
Oracle® Access Manager
Developer Guide

10g (10.1.4.2.0)

E10355-01

August 2007

This guide explains how to write custom applications and
plug-ins that enable programmatic access to Identity System
functions and to extend the Access System's single sign-on
and authorization functions.

Oracle Access Manager Developer Guide 10g (10.1.4.2.0)

E10355-01

Copyright © 2000, 2007, Oracle. All rights reserved.

Primary Author: Nina Wishbow

Contributing Author: Gail Tiberi

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Preface ... xxi

Audience... xxi
Documentation Accessibility ... xxi
Related Documents .. xxii
Conventions ... xxiii

What’s New in Oracle Access Manager?.. xxv

Product and Component Name Changes.. xxv
Globalization .. xxvi
WebGate Rewrite.. xxvii
Sample Web Services Code.. xxviii
Updates to IdentityXML... xxviii
Authorization Plug-in API... xxviii

1 IdentityXML and Identity Web Services

About IdentityXML.. 1-1
Implementing an IdentityXML Request ... 1-3
Sending Multiple IdentityXML Requests ... 1-4

Formatting an IdentityXML Request.. 1-4
XML Start Tag... 1-5
Soap Tags... 1-5
Authentication Tags... 1-6

Authentication and Single Sign-on Considerations... 1-6
Request Tag... 1-6
Parameter Tags ... 1-7

Request Examples ... 1-8
Handling Special Characters in Requests.. 1-10

Locations for Each Application... 1-10
Types of IdentityXML Functions.. 1-10

Functions to Test Access to Data... 1-11
Functions to Get Data ... 1-12
Functions to Set Data .. 1-13
Privileges to View and Modify ... 1-14

Privileges Required for Direct Access APIs ... 1-14
Privileges Required for Indirect Access APIs .. 1-15

iv

Privileges Required for Application-Specific IdentityXML Requests.............................. 1-15
Privileges Required for DN Operations ... 1-15

Formatting an IdentityXML Response .. 1-16
Parsing a Response ... 1-17
Response Example .. 1-17
Error Responses... 1-18

Creating IdentityXML Requests Using WSDL.. 1-20
Benefits of WSDL .. 1-20
About Identity System WSDL Files.. 1-20

WSDL Directory Structure.. 1-21
WSDL Documents... 1-21
Sample WSDL Files... 1-22
About Working With WSDL Files .. 1-23
.NET Implementation of WSDL.. 1-25
Invoking a WSDL-Based Web Service Using Java .. 1-26

Required Software for Using the Sample Code... 1-27
Setting Up the Access Manager SDK .. 1-27
Compiling and Running the Sample Code .. 1-27

Making WSDL Functions Available Using UDDI.. 1-29

2 IdentityXML Functions and Parameters

About IdentityXML.. 2-1
IdentityXML Overview ... 2-2
About IdentityXML Functions and Parameters .. 2-2

Function Types .. 2-2
Finding the Right Parameter Values for a Function .. 2-3

Search Parameters .. 2-3
Attribute Parameters.. 2-5

Syntax for Most Attribute Parameters .. 2-5
Syntax for Lost Password Management Attribute Parameters ... 2-9

Add Operation .. 2-9
Delete Operation .. 2-10
Replace Operations.. 2-10
Replace_All Operations .. 2-12

Exceptions to Attribute Values ... 2-13
Common Functions ... 2-14

Search for entries based on some criteria .. 2-14
Search for all pending, completed, or all tickets ... 2-16
Get information on a particular workflow ticket .. 2-19
Resume asynchronous workflows... 2-19
Subscribe self to group .. 2-22
Unsubscribe self from group.. 2-23
Subscribe user to group... 2-23
Unsubscribe user from group .. 2-24

User Manager Functions .. 2-25
Functions to Test for Attribute Permissions.. 2-26

Can I view a user's profile .. 2-26

v

Can I view an attribute in a user's profile .. 2-26
Can I modify an attribute in a user's profile .. 2-26
Can I modify an attribute in a user's profile using a workflow .. 2-27
Can I create a new user ... 2-27
Can I delete an existing user... 2-28
Can this user view another user's profile ... 2-28
Can this user view an attribute in another user's profile ... 2-28
Can this user modify an attribute in another user's profile using a workflow............... 2-29
Can this user create a new user.. 2-29
Can this user delete an existing user... 2-30
Can this user modify another user's attribute ... 2-30
Can this user request a change to another user's profile using a workflow 2-30

Functions to Perform User Manager Actions.. 2-31
View user attributes... 2-31
Modify user attributes... 2-32
Request user attribute change through a workflow ... 2-36
Create User Using a Workflow .. 2-41
Self-Registration Using a Workflow.. 2-44
Deactivate User Using a Workflow... 2-46
View Deactivated User.. 2-47
Search Deactivated Users.. 2-47
Reactivate User Using a Workflow ... 2-48

Group Manager Functions... 2-49
Functions to Test for Attribute Permissions.. 2-49

Can I view a group's profile ... 2-49
Can I view an attribute in a group's profile ... 2-50
Can I modify an attribute in a group's profile ... 2-50
Can I request modification through a workflow of an attribute in a group profile....... 2-50
Can I create a new group .. 2-51
Can I delete an existing group ... 2-51
Can I subscribe to a group .. 2-52
Can I unsubscribe from a group .. 2-52
Am I a member of a group ... 2-52
Can a user view a group's profile .. 2-53
Can a user view an attribute in a group's profile .. 2-53
Can a user modify an attribute in a group profile using a workflow 2-54
Can a user create a new group... 2-54
Can a user delete an existing group .. 2-54
Is this person a member of a group... 2-55
Request group attribute change... 2-55
Request group attribute change through a workflow .. 2-56

Functions to Perform Group Manager Actions .. 2-56
View group attributes ... 2-56
Modify Group attributes... 2-56
Create group ... 2-57
Delete Group... 2-58
Get groups that I am a member, owner, or administrator of .. 2-58

vi

Get groups that a user is a member, owner, or administrator of...................................... 2-59
View group members .. 2-61
Expand group ... 2-62
Flush the Group Cache.. 2-63
Subscribe a user to a group... 2-63

Organization Manager Functions .. 2-64
Functions to Test For Attribute Permissions... 2-64

Can I view an object's profile ... 2-64
Can I view an attribute in the object's profile .. 2-65
Can I modify an attribute in an object's profile ... 2-65
Can I request modification through a workflow of an attribute in an object's profile .. 2-65
Can I create a new object... 2-66
Can I delete an existing object.. 2-66
Can this user view an object's profile.. 2-66
Can this user view an attribute in an object's profile.. 2-67
Can a user modify an attribute in an object's profile .. 2-67
Can a user create a new object ... 2-68
Can a user delete an existing object... 2-68
Can this user request an object attribute modification... 2-68

Functions to Perform Organization Manager Actions .. 2-69
View object attributes .. 2-69
Modify object attributes .. 2-69
Request object attribute change through a workflow... 2-69
Create an object .. 2-69
Self-registration .. 2-69
Delete object.. 2-70

Code Examples of Deployed IdentityXML Functions ... 2-70
Java Application Example.. 2-70
Java Servlet Example .. 2-73
ObSSOCookie Example .. 2-79

3 Identity Event Plug-in API

About the Identity Event Plug-in API .. 3-1
Examples of Uses of the Identity Event Plug-in API .. 3-2

Connecting Events to Actions .. 3-2
Types of Events... 3-3

Identity System Program Events: Pre and Post .. 3-3
OnChange .. 3-3
Workflow Events... 3-4
Password Management Events... 3-4
Lost Password Management ... 3-4
Encryption Events... 3-4

Types of Actions... 3-5
LIB Actions... 3-5
MANAGEDLIB Actions... 3-6
EXEC Actions... 3-6

Configuration File (Catalog)... 3-7

vii

Guidelines for Writing an Action .. 3-9
Task overview: Writing an action... 3-9
Availability—The availability of the data ... 3-9

How the API Works ... 3-9
Actions, as Seen by Identity System Applications .. 3-9
Identity System Applications, as Seen by Actions ... 3-12

LIB Actions.. 3-13
LIB Interface.. 3-13
Load Behavior... 3-14
LIB Examples .. 3-14
MANAGEDLIB Actions.. 3-14
MANAGEDLIB Interface.. 3-14
Load Behavior for MANAGEDLIB ... 3-15
MANAGEDLIB Examples .. 3-15
MANAGEDLIB Actions.. 3-16
EXEC Actions.. 3-16
Load Behavior... 3-17
EXEC Examples.. 3-17
Global Parameters.. 3-17

Working with XML... 3-18
Event XML Format .. 3-18
PresentationXML Format.. 3-19
Parsing XML ... 3-19

Event Handling in the API .. 3-20
Event Handler Initialization and Shutdown Functions .. 3-20

ObInitEventAPI () ... 3-20
Return Values ... 3-20
ObTermEventAPI ().. 3-21
Return Values ... 3-21

Pre and Post Events .. 3-21
Catalog Entry.. 3-21
Interaction Methods... 3-23

OnChange Events.. 3-24
Catalog Entry.. 3-24
Interaction Methods... 3-24
Return Values ... 3-25

Workflow Events... 3-26
Catalog Entry.. 3-26
Interaction Methods... 3-27
Tables of Workflow Attributes... 3-29
Return Values ... 3-30

Password Management Events ... 3-31
Catalog Entry.. 3-31
Interaction Methods... 3-32
Return Values ... 3-32

Encryption Events ... 3-33
Catalog Entry.. 3-33

viii

Interaction Methods... 3-34
Response Values... 3-34

The API.. 3-34
More on LIB Actions... 3-35
More on MANAGEDLIB Actions ... 3-35
More on EXEC Actions... 3-36
Returning Error Messages From an EXEC Call .. 3-37

Returning Error Messages Using EXEC - WF.. 3-37
EReturning Error Messages Using EXEC - PRE .. 3-37
Returning Error Messages Using EXEC - POST.. 3-38

Development Environment ... 3-43
Library Files for LIB and EXEC Actions ... 3-44
Library Files for MANAGEDLIB Actions .. 3-44
LIB Action Example Files.. 3-45
MANAGEDLIB Action Example Files.. 3-46
EXEC Action Example Files.. 3-46
Parser Example Files.. 3-46

Cross-Application Support.. 3-47
Examples ... 3-48

A LIB Action Example—LogActivation .. 3-48
An EXEC Action Example—AfterHours ... 3-50
A MANAGEDLIB Action Example .. 3-52

4 Building AccessGates with the Access Manager SDK

About AccessGates... 4-2
About Prefabricated AccessGates (WebGates) .. 4-2
When to Create a Custom AccessGate.. 4-2
AccessGate Architecture ... 4-3
AccessGate Variations ... 4-4
How an AccessGate Handles a Resource Request .. 4-4

About AccessGate Deployment... 4-5
Supported Versions and Platforms ... 4-6
Installing the Access Manager SDK... 4-7

Obtaining the Access Manager SDK .. 4-7
Installing the SDK on Windows ... 4-7
Installing the SDK on UNIX .. 4-9

Configuring an AccessGate ... 4-10
Setting Environment Variables .. 4-10
Creating an AccessGate Entry on the Access Server .. 4-12
Running the configureAccessGate Utility.. 4-13

Writing AccessGate Code .. 4-14
Cloning a Custom AccessGate ... 4-14

Protecting Resources... 4-15
About the Access Manager SDK .. 4-15

SDK Overview ... 4-15
SDK Content .. 4-15

BEA WebLogic Support Files ... 4-16

ix

About the Access Manager API .. 4-17
Implementations Compared.. 4-17

About Memory Management... 4-17
Corresponding Classes.. 4-18
About Multi-Language Implementation .. 4-18

ObMap .. 4-18
Equivalent Methods... 4-19

ObMapIterator ... 4-20
Equivalent Methods... 4-20

ObAuthenticationScheme .. 4-20
Equivalent Methods... 4-22

ObResourceRequest .. 4-23
Equivalent Methods... 4-24

ObUserSession... 4-24
Equivalent Methods... 4-25

ObConfig .. 4-26
Configuration Parameters .. 4-26
Equivalent Methods... 4-28

ObAccessException... 4-28
Equivalent Methods... 4-29

Globalization and the Access Manager SDK, Access Manager APIs, Custom AccessGates . 4-29
About Custom AccessGate Code.. 4-30

Typical AccessGate Execution Flow... 4-30
Example of a Simple AccessGate: JAccessGate.java .. 4-31

Annotated Code ... 4-33
Example of a Simple AccessGate Using C Psuedo Classes: access_test_c.cpp 4-36

Annotated Code ... 4-38
Example: Java Login Servlet .. 4-42

Annotated Code ... 4-44
Example Using the C# API: access_api_test.cs ... 4-48

Annotated Code ... 4-50
Example Using Additional Methods: access_test_java.java ... 4-52

Annotated Code ... 4-55
Example in C++ that Implements Several Features: access_test_cplus.cpp........................... 4-60

Annotated Code ... 4-66
Example of Implementing Certificate-Based Authentication... 4-76

C++ Implementation Details .. 4-77
ObMap .. 4-78

Constructors (ObMap, C++)... 4-78
Methods (ObMap, C++) .. 4-78

ObMapIterator ... 4-79
Constructors (ObMapIterator, C++) ... 4-79
Methods (ObMapIterator, C++)... 4-79

ObAuthenticationScheme .. 4-80
Constructors (ObAuthenticationScheme, C++)... 4-80
Methods (ObAuthenticationScheme, C++) .. 4-80

ObResourceRequest .. 4-81

x

Constructors (ObResourceRequest, C++)... 4-82
Methods (ObResourceRequest, C++).. 4-82

ObUserSession... 4-83
Constructors (ObUserSession, C++).. 4-83
Methods (ObUserSession, C++)... 4-84

ObConfig .. 4-87
Methods (ObConfig, C++) .. 4-87

ObAccessException... 4-88
Constructors (ObAccessException, C++) ... 4-88
Methods (ObAccessException, C++)... 4-88

ObDiagnostic (C++) .. 4-89
Methods (ObDiagnostic, C++) ... 4-89

C Implementation Details ... 4-90
ObMap_t... 4-90

Functions (ObMap_t, C).. 4-91
ObMapIterator_t.. 4-91

Functions (ObMapIterator_t, C) .. 4-92
ObAuthenticationScheme_t... 4-92

Functions (ObAuthenticationScheme_t, C).. 4-93
ObResourceRequest_t... 4-94

Functions (ObResourceRequest_t, C).. 4-95
ObUserSession_t.. 4-96

Functions (ObUserSession, C).. 4-96
ObConfig_t ... 4-100

Functions (ObConfig, C) ... 4-100
ObAccessException_t ... 4-101

C-language Error Handlers .. 4-101
Functions (ObAccessException, C).. 4-101

ObDiagnostic (C)... 4-102
Methods (ObDiagnostic, C) .. 4-103

C# Implementation Details ... 4-103
ObDictionary.. 4-104

Constructors (ObDictionary, C#) ... 4-104
Methods (ObDictionary, C#) .. 4-104

ObDictionaryEnumerator .. 4-105
Constructors (ObDictionaryEnumerator, C#).. 4-105
Methods (ObDictionaryEnumerator, C#)... 4-106

ObAuthenticationSchemeMgd.. 4-106
Constructors (ObAuthenticationSchemeMgd, C#) .. 4-106
Methods (ObAuthenticationSchemeMgd, C#) .. 4-106

ObResourceRequestMgd.. 4-107
Constructors (ObResourceRequestMgd, C#) ... 4-108
Methods (ObResourceRequestMgd, C#) .. 4-108

ObUserSessionMgd .. 4-109
Constructors (ObUserSessionMgd, C#).. 4-109
Methods (ObUserSessionMgd, C#) ... 4-110

ObConfigMgd.. 4-112

xi

Constructors (ObConfigMgd, C#) ... 4-112
Methods (ObConfigMgd, C#) .. 4-112

ObAccessExceptionMgd .. 4-113
Constructors (obAccessExceptionMgd, C#)... 4-113
Methods (ObAccessExceptionMgd, C#) ... 4-114

ObDiagnostic (C#)... 4-114
Methods (ObDiagnostic, C#) .. 4-115

Java Implementation Details .. 4-115
Interfaces .. 4-116

ObAuthenticationSchemeInterface ... 4-116
ObResourceRequestInterface ... 4-116
ObUserSessionInterface .. 4-117

(java.util.Hashtable).. 4-117
Constructors (java.util.Hashtable, Java) ... 4-117
Methods (java.util.Hashtable, Java) .. 4-117

ObAuthenticationScheme .. 4-118
Constructors (ObAuthenticationScheme, Java)... 4-118
Methods (ObAuthenticationScheme, Java) .. 4-118

ObResourceRequest .. 4-119
Constructors (ObResourceRequest, Java)... 4-119
Methods (ObResourceRequest, Java).. 4-120

ObUserSession... 4-121
Java Status and Error Message Fields ... 4-121
Constructors (ObUserSession, Java).. 4-122
Methods (ObUserSession, Java)... 4-123

ObConfig .. 4-125
Constructors (ObConfig, Java) ... 4-125
Methods (ObConfig, Java) .. 4-125

ObAccessException... 4-126
Constructors (ObAccessException, Java) ... 4-126
Inherited Methods (ObAccessException, Java) ... 4-127

ObDiagnostic (Java) .. 4-127
Methods (ObDiagnostic, Java) ... 4-127

C-Family Status and Error Message Strings... 4-128
Best Practices .. 4-131

Avoiding Problems ... 4-131
Thread Safe Code ... 4-131

Identifying and Resolving Problems.. 4-132

5 Policy Manager API

About the Policy Manager API .. 5-1
Notes on Managed Code... 5-4

Development Environment .. 5-4
Installation Location .. 5-4
Installation Content ... 5-5
About Building an AccessGate... 5-6

Environment Variables .. 5-6

xii

Build Process.. 5-6
Configuration File .. 5-6

Coding With the Policy Manager API .. 5-7
API Conventions .. 5-7

Programmatic and Implementation Conventions ... 5-7
Naming Conventions ... 5-8

Creating New Objects.. 5-8
Copying Existing Objects .. 5-9

About Cloning Objects Explicitly ... 5-9
Deleting Objects... 5-10
Managing Data for Single-Valued Object Members .. 5-10

Setting Data for Single-Valued Object Members... 5-10
Getting Data for Single-Valued Object Members.. 5-11

Managing Arrays .. 5-12
About Keys.. 5-12
Adding Data to Arrays.. 5-12
Modifying Data for Objects in Arrays .. 5-13
Getting a Count of Members in an Array... 5-13
Getting Data for Elements of Arrays... 5-14
Removing Data from Arrays .. 5-15

Using setIDFrom ... 5-15
Using Enumerations ... 5-15
ObAccessManager Class .. 5-16

Methods to Handle AccessManager Objects ... 5-16
Connection Methods ... 5-18
Get Methods.. 5-19
Java... 5-19
C.. 5-20
Get Method Examples ... 5-23
Set Method .. 5-23
Test Access Method ... 5-24

Access System Configuration Objects .. 5-25
Policy Manager API Classes.. 5-26

Class ObAMHostIdentifier .. 5-26
Class ObAMHostIdentifierMgd.. 5-27
Class ObAMResourceType.. 5-27
Class ObAMResourceTypeMgd ... 5-27
Class ObAMAuthenticationScheme... 5-28
Class ObAMAuthenticationSchemeMgd .. 5-29
Class ObAMAuthenticationScheme_ChallengeMethodMgd... 5-29
Class ObAMAuthenticationPlugin... 5-30
Class ObAMAuthenticationPluginMgd .. 5-30
Class ObAMAuthorizationScheme .. 5-31
Class ObAMAuthorizationSchemeMgd.. 5-31
Class ObAMMasterAuditRule .. 5-32
Class ObAMMasterAuditRuleMgd.. 5-33
Access Policy Objects.. 5-33

xiii

About String Names .. 5-34
Class ObAMPolicyDomain.. 5-35
Class ObAMPolicyDomainMgd ... 5-38
Class ObAMAdminRule .. 5-39
Creating an Administrator Rule ... 5-40
Class ObAMAdminRuleMgd.. 5-40
Class ObAMPolicy .. 5-41
Class ObAMPolicyMgd.. 5-45
Class ObAMAuthenticationRule .. 5-45
Class ObAMAuthenticationRuleMgd.. 5-48
Class ObAMAuthorizationRule.. 5-48
Class ObAMAuthorizationRuleMgd ... 5-53
Class ObAMAuthorizationExpr ... 5-54
Class ObAMAuthorizationExprMgd ... 5-59
Class ObAMDuplicateActionPolicyMgd... 5-59
Class ObAMAccessConditions ... 5-59
Class ObAMAccessConditionsMgd... 5-60
Class ObAMActionTypeMgd.. 5-61
Class ObAMObjectWithActions ... 5-61
Class ObAMTimingConditions... 5-62
Class ObAMTimingConditionsMgd .. 5-64
Class ObAMTimingConditions_RelativeToMgd ... 5-66
Class ObAMDate_DaysOfWeekMgd... 5-66
Class ObAMAction ... 5-66
Class ObAMActionMgd... 5-67
Class ObAMAction_ValueTypeMgd ... 5-68
Class ObAMAuditRule .. 5-68
Class ObAMAuditRuleMgd.. 5-68
Class ObAMAuditRule_EventTypeMgd... 5-69
Class ObAMDate... 5-69
Class ObAMDateMgd .. 5-70
Class ObAMDate_MonthsMgd... 5-70
Class ObAMDate_DaysOfWeekMgd... 5-71
Class ObAMIdentity ... 5-71
Class ObAMIdentityMgd... 5-72
Class ObAMParameter... 5-72
Class ObAMParameterMgd .. 5-73
Class ObAMResource... 5-73
Class ObAMResourceMgd .. 5-73
Class ObAMTime.. 5-74
Class ObAMTimeMgd.. 5-74

Test Objects... 5-75
Class ObAMAccessTest.. 5-75
Class ObAMAccessTestMgd ... 5-78
Class ObAMAccessTestResults... 5-79
Class ObAMAccessTestResultsMgd .. 5-79
Class ObAMAccessTestResult... 5-80

xiv

Class ObAMAccessTestResultMgd .. 5-80
Class ObAMException ... 5-81
Class ObAccessException .. 5-81
Class ObAccessExceptionMgd.. 5-82

Sample Program... 5-83

6 Authentication Plug-in API

About the Authentication Plug-in API .. 6-1
Globalization and Custom C Authentication Plug-ins and Interfaces 6-2

Backward Compatibility .. 6-2
C API Environment .. 6-2

Support Files Location for the C API .. 6-2
C API Plug-in Directory .. 6-3

C API Data ... 6-3
Defines (C)... 6-4
Handles (C) ... 6-4
C Return Values.. 6-5

ObAnActionType_t... 6-5
ObAnPluginstatus_t ... 6-5
ObAnASStatus_t ... 6-6

C Structures... 6-7
ObAnServerContext ... 6-7
ObAnPluginInfo.. 6-7
ObAnPluginFns... 6-9

C API Functions .. 6-9
Functions Provided by the Access Server (C API) .. 6-9

GetDataFn ... 6-10
SetDataFn .. 6-10
GetFirstItemFn.. 6-11
GetNextFn ... 6-11
GetCredFn... 6-12
SetCredFn.. 6-12
GetActionFn.. 6-13
SetActionFn... 6-14
SetAuthnUidFn .. 6-14

C Functions Implemented in the Plug-in... 6-15
ObAnPluginGetVersion .. 6-15
ObAnPluginInit.. 6-15
ObAnPluginTerminate.. 6-16
ObAnPluginFn ... 6-16
ObAnPluginDeallocStatusMsg .. 6-17

C Authentication Plug-in Example .. 6-18
Managed Code API Environment .. 6-23

Managed Code API Plug-in Directory... 6-24
Managed Code API Data ... 6-24

Defines (Managed Code) ... 6-24
Interfaces (Managed Code).. 6-25

xv

IObAnServerContext ... 6-25
IObAnPluginInfo ... 6-26
IObAnPluginSVData ... 6-26
IObAnPluginMVData.. 6-27
IObAsPluginListItem... 6-27

Managed Code Return Values .. 6-28
ObAnActionType... 6-28
ObAnPluginstatus.. 6-28
ObAnASStatus.. 6-29

Managed Code Functions Implemented in the Plug-in .. 6-29
ObAnPluginGetVersion.. 6-30
ObAnPluginInit.. 6-30
ObAnPluginTerminate.. 6-31
ObAnPluginFn ... 6-31

Troubleshooting... 6-32
Standard Plug-Ins.. 6-32

Credential Mapping Plug-In ... 6-32
Validate Password Plug-In .. 6-34
Certificate Decode Plug-In... 6-34
Selection Filter Plug-In ... 6-35
NT/Win2000 Plug-In.. 6-35
SecurID Plug-In ... 6-35

7 Authorization Plug-in API

About the Authorization Plug-In API .. 7-1
Support for C and Managed Code... 7-2
Globalization and Custom C Authorization Plug-in Interfaces ... 7-2

Backward Compatibility .. 7-2
API Environment.. 7-3

C Code Location ... 7-3
Managed C++ Code Location... 7-3
Plug-in Location ... 7-4

C API Data ... 7-4
C Constant Definitions .. 7-5
C Handles .. 7-5
C Return Values.. 7-6

ObAzplug-instatus_t .. 7-6
ObAzASStatus_t.. 7-7

C Structures... 7-7
ObAzServerContext.. 7-7
ObAzPluginInfo .. 7-8
ObAzPluginFns .. 7-10

C API Functions ... 7-11
C Functions Provided by the Access Server.. 7-11

GetDataFn ... 7-11
SetDataFn .. 7-11
GetFirstItemFn.. 7-12

xvi

GetValueFn ... 7-12
GetNextFn ... 7-13

C Functions Implemented in the Plug-In .. 7-13
ObAzPluginGetVersion .. 7-13
ObAzPluginInit .. 7-14
ObAzPluginTerminate .. 7-14
ObAzPluginFn.. 7-15
ObAzPluginDeallocStatusMsg .. 7-16
C Example ... 7-17

Managed Code API Interfaces .. 7-21
Defines .. 7-21
Interfaces .. 7-22
Return Values .. 7-22

Status.. 7-22
ASStatus .. 7-23

Managed Code Interfaces .. 7-23
IObAzServerContext ... 7-23
IObAZPluginInfo ... 7-23
IObAzPluginData... 7-24
IObAzPluginWriteableData ... 7-25
IObAsPluginListItem... 7-25

Interfaces to be Implemented in the Plug-In... 7-26
ObAzPluginGetVersion .. 7-26
ObAzPluginInit .. 7-26
ObAzPluginTerminate .. 7-27
ObAzPluginFn.. 7-27

Troubleshooting... 7-28

A XML Background

About XML ... A-1
XML Schema... A-2
XSL and XSLT... A-5

General Syntax... A-5
Expression Syntax ... A-6
Client-Side Transformation ... A-6
XSL Transformation Limits ... A-7

Resources .. A-8

B Policy Manager API Definitions

Class ObAccessManager .. B-1
Java .. B-1
C... B-2
Managed Code... B-4

Access Policy Objects ... B-5
Java .. B-5

Class ObAMResource.. B-5
Class ObAMAccessConditions .. B-5

xvii

Class ObAMDate.. B-6
Class ObAMTime... B-7
Class ObAMTimingConditions ... B-7
Class ObAMIdentity.. B-7
Class ObAMObjectWithActions .. B-8
Class ObAMAction .. B-8
Class ObAMAuthenticationRule ... B-8
Class ObAMAuthorizationRule... B-9
Class ObAMAuthorizationExpr .. B-9
Class ObAMAuditRule ... B-10
Class ObAMAdminRule ... B-10
Class ObAMParameter.. B-11
Class ObAMPolicy... B-11
Class ObAMPolicyDomain... B-12
Class ObAMAccessTest .. B-13
Class ObAMAccessTestResults.. B-13
Class ObAMAccessTestResult(s) ... B-13

C... B-14
Class ObAMResource.. B-14
Class ObAMAccessConditions .. B-14
Class ObAMDate.. B-15
Class ObAMTime... B-15
Class ObAMTimingConditions ... B-16
Class ObAMIdentity.. B-17
Class ObAMAction .. B-17
Class ObAMObjectWithActions .. B-17
Class ObAMAuthenticationRule ... B-18
Class ObAMAuthorizationRule... B-18
Class ObAMAuthorizationExpr .. B-20
Class ObAMAuditRule ... B-20
Class ObAMAdminRule ... B-21
Class ObAMParameter.. B-22
Class ObAMPolicy... B-22
Class ObAMPolicyDomain... B-23
Class ObAMAccessTest .. B-24
Class ObAMAccessTestResults.. B-25
Class ObAMAccessTestResult(s) ... B-25

Managed Code... B-25
Class ObAMResourceMgd ... B-25
Class ObAMAccessConditionsMgd.. B-26
Class ObAMDateMgd ... B-26
Class ObAMDate_MonthsMgd ... B-26
Class ObAMDate_DaysOfWeekMgd.. B-27
Class ObAMTimeMgd .. B-27
Class ObAMTimingConditionsMgd... B-27
Class ObAMIdentityMgd ... B-28
Class ObAMActionTypeMgd... B-28

xviii

Class ObAMActionMgd.. B-28
Class ObAMAction_ValueTypeMgd .. B-29
Class ObAMAuthenticationRuleMgd... B-29
Class ObAMAuthorizationRuleMgd .. B-29
Class ObAMAuthorizationExprMgd.. B-30
Class ObAMAuditRuleMgd... B-30
Class ObAMAdminRuleMgd... B-31
Class ObAMParameterMgd ... B-31
Class ObAMPolicyMgd .. B-31
 Class ObAMPolicyDomainMgd ... B-32
Class ObAMAccessTestMgd .. B-33
Class ObAMAccessTestResultsMgd ... B-34
Class ObAMAccessTestResultMgd... B-34

Access System Configuration Objects .. B-34
Java .. B-34

Class ObAMHostIdentifier... B-34
Class ObAMResourceType... B-35
Class ObAMAuthenticationScheme.. B-35
Class ObAMAuthenticationPlugin ... B-35
Class ObAMAuthorizationScheme ... B-35
Class ObAMMasterAuditRule ... B-36

C... B-36
Class ObAMHostIdentifier... B-36
Class ObAMResourceType... B-36
Class ObAMAuthenticationScheme.. B-37
Class ObAMAuthenticationPlugin ... B-38

Managed Code... B-38
Class ObAMHostIdentifierMgd .. B-38
Class ObAMResourceTypeMgd .. B-38
Class ObAMAuthenticationSchemeMgd ... B-38
Class ObAMAuthenticationPluginMgd ... B-39
Class ObAMAuthorizationSchemeMgd... B-39
Class ObAMMasterAuditRuleMgd .. B-39

Class ObAMException ... B-39
Java .. B-40
Class ObAccessException .. B-40
C... B-40
Class ObAccessExceptionMgd.. B-41

Managed Code ... B-41

C Identity Events

Application Events .. C-1
Workflow Events ... C-2

D Installing the Access Manager SDK

About the Access Manager SDK Environment ... D-1
Software Developer Kit Installation Prerequisites .. D-1

xix

Installing the Access Manager SDK on Windows ... D-2
Installing the Access Manager SDK on Unix .. D-2
Installing the Access Manager SDK on Linux... D-3

E SOAP and HTTP Client

F Managed Helper Classes

Managed Helper Classes for the APIs... F-1

xx

xxi

Preface

This Oracle Access Manager Developer Guide explains how to write custom
applications and plug-ins to perform Identity System functions programmatically, to
create custom AccessGates that protect non-Web-based resources, and to be able to
perform other Access System functions programmatically.

This Preface covers the following topics:

■ Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Audience
This guide is intended for intended for Master Administrators assigned during
installation and setup, as well as Master Identity Administrators and Delegated
Identity Administrators. Administrators configure the rights and tasks available to
other administrators and end users.

This guide assumes that you are familiar with your LDAP directory and Web servers,
as well as Oracle Access Manager.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Note: Oracle Access Manager was previously known as Oblix
NetPoint. Many functions and paths described in this document still
reflect the older product names.

xxii

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents
For more information, see the following documents in the Oracle Access Manager
Release 10g (10.1.4.0.1) documentation set:

■ Oracle Access Manager Introduction—Provides an introduction to Oracle Access
Manager, a road map to the manuals, and a glossary of terms.

■ Oracle Application Server Release Notes—Read these for the latest Oracle Access
Manager updates. The release notes are available with the platform-specific
documentation. The most current version of the release notes is available on
Oracle Technology Network at:
http://www.oracle.com/technology/documentation.

■ Oracle Access Manager Patchset Notes Release 10.1.4 Patchset 1 (10.1.4.2.0) For All
Supported Operating Systems. It provides the system requirements and instructions
needed to install or de-install the Patchset itself, a list of known issues related to
the patchset, a list of the platform-specific bugs fixed in this Oracle Access
Manager Patchset.

■ Oracle Access Manager List of Bugs Fixed Release 10.1.4 Patchset 1 (10.1.4.2.0) . It
supplements the Patchset notes document for this release. It provides a list of all
generic (common to all operating systems) Oracle Access Manager bugs that have
been fixed in this Patchset, sorted by component.

■ Oracle Access Manager Installation Guide—Describes how to install and set up the
Oracle Access Manager components.

■ Oracle Access Manager Upgrade Guide—Explains how to upgrade earlier releases to
the latest major Oracle Access Manager release.

■ Oracle Access Manager Administration Guide—Explains how to configure Identity
System applications to display information about users, groups, and
organizations; how to assign permissions to users to view and modify the data
that is displayed in the Identity System applications; and how to configure
workflows that link together Identity application functions, for example, adding
basic information about a user, providing additional information about the user,
and approving the new user entry, into a chain of automatically performed steps.
This book also describes administration functions that are common to the Identity
and Access Systems, for example, directory profile configuration, password policy
configuration, logging, and auditing.

xxiii

■ Oracle Access Manager Access Administration Guide—Describes how to protect
resources by defining policy domains, authentication schemes, and authorization
schemes; how to allow users to access multiple resources with a single login by
configuring single- and multi-domain single sign-on; and how to design custom
login forms. This book also describes how to set up and administer the Access
System.

■ Oracle Access Manager Deployment Guide—Provides information for people who
plan and manage the environment in which Oracle Access Manager runs. This
guide covers capacity planning, system tuning, failover, load balancing, caching,
and migration planning.

■ Oracle Access Manager Customization Guide—Explains how to change the
appearance of Oracle Access Manager applications and how to control operation
by making changes to operating systems, Web servers, directory servers, directory
content, or by connecting CGI files or JavaScripts to Oracle Access Manager
screens. This guide also describes the Access Manager API and the authorization
and authentication plug-in APIs.

■ Oracle Access Manager Developer Guide—Explains how to access Identity System
functionality programmatically using IdentityXML and WSDL, how to create
custom WebGates (known as AccessGates), and how to develop plug-ins. This
guide also provides information to be aware of when creating CGI files or
JavaScripts for Oracle Access Manager.

■ Oracle Access Manager Integration Guide—Explains how to set up Oracle Access
Manager to run with third-party products such as BEA WebLogic, the Plumtree
portal, and IBM Websphere.

■ Oracle Access Manager Schema Description—Provides details about the schema.

■ Oracle Access Manager Configuration Manager Installation and Administration
Guide—Provides information about pushing configuration data changes from one
Oracle Access Manager 10g (10.1.4.0.1), or Oracle COREid Release 7.0.4,
deployment to another. For example, when pushing changes from a development
deployment to a pre-production deployment. Included are considerations,
prerequisites, and step-by-step instructions to help ensure your success.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xxiv

xxv

What’s New in Oracle Access Manager?

This section describes certain new features of Oracle Access Manager 10g (10.1.4.0.1)
and provides pointers to additional information in this book. Information from
previous releases is also retained to help those users migrating to the current release.

The following sections describe the new features in Oracle Access Manager that are
reflected in this book:

■ Product and Component Name Changes

■ Globalization

■ WebGate Rewrite

■ Sample Web Services Code

■ Updates to IdentityXML

■ Authorization Plug-in API

Product and Component Name Changes
The original product name, Oblix NetPoint, has changed to Oracle Access Manager.
Most component names remain the same. However, there are several important
changes that you should know about, as shown in the following table:

Note: For a comprehensive list of new features and functions in
Oracle Access Manager 10g (10.1.4.0.1), and a description of where
each is documented, see the chapter on What’s New in Oracle Access
Manager in the Oracle Access Manager Introduction.

Item Was Is

Product Name Oblix NetPoint

Oracle COREid

Oracle Access Manager

Product Name Oblix SHAREid

NetPoint SAML Services

Oracle Identity Federation

Product Name OctetString Virtual Directory
Engine (VDE)

Oracle Virtual Directory

Product Release Oracle COREid 7.0.4 Also available as part of
Oracle Application Server 10g
Release 2 (10.1.2).

Directory Name COREid Data Anywhere Data Anywhere

xxvi

All legacy references in the product or documentation should be understood to
connote the new names.

Globalization
The support features described in this section reflect the results of the Oracle Access
Manager 10g (10.1.4.0.1) globalization process with emphasis on multibyte support
through the use of Unicode to enable processing of internationalized data and the
impact on older environments that you upgrade.

■ Multibyte support and XML encoding

Component Name COREid Server Identity Server

Component Name Access Manager Policy Manager

Console Name COREid System Console Identity System Console

Identity System Transport
Security Protocol

NetPoint Identity Protocol Oracle Identity Protocol

Access System Transport
Protocol

NetPoint Access Protocol Oracle Access Protocol

Administrator NetPoint Administrator

COREid Administrator

Master Administrator

Directory Tree Oblix tree Configuration tree

Data Oblix data Configuration data

Software Developer Kit Access Server SDK

ASDK

Access Manager SDK

API Access Server API

Access API

Access Manager API

API Access Management API

Access Manager API

Policy Manager API

Default Policy Domains NetPoint Identity Domain

COREid Identity Domain

Identity Domain

Default Policy Domains NetPoint Access Manager

COREid Access Manager

Access Domain

Default Authentication
Schemes

NetPoint None
Authentication

COREid None Authentication

Anonymous

Default Authentication
Schemes

NetPoint Basic Over LDAP

COREid Basic Over LDAP

Oracle Access and Identity
Basic Over LDAP

Default Authentication
Schemes

NetPoint Basic Over LDAP
for AD Forest

COREid Basic Over LDAP for
AD Forest

Oracle Access and Identity
for AD Forest Basic Over
LDAP

Access System Service AM Service State Policy Manager API Support
Mode

Item Was Is

xxvii

Identifies behavior with 10g (10.1.4.0.1) and earlier versions and backward
compatibility with encoding in requests and responses; examples are included.

■ Multibyte support and IdentityXML Functions and Parameters

Illustrates UTF-8 encoding for multibyte support in several examples

■ Multibyte support and IdentityXML

Identifies behavior with 10g (10.1.4.0.1) and earlier versions and backward
compatibility with XML pages, SOAP/IdentityXML requests, and Identity Event
Plug-in data sent to executables.

■ Multibyte support and the Access Manager SDK, Access Manager APIs, Custom
AccessGates

Identifies behavior with 10g (10.1.4.0.1) and earlier versions and backward
compatibility with the Access Manager SDK, Access Manager APIs, and custom
AccessGates

■ Multibyte support and Custom C Authorization Plug-in Interfaces identifies
behavior with 10g (10.1.4.0.1) and earlier versions and backward compatibility
with custom C authorization plug-ins and interfaces

WebGate Rewrite
The code for WebGates has been rewritten so that WebGates and AccessGates share
the same code base.

■ A new lazyload method has been added to the ObUserSession constructor in the
Access Manager API as a result of this rewrite

■ New diagnostics have been added as a result of this rewrite.

See Also: "XML Start Tag" on page 1-5, "Types of IdentityXML
Functions" on page 1-10, and "Formatting an IdentityXML
Response" on page 1-16.

See Also: "Common Functions" on page 2-14.

See Also: "About the Identity Event Plug-in API" on page 3-1.

See Also: "Globalization and the Access Manager SDK, Access
Manager APIs, Custom AccessGates" on page 4-29.

See Also: "Globalization and Custom C Authorization Plug-in
Interfaces" on page 7-2.

See Also: "Methods (ObUserSession, C++)" on page 4-84,
"Functions (ObUserSession, C)" on page 4-96, "Methods
(ObUserSessionMgd, C#)" on page 4-110, "Constructors
(ObUserSession, Java)" on page 4-122.

See Also: "Methods (ObDiagnostic, C)" on page 4-103, "Methods
(ObDiagnostic, C#)" on page 4-115, "Methods (ObDiagnostic, Java)"
on page 4-127, "Methods (ObDiagnostic, C++)" on page 4-89.

xxviii

■ New status codes have been added as a result of this rewrite.

Sample Web Services Code
Information on using IdentityXML to create Web services has been updated.

■ Code samples has been provided and explained to illustrate how to use
IdentityXML Web services to make calls to a WebPass.

■ Two samples have been added, to show how to create a Web service call when a
WebPass is protected by a WebGate and when a WebPass is not protected by a
WebGate.

■ Older information on creating a Java proxy object has been removed.

Updates to IdentityXML
The chapter on IdentityXML functions and parameters contains new information on
configuring challenge phrases and challenge responses. Other updates have been
made to remove old information and to clarify the remaining information.

■ This chapter describes how to configure Add, Delete, Replace, and Replace_All
operations on individual and multiple challenge-and-response pairs.

■ The information on pre-6.5 IdentityXML syntax has been removed.

■ In the same chapter, information has been reorganized. The discussion of attribute
and search parameters now appears before the discussion of functions.

■ IdentityXML examples have been updated to reflect the post-6.5,
WSDL-compatible syntax.

Authorization Plug-in API
The chapter on the authorization plug-in API contains information on the ability to
make an external call for data to be used in authorization. Ordinarily, authorization
information flows from the Access Server to the AccessGate. An external call for data
can obtain external authorization information that the AccessGate can send to the
Access Server. This call does not return an error, however, if the returned value is null.

■ A note has been added to the section on the C API.

See Also: "C-Family Status and Error Message Strings" on
page 4-128, "Java Status and Error Message Fields" on page 4-121.

See Also: "Invoking a WSDL-Based Web Service Using Java" on
page 1-26.

See Also: "Syntax for Lost Password Management Attribute
Parameters" on page 2-9.

See Also: "Search Parameters" on page 2-3 and "Attribute
Parameters" on page 2-5.

See Also: "IdentityXML Functions and Parameters" on page 2-1.

See Also: "C Constant Definitions" on page 7-5.

xxix

■ A cross-reference has also been added to information on GetRequestContext in
the section on managed code.

■ In the same chapter, information has been reorganized. The discussion of attribute
and search parameters now appears before the discussion of functions.

See Also: "Managed Code Interfaces" on page 7-23.

xxx

Part I
Programmatic Interfaces to the Identity

System

Part I of this guide describes IdentityXML, a programmatic interface to the Identity
System applications. It also describes how to implement IdentityXML functions as
Web services, and how to extend the base Identity System functionality using the
Identity Event Plug-in API.

This part contains the following chapters:

■ Chapter 1, "IdentityXML and Identity Web Services"

■ Chapter 2, "IdentityXML Functions and Parameters"

■ Chapter 3, "Identity Event Plug-in API"

IdentityXML and Identity Web Services 1-1

1
IdentityXML and Identity Web Services

IdentityXML provides a programmatic interface for carrying out the actions that a user
can perform when accessing an Identity System application from a browser. For
instance, a program can send an IdentityXML request to find members of a group
defined in the Group Manager application, or to add a user to the User Manager. This
chapter describes how to create IdentityXML requests and the process for submitting
the requests and handling the responses from the Identity System.

The Web Services Description Language (WSDL) is a schematic description of an XML
request. You can use the Identity System's WSDL files as input for generating
IdentityXML requests. This chapter describes how you can use the Identity System's
WSDL solution as an automated method of generating IdentityXML requests.

Universal Description, Discovery, and Integration (UDDI) is a registry (analogous to
the White Pages or Yellow Pages) that enables users to access Web services that are
created using WSDL. The Identity System's UDDI and WSDL features together
constitute the Web Services for Identity Management.

The chapter contains the following sections:

■ About IdentityXML

■ Formatting an IdentityXML Request

■ Locations for Each Application

■ Types of IdentityXML Functions

■ Formatting an IdentityXML Response

■ Creating IdentityXML Requests Using WSDL

■ Making WSDL Functions Available Using UDDI

About IdentityXML
IdentityXML provides a programmatic interface for carrying out the actions that a user
can perform when accessing an Identity System application from a browser. Instead of
interacting with the application through a browser, you can write a program. For
example, if your company moves and you need to change the area code for the phone
number of 100,000 employees, you can use IdentityXML to do a bulk update. Or, if you
regularly add employees, instead of doing double entry between your Human
Resources application and the Identity System, you can write a script to call an
IdentityXML function to create new users in the User Manager, taking the data from
the Human Resources application.

Figure 1–1 illustrates how IdentityXML works:

About IdentityXML

1-2 Oracle Access Manager Developer Guide

Figure 1–1 IdentityXML Overview

IdentityXML enables you to process simple actions and multi-step workflows to
change user, group, and organization object profiles.

IdentityXML enables external applications to access these Identity System functions:

■ User: Create, delete, and manage user data within or outside of a workflow or an
asynchronous workflow.

■ Group: Create, delete, and manage groups and subscriptions.

■ Organization: Create, delete, and manage organization object data.

To create an IdentityXML request, you look up the request syntax, function names and
parameters using the information in this chapter and in "IdentityXML Functions and
Parameters" on page 1-1. After creating the IdentityXML request, you construct a
SOAP wrapper to send the IdentityXML request to WebPass using HTTP. Figure 1–2
illustrates how IdentityXML requests are processed:

Figure 1–2 IdentityXML Request and Response Flow

IdentityXML requests only work with LDAP attributes that are used on a panel in the
User, Group, or Organization Manager.

The IdentityXML API uses XML over SOAP. As shown in Figure 1–2, you pass
IdentityXML parameters to the Identity Server using an HTTP request. This HTTP
request contains a SOAP envelope. When WebPass receives the HTTP request, the
SOAP envelope indicates that it is an IdentityXML request rather than the usual
browser request. The request is forwarded to the Identity Server, where the request is
carried out and a response is returned. Alternatively, you can use WSDL to construct
the SOAP request.

Data that is sent in a response to an IdentityXML request is similar to the XML output
that the Identity System combines with a style sheet to create the HTML that is

Browser WebPass Identity
System Directory

User IdentityXML

Web
Server with
WebPass

Identity
System

Soap IdentityXML
Request

IdentityXML
Response

HTTP Request

IdentityXML
Request

Soap

HTTP Response

IdentityXML
Response

About IdentityXML

IdentityXML and Identity Web Services 1-3

returned to a browser. You must parse the XML response to extract and use the
information you requested.

Implementing an IdentityXML Request
A number of IdentityXML samples are provided with your Oracle Access Manager
installation. While these samples are not supported, they can provide you with an idea
of how specific functions are specified. For a look at the samples, go to:

 IdentityServer_install_dir\identity\oblix\unsupported\integsvcs

Implementing an IdentityXML request requires the procedures identified in the
following task overview.

Task overview: Implementing an IdentityXML Request
1. Decide what Identity System operation you want to perform; see the Oracle Access

Manager Administration Guide for more information.

2. Read "IdentityXML Functions and Parameters" on page 2-1 to find the function
name and parameters that correspond to the operation that you want to perform.

3. Ensure that the IdentityXML request works with LDAP attributes that are
configured on a panel in the User, Group, or Organization Manager.

See the Oracle Access Manager Administration Guide for details.

4. Develop the IdentityXML request and the SOAP envelope for the request, as
described in this chapter.

5. Write a program to send an HTTP/S request to the Identity System.

See sample programs in "Code Examples of Deployed IdentityXML Functions" on
page 2-70 and the "SOAP and HTTP Client" on page E-1 for details.

The program can be written in any language. The HTTP/S request must contain
an XML payload that consists of the IdentityXML request that you created. You
can write a Java program or a Perl script to send the request to a Web server that
understands SOAP requests.

The program or script will do the following:

a. Identify the host that is responsible for sending the request.

b. Read in the file that contains the IdentityXML request.

c. Identify the port to send the data to (port 80).

d. Identify the cgi that the IdentityXML is being sent to, for example,
userservcenter.cgi for the User Manager.

The cgi files are described in "Locations for Each Application" on page 1-10.

6. Create a program to parse the XML response and perform any additional
processing required.

The Identity System traps the XML request and returns output in the form of an
XML document. You need to parse and process this document.

See also: For a listing of IdentityXML functions and parameters, see
"IdentityXML Functions and Parameters" on page 2-1.

Formatting an IdentityXML Request

1-4 Oracle Access Manager Developer Guide

Sending Multiple IdentityXML Requests
Note that each IdentityXML file contains a single request consisting of a single
operation. In all likelihood, you will want to use IdentityXML to perform repetitive
tasks. For example, suppose that you implement an IdentityXML solution to update an
employee's home address. You may want to re-use this information for subsequent
employee address updates. To do this, you need to update the data in the IdentityXML
file and resend the request.

You can write a shell or Perl script to dynamically update the data in the IdentityXML
request. The script can take information from the original data source and substitute
this data in the IdentityXML file that you have set up. This is how, for instance, you
could ensure that information about new users entered in your Human Resources
database is automatically translated into a Create User operation in the Identity
System.

Formatting an IdentityXML Request
All IdentityXML requests use the syntax shown in the following paragraphs. For more
information on XML see "XML Background" on page A-1. More information on SOAP
is provided in "SOAP and HTTP Client" on page E-1.

The IdentityXML syntax is compatible with WSDL and UDDI. See "Creating
IdentityXML Requests Using WSDL" on page 1-20 for details.

Example 1–1 shows the request format:

Example 1–1 IdentityXML Request Format

<?xml version="1.0"?>
<SOAP-ENV:Envelope
 xmlns:oblix="http://www.oblix.com"
 xmlns:SOAP-ENV="http://schemas-xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
 <oblix:authentication type="basic">
 <oblix:login>login name</oblix:login>
 <oblix:password>login password</oblix:password>
 </oblix:authentication>
 <oblix:request application="application name"
 function="function name" version="NPWSDL1.0">
 <oblix:params>
 <oblix:param1>value1</oblix:param1>
 <oblix:param2>value2</oblix:param2>
 <oblix:param3>value3</oblix:param3>
 </oblix:params>
 </oblix:request>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Note: WSDL provides a method for submitting IdentityXML
requests through a Java proxy object. This may be more convenient for
some developers than the method outlined in the previous
paragraphs. See for "Creating IdentityXML Requests Using WSDL" on
page 1-20.

Formatting an IdentityXML Request

IdentityXML and Identity Web Services 1-5

XML Start Tag
XML must start with the following string:

 <?xml version="1.0"?>

Within this required string you can use a tag to select an encoding specification.
Without the encoding string, the default encoding specification is UTF-8.

10g (10.1.4.0.1) supports two encoding formats for requests: ISO-8859-1 (Latin-1) and
UTF-8. The encoding of the response is the same as the encoding of the request. For
example, if the request uses the Latin-1 encoding tag (encoding="ISO-8859-1")
the response will also use Latin-1 encoding; if the request uses UTF-8 encoding, the
response will use UTF-8 encoding.

With new 10g (10.1.4.0.1) installations, Oracle recommends that you use the UTF-8
encoding tag (encoding="UTF-8"):

 <?xml version="1.0" encoding="UTF-8" ?>

For backward compatability with older plug-ins in an upgraded environment, use the
Latin-1 encoding tag (encoding="ISO-8859-1"). For example:

 <?xml version="1.0" encoding="ISO-8859-1" ?>

If an IdentityXML request uses encoding="ISO-8859-1" and the response to it
contains any characters outside the Latin-1 character set, such characters are garbled.
For example, when ISO-8859-1 is used for the request and the response includes
Japanese or Arabic characters, those characters in the response will be garbled.

Soap Tags
The required SOAP tag starts the SOAP root element, the envelope:

 <SOAP-ENV:Envelope>
 xmlns:oblix="http://www.oblix.com"
 xmlns:SOAP-ENV="http://schemas-xmlsoap.org/soap/envelope/">

It is closed by the </SOAP-ENV:Envelope> tag. The namespace attribute
xmlns:oblix enables the use of Identity System-specific tags in the envelope
element.

This tag starts the body of the SOAP envelope:

 <SOAP-ENV:Body>

It is closed by the </SOAP-ENV:Body> tag. The body contains two SOAP elements:
authentication information and request information.

Note: This chapter describes the latest syntax for IdentityXML. This
syntax is optimized for use with WSDL and has been in use since
version 6.5. The older syntax is deprecated, however, code that uses
the old syntax will continue to work.

Documentation of the earlier IdentityXML syntax is available on the
Oracle Technology Network at:

http://www.oracle.com/technology/

Formatting an IdentityXML Request

1-6 Oracle Access Manager Developer Guide

Authentication Tags
This required element specifies the authentication type to be used:

 <oblix:authentication type="basic">

Currently, basic authentication is the only supported type. This means that the Oracle
Access Manager login ID and password are needed for authentication. The
</oblix:authentication> tag closes this element.

For servers in an Active Directory forest, you need to specify the login domain as well
as the login and password. You do this by specifying a <oblix:domain> element within
the <oblix:authentication> tag.

An example:

 <oblix:authentication
 xmlns:oblix="http://www.oblix.com" type="basic">
 <oblix:login>user1k1</oblix:login>
 <oblix:password>abc</oblix:password>
 <oblix:domain>
 DC=locations,DC=oblix,DC=com
 </oblix:domain>
 </oblix:authentication>

The login tag:

 <oblix:login>login name</oblix:login>

provides the login ID for an Oracle Access Manager user.

The password tag:

 <oblix:password>login password</oblix:password>
provides the actual password of an Oracle Access Manager user.

Authentication and Single Sign-on Considerations
If your HTTP client can receive and resend the Access System single sign-on cookie,
you only need to include the authentication element for the first request in a session.
This can reduce the overhead incurred by multiple logins. For an example, see the
cookie settings in the sample Java code in "ObSSOCookie Example" on page 2-79. If
you submit the single sign-on cookie as part of the HTTP(S) request, change the
IPValidation setting on the WebGate which protects the WebPass that processes the
IdentityXML request. Disable IPValidation for the IP address where the request
originates. This is usually the Web server hosting the application that submits the
IdentityXML request.

