Understanding Oracle Text Application Development

1 Understanding Oracle Text Application Development

This chapter discusses the following topics:

	
Introduction to Oracle Text

	
Document Collection Applications

	
Catalog Information Applications

	
Document Classification Applications

	
XML Search Applications

1.1 Introduction to Oracle Text

Oracle Text enables you to build text query applications and document classification applications. Oracle Text provides indexing, word and theme searching, and viewing capabilities for text.

To design an Oracle Text application, first determine the type of queries you expect to run. This enables you to choose the most suitable index for the task.

Consider the following three categories of applications for Oracle Text:

	
Document Collection Applications

	
Catalog Information Applications

	
Document Classification Applications

1.2 Document Collection Applications

A text query application enables users to search document collections, such as Web sites, digital libraries, or document warehouses. The collection is typically static with no significant change in content after the initial indexing run. Documents can be of any size and of different formats, such as HTML, PDF, or Microsoft Word. These documents are stored in a document table. Searching is enabled by first indexing the document collection.

Queries usually consist of words or phrases. Application users can specify logical combinations of words and phrases using operators such as OR and AND. Other query operations can be used to improve the search results, such as stemming, proximity searching, and wildcarding.

An important factor for this type of application is retrieving documents relevant to a query while retrieving as few non-relevant documents as possible. The most relevant documents must be ranked high in the result list.

The queries for this type of application are best served with a CONTEXT index on your document table. To query this index, the application uses the SQL CONTAINS operator in the WHERE clause of a SELECT statement.

Figure 1-1 Overview of Text Query Application

[image: Description of Figure 1-1 follows]

1.2.1 Flowchart of Text Query Application

A typical text query application on a document collection enables the user to enter a query. The application enters a CONTAINS query and returns a list, called a hitlist, of documents that satisfy the query. The results are usually ranked by relevance. The application enables the user to view one or more documents in the hitlist.

For example, an application might index URLs (HTML files) on the World Wide Web and provide query capabilities across the set of indexed URLs. Hitlists returned by the query application are composed of URLs that the user can visit.

Figure 1-2 illustrates the flowchart of how a user interacts with a simple query application:

	
The user enters a query.

	
The application runs a CONTAINS query.

	
The application presents a hitlist.

	
The user selects document from hitlist.

	
The application presents a document to the user for viewing.

Figure 1-2 Flowchart of a query application

[image: Description of Figure 1-2 follows]

1.3 Catalog Information Applications

Catalog information consists of inventory type information, such as that of an online book store or auction site. The stored information consists of text information, such as book titles, and related structured information, such as price. The information is usually updated regularly to keep the online catalog up to date with the inventory.

Queries are usually a combination of a text component and a structured component. Results are almost always sorted by a structured component, such as date or price. Good response time is always an important factor with this type of query application.

Catalog applications are best served by a CTXCAT index. Query this index with the CATSEARCH operator in the WHERE clause of a SELECT statement.

Figure 1-3 illustrates the relation of the catalog table, its CTXCAT index, and the catalog application that uses the CATSEARCH operator to query the index.

Figure 1-3 A Catalog Query Application

[image: Description of Figure 1-3 follows]

1.3.1 Flowchart for Catalog Query Application

A catalog application enables users to search for specific items in catalogs. For example, an online store application enables users to search for and purchase items in inventory. Typically, the user query consists of a text component that searches across the textual descriptions plus some other ordering criteria, such as price or date.

Figure 1-4 illustrates the flowchart of a catalog query application for an online electronics store.

	
The user enters the query, consisting of a text component (for example, cd player) and a structured component (for example, order by price).

	
The application executes the CATSEARCH query.

	
The application shows the results ordered accordingly.

	
The user browses the results.

	
The user then either enters another query or performs an action, such as purchasing the item.

Figure 1-4 Flowchart of a Catalog Query Application

[image: Description of Figure 1-4 follows]

1.4 Document Classification Applications

In a document classification application, an incoming stream or a set of documents is compared to a pre-defined set of rules. When a document matches one or more rules, the application performs some action.

For example, assume there is an incoming stream of news articles. You can define a rule to represent the category of Finance. The rule is essentially one or more queries that select document about the subject of Finance. The rule might have the form 'stocks or bonds or earnings'.

When a document arrives about a Wall Street earnings forecast and satisfies the rules for this category, the application takes an action, such as tagging the document as Finance or e-mailing one or more users.

To create a document classification application, create a table of rules and then create a CTXRULE index. To classify an incoming stream of text, use the MATCHES operator in the WHERE clause of a SELECT statement. See Figure 1-5 for the general flow of a classification application.

Figure 1-5 Overview of a Document Classification Application

[image: Description of Figure 1-5 follows]

1.5 XML Search Applications

An XML search application performs searches over XML documents. A regular document search usually searches across a set of documents to return documents that satisfy a text predicate; an XML search often uses the structure of the XML document to restrict the search. Typically, only that part of the document that satisfies the search is returned. For example, instead of finding all purchase orders that contain the word electric, the user might need only purchase orders in which the comment field contains electric.

Oracle Text enables you to perform XML searching using the following approaches:

	
Using Oracle Text

	
Using the Oracle XML DB Framework

	
Combining Oracle Text features with Oracle XML DB

1.5.1 Using Oracle Text

The CONTAINS operator is well suited to structured searching, enabling you to perform restrictive searches with the WITHIN, HASPATH, and INPATH operators. If you use a CONTEXT index, then you can also benefit from the following characteristics of Oracle Text searches:

	
Searches are token-based, whitespace-normalized

	
Hitlists are ranked by relevance

	
Case-sensitive searching

	
Section searching

	
Linguistic features such as stemming and fuzzy searching

	
Performance-optimized queries for large document sets

	
See Also:

"XML Section Searching with Oracle Text"

1.5.2 Using the Oracle XML DB Framework

With Oracle XML DB, you load your XML documents in an XMLType column. XML searching with Oracle XML DB usually consists of an XPATH expression within an existsNode(), extract(), or extractValue() query. This type of search can be characterized as follows:

	
It is a non-text search with equality and range on dates and numbers.

	
It is a string search that is character-based, where all characters are treated the same.

	
It has the ability to leverage the ora:contains() function with a CTXXPATH index to speed up existsNode() queries.

This type of search has the following disadvantages:

	
It has no special linguistic processing.

	
It uses exact matching, so there is no notion of relevance.

	
It can be very slow for some searches, such as wildcarding, as with:

WHERE col1 like '%dog%'

	
See Also:

Oracle XML DB Developer's Guide

1.5.3 Combining Oracle Text features with Oracle XML DB

You can combine the features of Oracle Text and Oracle XML DB for applications where you want to do a full-text retrieval, leveraging the XML structure by entering queries such as "find all nodes that contain the word Pentium." Do so in one of two ways:

	
Using the Text-on-XML Method

	
Using the XML-on-Text Method

	
See Also:

Oracle XML DB Developer's Guide and "XML Section Searching with Oracle Text"

1.5.3.1 Using the Text-on-XML Method

With Oracle Text, you can create a CONTEXT index on a column that contains XML data. The column type can be XMLType, but it can also be any supported type provided you use the correct index preference for XML data.

With the Text-on-XML method, use the standard CONTAINS query and add a structured constraint to limit the scope of a search to a particular section, field, tag, or attribute. This amounts to specifying the structure inside text operators, such as WITHIN, HASPATH, and INPATH.

For example, set up your CONTEXT index to create sections with XML documents. Consider the following XML document that defines a purchase order.

<?xml version="1.0"?>
<PURCHASEORDER pono="1">
 <PNAME>Po_1</PNAME>
 <CUSTNAME>John</CUSTNAME>
 <SHIPADDR>
 <STREET>1033 Main Street</STREET>
 <CITY>Sunnyvalue</CITY>
 <STATE>CA</STATE>
 </SHIPADDR>
 <ITEMS>
 <ITEM>
 <ITEM_NAME> Dell Computer </ITEM_NAME>
 <DESC> Pentium 2.0 Ghz 500MB RAM </DESC>
 </ITEM>
 <ITEM>
 <ITEM_NAME> Norelco R100 </ITEM_NAME>
 <DESC>Electric Razor </DESC>
 </ITEM>
 </ITEMS>
</PURCHASEORDER>

To query all purchase orders that contain Pentium within the item description section, use the WITHIN operator:

SELECT id from po_tab where CONTAINS(doc, 'Pentium WITHIN desc') > 0;

Specify more complex criteria with XPATH expressions using the INPATH operator:

SELECT id from po_tab where CONTAINS(doc, 'Pentium INPATH (/purchaseOrder/items/item/desc') > 0;

1.5.3.2 Using the XML-on-Text Method

With the XML-on-Text method, you add text operations to an XML search. This includes using the ora:contains() function in the XPATH expression with existsNode(), extract(), and extractValue() queries. This amounts to including the full-text predicate inside the structure. For example:

SELECT
 Extract(doc, '/purchaseOrder//desc{ora:contains(.,"pentium")>0]',
 'xmlns:ora=http://xmlns.oracle.com/xdb')
"Item Comment" FROM po_tab_xmltype
/

Additionally you can improve the performance of existsNode(), extract(), and extractValue() queries using the CTXXPATH Text domain index.

8 Searching Document Sections in Oracle Text

This chapter describes how to use document sections in an Oracle Text query application.

The following topics are discussed in this chapter:

	
About Oracle Text Document Section Searching

	
HTML Section Searching with Oracle Text

	
XML Section Searching with Oracle Text

8.1 About Oracle Text Document Section Searching

Section searching enables you to narrow text queries down to blocks of text within documents. Section searching is useful when your documents have internal structure, such as HTML and XML documents.

You can also search for text at the sentence and paragraph level.

This section contains these topics:

	
Enabling Oracle Text Section Searching

	
Oracle Text Section Types

8.1.1 Enabling Oracle Text Section Searching

The steps for enabling section searching for your document collection are:

	
Create a section group

	
Define your sections

	
Index your documents

	
Section search with WITHIN, INPATH, or HASPATH operators

8.1.1.1 Create a Section Group

Section searching is enabled by defining section groups. You use one of the system-defined section groups to create an instance of a section group. Choose a section group appropriate for your document collection.

You use section groups to specify the type of document set you have and implicitly indicate the tag structure. For instance, to index HTML tagged documents, you use the HTML_SECTION_GROUP. Likewise, to index XML tagged documents, you can use the XML_SECTION_GROUP.

Table 8-1 lists the different types of section groups you can use:

Table 8-1 Types of Section Groups

	Section Group Preference	Description
	
NULL_SECTION_GROUP

	
This is the default. Use this group type when you define no sections or when you define only SENTENCE or PARAGRAPH sections.

	
BASIC_SECTION_GROUP

	
Use this group type for defining sections where the start and end tags are of the form <A> and .

Note: This group type dopes not support input such as unbalanced parentheses, comments tags, and attributes. Use HTML_SECTION_GROUP for this type of input.

	
HTML_SECTION_GROUP

	
Use this group type for indexing HTML documents and for defining sections in HTML documents.

	
XML_SECTION_GROUP

	
Use this group type for indexing XML documents and for defining sections in XML documents.

	
AUTO_SECTION_GROUP

	
Use this group type to automatically create a zone section for each start-tag/end-tag pair in an XML document. The section names derived from XML tags are case-sensitive as in XML.

Attribute sections are created automatically for XML tags that have attributes. Attribute sections are named in the form tag@attribute.

Stop sections, empty tags, processing instructions, and comments are not indexed.

The following limitations apply to automatic section groups:

	
You cannot add zone, field or special sections to an automatic section group.

	
Automatic sectioning does not index XML document types (root elements.) However, you can define stop-sections with document type.

	
The length of the indexed tags including prefix and namespace cannot exceed 64 bytes. Tags longer than this are not indexed.

	
PATH_SECTION_GROUP

	
Use this group type to index XML documents. Behaves like the AUTO_SECTION_GROUP.

The difference is that with this section group you can do path searching with the INPATH and HASPATH operators. Queries are also case-sensitive for tag and attribute names.

	
NEWS_SECTION_GROUP

	
Use this group for defining sections in newsgroup formatted documents according to RFC 1036.

	
Note:

Documents sent to the HTML, XML, AUTO and PATH sectioners must begin with \s*<, where \s* represents zero or more whitespace characters. Otherwise, the document is treated as a plaintext document, and no sections are recognized.

You use the CTX_DDL package to create section groups and define sections as part of section groups. For example, to index HTML documents, create a section group with HTML_SECTION_GROUP:

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
end;

8.1.1.2 Define Your Sections

You define sections as part of the section group. The following example defines an zone section called heading for all text within the HTML < H1> tag:

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_zone_section('htmgroup', 'heading', 'H1');
end;

	
Note:

If you are using the AUTO_SECTION_GROUP or PATH_SECTION_GROUP to index an XML document collection, then you need not explicitly define sections. The system does this for you during indexing.

	
See Also:

	
"Oracle Text Section Types" for more information about sections

	
"XML Section Searching with Oracle Text" for more information about section searching with XML

8.1.1.3 Index Your Documents

When you index your documents, you specify your section group in the parameter clause of CREATE INDEX.

create index myindex on docs(htmlfile) indextype is ctxsys.context
parameters('filter ctxsys.null_filter section group htmgroup');

8.1.1.4 Section Searching with the WITHIN Operator

When your documents are indexed, you can query within sections using the WITHIN operator. For example, to find all the documents that contain the word Oracle within their headings, enter the following query:

'Oracle WITHIN heading'

	
See Also:

Oracle Text Reference to learn more about using the WITHIN operator

8.1.1.5 Path Searching with INPATH and HASPATH Operators

When you use the PATH_SECTION_GROUP, the system automatically creates XML sections for you. In addition to using the WITHIN operator to enter queries, you can enter path queries with the INPATH and HASPATH operators.

	
See Also:

	
"XML Section Searching with Oracle Text" to learn more about using these operators

	
Oracle Text Reference to learn more about using the INPATH operator

8.1.2 Oracle Text Section Types

All section types are blocks of text in a document. However, sections can differ in the way that they are delimited and the way that they are recorded in the index. Sections can be one of the following types:

	
Zone Section

	
Field Section

	
Stop Section

	
MDATA Section

	
SDATA Section

	
Attribute Section (for XML documents)

	
Special Sections (sentence or paragraphs)

Table 8-2 shows which section types may be used with each kind of section group.

Table 8-2 Section Types and Section Groups

	Section Group	ZONE	FIELD	STOP	MDATA	SDATA	ATTRIBUTE	SPECIAL
	
NULL

	
NO

	
NO

	
NO

	
NO

	
NO

	
NO

	
YES

	
BASIC

	
YES

	
YES

	
NO

	
YES

	
YES

	
NO

	
YES

	
HTML

	
YES

	
YES

	
NO

	
YES

	
YES

	
NO

	
YES

	
XML

	
YES

	
YES

	
NO

	
YES

	
YES

	
YES

	
YES

	
NEWS

	
YES

	
YES

	
NO

	
YES

	
YES

	
NO

	
YES

	
AUTO

	
NO

	
NO

	
YES

	
NO

	
NO

	
NO

	
NO

	
PATH

	
NO

	
NO

	
NO

	
NO

	
NO

	
NO

	
NO

8.1.2.1 Zone Section

A zone section is a body of text delimited by start and end tags in a document. The positions of the start and end tags are recorded in the index so that any words in between the tags are considered to be within the section. Any instance of a zone section must have a start and an end tag.

For example, the text between the <TITLE> and </TITLE> tags can be defined as a zone section as follows:

<TITLE>Tale of Two Cities</TITLE>
It was the best of times...

Zone sections can nest, overlap, and repeat within a document.

When querying zone sections, you use the WITHIN operator to search for a term across all sections. Oracle Text returns those documents that contain the term within the defined section.

Zone sections are well suited for defining sections in HTML and XML documents. To define a zone section, use CTX_DDL.ADD_ZONE_SECTION.

For example, assume you define the section booktitle as follows:

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_zone_section('htmgroup', 'booktitle', 'TITLE');
end;

After you index, you can search for all the documents that contain the term Cities within the section booktitle as follows:

'Cities WITHIN booktitle'

With multiple query terms such as (dog and cat) WITHIN booktitle, Oracle Text returns those documents that contain cat and dog within the same instance of a booktitle section.

8.1.2.1.1 Repeated Zone Sections

Zone sections can repeat. Each occurrence is treated as a separate section. For example, if <H1> denotes a heading section, they can repeat in the same documents as follows:

<H1> The Brown Fox </H1>
<H1> The Gray Wolf </H1>

Assuming that these zone sections are named Heading, the query Brown WITHIN Heading returns this document. However, a query of (Brown and Gray) WITHIN Heading does not.

8.1.2.1.2 Overlapping Zone Sections

Zone sections can overlap each other. For example, if and <I> denote two different zone sections, they can overlap in a document as follows:

plain bold <I> bold and italic only italic </I> plain

8.1.2.1.3 Nested Zone Sections

Zone sections can nest, including themselves as follows:

<TD> <TABLE><TD>nested cell</TD></TABLE></TD>

Using the WITHIN operator, you can write queries to search for text in sections within sections. For example, assume the BOOK1, BOOK2, and AUTHOR zone sections occur as follows in documents doc1 and doc2:

doc1:

<book1> <author>Scott Tiger</author> This is a cool book to read.</book1>

doc2:

<book2> <author>Scott Tiger</author> This is a great book to read.</book2>

Consider the nested query:

'(Scott within author) within book1'

This query returns only doc1.

8.1.2.2 Field Section

A field section is similar to a zone section in that it is a region of text delimited by start and end tags. A field section is different from a zone section in that the region is indexed separately from the rest of the document.

Since field sections are indexed differently, you can also get better query performance over zone sections for when you have a large number of documents indexed.

Field sections are more suited to when you have a single occurrence of a section in a a document such as a field in a news header. Field sections can also be made visible to the rest of the document.

Unlike zone sections, field sections have the following restrictions:

	
Field sections cannot overlap

	
Field sections cannot repeat

	
Field sections cannot nest

8.1.2.2.1 Visible and Invisible Field Sections

By default, field sections are indexed as a sub-document separate from the rest of the document. As such, field sections are invisible to the surrounding text and can only be queried by explicitly naming the section in the WITHIN clause.

You can make field sections visible if you want the text within the field section to be indexed as part of the enclosing document. Text within a visible field section can be queried with or without the WITHIN operator.

The following example shows the difference between using invisible and visible field sections.

The following code defines a section group basicgroup of the BASIC_SECTION_GROUP type. It then creates a field section in basicgroup called Author for the <A> tag. It also sets the visible flag to FALSE to create an invisible section:

begin
ctx_ddl.create_section_group('basicgroup', 'BASIC_SECTION_GROUP');
ctx_ddl.add_field_section('basicgroup', 'Author', 'A', FALSE);
end;

Because the Author field section is not visible, to find text within the Author section, you must use the WITHIN operator as follows:

'(Martin Luther King) WITHIN Author'

A query of Martin Luther King without the WITHIN operator does not return instances of this term in field sections. If you want to query text within field sections without specifying WITHIN, you must set the visible flag to TRUE when you create the section as follows:

begin
ctx_ddl.add_field_section('basicgroup', 'Author', 'A', TRUE);
end;

8.1.2.2.2 Nested Field Sections

Field sections cannot be nested. For example, if you define a field section to start with <TITLE> and define another field section to start with <FOO>, the two sections cannot be nested as follows:

<TITLE> dog <FOO> cat </FOO> </TITLE>

To work with nested sections, define them as zone sections.

8.1.2.2.3 Repeated Field Sections

Repeated field sections are allowed, but WITHIN queries treat them as a single section. The following is an example of repeated field section in a document:

<TITLE> cat </TITLE>
<TITLE> dog </TITLE>

The query dog and cat within title returns the document, even though these words occur in different sections.

To have WITHIN queries distinguish repeated sections, define them as zone sections.

8.1.2.3 Stop Section

A stop section may be added to an automatic section group. Adding a stop section causes the automatic section indexing operation to ignore the specified section in XML documents.

	
Note:

Adding a stop section causes no section information to be created in the index. However, the text within a stop section is always searchable.

Adding a stop section is useful when your documents contain many low-information tags. Adding stop sections also improves indexing performance with the automatic section group.

The number of stop sections you can add is unlimited.

Stop sections do not have section names and hence are not recorded in the section views.

8.1.2.4 MDATA Section

An MDATA section is used to reference user-defined metadata for a document. Using MDATA sections can speed up mixed queries.

Consider the case in which you want to query both according to text content and document type (magazine or newspaper or novel). You could create an index with a column for text and a column for the document type, and then perform a mixed query of this form—in this case, searching for all novels with the phrase Adam Thorpe (author of the novel Ulverton):

SELECT id FROM documents
 WHERE doctype = 'novel'
 AND CONTAINS(text, 'Adam Thorpe')>0;

However, it is usually faster to incorporate the attribute (in this case, the document type) into a field section, rather than use a separate column, and then use a single CONTAINS query:

SELECT id FROM documents
 WHERE CONTAINS(text, 'Adam Thorpe AND novel WITHIN doctype')>0;

There are two drawbacks to this approach:

	
Each time the attribute is updated, the entire text document must be re-indexed, resulting in increased index fragmentation and slower rates of processing DML.

	
Field sections tokenize the section value. This has several effects. Special characters in metadata, such as decimal points or currency characters, are not easily searchable; value searching (searching for Thurston Howell but not Thurston Howell, Jr.) is difficult; multi-word values are queried by phrase, which is slower than single-token searching; and multi-word values do not show up in browse-words, making author browsing or subject browsing impossible.

For these reasons, using MDATA sections instead of field sections may be worthwhile. MDATA sections are indexed like field sections, but metadata values can be added to and removed from documents without the need to re-index the document text. Unlike field sections, MDATA values are not tokenized. Additionally, MDATA section indexing generally takes up less disk space than field section indexing.

Use CTX_DDL.ADD_MDATA_SECTION to add an MDATA section to a section group. This example adds an MDATA section called AUTHOR and gives it the value Soseki Natsume (author of the novel Kokoro).

ctx_ddl.create.section.group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_mdata_section('htmgroup', 'author', 'Soseki Natsume');

MDATA values can be changed with CTX_DDL.ADD_MDATA and removed with CTX_DDL.REMOVE_MDATA. Also, MDATA sections can have multiple values. Only the owner of the index is allowed to call CTX_DDL.ADD_MDATA and CTX_DDL.REMOVE_MDATA.

Neither CTX_DDL.ADD_MDATA nor CTX_DDL.REMOVE_MDATA are supported for CTXCAT, CTXXPTH and CTXRULE indexes.

MDATA values are not passed through a lexer. Instead, all values undergo a simplified normalization:

	
Leading and trailing whitespace on the value is removed.

	
The value is truncated to 64 bytes.

	
The value is indexed as a single value; if the value consists of multiple words, it is not broken up.

	
Case is preserved. If the document is dynamically generated, you can implement case-insensitivity by uppercasing MDATA values and making sure to search only in uppercase.

After a document has had MDATA metadata added to it, you can query for that metadata using the MDATA CONTAINS query operator:

SELECT id FROM documents
 WHERE CONTAINS(text, 'Tokyo and MDATA(author, Soseki Natsume)')>0;

This query will only be successful if an AUTHOR tag has the exact value Soseki Natsume (after simplified tokenization). Soseki or Natsume Soseki will not work.

Other things to note about MDATA:

	
MDATA values are not highlightable, will not appear in the output of CTX_DOC.TOKENS, and will not show up when FILTER PLAINTEXT is enabled.

	
MDATA sections must be unique within section groups. You cannot have an MDATA section named FOO and a zone or field section of the same name in the same section group.

	
Like field sections, MDATA sections cannot overlap or nest. An MDATA section is implicitly closed by the first tag encountered. For instance, in this example:

<AUTHOR>Dickens Shelley Keats</AUTHOR>

The tag closes the AUTHOR MDATA section; as a result, this document has an AUTHOR of 'Dickens', but not of 'Shelley' or 'Keats'.

	
To prevent race conditions, each call to ADD_MDATA and REMOVE_MDATA locks out other calls on that rowid for that index for all values and sections. However, since ADD_MDATA and REMOVE_MDATA do not commit, it is possible for an application to deadlock when calling them both. It is the application's responsibility to prevent deadlocking.

	
See Also:

	
The CONTAINS query operators chapter of the Oracle Text Reference for information on the MDATA operator

	
The CTX_DDL package chapter of Oracle Text Reference for information on adding and removing MDATA sections

8.1.2.5 NDATA Section

Fields containing data to be indexed for name searching can be specified exclusively by adding NDATA sections to section groups of type: BASIC_SECTION_GROUP, HTML_SECTION_GROUP, or XML_SECTION_GROUP.

Users can synthesize textual documents, which contain name data, using two possible datastores: MULTI_COLUMN_DATASTORE or USER_DATASTORE. The following is an example of using MULTI_COLUMN_DATASTORE to pick up relevant columns containing the name data for indexing:

create table people(firstname varchar2(80), surname varchar2(80));
 insert into people values('John', 'Smith');
 commit;
 begin
 ctx_ddl.create_preference('nameds', 'MULTI_COLUMN_DATASTORE');
 ctx_ddl.set_attribute('nameds', 'columns', 'firstname,surname');
 end;
 /

This produces the following virtual text for indexing:

<FIRSTNAME>
John
</FIRSTNAME>
<SURNAME>
Smith
</SURNAME>

You can then create NDATA sections for FIRSTNAME and SURNAME sections:

begin
 ctx_ddl.create_section_group('namegroup', 'BASIC_SECTION_GROUP');
 ctx_ddl.add_ndata_section('namegroup', 'FIRSTNAME', 'FIRSTNAME');
 ctx_ddl.add_ndata_section('namegroup', 'SURNAME', 'SURNAME');
end;
/

Then create the index using the datastore preference and section group preference created earlier:

create index peopleidx on people(firstname) indextype is ctxsys.context
parameters('section group namegroup datastore nameds');

NDATA sections support both single- and multi-byte data, however, there are character- and term-based limitations. NDATA section data that is indexed is constrained as follows:

	
the number of characters in a single, white space delimited term

511

	
the number of white space delimited terms

255

	
the total number of characters, including white spaces

511

8.1.2.6 SDATA Section

The value of an SDATA section is extracted from the document text like other sections, but is indexed as structured data, also referred to as SDATA. Using SDATA sections supports operations such as projection, range searches, and ordering. It also enables SDATA indexing of section data such as embedded tags, and detail table or function invocations. This enables you to perform various combinations of text and structured searches in one single SQL statement.

SDATA operators should be used only as descendants of AND operators that also have non-SDATA children. SDATA operators are meant to be used as secondary, checking or non-driving, criteria. For instance, "find documents with DOG that also have price > 5", rather than "find documents with rating > 4". Other uses will operate properly, but may not have optimal performance.

You use CTX_DDL.ADD_SDATA_SECTION to add an SDATA section to a section group. When querying within an SDATA section, you use the CONTAINS operator. The following example creates a table called items, and adds an SDATA section called my_sec_group, and then queries SDATA in the section.

Create the table items:

CREATE TABLE items
(id NUMBER PRIMARY KEY,
 doc VARCHAR2(4000));

INSERT INTO items VALUES (1, '<description> Honda Pilot </description>
 <category> Cars & Trucks </category>
 <price> 27000 </price>');
INSERT INTO items VALUES (2, '<description> Toyota Sequoia </description>
 <category> Cars & Trucks </category>
 <price> 35000 </price>');
INSERT INTO items VALUES (3, '<description> Toyota Land Cruiser </description>
 <category> Cars & Trucks </category>
 <price> 45000 </price>');
INSERT INTO items VALUES (4, '<description> Palm Pilot </description>
 <category> Electronics </category>
 <price> 5 </price>');
INSERT INTO items VALUES (5, '<description> Toyota Land Cruiser Grill </description>
 <category> Parts & Accessories </category>
 <price> 100 </price>');
COMMIT;

Add SDATA section my_sec_group:

BEGIN
 CTX_DDL.CREATE_SECTION_GROUP('my_sec_group', 'BASIC_SECTION_GROUP');
 CTX_DDL.ADD_SDATA_SECTION('my_sec_group', 'category', 'category', 'VARCHAR2');
 CTX_DDL.ADD_SDATA_SECTION('my_sec_group', 'price', 'price', 'NUMBER');
END;

Create the CONTEXT index:

CREATE INDEX items$doc
 ON items(doc)
 INDEXTYPE IS CTXSYS.CONTEXT
 PARAMETERS('SECTION GROUP my_sec_group');

Run a query:

SELECT id, doc
 FROM items
 WHERE contains(doc, 'Toyota
 AND SDATA(category = ''Cars & Trucks'')
 AND SDATA(price <= 40000)') > 0;

Return the results:

 ID DOC
---- --
 2 <description> Toyota Sequoia </description>
 <category> Cars & Trucks </category>
 <price> 35000 </price>

	
See Also:

	
The CONTAINS query operators chapter of the Oracle Text Reference for information on the SDATA operator

	
The CTX_DDL package chapter of Oracle Text Reference for information on adding SDATA sections

8.1.2.7 Attribute Section

You can define attribute sections to query on XML attribute text. You can also have the system automatically define and index XML attributes for you.

	
See Also:

"XML Section Searching with Oracle Text"

8.1.2.8 Special Sections

Special sections are not recognized by tags. Currently the only special sections supported are sentence and paragraph. This enables you to search for combination of words within sentences or paragraphs.

The sentence and paragraph boundaries are determined by the lexer. For example, the BASIC_LEXER recognizes sentence and paragraph section boundaries as follows:

Table 8-3 Sentence and Paragraph Section Boundaries for BASIC_LEXER

	Special Section	Boundary
	
SENTENCE

	
WORD/PUNCT/WHITESPACE

	
	
WORD/PUNCT/NEWLINE

	
PARAGRAPH

	
WORD/PUNCT/NEWLINE/WHITESPACE

	
	
WORD/PUNCT/NEWLINE/NEWLINE

If the lexer cannot recognize the boundaries, no sentence or paragraph sections are indexed.

To add a special section, use the CTX_DDL.ADD_SPECIAL_SECTION procedure. For example, the following code enables searching within sentences within HTML documents:

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_special_section('htmgroup', 'SENTENCE');
end;

You can also add zone sections to the group to enable zone searching in addition to sentence searching. The following example adds the zone section Headline to the section group htmgroup:

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_special_section('htmgroup', 'SENTENCE');
ctx_ddl.add_zone_section('htmgroup', 'Headline', 'H1');
end;

8.2 HTML Section Searching with Oracle Text

HTML has internal structure in the form of tagged text which you can use for section searching. For example, you can define a section called headings for the <H1> tag. This enables you to search for terms only within these tags across your document set.

To query, you use the WITHIN operator. Oracle Text returns all documents that contain your query term within the headings section. Thus, if you wanted to find all documents that contain the word oracle within headings, enter the following query:

'oracle within headings'

This section contains these topics:

	
Creating HTML Sections

	
Searching HTML Meta Tags

8.2.1 Creating HTML Sections

The following code defines a section group called htmgroup of type HTML_SECTION_GROUP. It then creates a zone section in htmgroup called heading identified by the <H1> tag:

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_zone_section('htmgroup', 'heading', 'H1');
end;

You can then index your documents as follows:

create index myindex on docs(htmlfile) indextype is ctxsys.context
parameters('filter ctxsys.null_filter section group htmgroup');

After indexing with section group htmgroup, you can query within the heading section by issuing a query as follows:

'Oracle WITHIN heading'

8.2.2 Searching HTML Meta Tags

With HTML documents you can also create sections for NAME/CONTENT pairs in <META> tags. When you do so you can limit your searches to text within CONTENT.

