

List of Tables

	1-1 ALTER INDEX SYNC Methods
	1-2 CATSEARCH Query Operators
	1-3 TRANSFORM Parameters
	1-4 Template Attribute Values
	1-5 SYNC Types
	1-6 Supported CTXCAT Index Preferences
	2-1 Datastore Types
	2-2 MULTI_COLUMN_DATASTORE Attributes
	2-3 DETAIL_DATASTORE Attributes
	2-4 FILE_DATASTORE Attributes
	2-5 URL_DATASTORE Attributes
	2-6 USER_DATASTORE Attributes
	2-7 NESTED_DATASTORE Attributes
	2-8 Filter Types
	2-9 CHARSET_FILTER Attributes
	2-10 Character Sets Supported for CHARSET_FILTER Auto-detection
	2-11 AUTO_FILTER Attributes
	2-12 MAIL_FILTER Attributes
	2-13 USER_FILTER Attribute
	2-14 PROCEDURE_FILTER Attributes
	2-15 Lexer Types
	2-16 BASIC_LEXER Attributes
	2-17 Stemming User-Dictionaries
	2-18 CHINESE_VGRAM_LEXER Attributes
	2-19 CHINESE_LEXER Attributes
	2-20 JAPANESE_VGRAM_LEXER Attributes
	2-21 JAPANESE_LEXER Attributes
	2-22 KOREAN_MORPH_LEXER Dictionaries
	2-23 KOREAN_MORPH_LEXER Attributes
	2-24 User-Defined Routines for USER_LEXER
	2-25 USER_LEXER Attributes
	2-26 VARCHAR2 Interface for INDEX_PROCEDURES
	2-27 CLOB Interface for INDEX_PROCEDURE
	2-28 User-defined Lexer Query Procedure XML Schema Attributes
	2-29 User-defined Lexer Indexing Procedure XML Schema Element Names
	2-30 User-defined Lexer Indexing Procedure XML Schema Attributes
	2-31 User-defined Lexer Query Procedure XML Schema Attributes
	2-32 WORLD_LEXER Attribute
	2-33 BASIC_WORDLIST Attributes
	2-34 Storage Types
	2-35 BASIC_STORAGE Attributes
	2-36 Section Group Types
	2-37 RULE_CLASSIFIER Attributes
	2-38 SVM_CLASSIFIER Attributes
	2-39 KMEAN_CLUSTERING Attributes
	2-40 General System Parameters
	2-41 Default CONTEXT Index Parameters
	2-42 Default CTXCAT Index Parameters
	2-43 Default CTXRULE Index Parameters
	3-1 Query Expression Precedence Examples
	3-2 MDATA and Other Query Operators
	3-3 Score Samples
	4-1 Characters for Grouping Query Terms
	4-2 Characters for Escaping Query Terms
	4-3 Reserved Words and Characters
	7-1 Paragraph and Sentence Section Boundaries
	8-1 Required Columns for Token Tables
	9-1 Available Traces
	14-1 Size Limit for the Extended Knowledge Base
	15-1 German Alternate Spelling Conventions
	15-2 Danish Alternate Spelling Conventions
	15-3 Swedish Alternate Spelling Conventions
	A-1 EXPLAIN Result Table
	A-2 EXPLAIN Table OPERATION Column
	A-3 EXPLAIN Table OPTIONS Column
	A-4 HFEEDBACK Results Table
	A-5 HFEEDBACK Results Table OPERATION Column
	A-6 HFEEDBACK Results Table OPTIONS Column
	A-7 CTX_FEEDBACK_ITEM_TYPE
	A-8 FILTER Result Table
	A-9 Gist Table
	A-10 Highlight Table
	A-11 Markup Table
	A-12 Theme Table
	A-13 Token Table
	A-14 EXP_TAB Table Type (EXP_REC)
	B-1 AUTO_FILTER Behavior with PDF Security Settings
	B-2 Supported Archive File Formats
	B-3 Supported Graphics Formats for AUTO_FILTER Filter
	B-4 Formats Supported in Release 11.1.0.6 and not in 11.1.0.7
	D-1 Oracle Text Lexer Types
	D-2 Languages Supported by the World Lexer (Space-separated)
	D-3 Languages Supported by the World Lexer (Non-space-separated)
	D-4 Languages Not Supported by the World Lexer
	D-5 Multilingual Features for Supported Languages

1 Oracle Text SQL Statements and Operators

This chapter describes the SQL statements and Oracle Text operators for creating and managing Oracle Text indexes and performing Oracle Text queries.

The following statements are described in this chapter:

	
ALTER INDEX

	
ALTER TABLE: Supported Partitioning Statements

	
CATSEARCH

	
CONTAINS

	
CREATE INDEX

	
DROP INDEX

	
MATCHES

	
MATCH_SCORE

	
SCORE

ALTER INDEX

	
Note:

This section describes the ALTER INDEX statement as it pertains to managing an Oracle Text domain index.
For a complete description of the ALTER INDEX statement, see Oracle Database SQL Language Reference.

Purpose

Use ALTER INDEX to make changes to, or perform maintenance tasks for a CONTEXT, CTXCAT, or CTXRULE index.

All Index Types

Use ALTER INDEX to perform the following tasks on all Oracle Text index types:

	
Rename the index or index partition. See "ALTER INDEX RENAME Syntax".

	
Rebuild the index using different preferences. Some restrictions apply for the CTXCAT index type. See "ALTER INDEX REBUILD Syntax".

	
Add stopwords to the index. See "ALTER INDEX REBUILD Syntax".

CONTEXT and CTXRULE Index Types

Use ALTER INDEX to perform the following tasks on CONTEXT and CTXRULE index types:

	
Resume a failed index operation (creation/optimization).

	
Add sections and stop sections to the index.

	
Replace index metadata.

	
See Also:

"ALTER INDEX REBUILD Syntax" to learn more about performing these tasks

Overview of ALTER INDEX Syntax

The syntax for ALTER INDEX is fairly complex. The major divisions are covered in the following sections:

	
"ALTER INDEX MODIFY PARTITION Syntax"—use this to modify an index partition's metadata.

	
"ALTER INDEX PARAMETERS Syntax"—use this to modify the parameters of a nonpartitioned index, or to modify all partitions of a local partitioned index, without rebuilding the index.

	
"ALTER INDEX RENAME Syntax"—use this to rename an index or index partition.

	
"ALTER INDEX REBUILD Syntax"—use this to rebuild an index or index partition. With this statement, you can also replace index metadata; add stopwords, sections, and stop sections to an index; and resume a failed operation.

The parameters for ALTER INDEX REBUILD have their own syntax, which is a subset of the syntax for ALTER INDEX. For example, the ALTER INDEX REBUILD PARAMETERS statement can take either REPLACE or RESUME as an argument, and ALTER INDEX REBUILD PARAMETERS ('REPLACE') can take several arguments. Valid examples of ALTER INDEX REBUILD include the following statements:

ALTER INDEX REBUILD PARALLEL n
ALTER INDEX REBUILD PARAMETERS ('SYNC memsize')
ALTER INDEX REBUILD PARAMETERS ('REPLACE DATASTORE datastore_pref')
ALTER INDEX REBUILD PARAMETERS ('REPLACE WORDLIST wordlist_pref')

ALTER INDEX MODIFY PARTITION Syntax

Use the following syntax to modify the metadata of an index partition:

ALTER INDEX index_name MODIFY PARTITION partition_name PARAMETER (paramstring)

	index_name
	
Specify the name of the index whose partition metadata you want to modify.

	partition_name
	
Specify the name of the index partition whose metadata you want to modify.

	paramstring
	
The only valid argument here is 'REPLACE METADATA'. This follows the same syntax as ALTER INDEX REBUILD PARTITION PARAMETERS ('REPLACE METADATA'); see the REPLACE METADATA subsection of the "ALTER INDEX REBUILD Syntax" section for more information. (The two statements are equivalent. ALTER INDEX MODIFY PARTITION is offered for ease of use, and is the recommended syntax.)

ALTER INDEX PARAMETERS Syntax

Use the following syntax to modify the parameters either of nonpartitioned or local partitioned indexes, without rebuilding the index. For partitioned indexes, this statement works at the index level, not at the partition level. This statement changes information for the entire index, including all partitions.

ALTER INDEX index_name PARAMETERS (paramstring)

	paramstring
	
ALTER INDEX PARAMETERS accepts the following arguments for paramstring:

	
'REPLACE METADATA'

Replaces current metadata. See the REPLACE METADATA subsection of the "ALTER INDEX REBUILD Syntax" section for more information.

	
'ADD STOPWORD'

Dynamically adds a stopword to an index. See the ADD STOPWORD subsection of the "ALTER INDEX REBUILD Syntax" section for more information.

	
'ADD FIELD SECTION'

Dynamically adds a field section to an index. See the ADD FIELD subsection of the "ALTER INDEX REBUILD Syntax" section for more information.

	
'ADD ZONE SECTION'

Dynamically adds a zone section to an index. See the ADD ZONE subsection of the "ALTER INDEX REBUILD Syntax" section for more information.

	
'ADD ATTR SECTION'

Dynamically adds an attribute section to an index. See the ADD ATTR subsection of the "ALTER INDEX REBUILD Syntax" section for more information.

Each of the prior statements has an equivalent ALTER INDEX REBUILD PARAMETERS version. For example, ALTER INDEX PARAMETERS ('REPLACE METADATA') is equivalent to ALTER INDEX REBUILD PARAMETERS ('REPLACE METADATA'). However, the ALTER INDEX PARAMETERS versions work on either partitioned or nonpartitioned indexes, whereas the ALTER INDEX REBUILD PARAMETERS versions work only on nonpartitioned indexes.

ALTER INDEX RENAME Syntax

Use the following syntax to rename an index or index partition:

ALTER INDEX [schema.]index_name RENAME TO new_index_name;

ALTER INDEX [schema.]index_name RENAME PARTITION part_name TO new_part_name;

	[schema.]index_name
	
Specify the name of the index to rename.

	new_index_name
	
Specify the new name for schema.index. The new_index_name parameter can be no more than 25 bytes, and 21 bytes for a partitioned index. If you specify a name longer than 25 bytes (or longer than 21 bytes for a partitioned index), then Oracle Text returns an error and the renamed index is no longer valid.

	
Note:

When new_index_name is more than 25 bytes (21 for local partitioned index) and less than 30 bytes, Oracle Text renames the index, even though the system returns an error. To drop the index and associated tables, you must drop new_index_name with the DROP INDEX statement and then re-create and drop index_name.

	part_name
	
Specify the name of the index partition to rename.

	new_part_name
	
Specify the new name for partition.

ALTER INDEX REBUILD Syntax

Use ALTER INDEX REBUILD to rebuild an index, rebuild an index partition, resume a failed operation, replace index metadata, add stopwords to an index, or add sections and stop sections to an index.

The ALTER INDEX REBUILD syntax has its own subsyntax. That is, its parameters have their own syntax. For example, the ALTER INDEX REBUILD PARAMETERS statement can take either REPLACE or RESUME as an argument, and ALTER INDEX REBUILD PARAMETERS ('REPLACE') has several arguments it can take.

Valid examples of ALTER INDEX REBUILD include the following statements:

ALTER INDEX REBUILD PARALLEL n
ALTER INDEX REBUILD PARAMETERS (SYNC memsize)
ALTER INDEX REBUILD PARAMETERS (REPLACE DATASTORE datastore_pref)
ALTER INDEX REBUILD PARAMETERS (REPLACE WORDLIST wordlist_pref)

This is the syntax for ALTER INDEX REBUILD:

ALTER INDEX [schema.]index [REBUILD] [PARTITION partname] [ONLINE] [PARAMETERS
(paramstring)][PARALLEL N];

	PARTITION partname
	
Rebuilds the index partition partname. Only one index partition can be built at a time.

When you rebuild a partition you can specify only RESUME or REPLACE in paramstring. These operations work only on the partname you specify.

With the REPLACE operation, you can specify only MEMORY and STORAGE for each index partition.

Adding Partitions To add a partition to the base table, use the ALTER TABLE SQL statement. When you add a partition to an indexed table, Oracle Text automatically creates the metadata for the new index partition. The new index partition has the same name as the new table partition. Change the index partition name with ALTER INDEX RENAME.

Splitting or Merging Partitions Splitting or merging a table partition with ALTER TABLE renders the index partitions invalid. You must rebuild them with ALTER INDEX REBUILD.

	[ONLINE]
	
Enables you to continue to perform updates, insertions, and deletions on a base table. It does not enable you to query the base table.

	
Note:

You can specify REPLACE or RESUME when rebuilding an index or an index partition ONLINE.

	PARAMETERS (paramstring)
	
Optionally specify paramstring. If you do not specify paramstring, then Oracle Text rebuilds the index with existing preference settings.

The syntax for paramstring is as follows:

paramstring =

'REPLACE
 [DATASTORE datastore_pref]
 [FILTER filter_pref]
 [LEXER lexer_pref]
 [WORDLIST wordlist_pref]
 [STORAGE storage_pref]
 [STOPLIST stoplist]
 [SECTION GROUP section_group]
 [MEMORY memsize
 [[POPULATE | NOPOPULATE]
 [INDEX SET index_set]

 [METADATA preference new_preference]
 [METADATA FORMAT COLUMN format_column_name]
 [[METADATA] SYNC (MANUAL | EVERY "interval-string" | ON COMMIT)]
 [[METADATA] TRANSACTIONAL|NONTRANSACTIONAL

| RESUME [memory memsize]
| OPTIMIZE [token index_token | fast | full [maxtime (time | unlimited)]
| SYNC [memory memsize]
| ADD STOPWORD word [language language]
| ADD ZONE SECTION section_name tag tag
| ADD FIELD SECTION section_name tag tag [(VISIBLE | INVISIBLE)]
| ADD ATTR SECTION section_name tag tag@attr
| ADD STOP SECTION tag'

	REPLACE [optional_preference_list]
	
Rebuilds an index. You can optionally specify your own preferences, or system-defined preferences.

You can replace only preferences that are supported for that index type. For instance, you cannot replace index set for a CONTEXT or CTXRULE index. Similarly, for the CTXCAT index type, you can replace lexer, wordlist, storage index set, and memory preferences.

The POPULATE parameter is the default and need not be specified. If you want to empty the index of its contents, then specify NOPOPULATE. Clear an index of its contents when you must rebuild your index incrementally. The NOPOPULATE choice is available for a specific partition of the index, and not just for the entire index.

If you are rebuilding a partitioned index using the REPLACE parameter, then you can specify only STORAGE, MEMORY, and NOPOPULATE.

	
See Also:

Chapter 2, "Oracle Text Indexing Elements" for more information about creating and setting preferences, including information about system-defined preferences

	
	REPLACE METADATA preference new_preference
	
Replaces the existing preference class settings, including SYNC parameters, of the index with the settings from new_preference. Only index preferences and attributes are replaced. The index is not rebuilt.

This statement is useful for when you want to replace a preference and its attribute settings after the index is built, without reindexing all data. Reindexing data can require significant time and computing resources.

This statement is also useful for changing the SYNC parameter type, which can be automatic, manual, or on-commit.

The ALTER INDEX REBUILD PARAMETER ('REPLACE METADATA') statement does not work for a local partitioned index at the global level for the index. You cannot, for example, use this syntax to change a global preference, such as filter or lexer type, without rebuilding the index. Use ALTER INDEX PARAMETERS instead to change the metadata of an index at the global level, including all partitions. See "ALTER INDEX PARAMETERS Syntax".

When should I use the METADATA keyword? REPLACE METADATA should be used only when the change in index metadata will not lead to an inconsistent index, which can lead to incorrect query results.

For example, use this statement in the following instances:

	
To go from a single-language lexer to a multilexer in anticipation of multilingual data. For an example, see "Replacing Index Metadata: Changing Single-Lexer to Multilexer".

	
To change the WILDCARD_MAXTERMS setting in BASIC_WORDLIST.

	
To change the SYNC parameter type, which can be automatic, manual, or on-commit.

These changes are safe and will not lead to an inconsistent index that might adversely affect your query results.

	
Caution:

The REPLACE METADATA statement can result in inconsistent index data, which can lead to incorrect query results. As such, Oracle does not recommend using this statement, unless you carefully consider the effect it will have on the consistency of your index data and subsequent queries.

There can be many instances when changing metadata can result in inconsistent index data. For example, Oracle recommends against using the METADATA keyword after performing the following procedures:

	
Changing the USER_DATASTORE procedure to a new PL/SQL stored procedure that has different output.

	
Changing the BASIC_WORDLIST attribute PREFIX_INDEX from NO to YES because no prefixes have been generated for existing documents. Changing it from YES to NO is safe.

	
Adding or changing BASIC_LEXER printjoin and skipjoin characters, because new queries with these characters would be lexed differently from how these characters were lexed at index time.

In these unsafe cases, Oracle recommends rebuilding the index.

	
	REPLACE [METADATA] SYNC (MANUAL | EVERY "interval-string" | ON COMMIT)
	
Specifies SYNC for automatic synchronization of the CONTEXT index when a DML change has occurred to the base table. You can specify one of the SYNC methods shown in Table 1-1.

Table 1-1 ALTER INDEX SYNC Methods

	SYNC Type	Description
	
MANUAL

	
Means no automatic synchronization. This is the default. You must manually synchronize the index using CTX_DDL.SYNC_INDEX.

Use MANUAL to disable ON COMMIT and EVERY synchronization.

	
EVERY interval-string

	
Automatically synchronize the index at a regular interval specified by the value of interval-string, which takes the same syntax as that for scheduler jobs. Automatic synchronization using EVERY requires that the index creator have CREATE JOB privileges.

Ensure that interval-string is set to a long enough period so that any previous synchronization jobs will have completed. Otherwise, the synchronization job may hang. The interval-string argument must be enclosed in double quotation marks ('' '').

See "Enabling Automatic Index Synchronization" for an example of automatic synchronization syntax.

	
ON COMMIT

	
Synchronize the index immediately after a commit. The commit does not return until the sync is complete. (Because the synchronization is performed as a separate transaction, there may be a time period, usually small, when the data is committed but index changes are not.)

The operation uses the memory specified with the memory parameter.

Note that the sync operation has its own transaction context. If this operation fails, the data transaction still commits. Index synchronization errors are logged in the CTX_USER_INDEX_ERRORS view. See "Viewing Index Errors" under CREATE INDEX.

See "Enabling Automatic Index Synchronization" for an example of ON COMMIT syntax.

Each partition of a locally partitioned index can have its own type of sync: (ON COMMIT, EVERY, or MANUAL). The type of sync specified in master parameter strings applies to all index partitions unless a partition specifies its own type.

With automatic (EVERY) synchronization, you can specify memory size and parallel synchronization. The syntax is:

... EVERY interval_string MEMORY mem_size PARALLEL paradegree ...

ON COMMIT synchronizations can only be executed serially and at the same memory size as what was specified at index creation.

	
Note:

This command rebuilds the index. When you want to change the SYNC setting without rebuilding the index, use the REBUILD REPLACE METADATA SYNC (MANUAL | ON COMMIT) operation.

	REPLACE [METADATA] TRANSACTIONAL | NONTRANSACTIONAL
	
This parameter enables you to turn the TRANSACTIONAL property on or off. For more information, see "TRANSACTIONAL".

Using this parameter only succeeds if there are no rows in the DML pending queue. Therefore, you may need to sync the index before issuing this command.

To turn on the TRANSACTIONAL index property:

ALTER INDEX myidx REBUILD PARAMETERS('replace metadata transactional');

or

ALTER INDEX myidx REBUILD PARAMETERS('replace transactional');

To turn off the TRANSACTIONAL index property:

ALTER INDEX myidx REBUILD PARAMETERS('replace metadata nontransactional');

or

ALTER INDEX myidx REBUILD PARAMETERS('replace nontransactional');

	RESUME [MEMORY memsize]
	
Resumes a failed index operation. You can optionally specify the amount of memory to use with memsize.

	
Note:

This ALTER INDEX operation applies only to CONTEXT and CTXRULE indexes. It does not apply to CTXCAT indexes.

	OPTIMIZE [token index_token | fast | full [maxtime (time | unlimited)]
	

	
Note:

This ALTER INDEX operation will not be supported in future releases.
To optimize your index, use CTX_DDL.OPTIMIZE_INDEX.

Optimizes the index. Specify token, fast, or full optimization. You typically optimize after you synchronize the index.

When you optimize in token mode, Oracle Text optimizes only index_token. Use this method of optimization to quickly optimize index information for specific words.

When you optimize in fast mode, Oracle Text works on the entire index, compacting fragmented rows. However, in fast mode, old data is not removed.

When you optimize in full mode, you can optimize the whole index or a portion. This method compacts rows and removes old data (deleted rows).

	
Note:

Optimizing in full mode runs even when there are no deleted document rows. This is useful when you must optimize time-limited batches with the maxtime parameter.

Use the maxtime parameter to specify in minutes the time Oracle Text is to spend on the optimization operation. Oracle Text starts the optimization where it left off and optimizes until complete or until the time limit has been reached, whichever comes first. Specifying a time limit is useful for automating index optimization, where you set Oracle Text to optimize the index for a specified time on a regular basis.

When you specify maxtime unlimited, the entire index is optimized. This is the default. When you specify 0 for maxtime, Oracle Text performs minimal optimization.

Log the progress of optimization by writing periodic progress updates to the CTX_OUTPUT log. An event for CTX_OUTPUT.ADD_EVENT, called CTX_OUTPUT.EVENT_OPT_PRINT_TOKEN, prints each token as it is being optimized.

	
Note:

This ALTER INDEX operation applies only to CONTEXT and CTXRULE indexes. It does not apply to CTXCAT indexes.

	SYNC [MEMORY memsize]
	

	
Note:

This ALTER INDEX operation will not be supported in future releases.
To synchronize your index, use CTX_DDL.SYNC_INDEX.

Synchronizes the index. You can optionally specify the amount of run-time memory to use with memsize. Synchronize the index when you have DML operations on your base table.

	
Note:

This ALTER INDEX operation applies only to CONTEXT and CTXRULE indexes. It does not apply to CTXCAT indexes.

Memory Considerations The memory parameter memsize specifies the amount of memory Oracle Text uses for the ALTER INDEX operation before flushing the index to disk. Specifying a large amount of memory improves indexing performance because there is less I/O and improves query performance and maintenance because there is less fragmentation.

Specifying smaller amounts of memory increases disk I/O and index fragmentation, but might be useful if you want to track indexing progress or when run-time memory is scarce.

	
	ADD STOPWORD word [language language]
	
Dynamically adds a stopword word to the index.

Index entries for word that existed before this operation are not deleted. However, subsequent queries on word are treated as though it has always been a stopword.

When your stoplist is a multilanguage stoplist, you must specify language.

The index is not rebuilt by this statement.

	
	ADD ZONE SECTION section_name tag tag
	
Dynamically adds the zone section section_name identified by tag to the existing index.

The added section section_name applies only to documents indexed after this operation. For the change to take effect, you must manually re-index any existing documents that contain the tag.

The index is not rebuilt by this statement.

	
Note:

This ALTER INDEX operation applies only to CONTEXT and CTXRULE indexes. It does not apply to CTXCAT indexes.

	
See Also:

"Notes"

	
	ADD FIELD SECTION section_name tag tag [(VISIBLE | INVISIBLE)]
	
Dynamically adds the field section section_name identified by tag to the existing index.

Optionally specify VISIBLE to make the field sections visible. The default is INVISIBLE.

	
See Also:

CTX_DDL.ADD_FIELD_SECTION for more information on visible and invisible field sections.

The added section section_name applies only to documents indexed after this operation. For the change to affect previously indexed documents, you must explicitly re-index the documents that contain the tag.

This statement does not rebuild the index.

	
Note:

This ALTER INDEX operation applies only to CONTEXT CTXRULE indexes. It does not apply to CTXCAT indexes.

	
See Also:

"Notes"

	
	ADD ATTR SECTION section_name tag tag@attr
	
Dynamically adds an attribute section section_name to the existing index. You must specify the XML tag and attribute in the form tag@attr. You can add attribute sections only to XML section groups.

The added attribute section section_name applies only to documents indexed after this operation. For the change to take effect, you must manually re-index any existing documents that contain the tag.

The index is not rebuilt by this statement.

	
Note:

This ALTER INDEX operation applies only to CONTEXT CTXRULE indexes. It does not apply to CTXCAT indexes.

	
See Also:

"Notes".

	ADD STOP SECTION tag
	
Dynamically adds the stop section identified by tag to the existing index. As stop sections apply only to automatic sectioning of XML documents, the index must use the AUTO_SECTION_GROUP section group. The tag you specify must be case sensitive and unique within the automatic section group or else ALTER INDEX raises an error.

The added stop section tag applies only to documents indexed after this operation. For the change to affect previously indexed documents, you must explicitly re-index the documents that contain the tag.

The text within a stop section can always searched.

The number of stop sections you can add is unlimited.

The index is not rebuilt by this statement.

	
See Also:

"Notes"

	
Note:

This ALTER INDEX operation applies only to CONTEXT indexes. It does not apply to CTXCAT indexes.

	PARALLEL n
	
Using n, you can optionally specify the parallel degree for parallel indexing. This parameter is supported only when you use SYNC, REPLACE, and RESUME in paramstring. The actual degree of parallelism might be smaller depending on your resources.

Parallel indexing can speed up indexing when you have large amounts of data to index and when your operating system supports multiple CPUs.

ALTER INDEX Examples

Resuming Failed Index

The following statement resumes the indexing operation on newsindex with 2 megabytes of memory:

ALTER INDEX newsindex REBUILD PARAMETERS('resume memory 2M');

Rebuilding an Index

The following statement rebuilds the index, replacing the stoplist preference with new_stop.

ALTER INDEX newsindex REBUILD PARAMETERS('replace stoplist new_stop');

Rebuilding a Partitioned Index

The following example creates a partitioned text table, populates it, and creates a partitioned index. It then adds a new partition to the table and rebuilds the index with ALTER INDEX as follows:

PROMPT create partitioned table and populate it

create table part_tab (a int, b varchar2(40)) partition by range(a)
(partition p_tab1 values less than (10),
 partition p_tab2 values less than (20),
 partition p_tab3 values less than (30));

insert into part_tab values (1,'Actinidia deliciosa');
insert into part_tab values (8,'Distictis buccinatoria');
insert into part_tab values (12,'Actinidia quinata');
insert into part_tab values (18,'Distictis Rivers');
insert into part_tab values (21,'pandorea jasminoides Lady Di');
insert into part_tab values (28,'pandorea rosea');

commit;

PROMPT create partitioned index
create index part_idx on part_tab(b) indextype is ctxsys.context
local (partition p_idx1, partition p_idx2, partition p_idx3);

PROMPT add a partition and populate it
alter table part_tab add partition p_tab4 values less than (40);
insert into part_tab values (32, 'passiflora citrina');
insert into part_tab values (33, 'passiflora alatocaerulea');
commit;

The following statement rebuilds the index in the newly populated partition. In general, the index partition name for a newly added partition is the same as the table partition name, unless the name has already been used. In this case, Oracle Text generates a new name.

alter index part_idx rebuild partition p_tab4;

The following statement queries the table for the two hits in the newly added partition:

select * from part_tab where contains(b,'passiflora') >0;

The following statement queries the newly added partition directly:

select * from part_tab partition (p_tab4) where contains(b,'passiflora') >;

Replacing Index Metadata: Changing Single-Lexer to Multilexer

The following example demonstrates how an application can migrate from single-language documents (English) to multilanguage documents (English and Spanish) by replacing the index metadata for the lexer.

REM creates a simple table, which stores only English (American) text

create table simple (text varchar2(80));
insert into simple values ('the quick brown fox');
commit;

REM create a simple lexer to lex this English text

begin
 ctx_ddl.create_preference('us_lexer','basic_lexer');
end;
/

REM create a text index on the simple table
create index simple_idx on simple(text)
indextype is ctxsys.context parameters ('lexer us_lexer');

REM we can query easily
select * from simple where contains(text, 'fox')>0;

REM now suppose we want to start accepting Spanish documents.
REM first we have to extend the table with a language column
alter table simple add (lang varchar2(10) default 'us');

REM now let's create a Spanish lexer,
begin
 ctx_ddl.create_preference('e_lexer','basic_lexer');
 ctx_ddl.set_attribute('e_lexer','base_letter','yes');
end;
/
REM Then create a multilexer incorporating our English and Spanish lexers.
REM Note that the DEFAULT lexer is the exact same lexer, with which we have
REM have already indexed all the documents.
begin
 ctx_ddl.create_preference('m_lexer','multi_lexer');
 ctx_ddl.add_sub_lexer('m_lexer','default','us_lexer');
 ctx_ddl.add_sub_lexer('m_lexer','spanish','e_lexer');
end;
/
REM next replace our metadata
alter index simple_idx rebuild
parameters ('replace metadata language column lang lexer m_lexer');

REM We are ready for some Spanish data. Note that we could have inserted
REM this BEFORE the alter index, as long as we did not SYNC.
insert into simple values ('el zorro marrón rápido', 'e');
commit;
exec ctx_ddl.sync_index('simple_idx');
REM now query the Spanish data with base lettering:
select * from simple where contains(text, 'rapido')>0;

Optimizing the Index

To optimize your index, use CTX_DDL.OPTIMIZE_INDEX.

Synchronizing the Index

To synchronize your index, use CTX_DDL.SYNC_INDEX.

Adding a Zone Section

To add to the index the zone section author identified by the tag <author>, enter the following statement:

ALTER INDEX myindex REBUILD PARAMETERS('add zone section author tag author');

Adding a Stop Section

To add a stop section identified by tag <fluff> to the index that uses the AUTO_SECTION_GROUP, enter the following statement:

ALTER INDEX myindex REBUILD PARAMETERS('add stop section fluff');

Adding an Attribute Section

Assume that the following text appears in an XML document:

<book title="Tale of Two Cities">It was the best of times.</book>

Assume also that you want to create a separate section for the title attribute and you want to name the new attribute section booktitle. To do so, enter the following statement:

ALTER INDEX myindex REBUILD PARAMETERS('add attr section booktitle tag
title@book');

Using Flashback Queries

If a Text query is flashed back to a point before an ALTER INDEX statement was issued on the Text index for which the query is being run, then:

	
The query optimizer will not choose the index access path for that given index because the index is treated according to its creation time with ALTER INDEX. Therefore, to the query optimizer, the index is perceived not to exist.

	
The functional processing of the Text operator will fail with ORA-01466 or ORA-08176 errors if the ALTER INDEX statement involves re-creation of DR$ index tables.

To work around this issue, use the DBMS_FLASHBACK package. For example:

EXEC dbms_flashback.enable_at_system_change_number(:scn);
SELECT id from documents WHERE CONTAINS(text, 'oracle')>0;
EXEC dbms_flashback.disable;

	
Note:

In previous releases, flashback Text queries using AS OF predicates with Text operators such as CONTAINS and CATSEARCH are not supported.

	
See Also:

"Using DBMS_FLASHBACK Package" in Oracle Database Development Guide

Notes

Add Section Constraints

Before altering the index section information, Oracle Text checks the new section against the existing sections to ensure that all validity constraints are met. These constraints are the same for adding a section to a section group with the CTX_DDL PL/SQL package and are as follows:

	
You cannot add zone, field, or stop sections to a NULL_SECTION_GROUP.

	
You cannot add zone, field, or attribute sections to an automatic section group.

	
You cannot add attribute sections to anything other than XML section groups.

	
You cannot have the same tag for two different sections.

	
Section names for zone, field, and attribute sections cannot intersect.

	
You cannot exceed 64 fields per section.

	
You cannot add stop sections to basic, HTML, XML, or news section groups.

	
SENTENCE and PARAGRAPH are reserved section names.

Related Topics

CTX_DDL.SYNC_INDEX in Chapter 7, "CTX_DDL Package"

CTX_DDL.OPTIMIZE_INDEX in Chapter 7, "CTX_DDL Package"

CREATE INDEX

ALTER TABLE: Supported Partitioning Statements

	
Note:

This section describes the ALTER TABLE statement as it pertains to adding and modifying a partitioned text table with a context domain index.
For a complete description of the ALTER TABLE statement, see Oracle Database SQL Language Reference.

Purpose

Use the ALTER TABLE statement to add, modify, split, merge, exchange, or drop a partitioned text table with a context domain index. The following sections describe some of the ALTER TABLE operations.

Modify Partition Syntax

Unusable Local Indexes

ALTER TABLE [schema.]table MODIFY PARTITION partition UNUSABLE LOCAL INDEXES

Marks the index partition corresponding to the given table partition UNUSABLE. You might mark an index partition unusable before you rebuild the index partition as described in "Rebuild Unusable Local Indexes".

If the index partition is not marked unusable, then the statement returns without actually rebuilding the local index partition.

Rebuild Unusable Local Indexes

ALTER TABLE [schema.]table MODIFY PARTITION partition REBUILD UNUSABLE LOCAL
INDEXES

Rebuilds the index partition corresponding to the specified table partition that has an UNUSABLE status.

	
Note:

If the index partition status is already VALID before you enter this statement, then this statement does not rebuild the index partition. Do not depend on this statement to rebuild the index partition unless the index partition status is UNUSABLE.

Add Partition Syntax

ALTER TABLE [schema.]table ADD PARTITION [partition]
VALUES LESS THAN (value_list) [partition_description]

Adds a new partition to the high end of a range-partitioned table.

To add a partition to the beginning or to the middle of the table, use the ALTER TABLE SPLIT PARTITION statement.

The newly added table partition is always empty, and the context domain index (if any) status for this partition is always VALID. After issuing DML, if you want to synchronize or optimize this newly added index partition, then you must look up the index partition name and enter the ALTER INDEX REBUILD PARTITION statement. For this newly added partition, the index partition name is usually the same as the table partition name, but if the table partition name is already used by another index partition, the system assigns a name in the form of SYS_Pn.

By querying the USER_IND_PARTITIONS view and comparing the HIGH_VALUE field, you can determine the index partition name for the newly added partition.

Merge Partition Syntax

ALTER TABLE [schema.]table
MERGE PARTITIONS partition1, partition2
[INTO PARTITION [new_partition] [partition_description]]
[UPDATE GLOBAL INDEXES]

Applies only to a range partition. This statement merges the contents of two adjacent partitions into a new partition and then drops the original two partitions. If the resulting partition is non-empty, then the corresponding local domain index partition is marked UNUSABLE. You can use ALTER TABLE MODIFY PARTITION to rebuild the partition index.

For a global, nonpartitioned index, if you perform the merge operation without an UPDATE GLOBAL INDEXES clause, then the resulting index (if not NULL) will be invalid and must be rebuilt. If you specify the UPDATE GLOBAL INDEXES clause after the operation and the SYNC type is MANUAL, then the index will be valid, but you still must synchronize the index with CTX_DDL.SYNC_INDEX for the update to take place.

The naming convention for the resulting index partition is the same as in the ALTER TABLE ADD PARTITION statement.

Split Partition Syntax

ALTER TABLE [schema.]table
SPLIT PARTITION partition_name_old
AT (value_list)
[into (partition_description, partition_description)]
[prallel_clause]
[UPDATE GLOBAL INDEXES]

Applies only to range partitions. This statement divides a table partition into two partitions, thus adding a new partition to the table. The local corresponding index partitions will be marked UNUSABLE if the corresponding table partitions are non-empty. Use the ALTER TABLE MODIFY PARTITION statement to rebuild the partition indexes.

For a global, nonpartitioned index, if you perform the split operation without an UPDATE GLOBAL INDEXES clause, then the resulting index (if not NULL) will be invalid and must be rebuilt. If you specify the UPDATE GLOBAL INDEXES clause after the operation and the SYNC type is MANUAL, then the index will be valid, but you still must synchronize the index with CTX_DDL.SYNC_INDEX for the update to take place.

The naming convention for the two resulting index partition is the same as in the ALTER TABLE ADD PARTITION statement.

Exchange Partition Syntax

ALTER TABLE [schema.]table EXCHANGE PARTITION partition WITH TABLE table
[INCLUDING|EXCLUDING INDEXES}
[WITH|WITHOUT VALIDATION]
[EXCEPTIONS INTO [schema.]table]
[UPDATE GLOBAL INDEXES]

Converts a partition to a nonpartitioned table, and converts a table to a partition of a partitioned table by exchanging their data segments. Rowids are preserved.

If EXCLUDING INDEXES is specified, all the context indexes corresponding to the partition and all the indexes on the exchanged table are marked as UNUSABLE. To rebuild the new index partition in this case, issue an ALTER TABLE MODIFY PARTITION statement.

If INCLUDING INDEXES is specified, then for every local domain index on the partitioned table, there must be a nonpartitioned domain index on the nonpartitioned table. The local index partitions are exchanged with the corresponding regular indexes.

For a global, nonpartitioned index, if you perform the exchange operation without an UPDATE GLOBAL INDEXES clause, then the resulting index (if not NULL) will be invalid and must be rebuilt. If you specify the UPDATE GLOBAL INDEXES clause after the operation and the SYNC type is MANUAL, then the index will be valid, but you still must synchronize the index with CTX_DDL.SYNC_INDEX for the update to take place.

Field Sections

Field section queries might not work the same way if the nonpartitioned index and local index use different section IDs for the same field section.

Storage

Storage is not changed. So if the index on the nonpartitioned table $I table was in tablespace XYZ, then after the exchange partition, it will still be in tablespace XYZ, but now it is the $I table for an index partition.

Storage preferences are not switched, so if you switch and then rebuild the index, then the table may be created in a different location.

Restrictions

Both indexes must be equivalent. They must use the same objects and the same settings for each object. Note that Oracle Text checks only that the indexes are using the same object. But they should use the same exact everything.

No index object can be partitioned, that is, when the user has used the storage object to partition the $I, $N tables.

If either index or index partition does not meet all these restrictions an error is raised and both the index and index partition will be INVALID. You must manually rebuild both index and index partition using the ALTER INDEX REBUILD statement.

Truncate Partition Syntax

ALTER TABLE [schema.]table TRUNCATE PARTITION [DROP|REUSE STORAGE] [UPDATE GLOBAL
INDEXES]

Removes all rows from a partition in a table. Corresponding CONTEXT index partitions are also removed.

For a global, nonpartitioned index, if you perform the truncate operation without an UPDATE GLOBAL INDEXES clause, then the resulting index (if not NULL) will be invalid and must be rebuilt. If you specify the UPDATE GLOBAL INDEXES clause after the operation, the index will be valid.

ALTER TABLE Examples

Global Index on Partitioned Table Examples

The following example creates a range-partitioned table with three partitions. Each partition is populated with two rows. A global, nonpartitioned CONTEXT index is then created. To demonstrate the UPDATE GLOBAL INDEXES clause, the partitions are split and merged with an index synchronization.

create table tdrexglb_part(a int, b varchar2(40)) partition by range(a)
(partition p1 values less than (10),
 partition p2 values less than (20),
 partition p3 values less than (30));

insert into tdrexglb_part values (1,'row1');
insert into tdrexglb_part values (8,'row2');
insert into tdrexglb_part values (11,'row11');
insert into tdrexglb_part values (18,'row18');
insert into tdrexglb_part values (21,'row21');
insert into tdrexglb_part values (28,'row28');

commit;
create index tdrexglb_parti on tdrexglb_part(b) indextype is ctxsys.context;

create table tdrexglb(a int, b varchar2(40));

insert into tdrexglb values(20,'newrow20');
commit;

PROMPT make sure query works
select * from tdrexglb_part where contains(b,'row18') >0;

PROMPT split partition
alter table tdrexglb_part split partition p2 at (15) into
(partition p21, partition p22) update global indexes;

PROMPT before sync
select * from tdrexglb_part where contains(b,'row11') >0;
select * from tdrexglb_part where contains(b,'row18') >0;

exec ctx_ddl.sync_index('tdrexglb_parti')

PROMPT after sync
select * from tdrexglb_part where contains(b,'row11') >0;
select * from tdrexglb_part where contains(b,'row18') >0;

PROMPT merge partition
alter table tdrexglb_part merge partitions p22, p3
into partition pnew3 update global indexes;

PROMPT before sync
select * from tdrexglb_part where contains(b,'row18') >0;
select * from tdrexglb_part where contains(b,'row28') >0;
exec ctx_ddl.sync_index('tdrexglb_parti');

PROMPT after sync
select * from tdrexglb_part where contains(b,'row18') >0;
select * from tdrexglb_part where contains(b,'row28') >0;

PROMPT drop partition
alter table tdrexglb_part drop partition p1 update global indexes;

PROMPT before sync
select * from tdrexglb_part where contains(b,'row1') >0;
exec ctx_ddl.sync_index('tdrexglb_parti');

PROMPT after sync
select * from tdrexglb_part where contains(b,'row1') >0;

PROMPT exchange partition
alter table tdrexglb_part exchange partition pnew3 with table
tdrexglb update global indexes;

PROMPT before sync
select * from tdrexglb_part where contains(b,'newrow20') >0;
select * from tdrexglb_part where contains(b,'row28') >0;

exec ctx_ddl.sync_index('tdrexglb_parti');
PROMPT after sync
select * from tdrexglb_part where contains(b,'newrow20') >0;
select * from tdrexglb_part where contains(b,'row28') >0;

PROMPT move table partition
alter table tdrexglb_part move partition p21 update global indexes;
PROMPT before sync
select * from tdrexglb_part where contains(b,'row11') >0;

exec ctx_ddl.sync_index('tdrexglb_parti');
PROMPT after sync
select * from tdrexglb_part where contains(b,'row11') >0;

PROMPT truncate table partition
alter table tdrexglb_part truncate partition p21 update global indexes;

update global indexes;

CATSEARCH

Use the CATSEARCH operator to search CTXCAT indexes. Use this operator in the WHERE clause of a SELECT statement.

The CATSEARCH operator also supports database links. You can identify a remote table or materialized view by appending @dblink to the end of its name. The dblink must be a complete or partial name for a database link to the database containing the remote table or materialized view. (Indexing of remote views is not supported.)

The grammar of this operator is called CTXCAT. You can also use the CONTEXT grammar if your search criteria require special functionality, such as thesaurus, fuzzy matching, proximity searching, or stemming. To utilize the CONTEXT grammar, use the Query Template Specification in the text_query parameter as described in this section.

About Performance

Use the CATSEARCH operator with a CTXCAT index mainly to improve mixed-query performance. Specify your text query condition with text_query and your structured condition with the structured_query argument.

Internally, Oracle Text uses a combined B-tree index on text and structured columns to quickly produce results satisfying the query.

Limitations

If the optimizer chooses to use the functional query invocation, then your query will fail. The optimizer might choose functional invocation when your structured clause is highly selective.

The structured_query argument of the CATSEARCH operator must reference columns used during CREATE INDEX sets; otherwise, error DRG-10845 will be raised. For example, the error will be raised if you issue a CATSEARCH query on a view created on top of a table with the CTXCAT index on it, and the name of the logical column on the view is different from the actual column name on the physical table. The columns referenced by the structured_query argument of the CATSEARCH operator must be the physical column name used during CREATE INDEX sets, not the logical column on the view.

Syntax

CATSEARCH(

[schema.]column,
text_query [VARCHAR2|CLOB],
structured_query VARCHAR2,

RETURN NUMBER;

	[schema.]column
	
Specifies the text column to be searched on. This column must have a CTXCAT index associated with it.

	text_query
	
Specify one of the following to define your search in column:

	
CATSEARCH Query Operations

	
Query Template Specification (for using CONTEXT grammar)

CATSEARCH Query Operations

The CATSEARCH operator supports only the following query operations:

	
Logical AND

	
Logical OR (|)

	
Logical NOT (-)

	
" " (quoted phrases)

	
Wildcarding

Table 1-2 provides the syntax for these operators.

Table 1-2 CATSEARCH Query Operators

	Operation	Syntax	Description of Operation
	
Logical AND

	
a b c

	
Returns rows that contain a, b, and c.

	
Logical OR

	
a | b | c

	
Returns rows that contain a, b, or c.

	
Logical NOT

	
a - b

	
Returns rows that contain a and not b.

	
Hyphen with no space

	
a-b

	
Hyphen treated as a regular character.

For example, if the hyphen is defined as skipjoin, words such as web-site are treated as the single query term website.

Likewise, if the hyphen is defined as a printjoin, words such as web-site are treated as web-site in the CTXCAT query language.

	
" "

	
"a b c"

	
Returns rows that contain the phrase "a b c".

For example, entering "Sony CD Player" means return all rows that contain this sequence of words.

	
()

	
(A B) | C

	
Parentheses group operations. This query is equivalent to the CONTAINS query (A &B) | C.

	
Wildcard

(right and double truncated)

	
term*

a*b

	
The wildcard character matches zero or more characters.

For example, do* matches dog, and gl*s matches glass.

Left truncation not supported.

Note: Oracle recommends that you create a prefix index if your application uses wildcard searching. Set prefix indexing with the BASIC_WORDLIST preference.

The following limitations apply to these operators:

	
The left-hand side (the column name) must be a column named in at least one of the indexes of the index set.

	
The left-hand side must be a plain column name. Functions and expressions are not allowed.

	
The right-hand side must be composed of literal values. Functions, expressions, other columns, and subselects are not allowed.

	
Multiple criteria can be combined with AND. Note that OR is not supported.

	
When querying a remote table through a database link, the database link must be specified for CATSEARCH as well as for the table being queried.

For example, these expressions are supported:

catsearch(text, 'dog', 'foo > 15')
catsearch(text, 'dog', 'bar = ''SMITH''')
catsearch(text, 'dog', 'foo between 1 and 15')
catsearch(text, 'dog', 'foo = 1 and abc = 123')
catsearch@remote(text, 'dog', 'foo = 1 and abc = 123')

These expressions are not supported:

catsearch(text, 'dog', 'upper(bar) = ''A''')
catsearch(text, 'dog', 'bar LIKE ''A%''')
catsearch(text, 'dog', 'foo = abc')
catsearch(text, 'dog', 'foo = 1 or abc = 3')

Query Template Specification

Specifies a marked-up string that specifies a query template. Specify one of the following templates:

	
Query rewrite, used to expand a query string into different versions

	
Progressive relaxation, used to progressively enter less restrictive versions of a query to increase recall

	
Alternate grammar, used to specify CONTAINS operators (See "CONTEXT Query Grammar Examples")

	
Alternate language, used to specify alternate query language

	
Alternate scoring, used to specify alternate scoring algorithms

	
See Also:

The text_query parameter description for CONTAINS for more information about the syntax for these query templates

	structured_query
	
Specifies the structured conditions and the ORDER BY clause. There must exist an index for any column you specify. For example, if you specify 'category_id=1 order by bid_close', you must have an index for 'category_id, bid_close' as specified with the CTX_DDL.ADD_INDEX package.

With structured_query, you can use standard SQL syntax only with the following operators:

	
=

	
<=

	
>=

	
>

	
<

	
IN

	
BETWEEN

	
AND (to combine two or more clauses)

	
Note:

You cannot use parentheses () in the structured_query parameter.

Examples

	
Create the table.

The following statement creates the table to be indexed:

CREATE TABLE auction (category_id number primary key, title varchar2(20),
bid_close date);

The following table inserts the values into the table:

INSERT INTO auction values(1, 'Sony CD Player', '20-FEB-2000');
INSERT INTO auction values(2, 'Sony CD Player', '24-FEB-2000');
INSERT INTO auction values(3, 'Pioneer DVD Player', '25-FEB-2000');
INSERT INTO auction values(4, 'Sony CD Player', '25-FEB-2000');
INSERT INTO auction values(5, 'Bose Speaker', '22-FEB-2000');
INSERT INTO auction values(6, 'Tascam CD Burner', '25-FEB-2000');
INSERT INTO auction values(7, 'Nikon digital camera', '22-FEB-2000');
INSERT INTO auction values(8, 'Canon digital camera', '26-FEB-2000');

	
Create the CTXCAT index:

The following statements create the CTXCAT index:

begin

ctx_ddl.create_index_set('auction_iset');
ctx_ddl.add_index('auction_iset','bid_close');

end;
/
CREATE INDEX auction_titlex ON auction(title) INDEXTYPE IS CTXSYS.CTXCAT
PARAMETERS ('index set auction_iset');

	
Query the Table:

A typical query with CATSEARCH might include a structured clause as follows to find all rows that contain the word camera ordered by bid_close:

SELECT * FROM auction WHERE CATSEARCH(title, 'camera', 'order by bid_close desc')>
0;

CATEGORY_ID TITLE BID_CLOSE
----------- -------------------- ---------
 8 Canon digital camera 26-FEB-00
 7 Nikon digital camera 22-FEB-00

The following query finds all rows that contain the phrase Sony CD Player and that have a bid close date of February 20, 2000:

SELECT * FROM auction WHERE CATSEARCH(title, '"Sony CD Player"',
'bid_close=''20-FEB-00''')> 0;

CATEGORY_ID TITLE BID_CLOSE
----------- -------------------- ---------
 1 Sony CD Player 20-FEB-00

The following query finds all rows with the terms Sony and CD and Player:

SELECT * FROM auction WHERE CATSEARCH(title, 'Sony CD Player', 'order by bid_close
desc')> 0;
CATEGORY_ID TITLE BID_CLOSE
----------- -------------------- ---------
 4 Sony CD Player 25-FEB-00
 2 Sony CD Player 24-FEB-00
 1 Sony CD Player 20-FEB-00

The following query finds all rows with the term CD and not Player:

SELECT * FROM auction WHERE CATSEARCH(title, 'CD - Player', 'order by bid_close
desc')> 0;

CATEGORY_ID TITLE BID_CLOSE
----------- -------------------- ---------
 6 Tascam CD Burner 25-FEB-00

The following query finds all rows with the terms CD or DVD or Speaker:

SELECT * FROM auction WHERE CATSEARCH(title, 'CD | DVD | Speaker', 'order by
bid_close desc')> 0;

CATEGORY_ID TITLE BID_CLOSE
----------- -------------------- ---------
 3 Pioneer DVD Player 25-FEB-00
 4 Sony CD Player 25-FEB-00
 6 Tascam CD Burner 25-FEB-00
 2 Sony CD Player 24-FEB-00
 5 Bose Speaker 22-FEB-00
 1 Sony CD Player 20-FEB-00

The following query finds all rows that are about audio equipment:

SELECT * FROM auction WHERE CATSEARCH(title, 'ABOUT(audio equipment)', NULL)> 0;

CONTEXT Query Grammar Examples

The following examples show how to specify the CONTEXT grammar in CATSEARCH queries using the template feature:

PROMPT
PROMPT fuzzy: query = ?test
PROMPT should match all fuzzy variations of test (for example, text)
select pk||' ==> '||text from test
where catsearch(text,
'<query>
 <textquery grammar="context">
 ?test
 </textquery>
</query>','')>0
order by pk;

PROMPT
PROMPT fuzzy: query = !sail
PROMPT should match all soundex variations of bot (for example, sell)
select pk||' ==> '||text from test
where catsearch(text,
'<query>
 <textquery grammar="context">
 !sail
 </textquery>
</query>','')>0
order by pk;

PROMPT
PROMPT theme (ABOUT) query
PROMPT query: about(California)
select pk||' ==> '||text from test
where catsearch(text,
'<query>
 <textquery grammar="context">
 about(California)
 </textquery>
</query>','')>0
order by pk;

The following example shows a field section search against a CTXCAT index using CONTEXT grammar by means of a query template in a CATSEARCH query:

-- Create and populate table
create table BOOKS (ID number, INFO varchar2(200), PUBDATE DATE);

insert into BOOKS values(1, '<author>NOAM CHOMSKY</author><subject>CIVIL
 RIGHTS</subject><language>ENGLISH</language><publisher>MIT
 PRESS</publisher>', '01-NOV-2003');

insert into BOOKS values(2, '<author>NICANOR PARRA</author><subject>POEMS
 AND ANTIPOEMS</subject><language>SPANISH</language>
 <publisher>VASQUEZ</publisher>', '01-JAN-2001');

insert into BOOKS values(1, '<author>LUC SANTE</author><subject>XML
 DATABASE</subject><language>FRENCH</language><publisher>FREE
 PRESS</publisher>', '15-MAY-2002');

commit;

-- Create index set and section group
exec ctx_ddl.create_index_set('BOOK_INDEX_SET');
exec ctx_ddl.add_index('BOOKSET','PUBDATE');

exec ctx_ddl.create_section_group('BOOK_SECTION_GROUP',
 'BASIC_SECTION_GROUP');
exec ctx_ddl.add_field_section('BOOK_SECTION_GROUP','AUTHOR','AUTHOR');
exec ctx_ddl.add_field_section('BOOK_SECTION_GROUP','SUBJECT','SUBJECT');
exec ctx_ddl.add_field_section('BOOK_SECTION_GROUP','LANGUAGE','LANGUAGE');
exec ctx_ddl.add_field_section('BOOK_SECTION_GROUP','PUBLISHER','PUBLISHER');

-- Create index
create index books_index on books(info) indextype is ctxsys.ctxcat
 parameters('index set book_index_set section group book_section_group');

-- Use the index
-- Note that: even though CTXCAT index can be created with field sections, it
-- cannot be accessed using CTXCAT grammar (default for CATSEARCH).
-- We need to use query template with CONTEXT grammar to access field
-- sections with CATSEARCH.

select id, info from books
where catsearch(info,
'<query>
 <textquery grammar="context">
 NOAM within author and english within language
 </textquery>
 </query>',
'order by pubdate')>0;

Related Topics

"Syntax for CTXCAT Index Type"

Oracle Text Application Developer's Guide

CONTAINS

Use the CONTAINS operator in the WHERE clause of a SELECT statement to specify the query expression for a Text query.

The CONTAINS operator also supports database links. You can identify a remote table or materialized view by appending @dblink to the end of its name. The dblink must be a complete or partial name for a database link to the database containing the remote table or materialized view. (Querying of remote views is not supported.)

CONTAINS returns a relevance score for every row selected. Obtain this score with the SCORE operator.

The grammar for this operator is called the CONTEXT grammar. You can also use CTXCAT grammar if your application works better with simpler syntax. To do so, use the Query Template Specification in the text_query parameter as described in this section.

	
See Also:

"The CONTEXT Grammar" topic in Oracle Text Application Developer's Guide

Syntax

CONTAINS(
 [schema.]column,
 text_query [VARCHAR2|CLOB]
 [,label NUMBER])
RETURN NUMBER;

	[schema.]column
	
Specify the text column to be searched on. This column must have a Text index associated with it.

	
	text_query
	
Specify one of the following:

	
The query expression that defines your search in column.

	
A marked-up document that specifies a query template. Use one of the following templates:

Query Rewrite Template

Use this template to automatically write different versions of a query before you submit the query to Oracle Text. This is useful when you need to maximize the recall of a user query. For example, you can program your application to expand a single phrase query of 'cat dog' into the following queries:

{cat} {dog}
{cat} ; {dog}
{cat} AND {dog}
{cat} ACCUM {dog}

These queries are submitted as one query and results are returned with no duplication. In this example, the query returns documents that contain the phrase cat dog as well as documents in which cat is near dog, and documents that have cat and dog.