There are special considerations if you use both of the following types of request:

■ IdentityXML requests that use the SSO cookie on behalf of applications that
perform an action for an SSO-authenticated user.

■ IdentityXML requests that use Basic authentication for applications that use
credentials for privileged operations such as Identity Event API IdentityXML calls.

If your environment supports both types of request, you may require one or more
dedicated WebGates and WebPasses for the SSO IdentityXML requests and a separate
set of WebGates and WebPasses for the Basic authentication requests.

Request Tag
The request line:

Formatting an IdentityXML Request

IdentityXML and Identity Web Services 1-7

<oblix:request application="application name" function="function name" mode =
"modename" version="NPWSDL1.0">

tells the Identity System the function to use for the request, for example, search. You
replace function name with the accurately spelled and capitalized name of the function
in double quotation marks. A list of functions starts at "Common Functions" on
page 2-14.

The application name can be one of the following:

■ userservcenter: For User Manager functions.

■ groupservcenter: For Group Manager functions.

■ objservcenter: For Organization Manager functions.

■ asynch: For asynchronous workflows.

You specify the application to send the request to by inputting the correct URL. See
"Locations for Each Application" on page 1-10 and the function descriptions starting
with "Common Functions" on page 2-14 for information on the correct application
URL to use with each function.

You can optionally limit the output from this function by providing
mode="modename" in the request tag. Modename takes one of two values.

■ silent: Returns status information, but no other output. This is useful for
IdentityXML functions that test access. The returned status is 0 if the function
succeeded, 1 otherwise. To use silent mode, add the following in the line that
begins with <oblix:request>:

 mode="silent"

For example:

<oblix:request application="userservcenter" function="view" mode="silent">

■ dataonly: Omits display information from the output. The default mode returns
all display-related elements in the XML output, including buttons, forms, and so
on. Dataonly mode eliminates display-related elements to minimize the size of the
output XML.

For example:

<oblix:request application="userservcenter" function="view" mode="dataonly">

■ version: The version tag is required:

 version="NPWSDL1.0"

Documentation of the pre-6.5 IdentityXML version tag is available on the Oracle
Technology Network at:

http://www.oracle.com/technology/

Parameter Tags
The following:

Note: For the IdentityXML parameter viewGroupMembers, some
user interface information is included in the output even in data only
mode.

Formatting an IdentityXML Request

1-8 Oracle Access Manager Developer Guide

<oblix:params>

Delimits a list of parameter name:value pairs. Note the keyword is params, plural. The
tag </oblix:params> closes this element. The params tag may be replaced by other
tags, depending on the parameters being invoked. See "Search Parameters" on page 2-3
and "Attribute Parameters" on page 2-5 for details.

Each occurrence of this element provides a specific parameter name:value pair. You
replace param1 with the parameter name in quotes. Replace value1 with the actual
value. An example:

 <oblix:param name="uid">
 cn=Marketing Team, ou=Marketing, o=Company, c=US
 </oblix:param>

Note that this older syntax is supported if you have legacy IdentityXML files
(pre-NetPoint 6.5). Refer to the documentation for the appropriate version of the
product for details.

The method for specifying a parameter is as follows:

 <oblix:param1>value1</oblix:param1>

For example:

 <oblix:uid>
 cn=Marketing Team, ou=Marketing, o=Company, c=US
 </oblix:uid>

This method is required for use with the WSDL and UDDI functionality. Parameters
for each function are described starting with "Common Functions" on page 2-14.

You can supply more than one parameter:value pair:

 <oblix:param2>value2</oblix:param2>
 <oblix:param3>value3</oblix:param3>

Request Examples
Example 1–2 illustrates an IdentityXML function to change a password. Key words of
interest are shown in bold:

Example 1–2 Sample Change Password Request

<?xml version="1.0"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas-xmlsoap.org/soap/envelope/"
xmlns:oblix="http://www.oblix.com">
<SOAP-ENV:Body>
<oblix:authentication xmlns:oblix="http://www.oblix.com" type="basic">
 <oblix:login>dadmin</oblix:login>
 <oblix:password>password</oblix:password>
</oblix:authentication>
<oblix:request application="userservcenter" function="modifyUser" mode="" version="NPWSDL1.0">
<oblix:attributeParams>
 <oblix:uid>uid=jones,ou=People,ou=NA,ou=DEALER,dc=company,dc=com</oblix:uid>
 <oblix:PasswordAttribute>
 <oblix:attrName>userPassword</oblix:attrName>
 <oblix:attrNewValue>password</oblix:attrNewValue>
 <oblix:attrConfirmValue>password</oblix:attrConfirmValue>
 <oblix:attrOldValue>d</oblix:attrOldValue>
 <oblix:attrOperation>REPLACE</oblix:attrOperation>
 <oblix:attrNoOfFields">1</oblix:attrNoOfFields>

Formatting an IdentityXML Request

IdentityXML and Identity Web Services 1-9

 </oblix:PasswordAttribute>
</oblix:attributeParams>
</oblix:request>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

In the previous examples:

■ modifyUser: This is the name of an IdentityXML function. This function changes a
user attribute in the User Manager.

■ oblix:authentication: This is the authentication tag that enables the user to log in.

■ oblix:attributeParams: The uid identifies the user whose password is to be
changed.

■ attrName: This identifies the names of one or more attributes to be viewed or
changed.

■ attrNewValue: This identifies the value that is to be provided for the attribute
identified by the attrName parameter.

Example 1–3 shows an IdentityXML function that performs a query. This query asks if
the logged in user has permission to view a particular group profile. This request
might be sent to the User Manager at the following URL:

http://www.customer.com/identity/oblix/apps/userservcenter/bin/
userservcenter.cgi

Oracle Access Manager first authenticates John Smith as a valid user, and verifies that
the user is authorized to do a password change. The Identity System searches the User
Manager for all entries under the Employees tab that have john as a substring match in
their cn attribute. Because mode="silent" is part of the request, the response only
contains status information.

Example 1–3 illustrates an IdentityXML request.

Example 1–3 Sample IdentityXML Request

<?xml version="1.0"?>
<SOAP-ENV:Envelope
. . .
 </oblix:authentication>
 <oblix:request function="search" mode="silent"
 version="NPWSDL1.0">
 <oblix:Params>
 <oblix:tab_id>Employees</oblix:tab_id>
 <oblix:SearchParams>
 <oblix:Condition>
 <oblix:SearchAttr>cn</oblix:SearchAttr>
 <oblix:SearchOperation>OSM</oblix:SearchOperation>
 <oblix:SearchString>john</oblix:SearchString>
 </oblix:Condition>
 </oblix:SearchParams>
 </oblix:Params>
 </oblix:request>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Note: As shown in Example 1–3, you must set the version string to
NPWSDL1.0. For example, myrequest.setVersion("NPWSDL1.0");.

Locations for Each Application

1-10 Oracle Access Manager Developer Guide

Handling Special Characters in Requests
In an XML document, if you want special characters, such as the angle bracket "<" to
be treated as text, they must be encoded. The following table summarizes the handling
of special characters in XML:

Locations for Each Application
The applications that respond to IdentityXML input and the files that they use are as
follows.

URLs to the applications are as follows:

■ For the Group Manager:

http://www.domain.com:port/identity/oblix/apps/
groupservcenter/bin/groupservcenter.cgi

■ For the Organization Manager:

http://www.domain.com:port/identity/oblix/apps/
objservcenter/bin/objservcenter.cgi

■ For the User Manager:

http://www.domain.com:port/identity/oblix/apps/
userservcenter/bin/userservcenter.cgi

■ For Asynchronous Workflows:

http://www.domain.com:port/identity/oblix/apps/
asynch/bin/asynch.cgi

The schema files are as follows:

■ XML schema documentation files:
WebPass_install_dir\oblix\WebServices\XMLSchema*.xsd

■ WSDL schema files:
WebPass_install_dir\oblix\WebServices\WSDL*.wsdl

■ UDDI sample Java files:
WebPass_install_dir\oblix\WebServices\samples\UDDI*.*

The style sheets are as follows (see also the Oracle Access Manager Customization Guide):

■ Group Manager, Organization Manager, User Manager:

IdentityServer_install_dir\oblix\lang\en-us\style0

■ Asynchronous Workflows: none

Types of IdentityXML Functions
There are three types of IdentityXML functions:

Special character Description Encoding

 > Begins a tag. >

 < Ends a tag. <

 " Quotation mark. "

Types of IdentityXML Functions

IdentityXML and Identity Web Services 1-11

■ Test: These functions test whether the user is allowed to perform a particular
function. Test functions can be used before doing large scale batch operations. Test
functions return a yes or no type of response.

■ Get: These functions show current directory content.

■ Set: These functions change current directory content.

All functions are listed in "IdentityXML Functions and Parameters" on page 2-1. Note
that parameters for these functions can be specified in any order. You do not need to
follow the order provided in the parameter descriptions.

Functions to Test Access to Data
Use IdentityXML test functions to determine if you or another user can perform a
specific function. Functions that begin with CanI are a direct (first-person) test.
Functions that begin with CanUser are an indirect (third-person) test. These functions
ask "may user J. Smith do something." A third person test is also called a proxy test.
You identify the person who is the target of the test using the proxysourceuid
parameter.

Example 1–4 is an example test request.

Example 1–4 Test Request Example

<?xml version="1.0"?>
<SOAP-ENV:Envelope
 xmlns:oblix="http://www.oblix.com"
 xmlns:SOAP-ENV="http:
 //schemas-xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <oblix:authentication type="basic">
 <oblix:login>J.Smith</oblix:login>
 <oblix:password>J.Smith</oblix:password>
 </oblix:authentication>
 <oblix:request function="canIViewGroupProfile"
 version="NPWSDL1.0">
 <oblix:AttrParams>
 <oblix:uid>
 cn=Marketing Team,ou=Marketing,o=Company,c=US
 </oblix:uid>
 </oblix:AttrParams>
 </oblix:request>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The result of the request appears as the value in an ObTextMessage element, within
the ObAccessAPIResult element. There are three possible results.

■ Allowed: You or the specified user may do the requested activity.

■ Denied: You or the specified user may not do the requested activity.

■ Not authorized to use service: You lack the rights necessary to make the request,
as described in "Privileges to View and Modify" on page 1-14.

Example 1–5 is an example test response.

Types of IdentityXML Functions

1-12 Oracle Access Manager Developer Guide

If an IdentityXML request uses encoding="ISO-8859-1" and the response to it
contains any characters outside the Latin-1 character set, such characters are garbled.
For example, when ISO-8859-1 is used for the request and the response includes
Japanese or Arabic characters, such characters in the response are garbled.

Example 1–5 Test Response Example

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
 xmlns:oblix="http://www.oblix.com"
 xmlns:SOAP-ENV="http://
 schemas-xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <Oblix>
 <ObAccessAPIResult>
 <ObRequestInfo>187658080</ObRequestInfo>
 <ObTextMessage>Allowed</ObTextMessage>
 </ObAccessAPIResult>
 </Oblix>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Functions to Get Data
Some IdentityXML functions gather and return information from the directory. For
functions that get data for a logged in user, the user must have view privileges for the
target object naming attribute and the specified attribute.

Example 1–6 is an example of a request for workflow ticket information.

Example 1–6 Request for Workflow Ticket Information

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://
 schemas-xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <oblix:authentication xmlns:oblix="http://
 www.oblix.com" type="basic">
 <oblix:login>J.Smith</oblix:login>
 <oblix:password>J.Smith</oblix:password>
 </oblix:authentication>
 <oblix:request function="workflowTicketInfo"
 version="NPWSDL1.0">
 <oblix:AttrParams>
 <oblix:workflowInstanceDn>
 obwfinstanceid=20001019T1609090,
 obcontainerId=workflowInstances,
 o=Oblix,o=Company,c=US
 </oblix:workflowInstanceDn>
 <oblix:workflowStepInstanceId>
 2
 </oblix:workflowStepInstanceId>
 <oblix:AttrParams>

Note: 10g (10.1.4.0.1) supports two encoding formats: ISO-8859-1 and
UTF-8 for requests. The response uses the same encoding format as
the request. You may continue to send requests as Latin-1 data with
ISO-8859-1 encoding. However, Oracle recommends that you use
UTF-8 encoding with 10g (10.1.4.0.1) requests.

Types of IdentityXML Functions

IdentityXML and Identity Web Services 1-13

 </oblix:request>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Functions to Set Data
These functions change directory content.

For functions that allow a user to set data for themselves:

■ The user must have view privileges for the target object naming attribute.

■ For a workflow or a request to set an attribute, the logged in user must have view
privileges for the target object naming attribute and the attribute requested to be
set, and the user must be a participant of the appropriate workflow.

■ For a workflow or request to delete a user, group, or object, the logged in user
must have view access to the target object naming attribute and be a participant of
the appropriate workflow.

■ For a workflow or request to create a user, group or object, the searchbase rule
does not apply. If a domain is specified the logged in user must be a participant of
the matching workflows for that target domain. If no domain is specified, the
logged in user must be a participant of any matching workflows.

For functions that allow a logged in user to set data for another user:

■ All of the privileges that allow a user to set data for themselves must apply to the
proxysourceuid (that is, the user in the "CanUser. . ." call).

■ The logged in user must have view privileges for the class attribute of the
proxysourceuid and the targetuid if it exists. For example, a CanUserView type of
call has a targetuid but a CanUserCreate call does not.

■ The logged in user must have grant and read privileges for the class attribute of
the proxysourceuid and the targetuid if one exists.

For common IdentityXML functions and application specific IdentityXML functions:

■ All the applications should have the same access privileges as the equivalent GUI
function.

■ Exceptions: the rules that apply to the indirect access functions that allow a logged
in user to set data for another user also apply to the following group functions:
userGroupsProfile, subscribeUserToGroup, unsubscribeUserFromGroup.

Example 1–7 illustrates subscribing to a group.

Example 1–7 Subscription to a Group

<?xml version="1.0"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://
 schemas-xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <oblix:authentication xmlns:oblix="http://
 www.oblix.com" type="basic">
 <oblix:login>J.Smith</oblix:login>
 <oblix:password>J.Smith</oblix:password>
 </oblix:authentication>
 <oblix:request function="subscribeToGroup"
 version="NPWSDL1.0">
 <oblix:params>
 <oblix:uid>
 cn=Marketing Team, ou=Marketing,

Types of IdentityXML Functions

1-14 Oracle Access Manager Developer Guide

 o=Company, c=US
 </oblix:uid>
 </oblix:params>
 </oblix:request>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Privileges to View and Modify
You use IdentityXML requests to look at or change data in the directory. The ability to
view or change data is controlled by the view, modify, and grant rights that a
Master Administrator assigns to you. See the Oracle Access Manager Administration
Guide for details.

For most functions, except where noted, the data you are attempting to view or change
must be in the searchbase that the administrator set for you. For example, if your
searchbase is limited to the Sales organization, you cannot view or change data in the
Accounting organization.

Privileges Required for Direct Access APIs
Direct functions test your own ability to view or change data.

For functions that test your ability to view a value without using a workflow:

■ You must have view privileges for the target object naming attribute

■ If an attribute is specified, you must have permission to view the attribute

■ T he attribute must be included in a panel configured for an Identity System
application.

For functions that test your ability to modify a value without using a workflow:

■ You must have view privileges for the target object naming attribute.

■ You must have write privileges for the target attribute to be set.

■ T he attribute must be on a panel configured for an Identity System application.

For functions that use a workflow:

■ To test for the ability to modify attributes, you must:

– Have view permissions for the target object naming attribute (for example, the
uid or tab_id).

– Have view permissions for the target attribute.

– Be a participant in the workflow that is used to set that attribute.

■ To test for the ability to delete, you must:

– Have view permissions for the target object naming attribute.

– Be a participant in the workflow that is used to delete the object.

■ To test for the ability to create, you must:

– If a domain is specified: Be a participant in the workflow that is used to create
the data in that domain.

– If a domain is not specified: Be a participant of at least one workflow that
creates that data.

Types of IdentityXML Functions

IdentityXML and Identity Web Services 1-15

Privileges Required for Indirect Access APIs
Indirect functions test the ability of another user, represented by the proxysourceuid
parameter, to view data or make changes. This parameter is required for a number of
IdentityXML functions, as described in "IdentityXML Functions and Parameters" on
page 2-1. Required privileges are as follows:

■ All the access privileges described in the previous paragraphs must be satisfied for
the person represented by the proxysourceuid parameter.

■ You must have view privileges for the class attribute of the proxysourceuid and
the targetuid (if used).

■ The object classes for the proxysourceuid and targetuid must be in your
searchbase.

■ You must have the ability to grant the right to read on the class attribute of the
proxysourceuid and the targetuid (if used).

Privileges Required for Application-Specific IdentityXML Requests
Application-specific IdentityXML requests are the get or set functions that view or
change data. Each is equivalent to an operation that can be carried out through the
GUI, and the rights are those that would apply to the GUI.

Exceptions are the following three functions. Rights for these must be the same as for
the Indirect Access APIs.

userGroupsProfile

subscribeUsertoGroup

unsubscribeUserfromGroup

Privileges Required for DN Operations
Some parameters take values of type DN. Privileges required for DN operations are as
follows:

■ View: If you submit a request to view a DN attribute value (for example, by using
the attrName function), only values for which you have view permissions and
localized permissions are returned. That is, you must have read access to the class
attribute of that DN, and the DN value should fall under your searchbases with
respect to the type of its object class.

■ Modify: If you submit a request to add, modify, or delete a DN attribute value (for
example, through any modify or workflow function), values are considered valid
only if you have view permissions and localized permissions for them. That is,

Note: Workflow governs in all three categories. For the create test, if
you are a participant in the workflow, you will be granted access even
if the object is outside of your assigned searchbase. For all of the tests,
if you are not a participant in the workflow, you will get a negative
response even if you have modify rights to the attribute.

Note: In any IdentityXML request, the LDAP attributes that can be
specified or used are only those that have been configured in the
Identity System and are part of a panel in the profile of the user,
group, or organization. All other attributes are considered invalid.

Formatting an IdentityXML Response

1-16 Oracle Access Manager Developer Guide

you should have read access to the class attribute of that DN, and that DN value
should fall under your searchbases with respect to the type of its object class. If
you specify an invalid DN value, an error message such as "Invalid value for
parameter uniqueMember" is returned.

Some examples of invalid DN values are junk values, deactivated users, or DNs
that do not satisfy your access rights.

Formatting an IdentityXML Response
The chapter on PresentationXML in the Oracle Access Manager Customization Guide
discusses the way the HTML response is built up. See "XML Background" on page A-1
for a discussion of XSD and XML content.

Depending upon the Identity System application being used, you locate the matching
XML registration file (userservcenterreg.xml for example). Within the registration file,
look for the following element:

 ObProgram name="xxxxxx"

where xxxxx is the function you are using. In this example, you look for ObProgram
name="search". Within that element is another:

 ObSchema name="yyyy"

where yyyy is the name of the XML schema file that defines the expected output. In
this example, that line reads as follows:

 ObSchema name="usc_search.xsd"

The XML schema file generally begins with several includes, but the output XML
starts with the first element which contains a reference to ObRequestInfo, and will
contain only the information specified by that element.

For example, within the usc_search.xsd file the element ObSearch contains the
ObRequestInfo element, as shown in Example 1–8, taken from that file.

Example 1–8 Response Format

<xsd:element name="ObSearch">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="ObRequestInfo"/>
 <xsd:element ref="ObScripts"/>
 <xsd:element ref="ObForm"/>
 <xsd:element ref="ObTextMessage"/>
 <xsd:element ref="ObColumnInfo"/>
 <xsd:element ref="ObEntry" maxOccurs="unbounded"/>
 <xsd:element ref="ObButton" maxOccurs="unbounded"/>
 <xsd:element
 ref="ObViewModeButtonsForSearchResults"/>
 <xsd:element ref="ObStatus"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

Detailed search results are returned within ObAttribute elements nested within an
ObEntry element. An ObStatus element returns the status value for the request:

■ An ObStatus value of 0 means the request was accepted and processed.

Formatting an IdentityXML Response

IdentityXML and Identity Web Services 1-17

■ A value of 1 means that an error has occurred.

The recommended strategy for working with the response data is to use a tool, such as
the HTTPClient discussed in "XML Background" on page A-1, to get a sample of the
output returned by the Identity System. With the corresponding XML schema as a
guide, you can determine which parts of the data you want your application to use.

Parsing a Response
IdentityXML responses adhere to a particular XML schema. Due to the nature of
attribute mapping in the Identity System, an attribute can be configured as one of
many possible data types, for instance, as a single-valued string, a multi-valued string,
various date formats, integers, selection lists, checkboxes, and so on. As a result,
Oracle does not recommend hard-coding the attribute-to-data-type parsing
dependencies. It is recommended that you implement a parser that can recognize the
data type and extract the relevant data and attribute properties.

The IdentityXML response structure follows the data definition for a particular object
class type. For example, a profile for an object such as user, group, or organization
consists of at least one panel of attributes. An attribute may appear in more than one
panel in the Identity System application. The order of the attributes is determined by
configuration settings. It is a common mistake in IdentityXML implementations to
make invalid assumptions such as the number of occurrences of an attribute in an
XML response or that an attribute will always have a value.

Response Example
Example 1–9 is an actual response to the example search request. There would be an
ObEntry element returned for each directory entry satisfying the search.

Example 1–9 Response Example.

<?xml version="1.0" encoding="UTF-8" ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://
 schemas-xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<Oblix>
<ObSearch>
<ObRequestInfo>181481520</ObRequestInfo>
<ObScripts>
...
</ObScripts>
<ObForm>
...
</ObForm>
<ObTextMessage/>
<ObColumnInfo>
...
</ObColumnInfo>
<ObEntry>
 <ObAttribute obattrName="cn">
 <ObDisplay obdisplayName="Name" obdisplayType="dn"
 obname="cn" obmode="view" obcanRequest="false"
 obrequired="false">
 <ObDn>
 <ObLink obdisplayName="John Fulton"
 obhref="userservcenter.cgi
 ?program=view&tab_id=Employees
 &uid=cn%3DJohn%20Fulton%2C

Formatting an IdentityXML Response

1-18 Oracle Access Manager Developer Guide

 %20ou%3DEngineering
 %2C%20o%3DCompany%2C%20c%3DUS"
 obmouseOver="View personal information">
 cn=John Fulton, ou=Engineering,
 o=Company, c=US
 <ObImage obhref="CIMAGEperson"
 obalt="View personal information" />
 </ObLink>
 </ObDn>
 </ObDisplay>
 </ObAttribute>
 <ObAttribute obattrName="mail">
 <ObDisplay obdisplayName="E-Mail Address"
 obdisplayType="email" obsemanticType="ObSEmail"
 obname="mail" obmode="view" obcanRequest="false"
 obrequired="false">
 <ObEmail>
 <ObValue>J.Fulton@company.com</ObValue>
 </ObEmail>
 </ObDisplay>
 </ObAttribute>
. . .
 <ObAttribute obattrName="telephonenumber">
 <ObDisplay obdisplayName="Phone Number"
 obdisplayType="textS”obname="telephonenumber"
 obmode="view" obcanRequest="false"
 obrequired="false">
 <ObTextS>
 <ObValue>408-555-1173</ObValue>
 </ObTextS>
 </ObDisplay>
 </ObAttribute>
 <ObAttribute obattrName="ou">
 <ObDisplay obdisplayName="Organization"
 obdisplayType="select" obname="ou"
 obmode="view" obcanRequest="false"
 obrequired="false">
 <ObSelect>
 <ObChoice obdisplayName="Engineering"
 obselected="true">Engineering
 </ObChoice>
 </ObSelect>
 </ObDisplay>
 </ObAttribute>
</ObEntry>
...
<ObViewModeButtonsForSearchResults>
...
</ObViewModeButtonsForSearchResults>
<ObStatus>0</ObStatus>
</ObSearch>
<ObStatus>0</ObStatus>
</Oblix>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Error Responses
If a request contains invalid data, or if you try to access data for which you have no
authorization, you will get an error. The error response shown here is the result of

Formatting an IdentityXML Response

IdentityXML and Identity Web Services 1-19

using XXX as the value for the SLk1 parameter in the request. It is worth mentioning
that the response includes the element ObError and the element ObStatus with the
value 1, at the same indent level as ObError. Look for both of these parameters to
identify error responses.

Example 1–10 illustrates a response to an error.

Example 1–10 Error Response

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelopexmlns:SOAP-ENV="http://
 schemas-xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <Oblix xmlns:oblix="http://www.oblix.com/"
 xmlns="http://www.oblix.com/">
 <ObError>
 <ObRequestInfo>187658080</ObRequestInfo>
 <ObTextMessage>
 The attribute specified for this
 search (XXX) is either not searchable
 or not a valid attribute.
 </ObTextMessage>
 <ObStatus>1</ObStatus>
 </ObError>
 <ObStatus>1</ObStatus>
 </Oblix>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The following are some possible errors:

■ Invalid parameter value: %1.

This is returned when an input parameter has an invalid value. This could be
because the parameter is not provided in a DN format, or does not exist in the
schema. %1 is replaced with the name of the parameter that was in error, for
example ObWorkflowName .

■ Invalid parameters.

This is returned when the required or optional attributes provided for a workflow
are not valid; for example, if the password is set to a minimum of eight characters
and the input is only three characters.

■ You do not have access rights.

You do not have the right to perform the operation.

■ There is an XML syntax error.

That is, there is an error in the code, such as a typo.

■ There is no profile configured for this kind of user.

This is a generic error generated when the input is invalid and is not caught by
other error catching.

■ A value is required for %1.

This error indicates that a required parameter is missing, perhaps for a workflow
attribute or as part of a delete request.

■ Not authorized to use service.

Creating IdentityXML Requests Using WSDL

1-20 Oracle Access Manager Developer Guide

You have not been authenticated, or lack the authorization, to make requests to
particular application.

Creating IdentityXML Requests Using WSDL
A Web Service consists of programmable application logic that is accessed using
standard Internet protocols. XML Web Services expose useful functionality to Web
users through a standard Web protocol. In most cases, the protocol used is SOAP. XML
Web Services provide a way to describe an interface in enough detail to allow a
developer to build a client application to talk to it. The description of the interface is
usually provided in an XML document called a Web Services Description Language
(WSDL) document.

WSDL provides a convenient method for working with Web requests that are created
in XML. A WSDL file is a schematic description of an XML request. The contents of a
WSDL file consists of information about an XML function name, its parameters, and so
on.

The following sections describe using the Identity System's WSDL files and working
with them as an alternative method for generating IdentityXML requests.

Benefits of WSDL
WSDL enables you to create services that can anyone can access on the Web. This
enables others to build new, more powerful applications that use XML Web services as
building blocks. The section "Making WSDL Functions Available Using UDDI" on
page 1-29 describes how to register WSDL functions so that they are available to
anyone who needs to use them.

WSDL also provides an abstraction layer for IdentityXML. If you rely on IdentityXML
for integration with Web application servers or third-party applications, or if you work
with a variety of application frameworks and separate development teams, it is
unlikely that all of the application developers would have expertise in IdentityXML.
WSDL provides tools that allow you to bypass directly coding IdentityXML calls.
Developers can use tools to generate proxy code for the IdentityXML function, and use
the proxy code to make the calls. This enables the developer to use WSDL to avoid
hands-on XML programming.

As noted in "About IdentityXML" on page 1-1, you hand-craft an IdentityXML request
document by looking up the request syntax, function names and parameters in this
guide, constructing an XML-based SOAP request, and sending the IdentityXML
request to the WebPass using HTTP. With WSDL, you only work with objects, rather
than hand-crafting the XML request. Using WSDL, the code for sending the request is
generated automatically in the language of your choice, for example, Java. You only
need to set the parameters in the request, rather than constructing the entire request.
For example, the parameters would be function calls on Java objects.

About Identity System WSDL Files
The Identity System provides WSDL files for each of the IdentityXML functions
described in "IdentityXML Functions and Parameters" on page 2-1. The WSDL files are
in the following location:

oblix\WebServices\WSDL*.wsdl

The file names reflect the name of the function, for instance, one WSDL file contains
the name "search" because it corresponds to the IdentityXML search function. Another
WSDL file contains the name workflowTicketSearch, which corresponds to another

Creating IdentityXML Requests Using WSDL

IdentityXML and Identity Web Services 1-21

IdentityXML function. For a complete list of function names, see "IdentityXML
Functions and Parameters" on page 2-1.

WSDL Directory Structure
The directory oblix\WebServices is structured as follows:

■ WSDL: Contains WSDL template files, each of which corresponds to an
IdentityXML function.

■ XMLSchema: Contains schema required for generating proxy objects.

■ Samples: Contains the following:

– WSDL: Contains sample code for invoking Web services using Java and .NET.

– UDDI: Contains sample files for implementing UDDI functions. See "Making
WSDL Functions Available Using UDDI" on page 1-29 for details.

In the directory oblix\WebServices\WSDL*.wsdl, WSDL files are named as follows:

■ common_*.wsdl: Each file contains the information required for generating a
Common IdentityXML request.

■ gm_*.wsdl: Each file contains the information required for generating a Group
Manager IdentityXML request.

■ um_*.wsdl: Each file contains the information required for generating a User
Manager IdentityXML request.

■ om_*.wsdl: Each file contains the information required for generating an
Organization Manager IdentityXML request.

The Oracle implementation of WSDL follows the recommended model for publishing
into UDDI. This model calls for two files to be present for each function:

■ There is one file for each IdentityXML function that contains the URL location of
the function. The name of this WSDL file contains the IdentityXML function name,
with a prefix of "common_", "gm_", "um_", or "om_". For example, the search
function is a common function, so the corresponding WSDL file is called
common_search.wsdl. The function to view a group profile is called view, so the
corresponding WSDL file is called gm_view.wsdl.

■ There is a second WSDL file for the function interface. This file always contains the
string "interface" in the file name.

WSDL Documents
A WSDL document has two main sections. The first section consists of abstract
definitions. These are provided in the Identity System-supplied WSDL documents:

■ Types: Machine- and language-independent type definitions.

■ Messages: These contain function parameters.

■ PortTypes: These contain descriptions of function components (operation name,
input parameters, and output parameters).

The second section consists of concrete definitions. This information is specific to your
environment:

■ Bindings: The binding(s) of each operation in the PortTypes section.

■ Services: The port address(es) for each binding.

Creating IdentityXML Requests Using WSDL

1-22 Oracle Access Manager Developer Guide

Each WSDL file imports another WSDL file of the same name plus a suffix of
"_interface." For example, gm_view.wsdl file imports a file called
gm_view_interface.wsdl. The interface WSDL file contains the attribute types, function
name, binding and so on. This file is the abstract representation.

The file that corresponds to the name of the IdentityXML function contains the
implementation definition. It contains the URL where this Web service can be invoked.
This is the URL to the Identity System installation. This file imports the file with the
name that is a concatenation of the name of this file and "_interface", for example
gm_view_interface.wsdl.

Providing two WSDL files for each IdentityXML function is helpful if you need
multiple implementations of the same interface. You can expose the interface files once
through UDDI, and the multiple implementation files can also be published through
UDDI.

Sample WSDL Files
The following are examples of an actual Identity System WSDL document and a
second WSDL file that is included in the first file. Note that the function name is
shown in bold.

Example 1–11 shows the WSDL document that corresponds to the IdentityXML search
function:

Example 1–11 Common_search.wsdl file

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap"
 xmlns:http="http://schemas.xmlsoap.org/wsdl/http"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:oblix="http:www.oblix.com"
 xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
 xmlns:tns="http://www.oblix.com/wsdl/common_search"
 targetNamespace="http://www.oblix.com/wsdl/common_search">
<import namespace="http://www.oblix.com/"
 location="common_search_interface.wsdl"/>
<service name="OblixIDXML_common_search_Service">
<port name="OblixIDXML_common_search_Port"
 binding="tns:OblixIDXML_common_search_Binding">
<soap:address location ="http://echo.oblix.com:5555/identity/oblix/apps/
userservcenter/bin/userservcenter.cgi"/>
</port>
</service>
</definitions>

Example 1–12 shows the interface file that provides many of the definitions used in the
common_search.wsdl file in the previous example:

Example 1–12 Common_search_interface.wsdl

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 . . .
 xmlns:oblix="http://www.oblix.com/"
 xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
 xmlns:tns="http://www.oblix.com/wsdl/common_search"
 targetNamespace="http://www.oblix.com/wsdl/common_search">
<import namespace="http://www.oblix.com/" location="../XMLSchema/ common_parameters.xsd"/>

Creating IdentityXML Requests Using WSDL

IdentityXML and Identity Web Services 1-23

<import namespace="http://www.oblix.com/" location="../XMLSchema/ common_authentication.xsd"/>
<import namespace="http://www.oblix.com/" location="../XMLSchema/ common_component_search.xsd"/>
<types>
<xsd:schema targetNamespace="http://www.oblix.com/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="request">
<xsd:complexType>
 <xsd:sequence>
 <xsd:element name="params">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="oblix:tab_id" minOccurs="0"/>
 <xsd:element ref="oblix:startFrom" minOccurs="0"/>
 <xsd:element ref="oblix:noOfRecords" minOccurs="0"/>
 <xsd:element ref="oblix:noOfFields" minOccurs="0"/>
 <xsd:element ref="oblix:showAllResults" minOccurs="0"/>
 <xsd:element ref="oblix:sortBy" minOccurs="0"/>
 <xsd:element ref="oblix:sortOrder" minOccurs="0"/>
 <xsd:element ref="oblix:attrName" minOccurs="0"
 maxOccurs="unbounded"/>
 . . .
 <!--All of these functions can be invoked for any Identity System application -->
 <!--User Manager, Group Manager, or Organization Manager to get the -->
 <!--right search results. They are described in this one WSDL file. -->
 <xsd:pattern value="userservcenter\groupservcenter\objservcenter"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="function" type="xsd:string" use="required"/>
 <xsd:attribute name="mode" type="xsd:string" use="optional"/>
</xsd:complexType>
</xsd:element>
</xsd:schema>
</types>
<message name="OlibxIDXMLInput">
<part name="authentication" element="oblix:authentication"/>
<part name="request" element="oblix:request"/>
</message>
<message name="OblixIDXMLOutput">
<part name="body" element="oblix:Oblix"/>
</message>
<portType name="OblixIDXMLPortType">
 <operation name="OblixIDXML_common_search">
 <input message="tns:OblixIDXMLInput"/>
 <output message="tns:OblixIDXMLOutput"/>
 </operation>
 <portType>
<binding name="OblixIDXML_common_search_Binding" type="tns:OblixIDXMLPortType">
<soap:binding style="document"
 transport="http://schemas:xmlsoap.org/soap/http"/>
<operation name="OblixIDXML_common_search">
<soap:operation soapAction="http://www.oblix.com/"/>
...
</definitions>

About Working With WSDL Files
As illustrated in Figure 1–3, IdentityXML calls can substitute for user interaction with
the Identity System:

Creating IdentityXML Requests Using WSDL

1-24 Oracle Access Manager Developer Guide

Figure 1–3 IdentityXML can Substitute for User Interaction

You can either construct IdentityXML requests and SOAP envelopes manually, or you
can use WSDL to automatically generate a client object. You then only need to edit the
client object to set the appropriate parameters.

Task overview: Working with the Identity System WSDL files
1. Edit the appropriate WSDL files.

2. Generate a Java or .NET proxy object.

3. Develop a Java or .NET client.

The following sections provide details on how to develop a Java or .NET WSDL
solution.

If you are familiar with Java programming, the Identity System's Web Services for
Identity Management enables you to use WSDL instead of working directly with
IdentityXML. The Identity System provides two WSDL files for each IdentityXML
function. You use these files to generate a Java proxy object for your IdentityXML
requests.

Task overview: Using WSDL to generate Java IdentityXML requests
1. Identify the IdentityXML request you want to generate.

2. Look up the function that you wish to use in "IdentityXML Functions and
Parameters" on page 2-1.

Optionally, you can locate the corresponding WSDL file in a UDDI registry. The
Identity System provides WSDL files in a local installation directory. However, if
you have access to a UDDI registry containing the WSDL function, this can be a
convenient method of locating the function. See "Making WSDL Functions
Available Using UDDI" on page 1-29 for details.

3. Edit the host name and port number in the soap:address statement in a
corresponding WSDL document.

For example, for Common_Search.wsdl, to run a search for user entries you would
enter a line similar to the following:

<soap:address location ="http://echo.oblix.com:5555/identity/oblix/apps/
userservcenter/bin/userservcenter.cgi"/>

To search for group entries, the URL would be similar to the following:

<soap:address location ="http://example.com:1234/identity/oblix/apps/
groupservcenter/bin/groupservcenter.cgi"/>

To search for organizations and generic entries, the URL would be similar to the
following:

<soap:address location ="http://example.com:1234/identity/oblix/apps/
objservcenter/bin/objservcenter.cgi"/>

Browser WebPass Identity
System Directory

User IdentityXML

Creating IdentityXML Requests Using WSDL

IdentityXML and Identity Web Services 1-25

4. For a Java client, you develop a proxy object and a Java client that submits the
request.

You use a WSDL-to-Java conversion tool to process the Identity WSDL file and
automatically generate a Java proxy object for the IdentityXML request.

An example of a WSDL-to-Java tool is the Apache Axis package.

If you are familar with .NET, you use the following process:

.NET Implementation of WSDL
In a .NET environment, you submit the correct WSDL common files to Visual Studio,
which creates a.NET client. You edit the parameters in the generated client code, build
the code, and use it as you would any other Web service.

Oracle provides samples for invoking Web services using C#.

Prerequisites for creating a .NET WSDL client:
1. Be sure your Web services directory is exposed through your Web server so that

you can add Web references using Visual Studio.

2. Install .NET Studio 2003 with .NET Framework 1.1.

3. Install two Microsoft hot fixes:

■ The first fix to apply is for XML messaging with the .Net Framework, Hot Fix
Rollup at http://support.microsoft.com?id=822411.

■ You also need to apply the fix for .NET Framework 1.1 WSDL with Visual
Studio .NET 2003 Hot Fix Rollup at
http://support.microsoft.com/?id=823639.

Task overview: Using WSDL to generate .NET IdentityXML requests
1. Look up the function that you wish to use in Chapter 2, "IdentityXML Functions

and Parameters" on page 2-1.

2. Edit the location information in the soap:address statement in a corresponding
WSDL document.

For example, for Common_Search.wsdl, you would edit the following line:

<soap:address location ="http://echo.oblix.com:5555/identity/oblix/apps/
 userservcenter/bin/userservcenter.cgi"/>

3. Create .NET code that submits the request.

To generate a .NET WSDL client
1. Launch Visual Studio.

2. From the Visual C# Projects folder, select Console Application Template and click
OK.

3. Click Project, then click Add Web Reference.

4. In the Add Web Reference dialog, select the location where you have the Web
services directory.

The Web services directory is the location of your Oracle Access Manager WSDL
input files.

For example, this could be your local machine or your UDDI server.

Creating IdentityXML Requests Using WSDL

1-26 Oracle Access Manager Developer Guide

The WSDL files from the selected location are displayed.

5. Select the file containing the WSDL service that is relevant to your application.

These are the files with names that contain the function that you want to work
with and do not contain "_interface" in the file name. For example, for a search
function, you would edit common_search.wsdl, not
common_search_interface.wsdl.

Example: common_search.wsdl.

The service is displayed.

The displayed window will show an error, "No ports or methods were found on
this page." You can ignore this error. What is important is shown in the right-hand
pane on this page.

6. Click the Add Reference button in the pane on the right.

A project window will appear that shows that the link to the Web reference has
been added. Visual Studio creates the proxy object code, and puts all elements of
the object in one file called reference.cs.

7. In the main window, add the proxy object code.

8. Specify the application, version, function parameters, and any other information
required to complete the client code.

A sample .NET client is provided in the directory oblix\WebServices\samples.

9. To compile the .NET proxy object code, click Build, then click Build solution.

Once the solution is compiled, you should be able to run it like any other
executable, from within Visual Studio or another location.

Invoking a WSDL-Based Web Service Using Java
Oracle Access Manager ships with three sample client code files that demonstrate how
to invoke and consume a Web service using Java. These files are located in
WebPass_install_dir\identity\oblix\WebServices\samples\WSDL\java_axis:

■ testwsdl_gm_view.java: shows an example of invoking the Web service when
WebPass is protected by a WebGate.

To use this sample code, a WebPass must be installed and protected by a WebGate
that uses an Oracle Access and Identity authentication scheme. See the Oracle
Access Manager Access Administration Guide for details.

■ testwsdl_search_deactivated_users.java: shows an example of making a search
request, for deactivated users.

■ testwsdl_viewgroupmembers.java: shows an example of making a request to view
the members of a group.

■ testwsdl_reactivate_user.java: shows how to reactivate a user.

There is also a help file named WSDL_java_axis_README.html in the directory
WebPass_install_dir\identity\oblix\lang\<language>\html.

Note: Be sure that the URL location in the WSDL file points to the
URL of your installed Identity System.

Creating IdentityXML Requests Using WSDL

IdentityXML and Identity Web Services 1-27

If you want to test additional WSDL functions, for example, adding a group to the
group manager, you can add the appropriate WSDL functions to the sample files.

The following sections describe how to compile and run the code. If no exception is
thrown when you run the code, the Web service invocation worked. If there are errors,
the errors will be printed in the response.

Required Software for Using the Sample Code
The sample client code requires the following software to run. The following versions
are required, lower versions do not work with the sample code:

■ Java 1.4 or higher (JDK 2, version 1.4), obtainable from
http://java.sun.com/j2se/1.4.1/download.html.

■ Apache Axis 1.3 or higher, obtainable from http://ws.apache.org/axis/

■ Javax mail and Javax activation jars, available from:
http://java.sun.com/products/javamail/downloads/index.html and
http://java.sun.com/products/javabeans/glasgow/jaf.html

Setting Up the Access Manager SDK
The following task overview summarizes Access Manager SDK setup. This task is only
required if your WebPass is protected by a WebGate.

Task overview: Setting up the Access Manager SDK:
1. Install the Access Manager SDK on the local machine where you plan to make the

Web service calls.

2. Configure a new AccessGate in the Access System Console.

See the Oracle Access Manager Access Administration Guide for details. Provide a
unique ID for the AccessGate and the host name of the local machine where the
Web service calls will be made.

3. On the local machine, run the configureAccessGate command to configure an
AccessGate on this machine.

See the Oracle Access Manager Access Administration Guide for details.

4. From the Access System Console, turn off IP Validation for the AccessGate and for
the WebGate that will receive the Web service calls.

Compiling and Running the Sample Code
The following procedure describes the commands required to run the sample code.

To set the CLASSPATH, and compile and run the sample code:
1. Set the path to the java and javac compilers from your installed directory. For

example, if your installation directory is c:/j2sdk1.14.1\bin, you would set the
path as follows:

set java_home=c:\j2sdk1.4.2_05

Where java_home is the path for the installation directory.

2. Set the path to your Access Manager SDK installation, as follows:

set PATH=AccessServerSDK_install_dir\oblix\lib;F:\j2sdk1.4.2_05\bin;%PATH%

Creating IdentityXML Requests Using WSDL

1-28 Oracle Access Manager Developer Guide

Where Access_Server_install_dir is the directory where the Access Server was
installed.

3. Set the CLASSPATH variable to contain the following jar files:

■ The jobaccess.jar from the Access Manager SDK

■ The javx mail jar

■ The activation jar files.

You must include these jar files before any others that are already in the
CLASSPATH, for example:

set CLASSPATH=F:\axis\axis-1_3\lib\axis.jar;F:\axis\axis-1_3\lib\jaxrpc.jar;
F:\axis\axis-1_3\lib\commons-discovery-0.2.jar;
F:\axis\axis-1_3\lib\commons-logging-1.0.4.jar;
F:\axis\axis-1_3\lib\saaj.jar;F:\xerces\xerces-1_4_4\xerces.jar;
F:\axis\axis-1_3\lib\wsdl4j-1.5.1.jar;.;
F:\TEMP\AcessServerSDK\oblix\lib\jobaccess.jar;
F:\javax\javamail-1.3.3_01\mail.jar;F:\javax\jaf-1.0.2\activation.jar;
%CLASSPATH%

4. If your WebPass is protected by a WebGate, set the PATH to contain the Access
Manager SDK, for example:

set PATH=AccessServerSDK_install_dir\oblix\lib;F:\j2sdk1.4.2_05\bin;%PATH%

Where AccessServerSDK_install_dir is the location where the Access Manager SDK
is installed.

5. Run the following commands to compile the sample:

java org.apache.axis.wsdl.WSDL2Java -o f:\temp\mywsdl -p com.oblix.www
d:\oblix\WebServices\WSDL\gm_view.wsdl

A directory named com\oblix\www is created and is populated with java code.

6. Go to the directory that was created by running the previous command:

cd com\oblix\www

7. Copy the file that Oracle provides to perform a simple view operation when a
WebPass is not protected by a WebGate.

This file is named testwsdl_viewgroupmembers.java and resides in the following
location:

WebPass_install_dir\identity\oblix\WebServices\samples\WSDL\java\

Copy this file to the com\oblix\www directory.

This file contains code to view members of a group. You can run this file
unchanged, or you can use it as the basis for testing another operation, for
example, modifying a user or group.

8. Alternatively, you can copy the file that Oracle provides to perform a view
operation when WebPass is protected by a WebGate.

This file contains code for setting the obSSOCookie. It is named
testwsdl_gm_view and it resides in the following location:

WebPass_install_dir\identity\oblix\WebServices\samples\WSDL\java_axis\

 You will need to edit the sample code in this file as follows:

Making WSDL Functions Available Using UDDI

IdentityXML and Identity Web Services 1-29

■ Edit the static string accessSDKinstalldir, substituting the location of your
Access Manager SDK.

■ Change the host name and port to reflect your environment.

■ Change the values for userName and password to those for an actual
administrator in your Identity System.

■ Once you have obtained the ObSSOCookie (as shown in the code sample), you
can make multiple Web service calls without the need to provide the user
name and password each time. Instead, you can use the ObSSOCookie.

9. Enter the following command from the com\oblix\www directory:

javac *.java

10. Go up three levels from the com\oblix\www directory:

cd ..\..\..

11. Run the Web service, as follows:

java com.oblix.www.testwsdl_gm_view

The status of the request is output to the command window. A status of 0 indicates
success.

12. You can parse the response object to get other information.

For example, you can extract the search results. An example of this is shown in the
file testwsdl_search_deactivated_users.java in the same directory as the other
sample files:

WebPass_install_dir\identity\oblix\WebServices\samples\WSDL\java_axis\

The sample code prints the name of the first deactivated user.

Making WSDL Functions Available Using UDDI
The Universal Description, Discovery, and Integration (UDDI) registry is a database
for people who require WSDL functions. UDDI provides a way to publish and
categorize Web services created using WSDL. UDDI is analogous to the White Pages or
Yellow pages, in that you can browse the UDDI registry for functions that you need,
and you can add new functions to the registry. Global UDDI registries that can be
accessed by anyone from any organization are provided by companies such as IBM
and Microsoft. Instructions for creating and using a registry account is provided at
these UDDI sites. Other organizations have their own internal UDDI registries.

As an illustration of how people make use of UDDI, suppose a car dealer needs to
interact with remote dealers. This dealer can use their organization's UDDI registry as
a type of Yellow Pages where they can find Web-based services for locating other
dealers. To continue the illustration, suppose the UDDI registry contains the directory
software_publishers/identity management/Oracle. The hypothetical car dealer might
retrieve an entry in this directory for a Web service that enables users to find remote
dealers. The entry would consist of a URL that points to a WSDL file that is capable of
generating the desired search request.

In general, UDDI registries contain the following information for each Web service:

■ The business name, for instance, Oracle

■ The service (sometimes called an interface in UDDI parlance), which is the XML
function, for example, view, plus the input and output parameters in XSD format.

Making WSDL Functions Available Using UDDI

1-30 Oracle Access Manager Developer Guide

■ The implementation, which is the URL that points to the corresponding WSDL.

Follow the conventions used in your organization for locating the appropriate UDDI
registries.

When you work with the Identity System's Web services functionality, you can register
your own functions in UDDI. If you want to build an interface to interact with the
IdentityXML system, you can use UDDI to find the appropriate WSDL definitions and
use these definitions to develop the Java client that interacts with the IdentityXML
service.

Sample UDDI registration programs in .NET and Java format are provided in the
following location:

webpass_install_dir\oblix\WebServices\samples\UDDI\dotnet

and

webpass_install_dir\oblix\WebServices\samples\UDDI\java

There are readme files in both directories.These directories also contain a sample file
for testing the function after it is registered.

IdentityXML Functions and Parameters 2-1

2
IdentityXML Functions and Parameters

IdentityXML functions allow you to programmatically perform operations in the
Identity System applications. For example, using IdentityXML, you can perform
functions such as the following:

■ Finding users and adding users in the User Manager.

■ Modifying user profiles.

■ Creating a group and subscribing a user to a group.

■ Determining if a user has the right to perform an operation.

This chapter discusses the following topics:

■ About IdentityXML

■ Search Parameters

■ Attribute Parameters

■ Exceptions to Attribute Values

■ Common Functions

■ User Manager Functions

■ Group Manager Functions

■ Organization Manager Functions

■ Code Examples of Deployed IdentityXML Functions

About IdentityXML
IdentityXML enables you to write programs to perform various actions in the Identity
System applications:

User Manager: The User Manager enables users and administrators to add, modify,
and delete information about user identities. The User Manager enables end users to
view other users and to modify their own identity information. The users that a person
can view and the identity information that someone can modify depends on the
privileges granted by a Master administrator.

Group Manager: If you are an administrator, the Group Manager enables you to create
or delete groups. This application enables users to view groups and to subscribe or
unsubscribe from groups. A user's ability to create and delete groups and to subscribe
to various groups depends on the privileges granted by an Master administrator.

Organization Manager: If you are an administrator, the Organization Manager enables
you to create and delete organizations and other objects (such as floor plans and

About IdentityXML

2-2 Oracle Access Manager Developer Guide

assets) that do not belong in the User Manager or Group Manager. A user's ability to
view objects, add them, and modify them depends on the privileges granted by a
Master Administrator.

You can create programs with IdentityXML that perform actions such as adding a user
to the User Manager or changing the attribute values of an entry in the Organization
Manager.

You can also create programs that use the workflow capability of the Identity System.
An Identity workflow enables you to link actions into an automated chain of events
that are presented in the Identity System as a series of steps. When you create a
workflow definition, you specify who is to perform each action, possibly calling out to
external applications at one or more points in the process.

IdentityXML Overview
A process overview of planning an IdentityXML deployment is described elsewhere in
this guide. See "IdentityXML and Identity Web Services" on page 1-1 for details.
Line-by-line descriptions of IdentityXML request and response format are also
provided in that chapter. See "Formatting an IdentityXML Request" on page 1-4 and
"Formatting an IdentityXML Response" on page 1-16 for details.

A number of IdentityXML samples are provided with your Oracle Access Manager
installation. While these samples are not supported, they can provide you with an idea
of how specific functions are specified. For a look at the samples, go to:

 IdentityServer_install_dir\identity\oblix\unsupported\integsvcs

About IdentityXML Functions and Parameters
An IdentityXML function is a piece of code that serves the same purpose as an
operation that can be performed manually in the GUI. A parameter is a component in
the definition of a function. As described in the sections on IdentityXML functions,
starting with "Common Functions" on page 2-14, each IdentityXML function contains
one or more parameters. For example, the IdentityXML function named
workflowTicketSearch takes parameters such as targetapplication and tickettype. In
this document, required parameters must be used in the IdentityXML statement. You
can omit optional parameter names and values, in which case a default may apply. If
no default value appears in the description, there is no default for the parameter.

Entering an optional parameter's name but not its value causes an error.

Function Types
The following are basic types of IdentityXML functions:

■ Common functions: these are functions that are applicable to every Identity
System application.

See "Common Functions" on page 2-14 for details.

■ User Manager functions: These functions perform actions in the User Manager
application.

See "User Manager Functions" on page 2-25 for details.

■ Group Manager functions: These functions perform actions in the Group
Manager application.

See "Group Manager Functions" on page 2-49 for details.

Search Parameters

IdentityXML Functions and Parameters 2-3

■ Org. Manager functions: These functions perform actions in the Org. Manager
application.

See "Organization Manager Functions" on page 2-64 for details.

Each function performs one of two basic activities:

■ Testing to see if a particular person has the right to perform a specific operation

■ Actually performing the operation (for instance, finding a user)

Finding the Right Parameter Values for a Function
The values for many parameters are the DN values as they appear in the directory,
rather than the display values. To find the DN values, you can use a tool that enables
you to browse the directory and display DN entries. An example of such a tool is
ldp.exe provided with Windows systems.

The values for many parameters that operate on attributes are the LDAP schema
names of the attributes, rather than the display names. The following procedure
provides the User Manager as an example of finding the schema name for an attribute.

To find schema names for an attribute
1. Navigate to the Identity System Console.

2. Click User Manager Configuration.

3. Click Tabs.

4. Click the link for the tab.

5. Click Modify Attributes.

An applet appears. The Attribute field in the top left corner shows a list of schema
names for the attribute. The top right corner shows the Display Names field. This
field shows the name of the attribute as it appears in the GUI.

Search Parameters
One basic component of many IdentityXML functions is the search operation. The
following are search parameters that you can configure in IdentityXML functions that
conduct searches.