8.2.2.1 Example: Creating Sections for <META>Tags

Consider an HTML document that has a META tag as follows:

<META NAME="author" CONTENT="ken">

To create a zone section that indexes all CONTENT attributes for the META tag whose NAME value is author:

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_zone_section('htmgroup', 'author', 'meta@author');
end

After indexing with section group htmgroup, you can query the document as follows:

'ken WITHIN author'

8.3 XML Section Searching with Oracle Text

Like HTML documents, XML documents have tagged text which you can use to define blocks of text for section searching. The contents of a section can be searched on with the WITHIN or INPATH operators.

The following sections describe the different types of XML searching:

	
Automatic Sectioning

	
Attribute Searching

	
Creating Document Type Sensitive Sections

	
Path Section Searching

8.3.1 Automatic Sectioning

You can set up your indexing operation to automatically create sections from XML documents using the section group AUTO_SECTION_GROUP. The system creates zone sections for XML tags. Attribute sections are created for the tags that have attributes and these sections named in the form tag@attribute.

For example, the following statement creates the index myindex on a column containing the XML files using the AUTO_SECTION_GROUP:

CREATE INDEX myindex
ON xmldocs(xmlfile)
 INDEXTYPE IS ctxsys.context
PARAMETERS ('datastore ctxsys.default_datastore
 filter ctxsys.null_filter
 section group ctxsys.auto_section_group'
);

8.3.2 Attribute Searching

You can search XML attribute text in one of two ways:

	
Create attribute sections with CTX_DDL.ADD_ATTR_SECTION and then index with XML_SECTION_GROUP. If you use AUTO_SECTION_GROUP when you index, attribute sections are created automatically. You can query attribute sections with the WITHIN operator.

	
Index with the PATH_SECTION_GROUP and query attribute text with the INPATH operator.

8.3.2.1 Creating Attribute Sections

Consider an XML file that defines the BOOK tag with a TITLE attribute as follows:

<BOOK TITLE="Tale of Two Cities">
 It was the best of times.
</BOOK>

To define the title attribute as an attribute section, create an XML_SECTION_GROUP and define the attribute section as follows:

begin
ctx_ddl.create_section_group('myxmlgroup', 'XML_SECTION_GROUP');
ctx_ddl.add_attr_section('myxmlgroup', 'booktitle', 'book@title');
end;

To index:

CREATE INDEX myindex
ON xmldocs(xmlfile)
INDEXTYPE IS ctxsys.context
PARAMETERS ('datastore ctxsys.default_datastore
 filter ctxsys.null_filter
 section group myxmlgroup'
);

You can query the XML attribute section booktitle as follows:

'Cities within booktitle'

8.3.2.2 Searching Attributes with the INPATH Operator

You can search attribute text with the INPATH operator. To do so, you must index your XML document set with the PATH_SECTION_GROUP.

	
See Also:

"Path Section Searching"

8.3.3 Creating Document Type Sensitive Sections

For an XML document set that contains the <book> tag declared for different document types, you may want to create a distinct book section for each document type. The following scenario shows how to create book sections for each document type to improve search capability.

Assume that mydocname1 is declared as an XML document type (root element) as follows:

<!DOCTYPE mydocname1 ... [...

Within mydocname1, the element <book> is declared. For this tag, you can create a section named mybooksec1 that is sensitive to the tag's document type as follows:

begin

ctx_ddl.create_section_group('myxmlgroup', 'XML_SECTION_GROUP');
ctx_ddl.add_zone_section('myxmlgroup', 'mybooksec1', 'mydocname1(book)');

end;

Assume that mydocname2 is declared as another XML document type (root element) as follows:

<!DOCTYPE mydocname2 ... [...

Within mydocname2, the element <book> is declared. For this tag, you can create a section named mybooksec2 that is sensitive to the tag's document type as follows:

begin

ctx_ddl.create_section_group('myxmlgroup', 'XML_SECTION_GROUP');
ctx_ddl.add_zone_section('myxmlgroup', 'mybooksec2', 'mydocname2(book)');

end;

To query within the section mybooksec1, use WITHIN as follows:

'oracle within mybooksec1'

8.3.4 Path Section Searching

XML documents can have parent-child tag structures such as:

<A> <C> dog </C>

In this scenario, tag C is a child of tag B which is a child of tag A.

With Oracle Text, you can do path searching with PATH_SECTION_GROUP. This section group enables you to specify direct parentage in queries, such as to find all documents that contain the term dog in element C which is a child of element B and so on.

With PATH_SECTION_GROUP, you can also perform attribute value searching and attribute equality testing.

The new operators associated with this feature are

	
INPATH

	
HASPATH

8.3.4.1 Creating an Index with PATH_SECTION_GROUP

To enable path section searching, index your XML document set with PATH_SECTION_GROUP. For example:

Create the preference.

begin
ctx_ddl.create_section_group('xmlpathgroup', 'PATH_SECTION_GROUP');
end;

Create the index.

CREATE INDEX myindex
ON xmldocs(xmlfile)
INDEXTYPE IS ctxsys.context
PARAMETERS ('datastore ctxsys.default_datastore
 filter ctxsys.null_filter
 section group xmlpathgroup'
);

When you create the index, you can use the INPATH and HASPATH operators.

8.3.4.2 Top-Level Tag Searching

To find all documents that contain the term dog in the top-level tag <A>:

dog INPATH (/A)

or

dog INPATH(A)

8.3.4.3 Any-Level Tag Searching

To find all documents that contain the term dog in the <A> tag at any level:

dog INPATH(//A)

This query finds the following documents:

<A>dog

and

<C><A>dog</C>

8.3.4.4 Direct Parentage Searching

To find all documents that contain the term dog in a B element that is a direct child of a top-level A element:

dog INPATH(A/B)

This query finds the following XML document:

<A>My dog is friendly.

but does not find:

<C>My dog is friendly.</C>

8.3.4.5 Tag Value Testing

You can test the value of tags. For example, the query:

dog INPATH(A[B="dog"])

Finds the following document:

<A>dog

But does not find:

<A>My dog is friendly.

8.3.4.6 Attribute Searching

You can search the content of attributes. For example, the query:

dog INPATH(//A/@B)

Finds the document

<C> </C>

8.3.4.7 Attribute Value Testing

You can test the value of attributes. For example, the query

California INPATH (//A[@B = "home address"])

Finds the document:

San Francisco, California, USA

But does not find:

San Francisco, California, USA

8.3.4.8 Path Testing

You can test if a path exists with the HASPATH operator. For example, the query:

HASPATH(A/B/C)

finds and returns a score of 100 for the document

<A><C>dog</C>

without the query having to reference dog at all.

8.3.4.9 Section Equality Testing with HASPATH

You can use the HASPATH operator to do section quality tests. For example, consider the following query:

dog INPATH A

finds

<A>dog

but it also finds

<A>dog park

To limit the query to the term dog and nothing else, you can use a section equality test with the HASPATH operator. For example,

HASPATH(A="dog")

finds and returns a score of 100 only for the first document, and not the second.

	
See Also:

Oracle Text Reference to learn more about using the INPATH and HASPATH operators

3 Indexing with Oracle Text

This chapter provides an introduction to Oracle Text indexing. The following topics are discussed:

	
About Oracle Text Indexes

	
Considerations For Indexing

	
Creating Oracle Text Indexes

	
Maintaining Oracle Text Indexes

	
Managing DML Operations for a CONTEXT Index

3.1 About Oracle Text Indexes

This section discusses the different types of Oracle Text indexes, their structure, the indexing process, and limitations. The following subjects are included:

	
Types of Oracle Text Indexes

	
Structure of the Oracle Text CONTEXT Index

	
The Oracle Text Indexing Process

	
Partitioned Tables and Indexes

	
Creating an Index Online

	
Parallel Indexing

	
Indexing and Views

3.1.1 Types of Oracle Text Indexes

With Oracle Text, you can create indexes of several types, using CREATE INDEX. Table 3-1 describes each index type, its purpose, and the features it supports.

Table 3-1 Oracle Text Index Types

	Index Type	Description	Supported Preferences and Parameters	Query Operator	Notes
	
CONTEXT

	
Use this index to build a text retrieval application when your text consists of large coherent documents. You can index documents of different formats such as MS Word, HTML or plain text.

You can customize the index in a variety of ways.

This index type requires CTX_DDL.SYNC_INDEX after DML on base table.

	
All CREATE INDEX preferences and parameters supported except for INDEX SET.

These supported parameters include the index partition clause, and the format, charset, and language columns.

	
CONTAINS

Grammar is called the CONTEXT grammar, which supports a rich set of operations.

The CTXCAT grammar can be used with query templating.

	
Supports all documents services and query services.

Supports indexing of partitioned text tables.

Supports FILTER BY and ORDER BY clauses of CREATE INDEX to also index structured column values for more efficient processing of mixed queries.

	
CTXCAT

	
Use this index type for better mixed query performance. Typically, with this index type, you index small documents or text fragments. Other columns in the base table, such as item names, prices, and descriptions can be included in the index to improve mixed query performance.

This index type is transactional, automatically updating itself after DML to base table. No CTX_DDL.SYNC_INDEX is necessary.

	
INDEX SET

LEXER

STOPLIST

STORAGE

WORDLIST (only prefix_index attribute supported for Japanese data)

Format, charset, and language columns not supported.

Table and index partitioning not supported.

	
CATSEARCH

Grammar is called CTXCAT, which supports logical operations, phrase queries, and wildcarding.

The CONTEXT grammar can be used with query templating.

Theme querying is supported.

	
This index is larger and takes longer to build than a CONTEXT index.

The size of a CTXCAT index is related to the total amount of text to be indexed, the number of indexes in the index set, and the number of columns indexed. Carefully consider your queries and your resources before adding indexes to the index set.

The CTXCAT index does not support table and index partitioning, documents services (highlighting, markup, themes, and gists) or query services (explain, query feedback, and browse words.)

	
CTXRULE

	
Use CTXRULE index to build a document classification or routing application. This index is created on a table of queries, where the queries define the classification or routing criteria.

	
See "CTXRULE Parameters and Limitations".

	
MATCHES

	
Single documents (plain text, HTML, or XML) can be classified using the MATCHES operator, which turns a document into a set of queries and finds the matching rows in the CTXRULE index.

	
CTXXPATH

	
Create this index when you need to speed up existsNode() queries on an XMLType column.

	
STORAGE

	
Use with existsNode()

	
This indextype is deprecated and is only supported for backward compatibility with older releases of Oracle Database where XMLIndex is not available. If you are building a new application, Oracle recommends that you use XMLIndex.

Can only create this index on XMLType column.

Although this index type can be helpful for existsNode() queries, it is not required for XML searching. See "XML Search Applications".

	
See Also:

"Creating Oracle Text Indexes"

An Oracle Text index is an Oracle Database domain index. To build your query application, you can create an index of type CONTEXT with a mixture of text and structured data columns, and query it with the CONTAINS operator.

You create an index from a populated text table. In a query application, the table must contain the text or pointers to where the text is stored. Text is usually a collection of documents, but can also be small text fragments.

For better performance for mixed queries, you can create a CONTEXT index with FILTER BY and/or ORDER BY clauses to specify relational columns that will be used in structured criteria of the mixed query. Query this index with the CONTAINS operator.

Use the CTXCAT index type when your application relies heavily on mixed queries to search small documents or descriptive text fragments based on related criteria such as dates or prices. Query this index with the CATSEARCH operator.

To build a document classification application using simple or rule-based classification, create an index of type CTXRULE. This index classifies plain text, HTML, or XML documents using the MATCHES operator. Store your defining query set in the text table you index.

If you are working with XMLtype columns, then create an XMLIndex index to speed up queries with existsNode.

	
Note:

The CTXXPATH index type is deprecated. It is only supported for backward compatibility with older releases of Oracle Database where XMLIndex is not available. If you are building a new application, then Oracle recommends that you use XMLIndex.

Create a text index as a type of extensible index to Oracle Database using standard SQL. This means that an Oracle Text index operates like an Oracle Database index. It has a name by which it is referenced and can be manipulated with standard SQL statements.

The benefits of a creating an Oracle Text index include fast response time for text queries with the CONTAINS, CATSEARCH, and MATCHES Oracle Text operators. These operators query the CONTEXT, CTXCAT, and CTXRULE index types respectively.

	
Note:

Because a transparent data encryption-enabled column does not support domain indexes, it cannot be used with Oracle Text. However, you can create an Oracle Text index on a column in a table stored in TDE-enabled tablespace.

	
See Also:

"Creating Oracle Text Indexes"

3.1.2 Structure of the Oracle Text CONTEXT Index

Oracle Text indexes text by converting all words into tokens. The general structure of an Oracle Text CONTEXT index is an inverted index where each token contains the list of documents (rows) that contain that token.

For example, after a single initial indexing operation, the word DOG might have an entry as follows:

	Word	Appears in Document
	DOG	DOC1 DOC3 DOC5

This means that the word DOG is contained in the rows that store documents one, three, and five.

3.1.2.1 Merged Word and Theme Index

By default in English and French, Oracle Text indexes theme information with word information. You can query theme information with the ABOUT operator. You can optionally enable and disable theme indexing.

	
See Also:

"Creating Preferences" to learn more about indexing theme information

3.1.3 The Oracle Text Indexing Process

This section describes the Oracle Text indexing process. Initiate the indexing process with the CREATE INDEX statement. Initiate the indexing process using the CREATE INDEX statement to create an Oracle Text index of tokens, organized according to the parameters and preferences you specify.

Figure 3-1 shows the indexing process. This process is a data stream that is acted upon by the different indexing objects. Each object corresponds to an indexing preference type or section group you can specify in the parameter string of CREATE INDEX or ALTER INDEX. The following sections describe these objects.

Figure 3-1 Oracle Text Indexing Process

[image: Description of Figure 3-1 follows]

3.1.3.1 Datastore Object

The stream starts with the datastore reading in the documents as they are stored in the system according to your datastore preference. For example, if you have defined your datastore as FILE_DATASTORE, then the stream starts by reading the files from the operating system. You can also store your documents on the Internet or in Oracle Database. Wherever your files reside physically, you must always have a text table in Oracle Database that points to the file.

3.1.3.2 Filter Object

The stream then passes through the filter. What happens here is determined by your FILTER preference. The stream can be acted upon in one of the following ways:

	
No filtering takes place. This happens when you specify the NULL_FILTER preference type or when the value of the format column is IGNORE. Documents that are plain text, HTML, or XML need no filtering.

	
Formatted documents (binary) are filtered to marked-up text. This happens when you specify the AUTO_FILTER preference type or when the value of the format column is BINARY.

	
Text is converted from a non-database character set to the database character set. This happens when you specify CHARSET_FILTER preference type.

3.1.3.3 Sectioner Object

After being filtered, the marked-up text passes through the sectioner that separates the stream into text and section information. Section information includes where sections begin and end in the text stream. The type of sections extracted is determined by your section group type.

The section information is passed directly to the indexing engine which uses it later. The text is passed to the lexer.

3.1.3.4 Lexer Object

You create a lexer preference using one of the Oracle Text lexer types to specify the language of the text to be indexed. The lexer breaks the text into tokens according to your language. These tokens are usually words. To extract tokens, the lexer uses the parameters as defined in your lexer preference. These parameters include the definitions for the characters that separate tokens such as whitespace, and whether to convert the text to all uppercase or to leave it in mixed case.

When theme indexing is enabled, the lexer analyzes your text to create theme tokens for indexing.

3.1.3.5 Indexing Engine

The indexing engine creates the inverted index that maps tokens to the documents that contain them. In this phase, Oracle Text uses the stoplist you specify to exclude stopwords or stopthemes from the index. Oracle Text also uses the parameters defined in your WORDLIST preference, which tell the system how to create a prefix index or substring index, if enabled.

3.1.4 Partitioned Tables and Indexes

You can create a partitioned CONTEXT index on a partitioned text table. The table must be partitioned by range. Hash, composite, and list partitions are not supported.

You might create a partitioned text table to partition your data by date. For example, if your application maintains a large library of dated news articles, you can partition your information by month or year. Partitioning simplifies the manageability of large databases, because querying, DML, and backup and recovery can act on a single partition.

On local CONTEXT indexes with multiple table sets, Oracle Text supports the number of partitions supported by Oracle Database.

	
Note:

The number of partitions supported in Oracle Text is approximately 1024K-1. This limit, which should be more than adequate, is not applicable to a CONTEXT index on partitioned tables.

	
See Also:

Oracle Database Concepts for more information about partitioning

3.1.4.1 Querying Partitioned Tables

To query a partitioned table, you use CONTAINS in the WHERE clause of a SELECT statement as you query a regular table. You can query the entire table or a single partition. However, if you are using the ORDER BY SCORE clause, Oracle recommends that you query single partitions unless you include a range predicate that limits the query to a single partition.

3.1.5 Creating an Index Online

When it is not practical to lock up your base table for indexing because of ongoing updates, you can create your index online with the ONLINE parameter of CREATE INDEX. This way an application with heavy DML need not stop updating the base table for indexing.

There are short periods, however, when the base table is locked at the beginning and end of the indexing process.

	
See Also:

Oracle Text Reference to learn more about creating an index online

3.1.6 Parallel Indexing

Oracle Text supports parallel indexing with CREATE INDEX.

When you enter a parallel indexing statement on a non-partitioned table, Oracle Text splits the base table into temporary partitions, spawns child processes, and assigns a child to a partition. Each child then indexes the rows in its partition. The method of slicing the base table into partitions is determined by Oracle and is not under your direct control. This is true as well for the number of child processes actually spawned, which depends on machine capabilities, system load, your init.ora settings, and other factors. Because of these variables, the actual parallel degree may not match the degree of parallelism requested.

Because indexing is an I/O intensive operation, parallel indexing is most effective in decreasing your indexing time when you have distributed disk access and multiple CPUs. Parallel indexing can only affect the performance of an initial index with CREATE INDEX. It does not affect DML performance with ALTER INDEX, and has minimal impact on query performance.

Because parallel indexing decreases the initial indexing time, it is useful for the following scenarios:

	
Data staging, when your product includes an Oracle Text index

	
Rapid initial startup of applications based on large data collections

	
Application testing, when you need to test different index parameters and schemas while developing your application

	
See Also:

	
"Parallel Queries on a Local Context Index"

	
"Frequently Asked Questions About Indexing Performance"

3.1.7 Indexing and Views

Oracle SQL standards do not support creating indexes on views. If you need to index documents whose contents are in different tables, you can create a data storage preference using the USER_DATASTORE object. With this object, you can define a procedure that synthesizes documents from different tables at index time.

	
See Also:

Oracle Text Reference to learn more about USER_DATASTORE

Oracle Text does support the creation of CONTEXT, CTXCAT, CTXRULE, and CTXXPATH indexes on materialized views (MVIEW).

3.2 Considerations For Indexing

Use the CREATE INDEX statement to create an Oracle Text index. When you create an index and specify no parameter string, an index is created with default parameters. You can create either a CONTEXT, CTXCAT, or CTXRULE index. This sections contains the following topics:

	
Location of Text

	
Document Formats and Filtering

	
Bypassing Rows for Indexing

	
Document Character Set

	
Document Language

	
Indexing Special Characters

	
Case-Sensitive Indexing and Querying

	
Language-Specific Features

	
Fuzzy Matching and Stemming

	
Better Wildcard Query Performance

	
Document Section Searching

	
Stopwords and Stopthemes

	
Index Performance

	
Query Performance and Storage of LOB Columns

	
Mixed Query Performance

You can also override the defaults and customize your index to suit your query application. The parameters and preference types you use to customize your index with CREATE INDEX fall into the following general categories.

3.2.1 Location of Text

The basic prerequisite for an Oracle Text query application is to have a populated text table. The text table is where you store information about your document collection and is required for indexing.

When you create a CONTEXT index, you can populate rows in your text table with one of the following elements:

	
Text information (can be documents or text fragments)

	
Path names of documents in your file system

	
URLs that specify World Wide Web documents

Figure 3-2 illustrates these different methods.

When creating a CTXCAT or CTXRULE index, only the first method shown is supported.

Figure 3-2 Different Ways of Storing Text

[image: Description of Figure 3-2 follows]

By default, the indexing operation expects your document text to be directly loaded in your text table, which is the first method shown previously.

However, when you create a CONTEXT index, you can specify the other ways of identifying your documents such as with filenames or with URLs by using the corresponding data storage indexing preference.

3.2.1.1 Supported Column Types

With Oracle Text, you can create a CONTEXT index with columns of type VARCHAR2, CLOB, BLOB, CHAR, BFILE, XMLType, and URIType.

	
Note:

The column types NCLOB, DATE and NUMBER cannot be indexed.

3.2.1.2 Storing Text in the Text Table

This section discusses how you can store text in directly in your table with the different indexes.

3.2.1.2.1 CONTEXT Data Storage

You can store documents in your text table in different ways.

You can store documents in one column using the DIRECT_DATASTORE data storage type or over a number of columns using the MULTI_COLUMN_DATASTORE type. When your text is stored over a number of columns, Oracle Text concatenates the columns into a virtual document for indexing.

You can also create master-detail relationships for your documents, where one document can be stored across a number of rows. To create master-detail index, use the DETAIL_DATASTORE data storage type.

You can also store your text in a nested table using the NESTED_DATASTORE type.

Oracle Text supports the indexing of the XMLType datatype, which you use to store XML documents.

3.2.1.2.2 CTXCAT Data Storage

In your text table, you can also store short text fragments such as names, descriptions, and addresses over a number of columns and create a CTXCAT index. A CTXCAT index improves performance for mixed queries.

3.2.1.3 Storing File Path Names

In your text table, you can store path names to files stored in your file system. When you do so, use the FILE_DATASTORE preference type during indexing. This method of data storage is supported for CONTEXT indexes only.

3.2.1.4 Storing URLs

You can store URL names to index Web sites. When you do so, use the URL_DATASTORE preference type during indexing. This method of data storage is supported for CONTEXT indexes only.

3.2.1.5 Storing Associated Document Information

In your text table, you can create additional columns to store structured information that your query application might need, such as primary key, date, description, or author.

3.2.1.6 Format and Character Set Columns

If your documents are of mixed formats or of mixed character sets, you can create the following additional columns:

	
A format column to record the format (TEXT or BINARY) to help filtering during indexing. You can also use the format column to ignore rows for indexing by setting the format column to IGNORE. This is useful for bypassing rows that contain data incompatible with text indexing such as images.

	
A character set column to record the document character set for each row.

When you create your index, you must specify the name of the format or character set column in the parameter clause of CREATE INDEX.

For all rows containing the keywords AUTO or AUTOMATIC in character set or language columns, Oracle Text will apply statistical techniques to determine the character set and language respectively of the documents and modify document indexing appropriately.

3.2.1.7 Supported Document Formats

Because the system can index most document formats including HTML, PDF, Microsoft Word, and plain text, you can load any supported type into the text column.

When you have mixed formats in your text column, you can optionally include a format column to help filtering during indexing. With the format column you can specify whether a document is binary (formatted) or text (non-formatted such as HTML). If you mix HTML and XML documents in 1 index, you might not be able to configure your index to your needs; you cannot prevent stylesheet information from being added to the index.

	
See Also:

Oracle Text Reference for more information about the supported document formats

3.2.1.8 Summary of DATASTORE Types

When you index with CREATE INDEX, you specify the location using the datastore preference. Use the appropriate datastore according to your application.

Table 3-2 summarizes the different ways you can store your text with the datastore preference type.

Table 3-2 Summary of DATASTORE Types

	Datastore Type	Use When
	
DIRECT_DATASTORE

	
Data is stored internally in a text column. Each row is indexed as a single document.

Your text column can be VARCHAR2, CLOB, BLOB, CHAR, or BFILE. XMLType columns are supported for the context index type.

	
MULTI_COLUMN_DATASTORE

	
Data is stored in a text table in more than one column. Columns are concatenated to create a virtual document, one document for each row.

	
DETAIL_DATASTORE

	
Data is stored internally in a text column. Document consists of one or more rows stored in a text column in a detail table, with header information stored in a master table.

	
FILE_DATASTORE

	
Data is stored externally in operating system files. Filenames are stored in the text column, one for each row.

	
NESTED_DATASTORE

	
Data is stored in a nested table.

	
URL_DATASTORE

	
Data is stored externally in files located on an intranet or the Internet. URLs are stored in the text column.

	
USER_DATASTORE

	
Documents are synthesized at index time by a user-defined stored procedure.

Indexing time and document retrieval time will be increased for indexing URLs, because the system must retrieve the document from the network.

	
See Also:

"Datastore Examples"

3.2.2 Document Formats and Filtering

Formatted documents such as Microsoft Word and PDF must be filtered to text to be indexed. The type of filtering the system uses is determined by the FILTER preference type. By default, the system uses the AUTO_FILTER filter type, which automatically detects the format of your documents and filters them to text.

Oracle Text can index most formats. Oracle Text can also index columns that contain documents with mixed formats.

3.2.2.1 No Filtering for HTML

If you are indexing HTML or plain text files, do not use the AUTO_FILTER type. For best results, use the NULL_FILTER preference type.

	
See Also:

"NULL_FILTER Example: Indexing HTML Documents"

3.2.2.2 Filtering Mixed-Format Columns

If you have a mixed-format column such as one that contains Microsoft Word, plain text, and HTML documents, you can bypass filtering for plain text or HTML by including a format column in your text table. In the format column, you tag each row TEXT or BINARY. Rows that are tagged TEXT are not filtered.

For example, you can tag the HTML and plain text rows as TEXT and the Microsoft Word rows as BINARY. You specify the format column in the CREATE INDEX parameter clause.

A third format column type, IGNORE, is provided for when you do not want a document to be indexed at all. This is useful, for example, when you have a mixed-format table that includes plain-text documents in both Japanese and English, but you only want to process the English documents; another example might be that of a mixed-format table that includes both plain-text documents and images. Because IGNORE is implemented at the datastore level, it can be used with all filters.

3.2.2.3 Custom Filtering

You can create your own custom filter to filter documents for indexing. You can create either an external filter that is executed from the file system or an internal filter as a PL/SQL or Java stored procedure.

For external custom filtering, use the USER_FILTER filter preference type.

For internal filtering, use the PROCEDURE_FILTER filter type.

	
See Also:

"PROCEDURE_FILTER Example"

3.2.3 Bypassing Rows for Indexing

You can bypass rows in your text table that are not to be indexed, such as rows that contain image data. To do so, create a format column in your table and set it to IGNORE. You name the format column in the parameter clause of CREATE INDEX.

3.2.4 Document Character Set

The indexing engine expects filtered text to be in the database character set. When you use the AUTO_FILTER filter type, formatted documents are converted to text in the database character set.

If your source is text and your document character set is not the database character set, then you can use the AUTO_FILTER or CHARSET_FILTER filter type to convert your text for indexing.

3.2.4.1 Character Set Detection

When the CHARSET column is set to AUTO, the AUTO_FILTER filter detects the character set of the document and converts it from the detected character set to the database character set, if there is a difference.

3.2.4.2 Mixed Character Set Columns

If your document set contains documents with different character sets, such as JA16EUC and JA16SJIS, you can index the documents provided you create a charset column. You populate this column with the name of the document character set for each row. You name the column in the parameter clause of the CREATE INDEX statement.

3.2.5 Document Language

Oracle Text can index most languages. By default, Oracle Text assumes the language of text to index is the language you specify in your database setup. Depending on the language of your documents, use one of the following lexer types:

Use the BASIC_LEXER preference type to index whitespace-delimited languages such as English, French, German, and Spanish. For some of these languages, you can enable alternate spelling, composite word indexing, and base letter conversion.

Use the MULTI_LEXER preference type for indexing tables containing documents of different languages such as English, German, and Japanese.

Use the USER_LEXER preference type to create your own lexer for indexing a particular language.

Use the WORLD_LEXER preference type for indexing tables containing documents of different languages and to autodetect the languages in the document.

You can also use other lexer types that are designed specifically to tokenize and index Japanese, Chinese, and Korean.

	
See Also:

Oracle Text Reference to learn more about indexing languages and lexer types

3.2.5.1 Language Features Outside BASIC_LEXER

With the BASIC_LEXER, Japanese, Chinese and Korean lexers, Oracle Text provides a lexing solution for most languages. For other languages, you can create your own lexing solution using the user-defined lexer interface. This interface enables you to create a PL/SQL or Java procedure to process your documents during indexing and querying.

You can also use the user-defined lexer to create your own theme lexing solution or linguistic processing engine.

	
See Also:

Oracle Text Reference to learn more about the user-defined lexer

3.2.5.2 Indexing Multi-language Columns

Oracle Text can index text columns that contain documents of different languages, such as a column that contains documents written in English, German, and Japanese. To index a multi-language column, you need a language column in your text table. Use the MULTI_LEXER preference type.

You can also incorporate a multi-language stoplist when you index multi-language columns.

	
See Also:

"MULTI_LEXER Example: Indexing a Multi-Language Table"

3.2.6 Indexing Special Characters

When you use the BASIC_LEXER preference type, you can specify how non-alphanumeric characters such as hyphens and periods are indexed in relation to the tokens that contain them. For example, you can specify that Oracle Text include or exclude hyphen character (-) when indexing a word such as web-site.

These characters fall into BASIC_LEXER categories according to the behavior you require during indexing. The way you set the lexer to behave for indexing is the way it behaves for query parsing.

Some of the special characters you can set are as follows:

	
Printjoin Characters

	
Skipjoin Characters

	
Other Characters

3.2.6.1 Printjoin Characters

Define a non-alphanumeric character as printjoin when you want this character to be included in the token during indexing.

For example, if you want your index to include hyphens and underscore characters, define them as printjoins. This means that words such as web-site are indexed as web-site. A query on website does not find web-site.

	
See Also:

"BASIC_LEXER Example: Setting Printjoin Characters"

3.2.6.2 Skipjoin Characters

Define a non-alphanumeric character as a skipjoin when you do not want this character to be indexed with the token that contains it.

For example, with the hyphen (-) character defined as a skipjoin, the word web-site is indexed as website. A query on web-site finds documents containing website and web-site.

3.2.6.3 Other Characters

Other characters can be specified to control other tokenization behavior such as token separation (startjoins, endjoins, whitespace), punctuation identification (punctuations), number tokenization (numjoins), and word continuation after line-breaks (continuation). These categories of characters have defaults, which you can modify.

	
See Also:

Oracle Text Reference to learn more about the BASIC_LEXER

3.2.7 Case-Sensitive Indexing and Querying

By default, all text tokens are converted to uppercase and then indexed. This results in case-insensitive queries. For example, separate queries on each of the three words cat, CAT, and Cat all return the same documents.

You can change the default and have the index record tokens as they appear in the text. When you create a case-sensitive index, you must specify your queries with exact case to match documents. For example, if a document contains Cat, you must specify your query as Cat to match this document. Specifying cat or CAT does not return the document.

To enable or disable case-sensitive indexing, use the mixed_case attribute of the BASIC_LEXER preference.

	
See Also:

Oracle Text Reference to learn more about the BASIC_LEXER

3.2.8 Language-Specific Features

You can enable the following language-specific features at index time:

	
Indexing Themes

	
Base-Letter Conversion for Characters with Diacritical Marks

	
Alternate Spelling

	
Composite Words

	
Korean, Japanese, and Chinese Indexing

3.2.8.1 Indexing Themes

For English and French, you can index document theme information. A document theme is a concept that is sufficiently developed in the document. Themes can be queried with the ABOUT operator.

You can index theme information in other languages provided you have loaded and compiled a knowledge base for the language.

By default themes are indexed in English and French. You can enable and disable theme indexing with the index_themes attribute of the BASIC_LEXER preference type.