This is done with the following template:

 <query>
 <textquery lang="ENGLISH" grammar="CONTEXT"> cat dog
 <progression>
 <seq><rewrite>transform((TOKENS, "{", "}", " "))</rewrite></seq>
 <seq><rewrite>transform((TOKENS, "{", "}", " ; "))</rewrite></seq>
 <seq><rewrite>transform((TOKENS, "{", "}", "AND"))</rewrite></seq>
 <seq><rewrite>transform((TOKENS, "{", "}", "ACCUM"))</rewrite></seq>
 </progression>
 </textquery>
 <score datatype="INTEGER" algorithm="COUNT"/>
</query>

The operator TRANSFORM is used to specify the rewrite rules and has the following syntax (note that it uses double parentheses). The parameters are described in Table 1-3.

TRANSFORM((terms, prefix, suffix, connector))

Table 1-3 TRANSFORM Parameters

	Parameter	Description
	
term

	
Specifies the type of terms to be produced from the original query. Specify either TOKENS or THEMES.

Specifying THEMES requires an installed knowledge base. A knowledge base may or may not have been installed with Oracle Text. For more information, see Oracle Text Application Developer's Guide.

	
prefix

	
Specifies the literal string to be prepended to all terms.

	
suffix

	
Specifies the literal string to be appended to all terms.

	
connector

	
Specifies the literal string to connect all terms after applying the prefix and suffix.

	
Note:

An error will be raised if the input Text query string specified in the Query Rewrite Template with TRANSFORM rules contains any Oracle Text query operators (such as AND, OR, or SOUNDEX). Also, any special characters (such as % or $) in the input Text query string must be preceded by an escape character, or an error is raised.

Query Relaxation Template

Use this template to progressively relax your query. Progressive relaxation is when you increase recall by progressively issuing less restrictive versions of a query, so that your application can return an appropriate number of hits to the user.

For example, the query of black pen can be progressively relaxed to:

black pen
black NEAR pen
black AND pen
black ACCUM pen

This is done with the following template

<query>
 <textquery lang="ENGLISH" grammar="CONTEXT">
 <progression>
 <seq>black pen</seq>
 <seq>black NEAR pen</seq>
 <seq>black AND pen</seq>
 <seq>black ACCUM pen</seq>
 </progression>
 </textquery>
 <score datatype="INTEGER" algorithm="COUNT"/>
</query>

Alternate Grammar Template

Use this template to specify an alternate grammar, such as CONTEXT or CATSEARCH. Specifying an alternate grammar enables you to enter queries using different syntax and operators.

For example, with CATSEARCH, enter ABOUT queries using the CONTEXT grammar. Likewise with CONTAINS, enter logical queries using the simplified CATSEARCH syntax.

The phrase 'dog cat mouse' is interpreted as a phrase in CONTAINS. However, with CATSEARCH, this is equivalent to an AND query of 'dog AND cat AND mouse'. Specify that CONTAINS use the alternate grammar with the following template:

<query>
 <textquery grammar="CTXCAT">dog cat mouse</textquery>
 <score datatype="integer"/>
</query>

Alternate Language Template

Use this template to specify an alternate language:

<query><textquery lang="french">bon soir</textquery></query>

Alternative Scoring Template

Use this template to specify an alternative scoring algorithm.

The following example specifies that the query use the CONTEXT grammar and return integer scores using the COUNT algorithm. This algorithm returns a score as the number of query occurrences in the document.

<query>
 <textquery grammar="CONTEXT" lang="english"> mustang
 </textquery>
 <score datatype="INTEGER" algorithm="COUNT"/>
</query>

The following example uses the normalization_expr attribute to add SDATA(price) into the score returned by the query, and uses it as the final score:

<query>
 <textquery grammar="CONTEXT" lang="english">
 DEFINESCORE(dog, RELEVANCE) and cat
 </textquery>
 <score algorithm="COUNT" normalization_expr ="doc_score+ SDATA(price)"/>
</query>

The normalization_expr attribute is used only with the alternate scoring template, and is an arithmetic expression that consists of:

	
Arithmetic operators: + - * /. The operator precedence is the same as that for SQL operator precedence.

	
Grouping operators: (). Parentheses can be used to alter the precedence of the arithmetic operators.

	
Absolute function: ABS(n) returns the absolute value of n; where n is any expression that returns a number.

	
Logarithmic function: LOG(n): returns the base-10 logarithmic value of n; where n is any expression that returns a number.

	
Predefined components: The doc_score predefined component can be used to return the initial query score of a particular document.

	
SDATA component: SDATA(name) returns the value of the SDATA with the specified name as the score.

	
Only SDATA with a NUMBER or DATE data type is allowed. An error is raised otherwise.

	
The sdata string and the SDATA name are case-insensitive.

	
Because an SDATA section value can be NULL, any expression with NULL SDATA section value is evaluated as 0. For example: the normalization_expr "doc_score + SDATA(price)" will be evaluated to 0 if SDATA(price) for a given document has a NULL value.

	
Numeric literals: There are any number literal that conforms to the SQL pattern of NUMBER literal and is within the range of the double-precision floating-point (-3.4e38 to 3.4e38).

	
Date literals: Date literals must be enclosed with DATE (). Only the following format is allowed: YYYY-MM-DD or YYYY-MM-DD HH24:MI:SS. For example: DATE(2005-11-08).

Consistent with SQL, if no time is specified, then 00:00:00 is assumed.

The normalization_expr attribute overrides the algorithm attribute. That is, if algorithm is set to COUNT, and the user also specifies normalization_expr, then the score will not be count, but the calculated score based on the normalization_expr.

If the score (either from algorithm = COUNT or normalization_expr = ...) is internally calculated to be greater than 100, then it will be set to 100.

If the query relaxation template is used, the score will be further normalized in such a way that documents returned from higher sequences will always have higher scores than documents returned from sequence(s) below.

	DATE Literal Restrictions
	
Only the minus (-) operator is allowed between date-type data (DATE literals and date-type SDATA). Using other operators will result in an error. Subtracting two date-type data will produce a number (float) that represents the difference in number of days between the two dates. For example, the following expression is allowed:

SDATA(dob) – DATE(2005-11-08)

The following expression is not allowed:

SDATA(dob) + DATE(2005-11-08)

The plus (+) and minus (-) operators are allowed between numeric data and date type of data. The number operand is interpreted as the number or fraction of days. For example, the following expression is allowed:

DATE(2005-11-08) + 1 = 9 NOV 2005

The following expression is not allowed:

DATE(2005-11-08)* 3 = ERROR

Template Attribute Values

Table 1-4 gives the possible values for template attributes.

Table 1-4 Template Attribute Values

	Tag Attribute	Description	Possible Values	Meaning
	
grammar=

	
Specifies the grammar of the query.

	
CONTEXT

CTXCAT

	
The grammar of the query.

	
datatype=

	
Specifies the type of number returned as score.

	
INTEGER

FLOAT

	
Returns score as integer between 0 and 100.

Returns score as its high-precision floating-point number between 0 and 100.

	
algorithm=

	
Specifies the scoring algorithm to use.

	
DEFAULT

COUNT

	
Returns the default.

Returns scores as the number of occurrences in the document.

	
lang=

	
Specifies the language name.

	
Any language supported by Oracle Database. See Oracle Database Globalization Support Guide.

	
The language name.

Template Grammar Definition

The query template interface is an XML document. Its grammar is defined with the following XML DTD:

<!ELEMENT query (textquery, score?)>
<!ELEMENT textquery (#PCDATA|progression)*>
<!ELEMENT progression (seq)+>
<!ELEMENT seq (#PCDATA|rewrite)*>
<!ELEMENT rewrite (#PCDATA)>
<!ELEMENT score EMPTY>
<!ATTLIST textquery grammar (context | ctxcat) #IMPLIED>
<!ATTLIST textquery language CDATA #IMPLIED>
<!ATTLIST score datatype (integer | float) "integer">
<!ATTLIST score algorithm (default | count) "default">

All tags and attributes values are case-sensitive.

	
See Also:

Chapter 3, "Oracle Text CONTAINS Query Operators" for more information about the operators in query expressions

	label
	
Optionally, specifies the label that identifies the score generated by the CONTAINS operator.

Returns

For each row selected, the CONTAINS operator returns a number between 0 and 100 that indicates how relevant the document row is to the query. The number 0 means that Oracle Text found no matches in the row.

	
Note:

You must use the SCORE operator with a label to obtain this number.

Example

The following example searches for all documents in the text column that contain the word oracle. The score for each row is selected with the SCORE operator using a label of 1:

SELECT SCORE(1), title from newsindex
 WHERE CONTAINS(text, 'oracle', 1) > 0;

The CONTAINS operator must be followed by an expression such as > 0, which specifies that the score value calculated must be greater than zero for the row to be selected.

When the SCORE operator is called (for example, in a SELECT clause), the CONTAINS clause must reference the score label value as in the following example:

SELECT SCORE(1), title from newsindex
 WHERE CONTAINS(text, 'oracle', 1) > 0 ORDER BY SCORE(1) DESC;

The following example specifies that the query be parsed using the CATSEARCH grammar:

SELECT id FROM test WHERE CONTAINS (text,
 '<query>
 <textquery lang="ENGLISH" grammar="CATSEARCH">
 cheap pokemon
 </textquery>
 <score datatype="INTEGER"/>
 </query>') > 0;

Grammar Template Example

The following example shows how to use the CTXCAT grammar in a CONTAINS query. The example creates a CTXCAT and a CONTEXT index on the same table, and compares the query results.

PROMPT create context and ctxcat indexes, both using theme indexing
PROMPT
create index tdrbqcq101x on test(text) indextype is ctxsys.context
parameters ('lexer theme_lexer');

create index tdrbqcq101cx on test(text) indextype is ctxsys.ctxcat
parameters ('lexer theme_lexer');

PROMPT ***** San Diego ***********
PROMPT ***** CONTEXT grammar ***********
PROMPT ** should be interpreted as phrase query **
select pk||' ==> '||text from test
where contains(text,'San Diego')>0
order by pk;

PROMPT ***** San Diego ***********
PROMPT ***** CTXCAT grammar ***********
PROMPT ** should be interpreted as AND query ***
select pk||' ==> '||text from test
where contains(text,
'<query>
 <textquery grammar="CTXCAT">San Diego</textquery>
 <score datatype="integer"/>
</query>')>0
order by pk;

PROMPT ***** Hitlist from CTXCAT index ***********
select pk||' ==> '||text from test
where catsearch(text,'San Diego','')>0
order by pk;

Alternate Scoring Query Template Example

The following query template adds price SDATA section (or SDATA filter-by column) value into the score returned by the query and uses it as the final score:

<query>
 <textquery grammar="CONTEXT" lang="english">
 DEFINESCORE(dog, RELEVANCE) and cat
 </textquery>
 <score algorithm="COUNT" normalization_expr ="doc_score+SDATA(price)"/>
</query>

Query Relaxation Template Example

The following query template defines a query relaxation sequence. The query of black pen is entered in sequence as black pen, then black NEAR pen, then black AND pen, and then black ACCUM pen. Query hits are returned in this sequence with no duplication as long as the application requires results.

select id from docs where CONTAINS (text, '
<query>
 <textquery lang="ENGLISH" grammar="CONTEXT">
 <progression>
 <seq>black pen</seq>
 <seq>black NEAR pen</seq>
 <seq>black AND pen</seq>
 <seq>black ACCUM pen</seq>
 </progression>
 </textquery>
 <score datatype="INTEGER" algorithm="COUNT"/>
</query>')>0;

Query relaxation is most effective when your application requires the top n hits to a query, which you can obtain with the DOMAIN_INDEX_SORT or FIRST_ROWS hint, which is being deprecated, in a PL/SQL cursor.

Query Rewrite Example

The following template defines a query rewrite sequence. The query of kukui nut is rewritten as follows:

{kukui} {nut}

{kukui} ; {nut}

{kukui} AND {nut}

{kukui} ACCUM {nut}

select id from docs where CONTAINS (text, '
 <query>
 <textquery lang="ENGLISH" grammar="CONTEXT"> kukui nut
 <progression>
 <seq><rewrite>transform((TOKENS, "{", "}", " "))</rewrite></seq>
 <seq><rewrite>transform((TOKENS, "{", "}", " ; "))</rewrite>/seq>
 <seq><rewrite>transform((TOKENS, "{", "}", "AND"))</rewrite><seq/>
 <seq><rewrite>transform((TOKENS, "{", "}", "ACCUM"))</rewrite><seq/>
 </progression>
 </textquery>
 <score datatype="INTEGER" algorithm="COUNT"/>
</query>')>0;

Notes

Querying Multilanguage Tables

With the multilexer preference, you can create indexes from multilanguage tables. At query time, the multilexer examines the session's language setting and uses the sublexer preference for that language to parse the query. If the language setting is not mapped, then the default lexer is used.

When the language setting is mapped, the query is parsed and run as usual. The index contains tokens from multiple languages, so such a query can return documents in several languages.

To limit your query to returning documents of a given language, use a structured clause on the language column.

Query Performance Limitation with a Partitioned Index

Oracle Text supports the CONTEXT indexing and querying of a partitioned text table.

However, for optimal performance when querying a partitioned table with an ORDER BY SCORE clause, query the partition. If you query the entire table and use an ORDER BY SCORE clause, the query might not perform optimally unless you include a range predicate that can limit the query to a single partition.

For example, the following statement queries the partition p_tab4 partition directly:

select * from part_tab partition (p_tab4) where contains(b,'oracle') > 0 ORDER BY
SCORE DESC;

Related Topics

"Syntax for CONTEXT Index Type"

Chapter 3, "Oracle Text CONTAINS Query Operators"

"The CONTEXT Grammar" topic in Oracle Text Application Developer's Guide

"SCORE"

CREATE INDEX

This section describes the CREATE INDEX statement as it pertains to creating an Oracle Text domain index and composite domain index.

	
See Also:

"Oracle Database SQL Language Reference for a complete description of the CREATE INDEX statement

Purpose

Use CREATE INDEX to create an Oracle Text index. An Oracle Text index is an Oracle Database domain index or composite domain index of type CONTEXT, CTXCAT, CTXRULE, or CTXXPATH. A domain index is an application-specific index. A composite domain index (CDI) is an Oracle Text index that not only indexes and processes a specified text column, but also indexes and processes FILTER BY and ORDER BY structured columns, which are specified during index creation.

You must create an appropriate Oracle Text index to enter CONTAINS, CATSEARCH, or MATCHES queries.

You cannot create an Oracle Text index on an index-organized table.

You can create the following types of Oracle Text indexes.

CONTEXT

A CONTEXT index is the basic type of Oracle Text index. This is an index on a text column. A CONTEXT index is useful when your source text consists of many large, coherent documents. Query this index with the CONTAINS operator in the WHERE clause of a SELECT statement. This index requires manual synchronization after DML. See "Syntax for CONTEXT Index Type".

CTXCAT

The CTXCAT index is a combined index on a text column and one or more other columns. The CTXCAT type is typically used to index small documents or text fragments, such as item names, prices, and descriptions found in catalogs. Query this index with the CATSEARCH operator in the WHERE clause of a SELECT statement. This type of index is optimized for mixed queries. This index is transactional, automatically updating itself with DML to the base table. See "Syntax for CTXCAT Index Type".

CTXRULE

A CTXRULE index is used to build a document classification application. The CTXRULE index is an index created on a table of queries or a column containing a set of queries, where the queries serve as rules to define the classification criteria. Query this index with the MATCHES operator in the WHERE clause of a SELECT statement. See "Syntax for CTXRULE Index Type".

CTXXPATH

The CTXPATH index is used to speed up existsNode() queries on an XMLType column. See "Syntax for CTXXPATH Index Type".

Required Privileges

You do not need the CTXAPP role to create an Oracle Text index. If you have Oracle Database grants to create a B-tree index on the text column, you have sufficient privilege to create a text index. The issuing owner, table owner, and index owner can all be different users, which is consistent with Oracle standards for creating regular B-tree indexes.

Syntax for CONTEXT Index Type

Uses a CONTEXT index to create an index on a text column. Query this index with the CONTAINS operator in the WHERE clause of a SELECT statement. This index requires manual synchronization after DML.

CREATE INDEX [schema.]index ON [schema.]table(txt_column)
 INDEXTYPE IS ctxsys.context [ONLINE]
 [FILTER BY filter_column[, filter_column]...]
 [ORDER BY oby_column[desc|asc][, oby_column[desc|asc]]...]
 [LOCAL [(PARTITION [partition] [PARAMETERS('paramstring')]

 [, PARTITION [partition] [PARAMETERS('paramstring')]])]

 [PARAMETERS(paramstring)] [PARALLEL n] [UNUSABLE]];

	[schema.]index
	
Specifies the name of the Text index to create.

	[schema.]table(txt_column)
	
Specifies the name of the table and column to index. txt_column is the name of the domain index column on which the CONTAINS() operator will be invoked.

Your table can optionally contain a primary key if you prefer to identify your rows as such when you use procedures in CTX_DOC. When your table has no primary key, document services identifies your documents by ROWID.

The column that you specify must be one of the following types: CHAR, VARCHAR, VARCHAR2, BLOB, CLOB, BFILE, XMLType, or URIType.

The table that you specify can be a partitioned table. If you do not specify the LOCAL clause, then a global, nonpartitioned index is created.

The DATE, NUMBER, and nested table columns cannot be indexed. Object columns also cannot be indexed, but their attributes can be indexed, provided that they are atomic data types.

Attempting to create an index on a Virtual Private Database (VPD) protected table will fail unless one of the following criteria is true:

	
The VPD policy is created such that it does not apply to the INDEX statement type.

	
The policy function returns a NULL predicate for the current user.

	
The user (or index owner) is SYS.

	
The user has the EXEMPT ACCESS POLICY privilege.

Indexes on multiple columns are not supported with the CONTEXT index type. You must specify only one column in the column list.

	
Note:

With the CTXCAT index type, you can create indexes on text and structured columns. See "Syntax for CTXCAT Index Type"

	
Note:

Because a transparent data encryption-enabled column does not support domain indexes, it cannot be used with Oracle Text. However, you can create an Oracle Text index on a column in a table stored in a TDE-enabled tablespace.

	ONLINE
	
Creates the index while enabling DML insertions/updates/deletions on the base table.

During indexing, Oracle Text enqueues DML requests in a pending queue. At the end of the index creation, Oracle Text locks the base table. During this time, DML is blocked. You must synchronize the index in order for DML changes to be available.

Limitations

The following limitations apply to using ONLINE:

	
At the very beginning or very end of the ONLINE process, DML might fail.

	
ONLINE is supported for CONTEXT indexes only.

	FILTER BY filter_column
	
This is the structured indexed column on which a range or equality predicate in the WHERE clause of a mixed query will operate. You can specify one or more structured columns for filter_column, on which the relational predicates are expected to be specified along with the CONTAINS() predicate in a query.

The cost-based optimizer (CBO) will consider pushing down the structured predicates on these FILTER BY columns with the following relational operators: <, <=, =, >=, >, between, and LIKE (for VARCHAR2).

These columns can only be of CHAR, NUMBER, DATE, VARCHAR2, or RAW type. Additionally, VARCHAR2 and RAW types are supported only if the maximum length is specified and is limited to no more than 249. The ADT attributes of supported types (CHAR, NUMBER, DATE, VARCHAR2, or RAW) are also allowed. An error is raised for all other data types. Expressions, for example, func(cola), and virtual columns are not allowed.

txt_column is allowed in the FILTER BY column list.

DML operations on FILTER BY columns are always transactional.

	ORDER BY oby_column
	
This is the structured indexed column on which a structured ORDER BY mixed query will be based. A list of structured oby_columns can be specified in the ORDER BY clause of a CONTAINS() query.

These columns can only be of CHAR, NUMBER, DATE, VARCHAR2, or RAW type. Additionally, VARCHAR2 and RAW types are supported only if the maximum length is specified and is limited to no more than 249. Expressions, for example, func(cola), and virtual columns are not allowed.

The order of the specified columns matters. The cost-based optimizer will consider pushing the sort into the composite domain index only if the ORDER BY clause in the text query contains:

	
Entire ordered ORDER BY columns declared by the ORDER BY clause during CREATE INDEX,

	
CBO will consider pushing the sort into the CDI only if the ORDER BY clause in the text query contains:

	
Entire ordered ORDER BY columns declared by the ORDER BY clause during the CREATE INDEX statement

	
Only the prefix of the ordered ORDER BY columns declared by the ORDER BY clause during the CREATE INDEX statement

	
The score followed by the prefix of the ordered ORDER BY columns declared by the ORDER BY clause during the CREATE INDEX statement

	
The score following the prefix of the ordered ORDER BY columns declared by the ORDER BY clause during the CREATE INDEX statement

The following example illustrates CBO behavior with regard to ORDER BY columns:

CREATE INDEX foox ON foo(D) INDEXTYPE IS CTXSYS.CONTEXT
FILTER BY B, C
ORDER BY A, B desc;

Consider the following query:

SELECT A, SCORE(1) FROM foo WHERE CONTAINS(D, 'oracle',1)>0
AND C>100 ORDER BY col_list;

	
Note:

If you set NLS_SORT or NLS_COMP parameters (that is, alter session set NLS_SORT = <some lang>;), then CBO will not push the sort or related structured predicate into the CDI. This behavior is consistent with regular B-tree indexes.

CBO will consider pushing the sort into CDI if col_list has the following values:

A
A, B desc
SCORE(1), A
SCORE(1), A, B desc
A, SCORE(1)
A, B desc, SCORE(1)

CBO will not consider to push the sort into CDI if col_list has the following values:

B
B,A
SCORE(1), B
B, SCORE(1)
A, B, C
A, B asc (or simply A, B)

(or simply A, B)

	
score followed by the prefix of the ordered ORDER BY columns declared by the ORDER BY clause during the CREATE INDEX statement.

	
The score following the prefix of the ordered ORDER BY columns declared by the ORDER BY clause during the CREATE INDEX statement.

Expressions, for example, func(cola), are not allowed.

txt_column appearing in the ORDER BY column list is allowed.

DML operations on ORDER BY columns are always transactional.

Limitations

The following limitations apply to FILTER BY and ORDER BY:

	
A structured column is allowed in FILTER BY and ORDER BY clauses. However, a column that is mapped to MDATA in a FILTER BY clause cannot also appear in the ORDER BY clause. An error will be raised in this case.

	
The maximum length for CHAR, VARCHAR2, and RAW columns cannot be greater than 249. Additionally, if the VARCHAR2 or RAW column is mapped to an MDATA column, then the specified maximum length cannot exceed 64 and 32 bytes, respectively. (Note that MDATA does not support CHAR data types. If a FILTER BY column of CHAR data type is mapped to an MDATA section, then an error will be raised during the CREATE INDEX statement.)

	
The sum of the numbers for INDEXED_COLUMN, FILTER BY columns, and ORDER BY columns cannot be greater than 32.

	
Note:

	
As with concatenated B-tree indexes or bitmap indexes, performance degradation may occur in DML as the number of FILTER BY and ORDER BY columns increases.

	
Mapping a FILTER BY column to MDATA is not recommended if the FILTER BY column contains sequential values or has very high cardinality. Doing so can result in a very long and narrow $I table and reduced $X performance. An example is a column of type DATE. For columns of this type, mapping to SDATA is recommended.

	
Note:

An index table with the name DR$indextable$S is created to store FILTER BY and ORDER BY columns that are mapped to SDATA sections. If nothing is mapped to an SDATA section, then the $S table will not be created.
$S table contains the following columns:

	
SDATA_ID number is the internal SDATA section ID.

	
SDATA_LAST number, the last document ID, which is analogous to token_last.

	
SDATA_DATA RAW(2000), the compressed SDATA values. Note that if $S is created on a tablespace with 4K database block size, then it will be defined as RAW(1500).

Restriction: For performance reasons, $S table must be created on a tablespace with db block size >= 4K without overflow segment and without PCTTHRESHOLD clause. If $S is created on a tablespace with db block size < 4K, or is created with an overflow segment or with a PCTTHRESHOLD clause, then appropriate errors will be raised during the CREATE INDEX statement.

Restrictions on exporting and importing text tables with composite domain index created with FILTER BY and/or ORDER BY clauses are as follows:

	
Regular exp and imp will not support exporting and importing of composite domain index. Doing so will lead to the following error: EXP-00113: Feature Composite Domain Index is unsupported.

	
To export a text table with composite domain index, you must use Data Pump Export and Import utilities (invoked with the expdp and impdp commands, respectively), or DBMS_DATAPUMP PL/SQL package.

	
See Also:

ADD_SDATA_COLUMN in Chapter 7, "CTX_DDL Package"

Limitations of using ALTER INDEX and ALTER TABLE with FILTER BY and ORDER BY columns of the composite domain index, which are imposed by Extensible Indexing Framework in Oracle Database:

(These limitations are imposed by Extensible Indexing Framework in Oracle Database.)

	
Using ALTER INDEX to add or drop FILTER BY and ORDER BY columns is currently not supported. You must re-create the index to add or drop FILTER BY or ORDER BY columns.

	
To use ALTER TABLE MODIFY COLUMN to modify the datatype of a column that has the composite domain index built on it, you must first drop the composite domain index before modifying the column.

	
To use ALTER TABLE DROP COLUMN to drop a column that is part of the composite domain index, you must first drop the composite domain index before dropping the index column.

The following limitations apply to FILTER BY and ORDER BY when used with PL/SQL packages:

	
Mapping FILTER BY columns to sections is optional. If section mapping does not exist for a FILTER BY column, then it is mapped to an SDATA section by default. The section name assumes the name of the FILTER BY column.

	
If a section group is not specified during the CREATE INDEX clause of a composite domain index, then system default section group settings are used. An SDATA section is created for each of the FILTER BY and ORDER BY columns.

	
Note:

Because a section name does not allow certain special characters and is case-insensitive, if the column name is case-sensitive or contains special characters, then an error will be raised. To work around this problem, you must map the column to an MDATA or SDATA section before creating the index. See CTX_DDL.ADD_MDATA_COLUMN or CTX_DDL.ADD_SDATA_COLUMN.

	
An error is raised if a column that is mapped to an MDATA section also appears in the ORDER BY column clause.

	
Column section names are unique to their section group. That is, you cannot have an MDATA column section named FOO if you already have an MDATA column section named FOO. Nor can you have a field section named FOO if you already have an SDATA column section named FOO. This is true whether it is implicitly created (by CREATE INDEX for FILTER BY or ORDER BY clauses) or explicitly created (by CTX_DDL.ADD_SDATA_COLUMN).

	
One section name can be mapped to only one FILTER BY column, and vice versa. Mapping a section to more than one column, or mapping a column to more than one section is not allowed.

	
Column sections can be added to any type of section group, including the NULL section group.

	
If a section group with sections added by the CTX_DDL.ADD_MDATA_COLUMN or CTX_DDL.ADD_SDATA_COLUMN packages is specified for a CREATE INDEX statement without a FILTER BY clause, then the mapped column sections will be ignored. However, the index will still get created without those column sections. The same is true for a FILTER BY clause that does not contain mapped columns in the specified section group.

	
See Also:

CTX_DDL.ADD_SDATA_COLUMN

	LOCAL [(PARTITION [partition] [PARAMETERS('paramstring')]
	
Specifies a local partitioned context index on a partitioned table. The partitioned table must be partitioned by range. Hash, composite, and list partitions are not supported.

You can specify the list of index partition names with partition_name. If you do not specify a partition name, then the system assigns one. The order of the index partition list must correspond to the table partition order.

The PARAMETERS clause associated with each partition specifies the parameters string specific to that partition. You can only specify sync (manual|every |on commit), memory and storage for each index partition.

The PARAMETERS clause also supports the POPULATE and NOPOPULATE arguments. See "POPULATE | NOPOPULATE".

Query the views CTX_INDEX_PARTITIONS or CTX_USER_INDEX_PARTITIONS to find out index partition information, such as index partition name, and index partition status.

	
See Also:

"Creating a Local Partitioned Index"

Query Performance Limitation with Partitioned Index

For optimal performance when querying a partitioned index with an ORDER BY SCORE clause, query the partition. If you query the entire table and use an ORDER BY SCORE clause, the query might not perform optimally unless you include a range predicate that can limit the query to the fewest number of partitions, which is optimally a single partition.

	
See Also:

"Query Performance Limitation with a Partitioned Index"

	PARALLEL n
	
Optionally specifies the parallel degree for parallel indexing. The actual degree of parallelism might be smaller depending on your resources. You can use this parameter on nonpartitioned tables. However, creating a nonpartitioned index in parallel does not turn on parallel query processing. Parallel indexing is supported for creating a local partitioned index.

The indexing memory size specified in the parameter clause applies to each parallel slave. For example, if indexing memory size is specified in the parameter clause as 500M and parallel degree is specified as 2, then you must ensure that there is at least 1GB of memory available for indexing.

	
See Also:

	
"Parallel Indexing"

	
"Creating a Local Partitioned Index in Parallel"

	
The "Performance Tuning" chapter in Oracle Text Application Developer's Guide

Performance

Parallel indexing can speed up indexing when you have large amounts of data to index and when your operating system supports multiple CPUs.

	
Note:

Using PARALLEL to create a local partitioned index that enables parallel queries. (Creating a nonpartitioned index in parallel does not turn on parallel query processing.)
Parallel querying degrades query throughput especially on heavily loaded systems. Because of this, Oracle recommends that you disable parallel querying after creating a local index. To do so, use the ALTER INDEX NOPARALLEL statement.

For more information on parallel querying, see the "Performance Tuning" chapter in Oracle Text Application Developer's Guide.

Limitations

Parallel indexing is supported only for the CONTEXT index type.

	UNUSABLE
	
Creates an unusable index. This creates index metadata only and exits immediately.

You might create an unusable index when you need to create a local partitioned index in parallel.

	
See Also:

"Creating a Local Partitioned Index in Parallel"

	PARAMETERS(paramstring)
	
Optionally specify indexing parameters in paramstring. You can specify preferences owned by another user using the user.preference notation.

The syntax for paramstring is as follows:

paramstring =

'[DATASTORE datastore_pref]
 [FILTER filter_pref]
 [CHARSET COLUMN charset_column_name]
 [FORMAT COLUMN format_column_name]

 [LEXER lexer_pref]
 [LANGUAGE COLUMN language_column_name]

 [WORDLIST wordlist_pref]
 [STORAGE storage_pref]
 [STOPLIST stoplist]
 [SECTION GROUP section_group]
 [MEMORY memsize]
 [POPULATE | NOPOPULATE]
 [SYNC (MANUAL | EVERY "interval-string" | ON COMMIT)]
 [TRANSACTIONAL]'

Create datastore, filter, lexer, wordlist, and storage preferences with CTX_DDL.CREATE_PREFERENCE and then specify them in the paramstring.

	
Note:

When you specify no paramstring, Oracle Text uses the system defaults.
For more information about these defaults, see "Default Index Parameters".

	DATASTORE datastore_pref
	
Specifies the name of your datastore preference. Use the datastore preference to specify where your text is stored.See "Datastore Types".

	FILTER filter_pref
	
Specifies the name of your filter preference. Use the filter preference to specify how to filter formatted documents to plain text or HTML. See "Filter Types".

	CHARSET COLUMN charset_column_name
	
Specifies the name of the character set column. This column must be in the same table as the text column, and it must be of type CHAR, VARCHAR, or VARCHAR2. Use this column to specify the document character set for conversion to the database character set. The value is case-insensitive. You must specify a globalization support character set string, such as JA16EUC.

When the document is plain text or HTML, the AUTO_FILTER and CHARSET filters use this column to convert the document character set to the database character set for indexing.

Use this column when you have plain text or HTML documents with different character sets or in a character set different from the database character set.

Setting NLS_LENGTH_SEMANTICS parameter to CHAR is not supported at the database level. This parameter is supported for the following columns:

	
The CHARSET COLUMN, for example:

VARCHAR2 <size> CHAR
CHAR <size> CHAR

	
An index created on a VARCHAR2 and CHAR column

	
VARCHAR2 and CHAR columns for FILTER BY and ORDER BY clauses of CREATE INDEX

	
FORMAT COLUMN

	
Note:

	
Documents are not marked for re-indexing when only the character set column changes. The indexed column must be updated to flag the re-index.

	
The NLS_LENGTH_SEMANTICS = CHAR parameter is supported at the column level only, and is not supported at the database level, as described in this section.

	FORMAT COLUMN format_column_name
	
Specifies the name of the format column. The format column must be in the same table as the text column and it must be CHAR, VARCHAR, or VARCHAR2 type.

FORMAT COLUMN determines how a document is filtered, or, in the case of the IGNORE value, if it is to be indexed.

AUTO_FILTER uses the format column when filtering documents. Use this column with heterogeneous document sets to optionally bypass filtering for plain text or HTML documents.

In the format column, you can specify one of the following options:

	
TEXT

	
BINARY

	
IGNORE

The TEXT option indicates that the document is either plain text or HTML. When TEXT is specified, the document is not filtered, but may have the character set converted.

The BINARY option indicates that the document is a format supported by the AUTO_FILTER object other than plain text or HTML, for example PDF. BINARY is the default, if the format column entry cannot be mapped.

The IGNORE option indicates that the row is to be ignored during indexing. Use this value when you need to bypass rows that contain data incompatible with text indexing such as image data, or rows in languages that you do not want to process. The difference between documents with TEXT and IGNORE format column types is that the former are indexed but ignored by the filter, while the latter are not indexed at all. Thus, IGNORE can be used with any filter type.

	
Note:

Documents are not marked for re-indexing when only the format column changes. The indexed column must be updated to flag the re-index.

	LEXER lexer_pref
	
Specifies the name of your lexer or multilexer preference. Use the lexer preference to identify the language of your text and how text is tokenized for indexing. See "Lexer Types".

	LANGUAGE COLUMN language_column_name
	
Specifies the name of the language column when using a multi-lexer preference. See "MULTI_LEXER".

This column must exist in the base table. It cannot be the same column as the indexed column. Only the first 30 bytes of the language column are examined for language identification.

	
Note:

Documents are not marked for re-indexing when only the language column changes. The indexed column must be updated to flag the re-index.

	WORDLIST wordlist_pref
	
Specifies the name of your wordlist preference. Use the wordlist preference to enable features such as fuzzy, stemming, and prefix indexing for better wildcard searching. See "Wordlist Type".

	STORAGE storage_pref
	
Specifies the name of your storage preference for the Text index. Use the storage preference to specify how the index tables are stored. See "Storage Types".

	STOPLIST stoplist
	
Specifies the name of your stoplist. Use stoplist to identify words that are not to be indexed. See CTX_DDL.CREATE_STOPLIST.

	SECTION GROUP section_group
	
Specifies the name of your section group. Use section groups to create searchable sections in structured documents. See CTX_DDL.CREATE_SECTION_GROUP.

	MEMORY memsize
	
Specifies the amount of run-time memory to use for indexing. The syntax for memsize is as follows:

memsize = number[K|M|G]

K stands for kilobytes, M stands for megabytes, and G stands for gigabytes.

The value you specify for memsize must be between 1M and the value of MAX_INDEX_MEMORY in the CTX_PARAMETERS view. To specify a memory size larger than the MAX_INDEX_MEMORY, you must reset this parameter with CTX_ADM.SET_PARAMETER to be larger than or equal to memsize.

The default is the value specified for DEFAULT_INDEX_MEMORY in CTX_PARAMETERS.

The memsize parameter specifies the amount of memory Oracle Text uses for indexing before flushing the index to disk. Specifying a large amount memory improves indexing performance because there are fewer I/O operations and improves query performance and maintenance, because there is less fragmentation.

Specifying smaller amounts of memory increases disk I/O and index fragmentation, but might be useful when run-time memory is scarce.

	
	POPULATE | NOPOPULATE
	
Specifies whether an index should be empty or populated. The default is POPULATE.

	
Note:

POPULATE | NOPOPULATE is the only option whose default value cannot be set with CTX_ADM.SET_PARAMETER.
This option is not valid with CTXXPATH indexes.

Empty indexes are populated by updates or inserts to the base table. You might create an empty index when you need to create your index incrementally or to selectively index documents in the base table. You might also create an empty index when you require only theme and Gist output from a document set.

	
	SYNC (MANUAL | EVERY "interval-string" | ON COMMIT)
	
Specifies SYNC for automatic synchronization of the CONTEXT index when there are inserts, updates or deletes to the base table. You can specify one of the following SYNC methods:

Table 1-5 SYNC Types

	SYNC Type	Description
	
MANUAL

	
Provides no automatic synchronization. This is the default. You must manually synchronize the index with CTX_DDL.SYNC_INDEX.

	
EVERY "interval-string"

	
Automatically synchronizes the index at a regular interval specified by the value of interval-string, which takes the same syntax as that for scheduler jobs. Automatic synchronization using EVERY requires that the index creator have CREATE JOB privileges.

Ensure that interval-string is set to a long enough period that any previous sync jobs will have completed; otherwise, the sync job might hang. interval-string must be enclosed in double quotes, and any single quote within interval-string must be preceded by the escape character with another single quote.

See "Enabling Automatic Index Synchronization" for an example of automatic sync syntax.

	
ON COMMIT

	
Synchronizes the index immediately after a commit transaction. The commit transaction does not return until the sync is complete. (Because the synchronization is performed as a separate transaction, there may be a period, usually small, when the data is committed but index changes are not.)

The operation uses the memory specified with the memory parameter.

Note that the sync operation has its own transaction context. If this operation fails, the data transaction is still commited. Index synchronization errors are logged in the CTX_USER_INDEX_ERRORS view. See "Viewing Index Errors".

See "Enabling Automatic Index Synchronization" for an example of ON COMMIT syntax.

Each partition of a locally partitioned index can have its own type of sync (ON COMMIT, EVERY, or MANUAL). The type of sync specified in master parameter strings applies to all index partitions unless a partition specifies its own type.

With automatic (EVERY) synchronization, users can specify memory size and parallel synchronization. That syntax is:

... EVERY interval_string MEMORY mem_size PARALLEL paradegree ...

The ON COMMIT synchronizations can be run only serially and must use the same memory size that was specified at index creation.

	
See Also:

Oracle Database Administrator's Guide for information about job scheduling

	
	TRANSACTIONAL
	
Specifies that documents can be searched immediately after they are inserted or updated. If a text index is created with TRANSACTIONAL enabled, then, in addition to processing the synchronized rowids already in the index, the CONTAINS operator will process unsynchronized rowids as well. Oracle Text does in-memory indexing of unsynchronized rowids and processes the query against the in-memory index.

TRANSACTIONAL is an index-level parameter and does not apply at the partition level.

You must still synchronize your text indexes from time to time (with CTX_DDL.SYNC_INDEX) to bring pending rowids into the index. Query performance degrades as the number of unsynchronized rowids increases. For that reason, Oracle recommends setting up your index to use automatic synchronization with the EVERY parameter. (See "SYNC (MANUAL | EVERY "interval-string" | ON COMMIT)".)

Transactional querying for indexes that have been created with the TRANSACTIONAL parameter can be turned on and off (for the duration of a user session) with the PL/SQL variable CTX_QUERY.disable_transactional_query. This is useful, for example, if you find that querying is slow due to the presence of too many pending rowids. Here is an example of setting this session variable:

exec ctx_query.disable_transactional_query := TRUE;

If the index uses AUTO_FILTER, queries involving unsynchronized rowids will require filtering of unsynchronized documents.

CREATE INDEX: CONTEXT Index Examples

The following sections give examples of creating a CONTEXT index.

Creating CONTEXT Index Using Default Preferences

The following example creates a CONTEXT index called myindex on the docs column in mytable. Default preferences are used.

CREATE INDEX myindex ON mytable(docs) INDEXTYPE IS ctxsys.context;

	
See Also:

	
Oracle Text Application Developer's Guide

	
For more information about default settings, see "Default Index Parameters"

Creating CONTEXT Index with Custom Preferences

The following example creates a CONTEXT index called myindex on the docs column in mytable. The index is created with a custom lexer preference called my_lexer and a custom stoplist called my_stop.

This example also assumes that the preference and stoplist were previously created with CTX_DDL.CREATE_PREFERENCE for my_lexer, and CTX_DDL.CREATE_STOPLIST for my_stop. Default preferences are used for the unspecified preferences.

CREATE INDEX myindex ON mytable(docs) INDEXTYPE IS ctxsys.context
 PARAMETERS('LEXER my_lexer STOPLIST my_stop');

Any user can use any preference. To specify preferences that exist in another user's schema, add the user name to the preference name. The following example assumes that the preferences my_lexer and my_stop exist in the schema that belongs to user kenny:

CREATE INDEX myindex ON mytable(docs) INDEXTYPE IS ctxsys.context
 PARAMETERS('LEXER kenny.my_lexer STOPLIST kenny.my_stop');

Enabling Automatic Index Synchronization

You can create your index and specify that the index be synchronized at regular intervals for insertions, updates and deletions to the base table. To do so, create the index with the SYNC (EVERY "interval-string") parameter.

To use job scheduling, you must log in as a user who has DBA privileges and then grant CREATE JOB privileges.

The following example creates an index and schedules three synchronization jobs for three index partitions. The first partition uses ON COMMIT synchronization. The other two partitions are synchronized by jobs that are scheduled to be executed every Monday at 3 P.M.

CONNECT system/manager
GRANT CREATE JOB TO dr_test

CREATE INDEX tdrmauto02x ON tdrmauto02(text)
 INDEXTYPE IS CTXSYS.CONTEXT local
 (PARTITION tdrm02x_i1 PARAMETERS('
 MEMORY 20m SYNC(ON COMMIT)'),
 PARTITION tdrm02x_i2,
 PARTITION tdrm02x_i3) PARAMETERS('
 SYNC (EVERY "NEXT_DAY(TRUNC(SYSDATE), ''MONDAY'') + 15/24")
 ');

See Oracle Database Administrator's Guide for information about job scheduling syntax.

Creating CONTEXT Index with Multilexer Preference

The multilexer preference decides which lexer to use for each row based on a language column. This is a character column in the table that stores the language of the document in the text column. For example, create the table globaldoc to hold documents of different languages:

CREATE TABLE globaldoc (
 doc_id NUMBER PRIMARY KEY,
 lang VARCHAR2(10),
 text CLOB
);

Assume that global_lexer is a multilexer preference you created. To index the global_doc table, specify the multilexer preference and the name of the language column as follows:

CREATE INDEX globalx ON globaldoc(text) INDEXTYPE IS ctxsys.context PARAMETERS
('LEXER global_lexer LANGUAGE COLUMN lang');

	
See Also:

"MULTI_LEXER" for more information about creating multilexer preferences

Creating a Local Partitioned Index

The following example creates a text table that is partitioned into three, populates it, and then creates a partitioned index:

PROMPT create partitioned table and populate it

CREATE TABLE part_tab (a int, b varchar2(40)) PARTITION BY RANGE(a)

(partition p_tab1 values less than (10),
 partition p_tab2 values less than (20),
 partition p_tab3 values less than (30));

PROMPT create partitioned index
CREATE INDEX part_idx on part_tab(b) INDEXTYPE IS CTXSYS.CONTEXT

LOCAL (partition p_idx1, partition p_idx2, partition p_idx3);

	
Note:

The limit for the number of partitions in Oracle Text is the same as the maximum number of partitions per table in Oracle Database.

Using FILTER BY and ORDER BY Clauses

The following example creates an index on table docs and orders the documents by author's publishing date.

First, create the table:

CREATE TABLE docs (
 docid NUMBER,
 pub_date DATE,
 author VARCHAR2(30),
 category VARCHAR2(30),
 document CLOB
);

Create the index with FILTER BY and ORDER BY clauses:

CREATE INDEX doc_idx on docs(document) indextype is ctxsys.context
 FILTER BY category, author
 ORDER BY pub_date desc, docid
 PARAMETERS ('memory 500M');

Parallel Indexing

Parallel indexing can improve index performance when you have multiple CPUs.

To create an index in parallel, use the PARALLEL clause with a parallel degree. This example uses a parallel degree of 3:

CREATE INDEX myindex ON mytab(pk) INDEXTYPE IS ctxsys.context PARALLEL 3;

Creating a Local Partitioned Index in Parallel

Creating a local partitioned index in parallel can improve performance when you have multiple CPUs. With partitioned tables, you can divide the work. You can create a local partitioned index in parallel in two ways:

	
Use the PARALLEL clause with the LOCAL clause in the CREATE INDEX statement. In this case, the maximum parallel degree is limited to the number of partitions you have. See "Parallelism with CREATE INDEX".

	
Create an unusable index first, then run the DBMS_PCLXUTIL.BUILD_PART_INDEX utility. This method can result in a higher degree of parallelism, especially if you have more CPUs than partitions. See "Parallelism with DBMS_PCLUTIL.BUILD_PART_INDEX".

If you attempt to create a local partitioned index in parallel, and the attempt fails, you may see the following error message:

ORA-29953: error in the execution of the ODCIIndexCreate routine for one or more
of the index partitions

To determine the specific reason why the index creation failed, query the CTX_USER_INDEX_ERRORS view.

Parallelism with CREATE INDEX

You can achieve local index parallelism by using the PARALLEL and LOCAL clauses in the CREATE INDEX statement. In this case, the maximum parallel degree is limited to the number of partitions that you have.

The following example creates a table with three partitions, populates them, and then creates the local indexes in parallel with a degree of 2:

create table part_tab3(id number primary key, text varchar2(100))
partition by range(id)
(partition p1 values less than (1000),
 partition p2 values less than (2000),
 partition p3 values less than (3000));

begin
 for i in 0..2999
 loop
 insert into part_tab3 values (i,'oracle');
 end loop;
end;
/

create index part_tab3x on part_tab3(text)
indextype is ctxsys.context local (partition part_tabx1,
 partition part_tabx2,
 partition part_tabx3)
parallel 2;

Parallelism with DBMS_PCLUTIL.BUILD_PART_INDEX

You can achieve local index parallelism by first creating an unusable CONTEXT index, and then running the DBMS_PCLUTIL.BUILD_PART_INDEX utility. This method can result in a higher degree of parallelism, especially when you have more CPUs than partitions.

In this example, the base table has three partitions. We create a local partitioned unusable index first, then run DBMS_PCLUTIL.BUILD_PART_INDEX, which builds the 3 partitions in parallel (referred to as inter-partition parallelism). Also, inside each partition, index creation proceeds in parallel (called intra-partition parallelism) with a parallel degree of 2. Therefore, the total parallel degree is 6 (3 times 2).

create table part_tab3(id number primary key, text varchar2(100))
partition by range(id)
(partition p1 values less than (1000),
 partition p2 values less than (2000),
 partition p3 values less than (3000));

begin
 for i in 0..2999
 loop
 insert into part_tab3 values (i,'oracle');
 end loop;
end;
/

create index part_tab3x on part_tab3(text)
indextype is ctxsys.context local (partition part_tabx1,
 partition part_tabx2,
 partition part_tabx3)
unusable;

exec dbms_pclxutil.build_part_index(jobs_per_batch=>3,
 procs_per_job=>2,
 tab_name=>'PART_TAB3',
 idx_name=>'PART_TAB3X',
 force_opt=>TRUE);

Viewing Index Errors

After a CREATE INDEX or ALTER INDEX operation, you can view index errors with Oracle Text views. To view errors on your indexes, query the CTX_USER_INDEX_ERRORS view. To view errors on all indexes as CTXSYS, query the CTX_INDEX_ERRORS view.

For example, to view the most recent errors on your indexes, enter the following statement:

SELECT err_timestamp, err_text FROM ctx_user_index_errors
ORDER BY err_timestamp DESC;

Deleting Index Errors

To clear the index error view, enter the following statement:

DELETE FROM ctx_user_index_errors;

Syntax for CTXCAT Index Type

Combines an index on a text column and one or more other columns. Query this index with the CATSEARCH operator in the WHERE clause of a SELECT statement. This type of index is optimized for mixed queries. This index is transactional, automatically updating itself with DML to the base table.

CREATE INDEX [schema.]index on [schema.]table(column) INDEXTYPE IS ctxsys.ctxcat

[PARAMETERS

('[index set index_set]
[lexer lexer_pref]
[storage storage_pref]
[stoplist stoplist]
[section group sectiongroup_pref
[wordlist wordlist_pref]
[memory memsize]');

	[schema.]table(column)
	
Specifies the name of the table and column to index.

The column that you specify when you create a CTXCAT index must be of type CHAR or VARCHAR2. No other types are supported for CTXCAT.

Attempting to create an index on a Virtual Private Database (VPD) protected table will fail unless one of the following options is true:

	
The VPD policy is created such that it does not apply to INDEX statement type, which is the default

	
The policy function returns a null predicate for the current user.

	
The user (index owner) is SYS.

	
The user has the EXEMPT ACCESS POLICY privilege.

Supported CTXCAT Preferences

	index set index_set
	
Specifies the index set preference to create the CTXCAT index. Index set preferences name the columns that make up your subindexes. Any column that is named in an index set column list cannot have a NULL value in any row of the base table, or else you get an error.

Always ensure that your columns have non-null values before and after indexing.

See "Creating a CTXCAT Index".

Index Performance and Size Considerations

Although a CTXCAT index offers query performance benefits, creating this type of index has its costs. The time that it takes Oracle Text to create a CTXCAT index depends on the total size of the index.

The total size of a CTXCAT index is directly related to:

	
Total text to be indexed

	
Number of component indexes in the index set

	
Number of columns in the base table that make up the component indexes

Having many component indexes in your index set also degrades DML performance because more indexes must be updated.

Because of these added costs in creating a CTXCAT index, you should carefully consider the query performance benefit that each component index gives your application before adding it to your index set.

	
See Also:

Oracle Text Application Developer's Guide for more information about creating CTXCAT indexes and the benefits

	Other CTXCAT Preferences
	
When you create an index of type CTXCAT, you can use the supported index preferences listed in Table 1-6 in the parameters string.

Table 1-6 Supported CTXCAT Index Preferences

	Preference Class	Supported Types
	
Datastore

	
This preference class is not supported for CTXCAT.

	
Filter

	
This preference class is not supported for CTXCAT.

	
Lexer

	
BASIC_LEXER (index_themes attribute not supported)

CHINESE_LEXER

CHINESE_VGRAM_LEXER

JAPANESE_LEXER

JAPANESE_VGRAM_LEXER

KOREAN_MORPH_LEXER

	
Wordlist

	
BASIC_WORDLIST

	
Storage

	
BASIC_STORAGE

	
Stoplist

	
Supports single language stoplists only (BASIC_STOPLIST type).

	
Section Group

	
Only Field Section is supported for CTXCAT.

Unsupported Preferences and Parameters

When you create a CTXCAT index, you cannot specify datastore and filter preferences. For section group preferences, only the field section preference is supported. You also cannot specify language, format, or charset columns as with a CONTEXT index.

Creating a CTXCAT Index

This section gives a brief example for creating a CTXCAT index. For a more complete example, see Oracle Text Application Developer's Guide.

Consider a table called AUCTION with the following schema:

create table auction(

item_id number,
title varchar2(100),
category_id number,
price number,
bid_close date);

Assume that queries on the table involve a mandatory text query clause and optional structured conditions on price. Results must be sorted based on bid_close. This means that an index to support good response time for the structured and sorting criteria is required.

You can create a catalog index to support the different types of structured queries a user might enter. For structured queries, a CTXCAT index improves query performance over a context index.

To create the indexes, first, create the index set preference, next, optionally, add the storage preference, and, finally, add the required indexes to it:

begin

ctx_ddl.create_index_set('auction_iset');
ctx_ddl.add_index('auction_iset','bid_close');
ctx_ddl.add_index('auction_iset','price, bid_close');

end;

Optionally, create the storage preference:

begin
 ctx_ddl.create_preference('auction_st_pref', 'BASIC_STORAGE');
 ctx_ddl.set_attribute('auction_st_pref', 'I_TABLE_CLAUSE',
 'tablespace TEXT storage (initial 5M)');
 ctx_ddl.set_attribute('auction_st_pref', 'I_ROWID_INDEX_CLAUSE',
 'tablespace TEXT storage (initial 5M)');
 ctx_ddl.set_attribute('auction_st_pref', 'I_INDEX_CLAUSE',
 'tablespace TEXT storage (initial 5M) compress 2');
end;
/

Then, create the CTXCAT index with the CREATE INDEX statement as follows:

create index auction_titlex on AUCTION(title) indextype is CTXSYS.CTXCAT
parameters ('index set auction_iset storage auction_st_pref');

Querying a CTXCAT Index

To query the title column for the word pokemon, enter regular and mixed queries as follows:

select * from AUCTION where CATSEARCH(title, 'pokemon',NULL)> 0;
select * from AUCTION where CATSEARCH(title, 'pokemon', 'price < 50 order by
bid_close desc')> 0;

	
See Also:

Oracle Text Application Developer's Guide for a complete CTXCAT example

Syntax for CTXRULE Index Type

The CTXRULE type is an index on a column containing a set of queries. Query this index with the MATCHES operator in the WHERE clause of a SELECT statement.

CREATE INDEX [schema.]index on [schema.]table(rule_col) INDEXTYPE IS

ctxsys.ctxrule
[PARAMETERS ('[lexer lexer_pref] [storage storage_pref]

[section group section_pref] [wordlist wordlist_pref]
[classifier classifier_pref]');

[PARALLEL n];

	[schema.]table(column)
	
Specifies the name of the table and rule column to index. The rules can be query compatible strings, query template strings, or binary support vector machine rules.

The column you specify when you create a CTXRULE index must be VARCHAR2, CLOB or BLOB. No other types are supported for the CTXRULE type.

Attempting to create an index on a Virtual Private Database (VPD) protected table will fail unless one of the following is true:

	
The VPD policy does not have the INDEX statement type turned on (which is the default).

	
The policy function returns a null predicate for the current user.

	
The user (index owner) is SYS.

	
The user has the EXEMPT ACCESS POLICY privilege.

	lexer_pref
	
Specifies the lexer preference to be used for processing queries and later for the documents to be classified with the MATCHES function.

With both classifiers SVN_CLASSFIER and RULE_CLASSIFIER, you can use the BASIC_LEXER, CHINESE_LEXER, JAPANESE_LEXER, or KOREAN_MORPH_LEXER lexer. (See "Classifier Types" and "Lexer Types".)

For processing queries, these lexers support the following operators: ABOUT, STEM, AND, NEAR, NOT, OR, and WITHIN.