Search parameters are expressed using a Condition tag to delimit a tuple. The
following is an example:

<oblix:tab_id>Employees</oblix:tab_id>
 <oblix:SearchParams>

 <oblix:noOfFields>2</oblix:noOfFields>
 <oblix:Condition>
 <oblix:SearchAttr>cn</oblix:SearchAttr>
 <oblix:SearchOperation>OSM</oblix:SearchOperation>
 <oblix:SearchString>john</oblix:SearchString>
 </oblix:Condition>
 <oblix:Condition>
 <oblix:SearchAttr>cn</oblix:SearchAttr>
 <oblix:SearchOperation>OSM</oblix:SearchOperation>
 <oblix:SearchString>mary</oblix:SearchString>
 </oblix:Condition>
 </oblix:SearchParams>

Search Parameters

2-4 Oracle Access Manager Developer Guide

The search parameters are as follows:

Parameter searchAttr

Description: An attribute whose string values are to be searched. Attributes
are associated, by application, with one or more tabs. The
attribute must have been marked as searchable for the tab
name provided by the tab_id parameter. If it is not, an error is
returned.

An administrator must have set the searchable flag for the
attribute.

Rules: Required. Multivalued, 1 to n. For an explanation of n, see the
noOfFields parameter.

Parameter searchOperation

Description: The way string data is to be selected. Legal entries all begin
with the letter O, and the next two letters are an abbreviation
of the search type.

Possible values are:

OSM: Substring match. Search results include entries whose
value contains the data entered for this parameter.

OGE: Greater than or equal to. Search results include entries
whose string value is greater than or equal to the data entered
for this parameter.

OLE: Less than or equal to. Search results include entries
whose string value is greater than or equal to the data entered
for this parameter.

OBW: Begins with. Search results include entries whose string
value begins with the data entered for this parameter.

OEW: Ends with. Search results include entries whose string
value ends with the data entered for this parameter.

OSL: Sounds like. Attempts a phonic match on the entered
data.

OEM: Exact match. Search results include entries whose string
value is the same as the data entered for this parameter.

OOS: Oracle-specific substring match. Differs from OSM.
Multiple search strings can be entered, delimited by spaces.
Results include entries that match both of the two strings.

Any other value than the ones specified in this list returns an
error (Invalid parameters).

Rules: Required. Single value.

Default: None. If an invalid value or no value is provided, an error is
returned.

Parameter searchString

Description: Use this parameter to search for items that match a text string.

Rules: Required. Single value.

Default: If no value is specified, then the default is to do a blank search
on the class attribute. This means, return everything that has
any value (but not a NULL value) for the selected searchAttr
attribute.

Attribute Parameters

IdentityXML Functions and Parameters 2-5

Attribute Parameters
Many IdentityXML functions can add, modify, and remove attributes. For example, a
function can add new attributes and replace old attribute values in a user profile. The
following sections describe parameters that find, add, and replace attribute values, the
syntax for these parameters, and how to specify multiple values for an attribute.

Syntax for Most Attribute Parameters
Attribute parameters are expressed as follows:

 <oblix:AttributeParams>
 <oblix:GenericAttribute>
 <!--Generic string type attribute-->
 <oblix:AttrName>genphonenumber</oblix:AttrName>
 <oblix:AttrOperation>REPLACE</oblix:AttrOperation>
 <oblix:AttrOldValue>408</oblix:AttrOldValue>
 <oblix:AttrNewValue>650</oblix:AttrNewValue>
 </oblix:GenericAttribute>
 </oblix:AttributeParams>

There are templates for specifying attribute values for the following display types:
generic, password, Date, DateISO8601, and postal address. Examples:

<oblix:noOfFields>5</oblix:noOfFields>
 <oblix:AttributeParams>
 <oblix:GenericAttribute>
 <!--Generic string type attribute-->
 <oblix:noOfFields>1</oblix:noOfFields>
 <oblix:AttrName>cn</oblix:AttrName>
 <oblix:AttrOperation>REPLACE</oblix:AttrOperation>
 <oblix:AttrOldValue>jim</oblix:AttrOldValue>
 <oblix:AttrNewValue>james</oblix:AttrNewValue>
 </oblix:GenericAttribute>

 <oblix:PasswordAttribute>
 <!--Password type attribute-->
 <oblix:AttrName>pwd</oblix:AttrName>
 <oblix:AttrOperation>REPLACE</oblix:AttrOperation>
 <oblix:AttrOldValue>mypassword</oblix:AttrOldValue>

Parameter noOfFields

Description: When used in a search, this represents the number of attributes
whose values are to be searched. Depending on the value of
this parameter, you must provide the same number of
conditions of SearchAttribute, SearchOperation and
SearchString parameters. For example, if the noOfFields is 2,
you would need to supply two conditions in the SearchParams
element, and specify a set of search parameters within each
condition.

The result of the search is an AND that satisfies all of the
parameter sets.

The entered or default value for noOfFields must be greater
than or equal to the number of sets. If it is greater, no error is
reported, and the behavior is as if you had entered the correct
value for n.

Rules: Optional. Single value, an integer value >= 1.

Default: 1

Attribute Parameters

2-6 Oracle Access Manager Developer Guide

 <oblix:AttrNewValue>mynewpassword</oblix:AttrNewValue>
 </oblix:PasswordAttribute>

 <oblix:DateAttribute>
 <!--Generic datetype attribute-->
 <oblix:AttrName>date</oblix:AttrName>
 <oblix:AttrOperation>REPLACE</oblix:AttrOperation>
 <oblix:AttrOldValue>
 <oblix:day>21</oblix:day>
 <oblix:month>7</oblix:month>
 <oblix:year>2003</oblix:year>
 <oblix:hours>22</oblix:hours>
 <oblix:minutes>33</oblix:minutes>
 <oblix:seconds>11</oblix:seconds>
 </oblix:AttrOldValue>
 <oblix:AttrNewValue>
 <oblix:day>2</oblix:day>
 <oblix:month>10</oblix:month>
 <oblix:years>2004</oblix:year>
 <oblix:hours>15</oblix:hours>
 <oblix:minutes>10</oblix:minutes>
 <oblix:seconds>3</oblix:seconds>
 </oblix:AttrNewValue>
 </oblix:DateAttribute>

 <oblix:DateAttributeISO8601>
 <!--ISO8601 date type attribute-->
 <oblix:AttrName>date</oblix:AttrName>
 <oblix:AttrOperation>REPLACE</oblix:AttrOperation>
 <oblix:AttrOldValue>
 <oblix:bahead_utc>2100</oblix:bahead_utc>
 <oblix:tz_hours>22</oblix:tz_hours>
 <oblix:tz_minutes>33</oblix:tz_minutes>
 </oblix:AttrOldValue>
 <oblix:AttrNewValue>
 <oblix:bahead_utc>400</oblix:bahead_utc>
 <oblix:tz_hours>10</oblix:tz_hours>
 <oblix:tz_minutes>8</oblix:tz_minutes>
 </oblix:AttrNewValue>
 </oblix:DateAttributeISO8601>

 <oblix:PostalAddressAttribute>
 <!--Postal address type attribute-->
 <oblix:AttrName>addr</oblix:AttrName>
 <oblix:AttrOperation>REPLACE</oblix:AttrOperation>
 <oblix:AttrOldValue>
 <oblix:field>123 Main St.</oblix:field>
 <oblix:field>San Jose</oblix:field>
 </oblix:AttrOldValue>
 <oblix:AttrNewValue>
 <oblix:noOfFields>2</oblix:noOfFields>
 <oblix:field>100 Forge Dr.</oblix:field>
 <oblix:field>Cupertino</oblix:field>
 </oblix:AttrNewValue>
 </oblix:PostalAddressAttribute>
 </oblix:AttributeParams>

The noOfFields parameter is specified outside of the <oblix:AttributeParams> tag. The
noOfFields parameter refers to the total number of attributes being specified. Each

Attribute Parameters

IdentityXML Functions and Parameters 2-7

attribute must be enclosed in the appropriate tag element delimiters (for
PostalAddress, GenericAttribute, and so on). An example:

<oblix:noOfFields>3</oblix:noOfFields>
 <oblix:AttributeParams>
 <oblix:GenericAttribute>
 <oblix:AttrName>cn</oblix:AttrName>
 <oblix:AttrOperation>REPLACE</oblix:AttrOperation>
 <oblix:AttrOldValue>jim</oblix:AttrOldValue>
 <oblix:AttrNewValue>james</oblix:AttrNewValue>
 </oblix:GenericAttribute>
 <oblix:GenericAttribute>
 <oblix:AttrName>title</oblix:AttrName>
 <oblix:AttrOperation>REPLACE</oblix:AttrOperation>
 <oblix:AttrOldValue>development</oblix:AttrOldValue>
 <oblix:AttrNewValue>sales</oblix:AttrNewValue>
 </oblix:GenericAttribute>
 <oblix:PostalAddressAttribute>
 <oblix:AttrName>addr</oblix:AttrName>
 <oblix:AttrOperation>REPLACE</oblix:AttrOperation>
 <oblix:AttrOldValue>
 <oblix:field>123 Main St.</oblix:field>
 <oblix:field>San Jose</oblix:field>
 </oblix:AttrOldValue>
 <oblix:AttrNewValue>
 <oblix:field>100 Forge Dr.</oblix:field>
 <oblix:field>Cupertino</oblix:field>
 </oblix:AttrNewValue>
 </oblix:PostalAddressAttribute>
 </oblix:AttributeParams>

Parameter attrName

Description: The names of one or more attributes to be viewed or changed.
Use the schema names from the directory, not the display
names. The attribute must be configured in the Identity
System and should be included in a panel configured for a
user, group, or object profile.

A given attrName combination can appear only once. If it
appears more than once, every operation except the first on
that attribute name is ignored. Invalid attribute names or
attribute names that are not associated with a panel for the
associated function are ignored.

Optional for functions such as view or myGroupsProfile.

Rules: Required or Optional. Single value string, 1 to n.

Default: If no names are provided, only the attributes that the user is
allowed to view are considered, depending upon the function.

Parameter attrOldValue

Description: This parameter is used when changing an attribute value. Use
it to specify the old value for the attribute named by attrName.

Rules: Required if the attrOperation is a replace, otherwise ignored.
Single value string. Multiple instances of attrOldValue can be
replaced by the value supplied in attrNewValue.

Attribute Parameters

2-8 Oracle Access Manager Developer Guide

Parameter attrOperation

Description: The type of operation to perform on the attribute. Legal values
are:

ADD: Add the attribute name and value to the existing
attributes. You receive an error if the combination exists
already. Valid for LDAP attributes only.

DELETE: Delete the attribute and value from the existing
attributes. You receive an error if the combination does not
exist.

REPLACE: Delete the old attribute name and value
combination and replace it with the new attribute name and
value combination. If you use REPLACE, you must also use
the attrOldValue parameter. Valid for LDAP attributes only.

REPLACE_ALL: Delete the old attribute and name
combinations and replace them with new attribute name and
value combinations. Use this if you do not care what the old
values were, and just want to replace all of them. In this case,
attrOldValue is not used. Any other value returns an error
message such as "Invalid value for attribute". Can be specified
for LDAP attributes and template attributes.

Operations on attributes of display type “location”, for
example obparent locationdn, are not supported through
IdentityXML.

Rules: Required. Single value string.

Parameter attrNewValue

Description: The value that you want to add, delete, or replace for the
attribute specified with attrName. Some attributes can have
more than one value. To provide these, use attrNewValue
again.

Dates contain at least three fields which must be specified, the
day, month and year. Content must match the syntax defined
for DATETYPE in oblixbaseparams.xml.

DateAttributeISO8601 takes at least one additional field,
bahead_utc, to allow for a time zone offset. If the content of
this suffix is Z, there is no offset and no additional suffixes. If
the content is + or - then the offset must be supplied in hours
and minutes, using the tz_hours and tz-minutes, respectively.

Passwords contain three fields which must be specified: the
new value, confirmation value, and old value.

For an add or modify operation: you must specify the new
password as well as the confirmation. If you modify your own
password, you need to also provide the old value of the
password.

The attrOperation in this case can be any of the values ADD,
REPLACE, or REPLACE_ALL.

If you need to delete the password-type attribute, specify the
attrOperation as DELETE. You do not need to provide the old
value or new value parameters.

Postal addresses allow for six fields.

Legal values for attributes generally match what is shown in
the GUI that corresponds to the function to be executed. Some
exceptions exist, however, and are described at "Exceptions to
Attribute Values" on page 2-13.

Attribute Parameters

IdentityXML Functions and Parameters 2-9

Syntax for Lost Password Management Attribute Parameters
As described in the section on lost password management in the Oracle Access Manager
Administration Guide, you can configure multiple challenge phrases and responses. You
can add, modify, and delete challenge phrases and responses when performing a
modify profile operation, or when performing Create, Self-Registration, and Change
Attribute workflow operations.

The challenge phrase and response attribute values are stored as a single value in the
directory.

The following sections describe the IdentityXML syntax for challenge phrases and
responses in detail.

Add Operation
The following are required when adding challenge phrases and responses:

■ The number of ChallengeValue and ResponseValue elements must not exceed the
minimum number of challenges to be configured in the user entry.

For example, if the administrator configured the minimum number of challenges
as 3, and 2 challenges exist in the user entry, the Add operation can only add 1
more challenge.

■ Do not include attrOldValue elements when adding a challenge phrase or
response.

■ In each challenge response, provide an AttrConfirmValue element for every
AttrNewValue element.

The values of these two elements must be an exact match, including leading and
trailing spaces and case.

The following is an example of IdentityXML for adding a challenge phrase:

<oblix:ChallengeAttribute>
 <oblix:AttrName>genChallengePhrase</oblix:AttrName>
 <oblix:AttrOperation>ADD</oblix:AttrOperation>
 <oblix:ChallengeValue>
 <oblix:AttrNewValue>phrase1</oblix:AttrNewValue>
 </oblix:ChallengeValue>
 <oblix:ChallengeValue>
 <oblix:AttrNewValue>phrase2</oblix:AttrNewValue>
 </oblix:ChallengeValue>
 <oblix:ChallengeValue>
 <oblix:AttrNewValue>phrase3</oblix:AttrNewValue>
 </oblix:ChallengeValue>
</oblix:ChallengeAttribute>

The following is an example of IdentityXML for adding a challenge response:

Rules: Required. Single value

Parameter NoOfFields (when used with workflow and modify

Description: When used with workflow and modify attributes, this is the
number of attributes to be modified.

Rules: Required. Single value, integer.

Parameter attrNewValue

Attribute Parameters

2-10 Oracle Access Manager Developer Guide

<oblix:ResponseAttribute>
 <oblix:AttrName>genChallengePhraseResponse</oblix:AttrName>
 <oblix:AttrOperation>ADD</oblix:AttrOperation>
 <oblix:ResponseValue>
 <oblix:AttrNewValue>response1</oblix:AttrNewValue>
 <oblix:AttrConfirmValue>response1</oblix:AttrConfirmValue>
 </oblix:ResponseValue>
 <oblix:ResponseValue>
 <oblix:AttrNewValue>response2</oblix:AttrNewValue>
 <oblix:AttrConfirmValue>response2</oblix:AttrConfirmValue>
 </oblix:ResponseValue>
 <oblix:ResponseValue>
 <oblix:AttrNewValue>response3</oblix:AttrNewValue>
 <oblix:AttrConfirmValue>response3</oblix:AttrConfirmValue>
 </oblix:ResponseValue>
</oblix:ResponseAttribute>

Delete Operation
The following are requirements for deleting challenge phrases and responses:

■ Ensure that no lost password management policy is in effect for this user.

■ Only one ChallengeValue element is permitted for the challenge phrase.

■ Do not include attrOldValue elements when deleting a challenge phrase.

■ No ResponseValue element is permitted when deleting a challenge response.

As a result, you also do not include attrOldValue, AttrNewValue, or
AttrConfirmValue elements.

The following is an example of deleting the challenge phrase and response:

<oblix:ChallengeAttribute>
 <oblix:AttrName>genChallengePhrase</oblix:AttrName>
 <oblix:AttrOperation>DELETE</oblix:AttrOperation>
 <oblix:ChallengeValue>
 <oblix:AttrNewValue>phrase1</oblix:AttrNewValue>
 </oblix:ChallengeValue>
</oblix:ChallengeAttribute>
<oblix:ResponseAttribute>
 <oblix:AttrName>genChallengePhraseResponse</oblix:AttrName>
 <oblix:AttrOperation>DELETE</oblix:AttrOperation>
</oblix:ResponseAttribute>

Replace Operations
Replace operations can only be used if the values to be replaced exist in the user entry
in the directory. A Replace is permitted for intermediate values.

The following are required when you replace challenge phrases and responses:

■ The number of ChallengeValue and ResponseValue elements cannot exceed the
minimum number of challenges if a lost password management policy exists.

If no lost password management policy is in effect for the user, a Replace
operation for only one challenge and one response is permitted.

■ Challenge phrases must have an attrOldValue element for every attrNewValue
element.

■ Challenge responses must have an AttrOldValue element and an
AttrConfirmValue element for every AttrNewValue element.

Attribute Parameters

IdentityXML Functions and Parameters 2-11

The values of the AttrNewValue element and the AttrConfirmValue element must
be an exact match, including leading and trailing spaces and case.

■ The value of the AttrOldValue element must match the value for the user entry in
the directory.

The following is an example of replacing the challenge phrase and response:

<oblix:ChallengeAttribute>
 <oblix:AttrName>genChallengePhrase</oblix:AttrName>
 <oblix:AttrOperation>REPLACE</oblix:AttrOperation>
 <oblix:ChallengeValue>
 <oblix:AttrOldValue>phrase2</oblix:AttrOldValue>
 <oblix:AttrNewValue>phrase2_new</oblix:AttrNewValue>
 </oblix:ChallengeValue>
 <oblix:ChallengeValue>
 <oblix:AttrOldValue>phrase3</oblix:AttrOldValue>
 <oblix:AttrNewValue>phrase3_new</oblix:AttrNewValue>
 </oblix:ChallengeValue>
</oblix:ChallengeAttribute>

<oblix:ResponseAttribute>
 <oblix:AttrName>genChallengePhraseResponse</oblix:AttrName>
 <oblix:AttrOperation>REPLACE</oblix:AttrOperation>
 <oblix:ResponseValue>
 <oblix:AttrOldValue>response2</oblix:AttrOldValue>
 <oblix:AttrNewValue>response2_new</oblix:AttrNewValue>
 <oblix:AttrConfirmValue>response2_new</oblix:AttrConfirmValue>
 </oblix:ResponseValue>
 <oblix:ResponseValue>
 <oblix:AttrOldValue>response3</oblix:AttrOldValue>
 <oblix:AttrNewValue>response3_new</oblix:AttrNewValue>
 <oblix:AttrConfirmValue>response3_new</oblix:AttrConfirmValue>
 </oblix:ResponseValue>
 </oblix:ResponseAttribute>

If a lost password policy is in effect and Allow Duplicate Responses is enabled, there
are times when an index attribute is required in a ResponseValue element. When two
responses have the same value, and you want to change only one of them, you must
specify the index in the ResponseValue element. When two responses have same value
and no index is specified in the request, both occurrences are modified with the new
value.

For example, if challenge phrases A and B have the same response C, the Replace
operation could be configured with an index to differentiate the two challenge phrase
and response pairs (A-C and B-C).

The following is an example of a modifyUser function that updates two different
challenge phrases that have identical response phrases:

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:oblix="http://www.oblix.com"
xmlns:soapenv="http://schemas-xmlsoap.org/soap/envelope/">

<soapenv:Body>
<oblix:authentication>
 <oblix:login>admin</oblix:login>
 <oblix:password>oblix</oblix:password>
 </oblix:authentication>

<oblix:request application="userservcenter" function="modifyUser"
version="NPWSDL1.0">

Attribute Parameters

2-12 Oracle Access Manager Developer Guide

 <oblix:params>
 <oblix:uid>cn=user1,ou=Policy2,o=company,c=us</oblix:uid>
 <oblix:noOfFields>2</oblix:noOfFields>
 <oblix:AttributeParams>
 <oblix:ChallengeAttribute>
 <oblix:AttrName>genChallengePhrase</oblix:AttrName>
 <oblix:AttrOperation>REPLACE</oblix:AttrOperation>
 <oblix:ChallengeValue>
 <oblix:AttrOldValue>phrase1</oblix:AttrOldValue>
 <oblix:AttrNewValue>phrase1_new</oblix:AttrNewValue>
 </oblix:ChallengeValue>
 <oblix:ChallengeValue>
 <oblix:AttrOldValue>A</oblix:AttrOldValue>
 <oblix:AttrNewValue>A_new</oblix:AttrNewValue>
 </oblix:ChallengeValue>
 <oblix:ChallengeValue>
 <oblix:AttrOldValue>B</oblix:AttrOldValue>
 <oblix:AttrNewValue>B_new</oblix:AttrNewValue>
 </oblix:ChallengeValue>
 </oblix:ChallengeAttribute>

 <oblix:ResponseAttribute>
 <oblix:AttrName>genChallengePhraseResponse</oblix:AttrName>
 <oblix:AttrOperation>REPLACE</oblix:AttrOperation>
 <oblix:ResponseValue>
 <oblix:AttrOldValue>response1</oblix:AttrOldValue>
 <oblix:AttrNewValue>response1_new</oblix:AttrNewValue>
 <oblix:AttrConfirmValue>response1_new</oblix:AttrConfirmValue>
 </oblix:ResponseValue>
 <oblix:ResponseValue index="1">
 <oblix:AttrOldValue>C</oblix:AttrOldValue>
 <oblix:AttrNewValue>C_new1</oblix:AttrNewValue>
 <oblix:AttrConfirmValue>C_new1</oblix:AttrConfirmValue>
 </oblix:ResponseValue>
 <oblix:ResponseValue index="2">
 <oblix:AttrOldValue>C</oblix:AttrOldValue>
 <oblix:AttrNewValue>C_new2</oblix:AttrNewValue>
 <oblix:AttrConfirmValue>C_new2</oblix:AttrConfirmValue>
 </oblix:ResponseValue>
 </oblix:ResponseAttribute>

 </oblix:AttributeParams>
 </oblix:params>
 </oblix:request>
 </soapenv:Body>
</soapenv:Envelope>

Replace_All Operations
The Replace_All operation replaces all challenges or responses.

The following are required when you replace all challenge phrases and responses:

■ The number of ChallengeValue and ResponseValue elements must be exactly same
as the minimum number of challenges to be configured if a lost password policy
exists for the user.

If no lost password management policy is in effect for the user, you can only
replace one value.

Exceptions to Attribute Values

IdentityXML Functions and Parameters 2-13

■ For challenge phrases, do not include AttrOldValue elements in the
ChallengeValue element.

■ For challenge phrases, an AttrNewValue element is required.

■ For challenge responses, if a user is replacing their own response, the
AttrOldValue element must match the value of the user entry in the directory.

If any other user is performing the Replace_All operation, the AttrOldValue
elements are not required in the request.

■ Replace_All can be used even if there is no challenge phrase or response in the
user entry in the directory.

■ Challenge responses must have an AttrConfirm element for every AttrNewValue
element.

The values of the AttrNewValue element and the AttrConfirmValue element must
be an exact match, including leading and trailing spaces and case.

The following is an example of a Replace_All operation:

<oblix:ChallengeAttribute>
 <oblix:AttrName>genChallengePhrase</oblix:AttrName>
 <oblix:AttrOperation>REPLACE_ALL</oblix:AttrOperation>
 <oblix:ChallengeValue>
 <oblix:AttrNewValue>phrase1_new</oblix:AttrNewValue>
 </oblix:ChallengeValue>
 <oblix:ChallengeValue>
 <oblix:AttrNewValue>phrase2_new</oblix:AttrNewValue>
 </oblix:ChallengeValue>
 <oblix:ChallengeValue>
 <oblix:AttrNewValue>phrase3_new</oblix:AttrNewValue>
 </oblix:ChallengeValue>
</oblix:ChallengeAttribute>

<oblix:ResponseAttribute>
 <oblix:AttrName>genChallengePhraseResponse</oblix:AttrName>
 <oblix:AttrOperation>REPLACE_ALL</oblix:AttrOperation>
 <oblix:ResponseValue>
 <oblix:AttrNewValue>response1_new</oblix:AttrNewValue>
 <oblix:AttrConfirmValue>response1_new</oblix:AttrConfirmValue>
 </oblix:ResponseValue>
 <oblix:ResponseValue>
 <oblix:AttrNewValue>response2_new</oblix:AttrNewValue>
 <oblix:AttrConfirmValue>response2_new</oblix:AttrConfirmValue>
 </oblix:ResponseValue>
 <oblix:ResponseValue>
 <oblix:AttrNewValue>response3_new</oblix:AttrNewValue>
 <oblix:AttrConfirmValue>response3_new</oblix:AttrConfirmValue>
 </oblix:ResponseValue>
</oblix:ResponseAttribute>

Exceptions to Attribute Values
In general, legal values for attributes used in the functions match those that are used in
the GUI. However, exceptions exist. Table 2–1 lists attributes with values that differ
from those shown in the GUI for the function.

Common Functions

2-14 Oracle Access Manager Developer Guide

Common Functions
The following are functions used throughout the Identity System applications. Note
that all functions follow a similar syntax:

<oblix:request application="userservcenter|groupservcenter|objservcenter"
function="function name" version="version">

For example:

<oblix:request application="userservcenter" function="search" version="NPWSDL1.0">

Search for entries based on some criteria

Table 2–1 Attribute Value Exceptions

Attribute Name Description Values

obgroupsubscribe
notification

If this attribute is set,
the affected UID will
be notified when the
UID is subscribed or
unsubscribed from a
group.

NotifyUponSubscription: If the user is to be
notified when subscribed to a group (matches
subscribe for the GUI).

NotifyUponUnsubscription: If the user is to
be notified when unsubscribed from a group
(matches unsubscribe for the GUI).

obgroup
subscriptiontype

This attribute is set to
define the limits
under which users
can be subscribed to
the group.

SubscriptionPolicyOpen: Matches Open for
the GUI.

SubscriptionPolicyOpenFilter: Matches Open
with Filter for the GUI.

SubscriptionPolicyControlledWorkflow:
Matches Controlled through Workflow for the
GUI.

SubscriptionPolicyClosed: Matches Closed for
the GUI.

Note: The version tag is required if you are using IdentityXML with
Oracle Access Manager 6.5 and higher versions.

For documentation of the pre-6.5 IdentityXML version tag, see the
following:

http://www.oracle.com/technology/

Function name search

Request example: <oblix:request application="userservcenter"
function="search" version="NPWSDL1.0">

Description: Search for an entry or entries. The entries must be in a searchbase
accessible to the user.

Works with: Group, Organization, and User Manager.

Results: The output is defined by the schema file
oblix\WebServices\XMLSchema\component_search.xsd

Output schema: oblix\WebServices\XMLSchema\searchResults.xsd

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\common_search.wsdl

Parameters

Common Functions

IdentityXML Functions and Parameters 2-15

SearchAttr Required. See "Search Parameters" on page 2-3 for details.

SearchOperation Required. See "Search Parameters" on page 2-3 for details.

SearchString Required. See "Search Parameters" on page 2-3 for details.

attrname Optional. If no value is given, the default table view attributes are
used. See "Attribute Parameters" on page 2-5 for details.

noOfFields Optional. See "Attribute Parameters" on page 2-5 for details.

noOfRecords The maximum number of entries to return in the search results.
Overridden by the showAllResults parameter.

Rules: Optional. Single value, an integer value >=1.

Default: A value obtained from the defaultDisplayResultVal parameter
in the oblixbaseparams.xml catalog. Otherwise, this value is obtained
from the custom cookie.

showAllResults Specifies that all results of the search be returned. If the value is true, it
overrides the value of the noOfRecords parameter.

Rules: Optional. True or false.

Default: false, meaning return results up to the limit imposed by the
noOfRecords parameter.

sortBy What attribute to use to sort the results.

Rules: Optional. Single value.

Default: if no value is specified, the class attribute for the structural
object class of the tab specified by tab_id is used.

sortOrder The sort order, ascending or descending.

Rules: Optional. Single value, ascending or descending

Default: ascending

startFrom Use this parameter for a long list of search results, to skip over a
selected number of items and start the list with a specified item. For
example, if 100 entries were found by the search, entering a value of 80
for this parameter gives a response showing only items 80 through 100.

Rules: Optional. Single value, integer.

Default: 1, to start displaying from the beginning of the search results
list.

tab_id The name of the tab that describes the information category you want
to search within. For User Manager and Group Manager only one tab
is allowed. For Organization Manager, multiple tabs are allowed.

If omitted, the Identity System uses a default value for tab_id of the
leftmost tab. Oracle recommends that you always provide a value for
tab_id. Organization Manager enables you to change the order in
which tabs are displayed. If you rely on the default tab_id, your portal
functions would be affected.

The tab_id is a number. To get the number, go to the configuration
menu for the application. Choose configure tab. Position the cursor on
the tab whose tab_id you want, and right click, then click the tab name
whose tab_id you want. Select Open in new window. In the URL
displayed at the top of the page, you find the value for tab_id.

Rules: Optional. Single value

Default: For User Manager and Group Manager, which have only a
single tab, that tab is assumed.

For Organization Manager, which has multiple tabs, the leftmost tab is
assumed.

Function name search

Common Functions

2-16 Oracle Access Manager Developer Guide

Example 2–1 illustrates a search function.

Example 2–1 Example of a Search in the User Manager for the Name "John"

<?xml version="1.0"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas-xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<oblix:authentication xmlns:oblix="http://www.oblix.com" type="basic">
<oblix:login>J.Smith</oblix:login>
<oblix:password>J.Smith</oblix:password>
</oblix:authentication>
<oblix:request application="userservcenter" function ="search"
version="NPWSDL1.0">
<oblix:params>
<oblix:SearchParams>
<oblix:Condition>
<oblix:SearchAttr>cn</oblix:SearchAttr>
<oblix:SearchOperation>OSM</oblix:SearchOperation>
<oblix:SearchString>john</oblix:SearchString>
</oblix:Condition>
</oblix:SearchParams>
</oblix:params>
</oblix:request>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Search for all pending, completed, or all tickets

Function name workflowTicketSearch

Request example: <oblix:request application="userservcenter"
function="workflowTicketSearch" version="NPWSDL1.0">

Description: Search for pending, or completed, or all workflow requests.

Works with: Group Manager, Organization Manager, User Manager

Results: The output is defined by the schema file
oblix\WebServices\XMLSchema\component_search.xsd.

Output schema: oblix\WebServices\XMLSchemasearch\Results.xsd

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
common_workflowTicketSearch.wsdl

Parameters

requestType The request queue type to search

incomingRequests: Requests you need to process.

outgoingRequests: Requests you have originated.

Rules: Required. Single value.

targetApplication The application to search for tickets. To search all applications, use
the value allApplications. To search a specific application, enter the
application name:

groupservcenter: For Group Manager.

objservcenter: For Organization Manager.

userservcenter: For User Manager.

Rules: Required. Single value.

Common Functions

IdentityXML Functions and Parameters 2-17

ticketType The status type for the requests to be searched. There are three
possible entries:

WfAllTickets: Search for all requests, regardless of status.

WfCompletedTickets: Search for requests that have been
completely processed.

WfPendingTickets: Search for requests that are pending, waiting
to be processed.

Rules: Required. Single value.

days Look for requests issued in the past n days. The Identity System
considers a day to be the 24-hour period from when the ticket was
created, not a calendar day.

Rules: Optional. Single value, an integer >=1.

Default: 0, meaning look as far back as the oldest request.

noOfRecords A maximum number of entries to be returned in the search
results.This is overridden by the showAllResults parameter.

Rules: Optional. Single value, an integer value >=1.

Default: A value obtained from the defaultDisplayResultVal
parameter in the oblixbaseparams.xml catalog. Otherwise this value
is obtained from the custom cookie.

sortBy What attribute to use to sort the results.

Rules: Optional. Single value.

Default: if no value is specified, the class attribute of the structural
object class of the tab specified by tab_id is used. For workflow
tickets, the class sorting attribute can have only one of the following
values:

obticketid: For Ticket Number

obapp: For Application Name

obactionname: For Action

obwfstatus: For Status

obwftypename: For Request Type

obtargetdn: For Requested For

obcurrentdn: For Requested by

obactordn: For Action Taker

obdateprocessed: For Date Processed

oblockedby: For Locked By

obsubflow: For Subflow Number

If the attribute is invalid, an error is returned, such as "Invalid value
for parameter sortBy." If no attribute is specified, the default is the
first attribute (most likely obticketid) in the administrator-configured
workflow ticket search table. You can see this table by looking at the
Identity System Console, Common Configuration, Workflow Panels,
Ticket Search Table.

sortOrder The sort order, ascending or descending. An invalid order gives an
error message.

Rules: Optional. Single value, ascending or descending.

Default: ascending

Function name workflowTicketSearch

Common Functions

2-18 Oracle Access Manager Developer Guide

workflowTicketSearch Notes
If the mode is dataonly, the possible values for obwfstatus are integers, as follows:

Unknown = -1

Success = 0

Failed = 1

PendingUser = 2

PendingSubflow = 3

PendingPreAction = 4

PendingPostAction = 5

PendingUserInPre = 6

PendingUserInPost = 7

LastStepDone = 8

Asynch = 9

PendingExecution = 10

Cancelled = 11

PendingPreNotify = 12

PendingPreSubflow = 13

PendingPostNotify = 14

TriggerSubflows = 15

ForceCommit = 16

Retry = 17

PendingRetry = 18

For the output [integer/string], the "store-as" is an integer. The string is the value
displayed in the user interface.

Example 2–2 illustrates a search function for incoming tickets.

Example 2–2 Example of Searching for Your Incoming Tickets in the User Manager

<?xml version="1.0"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas-xmlsoap.org/soap/envelope/">

<SOAP-ENV:Body>
<oblix:authentication xmlns:oblix="http://www.oblix.com" type="basic">
<oblix:login>J.Smith</oblix:login>
<oblix:password>J.Smith</oblix:password>
</oblix:authentication>

startFrom Use this parameter for a long list of search results, to skip a number
of items and start the list with a specified item. For example, if 100
entries were found by the search, entering a value of 80 for this
parameter gives a response showing only items 80 through 100.

Rules: Optional. Single value, integer.

Default: 1, to start from the beginning of the search results list.

Function name workflowTicketSearch

Common Functions

IdentityXML Functions and Parameters 2-19

<oblix:request application="userservcenter" function="workflowTicketSearch"
version="NPWSDL1.0">

<oblix:params>
<oblix:tab_id>Employees</oblix:tab_id>
<oblix:requestType>incomingRequests</oblix:requestType>
<oblix:ticketType>allTickets</oblix:ticketType>
</oblix:params>
</oblix:request>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Get information on a particular workflow ticket

Resume asynchronous workflows

Function name workflowTicketInfo

Request example: <oblix:request application="userservcenter"
function="workflowTicketInfo"
version="NPWSDL1.0">

Description: Get information about a specific request.

Works with: Group Manager, Organization Manager, User Manager.

Results: The output is defined by the schema file
oblix\WebServices\XMLSchema\wfTicketInfo.xsd

Output schema: If the operation is successful, it returns the profile of the
group, according to the following XML Schema:
oblix\WebServices\XMLSchema\wfTicketInfo.xsd

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
common_workflowTicketInfo.wsdl

Parameters

workflowInstanceDn The DN of the workflow for which information is required.
The DN for the workflow is shown in the workflow definition
view. See the Oracle Access Manager Administration Guide.

Rules: Required. Single DN value.

workflowStepInstanceId A step in the workflow specified by workflowInstanceDn for
which information is required.

Rules: Required. Single integer value.

Function name asynchResumeWorkflowProcess

Request example: <oblix:request application="asynch"
function="asynchResumeWorkflowProcess"
version="NPWSDL1.0">

Common Functions

2-20 Oracle Access Manager Developer Guide

Example 2–3 and Example 2–4 illustrate resuming an asynchronous workflow

Example 2–3 Resuming an Asychronous Workflow (1 of 2)

<?xml version="1.0"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas-xmlsoap.org/soap/envelope/">

<SOAP-ENV:Body>
<oblix:authentication xmlns:oblix="http://www.oblix.com" type="basic">
<oblix:login>authenticationAttribute</oblix:login>
<oblix:password>authenticationPassword</oblix:password>
</oblix:authentication>

<oblix:request function="asynchResumeWorkflowProcess">
<oblix:params>
<oblix:param name="workflowInstanceDn">obwfinstanceid=wfinstanceid,
obcontainerId=workflowInstances,o=Oblix,ou=Apps, o=mycompany</oblix:param>

Description: This function enables the continuation of a workflow in
which an Identity Event API call returned a status of
STATUS_PPP_WF_ASYNC. The
asyncResumeWorkflowProcess function takes a workflow
instance DN and a step ID as input.

asynch_retcode =0 to resume the workfkow

asynch_retcode =1 to abort the workflow default value =0

See Chapter 3, "Identity Event Plug-in API" on page 3-1 for
details.

One or more of the parameters described as optional in the
"Parameters" section of this table must be provided,
depending on the requirements of the particular workflow.

Works with: Asynchronous workflows.

Output schema: Currently there is a bug which always produces the output in
html format like this:

<html>The action completed successfully. Please refer to the
workflow page. </html>

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
common_asynchResumeWorkflowProcess.wsdl

Parameters

workflowInstanceDn The DN of the workflow for which information is required.
The DN for the workflow is shown in the workflow definition
view. See the Oracle Access Manager Administration Guide.

Rules: Required. Single DN value.

workflowStepInstanceId A step in the workflow specified by workflowInstanceDn for
which information is required.

Rules: Required. Single integer value.

attrName Optional. See "Attribute Parameters" on page 2-5 for details.

attrOldValue Optional. See "Attribute Parameters" on page 2-5 for details.

attrOperation Optional. See "Attribute Parameters" on page 2-5 for details.

attrNewValue Optional. See "Attribute Parameters" on page 2-5 for details.

NoOfFields Optional. See "Attribute Parameters" on page 2-5 for details.

Function name asynchResumeWorkflowProcess

Common Functions

IdentityXML Functions and Parameters 2-21

<oblix:param name="workflowStepInstanceId">1</oblix:param>
<!-- See Return codes at the bottom of this file -->
<oblix:param name="asynch_retcode">0</oblix:param>

<!-- Add the attributes required by the workflow in the order the -->
<!-- workflow expects them. Include even the optional and hidden fields. -->
<!-- Start with n=1 -->
<oblix:param name="attrName_n">attr. name</oblix:param>
<oblix:param name="attrValue_n">attr. value</oblix:param>
<!-- ... all other workflow expected attributes -->
<!-- The operation depends on what you want to do with the attributes. -->
<!-- In this case I know the attribute does not currently exist in the user -->
<!-- entry so I want to add them. However, you might want to replace the -->
<!-- values of the attributes, and so on. -->
<oblix:param name="attrOperation">ADD</oblix:param>
</oblix:params>
</oblix:request>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
<!-- The values for the return code, async_retcode, is as follows: -->
<!-- 0 - Success -->
<!-- 1 - Action Failed -->
<!-- -11 - Pre-Action Failed -->
<!-- -12 - Post-Action Failed -->
<!-- -13 - External-Action Failed -->

Example 2–4 Resuming an Asychronous Workflow (2 of 2)

<?xml version="1.0"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas-xmlsoap.org/soap/envelope/">

<SOAP-ENV:Body>
<oblix:authentication xmlns:oblix="http://www.oblix.com" type="basic">
<oblix:login>authenticationAttribute</oblix:login>
<oblix:password>authenticationPassword</oblix:password>
</oblix:authentication>

<oblix:request function="asynchResumeWorkflowProcess" version="NPWSDL1.0">
<oblix:params>
<oblix:workflowInstanceDn>obwfinstanceid=wfinstanceid,obcontainerId=workflowInstan
ces,o=Oblix,ou=Apps, o=mycompany</oblix:workflowInstanceDn>
<oblix:workflowStepInstanceId>1</oblix:workflowStepInstanceId>
<!-- See Return codes at the bottom of this file -->
<oblix:asynch_retcode>0</oblix:asynch_retcode>
<!-- Add the attributes required by the workflow in the order the -->
<!-- workflow expects them. Include even the optional and hidden fields. -->
 <oblix:attributeParams>
 <oblix:genericAttribute>
 <oblix:attrName> name of attr </oblix:attrName>
 <oblix:attrNewValue> value of attr </oblix:attrNewValue>
 <oblix:attrOperation> operation like ADD or DELETE or REPLACE or
REPLACE_ALL</oblix:attrOperation>
 </oblix:genericAttribute>
 <!-- any more attributes -->

<!-- ... all other workflow expected attributes -->
 </oblix:attributeParams>

</oblix:params>

Common Functions

2-22 Oracle Access Manager Developer Guide

</oblix:request>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
<!-- The values for the return code, async_retcode, is as follows: -->
<!-- 0 - Success -->
<!-- 1 - Action Failed -->
<!-- -11 - Pre-Action Failed -->
<!-- -12 - Post-Action Failed -->
<!-- -13 - External-Action Failed -->

Subscribe self to group

Function name subscribe

Request example: <oblix:request application="groupservcenter"
function="subscribe" version="NPWSDL1.0">

Description: Add (subscribe) yourself to a group. The response returns the
profile for the group.

Works with: Group Manager.

Results: The output is the profile of the group, defined by the schema
file oblix\WebServices\XMLSchema\gsc_groupprofile.xsd.

Output schema: If operation is successful, it returns the profile of the group,
according to the following XML Schema.

oblix\WebServices\XMLSchema\gsc_groupprofile.xsd

If operation fails, you will get an error message like:

<SOAP-ENV:Envelope>
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet href="0" type="text/xsl"?>
<Oblix>
<ObError>
<ObRequestInfo> 161660048 </ObRequestInfo>
<ObTextMessage> You do not have access rights.
</ObTextMessage>
</ObError>
</Oblix>
</SOAP-ENV:Envelop>

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
gm_subscribe.wsdl

Parameters

uid In this case, uid means the DN of the group being subscribed
to.

Rules: Required. Single value, a DN.

Note: Subscription policies are not required for adding users to
groups. For example, if you have pre-existing groups and want to add
users to these groups, you can set the relevant access control policies
on the uniquemember attribute and use the Selector to add members.
However, if you want users to subscribe themselves to groups, you
implement this using a subscription functionality.

Common Functions

IdentityXML Functions and Parameters 2-23

Unsubscribe self from group

Subscribe user to group

Example 2–5 illustrates subscribing a user to a group.

Function name unsubscribe

Request example: <oblix:request application="groupservcenter"
function="unsubscribe" version="NPWSDL1.0">

Description: Remove (unsubscribe) yourself from a group.

Works with: Group Manager.

Results: The response returns the profile of the group, defined by the schema
file: oblix\WebServices\XMLSchema\gsc_groupprofile.xsd.

Output schema: If operation is successful, it returns the profile of the group, according
to the following XML Schema:
oblix\WebServices\XMLSchema\gsc_groupprofile.xsd

If operation fails, you will get an error message like:

<SOAP-ENV:Envelope>
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet href="0" type="text/xsl"?> <Oblix>
<ObError>
<ObRequestInfo> 161660048 </ObRequestInfo> <ObTextMessage>
You do not have access rights. </ObTextMessage>
</ObError>
</Oblix>
</SOAP-ENV:Envelop>

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\ gm_unsubscribe.wsdl

Parameters

uid The DN of the group being unsubscribed from.

Rules: Required. Single value, a DN.

Function name subscribeUserToGroup

Request example: <oblix:request application="groupservcenter"
function="subscribeUserToGroup" version="NPWSDL1.0">

Description: Subscribe a user other than yourself to a group. The other user does
not need to be logged in.

Works with: Group Manager.

Results: The output is the profile of the group, defined by the schema file
oblix\WebServices\XMLSchema\gsc_groupprofile.xsd

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
gm_subscribeUserToGroup.wsdl

Parameters

uid The DN of the group entry.

proxysourceuid The DN for a non-logged-in user (proxy user) who is being subscribed.

Rules: Required. Single value, a DN.

Common Functions

2-24 Oracle Access Manager Developer Guide

Example 2–5 Subscribing Robert Fulton to a Group

<?xml version="1.0"?> <SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas-xmlsoap.org/soap/envelope/"> <SOAP-ENV:Body>
<oblix:authentication xmlns:oblix="http://www.oblix.com" type="basic">
<oblix:login>J.Smith</oblix:login> <oblix:password>J.Smith</oblix:password>
</oblix:authentication>
<oblix:request application="groupservcenter" function="subscribeUserToGroup"
version="NPWSDL1.0">
<oblix:params>
<oblix:proxysourceuid>
cn=Robert Fulton, ou=Corporate, o=Company, c=US
</oblix:proxysourceuid>
<oblix:uid>
cn=Marketing Team, ou=Marketing, o=Company, c=US
</oblix:uid>
</oblix:params>
</oblix:request>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Unsubscribe user from group

Note: Subscription policies are not required for adding users to
groups. For example, if you have pre-existing groups and want to add
users to these groups, you can set the relevant access control policies
on the uniquemember attribute and use the Selector to add members.
However, if you want users to subscribe themselves to groups, you
implement this using a subscription functionality.

Function name unsubscribeUserFromGroup

Request example: <oblix:request application="groupservcenter"
function="unsubscribeUserFromGroup"
version="NPWSDL1.0">

Description: Unsubscribe a user other than yourself from a group. The other user
does not need to be logged in.

Works with: Group Manager.

Results: The response returns the profile of the group, defined by the schema
file: oblix\WebServices\XMLSchema\gsc_groupprofile.xsd.

Output schema: If operation is successful, it returns the profile of the group, according
to the following XML Schema.

oblix\WebServices\XMLSchema\gsc_groupprofile.xsd

If operation fails, you will get an error message like:

<SOAP-ENV:Envelope>
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet href="0" type="text/xsl"?>
<Oblix>
<ObError>
<ObRequestInfo> 161660048 </ObRequestInfo>
<ObTextMessage> You do not have access rights.
</ObTextMessage>
</ObError>
</Oblix>
</SOAP-ENV:Envelop>

User Manager Functions

IdentityXML Functions and Parameters 2-25

Example 2–6 illustrates unsubscribing from a group.

Example 2–6 Unsubscribing Robert Fulton From a Group

<?xml version="1.0"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas-xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
 <oblix:authentication xmlns:oblix="http://www.oblix.com” type="basic">
 <oblix:login>J.Smith</oblix:login>
 <oblix:password>J.Smith</oblix:password>
 </oblix:authentication>
<oblix:request application="groupservcenter"
 function="unsubscribeUserFromGroup" version="NPWSDL1.0">
 <oblix:params>
 <oblix:proxysourceuid=cn=Robert Fulton, ou=Corporate, o=Company,
 c=US</oblix:proxysourceuid>
 <oblix:uid>cn=Marketing Team, ou=Marketing, o=Company,c=US</oblix:uid>
 </oblix:params>
 </oblix:request>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas-xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>

User Manager Functions
If you are an administrator, the User Manager enables you to add, modify, and delete
user identities. The User Manager typically enables end users to view other users and
to modify their own identity information. The users that a person can view and the
identity information that someone can modify depends on the privileges granted by a
Master Administrator.

The following IdentityXML functions allow you to programmatically access the User
Manager application. Note that all functions follow a similar syntax:

<oblix:request application="userservcenter" function="name" version="version">
For example:

<oblix:request application="userservcenter" function="canIViewUserProfile"
version="NPWSDL1.0">

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
gm_unsubscribeUserFromGroup.wsdl

Parameters

uid The DN of the group being unsubscribed from.

Rules: Required. Single value, a DN.

proxysourceuid The DN for a non-logged-in user (proxy user) who is being
unsubscribed.

Rules: Required. Single value, a DN.

Function name unsubscribeUserFromGroup

User Manager Functions

2-26 Oracle Access Manager Developer Guide

Functions to Test for Attribute Permissions
The following functions provide a yes or no response as to whether you or another
user has read, write, delegate, and notify permissions set for a particular attribute.

Can I view a user's profile

Can I view an attribute in a user's profile

Can I modify an attribute in a user's profile

Note: The version tag is required if you are using IdentityXML with
Oracle Access Manager 6.5 and higher versions.

For documentation of the pre-6.5 IdentityXML version tag, see the
following:

http://www.oracle.com/technology/

Function name canIViewUserProfile

Request example: <oblix:request application="userservcenter"
function="canIViewUserProfile" version="NPWSDL1.0">

Description: Verifies that you can view a user's profile.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
um_CanIViewUserProfile.wsdl

Parameters

uid The DN of the user whose profile you want to view.

Rules: Required. Single value, a DN.

Function name canIViewUserProfileAttr

Request example: <oblix:request application="userservcenter"
function="canIViewUserProfileAttr"
version="NPWSDL1.0">

Description: Verifies that you can view a particular attribute in a user’s profile.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
um_CanIViewUserProfileAttr.wsdl

Parameters

uid The DN of the user whose attribute you want to view.

Rules: Required. Single value, a DN.

targetAttribute The schema name (not the display name) for the desired attribute.

Rules: Required. Single value, a string

Function name canIModifyUserProfileAttr

Request example: <oblix:request application="userservcenter"
function="canIModifyUserProfileAttr"
version="NPWSDL1.0">

User Manager Functions

IdentityXML Functions and Parameters 2-27

Can I modify an attribute in a user's profile using a workflow

Can I create a new user

Description: Verifies that you can change a particular attribute in a user’s
profile.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
um_canIModifyUserProfileAttr.wsdl

Parameters

uid The DN of the user whose attribute you want to change.

Rules: Required. Single value, a DN.

targetAttribute The schema name (not the display name) for the desired attribute.

Rules: Required. Single value, a string.

Function name canIRequestUserAttrModification

Request example: <oblix:request application="userservcenter"
function="canIRequestUserAttrModification"
version="NPWSDL1.0">

Description: Verifies that you can change a particular attribute in a user’s
profile, using a workflow.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
um_CanIRequestUserAttrModification.wsdl

Parameters

uid The DN of the user whose attribute you want to change.

Rules: Required. Single value, a DN.

targetAttribute The schema name (not the display name) for the desired attribute.

Rules: Required. Single value, a string.

Function name canICreateUser

Request example: <oblix:request application="userservcenter"
function="canICreateUser" version="NPWSDL1.0">

Description: Verifies that you can create a new user.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
um_CanICreateUser.wsdl

Parameters

ObDomainName A subtree within which a test is being requested.

Rules: Optional. Single value, a DN.

Default: if no value is provided, the Identity System checks to see
if you have the tested rights in any domain.

Function name canIModifyUserProfileAttr

User Manager Functions

2-28 Oracle Access Manager Developer Guide

Can I delete an existing user

Can this user view another user's profile

Can this user view an attribute in another user's profile

Function name canIDeleteUser

Request example: <oblix:request application="userservcenter"
function="canIDeleteUser" version="NPWSDL1.0">

Description: Verifies that you can delete an existing user.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
um_CanIDeleteUser.wsdl

Parameters

uid The DN of an entry you want to modify.

Rules: Required. Single value, a DN.

Function name canIUserViewUserProfile

Request example: <oblix:request application="userservcenter"
function="canUserViewUserProfile"
version="NPWSDL1.0">

Description: Verifies that a non-logged in user can view another user’s profile.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
um_CanUserViewUserProfile.wsdl

Parameters

uid The DN of the user whose profile is to be viewed.

Rules: Required. Single value, a DN.

proxysourceuid The DN of a non-logged-in user (proxy user) whose access rights
are being tested.

Rules: Required. Single value, a DN.

Function name canUserViewUserProfileAttr

Request example: <oblix:request application="userservcenter"
function="canUserViewUserProfileAttr"
version="NPWSDL1.0">

Description: Verifies that a non-logged in user can view a particular attribute
in another user’s profile.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
um_CanUserViewUserProfileAttr.wsdl

Parameters

uid The DN for the user whose profile is to be viewed.

Rules: Required. Single value, a DN.

proxysourceuid The DN for a non-logged-in user (proxy user) whose access
rights are being tested.

Rules: Required. Single value, a DN.

User Manager Functions

IdentityXML Functions and Parameters 2-29

Can this user modify an attribute in another user's profile using a workflow

Can this user create a new user

targetAttribute The schema name (not the display name) for the desired
attribute.

Rules: Required. Single value, a string.

Function name canUserRequestUserAttrModification

Request example: <oblix:request application="userservcenter"
function="canUserRequestUserAttrModification"
version="NPWSDL1.0">

Description: Verifies that a user can request a change of an attribute.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
um_CanUserRequestUserAttrModification.wsdl

Parameters

uid The DN of an entry you want to modify.

Rules: Required. Single value, a DN.

proxysourceuid The DN for a non-logged-in user (proxy user) whose access
rights are being tested.

Rules: Required. Single value, a DN.

targetattribute The schema name (not the display name) for the desired
attribute.

Rules: Required. Single value, a string.

Function name canUserCreateUser

Request example: <oblix:request application="userservcenter"
function="canUserCreateUser"
version="NPWSDL1.0">

Description: Verifies that a non-logged in user can create a new user.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
um_CanUserCreateUser.wsdl

Parameters

proxysourceuid The DN for a non-logged-in user (proxy user) whose access rights
are being tested.

Rules: Required. Single value, a DN.

ObDomainName A subtree within which a test is being requested.

Rules: Optional. Single value, a DN.

Default: if no value is provided, the Identity System checks to see
if you have the tested rights in any domain.

Function name canUserViewUserProfileAttr

User Manager Functions

2-30 Oracle Access Manager Developer Guide

Can this user delete an existing user

Can this user modify another user's attribute

Can this user request a change to another user's profile using a workflow

Function name canUserDeleteUser

Request example: <oblix:request application="userservcenter"
function="canUserDeleteUser"
version="NPWSDL1.0">

Description: Verifies that a non-logged in user can delete an existing user.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
um_CanUserDeleteUser.wsdl

Parameters

proxysourceuid The DN for a non-logged-in user (proxy user) whose access rights
are being tested.

Though it is outside the intent of functions using this parameter,
DNs other than those of users can be used.

Rules: Required. Single value, a DN.

uid The DN of an entry you want to modify.

Rules: Required. Single value, a DN.

Function name canUserModifyUserProfileAttr

Request example: <oblix:request application="userservcenter"
function="canUserModifyUserProfileAttr"
version="NPWSDL1.0">

Description: Verifies that a non-logged in user can change a particular attribute
in another user’s profile.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
um_CanUserModifyUserProfileAttr.wsdl

Parameters

uid The DN of the user whose attribute you want to modify.

Rules: Required. Single value, a DN.

proxysourceuid The DN for a non-logged-in user (proxy user) whose access rights
are being tested.