	
See Also:

	
Oracle Text Reference to learn more about the BASIC_LEXER

	
"ABOUT Queries and Themes"

3.2.8.2 Base-Letter Conversion for Characters with Diacritical Marks

Some languages contain characters with diacritical marks such as tildes, umlauts, and accents. When your indexing operation converts words containing diacritical marks to their base letter form, queries need not contain diacritical marks to score matches. For example in Spanish with a base-letter index, a query of energía matches energía and energia in the index.

However, with base-letter indexing disabled, a query of energía matches only energía.

You can enable and disable base-letter indexing for your language with the base_letter attribute of the BASIC_LEXER preference type.

	
See Also:

Oracle Text Reference to learn more about the BASIC_LEXER

3.2.8.3 Alternate Spelling

Languages such as German, Danish, and Swedish contain words that have more than one accepted spelling. For instance, in German, ae can be substituted for ä. The ae character pair is known as the alternate form.

By default, Oracle Text indexes words in their alternate forms for these languages. Query terms are also converted to their alternate forms. The result is that these words can be queried with either spelling.

You can enable and disable alternate spelling for your language using the alternate_spelling attribute in the BASIC_LEXER preference type.

	
See Also:

Oracle Text Reference to learn more about the BASIC_LEXER

3.2.8.4 Composite Words

German and Dutch text contain composite words. By default, Oracle Text creates composite indexes for these languages. The result is that a query on a term returns words that contain the term as a sub-composite.

For example, in German, a query on the term Bahnhof (train station) returns documents that contain Bahnhof or any word containing Bahnhof as a sub-composite, such as Hauptbahnhof, Nordbahnhof, or Ostbahnhof.

You can enable and disable the creation of composite indexes with the composite attribute of the BASIC_LEXER preference.

	
See Also:

Oracle Text Reference to learn more about the BASIC_LEXER

3.2.8.5 Korean, Japanese, and Chinese Indexing

Index these languages with specific lexers:

Table 3-3 Lexers for Asian Languages

	Language	Lexer
	
Korean

	
KOREAN_MORPH_LEXER

	
Japanese

	
JAPANESE_LEXER, JAPANESE_VGRAM_LEXER

	
Chinese

	
CHINESE_LEXER,CHINESE_VGRAM_LEXER

These lexers have their own sets of attributes to control indexing.

	
See Also:

Oracle Text Reference to learn more about these lexers

3.2.9 Fuzzy Matching and Stemming

Fuzzy matching enables you to match similarly spelled words in queries.

Stemming enables you to match words with the same linguistic root. For example a query on $speak, expands to search for all documents that contain speak, speaks, spoke, and spoken.

Fuzzy matching and stemming are automatically enabled in your index if Oracle Text supports this feature for your language.

Fuzzy matching is enabled with default parameters for its similarity score lower limit and for its maximum number of expanded terms. At index time you can change these default parameters.

To improve the performance of stem queries, create a stem index by enabling the index_stems attribute of the BASIC_LEXER.

	
See Also:

Oracle Text Reference

3.2.10 Better Wildcard Query Performance

Wildcard queries enable you to enter left-truncated, right-truncated and doubly truncated queries, such as %ing, cos%, or %benz%. With normal indexing, these queries can sometimes expand into large word lists, degrading your query performance.

Wildcard queries have better response time when token prefixes and substrings are recorded in the index.

By default, token prefixes and substrings are not recorded in the Oracle Text index. If your query application makes heavy use of wildcard queries, consider indexing token prefixes and substrings. To do so, use the wordlist preference type. The trade-off is a bigger index for improved wildcard searching.

	
See Also:

"BASIC_WORDLIST Example: Enabling Substring and Prefix Indexing"

3.2.11 Document Section Searching

For documents that have internal structure such as HTML and XML, you can define and index document sections. Indexing document sections enables you to narrow the scope of your queries to within pre-defined sections. For example, you can specify a query to find all documents that contain the term dog within a section you define as Headings.

Sections must be defined prior to indexing and specified with the section group preference.

Oracle Text provides section groups with system-defined section definitions for HTML and XML. You can also specify that the system automatically create sections from XML documents during indexing.

	
See Also:

Chapter 8, "Searching Document Sections in Oracle Text"

3.2.12 Stopwords and Stopthemes

A stopword is a word that is not to be indexed. Usually stopwords are low information words in a given language such as this and that in English.

By default, Oracle Text provides a list of stopwords called a stoplist for indexing a given language. You can modify this list or create your own with the CTX_DDL package. You specify the stoplist in the parameter string of CREATE INDEX.

A stoptheme is a word that is prevented from being theme-indexed or prevented from contributing to a theme. You can add stopthemes with the CTX_DDL package.

You can search document themes with the ABOUT operator. You can retrieve document themes programatically with the CTX_DOC PL/SQL package.

3.2.12.1 Language Detection and Stoplists

At query time, the language of the query is inherited from the query template, or from the session language (if no language is specified through the query template).

3.2.12.2 Multi-Language Stoplists

You can also create multi-language stoplists to hold language-specific stopwords. A multi-language stoplist is useful when you use the MULTI_LEXER to index a table that contains documents in different languages, such as English, German, and Japanese.

At index creation, the language column of each document is examined, and only the stopwords for that language are eliminated. At query time, the session language setting determines the active stopwords, like it determines the active lexer when using the multi-lexer.

3.2.13 Index Performance

There are factors that influence indexing performance including memory allocation, document format, degree of parallelism, and partitioned tables.

	
See Also:

"Frequently Asked Questions About Indexing Performance"

3.2.14 Query Performance and Storage of LOB Columns

If your table contains LOB structured columns that are frequently accessed in queries but rarely updated, you can improve query performance by storing these columns out of line.

	
Note:

You cannot map attributes to a remote LOB column.

	
See Also:

"Does out of line LOB storage of wide base table columns improve performance?"

3.2.15 Mixed Query Performance

If your CONTAINS() query also has structured predicates on the non-text columns, then you may consider having the Text index also index those column values. To do so, specify those columns in the FILTER BY clause of the CREATE INDEX statement. This enables Oracle Text to determine whether to have the structured predicate(s) also be processed by the Text index for better performance.

Additionally, if your CONTAINS() query has ORDER BY criteria on one or more structured columns, then the Text index can also index those column values. Specify those columns in the ORDER BY clause of the CREATE INDEX statement. This enables Oracle Text to determine whether to push the sort into the Text index for better query response time.

	
See Also:

"CONTEXT Index Example: Query Processing with FILTER BY and ORDER BY"

3.3 Creating Oracle Text Indexes

You can create four types of indexes with Oracle Text: CONTEXT, CTXCAT, and CTXRULE, and CTXXPATH. The section contains these topics:

	
Summary of Procedure for Creating a Text Index

	
Creating Preferences

	
Creating Section Groups for Section Searching

	
Using Stopwords and Stoplists

	
Creating a CONTEXT Index

	
Creating a CTXCAT Index

	
Creating a CTXRULE Index

3.3.1 Summary of Procedure for Creating a Text Index

By default, the system expects your documents to be stored in a text column. Once this requirement is satisfied, you can create a Text index using the CREATE INDEX SQL statement as an extensible index of type CONTEXT, without explicitly specifying any preferences. The system automatically detects your language, the datatype of the text column, format of documents, and sets indexing preferences accordingly.

	
See Also:

Default CONTEXT Index Example

To create an Oracle Text index:

	
Optionally, determine your custom indexing preferences, section groups, or stoplists if not using defaults. The following table describes these indexing classes:

	Class	Description
	Datastore	How are your documents stored?
	Filter	How can the documents be converted to plaintext?
	Lexer	What language is being indexed?
	Wordlist	How should stem and fuzzy queries be expanded?
	Storage	How should the index data be stored?
	Stop List	What words or themes are not to be indexed?
	Section Group	How are documents sections defined?

	
Optionally, create your own custom preferences, section groups, or stoplists. See "Creating Preferences".

	
Create the Text index with the SQL statement CREATE INDEX, naming your index and optionally specifying preferences. See "Creating a CONTEXT Index".

	
See Also:

"Considerations For Indexing" and CREATE INDEX topic in Oracle Text Reference

3.3.2 Creating Preferences

You can optionally create your own custom index preferences to override the defaults. Use the preferences to specify index information such as where your files are stored and how to filter your documents. You create the preferences then set the attributes.

3.3.2.1 Datastore Examples

The following sections give examples for setting direct, multi-column, URL, and file datastores.

	
See Also:

Oracle Text Reference for more information about data storage

3.3.2.1.1 Specifying DIRECT_DATASTORE

The following example creates a table with a CLOB column to store text data. It then populates two rows with text data and indexes the table using the system-defined preference CTXSYS.DEFAULT_DATASTORE which uses the DIRECT_DATASTORE preference type.

create table mytable(id number primary key, docs clob);

insert into mytable values(111555,'this text will be indexed');
insert into mytable values(111556,'this is a default datastore example');
commit;

create index myindex on mytable(docs)
 indextype is ctxsys.context
 parameters ('DATASTORE CTXSYS.DEFAULT_DATASTORE');

3.3.2.1.2 Specifying MULTI_COLUMN_DATASTORE

The following example creates a multi-column datastore preference called my_multi on the three text columns to be concatenated and indexed:

begin
ctx_ddl.create_preference('my_multi', 'MULTI_COLUMN_DATASTORE');
ctx_ddl.set_attribute('my_multi', 'columns', 'column1, column2, column3');
end;

3.3.2.1.3 Specifying URL Data Storage

This example creates a URL_DATASTORE preference called my_url to which the http_proxy, no_proxy, and timeout attributes are set. The timeout attribute is set to 300 seconds. The defaults are used for the attributes that are not set.

begin
 ctx_ddl.create_preference('my_url','URL_DATASTORE');
 ctx_ddl.set_attribute('my_url','HTTP_PROXY','www-proxy.us.oracle.com');
 ctx_ddl.set_attribute('my_url','NO_PROXY','us.oracle.com');
 ctx_ddl.set_attribute('my_url','Timeout','300');
end;

3.3.2.1.4 Specifying File Data Storage

The following example creates a data storage preference using the FILE_DATASTORE. This tells the system that the files to be indexed are stored in the operating system. The example uses CTX_DDL.SET_ATTRIBUTE to set the PATH attribute of to the directory /docs.

begin
ctx_ddl.create_preference('mypref', 'FILE_DATASTORE');
ctx_ddl.set_attribute('mypref', 'PATH', '/docs');
end;

3.3.2.2 NULL_FILTER Example: Indexing HTML Documents

If your document set is entirely in HTML, then Oracle recommends that you use the NULL_FILTER in your filter preference, which does no filtering.

For example, to index an HTML document set, you can specify the system-defined preferences for NULL_FILTER and HTML_SECTION_GROUP as follows:

create index myindex on docs(htmlfile) indextype is ctxsys.context
 parameters('filter ctxsys.null_filter
 section group ctxsys.html_section_group');

3.3.2.3 PROCEDURE_FILTER Example

Consider a filter procedure CTXSYS.NORMALIZE that you define with the following signature:

PROCEDURE NORMALIZE(id IN ROWID, charset IN VARCHAR2, input IN CLOB,
output IN OUT NOCOPY VARCHAR2);

To use this procedure as your filter, you set up your filter preference as follows:

begin

ctx_ddl.create_preference('myfilt', 'procedure_filter');
ctx_ddl.set_attribute('myfilt', 'procedure', 'normalize');
ctx_ddl.set_attribute('myfilt', 'input_type', 'clob');
ctx_ddl.set_attribute('myfilt', 'output_type', 'varchar2');
ctx_ddl.set_attribute('myfilt', 'rowid_parameter', 'TRUE');
ctx_ddl.set_attribute('myfilt', 'charset_parameter', 'TRUE');

end;

3.3.2.4 BASIC_LEXER Example: Setting Printjoin Characters

Printjoin characters are non-alphanumeric characters that are to be included in index tokens, so that words such as web-site are indexed as web-site.

The following example sets printjoin characters to be the hyphen and underscore with the BASIC_LEXER:

begin
ctx_ddl.create_preference('mylex', 'BASIC_LEXER');
ctx_ddl.set_attribute('mylex', 'printjoins', '_-');
end;

To create the index with printjoins characters set as previously shown, enter the following statement:

create index myindex on mytable (docs)
 indextype is ctxsys.context
 parameters ('LEXER mylex');

3.3.2.5 MULTI_LEXER Example: Indexing a Multi-Language Table

You use the MULTI_LEXER preference type to index a column containing documents in different languages. For example, you can use this preference type when your text column stores documents in English, German, and French.

The first step is to create the multi-language table with a primary key, a text column, and a language column as follows:

create table globaldoc (
 doc_id number primary key,
 lang varchar2(3),
 text clob
);

Assume that the table holds mostly English documents, with some German and Japanese documents. To handle the three languages, you must create three sub-lexers, one for English, one for German, and one for Japanese:

ctx_ddl.create_preference('english_lexer','basic_lexer');
ctx_ddl.set_attribute('english_lexer','index_themes','yes');
ctx_ddl.set_attribute('english_lexer','theme_language','english');

ctx_ddl.create_preference('german_lexer','basic_lexer');
ctx_ddl.set_attribute('german_lexer','composite','german');
ctx_ddl.set_attribute('german_lexer','mixed_case','yes');
ctx_ddl.set_attribute('german_lexer','alternate_spelling','german');

ctx_ddl.create_preference('japanese_lexer','japanese_vgram_lexer');

Create the multi-lexer preference:

ctx_ddl.create_preference('global_lexer', 'multi_lexer');

Because the stored documents are mostly English, make the English lexer the default using CTX_DDL.ADD_SUB_LEXER:

ctx_ddl.add_sub_lexer('global_lexer','default','english_lexer');

Now add the German and Japanese lexers in their respective languages with CTX_DDL.ADD_SUB_LEXER procedure. Also assume that the language column is expressed in the standard ISO 639-2 language codes, so add those as alternate values.

ctx_ddl.add_sub_lexer('global_lexer','german','german_lexer','ger');
ctx_ddl.add_sub_lexer('global_lexer','japanese','japanese_lexer','jpn');

Now create the index globalx, specifying the multi-lexer preference and the language column in the parameter clause as follows:

create index globalx on globaldoc(text) indextype is ctxsys.context
parameters ('lexer global_lexer language column lang');

3.3.2.6 BASIC_WORDLIST Example: Enabling Substring and Prefix Indexing

The following example sets the wordlist preference for prefix and substring indexing. Having a prefix and sub-string component to your index improves performance for wildcard queries.

For prefix indexing, the example specifies that Oracle Text create token prefixes between three and four characters long:

begin

ctx_ddl.create_preference('mywordlist', 'BASIC_WORDLIST');
ctx_ddl.set_attribute('mywordlist','PREFIX_INDEX','TRUE');
ctx_ddl.set_attribute('mywordlist','PREFIX_MIN_LENGTH', '3');
ctx_ddl.set_attribute('mywordlist','PREFIX_MAX_LENGTH', '4');
ctx_ddl.set_attribute('mywordlist','SUBSTRING_INDEX', 'YES');

end;

3.3.3 Creating Section Groups for Section Searching

When documents have internal structure such as in HTML and XML, you can define document sections using embedded tags before you index. This enables you to query within the sections using the WITHIN operator. You define sections as part of a section group.

3.3.3.1 Example: Creating HTML Sections

The following code defines a section group called htmgroup of type HTML_SECTION_GROUP. It then creates a zone section in htmgroup called heading identified by the <H1> tag:

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_zone_section('htmgroup', 'heading', 'H1');
end;

	
See Also:

Chapter 8, "Searching Document Sections in Oracle Text"

3.3.4 Using Stopwords and Stoplists

A stopword is a word that is not to be indexed. A stopword is usually a low information word such as this or that in English.

The system supplies a list of stopwords called a stoplist for every language. By default during indexing, the system uses the Oracle Text default stoplist for your language.

You can edit the default stoplist CTXSYS.DEFAULT_STOPLIST or create your own with the following PL/SQL procedures:

	
CTX_DDL.CREATE_STOPLIST

	
CTX_DDL.ADD_STOPWORD

	
CTX_DDL.REMOVE_STOPWORD

You specify your custom stoplists in the parameter clause of CREATE INDEX.

You can also dynamically add stopwords after indexing with the ALTER INDEX statement.

3.3.4.1 Multi-Language Stoplists

You can create multi-language stoplists to hold language-specific stopwords. A multi-language stoplist is useful when you use the MULTI_LEXER to index a table that contains documents in different languages, such as English, German, and Japanese.

To create a multi-language stoplist, use the CTX_DLL.CREATE_STOPLIST procedure and specify a stoplist type of MULTI_STOPLIST. You add language specific stopwords with CTX_DDL.ADD_STOPWORD.

3.3.4.2 Stopthemes and Stopclasses

In addition to defining your own stopwords, you can define stopthemes, which are themes that are not to be indexed. This feature is available for English and French only.

You can also specify that numbers are not to be indexed. A class of alphanumeric characters such a numbers that is not to be indexed is a stopclass.

You record your own stopwords, stopthemes, stopclasses by creating a single stoplist, to which you add the stopwords, stopthemes, and stopclasses. You specify the stoplist in the paramstring for CREATE INDEX.

3.3.4.3 PL/SQL Procedures for Managing Stoplists

You use the following procedures to manage stoplists, stopwords, stopthemes, and stopclasses:

	
CTX_DDL.CREATE_STOPLIST

	
CTX_DDL.ADD_STOPWORD

	
CTX_DDL.ADD_STOPTHEME

	
CTX_DDL.ADD_STOPCLASS

	
CTX_DDL.REMOVE_STOPWORD

	
CTX_DDL.REMOVE_STOPTHEME

	
CTX_DDL.REMOVE_STOPCLASS

	
CTX_DDL.DROP_STOPLIST

	
See Also:

Oracle Text Reference to learn more about using these statements

3.3.5 Creating a CONTEXT Index

The CONTEXT index type is well suited for indexing large coherent documents in formats such as Microsoft Word, HTML, or plain text. With a CONTEXT index, you can also customize your index in a variety of ways. The documents must be loaded in a text table.

3.3.5.1 CONTEXT Index and DML

A CONTEXT index is not transactional. When a record is deleted, the index change is immediate. That is, your own session will no longer find the record from the moment you make the change, and other users will not find the record as soon as you commit. For inserts and updates, the new information will not be visible to text searches until an index synchronization has occurred. Therefore, when you perform inserts or updates on the base table, you must explicitly synchronize the index with CTX_DDL.SYNC_INDEX.

	
See Also:

"Synchronizing the Index"

3.3.5.2 Default CONTEXT Index Example

The following statement creates a default CONTEXT index called myindex on the text column in the docs table:

CREATE INDEX myindex ON docs(text) INDEXTYPE IS CTXSYS.CONTEXT;

When you use CREATE INDEX without explicitly specifying parameters, the system does the following actions by default for all languages:

	
Assumes that the text to be indexed is stored directly in a text column. The text column can be of type CLOB, BLOB, BFILE, VARCHAR2, or CHAR.

	
Detects the column type and uses filtering for the binary column types of BLOB and BFILE. Most document formats are supported for filtering. If your column is plain text, the system does not use filtering.

	
Note:

For document filtering to work correctly in your system, you must ensure that your environment is set up correctly to support the AUTO_FILTER filter.
To learn more about configuring your environment to use the AUTO_FILTER filter, see the Oracle Text Reference.

	
Assumes the language of text to index is the language you specify in your database setup.

	
Uses the default stoplist for the language you specify in your database setup. Stoplists identify the words that the system ignores during indexing.

	
Enables fuzzy and stemming queries for your language, if this feature is available for your language.

You can always change the default indexing behavior by creating your own preferences and specifying these custom preferences in the parameter string of CREATE INDEX.

3.3.5.3 Incrementally Creating an Index with ALTER INDEX and CREATE INDEX

The ALTER INDEX and CREATE INDEX statements support incrementally creating a global CONTEXT index.

	
For creating a global index, CREATE INDEX supports the NOPOPULATE keyword of the REBUILD clause. Using the NOPOPULATE keyword in the REPLACE parameter, you can create indexes incrementally. This is valuable for creating text indexes in large installations that cannot afford to have the indexing process running continuously.

	
For creating a local index partition, ALTER INDEX ... REBUILD partition ... parameters ('REPLACE ...') parameter string is modified to support the NOPOPULATE keyword.

	
For creating a partition on a local index, CREATE INDEX ... LOCAL ... (partition ... parameters ('NOPOPULATE')) is supported. The partition-level POPULATE or NOPOPULATE keywords override any POPULATE or NOPOPULATE specified at the index level.

	
See Also:

Oracle Text Reference to learn more about the syntax for the ALTER INDEX and CREATE INDEX statements

3.3.5.4 Creating a CONTEXT Index Incrementally with POPULATE_PENDING

For large installations that cannot afford to have the indexing process run continuously, you can use the CTX_DDL.POPULATE_PENDING procedure. This also provides finer control over creating the indexes. The preferred method is to create an empty index, place all the rowids into the pending queue, and build the index through CTX_DDL.SYNC_INDEX.

This procedure populates the pending queue with every rowid in the base table or table partition.

	
See Also:

Oracle Text Reference for information about CTX.DDL.POPULATE_PENDING

3.3.5.5 Custom CONTEXT Index Example: Indexing HTML Documents

To index an HTML document set located by URLs, you can specify the system-defined preference for the NULL_FILTER in the CREATE INDEX statement.

You can also specify your section group htmgroup that uses HTML_SECTION_GROUP and datastore my_url that uses URL_DATASTORE as follows:

begin
 ctx_ddl.create_preference('my_url','URL_DATASTORE');
 ctx_ddl.set_attribute('my_url','HTTP_PROXY','www-proxy.us.oracle.com');
 ctx_ddl.set_attribute('my_url','NO_PROXY','us.oracle.com');
 ctx_ddl.set_attribute('my_url','Timeout','300');
end;

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_zone_section('htmgroup', 'heading', 'H1');
end;

You can then index your documents as follows:

CREATE INDEX myindex on docs(htmlfile) indextype is ctxsys.context
parameters(
'datastore my_url filter ctxsys.null_filter section group htmgroup'
);

	
See Also:

"Creating Preferences" for more examples on creating a custom context index

3.3.5.6 CONTEXT Index Example: Query Processing with FILTER BY and ORDER BY

To enable more efficient query processing and better response time for mixed queries, you can use FILTER BY and ORDER BY clauses as shown in the following example.

CREATE INDEX myindex on docs(text) INDEXTYPE is CTXSYS.CONTEXT
FILTER BY category, publisher, pub_date
ORDER BY pub_date desc;

In this example, by specifying the clause FILTER BY category, publisher, pub_date at query time, Oracle Text will also consider pushing any relational predicate on any of these columns into the Text index row source for more efficient query processing.

Also, when the query has matching ORDER BY criteria, by specifying ORDER BY pub_date desc, Oracle Text will determine whether to push the SORT into the Text index row source for better response time.

3.3.6 Creating a CTXCAT Index

The CTXCAT indextype is well-suited for indexing small text fragments and related information. If created correctly, this type of index can provide better structured query performance over a CONTEXT index.

3.3.6.1 CTXCAT Index and DML

A CTXCAT index is transactional. When you perform DML (inserts, updates, and deletes) on the base table, Oracle Text automatically synchronizes the index. Unlike a CONTEXT index, no CTX_DDL.SYNC_INDEX is necessary.

	
Note:

Applications that insert without invoking triggers such as SQL*Loader will not result in automatic index synchronization as described in this section.

3.3.6.2 About CTXCAT Sub-Indexes and Their Costs

A CTXCAT index comprises sub-indexes that you define as part of your index set. You create a sub-index on one or more columns to improve mixed query performance. However, adding sub-indexes to the index set has its costs. The time Oracle Text takes to create a CTXCAT index depends on its total size, and the total size of a CTXCAT index is directly related to the following factors:

	
Total text to be indexed

	
Number of sub-indexes in the index set

	
Number of columns in the base table that make up the sub-indexes

Having many component indexes in your index set also degrades DML performance, because more indexes must be updated.

Because of the added index time and disk space costs for creating a CTXCAT index, carefully consider the query performance benefit that each component index gives your application before adding it to your index set.

3.3.6.3 Creating CTXCAT Sub-indexes

An online auction site that must store item descriptions, prices and bid-close dates for ordered look-up provides a good example for creating a CTXCAT index.

Figure 3-3 Auction Table Schema and CTXCAT Index

[image: Description of Figure 3-3 follows]

Figure 3-3 shows a table called AUCTION with the following schema:

create table auction(

item_id number,
title varchar2(100),
category_id number,
price number,
bid_close date);

To create your sub-indexes, create an index set to contain them:

begin

ctx_ddl.create_index_set('auction_iset');

end;

Next, determine the structured queries your application is likely to enter. The CATSEARCH query operator takes a mandatory text clause and optional structured clause.

In our example, this means all queries include a clause for the title column which is the text column.

Assume that the structured clauses fall into the following categories:

	Structured Clauses	Sub-index Definition to Serve Query	Category
	'price < 200'
'price = 150'

'order by price'

	'price'	A
	'price = 100 order by bid_close'
'order by price, bid_close'

	'price, bid_close'	B

3.3.6.3.1 Structured Query Clause Category A

The structured query clause contains an expression for only the price column as follows:

SELECT FROM auction WHERE CATSEARCH(title, 'camera', 'price < 200')> 0;
SELECT FROM auction WHERE CATSEARCH(title, 'camera', 'price = 150')> 0;
SELECT FROM auction WHERE CATSEARCH(title, 'camera', 'order by price')> 0;

These queries can be served using sub-index B, but for efficiency you can also create a sub-index only on price, which we call sub-index A:

begin

ctx_ddl.add_index('auction_iset','price'); /* sub-index A */

end;

3.3.6.3.2 Structured Query Clause Category B

The structured query clause includes an equivalence expression for price ordered by bid_close, and an expression for ordering by price and bid_close in that order:

SELECT FROM auction WHERE CATSEARCH(
 title, 'camera','price = 100
 ORDER BY bid_close')> 0;
SELECT FROM auction
 WHERE CATSEARCH(
 title, 'camera','order by price, bid_close')> 0;

These queries can be served with a sub-index defined as follows:

begin

ctx_ddl.add_index('auction_iset','price, bid_close'); /* sub-index B */

end;

Like a combined b-tree index, the column order you specify with CTX_DDL.ADD_INDEX affects the efficiency and viability of the index scan Oracle Text uses to serve specific queries. For example, if two structured columns p and q have a b-tree index specified as 'p,q', Oracle Text cannot scan this index to sort 'ORDER BY q,p'.

3.3.6.4 Creating CTXCAT Index

The following example combines the previous examples and creates the index set preference with the two sub-indexes:

begin

ctx_ddl.create_index_set('auction_iset');
ctx_ddl.add_index('auction_iset','price'); /* sub-index A */
ctx_ddl.add_index('auction_iset','price, bid_close'); /* sub-index B */

end;

Figure 3-3 shows how the sub-indexes A and B are created from the auction table. Each sub-index is a b-tree index on the text column and the named structured columns. For example, sub-index A is an index on the title column and the bid_close column.

You create the combined catalog index with CREATE INDEX as follows:

CREATE INDEX auction_titlex ON AUCTION(title)
 INDEXTYPE IS CTXSYS.CTXCAT
 PARAMETERS ('index set auction_iset')
;

	
See Also:

Oracle Text Reference to learn more about creating a CTXCAT index with CREATEINDEX

3.3.7 Creating a CTXRULE Index

You use the CTXRULE index to build a document classification application. In such an application, a stream of incoming documents is classified based on their content. Document routing is achieved by creating a CTXRULE index on a table or queries. The queries define your categories. You can use the MATCHES operator to classify single documents.

This section contains the following steps toward creating a CTXRULE index and a simple document classification application:

	
Step One: Create a Table of Queries

	
Step Two: Create the CTXRULE Index

	
Step Three: Classify a Document

	
See Also:

Chapter 6, "Classifying Documents in Oracle Text" for more information on document classification and the CTXRULE index

3.3.7.1 Step One: Create a Table of Queries

The first step is to create a table of queries that define your classifications. We create a table myqueries to hold the category name and query text:

CREATE TABLE myqueries (

queryid NUMBER PRIMARY KEY,
category VARCHAR2(30),
query VARCHAR2(2000)

);

Populate the table with the classifications and the queries that define each. For example, consider a classification for the subjects US Politics, Music, and Soccer.:

INSERT INTO myqueries VALUES(1, 'US Politics', 'democrat or republican');
INSERT INTO myqueries VALUES(2, 'Music', 'ABOUT(music)');
INSERT INTO myqueries VALUES(3, 'Soccer', 'ABOUT(soccer)');

3.3.7.1.1 Using CTX_CLS.TRAIN

You can also generate a table of rules (or queries) with the CTX_CLS.TRAIN procedure, which takes as input a document training set.

	
See Also:

Oracle Text Reference for more information on CTX_CLS.TRAIN

3.3.7.2 Step Two: Create the CTXRULE Index

Use CREATE INDEX to create the CTXRULE index. You can specify lexer, storage, section group, and wordlist parameters if needed:

CREATE INDEX myruleindex ON myqueries(query)
 INDEXTYPE IS CTXRULE PARAMETERS
 ('lexer lexer_pref
 storage storage_pref
 section group section_pref
 wordlist wordlist_pref');

3.3.7.3 Step Three: Classify a Document

With a CTXRULE index created on a query set, you can use the MATCHES operator to classify a document.

Assume that incoming documents are stored in the table news:

CREATE TABLE news (

newsid NUMBER,
author VARCHAR2(30),
source VARCHAR2(30),
article CLOB);

You can create a before insert trigger with MATCHES to route each document to another table news_route based on its classification:

BEGIN
 -- find matching queries
 FOR c1 IN (select category
 from myqueries
 where MATCHES(query, :new.article)>0)
 LOOP
 INSERT INTO news_route(newsid, category)
 VALUES (:new.newsid, c1.category);
 END LOOP;
END;

3.4 Maintaining Oracle Text Indexes

This section describes maintaining your index in the event of an error or indexing failure. The following topics are included:

	
Viewing Index Errors

	
Dropping an Index

	
Resuming Failed Index

	
Re-creating an Index

	
Rebuilding an Index

	
Dropping a Preference

3.4.1 Viewing Index Errors

Sometimes an indexing operation might fail or not complete successfully. When the system encounters an error during indexing a row, it logs the error in an Oracle Text view.

You can view errors on your indexes with CTX_USER_INDEX_ERRORS. View errors on all indexes as CTXSYS with CTX_INDEX_ERRORS.

For example, to view the most recent errors on your indexes, enter the following statement:

SELECT err_timestamp, err_text
 FROM ctx_user_index_errors
 ORDER BY err_timestamp DESC;

To clear the view of errors, enter:

DELETE FROM ctx_user_index_errors;

This view is cleared automatically when you create a new index.

	
See Also:

Oracle Text Reference to learn more about these views

3.4.2 Dropping an Index

You must drop an existing index before you can re-create it with CREATE INDEX.

Drop an index using the DROP INDEX statement in SQL.

If you try to create an index with an invalid PARAMETERS string, then you still need to drop it before you can re-create it.

For example, to drop an index called newsindex, enter the following SQL statement:

DROP INDEX newsindex;

If Oracle Text cannot determine the state of the index, for example as a result of an indexing malfunction, you cannot drop the index as described previously. Instead use:

DROP INDEX newsindex FORCE;

	
See Also:

Oracle Text Reference to learn more about this statement

3.4.3 Resuming Failed Index

You can sometimes resume a failed index creation operation using the ALTER INDEX statement. You typically resume a failed index after you have investigated and corrected the index failure. Not all index failures can be resumed.