The thesaural operators (BT*, NT*, PT, RT, SYN, TR, TRSYS, TT, and so on) are supported. However, these operators are expanded using a snapshot of the thesaurus at index time, not when the MATCHES function is entered. This means that if you change your thesaurus after you index, you must re-index your query set.

	storage_pref
	
Specify the storage preference for the index on the queries.Use the storage preference to specify how the index tables are stored. See "Storage Types".

	section group
	
Specify the section group. This parameter does not affect the queries. It applies to sections in the documents to be classified. The following section groups are supported for the CTXRULE index type:

	
BASIC_SECTION_GROUP

	
HTML_SECTION_GROUP

	
XML_SECTION_GROUP

	
AUTO_SECTION_GROUP

See "Section Group Types".

CTXRULE does not support special sections. It also does not support NDATA sections.

	wordlist_pref
	
Specifies the wordlist preferences. This is used to enable stemming operations on query terms. See Wordlist Type.

	classifier_pref
	
Specifies the classifier preference. See "Classifier Types". You must use the same preference name you specify with CTX_CLS.TRAIN.

Example for Creating a CTXRULE Index

See Oracle Text Application Developer's Guide for a complete example of using the CTXRULE index type in a document routing application.

Syntax for CTXXPATH Index Type

This indextype if provided only for backward compatibility. Create a CTXXPATH index when you need to speed up existsNode() queries on an XMLType column.

CREATE INDEX [schema.]index on [schema.]table(XMLType column) INDEXTYPE IS
ctxsys.CTXXPATH
[PARAMETERS ('[storage storage_pref]
 [memory memsize]')];

	[schema.]table(column)
	
Specifies the name of the table and column to index.

The column you specify when you create a CTXXPATH index must be XMLType. No other types are supported for the CTXXPATH index.

	storage_pref
	
Specifies the storage preference for the index on the queries.

Use the storage preference to specify how the index tables are stored. See "Storage Types" in Chapter 2, "Oracle Text Indexing Elements".

	memory memsize
	
Specifies the amount of run-time memory to use for indexing. The syntax for memsize is as follows:

memsize = number[M|G|K]

M stands for megabytes, G stands for gigabytes, and K stands for kilobytes.

The value you specify for memsize must be between 1M and the value of MAX_INDEX_MEMORY in the CTX_PARAMETERS view. To specify a memory size larger than the MAX_INDEX_MEMORY, you must reset this parameter with CTX_ADM.SET_PARAMETER to be larger than or equal to memsize.

The default is the value specified for DEFAULT_INDEX_MEMORY in CTX_PARAMETERS.

CTXXPATH Examples

Index creation on an XMLType column:

CREATE INDEX xml_index ON xml_tab(col_xml) indextype is ctxsys.CTXXPATH;

Or

CREATE INDEX xml_index ON xml_tab(col_xml) indextype is ctxsys.CTXXPATH
 PARAMETERS('storage my_storage memory 40M');

Querying the table with existsNode:

select xml_id from xml_tab x where
x.col_xml.existsnode('/book/chapter[@title="XML"]') > 0;

	
See Also:

Oracle XML DB Developer's Guide for information about using the CTXXPATH index type

Related Topics

CTX_DDL.CREATE_PREFERENCE

CTX_DDL.CREATE_STOPLIST

CTX_DDL.CREATE_SECTION_GROUP

"ALTER INDEX"

"CATSEARCH"

DROP INDEX

	
Note:

This section describes the DROP INDEX statement as it pertains to dropping a Text domain index.
For a complete description of the DROP INDEX statement, see Oracle Database SQL Language Reference.

Purpose

Use DROP INDEX to drop a specified Text index.

Syntax

DROP INDEX [schema.]index [force];

	[force]
	
Optionally forces the index to be dropped. Use the force option when Oracle Text cannot determine the state of the index, such as when an indexing operation fails.

Oracle recommends against using this option by default. Use it only when a regular call to DROP INDEX fails.

Example

The following example drops an index named doc_index in the current user's database schema:

DROP INDEX doc_index;

Related Topics

"ALTER INDEX"

"CREATE INDEX"

MATCHES

Use the MATCHES operator to find all rows in a query table that match a given document. The document must be a plain text, HTML, or XML document.

The MATCHES operator also supports database links. You can identify a remote table or materialized view by appending @dblink to the end of its name. The dblink must be a complete or partial name for a database link to the database containing the remote table or materialized view. (Querying of remote views is not supported.)

This operator requires a CTXRULE index on your set of queries.

When the SVM_CLASSIFIER classifier type is used, MATCHES returns a score in the range 0 to 100; a higher number indicates a greater confidence in the match. Use the label parameter and MATCH_SCORE to obtain this number. Then use the matching score to apply a category-specific threshold to a particular category.

If the SVM_CLASSIFIER type is not used, then this operator returns either 100 (the document matches the criteria) or 0 (the document does not match).

Limitation

If the optimizer chooses to use the functional query invocation with a MATCHES query, your query will fail.

Syntax

MATCHES(

[schema.]column,
document VARCHAR2 or CLOB
[,label INTEGER])

RETURN NUMBER;

	column
	
Specifies the column containing the indexed query set.

	document
	
Specifies the document to be classified. The document can be plain text, HTML, or XML. Binary formats are not supported.

	label
	
Optionally specifies the label that identifies the score generated by the MATCHES operator. Use this label with MATCH_SCORE.

Matches Example

The following example creates a table querytable, and populates it with classification names and associated rules. It then creates a CTXRULE index.

The example enters the MATCHES query with a document string to be classified. The SELECT statement returns all rows (queries) that are satisfied by the document:

create table querytable (classification varchar2(64), text varchar2(4000));
insert into querytable values ('common names', 'smith OR jones OR brown');
insert into querytable values ('countries', 'United States OR Great Britain OR
France');
insert into querytable values ('Oracle DB', 'oracle NEAR database');

create index query_rule on querytable(text) indextype is ctxsys.ctxrule;

SELECT classification FROM querytable WHERE MATCHES(text, 'Smith is a common name
in the United States') > 0;

CLASSIFICATION
--
common names
countries

Related Topics

"MATCH_SCORE"

"Syntax for CTXRULE Index Type"

CTX_CLS.TRAIN

Oracle Text Application Developer's Guide contains extended examples of simple and supervised classification, which make use of the MATCHES operator.

MATCH_SCORE

Use the MATCH_SCORE operator in a statement to return scores produced by a MATCHES query.

The MATCH_SCORE operator also supports database links. You can identify a remote table or materialized view by appending @dblink to the end of its name. The dblink must be a complete or partial name for a database link to the database containing the remote table or materialized view. (Querying of remote views is not supported.)

When the SVM_CLASSIFIER classifier type is used, this operator returns a score in the range 0 to 100. Use the matching score to apply a category-specific threshold to a particular category.

If the SVM_CLASSIFIER classifier is not used, then this operator returns either 100 (the document matches the criteria) or 0 (the document does not match).

Syntax

MATCH_SCORE(label NUMBER)

	label
	
Specifies a number to identify the score produced by the query. Use this number to identify the MATCHES clause that returns this score.

Example

To get the matching score, use:

select cat_id, match_score(1) from training_result where matches(profile,
text,1)>0;

Related Topics

"MATCHES"

SCORE

Use the SCORE operator in a SELECT statement to return the score values produced by a CONTAINS query. The SCORE operator can be used in a SELECT, ORDER BY, or GROUP BY clause.

The SCORE operator also supports database links. You can identify a remote table or materialized view by appending @dblink to the end of its name. The dblink must be a complete or partial name for a database link to the database containing the remote table or materialized view. (Querying of remote views is not supported.)

Syntax

SCORE(label NUMBER)

	label
	
Specifies a number to identify the score produced by the query. Use this number to identify the CONTAINS clause that returns this score.

Example

Single CONTAINS

When the SCORE operator is called (for example, in a SELECT clause), the CONTAINS clause must reference the score label value as in the following example:

SELECT SCORE(1), title from newsindex
 WHERE CONTAINS(text, 'oracle', 1) > 0 ORDER BY SCORE(1) DESC;

Multiple CONTAINS

Assume that a news database stores and indexes the title and body of news articles separately. The following query returns all the documents that include the words Oracle in their title and java in their body. The articles are sorted by the scores for the first CONTAINS (Oracle) and then by the scores for the second CONTAINS (java).

SELECT title, body, SCORE(10), SCORE(20)

FROM news
WHERE CONTAINS (news.title, 'Oracle', 10) > 0 OR

CONTAINS (news.body, 'java', 20) > 0
ORDER BY SCORE(10), SCORE(20);

Related Topics

"CONTAINS"

Appendix F, " The Oracle Text Scoring Algorithm"

2 Oracle Text Indexing Elements

Oracle Text provides indexing elements for creating Oracle Text indexes and for specifying indexing preferences. This chapter describes the indexing elements that you can use to create an Oracle Text index.

The following topics are discussed in this chapter:

	
Overview

	
Datastore Types

	
Filter Types

	
Lexer Types

	
Wordlist Type

	
Storage Types

	
Section Group Types

	
Classifier Types

	
Cluster Types

	
Stoplists

	
System-Defined Preferences

	
System Parameters

2.1 Overview

When you use the CREATE INDEX statement to create an index or the ALTER INDEX statement to manage an index, you can optionally specify indexing preferences, stoplists, and section groups in the parameter string.

Specifying a preference, stoplist, or section group answers one of the following questions about the way Oracle Text indexes text:

	Preference Class	Answers the Question
	Datastore	How are your documents stored?
	Filter	How can the documents be converted to plain text?
	Lexer	What language is being indexed?
	Wordlist	How should stem and fuzzy queries be expanded?
	Storage	How should the index tables be stored?
	Stop List	What words or themes are not to be indexed?
	Section Group	Is querying within sections enabled, and how are the document sections defined?

This chapter describes how to set each preference. Enable an option by creating a preference with one of the types described in this chapter.

For example, to specify that your documents are stored in external files, you can create a datastore preference called mydatastore using the FILE_DATASTORE type. Specify mydatastore as the datastore preference in the parameter clause of the CREATE INDEX statement.

2.1.1 Creating Preferences

To create a datastore, lexer, filter, classifier, wordlist, or storage preference, use the CTX_DDL.CREATE_PREFERENCEprocedure and specify one of the types described in this chapter. For some types, you can also set attributes with the CTX_DDL.SET_ATTRIBUTE procedure.

An indexing type names a class of indexing objects that you can use to create an index preference. A type, therefore, is an abstract ID, while a preference is an entity that corresponds to a type. Many system-defined preferences have the same name as types (for example, BASIC_LEXER), but exact correspondence is not guaranteed. For example, the DEFAULT_DATASTORE preference uses the DIRECT_DATASTORE type, and there is no system preference corresponding to the CHARSET_FILTER type. Be careful in assuming the existence or nature of either indexing types or system preferences.

You specify indexing preferences with the CREATE INDEX and ALTER INDEX statements. Indexing preferences determine how your index is created. For example, lexer preferences indicate the language of the text to be indexed. You can create and specify your own user-defined preferences, or you can use system-defined preferences.

To create a stoplist, use the CTX_DDL.CREATE_STOPLIST procedure. Add stopwords to a stoplist with CTX_DDL.ADD_STOPWORD.

To create section groups, use CTX_DDL.CREATE_SECTION_GROUP and specify a section group type. Add sections to section groups with the CTX_DDL.ADD_ZONE_SECTION or CTX_DDL.ADD_FIELD_SECTION procedures.

2.2 Datastore Types

Use the datastore types to specify how your text is stored. To create a datastore preference, you must use one of the datastore types described in Table 2-1.

Table 2-1 Datastore Types

	Datastore Type	Use When
	
DIRECT_DATASTORE

	
Data is stored internally in the text column. Each row is indexed as a single document.

	
MULTI_COLUMN_DATASTORE

	
Data is stored in a text table in more than one column. Columns are concatenated to create a virtual document, one for each row.

	
DETAIL_DATASTORE

	
Data is stored internally in the text column. Document consists of one or more rows stored in a text column in a detail table, with header information stored in a master table.

	
FILE_DATASTORE

	
Data is stored externally in operating system files. File names are stored in the text column, one for each row.

	
NESTED_DATASTORE

	
Data is stored in a nested table.

	
URL_DATASTORE

	
Data is stored externally in files located on an intranet or the Internet. Uniform Resource Locators (URLs) are stored in the text column.

	
USER_DATASTORE

	
Documents are synthesized at index time by a user-defined stored procedure.

2.2.1 DIRECT_DATASTORE

Use the DIRECT_DATASTORE type for text stored directly in the text column, one document for each row. The DIRECT_DATASTORE type has no attributes.

The following column types are supported: CHAR, VARCHAR, VARCHAR2, BLOB, CLOB, BFILE, XMLType, and URIType.

	
Note:

If your column is a BFILE, then the index owner must have read permission on all directories used by the BFILEs.

2.2.1.1 DIRECT_DATASTORE CLOB Example

The following example creates a table with a CLOB column to store text data. It then populates two rows with text data and indexes the table using the system-defined preference CTXSYS.DEFAULT_DATASTORE.

create table mytable(id number primary key, docs clob);

insert into mytable values(111555,'this text will be indexed');
insert into mytable values(111556,'this is a direct_datastore example');
commit;

create index myindex on mytable(docs)
 indextype is ctxsys.context
 parameters ('DATASTORE CTXSYS.DEFAULT_DATASTORE');

2.2.2 MULTI_COLUMN_DATASTORE

Use the MULTI_COLUMN_DATASTORE datastore when your text is stored in more than one column. During indexing, the system concatenates the text columns, tags the column text, and indexes the text as a single document. The XML-like tagging is optional. You can also set the system to filter and concatenate binary columns.

The data store MULTI_COLUMN_DATASTORE has the attributes shown in Table 2-2.

Table 2-2 MULTI_COLUMN_DATASTORE Attributes

	Attribute	Attribute Value
	
columns

	
Specify a comma-delimited list of columns to be concatenated during indexing. You can also specify any allowed expression for the SELECT statement column list for the base table. This includes expressions, PL/SQL functions, column aliases, and so on.

The NUMBER and DATE column types are supported. They are converted to text before indexing using the default format mask. The TO_CHAR function can be used in the column list for formatting.

The RAW and BLOB columns are directly concatenated as binary data.

The LONG, LONG RAW, NCHAR, and NCLOB data types, nested table columns, and collections are not supported.

The column list is limited to 500 bytes.

	
filter

	
Specify a comma-delimited list of Y/N flags. Each flag corresponds to a column in the COLUMNS list and denotes whether to filter the column using the AUTO_FILTER.

Specify one of the following allowed values:

Y: Column is to be filtered with AUTO_FILTER

N or no value: Column is not to be filtered (default)

	
delimiter

	
Specify the delimiter that separates column text as follows:

COLUMN_NAME_TAG: Column text is set off by XML-like open and close tags (default).

NEWLINE: Column text is separated with a newline.

2.2.2.1 Indexing and DML

To index, you must create a dummy column to specify in the CREATE INDEX statement. This column's contents are not made part of the virtual document, unless its name is specified in the columns attribute.

The index is synchronized only when the dummy column is updated. You can create triggers to propagate changes if needed.

2.2.2.2 MULTI_COLUMN_DATASTORE Restriction

You cannot create a multicolumn datastore with XMLType columns. MULTI_COLUMN_DATA_STORE does not support XMLType. You can create a CONTEXT index with an XMLType column, as described in Chapter 1, "Oracle Text SQL Statements and Operators".

2.2.2.3 MULTI_COLUMN_DATASTORE Example

The following example creates a multicolumn datastore preference called my_multi with three text columns:

begin

ctx_ddl.create_preference('my_multi', 'MULTI_COLUMN_DATASTORE');
ctx_ddl.set_attribute('my_multi', 'columns', 'column1, column2, column3');

end;

2.2.2.4 MULTI_COLUMN_DATASTORE Filter Example

The following example creates a multicolumn datastore preference and denotes that the bar column is to be filtered with the AUTO_FILTER.

ctx_ddl.create_preference('MY_MULTI','MULTI_COLUMN_DATASTORE');
ctx_ddl.set_attribute('MY_MULTI', 'COLUMNS','foo,bar');
ctx_ddl.set_attribute('MY_MULTI','FILTER','N,Y');

The multicolumn datastore fetches the content of the foo and bar columns, filters bar, then composes the compound document as:

<FOO>
foo contents
</FOO>
<BAR>
bar filtered contents (probably originally HTML)
</BAR>

The N flags do not need not be specified, and there does not need to be a flag for every column. Only the Y flags must be need to be specified, with commas to denote to which column they apply. For instance:

ctx_ddl.create_preference('MY_MULTI','MULTI_COLUMN_DATASTORE');
ctx_ddl.set_attribute('MY_MULTI', 'COLUMNS','foo,bar,zoo,jar');
ctx_ddl.set_attribute('MY_MULTI','FILTER',',,Y');

This filters only the column zoo.

2.2.2.5 Tagging Behavior

During indexing, the system creates a virtual document for each row. The virtual document is composed of the contents of the columns concatenated in the listing order with column name tags automatically added. For example:

create table mc(id number primary key, name varchar2(10), address varchar2(80));
insert into mc values(1, 'John Smith', '123 Main Street');

exec ctx_ddl.create_preference('mymds', 'MULTI_COLUMN_DATASTORE');
exec ctx_ddl.set_attibute('mymds', 'columns', 'name, address');

This produces the following virtual text for indexing:

<NAME>
John Smith
</NAME>
<ADDRESS>
123 Main Street
</ADDRESS>

The system indexes the text between the tags, ignoring the tags themselves.

2.2.2.6 Indexing Columns as Sections

To index the tags as sections, you can optionally create field sections with BASIC_SECTION_GROUP.

	
Note:

No section group is created when you use the MULTI_COLUMN_DATASTORE. To create sections for these tags, you must create a section group.

When you use expressions or functions, the tag is composed of the first 30 characters of the expression unless a column alias is used.

For example, if your expression is as follows:

exec ctx_ddl.set_attibute('mymds', 'columns', '4 + 17');

then it produces the following virtual text:

<4 + 17>
21
</4 + 17>

If your expression is as follows:

exec ctx_ddl.set_attibute('mymds', 'columns', '4 + 17 col1');

then it produces the following virtual text:

<col1>
21
<col1>

The tags are in uppercase unless the column name or column alias is in lowercase and surrounded by double quotation marks. For example:

exec ctx_ddl.set_attibute('mymds', 'COLUMNS', 'foo');

This produces the following virtual text:

<FOO>
content of foo
</FOO>

For lowercase tags, use the following:

exec ctx_ddl.set_attibute('mymds', 'COLUMNS', 'foo "foo"');

This expression produces:

<foo>
content of foo
</foo>

2.2.3 DETAIL_DATASTORE

Use the DETAIL_DATASTORE type for text stored directly in the database in detail tables, with the indexed text column located in the master table.

The DETAIL_DATASTORE type has the attributes described in Table 2-3.

Table 2-3 DETAIL_DATASTORE Attributes

	Attribute	Attribute Value
	
binary

	
Specify TRUE for Oracle Text to add no newline character after each detail row.

Specify FALSE for Oracle Text to add a newline character (\n) after each detail row automatically.

	
detail_table

	
Specify the name of the detail table (OWNER.TABLE if necessary).

	
detail_key

	
Specify the name of the detail table foreign key column.

	
detail_lineno

	
Specify the name of the detail table sequence column.

	
detail_text

	
Specify the name of the detail table text column.

2.2.3.1 Synchronizing Master/Detail Indexes

Changes to the detail table do not trigger re-indexing when you synchronize the index. Only changes to the indexed column in the master table triggers a re-index when you synchronize the index.

You can create triggers on the detail table to propagate changes to the indexed column in the master table row.

2.2.3.2 Example Master/Detail Tables

This example illustrates how master and detail tables are related to each other.

2.2.3.2.1 Master Table Example

Master tables define the documents in a master/detail relationship. Assign an identifying number to each document. The following table is an example master table, called my_master:

	Column Name	Column Type	Description
	article_id	NUMBER	Document ID, unique for each document (primary key)
	author	VARCHAR2(30)	Author of document
	title	VARCHAR2(50)	Title of document
	body	CHAR(1)	Dummy column to specify in CREATE INDEX

	
Note:

Your master table must include a primary key column when you use the DETAIL_DATASTORE type.

2.2.3.2.2 Detail Table Example

Detail tables contain the text for a document, whose content is usually stored across a number of rows. The following detail table my_detail is related to the master table my_master with the article_id column. This column identifies the master document to which each detail row (sub-document) belongs.

	Column Name	Column Type	Description
	article_id	NUMBER	Document ID that relates to master table
	seq	NUMBER	Sequence of document in the master document defined by article_id
	text	VARCHAR2	Document text

2.2.3.2.3 Detail Table Example Attributes

In this example, the DETAIL_DATASTORE attributes have the following values:

	Attribute	Attribute Value
	binary	TRUE
	detail_table	my_detail
	detail_key	article_id
	detail_lineno	seq
	detail_text	text

Use CTX_DDL.CREATE_PREFERENCE to create a preference with DETAIL_DATASTORE. Use CTX_DDL.SET_ATTRIBUTE to set the attributes for this preference as described earlier. The following example shows how this is done:

begin

ctx_ddl.create_preference('my_detail_pref', 'DETAIL_DATASTORE');
ctx_ddl.set_attribute('my_detail_pref', 'binary', 'true');
ctx_ddl.set_attribute('my_detail_pref', 'detail_table', 'my_detail');
ctx_ddl.set_attribute('my_detail_pref', 'detail_key', 'article_id');
ctx_ddl.set_attribute('my_detail_pref', 'detail_lineno', 'seq');
ctx_ddl.set_attribute('my_detail_pref', 'detail_text', 'text');

end;

2.2.3.2.4 Master/Detail Index Example

To index the document defined in this master/detail relationship, specify a column in the master table using the CREATE INDEX statement. The column you specify must be one of the allowed types.

This example uses the body column, whose function is to enable the creation of the master/detail index and to improve readability of the code. The my_detail_pref preference is set to DETAIL_DATASTORE with the required attributes:

CREATE INDEX myindex on my_master(body) indextype is ctxsys.context
parameters('datastore my_detail_pref');

In this example, you can also specify the title or author column to create the index. However, if you do so, changes to these columns will trigger a re-index operation.

2.2.4 FILE_DATASTORE

The FILE_DATASTORE type is used for text stored in files accessed through the local file system.

	
Note:

The FILE_DATASTORE type may not work with certain types of remote-mounted file systems.

The FILE_DATASTORE type has the attributes described Table 2-4.

Table 2-4 FILE_DATASTORE Attributes

	Attribute	Attribute Value
	
path

	
path1:path2:pathn

	
filename_charset

	
name

	path
	
Specifies the full directory path name of the files stored externally in a file system. When you specify the full directory path as such, you need to include only file names in your text column.

You can specify multiple paths for the path attribute, with each path separated by a colon (:) on UNIX and semicolon(;) on Windows. File names are stored in the text column in the text table.

If you do not specify a path for external files with this attribute, then Oracle Text requires that the path be included in the file names stored in the text column.

	filename_charset
	
Specifies a valid Oracle character set name (maximum length 30 characters) to be used by the file datastore for converting file names. In general, the Oracle database can use a different character set than the operating system. This can lead to problems in finding files (which may raise DRG-11513 errors) when the indexed column contains characters that are not convertible to the operating system character set. By default, the file datastore will convert the file name to WE8ISO8859p1 for ASCII platforms or WE8EBCDIC1047 for EBCDIC platforms.

However, this may not be sufficient for applications with multibyte character sets for both the database and the operating system, because neither WE8ISO8859p1 nor WE8EBCDIC1047 supports multibyte characters. The attribute filename_charset rectifies this problem. If specified, then the datastore will convert from the database character set to the specified character set rather than to ISO8859 or EBCDIC.

If the filename_charset attribute is the same as the database character set, then the file name is used as is. If filename_charset is not a valid character set, then the error "DRG-10763: value %s is not a valid character set" is raised.

2.2.4.1 PATH Attribute Limitations

The PATH attribute has the following limitations:

	
If you specify a PATH attribute, then you can only use a simple file name in the indexed column. You cannot combine the PATH attribute with a path as part of the file name. If the files exist in multiple folders or directories, you must leave the PATH attribute unset, and include the full file name, with PATH, in the indexed column.

	
On Windows systems, the files must be located on a local drive. They cannot be on a remote drive, whether the remote drive is mapped to a local drive letter.

2.2.4.2 FILE_DATASTORE and Security

File and URL datastores enable access to files on the actual database disk. This may be undesirable when security is an issue since any user can browse the file system that is accessible to the Oracle user. The FILE_ACCESS_ROLE system parameter can be used to set the name of a database role that is authorized to create an index using FILE or URL datastores. If set, any user attempting to create an index using FILE or URL datastores must have this role, or the index creation will fail. Only SYS can set FILE_ACCESS_ROLE, and an error will be raised if any other user tries to modify it. If FILE_ACCESS_ROLE is left at the default of NULL, access is disallowed. Thus, by default, users are not able to create indexes that use the file or URL datastores. Users can, if desired, set FILE_ACCESS_ROLE to PUBLIC if they want to preserve the behavior from earlier releases.

For example, the following statement sets the name of the database role:

ctx_adm.set_parameter('FILE_ACCESS_ROLE','TOPCAT');

where TOPCAT is the role that is authorized to create an index on a file or URL datastore. The CREATE INDEX operation will fail when a user that does not have an authorized role tries to create an index on a file or URL datastore. For example:

CREATE INDEX myindex ON mydocument(TEXT) INDEXTYPE IS ctxsys.context PARAMETERS('DATASTORE ctxsys.file_datastore')

In this case, if the user does not have the role TOPCAT, then index creation will fail and return an error. For users who have the TOPCAT role, the index creation will proceed normally.

The authorized role name is checked any time the datastore is accessed. This includes index creation, index sync, and calls to document services, such as CTX_DOC.HIGHLIGHT.

2.2.4.3 FILE_DATASTORE Example

This example creates a file datastore preference called COMMON_DIR that has a path of /mydocs:

begin
 ctx_ddl.create_preference('COMMON_DIR','FILE_DATASTORE');
 ctx_ddl.set_attribute('COMMON_DIR','PATH','/mydocs');
end;

When you populate the table mytable, you need only insert file names. The path attribute tells the system where to look during the indexing operation.

create table mytable(id number primary key, docs varchar2(2000));
insert into mytable values(111555,'first.txt');
insert into mytable values(111556,'second.txt');
commit;

Create the index as follows:

create index myindex on mytable(docs)
 indextype is ctxsys.context
 parameters ('datastore COMMON_DIR');

2.2.5 URL_DATASTORE

Use the URL_DATASTORE type for text stored:

	
In files on the World Wide Web (accessed through HTTP or FTP)

	
In files in the local file system (accessed through the file protocol)

Store each URL in a single text field.

2.2.5.1 URL Syntax

The syntax of a URL you store in a text field is as follows (with brackets indicating optional parameters):

[URL:]<access_scheme>://<host_name>[:<port_number>]/[<url_path>]

The access_scheme string can be either ftp, http, or file. For example:

http://mymachine.us.oracle.com/home.html

	
Note:

The login:password@ syntax within the URL is supported only for the ftp access scheme.

Because this syntax is partially compliant with the RFC 1738 specification, the following restriction holds for the URL syntax: The URL must contain only printable ASCII characters. Non-printable ASCII characters and multibyte characters must be escaped with the %xx notation, where xx is the hexadecimal representation of the special character.

2.2.5.2 URL_DATASTORE Attributes

URL_DATASTORE has the following attributes:

Table 2-5 URL_DATASTORE Attributes

	Attribute	Attribute Value
	
timeout

	
The value of this attribute is ignored. This is provided for backward compatibility.

	
maxthreads

	
The value of this attribute is ignored. URL_DATASTORE is single-threaded. This is provided for backward compatibility.

	
urlsize

	
The value of this attribute is ignored. This is provided for backward compatibility.

	
maxurls

	
The value of this attribute is ignored. This is provided for backward compatibility.

	
maxdocsize

	
The value of this attribute is ignored. This is provided for backward compatibility.

	
http_proxy

	
Specify the host name of http proxy server. Optionally specify port number with a colon in the form hostname:port.

	
ftp_proxy

	
Specify the host name of ftp proxy server. Optionally specify port number with a colon in the form hostname:port.

	
no_proxy

	
Specify the domain for no proxy server. Use a comma separated string of up to 16 domain names.

	timeout
	
The value of this attribute is ignored. This is provided for backward compatibility.

	maxthreads
	
The value of this attribute is ignored. URL_DATASTORE is single-threaded. This is provided for backward compatibility.

	urlsize
	
The value of this attribute is ignored. This is provided for backward compatibility.

	maxdocsize
	
The value of this attribute is ignored. This is provided for backward compatibility.

	maxurls
	
The value of this attribute is ignored. This is provided for backward compatibility.

	http_proxy
	
Specify the fully qualified name of the host machine that serves as the HTTP proxy (gateway) for the machine on which Oracle Text is installed. You can optionally specify port number with a colon in the form hostname:port.

You must set this attribute if the machine is in an intranet that requires authentication through a proxy server to access Web files located outside the firewall.

	ftp_proxy
	
Specify the fully qualified name of the host machine that serves as the FTP proxy (gateway) for the server on which Oracle Text is installed. You can optionally specify a port number with a colon in the form hostname:port.

This attribute must be set if the machine is in an intranet that requires authentication through a proxy server to access Web files located outside the firewall.

	no_proxy
	
Specify a string of domains (up to sixteen, separated by commas) that are found in most, if not all, of the machines in your intranet. When one of the domains is encountered in a host name, no request is sent to the server(s) specified for ftp_proxy and http_proxy. Instead, the request is processed directly by the host machine identified in the URL.

For example, if the string us.example.com, uk.example.com is entered for no_proxy, any URL requests to machines that contain either of these domains in their host names are not processed by your proxy server(s).

2.2.5.3 URL_DATASTORE and Security

For a discussion of how to control file access security for file and URL datastores, refer to "FILE_DATASTORE and Security".

2.2.5.4 URL_DATASTORE Example

This example creates a URL_DATASTORE preference called URL_PREF for which the http_proxy, no_proxy, and timeout attributes are set. The defaults are used for the attributes that are not set.

begin
 ctx_ddl.create_preference('URL_PREF','URL_DATASTORE');
 ctx_ddl.set_attribute('URL_PREF','HTTP_PROXY','www-proxy.us.oracle.com');
 ctx_ddl.set_attribute('URL_PREF','NO_PROXY','us.oracle.com');
 ctx_ddl.set_attribute('URL_PREF','Timeout','300');
end;

Create the table and insert values into it:

create table urls(id number primary key, docs varchar2(2000));
insert into urls values(111555,'http://context.us.oracle.com');
insert into urls values(111556,'http://www.sun.com');
commit;

To create the index, specify URL_PREF as the datastore:

create index datastores_text on urls (docs)
 indextype is ctxsys.context
 parameters ('Datastore URL_PREF');

2.2.6 USER_DATASTORE

Use the USER_DATASTORE type to define stored procedures that synthesize documents during indexing. For example, a user procedure might synthesize author, date, and text columns into one document to have the author and date information be part of the indexed text.

USER_DATASTORE has the following attributes:

Table 2-6 USER_DATASTORE Attributes

	Attribute	Attribute Value
	
procedure

	
Specify the procedure that synthesizes the document to be indexed.

This procedure can be owned by any user and must be executable by the index owner.

	
output_type

	
Specify the data type of the second argument to procedure. Valid values are CLOB, BLOB, CLOB_LOC, BLOB_LOC, or VARCHAR2. The default is CLOB.

When you specify CLOB_LOC, BLOB_LOC, you indicate that no temporary CLOB or BLOB is needed, because your procedure copies a locator to the IN/OUT second parameter.

	procedure
	
Specify the name of the procedure that synthesizes the document to be indexed. This specification must be in the form PROCEDURENAME or PACKAGENAME.PROCEDURENAME. You can also specify the schema owner name.

The procedure you specify must have two arguments defined as follows:

procedure (r IN ROWID, c IN OUT NOCOPY output_type)

The first argument r must be of type ROWID. The second argument c must be of type output_type. NOCOPY is a compiler hint that instructs Oracle Text to pass parameter c by reference if possible.

	
Note:

The procedure name and its arguments can be named anything. The arguments r and c are used in this example for simplicity.

The stored procedure is called once for each row indexed. Given the rowid of the current row, procedure must write the text of the document into its second argument, whose type you specify with output_type.

2.2.6.1 Constraints

The following constraints apply to procedure:

	
It can be owned by any user, but the user must have database permissions to execute procedure correctly

	
It must be executable by the index owner

	
It must not enter DDL or transaction control statements, like COMMIT

2.2.6.2 Editing Procedure after Indexing

When you change or edit the stored procedure, indexes based on it will not be notified, so you must manually re-create such indexes. So if the stored procedure makes use of other columns, and those column values change, the row will not be re-indexed. The row is re-indexed only when the indexed column changes.

	output_type
	
Specify the datatype of the second argument to procedure. You can use either CLOB, BLOB, CLOB_LOC, BLOB_LOC, or VARCHAR2.

2.2.6.3 USER_DATASTORE with CLOB Example

Consider a table in which the author, title, and text fields are separate, as in the articles table defined as follows:

create table articles(
 id number,
 author varchar2(80),
 title varchar2(120),
 text clob);

The author and title fields are to be part of the indexed document text. Assume user appowner writes a stored procedure with the user datastore interface that synthesizes a document from the text, author, and title fields:

create procedure myproc(rid in rowid, tlob in out clob nocopy) is
 begin
 for c1 in (select author, title, text from articles
 where rowid = rid)
 loop

 dbms_lob.writeappend(tlob, length(c1.title), c1.title);
 dbms_lob.writeappend(tlob, length(c1.author), c1.author);
 dbms_lob.writeappend(tlob, length(c1.text), c1.text);

 end loop;
 end;

This procedure takes in a rowid and a temporary CLOB locator, and concatenates all the article's columns into the temporary CLOB. The for loop executes only once.

The user appowner creates the preference as follows:

begin

ctx_ddl.create_preference('myud', 'user_datastore');
ctx_ddl.set_attribute('myud', 'procedure', 'myproc');
ctx_ddl.set_attribute('myud', 'output_type', 'CLOB');

end;

When appowner creates the index on articles(text) using this preference, the indexing operation sees author and title in the document text.

2.2.6.4 USER_DATASTORE with BLOB_LOC Example

The following procedure might be used with OUTPUT_TYPE BLOB_LOC:

procedure myds(rid in rowid, dataout in out nocopy blob)
is
 l_dtype varchar2(10);
 l_pk number;
begin
 select dtype, pk into l_dtype, l_pk from mytable where rowid = rid;
 if (l_dtype = 'MOVIE') then
 select movie_data into dataout from movietab where fk = l_pk;
 elsif (l_dtype = 'SOUND') then
 select sound_data into dataout from soundtab where fk = l_pk;
 end if;
end;

The user appowner creates the preference as follows:

begin

ctx_ddl.create_preference('myud', 'user_datastore');
ctx_ddl.set_attribute('myud', 'procedure', 'myproc');
ctx_ddl.set_attribute('myud', 'output_type', 'blob_loc');

end;

2.2.7 NESTED_DATASTORE

Use the nested datastore type to index documents stored as rows in a nested table.

Table 2-7 NESTED_DATASTORE Attributes

	Attribute	Attribute Value
	
nested_column

	
Specify the name of the nested table column.This attribute is required. Specify only the column name. Do not specify schema owner or containing table name.

	
nested_type

	
Specify the type of nested table. This attribute is required. You must provide owner name and type.

	
nested_lineno

	
Specify the name of the attribute in the nested table that orders the lines. This is like DETAIL_LINENO in detail datastore. This attribute is required.

	
nested_text

	
Specify the name of the column in the nested table type that contains the text of the line. This is like DETAIL_TEXT in detail datastore. This attribute is required. LONG column types are not supported as nested table text columns.

	
binary

	
Specify FALSE for Oracle Text to automatically insert a newline character when synthesizing the document text. If you specify TRUE, Oracle Text does not do this. This attribute is not required. The default is FALSE.

When using the nested table datastore, you must index a dummy column, because the extensible indexing framework disallows indexing the nested table column. See the example.

DML on the nested table is not automatically propagated to the dummy column used for indexing. For DML on the nested table to be propagated to the dummy column, your application code or trigger must explicitly update the dummy column.

Filter defaults for the index are based on the type of the nested_text column.

During validation, Oracle Text checks that the type exists and that the attributes you specify for nested_lineno and nested_text exist in the nested table type. Oracle Text does not check that the named nested table column exists in the indexed table.

2.2.7.1 NESTED_DATASTORE Example

This section shows an example of using the NESTED_DATASTORE type to index documents stored as rows in a nested table.

2.2.7.1.1 Create the Nested Table

The following code creates a nested table and a storage table mytab for the nested table:

create type nt_rec as object (
 lno number, -- line number
 ltxt varchar2(80) -- text of line
);

create type nt_tab as table of nt_rec;
create table mytab (
 id number primary key, -- primary key
 dummy char(1), -- dummy column for indexing
 doc nt_tab -- nested table
)
nested table doc store as myntab;

2.2.7.1.2 Insert Values into Nested Table

The following code inserts values into the nested table for the parent row with ID equal to 1.

insert into mytab values (1, null, nt_tab());
insert into table(select doc from mytab where id=1) values (1, 'the dog');
insert into table(select doc from mytab where id=1) values (2, 'sat on mat ');
commit;

2.2.7.1.3 Create Nested Table Preferences

The following code sets the preferences and attributes for the NESTED_DATASTORE according to the definitions of the nested table type nt_tab and the parent table mytab:

begin
-- create nested datastore pref
ctx_ddl.create_preference('ntds','nested_datastore');

-- nest tab column in main table
ctx_ddl.set_attribute('ntds','nested_column', 'doc');

-- nested table type
ctx_ddl.set_attribute('ntds','nested_type', 'scott.nt_tab');

-- lineno column in nested table
ctx_ddl.set_attribute('ntds','nested_lineno','lno');

--text column in nested table
ctx_ddl.set_attribute('ntds','nested_text', 'ltxt');
end;

2.2.7.1.4 Create Index on Nested Table

The following code creates the index using the nested table datastore:

create index myidx on mytab(dummy) -- index dummy column, not nest table
indextype is ctxsys.context parameters ('datastore ntds');

2.2.7.1.5 Query Nested Datastore

The following select statement queries the index built from a nested table:

select * from mytab where contains(dummy, 'dog and mat')>0;
-- returns document 1, because it has dog in line 1 and mat in line 2.

2.3 Filter Types

Use the filter types to create preferences that determine how text is filtered for indexing. Filters enable word processor documents, formatted documents, plain text, HTML, and XML documents to be indexed.

For formatted documents, Oracle Text stores documents in their native format and uses filters to build interim plain text or HTML versions of the documents. Oracle Text indexes the words derived from the plain text or HTML version of the formatted document. The TMP_DIR environment variable sets the directory path for storing temporary files created by the filter.

To create a filter preference, you must use one of the following types:

Table 2-8 Filter Types

	Filter	When Used
	
CHARSET_FILTER

	
Character set converting filter.

	
AUTO_FILTER

	
Auto filter for filtering formatted documents.

	
NULL_FILTER

	
No filtering required. Use for indexing plain text, HTML, or XML documents.

	
MAIL_FILTER

	
Use the MAIL_FILTER to transform RFC-822, RFC-2045 messages in to text that can be indexed.

	
USER_FILTER

	
User-defined external filter to be used for custom filtering.

	
PROCEDURE_FILTER

	
User-defined stored procedure filter to be used for custom filtering.

2.3.1 CHARSET_FILTER

Use the CHARSET_FILTER to convert documents from a non-database character set to the character set used by the database.

CHARSET_FILTER has the attribute described in Table 2-9.

Table 2-9 CHARSET_FILTER Attributes

	Attribute	Attribute Value
	
charset

	
Specify the Globalization Support name of source character set.

If you specify UTF16AUTO, then this filter automatically detects the if the character set is UTF16 big- or little-endian.

Specify JAAUTO for Japanese character set auto-detection. This filter automatically detects the custom character specification in JA16EUC or JA16SJIS and converts to the database character set. This filter is useful in Japanese when your data files have mixed character sets.

JAAUTO can only be specified on a database whose character set is JA16EUC, JA16SJIS, or UTF8.

Specify AUTO to have CHARSET_FILTER automatically detect and convert character sets that Oracle Database supports, as shown in Table 2-10.

When the charset column or attribute is set to AUTO, the CHARSET_FILTER automatically detects the document character set and converts the document from the detected character set to the database character set. CHARSET_FILTER can detect the supported character sets shown in Table 2-10.

Table 2-10 Character Sets Supported for CHARSET_FILTER Auto-detection

	Character Set	

	
AL16UTF16

	
JA16EUC

	
AL32UTF8

	
JA16SJIS

	
AR8ISO8859P6

	
KO16KSC5601

	
AR8MSWIN1256

	
TH8TISASCII

	
CL8ISO8859P5

	
WE8ISO8859P1

	
CL8KOI8R

	
WE8ISO8859P9

	
CL8MSWIN1251

	
WE8MSWIN1252

	
EE8ISO8859P2

	
ZHS16CGB231280

	
EE8MSWIN1250

	
ZHS32GB18030

	
EL8ISO8859P7

	
ZHT16BIG5

	
EL8MSWIN1253

	
WE8MSWIN1252

	
See Also:

Oracle Database Globalization Support Guide for more information about the supported globalization character sets

2.3.1.1 UTF-16 Big- and Little-Endian Detection

If your character set is UTF-16, then you can specify UTF16AUTO to automatically detect big- or little-endian data. Oracle Text does so by examining the first two bytes of the document row.

If the first two bytes are 0xFE, 0xFF, the document is recognized as big-endian and the remainder of the document minus those two bytes is passed on for indexing.

If the first two bytes are 0xFF, 0xFE, the document is recognized as little-endian and the remainder of the document minus those two bytes is passed on for indexing.

If the first two bytes are anything else, the document is assumed to be big-endian and the whole document including the first two bytes is passed on for indexing.

2.3.1.2 Indexing Mixed-Character Set Columns

A mixed character set column is one that stores documents of different character sets. For example, a text table might store some documents in WE8ISO8859P1 and others in UTF8.

To index a table of documents in different character sets, you must create your base table with a character set column. In this column, specify the document character set on a per-row basis. To index the documents, Oracle Text converts the documents into the database character set.

Character set conversion works with the CHARSET_FILTER. When the charset column is NULL or not recognized, Oracle Text assumes the source character set is the one specified in the charset attribute.

	
Note:

Character set conversion also works with the AUTO_FILTER when the document format column is set to TEXT.

2.3.1.2.1 Indexing Mixed-Character Set Example

For example, create the table with a charset column:

create table hdocs (
 id number primary key,
 fmt varchar2(10),
 cset varchar2(20),
 text varchar2(80)
);

Create a preference for this filter:

begin
cxt_ddl.create_preference('cs_filter', 'CHARSET_FILTER');
ctx_ddl.set_attribute('cs_filter', 'charset', 'UTF8');
end;
/

Insert plain-text documents and name the character set:

insert into hdocs values(1, 'text', 'WE8ISO8859P1', '/docs/iso.txt');
insert into hdocs values (2, 'text', 'UTF8', '/docs/utf8.txt');
commit;

Create the index and name the charset column:

create index hdocsx on hdocs(text) indextype is ctxsys.context
 parameters ('datastore ctxsys.file_datastore
 filter cs_filter
 format column fmt
 charset column cset');

2.3.2 AUTO_FILTER

The AUTO_FILTER is a universal filter that filters most document formats, including PDF and Microsoft Word documents. Use it for indexing both single-format and mixed-format columns. This filter automatically bypasses plain text, HTML, XHTML, SGML, and XML documents.

	
See Also:

Appendix B, "Oracle Text Supported Document Formats", for a list of the formats supported by AUTO_FILTER, and to learn more about how to set up your environment

	
Note:

The AUTO_FILTER replaces the INSO_FILTER, which has been deprecated. While every effort has been made to ensure maximal backward compatibility between the two filters, so that applications using INSO_FILTER will continue to work without modification, some differences may arise. Users should therefore use AUTO_FILTER in their new programs and, when possible, replace instances of INSO_FILTER, and any system preferences or constants that make use of it, in older applications.

The AUTO_FILTER preference has the following attributes:

Table 2-11 AUTO_FILTER Attributes

	Attribute	Attribute Value
	
timeout

	
Specify the AUTO_FILTER timeout in seconds. Use a number between 0 and 42,949,672. Default is 120. Setting this value to 0 disables the feature.

How this wait period is used depends on how you set timeout_type.

This feature is disabled for rows for which the corresponding charset and format column cause the AUTO_FILTER to bypass the row, such as when format is marked TEXT.

Use this feature to prevent the Oracle Text indexing operation from waiting indefinitely on a hanging filter operation.

	
timeout_type

	
Specify either HEURISTIC or FIXED. Default is HEURISTIC.

Specify HEURISTIC for Oracle Text to check every TIMEOUT seconds if output from Outside In HTML Export has increased. The operation terminates for the document if output has not increased. An error is recorded in the CTX_USER_INDEX_ERRORS view and Oracle Text moves to the next document row to be indexed.

Specify FIXED to terminate the Outside In HTML Export processing after TIMEOUT seconds regardless of whether filtering was progressing normally or just hanging. This value is useful when indexing throughput is more important than taking the time to successfully filter large documents.

	
output_formatting

	
Setting this attribute has no effect on filter performance or filter output. It is maintained for backward compatibility.

2.3.2.1 Indexing Formatted Documents

To index a text column containing formatted documents such as Microsoft Word, use the AUTO_FILTER. This filter automatically detects the document format. Use the CTXSYS.AUTO_FILTER system-defined preference in the parameter clause as follows:

create index hdocsx on hdocs(text) indextype is ctxsys.context
 parameters ('datastore ctxsys.file_datastore
 filter ctxsys.auto_filter');

	
Note:

The CTXSYS.AUTO_FILTER replaces CTXSYS.INSO_FILTER, which has been deprecated. Programs making use of CTXSYS.INSO_FILTER should still work. New programs should use CTXSYS.AUTO_FILTER.

2.3.2.2 Explicitly Bypassing Plain Text or HTML in Mixed Format Columns

A mixed-format column is a text column containing more than one document format, such as a column that contains Microsoft Word, PDF, plain text, and HTML documents.

The AUTO_FILTER can index mixed-format columns, automatically bypassing plain text, HTML, and XML documents. However, if you prefer not to depend on the built-in bypass mechanism, you can explicitly tag your rows as text and cause the AUTO_FILTER to ignore the row and not process the document in any way.

The format column in the base table enables you to specify the type of document contained in the text column. You can specify the following document types: TEXT, BINARY, and IGNORE. During indexing, the AUTO_FILTER ignores any document typed TEXT, assuming the charset column is not specified. (The difference between a document with a TEXT format column type and one with an IGNORE type is that the TEXT document is indexed, but ignored by the filter, while the IGNORE document is not indexed at all. Use IGNORE to overlook documents such as image files, or documents in a language that you do not want to index. IGNORE can be used with any filter type.)

To set up the AUTO_FILTER bypass mechanism, you must create a format column in your base table.

For example:

create table hdocs (
 id number primary key,
 fmt varchar2(10),
 text varchar2(80)
);

Assuming you are indexing mostly Word documents, you specify BINARY in the format column to filter the Word documents. Alternatively, to have the AUTO_FILTER ignore an HTML document, specify TEXT in the format column.

For example, the following statements add two documents to the text table, assigning one format as BINARY and the other TEXT:

insert into hdocs values(1, 'binary', '/docs/myword.doc');
insert in hdocs values (2, 'text', '/docs/index.html');
commit;

To create the index, use CREATE INDEX and specify the format column name in the parameter string:

create index hdocsx on hdocs(text) indextype is ctxsys.context
 parameters ('datastore ctxsys.file_datastore
 filter ctxsys.auto_filter
 format column fmt');

If you do not specify TEXT or BINARY for the format column, BINARY is used.

	
Note:

You need not specify the format column in CREATE INDEX when using the AUTO_FILTER.

2.3.2.3 Character Set Conversion With AUTO_FILTER

The AUTO_FILTER converts documents to the database character set when the document format column is set to TEXT. In this case, the AUTO_FILTER looks at the charset column to determine the document character set.

If the charset column value is not an Oracle Text character set name, the document is passed through without any character set conversion.

	
Note:

You need not specify the charset column when using the AUTO_FILTER.

If you do specify the charset column and do not specify the format column, the AUTO_FILTER works like the CHARSET_FILTER, except that in this case there is no Japanese character set auto-detection.

	
See Also:

"CHARSET_FILTER".

2.3.3 NULL_FILTER

Use the NULL_FILTER type when plain text or HTML is to be indexed and no filtering needs to be performed. NULL_FILTER has no attributes.

2.3.3.1 Indexing HTML Documents

If your document set is entirely HTML, Oracle recommends that you use the NULL_FILTER in your filter preference.

For example, to index an HTML document set, specify the system-defined preferences for NULL_FILTER and HTML_SECTION_GROUP as follows:

create index myindex on docs(htmlfile) indextype is ctxsys.context
 parameters('filter ctxsys.null_filter
 section group ctxsys.html_section_group');

	
See Also:

For more information on section groups and indexing HTML documents, see "Section Group Types".

2.3.4 MAIL_FILTER

Use MAIL_FILTER to transform RFC-822, RFC-2045 messages into indexable text. The following limitations apply to the input:

	
Documents must be US-ASCII

	
Lines must not be longer than 1024 bytes

	
Documents must be syntactically valid with regard to RFC-822.

Behavior for invalid input is not defined. Some deviations may be robustly handled by the filter without error. Others may result in a fetch-time or filter-time error.

The MAIL_FILTER has the following attributes:

Table 2-12 MAIL_FILTER Attributes

	Attribute	Attribute Value
	
INDEX_FIELDS

	
Specify a colon-separated list of fields to preserve in the output. These fields are transformed to tag markup. For example, if INDEX_FIELDS is set to "FROM":

From: Scott Tiger

becomes:

<FROM>Scott Tiger</FROM>

Only top-level fields are transformed in this way.

	
AUTO_FILTER_TIMEOUT

	
Specify a timeout value for the AUTO_FILTER filtering invoked by the mail filter. Default is 60. (Replaces the INSO_TIMEOUT attribute and is backward compatible with INSO_TIMEOUT.)

	
AUTO_FILTER_OUTPUT_FORMATTING

	
Specify either TRUE or FALSE. Default is TRUE.

This attribute replaces the previous INSO_OUTPUT_FORMATTING attribute. However, it has no effect in the current release.

	
PART_FIELD_STYLE

	
Specify how fields occurring in lower-level parts and identified by the INDEX_FIELDS attribute should be transformed. The fields of the top-level message part identified by INDEX_FIELDS are always transformed to tag markup (see the previous description of INDEX_FIELDS); PART_FIELD_STYLE controls the transformation of subsequent parts; for example, attached e-mails.

Possible values include IGNORE (the default), in which the part fields are not included for indexing; TAG, in which the part field names are transformed to tags, as occurs with top-level part fields; FIELD, in which the part field names are preserved as fields, not as tags; and TEXT, in which the part field names are eliminated and only the field content is preserved for indexing. See "Mail_Filter Example" for an example of how PART_FIELD_STYLE works.

2.3.4.1 Filter Behavior

This filter behaves in the following way for each document:

	
Read and remove header fields

	
Decode message body if needed, depending on Content-transfer-encoding field

	
Take action depending on the Content-Type field value and the user-specified behavior specified in a mail filter configuration file. (See "About the Mail Filter Configuration File".) The possible actions are:

	
produce the body in the output text (INCLUDE). If no character set is encountered in the INCLUDE parts in the Content-Type header field, then Oracle defaults to the value specified in the character set column in the base table. Name your populated character set column in the parameter string of the CREATE INDEX command.

	
AUTO_FILTER the body contents (AUTO_FILTER directive).

	
remove the body contents from the output text (IGNORE)

	
If no behavior is specified for the type in the configuration file, then the defaults are as follows:

	
text/*: produce body in the output text

	
application/*: AUTO_FILTER the body contents

	
image/*, audio/*, video/*, model/*: ignore

	
Multipart messages are parsed, and the mail filter applied recursively to each part. Each part is appended to the output.

	
All text produced will be charset-converted to the database character set, if needed.

2.3.4.2 About the Mail Filter Configuration File

The MAIL_FILTER filter makes use of a mail filter configuration file, which contains directives specifying how a mail document should be filtered. The mail filter configuration file is a editable text file. Here you can override default behavior for each Content-Type. The configuration file also contains IANA-to-Oracle Globalization Support character set name mappings.

The location of the file must be in ORACLE_HOME/ctx/config. The name of the file to use is stored in the new system parameter MAIL_FILTER_CONFIG_FILE. On install, this is set to drmailfl.txt, which has useful default contents.

Oracle recommends that you create your own mail filter configuration files to avoid overwrite by the installation of a new version or patch set. The mail filter configuration file should be in the database character set.

2.3.4.2.1 Mail File Configuration File Structure

The file has two sections, BEHAVIOR and CHARSETS. Indicate the start of the behavior section as follows:

[behavior]

Each line following starts with a mime type, then whitespace, then behavior specification. The MIME type can be a full TYPE/SUBTYPE or just TYPE, which will apply to all subtypes of that type. TYPE/SUBTYPE specification overrides TYPE specification, which overrides default behavior. Behavior can be INCLUDE, AUTO_FILTER, or IGNORE (see "Filter Behavior" for definitions). For instance:

application/zip IGNORE
application/msword AUTO_FILTER
model IGNORE

You cannot specify behavior for "multipart" or "message" types. If you do, such lines are ignored. Duplicate specification for a type replaces earlier specifications.

Comments can be included in the mail configuration file by starting lines with the # symbol.

The charset mapping section begins with

[charsets]

Lines consist of an IANA name, then whitespace, then an Oracle Globalization Support charset name, like:

US-ASCII US7ASCI
ISO-8859-1 WE8ISO8859P1

This file is the only way the mail filter gets the mappings. There are no defaults.

When you change the configuration file, the changes affect only the documents indexed after that point. You must flush the shared pool after changing the file.

2.3.4.3 Mail_Filter Example

Suppose there is an e-mail with the following form, in which other e-mails with different subject lines are attached to this e-mail:

To: somebody@someplace
Subject: mainheader
Content-Type: multipart/mixed
. . .
Content-Type: text/plain
X-Ref: some_value
Subject: subheader 1
. . .
Content-Type: text/plain
X-Control: blah blah blah
Subject: subheader 2
. . .

Set INDEX_FIELDS to be "Subject" and, initially, PART_FIELD_STYLE to IGNORE.