Rules: Required. Single value, a DN.

targetAttribute The schema name (not the display name) for the desired attribute.

Rules: Required. Single value, a string.

Function name canUserRequestUserAttrModification

Request example: <oblix:request application="userservcenter"
function="canUserRequestUserAttrModification"
version="NPWSDL1.0">

Description: Verifies that a non-logged in user can request a change to a
particular attribute in another user’s profile, using a workflow.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
um_CanUserRequestUserAttrModification.wsdl

User Manager Functions

IdentityXML Functions and Parameters 2-31

Functions to Perform User Manager Actions
These functions enable you or another user to perform a particular Identity System
action, such as creating a user. These are get and set functions.

View user attributes

Example 2–7 illustrates the view function.

Example 2–7 View Example

<SOAP-ENV:Envelope xmlns:oblix=http://www.oblix.com"
xmlns:SOAP-ENV="http://schemas-xmlsoap.org/soap/envelope/">

Parameters

uid The DN of the user whose attribute you want to change.

Rules: Required. Single value, a DN.

proxysourceuid The DN for a non-logged-in user (proxy user) whose access
rights are being tested.

Though it is outside the intent of functions using this parameter,
DNs other than those of users can be used.

Rules: Required. Single value, a DN.

targetAttribute The schema name (not the display name) for the desired
attribute.

Rules: Required. Single value, a string.

Function name view

Request example: <oblix:request application="userservcenter"
function="view" version="NPWSDL1.0">

Description Use this function to view attributes.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\ um_view.wsdl

Parameters

uid The DN of the user, in the case of the User Manager. If no uid is
specified, the profile of the logged in user will be shown.

Rules: Optional for the User Manager only. Single value, a DN.

Notes: This parameter also applies to the DN of the group or
organization whose attributes are to be viewed, depending upon
if this function is being used in the Group Manager or
Organization Manager.

attrName Optional. See "Attribute Parameters" on page 2-5 for details.

If no attrNames are specified, then all of the attributes of the
entry that the logged-in user has access to view are returned.
Those attributes must be configured in the Identity System and
added to a panel in the User, Group, or Organization Manager.

Note: This function shows deactivated users if the requester is a
Master Administrator, or if the administrator has the delegated
administration rights of Grant and Workflow Monitoring.

Function name canUserRequestUserAttrModification

User Manager Functions

2-32 Oracle Access Manager Developer Guide

<SOAP-ENV:Body>
 <oblix:authentication xmlns:oblix="http://www.oblix.com" type="basic"?
 <oblix:login>admin</oblix:login>
 <oblix:password>oblix></oblix:password>
 </oblix:authentication>
 <oblix:request application="userservcenter" function="view"
version="NPWSDL1.0">
 <oblix:params>
 <oblix:uid>
 cn=test1,o=Company,c=US
 </oblix:uid>
 <oblix:attrName>
 genuserid
 </oblix:attrname>
 <oblix:attrName>
 mail
 </oblix:attrName>
 </oblix:params>
 </oblix:request>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Modify user attributes

Example 2–8 illustrates a modify operation.

Example 2–8 Modify User Operation That Adds Challenge Phrases and Responses

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:oblix="http://www.oblix.com"

Function name modifyUser

Request example: <oblix:request application="userservcenter"
function="modifyUser" version="NPWSDL1.0">

Description: Change the attribute values for a specified user.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
um_modifyUser.wsdl

Parameters

uid The DN of the user whose attributes are to be changed.

Rules: Required. Single value, a DN.

attrName Optional. See "Attribute Parameters" on page 2-5 for details.

Without the _n, to return data for only the named attributes.
Though optional for this function, it is best to always provide
this parameter. The trade-off is that if you omit it, you get back
data for all the names that appear in the panel. Use this
parameter to limit output to just the data you want to see. You
use this parameter in addition to the attrName_n parameter.

attrOperation_n Required. See "Attribute Parameters" on page 2-5 for details.

attrOperation Required. See "Attribute Parameters" on page 2-5 for details.

attrNewValue Required. See "Attribute Parameters" on page 2-5 for details.

NoOfFields Required. See "Attribute Parameters" on page 2-5 for details.

attrOldValue Optional/Required. Required only if the attrOperation is a
REPLACE. See "Attribute Parameters" on page 2-5 for details.

User Manager Functions

IdentityXML Functions and Parameters 2-33

xmlns:soapenv="http://schemas-xmlsoap.org/soap/envelope/">

<soapenv:Body>
 <oblix:authentication>
 <oblix:login>admin</oblix:login>
 <oblix:password>oblix</oblix:password>
 </oblix:authentication>

 <oblix:request application="userservcenter" function="modifyUser"
version="NPWSDL1.0">
 <oblix:params>
 <oblix:uid>cn=user1,ou=Policy2,o=company,c=us</oblix:uid>
 <oblix:noOfFields>2</oblix:noOfFields>
 <oblix:AttributeParams>
 <oblix:ChallengeAttribute>
 <oblix:AttrName>genChallengePhrase</oblix:AttrName>
 <oblix:AttrOperation>ADD</oblix:AttrOperation>
 <oblix:ChallengeValue>
 <oblix:AttrNewValue>phrase1</oblix:AttrNewValue>
 </oblix:ChallengeValue>
 <oblix:ChallengeValue>
 <oblix:AttrNewValue>phrase2</oblix:AttrNewValue>
 </oblix:ChallengeValue>
 <oblix:ChallengeValue>
 <oblix:AttrNewValue>phrase3</oblix:AttrNewValue>
 </oblix:ChallengeValue>
 </oblix:ChallengeAttribute>

 <oblix:ResponseAttribute>
 <oblix:AttrName>genChallengePhraseResponse</oblix:AttrName>
 <oblix:AttrOperation>ADD</oblix:AttrOperation>
 <oblix:ResponseValue>
 <oblix:AttrNewValue>response1</oblix:AttrNewValue>
 <oblix:AttrConfirmValue>response1</oblix:AttrConfirmValue>
 </oblix:ResponseValue>
 <oblix:ResponseValue>
 <oblix:AttrNewValue>response2</oblix:AttrNewValue>
 <oblix:AttrConfirmValue>response2</oblix:AttrConfirmValue>
 </oblix:ResponseValue>
 <oblix:ResponseValue>
 <oblix:AttrNewValue>response3</oblix:AttrNewValue>
 <oblix:AttrConfirmValue>response3</oblix:AttrConfirmValue>
 </oblix:ResponseValue>
 </oblix:ResponseAttribute>

 </oblix:AttributeParams>
 </oblix:params>
 </oblix:request>
 </soapenv:Body>
</soapenv:Envelope>

Example 2–9 illustrates a modify user operation that deletes challenges phrases and
responses.

Example 2–9 Modify User Operation That Deletes Challenge Phrases and Responses

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:oblix="http://www.oblix.com"
xmlns:soapenv="http://schemas-xmlsoap.org/soap/envelope/">

User Manager Functions

2-34 Oracle Access Manager Developer Guide

<soapenv:Body>
<oblix:authentication>
 <oblix:login>admin</oblix:login>
 <oblix:password>oblix</oblix:password>
</oblix:authentication>

<oblix:request application="userservcenter" function="modifyUser"
version="NPWSDL1.0">
 <oblix:params>
 <oblix:uid>cn=user1,ou=Policy2,o=company,c=us</oblix:uid>
 <oblix:noOfFields>2</oblix:noOfFields>
 <oblix:AttributeParams>

 <oblix:ChallengeAttribute>
 <oblix:AttrName>genChallengePhrase</oblix:AttrName>
 <oblix:AttrOperation>DELETE</oblix:AttrOperation>
 <oblix:ChallengeValue>
 <oblix:AttrNewValue>phrase1</oblix:AttrNewValue>
 </oblix:ChallengeValue>
 </oblix:ChallengeAttribute>

 <oblix:ResponseAttribute>
 <oblix:AttrName>genChallengePhraseResponse</oblix:AttrName>
 <oblix:AttrOperation>DELETE</oblix:AttrOperation>
 </oblix:ResponseAttribute>

 </oblix:AttributeParams>
 </oblix:params>
 </oblix:request>
 </soapenv:Body>
</soapenv:Envelope>

Example 2–10 illustrates replacing challenge phrases and responses.

Example 2–10 Modify User Operation That Replaces Challenges and Responses

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:oblix="http://www.oblix.com"
xmlns:soapenv="http://schemas-xmlsoap.org/soap/envelope/">

<soapenv:Body>
<oblix:authentication>
 <oblix:login>admin</oblix:login>
 <oblix:password>oblix</oblix:password>
</oblix:authentication>
<oblix:request application="userservcenter" function="modifyUser"
version="NPWSDL1.0">

 <oblix:params>
 <oblix:uid>cn=user1,ou=Policy2,o=company,c=us</oblix:uid>
 <oblix:noOfFields>2</oblix:noOfFields>
 <oblix:AttributeParams>

 <oblix:ChallengeAttribute>
 <oblix:AttrName>genChallengePhrase</oblix:AttrName>
 <oblix:AttrOperation>REPLACE</oblix:AttrOperation>
 <oblix:ChallengeValue>
 <oblix:AttrOldValue>phrase2</oblix:AttrOldValue>
 <oblix:AttrNewValue>phrase2_new</oblix:AttrNewValue>
 </oblix:ChallengeValue>

User Manager Functions

IdentityXML Functions and Parameters 2-35

 <oblix:ChallengeValue>
 <oblix:AttrOldValue>phrase3</oblix:AttrOldValue>
 <oblix:AttrNewValue>phrase3_new</oblix:AttrNewValue>
 </oblix:ChallengeValue>
 </oblix:ChallengeAttribute>

 <oblix:ResponseAttribute>
 <oblix:AttrName>genChallengePhraseResponse</oblix:AttrName>
 <oblix:AttrOperation>REPLACE</oblix:AttrOperation>
 <oblix:ResponseValue>
 <oblix:AttrOldValue>response2</oblix:AttrOldValue>
 <oblix:AttrNewValue>response2_new</oblix:AttrNewValue>
 <oblix:AttrConfirmValue>response2_new</oblix:AttrConfirmValue>
 </oblix:ResponseValue>
 <oblix:ResponseValue>
 <oblix:AttrOldValue>response3</oblix:AttrOldValue>
 <oblix:AttrNewValue>response3_new</oblix:AttrNewValue>
 <oblix:AttrConfirmValue>response3_new</oblix:AttrConfirmValue>
 </oblix:ResponseValue>
 </oblix:ResponseAttribute>

 </oblix:AttributeParams>
 </oblix:params>
 </oblix:request>
 </soapenv:Body>
</soapenv:Envelope>

Example 2–11 illustrates replacing all challenges and responses.

Example 2–11 Modify User Operation With a Replace_All for Challenges and Responses

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:oblix="http://www.oblix.com"
xmlns:soapenv="http://schemas-xmlsoap.org/soap/envelope/">

<soapenv:Body>
<oblix:authentication>
 <oblix:login>admin</oblix:login>
 <oblix:password>oblix</oblix:password>
</oblix:authentication>
<oblix:request application="userservcenter" function="modifyUser"
version="NPWSDL1.0">
 <oblix:params>
 <oblix:uid>cn=user1,ou=Policy2,o=company,c=us</oblix:uid>
 <oblix:noOfFields>2</oblix:noOfFields>
 <oblix:AttributeParams>

 <oblix:ChallengeAttribute>
 <oblix:AttrName>genChallengePhrase</oblix:AttrName>
 <oblix:AttrOperation>REPLACE_ALL</oblix:AttrOperation>
 <oblix:ChallengeValue>
 <oblix:AttrNewValue>phrase1_new</oblix:AttrNewValue>
 </oblix:ChallengeValue>
 <oblix:ChallengeValue>
 <oblix:AttrNewValue>phrase2_new</oblix:AttrNewValue>
 </oblix:ChallengeValue>
 <oblix:ChallengeValue>
 <oblix:AttrNewValue>phrase3_new</oblix:AttrNewValue>
 </oblix:ChallengeValue>
 </oblix:ChallengeAttribute>

User Manager Functions

2-36 Oracle Access Manager Developer Guide

 <oblix:ResponseAttribute>
 <oblix:AttrName>genChallengePhraseResponse</oblix:AttrName>
 <oblix:AttrOperation>REPLACE_ALL</oblix:AttrOperation>
 <oblix:ResponseValue>
 <oblix:AttrNewValue>response1_new</oblix:AttrNewValue>
 <oblix:AttrConfirmValue>response1_new</oblix:AttrConfirmValue>
 </oblix:ResponseValue>
 <oblix:ResponseValue>
 <oblix:AttrNewValue>response2_new</oblix:AttrNewValue>
 <oblix:AttrConfirmValue>response2_new</oblix:AttrConfirmValue>
 </oblix:ResponseValue>
 <oblix:ResponseValue>
 <oblix:AttrNewValue>response3_new</oblix:AttrNewValue>
 <oblix:AttrConfirmValue>response3_new</oblix:AttrConfirmValue>
 </oblix:ResponseValue>
 </oblix:ResponseAttribute>

 </oblix:AttributeParams>
 </oblix:params>
 </oblix:request>
 </soapenv:Body>
</soapenv:Envelope>

Request user attribute change through a workflow

Function name workflowSaveChangeAttributeRequest

Request example: <oblix:request application="userservcenter"
function="workflowSaveChangeAttributeRequest"
version="NPWSDL1.0">

Description: Use this function to request a group, organization, or user
attribute change using a workflow. The parameters starting
with OBAuxClasses apply only to groups.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
um_workflowSaveChangeAttributeRequest.wsdl

Parameters

uid The DN of the user, group or organization whose attribute is to
be changed.

Rules: Required. Single value, a DN.

attrName Required. Required here means attributes that are specific to
each workflow. If an attribute supplied here is not required by
the workflow, it is ignored, and no error is generated. See
"Attribute Parameters" on page 2-5 for details.

attrOperation Required. See "Attribute Parameters" on page 2-5 for details.

attrNewValue Required. See "Attribute Parameters" on page 2-5 for details.

changeRequestAttr Use this parameter to name the attribute whose value you
want to change. This is the LDAP schema name of the
attribute, not the display name.

Rules: Required. Single-valued, a string.

changeRequestType Specifies whether this request is a provisioning or
deprovisioning request.

Rules: Required. Single value. It can be one of two values:
remove (for deprovisioning) newval (for provisioning).

User Manager Functions

IdentityXML Functions and Parameters 2-37

NoOfFields Required. See "Attribute Parameters" on page 2-5 for details.

ObWorkflowName The name of the workflow that you want to use to create or
change the value(s) for an attribute.

Find the full DN for ObWorkflowName under the view menu
for workflow definition under the particular application.

Rules: Required. Single value, a DN.

attrOldValue Optional/Required. Required only if the attrOperation is a
REPLACE. See "Attribute Parameters" on page 2-5 for details.

ObAuxClassesOldValues The old values of the auxiliary class names that you want to
replace. This is used only to change the name information for
auxiliary classes associated with groups. Use this parameter
once for each auxiliary class name to be removed.

If you attempt to specify a value for which you do not have
access, you will get an error message "Invalid value for
attributeObAuxClasses."

You find the values for these using the Identity System
Console, Group Manager Configuration, Group Types,
Configure Group Type Panels. Select the group, and find the
Associated ObjectClass name displayed.

Rules: Required only if the attribute is for an auxiliary class
and the ObAuxClassesOperation is a REPLACE, otherwise
ignored. Multivalued.

ObAuxClassesOperation The type of operation to perform on the attribute. This is used
only to change the name information for auxiliary classes.

Legal values are:

ADD: Add the auxiliary class name to the existing attributes.

DELETE: Delete the auxiliary class name from the existing
attributes.

REPLACE: Delete the old auxiliary class name and replace it
with the new auxiliary class name.

If you specify any other value or no value, you will get an error
message "Invalid value for attribute ObAuxClasses."

Rules: Required only if the attribute is for an auxiliary class.
Single value.

ObAuxClassesValues The name of the auxiliary class that you want to add, delete, or
replace. This is used only to change the name information for
auxiliary classes.

Use this parameter once for each auxiliary class name to be
added or removed.If you attempt to specify a value for which
you do not have access, you will get an error message "Invalid
value for attributeObAuxClasses".

To find the values for these, use the Identity System Console,
Group Manager Configuration, Group Types, Configure Group
Type Panels. Select the group, and find the Associated
ObjectClass name.

Rules: Required if the attribute is for an auxiliary class.
Multivalued. Valid values are the string names of the
configured auxiliary classes available. (Auxiliary classes are
configured through the System Console, Configure Object
Class function, see the Oracle Access Manager Administration
Guide.)

Function name workflowSaveChangeAttributeRequest

User Manager Functions

2-38 Oracle Access Manager Developer Guide

Example 2–12 illustrates adding a challenge and response using a workflow.

Example 2–12 Change Attribute Workflow that Adds a Challenge Phrase and Response

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:oblix="http://www.oblix.com"
xmlns:soapenv="http://schemas-xmlsoap.org/soap/envelope/">

<soapenv:Body>
<oblix:authentication>
 <oblix:login>admin</oblix:login>
 <oblix:password>oblix</oblix:password>
</oblix:authentication>

<oblix:request application="userservcenter"
function="workflowSaveChangeAttributeRequest" version="NPWSDL1.0">
<oblix:params>
<oblix:uid>cn=user1,ou=Policy2,o=company,c=us</oblix:uid>
<oblix:ObWorkflowName>obworkflowid=94400828cd0b4cb494e04a8eab0a142f,obcontainerId=
workflowDefinitions,o=Oblix,o=company,c=us</oblix:ObWorkflowName>
 <oblix:changeRequestAttr>genChallengePhrase</oblix:changeRequestAttr>
 <oblix:changeRequestType>newval</oblix:changeRequestType>
 <oblix:noOfFields>2</oblix:noOfFields>
 <oblix:AttributeParams>

 <oblix:ChallengeAttribute>
 <oblix:AttrName>genChallengePhrase</oblix:AttrName>
 <oblix:AttrOperation>ADD</oblix:AttrOperation>
 <oblix:ChallengeValue>
 <oblix:AttrNewValue>phrase1</oblix:AttrNewValue>
 </oblix:ChallengeValue>
 <oblix:ChallengeValue>
 <oblix:AttrNewValue>phrase2</oblix:AttrNewValue>
 </oblix:ChallengeValue>
 <oblix:ChallengeValue>
 <oblix:AttrNewValue>phrase3</oblix:AttrNewValue>
 </oblix:ChallengeValue>
 </oblix:ChallengeAttribute>

 <oblix:ResponseAttribute>
 <oblix:AttrName>genChallengePhraseResponse</oblix:AttrName>
 <oblix:AttrOperation>ADD</oblix:AttrOperation>
 <oblix:ResponseValue>
 <oblix:AttrNewValue>response1</oblix:AttrNewValue>
 <oblix:AttrConfirmValue>response1</oblix:AttrConfirmValue>
 </oblix:ResponseValue>
 <oblix:ResponseValue>
 <oblix:AttrNewValue>response2</oblix:AttrNewValue>
 <oblix:AttrConfirmValue>response2</oblix:AttrConfirmValue>
 </oblix:ResponseValue>
 <oblix:ResponseValue>
 <oblix:AttrNewValue>response3</oblix:AttrNewValue>
 <oblix:AttrConfirmValue>response3</oblix:AttrConfirmValue>

ObWfComment Use this parameter to provide a comment for a step in a
workflow.

Rules: Optional. Single value, string.

Function name workflowSaveChangeAttributeRequest

User Manager Functions

IdentityXML Functions and Parameters 2-39

 </oblix:ResponseValue>
 </oblix:ResponseAttribute>

 </oblix:AttributeParams>
 </oblix:params>
 </oblix:request>
 </soapenv:Body>
</soapenv:Envelope>

Example 2–13 illustrates replacing a challenge phrase and response using a workflow.

Example 2–13 Workflow that Replaces Challenge Phrases and Responses

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:oblix="http://www.oblix.com"
xmlns:soapenv="http://schemas-xmlsoap.org/soap/envelope/">

<soapenv:Body>
<oblix:authentication>
 <oblix:login>admin</oblix:login>
 <oblix:password>oblix</oblix:password>
</oblix:authentication>
<oblix:request application="userservcenter"
function="workflowSaveChangeAttributeRequest" version="NPWSDL1.0">
<oblix:params>
<oblix:uid>cn=user1,ou=Policy2,o=company,c=us</oblix:uid>

<oblix:ObWorkflowName>obworkflowid=94400828cd0b4cb494e04a8eab0a142f,obcontainerId=
workflowDefinitions,o=Oblix,o=company,c=us</oblix:ObWorkflowName>
<oblix:changeRequestAttr>genChallengePhrase</oblix:changeRequestAttr>
<oblix:changeRequestType>newval</oblix:changeRequestType>
<oblix:noOfFields>2</oblix:noOfFields>

 <oblix:AttributeParams>
 <oblix:ChallengeAttribute>
 <oblix:AttrName>genChallengePhrase</oblix:AttrName>
 <oblix:AttrOperation>REPLACE</oblix:AttrOperation>
 <oblix:ChallengeValue>
 <oblix:AttrOldValue>phrase2</oblix:AttrOldValue>
 <oblix:AttrNewValue>phrase2_new</oblix:AttrNewValue>
 </oblix:ChallengeValue>
 <oblix:ChallengeValue>
 <oblix:AttrOldValue>phrase3</oblix:AttrOldValue>
 <oblix:AttrNewValue>phrase3_new</oblix:AttrNewValue>
 </oblix:ChallengeValue>
 </oblix:ChallengeAttribute>

 <oblix:ResponseAttribute>
 <oblix:AttrName>genChallengePhraseResponse</oblix:AttrName>
 <oblix:AttrOperation>REPLACE</oblix:AttrOperation>
 <oblix:ResponseValue>
 <oblix:AttrOldValue>response2</oblix:AttrOldValue>
 <oblix:AttrNewValue>response2_new</oblix:AttrNewValue>
 <oblix:AttrConfirmValue>response2_new</oblix:AttrConfirmValue>
 </oblix:ResponseValue>
 <oblix:ResponseValue>
 <oblix:AttrOldValue>response3</oblix:AttrOldValue>
 <oblix:AttrNewValue>response3_new</oblix:AttrNewValue>
 <oblix:AttrConfirmValue>response3_new</oblix:AttrConfirmValue>
 </oblix:ResponseValue>

User Manager Functions

2-40 Oracle Access Manager Developer Guide

 </oblix:ResponseAttribute>

 </oblix:AttributeParams>
 </oblix:params>
 </oblix:request>
 </soapenv:Body>
</soapenv:Envelope>

Example 2–14 illustrates replacing all challenge phrases and responses using a
workflow.

Example 2–14 Workflow That Replaces All Challenge Phrases and Responses

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:oblix="http://www.oblix.com"
xmlns:soapenv="http://schemas-xmlsoap.org/soap/envelope/">

<soapenv:Body>
<oblix:authentication>
 <oblix:login>admin</oblix:login>
 <oblix:password>oblix</oblix:password>
</oblix:authentication>
<oblix:request application="userservcenter"
function="workflowSaveChangeAttributeRequest" version="NPWSDL1.0">
<oblix:params>
<oblix:uid>cn=user1,ou=Policy2,o=company,c=us</oblix:uid>
<oblix:ObWorkflowName>obworkflowid=94400828cd0b4cb494e04a8eab0a142f,obcontainerId=
workflowDefinitions,o=Oblix,o=company,c=us</oblix:ObWorkflowName>

 <oblix:changeRequestAttr>genChallengePhrase</oblix:changeRequestAttr>
 <oblix:changeRequestType>newval</oblix:changeRequestType>
 <oblix:noOfFields>2</oblix:noOfFields>
 <oblix:AttributeParams>

 <oblix:ChallengeAttribute>
 <oblix:AttrName>genChallengePhrase</oblix:AttrName>
 <oblix:AttrOperation>REPLACE_ALL</oblix:AttrOperation>
 <oblix:ChallengeValue>
 <oblix:AttrNewValue>phrase1_new</oblix:AttrNewValue>
 </oblix:ChallengeValue>
 <oblix:ChallengeValue>
 <oblix:AttrNewValue>phrase2_new</oblix:AttrNewValue>
 </oblix:ChallengeValue>
 <oblix:ChallengeValue>
 <oblix:AttrNewValue>phrase3_new</oblix:AttrNewValue>
 </oblix:ChallengeValue>
 </oblix:ChallengeAttribute>

 <oblix:ResponseAttribute>
 <oblix:AttrName>genChallengePhraseResponse</oblix:AttrName>
 <oblix:AttrOperation>REPLACE_ALL</oblix:AttrOperation>
 <oblix:ResponseValue>
 <oblix:AttrNewValue>response1_new</oblix:AttrNewValue>
 <oblix:AttrConfirmValue>response1_new</oblix:AttrConfirmValue>
 </oblix:ResponseValue>
 <oblix:ResponseValue>
 <oblix:AttrNewValue>response2_new</oblix:AttrNewValue>
 <oblix:AttrConfirmValue>response2_new</oblix:AttrConfirmValue>
 </oblix:ResponseValue>
 <oblix:ResponseValue>

User Manager Functions

IdentityXML Functions and Parameters 2-41

 <oblix:AttrNewValue>response3_new</oblix:AttrNewValue>
 <oblix:AttrConfirmValue>response3_new</oblix:AttrConfirmValue>
 </oblix:ResponseValue>
 </oblix:ResponseAttribute>

 </oblix:AttributeParams>
 </oblix:params>
 </oblix:request>
 </soapenv:Body>
</soapenv:Envelope>

Create User Using a Workflow

Function name workflowSaveCreateProfile

Request example: <oblix:request application="userservcenter"
function="workflowSaveCreateProfile"
version="NPWSDL1.0">

Description: Use this function to create a new user, group, or organization
using a workflow.The parameters starting with
OBAuxClasses apply only to groups.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
um_workflowSaveCreateProfile.wsdl

Parameters

ObDomainName The name of the domain where you want to create a new
entry.

Rules: Required. Single value, a DN. The domain name must
be defined under the workflow referred to by the
ObWorkflowName parameter.

ObWorkflowName The name of the workflow that you want to use to create or
change the value(s) for an attribute.

Find the full DN for ObWorkflowName under the view menu
for workflow definition under the particular application.

Rules: Required. Single value, a DN.

NoOfFields Required. See "Attribute Parameters" on page 2-5 for details.

attrName Required. Required here means attributes that are specific to
each workflow. If an attribute supplied here is not required
by the workflow, it is ignored, and no error is generated. See
"Attribute Parameters" on page 2-5 for details.

attrOperation Required. See "Attribute Parameters" on page 2-5 for details.

attrNewValue Required. See "Attribute Parameters" on page 2-5 for details.

attrOldValue Optional/Required. Required only if the attrOperation is a
REPLACE.

User Manager Functions

2-42 Oracle Access Manager Developer Guide

Example 2–15 illustrates adding challenges and responses using a workflow.

Example 2–15 Create User Workflow That Adds Challenge Phrases and Responses

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:oblix="http://www.oblix.com"
xmlns:soapenv="http://schemas-xmlsoap.org/soap/envelope/">
<soapenv:Body>

ObAuxClassesOldValues The old values of the auxiliary class names that you want to
replace. This is used only to change the name information for
auxiliary classes associated with groups. Use this parameter
once for each auxiliary class name to be removed.

If you attempt to specify a value for which you do not have
access, you will get an error message "Invalid value for
attributeObAuxClasses."

You find the values for these using the Identity System
Console, Group Manager Configuration, Group Types,
Configure Group Type Panels. Select the group, and find the
Associated ObjectClass name displayed.

Rules: Required only if the attribute is for an auxiliary class
and the ObAuxClassesOperation is a REPLACE, otherwise
ignored. Multivalued.

ObAuxClassesOperation The type of operation to perform on the attribute. This is used
only to change the name information for auxiliary classes.

Legal values are:

ADD: Add the auxiliary class name to the existing attributes.

DELETE: Delete the auxiliary class name from the existing
attributes.

REPLACE: Delete the old auxiliary class name and replace it
with the new auxiliary class name.

If you specify any other value or no value, you will get an
error message "Invalid value for attribute ObAuxClasses."

Rules: Required if the attribute is for an auxiliary class. Single
value.

ObAuxClassesValues The name of the auxiliary class to add, delete, or replace. This
is used only to change the name information for auxiliary
classes.

Use this parameter once for each auxiliary class name to be
added or removed.If you attempt to specify a value for which
you do not have access, you get an error message "Invalid
value for attributeObAuxClasses."

To find the values, use the Identity System Console, Group
Manager Configuration, Group Types, Configure Group Type
Panels. Select the group, and find the Associated ObjectClass
name.

Rules: Required if the attribute is for an auxiliary class.
Multivalued. Valid values are the string names of the
configured auxiliary classes available. Auxiliary classes are
configured through the Administration Console's configure
object classes function. See the Oracle Access Manager
Administration Guide for details.

ObWfComment Provides a comment for a step in a workflow.

Rules: Optional. Single value, string.

Function name workflowSaveCreateProfile

User Manager Functions

IdentityXML Functions and Parameters 2-43

<oblix:authentication>
 <oblix:login>admin</oblix:login>
 <oblix:password>oblix</oblix:password>
</oblix:authentication>
<oblix:request application="userservcenter" function="workflowSaveCreateProfile"
version="NPWSDL1.0">
 <oblix:params>

<oblix:ObWorkflowName>obworkflowid=5c9ad30117f44a3e960dad321a84b139,obcontainerId=
workflowDefinitions,o=Oblix,o=company,c=us</oblix:ObWorkflowName>
 <oblix:ObDomainName>ou=Policy2,o=company,c=us</oblix:ObDomainName>
 <oblix:noOfFields>6</oblix:noOfFields>

 <oblix:AttributeParams>
 <oblix:GenericAttribute>
 <oblix:AttrName>cn</oblix:AttrName>
 <oblix:AttrOperation>ADD</oblix:AttrOperation>
 <oblix:AttrNewValue>user101</oblix:AttrNewValue>
 </oblix:GenericAttribute>
 <oblix:GenericAttribute>
 <oblix:AttrName>sn</oblix:AttrName>
 <oblix:AttrOperation>ADD</oblix:AttrOperation>
 <oblix:AttrNewValue>user101L</oblix:AttrNewValue>
 </oblix:GenericAttribute>
 <oblix:GenericAttribute>
 <oblix:AttrName>uid</oblix:AttrName>
 <oblix:AttrOperation>ADD</oblix:AttrOperation>
 <oblix:AttrNewValue>user101</oblix:AttrNewValue>
 </oblix:GenericAttribute>

 <oblix:PasswordAttribute>
 <oblix:AttrName>userPassword</oblix:AttrName>
 <oblix:AttrOperation>ADD</oblix:AttrOperation>
 <oblix:AttrNewValue>oblix</oblix:AttrNewValue>
 <oblix:AttrConfirmValue>oblix</oblix:AttrConfirmValue>
 </oblix:PasswordAttribute>

 <oblix:ChallengeAttribute>
 <oblix:AttrName>genChallengePhrase</oblix:AttrName>
 <oblix:AttrOperation>ADD</oblix:AttrOperation>
 <oblix:ChallengeValue>
 <oblix:AttrNewValue>phrase1</oblix:AttrNewValue>
 </oblix:ChallengeValue>
 <oblix:ChallengeValue>
 <oblix:AttrNewValue>phrase2</oblix:AttrNewValue>
 </oblix:ChallengeValue>
 <oblix:ChallengeValue>
 <oblix:AttrNewValue>phrase3</oblix:AttrNewValue>
 </oblix:ChallengeValue>
 </oblix:ChallengeAttribute>

 <oblix:ResponseAttribute>
 <oblix:AttrName>genChallengePhraseResponse</oblix:AttrName>
 <oblix:AttrOperation>ADD</oblix:AttrOperation>
 <oblix:ResponseValue>
 <oblix:AttrNewValue>response1</oblix:AttrNewValue>
 <oblix:AttrConfirmValue>response1</oblix:AttrConfirmValue>
 </oblix:ResponseValue>
 <oblix:ResponseValue>
 <oblix:AttrNewValue>response2</oblix:AttrNewValue>

User Manager Functions

2-44 Oracle Access Manager Developer Guide

 <oblix:AttrConfirmValue>response2</oblix:AttrConfirmValue>
 </oblix:ResponseValue>
 <oblix:ResponseValue>
 <oblix:AttrNewValue>response3</oblix:AttrNewValue>
 <oblix:AttrConfirmValue>response3</oblix:AttrConfirmValue>
 </oblix:ResponseValue>
 </oblix:ResponseAttribute>

 </oblix:AttributeParams>
 </oblix:params>
 </oblix:request>
 </soapenv:Body>
</soapenv:Envelope>

Self-Registration Using a Workflow

Example 2–16 illustrates adding challenges and responses using a self-registration
workflow.

Example 2–16 Self-Registration Workflow That Adds Challenge Phrases and Responses

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:oblix="http://www.oblix.com"

Function name workflowSelfRegistrationSave

Request example: <oblix:request application="userservcenter"
function="workflowSelfRegistrationSave"
version="NPWSDL1.0">

Description: Adds yourself to an organization or as a user.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
um_workflowSelfRegistrationSave.wsdl

Parameters

ObDomainName The name of the domain in which you want to create a new entry.
The domain name must be defined under the workflow referred to
by the ObWorkflowName parameter.

Rules: Required. Single value, a DN.

ObWorkflowName The name of the workflow that you want to use to create or change
the value(s) for an attribute.

Find the full DN for ObWorkflowName under the view menu for
workflow definition under the particular application.

Rules: Required. Single value, a DN.

attrName Required. Required here means attributes that are specific to each
workflow. If an attribute supplied here is not required by the
workflow, it is ignored, and no error is generated. See "Attribute
Parameters" on page 2-5 for details.

attrOperation Required. See "Attribute Parameters" on page 2-5 for details.

attrNewValue Required. See "Attribute Parameters" on page 2-5 for details.

NoOfFields Required. See "Attribute Parameters" on page 2-5 for details.

attrOldValue Optional/Required. Required only if the attrOperation is a
REPLACE.

ObWfComment Provides a comment for a step in a workflow.

Rules: Optional. Single value, string.

User Manager Functions

IdentityXML Functions and Parameters 2-45

xmlns:soapenv="http://schemas-xmlsoap.org/soap/envelope/">

<soapenv:Body>
<oblix:authentication>
 <oblix:login>admin</oblix:login>
 <oblix:password>oblix</oblix:password>
</oblix:authentication>
<oblix:request application="userservcenter"
function="workflowSelfRegistrationSave" version="NPWSDL1.0">
 <oblix:params>

<oblix:ObWorkflowName>obworkflowid=3a94939d048f42f0b039c3d978c10a2f,obcontainerId=
workflowDefinitions,o=Oblix,o=company,c=us</oblix:ObWorkflowName>
<oblix:ObDomainName>ou=Policy2,o=company,c=us</oblix:ObDomainName>
<oblix:noOfFields>6</oblix:noOfFields>
<oblix:AttributeParams>

 <oblix:GenericAttribute>
 <oblix:AttrName>cn</oblix:AttrName>
 <oblix:AttrOperation>ADD</oblix:AttrOperation>
 <oblix:AttrNewValue>user102</oblix:AttrNewValue>
 </oblix:GenericAttribute>
 <oblix:GenericAttribute>
 <oblix:AttrName>sn</oblix:AttrName>
 <oblix:AttrOperation>ADD</oblix:AttrOperation>
 <oblix:AttrNewValue>user102L</oblix:AttrNewValue>
 </oblix:GenericAttribute>
 <oblix:GenericAttribute>
 <oblix:AttrName>uid</oblix:AttrName>
 <oblix:AttrOperation>ADD</oblix:AttrOperation>
 <oblix:AttrNewValue>user102</oblix:AttrNewValue>
 </oblix:GenericAttribute>

 <oblix:PasswordAttribute>
 <oblix:AttrName>userPassword</oblix:AttrName>
 <oblix:AttrOperation>ADD</oblix:AttrOperation>
 <oblix:AttrNewValue>oblix</oblix:AttrNewValue>
 <oblix:AttrConfirmValue>oblix</oblix:AttrConfirmValue>
 </oblix:PasswordAttribute>

 <oblix:ChallengeAttribute>
 <oblix:AttrName>genChallengePhrase</oblix:AttrName>
 <oblix:AttrOperation>ADD</oblix:AttrOperation>
 <oblix:ChallengeValue>
 <oblix:AttrNewValue>phrase1</oblix:AttrNewValue>
 </oblix:ChallengeValue>
 <oblix:ChallengeValue>
 <oblix:AttrNewValue>phrase2</oblix:AttrNewValue>
 </oblix:ChallengeValue>
 <oblix:ChallengeValue>
 <oblix:AttrNewValue>phrase3</oblix:AttrNewValue>
 </oblix:ChallengeValue>
 </oblix:ChallengeAttribute>

 <oblix:ResponseAttribute>
 <oblix:AttrName>genChallengePhraseResponse</oblix:AttrName>
 <oblix:AttrOperation>ADD</oblix:AttrOperation>
 <oblix:ResponseValue>
 <oblix:AttrNewValue>response1</oblix:AttrNewValue>
 <oblix:AttrConfirmValue>response1</oblix:AttrConfirmValue>

User Manager Functions

2-46 Oracle Access Manager Developer Guide

 </oblix:ResponseValue>
 <oblix:ResponseValue>
 <oblix:AttrNewValue>response2</oblix:AttrNewValue>
 <oblix:AttrConfirmValue>response2</oblix:AttrConfirmValue>
 </oblix:ResponseValue>
 <oblix:ResponseValue>
 <oblix:AttrNewValue>response3</oblix:AttrNewValue>
 <oblix:AttrConfirmValue>response3</oblix:AttrConfirmValue>
 </oblix:ResponseValue>
 </oblix:ResponseAttribute>

 </oblix:AttributeParams>
 </oblix:params>
 </oblix:request>
 </soapenv:Body>
</soapenv:Envelope>

Deactivate User Using a Workflow

Function name workflowDeactivateUserSave

Request example: <oblix:request application="userservcenter"
function="workflowDeactivateUserSave"
version="NPWSDL1.0">

Description: Deactivates a user using a workflow. Information for deactivated
users is kept in the directory but not shown in search results.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
um_workflowDeactivateUserSave.wsdl

Parameters

uid The DN of the user to be deactivated.

Rules: Required. Single value, a DN.

ObDomainName The name of the domain in which you want to create a new entry.
The domain name must be defined under the workflow referred to
by the ObWorkflowName parameter.

Rules: Required. Single value, a DN.

ObWorkflowName The name of the workflow that you want to use to create or change
the value(s) for an attribute.

Find the full DN for ObWorkflowName under the view menu for
workflow definition under the particular application.

Rules: Required. Single value, a DN.

attrName Required. Here, required means attributes that are specific to each
workflow. If an attribute supplied here is not required by the
workflow, it is ignored, and no error is generated. See "Attribute
Parameters" on page 2-5 for details.

attrOperation Required. See "Attribute Parameters" on page 2-5 for details.

attrNewValue Required. See "Attribute Parameters" on page 2-5 for details.

NoOfFields Required. See "Attribute Parameters" on page 2-5 for details.

attrOldValue Optional/Required. Required only if the attrOperation is a
REPLACE.

ObWfComment Provides a comment for a step in a workflow.

Rules: Optional. Single value, string.

User Manager Functions

IdentityXML Functions and Parameters 2-47

View Deactivated User
To be able to view a deactivated user, you need to be either the Master Administrator
or have delegated administration rights for grant and workflow monitoring of the
domain where the target user exists. That is, you should be able to monitor workflow
requests in the target user domain. Then you can view a deactivated user in that
domain using the view function. See "View user attributes" on page 2-31 for details.

Search Deactivated Users

Function name searchDeactivatedUsers

Request example: <oblix:request application="userservcenter"
function="searchDeactivatedUsers"
version="NPWSDL1.0">

Description: Search for deactivated users, based on certain criteria. Only one
search condition is accepted. You can search for deactivated users
based on one condition only.

To be able to search for deactivated users, you need to be either the
Master Administrator or have delegated administration rights to
GRANT+WORKFLOW MONITORING to the domain where the
target users exist. That is, you should be able to monitor workflow
requests in the target users' domain. Then you can search for
deactivated users in that domain using the searchDeactivatedUsers
function. One difference is that the result attributes are those
specified in the search results table so you cannot specify the result
attributes through attrName as you can do in a normal search.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
um_searchDeactivatedUsers.wsdl

Parameters

SearchAttr Required. See "Search Parameters" on page 2-3 for details.

SearchOperation Required. See "Search Parameters" on page 2-3 for details.

SearchString Required. See "Search Parameters" on page 2-3 for details.

attrname Optional. If no value is given, the default table view attributes are
used See "Attribute Parameters" on page 2-5 for details.

noOfFields Optional. See "Attribute Parameters" on page 2-5 for details.

noOfRecords Optional. A maximum number of entries to be returned in the search
results.This, and its default value, is overridden by the
showAllResults parameter.

Rules: Optional. Single value, an integer value >=1.

Default: A value obtained from the defaultDisplayResultVal
parameter in the oblixbaseparams.xml catalog. Otherwise this value
is obtained from the custom cookie.

showAllResults Returns all results of the search to the user. If the parameter value is
true, it overrides the value of the noOfRecords parameter.

Rules: Optional. Single value, Boolean, valued true or false.

Default: False, meaning return results up to the limit imposed by the
noOfRecords parameter.

sortBy What attribute to use to sort the results.

Rules: Optional. Single value.

Default: if no value is specified, the class attribute of the structural
objectclass of the tab specified by tab_id is used.

User Manager Functions

2-48 Oracle Access Manager Developer Guide

Reactivate User Using a Workflow

sortOrder The sort order, ascending or descending. There are two possible
values: ascending, descending.

Rules: Optional. Single value.

Default: ascending

startFrom Use this parameter for a long list of search results, to skip over a
selected number of items and start the list with a specified item. For
example, if 100 entries were found by the search, entering a value of
80 for this parameter gives a response showing only items 80 through
100.

Rules: Optional. Single value, integer.

Default: 1, meaning to start displaying from the beginning of the
search results list.

Function name workflowReactivateUserSave

Request example: <oblix:request application="userservcenter"
function="workflowReactivateUserSave"
version="NPWSDL1.0">

Description: Reactivates a user using a workflow. Information for reactivated
users is kept in the directory but not shown in search results.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
um_workflowReactivateUserSave.wsdl

Parameters

uid The DN of the user to be reactivated.

Rules: Required. Single value, a DN.

ObDomainName The name of the domain in which you want to create a new entry.
The domain name must be defined under the workflow referred to
by the ObWorkflowName parameter.

Rules: Required. Single value, a DN.

ObWorkflowName The name of the workflow that you want to use to create or change
the value(s) for an attribute.

Find the full DN for ObWorkflowName under the view menu for
workflow definition under the particular application.

Rules: Required. Single value, a DN.

attrName Required. Here, required means attributes that are specific to each
workflow. If an attribute supplied here is not required by the
workflow, it is ignored, and no error is generated. See "Attribute
Parameters" on page 2-5 for details.

attrOperation Required. See "Attribute Parameters" on page 2-5 for details.

attrNewValue Required. See "Attribute Parameters" on page 2-5 for details.

NoOfFields Required. See "Attribute Parameters" on page 2-5 for details.

attrOldValue Optional/Required. Required only if the attrOperation is a
REPLACE.

ObWfComment Provides a comment for a step in a workflow.

Rules: Optional. Single value, string.

Function name searchDeactivatedUsers

Group Manager Functions

IdentityXML Functions and Parameters 2-49

Group Manager Functions
If you are an administrator, the Group Manager enables you to create or delete groups,
and enables users to subscribe or unsubscribe from groups. The Group Manager
typically enables end users to view groups and to subscribe to membership in a group.
The groups that a person can view and subscription rights are granted by a Master
administrator.

The following functions allow you to programmatically access the Group Manager
application. Note that all functions follow a similar syntax:

<oblix:request application="groupservcenter" function="name" version="version">
For example:

<oblix:request application="groupservcenter" function="canIViewGroupProfile"
version="NPWSDL1.0">

Functions to Test for Attribute Permissions
The following functions provide a yes or no response as to whether you or another
user have read, write, delegate, and notify permissions set for a particular attribute.

Can I view a group's profile

Example 2–17 illustrates testing the view group profile function.

Example 2–17 Example of Testing the Ability to View a Group Profile

<?xml version="1.0"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas-xmlsoap.org/soap/envelope/">

<SOAP-ENV:Body>
<oblix:request application="groupservcenter"
function="canIViewGroupProfile" version="NPWSDL1.0">

<oblix:params>

Note: The version tag is required if you are using IdentityXML with
Oracle Access Manager 6.5 and higher versions.

For documentation of the pre-6.5 IdentityXML version tag, see the
following:

http://www.oracle.com/technology/

Function name canIViewGroupProfile

Request example: <oblix:request application="groupservcenter"
function="canIViewGroupProfile"
version="NPWSDL1.0">

Description: Verifies that you can view a group’s profile.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
gm_canIViewGroupProfile.wsdl

Parameters

uid The DN of the group whose profile you want to view.

Rules: Required. Single value, a DN.

Group Manager Functions

2-50 Oracle Access Manager Developer Guide

<oblix:uid>cn=Marketing Team, ou=Marketing, o=Company, c=US
</oblix:uid>
</oblix:params>
</oblix:request>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Can I view an attribute in a group's profile

Can I modify an attribute in a group's profile

Can I request modification through a workflow of an attribute in a group profile

Function name canIViewGroupProfileAttr

Request example: <oblix:request application="groupservcenter"
function="canIViewGroupProfileAttr"
version="NPWSDL1.0">

Description: Verifies that you can view a particular attribute in a group’s
profile.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
gm_canIViewGroupProfileAttr.wsdl

Parameters

uid The DN of the group whose attribute you want to view.

Rules: Required. Single value, a DN.

targetAttribute The schema name (not the display name) for the desired
attribute.

Rules: Required. Single value, a string.

Function name canIModifyGroupProfileAttr

Request example: <oblix:request application="groupservcenter"
function="canIModifyGroupProfileAttr"
version="NPWSDL1.0">

Description: Verifies that you can change a particular attribute in a group’s
profile.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
gm_canIModifyGroupProfileAttr.wsdl

Parameters

uid The DN of the group whose attribute you want to change.

Rules: Required. Single value, a DN.

targetAttribute The schema name (not the display name) for the desired
attribute.

Rules: Required. Single value, a string.

Function name canIRequestGroupAttrModification

Request example: <oblix:request application="groupservcenter"
function="canIRequestGroupAttrModification"
version="NPWSDL1.0">

Group Manager Functions

IdentityXML Functions and Parameters 2-51

Can I create a new group

Can I delete an existing group

Description: Verifies that you can change a particular attribute in a group’s
profile, using a workflow.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
gm_canIRequestGroupAttrModification.wsdl

Parameters

uid The DN of the group whose attribute you want to change.

Rules: Required. Single value, a DN.

targetAttribute The schema name (not the display name) for the desired
attribute.

Rules: Required. Single value, a string.

Function name canICreateGroup

Request example: <oblix:request application="groupservcenter"
function="canICreateGroup" version="NPWSDL1.0">

Description: Verifies that you can create a new group.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
gm_canICreateGroup.wsdl

Parameters

ObDomainName A subtree within which a test is being requested.

Rules: Optional. Single value, a DN.

Default: If no value is provided, the Identity System checks to
see if you have the tested rights in any domain.

Objectclass The auxiliary object class(es), if any, within which the group is to
be created. This applies only to Group Manager, where the
auxiliary object classes correspond to the group types.

You find the values for these using Identity System Console,
Group Manager Configuration, Group Types, Configure Group
Type Panels. Select the group, and find the Associated
ObjectClass name displayed.

Rules: Optional. Multivalued.

Function name canIDeleteGroup

Request example: <oblix:request application="groupservcenter"
function="canIDeleteGroup" version="NPWSDL1.0">

Description: Verifies that you can delete an existing group.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
gm_canIDeleteGroup.wsdl

Parameters

uid The DN of an entry you want to modify.

Rules: Required. Single value, a DN.

Function name canIRequestGroupAttrModification

Group Manager Functions

2-52 Oracle Access Manager Developer Guide

Can I subscribe to a group

Can I unsubscribe from a group

Am I a member of a group

Function name canISubscribeToGroup

Request example: <oblix:request application="groupservcenter"
function="canISubscribetoGroup"
version="NPWSDL1.0">

Description: Verifies that you can subscribe to a specific group.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
gm_canISubscribeToGroup.wsdl

Parameters

uid The DN of the group to which you want to subscribe.

Rules: Required. Single value, a DN.

Function name canIUnsubscribeFromGroup

Request example: <oblix:request application="groupservcenter"
function="canIUnSubscribeFromGroup"
version="NPWSDL1.0">

Description: Verifies that you can unsubscribe from a specific group.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
gm_canIUnSubscribeFromGroup.wsdl

Parameters

uid The DN of the group from which you want to unsubscribe.

Rules: Required. Single value, a DN.

Function name amIAMember

Request example: <oblix:request application="groupservcenter"
function="amIAMember" version="NPWSDL1.0">

Description: Use this function to determine if the logged in user is a member
of any group. It checks for static membership by default. If you
also want to test the nested or dynamic membership, you need to
use the optional flags as described in the "Parameters" section of
this table. Use the function memberOfAGroup to determine
third-person group membership.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
gm_amIAMember.wsdl

Parameters

uid The DN of the entry you want to query.

Rules: Required. Single value, a DN.

checkNested Set this parameter to true to check nested groups for membership.

Rules: Optional. Single-valued, a flag.

Default: false.

Group Manager Functions

IdentityXML Functions and Parameters 2-53

Can a user view a group's profile

Can a user view an attribute in a group's profile

checkDynamic Set this parameter to true to check dynamic groups for
membership.

Rules: Optional. Single-valued, a flag.

Default: false.

Function name canUserViewGroupProfile

Request example: <oblix:request application="groupservcenter"
function="canUserViewGroupProfile"
version="NPWSDL1.0">

Description: Verifies that a non-logged in user can view a group’s profile.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
gm_canUserViewGroupProfile.wsdl

Parameters

uid The DN of the group whose profile you want to view.

Rules: Required. Single value, a DN.

proxysourceuid The DN for a non-logged-in user (proxy user) whose access rights
are being tested.

Though it is outside the intent of functions using this parameter,
DNs other than those of users can be used.

Rules: Required. Single value, a DN.

Function name canUserViewGroupProfileAttr

Request example: <oblix:request application="groupservcenter"
function="canUserViewGroupProfileAttr"
version="NPWSDL1.0">

Description: Verifies that a non-logged in user can view a particular attribute
in a group’s profile.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
gm_canUserViewGroupProfileAttr.wsdl

Parameters

uid The DN of the group whose attribute you want to view.

Rules: Required. Single value, a DN.

proxysourceuid The DN for a non-logged-in user (proxy user) whose access rights
are being tested.

Though it is outside the intent of functions using this parameter,
DNs other than those of users can be used.

Rules: Required. Single value, a DN.

targetAttribute The schema name (not the display name) for the desired attribute.

Rules: Required. Single value, a string.

Function name amIAMember

Group Manager Functions

2-54 Oracle Access Manager Developer Guide

Can a user modify an attribute in a group profile using a workflow

Can a user create a new group

Can a user delete an existing group

Function name canUserRequestGroupAttrModification

Request example: <oblix:request application="groupservcenter"
function="canUserRequestGroupAttrModification"
version="NPWSDL1.0">

Description: Verifies that a non-logged in user can request a change to a
particular attribute in a group’s profile, using a workflow.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
gm_canUserRequestGroupAttrModification.wsdl

Parameters

uid The DN of the group whose attribute you want to modify.

Rules: Required. Single value, a DN.

proxysourceuid The DN for a user (proxy user) whose access rights are being
tested.

Rules: Required. Single value, a DN.

targetAttribute The schema name (not the display name) for the desired attribute.

Rules: Required. Single value, a string.

Function name canUserCreateGroup

Request example: <oblix:request application="groupservcenter"
function="canUserCreateGroup"
version="NPWSDL1.0">

Description: Verifies that a non-logged in user can create a new group.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
gm_canUserCreateGroup.wsdl

Parameters

proxysourceuid The DN for a user (proxy user) whose rights are being tested.

Rules: Required. Single value, a DN.

ObDomainName A subtree within which a test is being requested.

Rules: Optional. Single value, a DN.

Default: if no value is provided, the Identity System checks to see
if you have the tested rights in any domain.

Function name canUserDeleteGroup

Request example: <oblix:request application="groupservcenter"
function="canUserDeleteGroup"
version="NPWSDL1.0">

Description: Verifies that a non-logged in user can delete an existing group.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
gm_canUserDeleteGroup.wsdl

Parameters

Group Manager Functions

IdentityXML Functions and Parameters 2-55

Is this person a member of a group

Request group attribute change

proxysourceuid The DN for a non-logged-in user (proxy user) whose access rights
are being tested.

Rules: Required. Single value, a DN.

uid The DN of the entry.

Rules: Optional. Single value, a DN.

Function name memberOfAGroup

Request example: <oblix:request application="groupservcenter"
function="memberOfAGroup" version="NPWSDL1.0">

Description: Third-person IdentityXML request to check a person's
membership to a particular group. It checks for static
membership by default. If you also want to test the nested or
dynamic membership, you need to use the optional flags as
described in the "Parameters" section of this table. You will need
to have view access for the dynamic filter attribute.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
gm_memberOfAGroup.wsdl

Parameters

proxysourceuid The DN for a non-logged-in user (proxy user) whose access rights
are being tested.

Rules: Required. Single value, a DN.

uid The DN of the entry.

Rules: Required. Single value, a DN.

checkNested Set this parameter to true to check nested groups for
membership.

Rules: Optional. Single-valued, a flag.

Default: false

checkDynamic Set this parameter to true to check dynamic groups for
membership.

Rules: Optional. Single-valued, a flag.

Default: false.