Index optimization commits at regular intervals. Therefore, if an optimization operation fails, then all optimization work up to the commit point has already been saved.

	
See Also:

Oracle Text Reference to learn more about the ALTER INDEX statement syntax

Example: Resuming a Failed Index

The following statement resumes the indexing operation on newsindex with 10 megabytes of memory:

ALTER INDEX newsindex REBUILD PARAMETERS('resume memory 10M');

3.4.4 Re-creating an Index

This section describes the procedures available for re-creating an index, which enable index settings to be changed. During the re-creation process, the index can be queried normally.

3.4.4.1 Re-creating a Global Index

Oracle Text provides RECREATE_INDEX_ONLINE to re-create a CONTEXT index with new preferences, while preserving the base table DML and query capability during the re-create process. You can use RECREATE_INDEX_ONLINE in a one step procedure to re-create a CONTEXT index online for global indexes. Because the new index is created alongside the existing index, this operation requires storage roughly equal to the size of the existing index. Also, because the RECREATE_INDEX_ONLINE operation is performed online, you may issue DML on the base table during the operation. All DML that occurs during re-creation is logged into an online pending queue.

	
After the re-create index operation is complete, any new information resulting from DML during the re-creation process may not be immediately reflected. As with creating an index online, the index should be synchronized after the re-create index operation is complete in order to bring it fully up-to-date.

	
Synchronizations issued against the index during the re-creation are processed against the old, existing data. Synchronizations are blocked during this time when queries return errors.

	
Optimize commands issued against the index during the re-creation return immediately without error and without processing.

	
During RECREATE_INDEX_ONLINE, the index can be queried normally most of the time. Queries return results based on the existing index and policy until after the final swap. Also, if you issue DML statements and synchronize them, then you will be able to see the new rows when you query on the existing index.

	
See Also:

Oracle Text Reference to learn more about the RECREATE_INDEX_ONLINE procedure

	
Note:

Transactional query is not supported with RECREATE_INDEX_ONLINE.

Re-creating a Local Partitioned Index

If the index is locally partitioned, you cannot re-create the index in one step. You must first create a shadow policy, and then run the RECREATE_INDEX_ONLINE procedure for every partition. You can specify SWAP or NOSWAP, which indicates whether re-creating the index for the partition will swap the index partition data and index partition metadata.

This procedure can also be used to update the metadata (for example the storage preference) of each partition when you specify NOPOPULATE in the parameter string. This is useful for incremental building of a shadow index through time-limited synchronization. If NOPOPULATE is specified, then NOSWAP is silently enforced.

	
When all of the partitions use NOSWAP, the storage requirement is approximately equal to the size of the existing index. During the re-creation of the index partition, since no swapping is performed, queries on the partition are processed normally. Queries spanning multiple partitions return consistent results across partitions until the swapping stage is reached.

	
When the partitions are rebuilt with SWAP, the storage requirement for the operation is equal to the size of the existing index partition. Since index partition data and metadata are swapped after re-creation, queries spanning multiple partitions will not return consistent results from partition to partition, but will always be correct with respect to each index partition.

	
If SWAP is specified, then DML and synchronization on the partition are blocked during the swap process.

	
See Also:

Oracle Text Reference for complete information about RECREATE_INDEX_ONLINE

Re-creating a Global Index with Time Limit for Synch

You can control index re-creation to set a time limit for SYNC_INDEX during non-business hours and incrementally re-create the index. You use the CREATE_SHADOW_INDEX procedure with POPULATE_PENDING and maxtime.

	
See Also:

Oracle Text Reference for information and examples for CREATE_SHADOW_INDEX

Re-creating a Global Index with Scheduled Swap

With CTX_DDL.EXCHANGE_SHADOW_INDEX you can perform index re-creation during non-business hours when query failures and DML blocking can be tolerated.

	
See Also:

Oracle Text Reference for information and examples for CTX_DDL.EXCHANGE_SHADOW_INDEX

Re-creating a Local Index with All-at-Once Swap

You can re-create a local partitioned index online to create or change preferences. The swapping of the index and partition metadata occurs at the end of the process. Queries spanning multiple partitions return consistent results across partitions when re-create is in process, except at the end when EXCHANGE_SHADOW_INDEX is running.

Scheduling Local Index Re-creation with All-at-Once Swap

With RECREATE_INDEX_ONLINE of the CTX.DDL package, you can incrementally re-create a local partitioned index, where partitions are all swapped at the end.

	
See Also:

Oracle Text Reference for complete information and the example for this process with RECREATE_INDEX_ONLINE

Re-creating a Local Index with Per-Partition Swap

Instead of swapping all partitions at once, you can re-create the index online with new preferences, with each partition being swapped as it is completed. Queries across all partitions may return inconsistent results during this process. This procedure uses CREATE_SHADOW_INDEX with RECREATE_INDEX_ONLINE.

	
See Also:

Oracle Text Reference for an example of swapping index partitions with the RECREATE_INDEX_ONLINE procedure

3.4.5 Rebuilding an Index

You can rebuild a valid index using ALTER INDEX. Rebuilding an index does not allow most index settings to be changed. You might rebuild an index when you want to index with a new preference. Generally, there is no advantage in rebuilding an index over dropping it and re-creating it with CREATE INDEX.

	
See Also:

"Re-creating an Index" for information about changing index settings

Example: Rebuilding an Index

The following statement rebuilds the index, replacing the lexer preference with my_lexer.

ALTER INDEX newsindex REBUILD PARAMETERS('replace lexer my_lexer');

3.4.6 Dropping a Preference

You might drop a custom index preference when you no longer need it for indexing.

You drop index preferences with the procedure CTX_DDL.DROP_PREFERENCE.

Dropping a preference does not affect the index created from the preference.

	
See Also:

Oracle Text Reference to learn more about the syntax for the CTX_DDL.DROP_PREFERENCE procedure

Example: Dropping a Preference

The following code drops the preference my_lexer.

begin
ctx_ddl.drop_preference('my_lexer');
end;

3.5 Managing DML Operations for a CONTEXT Index

DML operations to the base table refer to when documents are inserted, updated, or deleted from the base table. This section describes how you can monitor, synchronize, and optimize the Oracle Text CONTEXT index when DML operations occur. This section contains the following topics:

	
Viewing Pending DML

	
Synchronizing the Index

	
Optimizing the Index

	
Note:

CTXCAT indexes are transactional and, thus, they are updated immediately when there is a change to the base table. Manual synchronization as described in this section is not necessary for a CTXCAT index.

3.5.1 Viewing Pending DML

When documents in the base table are inserted or updated, their ROWIDs are held in a DML queue until you synchronize the index. You can view this queue with the CTX_USER_PENDING view.

For example, to view pending DML on all your indexes, enter the following statement:

SELECT pnd_index_name, pnd_rowid, to_char(
 pnd_timestamp, 'dd-mon-yyyy hh24:mi:ss'
) timestamp FROM ctx_user_pending;

This statement gives output in the form:

PND_INDEX_NAME PND_ROWID TIMESTAMP
------------------------------ ------------------ --------------------
MYINDEX AAADXnAABAAAS3SAAC 06-oct-1999 15:56:50

	
See Also:

Oracle Text Reference to learn more about this view

3.5.2 Synchronizing the Index

Synchronizing the index involves processing all pending updates and inserts to the base table. You can do this in PL/SQL with the CTX_DDL.SYNC_INDEX procedure. The following sections describe how you can control the duration and locking behavior for synchronizing an index:

	
Maxtime Parameter for SYNC_INDEX

	
Locking Parameter for SYNC_INDEX

3.5.2.1 Example

The following example synchronizes the index with 2 megabytes of memory:

begin

ctx_ddl.sync_index('myindex', '2M');

end;

	
See Also:

Oracle Text Reference to learn more about the CTX_DDL.SYNC_INDEX statement syntax

3.5.2.2 Maxtime Parameter for SYNC_INDEX

The sync_index procedure includes a maxtime parameter that, like optimize_index, indicates a suggested time limit in minutes for the operation. The sync_index will process as many documents in the queue as possible within the given time limit.

	
NULL maxtime is equivalent to CTX_DDL.MAXTIME_UNLIMITED.

	
The time limit is approximate. The actual time taken may be somewhat less than, or greater than what you specify.

	
There is no change to the ALTER INDEX... sync command, which is deprecated.

	
The maxtime parameter is ignored when sync_index is invoked without an index name.

	
The maxtime parameter cannot be communicated for automatic synchronizations (for example, sync on commit or sync every).

3.5.2.3 Locking Parameter for SYNC_INDEX

The locking parameter of sync_index enables you to configure how the synchronization deals with the scenario where another sync is already running on the index.

	
The locking parameter is ignored when sync_index is invoked without an index name.

	
The locking parameter cannot be communicated for automatic syncs (i.e. sync on commit/sync every)

	
When locking mode is LOCK_WAIT, in the event of not being able to get a lock, it will wait forever and ignore the maxtime setting.

The options are as follows:

	Option	Description
	CTX_DDL.LOCK_WAIT	If another sync is running, wait until the running sync is complete, then begin new sync.
	CTX_DDL.LOCK_NOWAIT	If another sync is running, immediately return without error.
	CTX_DDL.LOCK_NOWAIT_ERROR	If another sync is running, immediately raise an error (DRG-51313: timeout while waiting for DML or optimize lock).

3.5.3 Optimizing the Index

Frequent index synchronization ultimately causes fragmentation of your CONTEXT index. Index fragmentation can adversely affect query response time. You should, therefore, allow time to optimize your CONTEXT index in order to reduce fragmentation and index size and to ensure optimal query performance. To understand index optimization, you must understand the structure of the index and what happens when it is synchronized.

3.5.3.1 CONTEXT Index Structure

The CONTEXT index is an inverted index where each word contains the list of documents that contain that word. For example, after a single initial indexing operation, the word DOG might have an entry as follows:

DOG DOC1 DOC3 DOC5

3.5.3.2 Index Fragmentation

When new documents are added to the base table, the index is synchronized by adding new rows. Thus, if you add a new document (for example, DOC 7) with the word dog to the base table and synchronize the index, you now have:

DOG DOC1 DOC3 DOC5
DOG DOC7

Subsequent DML will also create new rows as follows:

DOG DOC1 DOC3 DOC5
DOG DOC7
DOG DOC9
DOG DOC11

Adding new documents and synchronizing the index causes index fragmentation. In particular, background DML, which synchronizes the index frequently, generally produces more fragmentation than synchronizing in batch mode.

Less frequent batch processing results in longer document lists, reducing the number of rows in the index and thus reducing fragmentation.

You can reduce index fragmentation by optimizing the index in either FULL or FAST mode with CTX_DDL.OPTIMIZE_INDEX.

3.5.3.3 Document Invalidation and Garbage Collection

When documents are removed from the base table, Oracle Text marks the document as removed but does not immediately alter the index.

Because the old information takes up space and can cause extra overhead at query time, you must remove the old information from the index by optimizing it in FULL mode. This is called garbage collection. Optimizing in FULL mode for garbage collection is necessary when you have frequent updates or deletes to the base table.

3.5.3.4 Single Token Optimization

In addition to optimizing the entire index, you can optimize single tokens. You can use token mode to optimize index tokens that are frequently searched, without spending time on optimizing tokens that are rarely referenced.

For example, you can specify that only the token DOG be optimized in the index, if you know that this token is updated and queried frequently.

An optimized token can improve query response time for the token.

To optimize an index in token mode, use CTX_DDL.OPTIMIZE_INDEX.

3.5.3.5 Viewing Index Fragmentation and Garbage Data

With the CTX_REPORT.INDEX_STATS procedure, you can create a statistical report on your index. The report includes information on optimal row fragmentation, a list of most fragmented tokens, and the amount of garbage data in your index. Although this report might take a long time to run for large indexes, it can help you decide whether to optimize your index.

	
See Also:

Oracle Text Reference to learn more about using this procedure

3.5.3.6 Examples: Optimizing the Index

To optimize an index, Oracle recommends that you use CTX_DDL.OPTIMIZE_INDEX.

	
See Also:

Oracle Text Reference for the CTX_DDL.OPTIMIZE_INDEX statement syntax and examples

9 Using Oracle Text Name Search

This chapter describes how to use the name search facility, and includes:

	
Overview of Name Search

	
Examples of Using Name Search

9.1 Overview of Name Search

Someone accustomed to the spelling rules of one culture can have difficulty applying those same rules to a name originating from a different culture. Name searching (also called name matching) provides a solution to match proper names that might differ in spelling due to orthographic variation. It also enables you to search for somewhat inaccurate data, such as might occur when a record's first name and surname are not properly segmented. This ability to handle somewhat inaccurate data is the main advantage of name searching.

9.2 Examples of Using Name Search

The following example illustrates how to use NDATA sections to search on names:

drop table people;

create table people (
 full_name varchar2(2000)
);

insert into people values
('John Black Smith');

-- multi_column datastore is a convenient way of adding section tags around our data
exec ctx_ddl.drop_preference('name_ds')
begin
 ctx_ddl.create_preference('name_ds', 'MULTI_COLUMN_DATASTORE');
 ctx_ddl.set_attribute('name_ds', 'COLUMNS', 'full_name');
end;
/

exec ctx_ddl.drop_section_group('name_sg');
begin
 ctx_ddl.create_section_group('name_sg', 'BASIC_SECTION_GROUP');
 ctx_ddl.add_ndata_section('name_sg', 'full_name', 'full_name');
end;
/
-- You can optionally load a thesaurus of nicknames
-- HOST ctxload -thes -name nicknames -file nicknames.txt

exec ctx_ddl.drop_preference('name_wl');
begin
 ctx_ddl.create_preference('name_wl', 'BASIC_WORDLIST');
 ctx_ddl.set_attribute('name_wl', 'NDATA_ALTERNATE_SPELLING', 'FALSE');
 ctx_ddl.set_attribute('name_wl', 'NDATA_BASE_LETTER', 'TRUE');
 -- Include the following line only if you have loaded the thesaurus
 -- file nicknames.txt:
 -- ctx_ddl.set_attribute('name_wl', 'NDATA_THESAURUS', 'nicknames');
 ctx_ddl.set_attribute('name_wl', 'NDATA_JOIN_PARTICLES',
 'de:di:la:da:el:del:qi:abd:los:la:dos:do:an:li:yi:yu:van:jon:un:sai:ben:al');
end;
/

create index people_idx on people(full_name) indextype is ctxsys.context
 parameters ('datastore name_ds section group name_sg wordlist name_wl');

-- Now you can do name searches with the following SQL:

var name varchar2(80);
exec :name := 'Jon Blacksmith'

select /*+ FIRST_ROWS */ full_name, score(1)
 from people
 where contains(full_name, 'ndata(full_name, '||:name||') ',1)>0
 order by score(1) desc
/

The following example illustrates a more complicated version of using NDATA sections to search on names:

create table emp (
 first_name varchar2(30),
 middle_name varchar2(30),
 last_name varchar2(30),
 email varchar2(30),
 phone varchar2(30));

insert into emp values
('John', 'Black', 'Smith', 'john.smith@example.org', '123-456-7890');

-- user datastore procedure
create or replace procedure empuds_proc
 (rid in rowid, tlob in out nocopy clob) is
 tag varchar2(30);
 phone varchar2(30);
begin
 for c1 in (select FIRST_NAME, MIDDLE_NAME, LAST_NAME, EMAIL, PHONE
 from emp
 where rowid = rid)
 loop
 tag :='<email>';
 dbms_lob.writeappend(tlob, length(tag), tag);
 if (c1.EMAIL is not null) then
 dbms_lob.writeappend(tlob, length(c1.EMAIL), c1.EMAIL);
 end if;
 tag :='</email>';
 dbms_lob.writeappend(tlob, length(tag), tag);
 tag :='<phone>';
 dbms_lob.writeappend(tlob, length(tag), tag);
 if (c1.PHONE is not null) then
 phone := nvl(REGEXP_SUBSTR(c1.PHONE, '\d\d\d\d($|\s)'), ' ');
 dbms_lob.writeappend(tlob, length(phone), phone);
 end if;
 tag :='</phone>';
 dbms_lob.writeappend(tlob, length(tag), tag);
 tag :='<fullname>';
 dbms_lob.writeappend(tlob, length(tag), tag);
 if (c1.FIRST_NAME is not null) then
 dbms_lob.writeappend(tlob, length(c1.FIRST_NAME), c1.FIRST_NAME);
 dbms_lob.writeappend(tlob, length(' '), ' ');
 end if;
 if (c1.MIDDLE_NAME is not null) then
 dbms_lob.writeappend(tlob, length(c1.MIDDLE_NAME), c1.MIDDLE_NAME);
 dbms_lob.writeappend(tlob, length(' '), ' ');
 end if;
 if (c1.LAST_NAME is not null) then
 dbms_lob.writeappend(tlob, length(c1.LAST_NAME), c1.LAST_NAME);
 end if;
 tag :='</fullname>';
 dbms_lob.writeappend(tlob, length(tag), tag);
 end loop;
 end;
 /

--list
show errors

exec ctx_ddl.drop_preference('empuds');
begin
 ctx_ddl.create_preference('empuds', 'user_datastore');
 ctx_ddl.set_attribute('empuds', 'procedure', 'empuds_proc');
 ctx_ddl.set_attribute('empuds', 'output_type', 'CLOB');
end;
/

exec ctx_ddl.drop_section_group('namegroup');
begin
 ctx_ddl.create_section_group('namegroup', 'BASIC_SECTION_GROUP');
 ctx_ddl.add_ndata_section('namegroup', 'fullname', 'fullname');
 ctx_ddl.add_ndata_section('namegroup', 'phone', 'phone');
 ctx_ddl.add_ndata_section('namegroup', 'email', 'email');
end;
/

-- Need to load nicknames thesaurus
-- ctxload -thes -name nicknames -file dr0thsnames.txt
-- You can find sample nicknames thesaurus file, dr0thsnames.txt, under
-- $ORACLE_HOME/ctx/sample/thes directory.

exec ctx_ddl.drop_preference('ndata_wl');
begin
 ctx_ddl.create_preference('NDATA_WL', 'BASIC_WORDLIST');
 ctx_ddl.set_attribute('NDATA_WL', 'NDATA_ALTERNATE_SPELLING', 'FALSE');
 ctx_ddl.set_attribute('NDATA_WL', 'NDATA_BASE_LETTER', 'TRUE');
 ctx_ddl.set_attribute('NDATA_WL', 'NDATA_THESAURUS', 'NICKNAMES');
 ctx_ddl.set_attribute('NDATA_WL', 'NDATA_JOIN_PARTICLES',
 'de:di:la:da:el:del:qi:abd:los:la:dos:do:an:li:yi:yu:van:jon:un:sai:ben:al');
end;
/

exec ctx_output.start_log('emp_log');
create index name_idx on emp(first_name) indextype is ctxsys.context
parameters ('datastore empuds section group namegroup wordlist ndata_wl
 memory 500M');

exec ctx_output.end_log;

-- Now you can do name searches with the following SQL:
var name varchar2(80);
exec :name := 'Jon Blacksmith'

select first_name, middle_name, last_name, phone, email, scr from
 (select /*+ FIRST_ROWS */
 first_name, middle_name, last_name, phone, email, score(1) scr
 from emp
 where contains(first_name,
 'ndata(phone, '||:name||') OR ndata(email,'||:name||') OR
 ndata(fullname, '||:name||') ',1)>0
 order by score(1) desc
) where rownum <= 10;

Preface

This Preface contains these topics:

	
Audience

	
Documentation Accessibility

	
Related Documents

	
Conventions

Audience

Oracle Text Application Developer's Guide is intended for users who perform the following tasks:

	
Develop Oracle Text applications

	
Administer Oracle Text installations

To use this document, you need to have experience with the Oracle object relational database management system, SQL, SQL*Plus, and PL/SQL.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

For more information about Oracle Text, see:

	
Oracle Text Reference

For more information about Oracle Database, see:

	
Oracle Database Concepts

	
Oracle Database Administrator's Guide

	
Oracle Database Utilities

	
Oracle Database Performance Tuning Guide

	
Oracle Database SQL Language Reference

	
Oracle Database Reference

	
Oracle Database Advanced Application Developer's Guide

For more information about PL/SQL, see:

	
Oracle Database PL/SQL Language Reference

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
	italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
	monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

Glossary

alternate spelling

In Oracle Text, alternate spelling refers specifically to the use of spelling variations in German, Swedish, and Dutch; these variations may be indexed if the BASIC_LEXER attribute ALTERNATE_SPELLING has been specified.

attribute

An attribute is an optional parameter associated with a preference. For example, the BASIC_LEXER preference includes the base_letter attribute, which can have either the value of YES (perform base-letter conversions) or NO (do not perform such conversions). Attributes are set with the CTX_DDL.SET_ATTRIBUTE procedure or with the ALTER INDEX statement. See also: preference, base-letter conversion.

attribute section

A user-defined section, representing an attribute of an XML document, such as AUTHOR or TITLE. Attribute sections are added to section groups with CTX_DDL.ADD_ATTR_SECTION or with the ALTER INDEX statement. See also: AUTO_SECTION_GROUP, section, XML_SECTION_GROUP.

AUTO_SECTION_GROUP

A section group used to automatically crate a zone section for each start-and end-tag pair in an XML document; attribute sections are automatically created for XML tags that have attributes. See also: attribute section, section, section group, XML_SECTION_GROUP, zone section.

base-letter conversion

The conversion of a letter with alternate forms (such as accents, umlauts, or cedillas) to its basic form (for example, without an accent).

BASIC_SECTION_GROUP

A section group used to define sections where the start and end tags are of the form <tag> and </tag>. It does not support non-basic tags, such as comment tags or those with attributes or unbalanced parentheses. See also: HTML_SECTION_GROUP, section, section group.

case

Case refers to the capitalization of a word or letter, where upper-case letters are capitals (M instead of m, for example). Not all languages have case. Mixed-case indexing is supported for some languages, notably those of Western Europe.

classification

Also known as document classification. The conceptual separation of source documents into groups, or clusters, based on their content. For example, a group of documents might be separated into clusters concerning medicine, finance, and sports.

Oracle Text includes rule-based classification, in which a person writes the rules for classifying documents (in the form of queries), and Oracle Text performs the document classification according to the rules; supervised classification, in which Oracle Text creates classification rules based on a set of sample documents; and clustering (also known as unsupervised classification), in which the clusters and rules are both created by Oracle Text.

clustering

Also known as unsupervised classification. See: classification.

composite domain index

Also known as CDI type of index. An Oracle Text index that not only indexes and processes a specified text column, but also indexes and processes FILTER BY and ORDER BY structured columns that are specified during index creation. See also: domain index.

CONTEXT index

The basic type of Oracle Text index; an index on a text column. A CONTEXT index is useful when your source text consists of many large, coherent documents. Applications making use of CONTEXT indexes use the CONTAINS query operator to retrieve text.

CTXAPP role

A role for application developers that enables a user to create Oracle Text indexes and index preferences, and to use PL/SQL packages. This role should be granted to Oracle Text users.

CTXCAT index

A combined index on a text column and one or more other columns. Typically used to index small documents or text fragments, such as item names, prices and descriptions typically found in catalogs. The CTXCAT index typically has better mixed-query performance than the CONTEXT index.

Applications query this index with the CATSEARCH operator. This index is transactional, which means that it automatically updates itself with DML to the base table.

CTXRULE index

A CTXRULE index is used to build a document classification application. The CTXRULE index is an index created on a table of queries, where the queries serve as rules to define the classification criteria. This index is queried with the MATCHES operator.

CTXSYS user

The CTXSYS user is created at install time. The CTXSYS user can view all indexes; sync all indexes; run ctxkbtc, the knowledge base extension compiler; query all system-defined views; and perform all the tasks of a user with the CTXAPP role.

CTXXPATH index

An index used to speed up existsNode() queries on an XMLType column.

datastore

In Oracle Text, datastore refers to the method of storing text. The method is determined by specifying a storage preference of a particular type. For example, the DIRECT_DATASTORE type stores data directly into the text column, while the URL_DATASTORE specifies that data is stored externally in a location specified by a URL.

domain index

An Oracle Database domain index that indexes and processes a specified text column. See also: composite domain index.

endjoin

One or more non-alphanumeric characters that, when encountered as the last character in a token, explicitly identify the end of the token. The characters, as well as any startjoin characters that immediately follow it, are included in the Text index entry for the token. For example, if ++ is specified as an endjoin, then C++ will be recognized and indexed as a single token. See also: printjoin, skipjoin, startjoin.

field section

A field section is similar to a zone section, with the main difference that the content between the start and end tags of a field section can be indexed separately from the rest of the document. This enables field section content to be "hidden" from a normal query. (The INPATH and WITHIN operators may be used to find the term in such a section.) Field sections are useful when there is a single occurrence of a section in a document, such as a filed in a news header. Field sections are added to section groups with the CTX_DDL.ADD_FIELD_SECTION procedure or with the ALTER INDEX statement. See also: INPATH operator, section, WITHIN operator, zone section.

filtering

One of the steps in the Oracle Text index-creation process. Depending on the filtering preferences associated with the creation of the index, one of three things happens during filtering: Formatted documents are filtered into marked-up text; text is converted from a non-database character set to a database character set; or no filtering takes place (HTML, XML, and plain-text documents are not filtered).

fuzzy matching

A fuzzy-matching query is one in which the query is expanded to include words that are spelled similarly to the specified term. This type of expansion is helpful for finding more accurate results when there are frequent misspellings in a document set. Fuzzy matching is invoked with the FUZZY query operator.

HASPATH operator

A CONTAINS query operator used to find XML documents that contain a section path exactly as specified in the query. See also: PATH_SECTION_GROUP.

highlighting

Generically, in Oracle Text, highlighting refers to generating a version of a document, or document fragments, with query terms displayed or called out in a special way.

Specifically, there are three forms of highlighting. First, CTX_DOC.MARKUP returns a document with the query term surrounded by plaintext or HTML tags. Second, CTX_DOC.HIGHLIGHT returns offsets for the query terms, allowing the user to mark up the document as desired. Third, CTX_DOC.SNIPPET produces a concordance, with the query term displayed in fragments of surrounding text. markup.

HTML_SECTION_GROUP

A section group type used for defining sections in HTML documents. See also: BASIC_SECTION_GROUP, section, section group.

INPATH operator

A CONTAINS query operator used to search within tags, or paths, of an XML document. It enables more generic path denomination than the WITHIN operator. See also: WITHIN operator.

Key Word in Context (KWIC)

In Oracle Text, a presentation of a query term with the text that surrounds it in the source document. This presentation may consist of a single instance of the query term, several instances, or every instance in the source document. The CTX_DOC.SNIPPET procedure produces such a presentation. Also known as Key Word in Context (KWIC).

knowledge base

Oracle Text includes a knowledge base, which is a hierarchical tree of concepts used for theme indexing, ABOUT queries, and deriving themes for document services. The knowledge base may be optionally installed. You can create your own knowledge base or extend the standard Oracle Text knowledge base.

lexer

The Oracle Text lexer breaks source text into tokens—usually words—in accordance with a specified language. To extract tokens, the lexer uses parameters as defined by a lexer preference. These parameters include the definitions for the characters that separate tokens, such as whitespace, and whether to convert text to all uppercase or not. When theme indexing is enabled, the lexer analyses text to create theme tokens.

When an application needs to index a table containing documents in more than one language, it can utilize the MULTI_LEXER (the multilingual lexer) and create sub-lexers to handle each language. Each sub-lexer is added to the main multi-lexer with the CTX_DDl.ADD_SUB_LEXER procedure.

markup

A form of highlighting. The CTX_DOC.MARKUP and CTX_DOC.POLICY_MARKUP procedures take a query term and a document, and return the document with the query terms marked up; that is, surrounded either by plaintext characters or HTML tags. You can use predefined markup tags or specify your own. In comparison, CTX_DOC.HIGHLIGHT and CTX_DOC.POLICY_HIGHLIGHT return offsets for query terms, so you can add your own highlighting tags. See also: highlighting.

MDATA

See: metadata.

MDATA section

An MDATA section contains user-defined index metadata. Use of this metadata can speed up mixed CONTAINS queries. See also: metadata, mixed query, section.

metadata

Metadata is information about a document that is not part of a document's regular content. For example, if an HTML document contains <author>Mark Twain</author>, author is considered the metadata type and Mark Twain is considered the value for author.

Sections containing metadata, known as MDATA sections, can be added to a document with the CTX_DDL.ADD_MDATA_SECTION procedure. Taking advantage of metadata can speed up mixed queries. Such queries can be made with the MDATA operator. See also: mixed query, section.

mixed query

A query that searches for two different types of information; for example, text content and document type. For example, a search for Romeo and Juliet in <title> metadata is a mixed query.

name search

Name searching (also called name matching) provides a solution to match proper names that might differ in spelling due to orthographic variation. It also enables you to search for somewhat inaccurate data, such as might occur when a record's first name and surname are not properly segmented.

NEWS_SECTION_GROUP

A section group type used for defining sections in newsgroup-formatted documents as defined by RFC 1036. See also: section, section group.

normalized word

The form of a word after it has been transformed for indexing, according to transformational rules in effect. Depending on the rules in effect, the normalized form of a word may be the same as the form found in the source document. The normalized form of a word may also include both the original and transformed versions. For example, if New German Spelling has been specified, the word Potential is normalized to both Potenzial and Potential.

NULL_SECTION_GROUP

The default section group type when no sections are defined or when only SENTENCE or PARAGRAPH sections are defined. See also: section, section group, special section.

PATH_SECTION_GROUP

A section group type used for indexing XML documents. It is similar to the AUTO_SECTION_GROUP type, except that it enables the use of the HASPATH and INPATH operators. See also: AUTO_SECTION_GROUP, HASPATH operator, INPATH operator, section, section group.

preference

A preference is an optional parameter that affects the way Oracle Text creates an index. For example, a lexer preference specifies the lexer to use when processing documents, such as the JAPANESE_VGRAM_LEXER. There are preferences for storage, filtering, lexers, classifiers, wordlist, section types, and more. A preference may or may not have attributes associated with it. Preferences are set with the CTX_DDL.CREATE_PREFERENCE procedure. See also: attribute.

printjoin

One or more non-alphanumeric character that, when they appear anywhere in a word (beginning, middle, or end), are processed as alphanumeric and included with the token in an Oracle Text index. This includes printjoins that occur consecutively.

For example, if the hyphen (-) and underscore (_) characters are defined as printjoins, terms such as pseudo-intellectual and _file_ are stored in the Oracle Text index as pseudo-intellectual and _file_.

Printjoins differ from endjoins and startjoins in that position does not matter. For example, $35 will be indexed as one token if $ is defined as a startjoin or a printjoin, but as two tokens if it is an endjoin. See also: endjoin, printjoin, startjoin.

result set

A page of search results in applications can consist of many disparate elements — metadata of the first few documents, total hit counts, per-word hit counts, and so on. Generating these results in earlier versions of Oracle Text required several queries and calls. Each extra call takes time to reparse the query and look up index metadata. Additionally, some search operations, such as iterative query refinement or breakdown top ten, are difficult for SQL.

The result set interface enables you to produce the various kinds of data needed for a page of search results all at once, thus improving performance by sharing overhead. The result set interface can also return data views that are difficult to express in SQL, such as top N by category queries.

rule-based classification

See: classification.