CTX_DDL.CREATE_PREFERENCE('my_mail_filt', 'mail_filter');
CTX_DDL_SET_ATTRIBUTE(my_mail_filt', 'INDEX_FILES', 'subject');
CTX_DDL.SET ATTRIBUTE ('my_mail_filt', 'PART_FIELD_STYLE', 'ignore');

Now when the index is created, the file will be indexed as follows:

<SUBJECT>mainheader</SUBJECT>

If PART_FIELD_STYLE is instead set to TAG, this becomes:

<SUBJECT>mainheader</SUBJECT>
<SUBJECT>subheader1</SUBJECT>
<SUBJECT>subheader2</SUBJECT>

If PART_FIELD_STYLE is set to FIELD instead, this is the result:

<SUBJECT>mainheader<SUBJECT>
SUBJECT:subheader1
SUBJECT:subheader2

Finally, if PART_FIELD_STYLE is instead set to TEXT, then the result is:

<SUBJECT>mainheader</SUBJECT>
subheader1
subheader2

2.3.5 USER_FILTER

Use the USER_FILTER type to specify an external filter for filtering documents in a column. USER_FILTER has the following attribute:

Table 2-13 USER_FILTER Attribute

	Attribute	Attribute Value
	
command

	
Specify the name of the filter executable.

	
CAUTION:

The USER_FILTER type introduces the potential for security threats. A database user granted the CTXAPP role could potentially use USER_FILTER to load a malicious application. Therefore, the DBA must safeguard against any combination of input and output file parameters that would enable the named filter executable to compromise system security.

	command
	
Specify the executable for the single external filter that is used to filter all text stored in a column. If more than one document format is stored in the column, then the external filter specified for command must recognize and handle all such formats.

The executable that you specify must exist in the $ORACLE_HOME/ctx/bin directory on UNIX, and in the %ORACLE_HOME%/ctx/bin directory on Windows.

You must create your user-filter command with two parameters:

	
The first parameter is the name of the input file to be read.

	
The second parameter is the name of the output file to be written to.

If all the document formats are supported by AUTO_FILTER, then use AUTO_FILTER instead of USER_FILTER, unless additional tasks besides filtering are required for the documents.

2.3.5.1 Using USER_FILTER with Charset and Format Columns

USER_FILTER bypasses documents that do not need to be filtered. Its behavior is sensitive to the values of the format and charset columns. In addition, USER_FILTER performs character set conversion according to the charset column values.

2.3.5.2 Explicitly Bypassing Plain Text or HTML in Mixed Format Columns

A mixed-format column is a text column containing more than one document format, such as a column that contains Microsoft Word, PDF, plain text, and HTML documents.

The USER_FILTER executable can index mixed-format columns, automatically bypassing textual documents. However, if you prefer not to depend on the built-in bypass mechanism, you can explicitly tag your rows as text and cause the USER_FILTER executable to ignore the row and not process the document in any way.

The format column in the base table enables you to specify the type of document contained in the text column. You can specify the following document types: TEXT, BINARY, and IGNORE. During indexing, the USER_FILTER executable ignores any document typed TEXT, assuming the charset column is not specified. (The difference between a document with a TEXT format column type and one with an IGNORE type is that the TEXT document is indexed, but ignored by the filter, while the IGNORE document is not indexed at all. Use IGNORE to overlook documents such as image files, or documents in a language that you do not want to index. IGNORE can be used with any filter type.

To set up the USER_FILTER bypass mechanism, you must create a format column in your base table. For example:

create table hdocs (
 id number primary key,
 fmt varchar2(10),
 text varchar2(80)
);

Assuming you are indexing mostly Word documents, you specify BINARY in the format column to filter the Word documents. Alternatively, to have the USER_FILTER executable ignore an HTML document, specify TEXT in the format column.

For example, the following statements add two documents to the text table, assigning one format as BINARY and the other TEXT:

insert into hdocs values(1, 'binary', '/docs/myword.doc');
insert into hdocs values(2, 'text', '/docs/index.html');
commit;

Assuming that this file is named upcase.pl, create the filter preference as follows:

ctx_ddl.create_preference
 (
 preference_name => 'USER_FILTER_PREF',
 object_name => 'USER_FILTER'
);

ctx_ddl.set_attribute ('USER_FILTER_PREF', 'COMMAND', 'upcase.pl');

To create the index, use CREATE INDEX and specify the format column name in the parameter string:

create index hdocsx on hdocs(text) indextype is ctxsys.context
 parameters ('datastore ctxsys.file_datastore
 filter 'USER_FILTER_PREF'
 format column fmt');

If you do not specify TEXT or BINARY for the format column, BINARY is used.

2.3.5.3 Character Set Conversion with USER_FILTER

The USER_FILTER executable converts documents to the database character set when the document format column is set to TEXT. In this case, the USER_FILTER executable looks at the charset column to determine the document character set.

If the charset column value is not an Oracle Text character set name, the document is passed through without any character set conversion.

If you do specify the charset column and do not specify the format column, the USER_FILTER executable works like the CHARSET_FILTER, except that in this case, there is no Japanese character set auto-detection. See "CHARSET_FILTER" for more information regarding CHARSET_FILTER.

2.3.5.4 User Filter Example

The following example shows a Perl script to be used as the user filter. This script converts the input text file specified in the first argument to uppercase and writes the output to the location specified in the second argument.

#!/usr/local/bin/perl

open(IN, $ARGV[0]);
open(OUT, ">".$ARGV[1]);

while (<IN>)
{
 tr/a-z/A-Z/;
 print OUT;
}

close (IN);
close (OUT);

Assuming that this file is named upcase.pl, create the filter preference as follows:

begin
 ctx_ddl.create_preference
 (
 preference_name => 'USER_FILTER_PREF',
 object_name => 'USER_FILTER'
);
 ctx_ddl.set_attribute
 ('USER_FILTER_PREF','COMMAND','upcase.pl');
end;

Create the index in SQL*Plus as follows:

create index user_filter_idx on user_filter (docs)
 indextype is ctxsys.context
 parameters ('FILTER USER_FILTER_PREF');

2.3.6 PROCEDURE_FILTER

Use the PROCEDURE_FILTER type to filter your documents with a stored procedure. The stored procedure is called each time a document needs to be filtered.

Table 2-14 lists the attributes for PROCEDURE_FILTER.

Table 2-14 PROCEDURE_FILTER Attributes

	Attribute	Purpose	Allowable Values
	
procedure

	
Name of the filter stored procedure.

	
Any procedure. The procedure can be a PL/SQL stored procedure.

	
input_type

	
Type of input argument for stored procedure.

	
VARCHAR2, BLOB, CLOB, FILE

	
output_type

	
Type of output argument for stored procedure.

	
VARCHAR2, CLOB, FILE

	
rowid_parameter

	
Include rowid parameter?

	
TRUE/FALSE

	
format_parameter

	
Include format parameter?

	
TRUE/FALSE

	
charset_parameter

	
Include charset parameter?

	
TRUE/FALSE

	procedure
	
Specify the name of the stored procedure to use for filtering. The procedure can be a PL/SQL stored procedure. The procedure can be a safe callout, or call a safe callout.

With the rowid_parameter, format_parameter, and charset_parameter set to FALSE, the procedure can have one of the following signatures:

PROCEDURE(IN BLOB, IN OUT NOCOPY CLOB)
PROCEDURE(IN CLOB, IN OUT NOCOPY CLOB)
PROCEDURE(IN VARCHAR, IN OUT NOCOPY CLOB)
PROCEDURE(IN BLOB, IN OUT NOCOPY VARCHAR2)
PROCEDURE(IN CLOB, IN OUT NOCOPY VARCHAR2)
PROCEDURE(IN VARCHAR2, IN OUT NOCOPY VARCHAR2)
PROCEDURE(IN BLOB, IN VARCHAR2)
PROCEDURE(IN CLOB, IN VARCHAR2)
PROCEDURE(IN VARCHAR2, IN VARCHAR2)

The first argument is the content of the unfiltered row, output by the datastore. The second argument is for the procedure to pass back the filtered document text.

The procedure attribute is mandatory and has no default.

	input_type
	
Specify the type of the input argument of the filter procedure. You can specify one of the following types:

	Type	Description
	procedure	Name of the filter stored procedure.
	input_type	Type of input argument for stored procedure.
	output_type	Type of output argument for stored procedure.
	rowid_parameter	Include rowid parameter?

The input_type attribute is not mandatory. If not specified, then BLOB is the default.

	output_type
	
Specify the type of output argument of the filter procedure. You can specify one of the following types:

	Type	Description
	CLOB	The output argument is IN OUT NOCOPY CLOB. Your procedure must write the filtered content to the CLOB passed in.
	VARCHAR2	The output argument is IN OUT NOCOPY VARCHAR2. Your procedure must write the filtered content to the VARCHAR2 variable passed in.
	FILE	The output argument must be IN VARCHAR2. On entering the filter procedure, the output argument is the name of a temporary file. The filter procedure must write the filtered contents to this named file.
Using a FILE output type is useful only when the procedure is a safe callout, which can write to the file.

The output_type attribute is not mandatory. If not specified, then CLOB is the default.

	rowid_ parameter
	
When you specify TRUE, the rowid of the document to be filtered is passed as the first parameter, before the input and output parameters.

For example, with INPUT_TYPE BLOB, OUTPUT_TYPE CLOB, and ROWID_PARAMETER TRUE, the filter procedure must have the signature as follows:

procedure(in rowid, in blob, in out nocopy clob)

This attribute is useful for when your procedure requires data from other columns or tables. This attribute is not mandatory. The default is FALSE.

	format_parameter
	
When you specify TRUE, the value of the format column of the document being filtered is passed to the filter procedure before input and output parameters, but after the rowid parameter, if enabled.

Specify the name of the format column at index time in the parameters string, using the keyword 'format column <columnname>'. The parameter type must be IN VARCHAR2.

The format column value can be read by means of the rowid parameter, but this attribute enables a single filter to work on multiple table structures, because the format attribute is abstracted and does not require the knowledge of the name of the table or format column.

FORMAT_PARAMETERis not mandatory. The default is FALSE.

	charset_parameter
	
When you specify TRUE, the value of the charset column of the document being filtered is passed to the filter procedure before input and output parameters, but after the rowid and format parameter, if enabled.

Specify the name of the charset column at index time in the parameters string, using the keyword 'charset column <columnname>'. The parameter type must be IN VARCHAR2.

CHARSET_PARAMETERattribute is not mandatory. The default is FALSE.

2.3.6.1 Parameter Order

ROWID_PARAMETER, FORMAT_PARAMETER, and CHARSET_PARAMETERare all independent. The order is rowid, the format, then charset. However, the filter procedure is passed only the minimum parameters required.

For example, assume that INPUT_TYPE is BLOB and OUTPUT_TYPE is CLOB. If your filter procedure requires all parameters, then the procedure signature must be:

(id IN ROWID, format IN VARCHAR2, charset IN VARCHAR2, input IN BLOB, output IN
OUT NOCOPY CLOB)

If your procedure requires only the ROWID, then the procedure signature must be:

(id IN ROWID,input IN BLOB, ouput IN OUT NOCOPY CLOB)

2.3.6.2 Procedure Filter Execute Requirements

To create an index using a PROCEDURE_FILTER preference, the index owner must have execute permission on the procedure.

2.3.6.3 Error Handling

The filter procedure can raise any errors needed through the normal PL/SQL raise_application_error facility. These errors are propagated to the CTX_USER_INDEX_ERRORS view or reported to the user, depending on how the filter is invoked.

2.3.6.4 Procedure Filter Preference Example

Consider a filter procedure CTXSYS.NORMALIZE that you define with the following signature:

PROCEDURE NORMALIZE(id IN ROWID, charset IN VARCHAR2, input IN CLOB,
output IN OUT NOCOPY VARCHAR2);

To use this procedure as your filter, set up your filter preference as follows:

begin
ctx_ddl.create_preference('myfilt', 'procedure_filter');
ctx_ddl.set_attribute('myfilt', 'procedure', 'normalize');
ctx_ddl.set_attribute('myfilt', 'input_type', 'clob');
ctx_ddl.set_attribute('myfilt', 'output_type', 'varchar2');
ctx_ddl.set_attribute('myfilt', 'rowid_parameter', 'TRUE');
ctx_ddl.set_attribute('myfilt', 'charset_parameter', 'TRUE');
end;

2.4 Lexer Types

Use the lexer preference to specify the language of the text to be indexed. To create a lexer preference, you must use one of the lexer types described in Table 2-15.

Table 2-15 Lexer Types

	Type	Description
	
BASIC_LEXER

	
Lexer for extracting tokens from text in languages, such as English and most western European languages that use white space delimited words.

	
MULTI_LEXER

	
Lexer for indexing tables containing documents of different languages such as English, German, and Japanese.

	
CHINESE_VGRAM_LEXER

	
Lexer for extracting tokens from Chinese text.

	
CHINESE_LEXER

	
Lexer for extracting tokens from Chinese text. This lexer offers benefits over the CHINESE_VGRAM lexer:

	
Generates a smaller index

	
Better query response time

	
Generates real world tokens resulting in better query precision

	
Supports stop words

	
JAPANESE_VGRAM_LEXER

	
Lexer for extracting tokens from Japanese text.

	
JAPANESE_LEXER

	
Lexer for extracting tokens from Japanese text. This lexer offers the following advantages over the JAPANESE_VGRAM lexer:

	
Generates smaller index

	
Better query response time

	
Generates real world tokens resulting in better precision

	
KOREAN_MORPH_LEXER

	
Lexer for extracting tokens from Korean text.

	
USER_LEXER

	
Lexer you create to index a particular language.

	
WORLD_LEXER

	
Lexer for indexing tables containing documents of different languages; autodetects languages in a document.

2.4.1 BASIC_LEXER

Use the BASIC_LEXER type to identify tokens for creating Text indexes for English and all other supported whitespace-delimited languages.

The BASIC_LEXER also enables base-letter conversion, composite word indexing, case-sensitive indexing and alternate spelling for whitespace-delimited languages that have extended character sets.

In English and French, you can use the BASIC_LEXER to enable theme indexing.

	
Note:

Any processing that the lexer does to tokens before indexing (for example, removal of characters, and base-letter conversion) are also performed on query terms at query time. This ensures that the query terms match the form of the tokens in the Text index.

BASIC_LEXER supports any database character set.

BASIC_LEXER has the attributes shown in Table 2-16.

Table 2-16 BASIC_LEXER Attributes

	Attribute	Attribute Value
	
continuation

	
characters

	
numgroup

	
characters

	
numjoin

	
characters

	
printjoins

	
characters

	
punctuations

	
characters

	
skipjoins

	
characters

	
startjoins

	
non alphanumeric characters that occur at the beginning of a token (string)

	
endjoins

	
non alphanumeric characters that occur at the end of a token (string)

	
whitespace

	
characters (string)

	
newline

	
NEWLINE (\n)

CARRIAGE_RETURN (\r)

	
base_letter

	
NO (disabled)

	
	
YES (enabled)

	
base_letter_type

	
GENERIC (default)

	
	
SPECIFIC

	
override_base_letter

	
TRUE

FALSE (default)

	
mixed_case

	
NO (disabled)

	
	
YES (enabled)

	
composite

	
DEFAULT (no composite word indexing, default)

	
	
GERMAN (German composite word indexing)

	
	
DUTCH (Dutch composite word indexing)

	
index_stems

	
0 NONE

1 ENGLISH

2 DERIVATIONAL

3 DUTCH

4 FRENCH

5 GERMAN

6 ITALIAN

7 SPANISH

	
index_themes

	
YES (enabled)

	
	
NO (disabled, default)

	
	
NO (disabled, default)

	
index_text

	
YES (enabled, default

	
	
NO (disabled)

	
prove_themes

	
YES (enabled, default)

	
	
NO (disabled)

	
theme_language

	
AUTO (default)

	
	
(any Globalization Support language)

	
alternate_spelling

	
GERMAN (German alternate spelling)

	
	
DANISH (Danish alternate spelling)

	
	
SWEDISH (Swedish alternate spelling)

	
	
NONE (No alternate spelling, default)

	
new_german_spelling

	
YES

NO (default)

	continuation
	
Specify the characters that indicate a word continues on the next line and should be indexed as a single token. The most common continuation characters are hyphen '-' and backslash '\'.

	numgroup
	
Specify a single character that, when it appears in a string of digits, indicates that the digits are groupings within a larger single unit.

For example, comma ',' might be defined as a numgroup character because it often indicates a grouping of thousands when it appears in a string of digits.

	numjoin
	
Specify the characters that, when they appear in a string of digits, cause Oracle Text to index the string of digits as a single unit or word.

For example, period '.' can be defined as numjoin characters because it often serves as decimal points when it appears in a string of digits.

	
Note:

The default values for numjoin and numgroup are determined by the globalization support initialization parameters that are specified for the database.
In general, a value need not be specified for either numjoin or numgroup when creating a lexer preference for BASIC_LEXER.

	printjoins
	
Specify the non alphanumeric characters that, when they appear anywhere in a word (beginning, middle, or end), are processed as alphanumeric and included with the token in the Text index. This includes printjoins that occur consecutively.

For example, if the hyphen '-' and underscore '_' characters are defined as printjoins, terms such as pseudo-intellectual and _file_ are stored in the Text index as pseudo-intellectual and _file_.

	
Note:

If a printjoins character is also defined as a punctuations character, the character is only processed as an alphanumeric character if the character immediately following it is a standard alphanumeric character or has been defined as a printjoins or skipjoins character.

	punctuations
	
Specify a list of non-alphanumeric characters that, when they appear at the end of a word, indicate the end of a sentence. The defaults are period '.', question mark '?', and exclamation point '!'.

Characters that are defined as punctuations are removed from a token before text indexing. However, if a punctuations character is also defined as a printjoins character, then the character is removed only when it is the last character in the token.

For example, if the period (.) is defined as both a printjoins and a punctuations character, then the following transformations take place during indexing and querying as well:

	Token	Indexed Token
	.doc	.doc
	dog.doc	dog.doc
	dog..doc	dog..doc
	dog.	dog
	dog...	dog..

In addition, BASIC_LEXER use punctuations characters in conjunction with newline and whitespace characters to determine sentence and paragraph delimiters for sentence/paragraph searching.

	skipjoins
	
Specify the non-alphanumeric characters that, when they appear within a word, identify the word as a single token; however, the characters are not stored with the token in the Text index.

For example, if the hyphen character '-' is defined as a skipjoins, then the word pseudo-intellectual is stored in the Text index as pseudointellectual.

	
Note:

Printjoins and skipjoins are mutually exclusive. The same characters cannot be specified for both attributes.

	startjoins/endjoins
	
For startjoins, specify the characters that when encountered as the first character in a token explicitly identify the start of the token. The character, as well as any other startjoins characters that immediately follow it, is included in the Text index entry for the token. In addition, the first startjoins character in a string of startjoins characters implicitly ends the previous token.

For endjoins, specify the characters that when encountered as the last character in a token explicitly identify the end of the token. The character, as well as any other startjoins characters that immediately follow it, is included in the Text index entry for the token.

The following rules apply to both startjoins and endjoins:

	
The characters specified for startjoins/endjoins cannot occur in any of the other attributes for BASIC_LEXER.

	
startjoins/endjoins characters can occur only at the beginning or end of tokens

Printjoins differ from endjoins and startjoins in that position does not matter. For example, $35 will be indexed as one token if $ is a startjoin or a printjoin, but as two tokens if it is defined as an endjoin.

	whitespace
	
Specify the characters that are treated as blank spaces between tokens. BASIC_LEXER uses whitespace characters in conjunction with punctuations and newline characters to identify character strings that serve as sentence delimiters for sentence and paragraph searching.

The predefined default values for whitespace are space and tab. These values cannot be changed. Specifying characters as whitespace characters adds to these defaults.

	newline
	
Specify the characters that indicate the end of a line of text. BASIC_LEXER uses newline characters in conjunction with punctuations and whitespace characters to identify character strings that serve as paragraph delimiters for sentence and paragraph searching.

The only valid values for newline are NEWLINE and CARRIAGE_RETURN (for carriage returns). The default is NEWLINE.

	base_letter
	
Specify whether characters that have diacritical marks (umlauts, cedillas, acute accents, and so on) are converted to their base form before being stored in the Text index. The default is NO (base-letter conversion disabled). For more information on base-letter conversions and base_letter_type, see Base-Letter Conversion.

	base_letter_type
	
Specify GENERIC or SPECIFIC.

The GENERIC value is the default and means that base letter transformation uses one transformation table that applies to all languages. For more information on base-letter conversions and base_letter_type, see "Base-Letter Conversion".

	override_base_letter
	
When base_letter is enabled at the same time as alternate_spelling, it is sometimes necessary to override base_letter to prevent unexpected results from serial transformations. See "Overriding Base-Letter Transformations with Alternate Spelling". Default is FALSE.

	mixed_case
	
Specify whether the lexer leaves the tokens exactly as they appear in the text or converts the tokens to all uppercase. The default is NO (tokens are converted to all uppercase).

	
Note:

Oracle Text ensures that word queries match the case sensitivity of the index being queried. As a result, if you enable case sensitivity for your Text index, queries against the index are always case sensitive.

	composite
	
Specify whether composite word indexing is disabled or enabled for either GERMAN or DUTCH text. The default is DEFAULT (composite word indexing disabled).

Words that are usually one entry in a German dictionary are not split into composite stems, while words that aren't dictionary entries are split into composite stems.

To retrieve the indexed composite stems, you must enter a stem query, such as $bahnhof. The language of the wordlist stemmer must match the language of the composite stems.

2.4.1.1 Stemming User-Dictionaries

You can create a user-dictionary for your own language to customize how words are decomposed. These dictionaries are shown in Table 2-17.

Table 2-17 Stemming User-Dictionaries

	Dictionary	Stemmer
	
$ORACLE_HOME/ctx/data/frlx/drfr.dct

	
French

	
$ORACLE_HOME/ctx/data/delx/drde.dct

	
German

	
$ORACLE_HOME/ctx/data/nllx/drnl.dct

	
Dutch

	
$ORACLE_HOME/ctx/data/itlx/drit.dct

	
Italian

	
$ORACLE_HOME/ctx/data/eslx/dres.dct

	
Spanish

	
$ORACLE_HOME/ctx/data/enlx/dren.dct

	
English and Derivational

Stemming user-dictionaries are not supported for languages other than those listed in Table 2-17.

The format for the user dictionary is as follows:

output term <tab> input term

The individual parts of the decomposed word must be separated by the # character. The following example entries are for the German word Hauptbahnhof:

Hauptbahnhof<tab>Haupt#Bahnhof
Hauptbahnhofes<tab>Haupt#Bahnhof
Hauptbahnhof<tab>Haupt#Bahnhof
Hauptbahnhoefe<tab>Haupt#Bahnhof

	index_themes
	
Specify YES to index theme information in English or French. This makes ABOUT queries more precise. The index_themes and index_text attributes cannot both be NO. The default is YES.

You can set this parameter to TRUE for any index type, including CTXCAT. To enter an ABOUT query with CATSEARCH, use the query template with CONTEXT grammar.

	
Note:

index_themes requires an installed knowledge base. A knowledge base may or may not have been installed with Oracle Text. For more information on knowledge bases, see Oracle Text Application Developer's Guide.

	prove_themes
	
Specify YES to prove themes. Theme proving attempts to find related themes in a document. When no related themes are found, parent themes are eliminated from the document.

While theme proving is acceptable for large documents, short text descriptions with a few words rarely prove parent themes, resulting in poor recall performance with ABOUT queries.

Theme proving results in higher precision and less recall (less rows returned) for ABOUT queries. For higher recall in ABOUT queries and possibly less precision, you can disable theme proving. Default is YES.

The prove_themes attribute is supported for CONTEXT and CTXRULE indexes.

	theme_language
	
Specify which knowledge base to use for theme generation when index_themes is set to YES. When index_themes is NO, setting this parameter has no effect on anything.

Specify any globalization support language or AUTO. You must have a knowledge base for the language you specify. This release provides a knowledge base in only English and French. In other languages, you can create your own knowledge base.

	
See Also:

"Adding a Language-Specific Knowledge Base" in Chapter 14, "Oracle Text Utilities".

The default is AUTO, which instructs the system to set this parameter according to the language of the environment.

	index_stems
	
Specify the stemmer to use for stem indexing. Choose one of the following stemmers:

	
	NONE
	
DERIVATIONAL

	
DUTCH

	
ENGLISH

	
FRENCH

	
	GERMAN
	
ITALIAN

	
NORWEGIAN

	
SPANISH

	
SWEDISH

Tokens are stemmed to a single base form at index time in addition to the normal forms. Indexing stems enables better query performance for stem ($) queries, such as $computed.

	index_text
	
Specify YES to index word information. The index_themes and index_text attributes cannot both be NO.

The default is NO.

	alternate_spelling
	
Specify either GERMAN, DANISH, or SWEDISH to enable the alternate spelling in one of these languages. Enabling alternate spelling enables you to query a word in any of its alternate forms.

Alternate spelling is off by default; however, in the language-specific scripts that Oracle provides in admin/defaults (drdefd.sql for German, drdefdk.sql for Danish, and drdefs.sql for Swedish), alternate spelling is turned on. If your installation uses these scripts, then alternate spelling is on. However, you can specify NONE for no alternate spelling. For more information about the alternate spelling conventions Oracle Text uses, see Alternate Spelling.

	new_german_spelling
	
Specify whether the queries using the BASIC_LEXER return both traditional and reformed (new) spellings of German words. If new_german_spelling is set to YES, then both traditional and new forms of words are indexed. If it is set to NO, then the word will be indexed only as it as provided in the query. The default is NO.

	
See Also:

"New German Spelling"

2.4.1.2 BASIC_LEXER Example

The following example sets printjoin characters and disables theme indexing with the BASIC_LEXER:

begin
ctx_ddl.create_preference('mylex', 'BASIC_LEXER');
ctx_ddl.set_attribute('mylex', 'printjoins', '_-');
ctx_ddl.set_attribute ('mylex', 'index_themes', 'NO');
ctx_ddl.set_attribute ('mylex', 'index_text', 'YES');
end;

To create the index with no theme indexing and with printjoin characters set as described, enter the following statement:

create index myindex on mytable (docs)
 indextype is ctxsys.context
 parameters ('LEXER mylex');

2.4.2 MULTI_LEXER

Use MULTI_LEXER to index text columns that contain documents of different languages. For example, use this lexer to index a text column that stores English, German, and Japanese documents.

This lexer has no attributes.

You must have a language column in your base table. To index multi-language tables, specify the language column when you create the index.

Create a multi-lexer preference with CTX_DDL.CREATE_PREFERENCE. Add language-specific lexers to the multi-lexer preference with the CTX_DDL.ADD_SUB_LEXER procedure.

During indexing, the MULTI_LEXER examines each row's language column value and switches in the language-specific lexer to process the document.

The WORLD_LEXER lexer also performs multi-language indexing, but without the need for separate language columns (that is, it has automatic language detection). For more on WORLD_LEXER, see "WORLD_LEXER".

2.4.2.1 Multi-language Stoplists

When you use the MULTI_LEXER, you can also use a multi-language stoplist for indexing.

	
See Also:

"Multi-Language Stoplists".

2.4.2.2 MULTI_LEXER Example

Create the multi-language table with a primary key, a text column, and a language column as follows:

create table globaldoc (
 doc_id number primary key,
 lang varchar2(3),
 text clob
);

Assume that the table holds mostly English documents, with the occasional German or Japanese document. To handle the three languages, you must create three sub-lexers, one for English, one for German, and one for Japanese:

ctx_ddl.create_preference('english_lexer','basic_lexer');
ctx_ddl.set_attribute('english_lexer','index_themes','yes');
ctx_ddl.set_attribute('english_lexer','theme_language','english');

ctx_ddl.create_preference('german_lexer','basic_lexer');
ctx_ddl.set_attribute('german_lexer','composite','german');
ctx_ddl.set_attribute('german_lexer','mixed_case','yes');
ctx_ddl.set_attribute('german_lexer','alternate_spelling','german');

ctx_ddl.create_preference('japanese_lexer','japanese_vgram_lexer');

Create the multi-lexer preference:

ctx_ddl.create_preference('global_lexer', 'multi_lexer');

Because the stored documents are mostly English, make the English lexer the default using CTX_DDL.ADD_SUB_LEXER:

ctx_ddl.add_sub_lexer('global_lexer','default','english_lexer');

Now add the German and Japanese lexers in their respective languages with CTX_DDL.ADD_SUB_LEXER procedure. Also assume that the language column is expressed in the standard ISO 639-2 language codes, so add those as alternative values.

ctx_ddl.add_sub_lexer('global_lexer','german','german_lexer','ger');
ctx_ddl.add_sub_lexer('global_lexer','japanese','japanese_lexer','jpn');

Now create the index globalx, specifying the multi-lexer preference and the language column in the parameter clause as follows:

create index globalx on globaldoc(text) indextype is ctxsys.context
parameters ('lexer global_lexer language column lang');

2.4.2.3 Querying Multi-Language Tables

At query time, the multi-lexer examines the language setting and uses the sub-lexer preference for that language to parse the query.

If the language is not set, then the default lexer is used. Otherwise, the query is parsed and run as usual. The index contains tokens from multiple languages, so such a query can return documents in several languages. To limit your query to a given language, use a structured clause on the language column.

2.4.3 CHINESE_VGRAM_LEXER

The CHINESE_VGRAM_LEXER type identifies tokens in Chinese text for creating Text indexes.

2.4.3.1 CHINESE_VGRAM_LEXER Attribute

The CHINESE_VGRAM_LEXER has the following attribute:

Table 2-18 CHINESE_VGRAM_LEXER Attributes

	Attribute	Attribute Value
	
mixed_case_ASCII7

	
Enable mixed-case (upper- and lower-case) searches of ASCII7 text (for example, cat and Cat). Allowable values are YES and NO (default).

2.4.3.2 Character Sets

You can use this lexer if your database uses one of the following character sets:

	
AL32UTF8

	
ZHS16CGB231280

	
ZHS16GBK

	
ZHS32GB18030

	
ZHT32EUC

	
ZHT16BIG5

	
ZHT32TRIS

	
ZHT16HKSCS

	
ZHT16MSWIN950

	
UTF8

2.4.4 CHINESE_LEXER

The CHINESE_LEXER type identifies tokens in traditional and simplified Chinese text for creating Oracle Text indexes.

This lexer offers the following benefits over the CHINESE_VGRAM_LEXER:

	
generates a smaller index

	
better query response time

	
generates real word tokens resulting in better query precision

	
supports stop words

Because the CHINESE_LEXER uses a different algorithm to generate tokens, indexing time is longer than with CHINESE_VGRAM_LEXER.

You can use this lexer if your database character is one of the Chinese or Unicode character sets supported by Oracle.

2.4.4.1 CHINESE_LEXER Attribute

The CHINESE_LEXER has the following attribute:

Table 2-19 CHINESE_LEXER Attributes

	Attribute	Attribute Value
	
mixed_case_ASCII7

	
Enable mixed-case (upper- and lower-case) searches of ASCII7 text (for example, cat and Cat). Allowable values are YES and NO (default).

2.4.4.2 Customizing the Chinese Lexicon

You can modify the existing lexicon (dictionary) used by the Chinese lexer, or create your own Chinese lexicon, with the ctxlc command.

	
See Also:

"Lexical Compiler (ctxlc)" in Chapter 14, "Oracle Text Utilities"

2.4.5 JAPANESE_VGRAM_LEXER

The JAPANESE_VGRAM_LEXER type identifies tokens in Japanese for creating Text indexes. This lexer supports the stem ($) operator.

2.4.5.1 JAPANESE_VGRAM_LEXER Attributes

This lexer has the following attributes:

Table 2-20 JAPANESE_VGRAM_LEXER Attributes

	Attribute	Attribute Value
	
delimiter

	
Specify whether to consider certain Japanese blank characters, such as a full-width forward slash or a full-width middle dot. ALL considers these characters, while NONE ignores them. Default is NONE.

	
mixed_case_ASCII7

	
Enable mixed-case (upper- and lower-case) searches of ASCII7 text (for example, cat and Cat). Allowable values are YES and NO (default).

2.4.5.2 JAPANESE_VGRAM_LEXER Character Sets

You can use this lexer if your database uses one of the following character sets:

	
JA16SJIS

	
JA16EUC

	
UTF8

	
AL32UTF8

	
JA16EUCTILDE

	
JA16EUCYEN

	
JA16SJISTILDE

	
JA16SJISYEN

2.4.6 JAPANESE_LEXER

The JAPANESE_LEXER type identifies tokens in Japanese for creating Text indexes. This lexer supports the stem ($) operator.

This lexer offers the following benefits over the JAPANESE_VGRAM_LEXER:

	
generates a smaller index

	
better query response time

	
generates real word tokens resulting in better query precision

Because the JAPANESE_LEXER uses a new algorithm to generate tokens, indexing time is longer than with JAPANESE_VGRAM_LEXER.

2.4.6.1 Customizing the Japanese Lexicon

You can modify the existing lexicon (dictionary) used by the Japanese lexer, or create your own Japanese lexicon, with the ctxlc command.

	
See Also:

"Lexical Compiler (ctxlc)" in Chapter 14, "Oracle Text Utilities"

2.4.6.2 JAPANESE_LEXER Attributes

This lexer has the following attributes:

Table 2-21 JAPANESE_LEXER Attributes

	Attribute	Attribute Value
	
delimiter

	
Specify NONE or ALL to ignore certain Japanese blank characters, such as a full-width forward slash or a full-width middle dot. Default is NONE.

	
mixed_case_ASCII7

	
Enable mixed-case (upper- and lower-case) searches of ASCII7 text (for example, cat and Cat). Allowable values are YES and NO (default).

2.4.6.3 JAPANESE LEXER Character Sets

The JAPANESE_LEXER supports the following character sets:

	
JA16SJIS

	
JA16EUC

	
UTF8

	
AL32UTF8

	
JA16EUCTILDE

	
JA16EUCYEN

	
JA16SJISTILDE

	
JA16SJISYEN

2.4.6.4 Japanese Lexer Example

When you specify JAPANESE_LEXER for creating text index, the JAPANESE_LEXER resolves a sentence into words.

For example, the following compound word (natural language institute)

[image: Description of nihongo1.gif follows]

is indexed as three tokens:

[image: Description of nihongo2.gif follows]

To resolve a sentence into words, the internal dictionary is referenced. When a word cannot be found in the internal dictionary, Oracle Text uses the JAPANESE_VGRAM_LEXER to resolve it.

2.4.7 KOREAN_MORPH_LEXER

The KOREAN_MORPH_LEXER type identifies tokens in Korean text for creating Oracle Text indexes.

2.4.7.1 Supplied Dictionaries

The KOREAN_MORPH_LEXER uses four dictionaries:

Table 2-22 KOREAN_MORPH_LEXER Dictionaries

	Dictionary	File
	
System

	
$ORACLE_HOME/ctx/data/kolx/drk2sdic.dat

	
Grammar

	
$ORACLE_HOME/ctx/data/kolx/drk2gram.dat

	
Stopword

	
$ORACLE_HOME/ctx/data/kolx/drk2xdic.dat

	
User-defined

	
$ORACLE_HOME/ctx/data/kolx/drk2udic.dat

The grammar, user-defined, and stopword dictionaries should be written using the KSC 5601 or MSWIN949 character sets. You can modify these dictionaries using the defined rules. The system dictionary must not be modified.

You can add unregistered words to the user-defined dictionary file. The rules for specifying new words are in the file.

2.4.7.2 Supported Character Sets

You can use KOREAN_MORPH_LEXER if your database uses one of the following character sets:

	
KO16KSC5601

	
KO16MSWIN949

	
UTF8

	
AL32UTF8

The KOREAN_MORPH_LEXER enables mixed-case searches.

2.4.7.3 Unicode Support

The KOREAN_MORPH_LEXER supports:

	
Words in non-KSC5601 Korean characters defined in Unicode

	
Supplementary characters

	
See Also:

For information on supplementary characters, see the Oracle Database Globalization Support Guide

Some Korean documents may have non-KSC5601 characters in them. As the KOREAN_MORPH_LEXER can recognize all possible 11,172 Korean (Hangul) characters, such documents can also be interpreted by using the UTF8 or AL32UTF8 character sets.

Use the AL32UTF8 character set for your database to extract surrogate characters. By default, the KOREAN_MORPH_LEXER extracts all series of surrogate characters in a document as one token for each series.

2.4.7.3.1 Limitations on Korean Unicode Support

For conversion Hanja to Hangul (Korean), the KOREAN_MORPH_LEXER supports only the 4888 Hanja characters defined in KSC5601.

2.4.7.4 KOREAN_MORPH_LEXER Attributes

When you use the KOREAN_MORPH_LEXER, you can specify the following attributes:

Table 2-23 KOREAN_MORPH_LEXER Attributes

	Attribute	Attribute Value
	
verb_adjective

	
Specify TRUE or FALSE to index verbs, adjectives, and adverbs. Default is FALSE.

	
one_char_word

	
Specify TRUE or FALSE to index one syllable. Default is FALSE.

	
number

	
Specify TRUE or FALSE to index number. Default is FALSE.

	
user_dic

	
Specify TRUE or FALSE to index user dictionary. Default is TRUE.

	
stop_dic

	
Specify TRUE of FALSE to use stop-word dictionary. Default is TRUE. The stop-word dictionary belongs to KOREAN_MORPH_LEXER.

	
composite

	
Specify indexing style of composite noun.

Specify COMPOSITE_ONLY to index only composite nouns.

Specify NGRAM to index all noun components of a composite noun.

Specify COMPONENT_WORD to index single noun components of composite nouns as well as the composite noun itself. Default is COMPONENT_WORD.

The following example describes the difference between NGRAM and COMPONENT_WORD.

	
morpheme

	
Specify TRUE or FALSE for morphological analysis. If set to FALSE, tokens are created from the words that are divided by delimiters such as white space in the document. Default is TRUE.

	
to_upper

	
Specify TRUE or FALSE to convert English to uppercase. Default is TRUE.

	
hanja

	
Specify TRUE to index hanja characters. If set to FALSE, hanja characters are converted to hangul characters. Default is FALSE.

	
long_word

	
Specify TRUE to index long words that have more than 16 syllables in Korean. Default is FALSE.

	
japanese

	
Specify TRUE to index Japanese characters in Unicode (only in the 2-byte area). Default is FALSE.

	
english

	
Specify TRUE to index alphanumeric strings. Default is TRUE.

2.4.7.5 Limitations

Sentence and paragraph sections are not supported with the KOREAN_MORPH_LEXER.

2.4.7.6 KOREAN_MORPH_LEXER Example: Setting Composite Attribute

Use the composite attribute to control how composite nouns are indexed.

2.4.7.6.1 NGRAM Example

When you specify NGRAM for the composite attribute, composite nouns are indexed with all possible component tokens. For example, the following composite noun (information processing instituteCTX_DDL Package

7 CTX_DDL Package

This chapter provides reference information for using the CTX_DDL PL/SQL package to create and manage the preferences, section groups, and stoplists required for Text indexes.

CTX_DDL contains the following stored procedures and functions:

	Name	Description
	ADD_ATTR_SECTION
	Adds an attribute section to an XML section group.
	ADD_FIELD_SECTION
	Creates a field section and assigns it to the specified section group.
	ADD_INDEX
	Adds an index to a catalog index preference.
	ADD_MDATA
	Changes the MDATA value of a document.
	ADD_MDATA_COLUMN
	Maps a FILTER BY column to the specified MDATA section.
	ADD_MDATA_SECTION
	Adds an MDATA metadata section to a document.
	ADD_NDATA_SECTION
	Adds an NDATA section to a document.
	ADD_SDATA_COLUMN
	Maps a FILTER BY column to the specified SDATA section.
	ADD_SDATA_SECTION
	Adds an SDATA structured data section to a document.
	ADD_SPECIAL_SECTION
	Adds a special section to a section group.
	ADD_STOPCLASS
	Adds a stopclass to a stoplist.
	ADD_STOP_SECTION
	Adds a stop section to an automatic section group.
	ADD_STOPTHEME
	Adds a stoptheme to a stoplist.
	ADD_STOPWORD
	Adds a stopword to a stoplist.
	ADD_SUB_LEXER
	Adds a sub-lexer to a multi-lexer preference.
	ADD_ZONE_SECTION
	Creates a zone section and adds it to the specified section group.
	COPY_POLICY
	Creates a copy of a policy.
	CREATE_INDEX_SET
	Creates an index set for CTXCAT index types.
	CREATE_POLICY
	Creates a policy to use with ORA:CONTAINS().
	CREATE_PREFERENCE
	Creates a preference in the Text data dictionary.
	CREATE_SECTION_GROUP
	Creates a section group in the Text data dictionary.
	CREATE_SHADOW_INDEX
	Creates a policy for the passed-in index. For non-partitioned index, also creates an index table.
	CREATE_STOPLIST
	Creates a stoplist.
	DROP_INDEX_SET
	Drops an index set.
	DROP_POLICY
	Drops a policy.
	DROP_PREFERENCE
	Deletes a preference from the Text data dictionary.
	DROP_SECTION_GROUP
	Deletes a section group from the Text data dictionary.
	DROP_SHADOW_INDEX
	Drops a shadow index.
	DROP_STOPLIST
	Drops a stoplist.
	EXCHANGE_SHADOW_INDEX
	Swaps the shadow index metadata and data.
	OPTIMIZE_INDEX
	Optimizes the index.
	POPULATE_PENDING
	Populates the pending queue with every rowid in the base table or table partition.
	RECREATE_INDEX_ONLINE
	Recreates the passed-in index.
	REMOVE_INDEX
	Removes an index from a CTXCAT index preference.
	REMOVE_MDATA
	Removes MDATA values from a document.
	REMOVE_SECTION
	Deletes a section from a section group.
	REMOVE_STOPCLASS
	Deletes a stopclass from a stoplist.
	REMOVE_STOPTHEME
	Deletes a stoptheme from a stoplist.
	REMOVE_STOPWORD
	Deletes a stopword from a stoplist.
	REMOVE_SUB_LEXER
	Deletes a sub-lexer from a multi-lexer preference.
	REPLACE_INDEX_METADATA
	Replaces metadata for local domain indexes.
	SET_ATTRIBUTE
	Sets a preference attribute.
	SYNC_INDEX
	Synchronizes the index.
	UNSET_ATTRIBUTE
	Removes a set attribute from a preference.
	UPDATE_POLICY
	Updates a policy.

ADD_ATTR_SECTION

Adds an attribute section to an XML section group. This procedure is useful for defining attributes in XML documents as sections. This enables you to search XML attribute text with the WITHIN operator.

	
Note:

When you use AUTO_SECTION_GROUP, attribute sections are created automatically. Attribute sections created automatically are named in the form tag@attribute.

Syntax

CTX_DDL.ADD_ATTR_SECTION(
 group_name in varchar2,
 section_name in varchar2,
 tag in varchar2);

	group_name
	
Specify the name of the XML section group. You can add attribute sections only to XML section groups.

	section_name
	
Specify the name of the attribute section. This is the name used for WITHIN queries on the attribute text.

The section name you specify cannot contain the colon (:), comma (,), or dot (.) characters. The section name must also be unique within group_name. Section names are case-insensitive.

Attribute section names can be no more than 64 bytes long.

	tag
	
Specify the name of the attribute in tag@attr form. This parameter is case-sensitive.

Examples

Consider an XML file that defines the BOOK tag with a TITLE attribute as follows:

<BOOK TITLE="Tale of Two Cities">
 It was the best of times.
</BOOK>

To define the title attribute as an attribute section, create an XML_SECTION_GROUP and define the attribute section as follows:

begin
ctx_ddl.create_section_group('myxmlgroup', 'XML_SECTION_GROUP');
ctx_ddl.add_attr_section('myxmlgroup', 'booktitle', 'BOOK@TITLE');
end;

When you define the TITLE attribute section as such and index the document set, you can query the XML attribute text as follows:

'Cities within booktitle'

ADD_FIELD_SECTION

Creates a field section and adds the section to an existing section group. This enables field section searching with the WITHIN operator.

Field sections are delimited by start and end tags. By default, the text within field sections are indexed as a sub-document separate from the rest of the document.

Unlike zone sections, field sections cannot nest or overlap. As such, field sections are best suited for non-repeating, non-overlapping sections such as TITLE and AUTHOR markup in e-mail- or news-type documents.

Because of how field sections are indexed, WITHIN queries on field sections are usually faster than WITHIN queries on zone sections.

Syntax

CTX_DDL.ADD_FIELD_SECTION(
 group_name in varchar2,
 section_name in varchar2,
 tag in varchar2,
 visible in boolean default FALSE
);

	group_name
	
Specify the name of the section group to which section_name is added. You can add up to 64 field sections to a single section group. Within the same group, section zone names and section field names cannot be the same.

	section_name
	
Specify the name of the section to add to the group_name. Use this name to identify the section in queries. Avoid using names that contain non-alphanumeric characters such as _, because these characters must be escaped in queries. Section names are case-insensitive.

Within the same group, zone section names and field section names cannot be the same. The terms Paragraph and Sentence are reserved for special sections.

Section names need not be unique across tags. You can assign the same section name to more than one tag, which makes details transparent to searches.

	tag
	
Specify the tag that marks the start of a section. For example, if the tag is <H1>, then specify H1. The start tag you specify must be unique within a section group.

If group_name is an HTML_SECTION_GROUP, then you can create field sections for the META tag's NAME/CONTENT attribute pairs. To do so, specify tag as meta@namevalue where namevalue is the value of the NAME attribute whose CONTENT attribute is to be indexed as a section. Refer to the example "Creating Sections for <META> Tags".

Oracle Text knows what the end tags look like from the group_type parameter you specify when you create the section group.

	visible
	
Specify TRUE to make the text visible within the rest of the document.

By default the visible flag is FALSE. This means that Oracle Text indexes the text within field sections as a sub-document separate from the rest of the document. However, you can set the visible flag to TRUE if you want text within the field section to be indexed as part of the enclosing document.

Examples

Visible and Invisible Field Sections

The following example defines a section group basicgroup of the BASIC_SECTION_GROUP type. It then creates a field section in basicgroup called Author for the <A> tag. It also sets the visible flag to FALSE:

begin

ctx_ddl.create_section_group('basicgroup', 'BASIC_SECTION_GROUP');
ctx_ddl.add_field_section('basicgroup', 'Author', 'A', FALSE);

end;

Because the Author field section is not visible, to find text within the Author section, you must use the WITHIN operator as follows:

'(Martin Luther King) WITHIN Author'

A query of Martin Luther King without the WITHIN operator does not return instances of this term in field sections. To query text within field sections without specifying WITHIN, you must set the visible flag to TRUE when you create the section as follows:

begin
ctx_ddl.add_field_section('basicgroup', 'Author', 'A', TRUE);
end;

Creating Sections for <META> Tags

When you use the HTML_SECTION_GROUP, you can create sections for META tags.

Consider an HTML document that has a META tag as follows:

<META NAME="author" CONTENT="ken">

To create a field section that indexes the CONTENT attribute for the <META NAME="author"> tag:

begin
ctx_ddl.create_section_group('myhtmlgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_field_section('myhtmlgroup', 'author', 'META@AUTHOR');
end

After indexing with section group mygroup, query the document as follows:

'ken WITHIN author'

Limitations

Nested Sections

Field sections cannot be nested. For example, if you define a field section to start with <TITLE> and define another field section to start with <FOO>, the two sections cannot be nested as follows:

<TITLE> dog <FOO> cat </FOO> </TITLE>

To work with nested section define them as zone sections.

Repeated Sections

Repeated field sections are allowed, but WITHIN queries treat them as a single section. The following is an example of repeated field section in a document:

<TITLE> cat </TITLE>
<TITLE> dog </TITLE>

The query (dog and cat) within title returns the document, even though these words occur in different sections.

To have WITHIN queries distinguish repeated sections, define them as zone sections.

Related Topics

"WITHIN"

"Section Group Types"

"CREATE_SECTION_GROUP"

"ADD_ZONE_SECTION"

"ADD_SPECIAL_SECTION"

"REMOVE_SECTION"

"DROP_SECTION_GROUP"

ADD_INDEX

Use this procedure to add a sub-index to a catalog index preference. Create this preference by naming one or more columns in the base table.

Because you create sub-indexes to improve the response time of structured queries, the column you add should be used in the structured_query clause of the CATSEARCH operator at query time.

Syntax

CTX_DDL.ADD_INDEX(set_name in varchar2,

column_list varchar2,
storage_clause varchar2);

	set_name
	
Specify the name of the index set.

	column_list
	
Specify a comma separated list of columns to index. At index time, any column listed here cannot have a NULL value in any row in the base table. If any row is NULL during indexing, then an error is raised.

Always ensure that your columns have non-NULL values before and after indexing.

	storage_clause
	
Specify a storage clause.

Example

Consider a table called AUCTION with the following schema:

create table auction(

item_id number,
title varchar2(100),
category_id number,
price number,
bid_close date);

Assume that queries on the table involve a mandatory text query clause and optional structured conditions on category_id. Results must be sorted based on bid_close.

You can create a catalog index to support the different types of structured queries a user might enter.

To create the indexes, first create the index set preference then add the required indexes to it:

begin
 ctx_ddl.create_index_set('auction_iset');
 ctx_ddl.add_index('auction_iset','bid_close');
 ctx_ddl.add_index('auction_iset','category_id, bid_close');
end;

Create the combined catalog index with CREATE INDEX as follows:

create index auction_titlex on AUCTION(title) indextype is CTXCAT parameters
('index set auction_iset');

Querying

To query the title column for the word pokemon, enter regular and mixed queries as follows:

select * from AUCTION where CATSEARCH(title, 'pokemon',NULL)> 0;
select * from AUCTION where CATSEARCH(title, 'pokemon', 'category_id=99 order by
bid_close desc')> 0;

Notes

VARCHAR2 columns in the column list of a CTXCAT index of an index set cannot exceed 30 bytes.

Related Topic

"REMOVE_INDEX"

ADD_MDATA

Use this procedure to change the metadata of a document that has been specified as an MDATA section. After this call, MDATA queries involving the named MDATA value will find documents with the given MDATA value.

There are two versions of CTX_DDL.ADD_MDATA: one for adding a single metadata value to a single rowid, and one for handing multiple values, multiple rowids, or both.

CTX_DDL.ADD_MDATA is transactional; it takes effect immediately in the calling session, can be seen only in the calling session, can be reversed with a ROLLBACK command, and must be committed to take permanent effect.

Use CTX_DDL.REMOVE_MDATA to remove metadata values from already-indexed documents. Only the owner of the index is allowed to call ADD_MDATA and REMOVE_MDATA.

Syntax

This is the syntax for adding a single value to a single rowid:

CTX_DDL.ADD_MDATA(
 idx_name IN VARCHAR2,
 section_name IN VARCHAR2,
 mdata_value IN VARCHAR2,
 mdata_rowid IN VARCHAR2,
 [part_name] IN VARCHAR2]
);

	idx_name
	
Name of the text index that contains the named rowid.

	section_name
	
Name of the MDATA section.

	mdata_value
	
The metadata value to add to the document.

	mdata_rowid
	
The rowid to which to add the metadata value.

	[part_name]
	
Name of the index partition, if any. Must be provided for local partitioned indexes and must be NULL for global, non-partitioned indexes.

This is the syntax for handling multiple values, multiple rowids, or both. This version is more efficient for large numbers of new values or rowids.

CTX_DDL.ADD_MDATA(
 idx_name IN VARCHAR2,
 section_name IN VARCHAR2,
 mdata_values SYS.ODCIVARCHAR2LIST,
 mdata_rowids SYS.ODCIRIDLIST,
 [part_name] IN VARCHAR2]
);

	idx_name
	
Name of the text index that contains the named rowids.

	section_name
	
Name of the MDATA section.

	mdata_values
	
List of metadata values. If a metadata value contains a comma, the comma must be escaped with a backslash.

	mdata_rowids
	
The rowids to which to add the metadata values.

	[part_name]
	
Name of the index partition, if any. Must be provided for local partitioned indexes and must be NULL for global, non-partitioned indexes.

Example

This example updates a single value:

select rowid from mytab where contains(text, 'MDATA(sec, value')>0;
No rows returned
exec ctx_ddl.add_mdata('my_index', 'sec', 'value', 'ABC');
select rowid from mytab where contains(text, 'MDATA(sec, value')>0;
ROWID

ABC

This example updates multiple values:

begin
ctx_ddl.add_mdata('my_index', 'sec',
 sys.odcivarchar2list('value1','value2','value3'),
 sys.odciridlist('ABC','DEF'));
end;

This is equivalent to:

begin
ctx_ddl.add_mdata('my_index', 'sec', 'value1', 'ABC');
ctx_ddl.add_mdata('my_index', 'sec', 'value1', 'DEF');
ctx_ddl.add_mdata('my_index', 'sec', 'value2', 'ABC');
ctx_ddl.add_mdata('my_index', 'sec', 'value2', 'DEF');
ctx_ddl.add_mdata('my_index', 'sec', 'value3', 'ABC');
ctx_ddl.add_mdata('my_index', 'sec', 'value3', 'DEF');
end;

Notes

If a rowid is not yet indexed, CTX_DDL.ADD.MDATA completes without error, but an error is logged in CTX_USER_INDEX_ERRORS.

These updates are updates directly on the index itself, not on the actual contents stored in the base table. Therefore, they will not survive when the Text index is rebuilt.

Related Topics

See also "ADD_MDATA_SECTION"; "REMOVE_MDATA"; "MDATA"; as well as the Section Searching chapter of the Oracle Text Application Developer's Guide.

ADD_MDATA_COLUMN

Use this procedure to map the FILTER BY column named in column_name to the MDATA section named in section_name.

Syntax

The syntax is as follows:

CTX_DDL.ADD_MDATA_COLUMN(
 group_name IN VARCHAR2,
 section_name IN VARCHAR2,
 column_name IN VARCHAR2,
);

	group_name
	
Name of the group that contains the section.

	section_name
	
Name of the MDATA section.

	column_name
	
Name of the FILTER BY column to add to the MDATA section.

Restrictions

MDATA sections that are created with CTX_DDL.ADD_MDATA_COLUMN cannot have their values changed using CTX_DDL.ADD_MDATA or CTX_DDL.REMOVE_MDATA. Doing so will result in errors being returned. The section values must be updated using SQL.

Notes

	
The stored datatype for MDATA sections is text. Therefore, the value of the FILTER BY column is converted to text during indexing. For non-text datatypes, the FILTER BY columns are normalized to an internal format during indexing. If the section is queried with an MDATA operator, then the MDATA query string will also be normalized to the internal format before processing.

	
When a FILTER BY column is mapped as MDATA, the cost-based optimizer in Oracle Text tries to avoid using the Oracle Text composite domain index to process range predicate(s) on that FILTER BY column. This is because range predicates on MDATA FILTER BY columns are processed less efficiently than if they were declared as SDATA. For this reason, you should not add a FILTER BY column as MDATA if you plan to do range searches on the column.