Function name canUserModifyGroupProfileAttr

Request example: <oblix:request application="groupservcenter"
function="canUserModifyGroupProfileAttr"
version="NPWSDL1.0">

Description: Verifies that a non-logged in user can change a particular attribute
in a group’s profile.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
gm_canUserModifyGroupProfileAttr.wsdl

Parameters

Function name canUserDeleteGroup

Group Manager Functions

2-56 Oracle Access Manager Developer Guide

Request group attribute change through a workflow
See "Request user attribute change through a workflow" on page 2-36. Note that the
application name is groupservcenter.

Functions to Perform Group Manager Actions
The following IdentityXML functions allow you to perform the following actions.
These are get and set functions.

View group attributes
See "View user attributes" on page 2-31. Note that the application name is
groupservcenter.

Modify Group attributes

uid The DN of the group whose attribute you want to modify.

Rules: Required. Single value, a DN.

proxysourceuid The DN for a non-logged-in user (proxy user) whose access rights
are being tested.

Rules: Required. Single value, a DN.

targetAttribute The schema name (not the display name) for the desired attribute.

Rules: Required. Single value, a string.

Function name modifyGroup

Request example: <oblix:request
application="groupservcenter"
function="modifyGroup" version="NPWSDL1.0">

Description: Use this function to change group attributes.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
gm_modifyGroup.wsdl

Parameters

uid The DN of the group whose attributes are to be changed.

Rules: Required. Single value, a DN.

attrName Required. See "Attribute Parameters" on page 2-5 for
details.

attrOperation Required. See "Attribute Parameters" on page 2-5 for
details.

attrNewValue Required. See "Attribute Parameters" on page 2-5 for
details.

noOfFields Required. See "Attribute Parameters" on page 2-5 for
details.

Function name canUserModifyGroupProfileAttr

Group Manager Functions

IdentityXML Functions and Parameters 2-57

Create group
See "Create User Using a Workflow" on page 2-41. Note that the application name is
groupservcenter.

ObAuxClassesOldValues The old values of the auxiliary class names that you want
to replace. This is used only to change the name
information for auxiliary classes associated with groups.
Use this parameter once for each auxiliary class name to
be removed.

If you attempt to specify a value for which you do not
have access, you will get an error message "Invalid value
for attributeObAuxClasses."

You find the values for these using the Identity System
Console, Group Manager Configuration, Group Types,
Configure Group Type Panels. Select the group, and find
the Associated ObjectClass name displayed.

Rules: Required only if the attribute is for an auxiliary
class and the ObAuxClassesOperation is a REPLACE,
otherwise ignored. Multivalued.

ObAuxClassesOperation The type of operation to perform on the attribute. This is
used only to change the name information for auxiliary
classes.

Legal values are:

ADD: Add the auxiliary class name to the existing
attributes.

DELETE: Delete the auxiliary class name from the existing
attributes.

REPLACE: Delete the old auxiliary class name and replace
it with the new auxiliary class name.

If you specify any other value or no value, you will get an
error message "Invalid value for attribute ObAuxClasses."

Rules: Required only if the attribute is for an auxiliary
class. Single value.

ObAuxClassesValues The name of the auxiliary class that you want to add,
delete, or replace. This is used only to change the name
information for auxiliary classes.

Use this parameter once for each auxiliary class name to
be added or removed.If you attempt to specify a value for
which you do not have access, you will get an error
message "Invalid value for attributeObAuxClasses".

To find the values for these, use the Identity System
Console, Group Manager Configuration, Group Types,
Configure Group Type Panels. Select the group, and find
the Associated ObjectClass name.

Rules: Required if the attribute is for an auxiliary class.
Multivalued. Valid values are the string names of the
configured auxiliary classes available. (Auxiliary classes
are configured through the System Console Configure
Object Class function, see the Oracle Access Manager
Administration Guide.)

attrOldValue Optional/Required. Required only if the attrOperation is a
REPLACE. This needs to be an exact match. If not, no
change takes place.

See "Attribute Parameters" on page 2-5 for details.

Function name modifyGroup

Group Manager Functions

2-58 Oracle Access Manager Developer Guide

Delete Group

Get groups that I am a member, owner, or administrator of

Function name delete (group)

Request example: <oblix:request application="groupservcenter"
function="delete" version="NPWSDL1.0">

Description: Use this function to delete a group. You have very little control
over this function, beyond specifying the name of the group.
Determination of the workflow to be used is made by the
application. The workflow selected satisfies all of the following: 1)
the target domain contains the group entry; 2) you are a
participant in the initiate step of the workflow, and 3) the group
types of the group to be deleted are a subset of the group types in
the workflow definition.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\ gm_delete.wsdl

Parameters

uid Rules: Required. Single value, a DN.

Function name myGroupsProfile

Request example: <oblix:request
application="groupservcenter"
function="myGroupsProfile"
version="NPWSDL1.0">

Description: Use this function to get the profiles for groups you are a
member, owner or an administrator of. Parameters used
here override the configured Group Manager Options.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
gm_myGroupsProfile.wsdl

Parameters

attrName Optional. See "Attribute Parameters" on page 2-5 for
details.

showAdministratorOfGroups Use this parameter to ask for groups you, or another user,
are an administrator of to be included in the response.

Rules: Optional. At least one of the parameters in the
showxxx list must be used. Single value, Boolean, true or
false.

Default: false

showDynamicGroups Use this parameter to ask for groups you, or another user,
are a dynamic member of to be included in the response.

showMemberOfGroups must also be used, set to true.

Rules: Optional. Single value, Boolean, true or false.

Default: false.

showMemberOfGroups Use this parameter to ask for groups that you, or another
user, are a member of to be included in the response.

Rules: Optional. Single value, Boolean, true or false.

Default: false—Optional.

Group Manager Functions

IdentityXML Functions and Parameters 2-59

Get groups that a user is a member, owner, or administrator of

showNestedGroups Use this parameter to ask for nested groups you, or
another user, are a member of to be included in the
response. showMemberOfGroups must also be used, set to
true. And one or both of showStaticGroups and
showDynamicGroups must also be used, set to true.

Rules: Optional. Single value, Boolean, true or false.

Default: false

showOwnerOfGroups Use this parameter to ask for groups you, or another user,
are an owner of to be included in the output.

Rules: Optional. Single value, Boolean, true or false.

Default: false

showStaticGroups Use this parameter to ask for groups you, or another user,
are a static member of to be included in the response.

showMemberOfGroups must also be used, set to true.

Rules: Optional. Single value, Boolean, true or false.

Default: false

Note: The show... options do not all have the same precedence. The
parameters showOwnerOfGroups and showAdministratorOfGroups
will always be applied if entered.

The parameter showMemberOfGroups must be set to true to use
showStaticGroups, showDynamicGroups, and showNestedGroups.
The showNestedGroups parameter can only be set to true if either or
both of the nested group categories showStaticGroups and
showDynamicGroups is set to true.The IdentityXML request uses
these options instead of the configured Group Manager options that
may have been set using the System Console.

Function name userGroupsProfile

Request example: <oblix:request
application="groupservcenter"
function="userGroupsProfile"
version="NPWSDL1.0">

Description: Use this function to get the profiles for groups that another
user is a member, owner or an administrator of.

Rights: The logged-in user must be able to grant read capability
on the proxysourceuid classname attribute.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
gm_userGroupsProfile.wsdl

Parameters

proxysourceuid The DN for a non-logged-in user (proxy user) whose
group profile you want.

Rules: Required. Single value, a DN.

attrName Optional. See "Attribute Parameters" on page 2-5 for
details.

Function name myGroupsProfile

Group Manager Functions

2-60 Oracle Access Manager Developer Guide

Example 2–17 illustrates getting the groups that a user is a member, owner, or
administrator of.

Example 2–18 Example of Getting the Groups that a User is a Member, Owner, or
Administrator Of

<?xml version="1.0"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas-xmlsoap.org/soap/envelope/"
 xmlns:oblix="http://www.oblix.com">
<SOAP-ENV:Body>
<oblix:request function="userGroupsProfile" mode="dataonly">
<oblix:params>
<oblix:param name="proxysourceuid">cn=dummyuser,o=Person,c=ES</oblix:param>
<oblix:param name="showMemberOfGroups">true</oblix:param>
<oblix:param name="showNestedGroups">true</oblix:param>
</oblix:params>
</oblix:request>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

showAdministratorOfGroups Use this parameter to ask for groups you, or another user,
are an administrator of to be included in the response.

Rules: Optional. At least one of the parameters in the
showxxx list must be used. Single value, Boolean, true or
false.

Default: false

showDynamicGroups Use this parameter to ask for groups you, or another user,
are a dynamic member of to be included in the response.

showMemberOfGroups must also be used, set to true.

Rules: Optional. Single value, Boolean, true or false.

Default: false.

showMemberOfGroups Use this parameter to ask for groups that you, or another
user, are a member of to be included in the response.

Rules: Optional. Single value, Boolean, true or false.

Default: false—Optional.

showNestedGroups Use this parameter to ask for nested groups you, or
another user, are a member of to be included in the
response. showMemberOfGroups must also be used, set to
true. And one or both of showStaticGroups and
showDynamicGroups must also be used, set to true.

Rules: Optional. Single value, Boolean, true or false.

Default: false

showOwnerOfGroups Use this parameter to ask for groups you, or another user,
are an owner of to be included in the output.

Rules: Optional. Single value, Boolean, true or false.

Default: false

showStaticGroups Use this parameter to ask for groups you, or another user,
are a static member of to be included in the response.

showMemberOfGroups must also be used, set to true.

Rules: Optional. Single value, Boolean, true or false.

Default: false

Function name userGroupsProfile

Group Manager Functions

IdentityXML Functions and Parameters 2-61

View group members

Function name viewGroupMembers

Request example: <oblix:request
application="groupservcenter"
function="viewGroupMembers"
version="NPWSDL1.0">

Description: View all or selected members of a group. To get selected
members of the group, you use the SearchAttr,
SearchOperation, or SearchString parameters. You may
use only one set. The length of the string value provided
for SStn or SearchString must be at greater than or equal to
the value for the
groupMemberSearchStringMiminumLength parameter in
the groupservcenterparams.xml file. If you set this value
to zero, you do not need to use the SLkn, SStn, and STyn
parameters or the SearchAttr, SearchOperation, and
SearchString parameters, and all members of the group are
returned in the search.

This function gets all or some members of the specified
group. The search is allowed only on one field. You can
only have only one triplet of STy1, SLk1 and SSt1 or
SearchString, SearchOperation, and SearchAttr. If you
don’t specify any search parameters, this function returns
all members of the group if the administrator has set the
minimum search length to be 0 through the
groupMemberSearchStringMiminumLength parameter in
the Identity
Server/oblix/apps/groupservcenter/bin/groupservcenter
params.xml file. If this is set to 0, then the search returns
all the members of the group. If this is not 0, then the
search triplet must be specified, plus the string to search
for (as specified through SSt1) should have at least the
same number of characters as specified by the
groupMemberSearchStringMiminumLength parameter.

In order to view group members, the access control
requirements are the following:

1. To view any members (Static, Dynamic, Nested), you
need to have View right on the Member attribute.

2. To view Dynamic members, you also need to have View
right on the "Dynamic Filter" attribute.

Rights: To view any members (Static, Dynamic, Nested), you need
to have the View right on the Member attribute. To view.
Dynamic members, you must additionally have the View
right on the Dynamic Filter attribute.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
gm_viewGroupMembers.wsdl

Parameters

uid The DN of the group whose members are to be listed.

Rules: Required. Single value, a DN.

attrName Optional. Use one or more instances of this to specify the
attributes that you want to see for each group member.
Use the LDAP name of each attribute, not its display
name. If you do not specify particular attributes the
default is to show the class attribute of the person object
class. See "Attribute Parameters" on page 2-5 for details.

Group Manager Functions

2-62 Oracle Access Manager Developer Guide

Expand group

memberIDsOnly Optional. Values are true or false. If you set this flag, only
the class attribute is returned even if other attributes are
requested. This limitation exists because The Identity
System reads the data from the cache rather than the
directory. This feature only takes affect after the first
request, after all caches are initialized. The advantage of
this flag is that directory hits are minimized.

When this flag is set to true, attributes requested with the
attrName parameter are ignored, with the exception of the
class attribute and attributes matching any search criteria.

Rules: Optional. Boolean, true or false.

Default: false.

showDynamicUserMembers Specifies whether dynamic members of a group are to be
included in the response.

Rules: Optional. At least one of the show parameters in the
list must be used and be set to true. Single value, Boolean,
true or false.

Default: false.

showNestedUserMembers Specifies whether nested members of a group are to be
included in the response.

Rules: Optional. Single value, Boolean, true or false.

Default: false

showStaticUserMembers Optional.

SearchAttr Required. See "Search Parameters" on page 2-3 for details.

SearchOperation Required. See "Search Parameters" on page 2-3 for details.

SearchString Required. See "Search Parameters" on page 2-3 for details.

groupMemberType Specifies the type of members that you want to view, for
example "user" or "group". The value is the LDAP name of
the object class that contains the type of objects you want
to view. This is a single-valued attribute. You can only
retrieve one type of group member at a time. Nested and
dynamic evaluation is performed only for members who
are users. Nested and dynamic evaluation is not
performed for members that are groups or generic objects.

Rules: Required.

Function name expandGroup

Request example: <oblix:request application="groupservcenter"
function="expandGroup" version="NPWSDL1.0">

Description: Expands a dynamic group into its current static members.

Rights: To expand a group, the user must have the view rights for the
group name and for the attributes Group Dynamic Filter and
Group Expansion, and modify rights for the Member
attribute. Group Dynamic Filter is the attribute that is of
semantic type, dynamic filter. The Group Expansion attribute
is the attribute of type, obgroupexpandeddynamic in the
oblixadvancedgroup auxiliary objectclass. Member is the
attribute that is of semantic type, Static Member.

Function name viewGroupMembers

Group Manager Functions

IdentityXML Functions and Parameters 2-63

Flush the Group Cache

Subscribe a user to a group

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
gm_expandGroup.wsdl

Parameters

groupsToExpand A target group you want to expand. One or the other of these
must be provided.

Rules: Optional. Multivalued, a DN.

expandAllGroups Expands all groups that you have rights to expand. If set to
true, then all such groups are expanded. If set to false, then
only the groups specified with the groupsToExpand
parameter are expanded.

Rules: Optional. Single value, Boolean, true or false.

Default: false

Function name flushGroupCache

Request example: <oblix:request application="groupservcenter"
function="flushGroupCache"
version="NPWSDL1.0">

Description: Use this function to remove groups from the group cache. One
of the two parameters shown in the "Parameters" section of
this table must be provided.

Rights: To flush the group cache, the user must be a Master
Administrator.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
gm_flushGroupCache.wsdl

Parameters

flushGroup Optional. Removes from the group cache those groups whose
dn is specified as a value.

flushGroupAll Optional.Removes all groups from the group cache if value =
true.

Function name subscribeUserToGroup

Request example: <oblix:request application="groupservcenter"
function="subscribeUserToGroup"
version="NPWSDL1.0">

Description: Add (subscribe) a user other than yourself to a group. The
other user does not need to be logged in. The response returns
the profile for the group.

Results: The output is the profile of the group, defined by the schema
file oblix\WebServices\XMLSchema\gsc_groupprofile.xsd.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
gm_subscribeUserToGroup.wsdl

Parameters

Function name expandGroup

Organization Manager Functions

2-64 Oracle Access Manager Developer Guide

Organization Manager Functions
If you are an administrator, the Organization Manager enables you to create and delete
organizations and other objects (such as floor plans and assets) that do not belong in
the User Manager or Group Manager. The Organization Manager enables end users to
view organizational entities such as floor plans. The organizational entities that a
person can view depend upon the rights granted by a Master Administrator.

The following IdentityXML functions allow you to programmatically access the
Organization Manager. Note that all functions follow a similar syntax:

<oblix:request application="objservcenter" function="name" version="version">

For example:

<oblix:request application="objservcenter" function="canIViewObjectProfile"
version="NPWSDL1.0">

Functions to Test For Attribute Permissions
The following functions provide a yes or no response as to whether you or another
user have read, write, delegate, and notify permissions set for a particular attribute.

Can I view an object's profile

uid The DN of the group being subscribed to. This DN must fall
under the searchbases of the logged-in user.

Rules: Required. Single value, a DN.

proxysourceuid The DN for a non-logged-in user who is subscribing to the
group. This DN must fall under the searchbases of the
logged-in user

Rules: Required. Single value, a DN.

Note: The version tag is required if you are using IdentityXML with
Oracle Access Manager 6.5 and higher versions.

For documentation of the pre-6.5 IdentityXML version tag, see the
following:

http://www.oracle.com/technology/

Function name canIViewObjectProfile

Request example: <oblix:request application="objservcenter"
function="canIViewObjectProfile"
version="NPWSDL1.0">

Description: Verifies that you can view an organization’s profile.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
om_canIViewObjectProfile.wsdl

Parameters

uid The DN of the organization whose profile you want to
view.

Rules: Required. Single value, a DN.

Function name subscribeUserToGroup

Organization Manager Functions

IdentityXML Functions and Parameters 2-65

Can I view an attribute in the object's profile

Can I modify an attribute in an object's profile

Can I request modification through a workflow of an attribute in an object's profile

Function name canIViewObjectProfileAttr

Request example: <oblix:request application="objservcenter"
function="canIViewObjectProfileAttr"
version="NPWSDL1.0">

Description: Verifies that you can view a particular attribute in an
organization’s profile.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
om_canIViewObjectProfileAttr.wsdl

Parameters

uid The DN of the organization whose attribute you want to
view.

Rules: Required. Single value, a DN.

targetAttribute The schema name (not the display name) for the desired
attribute.

Rules: Required. Single value, a string.

Function name canIModifyObjectProfileAttr

Request example: <oblix:request application="objservcenter"
function="canIModifyObjectProfile"
version="NPWSDL1.0">

Description: Verifies that you can change a particular attribute in an
organization’s profile.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
om_canIModifyObjectProfileAttr.wsdl

Parameters

uid The DN of the organization whose attribute you want to
change.

Rules: Required. Single value, a DN.

targetAttribute The schema name (not the display name) for the desired
attribute.

Rules: Required. Single value, a string.

Function name canIRequestObjectAttrModification

Request example: <oblix:request application="objservcenter"
function="canIRequestObjectAttrModification"
version="NPWSDL1.0">

Description: Verifies that you can change a particular attribute in an
organization’s profile, using a workflow.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
om_canIRequestObjectAttrModification.wsdl

Parameters

Organization Manager Functions

2-66 Oracle Access Manager Developer Guide

Can I create a new object

Can I delete an existing object

Can this user view an object's profile

uid The DN of the organization whose attribute you want to
change.

Rules: Required. Single value, a DN.

targetAttribute The schema name (not the display name) for the desired
attribute.

Rules: Required. Single value, a string.

Function name canICreateObject

Request example: <oblix:request application="objservcenter"
function="canICreateObject"
version="NPWSDL1.0">

Description: Verifies that you can create a new organization.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
om_canICreateObject.wsdl

Parameters

ObDomainName A subtree within which a test is being requested.

Rules: Optional. Single value, a DN.

Default: If no value is provided, the Identity System checks
to see if you have the tested rights in any domain.

Function name canIDeleteObject

Request example: <oblix:request application="objservcenter"
function="canIDeleteObject"
version="NPWSDL1.0">

Description: Verifies that you can delete an existing object.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
om_canIDeleteObject.wsdl

Parameters

uid Rules: Required. Single value, a DN.

Function name canUserViewObjectProfile

Request example: <oblix:request application="objservcenter"
function="canUserViewObjectProfile"
version="NPWSDL1.0">

Description: Verifies that a non-logged in user can view an organization’s
profile.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
om_canUserViewObjectProfile.wsdl

Parameters

Function name canIRequestObjectAttrModification

Organization Manager Functions

IdentityXML Functions and Parameters 2-67

Can this user view an attribute in an object's profile

Can a user modify an attribute in an object's profile

uid The DN of the organization whose profile you want to view.

Rules: Required. Single value, a DN.

proxysourceuid The DN for a non-logged-in user (proxy user) whose access
rights are being tested.

Rules: Required. Single value, a DN.

Function name canUserViewObjectProfileAttr

Request example: <oblix:request application="objservcenter"
function="canUserViewObjectProfileAttr"
version="NPWSDL1.0">

Description: Verifies that a non-logged in user can view a particular
attribute in an organization’s profile.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
om_canUserViewObjectProfileAttr.wsdl

Parameters

uid The DN of the organization whose attribute you want to
view.

Rules: Required. Single value, a DN.

proxysourceuid The DN for a non-logged-in user (proxy user) whose access
rights are being tested.

Rules: Required. Single value, a DN.

targetAttribute The schema name (not the display name) for the attribute.

Rules: Required. Single value, a string.

Function name canUserModifyObjectProfileAttr

Request example: <oblix:request application="objservcenter"
function="canUserModifyObjectProfileAttr"
version="NPWSDL1.0">

Description: Verifies that a non-logged in user can change a particular
attribute in an organization’s profile.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
om_canUserModifyObjectProfileAttr.wsdl

Parameters

uid The DN of the object whose attribute you want to modify.

Rules: Required. Single value, a DN.

proxysourceuid The DN for a non-logged-in user (proxy user) whose access
rights are being tested.

Rules: Required. Single value, a DN.

targetAttribute The schema name (not the display name) for the desired
attribute.

Rules: Required. Single value, a string.

Function name canUserViewObjectProfile

Organization Manager Functions

2-68 Oracle Access Manager Developer Guide

Can a user create a new object

Can a user delete an existing object

Can this user request an object attribute modification

Function name canUserCreateObject

Request example: <oblix:request application="objservcenter"
function="canUserCreateObject"
version="NPWSDL1.0">

Description: Verifies that a non-logged in user can create a new object.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\om_canUse
rCreateObject.wsdl

Parameters

proxysourceuid The DN for a non-logged-in user (proxy user) whose access
rights are being tested.

Rules: Required. Single value, a DN.

ObDomainName A subtree within which a test is being requested.

Rules: Optional. Single value, a DN.

Default: if no value is provided, the Identity System checks
to see if you have the tested rights in any domain.

Function name canUserDeleteObject

Request example: <oblix:request application="objservcenter"
function="canUserDeleteObject"
version="NPWSDL1.0">

Description: Verifies that a non-logged in user can delete
an existing organization.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
om_canUserDeleteObject.wsdl

Parameters

proxysourceuid The DN for a non-logged-in user (proxy user) whose access
rights are being tested.

Rules: Required. Single value, a DN.

uid Rules: Required. Single value, a DN.

Function name canUserViewObjectAttrModification

Request example: <oblix:request application="objservcenter"
function="canUserRequestObjectAttrModification"
version="NPWSDL1.0">

Description: Verifies that a non-logged in user can request a change to a
particular attribute in an object profile using a workflow.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
om_canUserRequestObjectAttrModification.wsdl

Parameters

uid The DN of the object whose attribute you want to modify.

Rules: Required. Single value, a DN.

Organization Manager Functions

IdentityXML Functions and Parameters 2-69

Functions to Perform Organization Manager Actions
The following functions allow you to perform actions in the Organization Manager.
These are get and set functions.

View object attributes
See "View user attributes" on page 2-31 for details.

Modify object attributes

Request object attribute change through a workflow
See "Request user attribute change through a workflow" on page 2-36.

Create an object
See "Create User Using a Workflow" on page 2-41 for details.

Self-registration
See "Self-Registration Using a Workflow" on page 2-44 for details.

proxysourceuid The DN for a non-logged-in user (proxy user) whose access
rights are being tested.

Rules: Required. Single value, a DN.

targetAttribute The schema name (not the display name) for the desired
attribute.

Rules: Required. Single value, a string.

Function name modifyObject

Request example: <oblix:request application="objservcenter"
function="modifyObject" version="NPWSDL1.0">

Description: Use this function to modify object attributes.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
om_modifyObject.wsdl

Parameters

uid The DN of the object whose attributes are to be changed.

Rules: Required. Single value, a DN.

attrName Optional. If no attrNames are specified, all the attributes of
the entry that the caller has access to view are returned. This
parameter is useful when you want to modify a few attributes
and only want those attributes back in the result of a modify
call. This can save on performance when the profile contains a
large number of attributes. See "Attribute Parameters" on
page 2-5 for details.

attrOperation Required. See "Search Parameters" on page 2-3 for details.

attrNewValue Required. See "Attribute Parameters" on page 2-5 for details.

NoOfFields Required. See "Attribute Parameters" on page 2-5 for details.

attrOldValue Required/Optional. Required only if the attrOperation is a
REPLACE.

Function name canUserViewObjectAttrModification

Code Examples of Deployed IdentityXML Functions

2-70 Oracle Access Manager Developer Guide

Delete object

Code Examples of Deployed IdentityXML Functions
The following sections provide examples of how IdentityXML can be packaged and
deployed.

Java Application Example
Example 2–19 sends a SOAP message contained in a file to a Identity System
application using HTTP.

The code for this example is located in:

Component_install_dir\identity\oblix\unsupported\integsvs\

Example 2–19 illustrates the basics of IdentityXML programming. For instance, the
Identity System can be scripted using techniques like this. You can write small
programs that do one thing, such as transmit a pre-composed message, and glue them
together in Perl or shell scripts to perform more complex tasks with the Identity
System. The intelligence concerning the message contents need not be part of the
IdentityXML client.

Function name delete (organization)

Request example: <oblix:request application="objservcenter"
function="delete" version="NPWSDL1.0">

Description: Use this function to delete an organization.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
om_delete.wsdl

Parameters

uid The DN of the group or whose attributes are to be changed.

Rules: Required. Single value, a DN.

ObWorkflowName The name of the workflow that you want to use to create or
change the value(s) for an attribute.

Find the full DN for ObWorkflowName under the view
menu for workflow definition under the particular
application.

Rules: Required. Single value, a DN.

ObWfComment Provides a comment for a step in a workflow.

Rules: Optional. Single value, string.

NoOfFields Optional. Required. See "Attribute Parameters" on page 2-5
for details.

attrName Optional. The attribute specified should be an attribute
configured in the Identity System console, and it should be
part of one of the panels configured for the View Profile of
the user, group, or organization. Otherwise, it is considered
invalid. See "Attribute Parameters" on page 2-5 for details.

attrValue See "Attribute Parameters" on page 2-5 for details.

attrNewValue Required. See "Attribute Parameters" on page 2-5 for details.

attrOldValue Optional/Required. Required only if the attrOperation is a
REPLACE.

Code Examples of Deployed IdentityXML Functions

IdentityXML Functions and Parameters 2-71

Example 2–19 Java Example to Query the Identity System using SOAP

/**
 * This is a very simple SOAP example of how to invoke Oracle Access Manager
 * through SOAP.
 *
 * This program will make a soap request (send the request in soap.xml)
 * to the argument hostname:port/oblix/apps/corpdir/bin/corpdir.cgi
 *
 * Requirements:
 * *** ObSoapClient, a complete http client library from innovation, is
 * required to run this test. The software is free, and licensed under the
 * GNU Lesser General Public License.
 * HTTPClient is available at http://www.innovation.ch/java/HTTPClient
 * This program has been tested with HTTPClient Version 0.3-2
 *
 * To run:
 * *** java ObSoapClient [-h hostname] [-p port] [-f inputfile] [-u oblixurl]
 *
 */

import java.net.URL;
import java.io.IOException;
import java.io.FileReader;
import java.io.BufferedReader;
import HTTPClient.CookieModule;
import HTTPClient.HTTPConnection;
import HTTPClient.HTTPResponse;
import HTTPClient.ModuleException;
import HTTPClient.NVPair;

public class ObSoapClient
{
static String hostname = "sunlight.oracle.com";
static String filename = "soap.xml";
static int port = 80;
static String oburl =
"/identity/oblix/apps/userservcenter/bin/userservcenter.cgi";

public static void collectArgs(String args[])
{
for (int i = 0; i < args.length; i++) {
if (args[i].equals("-h") && args.length >= i+1)
hostname = args[i+1];
else if (args[i].equals("-f") && args.length >= i+1)
filename = args[i+1];
else if (args[i].equals("-p") && args.length >= i+1)
port = Integer.parseInt(args[i+1]);
else if (args[i].equals("-u") && args.length >= i+1)
oburl = args[i+1];
else if (args[i].equals("-h") || args[i].equals("-help")) {
System.out.println("Usage: java ObSoapClient [-h hostname] [-p port] [-f filename]
[-u oblixurl] \n");
}
}
}

/**
 * Read from soap.xml in current directory and return as string.
 */
public static String getRequestFromFile()

Code Examples of Deployed IdentityXML Functions

2-72 Oracle Access Manager Developer Guide

{
StringBuffer data = new StringBuffer();
try {
BufferedReader reader = new BufferedReader(new FileReader(filename));

for (String line = reader.readLine(); line != null;
line = reader.readLine()) {
data.append(line);
data.append("\r\n");
}
} catch (Exception e) {
System.out.println(e.toString());
}
return data.toString();
}

public static void main(String args[]) throws Exception
{
try {
CookieModule.setCookiePolicyHandler(null);

// initiate connection
collectArgs(args);
HTTPConnection con = new HTTPConnection(hostname, port);

// collect response
NVPair header[] = new NVPair[1];
header[0] = new NVPair("Content-Type", "text/xml");
HTTPResponse rsp =
con.Post(oburl,
getRequestFromFile(),
header);

// get status and act accordingly
if (rsp.getStatusCode() >= 300) {
System.err.println("Received Error: "+rsp.getReasonLine());
System.err.println(new String(rsp.getData()));
} else
System.out.println(new String(rsp.getData()));
} catch (IOException ioe) {
System.err.println(ioe.toString());
} catch (ModuleException me) {
System.err.println("Error handling request: " + me.getMessage());
} catch (Exception e) {
System.out.println(e.toString());
}
}

}

/*
NVPair form_data[] = new NVPair[2];

form_data[0] = new NVPair("login", "J.Smith");
form_data[1] = new NVPair("password", "J.Smith");
//form_data[2] = new NVPair("uid",
//"cn=John Smith,ou=Corporate,o=Company,c=US");
//form_data[3] = new NVPair("program", "personPage");
//form_data[4] = new NVPair("tab_id", "Employees");

Code Examples of Deployed IdentityXML Functions

IdentityXML Functions and Parameters 2-73

//HTTPResponse rsp = con.Post("/oblix/apps/corpdir/bin/corpdir.cgi", form_data);

*/
You should inspect the files, copy the one you wish to send into the current directory
of the application, and modify the request parameters within the XML file to specify
parameters that make sense for your directory (such as valid uid for a view request).
Make sure you have that HTTPClient package from Innovation in your CLASSPATH.
Then send the request with the following command:

java Lookup -f inputfile [-h hostname] [-p port][-u oblixurl]

Java Servlet Example
This example builds on the previous one. This example is a Java Servlet that runs
within a Web or application server. Since simply printing out the result is not useful
for a servlet, this one shows a simple example of using an Identity System attribute
value to dynamically generate an HTML page. The servlet assumes your SOAP
message invokes the User Manager view program, and gets user profile data as a
response. It then uses the JAXP XML parser to parse the SOAP message containing the
user profile, and extracts the email address attribute for the user being viewed.

If you log into User Manager before running this servlet, and edit the email attribute
for the user you are going to look up so that it reads red or green, you will see that the
value is used by the servlet in generating the resulting HTML page. It uses this value
for the BGCOLOR attribute of the BODY element on the page, as well as printing it
out. If you specify a valid color or #RRGGBB value, the page is displayed in that color.

The servlet assumes the following request to view a user profile from User Manager.
This request, and many other examples, are installed in:

unsupported/integsvcs/um_view.xml

You should copy and modify the request file to specify a valid user uid for your
directory. Make sure to put it in the current working directory for the servlet, or
specify the full path when reading the file.

Example 2–20 is an example request file.

Example 2–20 Request File Example

<?xml version="1.0" ?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas-xmlsoap.org/soap/envelope/"
xmlns:oblix="http://www.oblix.com">

<SOAP-ENV:Body>
<oblix:authentication xmlns:oblix="http://www.oblix.com" type="basic">
<oblix:login>user1k1</oblix:login>
<oblix:password>oblix</oblix:password>
</oblix:authentication>

<oblix:request function="view" version="NPWSDL1.0">
<oblix:params>
<oblix:uid>cn=Rohit Valiveti,ou=Sales, ou=Dealer1k1,ou=Latin America,
ou=Ford,o=Company,c=US</oblix:uid>
<oblix:attrName>mail</oblix:attrName>
</oblix:params>
</oblix:request>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Code Examples of Deployed IdentityXML Functions

2-74 Oracle Access Manager Developer Guide

This request could easily have been constructed in code, but it is stored as a file for the
purposes of this example. Note the general structure of the SOAP message, and the
parameter elements being requested.

Example 2–21 is the code for MyobServelet, which sends this request, parses the result,
and generates an HTML page dynamically as the result of the request. MyobServelet is
derived from HttpServlet. It uses JAXP, a SAX parser for XML freely available from
Sun Microsystems, and HTTPClient, a freely available HTTP client package available
from Innovation. You may choose to use such packages, or integrate with your own as
needed.

Example 2–21 MyobServelet.java

/**
* This example illustrates how to use the
* Identity System via the IdentityXML interface from a Java servlet.
* The example uses two freely available third-party Java packages:
* 1. HTTPClient, from Innovation
* (http://www.innovation.ch/java/HTTPClient)
* 2. JAXP, from Sun Microsystems
* (http://java.sun.com/xml/xml_jaxp.html)
* HTTPClient encapsulates the client side of the HTTP protocol.
* JAXP provides APIs for XML parsing and XSL processing.
*
* What This Servlet Does:
* This servlet reads a SOAP request from a text file /tmp/um_view.xml.
* It could quite easily have hard-coded the request, or built it
* from parameters, or fetched it from a database. Reading it from
* a file just provides some simple flexibility and allows the code
* to be uncluttered with that detail. The servlet uses HTTPClient
* to connect to the web server hosting the Identity System,
* sends the SOAP message to the User Manager application's URL
* (hard-coded in this example), and receives the response. It then
* creates an XML parser, and uses a custom document handler,
* MyObReader, to handle only those elements of interest during the
* parse. In this case, MyObReader only cares about the ObEmail
* element. When it finds the element, it stores the value, which
* is then available to this servlet via the MyObReader.getEmail()
* method after parsing.
*
* As an HTTPServlet, a natural response for this servlet is an
* HTML page. To illustrate use of Identity data in building the
* page returned, this servlet does something a little unusual: it
* uses the value of the user's email address as a color, and uses
* it to set BGCOLOR attribute of the BODY element in the output HTML.
*
* To demonstrate the example, you should edit the SOAP message to
* specify the DN of the user profile in your Identity System that
* you want to use. Then, logged in as an NP admin, change the
* user's email address to a valid HTML color value. like "green"
* or an RGB value, like "#ffddff". Then run the servlet (i.e.
* install in your WS and fetch .../servlets/EmailColor). The
* page built by the servlet should appear, with its background
* rendered in the color you saved as the email address.
*
* The helper class, MyObReader, extends the DefaultHandler content
* handler of JAXP by adding handler methods for the ObEmail element
* and its nested ObValue element containing the email address,
* which is what this example is looking up. After the parse,

Code Examples of Deployed IdentityXML Functions

IdentityXML Functions and Parameters 2-75

* the helper class is queried for the email address, and this
* is added to the HTTPSerlvlet output stream (a simple HTML page)
* which is sent back to the browser.
* To run:
* Edit the SOAP message file, and make sure the hard-coded
* path in this class points to where you saved the SOAP message.
* Build the MyObServlet class and the MyObReader helper class.
* Put the class files and JAR files for these two classes, plus
* the HTTPClient package and JAXP in your web server's classpath
* for servlets. For iPlanet Web Server, you can find this
* in the console under
* Servlets/Configure JVM Attributes/Classpath.
* Restart your web server if necessary.
* Point your browser at <yourServletRoot>/ObSoapClient
*/
import java.io.*;
import java.net.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;
import HTTPClient.*;
// JAXP packages
import javax.xml.parsers.*;
import org.xml.sax.*;
import org.xml.sax.helpers.*;
public class MyObServlet extends HttpServlet{
 // Host and port of the web server for the Identity System
 static String hostname = "localhost";
 static String filename = "c:/temp/um_view.xml"; // NT PATH !
 static int port = 80;

 // URL for User Manager
 static String oburl =
 "/identity/oblix/apps/userservcenter/bin/
 userservcenter.cgi";

 public static String getRequestFromFile(HttpServlet s){
 StringBuffer data = new StringBuffer();
 try {
 BufferedReader reader = new BufferedReader
 (new FileReader(filename));

 for (String line = reader.readLine(); line != null;
 line = reader.readLine()){
 data.append(line);
 }
 } catch (Exception e) {
 s.getServletContext().log(e.toString());
 }
 return data.toString();
 }
public void doGet(HttpServletRequest req,
 HttpServletResponse res)
 throws ServletException, IOException {
 try {
 CookieModule.setCookiePolicyHandler(null);
 // Initiate new HTTP connection to WebPass server
 HTTPConnection con = new HTTPConnection(hostname, port);
 // Send SOAP message, collect response
 NVPair header[] = new NVPair[1];

Code Examples of Deployed IdentityXML Functions

2-76 Oracle Access Manager Developer Guide

 header[0] = new NVPair("Content-Type", "text/xml");
 String rqString = getRequestFromFile(this);
 getServletContext().log("request is: " + rqString);
 HTTPResponse rsp = con.Post(oburl, rqString, header);

 // Check HTTP status and act accordingly
 if (rsp.getStatusCode() >= 300) {

 getServletContext().log("Received Error:
 "+rsp.getReasonLine());
 getServletContext().log(new String(rsp.getData()));

 } else {

 // HTTP success

 getServletContext().log
 ("got SOAP result. next is parsing.");

 // Create a JAXP SAXParserFactory and configure it
 SAXParserFactory spf =
 SAXParserFactory.newInstance();
 spf.setValidating(false);

 XMLReader xmlReader = null;
 try {
 // Create a JAXP SAXParser
 SAXParser saxParser = spf.newSAXParser();

 // Get the encapsulated SAX XMLReader
 xmlReader = saxParser.getXMLReader();
 } catch (Exception ex) {
 getServletContext().log(ex, ex.toString());
 System.exit(1);
 }
// Set the ContentHandler of the XMLReader
 // Keep our content handler around to query later
 MyObReader myHandler = new MyObReader();
 xmlReader.setContentHandler(myHandler);
 // Set an ErrorHandler before parsing
 xmlReader.setErrorHandler
 (new MyErrorHandler(System.err));
 try {
 // parse the XML document
 xmlReader.parse
 (new InputSource(rsp.getInputStream()));
 res.setContentType("text/html");
 PrintWriter out = res.getWriter();
 out.println("<HTML>");
 out.println("<HEAD>");
 out.println("<TITLE>");
 out.println("Identity System via Servlet");
 out.println("</TITLE>");
 out.println("</HEAD>");
 // the example assumes an admin has set
 // the email address to a color value instead
 String emailAddress = myHandler.getEmail();
 String bgColorAttr = "bgcolor=\"" +
 emailAddress.trim() + "\"";
 out.println("<BODY " + bgColorAttr + ">");

Code Examples of Deployed IdentityXML Functions

IdentityXML Functions and Parameters 2-77

 out.println("<H1>");
 out.println("Identity System via Servlet");
 out.println("</H1>");
 out.println("<P>");
 out.println("The e mail address is: "
 + emailAddress);
 out.println("</P>");
 out.println("</BODY>");
 ut.println("</HTML>");
 } catch (SAXException se) {
 getServletContext().log(se, se.getMessage());
 System.exit(1);
 } catch (IOException ioe) {
 getServletContext().log(ioe, ioe.getMessage());
 System.exit(1);
 } }
 } catch (IOException ioe) {
 getServletContext().log(ioe, ioe.getMessage());
 } catch (ModuleException me) {
 getServletContext().log(me, "Error handling request: "
 + me.getMessage());
 } catch (Exception e) {
 getServletContext().log(e, e.toString()); } }
// Error handler to report errors and warnings
 private static class MyErrorHandler implements ErrorHandler {
 /** Error handler output goes here */
 private PrintStream out;

 MyErrorHandler(PrintStream out) {
 this.out = out;
 }

/**
* Returns a string describing parse exception details
*/
 private String getParseExceptionInfo(SAXParseException spe) {
 String systemId = spe.getSystemId();
 if (systemId == null) {
 systemId = "null";
 }
 String info = "URI=" + systemId +
 " Line=" + spe.getLineNumber() +
 ": " + spe.getMessage();
 return info;
 }

// The following methods are standard SAX ErrorHandler methods.
// See SAX documentation for more info.

 public void warning(SAXParseException spe)
 throws SAXException {
 out.println("Warning: " + getParseExceptionInfo(spe));
 }

 public void error(SAXParseException spe)
 throws SAXException {
 String message = "Error: " + getParseExceptionInfo(spe);
 throw new SAXException(message);
 }

Code Examples of Deployed IdentityXML Functions

2-78 Oracle Access Manager Developer Guide

 public void fatalError(SAXParseException spe)
 throws SAXException {
 String message = "Fatal Error: "
 + getParseExceptionInfo(spe);
 throw new SAXException(message);
 }
 }
}

Example 2–22 shows the code for MyObReader.

Example 2–22 MyobServelet.java

/*
* A simple SAX content handler that locates
* an email address in the Identity System
* SOAP response for a User Manager ’view’ operation.
* This class extends DefaultHandler provided by JAXP package
* by adding start/end element and character handler methods to
* help in locating the data we are after, and an accessor method
* for our client to extract the data.
*
* Note:
* This helper class makes assumptions, including
* its intimate knowledge of the structure of its input.
* If more than one email address is found, that information
* is lost. This class is to illustrate the technique.
* Requirements:
* JAXP
*/
// APache XML packages
import org.xml.sax.*;
import org.xml.sax.helpers.*;
import java.util.*;
import java.io.*;
public class MyObReader extends DefaultHandler {
 private boolean inEmail = false;
 private boolean inEmailValue = false;
 private String theEmail = "no.email.address.found";
 // HANDLERS ///
 // parser calls this for each element in a document
 public void startElement(String namespaceURI, String localName,
 String rawName, Attributes atts)
 throws SAXException{
 if (localName.equals("ObEmail")) {
 inEmail = true;
 }
 if (inEmail && localName.equals("ObValue")) {
 inEmailValue = true; }
 }
 // parser calls this for each element in a document
 public void endElement(String namespaceURI, String localName,
 String rawName)
 throws SAXException{
 // Are we closing an ObEmail?
 if (inEmail && localName.equals("ObEmail")) {
 inEmail = false;
 }
 // Are we closing an ObEmail/ObValue?
 if (inEmailValue && localName.equals("ObValue")) {

Code Examples of Deployed IdentityXML Functions

IdentityXML Functions and Parameters 2-79

 inEmailValue = false; } }
// parser calls this for character content found inside
 // elements.
 // captures characters while inside an ObEmail/ObValue
 public void characters(char[] ch, int start, int length)
 throws SAXException{
 if (!inEmailValue) return;
 theEmail = new String(String.copyValueOf(ch,start,length));
 }

 // ACCESSORS ///
 public String getEmail() {
 return new String(theEmail);
 }
}

The servlet begins by establishing a connection to the Identity System (using a
WebPass on a specified Webserver) using an HTTPConnection object. It then reads in
the SOAP message that contains the request shown in the previous example from a
file, and uses an HTTPClient object to POST the SOAP message to the server.

WebPass recognizes the request as SOAP message, and passes it on to the Identity
System's IdentityXML processing logic interpretation. If the message is validated, the
enclosed IdentityXML request is processed. The data resulting from the request and
the response code are packaged and transmitted back to the servlet as a SOAP
response. After verifying that the request generated a successful response code, the
servlet creates and configures a JAXP SAX parser, passing in a custom content handler,
MyObReader, which scans the data for the email address attribute.

If the document is successfully parsed, the MyObReader object provides the email
address attribute value through its getEmail() method. In this example, it is assumed
that the administrator has entered some text like green in the email address field.

The example servlet looks up this information, and uses it in generating the result
HTML page. The value is inserted as the BGCOLOR attribute of the BODY tag in the
HTML document. The page is returned showing the value in text, and the page
background is green.

ObSSOCookie Example
The following example shows how to use Java to post a SOAP request (or make
IDXML calls) to the Identity Server when it is protected using the Access System. This
example makes use of the obSSOCookie.

Example 2–23 illustrates a SOAP request that uses the obSSOCookie.

Example 2–23 SOAP Request Using the obSSOCookie

/**
 * This is a very simple SOAP example of how to invoke Oracle Access Manager
 * through SOAP.
 *
 * This program will make a soap request (send the request in soap.xml)
 * to the argument hostname:port/oblix/apps/corpdir/bin/corpdir.cgi

Note: The Access Manager SDK must be installed to create this type
of request. See "Installing the Access Manager SDK" on page D-1 for
details

Code Examples of Deployed IdentityXML Functions

2-80 Oracle Access Manager Developer Guide

 * In this particular example the Identity server is protected using Basic over
LDAP and the
 * ObUserSession class is used to retrieve the token which is used to set the
ObSSOCookie.
 * You might also need to pass the IP adress to the ObUserSession or turnoff
IPValidation for the
 * Webgate in Netpoint\WebGate\access\oblix\apps\webgate\WebGateStatic.lst.
 *
 *
 * Requirements:
 * *** HTTPClient, a complete http client library from innovation, is
 * required to run this test. The software is free, and licensed under the
 * GNU Lesser General Public License.
 * HTTPClient is available at http://www.innovation.ch/java/HTTPClient
 * This program has been tested with HTTPClient Version 0.3-2
 * ObSoapClientWebGate is written as an AccessGate using the Access Server API's
so
 * you will need to install the Access SDK and do the required configurations
to run
 * this class as an Access Gate.
 *
 * To run:
 * *** java ObSoapClientWebGate [-h hostname] [-p port] [-i <Access SDK install
dir>] [-l loginName] [-w password] [-f inputfile] [-u oblixurl]
 *
 */

import java.net.*;
import java.io.IOException;
import java.io.FileReader;
import java.io.BufferedReader;
import java.util.*;
import java.io.*;
import java.text.*;
import HTTPClient.*;
import HTTPClient.CookieModule;
import HTTPClient.HTTPConnection;
import HTTPClient.HTTPResponse;
import HTTPClient.ModuleException;
import HTTPClient.NVPair;
import HTTPClient.Cookie;
import com.oblix.access.*;

public class ObSoapClientWebGate
{

 static String hostname = "host.company.com";
 static String filename = "soap.xml";
 static String accessSDKinstalldir = "";
 static int port = 80;
 static String userName = "";
 static String password = "";
 static String res = "/identity/oblix";
 static String oburl =
"/identity/oblix/apps/userservcenter/bin/userservcenter.cgi";

 public static void collectArgs(String args[])
 {
 for (int i = 0; i < args.length; i++) {

Code Examples of Deployed IdentityXML Functions

IdentityXML Functions and Parameters 2-81

 if (args[i].equals("-h") && args.length >= i+1)
 hostname = args[i+1];
 else if (args[i].equals("-f") && args.length >= i+1)
 filename = args[i+1];
 else if (args[i].equals("-p") && args.length >= i+1)
 port = Integer.parseInt(args[i+1]);
 else if (args[i].equals("-u") && args.length >= i+1)
 oburl = args[i+1];
 else if (args[i].equals("-i") && args.length >= i+1)
 accessSDKinstalldir = args[i+1];
 else if (args[i].equals("-l") && args.length >= i+1)
 userName = args[i+1];
 else if (args[i].equals("-w") && args.length >= i+1)
 password = args[i+1];
 else if (args[i].equals("-help")) {
 System.out.println("Usage: java
ObSoapClientWebGate [-h hostname] [-p port] [-f filename] [-i <Access SDK install
dir>] [-l loginName] [-w password] [-u oblixurl] \n");
 System.exit(1);
 }
 }
 }

 /**
 * Read from soap.xml in current directory and return as string.
 */
 public static String getRequestFromFile()
 {
 StringBuffer data = new StringBuffer();
 try {
 BufferedReader reader = new BufferedReader(new
FileReader(filename));

 for (String line = reader.readLine(); line != null;
 line = reader.readLine()) {
 data.append(line);
 }
 } catch (Exception e) {
 System.out.println(e.toString());
 }
 System.out.println(data.toString());
 return data.toString();
 }

 public static void main(String args[]) throws Exception
 {
 try {
 CookieModule.setCookiePolicyHandler(null);
 AuthorizationInfo.setAuthHandler(null);
 // initiate connection
 collectArgs(args);
 HTTPConnection con = new HTTPConnection(hostname, port);
 // Check if user is authenticated, if yes pass the cookie
while posting.
 String token = null;
 token = authenticate(userName, password, res);
 if (token == null) {
 System.out.println("Authentication failed for User
" + userName + " Exiting program");
 System.exit(1);

Code Examples of Deployed IdentityXML Functions

2-82 Oracle Access Manager Developer Guide

 }
 System.out.println("TOKEN: " + token);

 Cookie SSOCookie = new Cookie("ObSSOCookie",
URLEncoder.encode(token), ".oracle.com", "/", null, false);
 CookieModule.addCookie(SSOCookie);
 System.out.println();

 // collect response
 NVPair header[] = new NVPair[1];
 header[0] = new NVPair("Content-Type", "text/xml");
 HTTPResponse rsp = con.Post(oburl,getRequestFromFile(),header);

 // get status and act accordingly
 if (rsp.getStatusCode() >= 300) {
 System.err.println("Received Error:
"+rsp.getReasonLine());
 System.err.println(new String(rsp.getData()));
 } else{
 System.out.println();
 System.out.println();
 System.out.println();
 System.out.println(new String(rsp.getData()));

}

 } catch (IOException ioe) {
 System.err.println(ioe.toString());
 } catch (ModuleException me) {
 System.err.println("Error handling request: " +
me.getMessage());
 } catch (Exception e) {
 System.out.println(e.toString());
 }
 }

public static String authenticate(String userName, String password, String res)
{
String token = null;
ObResourceRequest resReq = null;
ObUserSession user = null;

Hashtable cred = new Hashtable();
cred.put("userid", userName);
cred.put("password", password);
System.out.println("Authenticating user " + userName + " password " + password + "
for res " + res);
try
{
ObConfig.initialize(accessSDKinstalldir);
//"D:\\oblix\\install\\panacea\\ois\\identity\\AccessServerSDK"); // put the
correct path to your AccessSDK installation here
resReq = new ObResourceRequest("HTTP", res, "GET");
// check if it is protected, if yes, create a user session
if (resReq.isProtected())
{
System.out.println("is protected");
user = new ObUserSession(resReq, cred, "192.168.1.126");

Code Examples of Deployed IdentityXML Functions

IdentityXML Functions and Parameters 2-83

if (user.getStatus() == ObUserSession.LOGGEDIN)
{
System.out.println("user status is LOGGEDIN " + user.getStatus());
if(user.isAuthorized(resReq))
{
System.out.println("Permission GRANTED");
}

token = user.getSessionToken();
}
}
ObConfig.shutdown();
}
catch (ObAccessException oe)
{

ObConfig.shutdown();
oe.printStackTrace();
}
return token;
}

}

Code Examples of Deployed IdentityXML Functions

2-84 Oracle Access Manager Developer Guide

Identity Event Plug-in API 3-1

3
Identity Event Plug-in API

The Identity Event Plug-in API enables you to extend the base Identity System
functionality. This API provides a channel for Identity System data to flow between
Identity System applications and external software components. Applications for this
API can be as simple as basic logging of Identity System usage, or as sophisticated as
data-filtering pipelines or seamless bridges to Enterprise Resource Planning systems.

The Identity Event Plug-in API is a standard installed component of the Identity
System product.

This chapter discusses the following:

■ The concept of events in the Identity System data flow that can automatically
invoke user-defined actions to change the outcome of user requests. Actions are
associated with events by the content of a catalog file.

■ The interface between Identity System application events and actions.

■ The API event types and the functions you can build into each event type.

■ The way in which actions load and execute, locates the library and header files
that you use to create your own actions, and provides example files.

■ A way the API can be used to pass information from one Identity System
application to another, for example to create a new user in the User Manager and
add that new user to a Group.

■ Examples of source code to implement and configure two different types of action.

This chapter contains the following sections:

■ About the Identity Event Plug-in API

■ Connecting Events to Actions

■ How the API Works

■ Event Handling in the API

■ The API

■ Cross-Application Support

■ Examples

About the Identity Event Plug-in API
Just as a Web server can be configured to execute CGI programs and server-side scripts
during the life cycle of an HTTP request, the Identity Event Plug-in API gives
developers the ability to extend the Identity System by providing their own small

Connecting Events to Actions

3-2 Oracle Access Manager Developer Guide

applications, called actions or event handlers, to perform custom business logic and
integrate with external systems. You connect event handlers to the events using a
special configuration file named oblixpppcatalog.lst. The Identity System makes
certain data available to the actions, which are then allowed to modify the data and
influence the outcome of the event.

To support multibyte characters for globalization and localization in 10g Release 3
(10.1.3), UTF-8 encoding is used for XML pages, for SOAP/IdentityXML requests, and
for Identity Event Plug-in data sent to executables. Earlier releases used ISO-8859-1
encoding (also known as Latin-1).

To provide backward compatibility with earlier releases that used Latin-1 encoding,
10g (10.1.4.0.1) supports IdentityXML requests in both ISO-8859-1 encoding (Latin-1)
and UTF-8. For XML documents written to disk, both ISO-8859-1 and UTF-8 encoding
are supported. IdentityXML responses are emitted in the same encoding format as the
request. Therefore, when a request uses Latin-1 encoding (encoding="ISO-8859-1"
the response uses Latin-1 encoding; when a request uses UTF-8 encoding, the
corresponding response uses UTF-8 encoding.

If an IdentityXML request uses encoding="ISO-8859-1" and the response to it
contains any characters outside the Latin-1 character set, the response containing such
characters is garbled. For example, when encoding="ISO-8859-1" is used for the
request and the response includes Japanese or Arabic characters, those characters in
the response will be garbled. For more information, see the Oracle Access Manager
Upgrade Guide.