SDATA section

Structured/Sort Data section. Unlike the MDATA section type, which only supports equality searches, SDATA sections are designed to also support range searches. By default, all FILTER BY and ORDER BY columns are mapped as SDATA sections. An SDATA section contains user-defined index metadata. Use of this type of section can speed up mixed CONTAINS queries. See also: mixed query, section.

section

A section is a subdivision of a document; for example, everything within an <a>... section of an HTML page.

Dividing a document into sections and then searching within sections enables you to narrow text queries down to blocks of text within documents. Section searching is useful when your documents have internal structure, such as HTML and XML documents. You can also search for text at the sentence and paragraph level.

Section searching is performed with the HASPATH, ISPATH, or WITHIN operator. Sections searching is enabled by the used of the section group when indexing.

The various section types include attribute, field, HTML, MDATA, special, stop, XML, and zone sections.

section group

A section group identifies a type of document set and implicitly indicate the tag structure for indexing. For instance, to index HTML tagged documents, you use the HTML_SECTION_GROUP. section group type. Likewise, to index XML tagged documents, you can use the XML_SECTION_GROUP section group type. Section groups are declared with the CTX_DDL.CREATE_SECTION_GROUP procedure or with the ALTER INDEX statement. See also: section.

skipjoin

A non-alphanumeric character that, when it appears within a word, identifies the word as a single token; however, the character is not stored with the token in the Text index. For example, if the hyphen character '-' is defined as a skipjoin, the word pseudo-intellectual is stored in the Text index as pseudointellectual. See also: endjoin, printjoin, startjoin.

startjoin

One or more non-alphanumeric characters that, when encountered as the first character in a token explicitly identify the start of the token. The characters, as well as any other startjoins characters that immediately follow it, are included in the Text index entry for the token. For example, if '$' is defined as a startjoin, then $35 is indexed as a single token. In addition, the first startjoins character in a string of startjoins characters implicitly ends the previous token. See also: endjoin, printjoin, skipjoin.

stemming

The expansion of a query term to include all terms having the same root word. For example, stemming the verb talk yields talking, talks, and talked, as well as talk (but not talkie). Stemming is distinct from wildcard expansion, in which results are related only through spelling, not through morphology. See also: wildcard expansion.

special section

A document section that is not bounded by tags. Instead, sections are formed by plaintext document structures such as sentences and paragraphs. Special sections are added to a section group with the CTX_DDL.ADD_SPECIAL_SECTION procedure. See also: section, section group.

stop section

A section that, when added to an AUTO_SECTION_GROUP, causes the information for document sections of that type to be ignored during indexing; the section content may still be searched, however. Stop sections are added to section groups with the CTX_DDL.ADD_STOP_SECTION procedure. See also: AUTO_SECTION_GROUP, section, section group.

stopclass

A class of tokens, such as NUMBERs, that are to be skipped over during indexing. Stopclasses are specified by adding them to stoplists with CTX_DDL.ADD_STOPCLASS. See also: stoplist.

stoplist

A list of words, known as stopwords, themes (stopthemes), and data classes (stopclasses) that are not to be indexed. By default, the system indexes text using the system-supplied stoplist that corresponds to a given database language.

Oracle Text provides default stoplists for most common languages including English, French, German, Spanish, Chinese, Dutch, and Danish. These default stoplists contain only stopwords. Stoplists are created with CTX_DDL.CREATE_STOPLIST or with the ALTER INDEX statement. See also: stopclass, stoptheme, stopword.

stoptheme

A theme to be skipped over during indexing. Stopthemes are specified by adding them to stoplists with CTX_DDL.ADD_STOPTHEMES. See also: stoplist.

stopword

A word to be skipped over during indexing. Stopwords are specified by adding them to stoplists with CTX_DDL.ADD_STOPWORD. They can also be dynamically added to an index using the ALTER INDEX statement. See also: stoplist.

sub-lexer

See: lexer.

supervised classification

See: classification.

theme

A topic associated with a given document. A document may have many themes. A theme does not have to appear in a document; for example, a document containing the words San Francisco may have California as one of its themes.

Theme components are added to indexes with the INDEX_THEMES attribute of the BASIC_LEXER preference; they may be extracted from a document with CTX_DOC.THEMES and queried with the ABOUT operator.

unsupervised classification

Also known as clustering. See: classification.

wildcard expansion

The expansion of a query term to return words that fit a given pattern. For example, expansion of the query term %rot% would return both trot and rotten. Wildcard expansion is distinct from stemming. See also: stemming.

whitespace

Characters that are treated as blank spaces between tokens. The predefined default values for whitespace are 'space' and 'tab'. The BASIC_LEXER uses whitespace characters (in conjunction with punctuations and newline characters) to identify character strings that serve as sentence delimiters for sentence and paragraph searching.

WITHIN operator

A CONTAINS query operator used to search for query terms within a given XML document section. It is similar to the INPATH operator, but less generic. See also: INPATH operator.

wordlist

An Oracle Text preference that enables features such as fuzzy, stemming, and prefix indexing for better wildcard searching, as well as substring and prefix indexing. The wordlist preference improves performance for wildcard queries with CONTAINS and CATSEARCH. Create wordlists with the CTX_DDL.ADD_WORDLIST procedure or with the ALTER INDEX statement. See also: preference.

XML section

A section that defined by XML tags, enabling XML section searching. Indexing with XML sections permits automatic sectioning as well as declaring document-type-sensitive sections. XML section searching includes attribute searching as well as path section searching with the INPATH, HASPATH, and WITHIN operators. See also: section.

XML_SECTION_GROUP

A section group used for identifying XML documents for indexing. See also: section, section group.

zone section

The basic type of document section; a body of text delimited by start and end tags in a document. Zone sections are well suited for defining sections in HTML and XML documents. Zone sections are added to section groups with the CTX_DDL.ADD_ZONE_SECTION procedure or with the ALTER INDEX statement. See also: field section, section, section group.

2 Getting Started with Oracle Text

This chapter discuses the following topics:

	
Overview of Getting Started with Oracle Text

	
Creating an Oracle Text User

	
Query Application Quick Tour

	
Catalog Application Quick Tour

	
Classification Application Quick Tour

2.1 Overview of Getting Started with Oracle Text

This chapter provides basic information about how to create an Oracle Text developer user account, and how to build simple text query and catalog applications. It also provides information about basic SQL statements for each type of application to load, index, and query tables.

More complete application examples are given in the Appendices. To learn more about building document classification applications, see Chapter 6, "Classifying Documents in Oracle Text".

	
Note:

The SQL> prompt has been omitted in this chapter, in part to improve readability and in part to make it easier for you to cut and paste text.

2.2 Creating an Oracle Text User

Before you can create Oracle Text indexes and use Oracle Text PL/SQL packages, you need to create a user with the CTXAPP role. This role enables you to do the following:

	
Create and delete Oracle Text indexing preferences

	
Use the Oracle Text PL/SQL packages

To create an Oracle Text application developer user, do the following as the system administrator user:

	
	Step 1 Create User
	
The following SQL statement creates a user called MYUSER with a password of myuser_password:

CREATE USER myuser IDENTIFIED BY myuser_password;

	
	Step 2 Grant Roles
	
The following SQL statement grants the required roles of RESOURCE, CONNECT, and CTXAPP to MYUSER:

GRANT RESOURCE, CONNECT, CTXAPP TO MYUSER;

	
	Step 3 Grant EXECUTE Privileges on CTX PL/SQL Packages
	
Oracle Text includes several packages that let you perform actions ranging from synchronizing an Oracle Text index to highlighting documents. For example, the CTX_DDL package includes the SYNC_INDEX procedure, which enables you to synchronize your index. The Oracle Text Reference describes each of these packages in its own chapter.

To call any of these procedures from a stored procedure, your application requires execute privileges on the packages. For example, to grant to MYUSER execute privileges on all Oracle Text packages, enter the following SQL statements:

GRANT EXECUTE ON CTXSYS.CTX_CLS TO myuser;
GRANT EXECUTE ON CTXSYS.CTX_DDL TO myuser;
GRANT EXECUTE ON CTXSYS.CTX_DOC TO myuser;
GRANT EXECUTE ON CTXSYS.CTX_OUTPUT TO myuser;
GRANT EXECUTE ON CTXSYS.CTX_QUERY TO myuser;
GRANT EXECUTE ON CTXSYS.CTX_REPORT TO myuser;
GRANT EXECUTE ON CTXSYS.CTX_THES TO myuser;
GRANT EXECUTE ON CTXSYS.CTX_ULEXER TO myuser;

2.3 Query Application Quick Tour

In a basic text query application, users enter query words or phrases and expect the application to return a list of documents that best match the query. Such an application involves creating a CONTEXT index and querying it with CONTAINS.

This example steps you through the basic SQL statements to load the text table, index the documents, and query the index.

Typically, query applications require a user interface. An example of how to build such a query application using the CONTEXT index type is given in Appendix A.

	
	Step 1 Connect as the New User
	
Before creating any tables, assume the identity of the user you just created.

CONNECT myuser;

	
	Step 2 Create your Text Table
	
The following example creates a table called docs with two columns, id and text, by using the CREATE TABLE statement. This example makes the id column the primary key. The text column is VARCHAR2.

CREATE TABLE docs (id NUMBER PRIMARY KEY, text VARCHAR2(200));

	
	Step 3 Load Documents into Table
	
Use the SQL INSERT statement to load text to a table.

To populate the docs table, use the INSERT statement as follows:

INSERT INTO docs VALUES(1, '<HTML>California is a state in the US.</HTML>');
INSERT INTO docs VALUES(2, '<HTML>Paris is a city in France.</HTML>');
INSERT INTO docs VALUES(3, '<HTML>France is in Europe.</HTML>');

Using SQL*Loader

You can also load your table in batch with SQL*Loader.

	
See Also:

"Building the Web Application" for an example on how to use SQL*Loader to load a text table from a data file

	
	Step 1 Create the CONTEXT index
	
Index the HTML files by creating a CONTEXT index on the text column as follows. Because you are indexing HTML, this example uses the NULL_FILTER preference type for no filtering and the HTML_SECTION_GROUP type:

CREATE INDEX idx_docs ON docs(text)
 INDEXTYPE IS CTXSYS.CONTEXT PARAMETERS
 ('FILTER CTXSYS.NULL_FILTER SECTION GROUP CTXSYS.HTML_SECTION_GROUP');

Use the NULL_FILTER, because you do not need to filter HTML documents during indexing. However, if you index PDF, Microsoft Word, or other formatted documents, then use the CTXSYS.AUTO_FILTER (the default) as your FILTER preference.

This example also uses the HTML_SECTION_GROUP section group, which is recommended for indexing HTML documents. Using HTML_SECTION_GROUP enables you to search within specific HTML tags and eliminates from the index unwanted markup such as font information.

	
	Step 2 Querying Your Table with CONTAINS
	
First, set the format of the SELECT statement's output so it is easily readable. Set the width of the text column to 40 characters:

COLUMN text FORMAT a40;

Now query the table with the SELECT statement with CONTAINS. This retrieves the document IDs that satisfy the query. The following query looks for all documents that contain the word France:

SELECT SCORE(1), id, text FROM docs WHERE CONTAINS(text, 'France', 1) > 0;

 SCORE(1) ID TEXT
---------- ---------- --
 4 3 <HTML>France is in Europe.</HTML>
 4 2 <HTML>Paris is a city in France.</HTML>

	
	Step 3 Present the Document
	
In a real application, you might want to present the selected document to the user with query terms highlighted. Oracle Text enables you to mark up documents with the CTX_DOC package.

We can demonstrate HTML document markup with an anonymous PL/SQL block in SQL*Plus. However, in a real application you might present the document in a browser.

This PL/SQL example uses the in-memory version of CTX_DOC.MARKUP to highlight the word France in document 3. It allocates a temporary CLOB (Character Large Object datatype) to store the markup text and reads it back to the standard output. The CLOB is then de-allocated before exiting:

SET SERVEROUTPUT ON;
DECLARE
 2 mklob CLOB;
 3 amt NUMBER := 40;
 4 line VARCHAR2(80);
 5 BEGIN
 6 CTX_DOC.MARKUP('idx_docs','3','France', mklob);
 7 DBMS_LOB.READ(mklob, amt, 1, line);
 8 DBMS_OUTPUT.PUT_LINE('FIRST 40 CHARS ARE:'||line);
 9 DBMS_LOB.FREETEMPORARY(mklob);
 10 END;
 11 /
FIRST 40 CHARS ARE:<HTML><<<France>>> is in Europe.</HTML>

PL/SQL procedure successfully completed.

	
	Step 4 Synchronize the Index After Data Manipulation
	
When you create a CONTEXT index, you need to explicitly synchronize your index to keep it up to date with any inserts, updates, or deletes to the text table.

Oracle Text enables you to do so with the CTX_DDL.SYNC_INDEX procedure.

Add some rows to the docs table:

INSERT INTO docs VALUES(4, '<HTML>Los Angeles is a city in California.</HTML>');
INSERT INTO docs VALUES(5, '<HTML>Mexico City is big.</HTML>');

Because the index is not synchronized, these new rows are not returned with a query on city:

SELECT SCORE(1), id, text FROM docs WHERE CONTAINS(text, 'city', 1) > 0;

 SCORE(1) ID TEXT
---------- ---------- --
 4 2 <HTML>Paris is a city in France.</HTML>

Therefore, synchronize the index with 2Mb of memory, and rerun the query:

EXEC CTX_DDL.SYNC_INDEX('idx_docs', '2M');

PL/SQL procedure successfully completed.

COLUMN text FORMAT a50;
SELECT SCORE(1), id, text FROM docs WHERE CONTAINS(text, 'city', 1) > 0;

 SCORE(1) ID TEXT
---------- ---------- --
 4 5 <HTML>Mexico City is big.</HTML>
 4 4 <HTML>Los Angeles is a city in California.</HTML>
 4 2 <HTML>Paris is a city in France.</HTML>

2.3.1 Building Web Applications with the Oracle Text Wizard

Oracle Text enables you to build simple text and catalog Web applications with the Oracle Text Wizard add-on for Oracle JDeveloper. The wizard automatically generates Java Server Pages or PL/SQL server scripts you can use with the Oracle-configured Apache Web server.

Both JDeveloper and the Text Wizard can be downloaded for free from the Oracle Technology Network.

2.3.1.1 Oracle JDeveloper

Obtain the latest JDeveloper software from the following URL:

http://www.oracle.com/technology/software/products/jdev

See "Building the JSP Web Application" for an example.

2.3.1.2 Oracle Text Wizard Addins

Obtain the Text, Catalog, and Classification Wizard addins from the following URL:

http://www.oracle.com/technology/software/products/text

2.3.1.3 Oracle Text Wizard Instructions

Find instructions on using the Oracle Text Wizard and setting up your JSP files to run in a Web server environment from the following URL:

http://www.oracle.com/technology/software/products/text

Follow the "Text Search Wizard for JDeveloper" link.

2.4 Catalog Application Quick Tour

This example creates a catalog index for an auction site that sells electronic equipment, such as cameras and CD players. New inventory is added everyday and item descriptions, bid dates, and prices must be stored together.

The application requires good response time for mixed queries. The key is to determine what columns users frequently search to create a suitable CTXCAT index. Queries on this type of index are entered with the CATSEARCH operator.

	
Note:

Typically, query applications require a user interface. An example of how to build such a query application using the CATSEARCH index type is given in Appendix B.

	
	Step 1 Connect as the Appropriate User
	
Connect as the CTXAPP role the user myuser:

CONNECT myuser;

	
	Step 2 Create Your Table
	
Set up an auction table to store your inventory:

CREATE TABLE auction(
item_id NUMBER,
title VARCHAR2(100),
category_id NUMBER,
price NUMBER,
bid_close DATE);

Figure 2-1 illustrates this table.

	
	Step 3 Populate Your Table
	
Populate the table with various items, each with an id, title, price and bid_date:

INSERT INTO AUCTION VALUES(1, 'NIKON CAMERA', 1, 400, '24-OCT-2002');
INSERT INTO AUCTION VALUES(2, 'OLYMPUS CAMERA', 1, 300, '25-OCT-2002');
INSERT INTO AUCTION VALUES(3, 'PENTAX CAMERA', 1, 200, '26-OCT-2002');
INSERT INTO AUCTION VALUES(4, 'CANON CAMERA', 1, 250, '27-OCT-2002');

Using SQL*Loader

You can also load your table in batch with SQL*Loader.

	
See Also:

"Building the Web Application" for an example on how to use SQL*Loader to load a text table from a data file

	
	Step 1 Determine your Queries
	
Determine what criteria are likely to be retrieved. In this example, you determine that all queries search the title column for item descriptions, and most queries order by price. When using the CATSEARCH operator later, we'll specify the terms for the text column and the criteria for the structured clause.

	
	Step 2 Create the Sub-Index to Order by Price
	
For Oracle Text to serve these queries efficiently, we need a sub-index for the price column, because our queries will order by price.

Therefore, create an index set called auction_set and add a sub-index for the price column:

EXEC CTX_DDL.CREATE_INDEX_SET('auction_iset');
EXEC CTX_DDL.ADD_INDEX('auction_iset','price'); /* sub-index A*/

Figure 2-1 shows how the sub-index relates to the columns.

	
	Step 3 Create the CTXCAT Index
	
Create the combined catalog index on the AUCTION table with CREATE INDEX as follows:

CREATE INDEX auction_titlex ON AUCTION(title) INDEXTYPE IS CTXSYS.CTXCAT PARAMETERS ('index set auction_iset');

Figure 2-1 shows how the CTXCAT index and its sub-index relates to the columns.

Figure 2-1 Auction table schema and CTXCAT index

[image: Description of Figure 2-1 follows]

	
	Step 1 Querying Your Table with CATSEARCH
	
When you have created the CTXCAT index on the AUCTION table, you can query this index with the CATSEARCH operator.

First set the output format to make the output readable:

COLUMN title FORMAT a40;

Now run the query:

SELECT title, price FROM auction WHERE CATSEARCH(title, 'CAMERA', 'order by price')> 0;

TITLE PRICE
--------------- ----------
PENTAX CAMERA 200
CANON CAMERA 250
OLYMPUS CAMERA 300
NIKON CAMERA 400

SELECT title, price FROM auction WHERE CATSEARCH(title, 'CAMERA',
 'price <= 300')>0;

TITLE PRICE
--------------- ----------
PENTAX CAMERA 200
CANON CAMERA 250
OLYMPUS CAMERA 300

	
	Step 2 Update Your Table
	
Update your catalog table by adding new rows. When you do so, the CTXCAT index is automatically synchronized to reflect the change.

For example, add the following new rows to our table and then rerun the query:

INSERT INTO AUCTION VALUES(5, 'FUJI CAMERA', 1, 350, '28-OCT-2002');
INSERT INTO AUCTION VALUES(6, 'SONY CAMERA', 1, 310, '28-OCT-2002');

SELECT title, price FROM auction WHERE CATSEARCH(title, 'CAMERA', 'order by price')> 0;

TITLE PRICE
----------------------------------- ----------
PENTAX CAMERA 200
CANON CAMERA 250
OLYMPUS CAMERA 300
SONY CAMERA 310
FUJI CAMERA 350
NIKON CAMERA 400

6 rows selected.

Note how the added rows show up immediately in the query.

2.5 Classification Application Quick Tour

The function of a classification application is to perform some action based on document content. These actions can include assigning a category ID to a document or sending the document to a user. The result is classification of a document.

Documents are classified according to predefined rules. These rules select for a category. For instance, a query rule of 'presidential elections' might select documents for a category about politics.

Oracle Text provides several types of classification. One type is simple, or rule-based classification, discussed here, in which you create both document categories and the rules for categorizing documents. With supervised classification, Oracle Text derives the rules from a set of training documents you provide. With clustering, Oracle Text does all the work for you, deriving both rules and categories. (For more on classification, see "Overview of Document Classification".)

To create simple classification for document content using Oracle Text, create rules. Rules are essentially a table of queries that categorize document content. Index these rules in a CTXRULE index. To classify an incoming stream of text, use the MATCHES operator in the WHERE clause of a SELECT statement. See Figure 2-2 for the general flow of a classification application.

Figure 2-2 Overview of a Document Classification Application

[image: Description of Figure 2-2 follows]

2.5.1 Steps for Creating a Classification Application

The following example shows how to classify documents by defining simple categories, creating a CTXRULE index, and using MATCHES, using the CTXAPP role user myuser.

	
	Step 1 Connect As the Appropriate User
	
Connect as the CTXAPP role user myuser:

CONNECT myuser;

	
	Step 2 Create the Rule Table
	
We must create a rule table and populate it with query rules. In this example, we create a table called queries. Each row defines a category with an ID, and a rule which is a query string:

CREATE TABLE queries (
 query_id NUMBER,
 query_string VARCHAR2(80)
);

 INSERT INTO queries VALUES (1, 'oracle');
 INSERT INTO queries VALUES (2, 'larry or ellison');
 INSERT INTO queries VALUES (3, 'oracle and text');
 INSERT INTO queries VALUES (4, 'market share');

	
	Step 3 Create Your CTXRULE Index
	
Create a CTXRULE index as follows:

CREATE INDEX queryx ON queries(query_string) INDEXTYPE IS CTXSYS.CTXRULE;

	
	Step 4 Classify with MATCHES
	
Use the MATCHES operator in the WHERE clause of a SELECT statement to match documents to queries and hence classify.

 COLUMN query_string FORMAT a35;
 SELECT query_id,query_string FROM queries
 WHERE MATCHES(query_string,
 'Oracle announced that its market share in databases
 increased over the last year.')>0;

 QUERY_ID QUERY_STRING
---------- -----------------------------------
 1 oracle
 4 market share

As shown, the document string matches categories 1 and 4. With this classification you can perform an action, such as writing the document to a specific table or e-mailing a user.

	
See Also:

Chapter 6, "Classifying Documents in Oracle Text" for more extended classification examples

6 Classifying Documents in Oracle Text

This chapter includes the following topics:

	
Overview of Document Classification

	
Classification Solutions

	
Rule-Based Classification

	
Supervised Classification

	
Unsupervised Classification (Clustering)

6.1 Overview of Document Classification

A major problem facing businesses and institutions today is that of information overload. Sorting out useful documents from documents that are not of interest challenges the ingenuity and resources of both individuals and organizations.

One way to sift through numerous documents is to use keyword search engines. However, keyword searches have limitations. One major drawback is that keyword searches do not discriminate by context. In many languages, a word or phrase may have multiple meanings, so a search may result in many matches that are not on the desired topic. For example, a query on the phrase river bank might return documents about the Hudson River Bank & Trust Company, because the word bank has two meanings.

An alternative strategy is to have human beings sort through documents and classify them by content, but this is not feasible for very large volumes of documents.

Oracle Text offers various approaches to document classification. Under rule-based classification, you write the classification rules yourself. With supervised classification, Oracle Text creates classification rules based on a set of sample documents that you pre-classify. Finally, with unsupervised classification (also known as clustering), Oracle Text performs all the steps, from writing the classification rules to classifying the documents, for you.

6.1.1 Classification Applications

Oracle Text enables you to build document classification applications. A document classification application performs some action based on document content. Actions include assigning category IDs to a document for future lookup or sending a document to a user. The result is a set or stream of categorized documents. Figure 6-1 illustrates how the classification process works.

Oracle Text enables you to create document classification applications in different ways. This chapter defines a typical classification scenario and shows how you can use Oracle Text to build a solution.

Figure 6-1 Overview of a Document Classification Application

[image: Description of Figure 6-1 follows]

6.2 Classification Solutions

Oracle Text enables you to classify documents in the following ways:

	
Rule-Based Classification. In rule-based classification, you group your documents together, decide on categories, and formulate the rules that define those categories; these rules are actually query phrases. You then index the rules and use the MATCHES operator to classify documents.

Advantage: Rule-based classification is very accurate for small document sets. Results are always based on what you define, because you write the rules.

Disadvantages: Defining rules can be tedious for large document sets with many categories. As your document set grows, you may need to write correspondingly more rules.

	
Supervised Classification. This method is similar to rule-based classification, but the rule writing step is automated with CTX_CLS.TRAIN. CTX_CLS.TRAIN formulates a set of classification rules from a sample set of pre-classified documents that you provide. As with rule-based classification, you use MATCHES operator to classify documents.

Oracle Text offers two versions of supervised classification, one using the RULE_CLASSIFIER preference and one using the SVM_CLASSIFIER preference. These are discussed in "Supervised Classification".

Advantage: Rules are written for you automatically. This is useful for large document sets.

Disadvantages:

	
You must assign documents to categories before generating the rules.

	
Rules may not be as specific or accurate as those you write yourself.

	
Unsupervised Classification (Clustering). All steps from grouping your documents to writing the category rules are automated with CTX_CLS.CLUSTERING. Oracle Text statistically analyzes your document set and correlates them with clusters according to content.

Advantages:

	
You do not need to provide either the classification rules or the sample documents as a training set.

	
Helps to discover patterns and content similarities in your document set that you might overlook.

In fact, you can use unsupervised classification when you do not have a clear idea of rules or classifications. One possible scenario is to use unsupervised classification to provide an initial set of categories, and to subsequently build on these through supervised classification.

Disadvantages:

	
Clustering might result in unexpected groupings, because the clustering operation is not user-defined, but based on an internal algorithm.

	
You do not see the rules that create the clusters.

	
The clustering operation is CPU-intensive and can take at least the same time as indexing.

6.3 Rule-Based Classification

Rule-based classification (sometimes called "simple classification") is the basic way of creating an Oracle Text classification application.

The basic steps for rule-based classification are as follows. Specific steps are explored in greater detail in the example.

	
Create a table for the documents to be classified, and populate it.

	
Create a rule table (also known as a category table). The rule table consists of categories that you name, such as "medicine" or "finance," and the rules that sort documents into those categories.

These rules are actually queries. For example, you might define the "medicine" category as consisting of documents that include the words "hospital," "doctor," or "disease," so you would set up a rule of the form "hospital OR doctor OR disease." See "CTXRULE Parameters and Limitations" for information on which operators are allowed for queries.

	
Create a CTXRULE index on the rule table.

	
Classify the documents.

6.3.1 Rule-based Classification Example

In this example, we gather news articles on different subjects and then classify them.

Once our rules are created, we can index them and then use the MATCHES statement to classify documents. The steps are as follows:

	
	Step 1 Create schema
	
We create the tables to store the data. The news_table stores the documents to be classified. The news_categories table stores the categories and rules that define our categories. The news_id_cat table stores the document ids and their associated categories after classification.

create table news_table (
 tk number primary key not null,
 title varchar2(1000),
 text clob);

create table news_categories (
 queryid number primary key not null,
 category varchar2(100),
 query varchar2(2000));

create table news_id_cat (
 tk number,
 category_id number);

	
	Step 2 Load Documents with SQLLDR
	
In this step, we load the HTML news articles into the news_table using the SQLLDR program. The filenames and titles are read from loader.dat.

LOAD DATA
 INFILE 'loader.dat'
 INTO TABLE news_table
 REPLACE
 FIELDS TERMINATED BY ';'
 (tk INTEGER EXTERNAL,
 title CHAR,
 text_file FILLER CHAR,
 text LOBFILE(text_file) TERMINATED BY EOF)

	
	Step 3 Create Categories
	
In this step, we define our categories and write the rules for each of our categories.

	Defined Categories:	
	

	United States	Europe	Middle East
	Asia	Africa	Conflicts
	Finance	Technology	Consumer Electronics
	Latin America	World Politics	U.S. Politics
	Astronomy	Paleontology	Health
	Natural Disasters	Law	Music News

A rule is a query that selects documents for the category. For example, the category 'Asia' has a rule of 'China or Pakistan or India or Japan'. We insert our rules in the news_categories table as follows:

insert into news_categories values
 (1,'United States','Washington or George Bush or Colin Powell');

insert into news_categories values
 (2,'Europe','England or Britain or Germany');

insert into news_categories values
 (3,'Middle East','Israel or Iran or Palestine');

insert into news_categories values(4,'Asia','China or Pakistan or India or Japan');

insert into news_categories values(5,'Africa','Egypt or Kenya or Nigeria');

insert into news_categories values
 (6,'Conflicts','war or soliders or military or troops');

insert into news_categories values(7,'Finance','profit or loss or wall street');
insert into news_categories values
 (8,'Technology','software or computer or Oracle
 or Intel or IBM or Microsoft');

insert into news_categories values
 (9,'Consumer electronics','HDTV or electronics');

insert into news_categories values
 (10,'Latin America','Venezuela or Colombia
 or Argentina or Brazil or Chile');

insert into news_categories values
 (11,'World Politics','Hugo Chavez or George Bush
 or Tony Blair or Saddam Hussein or United Nations');

insert into news_categories values
 (12,'US Politics','George Bush or Democrats or Republicans
 or civil rights or Senate or White House');

insert into news_categories values
 (13,'Astronomy','Jupiter or Earth or star or planet or Orion
 or Venus or Mercury or Mars or Milky Way
 or Telescope or astronomer
 or NASA or astronaut');

insert into news_categories values
 (14,'Paleontology','fossils or scientist
 or paleontologist or dinosaur or Nature');

insert into news_categories values
 (15,'Health','stem cells or embryo or health or medical
 or medicine or World Health Organization or AIDS or HIV
 or virus or centers for disease control or vaccination');

insert into news_categories values
 (16,'Natural Disasters','earthquake or hurricane or tornado');

insert into news_categories values
 (17,'Law','abortion or Supreme Court or illegal
 or legal or legislation');

insert into news_categories values
 (18,'Music News','piracy or anti-piracy
 or Recording Industry Association of America
 or copyright or copy-protection or CDs
 or music or artist or song');

commit;

	
	Step 4 Create the CTXRULE index
	
In this step, we create a CTXRULE index on our news_categories query column.

create index news_cat_idx on news_categories(query)
indextype is ctxsys.ctxrule;

	
	Step 5 Classify Documents
	
To classify the documents, we use the CLASSIFIER.THIS PL/SQL procedure (a simple procedure designed for this example), which scrolls through the news_table, matches each document to a category, and writes the categorized results into the news_id_cat table.

create or replace package classifier asprocedure this;end;/

show errors

create or replace package body classifier as

 procedure this
 is
 v_document clob;
 v_item number;
 v_doc number;
 begin

 for doc in (select tk, text from news_table)
 loop
 v_document := doc.text;
 v_item := 0;
 v_doc := doc.tk;
 for c in (select queryid, category from news_categories
 where matches(query, v_document) > 0)
 loop
 v_item := v_item + 1;
 insert into news_id_cat values (doc.tk,c.queryid);
 end loop;
 end loop;

 end this;

end;
/
show errors
exec classifier.this

6.3.2 CTXRULE Parameters and Limitations

The following considerations apply to indexing a CTXRULE index.

	
If the SVM_CLASSIFIER classifier is used, then you may use the BASIC_LEXER, CHINESE_LEXER, JAPANESE_LEXER, or KOREAN_MORPH_LEXER lexers. If SVM_CLASSIFIER is not used, only the BASIC_LEXER lexer type may be used for indexing your query set. (See Oracle Text Reference for more on lexer and classifier preferences.)

	
Filter, memory, datastore, and [no]populate parameters are not applicable to index type CTXRULE.

	
The CREATE INDEX storage clause is supported for creating the index on the queries.

	
Wordlists are supported for stemming operations on your query set.

	
Queries for CTXRULE are similar to those of CONTAINS queries. Basic phrasing ("dog house") is supported, as are the following CONTAINS operators: ABOUT, AND, NEAR, NOT, OR, STEM, WITHIN, and THESAURUS. Section groups are supported for using the MATCHES operator to classify documents. Field sections are also supported; however, CTXRULE does not directly support field queries, so you must use a query rewrite on a CONTEXT query.