Related Topics

"MDATA"

"ADD_MDATA_SECTION"

"REMOVE_MDATA"

"ADD_SDATA_COLUMN"

	
See Also:

Chapter 8, "Searching Document Sections in Oracle Text" in Oracle Text Application Developer's Guide

ADD_MDATA_SECTION

Use this procedure to add an MDATA section, with an accompanying value, to an existing section group. MDATA sections cannot be added to Null Section groups, Path Section groups, or Auto Section groups.

Section values undergo a simplified normalization:

	
Leading and trailing whitespace on the value is removed.

	
The value is truncated to 64 bytes.

	
The value is indexed as a single value; if the value consists of multiple words, it is not broken up.

	
Case is preserved. If the document is dynamically generated, then implement case-insensitivity by uppercasing MDATA values and making sure to search only in uppercase.

Use CTX_DDL.REMOVE_SECTION to remove sections.

Syntax

CTX_DDL.ADD_MDATA_SECTION(
 group_name IN VARCHAR2,
 section_name IN VARCHAR2,
 tag IN VARCHAR2,
);

	group_name
	
Name of the section group that will contain the MDATA section.

	section_name
	
Name of the MDATA section.

	tag
	
The value of the MDATA section. For example, if the section is <AUTHOR>, the value could be Cynthia Kadohata (author of the novel The Floating World). More than one tag can be assigned to a given MDATA section.

Example

This example creates an MDATA section called auth.

ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_mdata_section('htmgroup', 'auth', 'author');

Related Topics

"ADD_MDATA"

"REMOVE_MDATA"

"MDATA"

"CREATE_SECTION_GROUP"

The Section Searching chapter of the Oracle Text Application Developer's Guide

ADD_NDATA_SECTION

Use this procedure to find matches that are spelled in a similar way. The value of an NDATA section is extracted from the document text like other sections, but is indexed as name data. NDATA sections are stored in the CTX_USER_SECTIONS view.

Syntax

CTX_DDL.ADD_NDATA_SECTION (
 group_name IN VARCHAR2,
 section_name IN VARCHAR2,
 tag IN VARCHAR2);

	group_name
	
Name of the group that contains the section.

	section_name
	
Name of the NDATA section.

	tag
	
Name of the tag that marks the start of a section. For example, if the tag is <H1>, specify H1. The start tag you specify must be unique within a section group.

Notes

NDATA sections support both single and multi-byte data, however, there are character- and term-based limitations. NDATA section data that is indexed is constrained as follows:

	
number of characters in a single, white space delimited term

511

	
number of white space delimited terms

255

	
total number of characters, including white spaces

511

NDATA section data that exceeds these constraints are truncated.

Example

The following example defines a section group namegroup of the BASIC_SECTION_GROUP type. It then creates an NDATA section in namegroup called firstname.

begin
 ctx_ddl.create_section_group('namegroup', 'BASIC_SECTION_GROUP');
 ctx_ddl.add_ndata_section('namegroup', 'firstname', 'fname1');
end;

ADD_SDATA_COLUMN

Use this procedure to map the FILTER BY or ORDER BY column named in column_name to the SDATA section named in section_name. By default, all FILTER BY columns are mapped as SDATA.

Syntax

The syntax is as follows:

CTX_DDL.ADD_SDATA_COLUMN(
 group_name IN VARCHAR2,
 section_name IN VARCHAR2,
 column_name IN VARCHAR2,
);

	group_name
	
Name of the group that contains the section.

	section_name
	
Name of the SDATA section.

	column_name
	
Name of the FILTER BY column to add to the SDATA section.

Notes

	
Mapping FILTER BY columns to sections is optional. If no section mapping exists for a FILTER BY column, then it is mapped to an SDATA section, and the section name will be the name of the FILTER BY column.

	
If a section group is not specified during CREATE INDEX of a composite domain index, then system default section group settings will be used, and a SDATA section will be created for each of the FILTER BY and ORDER BY columns.

	
Note:

Because section name does not allow certain special characters and is case insensitive, if the column name is case sensitive or contains special characters, then an error will be raised. To work around this problem, you need to map the column to an MDATA or SDATA section before creating the index. Refer to CTX_DDL.ADD_MDATA_COLUMN or CTX_DDL.ADD_SDATA_COLUMN in this chapter.

	
An error will be raised if a column mapped to MDATA also appears in the ORDER BY column clause.

	
Column section names are unique to their section group. That is, you cannot have an MDATA column section named FOO if you already have an MDATA column section named FOO. Furthermore, you cannot have a field section named FOO if you already have an SDATA column section named FOO. This is true whether it is implicitly created (by CREATE INDEX for FILTER BY or ORDER BY clauses) or explicitly created (by CTX_DDL.ADD_SDATA_COLUMN).

	
One section name can only be mapped to one FILTER BY column, and vice versa. For example, mapping a section to more than one column or mapping a column to more than one section is not allowed.

	
Column sections can be added to any type of section group, including the NULL section group.

	
32 is the maximum number for SDATA sections and columns.

Related Topics

"SDATA"

"ADD_SDATA_SECTION"

	
See Also:

Chapter 8, "Searching Document Sections in Oracle Text" in Oracle Text Application Developer's Guide

ADD_SDATA_SECTION

This procedure adds an SDATA section to a section group. By default, all FILTER BY columns are mapped as SDATA.

Syntax

The syntax is as follows:

CTX_DDL.ADD_SDATA_SECTION(
 group_name IN VARCHAR2,
 section_name IN VARCHAR2,
 tag IN VARCHAR2,
 datatype IN VARCHAR2, default NULL,
);

	group_name
	
Name of the group that contains the section.

	section_name
	
Name of the SDATA section.

	tag
	
Name of the tag to add to the SDATA section.

	datatype
	
Specifies the stored format for the data, as well as the semantics of comparison in later use in SDATA operators. The default is VARCHAR2, but if specified must be one of the following values:

	
VARCHAR2

	
CHAR

	
RAW

	
NUMBER

	
DATE

The VARCHAR2 datatype stores up to 249 bytes of character data in the database character set. Values larger than this result in a per-document indexing error. Note that leading and trailing whitespace are always trimmed from SDATA section values when extracted by the sectioner. This is different than SDATA columns. Column values are never trimmed. No lexing is performed on the value from either kind of SDATA.

The CHAR datatype stores up to 249 bytes of character data in the database character set. Values larger than this result in a per-document indexing error. Note that leading and trailing whitespace are always trimmed from SDATA section values when extracted by the sectioner. This is different than SDATA columns. Column values are never trimmed. No lexing is performed on the value from either kind of SDATA. To be consistent with SQL, the comparisons of CHAR datatype SDATA values are blank-padded comparisons.

RAW datatype stores up to 249 bytes of binary data. Values larger than this result in a per-document indexing error. The value is converted from hexadecimal string representation. That is, to store a value of 65, the document should look like <TAG>40</TAG>, and not <TAG>65</TAG> or <TAG>A</TAG>.

The DATE datatype values must conform to the following format: YYYY-MM-DD or YYYY-MM-DD HH24:MI:SS. That is, to store a DATE value of "Nov. 24, 2006 10:32pm 36sec", the document should look like <TAG>2006-11-24 22:32:36</TAG>.

Limitations

	
SDATA are single-occurrence only. If multiple instances of an SDATA tag are encountered in a single document, then later instances supersede the value set by earlier instances. This means that the last occurrence of an SDATA tag takes effect.

	
If no SDATA tag occurs in a given document, then this is treated as an SDATA value of NULL.

	
Empty SDATA tags are treated as NULL values.

	
SDATA sections cannot be nested. Sections that are nested inside are ignored.

	
32 is the maximum number for SDATA sections and columns.

Related Topics

"SDATA"

"ADD_SDATA_COLUMN"

	
See Also:

Chapter 8, "Searching Document Sections in Oracle Text" in Oracle Text Application Developer's Guide

ADD_SPECIAL_SECTION

Adds a special section, either SENTENCE or PARAGRAPH, to a section group. This enables searching within sentences or paragraphs in documents with the WITHIN operator.

A special section in a document is a section which is not explicitly tagged like zone and field sections. The start and end of special sections are detected when the index is created. Oracle Text supports two such sections: paragraph and sentence.

The sentence and paragraph boundaries are determined by the lexer. For example, the lexer recognizes sentence and paragraph section boundaries as follows:

Table 7-1 Paragraph and Sentence Section Boundaries

	Special Section	Boundary
	
SENTENCE

	
WORD/PUNCT/WHITESPACE

	
	
WORD/PUNCT/NEWLINE

	
PARAGRAPH

	
WORD/PUNCT/NEWLINE/WHITESPACE (indented paragraph)

	
	
WORD/PUNCT/NEWLINE/NEWLINE (block paragraph)

The punctuation, whitespace, and newline characters are determined by your lexer settings and can be changed.

If the lexer cannot recognize the boundaries, no sentence or paragraph sections are indexed.

Syntax

CTX_DDL.ADD_SPECIAL_SECTION(
 group_name IN VARCHAR2,
 section_name IN VARCHAR2);

	group_name
	
Specify the name of the section group.

	section_name
	
Specify SENTENCE or PARAGRAPH.

Example

The following example enables searching within sentences within HTML documents:

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_special_section('htmgroup', 'SENTENCE');
end;

Add zone sections to the group to enable zone searching in addition to sentence searching. The following example adds the zone section Headline to the section group htmgroup:

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_special_section('htmgroup', 'SENTENCE');
ctx_ddl.add_zone_section('htmgroup', 'Headline', 'H1');
end;

If you are only interested in sentence or paragraph searching within documents and not interested in defining zone or field sections, then use the NULL_SECTION_GROUP as follows:

begin
ctx_ddl.create_section_group('nullgroup', 'NULL_SECTION_GROUP');
ctx_ddl.add_special_section('nullgroup', 'SENTENCE');
end;

Related Topics

"WITHIN"

"Section Group Types"

"CREATE_SECTION_GROUP"

"ADD_ZONE_SECTION"

"ADD_FIELD_SECTION"

"REMOVE_SECTION"

"DROP_SECTION_GROUP"

ADD_STOPCLASS

Adds a stopclass to a stoplist. A stopclass is a class of tokens that is not to be indexed.

Syntax

CTX_DDL.ADD_STOPCLASS(
 stoplist_name in varchar2,
 stopclass in varchar2
);

	stoplist_name
	
Specify the name of the stoplist.

	stopclass
	
Specify the stopclass to be added to stoplist_name. Currently, only the NUMBERS class is supported. It is not possible to create a custom stopclass.

NUMBERS includes tokens that follow the number pattern: digits, numgroup, and numjoin only. Therefore, 123ABC is not a number, nor is A123. These are labeled as MIXED. $123 is not a number (this token is not common in a text index because non-alphanumerics become whitespace by default). In the United States, 123.45 is a number, but 123.456.789 is not; in Europe, where numgroup may be '.', the reverse is true.

The maximum number of stopwords, stopthemes, and stopclasses you can add to a stoplist is 4095.

Example

The following example adds a stopclass of NUMBERS to the stoplist mystop:

begin
ctx_ddl.add_stopclass('mystop', 'NUMBERS');
end;

Related Topics

"CREATE_STOPLIST"

"REMOVE_STOPCLASS"

"DROP_STOPLIST"

ADD_STOP_SECTION

Adds a stop section to an automatic section group. Adding a stop section causes the automatic section indexing operation to ignore the specified section in XML documents.

	
Note:

Adding a stop section causes no section information to be created in the index. However, the text within a stop section is always searchable.

Adding a stop section is useful when your documents contain many low information tags. Adding stop sections also improves indexing performance with the automatic section group.

The number of stop sections you can add is unlimited.

Stop sections do not have section names and hence are not recorded in the section views.

Syntax

CTX_DDL.ADD_STOP_SECTION(
 section_group IN VARCHAR2,
 tag IN VARCHAR2);

	section_group
	
Specify the name of the automatic section group. If you do not specify an automatic section group, then this procedure returns an error.

	tag
	
Specify the tag to ignore during indexing. This parameter is case-sensitive. Defining a stop tag as such also stops the tag's attribute sections, if any.

Qualify the tag with document type in the form (doctype)tag. For example, if you wanted to make the <fluff> tag a stop section only within the mydoc document type, specify (mydoc)fluff for tag.

Example

Defining Stop Sections

The following example adds a stop section identified by the tag <fluff> to the automatic section group myauto:

begin
ctx_ddl.add_stop_section('myauto', 'fluff');
end;

This example also stops any attribute sections contained within <fluff>. For example, if a document contained:

<fluff type="computer">

Then the preceding example also stops the attribute section fluff@type.

Doctype Sensitive Stop Sections

The following example creates a stop section for the tag <fluff> only in documents that have a root element of mydoc:

begin
ctx_ddl.add_stop_section('myauto', '(mydoc)fluff');
end;

Related Topics

"ALTER INDEX"

"CREATE_SECTION_GROUP"

ADD_STOPTHEME

Adds a single stoptheme to a stoplist. A stoptheme is a theme that is not to be indexed.

In English, query on indexed themes using the ABOUT operator.

Syntax

CTX_DDL.ADD_STOPTHEME(
 stoplist_name in varchar2,
 stoptheme in varchar2
);

	stoplist_name
	
Specify the name of the stoplist.

	stoptheme
	
Specify the stoptheme to be added to stoplist_name. The system normalizes the stoptheme you enter using the knowledge base. If the normalized theme is more than one theme, then the system does not process your stoptheme. For this reason, Oracle recommends that you submit single stopthemes.

The maximum number of stopwords, stopthemes, and stopclasses you can add to a stoplist is 4095.

Example

The following example adds the stoptheme banking to the stoplist mystop:

begin
ctx_ddl.add_stoptheme('mystop', 'banking');
end;

Related Topics

"CREATE_STOPLIST"

"REMOVE_STOPTHEME"

"DROP_STOPLIST"

"ABOUT"

ADD_STOPWORD

Use this procedure to add a single stopword to a stoplist.

To create a list of stopwords, you must call this procedure once for each word.

Syntax

CTX_DDL.ADD_STOPWORD(

stoplist_name in varchar2,
stopword in varchar2,
language in varchar2 default NULL

);

	stoplist_name
	
Specify the name of the stoplist.

	stopword
	
Specify the stopword to be added.

Language-specific stopwords must be unique across the other stopwords specific to the language. For example, it is valid to have a German die and an English die in the same stoplist.

The maximum number of stopwords, stopthemes, and stopclasses you can add to a stoplist is 4095.

	language
	
Specify the language of stopword when the stoplist you specify with stoplist_name is of type MULTI_STOPLIST. You must specify the globalization support name or abbreviation of an Oracle Text-supported language.

To make a stopword active in multiple languages, specify ALL for this parameter. For example, defining ALL stopwords is useful when you have international documents that contain English fragments that need to be stopped in any language.

An ALL stopword is active in all languages. If you use the multi-lexer, the language-specific lexing of the stopword occurs, just as if it had been added multiple times in multiple specific languages.

Otherwise, specify NULL.

Example

Single Language Stoplist

The following example adds the stopwords because, notwithstanding, nonetheless, and therefore to the stoplist mystop:

begin

ctx_ddl.add_stopword('mystop', 'because');
ctx_ddl.add_stopword('mystop', 'notwithstanding');
ctx_ddl.add_stopword('mystop', 'nonetheless');
ctx_ddl.add_stopword('mystop', 'therefore');

end;

Multi-Language Stoplist

The following example adds the German word die to a multi-language stoplist:

begin

ctx_ddl.add_stopword('mystop', 'Die','german');

end;

	
Note:

Add stopwords after you create the index with ALTER INDEX.

Adding An ALL Stopword

The following adds the word the as an ALL stopword to the multi-language stoplist globallist:

begin

ctx_ddl.add_stopword('globallist','the','ALL');

end;

Related Topics

"CREATE_STOPLIST"

"REMOVE_STOPWORD"

"DROP_STOPLIST"

"ALTER INDEX"

Appendix E, "Oracle Text Supplied Stoplists"

ADD_SUB_LEXER

Add a sub-lexer to a multi-lexer preference. A sub-lexer identifies a language in a multi-lexer (multi-language) preference. Use a multi-lexer preference when you want to index more than one language.

Restrictions

The following restrictions apply to using CTX_DDL.ADD_SUB_LEXER:

	
The invoking user must be the owner of the multi-lexer or CTXSYS.

	
The lexer_name parameter must name a preference which is a multi-lexer lexer.

	
A lexer for default must be defined before the multi-lexer can be used in an index.

	
The sub-lexer preference owner must be the same as multi-lexer preference owner.

	
The sub-lexer preference must not be a multi-lexer lexer.

	
A sub-lexer preference cannot be dropped while it is being used in a multi-lexer preference.

	
CTX_DDL.ADD_SUB_LEXER records only a reference. The sub-lexer values are copied at create index time to index value storage.

Syntax

CTX_DDL.ADD_SUB_LEXER(
 lexer_name in varchar2,
 language in varchar2,
 sub_lexer in varchar2,
 alt_value in varchar2 default null
);

	lexer_name
	
Specify the name of the multi-lexer preference.

	language
	
Specify the globalization support language name or abbreviation of the sub-lexer. For example, specify JAPANESE or JA for Japanese.

The sub-lexer you specify with sub_lexer is used when the language column has a value case-insensitive equal to the globalization support name of abbreviation of language.

Specify DEFAULT to assign a default sub-lexer to use when the value of the language column in the base table is null, invalid, or unmapped to a sub-lexer. The DEFAULT lexer is also used to parse stopwords.

If a sub-lexer definition for language already exists, then it is replaced by this call.

	sub_lexer
	
Specify the name of the sub-lexer to use for this language.

	alt_value
	
Optionally specify an alternate value for language.

If you specify DEFAULT for language, then you cannot specify an alt_value.

The alt_value is limited to 30 bytes and cannot be a globalization support language name, abbreviation, or DEFAULT.

Example

This example shows how to create a multi-language text table and how to set up the multi-lexer to index the table.

Create the multi-language table with a primary key, a text column, and a language column as follows:

create table globaldoc (
 doc_id number primary key,
 lang varchar2(3),
 text clob
);

Assume that the table holds mostly English documents, with an occasional German or Japanese document. To handle the three languages, you must create three sub-lexers: one for English, one for German, and one for Japanese as follows:

ctx_ddl.create_preference('english_lexer','basic_lexer');
ctx_ddl.set_attribute('english_lexer','index_themes','yes');
ctx_ddl.set_attribtue('english_lexer','theme_language','english');

ctx_ddl.create_preference('german_lexer','basic_lexer');
ctx_ddl.set_attribute('german_lexer','composite','german');
ctx_ddl.set_attribute('german_lexer','mixed_case','yes');
ctx_ddl.set_attribute('german_lexer','alternate_spelling','german');

ctx_ddl.create_preference('japanese_lexer','japanese_vgram_lexer');

Create the multi-lexer preference:

ctx_ddl.create_preference('global_lexer', 'multi_lexer');

Because the stored documents are mostly English, make the English lexer the default:

ctx_ddl.add_sub_lexer('global_lexer','default','english_lexer');

Add the German and Japanese lexers in their respective languages. Also assume that the language column is expressed in ISO 639-2, so add those as alternative values.

ctx_ddl.add_sub_lexer('global_lexer','german','german_lexer','ger');
ctx_ddl.add_sub_lexer('global_lexer','japanese','japanese_lexer','jpn');

Create the index globalx, specifying the multi-lexer preference and the language column in the parameters string as follows:

create index globalx on globaldoc(text) indextype is ctxsys.context
parameters ('lexer global_lexer language column lang');

ADD_ZONE_SECTION

Creates a zone section and adds the section to an existing section group. This enables zone section searching with the WITHIN operator.

Zone sections are sections delimited by start and end tags. The and tags in HTML, for instance, marks a range of words which are to be rendered in boldface.

Zone sections can be nested within one another, can overlap, and can occur more than once in a document.

Syntax

CTX_DDL.ADD_ZONE_SECTION(
 group_name in varchar2,
 section_name in varchar2,
 tag in varchar2
);

	group_name
	
Specify the name of the section group to which section_name is added.

	section_name
	
Specify the name of the section to add to the group_name. Use this name to identify the section in WITHIN queries. Avoid using names that contain non-alphanumeric characters such as _, because most of these characters are special must be escaped in queries. Section names are case-insensitive.

Within the same group, zone section names and field section names cannot be the same. The terms Paragraph and Sentence are reserved for special sections.

Section names need not be unique across tags. You can assign the same section name to more than one tag, making details transparent to searches.

	tag
	
Specify the pattern which marks the start of a section. For example, if <H1> is the HTML tag, specify H1 for tag. The start tag you specify must be unique within a section group.

Oracle Text knows what the end tags look like from the group_type parameter you specify when you create the section group.

If group_name is an HTML_SECTION_GROUP, you can create zone sections for the META tag's NAME/CONTENT attribute pairs. To do so, specify tag as meta@namevalue where namevalue is the value of the NAME attribute whose CONTENT attributes are to be indexed as a section. Refer to the example.

If group_name is an XML_SECTION_GROUP, you can optionally qualify tag with a document type (root element) in the form (doctype)tag. Doing so makes section_name sensitive to the XML document type declaration. Refer to the example.

Examples

Creating HTML Sections

The following example defines a section group called htmgroup of type HTML_SECTION_GROUP. It then creates a zone section in htmgroup called headline identified by the <H1> tag:

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_zone_section('htmgroup', 'heading', 'H1');
end;

After indexing with section group htmgroup, query within the heading section by issuing a query as follows:

'Oracle WITHIN heading'

Creating Sections for <META NAME> Tags

You can create zone sections for HTML META tags when you use the HTML_SECTION_GROUP.

Consider an HTML document that has a META tag as follows:

<META NAME="author" CONTENT="ken">

To create a zone section that indexes all CONTENT attributes for the META tag whose NAME value is author:

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_zone_section('htmgroup', 'author', 'meta@author');
end

After indexing with section group htmgroup, query the document as follows:

'ken WITHIN author'

Creating Document Type Sensitive Sections (XML Documents Only)

You have an XML document set that contains the <book> tag declared for different document types (DTDs). You want to create a distinct book section for each document type.

Assume that myDTDname is declared as an XML document type as follows:

<!DOCTYPE myDTDname>
<myDTDname>
 ...

(Note: the DOCTYPE must match the top-level tag.)

Within myDTDname, the element <book> is declared. For this tag, create a section named mybooksec that is sensitive to the tag's document type as follows:

begin
ctx_ddl.create_section_group('myxmlgroup', 'XML_SECTION_GROUP');
ctx_ddl.add_zone_section('myxmlgroup', 'mybooksec', '(myDTDname)book');
end;

Notes

Repeated Sections

Zone sections can repeat. Each occurrence is treated as a separate section. For example, if <H1> denotes a heading section, they can repeat in the same documents as follows:

<H1> The Brown Fox </H1>

<H1> The Gray Wolf </H1>

Assuming that these zone sections are named Heading, the query Brown WITHIN Heading returns this document. However, a query of (Brown and Gray) WITHIN Heading does not.

Overlapping Sections

Zone sections can overlap each other. For example, if and <I> denote two different zone sections, they can overlap in document as follows:

plain bold <I> bold and italic only italic </I> plain

Nested Sections

Zone sections can nest, including themselves as follows:

<TD> <TABLE><TD>nested cell</TD></TABLE></TD>

Using the WITHIN operator, you can write queries to search for text in sections within sections. For example, assume the BOOK1, BOOK2, and AUTHOR zone sections occur as follows in documents doc1 and doc2:

doc1:

<book1> <author>Scott Tiger</author> This is a cool book to read.</book1>

doc2:

<book2> <author>Scott Tiger</author> This is a great book to read.</book2>

Consider the nested query:

'(Scott within author) within book1'

This query returns only doc1.

Related Topics

"WITHIN"

"Section Group Types"

"CREATE_SECTION_GROUP"

"ADD_FIELD_SECTION"

"ADD_SPECIAL_SECTION"

"REMOVE_SECTION"

"DROP_SECTION_GROUP"

COPY_POLICY

Creates a new policy from an existing policy or index.

Syntax

ctx_ddl.copy_policy(
 source_policy VARCHAR2,
 policy_name VARCHAR2);

	source_policy
	
The name of the policy or index being copied.

	policy_name
	
The name of the new policy copy.

The preference values are copied from the source_policy. Both the source policy or index and the new policy must be owned by the same database user.

CREATE_INDEX_SET

Creates an index set for CTXCAT index types. Name this index set in the parameter clause of CREATE INDEX when you create a CTXCAT index.

Syntax

CTX_DDL.CREATE_INDEX_SET(set_name in varchar2);

	set_name
	
Specify the name of the index set. Name this index set in the parameter clause of CREATE INDEX when you create a CTXCAT index.

CREATE_POLICY

Creates a policy to use with the CTX_DOC.POLICY_* procedures and the ORA:CONTAINS function. ORA:CONTAINS is a function you use within an XPATH query expression with existsNode().

	
See Also:

Oracle XML DB Developer's Guide

Syntax

CTX_DDL.CREATE_POLICY(
 policy_name IN VARCHAR2,
 filter IN VARCHAR2 DEFAULT NULL,
 section_group IN VARCHAR2 DEFAULT NULL,
 lexer IN VARCHAR2 DEFAULT NULL,
 stoplist IN VARCHAR2 DEFAULT NULL,
 wordlist IN VARCHAR2 DEFAULT NULL);

	policy_name
	
Specify the name for the new policy. Policy names and Text indexes share the same namespace.

	filter
	
Specify the filter preference to use.

	section_group
	
Specify the section group to use. You can specify any section group that is supported by CONTEXT index.

	lexer
	
Specify the lexer preference to use. Your INDEX_THEMES attribute must be disabled.

	stoplist
	
Specify the stoplist to use.

	wordlist
	
Specify the wordlist to use.

Example

Create mylex lexer preference named mylex.

begin
 ctx_ddl.create_preference('mylex', 'BASIC_LEXER');
 ctx_ddl.set_attribute('mylex', 'printjoins', '_-');
 ctx_ddl.set_attribute ('mylex', 'index_themes', 'NO');
 ctx_ddl.set_attribute ('mylex', 'index_text', 'YES');
end;

Create a stoplist preference named mystop.

begin
 ctx_ddl.create_stoplist('mystop', 'BASIC_STOPLIST');
 ctx_ddl.add_stopword('mystop', 'because');
 ctx_ddl.add_stopword('mystop', 'nonetheless');
 ctx_ddl.add_stopword('mystop', 'therefore');
end;

Create a wordlist preference named 'mywordlist'.

begin
 ctx_ddl.create_preference('mywordlist', 'BASIC_WORDLIST');
 ctx_ddl.set_attribute('mywordlist','FUZZY_MATCH','ENGLISH');
 ctx_ddl.set_attribute('mywordlist','FUZZY_SCORE','0');
 ctx_ddl.set_attribute('mywordlist','FUZZY_NUMRESULTS','5000');
 ctx_ddl.set_attribute('mywordlist','SUBSTRING_INDEX','TRUE');
 ctx_ddl.set_attribute('mywordlist','STEMMER','ENGLISH');
end;

exec ctx_ddl.create_policy('my_policy', NULL, NULL, 'mylex', 'mystop',
'mywordlist');

or

exec ctx_ddl.create_policy(policy_name => 'my_policy',
 lexer => 'mylex',
 stoplist => 'mystop',
 wordlist => 'mywordlist');

Then enter the following existsNode() query with your own defined policy:

select id from xmltab
 where existsNode(doc, '/book/chapter[ora:contains(summary,"dog or cat",
 "my_policy") >0]', 'xmlns:ora="http://xmlns.oracle.com/xdb" ')=1;

Update the policy with the following:

exec ctx_ddl.update_policy(policy_name => 'my_policy', lexer => 'my_new_lex');

Drop the policy with the following:

exec ctx_ddl.drop_policy(policy_name => 'my_policy');

CREATE_PREFERENCE

Creates a preference in the Text data dictionary. Specify preferences in the parameter string of CREATE INDEX or ALTER INDEX.

	
Caution:

CTX_DDL.CREATE_PREFERENCE does not respect the current schema as set by ALTER SESSION SET current_schema. Therefore, if you need to create or delete a preference owned by another user, then you must explicitly state this, and you must have the CREATE ANY TABLE system privilege.

Syntax

CTX_DDL.CREATE_PREFERENCE(preference_name in varchar2,
 object_name in varchar2);

	preference_name
	
Specify the name of the preference to be created.

	object_name
	
Specify the name of the preference type.

	
See Also:

For a complete list of preference types and their associated attributes, see Chapter 2, "Oracle Text Indexing Elements"

Examples

Creating Text-only Index

The following example creates a lexer preference that specifies a text-only index. It does so by creating a BASIC_LEXER preference called my_lexer with CTX_DDL.CREATE_PREFERENCE. It then calls CTX_DDL.SET_ATTRIBUTE twice, first specifying YES for the INDEX_TEXT attribute, then specifying NO for the INDEX_THEMES attribute.

begin
ctx_ddl.create_preference('my_lexer', 'BASIC_LEXER');
ctx_ddl.set_attribute('my_lexer', 'INDEX_TEXT', 'YES');
ctx_ddl.set_attribute('my_lexer', 'INDEX_THEMES', 'NO');
end;

Specifying File Data Storage

The following example creates a data storage preference called mypref that tells the system that the files to be indexed are stored in the operating system. The example then uses CTX_DDL.SET_ATTRIBUTE to set the PATH attribute of to the directory /docs.

begin
ctx_ddl.create_preference('mypref', 'FILE_DATASTORE');
ctx_ddl.set_attribute('mypref', 'PATH', '/docs');
end;

	
See Also:

For more information about data storage, see "Datastore Types"

Creating Master/Detail Relationship

Use CTX_DDL.CREATE_PREFERENCE to create a preference with DETAIL_DATASTORE. Use CTX_DDL.SET_ATTRIBUTE to set the attributes for this preference. The following example shows how this is done:

begin
ctx_ddl.create_preference('my_detail_pref', 'DETAIL_DATASTORE');
ctx_ddl.set_attribute('my_detail_pref', 'binary', 'true');
ctx_ddl.set_attribute('my_detail_pref', 'detail_table', 'my_detail');
ctx_ddl.set_attribute('my_detail_pref', 'detail_key', 'article_id');
ctx_ddl.set_attribute('my_detail_pref', 'detail_lineno', 'seq');
ctx_ddl.set_attribute('my_detail_pref', 'detail_text', 'text');
end;

	
See Also:

For more information about master/detail, see "DETAIL_DATASTORE"

Specifying Storage Attributes

The following examples specify that the index tables are to be created in the foo tablespace with an initial extent of 1K:

begin
ctx_ddl.create_preference('mystore', 'BASIC_STORAGE');
ctx_ddl.set_attribute('mystore', 'I_TABLE_CLAUSE',
 'tablespace foo storage (initial 1K)');
ctx_ddl.set_attribute('mystore', 'K_TABLE_CLAUSE',
 'tablespace foo storage (initial 1K)');
ctx_ddl.set_attribute('mystore', 'R_TABLE_CLAUSE',
 'tablespace foo storage (initial 1K)');
ctx_ddl.set_attribute('mystore', 'S_TABLE_CLAUSE',
 'tablespace foo storage (initial 1K)');
ctx_ddl.set_attribute('mystore', 'N_TABLE_CLAUSE',
 'tablespace foo storage (initial 1K)');
ctx_ddl.set_attribute('mystore', 'I_INDEX_CLAUSE',
 'tablespace foo storage (initial 1K)');
end;

	
See Also:

Storage Types

Creating Preferences with No Attributes

When you create preferences with types that have no attributes, you need only create the preference, as in the following example which sets the filter to the NULL_FILTER:

begin
ctx_ddl.create_preference('my_null_filter', 'NULL_FILTER');
end;

Notes

If s_table_clause is specified for a storage preference in an index without SDATA, then it has no effect on the index, and the index creation will still succeed.

Related Topics

"SET_ATTRIBUTE"

"DROP_PREFERENCE"

"CREATE INDEX"

"ALTER INDEX"

Chapter 2, "Oracle Text Indexing Elements"

CREATE_SECTION_GROUP

Creates a section group for defining sections in a text column.

When you create a section group, you can add to it zone, field, or special sections with ADD_ZONE_SECTION, ADD_FIELD_SECTION, ADD_MDATA_SECTION, or ADD_SPECIAL_SECTION.

When you index, name the section group in the parameter string of CREATE INDEX or ALTER INDEX.

After indexing, query within your defined sections with the WITHIN operator.

Syntax

CTX_DDL.CREATE_SECTION_GROUP(
 group_name in varchar2,
 group_type in varchar2
);

	group_name
	
Specify the section group name to create as [user.]section_group_name. This parameter must be unique within an owner.

	group_type
	
Specify section group type. The group_type parameter can be one of:

	Section Group Preference	Description
	NULL_SECTION_GROUP	Use this group type when you define no sections or when you define only SENTENCE or PARAGRAPH sections. This is the default.
	BASIC_SECTION_GROUP	Use this group type for defining sections where the start and end tags are of the form <A> and .
Note: This group type dopes not support input such as unbalanced parentheses, comments tags, and attributes. Use HTML_SECTION_GROUP for this type of input.

	HTML_SECTION_GROUP	Use this group type for indexing HTML documents and for defining sections in HTML documents.
	XML_SECTION_GROUP	Use this group type for indexing XML documents and for defining sections in XML documents.
	AUTO_SECTION_GROUP	Use this group type to automatically create a zone section for each start-tag/end-tag pair in an XML document. The section names derived from XML tags are case sensitive as in XML.
Attribute sections are created automatically for XML tags that have attributes. Attribute sections are named in the form attribute@tag.

Stop sections, empty tags, processing instructions, and comments are not indexed.

The following limitations apply to automatic section groups:

	
You cannot add zone, field, or special sections to an automatic section group.

	
Automatic sectioning does not index XML document types (root elements.) However, you can define stop sections with document type.

	
The length of the indexed tags, including prefix and namespace, cannot exceed 64 bytes. Tags longer than this are not indexed.

	PATH_SECTION_GROUP	Use this group type to index XML documents. Behaves like the AUTO_SECTION_GROUP.
The difference is that with this section group you can do path searching with the INPATH and HASPATH operators. Queries are also case-sensitive for tag and attribute names.

	NEWS_SECTION_GROUP	Use this group for defining sections in newsgroup formatted documents according to RFC 1036.

Example

The following command creates a section group called htmgroup with the HTML group type.

begin

ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');

end;

The following command creates a section group called auto with the AUTO_SECTION_GROUP group type to be used to automatically index tags in XML documents.

begin

ctx_ddl.create_section_group('auto', 'AUTO_SECTION_GROUP');

end;

Related Topics

"WITHIN"

"Section Group Types"

"ADD_ZONE_SECTION"

"ADD_FIELD_SECTION"

"ADD_MDATA_SECTION"

"ADD_SPECIAL_SECTION"

"REMOVE_SECTION"

"DROP_SECTION_GROUP"

CREATE_SHADOW_INDEX

Creates index metadata (or policy) for the specified index. If the index is not partitioned, then it also creates the index tables. This procedure is only supported in Enterprise Edition of Oracle Database.

The following changes are not supported:

	
Transition from non-composite domain index to composite, or changing the composite domain index columns.

	
Rebuild indexes that have partitioned index tables, for example, $I, $P, $K.

	
Note:

For a partitioned index, you must first call this procedure to create the shadow index metadata. This procedure will not create index tables. It has no effect on query, DML, sync, or optimize operations.

Syntax

CTX_DDL.CREATE_SHADOW_INDEX(
 idx_name IN VARCHAR2,
 parameter_string IN VARCHAR2 DEFAULT NULL,
 parallel_degree IN NUMBER, DEFAULT 1
);

	idx_name
	
The name of a valid CONTEXT indextype.

	parameter_string
	
For non-partitioned index, the same string as in ALTER INDEX. For partitioned index, the same string as in ALTER INDEX PARAMETER.

	parallel_degree
	
Reserved for future use. Specify the degree of parallelism. Parallel operation is not currently supported.

Example

Example 7-1 Scheduled Global Index Recreate (Incremental Rebuild)

In this example, you have the finest control over each stage of RECREATE_INDEX_ONLINE. Since SYNC_INDEX can take a time limit, you can limit SYNC_INDEX during non-business hours and incrementally recreate the index.

/* create lexer and original index */
exec ctx_ddl.create_preference('us_lexer','basic_lexer');
create index idx on tbl(text) indextype is ctxsys.context
 parameters('lexer us_lexer');

/* create a new lexer */
begin
 ctx_ddl.create_preference('e_lexer','basic_lexer');
 ctx_ddl.set_attribute('e_lexer','base_letter','yes');
 ctx_ddl.create_preference('m_lexer','multi_lexer');
 ctx_ddl.add_sub_lexer('m_lexer','default','us_lexer');
 ctx_ddl.add_sub_lexer('m_lexer','e','e_lexer');
end;
/

/* add new language column to the table for multi-lexer */
alter table tbl add(lang varchar2(10) default 'us');

/* create shadow index */
exec ctx_ddl.create_shadow_index('idx',
 'replace lexer m_lexer language column lang NOPOPULATE');

declare
 idxid integer;
begin
 /* figure out shadow index name */
 select idx_id into idxid from ctx_user_indexes
 where idx_name ='IDX';
 /* populate pending */
 ctx_ddl.populate_pending('RIO$'||idxid);
 /* time limited sync */
 ctx_ddl.sync_index(idx_name =>'RIO$'||idxid,
 maxtime =>480);
 /* more sync until no pending rows for the shadow index */
end;
/* swap in the shadow index */
exec ctx_ddl.exchange_shadow_index('idx');

Notes

The index name for the shadow index is RIO$index_id. By default it will also populate index tables for non-partitioned indexes, unless NOPOPULATE is specified in CREATE INDEX or in ALTER INDEX. For a local partitioned index, it will only create index metadata without creating the index tables for each partition. Each index can have only one shadow index.

When building a non-partitioned index online, you can first call this procedure to create index metadata and index tables. If you specify POPULATE, then this procedure will populate the index, but will not do swapping. You can schedule the swapping at a later, preferred time.

If you specify NOPOPULATE, it will only create metadata for the index tables, but will not populate them. You must perform POPULATE_PENDING (CTX_DDL.POPULATE_PENDING) to populate the pending queues after running this procedure, and then sync the indexes. This is referred to as incremental recreate.

Queries are all processed normally when this procedure is running.

If POPULATE is specified, then DML is blocked for a very short time at the beginning of populate, after which all further DML is logged into an online pending queue and processed later.

Sync with CTX_DDL.SYNC_INDEX runs normally on the index. OPTIMIZE_INDEX runs without doing anything, but does not return an error.

Related Topics

See also POPULATE | NOPOPULATE in ALTER INDEX and CREATE INDEX in Chapter 1, "Oracle Text SQL Statements and Operators", and CTX_DDL.DROP_SHADOW_INDEX, CTX_DDL.EXCHANGE_SHADOW_INDEX, CTX_DDL.SYNC_INDEX, and CTX_DDL.POPULATE_PENDING in this chapter.

CREATE_STOPLIST

Use this procedure to create a new, empty stoplist. Stoplists can contain words or themes that are not to be indexed.

You can also create multi-language stoplists to hold language-specific stopwords. A multi-language stoplist is useful when you index a table that contains documents in different languages, such as English, German, and Japanese. When you do so, the text table must contain a language column.

Add either stopwords, stopclasses, or stopthemes to a stoplist using ADD_STOPWORD, ADD_STOPCLASS, or ADD_STOPTHEME. Specify a stoplist in the parameter string of CREATE INDEX or ALTER INDEX to override the default stoplist CTXSYS.DEFAULT_STOPLIST.

Syntax

CTX_DDL.CREATE_STOPLIST(

stoplist_name IN VARCHAR2,
stoplist_type IN VARCHAR2 DEFAULT 'BASIC_STOPLIST');

	stoplist_name
	
Specify the name of the stoplist to be created.

	stoplist_type
	
Specify BASIC_STOPLIST to create a stoplist for a single language. This is the default.

Specify MULTI_STOPLIST to create a stoplist with language-specific stopwords.

At indexing time, the language column of each document is examined, and only the stopwords for that language are eliminated. At query time, the session language setting determines the active stopwords, like it determines the active lexer when using the multi-lexer.

	
Note:

When indexing a multi-language table with a multi-language stoplist, the table must have a language column.

Examples

Example 7-2 Single Language Stoplist

The following example creates a stoplist called mystop:

begin
ctx_ddl.create_stoplist('mystop', 'BASIC_STOPLIST');
end;

Example 7-3 Multi-Language Stoplist

The following example creates a multi-language stoplist called multistop and then adds tow language-specific stopwords:

begin
ctx_ddl.create_stoplist('multistop', 'MULTI_STOPLIST');
ctx_ddl.add_stopword('mystop', 'Die','german');
ctx_ddl.add_stopword('mystop', 'Or','english');
end;

Related Topics

"ADD_STOPWORD"

"ADD_STOPCLASS"

"ADD_STOPTHEME"

"DROP_STOPLIST"

"CREATE INDEX"

"ALTER INDEX"

Appendix E, "Oracle Text Supplied Stoplists"

DROP_INDEX_SET

Drops a CTXCAT index set created with CTX_DDL.CREATE_INDEX_SET.

Syntax

CTX_DDL.DROP_INDEX_SET(
 set_name IN VARCHAR2
);

	set_name
	
Specify the name of the index set to drop.

Dropping an index set drops all of the sub-indexes it contains.

DROP_POLICY

Drops a policy created with CTX_DDL.CREATE_POLICY.

Syntax

CTX_DDL.DROP_POLICY(
 policy_name IN VARCHAR2
);

	policy_name
	
Specify the name of the policy to drop.

DROP_PREFERENCE

The DROP_PREFERENCE procedure deletes the specified preference from the Text data dictionary. Dropping a preference does not affect indexes that have already been created using that preference.

Syntax

CTX_DDL.DROP_PREFERENCE(
 preference_name IN VARCHAR2
);

	preference_name
	
Specify the name of the preference to be dropped.

Example

The following example drops the preference my_lexer.

begin
ctx_ddl.drop_preference('my_lexer');
end;

Related Topics

See also CTX_DDL.CREATE_PREFERENCE.

DROP_SECTION_GROUP

The DROP_SECTION_GROUP procedure deletes the specified section group, as well as all the sections in the group, from the Text data dictionary.

Syntax

CTX_DDL.DROP_SECTION_GROUP(
 group_name IN VARCHAR2
);

	group_name
	
Specify the name of the section group to delete.

Example

The following example drops the section group htmgroup and all its sections:

begin
ctx_ddl.drop_section_group('htmgroup');
end;

Related Topics

See also CTX_DDL.CREATE_SECTION_GROUP.

DROP_SHADOW_INDEX

Drops a shadow index for the specified index. When you drop a shadow index, if it is partitioned, then its metadata and the metadata of all this shadow index's partitions are dropped. This procedure also drops all the shadow index tables and cleans up any online pending queue.

Syntax

CTX_DDL.DROP_SHADOW_INDEX(
 idx_name in VARCHAR2
);

	idx_name
	
The name of a valid CONTEXT indextype.

Example

The following example drops the shadow index myshadowidx:

begin
ctx_ddl.drop_shadow_index('myshadowidx');
end;

Related Topics

See also CTX_DDL.CREATE_SHADOW_INDEX.

DROP_STOPLIST

Drops a stoplist from the Text data dictionary. When you drop a stoplist, you must re-create or rebuild the index for the change to take effect.

Syntax

CTX_DDL.DROP_STOPLIST(stoplist_name in varchar2);

	stoplist_name
	
Specify the name of the stoplist.

Example

The following example drops the stoplist mystop:

begin
ctx_ddl.drop_stoplist('mystop');
end;

Related Topics

See also CTX_DDL.CREATE_STOPLIST.

EXCHANGE_SHADOW_INDEX

This procedure swaps the index (or index partition) metadata and index (or index partition) data.

For non-partitioned indexes, this procedure swaps both the metadata and the index data, and processes the online pending queue.

Syntax

CTX_DDL.EXCHANGE_SHADOW_INDEX(
 idx_name IN VARCHAR2
 partition_name IN VARCHAR2 default NULL
);

	idx_name
	
Specify the name of the CONTEXT indextype.

	partition_name
	
Specify the name of the shadow index partition. May also be NULL.

Example

Example 7-4 Global Index Recreate with Scheduled Swap

This example demonstrates running CTX_DDL.EXCHANGE_SHADOW_INDEX during non-business hours when query failures and DML blocking can be tolerated.

/* create lexer and original index */
exec ctx_ddl.create_preference('us_lexer','basic_lexer');
create index idx on tbl(text) indextype is ctxsys.context
 parameters('lexer us_lexer');

/* create a new lexer */
begin
 ctx_ddl.create_preference('e_lexer','basic_lexer');
 ctx_ddl.set_attribute('e_lexer','base_letter','yes');
 ctx_ddl.create_preference('m_lexer','multi_lexer');
 ctx_ddl.add_sub_lexer('m_lexer','default','us_lexer');
 ctx_ddl.add_sub_lexer('m_lexer','e','e_lexer');
end;
/

/* add new language column to the table for multi-lexer */
alter table tbl add(lang varchar2(10) default 'us');

/* recreate index online with the new multip-lexer */
exec ctx_ddl.create_shadow_index('idx',
 'replace lexer m_lexer language column lang');
exec ctx_ddl.exchange_shadow_index('idx');

Notes

Using EXCHANGE_SHADOW_INDEX with Non-partitioned Indexes

For non-partitioned indexes, this procedure will swap both metadata and index data, and will process the online pending queue.

Queries will return column not indexed errors when swapping metadata and index data, but queries are processed normally when processing online pending queue. The period of errors being raised should be short.

If you specify POPULATE when you create the shadow index, and if many DML operations have been issued since the creation of the shadow index, then there could be a large pending queue. However, if you use incremental recreate, that is, specify NOPOPULATE when you create the shadow index, and you then populate the pending queue and sync, then the online pending queue is always empty no matter how many DML operations have occurred since CREATE_SHADOW_INDEX was issued.

When this procedure is running, DML will first fail with an error about index being in in-progress status. After that DML could be blocked (hang) if there are rows in online pending queue that need to be reapplied.

	
Note:

When this procedure is running, DML statements will fail with an error that the index is in "in-progress status." If, when this error occurs, there are rows in the online pending queue that need to be reapplied, then the DML could be blocked and hang.

Using EXCHANGE_SHADOW_INDEX with Partitioned Indexes

For partitions that are recreated with NOSWAP: when the index is partitioned, and if partition_name is a valid index partition, then this procedure will swap the index partition data and the index partition metadata, and will process the online pending queue for this partition.

This procedure swaps only one partition at a time. When you run this procedure on partitions that are recreated with NOSWAP:

	
Queries that span multiple partitions will not return consistent results across all partitions.

	
Queries on the partition that is being swapped will return errors.

	
Queries on partitions that are already swapped will be based on the new index.

	
Queries on the partitions that haven't been swapped will be based on the old index.

If the partition_name is NULL, then this procedure will swap the index metadata. Run this procedure as the last step when recreating a local partitioned index online.

Related Topics

See also CTX_DDL.RECREATE_INDEX_ONLINE, CTX_DDL.CREATE_SHADOW_INDEX, and CTX_DDL.DROP_SHADOW_INDEX.

OPTIMIZE_INDEX

Use this procedure to optimize the index. Optimize your index after you synchronize it. Optimizing an index removes old data and minimizes index fragmentation, which can improve query response time. Querying and DML may proceed while optimization takes place.

You can optimize in fast, full, rebuild, token, or token-type mode.

	
Fast mode compacts data but does not remove rows.

	
Full mode compacts data and removes rows.

	
Optimize in rebuild mode rebuilds the $I table (the inverted list table) in its entirety. Rebuilding an index is often significantly faster than performing a full optimization, and is more likely to result in smaller indexes, especially if the index is heavily fragmented.

Rebuild optimization creates a more compact copy of the $I table, and then switches the original $I table and the copy. The rebuild operation will therefore require enough space to store the copy as well as the original. (If redo logging is enabled, then additional space is required in the redo log as well.) At the end of the rebuild operation, the original $I table is dropped, and the space can be reused.

Optimize in rebuild mode supports partitioning on the $I table via the i_table_clause attribute of the basic_storage preference with the following limitations:

	
The i_index_clause must specify using a local btree index if the $I table is partitioned.

	
Partitioning schemes on the token_first, token_last, or token_count columns are not allowed.

	
In token mode, specify a specific token to be optimized (for example, all rows with documents containing the word elections). Use this mode to optimize index tokens that are frequently searched, without spending time on optimizing tokens that are rarely referenced. An optimized token can improve query response time (but only for queries on that token).

	
Token-type optimization is similar to token mode, except that the optimization is performed on field sections or MDATA sections (for example, sections with an <A> tag). This is useful in keeping critical field or MDATA sections optimal.

A common strategy for optimizing indexes is to perform regular token optimizations on frequently referenced terms, and to perform rebuild optimizations less frequently. (Use CTX_REPORT.QUERY_LOG_SUMMARY to find out which queries are made most frequently.) You can perform full, fast, or token-type optimizations instead of token optimizations.

Some users choose to perform frequent time-limited full optimizations along with occasional rebuild optimizations.

	
Note:

Optimizing an index can result in better response time only if you insert, delete, or update documents in the base table after your initial indexing operation.

Using this procedure to optimize the index is recommended over using the ALTER INDEX statement.

Optimization of a large index may take a long time. To monitor the progress of a lengthy optimization, log the optimization with CTX_OUTPUT.START_LOG and check the resultant logfile from time to time.

Note that, unlike serial optimize full, CTX_DDL.OPTIMIZE_INDEX() run with optlevel of FULL and parallel_degree > 1 is not resumable. That is, it will not resume from where it left after a time-out or failure.

	
Note:

There is a very small window of time when a query might fail in CTX_DDL.OPTIMIZE_INDEX REBUILD mode when the $I table is being swapped with the optimized shadow $I table.

Syntax

CTX_DDL.OPTIMIZE_INDEX(

idx_name IN VARCHAR2,
optlevel IN VARCHAR2,
maxtime IN NUMBER DEFAULT NULL,
token IN VARCHAR2 DEFAULT NULL,
part_name IN VARCHAR2 DEFAULT NULL,
token_type IN NUMBER DEFAULT NULL,
parallel_degree IN NUMBER DEFAULT 1);

);

	idx_name
	
Specify the name of the index. If you do not specify an index name, then Oracle Text chooses a single index to optimize.

	optlevel
	
Specify optimization level as a string. You can specify one of the following methods for optimization:

	optlevel value	Description
	FAST or CTX_DDL.OPTLEVEL_FAST	This method compacts fragmented rows. However, old data is not removed.
FAST optimization is not supported for CTXCAT indexes. FAST optimization will not optimize $S index table.

	FULL or CTX_DDL.OPTLEVEL_FULL	In this mode you can optimize the entire index or a portion of the index. This method compacts rows and removes old data (deleted rows). Optimizing in full mode runs even when there are no deleted rows.
Full optimization is not supported for CTXCAT indexes.

	REBUILD or CTX_DDL.OPTLEVEL_REBUILD	This optlevel rebuilds the $I table (the inverted list table) to produce more compact token info rows. Like FULL optimize, this mode also deletes information pertaining to deleted rows of the base table.
REBUILD is not supported for CTCAT, CTXRULE, or CTXXPATH indexes.

REBUILD is not supported when the $I table is partitioned.

	TOKEN or CTX_DDL.OPTLEVEL_TOKEN	This method lets you specify a specific token to be optimized. Oracle Text does a full optimization on the token you specify with token. If no token type is provided, 0 (zero) will be used as the default.
Use this method to optimize those tokens that are searched frequently.

Token optimization is not supported for CTXCAT, CTXRULE, and CTXXPATH indexes.

	TOKEN_TYPE or CTX_DDL.OPTLEVEL_TOKEN_TYPE	This optlevel optimizes on demand all tokens in the index matching the input token type.
When optlevel is TOKEN_TYPE, token_type must be provided.TOKEN_TYPE performs FULL optimize on any token of the input token_type. Like a TOKEN optimize, TOKEN_TYPE optimize does not change the FULL optimize state, and runs to completion on each invocation.

Token_type optimization is not supported for CTXCAT, CTXRULE, and CTXXPATH indexes.

The behavior of CTX_DDL.OPTIMIZE_INDEX with respect to the $S index table is as follows:

	optlevel value	Will Optimize $S Index Table Yes/No	Notes
	FAST or CTX_DDL.OPTLEVEL_FAST	No	

	FULL or CTX_DDL.OPTLEVEL_FULL	Yes	
	The optimize process will optimize $I table first. Once $I table optimize is finished, CTX_DDL.OPTIMIZE_INDEX will continue on to optimize $S index table.
	
MAXTIME will also be honored. Once CTX_DDL.OPTIMIZE_INDEX completes optimizing $S rows for a given SDATA_ID, it will check MAXTIME and exit if total elapsed time (including time taken to optimize $I) exceeds specified MAXTIME. The next CTX_DDL.OPTIMIZE_INDEX with optlevel=>'FULL' will pick up where it left off.

	
$S table optimize will be done in serial.

	REBUILD or CTX_DDL.OPTLEVEL_REBUILD	Yes	
	$S optimize will start after $I rebuild finishes.
	
$S optimize in this case will be processed the same way as $S optimize in FULL mode. $S table is optimized in place, not rebuilt.

Note: If for some reason $S optimize exits abnormally, then it is recommended that you use optlevel=>TOKEN_TYPE to optimize $S to avoid rebuilding the $I table again.

	
$S table optimize will be done in serial.

	TOKEN or CTX_DDL.OPTLEVEL_TOKEN	No	

	TOKEN_TYPE or CTX_DDL.OPTLEVEL_TOKEN_TYPE	Yes	You can optimize $S rows for a given SDATA_ID by setting optlevel => TOKEN_TYPE and the TOKEN_TYPE parameter to the target SDATA_ID.

	maxtime
	
Specify maximum optimization time, in minutes, for FULL optimize.

When you specify the symbol CTX_DDL.MAXTIME_UNLIMITED (or pass in NULL), the entire index is optimized. This is the default.

	token
	
Specify the token to be optimized.

	part_name
	
If your index is a local index, then you must specify the name of the index partition to synchronize otherwise an error is returned.

If your index is a global, non-partitioned index, then specify NULL, which is the default.

	token_type
	
Specify the token_type to be optimized.

	parallel_degree
	
Specify the parallel degree as a number for parallel optimization. The actual parallel degree depends on your resources. Note that when using REBUILD, setting parallel_degree to a value greater than 1 still results in serial execution.