Examples of Uses of the Identity Event Plug-in API
Common uses of this API are for password validation, integration, and provisioning.

For example, in a password validation application, suppose a security architect
recommends the use of 8-character passwords with 2-4 digits and 1-3 special
characters. You can develop an event handler for Password Management events that
use the Identity Event API and add this event handler to an Identity System password
policy.

As another example, suppose that new hires need to be recorded in a RDBMS to
ensure that they receive a "Welcome to the company" packet. You could develop an
event handler for the Enable step of each registration workflow instance to update the
remote database using the RDBMS vendor's API.

Finally, suppose that new users require a randomly generated unique ID to act as their
login ID. You could develop an event handler for the Enable step of each registration
workflow instance to generate a unique string in the required format and pass it back
to the Identity System to use as the uid attribute value.

Connecting Events to Actions
This section describes actions and events in more detail, and explains how to connect
them to each other using the Configuration File.

Note: Oracle recommends that you use encoding="UTF-8" in new
10g (10.1.4.0.1) installations. In upgraded environments, Oracle
recommends that you use encoding="ISO-8859-1" for backward
compatibility.

Connecting Events to Actions

Identity Event Plug-in API 3-3

Types of Events
An event is a state change within the Identity system. Examples of events:

■ A request was received and is about to be passed to the User Manager view
program.

■ Results have been generated by the Group Manager search program.

■ A user has entered a challenge response while attempting a password reset.

■ An attribute on a profile page for an Organization Manager tab has been modified.

■ A workflow ticket awaiting approval by the corporate IT group has been
approved.

■ A user has entered a new password, and the password policy in force requires
external validation.

The Identity System provides functionality specific to five different types of events,
summarized here. More detail for each type of event appears in the section on "How
the API Works" on page 3-9.

Identity System Program Events: Pre and Post
These are the most frequently used type of event. Each Identity System application
(User Manager, Group Manager, Organization Manager) contains a number of
programs (view, search, and so on) that generate the displayed HTML for each page
within the application. When any program runs, a pair of events is generated. Each of
the programs recognizes this pair of events.

One event (Pre) is generated before the program begins to create the page. The Pre
event enables an event handler to work with a request before it reaches a program. The
other event (Post) is generated after the program has created the page, but before
responding to the user with an HTML page. The Post event enables an event handler
to work with the results of processing a request.

These two events are referred to as the pre-processing event and the post-processing event
for that program, as shown in the following diagram.

OnChange
OnChange event interaction is provided as part of the set of Identity System
applications (User Manager, Group Manager, and Organization Manager). Specifically,
the OnChange event applies to the Profile page within each of these applications.
When a change is made to any of the data in these pages, an OnChange event is
generated. These events are triggered only after the changes are successfully
committed to the directory.

Pre-Event

Identity
Programs

Post-Event

Actions

oblixpppcatalog.lst

Pre

Post

Identity Server

Connecting Events to Actions

3-4 Oracle Access Manager Developer Guide

Workflow Events
Workflows are definitions for a repeatable set of steps used to create or modify data.
Workflow definitions are created and stored within the Identity System. The user can
then reference the workflow by name, and instruct the workflow engine to process it
when needed. Workflow steps each generate a pair of events (pre and post). The pre
event enables an event handler to inspect and modify workflow data before the step is
executed. The post event enables an event handler to inspect and modify workflow
data after the step is executed. Workflow steps also generate an external action event.

The Pre, Post, and external action events in a workflow can process both LDAP data
and template object data. This is a departure from the Identity System applications,
which only process LDAP data. The Identity System stores template attributes in fully
qualified form on a workflow step, as follows:

attribute.class.domain

See the chapter on configuring template objects in the Oracle Access Manager
Administration Guide for details.

Password Management Events
Password Management events are generated when an attempt is made to set the
password of a user in a branch of the directory tree that is covered by a password
policy whose external validation flag is enabled. Actions associated with Password
Management events are used to check password quality against custom business rules.

As part of creating a password policy, you may enable the option “Externally specified
validation rules.” Oracle Access Manager applies the password policy for the
requester. If the requester is covered by the policy, then Oracle Access Manager
checks to see if this flag is set. If it is, then Oracle Access Manager executes the
password validation event which in turn carries out the action defined by the user.
Oracle Access Manager also supports the Identity Event plug-in for the Identity
System Lost Password Management application. When you configure the
oblixpppcatalog.lst file, the application name is lost_pwd_mgmt.

Lost Password Management
The event related to lost password management functionality is setChangedPassword,
and the application name for this is lost_pwd_mgmt. The sample application name,
event name, and action is lost_pwd_mgmt_setChangedPassword_pre.

Encryption Events
The Identity System applies a proprietary encryption method to several pieces of
information. One is cookie information, such as the login cookie for a authenticated
session. An encrypted version of this cookie is kept by the user's browser while a
session is in effect. A second is the response half of the challenge/response pair used
for Lost Password Management. The response phrase, to be given by the user in
response to the challenge phrase, is stored encrypted in the directory. Password
information is encrypted when included in a workflow. Encryption events are used to
invoke user-defined encryption algorithms (implemented by actions) when the
Identity System needs to encrypt a piece of data.

You can replace Oracle Access Manager's encryption technique with one of your own
by adding actions to the Catalog to replace either or both of these default encryption
methods. For example, you can replace the default encryption scheme for cookies,
challenge responses, and password fields in workflows using this method.

Connecting Events to Actions

Identity Event Plug-in API 3-5

Types of Actions
An action is an event handler. More specifically it is a unit of external logic written by
a developer and then configured by a Master Administrator to execute in response to a
particular event.

Actions have three formats: LIB, MANAGEDLIB, and EXEC.

Actions may perform their tasks without accessing external components, or they may
use any available mechanism to access third-party applications and resources such as
web services, RDBMS services, and ERP applications.

At startup time, the Identity Server reads its configuration catalog, which tells it what
events have actions. When an event occurs, the server executes the associated action.

LIB Actions
A LIB action is a function within a shared library that the Identity Server calls. LIB
actions reside in shared libraries on Unix or DLLs on Windows. Once dynamically
loaded, the action function executes in the same process space as the Identity Server
and has direct access through API functions to data objects held by the server.

For a LIB action, the Identity Server dynamically opens the shared library or DLL,
locates the function that implements the action, and calls the function.

LIB actions have advantages. These are:

Fast loading—LIB actions are compiled binary objects that reside in shared libraries.
They have relatively low startup overhead.

Reusable at runtime—LIB actions need only be loaded once. They then remain in
virtual memory, ready for subsequent calls.

High performance—LIB actions execute quickly because they are binary code
modules compiled from C or C++ source code. Of course, whether they are received as
fast depends on the function they perform.

Identity data on demand—LIB actions have access to a great deal of data about the
current request, the authenticated user, and other services from the Identity System
using simple GET/SET API calls.

Scalable—LIB actions provide good scalability, even in high traffic applications,
because they are simply functions that can be called repeatedly as requests are
processed, with low overhead.

Disadvantages of LIB actions:

Limited support from third-party components—LIB actions, because they are written
in C or C++ have relatively few freely available third-party APIs to call upon for
external services such as RDBMS access, XML parsing and formatting, network
services, cryptography services, LDAP services, and so on. These services are more
widely available to the Java and PERL developer community.

Specialist expertise required—LIB actions require more specialized skills to
implement. This can increase the cost. For instance, even to deploy the same action on
a Windows and Solaris environment simultaneously would require C/C++
development expertise in both platforms and development environments.

Platform-dependent source code—The steps necessary to author and build a shared
library on Solaris are different from building a DLL for Windows on NT. Either
defensive coding practices are required to ensure cross-platform source code, or
multiple source trees must be maintained for a multi-platform deployment.

Connecting Events to Actions

3-6 Oracle Access Manager Developer Guide

Potential to cause Identity Server failure—Any uncaught exceptions caused by errors
in LIB actions will cause the Identity Server to fail. This is because the action is
running in the Identity System Identity address space, and if it accidentally causes a
memory leak or memory trash, the server cannot detect and recover from this. These
problems to not exist in EXEC actions because each EXEC action runs in its own
address space and can only damage itself. The server can detect this because the child
process exits without returning a success status.

MANAGEDLIB Actions
A MANAGEDLIB actions only run on Windows. A MANAGEDLIB action can be
written in any .NET language. A .NET language is any source language for which a
Microsoft Intermediate Language (MIL) compiler exists. MIL instructions are executed
by the Microsoft .NET Common Language Runtime (CLR), which uses a just-in-time
(JIT) compiler. The JIT compiler compiles the MIL instructions into native machine
instructions. MIL instructions are compiled once and stored in dynamic memory.
There is a modest performance hit the first time that managed code is executed.

MANAGEDLIB actions are similar to LIB actions. As with LIB actions, a
MANAGEDLIB action is loaded into memory. MANAGEDLIB actions also share most
of the benefits of LIB actions.

In addition, MANAGEDLIB actions offer the benefits of managed code, including:

■ Language Choice—You can write your plug-ins in VisualBasic, C#, Managed C++
(MC++), Java, or PERL.

■ Language Integration—You can combine MIL modules compiled from different
source languages into one assembly or plug-in. This provides the plug-in writer
with a wider range of language choices for plug-in development.

■ Support for Memory Management—The CLR provides garbage collection,
freeing the plug-in writer from most memory management. The garbage collector
will return memory to the heap when that memory is no longer referenced.
However, the plug-in writer should ensure that there are no dangling references to
objects. If there are dangling references, garbage collection will not occur for the
unused memory.

■ .NET framework support—The .NET framework SDK contains a wide range of
functionality. This may reduce the need for third-party support in plug-in code.

EXEC Actions
An EXEC action is a standalone executable program that the Identity Server executes.
EXEC actions reside in separate executables and run in their own process space. To
process an EXEC action, the Identity Server starts a new child process and loads the
executable passing its parameters. Input is streamed to the action on STDIN and
output is received on STDOUT and the process's exit status.

Characteristics of EXEC actions:

■ Communication with the Identity Server is limited to startup parameters and an
XML stream for input, and an XML stream plus an exit status code for output. Any

Source

Compiler for C++,
managed extensions
for C++, C#, and
so on

Microsoft
Intermediate

Language
(IL)

Native CPU
Instructions

Common Language
Runtime (CLR), a
Just-In-Time (JIT)
compiler

Connecting Events to Actions

Identity Event Plug-in API 3-7

further access to the Identity System data must be done like any other Identity
System client, using IdentityXML.

■ Actions can also use any other APIs, such as an LDAP Identity Event Plug-in API
to access directory information directly.

■ For scripted EXEC actions, the action would be the interpreter, such as
/usr/local/bin/perl, and the script itself would be passed as a command-line
parameter.

Advantages of EXEC actions:

Choice of Development Languages—EXEC action developers can write the code in C,
C++, Java, PERL, or any language that supports C-style command line processing and
stdio.h compatible standard I/O processing.

Rapid prototyping—EXEC actions can be rapidly prototyped or developed using
scripting languages such as PERL.

Platform-Independent Code—EXEC action source code can be platform independent
because of the language neutrality. The same code written in PERL and Java will
execute on Windows and Unix.

Java-Compatible—EXEC actions can be implemented in Java, giving them access to
third-party services that only provide Java APIs.

Extensive Third-Party Support—EXEC actions cannot bring down the Identity Server.
If they fail, the end user will see an error report and the Identity Server will continue
to serve other requests.

Disadvantages include:

Poor Scalability—EXEC actions do not scale as well for high-traffic applications
because a new child process is required for each request.

Limited Access to Identity System Data—EXEC actions get their input from
command line parameters and from the (static) XML stream available on STDIN when
they execute. There is no API to provide direct access to further Identity System
information. To do this, the action would have to implement an IdentityXML client
and communicate with Identity Server over a separate connection.

XML Parser Required—EXEC actions need to parse XML for all but the simplest tasks
in order to access their input. This means that they must have an embedded parser
that understands the XML schema of any input they may receive. This adds to the
startup time, the memory footprint, and the complexity of the action, and may be too
heavyweight for many tasks.

Configuration File (Catalog)
The Identity System uses a configuration file, oblixpppcatalog.lst, to provide the link
between Identity events to be responded to and custom actions to be taken. This file is
called the Catalog. For LIB, MANAGEDLIB, and EXEC actions, this file is installed and
must stay in the following directory:

Identity_install_dir/identity/oblix/apps/common/bin

Note: When you installed the Identity System, an installation
directory was specified and created, for example:
/usr/coreid/identity. As a convenient shorthand, this directory is
called Identity_install_Dir.

Connecting Events to Actions

3-8 Oracle Access Manager Developer Guide

Each entry in oblixpppcatalog.lst is a single line linking an Identity System event to an
action. Each line in the Catalog must contain at least five fields (six if you need to use
the apiVersion field), delimited by semicolons. Each line must end with a semicolon.
Lists of data items within each field are delimited by commas. Fields may be empty,
indicated by the semicolons being next to each other. The precise content of each field
varies with the action type and the kind of event to which it is responding.

The general form for a LIB or MANAGEDLIB entry is:

actionName;actiontype;;path;funcname;apiVersion;

With LIB and MANAGEDLIB actions, the path can be relative or a full path.

The general form for an EXEC entry is:

actionName;actiontype;identityparam1,...;path;execparam1,...;apiVersion;

Fields within the entries are delimited by semicolons (;). Each entry must have at least
five fields, and end with a semicolon, followed by a new line (carriage return and line
feed).

Explanation of each field is given in the following table. Read down each column to
understand the content for each of the action types.

Note: The special character # is used in this file to indicate lines that
are comments. Do not use this character as part of a LIB or EXEC
entry. It would be a mistake, for example, to call a LIB funcname
getbuilding# since, for that entry, everything past the # would be
ignored.

Field Name LIB and MANAGEDLIB Actions EXEC Actions

actionName

(required)

Field 1. The action name. The name contains
information that tells the Identity System which
event type the action responds to and in some
cases whether it should be performed before, as
part of, or after the event.

Field 1. Same description as for LIB
and MANAGEDLIB Actions.

actiontype

(required)

Field 2. managedlib (This exact text) or lib (this
exact text), depending on what type of action you
are using.

Field 2. exec (This exact text).

identityparam1,

. . .

(optional)

Field 3. This field is always empty. Field 3. Used by EXEC actions only.
The names of global parameters,
delimited by commas. A table of these
parameters is provided on "Global
Parameters" on page 3-17.

path

(required)

Field 4. The location and name of the LIB or
MANAGEDLIB file that implements the action.

Field 4. The location and name of the
EXEC file that implements the action.

funcname

(required)

Field 5. The name of one function to call from
within the shared library, for the LIB or
MANAGEDLIB action.

N/A

execparam

(optional)

N/A Field 5. One or more input parameters
to the EXEC action, delimited by
commas.

apiVersion

(optional)

Field 6. Leave this field empty. Reserved for
earlier versions of the product.

Field 6. Same description as for
MANAGEDLIB Actions.

How the API Works

Identity Event Plug-in API 3-9

Guidelines for Writing an Action
The procedure for creating an action is as follows.

Task overview: Writing an action
1. Identify Requirements—Investigate whether you need to validate or modify the

inputs, results, or side effects of an Identity System request or workflow in order
to achieve results that the Identity System cannot deliver.

2. Select the Event—This depends on the following:

Availability—The availability of the data
1. Timing—whether the system is in the desired state for the action when the event

occurs

2. Performance—To maximize performance, identify the least frequently used event
that will yield the desired result.

3. Execution—Determine if this action should run before (pre-event) or after
(post-event) the request is processed by the Identity System application.

4. Write—Write the action.

5. Configure the Action—A Master Administrator must edit the Identity Event
plug-in API configuration catalog in

Identity_install_dir//identity/oblix/apps/common/bin/oblixpppcat
alog.lst

The administrator enters an entry in the catalog to register the action and its
parameters against a particular request. The administrator then restarts the Identity
Server(s) or uses a portal insert to refresh the catalog of a running Identity Server.

How the API Works
The next section describes how actions are found and executed, from the Identity
System application's point of view. The following section, "Identity System
Applications, as Seen by Actions" on page 3-12 describes what happens and what data
can be accessed, from an action's perspective.

Actions, as Seen by Identity System Applications
The Catalog is loaded once, when the Identity System starts up. File content can be
changed while the Identity System is running, but the changes take effect only if the
file is reloaded. You can force changes to take effect by restarting the Identity System
or by linking from any browser to the following URL:

http://hostname:port/identity/oblix/apps/admin/bin/genconfig.cgi
?program=flushCache&cacheType=ppp

For LIB and EXEC Actions—If you flush the Identity Event Plug-in (PPP) information
from the Identity System, it forgets all it knew about DSOs and executables that
contain actions. The Identity System reads the Catalog again when it next generates an
event, and starts loading DSOs on demand, depending on what actions are configured
and what events occur.

For MANAGEDLIB Actions—The DSO (in managed code terminology, this is the
assembly or DLL) is loaded once into the default application domain. If a plug-in

How the API Works

3-10 Oracle Access Manager Developer Guide

writer rebuilds the assembly, they will need to restart the Identity Server to ensure that
the new assembly is loaded the first time an action from that assembly is invoked.

Multiple actions can be defined for a single event. If multiple actions are defined, all of
the actions are performed, in the order that they appear in the Catalog. This approach
enables you to build action pipelines, where the output of one action can become the
input of the next.

Keep in mind, however, that for a typical event, the event that invoked the action was
caused by user activity. While your code is processing the data, and passing its output
down the chain, the end user may be waiting for a result. You should include the
impact of user-perceived responsiveness in the design and testing of all actions,
especially if multiple actions are expected for a single event. Note also that if any of
the multiple actions returns an error, additional actions in the pipeline for that event
instance will not be performed.

The following diagram shows how three possible events can be configured with
actions for the User Manager application.

Assume that the workflowActivate event is associated in the Catalog with three
custom actions to be performed during post-processing:

■ Invoke an action to extract information about the newly activated user, and add
the user to default company email distribution lists.

■ Send a pre-written email message template to relevant lists and individuals
(possibly based on Identity System data) welcoming the new user to the
organization.

■ Trigger an external business process that updates each of various external
company databases with appropriate information about the user. This can be as
simple as an application that pushes the new user's information to a table where
external programs can pick it up.

In this example, when a user request generates the workflowActivate event, User
Manager consults the Catalog, determines that this event has no configured
pre-processing actions, and proceeds to generate the page in XML. It then checks for
post-processing actions and finds three: updateDistLists, sendWelcomeMsg and
updateRDBMS. User Manager checks the Catalog to see whether the first action,
updateDistLists, is a LIB or EXEC action. How processing proceeds depends on the
result of this test:

■ For a LIB Action—User Manager dynamically loads the DSO containing the
function (if it is not already loaded) and obtains a pointer to the function within
the action. It then calls the function, passing the name of the event for which it is

Workflow
Activate

Workflow
Deactivate

updateDistLists sendWelcomeBackMsg

sendWelcomeMsg

updateRDBMS

Workflow
Reactivate

Identity System Application (User Manager)

How the API Works

Identity Event Plug-in API 3-11

being invoked and a pointer to an ObPPPData object through which the action can
interact with User Manager. The action performs its tasks, querying User Manager
as needed through calls to ObPPPData methods. When its task is complete, the
action function returns status information that the event uses to decide its next
behavior.

■ For a MANAGEDLIB Action—User Manager dynamically loads the DSO
containing the function if it is not already loaded and obtains a pointer to an object
that implements the IPPPData interface. The Identity System will reference an
EventAPI object and invoke the "action" method on that object, passing a reference
to IPPPData as a parameter of the "action" method. The EventAPI object is a
singleton, meaning that the first request will instantiate the object and subsequent
requests will use this object. The action performs its tasks, querying User Manager
as needed through calls to IPPPData methods. When its task is complete, the
action function returns status information that the event uses to decide its next
behavior.

■ For an EXEC Action—User Manager starts up the executable in a new process,
making connections to its STDIN and STDOUT streams. The argv[] array of
command line arguments is built as well. The first argument is the total count of
arguments. The last is always the data for the set of Identity System parameters
specified in the catalog (if any), provided in a specific XML format, called
EventXML. The arguments in between match the values given for EXEC
parameters in the catalog file (if any). User Manager always sends the XML data
representing the current state of the request, in EventXML format, to the action on
its STDIN. The action interprets its arguments, if any, reads its STDIN and
performs its task, which may or may not involve XML parsing to extract and
replace (or extract and replace) information received from User Manager. When
complete, the action optionally writes the XML data out on its STDOUT. The
action is not required to return the XML data, because the Identity System keeps
the original version as the default, in parsed form. (If the data is large, avoiding an
extra parsing operation can be worthwhile).

When User Manager receives the result status code, either from the return value of a
LIB action function or from the exit status of a terminating child process that was
running an EXEC action, it proceeds as follows:

■ STATUS_PPP_OK—User Manager looks for the next post-processing action in the
Catalog that is configured for workflowActivate. If there is one, User Manager
goes through the preceding procedure again for that action, passing in the possibly
modified XML data received from the earlier actions.

■ STATUS_PPP_ABORT—The action has signalled an error. In this case, User
Manager does not even check for subsequent actions for the event. It translates
any information transmitted by the action through the API into an error, and

Note: In managed code terminology, DSO is referred to as an
assembly or a dll.

Note: If any action modifies the XML data, it is the action's
responsibility to make sure the output XML conforms to the
appropriate XML Schema. How to find the correct schema file for the
event you are handling is described in "Connecting Events to Actions"
on page 3-2.

How the API Works

3-12 Oracle Access Manager Developer Guide

handles the error. This result generally results in an error message being displayed
to the user, who can then report the problem.

■ STATUS_PPP_WF_ASYNC—For use with workflows, this result tells the event to
wait for an asynchronous, probably manual, action to be completed. For example,
this might ensure that a currently unavailable database is updated before the
workflow continues. See "Workflow Events" on page 3-26 for more details.

■ STATUS_PPP_WF_RETRY—For use with workflows, this response tells the event
that the workflow step did not complete, probably because of invalid data, that
therefore needs to be reentered. The event increments its retrycount, and starts
again.

In the example, workflowActivate has three post-processing actions. You can view this
as a pipeline, because the data flows from one action to the next. In practice, each
action returns to User Manager before the next is called. If all of the actions return
STATUS_PPP_OK, User Manager completes its processing for the request, applying
the XSL stylesheet for the page and returning the resulting HTML page to the browser.

No actions are configured for the workflowDeactivate pre- or post-processing events,
so User Manager builds the result page without calling any actions.

The workflowReactivate post-processing event is configured to call the
sendWelcomeBackMsg action. User Manager calls this single action and applies XSL
processing to its output before returning the result page to the user.

The preceding illustration uses User Manager as an example; the other Identity System
applications that generate events behave in exactly the same way with respect to the
Identity Event Plug-in API.

For detailed examples of LIB, MANAGEDLIB, and EXEC actions, including sample
code and Catalog entries for configuration, see "Examples" on page 3-48.

Identity System Applications, as Seen by Actions
The following topics provide details about Identity System applications and actions:

■ LIB Actions

■ LIB Interface

■ Load Behavior

■ LIB Examples

■ MANAGEDLIB Actions

■ MANAGEDLIB Interface

■ Load Behavior for MANAGEDLIB

■ MANAGEDLIB Examples

■ MANAGEDLIB Actions

■ EXEC Actions

Note: The action has direct access only to data known to the current
event. For example, in order to access full user information from the
directory, the action might have to communicate with the Identity
System using a different method, such as the IdentityXML interface,
before it has sufficient information to accomplish a given task.

How the API Works

Identity Event Plug-in API 3-13

■ Load Behavior

■ EXEC Examples

■ Global Parameters

LIB Actions
LIB actions are only available in C or C++. However, if you want to write these actions
in Java, you can write a JNI to wrap C++ functions with the Java API.

LIB Interface
The LIB action interface to the Identity System is defined by the ObPPPData class
provided in the obpppdata.h. file. See "Development Environment" on page 3-43 for
the location of this file. ObPPPData defines five methods that a LIB action may use to
access Identity System data. These methods are:

■ Get —Use this method to get the value or values (attributes may be multi-valued)
for a specified parameter from the Identity System application that triggered the
event. The method returns a pointer to an array of values matching a key. The key
is any attribute that is known to the application handling the event. The key may
also be one of the Global parameters; see "Global Parameters" on page 3-17. The
last member of the array is a NULL.

virtual const char * const *Get(const char *key) const;

Responsibility for allocating and freeing memory for the return value lies with the
Identity System. If you request a value for a parameter that is not valid for the
event triggering the action, only the NULL value is returned.

■ Set—Use this method to set the value(s) for a given parameter to be sent to the
Identity System application. You should set values only for those parameters that
are valid for the event.

virtual int Set(const char *key,

const char * const *value) = 0;

Key represents the parameter to be set; value is an array of values to be used. The
last member of the array must contain a NULL.

Responsibility for allocating and freeing memory for the input parameter content
lies with the API developer.

The Identity System returns 1 if the set is successful, 0 if not.

■ Receive —Use this method to request and receive event data from the Identity
System application as an XML string. You will need to understand the structure of
this XML string in order to locate data within it. See "Working with XML" on
page 3-18 and the chapter on PresentationXML in the Oracle Access Manager
Customization Guide.

virtual const char *Receive() const = 0;

■ Send—Use this method to send replacement content for the event page to the
Identity System application as an XML string. Generally, this will be EventXML,
from which the Identity System application extracts the information it needs. In
the case of post actions, however, this is expected to be PresentationXML. This
PresentationXML string completely replaces the output that the Identity System
application would otherwise have used to generate an HTML page for the user or
would have passed to the next action if this action is part of a pipeline. Your new

How the API Works

3-14 Oracle Access Manager Developer Guide

content may differ in a minor way, such as the addition of a copyright or other text
message, or it may contain significantly different data.

virtual void Send(const char *data) = 0;

The XML data string being sent must match the schema expected by the
application receiving it. Best practice is to verify the XML data against the schema
with an XML editor, before using the action in a live environment.

■ SetResultString—Use this method to set the content of a result string to be
displayed to the user by the Identity System application. The exact manner in
which the text is then shown varies with the event to which the action is
responding.

virtual void SetResultString(const char *str) = 0;

str contains the text to be displayed.

Load Behavior
The Dynamically Shared Object (DSO) for a LIB action is loaded into the Identity
System's address space when it is first needed and remains there. A new version of the
DSO can be generated and installed while the Identity System is running, but any
revised actions contained in the DSO will not be loaded unless the Identity System is
stopped or started, or the loaded Catalog is flushed using the URL described in
"Configuration File (Catalog)" on page 3-7. If the file is flushed, then the action is
reloaded the next time its corresponding event occurs.

Functions for LIB actions are loaded as needed into Identity System applications, and
executed directly by them. For this reason, you will need to link with the
Oracle-provided interface library on Windows platforms or with the runtime shared
library itself for UNIX. See "Development Environment" on page 3-43 for the location
of the Windows library.

LIB Examples
LIB Code examples can be found installed under the following directory:

Identity_install_dir/oblix/usupported/ppp/ppp_dll

They are provided under "Examples" on page 3-48.

MANAGEDLIB Actions
MANAGEDLIB actions can be written in any language supported by the Microsoft
.NET framework for managed code, including Visual Basic, C# and C++.

MANAGEDLIB Interface
The MANAGEDLIB action interface to the Identity System is defined by the IPPPData
interface. See "Development Environment" on page 3-43 for the location of the header
file. The header was written in MC++. The IPPPData interface will be syntactically
different in other .NET languages, but will work the same way, that is, the semantics
will be identical.

Note: This method cannot be used for post events, because the data
returned by them is in PresentationXML format. If an error is to be
displayed, the developer is responsible for building it into the
PresentationXML.

How the API Works

Identity Event Plug-in API 3-15

IPPPData defines five methods that a MANAGEDLIB action may use to access
Identity System data. The definitions for these methods are similar to those for LIB
actions:

■ Get —Gets value or values for a specified parameter (argument key) from the
Identity System application that triggered the event.

String * Get(String * key) __gc[];

■ Set—Set the value(s) for a given parameter (argument key) to be sent to the
Identity System application. You should set values only for those parameters that
are valid for the event.

int Set(String * key , String * value __gc[]);

■ Receive —Use this method to request and receive event data from the Identity
System application as an XML string. You will need to understand the structure of
this XML string in order to locate data within it. See "Working with XML" on
page 3-18. See also the chapter on PresentationXML in the Oracle Access Manager
Customization Guide.

String * Receive();

■ Send—Use this method to send replacement content for the event page to the
Identity System application as an XML string.

void Send(String * data);

The XML data string being sent must match the schema expected by the
application receiving it. Best practice is to verify the XML data against the schema
with an XML editor, before using the action in a live environment.

■ SetResultString—Use this method to set the content of a result string to be
displayed to the user by the Identity System application. The exact manner in
which the text is then shown varies with the event to which the action is
responding.

void SetResultString(String * str);

str contains the text to be displayed.

Load Behavior for MANAGEDLIB
The DSO (managed assembly or dll) is loaded once into the default application
domain, which is part of the Identity System process. If a plug-in writer rebuilds the
assembly, they will need to restart the Identity Server to ensure that the new assembly
is loaded the first time an action from that assembly is invoked.

MANAGEDLIB Examples
MANAGEDLIB code examples can be found installed under

Identity_install_dir\oblix\unsupported\ppp\dotnet\managedcplusplus
and are provided under "Examples" on page 3-48.

Note: This method cannot be used for post events, because the data
returned by them is in PresentationXML format. If an error is to be
displayed, the developer is responsible for building it into the
PresentationXML.

How the API Works

3-16 Oracle Access Manager Developer Guide

MANAGEDLIB Actions
Using Windows-based Managed Code, you can write MANAGEDLIB actions in Visual
Basic, C#, C++, and any other language that uses Managed Code. Managed Code is
only appropriate for MANAGEDLIB actions, not for EXECs. This is because
MANAGEDLIB actions are loaded into memory.

EXEC Actions
Exec Interface—Executables run as distinct processes and do not share an address
space with the Identity System.

The Identity System determines the data to be sent and received between itself and the
executable, based on the Identity System and Executable parameters specified in the
Catalog entry. The action then receives a set of command line arguments and XML
data representing the event on STDIN. The EXEC action returns a status and,
optionally, XML data on STDOUT. The possibilities are shown in the following
diagram:

The set of command line arguments has a fixed logical structure. Consider, for
example, the argv[] array of command line parameters. The first member of this array
is the total count of arguments. The last array member is always the data for the set of
Identity System parameters (if any) specified in the catalog entry for the event, always
provided in EventXML format. (These are the same set of parameters available to LIB
actions; see the full list at "Global Parameters" on page 3-17.) The arguments in
between are the values given for EXEC parameters (if any) in the catalog entry for the
event. The exec parameters are user-defined instructions to the EXEC action that
control its operation.

The format of the XML data sent to the action and returned by it varies with the type
of event. In most cases, both the STDIN and STDOUT data will be in EventXML
format. Post processing events are an exception; they always return PresentationXML,
as discussed in greater detail in "Pre and Post Events" on page 3-21.

EXEC actions are able to get and return the same data as LIBs, but do it in a more
complex way, generally requiring parsing of the XML data. Here are the equivalences:

■ Equivalence to Get —The desired value must be obtained by first locating the
attribute name in the EventXML or PresentationXML string, then extracting the
value.

Values for global parameters are provided, in EventXML format, as the last command
line argument.

■ Equivalence to Set —The user must start with the full EventXML or
PresentationXML string, then locate the attribute name in the XML and insert the
value.

■ Equivalence to Receive —This is the EventXML or PresentationXML string for the
event, which is always provided to the EXEC using its STDIN.

EXEC

status value

STDOUT(XML)

arg[n]

STDIN(XML)
Identity
System

How the API Works

Identity Event Plug-in API 3-17

■ Equivalence to Send —This is the EventXML or PresentationML which the action
optionally returns on its STDOUT.

■ Equivalence to SetResultString —Use ObResultString to name the ObParam and
provide the message string as its value.

Load Behavior
Unlike LIB actions (which are cached) EXEC actions are executed afresh from the file
system each time they are used. This means that they can be replaced at any time with
a new version. The new version is executed the next time the corresponding event is
triggered.

EXEC Examples
EXEC Code examples can be found installed under

Identity_install_dir/oblix/unsupported/ppp/ppp_exec

Global Parameters
A special set of global parameters can be retrieved. Lib actions get values for these
parameters interactively, using the Get method. Exec actions get values by providing
one or more of the parameter names in the parameter list. Either way the developer
specifies a predefined fixed value parameter name, also called a key, as listed in the
following table. Use the full uppercase parameter name shown in the table, preceded
by either ObRequest or ObEnv, as shown.

For example, to get the name of the user making the request from within a LIB or
MANAGEDLIB Faction, the content could be:

User Identity Key Name Description of Data

ObRequest.

REMOTE_ADDR

Client IP address, for example, 666.777.888.999. This is the IP
address of the user making the request.

ObRequest.

REMOTE_HOST

Client's DNS address (for example, www.foo.com).

ObRequest.

REMOTE_PORT

The port number at which the client host is listening.

ObRequest.

REMOTE_USER

Name of the HTTP authenticated user.

ObRequest.

HTTP_USER_AGENT

Name of the client's browser (for example, Mozilla/4.07).

ObRequest.

OBLIX_AUTH_USER

The Oracle Access Manager authenticated user.

ObRequest.

TARGET_UID

UID for the target entry.

ObRequest.

<any requestInfo parameter>

A requestInfo parameter is any of the values that appear in the
URL for a displayed page, following the delimiters $ or &.

ObEnv.

INSTALL_DIR

Installation Directory for the Identity Server.

How the API Works

3-18 Oracle Access Manager Developer Guide

currentuser = Get("ObRequest.OBLIX_AUTH_USER")

The catalog entry for the equivalent EXEC request might look like this:

userservcenter_view_pre;exec; ObRequest.OBLIX_AUTH_USER;
../../../unsupported/ppp/ppp_exec/pppexectest; someinstruction;

Working with XML
The following topics are discussed in this section:

■ Event XML Format

■ PresentationXML Format

■ Parsing XML

Event XML Format
EventXML provides a standard, predictable format for use by LIB, MANAGEDLIB,
and EXEC actions. The schema for EventXML looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.oblix.com/"
xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns="http://www.oblix.com/"
elementFormDefault="qualified">

<xs:element name="ObEventParams">
<xs:complexType>
<xs:choice minOccurs="0"

maxOccurs="unbounded">
<xs:element name="ObParamList"
minOccurs="0" maxOccurs="unbounded">
<xs:complexType>

<xs:sequence>
<xs:element ref="ObParam"
maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="name"
type="xs:string" use="required"/>

 </xs:complexType>
 </xs:element>
 <xs:element ref="ObParam" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:choice>
 </xs:complexType>
 </xs:element>

<xs:element name="ObParam">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ObValue" type="xs:string"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string"
 use="required"/>
 </xs:complexType>
</xs:element>
</xs:schema>

Consider an example. Suppose the Catalog entry for an EXEC action is as follows:

userservcenter_view_pre;exec;

How the API Works

Identity Event Plug-in API 3-19

ObRequest.cn,ObRequest.sn; ../../../unsupported/ppp/ppp_exec/pppexectest;
execparam;

This example specifies that the EXEC action pppexectest is to be invoked before (pre)
the Identity System begins to build the person profile page (view) in User Manager
(userservcenter). Information is requested for the cn parameter and sn parameters. The
executable parameter execparam is to be included as the first command line argument
to the executable.

The last argument of the command-line information passed to the EXEC action,
containing the EventXML, will be as shown in the following listing. Note there are as
many instances of ObParam as there are requested parameters.

<?xml version="1.0" encoding="UTF-8"?>
<ObEventParams
xmlns="http://www.oblix.com/">
<ObParamList name="ObRequest">
<ObParam name="cn">
<ObValue>John Smith</ObValue>
</ObParam>
<ObParam name="sn">
<ObValue>Smith</ObValue>
</ObParam>
</ObParamList>
</ObEventParams>

PresentationXML Format
The content of PresentationXML is highly variable, because the Identity System
enables the user to modify the appearance and content of screens to satisfy
site-dependent requirements. An explanation of the XML content and structure is
provided in the chapter on PresentationXML in the Oracle Access Manager
Customization Guide.

Parsing XML
In order to work with either EventXML or PresentationXML, the developer will need
to be able to parse the XML data stream, to locate the points in the stream where data
is provided (to in effect Get data) or must be inserted (to in effect Set data).

We do not attempt here to tell developers how to program such a parser. However, a
set of examples is provided at:

Identity_install_dir/oblix/unsupported/ppp/parser_test

See "Parser Example Files" on page 3-46 for a list of these files.

The files assume the developer is using the free Apache XML parser, XERCES, source
code for which can be obtained from:

http://xml.apache.org/

The content of the EventXML and PresentationXML strings technically is predictable,
but depends in very complex ways upon which event is occurring and in which
application. The recommended approach is to set up an action that returns the XML
stream for the desired application and event combination, and capture the stream in a
file. Then, code the action to work with that information. This approach is particularly
appropriate for actions to be written for post-processing events, when the stream
consists of highly variable PresentationXML information.

Event Handling in the API

3-20 Oracle Access Manager Developer Guide

Event Handling in the API
For each of the five event types, this section describes:

■ The syntax required in order to link that event type to an action in the Catalog.

■ The functions required for initialization and shutdown of the event handler.

■ The valid interface methods for the event type, and the content of the interface
data.

■ The set of status responses, one of which the action must return to the application.

The following topics are discussed in this section:

■ Event Handler Initialization and Shutdown Functions

■ Pre and Post Events

■ OnChange Events

■ Workflow Events

■ Password Management Events

■ Encryption Events

Event Handler Initialization and Shutdown Functions
For LIB and MANAGEDLIB actions, Pre and Post Processing (PPP) provides functions
for initialization and shutdown for the event handler. These initialization and
termination functions are called each time when the PPP library is loaded or unloaded.

For MANAGEDLIB actions, you must define a singleton object of class EventAPI. The
constructor will be invoked upon loading the DSO, while the destructor will be called
when the default application domain is unloaded from the Identity System process
during shutdown. The initialization code must be placed in the constructor for this
class, and the shutdown code must be placed in the destructor. These replace the Init
and Term functions provided for LIB and MANAGEDLIB actions.

Global initialization and cleanup should be done only within the following functions.

ObInitEventAPI ()
For LIB, actions, the ObInitEventAPI () function is called when the DSO is loaded. This
function, shown as follows, provides all global initialization such as reading of
configuration files and creation of log files.

unsigned int OBLIX_DLLEXPORT ObInitEventAPI (void)

This function is guaranteed to be called in a thread-safe manner.

If this function is present in the plug-in, the Identity System calls it after the plug-in
has been loaded.

Return Values
The function can return either of the following two response values, which are defined
in the obppp.h. file:

Note: Events are described in greater detail at "Types of Events" on
page 3-3. All event types support LIB, MANAGEDLIB, and EXEC
actions.

Event Handling in the API

Identity Event Plug-in API 3-21

■ STATUS_PPP_OK—This is the result the function should return if it succeeds. This
function result tells the application that the function has completed execution
without error.

■ STATUS_PPP_ABORT— This is the result the function should return if it fails. This
function result tells the application that the function failed to complete execution
because of an error. Subsequent calls to the plug-in will not be made.

ObTermEventAPI ()
For LIB actions, the function ObTermEventAPI () is called when the DSO is unloaded.
This function, shown as follows, performs clean-up activity such as releasing any
allocated memory and closing any opened files.

unsigned int OBLIX_DLLEXPORT ObTermEventAPI (void)

This function is guaranteed to be called in a thread-safe manner.

If this function is present in the plug-in, the Identity System calls it when the server is
being shut down.

Return Values
The action returns the following value which are defined in the pppdlltest.cpp file:

STATUS_PPP_OK—The function returns this result to tell the application that it has
completed the action without error.

STATUS_PPP_ABORT—The function returns this result to tell the application that it
has encountered an error.

Pre and Post Events
The following topics are discussed in this section:

■ Catalog Entry

■ Interaction Methods

■ Return Values

Catalog Entry
For this event type the format for the entry in the Catalog for a LIB action or a
MANAGEDLIB action is:

actionName;lib;;libname;libfuncname;apiVersion;

For EXEC actions the format for the entry is:

actionName;exec;NPparam1,...;execname;execparam1,...;apiVersion;

Note the punctuation within each entry. Fields are separated by semicolons; lists of
items within fields are separated by commas. The entry is terminated with a
semicolon. Fields may be empty. The following table describes each field in detail.

Event Handling in the API

3-22 Oracle Access Manager Developer Guide

The following are some LIB action Catalog entry examples. For the examples shown
here and in following sections, file entries are shown with line breaks at the semicolon
delimiters, to allow printing in this Guide. In the actual file, the content must be
entered all on one line. Also, source for many of the example actions is provided as
part of the Identity System installation. See "Development Environment" on page 3-43.

 userservcenter_view_pre;lib;;
../../../unsupported/ppp/ppp_dll/libppp_dll.dll;
PreProcessingTest;;

For a MANAGEDLIB action Catalog, the entry would be as follows:

 userservcenter_view_pre;managedlib;;
c:\unsupported\ppp\ppp_dll\libppp_dll.dll; PreProcessingTest;;

This example calls for the PreProcessingTest action function in the ppp_dll.dll library
to be performed before (pre) the person profile page (event = view) is built by the User
Manager (application = userservcenter). Because the file type is lib, this is a LIB action
implemented by a function, meaning that the DSO must be loaded and the function
located within the DSO before the action can be performed.

This example action that is provided in the unsupported directory changes the
requested uid value to the following DN:

cn=Pick Carli,ou=Customer10K1,ou=Customers,o=Company,c=US

Mr. Smith's profile is always displayed when the user requests a profile page in the
User Manager, regardless of the uid for which the request was made.

userservcenter_view_post;lib;; ../../../unsupported/ppp/ppp_dll/ppp_dll.dll;
PostProcessingTest;;

This example configures the PostProcessingTest action function in ppp_dll.dll to be
invoked after (post) the building of User Manager's person profile (view) page. This
example action, which is provided in the unsupported directory, forces a message to be
displayed instead of the profile page.

Further examples of Catalog entries can be found in the default Catalog file located at:

Identity_install_dir/oblix/apps/common/bin/oblixpppcatalog.lst

Field Name Description

actionName (for events
in Group Manager,
Organization Manager,
and User Manager)

Required. Provide this information in the form
APPNAME_EVENTNAME_PPPTYPE. Note the underscores used to
separate the three parts.

APPNAME is the Identity System application name. Valid application
names are:

groupservcenter—or Group Manager

objservcenter—for Organization Manager

userservcenter—for User Manager

EVENTNAME is one of the possible events for the APPNAME
application, as described in Chapter C, "Identity Events" on page C-1.

PPPTYPE is one of two values:

pre—means the action is a preprocessing action, to take place before the
event

post—means a post-processing action, to occur after the event.

(other fields) See the descriptions in "Configuration File (Catalog)" on page 3-7.

Event Handling in the API

Identity Event Plug-in API 3-23

Interaction Methods

Get

Set

Receive
XML data received in response to this request can be of two different formats,
depending upon whether the action is pre or post. Pre actions receive data in the
EventXML format, as described at "Working with XML" on page 3-18. Post-processing
actions receive data in the PresentationXML format, as described in the chapter on
PresentationXML in the Oracle Access Manager Customization Guide.

Send
XML data sent back to the application must be the same type as was received. The
data sent to the application must conform to the formal schema for each type of data
or else it will be rejected. The section "Parser Example Files" on page 3-46 lists some
files provided with the Identity System installation, which can be used to verify the
data using an XML editor.

SetResultString
A string returned with this method will be displayed by the Identity System
application.

Return Values
The action should return one two response values, which are defined in the Obppp.h
file:

Operation
User Identity Key
Name Description of Data

GET <attribute name> For a LIB action, returns a
NULL-terminated array holding each
of the values provided for the named
attribute within the XML data used
to create the display. For managed
code, returns an object of base type
System.Array whose contents can be
enumerated.

Operation
User Identity Key
Name Description of Data

SET <attribute name> Sets values for the named attribute
within the XML data used to create
the display.

SET ObRequest.

<any requestInfo
parameter>

Sets the single value for any of the
RequestInfo parameters that appear
in the URL for a displayed page,
following $ or &.

Note: In the case of pre actions, the EventXML will contain values
only if the event being monitored is one that enables a change of
attributes.

Event Handling in the API

3-24 Oracle Access Manager Developer Guide

■ STATUS_PPP_OK—This is the success response. The action sends this value to tell
the application that the action has completed without an error. Value = 0x00h.

■ STATUS_PPP_ABORT—This value returned means an error has occurred. Value =
0x01h.

Failure to formally return a response value will cause unpredictable behavior in the
application, depending upon the default return value that the operating system will
supply instead.

OnChange Events
The following topics are discussed in this section:

■ Catalog Entry

■ Interaction Methods

■ Return Values

Catalog Entry
Entries to the Catalog for this action type are the same as for pre- and post-processing
events, except for the action name.

This event gets triggered only after the changes are successfully committed to the
directory.

Here is an example:

userservcenter_inetOrgPerson_onchange;lib;;
..\..\..\unsupported\ppp\ppp_dll\ppp_dll.dll;
uscOnChange;;

This example calls for the action uscOnChange to monitor any changes that the event
makes to attributes belonging to the inetOrgPerson class, or to any of its attached
auxiliary classes.

Interaction Methods

Get

Field Name Description

actionName (for
OnChange)

Required. Provide this information in the form
APPNAME_STRUCTURALCLASSNAME_onchange.

APPNAME is the Identity System application name.

STRUCTURALCLASSNAME is the name of the structural class that
contains the attribute whose change in value is to be monitored. If the
attribute belongs to an auxiliary class then the name of the structural
class it is attached to.

onchange precisely identifies the type of action.

(other fields) See the descriptions in "Configuration File (Catalog)" on page 3-7.

Operation
User Identity Key
Name Description of Data

GET <attribute
name>.ObOldValue

The old value for the attribute.

Event Handling in the API

Identity Event Plug-in API 3-25

Set
This method is not supported for the OnChange event.

Receive
Receive() is used to get data from the Identity System. XML can be received just as for
pre- and post-processing events, but only in EventXML format.

Send
The Send() method is used to send data to the Identity System. The onChange event
handler is called in response to completion of an operation that changed data in the
Profile page of an Identity System application. For the onChange event handler, you
use the Send() method to set a message to be displayed on the screen after the
modification operation completes execution. A call to the Send() method must be sent
in EVENTXML format.

Send() method is for sending data back to the Identity System. For the onChange
event, Send() can only be used to set a message to be shown after the operation is
completed. The same result can be implemented using the SetResultString() call

SetResultString
A string returned with this method will be displayed by the Identity System
application.

Return Values
The action must return one of two response values, which are defined in the Obppp.h
file:

■ STATUS_PPP_OK—This is the success response. The action sends this value to tell
the application that the action has completed without an error. Value = 0x00h.

■ STATUS_PPP_ABORT—This value returned means an error has occurred. Value =
0x01h.

Failure to formally return a response value will cause unpredictable behavior in the
application, depending upon the default return value that the operating system will
supply instead.

GET <attribute
name>.ObNewValue

The new value for the attribute.

GET <attribute
name>.ObChangeType

The type of change that was made.

Possible values:

OB_ADD—A new value was added.

OB_MODIFY—An existing value was
changed.

OB_DELETE—An existing value was
deleted.

OB_NOCHANGE—The value was not
changed.

Operation
User Identity Key
Name Description of Data

Event Handling in the API

3-26 Oracle Access Manager Developer Guide

Workflow Events
The following topics are discussed in this section:

■ Catalog Entry

■ Interaction Methods

■ Tables of Workflow Attributes

■ Return Values

Catalog Entry
Workflow entries to the Catalog use the same format as for pre- and post-processing
events. Also, except for the actionName field, the table describing the fields within
entries is identical. For a description of the format and requirements for the fields of
the workflow entry that are common to all entries, see "Configuration File (Catalog)"
on page 3-7.

Here is an example of a workflow event entry in the oblixpppcatalog.lst Catalog file:

63f004504f83455b924133acd0ef2e87_3_externalaction;
lib;;../../../unsupported/ppp/ppp_dll/libppp_dll.so;
WorkflowExtActionTest;;

This example calls WorkflowExtActionTest as an externalaction during step three of
the workflow whose ID is 63f004504f83455b924133acd0ef2e87.

Example: Calling Logger as a Post-Processing Action After a Workflow
Step
Here is another example of an entry in the Catalog. This example calls the Logger
action after Step 1 of the workflow completes execution. The workflow ID
number—2e22c064723e4030a05b437e059fe4d6—is used to identify the workflow that
contains the step. The full entry for both MS Windows and Unix platforms is shown in
the following paragraphs.

Field Name Description

actionName (for
workflows)

For events triggered by workflows, use the form

WORKFLOW-DEFINITION-ID_STEP-DEFINITION-NUMBER_PPP
TYPE. Note the underscores used to separate the three parts.

WORKFLOW-DEFINITION-ID is the unique identifier used to label
the workflow. The DN for the workflow is shown in the workflow
definition view. See the Oracle Access Manager Administration Guide
for details.

STEP-DEFINITION-NUMBER is the number of the step within the
workflow.

PPPTYPE is one of three values:

preaction—The action is a preprocessing action, to take place before
the workflow step.

externalaction—Means the action occurs as part of the workflow
step. The workflow waits for this action to complete before
continuing.

postaction—Means a post-processing action, to occur after the
workflow step.

(other fields) See the descriptions in "Configuration File (Catalog)" on page 3-7.

Event Handling in the API

Identity Event Plug-in API 3-27

For Windows
Here is the oblixpppcatalog.lst entry for MS Windows:

2e22c064723e4030a05b437e059fe4d6_1_postaction;
exec;uid;c:\j2sdk1.4.1_01\bin\java.exe; —classpath C:\ana\samples\bin Logger;;

■ actionName—2e22c064723e4030a05b437e059fe4d6_1_postaction

Here are the parts of the actionName for this example:

– WORKFLOW-DEFINITION_ID

– 2e22c064723e4030a05b437e059fe4d6

– STEP-DEFINITION_NUMBER

1

– PPPTYPE

postaction

■ actionType—exec

■ identityparam1—uid

■ path—/usr/local/bin/java

functionname— -classpath C:\ana\samples\bin Logger

For Unix
Here is the oblixpppcatalog.lst entry for Unix

2e22c064723e4030a05b437e3059fe4d6_1_postaction;exec;uid;/usr/local/bin/java;
-LD_LIBRARY_PATH/opt/ana/sample/bin Logger;;

actionName—2e22c064723e4030a05b437e3059fe4d6_1_postaction

actionType—exec

identityparam1—uid

path—/usr/local/bin/java

functionname— -LD_LIBRARY_PATH/opt/ana/sample/bin Logger

Interaction Methods

Get

Note: The same syntax applies for an entry pertaining to a
pre-processing action. The single difference is that the PPPTYPE is
preaction.

Operation
User Identity Key
Name Description of Data

GET WfHandler This is the callback URL expected by the
asynchResumeWorkflowProcess function in
IdentityXML. This URL will be of the form:

http://www.domain.com/identity/oblix/
apps/asynch/bin/asynch.cgi

Event Handling in the API

3-28 Oracle Access Manager Developer Guide

Set

Receive
XML can be received just as for pre- and post-processing events, but only in the
EventXML format.

Send
XML can be sent just as for pre- and post-processing events, but only in the EventXML
format.

GET WfSubflow A list of one or more of the subflows belonging
to the current workflow.

GET WfInstance.

<attribute name>

A list of one or more values for the named
attribute belonging to the current workflow.

For example WfInstance.obtargetdn refers to the
value for the target DN, as stored in the
obtargetdn attribute. See the full list of
WfInstance attributes in the following table.

GET WfStepInstance.
<attribute name>

A list of one or more values for the named
attribute belonging to the current step of the
current workflow.

For example WfStepInstance.obactordn refers to
the value for the uid of the person processing
the current step, as stored in the obactordn
attribute.

GET WfAttribute.

<attribute name>

A list of one or more values for the named
Workflow attribute. Refers to the configured
workflow attribute for the step.

GET WfSubflow.

<subflowid>.

<attribute name>

A list of one or more values for the named
attribute under the named subflow ID for the
current Workflow, where attribute name is any
of the WfInstance attributes pertaining to the
subflowid. For example,
WfSubflow.63f004504f83455b924133acd0ef87.

obtargetdn refers to the target DN of the
subflow whose ID is
63f004504f83455b924133acd0ef87 and which is
triggered from the current workflow instance.

Operation
User Identity Key
Name Description of Data

SET WfAttribute.

<attribute name>

Any of the configured workflow attributes for
the step.

SET WfInstance. Obwf

supplementalval

Set the approval status for all subflows. Applies
only to steps that have multiple workflows.
Possible values to be set are:

rejected

approved

Operation
User Identity Key
Name Description of Data

Event Handling in the API

Identity Event Plug-in API 3-29

SetResultString
A string returned with this method will be displayed by the Identity System
application.

Tables of Workflow Attributes
The following table summarizes WfInstance attributes:

Attribute Name Meaning

obactionindicator For internal use.

obactorcomment Comments entered during workflow processing.

obapp Application to which the workflow belongs (for example
userservcenter for User Manager).

obattr For internal use.

obcertid Certificate id (used by certificate workflows).

obclass Object classes of the target entry.

obcurrentdn The dn of the user who initiated the workflow.

obcurrentstep The dn of the current step being processed.

obdatecreated Integer date when the workflow instance was created.

obdateprocessed Integer date when the workflow instance was last processed.

obhostname Hostname of the machine from where the workflow was initiated.

obkey For internal use.

oblockedby The dn of the user who locked the workflow ticket.

obparentstep Applicable to subflows. dn of the parent workflow step instance that
triggered the subflow.

obparentworkflow Applicable to subflows. The dn of the parent workflow instance.

obport Port number of the machine from which the workflow was initiated.

obtargetdn The dn of the target user entry.

obtriggeredworkflow For internal use. Maintains number of unfinished triggered subflows.

obver Identity System version.

obwfinstanceid Instance identifier.

obwfstatus Status of workflow.

obwfsupplementalval This indicates a single approval status of all triggered subflows. Valid
values:

■ approved

■ rejected

Example:

data->Get("WfInstance.obwfsupplementalval");

obwftypename Display name of type of workflow.

obworkflowdn The dn of the workflow definition.

obworkflowname Name of workflow definition.

obworkflowtype Type of workflow, such as create user, change attribute, and so on.