	
See Also:

"Creating a CTXRULE Index"

6.4 Supervised Classification

With supervised classification, you employ the CTX_CLS.TRAIN procedure to automate the rule writing step. CTX_CLS.TRAIN uses a training set of sample documents to deduce classification rules. This is the major advantage over rule-based classification, in which you must write the classification rules.

However, before you can run the CTX_CLS.TRAIN procedure, you must manually create categories and assign each document in the sample training set to a category. See Oracle Text Reference for more information on CTX_CLS.TRAIN.

When the rules are generated, you index them to create a CTXRULE index. You can then use the MATCHES operator to classify an incoming stream of new documents.

You may choose between two different classification algorithms for supervised classification:

	
Decision Tree classification. The advantage of Decision Tree classification is that the generated rules are easily observed (and modified).

	
SVM-based classification. This method uses the Support Vector Machine (SVM) algorithm for creating rules. The advantage of SVM-based classification is that it is often more accurate than Decision Tree classification. The disadvantage is that it generates binary rules, so the rules themselves are opaque.

6.4.1 Decision Tree Supervised Classification

To use Decision Tree classification, you set the preference argument to CTX_CLS.TRAIN to RULE_CLASSIFIER.

This form of classification uses a decision tree algorithm for creating rules. Generally speaking, a decision tree is a method of deciding between two (or more, but usually two) choices. In document classification, the choices are "the document matches the training set" or "the document does not match the training set."

A decision tree has a set of attributes that can be tested. In this case, these include:

	
words from the document

	
stems of words from the document (as an example, the stem of running is run)

	
themes from the document (if themes are supported for the language in use)

The learning algorithm in Oracle Text builds one or more decision trees for each category provided in the training set. These decision trees are then coded into queries suitable for use by a CTXRULE index. As a trivial example, if one category is provided with a training document that consists of "Japanese beetle" and another category with a document reading "Japanese currency," the algorithm may create decision trees based on the words "Japanese," "beetle," and "currency," and classify documents accordingly.

The decision trees include the concept of confidence. Each rule that is generated is allocated a percentage value that represents the accuracy of the rule, given the current training set. In trivial examples, this accuracy is almost always 100%, but this merely represents the limitations of the training set. Similarly, the rules generated from a trivial training set may seem to be less than what you might expect, but these are sufficient to distinguish the different categories given the current training set.

The advantage of the Decision Tree method is that it can generate rules that are easily inspected and modified by a human. Using Decision Tree classification makes sense when you want to the computer to generate the bulk of the rules, but you want to fine tune them afterward by editing the rule sets.

6.4.1.1 Decision Tree Supervised Classification Example

The following SQL example steps through creating your document and classification tables, classifying the documents, and generating the rules. It then goes on to generate rules with CTX_CLS.TRAIN.

Rules are then indexed to create CTXRULE index and new documents are classified with MATCHES.

The general steps for supervised classification can be broken down as follows:

	
Create the Category Rules

	
Index Rules to Categorize New Documents

6.4.1.1.1 Create the Category Rules

The CTX_CLS.TRAIN procedure requires an input training document set. A training set is a set of documents that have already been assigned a category.

	
	Step 1 Create and populate a training document table
	
Create and load a table of training documents. This example uses a simple set; three concern fast food and three concern computers.

create table docs (
 doc_id number primary key,
 doc_text clob);

insert into docs values
(1, 'MacTavishes is a fast-food chain specializing in burgers, fries and -
shakes. Burgers are clearly their most important line.');
insert into docs values
(2, 'Burger Prince are an up-market chain of burger shops, who sell burgers -
and fries in competition with the likes of MacTavishes.');
insert into docs values
(3, 'Shakes 2 Go are a new venture in the low-cost restaurant arena,
specializing in semi-liquid frozen fruit-flavored vegetable oil products.');
insert into docs values
(4, 'TCP/IP network engineers generally need to know about routers,
firewalls, hosts, patch cables networking etc');
insert into docs values
(5, 'Firewalls are used to protect a network from attack by remote hosts,
 generally across TCP/IP');

	
	Step 2 Create category tables, category descriptions and ids
	

--

-- Create category tables
-- Note that "category_descriptions" isn't really needed for this demo -
-- it just provides a descriptive name for the category numbers in
-- doc_categories
--

create table category_descriptions (
 cd_category number,
 cd_description varchar2(80));

create table doc_categories (
 dc_category number,
 dc_doc_id number,
 primary key (dc_category, dc_doc_id))
 organization index;

-- descriptons for categories

insert into category_descriptions values (1, 'fast food');
insert into category_descriptions values (2, 'computer networking');

	
	Step 3 Assign each document to a category
	
In this case, the fast food documents all go into category 1, and the computer documents into category 2.

insert into doc_categories values (1, 1);
insert into doc_categories values (1, 2);
insert into doc_categories values (1, 3);
insert into doc_categories values (2, 4);
insert into doc_categories values (2, 5);

	
	Step 4 Create a CONTEXT index to be used by CTX_CLS.TRAIN
	
Create an Oracle Text preference for the index. This enables us to experiment with the effects of turning themes on and off:

exec ctx_ddl.create_preference('my_lex', 'basic_lexer');
exec ctx_ddl.set_attribute ('my_lex', 'index_themes', 'no');
exec ctx_ddl.set_attribute ('my_lex', 'index_text', 'yes');

create index docsindex on docs(doc_text) indextype is ctxsys.context
parameters ('lexer my_lex');

	
	Step 5 Create the rules table
	
Create the table that will be populated by the generated rules.

create table rules(
 rule_cat_id number,
 rule_text varchar2(4000),
 rule_confidence number
);

	
	Step 6 Call CTX_CLS.TRAIN procedure to generate category rules
	
Now call the CTX_CLS.TRAIN procedure to generate some rules. Note all the arguments are the names of tables, columns or indexes previously created in this example. The rules table now contains the rules, which you can view.

begin
 ctx_cls.train(
 index_name => 'docsindex',
 docid => 'doc_id',
 cattab => 'doc_categories',
 catdocid => 'dc_doc_id',
 catid => 'dc_category',
 restab => 'rules',
 rescatid => 'rule_cat_id',
 resquery => 'rule_text',
 resconfid => 'rule_confidence'
);
end;
/

	
	Step 7 Fetch the generated rules, viewed by category
	
Fetch the generated rules. For convenience's sake, the rules table is joined with category_descriptions so we can see to which category each rule applies:

select cd_description, rule_confidence, rule_text from rules,
category_descriptions where cd_category = rule_cat_id;

6.4.1.1.2 Index Rules to Categorize New Documents

Once the rules are generated, you can test them by first indexing them and then using MATCHES to classify new documents. The process is as follows:

	
	Step 1 Index the rules to create the CTXRULE index
	
Use CREATE INDEX to create the CTXRULE index on the previously generated rules:

create index rules_idx on rules (rule_text) indextype is ctxsys.ctxrule;

	
	Step 2 Test an incoming document using MATCHES
	

set serveroutput on;

declare
 incoming_doc clob;
begin
 incoming_doc
 := 'I have spent my entire life managing restaurants selling burgers';
 for c in
 (select distinct cd_description from rules, category_descriptions
 where cd_category = rule_cat_id
 and matches (rule_text, incoming_doc) > 0) loop
 dbms_output.put_line('CATEGORY: '||c.cd_description);
 end loop;
end;
/

6.4.2 SVM-Based Supervised Classification

The second method we can use for training purposes is known as Support Vector Machine (SVM) classification. SVM is a type of machine learning algorithm derived from statistical learning theory. A property of SVM classification is the ability to learn from a very small sample set.

Using the SVM classifier is much the same as using the Decision Tree classifier, with the following differences.

	
The preference used in the call to CTX_CLS.TRAIN should be of type SVM_CLASSIFIER instead of RULE_CLASSIFIER. (If you do not want to modify any attributes, you can use the predefined preference CTXSYS.SVM_CLASSIFIER.)

	
The CONTEXT index on the table does not have to be populated; that is, you can use the NOPOPULATE keyword. The classifier uses it only to find the source of the text, by means of datastore and filter preferences, and to determine how to process the text, through lexer and sectioner preferences.

	
The table for the generated rules must have (as a minimum) these columns:

cat_id number,
type number,
rule blob);

As you can see, the generated rule is written into a BLOB column. It is therefore opaque to the user, and unlike Decision Tree classification rules, it cannot be edited or modified. The trade-off here is that you often get considerably better accuracy with SVM than with Decision Tree classification.

With SVM classification, allocated memory has to be large enough to load the SVM model; otherwise, the application built on SVM will incur an out-of-memory error. Here is how to calculate the memory allocation:

Minimum memory request (in bytes) = number of unique categories x number of features
 example: (value of MAX_FEATURES attributes) x 8

If necessary to meet the minimum memory requirements, either:

	
increase SGA memory (if in shared server mode)

	
increase PGA memory (if in dedicated server mode)

6.4.2.1 SVM-Based Supervised Classification Example

The following example uses SVM-based classification. It uses essentially the same steps as the Decision Tree example. Some differences between the examples:

	
In this example, we set the SVM_CLASSIFIER preference with CTX_DDL.CREATE_PREFERENCE rather than setting it in CTX_CLS.TRAIN. (You can do it either way.)

	
In this example, our category table includes category descriptions, unlike the category table in the Decision Tree example. (You can do it either way.)

	
CTX_CLS.TRAIN takes fewer arguments than in the Decision Tree example, as rules are opaque to the user.

	
	Step 1 Create and populate the training document table:
	

create table doc (id number primary key, text varchar2(2000));
insert into doc values(1,'1 2 3 4 5 6');
insert into doc values(2,'3 4 7 8 9 0');
insert into doc values(3,'a b c d e f');
insert into doc values(4,'g h i j k l m n o p q r');
insert into doc values(5,'g h i j k s t u v w x y z');

	
	Step 2 Create and populate the category table:
	

create table testcategory (
 doc_id number,
 cat_id number,
 cat_name varchar2(100)
);
insert into testcategory values (1,1,'number');
insert into testcategory values (2,1,'number');
insert into testcategory values (3,2,'letter');
insert into testcategory values (4,2,'letter');
insert into testcategory values (5,2,'letter');

	
	Step 3 Create the CONTEXT index on the document table:
	
In this case, we create the index without populating.

create index docx on doc(text) indextype is ctxsys.context
 parameters('nopopulate');

	
	Step 4 Set SVM_CLASSIFIER:
	
This can also be done in CTX.CLS_TRAIN.

exec ctx_ddl.create_preference('my_classifier','SVM_CLASSIFIER');
exec ctx_ddl.set_attribute('my_classifier','MAX_FEATURES','100');

	
	Step 5 Create the result (rule) table:
	

create table restab (
 cat_id number,
 type number(3) not null,
 rule blob
);

	
	Step 6 Perform the training:
	

exec ctx_cls.train('docx', 'id','testcategory','doc_id','cat_id',
 'restab','my_classifier');

	
	Step 7 Create a CTXRULE index on the rules table:
	

exec ctx_ddl.create_preference('my_filter','NULL_FILTER');
create index restabx on restab (rule)
 indextype is ctxsys.ctxrule
 parameters ('filter my_filter classifier my_classifier');

Now we can classify two unknown documents:

select cat_id, match_score(1) from restab
 where matches(rule, '4 5 6',1)>50;

select cat_id, match_score(1) from restab
 where matches(rule, 'f h j',1)>50;

drop table doc;
drop table testcategory;
drop table restab;
exec ctx_ddl.drop_preference('my_classifier');
exec ctx_ddl.drop_preference('my_filter');

6.5 Unsupervised Classification (Clustering)

With Rule-Based Classification, you write the rules for classifying documents yourself. With Supervised Classification, Oracle Text writes the rules for you, but you must provide a set of training documents that you pre-classify. With unsupervised classification (also known as clustering), you do not even have to provide a training set of documents.

Clustering is performed with the CTX_CLS.CLUSTERING procedure. CTX_CLS.CLUSTERING creates a hierarchy of document groups, known as clusters, and, for each document, returns relevancy scores for all leaf clusters.

For example, suppose that you have a large collection of documents concerning animals. CTX_CLS.CLUSTERING might create one leaf cluster about dogs, another about cats, another about fish, and a fourth cluster about bears. (The first three might be grouped under a node cluster concerning pets.) Suppose further that you have a document about one breed of dogs, such as chihuahuas. CTX_CLS.CLUSTERING would assign the dog cluster to the document with a very high relevancy score, while the cat cluster would be assigned with a lower score and the fish and bear clusters with still lower scores. When scores for all clusters have been assigned to all documents, an application can then take action based on the scores.

As noted in "Decision Tree Supervised Classification", attributes used for determining clusters may consist of simple words (or tokens), word stems, and themes (where supported).

CTX_CLS.CLUSTERING assigns output to two tables (which may be in-memory tables):

	
A document assignment table showing how similar the document is to each leaf cluster. This information takes the form of document identification, cluster identification, and a similarity score between the document and a cluster.

	
A cluster description table containing information about what a generated cluster is about. This table contains cluster identification, cluster description text, a suggested cluster label, and a quality score for the cluster.

CTX_CLS.CLUSTERING employs a K-MEAN algorithm to perform clustering. Use the KMEAN_CLUSTERING preference to determine how CTX_CLS.CLUSTERING works.

	
See Also:

Oracle Text Reference for more on cluster types and hierarchical clustering

6.5.1 Clustering Example

The following SQL example creates a small collection of documents in the collection table and creates a CONTEXT index. It then creates a document assignment and cluster description table, which are populated with a call to the CLUSTERING procedure. The output would then be viewed with a select statement:

set serverout on

/* collect document into a table */
create table collection (id number primary key, text varchar2(4000));
insert into collection values (1, 'Oracle Text can index any document or textual content.');
insert into collection values (2, 'Ultra Search uses a crawler to access documents.');
insert into collection values (3, 'XML is a tag-based markup language.');
insert into collection values (4, 'Oracle Database 11g XML DB treats XML
as a native datatype in the database.');
insert into collection values (5, 'There are three Text index types to cover
all text search needs.');
insert into collection values (6, 'Ultra Search also provides API
for content management solutions.');

create index collectionx on collection(text)
 indextype is ctxsys.context parameters('nopopulate');

/* prepare result tables, if you omit this step, procedure will create table automatically */
create table restab (
 docid NUMBER,
 clusterid NUMBER,
 score NUMBER);

create table clusters (
 clusterid NUMBER,
 descript varchar2(4000),
 label varchar2(200),
 sze number,
 quality_score number,
 parent number);

/* set the preference */
exec ctx_ddl.drop_preference('my_cluster');
exec ctx_ddl.create_preference('my_cluster','KMEAN_CLUSTERING');
exec ctx_ddl.set_attribute('my_cluster','CLUSTER_NUM','3');

/* do the clustering */
exec ctx_output.start_log('my_log');
exec ctx_cls.clustering('collectionx','id','restab','clusters','my_cluster');
exec ctx_output.end_log;

	
See Also:

Oracle Text Reference for CTX_CLS.CLUSTERING syntax and examples

12 Administering Oracle Text

This chapter describes Oracle Text administration. The following topics are covered:

	
Oracle Text Users and Roles

	
DML Queue

	
The CTX_OUTPUT Package

	
The CTX_REPORT Package

	
Text Manager in Oracle Enterprise Manager

	
Servers and Indexing

	
Database Feature Usage Tracking in Oracle Enterprise Manager

	
Oracle Text on Oracle Real Application Clusters

12.1 Oracle Text Users and Roles

While any user can create an Oracle Text index and enter a CONTAINS query, Oracle Text provides the CTXSYS user for administration and the CTXAPP role for application developers.

12.1.1 CTXSYS User

The CTXSYS user is created during installation time. CTXSYS can do the following:

	
View all indexes

	
Sync all indexes

	
Run ctxkbtc, the knowledge base extension compiler

	
Query all system-defined views

	
Perform all the tasks of a user with the CTXAPP role

	
Note:

In previous releases of Oracle Text, CTXSYS had SYSDBA privileges, and only CTXSYS could perform certain functions, such as modifying system-defined preferences or setting system parameters.

12.1.2 CTXAPP Role

The CTXAPP role is a system-defined role that enables users to do the following:

	
Create and delete Oracle Text preferences

	
Use the Oracle Text PL/SQL packages

Any user can create an Oracle Text index and enter a Text query. The CTXAPP role enables users to create preferences and use the PL/SQL packages.

12.1.3 Granting Roles and Privileges to Users

The system uses the standard SQL model for granting roles to users. To grant a Text role to a user, use the GRANT statement.

In addition, to allow application developers to call procedures in the Oracle Text PL/SQL packages, you must explicitly grant to each user EXECUTE privileges for the Oracle Text package.

	
See Also:

"Creating an Oracle Text User" in Chapter 2, "Getting Started with Oracle Text"

12.2 DML Queue

When there are inserts, updates, or deletes to documents in your base table, the DML queue stores the requests for documents waiting to be indexed. When you synchronize the index with CTX_DDL.SYNC_INDEX, requests are removed from this queue.

Pending DML requests can be queried with the CTX_PENDING and CTX_USER_PENDING views.

DML errors can be queried with the CTX_INDEX_ERRORS or CTX_USER_INDEX_ERRORS view.

	
See Also:

Oracle Text Reference for more information about these views

12.3 The CTX_OUTPUT Package

Use the CTX_OUTPUT PL/SQL package to log indexing and document service requests.

	
See Also:

Oracle Text Reference for more information about this package

12.4 The CTX_REPORT Package

Use the CTX_REPORT package to produce reports on indexes and queries. These reports can help you fine-tune or troubleshoot your applications.

	
See Also:

Oracle Text Reference for more information about this package

The CTX_REPORT package contains the following procedures:

	CTX_REPORT.DESCRIBE_INDEX
	CTX_REPORT.DESCRIBE_POLICY
	
These procedures create reports that describe an existing index or policy, including the settings of the index metadata, the indexing objects used, the settings of the attributes of the objects, and (for CTX_REPORT.DESCRIBE_INDEX) index partition information, if any. These procedures are especially useful for diagnosing index-related problems.

This is sample output from DESCRIBE_INDEX, run on a simple context index:

===
 INDEX DESCRIPTION
===
index name: "DR_TEST"."TDRBPRX0"
index id: 1160
index type: context
base table: "DR_TEST"."TDRBPR"
primary key column: ID
text column: TEXT2
text column type: VARCHAR2(80)
language column:
format column:
charset column:
===
 INDEX OBJECTS
===
datastore: DIRECT_DATASTORE
filter: NULL_FILTER
section group: NULL_SECTION_GROUP
lexer: BASIC_LEXER
wordlist: BASIC_WORDLIST
 stemmer: ENGLISH
 fuzzy_match: GENERIC
stoplist: BASIC_STOPLIST
 stop_word: teststopword
storage: BASIC_STORAGE
 r_table_clause: lob (data) store as (cache)
 i_index_clause: compress 2

	CTX_REPORT.CREATE_INDEX_SCRIPT
	CTX_REPORT.CREATE_POLICY_SCRIPT
	
CREATE_INDEX_SCRIPT creates a SQL*Plus script that can create a duplicate of a given text index. Use this when you have an index but don't have the original script (if any) used to create that script and want to be able to re-create the index. For example, if you accidentally drop a script, CREATE_INDEX_SCRIPT can re-create it; likewise, CREATE_INDEX_SCRIPT can be useful if you have inherited indexes from another user but not the scripts that created them.

CREATE_POLICY_SCRIPT does the same thing as CREATE_INDEX_SCRIPT, except that it enables you to re-create a policy instead of an index.

This is sample output from CREATE_INDEX_SCRIPT, run on a simple context index (not a complete listing):

begin
 ctx_ddl.create_preference('"TDRBPRX0_DST"','DIRECT_DATASTORE');
end;
/
...
/
begin
 ctx_ddl.create_section_group('"TDRBPRX0_SGP"','NULL_SECTION_GROUP');
end;
/
...
begin
 ctx_ddl.create_preference('"TDRBPRX0_WDL"','BASIC_WORDLIST');
 ctx_ddl.set_attribute('"TDRBPRX0_WDL"','STEMMER','ENGLISH');
 ctx_ddl.set_attribute('"TDRBPRX0_WDL"','FUZZY_MATCH','GENERIC');
end;
/
begin
 ctx_ddl.create_stoplist('"TDRBPRX0_SPL"','BASIC_STOPLIST');
 ctx_ddl.add_stopword('"TDRBPRX0_SPL"','teststopword');
end;
/
...
/
begin
 ctx_output.start_log('TDRBPRX0_LOG');
end;
/
create index "DR_TEST"."TDRBPRX0"
 on "DR_TEST"."TDRBPR"
 ("TEXT2")
 indextype is ctxsys.context
 parameters('
 datastore "TDRBPRX0_DST"
 filter "TDRBPRX0_FIL"
 section group "TDRBPRX0_SGP"
 lexer "TDRBPRX0_LEX"
 wordlist "TDRBPRX0_WDL"
 stoplist "TDRBPRX0_SPL"
 storage "TDRBPRX0_STO"
 ')
/

	CTX_REPORT.INDEX_SIZE
	
This procedure creates a report showing the names of the internal index objects, along with their tablespaces, allocated sizes, and used sizes. It is useful for DBAs who may need to monitor the size of their indexes (for example, when disk space is at a premium).

Sample output from this procedure looks like this (partial listing):

===
 INDEX SIZE FOR DR_TEST.TDRBPRX10
===
TABLE: DR_TEST.DR$TDRBPRX10$I
TABLESPACE NAME: DRSYS
BLOCKS ALLOCATED: 4
BLOCKS USED: 1
BYTES ALLOCATED: 8,192 (8.00 KB)
BYTES USED: 2,048 (2.00 KB)

INDEX (LOB): DR_TEST.SYS_IL0000023161C00006$$
TABLE NAME: DR_TEST.DR$TDRBPRX10$I
TABLESPACE NAME: DRSYS
BLOCKS ALLOCATED: 5
BLOCKS USED: 2
BYTES ALLOCATED: 10,240 (10.00 KB)
BYTES USED: 4,096 (4.00 KB)

INDEX (NORMAL): DR_TEST.DR$TDRBPRX10$X
TABLE NAME: DR_TEST.DR$TDRBPRX10$I
TABLESPACE NAME: DRSYS
BLOCKS ALLOCATED: 4
BLOCKS USED: 2
BYTES ALLOCATED: 8,192 (8.00 KB)
BYTES USED: 4,096 (4.00 KB)

	CTX_REPORT.INDEX_STATS
	
INDEX_STATS produces a variety of calculated statistics about an index, such as how many documents are indexed, how many unique tokens the index contains, average size of its tokens, fragmentation information for the index, and so on. An example of a use of INDEX_STATS might be in optimizing stoplists.

See Oracle Text Reference for an example of the output of this procedure.

	CTX_REPORT.QUERY_LOG_SUMMARY
	
This procedure creates a report of logged queries, which you can use to perform simple analyses. With query analysis, you can find out:

	
which queries were made

	
which queries were successful

	
which queries were unsuccessful

	
how many times each query was made

You can combine these factors in various ways, such as determining the 50 most frequent unsuccessful queries made by your application.

See Oracle Text Reference for an example of the output of this procedure.

	CTX_REPORT.TOKEN_INFO
	
TOKEN_INFO is used mainly to diagnose query problems; for instance, to check that index data is not corrupted. As an example, you can use it to find out which documents are producing unexpected or bad tokens.

	CTX_REPORT.TOKEN_TYPE
	
This is a lookup function, used mainly as input to other functions (CTX_DDL.OPTIMIZE_INDEX, CTX_REPORT.TOKEN_INFO, and so on).

12.5 Text Manager in Oracle Enterprise Manager

Oracle Enterprise Manager provides Text Manager for configuring, maintaining, and administering Oracle Text indexes. With Text Manager you can perform all of the basic configuration and administration tasks for Oracle Text indexes. You can monitor the overall health of Text indexes for a single Oracle database instance or for the Oracle Real Application Clusters environment. Text Manager provides summaries of critical information and enables you to drill down to the level of detail that you want, to resolve issues, and to understand any actions that may need to occur. You access Text Manager by clicking the Schema tab from the database home page in Oracle Enterprise Manager, and then selecting Text Indexes under the Text Manager group. On the Text Indexes page, select an index name and click View to see information and attributes for that index.

The Text Indexes page shows the jobs that are in progress, scheduled within the last seven days, or are experiencing problems. From this page you can go to the Job Scheduler to see a summary of all jobs for this database instance, and to manage selected jobs. The online help in Oracle Enterprise Manager provides details and procedures for using each Text Manager feature.

	
Note:

You cannot create an Oracle Text index with Text Manager. Use the CREATE INDEX statement to create an Oracle Text index as described in Chapter 3, " Indexing with Oracle Text" under Creating Oracle Text Indexes.

12.5.1 Using Text Manager

From the main Text Manager page, you can perform the following actions on the selected index from the Actions list:

	
Synchronize

	
Optimize

	
Rebuild

	
Resume Failed Operation

	
Show Logs

	
Show Errors

You can also schedule jobs for the specified index.

To access Text Manager:

	
Log on to the database with a user account that is authorized to access Database Control. For example, this could be SYS or SYSTEM, with the password that you specified during database installation.

Database Control displays the Database Home page.

	
Select the Schema tab from the Database Home page.

	
Click Text Indexes located under Text Manager.

The Text Indexes page appears with a list of Text indexes for this database instance.

When you select a Text index from the Text Indexes page, options become available for that index for you to edit or perform actions. For example, to configure attributes for searching, click Edit for the selected index. From the Edit Text Index page, you can set attributes, including: Wild Card Maximum Term, Fuzzy Score, and Number of Fuzzy Expansions. You can change index and partition names, as well as specify settings for URL_DATASTORE in addition to other options.

12.5.2 Viewing General Information for a Text Index

You can use the View Text Index page to see general information about a specific index: index type, parallel degree, synchronization mode, wild card limit, fuzzy score, fuzzy numeric result, datastore, and so forth. Information about any partitions on the index is also available.

To view general information for a Text index:

	
From the Text Indexes page, click the name of the index in the list of Text indexes.

The View Text Index page opens with the General tab selected.

From here you can select actions to perform maintenance tasks.

12.5.3 Checking Text Index Health

You use the Text Indexes page in Text Manager to see the list of Text indexes and general health of the Text indexes for the database instance to help you understand any critical actions that may need to be taken in order to make sure that the entire application is performing properly. Information is displayed such as the status of the indexes and jobs submitted by users during the last seven days. Key information about the Text indexes is also displayed in a tabular form.

Use the Text Indexes page to see:

	
The number of Text indexes that contain invalid partitions, and which are, therefore, invalid. The number of partitions that are invalid, if any, for all Text indexes is also shown.

	
The number of indexes that are in an in-progress state, and the number of partitions, if any, that are in an in-progress state.

	
The number of indexes where all partitions are valid and no activity is in progress.

	
Sum total of the Text indexes found for this database instance.

Additionally, use the Text Indexes page to see the index type for each Text index, the owner, the number of documents that are not synchronized, total number of documents, and percentage of fragmentation.

You select a Text index from the list and then options become available for that index for you to edit or perform actions.

12.6 Servers and Indexing

You index documents and enter queries with standard SQL. No server is needed for performing batch DML. You can synchronize the CONTEXT index with the CTX_DDL.SYNC_INDEX procedure, or from Text Manager in Oracle Enterprise Manager.

	
See Also:

Chapter 3, " Indexing with Oracle Text" for more information about indexing and index synchronization

12.7 Database Feature Usage Tracking in Oracle Enterprise Manager

Database Feature Usage statistics in Oracle Enterprise Manager provide an approximation of how often various database features are used. Tracking this information is potentially useful for application development as well as for auditing. You access Database Feature Usage by clicking the Server tab in Oracle Enterprise Manager, and then selecting Database Feature Usage under the Database Configuration group.

The following information is gathered for Oracle Text:

	
Package Usage Statistics

	
Index Usage Statistics

	
SQL Operator Usage Statistics

12.7.1 Package Usage Statistics

For package usage statistics, Database Feature Usage captures information about how often, if ever, and when the following packages have been used:

	
CTX_ADM

	
CTX_CLS

	
CTX_DDL

	
CTX_DOC

	
CTX_OUTPUT

	
CTX_QUERY

	
CTX_REPORT

	
CTX_THES

	
CTX_ULEXER

12.7.2 Index Usage Statistics

For index usage statistics, Database Feature Usage captures the number of existing indexes in the database. The statistics are captured separately for each index type: CONTEXT, CTXCAT, and CTXRULE.

12.7.3 SQL Operator Usage Statistics

For SQL operator usage statistics, Database Feature Usage captures whether the user has ever used the CONTAINS, CATSEARCH, and MATCHES operators.

	
Note:

The feature usage tracking statistics might not be 100% accurate.

12.8 Oracle Text on Oracle Real Application Clusters

Oracle Text queries can be parallelized across Oracle RAC nodes for maximum throughput and performance for OLAP applications. You can manage Oracle Text indexes on Oracle RAC nodes with Text Manager in Oracle Enterprise Manager as described in the previous section "Text Manager in Oracle Enterprise Manager".

	
See Also:

"Parallelizing Queries Across Oracle RAC Nodes"

List of Tables

	3-1 Oracle Text Index Types
	3-2 Summary of DATASTORE Types
	3-3 Lexers for Asian Languages
	4-1 Other Oracle Text Query Features
	4-2 Logical Operators
	4-3 CATSEARCH Query Operator Syntax
	5-1 Lists of Themes, Gists, and Theme Summaries
	5-2 CTX_DOC Output
	8-1 Types of Section Groups
	8-2 Section Types and Section Groups
	8-3 Sentence and Paragraph Section Boundaries for BASIC_LEXER

5 Presenting Documents in Oracle Text

This chapter describes document presentation. The following topics are covered:

	
Highlighting Query Terms

	
Obtaining Lists of Themes, Gists, and Theme Summaries

	
Document Presentation and Highlighting

5.1 Highlighting Query Terms

In Oracle Text query applications, you can present selected documents with query terms highlighted for text queries or with themes highlighted for ABOUT queries.

You can generate three types of output associated with highlighting:

	
A marked-up version of the document

	
Query offset information for the document

	
A concordance of the document, in which occurrences of the query term are returned with their surrounding text

5.1.1 Text highlighting

For text highlighting, you supply the query, and Oracle Text highlights words in document that satisfy the query. You can obtain plain-text or HTML highlighting.

5.1.2 Theme Highlighting

For ABOUT queries, the CTX_DOC procedures highlight and mark up words or phrases that best represent the ABOUT query.

5.1.3 CTX_DOC Highlighting Procedures

These are the highlighting procedures in CTX_DOC:

	
CTX_DOC.MARKUP and CTX_DOC.POLICY_MARKUP

	
CTX_DOC.HIGHLIGHT and CTX_DOC.POLICY_HIGHLIGHT

	
CTX_DOC.SNIPPET and CTX_DOC.POLICY_SNIPPET

The POLICY and non-POLICY versions of the procedures are equivalent, except that the POLICY versions do not require an index.

5.1.3.1 Markup Procedure

The CTX_DOC.MARKUP and CTX_DOC.POLICY_MARKUP procedures take a document reference and a query, and return a marked-up version of the document. The output can be either marked-up plaintext or marked-up HTML. For example, you might specify that a marked-up document be returned with the query term surrounded by angle brackets (<<<tansu>>>) or HTML (tansu).

CTX_DOC.MARKUP and CTX_DOC.POLICY_MARKUP are equivalent, except that CTX_DOC.POLICY_MARKUP does not require an index.

You can customize the markup sequence for HTML navigation.