Because the following optlevel values are executed serially, this setting is ignored for them:

	
TOKEN or CTX_DDL.OPTLEVEL_TOKEN

	
FAST or CTX_DDL.OPTLEVEL_FAST

Examples

The following two examples are equivalent ways of optimizing an index using fast optimization:

begin
 ctx_ddl.optimize_index('myidx','FAST');
end;

begin
 ctx_ddl.optimize_index('myidx',CTX_DDL.OPTLEVEL_FAST);
end;

The following example optimizes the index token Oracle:

begin
 ctx_ddl.optimize_index('myidx','token', TOKEN=>'Oracle');
end;

To optimize all tokens of field section MYSEC in index MYINDEX:

begin
 ctx_ddl.optimize_index('myindex', ctx_ddl.optlevel_token_type,
 token_type=> ctx_report.token_type('myindex','field mysec text'));end;

Notes

You can run CTX_DDL.SYNC_INDEX and CTX_DDL.OPTIMIZE_INDEX at the same time. You can also run CTX_DDL.SYNC_INDEX and CTX_DDL.OPTIMIZE_INDEX with parallelism at the same time. However, you should not:

	
Run CTX_DDL.SYNC_INDEX with parallelism at the same time as CTX_DDL.OPTIMIZE_INDEX

	
Run CTX_DDL.SYNC_INDEX with parallelism at the same time as CTX_DDL.OPTIMIZE_INDEX with parallelism.

If you should run one of these combinations, no error is generated; however, one operation will wait until the other is done.

Related Topics

See also CTX_DDL.SYNC_INDEX and ALTER INDEX.

POPULATE_PENDING

This procedure populates the pending queue with every rowid in the base table or table partition. This procedure is only supported for CONTEXT indexes.

This procedure is valuable for large installations that cannot afford to have the indexing process run continuously, and, therefore, need finer control over creating text indexes. The preferred method is to create an empty index, place all the rowids into the pending queue, and build the index through CTX_DDL.SYNC_INDEX.

Syntax

ctx_ddl.populate_pending(
 idx_name IN VARCHAR2,
 part_name IN VARCHAR2 DEFAULT NULL
);

	idx_name
	
Name of the CONTEXT indextype.

	part_name
	
Name of the index partition, if any. Must be provided for local partitioned indexes and must be NULL for global, non-partitioned indexes.

Notes

The SYNC_INDEX is blocked for the duration of the processing. The index unit must be totally empty (idx_docid_count = 0, idx_nextid = 1). The rowids of rows waiting to be indexed are inserted into table ctxsys.dr$pending. You should ensure that there is sufficient space in this table to hold the rowids of the base table.

Related Topics

See also SYNC_INDEX, CREATE_SHADOW_INDEX, DROP_SHADOW_INDEX, EXCHANGE_SHADOW_INDEX, RECREATE_INDEX_ONLINE.

RECREATE_INDEX_ONLINE

Recreates the specified index, or recreates the passed-in index partition if the index is local partitioned. For global non-partitioned indexes, this is a one-step procedure. For local partitioned indexes, this procedure must be run separately on every partition after first using CREATE_SHADOW_INDEX to create a shadow policy (or metadata). This procedure is only supported in Enterprise Edition of Oracle Database.

The following changes are not supported:

	
Transitioning from non-composite domain index to composite, or changing the composite domain index columns.

	
Rebuilding indexes that have partitioned index tables, for example, $I, $P, $K.

Syntax

CTX_DDL.RECREATE_INDEX_ONLINE(
 idx_name IN VARCHAR2,
 parameter_string IN VARCHAR2 default NULL,
 parallel_degree IN NUMBER default 1,
 partition_name IN VARCHAR2 default NULL
);

	idx_name
	
The name of a valid CONTEXT indextype.

	parameter_string
	
If the index is a global non-partitioned index, specify the same index-level parameter string as in ALTER INDEX. Must start with REPLACE, if it is not NULL. Optionally specify SWAP or NOSWAP. The default is SWAP.

	parallel_degree
	
Reserved for future use. Specify the degree of parallelism. Parallel operation is not supported in the current release.

	partition_name
	
Specify the name of a valid index partition for a local partitioned index. Otherwise, the default is NULL. If the index is partitioned, then first pass a partition name, and then specify the partition-level parameter string for ALTER INDEX REBUILD PARTITION.

Examples

Example 7-5 Recreate Simple Global Index

The following example creates an index idx with a BASIC_LEXER-based preference us_lexer. It then recreates the index with a new MULTI_LEXER based preference m_lexer in one step. You can use this one step approach when you do not mind that a query might fail for a small window of time at the end of the operation, and DML might get blocked at the beginning for a short time and again at the end.

/* create lexer and original index */
exec ctx_ddl.create_preference('us_lexer','basic_lexer');
create index idx on tbl(text) indextype is ctxsys.context
 parameters('lexer us_lexer');

/* create a new lexer */
begin
 ctx_ddl.create_preference('e_lexer','basic_lexer');
 ctx_ddl.set_attribute('e_lexer','base_letter','yes');
 ctx_ddl.create_preference('m_lexer','multi_lexer');
 ctx_ddl.add_sub_lexer('m_lexer','default','us_lexer');
 ctx_ddl.add_sub_lexer('m_lexer','e','e_lexer');
end;
/

/* add new language column to the table for multi-lexer */
alter table tbl add(lang varchar2(10) default 'us');

/* recreate index online with the new multip-lexer */
exec ctx_ddl.recreate_index_online('idx',
 'replace lexer m_lexer language column lang');

Example 7-6 Local Index Recreate with All-At-Once Swap

The following example creates a local partitioned index idxp with a basic lexer us_lexer. It has two index partitions idx_p1 and idx_p2. It then recreates a local partitioned index idxp online with partition idx_p1, which will have a new storage preference new_store. The swapping of the partition metadata and index partition data occur at the end. In this example, queries spanning multiple partitions return consistent results across partitions when recreate is in process, except at the end when EXCHANGE_SHADOW_INDEX is running. The extra space required is the combined index size of partition idx_p1 and idx_p2.

/* create a basic lexer and a local partition index with the lexer*/
exec ctx_ddl.create_preference('us_lexer','basic_lexer');
create index idxp on tblp(text) indextype is ctxsys.context local
 (partition idx_p1,
 partition idx_p2)
 parameters('lexer us_lexer');

/* create new preferences */
begin
 ctx_ddl.create_preference('my_store','basic_storage');
 ctx_ddl.set_attribute('my_store','i_table_clause','tablespace tbs');
end;
/
begin
 ctx_ddl.create_preference('e_lexer','basic_lexer');
 ctx_ddl.set_attribute('e_lexer','base_letter','yes');
 ctx_ddl.create_preference('m_lexer','multi_lexer');
 ctx_ddl.add_sub_lexer('m_lexer','default','us_lexer');
 ctx_ddl.add_sub_lexer('m_lexer','e','e_lexer');
end;
/

/* add new language column */
alter table tblp add column (lang varchar2(10) default 'us');

/* create a shadow policy with a new lexer */
exec ctx_ddl.create_shadow_index('idxp', null,
 'replace lexer m_lexer language column lang');

/* recreate every index partition online without swapping */
exec ctx_ddl.recreate_index_online('idxp',
 'replace storage my_store NOSWAP', 1, 'idx_p1');
exec ctx_ddl.recreate_index_online('idxp','replace NOSWAP',1,'idx_p2');

/* exchange in shadow index partition all at once */
exec ctx_ddl.exchange_shadow_index('idxp',
 'idx_p1') /* exchange index partition data*/
exec ctx_ddl.exchange_shadow_index('idxp',
 'idx_p2') /* exchange index partition data*/

/* exchange in shadow index metadata */
exec ctx_ddl.exchange_shadow_index('idxp')

Example 7-7 Local Index Recreate with Per-Partition Swap

This example performs the same tasks as Example 7-6, "Local Index Recreate with All-At-Once Swap", except that each index partition is swapped in as it is completed. Queries across all partitions may return inconsistent results in this example.

/* create a basic lexer and a local partition index with the lexer*/
exec ctx_ddl.create_preference('us_lexer','basic_lexer');
create index idxp on tblp(text) indextype is ctxsys.context local
 (partition idx_p1,
 partition idx_p2)
 parameters('lexer us_lexer');

/* create new preferences */
begin
 ctx_ddl.create_preference('my_store','basic_storage');
 ctx_ddl.set_attribute('my_store','i_table_clause','tablespace tbs');
end;
/
begin
 ctx_ddl.create_preference('e_lexer','basic_lexer');
 ctx_ddl.set_attribute('e_lexer','base_letter','yes');
 ctx_ddl.create_preference('m_lexer','multi_lexer');
 ctx_ddl.add_sub_lexer('m_lexer','default','us_lexer');
 ctx_ddl.add_sub_lexer('m_lexer','e','e_lexer');
end;
/

/* add new language column */
alter table tblp add column (lang varchar2(10) default 'us');

/* create a shadow policy with a new lexer *
exec ctx_ddl.create_shadow_index('idxp',
 'replace lexer m_lexer language column lang');

/* recreate every index partition online and swap (default) */
exec ctx_ddl.recreate_index_online('idxp',
 'replace storage my_store', 1, 'idx_p1');
exec ctx_ddl.recreate_index_online('idxp', 'replace SWAP', 1, 'idx_p2',

 /* exchange in shadow index metadata */
exec ctx_ddl.exchange_shadow_index('idxp')

Example 7-8 Scheduled Local Index Recreate with All-At-Once Swap

This example shows the incremental recreation of a local partitioned index, where partitions are all swapped at the end.

/* create a basic lexer and a local partition index with the lexer*/
exec ctx_ddl.create_preference('us_lexer','basic_lexer');
create index idxp on tblp(text) indextype is ctxsys.context local
 (partition idx_p1,
 partition idx_p2)
 parameters('lexer us_lexer');

/* create new preferences */
begin
 ctx_ddl.create_preference('my_store','basic_storage');
 ctx_ddl.set_attribute('my_store','i_table_clause','tablespace tbs');
end;
/
begin
 ctx_ddl.create_preference('e_lexer','basic_lexer');
 ctx_ddl.set_attribute('e_lexer','base_letter','yes');
 ctx_ddl.create_preference('m_lexer','multi_lexer');
 ctx_ddl.add_sub_lexer('m_lexer','default','us_lexer');
 ctx_ddl.add_sub_lexer('m_lexer','e','e_lexer');
end;
/

/* add new language column */
alter table tblp add column (lang varchar2(10) default 'us');

/* create a shadow policy with a new lexer *
exec ctx_ddl.create_shadow_index('idxp',
 'replace lexer m_lexer language column lang');
/* create shadow partition with new storage preference */
exec ctx_ddl.recreate_index_online('idxp', 'replace storage ctxsys.default_storage nopopulate',1,'idx_p1');
exec ctx_ddl.recreate_index_online('idxp', 'replace storage ctxsys.default_storage nopopulate',1,'idx_p2');

declare
 idxid integer;
 ixpid integer;
begin
 select idx_id into idxid from ctx_user_indexes
 where idx_name = 'IDXP';
 select ixp_id into ixpid from ctx_user_index_partitions
 where ixp_index_name = 'IDXP'
 and ixp_index_partition_name = 'IDX_P1';
 /* populate pending */
 ctx_ddl.populate_pending('RIO$'||idxid, 'RIO$'||idxid||'#'||ixpid);
 /* incremental sync
 ctx_ddl.sync_index('RIO$'||idxid, null, 'RIO$'||idxid||'#'||ixpid,
 maxtime=>400);
 /* more incremental sync until no more pending rows */

 select ixp_id into ixpid from ctx_user_index_partitions
 where ixp_index_name = 'IDXP'
 and ixp_index_partition_name = 'IDX_P2';
 /* populate pending */
 ctx_ddl.populate_pending('RIO$'||idxid, 'RIO$'||idxid||'#'||ixpid);
 /* incremental sync
 ctx_ddl.sync_index('RIO$'||idxid, null, 'RIO$'||idxid||'#'||ixpid,
 maxtime=>400);
 /* more incremental sync until no more pending rows */
end;
/

exec ctx_ddl.exchange_shadow_index('idxp','idx_p1');
exec ctx_ddl.exchange_shadow_index('idxp','idx_p2');
exec ctx_ddl.exchange_shadow_index('idxp');

Example 7-9 Schedule Local Index Recreate with Per-Partition Swap

For incremental recreate where partitions are swapped as they becomes available, follow the steps in example Example 7-8, "Scheduled Local Index Recreate with All-At-Once Swap", except instead of waiting until all syncs are finished before starting exchange shadow index, EXCHANGE_SHADOW_INDEX is done for each partition right after sync is finished.

Notes

Using RECREATE_INDEX_ONLINE with Global Non-partitioned Indexes

For global indexes, this procedure provides a one-step process to recreate an index online. It recreates an index, with new preference values, while preserving base table DML and query capability during the recreate process.

	
Note:

Because the new index is created alongside the existing index, this operation requires additional storage roughly equal to the size of the existing index.

	DML Behavior
	
Because this procedure is performed online, DML on the base table are permitted during this operation, and are processed as normal. All DML statements that occur during RECREATE_INDEX_ONLINE are logged into an online pending queue.

Towards the end of the recreate operation, there will be a short duration when DML will fail with an error being raised stating that the index is in an in-progress status. DML may hang again during the process, and the duration will depend on how many DML are logged in the online pending queue since the start of the recreate process.

Note that after the recreate index operation is complete, new information, from all the DML that becomes pending since RECREATE_INDEX_ONLINE started, may not be immediately reflected. As with creating an index with INDEXTYPE IS ctxsys.context ONLINE, the index should be synchronized after the recreate index operation is complete, to bring it fully up-to-date.

	
See Also:

	
CTX_DDL.CREATE_SHADOW_INDEX and CTX_DDL.EXCHANGE_SHADOW_INDEX for information about how to manually go through each stage of recreation, and to schedule each step to run at a preferred time

	
The ONLINE parameter under "Syntax for CONTEXT Index Type"

	Sync and Optimize Behavior
	
Syncs issued against the index during the recreate operation are processed against the old, existing data. Syncs are also blocked during the same window when queries return errors. Optimize commands issued against the index during the recreate operation return immediately without error and without processing.

	Query Behavior
	
During the recreate operation, the index can be queried normally most of the time. Queries return results based on the existing index and policy (or metadata) until after the final swap.

There is a short interval towards the end of RECREATE_INDEX_ONLINE when queries will return an error indicating that the column is not indexed. This duration should be short for regular queries. It is mainly the time taken for swapping data segments of the shadow index tables and the index tables, plus the time to delete all the rows in the pending queue. This is the same window of time when DML will fail.

During RECREATE_INDEX_ONLINE, if you issue DML statements and synchronize them, then you will be able to see the new rows when you query on the existing index. However, after RECREATE_INDEX_ONLINE finishes (swapping completes and query is on the new index) and before sync is performed, it is possible that you will not be able to query on the new rows, which once could be queried on the old index.

	
Note:

Transactional queries are not supported.

Using RECREATE_INDEX_ONLINE with Local Partitioned Indexes

If the index is local partitioned, you cannot recreate index in one step. You must first create a shadow policy, and then run this procedure for every partition. You can specify SWAP or NOSWAP to indicate whether RECREATE_INDEX_ONLINE partition will swap the index partition data and index partition metadata or not. If the partition was built with NOSWAP, then another call to EXCHANGE_SHADOW_INDEX must be invoked later against this partition.

This procedure can also be used to update the metadata (for example, storage preference) of each partition when you specify NOPOPULATE in the parameter string. This is useful for incremental building of a shadow index through time-limited sync.

If NOPOPULATE is specified, then NOSWAP is silently enforced.

	NOSWAP Behavior
	
During the recreate of the index partition, since no swapping is performed, queries on the partition are processed regularly. Until the swapping stage is reached, queries spanning multiple partitions return consistent results across partitions.

DML and sync are processed normally. Running optimize on partitions that are being recreated, or that have been built (but not swapped), simply returns without doing anything. Running optimize on a partition that has not been rebuilt processes normally.

As with a global index, when all of the partitions use NOSWAP, the additional storage requirement is roughly equal to the size of the existing index.

	SWAP Behavior
	
Because index partition data and metadata are swapped after index recreate, queries that span multiple partitions will not return consistent results from partition to partition, but will always be correct with respect to each index partition. There is also a short interval towards the end of partition recreate, when the index partition is swapped, during which a query will return a "column not indexed" error.

When partitions are recreated with SWAP, the additional storage requirement for the operation is equal to the size of the existing index partition.

DML on the partition is blocked. Sync is also blocked during swapping.

Related Topics

See also CREATE_SHADOW_INDEX and DROP_SHADOW_INDEX, and EXCHANGE_SHADOW_INDEX, as well as Oracle Text Application Developer's Guide.

REMOVE_INDEX

Removes the index with the specified column list from a CTXCAT index set preference.

	
Note:

This procedure does not remove a CTXCAT sub-index from the existing index. To do so, you must drop your index and re-index with the modified index set preference.

Syntax

CTX_DDL.REMOVE_INDEX(

 set_name IN VARCHAR2,
 column_list IN VARCHAR2
 language IN VARCHAR2 default NULL
);

	set_name
	
Specify the name of the index set.

	column_list
	
Specify the name of the column list to remove.

REMOVE_MDATA

Use this procedure to remove metadata values, which are associated with an MDATA section, from a document. Only the owner of the index is allowed to call ADD_MDATA and REMOVE_MDATA.

Syntax

CTX_DDL.REMOVE_MDATA(
 idx_name IN VARCHAR2,
 section_name IN VARCHAR2,
 values SYS.ODCIVARCHAR2LIST,
 rowids SYS.ODCIRIDLIST,
 [part_name] IN VARCHAR2]
);

	idx_name
	
Name of the text index that contains the named rowids.

	section_name
	
Name of the MDATA section.

	values
	
List of metadata values. If a metadata value contains a comma, the comma must be escaped with a backslash.

	rowids
	
Rowids from which to remove the metadata values.

	[part_name]
	
Name of the index partition, if any. Must be provided for local partitioned indexes and must be NULL for global, non-partitioned indexes.

Example

This example removes the MDATA value blue from the MDATA section BGCOLOR.

ctx_ddl.remove_mdata('idx_docs', 'bgcolor', 'blue', 'rows');

Related Topics

See also "ADD_MDATA"; "ADD_MDATA_SECTION"; "MDATA"; as well as the Section Searching chapter of Oracle Text Application Developer's Guide.

Notes

These updates are updates directly on the index itself, not on the actual contents stored in the base table. Therefore, they will not survive when the Text index is rebuilt.

REMOVE_SECTION

The REMOVE_SECTION procedure removes the specified section from the specified section group. You can specify the section by name or ID. View section ID with the CTX_USER_SECTIONS view.

Syntax 1

Use the following syntax to remove a section by section name:

CTX_DDL.REMOVE_SECTION(
 group_name in varchar2,
 section_name in varchar2
);

	group_name
	
Specify the name of the section group from which to delete section_name.

	section_name
	
Specify the name of the section to delete from group_name.

Syntax 2

Use the following syntax to remove a section by section ID:

CTX_DDL.REMOVE_SECTION(
 group_name in varchar2,
 section_id in number
);

	group_name
	
Specify the name of the section group from which to delete section_id.

	section_id
	
Specify the section ID of the section to delete from group_name.

Example

The following example drops a section called Title from the htmgroup:

begin
ctx_ddl.remove_section('htmgroup', 'Title');
end;

Related Topics

"ADD_FIELD_SECTION"

"ADD_SPECIAL_SECTION"

"ADD_ZONE_SECTION"

REMOVE_STOPCLASS

Removes a stopclass from a stoplist.

Syntax

CTX_DDL.REMOVE_STOPCLASS(
 stoplist_name in varchar2,
 stopclass in varchar2
);

	stoplist_name
	
Specify the name of the stoplist.

	stopclass
	
Specify the name of the stopclass to be removed.

Example

The following example removes the stopclass NUMBERS from the stoplist mystop.

begin
ctx_ddl.remove_stopclass('mystop', 'NUMBERS');
end;

Related Topics

"ADD_STOPCLASS"

REMOVE_STOPTHEME

Removes a stoptheme from a stoplist.

Syntax

CTX_DDL.REMOVE_STOPTHEME(
 stoplist_name in varchar2,
 stoptheme in varchar2
);

	stoplist_name
	
Specify the name of the stoplist.

	stoptheme
	
Specify the stoptheme to be removed from stoplist_name.

Example

The following example removes the stoptheme banking from the stoplist mystop:

begin
ctx_ddl.remove_stoptheme('mystop', 'banking');
end;

Related Topics

"ADD_STOPTHEME"

REMOVE_STOPWORD

Removes a stopword from a stoplist. To have the removal of a stopword be reflected in the index, you must rebuild your index.

Syntax

CTX_DDL.REMOVE_STOPWORD(

stoplist_name in varchar2,
stopword in varchar2,
language in varchar2 default NULL

);

	stoplist_name
	
Specify the name of the stoplist.

	stopword
	
Specify the stopword to be removed from stoplist_name.

	language
	
Specify the language of stopword to remove when the stoplist you specify with stoplist_name is of type MULTI_STOPLIST. You must specify the globalization support name or abbreviation of an Oracle Text-supported language. You can also remove ALL stopwords.

Example

The following example removes a stopword because from the stoplist mystop:

begin

ctx_ddl.remove_stopword('mystop','because');

end;

Related Topics

"ADD_STOPWORD"

REMOVE_SUB_LEXER

Removes a sub-lexer from a multi-lexer preference. You cannot remove the lexer for DEFAULT.

Syntax

CTX_DDL.REMOVE_SUB_LEXER(

lexer_name in varchar2,
language in varchar2 default NULL

);

	lexer_name
	
Specify the name of the multi-lexer preference.

	language
	
Specify the language of the sub-lexer to remove. You must specify the globalization support name or abbreviation of an Oracle Text-supported language.

Example

The following example removes a sub-lexer german_lexer of language german:

begin

ctx_ddl.remove_sub_lexer('german_lexer','german');

end;

Related Topics

REPLACE_INDEX_METADATA

Use this procedure to replace metadata in local domain indexes at the global (index) level.

	
Note:

The ALTER INDEX PARAMETERS command performs the same function as this procedure and can replace more than just metadata. For that reason, using ALTER INDEX PARAMETERS is the preferred method of replacing metadata at the global (index) level and should be used in place of this procedure when possible. For more information, see "ALTER INDEX PARAMETERS Syntax".
CTX_REPLACE_INDEX_METADATA may be deprecated in a future release of Oracle Text.

Syntax

CTX_DDL.REPLACE_INDEX_METADATA(idx_name IN VARCHAR2,
 parameter_string IN VARCHAR2);

	idx_name
	
Specify the name of the index whose metadata you want to replace.

	parameter_string
	
Specify the parameter string to be passed to ALTER INDEX. This must begin with 'REPLACE METADATA'.

Notes

ALTER INDEX REBUILD PARAMETERS ('REPLACE METADATA') does not work for a local partitioned index at the index (global) level; you cannot, for example, use that ALTER INDEX syntax to change a global preference, such as filter or lexer type, without rebuilding the index. Therefore, CTX_DDL.REPLACE_INDEX_METADATA is provided as a method of overcoming this limitation of ALTER INDEX.

Though it is meant as a way to replace metadata for a local partitioned index, CTX_DDL.REPLACE_INDEX_METADATA can be used on a global, non-partitioned index, as well.

REPLACE_INDEX_METADATA cannot be used to change the sync type at the partition level; that is, parameter_string cannot be 'REPLACE METADATA SYNC'. For that purpose, use ALTER INDEX REBUILD PARTITION to change the sync type at the partition level.

Related Topics

See also "ALTER INDEX PARAMETERS Syntax" and "ALTER INDEX REBUILD Syntax".

SET_ATTRIBUTE

Sets a preference attribute. Use this procedure after you have created a preference with CTX_DDL.CREATE_PREFERENCE.

Syntax

CTX_DDL.SET_ATTRIBUTE(preference_name IN VARCHAR2,
 attribute_name IN VARCHAR2,
 attribute_value IN VARCHAR2);

	preference_name
	
Specify the name of the preference.

	attribute_name
	
Specify the name of the attribute.

	attribute_value
	
Specify the attribute value. Specify boolean values as TRUE or FALSE, T or F, YES or NO, Y or N, ON or OFF, or 1 or 0.

Example

Specifying File Data Storage

The following example creates a data storage preference called filepref that tells the system that the files to be indexed are stored in the operating system. The example then uses CTX_DDL.SET_ATTRIBUTE to set the PATH attribute to the directory /docs.

begin
ctx_ddl.create_preference('filepref', 'FILE_DATASTORE');
ctx_ddl.set_attribute('filepref', 'PATH', '/docs');
end;

	
See Also:

For more information about data storage, see "Datastore Types"
For more examples of using SET_ATTRIBUTE, see "CREATE_PREFERENCE"

SYNC_INDEX

Synchronizes the index to process inserts, updates, and deletes to the base table.

	
Note:

Because CTX_DDL.SYNC_INDEX issues implicit commits, calling CTX_DDL.SYNC_INDEX in a trigger is strongly discouraged. Doing so can result in errors being raised, as both SYNC_INDEX and post-commit $R LOB maintenance try to update the same $R LOB.

Syntax

CTX_DDL.SYNC_INDEX(

idx_name IN VARCHAR2 DEFAULT NULL
memory IN VARCHAR2 DEFAULT NULL,
part_name IN VARCHAR2 DEFAULT NULL,
parallel_degree IN NUMBER DEFAULT 1
maxtime IN NUMBER DEFAULT NULL,
locking IN NUMBER DEFAULT LOCK_WAIT
);

	idx_name
	
Specify the name of the index to synchronize.

	
Note:

When idx_name is null, all CONTEXT, CTXRULE, and CTXXPATH indexes that have pending changes are synchronized. You must be connected as ctxsys to perform this operation. Each index or index partition is synchronized in sequence, one after the other. Because of this, the individual syncs are performed with locking set to NOWAIT and maxtime set to 0. Any values that you specify for locking or maxtime on the SYNC_INDEX call are ignored. However, the memory and parallel_degree parameters are passed on to the individual synchronizations.

	memory
	
Specify the runtime memory to use for synchronization. This value overrides the DEFAULT_INDEX_MEMORY system parameter.

The memory parameter specifies the amount of memory Oracle Text uses for the synchronization operation before flushing the index to disk. Specifying a large amount of memory:

	
Improves indexing performance because there is less I/O

	
Improves query performance and maintenance because there is less fragmentation

	
The indexing memory size specified in the second argument applies to each parallel slave. For exmaple, if the memory argument is set to 500M and parallel_degree is set to 2, then ensure that there is at least 1GB of memory available on the system used for the parallel SYNC_INDEX.

Specifying smaller amounts of memory increases disk I/O and index fragmentation, but might be useful when runtime memory is scarce.

	part_name
	
If your index is a local index, then you must specify the name of the index partition to synchronize otherwise an error is returned.

If your index is a global, non-partitioned index, then specify NULL, which is the default.

	parallel_degree
	
Specify the degree to run parallel synchronize. A number greater than 1 turns on parallel synchronize. The actual degree of parallelism might be smaller depending on your resources.

	maxtime
	
Indicate a suggested time limit on the operation, in minutes. SYNC_INDEX will process as many documents in the queue as possible within the time limit. The maxtime value of NULL is equivalent to CTX_DDL.MAXTIME_UNLIMITED. This parameter is ignored when SYNC_INDEX is invoked without an index name, in which case maxtime value of 0 is used instead. The locking parameter is ignored for automatic syncs (that is, SYNC ON COMMIT or SYNC EVERY).

The time limit specified is treated as approximate. The actual time taken may be somewhat less than or greater than what you specify. The "time clock" for maxtime does not start until the SYNC lock is acquired.

	locking
	
Configure how SYNC_INDEX deals with the situation where another sync is already running on the same index or index partition. When locking is ignored because SYNC_INDEX is invoked without an index name, then locking value of LOCK_NOWAIT is used instead. The locking parameter is ignored for automatic syncs (that is, SYNC ON COMMIT or SYNC EVERY).

The options for locking are:

	CTX_DDL.LOCK_WAIT	If another sync is running, wait until the running sync is complete, then begin sync. (In the event of not being able to get a lock, it will wait forever and ignore the maxtime setting.)
	CTX_DDL.LOCK_NOWAIT	If another sync is running, immediately returns without error.
	CTX_DDL.LOCK_NOWAIT_ERROR	If another sync is running, error "DRG-51313: timeout while waiting for DML or optimize lock" is raised.

Example

The following example synchronizes the index myindex with 2 megabytes of memory:

begin

ctx_ddl.sync_index('myindex', '2M');

end;

The following example synchronizes the part1 index partition with 2 megabytes of memory:

begin

ctx_ddl.sync_index('myindex', '2M', 'part1');

end;

Notes

You can run CTX_DDL.SYNC_INDEX and CTX_DDL.OPTIMIZE_INDEX at the same time. You can also run CTX_DDL.SYNC_INDEX and CTX_DDL.OPTIMIZE_INDEX with parallelism at the same time. However, you should not run CTX_DDL.SYNC_INDEX with parallelism at the same time as CTX_DDL.OPTIMIZE_INDEX, nor CTX_DDL.SYNC_INDEX with parallelism at the same time as CTX_DDL.OPTIMIZE_INDEX with parallelism. If you should run one of these combinations, no error is generated; however, one operation will wait until the other is done.

Related Topics

"ALTER INDEX"

UNSET_ATTRIBUTE

Removes a set attribute from a preference.

Syntax

CTX_DDL.UNSET_ATTRIBUTE(preference_name varchar2,
 attribute_name varchar2);

	preference_name
	
Specify the name of the preference.

	attribute_name
	
Specify the name of the attribute.

Example

Enabling/Disabling Alternate Spelling

The following example shows how you can enable alternate spelling for German and disable alternate spelling with CTX_DDL.UNSET_ATTRIBUTE:

begin
ctx_ddl.create_preference('GERMAN_LEX', 'BASIC_LEXER');
ctx_ddl.set_attribute('GERMAN_LEX', 'ALTERNATE_SPELLING', 'GERMAN');
end;

To disable alternate spelling, use the CTX_DDL.UNSET_ATTRIBUTE procedure as follows:

begin
ctx_ddl.unset_attribute('GERMAN_LEX', 'ALTERNATE_SPELLING');
end;

Related Topics

"SET_ATTRIBUTE"

UPDATE_POLICY

Updates a policy created with CREATE_POLICY. Replaces the preferences of the policy. Null arguments are not replaced.

Syntax

CTX_DDL.UPDATE_POLICY(
 policy_name IN VARCHAR2,
 filter IN VARCHAR2 DEFAULT NULL,
 section_group IN VARCHAR2 DEFAULT NULL,
 lexer IN VARCHAR2 DEFAULT NULL,
 stoplist IN VARCHAR2 DEFAULT NULL,
 wordlist IN VARCHAR2 DEFAULT NULL);

	policy_name
	
Specify the name of the policy to update.

	filter
	
Specify the filter preference to use.

	section_group
	
Specify the section group to use.

	lexer
	
Specify the lexer preference to use.

	stoplist
	
Specify the stoplist to use.

	wordlist
	
Specify the wordlist to use.

CTX_ULEXER Package

13 CTX_ULEXER Package

This chapter provides reference information on how to use the CTX_ULEXER PL/SQL package with the user-defined lexer.

CTX_ULEXER declares the following type:

	Name	Description
	WILDCARD_TAB
	Index-by table type that you use to specify the offset of characters to be treated as wildcard characters by the user-defined lexer query procedure.

WILDCARD_TAB

TYPE WILDCARD_TAB IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;

Use this index-by table type to specify the offset of those characters in the query word to be treated as wildcard characters by the user-defined lexer query procedure.

Character offset information follows USC-2 codepoint semantics.

Oracle Text Utilities

14 Oracle Text Utilities

This chapter discusses the utilities shipped with Oracle Text. The following topics are included:

	
Thesaurus Loader (ctxload)

	
Knowledge Base Extension Compiler (ctxkbtc)

	
Lexical Compiler (ctxlc)

14.1 Thesaurus Loader (ctxload)

Use ctxload to import a thesaurus file into the Oracle Text thesaurus tables.

An import file is an ASCII flat file that contains entries for synonyms, broader terms, narrower terms, or related terms, which can be used to expand queries.

	
See Also:

For examples of import files for thesaurus importing, see "Structure of ctxload Thesaurus Import File" in Appendix C, "Text Loading Examples for Oracle Text"

14.1.1 Text Loading

The ctxload program no longer supports the loading of text columns. To load files to a text column in batch mode, Oracle recommends that you use SQL*Loader.

	
See Also:

"SQL*Loader Example" in Appendix C, "Text Loading Examples for Oracle Text"

14.1.2 ctxload Syntax

ctxload -user username[/password][@sqlnet_address]
 -name object_name
 -file file_name

 [-thes]
 [-thescase y|n]
 [-thesdump]
 [-log file_name]
 [-trace]
 [-drop]

14.1.2.1 Mandatory Arguments

	-user
	
Specify the user name and password of the user running ctxload.

The user name and password can be followed immediately by @sqlnet_address to permit logging on to remote databases. The value for sqlnet_address is a database connect string. If the TWO_TASK environment variable is set to a remote database, then you do not need to specify a value for sqlnet_address to connect to the database.

	-name object_name
	
When you use ctxload to import a thesaurus, use object_name to specify the name of the thesaurus to be imported.

Use object_name to identify the thesaurus in queries that use thesaurus operators.

	
Note:

Thesaurus name must be unique. If the name specified for the thesaurus is identical to an existing thesaurus, then ctxload returns an error and does not overwrite the existing thesaurus.

	-file file_name
	
When ctxload is used to import a thesaurus, use file_name to specify the name of the import file that contains the thesaurus entries.

When ctxload is used to export a thesaurus, use file_name to specify the name of the export file created by ctxload.

	
Note:

If the name specified for the thesaurus dump file is identical to an existing file, then ctxload overwrites the existing file.

14.1.2.2 Optional Arguments

	-thes
	
Import a thesaurus. Specify the source file with the -file argument. Specify the name of the thesaurus to be imported with -name.

	-thescase y | n
	
Specify y to create a case-sensitive thesaurus with the name specified by -name and populate the thesaurus with entries from the thesaurus import file specified by -file. If -thescase is y (the thesaurus is case-sensitive), ctxload enters the terms in the thesaurus exactly as they appear in the import file.

The default for -thescase is n (case-insensitive thesaurus).

	
Note:

-thescase is valid for use only with the -thes argument.

	-thesdump
	
Export a thesaurus. Specify the name of the thesaurus to be exported with the -name argument. Specify the destination file with the -file argument.

	-log
	
Specify the name of the log file to which ctxload writes any national-language supported (Globalization Support) messages generated during processing. If you do not specify a log file name, the messages appear on the standard output.

	-trace
	
Enables SQL statement tracing using ALTER SESSION SET SQL_TRACE TRUE. This command captures all processed SQL statements in a trace file, which can be used for debugging. The location of the trace file is operating-system dependent and can be modified using the USER_DUMP_DEST initialization parameter.

	
See Also:

For more information about SQL trace and the USER_DUMP_DEST initialization parameter, see Oracle Database Administrator's Guide

14.1.3 ctxload Examples

This section provides examples for some of the operations that ctxload can perform.

	
See Also:

For more document loading examples, see Appendix C, "Text Loading Examples for Oracle Text"

14.1.3.1 Thesaurus Import Example

The following example imports a thesaurus named tech_doc from an import file named tech_thesaurus.txt:

ctxload -user jsmith/123abc -thes -name tech_doc -file tech_thesaurus.txt

14.1.3.2 Thesaurus Export Example

The following example dumps the contents of a thesaurus named tech_doc into a file named tech_thesaurus.out:

ctxload -user jsmith/123abc -thesdump -name tech_doc -file tech_thesaurus.out

14.2 Knowledge Base Extension Compiler (ctxkbtc)

The knowledge base is the information source that Oracle Text uses to perform theme analysis, such as theme indexing, processing ABOUT queries, and to document theme extraction with the CTX_DOC package. A knowledge base is supplied for English and French.

With the ctxkbtc compiler, you can:

	
Extend your knowledge base by compiling one or more thesauri with the Oracle Text knowledge base. The extended information can be application-specific terms and relationships. During theme analysis, the extended portion of the knowledge base overrides any terms and relationships in the knowledge base where there is overlap.

	
Create a new user-defined knowledge base by compiling one or more thesauri. In languages other than English and French, this feature can be used to create a language-specific knowledge base.

	
Note:

Only CTXSYS can extend the knowledge base.

	
See Also:

For more information about the knowledge base packaged with Oracle Text, see http://www.oracle.com/technology/products/text/
For more information about the ABOUT operator, see ABOUT operator in Chapter 3, "Oracle Text CONTAINS Query Operators"

For more information about document services, see Chapter 8, "CTX_DOC Package"

14.2.1 Knowledge Base Character Set

Knowledge bases can be in any single-byte character set. Supplied knowledge bases are in WE8ISO8859P1. You can store an extended knowledge base in another character set such as US7ASCII.

14.2.2 ctxkbtc Syntax

ctxkbtc -user uname/passwd

[-name thesname1 [thesname2 ... thesname16]]
[-revert]
[-stoplist stoplistname]
[-verbose]
[-log filename]

	-user
	
Specify the user name and password for the administrator creating an extended knowledge base. This user must have write permission to the ORACLE_HOME directory.

	-name thesname1 [thesname2 ... thesname16]
	
Specify the names of the thesauri (up to 16) to be compiled with the knowledge base to create the extended knowledge base. The thesauri you specify must already be loaded with ctxload with the "-thescase Y" option

	-revert
	
Reverts the extended knowledge base to the default knowledge base provided by Oracle Text.

	-stoplist stoplistname
	
Specify the name of the stoplist. Stopwords in the stoplist are added to the knowledge base as useless words that are prevented from becoming themes or contributing to themes. Add stopthemes after running this command using CTX_DLL.ADD_STOPTHEME.

	-verbose
	
Displays all warnings and messages, including non-Globalization Support messages, to the standard output.

	-log
	
Specify the log file for storing all messages. When you specify a log file, no messages are reported to standard out.

14.2.3 ctxkbtc Usage Notes

	
Before running ctxkbtc, you must set the NLS_LANG environment variable to match the database character set.

	
The user issuing ctxkbtc must have write permission to the ORACLE_HOME, because the program writes files to this directory.

	
Before being compiled, each thesaurus must be loaded into Oracle Text case sensitive with the "-thescase Y" option in ctxload.

	
Running ctxkbtc twice removes the previous extension.

14.2.4 ctxkbtc Limitations

The ctxkbtc program has the following limitations:

	
When upgrading or downgrading your database to a different release, for theme indexing and related features to work correctly, Oracle recommends that you recompile your extended knowledge base in the new environment.

	
Before extending the knowledge base, you must terminate all server processes that have invoked any knowledge base-related Text functions during their lifetime.

	
There can be only one user extension for each language for each installation. Because a user extension affects all users at the installation, only the CTXSYS user can extend the knowledge base.

	
In an Oracle RAC environment, the ORACLE_HOME can either be shared between multiple nodes, or each node can have its own ORACLE_HOME. The following requirements apply:

	
Before using any knowledge base-dependent functionality in any of the Oracle RAC nodes, ctxkbtc must be run in every ORACLE_HOME in the Oracle RAC environment.

	
When using ctxkbtc, the exact same input thesaurus content must be used in every ORACLE_HOME in the Oracle RAC environment.

14.2.5 ctxkbtc Constraints on Thesaurus Terms

Terms are case sensitive. If a thesaurus has a term in uppercase, for example, the same term present in lowercase form in a document will not be recognized.

The maximum length of a term is 80 characters.

Disambiguated homographs are not supported.

14.2.6 ctxkbtc Constraints on Thesaurus Relations

The following constraints apply to thesaurus relations:

	
BTG and BTP are the same as BT. NTG and NTP are the same as NT.

	
Only preferred terms can have a BT, NTs or RTs.

	
If a term has no USE relation, it will be treated as its own preferred term.

	
If a set of terms are related by SYN relations, only one of them may be a preferred term.

	
An existing category cannot be made a top term.

	
There can be no cycles in BT and NT relations.

	
A term can have at most one preferred term and at most one BT. A term may have any number of NTs.

	
An RT of a term cannot be an ancestor or descendent of the term. A preferred term may have any number of RTs up to a maximum of 32.

	
The maximum height of a tree is 16 including the top term level.

	
When multiple thesauri are being compiled, a top term in one thesaurus should not have a broader term in another thesaurus.

	
Note:

The thesaurus compiler tolerates some violations of the preceding rules. For example, if a term has multiple BTs, then the compiler ignores all but the last one it encounters.
Similarly, BTs between existing knowledge base categories result only in a warning message.

Oracle recommends that you do not set up extended storage bases with violations. Using extended storage bases containing violations can produce undesired results.

14.2.7 Extending the Knowledge Base

Extend the supplied knowledge base by compiling one or more thesauri with the Oracle Text knowledge base. The extended information can be application-specific terms and relationships. During theme analysis, the extended portion of the knowledge base overrides any terms and relationships in the knowledge base where there is overlap.

When extending the knowledge base, Oracle recommends that new terms be linked to one of the categories in the knowledge base for best results in theme proving when appropriate.

	
See Also:

For complete description of the supplied knowledge base, see http://www.oracle.com/technology/products/text/

If new terms are kept completely disjoint from existing categories, fewer themes from new terms will be proven. The result of this is poorer precision and recall with ABOUT queries as well poor quality of gists and theme highlighting.

Link new terms to existing terms by making an existing term the broader term for the new terms.

14.2.7.1 Example for Extending the Knowledge Base

You purchase a medical thesaurus medthes containing a hierarchy of medical terms. The four top terms in the thesaurus are the following:

	
Anesthesia and Analgesia

	
Anti-Allergic and Respiratory System Agents

	
Anti-Inflammatory Agents, Antirheumatic Agents, and Inflammation Mediators

	
Antineoplastic and Immunosuppressive Agents

To link these terms to the existing knowledge base, add the following entries to the medical thesaurus to map the new terms to the existing health and medicine branch:

health and medicine
 NT Anesthesia and Analgesia
 NT Anti-Allergic and Respiratory System Agents
 NT Anti-Inflamammatory Agents, Antirheumatic Agents, and Inflamation Mediators
 NT Antineoplastic and Immunosuppressive Agents

Set your globalization support language environment variable to match the database character set. For example, if your database character set is WE8ISO8859P1 and you are using American English, set your NLS_LANG as follows:

setenv NLS_LANG AMERICAN_AMERICA.WE8ISO8859P1

Assuming the medical thesaurus is in a file called med.thes, load the thesaurus as medthes with ctxload as follows:

ctxload -thes -thescase y -name medthes -file med.thes -user ctxsys/ctxsys

To link the loaded thesaurus medthes to the knowledge base, use ctxkbtc as follows:

ctxkbtc -user ctxsys/ctxsys -name medthes

14.2.8 Adding a Language-Specific Knowledge Base

Extend theme functionality to languages other than English or French by loading your own knowledge base for any single-byte whitespace delimited language, including Spanish.

Theme functionality includes theme indexing, ABOUT queries, theme highlighting, and the generation of themes, gists, and theme summaries with the CTX_DOC PL/SQL package.

Extend theme functionality by adding a user-defined knowledge base. For example, you can create a Spanish knowledge base from a Spanish thesaurus.

To load your language-specific knowledge base, follow these steps:

	
Load your custom thesaurus using ctxload.

	
Set NLS_LANG so that the language portion is the target language. The charset portion must be a single-byte character set.

	
Compile the loaded thesaurus using ctxkbtc:

ctxkbtc -user ctxsys/ctxsys -name my_lang_thes

This command compiles your language-specific knowledge base from the loaded thesaurus. To use this knowledge base for theme analysis during indexing and ABOUT queries, specify the NLS_LANG language as the THEME_LANGUAGE attribute value for the BASIC_LEXER preference.

14.2.8.1 Limitations for Adding a Knowledge Base

The following limitations hold for adding knowledge bases:

	
Oracle Text supplies knowledge bases in English and French only. You must provide your own thesaurus for any other language.

	
You can only add knowledge bases for languages with single-byte character sets. You cannot create a knowledge base for languages which can be expressed only in multibyte character sets. If the database is a multibyte universal character set, such as UTF-8, the NLS_LANG parameter must still be set to a compatible single-byte character set when compiling the thesaurus.

	
Adding a knowledge base works best for whitespace delimited languages.

	
You can have at most one knowledge base for each globalization support language.

	
Obtaining hierarchical query feedback information such as broader terms, narrower terms and related terms does not work in languages other than English and French. In other languages, the knowledge bases are derived entirely from your thesauri. In such cases, Oracle recommends that you obtain hierarchical information directly from your thesauri.

14.2.9 Order of Precedence for Multiple Thesauri

When multiple thesauri are to be compiled, precedence is determined by the order in which thesauri are listed in the arguments to the compiler, assumed to be most preferred first. A user-defined thesaurus always has precedence over the built-in knowledge base.

14.2.10 Size Limits for Extended Knowledge Base

The following table lists the size limits associated with creating and compiling an extended knowledge base.

Table 14-1 Size Limit for the Extended Knowledge Base

	Description of Parameter	Limit
	
Number of RTs (from + to) for each term

	
32

	
Number of terms for each single hierarchy (for example, all narrower terms for a given top term)

	
64000

	
Number of new terms in an extended knowledge base

	
1 million

	
Number of separate thesauri that can be compiled into a user extension to the KB

	
16

14.3 Lexical Compiler (ctxlc)

The Lexical Compiler (ctxlc) is a command-line utility that enables you to create your own Chinese and Japanese lexicons (dictionaries). Such a lexicon may either be generated from a user-supplied word list or from the merging of a word list with the system lexicon for that language.

ctxlc creates the new lexicon in your current directory. The new lexicon consists of three files, drold.dat, drolk.dat, and droli.dat. To change your system lexicon for Japanese or Chinese, overwrite the system lexicon with these files.

The Lexical Compiler can also generate wordlists from the system lexicons for Japanese and Chinese, enabling you to see their contents. These word lists go to the standard output and thus can be redirected into a file of your choice.

After overwriting the system lexicon, you need to re-create your indexes before querying them.

14.3.1 Syntax of ctxlc

ctxlc has the following syntax:

ctxlc -ja | -zh [-n] -ics character_set -i input_file

ctxlc -ja | -zh -ocs character_set [> output_file]

14.3.1.1 Mandatory Arguments

	-ja | -zh
	
Specify the language of the lexicon to modify or create. -ja indicates the Japanese lexicon; -zh indicates the Chinese lexicon.

	-ics character_set
	
Specify the character set of the input file denoted by -i input_file. input_file is the list of words, one word to a line, to use in creating the new lexicon.

	-i input_file
	
Specify the file containing words to use in creating a new lexicon.

	-ocs character_set
	
Specify the character set of the text file to be output.

14.3.1.2 Optional Arguments

	-n
	
Specify -n to create a new lexicon that consists only of user-supplied words taken from input_file. If -n is not specified, then the new lexicon consists of a merge of the system lexicon with input_file. Also, when -n is not selected, a text file called drolt.dat, is created in the current directory to enable you to inspect the contents of the merged lexicon without having to enter another ctxlc command.

14.3.2 Performance Considerations

You can add up to 1,000,000 new words to a lexicon. However, creating a very large lexicon can reduce performance in indexing and querying. Performance is best when the lexicon character set is UTF-8. There is no performance impact on the Chinese or Japanese V-gram lexers, as they do not use lexicons.

14.3.3 ctxlc Usage Notes

Oracle recommends the following practices with regard to ctxlc:

	
Save your plain text dictionary file in your environment for emergency use.

	
When upgrading or downgrading your database to a different release, recompile your plain text dictionary file in the new environment so that the user lexicon will work correctly.

14.3.4 Example

In this example, you create a new Japanese lexicon from the file jadict.txt, a word list that uses the JA16EUC character set. Because you are not specifying -n, the new lexicon is the result of merging jadict.txt with the system Japanese lexicon. Then replace the existing Japanese lexicon with the new, merged one.

% ctxlc -ja -ics JA16EUC -i jadict.txt

This creates new files in the current directory:

% ls
drold.dat
drolk.dat
droli.dat
drolt.dat

The system lexicon files for Japanese and Chinese are named droldxx.dat drolkxx.dat, and drolixx.dat, where xx is either JA (for Japanese) or ZH (for Chinese). Rename the three new files and copy them to the directory containing the system Japanese lexicon.

% mv drold.dat droldJA.dat
% mv drolk.dat drolkJA.dat
% mv droli.dat droliJA.dat
% cp *dat $ORACLE_HOME/ctx/data/jalx

This replaces the system Japanese lexicon with one that is a merge of the old system lexicon and your wordlist from jadict.txt.

You can also use ctxlc to get a dump of a system lexicon. This example dumps the Chinese lexicon to a file called new_chinese_dict.txt in the current directory:

% ctxlc -zh -ocs UTF8 > new_chinese_dict.txt

This creates a file, new_japanese.dict.txt, using the UTF8 character set, in the current directory.

Oracle Text Supported Document Formats

B Oracle Text Supported Document Formats

This appendix contains a list of the document formats supported by the automatic (AUTO_FILTER) filtering technology. The following topics are covered in this appendix:

	
About Document Filtering Technology

	
Supported Document Formats

B.1 About Document Filtering Technology

The automatic filtering technology in Oracle Text uses the HTML Export technology provided by Oracle Outside In. This technology also enables you to convert documents to HTML for document presentation with the CTX_DOC package.

To use automatic filtering for indexing and DML processing, you must specify the AUTO_FILTER object in your filter preference.

To use automatic filtering technology for converting documents to HTML with the CTX_DOC package, you need not use the AUTO_FILTER indexing preference, but you must still set up your environment to use this filtering technology, as described in this appendix.

	
Note:

The underlying technology used by Oracle Text was migrated to Oracle Outside In HTML Export in release 11.1.0.7. See "Formats No Longer Supported in 11.1.0.7" for a list of formats that are no longer supported as a result of this migration. Applications that require support for those formats can use USER_FILTER to plug in third-party filtering technology supporting those formats. See "USER_FILTER" for more information.

B.1.1 Latest Updates for Patch Releases

The supported platforms and formats listed in this appendix apply for this release. These supported formats are updated for patch releases.

B.1.2 Restrictions on Format Support

Password-protected documents and documents with password-protected content are not supported by the AUTO_FILTER filter.

For other limitations, refer to sections in this chapter concerning specific document types.

B.1.3 Supported Platforms for AUTO_FILTER Document Filtering Technology

Several platforms can take advantage of AUTO_FILTER filter technology.

B.1.3.1 Supported Platforms

AUTO_FILTER filter technology is supported on the following platforms:

	
Windows (x86 32-bit) Windows 2000, Windows 2003, Windows XP, and Windows Vista

	
Windows (Itanium 64-bit) Windows .Net Server 2003 Enterprise Edition

	
Windows (x86 64-bit) Windows 2003 x64 Standard, Enterprise, and Datacenter Editions (64-bit Extended Systems)

	
HP-UX (PA-RISC 64-bit) 11.i

	
HP/UX (Itanium 64) 11i

	
IBM AIX (32-bit pSeries) 5.1 - 5.3

	
iSeries (OS/400 using PASE) V5R2

	
Red Hat Linux (x86) Advanced Server 3, 4, and 5

	
Red Hat Linux (x86) Red Hat Enterprise Linux (RHEL) 4

	
Red Hat Linux (Itanium 64) Advanced Server 3, 4, and 5

	
Red Hat Linux (zSeries, 31-bit) Advanced Server 3 and 4

	
Red Hat Enterprise Linux AS/ES 3.0, 4.0 and 5.0, x86-64 (AMD64/EM64T)Oracle Enterprise Linux 4.0 and 5.0, x86-64 (AMD64/EM64T)

	
SuSE Linux (x86) 9, 10, and Enterprise Server 9.0

	
SuSE Linux (x86 64-bit) SUSE Enterprise Server (SLES) 9, 10

	
SuSE Linux (Itanium 64) Enterprise Server 8

	
SuSE Linux (zSeries, 31-bit) 9

	
Sun Solaris (SPARC 64-bit) 9.x - 10.x

	
Sun Solaris (x86-64-bit) 10x

Note that some of these platforms may not be supported by the Oracle Database.

B.1.4 Filtering on PDF Documents and Security Settings

A PDF document can have different levels of security settings as follows:

Table B-1 AUTO_FILTER Behavior with PDF Security Settings

	Security Level	Description	PDF Version	Encryption	AUTO_FILTER Support Level
	
Level 1

	
Requires a password for opening the document.

	
1.2+

	
40 bit RC4

	
Not supported.

	
	
	
1.4+

	
128 bit RC4

	
Not supported.

	
	
	
1.5+

	
128 bit RC4

	
Not supported.

	
	
	
1.6+

	
128 bit AES

	
Not supported.

	
	
	
1.7+

	
256 bit AES

	
Not supported.

	
Level 2

	
Disallows user printing of the document.

	
1.2+

	
40 bit RC4

	
Supported.

	
	
	
1.4+

	
128 bit RC4

	
Supported.

	
	
	
1.5+

	
128 bit RC4

	
Supported.

	
	
	
1.6+

	
128 bit AES

	
Not supported.

	
	
	
1.7+

	
256 bit AES

	
Not supported.

	
Level 3

	
Disallows user modification or change of the document.

	
1.2+

	
40 bit RC4

	
Supported.

	
	
	
1.4+

	
128 bit RC4

	
Supported.

	
	
	
1.5+

	
128 bit RC4

	
Supported.

	
	
	
1.6+

	
128 bit RC4

	
Not supported.

	
	
	
1.7+

	
256 bit AES

	
Not supported.

	
Level 4

	
Disallows the user from copying or extracting content from the document.

	
1.2+

	
40 bit RC4

	
Supported.

	
	
	
1.4+

	
128 bit RC4

	
Supported.

	
	
	
1.5+

	
128 bit RC4

	
Supported.

	
	
	
1.6+

	
128 bit AES

	
Not supported.

	
	
	
1.7+

	
256 bit AES

	
Not supported.

B.1.5 PDF Filtering Limitations

The following limitations apply when filtering PDF files:

	
Multi-byte PDFs are supported, provided the PDF document is created using Character ID-keyed (CID) fonts, predefined CJK CMap files, or ToUnicode font encodings, and the document does not contain embedded fonts.

	
Embedded fonts in a PDF document are not filtered correctly. They are usually displayed using the question mark (?) replacement character.

	
Hyperlinks in a PDF are not active when displayed in a browser or a viewing window.

	
Annotations, such as notes, sound, or movies, are not supported.

B.1.6 Environment Variables

No environment variables need to be set by the user.

B.1.7 General Limitations

AUTO_FILTER filter technology has the following limitations:

	
Any ASCII characters less then 0x20 (decimal 32) are converted to hexadecimal numbers.

	
Files larger than 2GB are not handled.

B.2 Supported Document Formats

The tables in this section list the document formats that Oracle Text supports for filtering.

Document filtering is used for indexing, DML, and for converting documents to HTML with the CTX_DOC package.