Event Handling in the API

3-30 Oracle Access Manager Developer Guide

The following table summarizes WfStepInstance attributes:

Return Values
The action must return one of four response values to the workflow engine:

■ STATUS_PPP_OK—This value tells the workflow engine that the action has
completed, and it may continue to the next step.

■ STATUS_PPP_ABORT—This value tells the workflow engine an error has
occurred. The workflow engine tells workflow participants for the current step in
the workflow that it has failed, and uses its internal logic to handle the error.

Attribute Name Meaning

obactionname Step action (for example initiate, request, and so on.)

obactionreturncode For internal use.

obactorcomment Status message of step processing.

obactordn The dn of the user processing the current step.

obapp Application to which the workflow belongs (for example
userservcenter for User Manager).

obdatecreated Integer date when the workflow step instance was created.

obdateprocessed Integer date when the workflow step instance was last processed.

obentrycondition Not used.

obexitcondition Not used.

oblockedby The dn of the user who locked the workflow ticket.

oboptionalattribute List of optional attributes configured for the step. The attribute list is
comma delimited.

obparticipant Not used.

obprovisionedattribute List of attributes for which subflows are configured in the step. The
attribute list is comma delimited.

obrequiredattribute List of required attributes configured for the step. The attribute list is
delimited with comma.

obretrycount Number of times the step has been retried. Applicable only if retry
status is returned from workflow event handler.

obretrydone Boolean value that indicates if the retry is completed or not.

obtriggeredworkflow Not used.

obver Identity System version.

obwfstatus Status of step instance processing.

obwfstepinstid Step instance identifier.

obworkflowstepdn The dn of the workflow step definition.

obattr Attribute name.

obattrtype Attribute type.

obattrvals Attribute values.

obver Identity System version.

obwfattrdefval Not used.

obwfattrflags Not used.

Event Handling in the API

Identity Event Plug-in API 3-31

■ STATUS_PPP_WF_ASYNC—This value tells the workflow engine to put itself into
a pending state, waiting for some external action to complete. Recover from this
state by sending an asynchResumeWorkflowProcess command. The URL to which
the command should be sent is requested using the parameter name wfhandler.
This command and the process for using it, are described in the Chapter 2,
"IdentityXML Functions and Parameters" on page 2-1.

■ STATUS_PPP_WF_RETRY—This value tells the workflow engine that the step did
not complete, most likely due to entry of invalid data. The user will need to try the
step again, providing correct data. The current retry count is maintained in the
directory entry for the workflow step instance. You can request the current retry
count using the attribute name obretrycount.

Failure to formally return a response value may cause unpredictable behavior in the
application, depending upon the default return value that the server operating system
will supply instead.

Password Management Events
As part of creating a password policy, you may set a flag allowing "Externally
specified validation rules." If this flag is set on, then the Identity System checks the
Catalog for actions to be used in place of its standard Password Management.

The event related to lost password management functionality is setChangedPassword
and the application name is lost_pwd_mgmt. The sample application name, event
name, and action is lost_pwd_mgmt_setChangedPassword_pre. Note that this is not
the standard UserServCenter application naming convention.

The following topics are discussed in this section:

■ Catalog Entry

■ Interaction Methods

■ Return Values

Catalog Entry
Under Password Management, only one event is possible, Password Validation. The
action name therefore has the fixed value PWMGMT_PasswordValidation. Also,
because no pre- or post-processing is supported, the name does not include the pre or
post indicator that other actions use.

Here is an example of a password validation event entry in the Catalog:

PWMGMT_PasswordValidation;exec;;..\..\..\unsupported\ppp\ppp_exec\ppp_exec.exe;;

This example calls ppp_exec.exe as an EXEC function to do password validation. This
registers the standalone program ppp_exec.exe to perform password validation when
a user attempts to change their password. The following must be true for the action to
be invoked:

■ The action must be configured in the catalog and deployed on the Identity System.

Field Name Description

actionName (for Password
Management)

Required. Provide this information in the form
PWMGMT_PasswordValidation.

(other fields) See the descriptions in "Configuration File (Catalog)" on
page 3-7.

Event Handling in the API

3-32 Oracle Access Manager Developer Guide

■ A Master Identity Administrator must configure a password policy whose
External Validation flag is turned on.

■ The password policy must be enabled.

The domain of the password policy must contain the user's identity.

Interaction Methods

Get

Set
This method is not supported for the Password Management event.

Receive
XML can be received just as for pre- and post-processing events, but only in the
EventXML format.

Send
XML can be sent just as for pre- and post-processing events, but only in the EventXML
format.

SetResultString
A string returned with this method will be displayed by the Identity System
application.

Return Values
The action must return one of two values:

■ STATUS_PPP_OK—Indicates that the password conforms to the rules and can be
changed to the indicated value.

■ STATUS_PPP_ABORT—Indicates that it does not. The change can not be made.

Failure to formally return a response value will cause unpredictable behavior in the
application, depending upon the default return value that the server operating system
will supply instead.

Operation
User Identity Key
Name Description of Data

GET Password This is the password value entered by
the user, to be validated. It is a
two-member array, NULL terminated.

GET PasswordPolicy

Domain

The domain defined for the Oracle
Access Manager password policy that
applies to the user.

GET PasswordPolicy

Filter

The filter defined for the Oracle Access
Manager password policy that applies
to the user.

Event Handling in the API

Identity Event Plug-in API 3-33

Encryption Events
Whenever an encryption event occurs, the Identity System checks the Catalog for an
encryption action. If one is present, then the process defined within it is used instead
of the Identity System's default method.

If you make this change, the Identity System assigns all responsibility for the
encryption to your action. Be sure that the encrypt and decrypt methods you use are
the inverse of each other.

The following topics are discussed in this section:

■ Catalog Entry

■ Interaction Methods

■ Response Values

Catalog Entry
Catalog entries for encryption use the same format as pre- and post-processing events,
with one difference, the actionName. Under Encryption, only two events are possible.
Also, because no pre- or post-processing is supported, the name does not include the
pre or post indicator that other actions use.

In table format:

Here is an example of an Encryption event entry in the Catalog.

 ENCRYPTION_CPResponseEncryptionKey;lib;;
../../../unsupported/ppp/ppp_dll/ppp_dll.dll;
ProcessCPResponseEncryption;;

This example calls the ProcessCPResponseEncryption function in ppp_dll.dll to
encrypt the challenge response key.

Field Name Description

actionName (for
Encryption)

Required. Provide this information in the form
APPNAME_EVENTNAME. Note this has only two parts, separated by
underscores.

APPNAME is the Identity System application name, in this case
Encryption, entered as ENCRYPTION.

Under encryption, there are only two valid events, actually the type of
information to be encrypted. These are the Cookie Encryption Key or
the Challenge Response Encryption Key. Acceptable values for
EVENTNAME are therefore cookieEncryptionKey or
CPResponseEncryptionKey respectively.

(other fields) See the descriptions in "Configuration File (Catalog)" on page 3-7.

The API

3-34 Oracle Access Manager Developer Guide

Interaction Methods

Get

Set

Receive
XML can be received just as for pre- and post-processing events, but only in the
EventXML format.

Send
XML can be sent just as for pre- and post-processing events, but only in the EventXML
format.

SetResultString
A string returned with this method will be displayed by the Identity System
application.

Response Values
The event must return one of two values:

■ STATUS_PPP_OK—The event sends this value to indicate that encryption has
completed satisfactorily.

■ STATUS_PPP_ABORT—The event sends this value to indicate that encryption did
not complete satisfactorily.

■ Because encryption is essential to the Identity System’s operation, any response
other than STATUS_PPP_OK will cause the Identity System instance to stop, and
generate a bug report.

The API
This section provides additional information for the developer on how to use the API.
The following topics are discussed:

■ More on LIB Actions

■ More on MANAGEDLIB Actions

Operation
User Identity Key
Name Description of Data

GET OPERATION This operation returns one of two values.

ENCRYPT—Encrypt the data.

DECRYPT—Decrypt the data.

GET INPUTSTR Returns user entered information in a
two-member array, NULL terminated.

Operation
User Identity Key
Name Description of Data

SET OUTPUTSTR The information to be returned to the Identity
System. You must provide a NULL termination.

The API

Identity Event Plug-in API 3-35

■ More on EXEC Actions

■ Returning Error Messages From an EXEC Call

■ Development Environment

More on LIB Actions
You implement a LIB action as a callable function (with C language calling
conventions), that resides within a dynamic shared object (DSO) library. The DSO
must be native to the platform on which the Identity System is running. For example
on NT, it must be a .dll; on Solaris UNIX it is must be an .so.

LIB actions are executed in the address space of the Identity System server process. It
is critical that LIB actions be thoroughly tested before being deployed, as there is a
class of programming errors (such as divide-by-zero errors) that cannot be caught by
the Identity System and can cause the server to fail, or to exhibit other unstable
behavior.

LIB actions communicate with the Identity System application by calling API functions
directly, passing the appropriate parameters, as described in "Connecting Events to
Actions" on page 3-2.

More on MANAGEDLIB Actions
MANAGEDLIB actions are methods on a class. You implement a MANAGEDLIB
action as a method on the EventAPI class, which is defined in the plug-in. The DSO is
an assembly or a dll.

MANAGEDLIB actions are executed in the address space of the Identity server
process. It is critical that MANAGEDLIB actions be thoroughly tested before being
deployed. However, any exception generated by the managed plug-in will be caught
by the Identity Server, logged, and a bug report page will be generated.

MANAGEDLIB actions communicate with the Identity System application by calling
API functions directly, passing the appropriate parameters, as described in
"Connecting Events to Actions" on page 3-2.

When compiling an EventAPI PPP Plug-In in VB.NET, ensure that:

■ Your VB Class is named "EventAPI".

■ You are not using namespaces in your code.

■ You blank out the "Root Namespace" in the properties settings of your project in
Visual Studio.NET with your VB project open:

Note: Do not use blank spaces in the names of any file in an Identity
Event API project.

Note: When developing a LIB plug-in, global data must be
implemented in a thread-safe manner.

Note: When developing a MANAGEDLIB plug-in, member
variables of class EventAPI must be accessed in a thread-safe manner.

The API

3-36 Oracle Access Manager Developer Guide

Go to the Project, then to Properties, then to the Common Properties / General
page, then to the Root Namespace, remove the value, and click OK.

The Identity Server will not load your dll if you fail to perform any of the items in the
previous list.

More on EXEC Actions
You implement an EXEC action as a standalone executable. The action receives two
kinds of input: command-line parameters that you specify in the catalog and XML
data from the Identity program whose event is causing the action to run. The
parameters are received in the ARGV[] array passed into the main() function
(assuming a C/C++ programming environment). The XML data is available as a
stream on the executable's standard input stream, STDIN.

Content of the XML data depends on whether the event is a pre-processing or
post-processing event. For a pre-processing event, the data describes the request and is
given in EventXML format. For a post-processing event, the data represents the result
of processing the request and is given in PresentationXML format. (PresentationXML
is the XML that would normally be combined with an XSL stylesheet and transformed
into the HTML ultimately seen by the user's browser.) The action is expected to
perform its task and optionally write modified XML, in the same format as was
received, back to the executable's standard output STDOUT. If information is returned
on STDOUT, the Identity System receives it and generates the HTML based on the new
data.

Use of STDIN and STDOUT gives developers the ability to code their EXEC actions in
any language that supports these data streams. This includes Java, C, C++, PERL,
Python, UNIX shells, and .NET languages such as C#, MC++, and VisualBasic. If it
needs to access the data to perform its task, an EXEC action may invoke any XML
parser to interpret the XML. The Identity System does not provide a built-in parser.
The EXEC action must maintain the validity of the XML. Otherwise the
Oracle-provided or custom XSL stylesheets that may be applied further downstream
before presentation to the user may not produce the expected results. Within this
constraint, the EXEC action may perform any processing needed:

■ It might parse the Identity System data and take action based on the result.

■ It might filter the Identity System data by replacing some or all of it in the output
stream with different data, taking care to maintain compliance with the Identity
System data's XML schema.

Note: Any managed library to be used for PPP events must have the
EventAPI class declared at the global namespace level. That is, it must
be declared within no namespace. For a C# library, this means simply
removing the `namespace' directive from the source code. For a
VB.Net library, remove the `Default Namespace' option from the
project.

Note: A complete discussion of the process that the Identity System
follows to logically combine XML data and XSL style sheets to create
its HTML presentation is outside the scope of this manual. See the
chapter on PresentationXML in the Oracle Access Manager
Customization Guide.

The API

Identity Event Plug-in API 3-37

■ It might allow the Identity System data to pass through untouched, but kick off
another business process somewhere else on the network. For example, an action
handling the workflowActivateSave event in User Manager can maintain a count
of users that have been activated. When the count reaches a certain threshold, the
action can trigger a backup or replication procedure to limit the risk of data loss.
Or it can send email to an IT manager, who might want to investigate why so
many users have suddenly been activated.

Returning Error Messages From an EXEC Call
There are three interfaces you can use to return error messages from an EXEC call. The
three common interfaces are:

■ EXEC - WF

■ EXEC - PRE

■ EXEC - POST

Returning Error Messages Using EXEC - WF
To send error message back to the Identity System, specify the 'ObResultString' in the
XML along with the message to be displayed. The message is displayed in the
confirmation page after the user processes a ticket.

The XML MUST be constructed as follows:

<ObEventParams>
<ObParam name="ObResultString">
<ObValue>The value of the result string goes here...</ObValue>
</ObParam>
<ObParamList name="WfAttribute">
<ObParam name="cn">
<ObValue>New value(s) go here...</ObValue>
</ObParam>
<ObParam name="sn">
<ObValue>New value(s) go here...</ObValue>
<ObValue>New value(s) go here...</ObValue>
</ObParam>
</ObParamList>
<ObParamList name="WfInstance">
<!--
NOTE: This is the only parameter that can be changed. The parameter is used to set
the outcome of a sub-flow. It will be displayed as the 'Outcome' value in the
'Subflow Approval' step. By default, the Identity System sets this parameter to
'approved' or 'rejected' in an 'Approval' step.
-->
<ObParam name="obwfsupplementalval">
<ObValue> New value(s) go here...</ObValue>
</ObParam>
</ObParamList>
</ObEventParams>

EReturning Error Messages Using EXEC - PRE
For a PRE event, the XML is constructed in much the same way as in a WF event. The
DOM is the same. The difference is in the parameter names. The parameters usually
begin with ObRequest, followed by the parameter you wish to change. To set the result
string for a PRE event, the executable must return 'STATUS_PPP_ABORT'.

The API

3-38 Oracle Access Manager Developer Guide

<ObEventParams>
<ObParam name="ObRequest.uid">
<ObValue>cn=Thomas Remahl,o=Company,c=US</ObValue>
</ObParam>
<ObParam name="ObResultString">
<ObValue>Always viewing: cn=Thomas Remahl,o=Company,c=US</ObValue>
</ObParam>
</ObEventParams

Returning Error Messages Using EXEC - POST
In the case of a POST event, the XML must conform to the event that is associated with
the plug-in. To set the result string for a POST event, you usually embed an
<ObTextMessage> element in the XML returned to the Identity System. Whether the
returned string is shown or not depends on the associated stylesheet.

For example, the output of the view event in the following example shows the
returned string "Hello, World!". As already noted, the stylesheet determines if the
element is applied. In the following example, the element is 'usc_profile.xsl'.

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet href="../../../lang/en-us/style0/usc_profile.xsl"
type="text/xsl"?>
<Oblix xmlns:oblix="http://www.oblix.com/" xmlns="http://www.oblix.com/"
oblang="en-us">
<ObProfile>
<ObTextMessage>
Hello, World!
</ObTextMessage>
<ObPanel obname="defaultPanel" obpanelId="20040401T22135679142"
obpanelClass="gensiteorgperson">
<ObAttribute obattrName="genUserID">
<ObDisplay obdisplayName="UID" obdisplayType="textS" obsemanticType="ObSLogin"
obname="genUserID" obmode="view" obcanRequest="false" obrequired="false">
<ObTextS>
<ObValue>Admin</ObValue>
</ObTextS>
</ObDisplay>
</ObAttribute>
<ObAttribute obattrName="sn">
<ObDisplay obdisplayName="Last Name:" obdisplayType="textS" obname="sn"
obmode="view" obcanRequest="false" obrequired="false">
<ObTextS>
<ObValue>dmÔn</ObValue>
</ObTextS>
</ObDisplay>
</ObAttribute>
<ObAttribute obattrName="cn">
<ObDisplay obdisplayName="Name" obdisplayType="textS" obname="cn" obmode="view"
obcanRequest="false" obrequired="false">
<ObTextS>
<ObValue>Master dmÔn</ObValue>
</ObTextS>
</ObDisplay>
</ObAttribute>
</ObPanel>
<ObPanel obname="miisPanel" obpanelId="20040406T10492776123"
obpanelClass="gensiteorgperson">
<ObAttribute obattrName="cn.person.miis">
<ObDisplay obdisplayName="MIIS Name" obdisplayType="textS" obname="cn.person.miis"

The API

Identity Event Plug-in API 3-39

obmode="view" obcanRequest="false" obrequired="false">
<ObTextS></ObTextS>
</ObDisplay>
</ObAttribute>
<ObAttribute obattrName="userSMIMECertificate.person.miis">
<ObDisplay obdisplayName="MIIS Password" obdisplayType="password"
obsemanticType="ObSPassword" obname="userSMIMECertificate.person.miis"
obmode="view" obcanRequest="false" obrequired="false">
<ObPassword oboldpsw="false"></ObPassword>
</ObDisplay>
</ObAttribute>
</ObPanel>
<ObHeaderPanel>
<ObAttribute obattrName="cn">
<ObDisplay obdisplayName="Name" obdisplayType="textS" obname="cn" obmode="view"
obcanRequest="false" obrequired="false">
<ObTextS>
<ObValue>Master dmÔn</ObValue>
</ObTextS>
</ObDisplay>
</ObAttribute>
</ObHeaderPanel>
<ObRequestInfo>210498888</ObRequestInfo>
<ObScripts>
<ObScript obname="../../../lang/en-us/msgctlg.js"></ObScript>
<ObScript obname="../../../lang/shared/i18n.js"></ObScript>
<ObScript obname="../../../lang/shared/nsiesetup.js"></ObScript>
<ObScript obname="../../../lang/shared/misc.js"></ObScript>
<ObScript obname="../../../lang/shared/miscsc.js"></ObScript>
<ObScript obname="../../../lang/shared/horizontalprofile.js"></ObScript>
<ObScript obname="../../../lang/shared/userservcenter.js"></ObScript>
</ObScripts>
<ObForm obname="profileForm" obmethod="post"
obaction="userservcenter.cgi?tab_id=Employees&uid=cn%3DMaster%20%C5dm%EFn%2Co%
3DCompany%2Cc%3DUS">
<ObInput obtype="hidden" obname="program" obvalue="view"></ObInput>
<ObInput obtype="hidden" obname="visiblePanel"></ObInput>
</ObForm>
<ObDisplay obdisplayName="ObTextMessage" obdisplayType="textS"
obname="ObTextMessage" obmode="view" obcanRequest="false" obrequired="false">
<ObTextS>
<ObTextMessage></ObTextMessage>
</ObTextS>
</ObDisplay>
<ObTextMessage></ObTextMessage>
<ObSelectorInfoForm>
<ObForm obname=""></ObForm>
</ObSelectorInfoForm>
<ObButton obaction="initiateDeactivateUser"></ObButton>
<ObButton obaction="userreactivate"></ObButton>
<ObButton obaction="wfTicketDelete"></ObButton>
<ObButton obaction="userModify" obimageUrl="NAVmodify" obmouseOver="Modify this
profile."
obhref="../../userservcenter/bin/userservcenter.cgi?program=modify&tab_id=Empl
oyees&uid=cn%3DMaster%20%C5dm%EFn%2Co%3DCompany%2Cc%3DUS"></ObButton>
<ObStatus>0</ObStatus>
</ObProfile>
<ObNavbar obbgcolor="#669966">
<ObMisc>
<ObButton obaction="T1help" obimageUrl="T1help" obmouseOver="View Online Help"

The API

3-40 Oracle Access Manager Developer Guide

obhref="javascript:ObHelp('../../help/bin/help.cgi?program=helpProgram&helpApp
Context=userservcenter&helpEventContext=view&helpTOCContext=application');
"></ObButton>
<ObButton obaction="T1about" obimageUrl="T1about" obmouseOver="Product Information
and Feedback"
obhref="userservcenter.cgi?program=aboutOblix&tab_id=Employees"></ObButton>
<ObButton obaction="T1logout" obimageUrl="T1logout" obmouseOver="Logout"
obhref="userservcenter.cgi?program=commonLogout&sessionUid=20040407T1438028574
5"></ObButton>
</ObMisc>
<ObApps>
<ObApplication>
<ObButton obaction="userservcenter_application_info" obimageUrl="T1TABusermanager"
obmouseOver="User Manager" obhref="../../userservcenter/bin/userservcenter.cgi"
obanchorText="User Manager"></ObButton>
<ObTitle>
<ObButton obaction="T1TABusermanager"></ObButton>
</ObTitle>
<ObFunctions>
<ObButton obaction="MyProfile" obimageUrl="FTABmyidentity2" obmouseOver="View my
profile."
obhref="userservcenter.cgi?program=view&uid=cn%3DMaster%20%C5dm%EFn%2Co%3DComp
any%2Cc%3DUS&tab_id=Employees"></ObButton>
<ObButton obaction="Report" obimageUrl="FTABreports" obmouseOver="Report
Functions"
obhref="userservcenter.cgi?program=mainReports&appName=userservcenter&tab_
id=Employees"></ObButton>
<ObReportFunctions>
<ObButton obaction="generateReport" obimageUrl="2FTABgeneratereport"
obmouseOver="Generate a report"
obhref="javascript:QueryBuilder('../../querybuilder/bin/querybuilder.cgi?program=m
odifyFilter&tab_id=Employees&appName=userservcenter&uid=cn%'+'3DMaster
%'+'20%'+'C5dm%'+'EFn%'+'2Co%'+'3DCompany%'+'2Cc%'+'3DUS&advModeDisable=true&a
mp;slapTab=true','','..%'+'2F..%'+'2Fuserservcenter%'+'2Fbin%'+'2Fuserservcenter.c
gi%'+'3Fprogram%'+'3DshowReportsResults%'+'26appName%'+'3Duserservcenter%'+'26tab_
id%'+'3DEmployees%'+'26fromQB%'+'3Dtrue','')"></ObButton>
<ObButton obaction="viewPredefinedReports" obimageUrl="2FTABviewpredefinedreports"
obmouseOver="View predefined reports"
obhref="userservcenter.cgi?program=predefinedReports&appName=userservcenter&am
p;tab_id=Employees"></ObButton>
</ObReportFunctions>
<ObButton obaction="wfCreateProfile" obimageUrl="FTABcreateuseridentity"
obmouseOver="Create New User"
obhref="userservcenter.cgi?program=workflowCreateProfile&tab_id=Employees"></O
bButton>
<ObButton obaction="wfDeactivateProfile" obimageUrl="FTABdeactivateuseridentity"
obmouseOver="Search on Deactivated Persons."
obhref="userservcenter.cgi?program=workflowDeactivatedUserSearchResults&tab_id
=Employees"></ObButton>
<ObButton obaction="adminProxy" obimageUrl="FTABsubstituterights"
obmouseOver="Configure Proxy Administration"
obhref="userservcenter.cgi?program=proxyAdmin&tab_id=Employees"></ObButton>
<ObButton obaction="Workflow" obimageUrl="FTABrequests" obmouseOver="Workflow
Functions"
obhref="userservcenter.cgi?program=workflowMain&tab_id=Employees"></ObButton>
<ObWorkflowFunctions>
<ObButton obaction="wfIncomingRequest" obimageUrl="2FTABincomingrequests"
obmouseOver="Incoming Request"
obhref="../../userservcenter/bin/userservcenter.cgi?program=workflowTicketSearchFo
rm&tab_id=Employees&requestType=incomingRequests"></ObButton>

The API

Identity Event Plug-in API 3-41

<ObButton obaction="wfOutgoingRequest" obimageUrl="2FTABoutgoingrequests"
obmouseOver="Outgoing Request"
obhref="../../userservcenter/bin/userservcenter.cgi?program=workflowTicketSearchFo
rm&tab_id=Employees&requestType=outgoingRequests"></ObButton>
<ObButton obaction="wfMonitor" obimageUrl="2FTABmonitorrequests"
obmouseOver="Requests Monitor"
obhref="../../userservcenter/bin/userservcenter.cgi?program=workflowMonitorSearchF
orm&tab_id=Employees"></ObButton>
</ObWorkflowFunctions>
<ObButton obaction="Admin" obimageUrl="FTABconfiguration"
obmouseOver="Administrative Functions"
obhref="userservcenter.cgi?program=administrationMain&tab_id=Employees"></ObBu
tton>
<ObAdminFunctions>
<ObButton obaction="adminAccessControl" obimageUrl="2FTABattraccesscontrol"
obmouseOver="Configure Attribute Access Control"
obhref="javascript:DetectPluginForApplets('../../userservcenter/bin/userservcenter
.cgi?program=mainAccessAdmin&tab_id=Employees')"></ObButton>
<ObButton obaction="adminDelegate" obimageUrl="2FTABdelegateadmin"
obmouseOver="Configure Delegated Administration"
obhref="javascript:DetectPluginForApplets('../../userservcenter/bin/userservcenter
.cgi?program=mainDelegateAdmin&tab_id=Employees')"></ObButton>
<ObButton obaction="adminWorkflowDef" obimageUrl="2FTABworkflowdefinition"
obmouseOver="Configure Workflow Definition"
obhref="javascript:DetectPluginForApplets('../../userservcenter/bin/userservcenter
.cgi?program=mainWorkflowAdmin&tab_id=Employees')"></ObButton>
<ObButton obaction="adminSetSearchbase" obimageUrl="2FTABsetsearchbase"
obmouseOver="Configure Localized Access"
obhref="javascript:DetectPluginForApplets('../../userservcenter/bin/userservcenter
.cgi?program=mainSetSearchbase&tab_id=Employees')"></ObButton>
</ObAdminFunctions>
</ObFunctions>
</ObApplication>
<ObApplication>
<ObButton obaction="groupservcenter_application_info"
obimageUrl="T1TABgroupmanager" obmouseOver="Group Manager"
obhref="../../groupservcenter/bin/groupservcenter.cgi" obanchorText="Group
Manager"></ObButton>
<ObTitle></ObTitle>
<ObFunctions></ObFunctions>
</ObApplication>
<ObApplication>
<ObButton obaction="objservcenter_application_info" obimageUrl="T1TABorgmanager"
obmouseOver="Org. Manager" obhref="../../objservcenter/bin/objservcenter.cgi"
obanchorText="Org. Manager"></ObButton>
<ObTitle></ObTitle>
<ObTabs></ObTabs>
<ObFunctions></ObFunctions>
</ObApplication>
<ObApplication>
<ObButton obaction="corpdir_application_info"></ObButton>
<ObTitle></ObTitle>
<ObTabs></ObTabs>
<ObFunctions></ObFunctions>
</ObApplication>
<ObApplication>
<ObButton obaction="dashline" obmouseOver="------------------------------------"
obhref="userservcenter.cgi?"></ObButton>
</ObApplication>
<ObApplication>

The API

3-42 Oracle Access Manager Developer Guide

<ObButton obaction="front_page_admin_application_info"
obimageUrl="T1TABidentityadmin" obmouseOver="Identity System Console"
obhref="../../admin/bin/front_page_admin.cgi" obanchorText="Identity System
Console"></ObButton>
</ObApplication>
</ObApps>
<ObScripts>
<ObScript obname="../../../lang/en-us/msgctlg.js"></ObScript>
<ObScript obname="../../../lang/shared/i18n.js"></ObScript>
<ObScript obname="../../../lang/shared/misc.js"></ObScript>
<ObScript obname="../../../lang/shared/helpcommon.js"></ObScript>
<ObScript obname="../../../lang/shared/wf_qs.js"></ObScript>
</ObScripts>
<ObStatus>0</ObStatus>
<ObUserName>Master dmÔn</ObUserName>
</ObNavbar>
<ObSearchForm>
<ObSearchRow>
<ObDisplay obdisplayName="" obdisplayType="select" obname="STy1" obmode="modify"
obrequired="true" obcardinality="singleValued" obcanRequest="false">
<ObSelect obmultiple="false">
<ObChoice obdisplayName="Last Name:" obselected="false">sn</ObChoice>
<ObChoice obdisplayName="MIIS Name" obselected="false">cn.person.miis</ObChoice>
<ObChoice obdisplayName="Name" obselected="true">cn</ObChoice>
<ObChoice obdisplayName="UID" obselected="false">genUserID</ObChoice>
</ObSelect>
</ObDisplay>
<ObDisplay obdisplayName="" obdisplayType="select" obname="SLk1" obmode="modify"
obrequired="false" obcardinality="singleValued" obcanRequest="false">
<ObSelect obmultiple="false">
<ObChoice obdisplayName="That Contains" obselected="false">OOS</ObChoice>
<ObChoice obdisplayName="Contains In Order" obselected="false">OSM</ObChoice>
<ObChoice obdisplayName="=" obselected="false">OEM</ObChoice>
<ObChoice obdisplayName="<=" obselected="false">OLE</ObChoice>
<ObChoice obdisplayName=">=" obselected="false">OGE</ObChoice>
<ObChoice obdisplayName="That Begins With" obselected="false">OBW</ObChoice>
<ObChoice obdisplayName="That Ends With" obselected="false">OEW</ObChoice>
<ObChoice obdisplayName="That Sounds Like" obselected="false">OSL</ObChoice>
<ObChoice obdisplayName="!=" obselected="false">ONE</ObChoice>
</ObSelect>
</ObDisplay>
<ObDisplay obdisplayName="" obdisplayType="textS" obname="SSt1" obmode="modify"
obrequired="false" obcardinality="singleValued" obcanRequest="false">
<ObDisplayProperties>
<ObDisplayProperty obname="onKeyDown"
obvalue="javascript:checkSearchKey(event,this)"></ObDisplayProperty>
</ObDisplayProperties>
<ObTextS oblength="19"></ObTextS>
</ObDisplay>
</ObSearchRow>
<ObAdvancedSearch obadvancedSearchOn="false">
<ObDisplay obdisplayName="" obdisplayType="radio" obname="showAllResults"
obmode="modify" obrequired="true" obcardinality="singleValued"
obcanRequest="false">
<ObRadio>
<ObChoice obdisplayName="All" obselected="false">true</ObChoice>
<ObChoice obdisplayName="" obselected="true">false</ObChoice>
</ObRadio>
</ObDisplay>
<ObDisplay obdisplayName="" obdisplayType="textS" obname="noOfRecords"

The API

Identity Event Plug-in API 3-43

obmode="modify" obrequired="true" obcardinality="singleValued"
obcanRequest="false">
<ObTextS oblength="2">
<ObValue>8</ObValue>
</ObTextS>
</ObDisplay>
</ObAdvancedSearch>
<ObRequestInfo>210498888</ObRequestInfo>
<ObScripts>
<ObScript obname="../../../lang/en-us/msgctlg.js"></ObScript>
<ObScript obname="../../../lang/shared/i18n.js"></ObScript>
<ObScript obname="../../../lang/shared/misc.js"></ObScript>
</ObScripts>
<ObForm obname="searchForm" obmethod="post" obaction="userservcenter.cgi?">
<ObInput obtype="hidden" obname="program" obvalue="search"></ObInput>
<ObInput obtype="hidden" obname="tab_id" obvalue="Employees"></ObInput>
<ObInput obtype="hidden" obname="startFrom" obvalue="0"></ObInput>
<ObInput obtype="hidden" obname="getPrevRecords" obvalue="false"></ObInput>
<ObInput obtype="hidden" obname="noOfFields" obvalue="1"></ObInput>
<ObInput obtype="hidden" obname="displayFormat" obvalue="2"></ObInput>
<ObInput obtype="hidden" obname="advSearch" obvalue="false"></ObInput>
<ObInput obtype="hidden" obname="searchStringMinimumLength" obvalue="3"></ObInput>
<ObInput obtype="hidden" obname="searchSameAttrAsOr" obvalue="false"></ObInput>
</ObForm>
<ObDisplay obdisplayName="ObTextMessage" obdisplayType="textS"
obname="ObTextMessage" obmode="modify" obrequired="false"
obcardinality="singleValued" obcanRequest="false">
<ObTextS>
<ObTextMessage></ObTextMessage>
</ObTextS>
</ObDisplay>
<ObSelectorInfoForm>
<ObForm obname=""></ObForm>
</ObSelectorInfoForm>
<ObButton obaction="searchGo" obimageUrl="SEARCHgo" obmouseOver="Start search."
obhref="javascript:validateSearchAndSubmit('search')"></ObButton>
<ObButton obaction="searchAdvance" obimageUrl="SEARCHadvanced"
obmouseOver="Advanced search."
obhref="javascript:validateSearchAndSubmit('moreFields')"></ObButton>
<ObButton obaction="searchLess"></ObButton>
<ObButton obaction="searchMore" obimageUrl="SEARCHmore" obmouseOver="Get more
fields." obhref="javascript:validateSearchAndSubmit('moreFields')"></ObButton>
<ObButton obaction="searchAll" obimageUrl="SEARCHall" obmouseOver="All fields."
obhref="javascript:validateSearchAndSubmit('allFields')"></ObButton>
<ObStatus>0</ObStatus>
</ObSearchForm>
<ObStatus>0</ObStatus>
</Oblix>

Development Environment
The Identity Event Plug-in API consists of a set of header files that you can use to
build your LIB actions, source code examples for working with LIB, MANAGEDLIB,
and EXEC actions, source code examples for creating an XML parser, and a default
obpppcatalog.lst file with extensive examples of action configuration entries. On
Windows platforms, an import library is also provided, which you will need to build
your LIB actions. All of these files are bundled in the standard Identity System
installation; there is nothing else to install in order to develop actions.

The API

3-44 Oracle Access Manager Developer Guide

For managed code, plug-in writers need to compile and link with pppInterface.dll,
which contains the IPPPData interface. This assembly is located at

install_dir/oblix/include/managed/pppinterface.dll

This path will need to be referenced as a "Resolve #using Reference" in Visual Studio,
or through the /AI compiler option when compiling and linking the plug-in. At
runtime, both the Identity Server and the plug-in will need to locate pppInterface.dll.
For this reason, pppInterface.dll is installed in the Global Assembly Cache (GAC)
during installation of the Identity Server. Alternatively, if plug-in writers wish to test
their plug-in on a machine where the Identity System has not been installed,
pppInterface.dll can be privately deployed. This means placing the assembly in the
plug-in's bin directory. It is important to compile and link with the same version of
pppInterface.dll that will be used at runtime (either through the GAC or through
private deployment). Otherwise, an exception may be thrown by the Common
Language Runtime (CLR).

The files you need to be familiar with in order to develop custom actions are described
in the following tables:

Library Files for LIB and EXEC Actions
Directory:

$Identity_install_Dir/oblix/lib

Directory:

$Identity_install_Dir/oblix/include/ppp

Library Files for MANAGEDLIB Actions
The pppInterface.dll is located as follows:

$Identity_install_dir\identity\oblix\include\managed\

This is the dll with which plug-ins compile and link.

File Name Description

ppp.lib (Windows platforms only.) An export library you need to link your LIB
action DLL to in order to resolve references to Identity
System-provided symbols.

File Name Description

obppp.h Defines the basic success/failure status return codes used by the API
functions. Declares the ObActionFunc function signature that you must
use to declare your LIB action functions.

obpppdata.h Defines the ObPPPData C++ class that you must use to transmit data
between the Identity System and your LIB action.

obpppwf.h Defines constants used for developing actions that work with the
Identity System's workflow functionality.

File Name Description

pppInterface.dll (Windows platforms only.) The DSO for MANAGEDLIB actions.

The API

Identity Event Plug-in API 3-45

LIB Action Example Files
These are examples only, not part of the product. See the \unsupported branch of the
Identity System directory tree. Directory:

Identity_install_dir/oblix/unsupported/ppp/ppp_dll

File Name Description

libppp_dll.so Solaris UNIX platforms only. This is a dynamic shared object (DSO)
that is pre-built from source files present in this example directory. You
provide a path to this DSO as part of the entry for a lib action in the
oblixpppcatalog.lst file, specifying the name of one of the action
functions within the DLL, as defined in pppdlltest.cpp.

You must also include the path to the libppp_dll.so DSO in the shared
library search path. The preferred method for doing this is to use the -L
option of the ld command. Another way is to use the
LD_LIBRARY_PATH environment variable, which can be set to give
the run-time shared library loader (ld) an extra set of directories to look
for when it searches for DSOs.

ppp_dll.dll Windows platforms only. This is a dynamic link library (DLL) pre-built
from source files in this example directory. You provide a path to this
DLL as part of the entry for a lib action in the oblixpppcatalog.lst file,
specifying the name of one of the action functions within the DLL, as
defined in pppdlltest.cpp.

ppp_dll.sln Windows platforms only. A Microsoft Visual C++ project file you can
use to build ppp_dll.dll yourself.

pppdlltest.cpp The C++ source file for the Oracle-provided LIB action examples.

ppputil.cpp Provides:

A C++ class that illustrates how to access the Identity System data
available to actions through the API. The example simply writes the
data out to the file system.

A C function, MakePayload, that illustrates how to compose an XML
SOAP message to request a group subscription for a user.

ppputil.h Class and function declarations for ppputil.cpp.

nis_client.cpp Provides a C++ class that implements an HTTP client capable of
sending messages to the Identity System using WebPass. By combining
this with the MakePayload function mentioned under ppputil.cpp,
your action can use the IdentityXML or AccessXML interfaces to make
requests of the Identity System. This example may be particularly
useful for Cross Application Support. See "Cross-Application Support"
on page 3-47.

nis_client.h Class and function declarations for nisclient.cpp.

Tip: If you are using the ConfigurationStructure class provided in
nis_client.h, it does not get called when either nis_client.h has the
declaration of a class ConfigurationStructure or the same class has been
used in some other functionality.

When the Identity server starts, the ConfigurationStructure class is
loaded before the ConfigurationStructure class that is present in the
PPP plug-in. Solaris always calls the constructor of the
ConfigurationStructure class, while the constructor of the
ConfigurationStructure class in the PPP plug-in's nis_client.cpp file
never gets called.Suggestion: Build libppp_dll.so using -Wl,-B,symbolic
option so that Solarisv will bind symbols at compile time only.

makefile Solaris, UNIX platforms only. This is the UNIX make file used to create
libppp_dll.s.

The API

3-46 Oracle Access Manager Developer Guide

MANAGEDLIB Action Example Files
Directory:

Identity_install_dir\unsupported\ppp\dotnet\managedcplusplus\Rel
ease

EXEC Action Example Files
Directory:

Identity_install_dir/oblix/unsupported/ppp/ppp_exec

Parser Example Files
Directory:

Identity_install_dir/oblix/unsupported/ppp/parser_test

File Name Description

managedcplusplus.cpp (Windows platforms only.) The MC++ source file for the
Oracle-provided MANAGEDLIB action examples.

managedcplusplus.h (Windows platforms only.) The header file for managedcplusplus.cpp.
It defines a singleton class that contains methods specified as Identity
Event API actions.

managedcplusplus.sln (Windows platforms only.) A Microsoft Visual C++ managed code
project file that you can use to build managedcplusplus.dll.

managedcplusplus.vcpr
oj

(Windows platforms only.) A Microsoft Visual C++ managed code
project file that contains the necessary configuration to build the
project.

managedcplusplus.dll The sample plug-in.

pppfilewriter.cpp (Windows platforms only.) A utility class that receives Identity System
data and writes the data to a file.

pppfilewriter.h (Windows platforms only.) The header file for pppfilewriter.cpp.

File Name Description

ppp_exec_test.
java

This is the source for a JAVA version of an Oracle-provided EXEC
action example for post-processing. You can refer to this program as an
EXEC action in the oblixpppcatalog.lst file.

ppp_exec.exe (Windows platforms only.) This is an NT executable, pre-built from the
file pppexectest.cpp to make that example available to you. You can
refer to this program as an EXEC action in the oblixpppcatalog.lst file.

ppp_exec.sln (Windows platforms only.) A Microsoft Visual C++ project file you can
use to build ppp_exec.exe yourself.

pppexectest.cpp The C++ source file for an Oracle-provided EXEC action example.

ppp_perl.pl This is the source for a PERL version of an Oracle-provided EXEC
action example for post-processing. You can refer to this program as an
EXEC action in the oblixpppcatalog.lst file.

ppp_string.cpp A C++ class representing strings used by pppexectest.cpp.

ppp_string.h Class declaration for ppp_string.cpp.

corpdir_view_pre
.xml

A pre-formatted XML message for the example to send to the Identity
System when invoked as a preprocessing step. See the pppexectest.cpp
example.

Cross-Application Support

Identity Event Plug-in API 3-47

Cross-Application Support
Standard workflows exist within specific applications, such as the User Manager and
Group Manager, and their direct effects are limited to the application in which they
exist. Situations may arise in which you want a workflow to make changes that affect
more than one Manager application. An example is the need to create a new user and
also subscribe that user to a Group.

This is accomplished by including an event in the workflow, which triggers an action
that gets information from the workflow, and uses IdentityXML syntax to send a
request to the other application to accomplish the task. The flow might be something
like this:

■ The event is invoked in the usual way as part of the workflow. The Identity
System provides parameters, such as the user DN and group(s) to be subscribed
to, to the corresponding action.

■ The action combines this information into a subscribeUserToGroup IdentityXML
request. The IdentityXML request requires a login id, password, and URL for the
Group Manager. None of this will have been known to the creator of the workflow.
The action will need to get it somehow. It could be coded into the action, extracted
from a database, or provided by a file. For our example, we use a file named
conf.txt.

■ The information from the Identity System is combined with the information from
the file to build the IdentityXML request, and the request is sent to the Group
Manager URL. There, it is accepted and carried out, or denied.

■ The status returned by IdentityXML is received by the action, interpreted and
returned to the Identity System application as either STATUS_PPP_OK or
STATUS_PPP_ABORT.

File Name Description

MyPPPActions.cpp The C++ source file that builds a function called
SAXParserPostActionTest, to be loaded as part of a DSO called
MYPPPActions.dll. The file also provides Windows and UNIX
examples of the Catalog entry that connects the action to the view
post-processing event in the Profile page of the User Manager. The
function replaces the phone numbers of corporate users with the
pattern XXX-XXX-XXXX.

MyPPPActions.dll This is the dynamic link library (DLL) pre-built from source files in this
example directory.

MyPPPAction.sln (Windows platforms only.) A Microsoft Visual C++ project file you can
use to build MyPPPActions.

MySAXhandler.cpp The C++ source file that builds the SAXhandler class of methods that
does the actual interpretation of the XML. SAX stands for Simple API
for XML.

MySAXhandler.hpp The header file defining the methods belonging to the SAXhandler
class.

Note: The examples are provided for illustrative purposes only. To
emphasize that they are not part of the formal product, they are
installed in the unsupported branch of the Oracle Access Manager
directory tree.

Examples

3-48 Oracle Access Manager Developer Guide

The event entry in the Catalog to implement this might be the following:

63f004504f83455b924133acd0ef2e87_3_postaction;
lib;;../../../unsupported/ppp/ppp_dll/ppp_dll.dll;
NISClient;

It takes the same form as any other Workflow event. The behavior difference lies in the
NISClient function, which performs all the duties described in the previous list. You
will find the example code for the NISClient function in the file pppdlltest.cpp, with
supporting methods in nis_client.cpp, both in the directory

Identity_install_dir/oblix/unsupported/ppp/ppp_dll

The example conf.txt file is located in:

Identity_install_dir/oblix/unsupported/ppp/ppp_dll

If you use it, you will need to change the content to match your situation, and move it
to where the dll expects to find it:

Identity_install_dir/oblix/apps/common/bin

Examples
The following are examples of the Identity Event Plug-in API in use:

■ A LIB Action Example—LogActivation

■ An EXEC Action Example—AfterHours

■ A MANAGEDLIB Action Example

A LIB Action Example—LogActivation
In this example, we will examine a C function that implements logging for both
activation and deactivation of users in the Identity System. Notice that the same action
function is registered in the Catalog for two different events. The event name is passed
to the action, so it can differentiate between events that are handled in similar ways.

In the example, the log is written to the file system. A more sophisticated
implementation might connect directly to a relational database to collect statistics like
this for later processing by external enterprise applications. You should resist the urge
to do too much in an action, however. Time spent in an action is time added to the of
the HTTP request latency perceived by the user, in this case a Delegated Identity
Administrator.

The following code implements this feature, packaged as a LIB action:

#include <ppp/obppp.h>
#include <ppp/obpppwf.h>
#include <ppp/obpppdata.h>

extern "C" {

/**

Note: There may be timing delays involved when you use a Cross
Application plug-in. For example, if you are using replicated
directories it will take time for information written to a first directory
to be duplicated to a second. Your plug-in should allow for this time
difference before trying to use data from the second directory.

Examples

Identity Event Plug-in API 3-49

* LogActivation
* This action logs user activation and deactivation
* events.
* @param eventName The name of the event that
* triggered this action.
* This example processes both activation and
* deactivation, and uses this parameter to
* tell the difference.
* @param data the data for this event.
* (re: include/ppp/obpppdata.h)
* @return STATUS_PPP_OK or STATUS_PPP_ABORT
**/

unsigned int
LogActivation(const char *eventName, ObPPPData *data)
{
// Event names (must match those used in catalog)
const char *ACTIVATE_EVENT =
"userservcenter_workflowActivateSave_pre";
const char *DEACTIVATE_EVENT =
"userservcenter_workflowDeactivateUserSave_pre";
// open our file
FILE *file = fopen("activation_log.txt", "a");
// Determine whether action is being called to log
// an activate or deactivate user event.
bool activate;
if (0 == strcmp(eventName, ACTIVATE_EVENT)) {
activate = true;
} else if (0 == strcmp(eventName, DEACTIVATE_EVENT)) {
activate = false;
} else {
// error - can't process other events
data->SetResultString("PPP action misconfigured");
fclose(file);
return STATUS_PPP_ABORT;
}

const char **uid = (const char **)data->Get("uid");
if (NULL == *uid) {
data->SetResultString("PPP action error");
fclose(file);
return STATUS_PPP_ABORT;
data->SetResultString("PPP action error");
fclose(file);
return STATUS_PPP_ABORT;
}
// Write the log entry
fprintf(file, "%s: %s\n",
activate ? "activated" : "deactivated",
*uid);
fclose(file);
return STATUS_PPP_OK;
}
For reference in the following description, here is how this action can be configured in
oblixpppcatalog.lst on a UNIX system:

userservcenter_workflowActivateSave_pre;lib;;/var/opt/netpoint/plug-ins/liblogacti
ons.so;LogActivation;

userservcenter_workflowDeactivateUserSave_pre;lib;;/var/opt/netpoint/plug-ins/libl
ogactions.so;LogActivation;

Examples

3-50 Oracle Access Manager Developer Guide

The LogActivation LIB action begins by including the Identity Event Plug-in API
header files, as all LIB actions must do in order to have access to Identity System data.

Notice that the LogActivation is declared within an extern C block to tell the C++
compiler that it is code written in C with external C linkage.

Next is the function signature for the action:

unsigned int
LogActivation(const char *eventName, ObPPPData *data)

This code declares LogActivation as a function with the same return type and
parameter list as an ObActionFunc, as described in obppp.h. The Identity System
requires that all LIB actions conform to this type.

LogActivation then declares constants for ACTIVATE_EVENT and
DEACTIVATE_EVENT. The values of these constants reflect the events that this action
will respond to, and must match the stylized event names used in the Catalog, as
shown in the preceding code listing.

Next, a file is opened for append using fopen(). This is the log file for the example. It
resides in the current working directory of the Identity System, which is the
identity/oblix/apps/common/bin directory. In this example, there are just two
possible types of entry in the log file:

■ activated: <user dn>

■ deactivated: <user dn>

LogActivation next inspects the name of the event for which it is being invoked, and
sets an activate/deactivate flag. Then it looks up the DN of the user using the Get
method of ObPPPData, to fetch the value of the uid parameter. The value of this
parameter for this event is the directory DN of the user who is being activated or
deactivated.

The action completes its task by writing its log message, closing the log file and
returning the success status, STATUS_PPP_OK to User Manager.

An EXEC Action Example—AfterHours
This example implements an after-hours lockout function using a post-processing
EXEC action. The intent is that a site may have a policy of disallowing certain types of
activity during certain hours of the day, to allow a safe environment for backups and
other system maintenance. This action might be one tool in the administrator's toolbox
for enforcing such a policy.

Here is the source code for the AfterHours action:

#include <time.h>
#include <stdio.h>
#include <string.h>
#include <iostream.h>
#include <stdlib.h>
#include <ppp/obppp.h>

Note: Notice that the action demonstrates communicating an error to
User Manager by setting the return status to STATUS_PPP_ABORT if
it is called for an unexpected event, or if it fails to find the expected
data in the ObPPPData object.

Examples

Identity Event Plug-in API 3-51

int main(int argc, char* argv[])
{
// XML template for text message
static const char *messageTemplate =
"<?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n \
<?xml-stylesheet href=\"../../common/ui/style0/ppp.xsl\"
type=\"text/xsl\"?>\n \
<Oblix xmlns=\"http://www.oblix.com/\">\n \
<ObTextMessage>\n \
%s\n \
</ObTextMessage>\n \
</Oblix>\n";

static const char *message;

if (argc > 1 && argv[1] != 0 && stricmp(argv[1], "pre")
== 0) {
// PRE-processing requests are not supported
return(STATUS_PPP_ABORT);
} else {
// POST-processing
// Examine command-line for any EXEC arguments
if (argc > 1 && argv[1] != 0) {
const long now = time(0);
struct tm* tmNow = localtime(&now);
int hrsNow = tmNow->tm_hour;
int minNow = tmNow->tm_min;
int hrsOff = atoi(argv[2]);
int minOff = atoi(argv[3]);
int hrsOn = atoi(argv[4]);
int minOn = atoi(argv[5]);
int timeOff = (60 * hrsOff) + minOff;
int timeOn = (60 * hrsOn) + minOn;
int timeNow = (60 * hrsNow) + minNow;
if (timeOn < timeOff) timeOn += (60*24);
if (timeOn != timeOff && timeNow >= timeOff &&
timeNow < timeOn) {
// Disallow the event; send ObTextMessage using
// text in catalog
message = argv[1];
} else {
// Allow the event. As a convenience, Identity
// applications assume actions haven't modified
// the data if they don't write to stdout. So
// all you need to do here is return status.
return STATUS_PPP_OK;
}
} else {
// No arguments. Output a default disablement message.
message = "This operation is disabled by the POST-processing action.";
}
// If we get here, we're replacing the data with
// the ObTextMessage.
fprintf(stdout, messageTemplate, message);
fflush(stdout);
return(STATUS_PPP_OK);
}
}
Here is a sample Catalog entry to configure the AfterHours action on a Windows
server.

Examples

3-52 Oracle Access Manager Developer Guide

userservcenter_view_post;exec;;C:\NetPoint\Identity\Actions\AfterHours.exe;"This
Operation is unavailable outside business hours. Please contact your Identity
administrator for details." 21 30 06 00;

The first field associates the action with the User Manager view post-processing event.
The second field is empty (no Identity System parameters). The third field indicates
that this is an EXEC action. The fourth field is the path to the executable that
implements the AfterHours action. The remaining fields are EXEC action parameters,
and they are supplied to the action as argv[1] through argv[5]. Notice that the text
message parameter must be quoted because it contains spaces. The last four
parameters indicate that the OFF hours are 21:30 (9.30pm) till 06:00 (6.00am).

The AfterHours action begins by declaring a string containing the XML document that
is used to return a text message to the browser if the event is currently disabled. Notice
the %s embedded in the string. The string is used as a template to fprintf; the %s is a
printf directive and is replaced by the actual message.

Next, the action rejects attempts to call it from a pre-processing event. It does not
support pre-processing because it cannot usefully replace the XML result of the
request until it has been generated, which is not until after pre-processing.

AfterHours then performs some time calculations. To do this, it checks the system time
and extracts the current hour and minute, then converts it to minutes alone. It then
examines its command-line arguments, and extracts the Catalog-supplied message, the
OFF hours and minutes, and the ON hours and minutes, as argv[1] through argv[5], in
that order.

Again, times are converted to minutes. If the ON time is earlier than the OFF time, the
ON time falls within the next day, so 24 hours (24 * 60 minutes) are added to the ON
time. If ON and OFF times are the same, AfterHours enables the request. If the time
now falls between the OFF and ON times, AfterHours selects argv[1] for output in the
message template. If the time now falls outside that period, AfterHours simply returns
STATUS_PPP_OK to indicate that the event may proceed.

If the event is to be disallowed, this is achieved by combining the message template
with the selected message in a call to fprintf, sending output to STDOUT. The action
returns STATUS_PPP_OK to allow the event to proceed. User Manager applies the
stylesheet ppp.xsl, which is part of the Identity System, and the resulting page
containing the text message is returned to the browser.

A MANAGEDLIB Action Example
The following is a sample header file that declares class EventAPI.

// managed_ppp.h

Note: This illustrates the use of action parameters. Parameters are
only available to EXEC actions, not LIB actions. A LIB action that
implemented the after-hours lockout feature would have to look up its
OFF and ON hours, and the text message to be displayed from an
external source. Doing so would provide the opportunity for greater
sophistication: just like a home-security time switch, an administrator
may want more than one OFF period a day, or may want a different
schedule on weekends. Knowing the requirements will help you to
design your action interface, and help you decide whether a LIB or
EXEC action is called for.