5.1.3.1.1 CTX_DOC.MARKUP Example

The following example is taken from the Web application described in Appendix A, "CONTEXT Query Application". The procedure showDoc takes an HTML document and a query, creates the highlight markup—in this case, the query term will display in red—and outputs the result to an in-memory buffer. It then uses htp.print to display it in the browser.

procedure showDoc (p_id in varchar2, p_query in varchar2) is

 v_clob_selected CLOB;
 v_read_amount integer;
 v_read_offset integer;
 v_buffer varchar2(32767);
 v_query varchar(2000);
 v_cursor integer;

 begin
 htp.p('<html><title>HTML version with highlighted terms</title>');
 htp.p('<body bgcolor="#ffffff">');
 htp.p('HTML version with highlighted terms');

 begin
 ctx_doc.markup (index_name => 'idx_search_table',
 textkey => p_id,
 text_query => p_query,
 restab => v_clob_selected,
 starttag => '<i>',
 endtag => '</i>');

 v_read_amount := 32767;
 v_read_offset := 1;
 begin
 loop
 dbms_lob.read(v_clob_selected,v_read_amount,v_read_offset,v_buffer);
 htp.print(v_buffer);
 v_read_offset := v_read_offset + v_read_amount;
 v_read_amount := 32767;
 end loop;
 exception
 when no_data_found then
 null;
 end;

 exception
 when others then
 null; --showHTMLdoc(p_id);
 end;
end showDoc;
end;
/
show errors
set define on

	
See Also:

Oracle Text Reference for more information about CTX_DOC.MARKUP and CTX_DOC.POLICY_SNIPPET

5.1.3.2 Highlight Procedure

CTX_DOC.HIGHLIGHT and CTX_DOC.POLICY_HIGHLIGHT take a query and a document and return offset information for the query in either plaintext or HTML formats. This offset information can be used to write your own custom routines for displaying documents.

CTX_DOC.HIGHLIGHT and CTX_DOC.POLICY_HIGHLIGHT are equivalent, except that CTX_DOC.POLICY_HIGHLIGHT does not require an index.

With offset information, you can display a highlighted version of document as desired. For example, you can display the document with different font types or colors rather than using the standard plain text markup obtained from CTX_DOC.MARKUP.

	
See Also:

Oracle Text Reference for more information about using CTX_DOC.HIGHLIGHT and CTX_DOC.POLICY_HIGHLIGHT

5.1.3.3 Concordance

CTX_DOC.SNIPPET and CTX_DOC.POLICY_SNIPPET produce a concordance of the document, in which occurrences of the query term are returned with their surrounding text. This result is sometimes known as Key Word in Context, or KWIC, because instead of returning the entire document (with or without the query term highlighted), it returns the query term in text fragments, allowing a user to see it in context. You can control the way the query term is highlighted in the returned fragments.

CTX_DOC.SNIPPET and CTX_DOC.POLICY_SNIPPET are equivalent, except that CTX_DOC.POLICY_SNIPPET does not require an index.

	
See Also:

Oracle Text Reference for more information about CTX_DOC.SNIPPET and CTX_DOC.POLICY_SNIPPET

5.2 Obtaining Lists of Themes, Gists, and Theme Summaries

The following table describes lists of themes, gists, and theme summaries.

Table 5-1 Lists of Themes, Gists, and Theme Summaries

	Output Type	Description
	
List of Themes

	
A list of the main concepts of a document.

You can generate list of themes where each theme is a single word or phrase or where each theme is a hierarchical list of parent themes.

	
Gist

	
Text in a document that best represents what the document is about as a whole.

	
Theme Summary

	
Text in a document that best represents a given theme in the document.

To obtain this output, you use procedures in the CTX_DOC supplied package. With this package, you can do the following:

	
Identify documents by ROWID in addition to primary key

	
Store results in-memory for improved performance

5.2.1 Lists of Themes

A list of themes is a list of the main concepts in a document. Use the CTX_DOC.THEMES procedure to generate lists of themes.

	
See Also:

Oracle Text Reference to learn more about the command syntax for CTX_DOC.THEMES

5.2.1.1 In-Memory Themes

The following example generates the top 10 themes for document 1 and stores them in an in-memory table called the_themes. The example then loops through the table to display the document themes.

declare
 the_themes ctx_doc.theme_tab;

begin
 ctx_doc.themes('myindex','1',the_themes, numthemes=>10);
 for i in 1..the_themes.count loop
 dbms_output.put_line(the_themes(i).theme||':'||the_themes(i).weight);
 end loop;
end;

5.2.1.2 Result Table Themes

To create a theme table:

create table ctx_themes (query_id number,
 theme varchar2(2000),
 weight number);

5.2.1.2.1 Single Themes

To obtain a list of themes where each element in the list is a single theme, enter the following:

begin
ctx_doc.themes('newsindex','34','CTX_THEMES',1,full_themes => FALSE);
end;

5.2.1.2.2 Full Themes

To obtain a list of themes where each element in the list is a hierarchical list of parent themes, enter the following:

begin
ctx_doc.themes('newsindex','34','CTX_THEMES',1,full_themes => TRUE);
end;

5.2.2 Gist and Theme Summary

A gist is the text of a document that best represents what the document is about as a whole. A theme summary is the text of a document that best represents a single theme in the document.

Use the procedure CTX_DOC.GIST to generate gists and theme summaries. You can specify the size of the gist or theme summary when you call the procedure.

	
See Also:

Oracle Text Reference to learn about the command syntax for CTX_DOC.GIST

5.2.2.1 In-Memory Gist

The following example generates a nondefault size generic gist of at most 10 paragraphs. The result is stored in memory in a CLOB locator. The code then de-allocates the returned CLOB locator after using it.

declare
 gklob clob;
 amt number := 40;
 line varchar2(80);

begin
 ctx_doc.gist('newsindex','34','gklob',1,glevel => 'P',pov => 'GENERIC', numParagraphs => 10);
 -- gklob is NULL when passed-in, so ctx-doc.gist will allocate a temporary
 -- CLOB for us and place the results there.

 dbms_lob.read(gklob, amt, 1, line);
 dbms_output.put_line('FIRST 40 CHARS ARE:'||line);
 -- have to de-allocate the temp lob
 dbms_lob.freetemporary(gklob);
 end;

5.2.2.2 Result Table Gists

To create a gist table:

create table ctx_gist (query_id number,
 pov varchar2(80),
 gist CLOB);

The following example returns a default sized paragraph level gist for document 34:

begin
ctx_doc.gist('newsindex','34','CTX_GIST',1,'PARAGRAPH', pov =>'GENERIC');
end;

The following example generates a nondefault size gist of ten paragraphs:

begin
ctx_doc.gist('newsindex','34','CTX_GIST',1,'PARAGRAPH', pov =>'GENERIC', numParagraphs => 10);
end;

The following example generates a gist whose number of paragraphs is ten percent of the total paragraphs in document:

begin
ctx_doc.gist('newsindex','34','CTX_GIST',1, 'PARAGRAPH', pov =>'GENERIC', maxPercent => 10);
end;

5.2.2.3 Theme Summary

The following example returns a theme summary on the theme of insects for document with textkey 34. The default Gist size is returned.

begin
ctx_doc.gist('newsindex','34','CTX_GIST',1, 'PARAGRAPH', pov => 'insects');
end;

5.3 Document Presentation and Highlighting

Typically, a query application enables the user to view the documents returned by a query. The user selects a document from the hit list and then the application presents the document in some form.

With Oracle Text, you can display a document in different ways. For example, you can present documents with query terms highlighted. Highlighted query terms can be either the words of a word query or the themes of an ABOUT query in English.

You can also obtain gist (document summary) and theme information from documents with the CTX_DOC PL/SQL package.

Table 5-2 describes the different output you can obtain and which procedure to use to obtain each type.

Table 5-2 CTX_DOC Output

	Output	Procedure
	
Plain text version, no highlights

	
CTX_DOC.FILTER

	
HTML version of document, no highlights

	
CTX_DOC.FILTER

	
Highlighted document, plain text version

	
CTX_DOC.MARKUP

	
Highlighted document, HTML version

	
CTX_DOC.MARKUP

	
Highlight offset information for plain text version

	
CTX_DOC.HIGHLIGHT

	
Highlight offset information for HTML version

	
CTX_DOC.HIGHLIGHT

	
Theme summaries and gist of document.

	
CTX_DOC.GIST

	
List of themes in document.

	
CTX_DOC.THEMES

	
See Also:

Oracle Text Reference

Figure 5-1 shows an original document to which we can apply highlighting, gisting, and theme extraction in the following sections.

Figure 5-1 Sample Document for Highlighting, Gisting, and Theme Extraction

[image: Description of Figure 5-1 follows]

5.3.1 Highlighting Example

Figure 5-2 is a screen shot of a query application presenting the document shown in Figure 5-1 with the query term pet highlighted. This output was created using the text query application produced by a wizard described in Appendix A, "CONTEXT Query Application".

Figure 5-2 Pet Highlighted in Pet Magnet Document

[image: Description of Figure 5-2 follows]

5.3.2 Document List of Themes Example

Figure 5-3 is a screen shot of a query application presenting a list of themes for the document shown in Figure 5-1. This output was created using the text query application produced by a wizard described in Appendix A, "CONTEXT Query Application".

Figure 5-3 Query Application Displaying Document Themes

[image: Description of Figure 5-3 follows]

5.3.3 Gist Example

Figure 5-4 is a screen shot of a query application presenting a gist of the document shown in Figure 5-1. This output was created using the text query application produced by a wizard described in Appendix A, "CONTEXT Query Application".

Figure 5-4 Query Application Presenting Document Gist

[image: Description of Figure 5-4 follows]

Oracle Legal Notices
Copyright Notice
Copyright © 1994-2017, Oracle and/or its affiliates. All rights reserved.
License Restrictions Warranty/Consequential Damages Disclaimer
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
Warranty Disclaimer
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
Restricted Rights Notice
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:
U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.
Hazardous Applications Notice
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Trademark Notice
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
Third-Party Content, Products, and Services Disclaimer
This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.
Alpha and Beta Draft Documentation Notice
If this document is in preproduction status:
This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.
Private Alpha and Beta Draft Documentation Notice
If this document is in private preproduction status:
The information contained in this document is for
informational sharing purposes only and should be considered in your
capacity as a customer advisory board member or pursuant to your beta
trial agreement only. It is not a commitment to deliver any material,
code, or functionality, and should not be relied upon in making
purchasing decisions. The development, release, and timing of any
features or functionality described in this document remains at the
sole discretion of Oracle.
This document in any form, software or printed matter, contains proprietary information that is the exclusive property
of Oracle. Your access to and use of this confidential material is
subject to the terms and conditions of your Oracle Master Agreement, Oracle License and Services Agreement, Oracle PartnerNetwork Agreement, Oracle distribution agreement, or other license agreement which has been executed by you and Oracle and with which you agree to
comply. This document and information contained herein may not be
disclosed, copied, reproduced, or distributed to anyone outside Oracle
without prior written consent of Oracle. This document is not part of
your license agreement nor can it be incorporated into any contractual
agreement with Oracle or its subsidiaries or affiliates.
Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.
Access to Oracle Support
Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.
[image: Oracle Logo]

11 Using XML Query Result Set Interface

This chapter describes how to use the XML query result set interface, and includes:

	
Overview of the XML Query Result Set Interface

	
Using the XML Query Result Set Interface

11.1 Overview of the XML Query Result Set Interface

A page of search results in applications can consist of many disparate elements - metadata of the first few documents, total hit counts, per-word hit counts, and so on. Generating these results in earlier versions of Oracle Text required several queries and calls — perhaps a query on the base table, a call to CTX_QUERY.COUNT_HITS, and so on. Each extra call takes time to reparse the query and look up index metadata. Additionally, some search operations, such as iterative query refinement or breakdown top ten, are difficult for SQL. If it is even possible to construct a SQL statement to produce the desired results, such SQL is usually suboptimal.

The result set interface is able to produce the various kinds of data needed for a page of search results all at once, thus improving performance by sharing overhead. The result set interface can also return data views that are difficult to express in SQL, such as top N by category queries.

11.2 Using the XML Query Result Set Interface

The CTX_QUERY.RESULT_SET() API enables you to obtain query results with a single query, rather than running multiple CONTAINS() queries to achieve the same result. For example, in order to display a search result page, the following information needs to be obtained first:

	
top 20 hit list sorted by date and relevancy

	
total number of hits for the given Text query

	
counts group by publication date

	
counts group by author

Assume the following table definition for storing documents to be searched:

create table docs (
 docid number,
 author varchar2(30),
 pubdate date,
 title varchar2(60), doc clob);

Assume the following Oracle Text Index definition:

create index docidx on docs(doc) indextype is ctxsys.context
filter by author, pubdate, title,
order by pubdate;

With these definitions, you can obtain the four pieces of information for displaying the search result page by issuing four SQL statements:

-- Get top 20 hits sorted by date and relevancy
select * from
 (select /*+ first_rows */ rowid, title, author, pubdate
 from docs where contains(doc, 'oracle',1)>0
 order by pubdate desc, score(1) desc)
where rownum < 21;

-- Get total number of hits for the given Text query
select count(*) from docs where contains(doc, 'oracle',1)>0;

-- Get counts group by publication date
select pubdate, count(*) from docs where contains(doc, 'oracle',1)>0
group by pubdate;

-- Get counts group by author
select author, count(*) from docs where contains(doc, 'oracle',1)>0 group by author;

As you can see, using separate SQL statements results in a resource-intensive query, as you run the same query four times. However, by using CTX_QUERY.RESULT_SET(), you can enter all this information in one single Oracle Text query:

declare
 rs clob;
begin
 dbms_lob.createtemporary(rs, true, dbms_lob.session);
 ctx_query.result_set('docidx', 'oracle text performance tuning', '
 <ctx_result_set_descriptor>
 <count/>
 <hitlist start_hit_num="1" end_hit_num="20" order="pubDate desc,
 score desc">
 <score/>
 <rowid/>
 <sdata name="title"/>
 <sdata name="author"/>
 <sdata name="pubDate"/>
 </hitlist>
 <group sdata="pubDate">
 <count/>
 </group>
 <group sdata="author">
 <count/>
 </group>
 </ctx_result_set_descriptor>
 ', rs);

-- Put in your code here to process the Output Result Set XML
 dbms_lob.freetemporary(rs);
exception
 when others then
 dbms_lob.freetemporary(rs);
 raise;
end;
/

The result set output will be an XML containing all the necessary information required to construct the search result page:

<ctx_result_set>
 <hitlist>
 <hit>
 <score>90</score>
 <rowid>AAAPoEAABAAAMWsAAC</rowid>
 <sdata name="TITLE"> Article 8 </sdata>
 <sdata name="AUTHOR">John</sdata>
 <sdata name="PUBDATE">2001-01-03 00:00:00</sdata>
 </hit>
 <hit>
 <score>86</score>
 <rowid>AAAPoEAABAAAMWsAAG</rowid>
 <sdata name="TITLE"> Article 20 </sdata>
 <sdata name="AUTHOR">John</sdata>
 <sdata name="PUBDATE">2001-01-03 00:00:00</sdata>
 </hit>
 <hit>
 <score>78</score>
 <rowid>AAAPoEAABAAAMWsAAK</rowid>
 <sdata name="TITLE"> Article 17 </sdata>
 <sdata name="AUTHOR">John</sdata>
 <sdata name="PUBDATE">2001-01-03 00:00:00</sdata>
 </hit>
 <hit>
 <score>77</score>
 <rowid>AAAPoEAABAAAMWsAAO</rowid>
 <sdata name="TITLE"> Article 37 </sdata>
 <sdata name="AUTHOR">John</sdata>
 <sdata name="PUBDATE">2001-01-03 00:00:00</sdata>
 </hit>
...
 <hit>
 <score>72</score>
 <rowid>AAAPoEAABAAAMWsAAS</rowid>
 <sdata name="TITLE"> Article 56 </sdata>
 <sdata name="AUTHOR">John</sdata>
 <sdata name="PUBDATE">2001-01-03 00:00:00</sdata>
 </hit>
 </hitlist>

 <count>100</count>

 <groups sdata="PUBDATE">
 <group value="2001-01-01 00:00:00"><count>25</count></group>
 <group value="2001-01-02 00:00:00"><count>50</count></group>
 <group value="2001-01-03 00:00:00"><count>25</count></group>
 </groups>

 <groups sdata="AUTHOR">
 <group value="John"><count>50</count></group>
 <group value="Mike"><count>25</count></group>
 <group value="Steve"><count>25</count></group>
 </groups>

</ctx_result_set>

	
See Also:

Oracle Text Reference for syntax details and more information

[image: Oracle Corporation]

Index

A B C D E F G H I J K L M N O P Q R S T U V W X Z

A

	ABOUT query, 4.2.1
	
	adding for your language, 10.4.1
	case-sensitivity, 4.1.8.2
	definition, 4.1.6

	accents
	
	indexing characters with, 3.2.8.2

	ACCUM operator, 4.2.2
	ADD_STOPCLASS procedure, 3.3.4.3
	ADD_STOPTHEME procedure, 3.3.4.3, 3.3.4.3
	ADD_STOPWORD procedure, 3.3.4, 3.3.4.3
	ADD_SUB_LEXER procedure
	
	example, 3.3.2.5

	administration tool, 12.5
	ALTER INDEX statement
	
	rebuilding index, 3.4.5
	resuming failed index, 3.4.3

	alternate spelling, 3.2.8.3
	alternative grammar, 4.1.18
	alternative grammar template, 4.1.18
	alternative scoring, 4.1.17
	alternative scoring template, 4.1.17
	AND operator, 4.2.2
	application
	
	sample, A, B

	applications, updating, 13
	attribute
	
	searching XML, 8.3.2

	attribute sections, 8.1.2.7
	AUTO_FILTER filter, 3.1.3.2, 3.2.2, 3.2.4, 7.8.4
	AUTO_SECTION_GROUP object, 8.1.1.1
	automatic sections, 8.3.1

B

	background DML, 12.6
	base-letter conversion, 3.2.8.2
	BASIC_LEXER, 3.2.5
	BASIC_SECTION_GROUP object, 8.1.1.1
	BFILE column, 3.2.1.1
	
	indexing, 3.3.5.2

	BINARY format column value, 3.2.2.2
	BLOB column, 3.2.1.1
	
	indexing, 3.3.5.2

	blocking operations
	
	tuning queries with, 7.6

	bypassing rows, 3.2.3

C

	cantaloupe dispenser, A.1
	case-sensitive
	
	ABOUT query, 4.1.8.2
	indexing, 3.2.7
	queries, 4.1.8
	thesaurus, 10.1.2

	catalog application, 2.4
	
	example, 2.4

	CATSEARCH, 4.1.2
	
	creating index for, 3.3.6.3
	operators, 4.3
	SQL example, 4.1.2.1

	CATSEARCH queries, 2.4
	CHAR column, 3.2.1.1
	Character Large Object (CLOB), 2.3
	character set
	
	indexing, 3.2.4
	indexing mixed, 3.2.4.2

	character set column, 3.2.1.6
	charset column, 3.2.4.2
	CHARSET_FILTER, 3.1.3.2, 3.2.4
	Chinese indexing, 3.2.8.5
	CHINESE_VGRAM_LEXER, 3.2.8.5
	classification
	
	Decision Tree (supervised), 6.4.1
	rule-based, 6.3
	simple, see rule-based classification
	supervised, 6.4
	SVM (supervised), 6.4.2
	unsupervised

	classification application
	
	example, 2.5

	CLOB (Character Large Object) datatype, 2.3
	CLOB column, 3.2.1.1
	
	indexing, 3.3.5.2

	clustering, see unsupervised classification
	column types
	
	supported for indexing, 3.2.1.1

	composite words
	
	indexing, 3.2.8.4

	concordance, 5.1.3.3
	CONTAINS
	
	operators, 4.2
	PL/SQL example, 4.1.1.2
	query, 4.1.1
	SQL example, 4.1.1.1
	structured query, 4.1.1.3

	CONTAINS query, 2.3
	CONTEXT grammar, 4.2
	CONTEXT index
	
	about, 3.1.1
	creating, 3.3.1, 3.3.5
	HTML example, 2.3, 3.3.5.5, A.2.2

	couch, self-tipping, A.1
	counting hits, 4.2.10
	CREATE_INDEX_SCRIPT, 12.4
	CREATE_POLICY_SCRIPT, 12.4, 12.4
	CREATE_STOPLIST procedure, 3.3.4, 3.3.4.3
	CTX_CLS.TRAIN procedure, 6.4
	CTX_DDL.SYNC_INDEX procedure, 2.3
	CTX_DOC.POLICY_SNIPPET procedure, 5.1.3.3
	CTX_DOC.SNIPPET procedure, 5.1.3.3
	CTX_INDEX_ERRORS view, 3.4.1, 12.2
	CTX_OUTPUT.END_QUERY_LOG, 4.1.19
	CTX_OUTPUT.START_QUERY_LOG, 4.1.19
	CTX_PENDING view, 12.2
	CTX_QUERY.RESULT_SET procedure, 11.2
	CTX_REPORT, 3.5.3.5
	CTX_REPORT package, 12.4
	CTX_REPORT_QUERY_LOG_SUMMARY, 4.1.19
	CTX_REPORT_TOKEN_TYPE, 12.4
	CTX_REPORT.CREATE_INDEX_SCRIPT, 12.4
	CTX_REPORT.CREATE_POLICY_SCRIPT, 12.4, 12.4
	CTX_REPORT.DESCRIBE_INDEX, 12.4
	CTX_REPORT.DESCRIBE_POLICY, 12.4
	CTX_REPORT.INDEX_SIZE, 12.4
	CTX_REPORT.INDEX_STATS, 12.4
	CTX_REPORT.QUERY_LOG_SUMMARY, 12.4
	CTX_REPORT.TOKEN_INFO, 12.4
	CTX_THES package
	
	about, 10.1.1.1

	CTX_USER_INDEX_ERRORS view, 3.4.1, 12.2
	CTX_USER_PENDING view, 12.2
	CTXAPP role, 2.2, 12.1
	CTXCAT grammar, 4.3
	CTXCAT index
	
	about, 3.1.1
	about performance, 7.7.17
	automatic synchronization, 2.4
	creating, 2.4
	example, 3.3.6

	ctxkbtc
	
	example, 10.3.2.5

	ctxload
	
	load thesaurus example, 10.1.1.3, 10.3.1, 10.3.2.4

	CTXRULE index, 6.3.2
	
	about, 3.1.1
	allowable queries, 6.3.2
	creating, 2.5.1, 3.3.7
	lexer types, 6.3.2
	limitations, 6.3.2
	parameters, 6.3.2

	CTXSYS user, 12.1
	CTXXPATH index, 1.5.3.2
	
	about, 3.1.1

D

	data storage
	
	index default, 3.3.5.2
	preference example, 3.3.2.1.4

	datastore
	
	about, 3.1.3.1, 3.3.1

	DATE column, 3.3.5.2
	Decision Tree supervised classification, 6.4.1
	default thesaurus, 10.1.4
	DEFAULT_INDEX_MEMORY, 7.8.2
	defaults
	
	index, 3.3.5.2

	DEFINEMERGE operator, 4.2.11
	DEFINESCORE operator, 4.2.11
	DESCRIBE_INDEX, 12.4
	DETAIL_DATASTORE, 3.2.1.2.1
	
	about, 3.2.1.8

	diacritical marks
	
	characters with, 3.2.8.2

	DIRECT_DATASTORE, 3.2.1.2.1
	
	about, 3.2.1.8
	example, 3.3.2.1.1

	DML
	
	view pending, 3.5.1

	DML processing
	
	background, 12.6

	DML queue, 12.2
	document
	
	classification, 3.3.7, 6

	document format
	
	affect on index performance, 7.8.4
	affect on performance, 7.7.5

	document formats
	
	filtering, 3.2.2
	supported, 3.2.1.7

	document invalidation, 3.5.3.3
	document presentation
	
	about, 5.3

	document sections, 3.3.3
	document services
	
	about, 5.3

	DOMAIN_INDEX_NO_SORT hint
	
	better throughput example, 7.2.2

	DOMAIN_INDEX_SORT hint
	
	better response time example, 7.1.2.1

	DROP INDEX statement, 3.4.2
	DROP_STOPLIST procedure, 3.3.4.3
	dropping an index, 3.4.2

E

	EQUIV operator, 4.2.2
	errors
	
	DML, 12.2
	viewing, 3.4.1

	explain plan, 4.1.10

F

	feedback
	
	query, 4.1.9

	field section
	
	definition, 8.1.2.2
	nested, 8.1.2.2.2
	repeated, 8.1.2.2.3
	visible and invisible, 8.1.2.2.1

	file paths
	
	storing, 3.2.1.3

	FILE_DATASTORE, 3.1.3.1
	
	about, 3.2.1.3, 3.2.1.8
	example, 3.3.2.1.4

	filter
	
	about, 3.1.3.2, 3.3.1

	filtering
	
	custom, 3.2.2.3
	index default, 3.3.5.2
	to plain text and HTML, 5.3

	filtering documents, 3.2.2
	FIRST_ROWS hint, 4.2.9
	
	better throughput example, 7.2.2

	FIRST_ROWS(n) hint, 7.1.2
	format column, 3.2.1.6, 3.2.2.2, 3.2.3
	formats
	
	filtering, 3.2.2
	supported, 3.2.1.7

	fragmentation of index, 3.5.3.2, 7.9.2
	
	viewing, 3.5.3.5

	full themes
	
	obtaining, 5.2.1.2.2

	functional lookup, 7.7.6
	fuzzy matching, 3.2.9
	
	default, 3.3.5.2

	fuzzy operator, 4.2.5

G

	garbage collection, 3.5.3.3
	German
	
	alternate spelling, 3.2.8.3
	composite words, 3.2.8.4

	gist
	
	definition, 5.2
	example, 5.2.2.1

	GIST procedure, 5.2.2
	grammar
	
	alternative, 4.1.18
	CTXCAT, 4.3

	grammar CONTEXT, 4.2
	granting roles, 2.2, 12.1.3

H

	HASPATH operator, 8.3.4
	
	examples, 8.3.4.8

	HFEEDBACK procedure, 4.1.9
	highlighting
	
	about, 5.3
	overview, 5.1

	highlighting documents, 2.3
	highlighting text, 5.1.1
	highlighting themes, 5.1.2
	hit count, 4.2.10
	home air dirtier, A.1
	HTML
	
	filtering to, 5.3
	indexing, 3.3.2.2, 8.1.1.1
	indexing example, 2.3, A.2.2
	searching META tags, 8.2.2
	zone section example, 3.3.3.1, 8.2.1

	HTML_SECTION_GROUP object, 3.3.3.1, 8.1.1.1, 8.2.1
	
	with NULL_FILTER, 2.3, 3.3.2.2, A.2.2

I

	IGNORE
	
	format column value, 3.2.3

	IGNORE format column value, 3.2.2.2
	index
	
	about, 3.1
	creating, 3.3
	dropping, 3.4.2
	fragmentation, 3.5.3.2
	getting report on, 12.4
	incrementally creating, 3.3.5.3
	maintenance, 3.4
	online recreation, 3.4.4.1
	optimizing, 3.5.3, 3.5.3.6
	rebuilding, 3.4.5
	statistics on, 12.4
	structure, 3.1.2, 3.5.3.1
	synchronizing, 3.5.2, 12.6
	viewing information on, 12.4

	index defaults
	
	general, 3.3.5.2

	index engine
	
	about, 3.1.3.5

	index errors
	
	viewing, 3.4.1

	index fragmentation, 7.9.2
	index memory, 7.8.2
	index synchronization, 2.3
	index types
	
	choosing, 3.1.1

	INDEX_SIZE, 12.4
	INDEX_STATS, 12.4
	INDEX_STATS procedure, 3.5.3.5
	indexed lookup, 7.7.6
	indexing
	
	and views, 3.1.7
	bypassing rows, 3.2.3
	considerations, 3.2
	overview of process, 3.1.3
	parallel, 3.1.6, 7.8.5
	resuming failed, 3.4.3
	special characters, 3.2.6

	indexing performance
	
	FAQs, 7.8
	parallel, 7.8.6

	indexing time, 7.8.1
	INPATH operator, 8.3.4
	
	examples, 8.3.4.2

	INSO_FILTER (deprecated), 13.3.1
	INSO_OUTPUT_FORMATTING attribute (deprecated), 13.3.1
	INSO_TIMEOUT attribute (deprecated), 13.3.1
	INSOFILTER directive (deprecated), 13.3.1

J

	Japanese indexing, 3.2.8.5
	JAPANESE_LEXER, 3.2.8.5
	Jdeveloper
	
	Text wizard, 2.3.1, A, B

K

	knowledge base
	
	about, 10.4
	augmenting, 10.3.2
	linking new terms, 10.3.2.3
	supported character set, 10.4
	user-defined, 10.4.1

	Korean indexing, 3.2.8.5
	KOREAN_MORPH_LEXER, 3.2.8.5

L

	language
	
	default setting for indexing, 3.3.5.2

	language specific features, 3.2.8
	languages
	
	indexing, 3.2.5

	language-specific knowledge base, 10.4.1
	lexer
	
	about, 3.1.3.4, 3.3.1
	and CTXRULE, 6.3.2

	list of themes
	
	definition, 5.2
	obtaining, 5.2.1

	loading text
	
	about, 3.2.1

	LOB columns
	
	improving query performance, 7.7.11
	indexing, 3.3.5.2

	local partitioned index, 7.7.14
	
	improved response time, 7.1.3

	location of text, 3.2.1
	locking parameter for sync_index, 3.5.2.3
	logical operators, 4.2.2