	
Note:

These lists do not represent the complete list of formats that Oracle Text is able to process. The USER_FILTER and PROCEDURE_FILTER enable Oracle Text to process any document format, provided an external filter exists that can filter to some textual format like plain-text, HTML, XML, and so forth.

B.2.1 Word Processing and Desktop Publishing Formats

	Format	Version
	Adobe FrameMaker (MIF)	Versions 3.0, 4.0, 5.0, and 6.0 and Japanese 3.0, 4.0, 5.0, and 6.0 (text only)
	ANSI Text	7 and 8 bit
	ASCII Text	7 and 8 bit
	DEC WPS Plus (DX)	Versions through 3.1
	DEC WPS Plus (WPL)	Versions through 4.1
	DisplayWrite 2 and 3 (TXT)	All versions
	EBCDIC	All versions
	Enable	Versions 3.0, 4.0, and 4.5
	First Choice	Versions through 3.0
	Framework	Version 3.0
	Hangul	Versions 97, 2002, and 2005
	IBM FFT	All versions
	IBM Revisable Form Text	All versions
	IBM Writing Assistant	Version 1.01
	Just System Ichitaro	Versions 4.x through 6.x, 8.x through 13.x and 2004
	JustWrite	Versions through 3.0
	Legacy	Versions 1.1
	Lotus AMI/AMI Professional	Versions 3.1
	Lotus Manuscript	Version 2.0
	Lotus Notes DXL	All versions
	Lotus Notes NSF	All versions (File ID support only)
	Lotus Word Pro (non-Windows)	Versions SmartSuite 97, Millennium, and Millennium 9.6 (text only)
	Lotus Word Pro (Windows)	Versions SmartSuite 96, 97, and Millennium and Millennium 9.6
	MacWrite II	Version 1.1
	MASS11	Versions through 8.0
	Microsoft Rich Text Format (RTF)	All versions
	Microsoft Word (DOS)	Versions through 6.0
	Microsoft Word (Mac)	Versions 4.0 - 2004
	Microsoft Word (Windows)	Versions through 2007
	Microsoft WordPad	All versions
	Microsoft Works (DOS)	Versions through 2.0
	Microsoft Works (Mac)	Versions through 2.0
	Microsoft Works (Windows)	Versions through 4.0
	Microsoft Windows Write	Versions through 3.0
	MultiMate	Versions through 4.0
	Navy DIF	All versions
	Nota Bene	Version 3.0
	Novell Perfect Works	Version 2.0
	Novell/Corel WordPerfect (DOS)	Versions through 6.1
	Novell/Corel WordPerfect (Mac)	Versions 1.02 through 3.0
	Novell/Corel WordPerfect (Windows)	Versions through 12.0
	Office Writer	Versions 4.0 - 6.0
	OpenOffice Writer (Windows and UNIX)	OpenOffice version 1.1 and 2.0
	PC-File Letter	Versions through 5.0
	PC-File+ Letter	Versions through 3.0
	PFS:Write	Versions A, B, and C
	Professional Write Plus (Windows)	Version 1.0
	Q&A (DOS)	Version 2.0
	Q&A Write (Windows)	Version 3.0
	Samna Word	Versions through Samna Word IV+
	Signature	Version 1.0
	SmartWare II	Version 1.02
	Sprint	Versions through 1.0
	StarOffice Writer	Version 5.2 (text only) and 6.x through 8.x
	Total Word	Version 1.2
	Unicode Text	All versions
	UTF-8	All versions
	Volkswriter 3 and 4	Versions through 1.0
	Wang PC (IWP)	Versions through 2.6
	WordMARC	Versions through Composer Plus
	WordStar (Windows)	Version 1.0
	WordStar 2000 (DOS)	Versions through 3.0
	XyWrite	Versions through III Plus

B.2.2 Spreadsheet Formats

	Format	Version
	Enable	Versions 3.0, 4.0, and 4.5
	First Choice	Versions through 3.0
	Framework	Version 3.0
	Lotus 1-2-3 (DOS & Windows)	Versions through 5.0
	Lotus 1-2-3 (OS/2)	Versions through 2.0
	Lotus 1-2-3 Charts (DOS & Windows)	Versions through 5.0
	Lotus 1-2-3 for SmartSuite	Versions 97 - Millennium 9.6
	Lotus Symphony	Versions 1.0, 1.1, and 2.0
	Lotus Symphony (Documents, Presentations, Spreadsheets)	Version 1.2
	Mac Works	Version 2.0
	Microsoft Excel Charts	Versions 2.x - 7.0
	Microsoft Excel (Mac)	Versions 3.0 - 4.0, 98, 2001, 2002, 2004, and v.X
	Microsoft Excel (Windows)	Versions 2.2 through 2007
	Microsoft Multiplan	Version 4.0
	Microsoft Works (Windows)	Versions through 4.0
	Microsoft Works (DOS)	Versions through 2.0
	Microsoft Works (Mac)	Versions through 2.0
	Mosaic Twin	Version 2.5
	Novell Perfect Works	Version 2.0
	PFS:Professional Plan	Version 1.0
	Quattro Pro (DOS)	Versions through 5.0 (text only)
	Quattro Pro (Windows)	Version through 12.0 (text only)
	SmartWare II	Version 1.02
	StarOffice/OpenOffice Calc (Windows and UNIX)	StarOffice versions 5.2 (text only) through 8.x and OpenOffice version 1.1 and 2.0
	SuperCalc 5	Version 4.0
	VP Planner 3D	Version 1.0

B.2.3 Presentation Formats

	Format	Version
	Corel/Novell Presentations	Versions through 12.0
	Harvard Graphics (DOS)	Versions 2.x and 3.x
	Harvard Graphics (Windows)	Windows versions
	Freelance (Windows)	Versions through Millennium 9.6
	Freelance (OS/2)	Versions through 2.0
	Microsoft PowerPoint (Windows)	Versions 3.0 through 2007
Versions 97 - 2003 (support for read-only files)

	Microsoft PowerPoint (Mac)	Versions 4.0 through v.x
Versions 97 - 2003 (support for read-only files)

	StarOffice/OpenOffice Impress (Windows and UNIX)	StarOffice versions 5.2 (text only) and 6.x through 8.x (full support) and OpenOffice version 1.1 and 2.0 (text only)

B.2.4 Database Formats

	Format	Version
	Access	Versions through 2.0
	dBASE	Versions through 5.0
	DataEase	Version 4.x
	dBXL	Version 1.3
	Enable	Versions 3.0, 4.0, and 4.5
	First Choice	Versions through 3.0
	FoxBase	Version 2.1
	Framework	Version 3.0
	Microsoft Works (Windows)	Versions through 4.0
	Microsoft Works (DOS)	Versions through 2.0
	Microsoft Works (Mac)	Versions through 2.0
	Paradox (DOS)	Versions through 4.0
	Paradox (Windows)	Versions through 1.0
	Personal R:BASE	Version 1.0
	R:BASE 5000	Versions through 3.1
	R:BASE System V	Version 1.0
	Reflex	Version 2.0
	Q & A	Versions through 2.0
	SmartWare II	Version 1.02

B.2.5 Archive File Format

When filtering an archive file, all the contents of the files inside the archive will be exported to a single output file. This will also include the contents of all subfolders and files inside the archive file.

Table B-2 lists the archive formats that Oracle supports.

Table B-2 Supported Archive File Formats

	Format	Version
	
GZIP

	

	
Microsoft Binder

	
Versions 7.0 - 97 (conversion of files contained in the Binder File is supported only on Windows)

	
UUEncode

	

	
UNIX Compress

	

	
UNIX Tar

	

	
ZIP

	
PKWARE versions through 2.04g

	
LZA Self-Extracting Compress

	

	
LZH Compress

	

B.2.6 Email Formats

	Format	Version
	Microsoft Outlook Folder (PST)	Microsoft Outlook Folder and Microsoft Outlook Offline Folder files versions 97, 98, 2000, 2002, 2003, and 2007
	Microsoft Outlook Message (MSG)	Microsoft Outlook Message and Microsoft Outlook Form Template versions 97, 98, 2000, 2002, 2003, and 2007
	MIME	MIME-encoded mail messages.

B.2.6.1 MIME Support Notes

The following formats are supported:

	
MIME formats

	
EML

	
MHT (Web Archive)

	
NWS (Newsgroup single-part and multi-part)

	
Simple Text Mail (defined in RFC 2822)

	
TNEF format

	
MIME encodings, including

	
base64 (defined in RFC 1521)

	
binary (defined in RFC 1521)

	
binhex (defined in RFC 1741)

	
btoa

	
quoted-printable (defined in RFC 1521)

	
utf-7 (defined in RFC 2152)

	
uue

	
xxe

	
yenc

In addition, the body of a message can be encoded in several ways. The following encodings are supported:

	
HTML

	
RTF

	
TNEF

	
Text/enriched (defined in RFC 1523)

	
Text/richtext (defined in RFC1341)

	
Embedded mail message (defined in RFC 822) - this is handled as a link to a new message

The attachments of a MIME message can be stored in many formats. Oracle Corporation processes all attachment types that its technology supports.

B.2.7 Other Formats

	Format	Version
	ASF (subformats: WMA/SMV/DVR-MS)	Metadata extraction only
	Executable (EXE, DLL)	-
	HTML	Versions through 3.0, with some limitations
	IBM Lotus Notes DXL	All versions
	IBM Lotus Notes NSF	All versions (File ID support only)
	ISO Base Media (subformats: Quicktime/MPEG-4/MPEG-7)	Media extraction only
	MacroMedia Flash	Macromedia Flash 6.x, MacroMedia Flash 7.x, and MacroMedia Flash Lite (text only)
	Microsoft Office	2007 (support for SmartArt created using SP2 MSO)
	Microsoft Office 2008 for Mac	(Word, PowerPoint, Excel)
	Microsoft Project	Versions 98 - 2003 (text only)
	Microsoft Project	Version 2007 (File ID support only)
	Microsoft Publisher	2003/2007 (File ID support only)
	Microsoft XPS	Metadata extraction only
	MP3	ID3 information
	RIFF (subformats: WAV/AVI)	Metadata extraction only
	RPIX	File ID support only
	vCard, vCalendar	Version 2.1
	Windows Executable	-
	WML	Version 5.2
	XML	Text only
	Yahoo Instant	-

B.2.8 Graphic Formats

Table B-3 lists the graphic formats that the AUTO_FILTER filter recognizes. This means that indexing a text column that contains any of these formats produces no error. As such, it is safe for the column to contain any of these formats.

Formats are categorized as either embedded graphics or standalone graphics. Embedded graphics are inserted or referenced within a document.

	
Note:

The AUTO_FILTER filter cannot extract textual information from graphics.

Table B-3 Supported Graphics Formats for AUTO_FILTER Filter

	Graphics Format	Version
	
Adobe Photoshop (PSD)

	
Version 4.0

	
Windows Icon Cursor (ICO)

	
no specific version

	
Adobe Photoshop (PSD)

	
Version 4.0

	
Adobe Illustrator

	
Versions 7.0 and 9.0

	
Adobe FrameMaker graphics (FMV)

	
Vector/raster through 5.0

	
Adobe Acrobat (PDF)

	
Versions 1.0, 2.1, 3.0, 4.0, 5.0, 6.0, and 7.0 (including Japanese PDF)

Versions 1.6 and 1.7 (PDF packages and portfolios are not supported)

	
Ami Draw (SDW)

	
Ami Draw

	
AutoCAD Interchange and Native Drawing formats (DXF and DWG)

	
AutoCAD Drawing Versions 2.5 - 2.6, 9.0-14.0, 2000i and 2002

	
AutoShade Rendering (RND)

	
Version 2.0

	
Binary Group 3 Fax

	
All versions

	
Bitmap (BMP, RLE, ICO, CUR, OS/2 DIB, and WARP)

	
All versions

	
CALS Raster (GP4)

	
Type I and Type II

	
Corel Clipart format (CMX)

	
Versions 5 through 6

	
Corel Draw (CDR)

	
Versions 3.x - 8.x

	
Corel Draw (CDR with TIFF header)

	
Versions 2.x - 9.x

	
Computer Graphics Metafile (CGM)

	
ANSI, CALS NIST version 3.0

	
Encapsulated PostScript (EPS)

	
TIFF header only

	
GEM Paint (IMG)

	
All versions

	
Graphics Environment Mgr (GEM)

	
Bitmap and vector

	
Graphics Interchange Format (GIF)

	
All versions

	
Hewlett Packard Graphics Language (HPGL)

	
Version 2.0

	
IBM Graphics Data Format (GDF)

	
Version 1.0

	
IBM Picture Interchange Format (PIF)

	
Version 1.0

	
Initial Graphics Exchange Spec (IGES)

	
Version 5.1

	
JBIG2

	
JBIG2 graphic embeddings in PDF files

	
JFIF (JPEG not in TIFF format)

	
All versions

	
JPEG (including EXIF)

	
All versions

	
Kodak Flash Pix (FPX)

	
All versions

	
Kodak Photo CD (PCD)

	
Version 1.0

	
Lotus PIC

	
All versions

	
Lotus Snapshot

	
All versions

	
Macintosh PIC1 and PICT2

	
Bitmap only

	
MacPaint (PNTG)

	
All versions

	
Micrografx Draw (DRW)

	
Versions through 4.0

	
Micrografx Designer (DRW)

	
Versions through 3.1

	
Micrografx Designer (DFS)

	
Windows 95, version 6.0

	
Novell PerfectWorks (Draw)

	
Version 2.0

	
OS/2 PM Metafile (MET)

	
Version 3.0

	
Paint Shop Pro 6 (PSP)

	
Windows only, versions 5.0 - 6.0

	
PC Paintbrush (PCX and DCX)

	
All versions

	
Portable Bitmap (PBM)

	
All versions

	
Portable Graymap (PGM)

	
No specific version

	
Portable Network Graphics (PNG)

	
Version 1.0

	
Portable Pixmap (PPM)

	
No specific version

	
Postscript (PS)

	
Levels 1-2

	
Progressive JPEG

	
No specific version

	
Sun Raster (SRS)

	
No specific version

	
StarOffice/OpenOffice Draw for Windows and UNIX

	
StarOffice versions 5.2 (text only) through 8.x and OpenOffice version 1.1 and 2.0

	
TIFF

	
Versions through 6

	
TIFF CCITT Group 3 and 4

	
Versions through 6

	
Truevision TGA (TARGA)

	
Version 2

	
Visio (preview)

	
Version 4

	
Visio

	
Versions 5, 2000, 2002, and 2003

	
Visio 2007

	
File ID support only

	
WBMP

	
No specific version

	
Windows Enhanced Metafile (EMF)

	
No specific version

	
Windows Metafile (WMF)

	
No specific version

	
WordPerfect Graphics (WPG and WPG2)

	
Versions through 2.0

	
X-Windows Bitmap (XBM)

	
x10 compatible

	
X-Windows Dump (XWD)

	
x10 compatible

	
X-Windows Pixmap (XPM)

	
x10 compatible

B.2.8.1 Graphics Formats Limitations

The AUTO_FILTER filter supports AutoCAD on IBM AIX with the following limitations:

	
Oracle Database release 11.1.0.7 and release 11.2.0.1 supports AutoCAD files up to AutoCAD 2002.

	
Support for AutoCAD versions later than 2002 on IBM AIX is available with Oracle release 11.2.0.2.

B.2.9 Formats No Longer Supported in 11.1.0.7

Certain document formats are not supported if you upgrade from release 11.1.0.6 to 11.1.0.7. This is because Oracle Text filtering technology migrated to Oracle Outside In HTML Export technology for release 11.1.0.7. To filter these unsupported formats, you can plug in a third party filtering technology using USER_FILTER. See "USER_FILTER" for more information.

Table B-4 lists the formats supported in release 11.1.0.6, but not in 11.1.0.7.

Table B-4 Formats Supported in Release 11.1.0.6 and not in 11.1.0.7

	Format	Versions
	
Word Processing Formats

	

	
Applix Words (AW)

	
3.11, 4.0, 4.1, 4.2, 4.3, 4.4

	
JustSystems Ichitaro (JTD)

	
2005

	
Folio Flat File (FFF)

	
3.1

	
Fujitsu Oasys (OA2)

	
7

	
Lotus Word Pro (LWP)

	
9.7, 9.8

	
WordPerfect for Linux

	
All versions

	
	

	
Desktop Publishing Formats

	

	
Adobe Framemaker (MIF)

	
7

	
	

	
Spreadsheet Formats

	

	
Applix Spreadsheets (AS)

	
4.2, 4.3, 4.4

	
Lotus 1-2-3 (123)

	
Millennium Edition R9, 9.8

	
Microsoft Works Spreadsheet (DOS)

	
3.4

	
Microsoft Works Spreadsheet (Mac)

	
3.4

	
Comma-Separated Values (SCV)

	
N/A

	
	

	
Presentation Formats

	

	
Applix Presents (AG)

	
4.0, 4.2, 4.3, 4.4

	
Lotus Freelance Graphics (PRE)

	
Millennium Edition R9, 9.8

	
Microsoft Visio XML Format

	
2003

	
	

	
Graphic Formats

	

	
SGI RGB Image (RGB)

	
No specific version

	
Windows Animated Cursor (ANI)

	
No specific version

	
WordPerfect Graphics 2 (WPG2)

	
7

	
Microsoft Office Drawing (MSO)

	
No specific version

	
Windows Icon Cursor (ICO)

	
No specific version

Text Loading Examples for Oracle Text

C Text Loading Examples for Oracle Text

This appendix provides examples of how to load text into a text column, and the structure of ctxload import files. This appendix contains these topics:

	
SQL INSERT Example

	
SQL*Loader Example

	
Structure of ctxload Thesaurus Import File

C.1 SQL INSERT Example

A simple way to populate a text table is to create a table with two columns, id and text, using CREATE TABLE and then use the INSERT statement to load the data. This example makes the id column the primary key, which is optional. The text column is VARCHAR2:

create table docs (id number primary key, text varchar2(80));

To populate the text column, use the INSERT statement as follows:

insert into docs values(1, 'this is the text of the first document');
insert into docs values(12, 'this is the text of the second document');

C.2 SQL*Loader Example

The following example shows how to use SQL*Loader to load mixed format documents from the operating system to a BLOB column. The example has two steps:

	
Create the table

	
Enter the SQL*Loader command that reads control file and loads data into table

	
See Also:

For a complete discussion on using SQL*Loader, see Oracle Database Utilities

C.2.1 Creating the Table

This example loads a table articles_formatted created as follows:

CREATE TABLE articles_formatted (
 ARTICLE_ID NUMBER PRIMARY KEY ,
 AUTHOR VARCHAR2(30),
 FORMAT VARCHAR2(30),
 PUB_DATE DATE,
 TITLE VARCHAR2(256),
 TEXT BLOB
);

The article_id column is the primary key. Documents are loaded in the text column, which is of type BLOB.

C.2.2 Issuing the SQL*Loader Command

The following command starts the loader, which reads the control file LOADER1.DAT:

sqlldr userid=demo/demo control=loader1.dat log=loader.log

C.2.2.1 Example Control File: loader1.dat

This SQL*Loader control file defines the columns to be loaded and instructs the loader to load the data line by line from loader2.dat into the articles_formatted table. Each line in loader2.dat holds a comma separated list of fields to be loaded.

-- load file example
load data
INFILE 'loader2.dat'
INTO TABLE articles_formatted
APPEND
FIELDS TERMINATED BY ','
(article_id SEQUENCE (MAX,1),
 author CHAR(30),
 format,
 pub_date SYSDATE,
 title,
 ext_fname FILLER CHAR(80),
 text LOBFILE(ext_fname) TERMINATED BY EOF)

This control file instructs the loader to load data from loader2.dat to the articles_formatted table in the following way:

	
The ordinal position of the line describing the document fields in loader2.dat is written to the article_id column.

	
The first field on the line is written to author column.

	
The second field on the line is written to the format column.

	
The current date given by SYSDATE is written to the pub_date column.

	
The title of the document, which is the third field on the line, is written to the title column.

	
The name of each document to be loaded is read into the ext_fname temporary variable, and the actual document is loaded in the text BLOB column:

C.2.2.2 Example Data File: loader2.dat

This file contains the data to be loaded into each row of the table, articles_formatted.

Each line contains a comma separated list of the fields to be loaded in articles_formatted. The last field of every line names the file to be loaded in to the text column:

Ben Kanobi, plaintext,Kawasaki news article,../sample_docs/kawasaki.txt,
Joe Bloggs, plaintext,Java plug-in,../sample_docs/javaplugin.txt,
John Hancock, plaintext,Declaration of Independence,../sample_docs/indep.txt,
M. S. Developer, Word7,Newsletter example,../sample_docs/newsletter.doc,
M. S. Developer, Word7,Resume example,../sample_docs/resume.doc,
X. L. Developer, Excel7,Common example,../sample_docs/common.xls,
X. L. Developer, Excel7,Complex example,../sample_docs/solvsamp.xls,
Pow R. Point, Powerpoint7,Generic presentation,../sample_docs/generic.ppt,
Pow R. Point, Powerpoint7,Meeting presentation,../sample_docs/meeting.ppt,
Java Man, PDF,Java Beans paper,../sample_docs/j_bean.pdf,
Java Man, PDF,Java on the server paper,../sample_docs/j_svr.pdf,
Ora Webmaster, HTML,Oracle home page,../sample_docs/oramnu97.html,
Ora Webmaster, HTML,Oracle Company Overview,../sample_docs/oraoverview.html,
John Constable, GIF,Laurence J. Ellison : portrait,../sample_docs/larry.gif,
Alan Greenspan, GIF,Oracle revenues : Graph,../sample_docs/oragraph97.gif,
Giorgio Armani, GIF,Oracle Revenues : Trend,../sample_docs/oratrend.gif,

C.3 Structure of ctxload Thesaurus Import File

The import file must use the following format for entries in the thesaurus:

phrase
 BT broader_term
 NT narrower_term1
 NT narrower_term2
. . .
 NT narrower_termN

 BTG broader_term
 NTG narrower_term1
 NTG narrower_term2
. . .
 NTG narrower_termN

 BTP broader_term
 NTP narrower_term1
 NTP narrower_term2
. . .
 NTP narrower_termN

 BTI broader_term
 NTI narrower_term1
 NTI narrower_term2
. . .
 NTI narrower_termN

 SYN synonym1
 SYN synonym2
. . .
 SYN synonymN

 USE synonym1 or SEE synonym1 or PT synonym1

 RT related_term1
 RT related_term2
. . .
 RT related_termN

 SN text

 language_key: term

	phrase
	
is a word or phrase that is defined as having synonyms, broader terms, narrower terms, or related terms.

In compliance with ISO-2788 standards, a TT marker can be placed before a phrase to indicate that the phrase is the top term in a hierarchy; however, the TT marker is not required. In fact, ctxload ignores TT markers during import.

A top term is identified as any phrase that does not have a broader term (BT, BTG, BTP, or BTI).

	
Note:

The thesaurus query operators (SYN, PT, BT, BTG, BTP, BTI, NT, NTG, NTP, NTI, and RT) are reserved words and, thus, cannot be used as phrases in thesaurus entries.

	BT, BTG, BTP, BTI broader_termN
	
are the markers that indicate broader_termN is a broader (generic|partitive|instance) term for phrase.

broader_termN is a word or phrase that conceptually provides a more general description or category for phrase. For example, the word elephant could have a broader term of land mammal.

	NT, NTG, NTP, NTI narrower_termN
	
are the markers that indicate narrower_termN is a narrower (generic|partitive|instance) term for phrase.

If phrase does not have a broader (generic|partitive|instance) term, but has one or more narrower (generic|partitive|instance) terms, phrase is created as a top term in the respective hierarchy (in an Oracle Text thesaurus, the BT/NT, BTG/NTG, BTP/NTP, and BTI/NTI hierarchies are separate structures).

narrower_termN is a word or phrase that conceptually provides a more specific description for phrase. For example, the word elephant could have a narrower terms of indian elephant and african elephant.

	SYN synonymN
	
is a marker that indicates phrase and synonymN are synonyms within a synonym ring.

synonymN is a word or phrase that has the same meaning for phrase. For example, the word dog could have a synonym of canine.

	
Note:

Synonym rings are not defined explicitly in Oracle Text thesauri. They are created by the transitive nature of synonyms.

	USE SEE PT synonym1
	
are markers that indicate phrase and synonym1 are synonyms within a synonym ring (similar to SYN).

The markers USE, SEE or PT also indicate synonym1 is the preferred term for the synonym ring. Any of these markers can be used to define the preferred term for a synonym ring.

	
Note:

If the user-defined thesaurus is to be used for compiling the Knowledge Base, then you must specify the preferred term when a synonym ring is declared. Use one of the keywords USE, SEE, or PT to specify which synonym to use when reporting query matches. Only one term can be a preferred term.
Not using one of these keywords may result in the failure to return results defined by a word's synonym. When compiling two or more thesauri that declare elements of the same synonym ring, the preferred term must be the same in both files, which ensures that only one word is defined as the preferred word in a synonym ring.

	RT related_termN
	
is the marker that indicates related_termN is a related term for phrase.

related_termN is a word or phrase that has a meaning related to, but not necessarily synonymous with phrase. For example, the word dog could have a related term of wolf.

	
Note:

Related terms are not transitive. If a phrase has two or more related terms, the terms are related only to the parent phrase and not to each other.

	SN text
	
is the marker that indicates the following text is a scope note (for example, comment) for the preceding entry.

	language_key term
	
term is the translation of phrase into the language specified by language_key.

C.3.1 Alternate Hierarchy Structure

In compliance with thesauri standards, the load file supports formatting hierarchies (BT/NT, BTG/NTG, BTP, NTP, BTI/NTI) by indenting the terms under the top term and using NT (or NTG, NTP, NTI) markers that include the level for the term:

phrase
 NT1 narrower_term1
 NT2 narrower_term1.1
 NT2 narrower_term1.2
 NT3 narrower_term1.2.1
 NT3 narrower_term1.2.2
 NT1 narrower_term2
 . . .
 NT1 narrower_termN

Using this method, the entire branch for a top term can be represented hierarchically in the load file.

C.3.2 Usage Notes for Terms in Import Files

The following conditions apply to the structure of the entries in the import file:

	
Each entry (phrase, BT, NT, or SYN) must be on a single line followed by a newline character.

	
Entries can consist of a single word or phrases.

	
The maximum length of an entry (phrase, BT, NT, or SYN) is 255 bytes, not including the BT, NT, and SYN markers or the newline characters.

	
Entries cannot contain parentheses or plus signs.

	
Each line of the file that starts with a relationship (BT, NT, and so on) must begin with at least one space.

	
A phrase can occur more than once in the file.

	
Each phrase can have one or more narrower term entries (NT, NTG, NTP), broader term entries (BT, BTG, BTP), synonym entries, and related term entries.

	
Each broader term, narrower term, synonym, and preferred term entry must start with the appropriate marker and the markers must be in capital letters.

	
The broader terms, narrower terms, and synonyms for a phrase can be in any order.

	
Homographs must be followed by parenthetical disambiguators everywhere they are used.

For example: cranes (birds), cranes (lifting equipment)

	
Compound terms are signified by a plus sign between each factor (for example, buildings + construction).

	
Compound terms are allowed only as synonyms or preferred terms for other terms, never as terms by themselves, or in hierarchical relations.

	
Terms can be followed by a scope note (SN), total maximum length of 2000 bytes, on subsequent lines.

	
Multi-line scope notes are allowed, but require an SN marker on each line of the note.

Example of Incorrect SN usage:

VIEW CAMERAS
 SN Cameras with through-the lens focusing and a
range of movements of the lens plane relative to
the film plane

Example of Correct SN usage:

VIEW CAMERAS
 SN Cameras with through-the lens focusing and a
 SN range of movements of the lens plane relative
 SN to the film plane

	
Multi-word terms cannot start with reserved words (for example, use is a reserved word, so use other door is not an allowed term; however, use is an allowed term).

C.3.3 Usage Notes for Relationships in Import Files

The following conditions apply to the relationships defined for the entries in the import file:

	
related term entries must follow a phrase or another related term entry

	
related term entries start with one or more spaces, the RT marker, followed by white space, then the related term on the same line

	
multiple related terms require multiple RT markers

Example of incorrect RT usage:

MOVING PICTURE CAMERAS
 RT CINE CAMERAS
TELEVISION CAMERAS

Example of correct RT usage:

MOVING PICTURE CAMERAS
 RT CINE CAMERAS
 RT TELEVISION CAMERAS

	
Terms are allowed to have multiple broader terms, narrower terms, and related terms

C.3.4 Examples of Import Files

This section provides three examples of correctly formatted thesaurus import files.

C.3.4.1 Example 1 (Flat Structure)

cat
 SYN feline
 NT domestic cat
 NT wild cat
 BT mammal
mammal
 BT animal
domestic cat
 NT Persian cat
 NT Siamese cat
wild cat
 NT tiger
tiger
 NT Bengal tiger
dog
 BT mammal
 NT domestic dog
 NT wild dog
 SYN canine
domestic dog
 NT German Shepard
wild dog
 NT Dingo

C.3.4.2 Example 2 (Hierarchical)

animal
 NT1 mammal
 NT2 cat
 NT3 domestic cat
 NT4 Persian cat
 NT4 Siamese cat
 NT3 wild cat
 NT4 tiger
 NT5 Bengal tiger
 NT2 dog
 NT3 domestic dog
 NT4 German Shepard
 NT3 wild dog
 NT4 Dingo
cat
 SYN feline
dog
 SYN canine

C.3.4.3 Example 3

35MM CAMERAS
 BT MINIATURE CAMERAS
CAMERAS
 BT OPTICAL EQUIPMENT
 NT MOVING PICTURE CAMERAS
 NT STEREO CAMERAS
LAND CAMERAS
 USE VIEW CAMERAS
VIEW CAMERAS
 SN Cameras with through-the lens focusing and a range of
 SN movements of the lens plane relative to the film plane
 UF LAND CAMERAS
 BT STILL CAMERAS

Oracle Text Multilingual Features

D Oracle Text Multilingual Features

This Appendix describes the multilingual features of Oracle Text. The following topics are discussed:

	
Introduction

	
Indexing

	
Querying

	
Supplied Stop Lists

	
Knowledge Base

	
Multilingual Features Matrix

D.1 Introduction

This appendix summarizes the main multilingual features for Oracle Text.

For a complete list of Oracle Globalization Support languages and character set support, refer to the Oracle Database Globalization Support Guide.

D.2 Indexing

The following sections describe the multilingual indexing features:

	
Multilingual Features for Text Index Types

	
Lexer Types

	
Basic Lexer Features

	
Multi Lexer Features

	
World Lexer Features

D.2.1 Multilingual Features for Text Index Types

The following sections describes the supported multilingual features for the Oracle Text index types.

	
See Also:

"Lexer Types" for a description of available lexers

D.2.1.1 CONTEXT Index Type

The CONTEXT index type fully supports multilingual features, including use of the language and character set columns. The following lexers are supported:

	
MULTI_LEXER

	
USER_LEXER

	
WORLD_LEXER

CONTEXT also supports use of all Chinese, Japanese, and Korean language lexers as follows:

	
CHINESE_LEXER

	
CHINESE_VGRAM_LEXER

	
JAPANESE_LEXER

	
JAPANESE_VGRAM_LEXER

	
KOREAN_MORPH_LEXER

D.2.1.2 CTXCAT Index Type

CTXCAT supports the multilingual features of the BASIC_LEXER with the exception of indexing themes, and supports the following additional lexers:

	
USER_LEXER

	
WORLD_LEXER

CTXCAT also supports the following lexers:

	
CHINESE_LEXER

	
CHINESE_VGRAM_LEXER

	
JAPANESE_LEXER

	
JAPANESE_VGRAM_LEXER

	
KOREAN_MORPH_LEXER

D.2.1.3 CTXRULE Index Type

The CTXRULE index type supports the multilingual features of the BASIC_LEXER including ABOUT and STEM operators. It also supports Japanese, Chinese, and Korean (when used with the SVM_CLASSIFIER).

D.2.2 Lexer Types

Oracle Text supports the indexing of different languages by enabling you to choose a lexer in the indexing process. The lexer you employ determines the languages you can index. Table D-1 describes the supported lexers.

Table D-1 Oracle Text Lexer Types

	Lexer	Supported Languages
	
BASIC_LEXER

	
English and most western European languages that use white space delimited words.

	
MULTI_LEXER

	
Lexer for indexing tables containing documents of different languages such as English, German, and Japanese.

	
CHINESE_VGRAM

	
Lexer for extracting tokens from Chinese text.

	
CHINESE_LEXER

	
Lexer for extracting tokens from Chinese text. This lexer offers the following benefits over the CHINESE_VGRAM lexer:

	
Generates a smaller index

	
Better query response time

	
Generates real world tokens resulting in better query precision

	
Supports stop words

	
JAPANESE_VGRAM

	
Lexer for extracting tokens from Japanese text.

	
JAPANESE_LEXER

	
Lexer for extracting tokens from Japanese text. This lexer offers the following advantages over the JAPANESE_VGRAM lexer:

	
Generates smaller index

	
Better query response time

	
Generates real world tokens resulting in better precision

	
KOREAN_MORPH_LEXER

	
Lexer for extracting tokens from Korean text.

	
USER_LEXER

	
Lexer you create to index a particular language.

	
WORLD_LEXER

	
Lexer for indexing tables containing documents of different languages; autodetects languages in a document

D.2.3 Basic Lexer Features

The following features are supported with the BASIC_LEXER preference. Enable these features with attributes of the BASIC_LEXER. Features such as alternate spelling, composite, and base letter can be enabled together for better search results.

D.2.3.1 Theme Indexing

Enables the indexing and subsequent querying of document concepts with the ABOUT operator with CONTEXT index types. These concepts are derived from the Oracle Text knowledge base. This feature is supported for English and French.

This feature is not supported with CTXCAT index types.

D.2.3.2 Alternate Spelling

This feature enables you to search on alternate spellings of words. For example, with alternate spelling enabled in German, a query on gross returns documents that contain groß and gross.

This feature is supported in German, Danish, and Swedish.

Additionally, German can be indexed according to both traditional and reformed spelling conventions.

	
See Also:

"Alternate Spelling" and "New German Spelling".

D.2.3.3 Base Letter Conversion

This feature enables you to query words with or without diacritical marks such as tildes, accents, and umlauts. For example, with a Spanish base-letter index, a query of energia matches documents containing both energía and energia.

This feature is supported for English and all other supported whitespace delimited languages. In English and French, you can use the basic lexer to enable theme indexing.

	
See Also:

"Base-Letter Conversion"

D.2.3.4 Composite

This feature enables you to search on words that contain the specified term as a sub-composite. You must use the stem ($) operator. This feature is supported for German and Dutch.

For example, in German, a query of $register finds documents that contain Bruttoregistertonne and Registertonne.

D.2.3.5 Index stems

This feature enables you to specify a stemmer for stem indexing. Tokens are stemmed to a single base form at index time in addition to the normal forms. Specifying index stems enables better query performance for stem queries, for example $computed.

This feature is supported for English, Dutch, French, German, Italian, and Spanish.

D.2.4 Multi Lexer Features

The MULTI_LEXER lexer enables you to index a column that contains documents of different languages. During indexing Oracle Text examines the language column and switches in the language-specific lexer to process the document. Define the lexer preferences for each language before indexing.

The multi lexer enables you to set different preferences for languages. For example, you can have composite set to TRUE for German documents and composite set to FALSE for Dutch documents.

D.2.5 World Lexer Features

Like MULTI_LEXER, the WORLD_LEXER lexer enables you to index documents that contain different languages. It automatically detects the languages of a document and, therefore, does not require you to create a language column in the base table.

WORLD_LEXER processes all database character sets and supports the Unicode 5.0 standard. For WORLD_LEXER to be effective with documents that use multiple languages, AL32UTF-8 or UTF8 Oracle character set encoding must be specified. This includes supplementary, or "surrogate-pair," characters.

Table D-2 and Table D-3 show the languages supported by WORLD_LEXER. This list may change as the Unicode standard changes, and in any case should not be considered exhaustive. (Languages are grouped by Unicode writing system, not by natural language groupings.)

Table D-2 Languages Supported by the World Lexer (Space-separated)

	Language Group	Languages Include
	
Arabic

	
Arabic, Farsi, Kurdish, Pashto, Sindhi, Urdu

	
Armenian

	
Armenian

	
Bengali

	
Assamese, Bengali

	
Bopomofo

	
Hakka Chinese, Minnan Chinese

	
Cyrillic

	
Over 50 languages, including Belorussian, Bulgarian, Macedonian, Moldavian, Russian, Serbian, Serbo-Croatian, Ukrainian

	
Devenagari

	
Bhojpuri, Bihari, Hindi, Kashmiri, Marathi, Nepali, Pali, Sanskrit

	
Ethiopic

	
Amharic, Ge'ez, Tigrinya, Tigre

	
Georgian

	
Georgian

	
Greek

	
Greek

	
Gujarati

	
Gujarati, Kacchi

	
Gurmukhi

	
{Punjabi

	
Hebrew

	
Hebrew, Ladino, Yiddish

	
Kaganga

	
Redjang

	
Kannada

	
Kanarese, Kannada

	
Korean

	
Korean, Hanja Hangul

	
Latin

	
Afrikaans, Albanian, Basque, Breton, Catalan, Croatian, Czech, Danish, Dutch, English, Esperanto, Estonian, Faeroese, Fijian, Finnish, Flemish, French, Frisian, German, Hawaiian, Hungarian, Icelandic, Indonesian, Irish, Italian, Lappish, Classic Latin, Latvian, Lithuanian, Malay, Maltese, Pinyin Mandarin, Maori, Norwegian, Polish, Portuguese, Provencal, Romanian, Rumanian, Samoan, Scottish Gaelic, Slovak, Slovene, Slovenian, Sorbian, Spanish, Swahili, Swedish, Tagalog, Turkish, Vietnamese, Welsh

	
Malayalam

	
Malayalam

	
Mongolian

	
Mongolian

	
Oriya

	
Oriya

	
Sinhalese, Sinhala

	
Pali, Sinhalese

	
Syriac

	
Aramaic, Syriac

	
Tamil

	
Tamil

	
Telugu

	
Telugu

	
Thaana

	
Dhiveli, Divehi, Maldivian

Table D-3 Languages Supported by the World Lexer (Non-space-separated)

	Language Group	Languages Include
	
Chinese

	
Cantonese, Mandarin, Pinyin phonograms

	
Japanese

	
Japanese (Hiragana, Kanji, Katakana)

	
Khmer

	
Cambodian, Khmer

	
Lao

	
Lao

	
Myanmar

	
Burmese

	
Thai

	
Thai

	
Tibetan

	
Dzongkha, Tibetan

Table D-4 shows languages not supported by the World Lexer.

Table D-4 Languages Not Supported by the World Lexer

	Language Group	Languages Include
	
Buhid

	
Buhid

	
Canadian Syllabics

	
Blackfoot, Carrier, Cree, Dakhelh, Inuit, Inuktitut, Naskapi, Nunavik, Nunavut, Ojibwe, Sayisi, Slavey

	
Cherokee

	
Cherokee

	
Cypriot

	
Cypriot

	
Limbu

	
Limbu

	
Ogham

	
Ogham

	
Runic

	
Runic

	
Tai Le (Tai Lu, Lue, Dai Le)

	
Tai Le

	
Ugaritic

	
Ugaritic

	
Yi

	
Yi

	
Yi Jang Hexagram

	
Yi Jang

D.3 Querying

Oracle Text supports the use of different query operators. Some operators can be set to behave in accordance with your language. This section summarizes the multilingual query features for these operators.

D.3.1 ABOUT Operator

Use the ABOUT operator to query on concepts. The system looks up concept information in the theme component of the index.

This feature is supported for English and French with CONTEXT indexes only.

D.3.2 Fuzzy Operator

This operator enables you to search for words that have similar spelling to specified word. Oracle Text supports fuzzy for English, French, German, Italian, Dutch, Spanish, Portuguese, Japanese, Optical Character recognition (OCR), and automatic language detection.

D.3.3 Stem Operator

This operator enables you to search for words that have the same root as the specified term. For example, a stem of $sing expands into a query on the words sang, sung, sing. The Oracle Text stemmer supports the following languages: English, French, Spanish, Italian, German, Japanese and Dutch.

D.4 Supplied Stop Lists

A stoplist is a list of words that do not get indexed. These are usually common words in a language such as this, that, and can in English.

Oracle Text provides a default stoplist for English, Chinese (traditional and simplified), Danish, Dutch, Finnish, French, German, Italian, Portuguese, Spanish, and Swedish. Appendix E, "Oracle Text Supplied Stoplists", lists the stoplists for various languges.

D.5 Knowledge Base

An Oracle Text knowledge base is a hierarchical tree of concepts used for theme indexing, ABOUT queries, and deriving themes for document services.

Oracle Text supplies knowledge bases in English and French only.

D.5.1 Knowledge Base Extension

Extend theme functionality to languages other than English or French by loading your own knowledge base for any single byte white space delimited language, including Spanish.

D.6 Multilingual Features Matrix

The following table summarizes the multilingual features for the supported languages.

Table D-5 Multilingual Features for Supported Languages

	LANGUAGE	ALTERNATE SPELLING	FUZZY MATCHING	LANGUAGE SPECIFIC LEXER	DEFAULT STOP LIST	STEMMING
	
ENGLISH

	
N/A

	
Yes

	
Yes

	
Yes

	
Yes

	
GERMAN

	
Yes

	
Yes

	
Yes

	
Yes

	
Yes

	
JAPANESE

	
N/A

	
Yes

	
Yes

	
No

	
Yes

	
FRENCH

	
N/A

	
Yes

	
Yes

	
Yes

	
Yes

	
SPANISH

	
N/A

	
Yes

	
Yes

	
Yes

	
Yes

	
ITALIAN

	
N/A

	
Yes

	
Yes

	
Yes

	
Yes

	
DUTCH

	
N/A

	
Yes

	
Yes

	
Yes

	
Yes

	
PORTUGUESE

	
N/A

	
Yes

	
Yes

	
Yes

	
Yes

	
KOREAN

	
N/A

	
No

	
Yes

	
No

	
Yes

	
SIMPLIFIED CHINESE

	
N/A

	
No

	
Yes

	
Yes

	
Yes

	
TRADITIONAL CHINESE

	
N/A

	
No

	
Yes

	
Yes

	
Yes

	
DANISH

	
Yes

	
No

	
Yes

	
No

	
Yes

	
SWEDISH

	
Yes

	
No

	
Yes

	
Yes

	
Yes

	
FINNISH

	
N/A

	
No

	
Yes

	
No

	
Yes

	
ARABIC

	
N/A

	
No

	
Yes

	
No

	
Yes

	
GREEK

	
N/A

	
No

	
Yes

	
No

	
Yes

	
BOKMAL

	
N/A

	
No

	
Yes

	
No

	
Yes

	
POLISH

	
N/A

	
No

	
Yes

	
No

	
Yes

	
RUSSIAN

	
N/A

	
No

	
Yes

	
No

	
Yes

	
SLOVENIAN

	
N/A

	
No

	
Yes

	
No

	
Yes

	
THAI

	
N/A

	
No

	
Yes

	
No

	
Yes

	
CATALAN

	
N/A

	
No

	
Yes

	
No

	
Yes

	
CROATIAN

	
N/A

	
No

	
Yes

	
No

	
Yes

	
HEBREW

	
N/A

	
No

	
Yes

	
No

	
Yes

	
NYNORSK

	
N/A

	
No

	
Yes

	
No

	
Yes

	
SERBIAN

	
N/A

	
No

	
Yes

	
No

	
Yes

	
TURKISH

	
N/A

	
No

	
Yes

	
No

	
Yes

	
CZECH

	
N/A

	
No

	
Yes

	
No

	
Yes

	
HUNGARIAN

	
N/A

	
No

	
Yes

	
No

	
Yes

	
PERSIAN

	
N/A

	
No

	
Yes

	
No

	
Yes

	
SLOVAK

	
N/A

	
No

	
Yes

	
No

	
Yes

Stopword Transformations in Oracle Text

H Stopword Transformations in Oracle Text

This appendix describes stopword transformations. The following topic is covered:

	
Understanding Stopword Transformations

H.1 Understanding Stopword Transformations

When you use a stopword or stopword-only phrase as an operand for a query operator, Oracle Text rewrites the expression to eliminate the stopword or stopword-only phrase and then executes the query.

The following section describes the stopword rewrites or transformations for each operator. In all tables, the Stopword Expression column describes the query expression or component of a query expression, while the right-hand column describes the way Oracle Text rewrites the query.

The token stopword stands for a single stopword or a stopword-only phrase.

The token non_stopword stands for either a single non-stopword, a phrase of all non-stopwords, or a phrase of non-stopwords and stopwords.

The token no_lex stands for a single character or a string of characters that is neither a stopword nor a word that is indexed. For example, the + character by itself is an example of a no_lex token.

When the Stopword Expression column completely describes the query expression, a rewritten expression of no_token means that no hits are returned when you enter such a query.

When the Stopword Expression column describes a component of a query expression with more than one operator, a rewritten expression of no_token means that a no_token value is passed to the next step of the rewrite.

Transformations that contain a no_token as an operand in the Stopword Expression column describe intermediate transformations in which the no_token is a result of a previous transformation. These intermediate transformations apply when the original query expression has at least one stopword and more than one operator.

For example, consider the following compound query expression:

'(this NOT dog) AND cat'

Assuming that this is the only stopword in this expression, Oracle Text applies the following transformations in the following order:

stopword NOT non-stopword => no_token

no_token AND non_stopword => non_stopword

The resulting expression is:

'cat'

H.1.1 Word Transformations

	Stopword Expression	Rewritten Expression
	stopword	no_token
	no_lex	no_token

The first transformation means that a stopword or stopword-only phrase by itself in a query expression results in no hits.

The second transformation says that a term that is not lexed, such as the + character, results in no hits.

H.1.2 AND Transformations

	Stopword Expression	Rewritten Expression
	non_stopword AND stopword	non_stopword
	non_stopword AND no_token	non_stopword
	stopword AND non_stopword	non_stopword
	no_token AND non_stopword	non_stopword
	stopword AND stopword	no_token
	no_token AND stopword	no_token
	stopword AND no_token	no_token
	no_token AND no_token	no_token

H.1.3 OR Transformations

	Stopword Expression	Rewritten Expression
	non_stopword OR stopword	non_stopword
	non_stopword OR no_token	non_stopword
	stopword OR non_stopword	non_stopword
	no_token OR non_stopword	non_stopword
	stopword OR stopword	no_token
	no_token OR stopword	no_token
	stopword OR no_token	no_token
	no_token OR no_token	no_token

H.1.4 ACCUMulate Transformations

	Stopword Expression	Rewritten Expression
	non_stopword ACCUM stopword	non_stopword
	non_stopword ACCUM no_token	non_stopword
	stopword ACCUM non_stopword	non_stopword
	no_token ACCUM non_stopword	non_stopword
	stopword ACCUM stopword	no_token
	no_token ACCUM stopword	no_token
	stopword ACCUM no_token	no_token
	no_token ACCUM no_token	no_token

H.1.5 MINUS Transformations

	Stopword Expression	Rewritten Expression
	non_stopword MINUS stopword	non_stopword
	non_stopword MINUS no_token	non_stopword
	stopword MINUS non_stopword	no_token
	no_token MINUS non_stopword	no_token
	stopword MINUS stopword	no_token
	no_token MINUS stopword	no_token
	stopword MINUS no_token	no_token
	no_token MINUS no_token	no_token

H.1.6 MNOT Transformations

	Stopword Expression	Rewritten Expression
	non_stopword MNOT stopword	non_stopword
	non_stopword MNOT no_token	non_stopword
	stopword MNOT non_stopword	no_token
	no_token MNOT non_stopword	no_token
	stopword MNOT stopword	no_token
	no_token MNOT stopword	no_token
	stopword MNOT no_token	no_token
	no_token MNOT no_token	no_token

H.1.7 NOT Transformations

	Stopword Expression	Rewritten Expression
	non_stopword NOT stopword	non_stopword
	non_stopword NOT no_token	non_stopword
	stopword NOT non_stopword	no_token
	no_token NOT non_stopword	no_token
	stopword NOT stopword	no_token
	no_token NOT stopword	no_token
	stopword NOT no_token	no_token
	no_token NOT no_token	no_token

H.1.8 EQUIValence Transformations

	Stopword Expression	Rewritten Expression
	non_stopword EQUIV stopword	non_stopword
	non_stopword EQUIV no_token	non_stopword
	stopword EQUIV non_stopword	non_stopword
	no_token EQUIV non_stopword	non_stopword
	stopword EQUIV stopword	no_token
	no_token EQUIV stopword	no_token
	stopword EQUIV no_token	no_token
	no_token EQUIV no_token	no_token

	
Note:

When you use query explain plan, not all of the equivalence transformations are represented in the EXPLAIN table.

H.1.9 NEAR Transformations

	Stopword Expression	Rewritten Expression
	non_stopword NEAR stopword	non_stopword
	non_stopword NEAR no_token	non_stopword
	stopword NEAR non_stopword	non_stopword
	no_token NEAR non_stopword	non_stopword
	stopword NEAR stopword	no_token
	no_token NEAR stopword	no_token
	stopword NEAR no_token	no_token
	no_token NEAR no_token	no_token

H.1.10 Weight Transformations

	Stopword Expression	Rewritten Expression
	stopword * n	no_token
	no_token * n	no_token

H.1.11 Threshold Transformations

	Stopword Expression	Rewritten Expression
	stopword > n	no_token
	no_token > n	no_token

H.1.12 WITHIN Transformations

	Stopword Expression	Rewritten Expression
	stopword WITHIN section	no_token
	no_token WITHIN section	no_token

Index

Index

A B C D E F G H I J K L M N O P Q R S T U V W X Z

Symbols

	! operator, 3.1.5
	- operator, 3.1.5
	$ operator, 3.1.5
	% wildcard, 3.1.5
	* operator, 3.1.5
	, operator, 3.1.5
	? operator, 3.1.5
	\ escape character, 4.2
	_ wildcard, 3.1.5
	{} escape character, 4.2
	= operator, 3.1.5, 3.1.5, 3.1.5
	> operator, 3.1.5

A

	ABOUT query, 3.1.5
	
	example, 3.1.5
	highlight markup, 8, 8
	highlight offsets, 8, 8
	viewing expansion, 10

	accumulate operator, 3.1.5
	
	scoring, 3.1.5
	stopword transformations, H.1.4

	ADD_ATTR_SECTION procedure, 7
	ADD_EVENT procedure, 9
	ADD_FIELD_SECTION procedure, 7
	ADD_INDEX procedure, 7
	ADD_MDATA procedure, 7, 7
	ADD_MDATA_SECTION procedure, 7
	ADD_SDATA_COLUMN procedure, 7
	ADD_SDATA_SECTION procedure, 7
	ADD_SPECIAL_SECTION procedure, 7
	ADD_STOP_SECTION procedure, 7
	ADD_STOPCLASS procedure, 7
	ADD_STOPTHEME procedure, 7
	ADD_STOPWORD procedure, 7
	ADD_SUB_LEXER procedure, 7
	
	example, 2.4.2.2

	ADD_TRACE procedure, 9
	ADD_ZONE_SECTION procedure, 7
	adding a trace, 9
	adding an event, 9
	adding metadata, 7, 7, 7
	adding structured data, 7, 7
	AL32UTF8 character set, 2.4.3.2, 2.4.5.2, 2.4.6.3, 2.4.7.2
	ALTER INDEX
	
	Add Section Constraints, 1

	ALTER INDEX statement, 1
	
	examples, 1
	rebuild syntax, 1
	rename syntax, 1
	syntax overview, 1

	ALTER TABLE
	
	Composite Domain Index and, 1
	UPDATE GLOBAL INDEXES, 1, 1, 1, 1

	ALTER TABLE statement, 1
	ALTER_PHRASE procedure, 12
	ALTER_THESAURUS procedure, 12
	alternate grammar template, 1
	alternate language template, 1
	alternate spelling, 15.1.1
	
	about, 15.1
	base letter, 15.1.2
	Danish, 15.3.2
	disabling example, 7, 15.1
	enabling example, 15.1
	German, 15.3.1
	normalized vs. original, 15.1
	overriding, 15.2
	Swedish, 15.3.3

	alternate_spelling attribute, 2.4.1.1, 15.1.1
	alternative scoring template, 1
	American
	
	index defaults, 2.11.3.1.1

	analyzing queries, 11.2
	AND operator, 3.1.5
	
	stopword transformations, H.1.2

	Asian languages
	
	and CTXRULE indexes, D.2.1.3

	attribute section
	
	defining, 7
	dynamically adding, 1
	querying, 3.1.5

	attribute sections
	
	adding dynamically, 1
	WITHIN example, 3.1.5

	attributes
	
	alternate_spelling, 2.4.1.1, 15.1.1
	auto_filter_output_formatting, 2.3.4
	base_letter, 2.4.1, 15.1.2, 15.1.2.1
	base_letter_type, 2.4.1
	binary, 2.2.3
	charset, 2.3.1
	command, 2.3.5
	composite, 2.4.1
	continuation, 2.4.1
	detail_key, 2.2.3
	detail_lineno, 2.2.3
	detail_table, 2.2.3
	detail_text, 2.2.3
	disabling, 7
	endjoins, 2.4.1
	ftp_proxy, 2.2.5.2
	fuzzy_match, 2.5.1
	fuzzy_numresults, 2.5.1
	fuzzy_score, 2.5.1
	http_proxy, 2.2.5.2
	i_index_clause, 2.6.1
	i_table_clause, 2.6.1
	index_text, 2.4.1.1
	index_themes, 2.4.1.1
	k_table_clause, 2.6.1
	maxthreads, 2.2.5.2
	maxurls, 2.2.5.2
	mixed_case, 2.4.1
	n_table_clause, 2.6.1
	new_german_spelling, 2.4.1.1, 15.1.3
	newline, 2.4.1
	no_proxy, 2.2.5.2
	numgroup, 2.4.1
	numjoin, 2.4.1
	output_type, 2.2.6.2
	override_base_letter, 15.2.1
	p_table_clause, 2.6.1
	path, 2.2.4
	printjoins, 2.4.1
	procedure, 2.2.6
	punctuations, 2.4.1
	r_table_clause, 2.6.1
	setting, 7
	skipjoins, 2.4.1
	startjoins, 2.4.1
	stemmer, 2.5.1
	timeout, 2.2.5.2
	urlsize, 2.2.5.2
	viewing, G.13
	viewing allowed values, G.14
	whitespace, 2.4.1

	AUTO stemming, 2.5.1
	AUTO_FILTER Document Filtering Technology
	
	Supported Platforms for, B.1.3

	AUTO_FILTER filter, 2.3.2
	
	and transactional CONTEXT indexes, 1
	character-set conversion, 2.3.2.3
	index preference object, 2.3.2
	setting up, B.1
	supported formats, B.2
	supported platforms, B.1.3, B.1.3.1
	unsupported formats, B.1.2

	AUTO_FILTER system-defined preference, 2.11.2.2
	AUTO_FILTER_OUTPUT_FORMATTING attribute, 2.3.4
	AUTO_SECTION_GROUP example, 2.7.1.3
	AUTO_SECTION_GROUP object, 1, 2.7, 7
	AUTO_SECTION_GROUP system-defined preference, 2.11.4.3
	automatic index synchronization, 1, 1
	available traces, 9

B

	backslash escape character, 4.2
	base_letter attribute, 2.4.1, 15.1.2
	base_letter_type attribute, 2.4.1, 15.1.2.1
	base-letter conversions, 15.1.2, 15.1.2.1
	base-letter conversions, overriding, 15.2.1
	BASIC_LEXER object, 2.4.1
	
	supported character sets, 2.4.1

	BASIC_LEXER system-defined preference, 2.11.3.2
	BASIC_LEXER type
	
	example, 2.4.1.2

	BASIC_SECTION_GROUP object, 1, 2.7, 7
	BASIC_STOPLIST type, 7
	BASIC_STORAGE object
	
	attributes for, 2.6.1
	defaults, 2.6.1.1
	example, 2.6.1.2

	BASIC_WORDLIST object
	
	attributes for, 2.5.1
	example, 2.5.2

	BFILE column
	
	indexing, 1

	binary attribute, 2.2.3, 2.2.7
	binary documents
	
	filtering, 2.2.2

	BINARY format column value, 1
	BLOB column
	
	indexing, 1
	loading example, C.2

	brace escape character, 4.2
	brackets
	
	altering precedence, 3.1.5, 4.1
	grouping character, 4.1

	broader term operators
	
	example, 3.1.5

	broader term query feedback, 10
	BROWSE_WORDS procedure, 10
	browsing words in index, 10
	BT function, 12
	BT operator, 3.1.5
	BTG function, 12
	BTG operator, 3.1.5
	BTI function, 12
	BTI operator, 3.1.5
	BTP function, 12
	BTP operator, 3.1.5

C

	case-sensitive
	
	ABOUT queries, 3.1.5

	case-sensitive index
	
	creating, 2.4.1

	CATSEARCH operator, 1
	CHAR column
	
	indexing, 1

	character sets
	
	Chinese, 2.4.3.2
	Japanese, 2.4.5.2
	Korean, 2.4.7.2

	characters
	
	continuation, 2.4.1
	numgroup, 2.4.1
	numjoin, 2.4.1
	printjoin, 2.4.1
	punctuation, 2.4.1
	skipjoin, 2.4.1
	specifying for newline, 2.4.1
	specifying for whitespace, 2.4.1
	startjoin and endjoin, 2.4.1

	character-set
	
	indexing mixed columns, 2.3.1.2

	character-set conversion
	
	with AUTO_FILTER, 2.3.2.3

	charset attribute, 2.3.1
	charset column, 1
	CHARSET_FILTER
	
	attributes for, 2.3.1
	mixed character-set example, 2.3.1.2.1

	Chinese
	
	fuzzy matching, 2.5.1

	Chinese character sets supported, 2.4.3.2
	Chinese lexicon, modifying, 14.3
	Chinese text
	
	indexing, 2.4.3

	CHINESE_LEXER Attribute, 2.4.4.1
	CHINESE_VGRAM_LEXER object, 2.4.3
	classifying documents, 6
	
	clustering, 2.9, 6

	CLOB column
	
	indexing, 1

	clump, 3.1.5
	clump size in near operator, 3.1.5
	clustering, 2.9, 6
	
	KMEAN_CLUSTERING, 2.9.1
	types, 2.9

	CLUSTERING procedure, 6
	clustering types, 2.9
	columns types
	
	supported for CTXCAT index, 1
	supported for CTXRULE index, 1
	supported for CTXXPATH index, 1
	supported for indexing, 1

	command attribute, 2.3.5
	compiler, lexical, 14.3
	compMem element, 2.4.8.9
	composite attribute
	
	BASIC_LEXER, 2.4.1
	KOREAN_MORPH_LEXER, 2.4.7.4

	composite domain index, 1
	composite textkey
	
	encoding, 8

	composite word dictionary, 2.4.1.1
	composite word index
	
	creating for German or Dutch text, 2.4.1

	composite words
	
	viewing, 10

	concordance, 8
	CONTAINS operator
	
	example, 1
	syntax, 1

	CONTEXT index
	
	about, 1
	default parameters, 2.12.2.1
	syntax, 1

	context indextype, 1
	continuation attribute, 2.4.1
	control file example
	
	SQL*Loader, C.2.2.1

	COPY_POLICY procedure, 7
	CREATE INDEX statement, 1
	
	CONTEXT, 1
	CTXCAT, 1
	CTXRULE, 1
	CTXXPATH, 1
	default parameters, 2.12.2
	failure, 5

	CREATE_INDEX_SCRIPT procedure, 11.2
	CREATE_INDEX_SET procedure, 7, 7
	CREATE_PHRASE procedure, 12
	CREATE_POLICY procedure, 7
	CREATE_POLICY_SCRIPT procedure, 11.2
	CREATE_PREFERENCE procedure, 7
	CREATE_RELATION procedure, 12
	CREATE_SECTION_GROUP procedure, 7
	CREATE_STOPLIST procedure, 7
	CREATE_THESAURUS function, 12
	CREATE_TRANSLATION procedure, 12
	creating an index report, 11.2
	CTX_ADM package
	
	MARK_FAILED, 5
	RECOVER, 5
	SET_PARAMETER, 5

	CTX_ADM.MARK_FAILED, 5
	CTX_CLASSES view, G.1, G.2, G.15, G.29, G.39
	CTX_CLS
	
	CLUSTERING, 6
	TRAIN, 6

	CTX_DDL package
	
	ADD_ATTR_SECTION, 7
	ADD_FIELD_SECTION, 7
	ADD_MDATA, 7, 7
	ADD_MDATA_SECTION, 7
	ADD_SDATA_COLUMN, 7
	ADD_SDATA_SECTION, 7
	ADD_SPECIAL_SECTION, 7
	ADD_STOP_SECTION, 7
	ADD_STOPCLASS, 7
	ADD_STOPTHEME, 7
	ADD_STOPWORD, 7
	ADD_SUB_LEXER, 7
	ADD_ZONE_SECTION, 7
	COPY_POLICY, 7
	CREATE_INDEX_SET, 7, 7
	CREATE_POLICY, 7
	CREATE_PREFERENCE, 7
	CREATE_SECTION_GROUP, 7
	CREATE_STOPLIST, 7
	DROP_POLICY, 7
	DROP_PREFERENCE, 7
	DROP_STOPLIST, 7
	OPTIMIZE_INDEX procedure, 7
	REMOVE_MDATA, 7
	REMOVE_SECTION, 7
	REMOVE_STOPCLASS, 7
	REMOVE_STOPTHEME, 7
	REMOVE_STOPWORD, 7
	REMOVE_SUB_LEXER, 7
	REPLACE_INDEX_METADATA, 7
	SET_ATTRIBUTE, 7
	SYNC_INDEX procedure, 7
	UNSET_ATTRIBUTE, 7

	CTX_DDL.ADD_INDEX procedure, 7
	CTX_DOC package, 8
	
	FILTER, 8
	GIST, 8
	HIGHLIGHT, 8
	IFILTER, 8
	MARKUP, 8
	PKENCODE, 8
	POLICY_FILTER, 8
	POLICY_GIST, 8
	POLICY_HIGHLIGHT, 8
	POLICY_MARKUP, 8
	POLICY_SNIPPET, 8
	POLICY_THEMES, 8
	POLICY_TOKENS, 8
	result tables, A.2
	SET_KEY_TYPE, 8
	SNIPPET, 8
	THEMES, 8
	TOKENS, 8

	CTX_DOC_KEY_TYPE system parameter, 2.12.1
	CTX_FEEDBACK_ITEM_TYPE type, A.1.2.3
	CTX_FEEDBACK_TYPE type, 10, A.1.2.3
	CTX_INDEX_ERRORS view, G.4
	
	example, 1

	CTX_INDEX_OBJECTS view, G.5
	CTX_INDEX_SET_INDEXES view
	
	views
	
	CTX_INDEX_SET_INDEXES, G.8

	CTX_INDEX_SUB_LEXERS view, G.9, G.37
	CTX_INDEX_SUB_LEXERS_VALUES view, G.10
	CTX_INDEX_VALUES view, G.11
	CTX_INDEXES view, G.3
	CTX_OBJECT_ATTRIBUTE_LOV view, G.14
	CTX_OBJECT_ATTRIBUTES view, G.13
	CTX_OBJECTS view, G.12
	CTX_OUTPUT package, 9
	
	ADD_EVENT, 9
	ADD_TRACE, 9
	DISABLE_QUERY_STATS, 9
	ENABLE_QUERY_STATS, 9
	END_LOG, 9
	GET_TRACE_VALUE, 9
	LOG_TRACES, 9
	LOGFILENAME, 9
	REMOVE_EVENT, 9
	REMOVE_TRACE, 9
	RESET_TRACE, 9
	START_LOG, 9

	CTX_PARAMETERS view, 2.12, G.16
	CTX_PENDING view, G.17
	CTX_PREFERENCE_VALUES view, G.19
	CTX_PREFERENCES view, G.18
	CTX_QUERY package
	
	BROWSE_WORDS, 10
	EXPLAIN, 10
	HFEEDBACK, 10
	REMOVE_SQE, 10
	result tables, A.1
	STORE_SQE, 10

	CTX_QUERY.disable_transactional_query session variable, 1
	CTX_REPORT output format, 11.2, 11.2, 11.2, 11.2, 11.2
	CTX_REPORT package, 11
	
	CREATE_INDEX_SCRIPT, 11.2
	CREATE_POLICY_SCRIPT, 11.2
	DESCRIBE_INDEX, 11.2
	DESCRIBE_POLICY, 11.2
	function versions of procedures, 11.2
	INDEX_SIZE, 11.2
	INDEX_STATS, 11.2
	QUERY_LOG_SUMMARY, 11.2
	TOKEN_INFO, 11.2
	TOKEN_TYPE, 11.2

	CTX_SECTION_GROUPS view, G.21
	CTX_SECTIONS view, G.20
	CTX_SQES view, G.22
	CTX_STOPLISTS view, G.23
	CTX_STOPWORDS view, G.24
	CTX_SUB_LEXERS view, G.25
	CTX_THES package, 12
	
	ALTER_PHRASE, 12
	ALTER_THESAURUS, 12
	BT, 12
	BTG, 12
	BTI, 12
	BTP, 12
	CREATE_PHRASE, 12
	CREATE_RELATION, 12
	CREATE_THESAURUS, 12
	DROP_PHRASE, 12
	DROP_RELATION, 12
	DROP_THESAURUS, 12
	NT, 12
	NTG, 12
	NTI, 12
	NTP, 12
	OUTPUT_STYLE, 12
	PT, 12
	result tables, A.3
	RT, 12
	SN, 12
	SYN, 12
	THES_TT, 12
	TR, 12
	TRSYN, 12
	TT, 12

	CTX_THESAURI view, G.26
	CTX_THES.CREATE_TRANSLATION, 12
	CTX_THES.DROP_TRANSLATION, 12
	CTX_THES.UPDATE_TRANSLATION, 12
	CTX_TRACE_VALUES view, G.28
	CTX_ULEXER package, 13
	CTX_USER_INDEX_ERRORS view, G.31
	
	example, 1

	CTX_USER_INDEX_OBJECTS view, G.32
	CTX_USER_INDEX_SET_INDEXES view, G.35
	CTX_USER_INDEX_SETS view, G.34
	CTX_USER_INDEX_SUB_LEXERS view, G.36
	CTX_USER_INDEX_VALUES view, G.38
	CTX_USER_INDEXES view, G.30
	CTX_USER_PENDING view, G.40
	CTX_USER_PREFERENCE_VALUES view, G.42
	CTX_USER_PREFERENCES view, G.41
	CTX_USER_SECTION_GROUPS view, G.44
	CTX_USER_SECTIONS view, G.43
	CTX_USER_SQES view, G.45
	CTX_USER_STOPLISTS view, G.46
	CTX_USER_STOPWORDS view, G.47
	CTX_USER_SUB_LEXERS view, G.48
	CTX_USER_THES_PHRASES view, G.50
	CTX_USER_THESAURI view, G.49
	CTX_VERSION view, G.51
	CTXCAT index
	
	about, 1
	default parameters, 2.12.2.2
	supported preferences, 1
	syntax, 1
	unsupported preferences, 1

	ctxkbtc complier, 14.2
	ctxlc (lexical compiler), 14.3
	ctxload, 14.1
	
	examples, 14.1.3.1
	import file structure, C.3

	CTXRULE index
	
	about, 1
	and Asian languages, D.2.1.3
	and multilingual support, D.2.1.3
	and USER_LEXER, 2.4.8.1
	default parameters, 2.12.2.3
	lexer types, 1
	syntax, 1

	CTXRULE Index Limitations, 2.12.2.3
	CTXSYS.AUTO_FILTER system preference, 2.3.2.1
	CTXSYS.INSO_FILTER system preference (deprecated), 2.3.2.1
	CTXXPATH index
	
	about, 1
	syntax, 1

	CTXXPATH indextype
	
	creating, 1

D

	Danish
	
	alternate spelling, 15.3.2
	index defaults, 2.11.3.1.2
	supplied stoplist, E.4

	data storage
	
	defined procedurally, 2.2.6
	direct, 2.2.1
	example, 7
	external, 2.2.4
	master/detail, 2.2.3
	URL, 2.2.5

	datastore types, 2.2
	DATE column, 1
	DBMS_PCLUTIL
	
	BUILD_PART_INDEX, 1

	default index
	
	example, 1

	default parameters
	
	changing, 2.12.2.5
	CONTEXT index, 2.12.2.1
	CTXCAT index, 2.12.2.2
	CTXRULE index, 2.12.2.3
	viewing, 2.12.2.4

	DEFAULT thesaurus, 3.1.5, 3.1.5
	DEFAULT_CTXCAT_INDEX_SET system parameter, 2.12.2.2
	DEFAULT_CTXCAT_LEXER system parameter, 2.12.2.2
	DEFAULT_CTXCAT_STOPLIST system parameter, 2.12.2.2
	DEFAULT_CTXCAT_STORAGE system parameter, 2.12.2.2
	DEFAULT_CTXCAT_WORDLIST system parameter, 2.12.2.2
	DEFAULT_CTXRULE_LEXER system parameter, 2.12.2.3
	DEFAULT_CTXRULE_STOPLIST system parameter, 2.12.2.3
	DEFAULT_CTXRULE_WORDLIST system parameter, 2.12.2.3, 2.12.2.3
	DEFAULT_DATASTORE system parameter, 2.12.2.1
	DEFAULT_DATASTORE system-defined indexing preference, 2.11.1.1
	DEFAULT_FILTER_BINARY system parameter, 2.12.2.1
	DEFAULT_FILTER_FILE system parameter, 2.12.2.1
	DEFAULT_FILTER_TEXT system parameter, 2.12.2.1
	DEFAULT_INDEX_MEMORY system parameter, 2.12.1
	DEFAULT_LEXER system parameter, 2.12.2.1
	DEFAULT_LEXER system-defined indexing preference, 2.11.3.1
	DEFAULT_RULE_STORAGE system parameter, 2.12.2.3
	DEFAULT_SECTION_HTML system parameter, 2.12.2.1
	DEFAULT_SECTION_TEXT system parameter, 2.12.2.1
	DEFAULT_STOPLIST system parameter, 2.12.2.1
	DEFAULT_STOPLIST system-defined preference, 2.11.5.1
	DEFAULT_STORAGE system parameter, 2.12.2.1
	DEFAULT_STORAGE system-defined preference, 2.11.6.1
	DEFAULT_WORDLIST system parameter, 2.12.2.1
	DEFAULT_WORDLIST system-defined preference, 2.11.7.1
	defaults for indexing
	
	viewing, G.16

	definemerge operator, 3.1.5
	definescore operator, 3.1.5
	derivational stemming
	
	enabling for English, 2.5.1

	DESCRIBE_INDEX procedure, 11.2
	DESCRIBE_POLICY procedure, 11.2
	describing an index, 11.2
	DETAIL_DATASTORE object, 2.2.3
	
	example, 2.2.3.2

	detail_key attribute, 2.2.3
	detail_lineno attribute, 2.2.3
	detail_table attribute, 2.2.3
	detail_text attribute, 2.2.3
	dictionary
	
	Chinese, 14.3
	Japanese, 14.3
	Korean, 2.4.7.1
	modifying, 14.3
	user, 2.4.1.1

	DIRECT_DATASTORE object, 2.2.1
	
	example, 2.2.1.1

	DISABLE_QUERY_STATS procedure, 9
	disabling transactional queries, 1
	disambiguators
	
	in thesaural queries, 3.1.5
	in thesaurus import file, C.3.2

	DML
	
	affect on scoring, F.1.2

	DML errors
	
	viewing, G.4

	DML processing
	
	batch, 1

	DML queue
	
	viewing, G.17

	document
	
	classifying, 6
	clustering, 6
	filtering to HTML and plain text, 8

	document filtering
	
	AUTO_FILTER, B.1

	document formats
	
	supported, B.2
	unsupported, B.1.2

	document loading
	
	SQL*Loader, C.2

	document presentation
	
	procedures, 8

	document services
	
	logging
	
	requests, 9

	domain index, 1
	double-truncated queries, 3.1.5
	double-truncated searching
	
	improving performance, 2.5.1

	DROP INDEX statement, 1
	DROP_PHRASE procedure, 12
	DROP_POLICY procedure, 7
	DROP_PREFERENCE procedure, 7
	DROP_RELATION procedure, 12
	DROP_STOPLIST procedure, 7
	DROP_THESAURUS procedure, 12
	DROP_TRANSLATION procedure, 12
	duplicating indexes with scripts, 11.2
	duplicating policy with script, 11.2
	Dutch
	
	composite word indexing, 2.4.1
	fuzzy matching, 2.5.1
	index defaults, 2.11.3.1.3
	stemming, 2.5.1
	supplied stoplist, E.5

E

	e-mail
	
	filtering and indexing, 2.3.4

	embedded graphics, B.2.8
	empty index
	
	POPULATE | NOPOPULATE and, 1

	empty indexes
	
	creating, 1

	EMPTY_STOPLIST system-defined preference, 2.11.5.2
	ENABLE_QUERY_STATS procedure, 9
	enabling tracing, 9
	END_LOG procedure, 9
	END_QUERY_LOG procedure, 9
	ending a log, 9
	ending a query log, 9
	endjoins attribute, 2.4.1
	English
	
	fuzzy matching, 2.5.1
	index defaults, 2.11.3.1.1
	supplied stoplist, E.1

	english attribute (Korean lexer), 2.4.7.4
	environment variables
	
	setting for AUTO_FILTER filter, B.1.6

	equivalence operator, 3.1.5
	
	stopword transformations, H.1.8
	with NEAR, 3.1.5

	errors
	
	indexing, 1

	escaping special characters, 4.2
	event
	
	adding, 9
	removing, 9

	EVERY parameter, 1, 1
	example, 1
	Example
	
	FILTER BY and ORDER BY with creating an index, 1

	EXP_TAB table type, A.3.1
	expansion operator
	
	soundex, 3.1.5
	stem, 3.1.5
	viewing, 10

	EXPLAIN procedure, 10
	
	example, 10
	result table, A.1.1

	explain table
	
	creating, 10
	retrieving data example, 10
	structure, A.1.1

	extending knowledge base, 14.2
	external filters
	
	specifying, 2.3.5

F

	failed index operation
	
	resuming, 1

	failure of index loading, 5
	fast filtering, 2.3.4
	field section
	
	defining, 7
	limitations, 7
	querying, 3.1.5

	field sections
	
	adding dynamically, 1
	repeated, 3.1.5
	WITHIN example, 3.1.5

	file data storage
	
	example, 7

	FILE_DATASTORE object, 2.2.4
	
	example, 2.2.4.3

	FILE_DATASTORE system-defined preference, 2.11.1.2
	filter
	
	INSO (deprecated), 2.3.2

	filter attribute
	
	MULTI_COLUMN_DATASTORE, 2.2.2

	FILTER BY, 1
	filter formats
	
	supported, B.2

	FILTER procedure, 8
	
	example, 8
	in-memory example, 8
	result table, A.2.1

	filter table
	
	structure, A.2.1

	filter types, 2.3
	filtering
	
	fast, with AUTO_FILTER_OUTPUT_FORMATTING attribute, 2.3.4
	multi_column_datastore, 2.2.2
	stored procedures, 2.3.6
	to plain text, 8
	to plain text and HTML, 8

	filters
	
	AUTO_FILTER, 2.3.2, B.1
	character-set, 2.3.1
	user, 2.3.5

	Finnish
	
	index defaults, 2.11.3.1.5
	supplied stoplist, E.6

	format column, 1
	formatted documents
	
	filtering, 2.3.2

	fragmentation of index, 1
	French
	
	fuzzy matching, 2.5.1
	supplied stoplist, E.7

	French stemming, 2.5.1
	ftp_proxy attribute, 2.2.5.2
	fuzzy matching
	
	automatic language detection, 2.5.1
	example for enabling, 2.5.2
	specifying a language, 2.5.1

	fuzzy operator, 3.1.5
	fuzzy_match attribute, 2.5.1
	fuzzy_numresults attribute, 2.5.1
	fuzzy_score attribute, 2.5.1

G

	German
	
	alternate spelling attribute, 2.4.1.1
	alternate spelling conventions, 15.3.1
	composite word indexing, 2.4.1
	fuzzy matching, 2.5.1
	index defaults, 2.11.3.1.4
	new spelling, querying with, 2.4.1.1, 15.1.3
	stemming, 2.5.1
	supplied stoplist, E.8

	GET_TRACE_VALUE procedure, 9
	gist
	
	generating, 8

	Gist
	
	generating, 8

	GIST procedure
	
	example, 8
	result table, A.2.2
	updated syntax, 8

	Gist table
	
	structure, A.2.2

	graphics
	
	embedded, B.2.8
	standalone, B.2.8

H

	hanja attribute, 2.4.7.4
	HASPATH operator, 3.1.5
	
	and special characters, 3.1.5

	HFEEDBACK procedure, 10
	
	example, 10
	result table, A.1.2

	hierarchical query feedback information
	
	generating, 10

	hierarchical relationships
	
	in thesaurus import file, C.3.1

	HIGHLIGHT procedure, 8
	
	example, 8
	result table, A.2.3

	highlight table
	
	example, 8
	structure, A.2.3

	highlighting
	
	generating markup, 8, 8
	generating offsets, 8, 8
	with NEAR operator, 3.1.5

	homographs
	
	in broader term queries, 3.1.5
	in queries, 3.1.5
	in thesaurus import file, C.3.2

	HTML
	
	bypassing filtering, 2.3.2.2
	filtering to, 8
	generating, 8
	generating highlight offsets for, 8, 8
	highlight markup, 8, 8
	highlighting example, 8
	indexing, 1, 2.3.3.1, 2.7, 7
	zone section example, 7

	HTML_SECTION_GROUP
	
	example, 2.7.1.1

	HTML_SECTION_GROUP object, 1, 2.7, 7, 7
	
	with NULL_FILTER, 2.3.3.1

	HTML_SECTION_GROUP system-defined preference, 2.11.4.2
	http_proxy attribute, 2.2.5.2

I

	i_index_clause attribute, 2.6.1
	i_rowid_index_clause, 2.6.1
	i_table_clause attribute, 2.6.1
	IFILTER procedure, 8
	IGNORE format column value, 1
	import file
	
	examples of, C.3.4
	structure, C.3

	index
	
	creating, 1
	creating a report on, 11.2
	creating index script, 11.2
	describing, 11.2
	duplicating with script, 11.2
	loading failure, 5
	renaming, 1
	script, 11.2
	show size of objects, 11.2
	show statistics, 11.2
	synchronizing, 1, 1
	transactional, 10
	transactional CONTEXT, 1, 1
	viewing registered, G.3

	index creation
	
	custom preference example, 1
	default example, 1

	index creation parameters
	
	example, 2.6.1.2

	index errors
	
	deleting, 1
	viewing, 1

	index fragmentation, 1
	index maintenance, 1
	index objects, 2
	
	viewing, G.5, G.12

	index optimization, 1
	index preference
	
	about, 2.1
	creating, 2.1.1, 7

	index reports, 11
	index requests
	
	logging, 9

	index status, 5
	index tablespace parameters
	
	specifying, 2.6

	index tokens
	
	generating for a document, 8, 8

	INDEX_PROCEDURE user_lexer attribute, 2.4.8.3
	INDEX_SIZE procedure, 11.2
	INDEX_STATS procedure, 11.2
	index_stems
	
	attributes, 2.4.1

	index_stems attribute, 2.4.1.1
	index_text attribute, 2.4.1.1
	index_themes attribute, 2.4.1.1
	indexing
	
	master/detail example, 2.2.3.2.4
	multilingual documents, 2.4.2, 2.4.9, D.2.5
	parallel, 1, 1
	themes, 2.4.1.1

	indexing types
	
	classifier, 2.8.1
	clustering, 2.9
	datastore, 2.2
	filter, 2.3
	lexer, 2.4
	section group, 2.7
	storage, 2.6
	vs. preferences, 2.1.1
	wordlist, 2.5

	indexless document services, see policy-based document services
	index-organized table, 1
	indextype context, 1
	inflectional stemming
	
	enabling, 2.5.1

	INPATH operator, 3.1.5
	
	and special characters, 3.1.5

	INPUT_TYPE user_lexer attribute, 2.4.8.4
	INSERT statement
	
	loading example, C.1

	INSO_FILTER (deprecated), 2.3.2
	inverse frequency scoring, F.1
	Italian
	
	fuzzy matching, 2.5.1
	stemming, 2.5.1
	supplied stoplist, E.9

J

	JA16EUC character set, 2.4.5.2, 2.4.6.3
	JA16EUCTILDE character set, 2.4.5.2, 2.4.6.3
	JA16EUCYEN character set, 2.4.5.2, 2.4.6.3
	JA16SJIS character set, 2.4.5.2, 2.4.6.3
	JA16SJISTILDE character set, 2.4.5.2, 2.4.6.3
	JA16SJISYEN character set, 2.4.5.2, 2.4.6.3
	Japanese
	
	fuzzy matching, 2.5.1
	index defaults, 2.11.3.1.6
	indexing, 2.4.5
	stemming, 2.5.1

	japanese attribute (Korean lexer), 2.4.7.4
	Japanese character sets supported, 2.4.5.2
	Japanese EUC character se, 2.4.6
	Japanese lexicon, modifying, 14.3
	Japanese stemming, 2.5.1, 3.1.5
	JAPANESE_LEXER, 2.4.6
	JAPANESE_LEXER Attributes, 2.4.6.2
	JAPANESE_VGRAM_LEXER Attributes, 2.4.5.1
	JAPANESE_VGRAM_LEXER object, 2.4.5
	JOB_QUEUE_PROCESSES initialization parameter, 1

K

	k_table_clause attribute, 2.6.1
	Key Word in Context. See KWIC
	KMEAN_CLUSTERING object, 2.9.1
	knowledge base
	
	supported character set, 14.2.1
	user-defined, 14.2.8

	knowledge base extension compiler, 14.2
	KO16KSC5601 character set, 2.4.7.2
	KO16MSWIN949 character set, 2.4.7.2
	Korean
	
	fuzzy matching, 2.5.1
	index defaults, 2.11.3.1.7
	unicode character support, 2.4.7.3

	korean character sets supported, 2.4.7.2
	Korean text
	
	indexing, 2.4.7

	KOREAN_MORPH_LEXER, 2.4.7
	
	composite example, 2.4.7.6
	supplied dictionaries, 2.4.7.1
	Unicode support, 2.4.7.3

	KOREAN_MORPH_LEXER Attributes, 2.4.7.4
	KWIC (Key Word in Context), 8

L

	language
	
	setting, 2.4

	language column, 1
	left-truncated searching
	
	improving performance, 2.5.1

	lexer types, 2.4
	
	and CTXRULE index, 1

	lexical compiler, 14.3
	lexicon. See entries under dictionary
	loading text
	
	SQL INSERT example, C.1
	SQL*Loader example, C.2

	loading thesaurus, 14.1
	LOB columns
	
	loading, C.2

	local partition index
	
	parallelism, 1

	local partitioned index, 1
	LOG_DIRECTORY system parameter, 2.12.1, 9
	LOG_TRACES procedure, 9
	LOGFILENAME procedure, 9
	logging
	
	ending, 9
	ending a log, 9
	getting log file name, 9
	index requests, 9

	logging queries, 11.2
	logging traces, 9
	logical operators
	
	with NEAR, 3.1.5

	LONG columns
	
	indexing, 1

	long_word attribute, 2.4.7.4

M

	mail filter configuration file, 2.3.4.2
	mail filtering, see e-mail, 2.3.4
	MAIL_FILTER object, 2.3.4
	MAIL_FILTER_CONFIG_FILE system parameter, 2.3.4.2
	maintaining index, 1
	MARK_FAILED procedure, 5
	MARKUP procedure, 8
	
	example, 8
	HTML highlight example, 8
	result table, A.2.4

	markup table
	
	example, 8
	structure, A.2.4

	master/detail data storage, 2.2.3
	
	example, 2.2.3.2, 7

	master/detail tables
	
	indexing example, 2.2.3.2.4

	MATCH_SCORE operator, 1
	MATCHES operator, 1, 1
	MAX_INDEX_MEMORY system parameter, 2.12.1
	max_span parameter in near operator, 3.1.5
	maxthreads attribute, 2.2.5.2
	maxurls attribute, 2.2.5.2, 2.2.5.2
	MDATA operator, 3.1.5
	MDATA section, 7, 7, 7, 7
	memory
	
	for index synchronize, 1
	for indexing, 1, 1, 1, 7

	META tag
	
	creating field sections for, 7
	creating zone section for, 7

	metadata, 1, 3.1.5
	
	replacing, 7

	METADATA keyword, 1
	
	ALTER INDEX example, 1

	metadata section, 7, 7, 7, 7
	MINUS operator, 3.1.5
	
	stopword transformations, H.1.5

	mixed character-set columns
	
	indexing, 2.3.1.2

	mixed_case attribute, 2.4.1
	mixed-format columns
	
	filtering, 2.3.2
	indexing, 2.3.2.2
	supported formats for, B.2

	modifying user dictionary, 14.3
	morpheme attribute, 2.4.7.4
	MULTI_COLUMN_DATASTORE Restriction, 2.2.2.2
	MULTI_LEXER object
	
	CREATE INDEX example, 1
	example, 2.4.2.2

	MULTI_LEXER type, 2.4.2
	MULTI_STOPLIST type, 7
	multi-language indexing, 2.4.2, 2.4.9, 7, D.2.5
	multi-language stoplist, 2.4.2.1, 2.10.1
	multi-language tables
	
	querying, 1, 2.4.2.3

	multi-lexer example
	
	migrating from single language, 1

N

	n_table_clause attribute, 2.6.1
	narrower term operators
	
	example, 3.1.5

	narrower term query feedback, 10
	NEAR operator
	
	backward compatibility, 3.1.5
	highlighting, 3.1.5
	scoring, 3.1.5
	stopword transformations, H.1.9
	with other operators, 3.1.5
	with within, 3.1.5

	nested section searching, 3.1.5
	nested zone sections, 7
	nested_column attribute, 2.2.7
	NESTED_DATASTORE attribute, 2.2.7.1
	NESTED_DATASTORE object, 2.2.7
	nested_lineno attribute, 2.2.7
	nested_text attribute, 2.2.7
	nested_type attribute, 2.2.7
	new_german_spelling attribute, 2.4.1.1, 15.1.3
	newline attribute, 2.4.1
	NEWS_SECTION_GROUP object, 2.7, 7
	NLS_LENGTH_SEMANTICS parameter, 1
	no_proxy attribute, 2.2.5.2
	nopopulate index parameter, 1
	nopopulate parameter, 1
	normalization_expr attribute, 1
	normalized word forms, 15.1
	Norwegian
	
	index defaults, 2.11.3.1.5

	NOT operator, 3.1.5
	
	stopword transformations, H.1.7

	NT function, 12
	NT operator, 3.1.5
	NTG function, 12
	NTG operator, 3.1.5
	NTI function, 12
	NTI operator, 3.1.5
	NTP function, 12
	NTP operator, 3.1.5
	NULL_FILTER object, 2.3.3
	NULL_FILTER system-defined preference, 2.11.2.1
	NULL_SECTION_GROUP object, 2.7, 7
	NULL_SECTION_GROUP system-defined preference, 2.11.4.1
	number attribute, 2.4.7.4
	NUMBER column, 1
	numgroup attribute, 2.4.1
	numjoin attribute, 2.4.1

O

	object values
	
	viewing, G.11

	objects
	
	viewing index, G.12

	offsets for highlighting, 8, 8
	on commit, 1, 1
	one_char_word attribute, 2.4.7.4
	ONLINE
	
	CREATE INDEX and, 1

	OPERATION column of explain table
	
	values, A.1.1.1

	OPERATION column of hfeedback table
	
	values, A.1.2.1

	operator
	
	ABOUT, 3.1.5
	accumulate, 3.1.5
	broader term, 3.1.5
	equivalence, 3.1.5
	fuzzy, 3.1.5
	HASPATH, 3.1.5
	INPATH, 3.1.5
	MATCH_SCORE, 1
	MATCHES, 1
	MDATA, 3.1.5
	MINUS, 3.1.5
	narrower term, 3.1.5
	NEAR
	NOT, 3.1.5
	OR, 3.1.5
	preferred term, 3.1.5
	related term, 3.1.5
	SCORE, 1
	scoring, 3.1.5, 3.1.5
	SDATA, 3.1.5
	soundex, 3.1.5
	SQE, 3.1.5
	stem, 3.1.5
	synonym, 3.1.5
	threshold, 3.1.5
	top term, 3.1.5
	TRANSFORM, 1
	translation term, 3.1.5
	translation term synonym, 3.1.5
	weight, 3.1.5
	WITHIN, 3.1.5

	operator expansion
	
	viewing, 10

	operator precedence, 3.1
	
	examples, 3.1.4
	viewing, 10

	operators, 3
	optimization, 7
	
	strategies, 7

	OPTIMIZE_INDEX procedure, 7
	optimizing index, 1
	OPTIONS column
	
	explain table, A.1.1.2
	hfeedback table, A.1.2.2

	OR operator, 3.1.5
	
	stopword transformations, H.1.3

	ORDER BY, 1
	
	Limitations with PL/SQL Packages, 1

	original word forms, 15.1
	OUTPUT_STYLE procedure, 12
	output_type attribute, 2.2.6.2
	overlapping zone sections, 7
	override_base_letter attribute, 15.2.1
	overriding alternate spelling, 15.2
	overriding base-letter conversions, 15.2.1

P

	p_table_clause, 2.6.1
	PARAGRAPH keyword, 3.1.5
	paragraph section
	
	defining, 7
	querying, 3.1.5

	parallel index creation, 1
	parallel indexing, 1, 1, 1
	
	DBMS_PCLUTIL.BUILD_PART_INDEX, 1
	example, 1
	local partitioned index, 1

	parameter
	
	transactional, 1, 1

	parameters
	
	setting, 5
	viewing system-defined, G.16

	parentheses
	
	altering precedence, 3.1.5, 4.1
	grouping character, 4.1

	partitioned index
	
	creating local in parallel, 1
	example, 1
	local, 1
	parallel creation, 1
	rebuild example, 1

	partitioned index creation
	
	example, 1

	partitioned tables
	
	modifying, 1

	path attribute, 2.2.4
	PATH_SECTION_GROUP
	
	querying with, 3.1.5

	PATH_SECTION_GROUP object, 2.7, 7
	PATH_SECTION_GROUP system-defined preference, 2.11.4.4
	pending DML
	
	viewing, G.17

	performance
	
	wildcard searches, 3.1.5

	PKENCODE function, 8
	plain text
	
	bypassing filtering, 2.3.2.2
	filtering to, 8, 8
	highlight markup, 8, 8
	indexing with NULL_FILTER, 2.3.3.1
	offsets for highlighting, 8

	policy, 8
	
	create script, 11.2
	duplicate with script, 11.2
	report describing, 11.2

	POLICY_FILTER procedure, 8
	POLICY_GIST procedure, 8
	POLICY_HIGHLIGHT procedure, 8
	POLICY_MARKUP procedure, 8
	POLICY_SNIPPET procedure, 8
	POLICY_THEMES procedure
	
	syntax, 8

	POLICY_TOKENS procedure
	
	syntax, 8

	policy-based document services, 8
	populate index parameter, 1
	populate parameter, 1
	Portuguese
	
	supplied stoplist, E.10

	precedence of operators, 3.1
	
	altering, 3.1.5, 4.1
	equivalence operator, 3.1.5
	example, 3.1.4
	viewing, 10

	preference classes
	
	viewing, G.1, G.2, G.15, G.29, G.39

	preference values
	
	viewing, G.19

	preferences
	
	about, 2.1
	changing, 1
	creating, 7
	dropping, 7
	replacing, 1
	specifying for indexing, 1
	system-defined, 2.11
	viewing, G.18
	vs. types, 2.1.1

	preferred term operator
	
	example, 3.1.5

	prefix_index attribute, 2.5.1
	prefix_max_length attribute, 2.5.1
	prefix_min_length attribute, 2.5.1
	printjoins attribute, 2.4.1
	privileges
	
	required for indexing, 1

	procedure
	
	COPY_POLICY, 7
	CTX_DDL.ADD_INDEX, 7
	CTX_DDL.REPLACE_INDEX_METADATA, 7
	CTX_OUTPUT_LOG_TRACES, 9
	CTX_OUTPUT.ADD_TRACE, 9
	CTX_OUTPUT.END_QUERY_LOG, 9
	CTX_OUTPUT.GET_TRACE_VALUE, 9
	CTX_OUTPUT.REMOVE_TRACE, 9
	CTX_OUTPUT.RESET_TRACE, 9

	procedure attribute, 2.2.6
	PROCEDURE_FILTER object, 2.3.6
	progressive relaxation template, 1
	prove_themes attribute, 2.4.1.1
	proximity operator, see NEAR operator
	PT function, 12
	PT operator, 3.1.5
	punctuations attribute, 2.4.1

Q

	query
	
	accumulate, 3.1.5
	analysis, 11.2
	AND, 3.1.5
	broader term, 3.1.5
	equivalence, 3.1.5
	example, 1
	hierarchical feedback, 10
	MINUS, 3.1.5
	narrower term, 3.1.5
	NOT, 3.1.5
	on unsynched index, 1
	OR, 3.1.5
	preferred term, 3.1.5
	related term, 3.1.5
	report of logged, 11.2
	scoring, 3.1.5, 3.1.5
	stored, 3.1.5
	synonym, 3.1.5
	threshold, 3.1.5
	top term, 3.1.5
	transactional, 1, 10
	translation term, 3.1.5
	translation term synonym, 3.1.5
	weighted, 3.1.5

	query relaxation template, 1
	query rewrite template, 1
	query template, 1, 1
	QUERY_LOG_SUMMARY procedure, 11.2
	QUERY_PROCEDURE user_lexer attribute, 2.4.8.5

R

	r_table_clause attribute, 2.6.1
	rebuilding index
	
	example, 1
	syntax, 1

	RECOVER procedure, 5
	related term operator, 3.1.5
	related term query feedback, 10
	relaxing queries, 1
	relevance ranking
	
	word queries, F.1

	REMOVE_EVENT procedure, 9
	REMOVE_MDATA procedure, 7
	REMOVE_SECTION procedure, 7
	REMOVE_SQE procedure, 10
	REMOVE_STOPCLASS procedure, 7
	REMOVE_STOPTHEME procedure, 7
	REMOVE_STOPWORD procedure, 7
	REMOVE_SUB_LEXER procedure, 7
	REMOVE_TRACE procedure, 9
	removing a trace, 9
	removing metadata, 7
	renaming index, 1
	repeated field sections
	
	querying, 3.1.5

	REPLACE_INDEX_METADATA procedure, 7
	replacing, 1
	replacing metadata, 1
	replacing preferences, 1
	report
	
	describing index, 11.2
	describing policy, 11.2
	index objects, 11.2
	index size, 11.2
	index statistics, 11.2
	of logged queries, 11.2
	token information, 11.2

	reserved words and characters, 4.3
	
	escaping, 4.2

	RESET_TRACE procedure, 9
	resetting a trace, 9
	result set interface, 10
	result sets, 10
	result table
	
	TOKENS, A.2.6

	result tables, A
	
	CTX_DOC, A.2
	CTX_QUERY, A.1
	CTX_THES, A.3

	resuming failed index, 1
	
	example, 1

	rewriting queries, 1
	RFC 1738 URL specification, 2.2.5.1
	RFC-2045 messages
	
	filtering, 2.3.4

	RFC-822 messages
	
	filtering, 2.3.4

	RT function, 12
	RT operator, 3.1.5
	RULE_CLASSIFIER type, 2.8.1
	rules
	
	generating, 6

S

	Salton’s formula for scoring, F.1
	scope notes
	
	finding, 12

	SCORE operator, 1
	scoring
	
	accumulate, 3.1.5
	effect of DML, F.1.2
	for NEAR operator, 3.1.5

	scoring algorithm
	
	word queries, F.1

	script
	
	create index, 11.2
	create policy, 11.2

	SDATA operator, 3.1.5
	SDATA section, 7, 7
	section group
	
	creating, 7
	viewing information about, G.21

	section group example, 2.7.1
	section group types, 2.7, 7
	section searching, 3.1.5
	
	nested, 3.1.5

	sections
	
	adding dynamically, 1
	constraints for dynamic addition, 1
	creating attribute, 7
	creating field, 7
	creating zone, 7
	nested, 7
	overlapping, 7
	removing, 7
	repeated field, 7
	repeated zone, 7
	viewing information on, G.20

	SENTENCE keyword, 3.1.5
	sentence section
	
	defining, 7
	querying, 3.1.5

	SET_ATTRIBUTE procedure, 7
	SET_KEY_TYPE procedure, 8
	SET_PARAMETER procedure, 2.12, 5
	show size of index objects, 11.2
	Simplified Chinese
	
	index defaults, 2.11.3.1.8

	single-byte languages
	
	indexing, 2.4.1

	skipjoins attribute, 2.4.1
	SN procedure, 12
	SNIPPET procedure, 8
	soundex operator, 3.1.5
	Spanish
	
	fuzzy matching, 2.5.1
	stemming, 2.5.1
	supplied stoplist, E.11

	special characters
	
	INPATH and HASPATH operators, 3.1.5

	special section
	
	defining, 7
	querying, 3.1.5

	spelling
	
	alternate, 15.1.1
	base letter, 15.1.2
	new German, 15.1.3
	overriding alternate, 15.2

	spelling, alternate, 15
	spelling, new German, 2.4.1.1
	SQE operator, 3.1.5
	SQL commands
	
	ALTER INDEX, 1
	CREATE INDEX, 1
	DROP INDEX, 1

	SQL operators
	
	CONTAINS, 1
	MATCH_SCORE, 1
	MATCHES, 1
	SCORE, 1

	SQL*Loader
	
	example, C.2
	example control file, C.2.2.1
	example data file, C.2.2.2

	sqlldr example, C.2.2
	standalone graphics, B.2.8
	START_LOG procedure, 9
	startjoins attribute, 2.4.1
	statistics, disabling, 9
	statistics, enabling, 9
	statistics, showing index, 11.2
	stem indexing, 2.4.1.1
	stem operator, 3.1.5
	stemmer attribute, 2.5.1
	stemming, 2.5.1, 2.5.1, 3.1.5
	
	automatic, 2.5.1
	example for enabling, 2.5.2

	stop section
	
	adding dynamically, 1
	dynamically adding example, 1

	stop sections
	
	adding, 7

	stop_dic attribute, 2.4.7.4
	stopclass
	
	defining, 7
	removing, 7

	stoplist
	
	creating, 7
	Danish, E.4
	dropping, 7
	Dutch, E.5
	English, E.1
	Finnish, E.6
	French, E.7
	German, E.8
	Italian, E.9
	modifying, 2.10.3
	multi-language, 2.4.2.1, 2.10.1
	Portuguese, E.10
	Spanish, E.11
	Swedish, E.12

	stoplists
	
	about, 2.10
	creating, 2.10.2
	viewing, G.23

	stoptheme
	
	defining, 7
	removing, 7

	stopword
	
	adding dynamically, 1, 1
	defining, 7
	removing, 7
	viewing all in stoplist, G.24

	stopword transformation, H.1
	
	viewing, 10

	stopwords
	
	adding dynamically, 2.10.3.1
	removing, 2.10.3.1

	storage defaults, 2.6.1.1
	storage index preference
	
	example, 7

	storage objects, 2.6
	STORE_SQE procedure
	
	example, 3.1.5
	syntax, 10

	stored queries, 3.1.5
	stored query expression
	
	creating, 10
	removing, 10
	viewing, G.45
	viewing definition, G.22

	structured data, 3.1.5
	structured data section, 7, 7
	sub-lexer preference
	
	removing, 7

	sub-lexer values
	
	viewing, G.10

	sub-lexers
	
	viewing, G.9, G.25, G.36, G.37

	substring index
	
	example for creating, 2.5.2

	substring_index attribute, 2.5.1
	supplied stoplists, E
	Supported Platforms for AUTO_FILTER, B.1.3
	Swedish
	
	alternate spelling, 15.3.3
	index defaults, 2.11.3.1.5
	supplied stoplist, E.12

	SYN function, 12
	SYN operator, 3.1.5
	SYNC EVERY parameter, 1, 1
	SYNC ON COMMIT parameter, 1, 1
	sync parameter, 1, 1
	SYNC_INDEX procedure, 7
	synchronize index, 1, 1
	synonym operator, 3.1.5
	system parameters, 2.12
	
	defaults for indexing, 2.12.2

	system recovery
	
	manual, 5

	system-defined preferences, 2.11
	
	CTXSYS.AUTO_FILTER, 2.3.2.1

T

	table structure
	
	explain, A.1.1
	filter, A.2.1
	Gist, A.2.2
	hfeedback, A.1.2
	highlight, A.2.3
	markup, A.2.4
	theme, A.2.5

	tagged text
	
	searching, 3.1.5

	template query, 1, 1
	text column
	
	supported types, 1

	Text data dictionary
	
	cleaning up, 5, 5

	TEXT format column value, 1
	text-only index
	
	enabling, 2.4.1.1
	example, 7

	theme functionality
	
	supported languages, 14.2.8

	theme highlighting
	
	generating markup, 8
	generating offsets, 8, 8
	HTML markup example, 8
	HTML offset example, 8

	theme index
	
	as default in English, 2.11.3.1.1
	creating, 2.4.1.1

	theme proving
	
	enabling, 2.4.1.1

	theme summary
	
	generating, 8
	generating top n, 8

	theme table
	
	structure, A.2.5

	theme_language attribute, 2.4.1.1
	themes
	
	generating for document, 8, 8
	generating highlight markup, 8, 8
	highlight offset example, 8
	indexing, 2.4.1.1
	obtaining top n, 8

	THEMES procedure
	
	result table, A.2.5
	syntax, 8

	THES_TT procedure, 12
	thesaurus
	
	compiling, 14.2
	creating, 12
	creating relationships, 12
	DEFAULT, 3.1.5
	dropping, 12
	import/export examples, 14.1.3.1
	importing/exporting, 14.1
	procedures for browsing, 12
	renaming and truncating, 12
	viewing information about, G.26

	thesaurus import file
	
	examples, C.3.4
	structure, C.3

	thesaurus phrases
	
	altering, 12
	dropping, 12

	thesaurus relations
	
	creating, 12
	dropping, 12

	thesaurus scope note
	
	finding, 12

	thesaurus top terms
	
	finding all, 12

	threshold operator, 3.1.5
	
	stopword transformations, H.1.11

	timeout attribute, 2.2.5.2
	to_upper attribute, 2.4.7.4
	token index optimization, 1
	token report, generating, 11.2
	token, translating name into, 11.2
	TOKEN_INFO procedure, 11.2
	TOKEN_TYPE procedure, 11.2
	TOKENS procedure
	
	result table, A.2.6
	syntax, 8

	top term, 3.1.5
	top term operator, 3.1.5
	TR function, 12
	TR operator, 3.1.5
	trace value
	
	getting, 9

	traces, available, 9
	tracing
	
	adding a trace, 9
	available traces, 9
	CTX_TRACE_VALUES view, G.28
	enabling, 9
	getting trace values, 9, G.28
	logging traces, 9
	removing trace, 9
	resetting trace, 9

	TRAIN procedure, 6
	transactional CONTEXT index, 1, 1
	transactional index, 10
	transactional parameter, 1, 1
	transactional text query, 1, 1
	
	disabling, 1

	TRANSFORM operator, 1
	transformation
	
	stopword, H.1

	translation term operator, 3.1.5
	translation term synonym operator, 3.1.5
	translations
	
	adding to thesaurus, 12
	dropping, 12
	English name to numeric token, 11.2
	updating, 12

	TRSYN function, 12
	TRSYN operator, 3.1.5
	TT function, 12
	TT operator, 3.1.5
	type
	
	MULTI_LEXER, 2.4.2
	WORLD_LEXER, 2.4.9, D.2.5

	types, 2.1.1
	
	indexing, 2.1.1
	see also indexing types

U

	unicode support in Korean lexer, 2.4.7.3
	UNSET_ATTRIBUTE procedure, 7
	unsupervised classification, see clustering
	UPDATE GLOBAL INDEXES, 1, 1, 1, 1
	UPDATE_TRANSLATION procedure, 12
	URL syntax, 2.2.5.1
	URL_DATASTORE object
	
	attributes for, 2.2.5
	example, 2.2.5.4

	URL_DATASTORE system-defined preference, 2.11.1.3
	urlsize attribute, 2.2.5.2
	user dictionary, modifying, 14.3
	USER_DATASTORE object, 2.2.6
	
	example, 2.2.6.3

	USER_DATSTORE
	
	filtering binary documents, 8

	user_dic attribute, 2.4.7.4
	USER_FILTER object, 2.3.5
	
	example, 2.3.5.4

	USER_LEXER object, 2.4.8
	
	and CTXRULE index, 2.4.8.1

	UTF-16 endian auto-detection, 2.3.1.1
	UTF8, 2.4.6
	UTF8 character set, 2.4.1, 2.4.3.2, 2.4.5.2, 2.4.6.3, 2.4.7.2
	utilities
	
	ctxload, 14.1

V

	VARCHAR2 column
	
	indexing, 1

	verb_adjective attribute, 2.4.7.4
	version numbers
	
	viewing, G.51

	viewing
	
	operator expansion, 10
	operator precedence, 10

	views
	
	CTX_CLASSES, G.1, G.2, G.15, G.29, G.39
	CTX_INDEX_ERRORS, G.4
	CTX_INDEX_OBJECTS, G.5
	CTX_INDEX_SUB_LEXER, G.9
	CTX_INDEX_SUB_LEXERS, G.37
	CTX_INDEX_SUB_LEXERS_VALUES, G.10
	CTX_INDEX_VALUES, G.11
	CTX_INDEXES, G.3
	CTX_OBJECT_ATTRIBUTE_LOV, G.14
	CTX_OBJECT_ATTRIBUTES, G.13
	CTX_OBJECTS, G.12
	CTX_PARAMETERS, G.16
	CTX_PENDING, G.17
	CTX_PREFERENCE_VALUES, G.19
	CTX_PREFERENCES, G.18
	CTX_SECTION_GROUPS, G.21
	CTX_SECTIONS, G.20
	CTX_SQES, G.22
	CTX_STOPLISTS, G.23
	CTX_STOPWORDS, G.24
	CTX_SUB_LEXERS, G.25
	CTX_THESAURI, G.26
	CTX_TRACE_VALUES, G.28
	CTX_USER_INDEX_ERRORS, G.31
	CTX_USER_INDEX_OBJECTS, G.32
	CTX_USER_INDEX_SET_INDEXES, G.35
	CTX_USER_INDEX_SETS, G.34
	CTX_USER_INDEX_SUB_LEXERS, G.36
	CTX_USER_INDEX_VALUES, G.38
	CTX_USER_INDEXES, G.30
	CTX_USER_PENDING, G.40
	CTX_USER_PREFERENCE_VALUES, G.42
	CTX_USER_PREFERENCES, G.41
	CTX_USER_SECTION_GROUPS, G.44
	CTX_USER_SECTIONS, G.43
	CTX_USER_SQES, G.45
	CTX_USER_STOPLISTS, G.46
	CTX_USER_STOPWORDS, G.47
	CTX_USER_SUB_LEXERS, G.48
	CTX_USER_THES_PHRASES, G.50
	CTX_USER_THESAURI, G.49
	CTX_VERSION, G.51

	visible flag for field sections, 7
	visible flag in field sections, 3.1.5

W

	weight operator, 3.1.5
	
	stopword transformations, H.1.10

	whitespace attribute, 2.4.1
	wildcard queries
	
	improving performance, 2.5.1

	wildcard searches, 3.1.5
	
	improving performance, 3.1.5

	wildcard_maxterms attribute, 2.5.1
	WILDCARD_TAB type, 13
	WITHIN operator, 3.1.5
	
	attribute sections, 3.1.5
	limitations, 3.1.5
	nested, 3.1.5
	precedence, 3.1.4
	stopword transformations, H.1.12

	word forms, 15.1
	
	original vs. normalized, 15.1

	WORLD_LEXER type, 2.4.9, D.2.5

X

	XML documents
	
	attribute sections, 7
	doctype sensitive sections, 7
	indexing, 1, 2.7, 7
	querying, 3.1.5

	XML report output format, 11.2, 11.2, 11.2, 11.2, 11.2
	XML sectioning, 2.7.1.3
	XML_SECTION_GROUP
	
	example, 2.7.1.2

	XML_SECTION_GROUP object, 1, 2.7, 7
	XMLType column
	
	indexing, 1

Z

	ZHS16CGB231280 character set, 2.4.3.2
	ZHS16GBK character set, 2.4.3.2
	ZHS32GB18030 character set, 2.4.3.2
	ZHT16BIG5 character set, 2.4.3.2
	ZHT16HKSCS character set, 2.4.3.2
	ZHT16MSWIN950 character set, 2.4.3.2
	ZHT32EUC character set, 2.4.3.2
	ZHT32TRIS character set, 2.4.3.2
	zone section
	
	adding dynamically, 1
	creating, 7
	dynamically adding example, 1
	querying, 3.1.5
	repeating, 7

Oracle Legal Notices

Oracle Legal Notices

Copyright Notice

Copyright © 1994-2014, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Mi