M

	magnet, pet see pet magnet
	maintaining the index, 3.4
	marked-up document
	
	obtaining, 5.1.3.1

	MARKUP procedure, 2.3, 5.1.3.1
	MATCHES
	
	about, 4.1.3
	PL/SQL example, 3.3.7.3, 4.1.3.2
	SQL example, 4.1.3.1

	MATCHES operator, 2.5.1, 6.3.1
	materialized views, indexes on
	MAX_INDEX_MEMORY, 7.8.2
	maxtime parameter for sync_index, 3.5.2.2
	MDATA operator, 8.1.2.4
	MDATA section, 8.1.2.4
	memory allocation
	
	index synchronization, 7.9.3
	indexing, 7.8.2
	querying, 7.7.10

	META tag
	
	creating zone section for, 8.2.2.1

	metadata
	
	adding, 8.1.2.4
	removing, 8.1.2.4
	section, 8.1.2.4

	migrating from previous releases, 13
	mixed formats
	
	filtering, 3.2.2.2

	mixed query, 8.1.2.4, 8.1.2.6
	MULTI_COLUMN_DATASTORE, 3.2.1.2.1
	
	about, 3.2.1.8
	example, 3.3.2.1.2

	MULTI_LEXER, 3.2.5.2
	
	example, 3.3.2.5

	multi-language columns
	
	indexing, 3.2.5.2

	multi-language stoplist
	
	about, 3.3.4.1

	multiple CONTAINS
	
	improving performance, 7.7.12

	MVIEW see materialized views

N

	name matching, 9.1
	name search, 9.1
	NCLOB column, 3.3.5.2
	NEAR operator, 4.2.4
	NEAR_ACCUM operator, 4.2.4
	nested zone sections, 8.1.2.1.3
	NESTED_DATASTORE, 3.2.1.2.1
	
	about, 3.2.1.8

	NEWS_SECTION_GROUP object, 8.1.1.1
	NOPOPULATE keyword
	
	and incremental rebuild,and replace parameter, 3.3.5.3

	nopopulate with RECREATE_INDEX_ONLINE, 3.4.4.1
	NOT operator, 4.2.2
	NULL_FILTER, 3.1.3.2
	
	example, 2.3, 3.3.2.2, A.2.2

	NULL_SECTION_GROUP object, 8.1.1.1
	NUMBER column, 3.3.5.2

O

	offset information
	
	highlight, 5.1.3.2

	online
	
	recreating a CONTEXT indextype, 3.4.4.1

	operator
	
	MDATA, 8.1.2.4
	SDATA, 8.1.2.6

	operators
	
	CATSEARCH, 4.3
	CONTAINS, 4.2
	logical, 4.2.2
	thesaurus, 10.1.1.2

	optimizing index, 3.5.3
	
	example, 3.5.3.6
	single token, 3.5.3.4

	optimizing queries, 4.2.9
	
	FAQs, 7.7
	response time, 7.1
	throughput, 7.2
	with blocking operations, 7.6

	OR operator, 4.2.2
	ora
	
	contains, 1.5.2

	Oracle Enterprise Manager, 12.5
	Oracle Enterprise Manager and Oracle Text, 12.5
	Oracle Text pages in OEM, 12.5
	Oracle XML DB, 1.5
	out of line LOB storage
	
	improving performance, 7.7.11

P

	parallel indexing, 3.1.6, 7.8.5
	
	partitioned table, 7.8.6

	parallel queries, 7.5, 7.7.15
	
	across Real Application Clusters (RAC) nodes, 7.5

	partitioned index, 7.7.14
	
	improved response time, 7.1.3

	path section searching, 8.3.4
	PATH_SECTION_GROUP
	
	example, 8.3.4.1

	pending DML
	
	viewing, 3.5.1

	pending updates, 12.2
	performance tuning
	
	indexing, 7.8
	querying, 7.7
	updating index, 7.9

	pet magnet, A.1
	
	gist, 5.3.3
	illustration, 5.3
	themes, 5.3.2

	phrase query, 4.1.4
	pizza shredder, A.1
	plain text
	
	indexing with NULL_FILTER, 3.3.2.2

	plain text filtering, 5.3
	PL/SQL functions
	
	calling in contains, 4.2.8

	POPULATE_PENDING, 3.3.5.4
	preferences
	
	creating (examples), 3.3.2
	creating with admin tool, 12.5
	dropping, 3.4.6

	previous releases, migrating from, 13
	printjoins character, 3.2.6.1
	PROCEDURE_FILTER, 3.2.2.3
	PSP application, A.2, B.2

Q

	query
	
	ABOUT, 4.2.1
	analysis, 4.1.19
	blocking operations, 7.6
	case-sensitive, 4.1.8
	CATSEARCH, 4.1.2, 4.1.2.1
	CONTAINS, 4.1.1
	counting hits, 4.2.10
	CTXRULE, 6.3.2
	getting report on, 12.4
	log, 4.1.19
	MATCHES, 4.1.3
	mixed, 8.1.2.4, 8.1.2.6
	optimizing for throughput, 7.2
	overview, 4.1
	parallel, 7.5
	speeding up with MDATA, 8.1.2.4
	speeding up with SDATA, 8.1.2.6
	viewing information on, 12.4
	viewing log of, 12.4

	query analysis, 4.1.19
	query application
	
	example, 2.3
	sample, 1.2.1

	query explain plan, 4.1.10
	query expressions, 4.1.7
	query features, 4.1.20
	query feedback, 4.1.9
	query language, 4.1.16
	query log, 4.1.19, 12.4
	query optimization, 4.2.9
	
	FAQs, 7.7
	response time, 7.1

	Query Parallelized Across Oracle RAC Nodes, 7.5.2
	query performance
	
	FAQs, 7.7

	query relaxation, 4.1.15
	query relaxation template, 4.1.15
	query rewrite, 4.1.14
	query rewrite template, 4.1.14
	query template, 4.2.6, 4.3.1
	
	lang parameter and, 4.1.16

	Query Templates, 4.1.13
	QUERY_LOG_SUMMARY, 12.4
	queue
	
	DML, 12.2

R

	Real Application Clusters (RAC) and parallel queries, 7.5
	rebuilding an index, 3.4.5, 3.4.5
	RECREATE_INDEX_ONLINE, 3.4.4.1
	
	and DML, 3.4.4.1

	recreating a local partitioned index online, 3.4.4.1
	recreating an index, 3.4.4
	recreating an index online, 3.4.4.1
	relaxing queries, 4.1.15
	REMOVE_SQE procedure, 4.2.7.1
	REMOVE_STOPCLASS procedure, 3.3.4.3
	REMOVE_STOPTHEME procedure, 3.3.4.3
	REMOVE_STOPWORD procedure, 3.3.4, 3.3.4.3
	response time
	
	improving, 7.1
	optimizing for, 4.2.9

	result buffer size
	
	increasing, 7.6

	result set interface, 11
	result sets, 11
	resuming failed index, 3.4.3
	rewriting queries, 4.1.14
	roles
	
	granting, 2.2, 12.1.3
	system-defined, 12.1

	rule-based classification, 6.3

S

	sample application, A, B
	scoring
	
	alternative, 4.1.17

	SDATA operator, 8.1.2.6
	SDATA section, 8.1.2.6
	searching
	
	XML, 1.5

	section
	
	attribute, 8.1.2.7
	field, 8.1.2.2
	groups and types, 8.1.2
	HTML example, 3.3.3
	MDATA, 8.1.2.4
	nested, 8.1.2.1.3
	overlapping, 8.1.2.1.2
	repeated zone, 8.1.2.1.1
	SDATA, 8.1.2.6
	special, 8.1.2.8
	stop section, 8.1.2.3
	types and groups, 8.1.2
	zone, 8.1.2.1

	section group
	
	about, 3.3.1
	and section types, 8.1.2
	creating with admin tool, 12.5

	section searching, 4.2.3
	
	about, 4.1.12, 8.1
	enabling, 8.1.1
	HTML, 8.2.1

	sectioner
	
	about, 3.1.3.3

	sectioning
	
	automatic, 8.3.1
	path, 8.3.4

	self-tipping couch, A.1
	SGA memory allocation, 7.8.2
	simple classification, see rule-based classification
	single themes
	
	obtaining, 5.2.1.2.1

	size of index, viewing, 12.4
	skipjoins character, 3.2.6.2
	SORT_AREA_SIZE, 7.6, 7.7.10, 7.8.2
	special characters
	
	indexing, 3.2.6

	special sections, 8.1.2.8
	spelling
	
	alternate, 3.2.8.3
	searching different, 9.1

	SQE operator, 4.2.7
	stem operator, 3.2.9, 4.2.5
	stemming
	
	default, 3.3.5.2
	improving performance, 7.7.13

	stop section, 8.1.2.3
	stopclass, 3.3.4.2, 3.3.4.2
	stoplist, 3.3.4
	
	about, 3.3.1
	creating with admin tool, 12.5
	default, 3.3.5.2
	multi-language, 3.2.12.2, 3.3.4.1
	PL/SQL procedures, 3.3.4.3

	stoptheme, 3.3.4.2, 3.3.4.2
	
	about, 3.2.12
	definition, 4.1.6.1

	stopword, 3.3.4, 3.3.4.2
	
	about, 3.2.12, 4.1.5
	case-sensitive, 4.1.8.1.1

	storage
	
	about, 3.3.1

	STORE_SQE procedure, 4.2.7, 4.2.7.1
	stored query expression, defining, 4.2.7.1
	stored query expressions, 4.2.7
	storing text, 3.2.1
	
	about, 3.2.1.2

	structure of index, 3.5.3.1
	structured data
	
	adding, 8.1.2.6
	removing, 8.1.2.6
	section, 8.1.2.6

	structured query
	
	example, 3.3.6

	supervised classification, 6.4
	
	Decision Tree, 6.4.1

	SVM supervised classification, 6.4.2
	
	memory requirements, 6.4.2

	swap and noswap with RECREATE_INDEX_ONLINE, 3.4.4.1
	SYN operator, 10.2.1
	sync_index locking parameter, 3.5.2.3
	sync_index maxtime parameter, 3.5.2.2
	SYNC_INDEX procedure, 2.3
	synchronize index, 2.3
	synchronizing index, 3.5.2, 12.6
	
	improving performance, 7.9

	synonyms
	
	defining, 10.2.1

T

	talking pillow, A.1
	template queries, 4.2.6, 4.3.1
	templates, 4.1.13
	
	query rewrite, 4.1.14

	text column
	
	supported types, 3.2.1.1

	TEXT format column value, 3.2.2.2
	text highlighting, 5.1.1
	text storage, 3.2.1
	theme functionality
	
	adding, 10.4.1

	theme highlighting, 5.1.2
	theme summary
	
	definition, 5.2

	themes
	
	indexing, 3.2.8.1

	THEMES procedure, 5.2.1
	thesaural queries
	
	about, 4.1.11

	thesaurus
	
	about, 10.1
	adding to knowledge base, 10.3.2
	case-sensitive, 10.1.2
	default, 10.1.4
	DEFAULT, 10.1.4
	defining terms, 10.2
	hierarchical relations, 10.2.2
	loading custom, 10.3.1
	operators, 10.1.1.2
	supplied, 10.1.5
	using in application, 10.3

	thesaurus operator, 4.2.5
	throughput
	
	improving query, 7.2

	tildes
	
	indexing characters with, 3.2.8.2

	TOKEN_INFO, 12.4
	TOKEN_TYPE, 12.4
	tracing, 7.4
	TRAIN procedure, 6.4
	tuning queries
	
	for response time, 7.1
	for throughput, 7.2
	increasing result buffer size, 7.6

U

	umlauts
	
	indexing characters with, 3.2.8.2

	unsupervised classification, 6.5
	updating index performance
	
	FAQs, 7.9

	updating your applications, 13
	URL_DATASTORE
	
	about, 3.2.1.8
	example, 3.3.2.1.3

	URLs
	
	storing, 3.2.1.4

	user
	
	creating Oracle Text, 2.2
	system-defined, 12.1

	USER_DATASTORE, 3.1.7
	
	about, 3.2.1.8

	USER_FILTER, 3.2.2.3

V

	VARCHAR2 column, 3.2.1.1
	viewing information on indexes and queries, 12.4
	viewing size of index, 12.4
	views
	
	and indexing, 3.1.7
	materialized

W

	wildcard operator, 4.2.5
	
	improving performance, 7.7.13

	WITHIN operator, 3.3.3
	wizard
	
	Oracle Text addin, 2.3.1, A, B

	word query, 4.1.4
	
	case-sensitivity, 4.1.8.1

	wordlist
	
	about, 3.3.1

X

	XML DB, 1.5
	XML documents
	
	attribute searching, 8.3.2
	doctype sensitive sections, 8.3.3
	indexing, 8.1.1.1
	section searching, 8.3

	XML searching, 1.5
	XML_SECTION_GROUP object, 8.1.1.1

Z

	zone section
	
	definition, 8.1.2.1
	nested, 8.1.2.1.3
	overlapping, 8.1.2.1.2
	repeating, 8.1.2.1.1

B CATSEARCH Query Application

This appendix describes how to build a simple Web-search application using the CATSEARCH index type, either by writing your own code or by using the Oracle Text Wizard. The following topics are covered:

	
CATSEARCH Web Query Application Overview

	
The JSP Web Application

B.1 CATSEARCH Web Query Application Overview

The CTXCAT index type is well suited for merchandise catalogs that have short descriptive text fragments and associated structured data. This appendix describes how to build a browser based bookstore catalog that users can search to find titles and prices.

This application is written in Java Server Pages (JSP).

The application can be produced by using a catalog query application wizard, which produces the necessary code automatically. You can view and download the JSP application code, as well as the catalog query application wizard, at the Oracle Technology Network Web site:

http://www.oracle.com/technology/products/text

This Web site also has complete instructions on how to use the catalog query wizard.

B.2 The JSP Web Application

This application is based on Java Server pages and has the following requirements:

	
Your Oracle Database (version 8.1.7 or higher) is up and running.

	
You have a Web server such as Apache up and running and correctly configured to send requests to Oracle Database.

B.2.1 Building the JSP Web Application

This application models an online bookstore where you can look up book titles and prices.

	
	Step 1 Create Your Table
	
You must create the table to store book information such as title, publisher, and price. From SQL*Plus:

sqlplus>create table book_catalog (
 id numeric,
 title varchar2(80),
 publisher varchar2(25),
 price numeric)

	
	Step 2 Load data using SQL*Loader
	
Load the book data from the operating system command-line with SQL*Loader:

% sqlldr userid=ctxdemo/ctxdemo control=loader.ctl

	
	Step 3 Create index set
	
You can create the index set from SQL*Plus:

sqlplus>begin
 ctx_ddl.create_index_set('bookset');
 ctx_ddl.add_index('bookset','price');
 ctx_ddl.add_index('bookset','publisher');
 end;
/

	
	Step 4 Index creation
	
You can create the CTXCAT index from SQL*Plus as follows:

sqlplus>create index book_idx on book_catalog (title)
 indextype is ctxsys.ctxcat
 parameters('index set bookset');

	
	Step 5 Try a simple search using CATSEARCH
	
You can test the newly created index in SQL*Plus as follows:

sqlplus>select id, title from book_catalog
 where catsearch(title,'Java','price > 10 order by price') > 0

	
	Step 6 Copy the catalogSearch.jsp file to your Web site JSP directory.
	
When you do so, you can access the application from a browser. The URL should be http://localhost:port/path/catalogSearch.jsp

The application displays a query entry box in your browser and returns the query results as a list of HTML links. See Figure B-1.

Figure B-1 Screen shot of Web Query Application

[image: Description of Figure B-1 follows]

B.2.2 JSP Sample Code

This section lists the code used to build the example Web application. It includes the following files:

	
loader.ctl

	
loader.dat

	
catalogSearch.jsp

	
See Also:

http://www.oracle.com/technology/products/text/

B.2.2.1 loader.ctl

 LOAD DATA
 INFILE 'loader.dat'
 INTO TABLE book_catalog
 REPLACE
 FIELDS TERMINATED BY ';'
 (id, title, publisher, price)

B.2.2.2 loader.dat

1; A History of Goats; SPINDRIFT BOOKS;50
2; Robust Recipes Inspired by Eating Too Much;SPINDRIFT BOOKS;28
3; Atlas of Greenland History; SPINDRIFT BOOKS; 35
4; Bed and Breakfast Guide to Greenland; SPINDRIFT BOOKS; 37
5; Quitting Your Job and Running Away; SPINDRIFT BOOKS;25
6; Best Noodle Shops of Omaha ;SPINDRIFT BOOKS; 28
7; Complete Book of Toes; SPINDRIFT BOOKS;16
8; Complete Idiot's Guide to Nuclear Technology;SPINDRIFT BOOKS; 28
9; Java Programming for Woodland Animals; LOW LIFE BOOK CO; 10
10; Emergency Surgery Tips and Tricks;SPOT-ON PUBLISHING;10
11; Programming with Your Eyes Shut; KLONDIKE BOOKS; 10
12; Forest Fires of North America, 1858-1882; CALAMITY BOOKS; 11
13; Spanish in Twelve Minutes; WRENCH BOOKS 11
14; Better Sex and Romance Through C++; CALAMITY BOOKS; 12
15; Oracle Internet Application Server Enterprise Edition; KANT BOOKS; 12
16; Oracle Internet Developer Suite; SPAMMUS BOOK CO;13
17; Telling the Truth to Your Pets; IBEX BOOKS INC; 13
18; Go Ask Alice's Restaurant;HUMMING BOOKS; 13
19; Life Begins at 93; CALAMITY BOOKS; 17
20; Dating While Drunk; BALLAST BOOKS; 14
21; The Second-to-Last Mohican; KLONDIKE BOOKS; 14
22; Eye of Horus; An Oracle of Ancient Egypt; BIG LITTLE BOOKS; 15
23; Introduction to Sitting Down; IBEX BOOKS INC; 15

B.2.2.3 catalogSearch.jsp

<%@ page import="java.sql.* , oracle.jsp.dbutil.*" %>
<jsp:useBean id="name" class="oracle.jsp.jml.JmlString" scope="request" >
<jsp:setProperty name="name" property="value" param="v_query" />
</jsp:useBean>

<%
 String connStr="jdbc:oracle:thin:@machine-domain-name:1521:betadev";

 java.util.Properties info = new java.util.Properties();

 Connection conn = null;
 ResultSet rset = null;
 Statement stmt = null;

 if (name.isEmpty()) {

%>
 <html>
 <title>Catalog Search</title>
 <body>
 <center>
 <form method=post>
 Search for book title:
 <input type=text name="v_query" size=10>
 where publisher is
 <select name="v_publisher">
 <option value="ADDISON WESLEY">ADDISON WESLEY
 <option value="HUMMING BOOKS">HUMMING BOOKS
 <option value="WRENCH BOOKS">WRENCH BOOKS
 <option value="SPOT-ON PUBLISHING">SPOT-ON PUBLISHING
 <option value="SPINDRIFT BOOKS">SPINDRIFT BOOKS
 <option value="LOW LIFE BOOK CO">LOW LIFE BOOK CO
 <option value="KLONDIKE BOOKS">KLONDIKE BOOKS
 <option value="CALAMITY BOOKS">CALAMITY BOOKS
 <option value="IBEX BOOKS INC">IBEX BOOKS INC
 <option value="BIG LITTLE BOOKS">BIG LITTLE BOOKS
 </select>
 and price is
 <select name="v_op">
 <option value="=">=
 <option value="<"><
 <option value=">">>
 </select>
 <input type=text name="v_price" size=2>
 <input type=submit value="Search">
 </form>
 </center>
 <hr>
 </body>
 </html>

<%
 }
 else {

 String v_query = request.getParameter("v_query");
 String v_publisher = request.getParameter("v_publisher");
 String v_price = request.getParameter("v_price");
 String v_op = request.getParameter("v_op");
%>

 <html>
 <title>Catalog Search</title>
 <body>
 <center>
 <form method=post action="catalogSearch.jsp">
 Search for book title:
 <input type=text name="v_query" value=
 <%= v_query %>
 size=10>
 where publisher is
 <select name="v_publisher">
 <option value="ADDISON WESLEY">ADDISON WESLEY
 <option value="HUMMING BOOKS">HUMMING BOOKS
 <option value="WRENCH BOOKS">WRENCH BOOKS
 <option value="SPOT-ON PUBLISHING">SPOT-ON PUBLISHING
 <option value="SPINDRIFT BOOKS">SPINDRIFT BOOKS
 <option value="LOW LIFE BOOK CO">LOW LIFE BOOK CO
 <option value="KLONDIKE BOOKS">KLONDIKE BOOKS
 <option value="CALAMITY BOOKS">CALAMITY BOOKS
 <option value="IBEX BOOKS INC">IBEX BOOKS INC
 <option value="BIG LITTLE BOOKS">BIG LITTLE BOOKS
 </select>
 and price is
 <select name="v_op">
 <option value="=">=
 <option value="<"><
 <option value=">">>
 </select>
 <input type=text name="v_price" value=
 <%= v_price %> size=2>
 <input type=submit value="Search">
 </form>
 </center>

<%
 try {

 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
 info.put ("user", "ctxdemo");
 info.put ("password","ctxdemo");
 conn = DriverManager.getConnection(connStr,info);

 stmt = conn.createStatement();
 String theQuery = request.getParameter("v_query");
 String thePrice = request.getParameter("v_price");

 // select id,title
 // from book_catalog
 // where catsearch (title,'Java','price >10 order by price') > 0

 // select title
 // from book_catalog
 // where catsearch(title,'Java','publisher = ''CALAMITY BOOKS''
 and price < 40 order by price')>0

 String myQuery = "select title, publisher, price from book_catalog
 where catsearch(title, '"+theQuery+"',
 'publisher = ''"+v_publisher+"'' and price "+v_op+thePrice+"
 order by price') > 0";
 rset = stmt.executeQuery(myQuery);

 String color = "ffffff";

 String myTitle = null;
 String myPublisher = null;
 int myPrice = 0;
 int items = 0;

 while (rset.next()) {
 myTitle = (String)rset.getString(1);
 myPublisher = (String)rset.getString(2);
 myPrice = (int)rset.getInt(3);
 items++;

 if (items == 1) {
%>
 <center>
 <table border="0">
 <tr bgcolor="#6699CC">
 <th>Title</th>
 <th>Publisher</th>
 <th>Price</th>
 </tr>
<%
 }
%>
 <tr bgcolor="#<%= color %>">
 <td> <%= myTitle %></td>
 <td> <%= myPublisher %></td>
 <td> $<%= myPrice %></td>
 </tr>
<%
 if (color.compareTo("ffffff") == 0)
 color = "eeeeee";
 else
 color = "ffffff";

 }

 } catch (SQLException e) {

%>

 Error: <%= e %><p>

<%

 } finally {
 if (conn != null) conn.close();
 if (stmt != null) stmt.close();
 if (rset != null) rset.close();
 }

%>
 </table>
 </center>
 </body>
 </html>
<%
 }
%>

Contents

List of Tables

Preface

	Audience
	Documentation Accessibility
	Related Documents
	Conventions

1 Understanding Oracle Text Application Development

	1.1 Introduction to Oracle Text
	1.2 Document Collection Applications
	1.2.1 Flowchart of Text Query Application

	1.3 Catalog Information Applications
	1.3.1 Flowchart for Catalog Query Application

	1.4 Document Classification Applications
	1.5 XML Search Applications
	1.5.1 Using Oracle Text
	1.5.2 Using the Oracle XML DB Framework
	1.5.3 Combining Oracle Text features with Oracle XML DB
	1.5.3.1 Using the Text-on-XML Method
	1.5.3.2 Using the XML-on-Text Method

2 Getting Started with Oracle Text

	2.1 Overview of Getting Started with Oracle Text
	2.2 Creating an Oracle Text User
	2.3 Query Application Quick Tour
	2.3.1 Building Web Applications with the Oracle Text Wizard
	2.3.1.1 Oracle JDeveloper
	2.3.1.2 Oracle Text Wizard Addins
	2.3.1.3 Oracle Text Wizard Instructions

	2.4 Catalog Application Quick Tour
	2.5 Classification Application Quick Tour
	2.5.1 Steps for Creating a Classification Application

3 Indexing with Oracle Text

	3.1 About Oracle Text Indexes
	3.1.1 Types of Oracle Text Indexes
	3.1.2 Structure of the Oracle Text CONTEXT Index
	3.1.2.1 Merged Word and Theme Index

	3.1.3 The Oracle Text Indexing Process
	3.1.3.1 Datastore Object
	3.1.3.2 Filter Object
	3.1.3.3 Sectioner Object
	3.1.3.4 Lexer Object
	3.1.3.5 Indexing Engine

	3.1.4 Partitioned Tables and Indexes
	3.1.4.1 Querying Partitioned Tables

	3.1.5 Creating an Index Online
	3.1.6 Parallel Indexing
	3.1.7 Indexing and Views

	3.2 Considerations For Indexing
	3.2.1 Location of Text
	3.2.1.1 Supported Column Types
	3.2.1.2 Storing Text in the Text Table
	3.2.1.3 Storing File Path Names
	3.2.1.4 Storing URLs
	3.2.1.5 Storing Associated Document Information
	3.2.1.6 Format and Character Set Columns
	3.2.1.7 Supported Document Formats
	3.2.1.8 Summary of DATASTORE Types

	3.2.2 Document Formats and Filtering
	3.2.2.1 No Filtering for HTML
	3.2.2.2 Filtering Mixed-Format Columns
	3.2.2.3 Custom Filtering

	3.2.3 Bypassing Rows for Indexing
	3.2.4 Document Character Set
	3.2.4.1 Character Set Detection
	3.2.4.2 Mixed Character Set Columns

	3.2.5 Document Language
	3.2.5.1 Language Features Outside BASIC_LEXER
	3.2.5.2 Indexing Multi-language Columns

	3.2.6 Indexing Special Characters
	3.2.6.1 Printjoin Characters
	3.2.6.2 Skipjoin Characters
	3.2.6.3 Other Characters

	3.2.7 Case-Sensitive Indexing and Querying
	3.2.8 Language-Specific Features
	3.2.8.1 Indexing Themes
	3.2.8.2 Base-Letter Conversion for Characters with Diacritical Marks
	3.2.8.3 Alternate Spelling
	3.2.8.4 Composite Words
	3.2.8.5 Korean, Japanese, and Chinese Indexing

	3.2.9 Fuzzy Matching and Stemming
	3.2.10 Better Wildcard Query Performance
	3.2.11 Document Section Searching
	3.2.12 Stopwords and Stopthemes
	3.2.12.1 Language Detection and Stoplists
	3.2.12.2 Multi-Language Stoplists

	3.2.13 Index Performance
	3.2.14 Query Performance and Storage of LOB Columns
	3.2.15 Mixed Query Performance

	3.3 Creating Oracle Text Indexes
	3.3.1 Summary of Procedure for Creating a Text Index
	3.3.2 Creating Preferences
	3.3.2.1 Datastore Examples
	3.3.2.2 NULL_FILTER Example: Indexing HTML Documents
	3.3.2.3 PROCEDURE_FILTER Example
	3.3.2.4 BASIC_LEXER Example: Setting Printjoin Characters
	3.3.2.5 MULTI_LEXER Example: Indexing a Multi-Language Table
	3.3.2.6 BASIC_WORDLIST Example: Enabling Substring and Prefix Indexing

	3.3.3 Creating Section Groups for Section Searching
	3.3.3.1 Example: Creating HTML Sections

	3.3.4 Using Stopwords and Stoplists
	3.3.4.1 Multi-Language Stoplists
	3.3.4.2 Stopthemes and Stopclasses
	3.3.4.3 PL/SQL Procedures for Managing Stoplists

	3.3.5 Creating a CONTEXT Index
	3.3.5.1 CONTEXT Index and DML
	3.3.5.2 Default CONTEXT Index Example
	3.3.5.3 Incrementally Creating an Index with ALTER INDEX and CREATE INDEX
	3.3.5.4 Creating a CONTEXT Index Incrementally with POPULATE_PENDING
	3.3.5.5 Custom CONTEXT Index Example: Indexing HTML Documents
	3.3.5.6 CONTEXT Index Example: Query Processing with FILTER BY and ORDER BY

	3.3.6 Creating a CTXCAT Index
	3.3.6.1 CTXCAT Index and DML
	3.3.6.2 About CTXCAT Sub-Indexes and Their Costs
	3.3.6.3 Creating CTXCAT Sub-indexes
	3.3.6.4 Creating CTXCAT Index

	3.3.7 Creating a CTXRULE Index
	3.3.7.1 Step One: Create a Table of Queries
	3.3.7.2 Step Two: Create the CTXRULE Index
	3.3.7.3 Step Three: Classify a Document

	3.4 Maintaining Oracle Text Indexes
	3.4.1 Viewing Index Errors
	3.4.2 Dropping an Index
	3.4.3 Resuming Failed Index
	3.4.4 Re-creating an Index
	3.4.4.1 Re-creating a Global Index

	3.4.5 Rebuilding an Index
	3.4.6 Dropping a Preference

	3.5 Managing DML Operations for a CONTEXT Index
	3.5.1 Viewing Pending DML
	3.5.2 Synchronizing the Index
	3.5.2.1 Example
	3.5.2.2 Maxtime Parameter for SYNC_INDEX
	3.5.2.3 Locking Parameter for SYNC_INDEX

	3.5.3 Optimizing the Index
	3.5.3.1 CONTEXT Index Structure
	3.5.3.2 Index Fragmentation
	3.5.3.3 Document Invalidation and Garbage Collection
	3.5.3.4 Single Token Optimization
	3.5.3.5 Viewing Index Fragmentation and Garbage Data
	3.5.3.6 Examples: Optimizing the Index

4 Querying with Oracle Text

	4.1 Overview of Queries
	4.1.1 Querying with CONTAINS
	4.1.1.1 CONTAINS SQL Example
	4.1.1.2 CONTAINS PL/SQL Example
	4.1.1.3 Structured Query with CONTAINS

	4.1.2 Querying with CATSEARCH
	4.1.2.1 CATSEARCH SQL Query
	4.1.2.2 CATSEARCH Example

	4.1.3 Querying with MATCHES
	4.1.3.1 MATCHES SQL Query
	4.1.3.2 MATCHES PL/SQL Example

	4.1.4 Word and Phrase Queries
	4.1.4.1 CONTAINS Phrase Queries
	4.1.4.2 CATSEARCH Phrase Queries

	4.1.5 Querying Stopwords
	4.1.6 ABOUT Queries and Themes
	4.1.6.1 Querying Stopthemes

	4.1.7 Query Expressions
	4.1.7.1 CONTAINS Operators
	4.1.7.2 CATSEARCH Operator
	4.1.7.3 MATCHES Operator

	4.1.8 Case-Sensitive Searching
	4.1.8.1 Word Queries
	4.1.8.2 ABOUT Queries

	4.1.9 Query Feedback
	4.1.10 Query Explain Plan
	4.1.11 Using a Thesaurus in Queries
	4.1.12 Document Section Searching
	4.1.13 Using Query Templates
	4.1.14 Query Rewrite
	4.1.15 Query Relaxation
	4.1.16 Query Language
	4.1.17 Alternative and User-defined Scoring
	4.1.18 Alternative Grammar
	4.1.19 Query Analysis
	4.1.20 Other Query Features

	4.2 The CONTEXT Grammar
	4.2.1 ABOUT Query
	4.2.2 Logical Operators
	4.2.3 Section Searching
	4.2.4 Proximity Queries with NEAR and NEAR_ACCUM Operators
	4.2.5 Fuzzy, Stem, Soundex, Wildcard and Thesaurus Expansion Operators
	4.2.6 Using CTXCAT Grammar
	4.2.7 Stored Query Expressions
	4.2.7.1 Defining a Stored Query Expression
	4.2.7.2 SQE Example

	4.2.8 Calling PL/SQL Functions in CONTAINS
	4.2.9 Optimizing for Response Time
	4.2.9.1 Other Factors that Influence Query Response Time

	4.2.10 Counting Hits
	4.2.10.1 SQL Count Hits Example
	4.2.10.2 Counting Hits with a Structured Predicate
	4.2.10.3 PL/SQL Count Hits Example

	4.2.11 Using DEFINESCORE and DEFINEMERGE for User-defined Scoring

	4.3 The CTXCAT Grammar
	4.3.1 Using CONTEXT Grammar with CATSEARCH

5 Presenting Documents in Oracle Text

	5.1 Highlighting Query Terms
	5.1.1 Text highlighting
	5.1.2 Theme Highlighting
	5.1.3 CTX_DOC Highlighting Procedures
	5.1.3.1 Markup Procedure
	5.1.3.2 Highlight Procedure
	5.1.3.3 Concordance

	5.2 Obtaining Lists of Themes, Gists, and Theme Summaries
	5.2.1 Lists of Themes
	5.2.1.1 In-Memory Themes
	5.2.1.2 Result Table Themes

	5.2.2 Gist and Theme Summary
	5.2.2.1 In-Memory Gist
	5.2.2.2 Result Table Gists
	5.2.2.3 Theme Summary

	5.3 Document Presentation and Highlighting
	5.3.1 Highlighting Example
	5.3.2 Document List of Themes Example
	5.3.3 Gist Example

6 Classifying Documents in Oracle Text

	6.1 Overview of Document Classification
	6.1.1 Classification Applications

	6.2 Classification Solutions
	6.3 Rule-Based Classification
	6.3.1 Rule-based Classification Example
	6.3.2 CTXRULE Parameters and Limitations

	6.4 Supervised Classification
	6.4.1 Decision Tree Supervised Classification
	6.4.1.1 Decision Tree Supervised Classification Example

	6.4.2 S