Examples

Identity Event Plug-in API 3-53

#ifndef __managed_ppp__
#define __managed_ppp__

#using <mscorlib.dll>
#using <pppinterface.dll>
#using <System.dll>
#using <System.Xml.dll>

using namespace System;
using namespace System::Text;
using namespace System::Collections;
using namespace System::Xml;
using namespace System::Net;
using namespace System::IO;
using namespace Oblix::Identity::CoreID;

/* Singleton class that contains methods specified as Identity Event API actions.
The Identity System will instantiate one EventAPI object, which will be shared
among threads.
Class members must be accessed in a thread-safe manner. Modification of data
members must be synchronized.

The class must be named EventAPI and must define a constructor and destructor
*/

public __gc class EventAPI {

public:
/* ctor, initialize class members here */
EventAPI();
/* dtor, release resources here */
virtual ~EventAPI();

/* action methods */
IPPPData::STATUS_PPP_M PreProcessingTest(String * eventName, IPPPData * data);
IPPPData::STATUS_PPP_M PostProcessingTest(String * eventName , IPPPData * data);
IPPPData::STATUS_PPP_M PostProcessingTest_Phone(String * eventName, IPPPData *
data);
IPPPData::STATUS_PPP_M SavePreProcessing(String * eventName, IPPPData * data);
IPPPData::STATUS_PPP_M WorkflowPreActionTest(String * eventName, IPPPData * data
);
IPPPData::STATUS_PPP_M WorkflowPostActionTest(String * eventName , IPPPData *
data);
IPPPData::STATUS_PPP_M WorkflowPostActionPasswordTest(String * eventName,
IPPPData * data);
IPPPData::STATUS_PPP_M WorkflowExtActionTest(String * eventName, IPPPData * data
);
IPPPData::STATUS_PPP_M WorkflowSubflowActionTest(String * eventName, IPPPData *
data);
IPPPData::STATUS_PPP_M PasswordTest(String * eventName, IPPPData * data);
IPPPData::STATUS_PPP_M WorkflowRetryTest(String * eventName, IPPPData * data);
IPPPData::STATUS_PPP_M NISClient(String * eventName, IPPPData * data);
IPPPData::STATUS_PPP_M ProcessCPResponseEncryption(String * eventName, IPPPData *
data);
IPPPData::STATUS_PPP_M USCOnChange(String * eventName, IPPPData * data);
IPPPData::STATUS_PPP_M NavigationTest(String * eventName, IPPPData * data);

private:
String * MakePayload(IPPPData * data, String * login, String * password, String *
group , String * user);

Examples

3-54 Oracle Access Manager Developer Guide

};

public __gc class XMLUtil {
public:
static String * XMLUtil::knewline = S"\n";
static String * XMLUtil::kSpace = S" ";
static String * XMLUtil::kCloseAngle = S">";
static String * XMLUtil::kProcessingInst = S"<?xml version=\"1.0\"?>";
static String * XMLUtil::kSoapEnvEnvelopeStart = S"<SOAP-ENV:Envelope";
static String * XMLUtil::kSoapEnvEnvelopeEnd = S"</SOAP-ENV:Envelope>";
static String * XMLUtil::kxmlns = S"xmlns:oblix=\"http://www.oblix.com\"
xmlns:SOAP-ENV=\"http://schemas-xmlsoap.org/soap/envelope/\"";
static String * XMLUtil::kSoapEnvBodyStart = S"<SOAP-ENV:Body>";
static String * XMLUtil::kSoapEnvBodyEnd = S"</SOAP-ENV:Body>";
static String * XMLUtil::kOblixAuthStart = S"<oblix:authentication ";
static String * XMLUtil::kOblixAuthEnd = S"</oblix:authentication>";
static String * XMLUtil::kTypeBasic = S"type=\"basic\"";
static String * XMLUtil::kObLoginStart = S"<oblix:login>";
static String * XMLUtil::kObLoginEnd = S"</oblix:login>";
static String * XMLUtil::kObPasswordStart = S"<oblix:password>";
static String * XMLUtil::kObPasswordEnd = S"</oblix:password>";
static String * XMLUtil::kObReqStart = S"<oblix:request";
static String * XMLUtil::kObReqEnd = S"</oblix:request>";
static String * XMLUtil::kApp = S"application=\"groupservcenter\"";
static String * XMLUtil::kfuncname = S"function=\"subscribeUserToGroup\"";
static String * XMLUtil::kObParamsStart = S"<oblix:params>";
static String * XMLUtil::kObParamsEnd = S"</oblix:params>";
static String * XMLUtil::kObParamStart = S"<oblix:param";
static String * XMLUtil::kObParamEnd = S"</oblix:param>";
static String * XMLUtil::kNameEqproxysourceuid = S"name=\"proxysourceuid\"";
static String * XMLUtil::kNameEquid = S"name=\"uid\"";

};

#endif

There are several "action" methods in the class. The directive

#using <pppinterface.dll>

indicates that the plug-in will be using date types from pppInterface.dll, namely the
IPPPDate interface as well as the status codes. Initialization code should be placed in
the constructor, EventAPI(), and clean-up code should be placed in the destructor
~EventAPI().

The sample plug-in also uses data types from the System.Xml library, as indicated by
the directive

#using<System.Xml.dll>

The method EventAPI::NISClient is an example of how to send a SOAP request using
classes from System.Xml, which is part of the .NET framework SDK. The method
subscribes the target user to a group. The target user is obtained through
IPPPDate::Get, while other parameters, including the group to which to subscribe the
user, are obtained from a configuration file, params.xml.

The method uses these parameters to construct the SOAP request with the method
EventAPI::MakePayLoad (not listed here, but it is in the sample code). It then creates
an http request with the URI parameter using HttpWebRequest. It then gets a stream

Examples

Identity Event Plug-in API 3-55

from that request and writes the SOAP request (IdentityXML/subscribeUserToGroup)
to the stream. Afterwards, the method gets a response from the request.

IPPPData::STATUS_PPP_M
EventAPI::NISClient(String * eventName, IPPPData * data)
{
IPPPData::STATUS_PPP_M retStatus = IPPPData::STATUS_PPP_M::STATUS_PPP_OK;

try {
String * sUidParamName = S"proxysourceuid";
String * sGroupDNParamName = S"uid";
String * uri, * login, * password, * group, * user;
String * errMsg = S"Missing Parameter";

String * targets[] = data->Get(S"WfInstance.obtargetdn");
user = targets[0];
XmlDocument& doc = *new XmlDocument;
doc.Load(S"params.xml");
XmlNode * root = doc.FirstChild;
XmlElement * elem;
elem = root->get_Item(S"uri");
if(elem != NULL) { uri = elem->InnerText; } else { throw new Exception(errMsg
); }
elem = root->get_Item(S"login");
if(elem != NULL) { login = elem->InnerText; } else { throw new Exception(errMsg
); }
elem = root->get_Item(S"password");
if(elem != NULL) { password = elem->InnerText; } else { throw new Exception(
errMsg); }
elem = root->get_Item(S"group");
if(elem != NULL) { group = elem->InnerText; } else { throw new Exception(errMsg
); }

String * sPayLoad = MakePayload(data, login , password , group , user);
XmlDocument& soapReq = *new XmlDocument;
soapReq.LoadXml(sPayLoad);

HttpWebRequest * req = static_cast<HttpWebRequest*>(WebRequest::Create(uri));
req->ContentType = "text/xml;charset=\"utf-8\"";
req->Accept = "text/xml";
req->Method = "POST";

Stream * stm = req->GetRequestStream();
soapReq.Save(stm);
stm->Close();

WebResponse * resp = req->GetResponse();

}
catch(Exception * e) {
data->SetResultString(e->ToString());
retStatus = IPPPData::STATUS_PPP_M::STATUS_PPP_ABORT;
}

return retStatus;
}

Parameter File:

params.xml
<Root>

Examples

3-56 Oracle Access Manager Developer Guide

<uri>http://sdelaney/identity/oblix/apps/groupservcenter/bin/groupservcenter.cgi</
uri>
<login>admin</login>
<password>oblix</password>
<group>cn=Group of Employees10k1 with 1000 members, ou=Corporate,
o=Company,c=US</group>
</Root>

Part II
Programatic Interfaces to the Access

System

Part II discusses how to use the Access Manager SDK to create custom AccessGates,
and how to use the Policy Manager API for programmatic access to most of the
functions in the Policy Manager. It also explains creating custom authentication and
authorization plug-ins.

This part contains the following chapters:

■ Chapter 4, "Building AccessGates with the Access Manager SDK"

■ Chapter 5, "Policy Manager API"

■ Chapter 6, "Authentication Plug-in API"

■ Chapter 7, "Authorization Plug-in API"

Building AccessGates with the Access Manager SDK 4-1

4
Building AccessGates with the Access

Manager SDK

This chapter describes the Access Manager SDK and how you use it to create custom
AccessGates. It discusses the following topics:

■ AccessGates, their role in the Access System, and AccessGate architecture.

■ The tasks you must complete to create and enable an AccessGate.

■ The directory structure and content of the installed SDK.

■ Selecting an AccessGate development platform by comparing the development
language-specific implementations of each class in the Access Manager API.

■ Behavior with 10g (10.1.4.0.1) and earlier versions and backward compatibility.

■ How to write each functional section of code that goes into a typical AccessGate.

■ Reference details for the C++, C, C#, and Java implementation of the Access
Manager API.

■ Reference details for the C# implementation of the Access Manager API.

■ Suggestions on how to avoid problems with your AccessGate. It also presents tips
for identifying and resolving the most common AccessGate problems.

This chapter contains the following sections:

■ About AccessGates

■ About AccessGate Deployment

■ About the Access Manager SDK

■ About the Access Manager API

■ Globalization and the Access Manager SDK, Access Manager APIs, Custom
AccessGates

■ About Custom AccessGate Code

■ C++ Implementation Details

■ C Implementation Details

■ C# Implementation Details

■ Java Implementation Details

■ C-Family Status and Error Message Strings

■ Best Practices

About AccessGates

4-2 Oracle Access Manager Developer Guide

About AccessGates
AccessGates are Access Server clients or agents. They process user requests for access
to resources within the LDAP domain protected by your Access System.

Typically, you embed custom AccessGate code in a servlet (plug-in) or standalone
application that receives resource requests. This code uses Access Manager API
libraries to perform authentication and authorization services on the Access Server.

If a resource is not protected, the AccessGate grants the user free access to the
requested resource. If the resource is protected and the user is authorized to provide
certain credentials to gain access, the AccessGate attempts to retrieve those user
credentials so that the Access Server can validate them. If authentication of the user
and authorization for the resource succeed, the AccessGate makes the resource
available to the user.

About Prefabricated AccessGates (WebGates)
Oracle Access Manager ships with several prefabricated AccessGates known as
WebGates. Each of these out-of-the box WebGates has been set up to protect HTTP
resources on a specific web server such as:

■ Microsoft Internet Information Server

■ iPlanet/SunONE Web Server

■ Apache Web Server

■ Lotus Domino

■ IBM HTTP Server (IHS)

Some WebGates can protect Embedded Java Bean (EJB) resources (which are
non-HTTP resources) on application servers such as BEA WebLogic and IBM
WebSphere. For a matrix listing the WebGate implementations available for various
combinations of host server software and host machine operating system, see the
Oracle Access Manager Installation Guide.

When to Create a Custom AccessGate
Typically, you deploy a custom AccessGate instead of a standard WebGate when you
need to control access to a resource for which Oracle Access Manager does not already
supply an out-of-the-box solution. This might include:

■ Protection for non-HTTP resources

■ Protection for a custom web server developed to implement a special feature (such
as reverse proxy, for example)

■ Implementation of single sign-on (SSO) to protect a combination of HTTP and
non-HTTP resources

For example, you can create an AccessGate that facilitates SSO within an
enterprise environment that includes a WebLogic cluster as well as non-WebLogic
resources.

Note: For the purposes of this document, "Access Manager API"
refers narrowly to the set of programming calls that enable developers
to access the authentication, authorization, and other services of an
Access Server. By contrast, "Access Manager SDK" refers to all the files
installed by the Access Server SDK installation package.

About AccessGates

Building AccessGates with the Access Manager SDK 4-3

AccessGate Architecture
Each AccessGate is built from three types of resources:

■ Custom AccessGate code, which you build into a servlet or standalone application
running on the machine where the rest of the AccessGate resides. You can write
AccessGate code using any of four development language platforms:

– C++

– C (pseudo object-oriented classes)

– C# (.NET framework managed code)

– Java

These platforms, which support equivalent functionality implemented in
language-specific ways, serve as interfaces to the underlying Access System code,
which is written in C++.

■ Configuration information, which consists of the following:

– Environment variables, which you set on the server where the AccessGate is
installed. These variables differ, depending on whether your server runs UNIX
or Windows.

– An ObAccessClient.xml file, which is stored on the server where the
AccessGate is installed. This file contains configuration information entered
through the "configureAccessGate" command-line application.

– AccessGate connection settings that you enter, view, and edit by navigating to
Access System Console, then to AccessGate Configuration. These settings are
stored in your Oracle configuration directory.

■ The various implementations of the Access Manager API libraries, which facilitate
AccessGate interaction with the Access Server. These include:

– Header files for either Java or the "C-family" languages (C\C++\C#)

– The JNI library (for Java only, packaged in jobaccess.jar)

– The ObAccess library (specific to the operating system platform used by the
machine hosting the AccessGate)

Figure 4–1 shows AccessGate components installed on a host server:

Figure 4–1 Architectural Detail of an AccessGate

Embedded
AccessGate

Code

Access Server API Configuration Info
ObAccessClient.lst
environment variables

header files

JNI library (Java only)

obAccess library

Host Server

Servlet or Stand-Alone
Application Receiving
Resource Requests

AccessGate

About AccessGates

4-4 Oracle Access Manager Developer Guide

AccessGate Variations
AccessGates can differ according to a variety of factors:

■ The operating system of the host machine on which they are installed (Each OS
platform requires a different Access Manager SDK installation package.)

■ Whether they run as standalone applications or server plug-ins

■ The development language in which they are written (These development
languages provide a choice of interfaces to the underlying functionality of the API)

■ The type of server for which they are written (You can protect web servers or
application servers)

■ The type of resources they protect (You can protect both HTTP and non-HTTP
resources)

■ The ways in which they retrieve user credentials (You can enable HTTP
FORM-based input, the use of session tokens, and command-line input, among
other methods)

How an AccessGate Handles a Resource Request
Regardless of the variability introduced by the preceding factors, most AccessGates
follow the same basic steps to process user requests.

When a user or application submits a resource request to a servlet or application
running on the server where the AccessGate is installed, the AccessGate code
embedded in that servlet or application initiates the basic process shown in the
following diagram.

Figure 4–2 illustrates the process of handling a resource request:

Figure 4–2 Process Overview: Handling a Resource Request

Process Overview: Handling a resource request
1. The application or servlet containing the AccessGate code receives a user request

for a resource.

2. The AccessGate constructs a ObResourceRequest structure, which the AccessGate
code uses when it asks the Access Server whether the requested resource is
protected.

3. The Access Server responds.

4. If the resource is not protected,

Embedded Code

Access Server API

Server

Unprotected Resources

Protected Resources

Servlet
or

Application

AccessGate

4a

10

7
6

1

User
or
Application 2

3

Access Server

(manages:
authentication
authorization
and auditing)4b

5
8
9

About AccessGate Deployment

Building AccessGates with the Access Manager SDK 4-5

a. The AccessGate grants the user access to the resource. Otherwise...

b. The AccessGate constructs an ObAuthenticationScheme structure, which it
uses to ask the Access Server what credentials the user needs to supply. (This
step is only necessary if the AccessGate supports the use of different
authentication schemes for different resources).

5. The Access Server responds.

6. The application uses a form or some other means to ask the user for her
credentials. In some cases, the user credentials may already have been submitted
as part of:

■ A valid session token

■ Input from a web browser

■ Arguments to the command-line script or keyboard input that launched the
AccessGate application

7. The user responds to the application.

8. The AccessGate constructs an ObUserSession structure, which presents the user
credentials to the Access Server, which maps them to a user profile in the Oracle
Access Manager user directory.

9. If the credentials prove valid, the AccessGate creates a session token for the user,
then it sends a request for authorization to the Access Server. This request contains
the user identity, the name of the target resource, and the requested operation.

10. The AccessGate grants the user access to the resource, providing, of course, that
the user is authorized for the requested operation on the particular resource.

11. (Not pictured). A well-behaved AccessGate deallocates the memory used by the
objects it has created, then shuts down the Access Manager API.

The preceding steps represent only the main path of the authorization process.
Typically, additional code sections within the servlet or application handle branch
situations where:

■ The requested resource is not protected

■ The authentication challenge method associated with the protected resource is not
supported by the application

■ The user has a valid single sign-on cookie (ObSSOCookie), which enables the user
to access to the resource without re-presenting her credentials for as long as the
session token embedded in the cookie remains valid. For details about
ObSSOCookies and single sign-on, see the Oracle Access Manager Access
Administration Guide.

■ The user fails to supply valid credentials under the specified conditions

■ Some other error condition arises

■ The developer has built additional custom code into the AccessGate to handle
special situations or functionality

About AccessGate Deployment
AccessGates are typically deployed by teams, with each team member covering a
specific area of expertise. For instance, a network administrator can install software
and set the requisite environment variables, a developer can write the custom
AccessGate code, and an Access Administrator can create policy domains to protect

About AccessGate Deployment

4-6 Oracle Access Manager Developer Guide

specific resources. Together, the developer and the Access Administrator can configure
the Access Server to work with the new AccessGate.

Although the tasks handled by each individual can vary, the team responsible for the
Access System must complete the following tasks.

Task overview: AccessGate deployment
1. Install the Access Manager SDK on the machine that will host the AccessGate, as

described in "Installing the Access Manager SDK" on page 4-7.

2. Write custom AccessGate code and build it into a servlet or application that
receives resource requests, as described in "Writing AccessGate Code" on
page 4-14.

3. Configure the AccessGate, as described in "Configuring an AccessGate" on
page 4-10 and includes the following:

– Set environment variables on the host server where the AccessGate will be
installed.

– Create an AccessGate entry on the Access System console (typically, the
Access Administrator and the AccessGate developer work together to create
this entry).

– Create an ObAccessClient.xml file, which the AccessGate developer
accomplishes by running the interactive, non-GUI configureAccessGate
application on the machine that will host the AccessGate.

4. Protect enterprise resources by creating policy domains, as described in the Oracle
Access Manager Access Administration Guide.

This includes definition of the resource and the designation of operations
permitted against that resource. Generally, an Access Administrator performs this
task through the Access System console.

Supported Versions and Platforms
Any references to specific versions and platforms in this chapter are made for
demonstration purposes.

You can find support and certification information at the following URL:

http://www.oracle.com/technology/documentation/

You must register with OTN to view this information.

Also, you can see the supported versions and platforms for this integration on
Metalink, as follows.

To view information on Metalink
1. In your browser, enter the following URL:

Note: The Access Administrator and the developer must work
closely to ensure that the resource types and challenge methods the
AccessGate is programmed to handle match exactly the resource types
and challenge methods assigned to the policy domains that the
AccessGate will protect. For details about protecting resources with
policy domains, see the Oracle Access Manager Access Administration
Guide.

About AccessGate Deployment

Building AccessGates with the Access Manager SDK 4-7

https://metalink.oracle.com

2. Log in to MetaLink.

3. Click the Certify tab.

4. Click View Certifications by Product.

5. Select the Application Server option and click Submit.

6. Choose Oracle Identity Management and click Submit.

7. Click Oracle Identity Management Certification Information 10g (10.1.4.0.1)
(html) to display the Oracle Identity Management page.

8. Click the link for Section 6, Oracle Access Manager Certification to display the
certification matrix.

Installing the Access Manager SDK
If your Access System uses WebGates exclusively, you do not need to install the Access
Manager SDK, because each self-contained WebGate installation package already
contains all the specific resources it needs.

If you use one or more custom AccessGates, you must install an instance of the Access
Manager SDK on each server that hosts an AccessGate. You may install both
UNIX-based and Windows-based AccessGates within the same deployment as long as
each instance of the Access Manager SDK matches the type of server on which it is
installed.

Note that the Access Manager SDK is not part of the Access Server installation
package. The self-contained SDK ships in its own setup package which is labelled:

COREid#_#_Platform_AccessServerSDK[.ext]

where #_# is the installed version of Oracle Access Manager, platform is the operating
system of the host server where you install the SDK, and ext is the file name extension
".exe," which appears only on Windows installation packages.

Thus, "COREid_10_1_4_sparc-s2_AccessServerSDK" contains the version of the Access
Manager SDK appropriate for installation on servers running the Solaris operating
system.

A convenient installation location for your Access Manager SDK on a typical Windows
system might be:

C:\Program Files\Oblix\AccessServerSDK

In any case, make note of the SDK installation path, as you will need it later, whenever
you see the string SDK_install_dir in the rest of this chapter.

Obtaining the Access Manager SDK
You can download the Access Manager SDK from the Oracle Technology Network at
the following URL:

http://www.oracle.com/technology

Installing the SDK on Windows
After downloading the SDK, you can install it. The following procedure describes how
to install the SDK on Windows.

About AccessGate Deployment

4-8 Oracle Access Manager Developer Guide

To Install the SDK on a Windows Machine
1. On the machine where you plan to install your AccessGate, navigate to the

directory where your Access Manager SDK installation package is stored. The path
to this package resembles the following:

Device\...\AccessSystem\Platform

where Device is the CD or hard drive holding your installation image, and
Platform is the operating system of the host server on which you are installing the
AccessGate.

2. Double-click the following executable:

COREid#_#_Platform_AccessServerSDK

where #_# is the version you are running, and Platform is the operating system of
the machine on which you are installing the AccessGate.

For example:

COREid_10_1_4_Win32_AccessServerSDK.exe

3. When the Welcome screen appears, click Next.

4. When the license agreement appears, decide whether to proceed by checking the
box "I accept the terms of the license agreement."

5. The next screen emphasizes that you must have administrator privileges on the
host machine where you are installing the SDK.

If your current account has administrator rights, click Next.

If you are not currently logged onto an account with such privileges, complete the
following sub-task:

a. Click Cancel to close the installation wizard

b. Log off the system

c. Log back on using an administrator account

d. Restart the Access Manager SDK installation wizard

6. Select an install directory using any of the following methods:

■ Click Browse and navigate to the directory you prefer

■ Place your cursor in the "Destination Name" entry field and type the path to
the directory you prefer

■ Simply accept the default installation directory as it appears in the
"Destination Name" entry field.

For Windows, the default is C:\Program Files\NetPoint. The sub-directory
\AccessServerSDK is appended to the default base path during installation.

In any case, when the directory you want appears in the "Destination Name" entry
field, click Next to continue.

7. When a screen appears to announce the target installation directory, check to make
sure that it shows the exact location you want. Make a note of this path, because
you will need it every time SDK_install_dir appears in the rest of this chapter.

8. Click next to commence file installation.

9. Respond to the on-screen prompts, as necessary.

About AccessGate Deployment

Building AccessGates with the Access Manager SDK 4-9

10. When installation completes, a screen appears to report that the process has
succeeded.

Installing the SDK on UNIX

To install the SDK on a UNIX machine
1. On the machine where you plan to install your AccessGate, navigate to the

directory where your Access Manager SDK installation package is stored.

The path to this package resembles the following:

Device\...\AccessSystem\Platform

where Device is the CD or hard drive holding your installation image, and
Platform is the operating system of the machine on which you are installing the
AccessGate.

2. Locate the following executable:

COREid#_#_Platform_AccessServerSDK

where #_# is the version you are running, and Platform is the operating system of
the machine on which you are installing the AccessGate.

For example:

COREid_10_1_4_sparc-s2_AccessServerSDK

3. At the UNIX prompt, enter the name of the appropriate Access Manager SDK
installation package to commence GUI-mode installation.

4. When the Welcome screen appears, click next.

5. When the license agreement appears, decide whether to proceed by checking the
box "I accept the terms of the license agreement."

6. When the installer asks for a user and group to set as the owner of the installed
files, you may find it convenient to specify the same user and group that "own" the
server application your AccessGate will protect. In any case, you must be logged
on as the user you specify, or as "root," in order to continue installation.

7. Accept the default install directory by hitting Return, or type your preference, then
hit return.

Note: This procedure assumes that your UNIX machine supports
GUI-mode. You can also run the installation package in interactive
command-line mode by entering the following:

run ./installationPackage

where installationPackage is the name of the Access Manager SDK
installation package appropriate for your machine.

Note: You cannot install Oracle Access Manager components in any
directory that contains special characters in its path. The proscribed
characters are: blank spaces, new lines, *, [], {}, and so on.

About AccessGate Deployment

4-10 Oracle Access Manager Developer Guide

8. When a screen appears to announce the target installation directory, check to make
sure that it shows the exact location you want. If the directory does not exist, the
installer creates it. Make a note of this path, because you will need it every time
SDK_install_dir appears in the rest of this chapter.

9. Click next to commence file installation.

10. Respond to the on-screen prompts, as necessary.

11. When installation completes, a screen appears to report that the process has
succeeded.

Configuring an AccessGate
AccessGate configuration, which is not to be confused with AccessGate creation or
SDK installation, consists of the following sub-tasks.

Task overview: Configuring an AccessGate
1. Setting environment variables on the host server where the AccessGate will reside,

as described in "Setting Environment Variables" on page 4-10.

2. Creating an AccessGate entry on the Access Server, as described in "Creating an
AccessGate Entry on the Access Server" on page 4-12.

3. Creating the ObAccessClient.xml file within the Access Manager SDK installation,
as described in "Running the configureAccessGate Utility" on page 4-13.

4. For each AccessGate, you must run the configureAccessGate utility, as described
in "Running the configureAccessGate Utility" on page 4-13.

You can perform any of the AccessGate configuration either before or after you
create custom code for your AccessGate.

Setting Environment Variables
Requisite environment variables differ according to the operating system on the host
server where your AccessGate resides. Complete the procedure that is appropriate to
your environment:

■ Windows host

■ UNIX host

To set environment variables on a Windows machine
1. Navigate to the Start Menu, then to Control Panel, then to System, then to

Advanced, then to Environment Variables.

2. Examine the contents of the System Variables box.

3. If you see the Variable Name for the Variable Value you want to add, click that
Variable Name, click Edit, then proceed to Step 6 (otherwise, click New and
proceed to the next step).

4. Type Variable Name and Variable Value in the appropriate fields of the New
System Variable entry box.

5. Click OK to commit the variable, then proceed to Step 7.

Note: Creating the ObAccessClient.xml file within the Access
Manager SDK installation, as described in "Running the
configureAccessGate Utility" on page 4-13.

About AccessGate Deployment

Building AccessGates with the Access Manager SDK 4-11

6. When the Edit System Variable entry box appears, click the Variable Value field,
move the cursor to the end of the string, type "; value" (semi-colon followed by the
blank space character followed by the new value), then click OK to commit the
variable.

7. Repeat Steps 3-6 until you have added all the variables listed in the following
table.

To set environment variables on a UNIX machine
1. Use a text editor to open the file (or files) containing the variables on your UNIX

system.

2. For all the variables in Table 4–2, append the values listed, or, if the variable name
does not exist, add the variable name along with its associated value to the file.

Note: For Windows 2003, these variables take effect immediately and
do not require a system restart.For Windows 2000, you should restart
your machine after you have entered the variables. This ensures that
all the variables will take effect.

Table 4–1 Windows Environment Variables

Variable Name = existing
path; Value to Add Description

PATH = existing path;
SDK_install_dir\oblix\lib

Points to obaccess.dll and other library files.

CLASSPATH = existing
path;
SDK_install_dir\oblix\lib\jo
baccess.jar

Points to the name and location of the Java class archive for the
Access Manager API. (Required only if you use the Java
implementation of the Access Manager API to write custom
AccessGate code).

OBACCESS_INSTALL_DIR
= SDK_install_dir

Points to the Access Manager SDK install root. (This is necessary
only if your AccessGate does not specify SDK_install_dir as part
of the ObConfig.initialize method).

Note: To ensure that the new variables take effect, take whatever
measures (such as system restart) are appropriate for your specific
UNIX environment.

Table 4–2 UNIX Environment Variables

Variable Name = existing path; Value to Add Description

LD_LIBRARY_PATH = existing path;
SDK_install_dir/oblix/lib (for Solaris only)

Points to libobaccess.so and other library files
on Solaris systems.

CLASSPATH = existing path;
SDK_install_dir/oblix/lib/jobaccess.jar

Points to the name and location of the Java
class archive for the Access Manager API.
Required only if you use the Java
implementation of the Access Manager API to
write custom AccessGate code.

POST_CLASSPATH = existing path;
SDK_install_dir/oblix/lib/jobaccess.jar

OBACCESS_INSTALL_DIR = existing path;
SDK_install_dir

Points to the Access Manager SDK install root.

About AccessGate Deployment

4-12 Oracle Access Manager Developer Guide

Creating an AccessGate Entry on the Access Server
Complete the following task to enable your Access Server to connect to your custom
AccessGate. (You can complete this task before your create your AccessGate, as long as
the information you enter matches the particulars of the AccessGate and the
ObAccessClient.xml file).

To create an AccessGate entry on the Access Server
1. Navigate to the Access System Console, then to Access System Configuration, then

to Add New AccessGate.

2. Type a convenient name in the AccessGate Name field.

3. In the HostName field, type the DNS name of the machine hosting the server
instance on which the AccessGate resides.

For example:

CustomerCare5.oblix.com

4. Complete the following activity based on your environment:

■ If the machine on which your will install the AccessGate does not host
additional Web or applications servers skip this step.

Typically, this value is assigned by the administrator responsible for the
server; the AccessGate administrator merely records this value in the
AccessGate configuration profile).

■ If the machine on which your will install the AccessGate hosts does host
additional Web or applications servers, specify the server instance that will use
your AccessGate by typing in the port number the server uses to listen for user
requests.

5. Type an alphanumeric string for use as a password whenever the AccessGate
connects to the Access Server.

This value is optional for all transport modes, although the Simple and Cert
modes use other passwords not directly related to AccessGate configuration.
However, Oracle strongly recommends that you set a password for your
AccessGate, particularly if it uses Open mode. This will prevent unauthorized
AccessGates from connecting to Access Servers.

6. Retype the password to confirm it.

7. Click Save at the bottom of the panel to commit the values.

The preceding steps provide all necessary information for this stage of AccessGate
deployment. From this point forward, you can enter optional values for the other
parameters, which will use the supplied default values until you replace them. For

Note: Choose a name that distinguishes this particular AccessGate
from all the others in your system. For instance, "CustCare5_6006"
might help you identify an AccessGate installed on web server
"Customer Care 5," which listens on port 6006.

Note: Oracle recommends using any number between 6000 and
65,536, which has not been used for any other ports on the network.

About AccessGate Deployment

Building AccessGates with the Access Manager SDK 4-13

details on setting these other parameters by modifying an AccessGate, see the Oracle
Access Manager Access Administration Guide.

Running the configureAccessGate Utility
For each AccessGate on your system, you must run the configureAccessGate utility,
which stores data used to initialize the AccessGate in the file ObAccessClient.xml.

The configureAccessGate tool reads and updates this information each time you
initialize the Access Manager API and at other points during AccessGate operation.

By default, this file is stored in the following directory on the machine hosting your
AccessGate:

SDK_install_dir\oblix\config

You can view the contents of the ObAccessClient.xml file by opening it in any text
editor. For details on the content of the ObAccessClient.xml file and modifying an
AccessGate, see the Oracle Access Manager Access Administration Guide.

Using the configureAccessGate application from a command-line window to edit
ObAccessClient.xml ensures that your AccessGate parameters remain consistent
throughout the system. This is because confgureAccessGate not only modifies
ObAccessClient.xml, it performs additional vital tasks related to the simple and cert
modes, such as creating or requesting an X.509 certificate. See details on modifying an
AccessGate in the Oracle Access Manager Access Administration Guide.

To run configureAccessGate on a UNIX Machine
1. From the UNIX command line, navigate to the following directory:

SDK_install_dir\oblix\tools

where SDK_install_dir is the root directory of your Access Manager SDK
installation.

2. Type the following command, then press Enter:

./configureAccessGate -i SDK_install_dir -t AccessGate

Where SDK_install_dir is the directory where you installed the SDK.

3. Respond to the series of prompts as they appear.

For information on available switches, acceptable arguments, and defaults when
configuring AccessGates, see the Oracle Access Manager Access Administration
Guide.

When the configureAccessGate program successfully exits, the AccessGate is enabled
on your server.

To run configureAccessGate.exe on a Windows Machine
1. Navigate to the Start Menu, then select Run.

2. Enter the following command in the Open field:

cmd

Note: Never edit ObAccessClient.xml using a text editor. Instead,
use the configureAccessGate application from a command-line
window.

About AccessGate Deployment

4-14 Oracle Access Manager Developer Guide

3. When the command-line (non-GUI) window opens, switch directories by entering
the following command:

cd SDK_install_dir\oblix\tools\configureAccessGate

where SDK_install_dir is the path to your Access Manager SDK installation.

4. Launch the configureAccessGate utility by entering the following command,
including switches and arguments:

configureAccessGate -i SDK_install_dir -t AccessGate

where SDK_install_dir is the path to your Access Manager SDK installation.

Respond to the series of prompts as they appear. For information on available
switches, acceptable arguments, and defaults when configuring AccessGates, see the
Oracle Access Manager Access Administration Guide.

When the configureAccessGate program successfully exits, the AccessGate is enabled
on your server.

Writing AccessGate Code
This procedure is covered in the section "About Custom AccessGate Code" on
page 4-30.

Cloning a Custom AccessGate
When you need to protect an additional server by creating an AccessGate similar to an
AccessGate you have already deployed, you do not necessarily have to write new
code. In some cases, you might be able to clone the existing AccessGate to that
additional server.

Task Overview: Cloning a custom AccessGate
1. Install the version of the Access Manager SDK that is compatible with the

operating system of the server where the cloned AccessGate will reside. See
"Supported Versions and Platforms" on page 4-6.

2. Create an entry for the new AccessGate on the Access Server to which it will
connect. See "Creating an AccessGate Entry on the Access Server" on page 4-12.

3. Run the configureAccessGate utility to create an ObAccessClient.xml file for the
new AccessGate on the server where the new AccessGate will reside. See
"Running the configureAccessGate Utility" on page 4-13.

Alternatively, you modify the ObAccessClient.xml file from the original
AccessGate by copying it to the new host server, then running the
configureAccessGate utility.

4. Set the Access Manager API environment variables for the server on which the
cloned AccessGate will reside. See "Setting Environment Variables" on page 4-10.

5. Copy the plain text file containing your custom AccessGate code to the server
where the cloned AccessGate will reside.

6. Modify the transferred code, as necessary, to fit the particulars of the new
AccessGate.

7. Recompile the code using the compiler that is compatible with the operating
system of the host server and the development language in which the custom

About the Access Manager SDK

Building AccessGates with the Access Manager SDK 4-15

AccessGate code was written. See "Supported Versions and Platforms" on
page 4-6.

Protecting Resources
Policy domains specify which resources are protected by what protection methods
applied to which users and groups. Usually, they are created and maintained by
Access Administrators. AccessGate developers should work with Access
administrators to create, modify, or identify the specific policy domains that the
AccessGate will protect. For detailed information on creating policy domains, see the
Oracle Access Manager Access Administration Guide.

About the Access Manager SDK
This section begins with an overview of the Access Manager SDK. Next, it outlines the
content of the installed SDK directory and subdirectories. Finally, it introduces the set
of files supplied to support custom AccessGates for BEA WebLogic systems.

SDK Overview
The Access Manager SDK is an optional component, and is installed independent of
the Access Server. The SDK provides all the information and resources you need to
build a custom AccessGate. In addition to the files that make up the various
implementations of the Access Manager API, the SDK includes documentation and
code samples, which show how to construct simple AccessGate servlets or
applications for each of the supported development platforms.

SDK Content
The Access Manager SDK installation directory contains the following subdirectories
and content:

_jvmAccessSDK: Contains the Java runtime resources used by the Access Manager
SDK install wizard.

_uninstAccessSDK: Contains the resources for uninstalling the Access Manager SDK
through the install wizard.

apidoc: Documents the Java implementation of the Access Manager API. You access
this information through the following URL:

SDK_install_dir\apidoc\com\oblix\access\package-summary.html

examples: Includes a sample build file, a sample make script, and the Web page
AppServer_ReadMe.html, which explains how to create an AccessGate for a WebLogic
server.

obaccess: Contains an example Java servlet as well as prototypes for classes that can be
used to extend the startup and shutdown classes for the server application.

ejbAccessTest: Holds the example "Broker Bean" EJB, along with a sample build file
and a build script which follows the conventions used by BEA WebLogic.

Note: The package com.oblix.access documents the Access Manager
API. The package com.oblix.accessmgr documents the Policy Manager
API.

About the Access Manager SDK

4-16 Oracle Access Manager Developer Guide

include: Contains header files that define the classes, methods, and functions
composing the C++ and C implementations of the Access Manager API.

oblix: Holds four subdirectories:

config: Contains configuration data for the Access Manager SDK installation.

lang: Contains language-specific files (English, French, and so on) for your installation
of the Access Manager SDK, including:

■ release notes: Contains information that was not received in time to include in the
main documentation.

■ netlibmsg.lst: A file of messages the AccessGate uses when errors occur.
Depending on how your AccessGate is configured, these can be logged locally,
displayed locally, or ignored.

■ ObAccessClient.msg: Provides the message text the AccessGate displays in
response to various events.

lib: Contains the Access Manager SDK libraries and Java archive files that are built
into the application. These include:

■ various libraries: Codes libraries required by the API. (For instance, .dll files for
Windows, .so files for Solaris, and so on).

■ jobaccess.jar: Which is the Java archive file for the API.

■ ObAccessClient.xml file: An example of the AccessGate configuration file.

orig: Contains information created during the installation of the SDK. You should
ignore this.

tools: Contains four significant subdirectories:

■ configureAccessGate: Contains the tool that configures the AccessGate, as well as
the messages the tool needs.

■ lang_tools: Contains development language-specific files (Java, C, and so on) for
your installation of the Access Manager SDK.

■ migration_tools: Contains information about migrating AccessGates created with
earlier versions of the API to the current version of the SDK.

■ openssl: Contains a tool and short certificate used to configure the AccessGate for
Simple or Cert mode operation.

samples: Provides versions of the standalone Access Test application written for Java,
C, C++, and C# (.NET). These can be used to gain familiarity with the SDK build
process before you attempt more complex applications.

BEA WebLogic Support Files
To enable quick support of BEA WebLogic, the Access Manager SDK provides
WebLogic-compatible Startup and Shutdown classes. The WebLogic Manager API
itself provides extensible classes that can be used to extend the startup and shutdown
capabilities of the WebLogic Server.

The ObStartupAppGate.java and ObShutdownAppGate.java classes reside in:

Note: Once the SDK is installed, do not change the relative locations
of the subdirectories and files. Doing so may prevent an accurate build
and proper operation of the API.

About the Access Manager API

Building AccessGates with the Access Manager SDK 4-17

SDK_install_dir/examples/obaccess

These classes enable WebLogic Server initialization, which is necessary before
AccessGate initialization can take place. They can be used out-of-the-box or modified
to suit the application being developed.

The ObStartupAppGate and ObShutdownAppGate Java classes conform to the
standards detailed in the WebLogic documentation supplied by BEA. Before writing
your own Startup and Shutdown classes for the WebLogic Server, refer to the section
on server startup and shutdown in the Access Manager SDK and WebLogic
Application Server documentation in SDK_install_dir\examples\
AppServer_Readme.html.

The Access Manager API method ObConfig.initialize initializes the AccessGate. The
ObConfig.shutdown method shuts down the AccessGate gracefully. After successful
initialization, all Java components built using the Access Manager SDK share the
AccessGate configuration when they are deployed to the WebLogic Server.

About the Access Manager API
This section begins by comparing the naming schemes used by each of the four Access
Manager API implementations. It then introduces the API classes in turn, with special
emphasis on the different ways specific features are handled in the various
development environments.

Reference details for each of the four language-specific implementations appear in
separate sections beginning on "C++ Implementation Details" on page 4-77. For the
Java implementation only, reference details are also supplied as online JavaDoc HTML
files accessible through SDK_install_dir/apidoc/index-all.html.

Implementations Compared
The Access Manager API enables developers to write custom AccessGate code in any
of four development languages: Java, C, C++, or C#. While each of these
implementations takes advantage of platform-specific features to implement the API,
the four implementations are functionally equivalent.

About Memory Management
The four implementations of the Access Manager API differ most significantly in the
area of memory management.

Java and C# both feature automatic garbage collection. Neither language enables you
to call a destructor explicitly. Instead, you simply let the built-in garbage collector
deallocate the memory for unused objects when it (the garbage collector) deems
appropriate. Thus, the garbage collectors do not guarantee when an object will be
cleaned up, but they do see to it that all objects are destroyed when they are no longer
referenced, and no memory leak occurs.

By contrast, you must explicitly call destructors in C and C++ to clean up the objects
that your program no longer needs. For each C-language pseudo class, you use the
functions whose names end with "_free." When you no longer need C++ objects
previously created with the "new" operator, use the "delete" operator to destroy them.

About the Access Manager API

4-18 Oracle Access Manager Developer Guide

Corresponding Classes
The functionality of the Access Manager API has been organized into seven basic
classes. Even for the C language, which is not explicitly object-oriented, the functions
have been organized into "pseudo object-oriented classes."

Table 4–3 lists the corresponding class names for each language platform:

About Multi-Language Implementation
You can select any of the four functionally-equivalent implementations of the Access
Manager API as the development language interface you use to write your custom
AccessGate code. However, you should remain aware that your code, no matter what
language it was written in, will interact with underlying C++ binaries in the API.

Also, AccessGate code that is created for one specific development language, compiler,
server, and operating system configuration might require recompilation to ensure that
it will run correctly in another environment.

To ensure that your AccessGates behave as expected, you should follow certain best
practices in the following areas:

■ Portability: See "Cloning a Custom AccessGate" on page 4-14 for details.

■ Clean-up: See "About Memory Management" on page 4-17 for details.

ObMap
When your AccessGate interacts with the Access Server, it stores, passes, and receives
information through lists of entries (or items) arranged as name:value pairs. These list
structures, which are opaque to the end user, are also known as maps in the C and C++
environments. When used within a Java or C# context, they are called hashtables.

Table 4–3 Access Manager API Implementation-Specific Classes Compared

Purpose of the Class C++ C C# Java

Supports parameter storage
structures (lists or hashtables).

ObMap ObMap_t ObDictionary java.util.Hashtable, which extends
java.util.Dictionary (This is not a
Com. Oblix.Access class)

Supports iteration within lists
(C and C++ implementations
only; C# and Java enumerate
hashtables).

ObMapIterator ObMap Iterator_t ObDictionary
Enumerator

java.util.Hashtable, which extends
java.util.Dictionary (This is not a
Com. Oblix.Access class)

Creates and manipulates
structures that handle user
authentication.

ObAuthentication
Scheme

ObAuthn
Scheme_t

ObAuthentication
SchemeMgd

ObAuthentication Scheme
implements ObAuthentication
Scheme Interface

Creates and manipulates
structures that handle user
requests for resources.

ObResource
Request

ObResource
Request_t

ObResource
RequestMgd

ObResource Request implements
ObResource RequestInterface

Creates and manipulates
structures that handle user
sessions, which begin when
the user authenticates and
end when the user logs off or
the session times out.

ObUserSession ObUserSession_t ObUser
SessionMgd

ObUserSession implements
ObUserSession Interface

Retrieves and modifies
AccessGate configuration
information.

ObConfig ObConfig_t ObConfigMgd ObConfig

Handles errors thrown by the
Access Manager API

ObAccess
Exception

ObAccess
Exception_t

ObAccess
ExceptionMgd

ObAccess Exception

About the Access Manager API

Building AccessGates with the Access Manager SDK 4-19

These list and hashtable structures store many types of Access Manager API-related
data, including the following:

■ Resource request information

■ Authentication scheme information

■ User session information

■ AccessGate configuration information

For instance, a typical AccessGate might pass a set of user credentials to the Access
Server as a single-item list in the following form:

UserName=JSmith&Password=J5m1th

The C and C++ implementations of the Access Manager API create and manipulate
these structures through the ObMap class and ObMap_t pseudo class, respectively.
The equivalent class for the C# implementation is ObDictionary. The Java
implementation of the API does not include a class of its own to handle list structures;
rather, it relies on the standard Java class named java.util.Hashtable for all list-related
functions.

All of these implementing classes provide methods to enable the following
functionality:

■ Create a list (or hashtable)

■ Add a name:value pair to a list (or hashtable)

■ Read a name:value pair from the list (or hashtable) when the name half of the item
is known

■ Report the total number of items in a list (or hashtable)

■ Copy an existing list (or hashtable)

■ Deallocate the memory used by the list structure (or hashtable)

For a discussion of additional methods that manipulate Access Manager API lists and
hashtables, see "ObMapIterator" on page 4-20.

Equivalent Methods
Table 4–4 presents equivalent constructors and methods for the four API
implementations of the ObMap class. Note that this table includes existing Java
methods only if they correspond to an equivalent method in one of the C-family
implementations of ObAccess:

Table 4–4 Methods (and Constructors) for the ObMap Class Compared

C++ (ObMap) C (ObMap_t) C# (ObDictionary)
Java
(java.util.Hashtable)

get ObMap_get get_Item get

put ObMap_put add put

size ObMap_size get_Count size

copy ObMap_copy Clone Hashtable(map t)

Delete ObMap_free (built-in garbage collection) (built-in garbage
collection)

(constructor) ObMap_new (constructor) (constructor)

About the Access Manager API

4-20 Oracle Access Manager Developer Guide

ObMapIterator
Sometimes, it is necessary to step through (or iterate) the items in a hashtable or list.
The C, C++, and C# implementations handle this and related functions through the
ObMapIterator, ObMapIterator_t, and ObDictionary classes, respectively. The Java
implementation achieves this functionality through java.util.Hashtable, which is a
standard Java class, rather than an Access Manager API class.

The methods offered by the implementations differ because only the C and C++
implementations of the Access Manager API require full iterator functionality to parse
their list structures. The C# and Java implementations of the API use hashtables, and
therefore do not use the same iterator functionality for parsing operations.

ObMapIterator provides methods to enable the following pointer functionality:

■ Create a list pointer

■ Move the pointer from the current item to the next item in the list

■ Determine whether additional items exist in the list beyond the position currently
occupied by the pointer. By implication, you know that the pointer has reached the
end of a list when no more items exist beyond the current position of the pointer.

■ Deallocate the memory used by the pointer.

Equivalent Methods
Table 4–5 presents equivalent constructors and methods for the four API
implementations of the ObMapIterator class. Note that this table includes Java
methods only if they correspond to an equivalent method in one of the C-family
implementations of ObAccess.

ObAuthenticationScheme
The Access Manager API creates ObAuthenticationScheme structures to store, pass,
and retrieve information about the authentication scheme (authentication template)
associated with the target resource requested by a particular user. In other words, an
authentication scheme specifies how a user is to be challenged for a set of credentials.

The details for each authentication scheme are specified when the Access
Administrator creates a policy domain on the Access Server to protect a specific
resource. For a detailed discussion of authentication schemes, see the Oracle Access
Manager Access Administration Guide.

Table 4–5 Methods for the ObMapIterator Class Compared

C++ (ObMapIterator) C (ObMapIterator_t)
C# (ObDictionary
Enumerator)

Java
(java.util.Hashtable)

next ObMapIterator_next MoveNext

get_Current

hasMore ObMapIterator_hasMore

get_Entry

get_Key

get_Value

(constructor) ObMapIterator_new Reset

Delete ObMapIterator_free (built-in garbage
collection)

(built-in garbage
collection)

About the Access Manager API

Building AccessGates with the Access Manager SDK 4-21

Credentials are name:value pairs that the AccessGate passes to the Access Server in
order to authenticate a user. For example, an AccessGate using the HTTP basic
challenge method might pass the following credential string, which contains two
name:value pairs:

userid=JSmith&Password=J5m1th

In the preceding example, the name:value pairs are separated by the ampersand
character (&), and the name and value components are separated by equal signs (=).

Since the requisite authentication scheme can vary according to the resource
requested, an ObAuthenticationScheme structure can be created only after an
ObResourceRequest structure has specified the target resource.

Each authentication scheme contains the elements listed in Table 4–6:

Table 4–6 ObAuthenticationScheme Elements

Element Details

Display Name This is a friendly name used to identify the authentication
scheme. For example, "Customer Form Login" might represent
an authentication scheme used to grant preferred customers
access to a price list for frequent buyers.

Mask Byte

Mask

Expected Credentials

0x00

No credentials needed. The
plug-in should map to an
anonymous user.

0x01

User ID and Password (as
for HTTP basic)

0x02

A certificate using SSL/TLS
client authentication (as for
HTTPS)

0x04

Customer-defined
credential fields in an
HTML login form

0x08

Credentials must be sent
over a secure connection (as
for HTTPS) and a
redirection URL must be
used as well.

This byte indicates the type of challenge method to be used and
whether credentials need to be sent over a secure connection:

Challenge Method

none

basic

certificate

form

secure

Strength This positive integer defines the level of authentication.

Redirection URL This is the URL (in the form "https://host:port") where HTTP
secure authentication is to be performed. If secure authentication
(or a central authentication server such as SecurID) is not
required, this value is set to NULL.

About the Access Manager API

4-22 Oracle Access Manager Developer Guide

Equivalent Methods
Table 4–7 presents equivalent constructors and methods for the four API
implementations of the ObAuthenticationScheme class.

Challenge Parameters

Challenge Method

Value

basic

The authentication domain
(as for an LDAP directory)

form

The URL of the login form
that will be displayed on the
user web browser

form

A space-separated list of
login form fields that will be
used as credentials

form

The URL to which the login
form posts the data it
receives

This element stores additional authentication scheme-related
information in name:value pairs.

When these optional parameters are not supplied, Challenge
Parameters is represented by an empty string.

Parameter Name

realm

form

creds

action

Plug-in Sequence This element is not visible through the Access Manager API.

Table 4–7 Methods for the ObAuthenticationScheme Class Compared

C++ (ObAuthentication
Scheme)

C (ObAuthentication
Scheme_t)

C# (ObAuthentication
SchemeMgd) Java (ObAuthentication Scheme)

getName ObAuthn_getName get_Name getName

getMask ObAuthn_getMask get_Mask (this method is not public in Java)

requires SecureTransport ObAuthn_requires
SecureTransport

get_Requires
SecureTransport

requires SecureTransport

IsBasic ObAuthn_isBasic get_IsBasic isBasic

IsCertificate ObAuthn_isCertificate get_IsCertificate isCertificate

IsForm ObAuthn_isForm get_IsForm isForm

IsNone ObAuthn_isNone get_IsNone isNone

getLevel ObAuthn_getLevel get_Level getLevel

getRedirectUrl ObAuthn_get RedirectUrl get_RedirectUrl getRedirectUrl

getChallenge Parameter ObAuthn_get
ChallengeParameter

get_Challenge Parameter getChallenge Parameter

getAllChallenge Parameters ObAuthn_getAll
ChallengeParameters

get_All
ChallengeParameters

getAllChallenge Parameters

getNumberOfChallenge
Parameters

ObAuthn_getNumberOf
ChallengeParameters

get_NumberOf
ChallengeParameters

getNumberOfChallenge Parameters

(constructor) ObAuthn_new (constructor) (constructor)

(copy constructor) (not implemented) Clone clone

Table 4–6 (Cont.) ObAuthenticationScheme Elements

Element Details

About the Access Manager API

Building AccessGates with the Access Manager SDK 4-23

ObResourceRequest
The Access Manager API uses the ObResourceRequest structure to store, pass, and
retrieve information concerning a user request for access to a resource. This
information includes the elements listed in Table 4–8.

The ObResourceRequest constructors return the following policy information from the
Access Server, as described in Table 4–9:

ObAuthenticationScheme constructors use the information contained in the
ObResourceRequest structure to determine which authentication scheme is associated
with the target resource. Similarly, the ObUserSession constructors can use the
information in the ObResourceRequest structure to determine whether the user, once
authenticated, is authorized to access the target resource.

Delete ObAuthn_free (built-in garbage
collection)

(built-in garbage collection)

Table 4–8 ObResourceRequest Elements

Element Details

Resource Type This can be a built-in type, such as HTTP or EJB, or a custom type defined through the Access System
Console. For a detailed discussion about configuring resource types and protecting resources with
policy domains, see the Oracle Access Manager Access Administration Guide.

Resource Name The name of the target resource within the Oracle Access Manager name space. This must be
provided in the format

[//host[:port]]/resourceName

where the optional host and port values indicate the Web server servicing resourceName, which is the
name of the targeted resource.

Host and port apply only to HTTP resources.

Operation The action to be performed against the resource, as dictated by the resource type. Examples are GET
and POST for HTTP resources, and EXECUTE for EJB resources. For custom resource types,
operations are defined through the Access System Console when the resource type is defined. For a
detailed discussion, about configuring resource types and protecting resources with policy domains,
see the Oracle Access Manager Access Administration Guide.

Parameter Set
(optional)

A name:value pair for the requested operation. Parameter names and values must be strings. For
HTTP resources, they can be extracted from the request query string or POST data. For EJB resources,
parameter entries can be "bean" method parameters. Neither of the preceding is a requirement. The
names and values can be any arbitrary data that the developer and Access Administrator have agreed
upon.

The name:value pairs can be used to supply data for authorization requests. This is useful for
authorizations that require data from external sources. For example, if you need to pass an account
number, you can write a plug-in for this purpose. For details about customizing access control with
plug-ins, see the Oracle Access Manager Customization Guide

Table 4–9 Information Returned by the Access Server in Response to
ObResourceRequest

Element Details

Protection Flag Indicates whether the resource request is protected by Access
System policies. If the resource is not protected, the AccessGate
grants the user free access to the resource.

Authentication scheme name An internal ID representing the authentication scheme
associated with the target resource.

Table 4–7 (Cont.) Methods for the ObAuthenticationScheme Class Compared

C++ (ObAuthentication
Scheme)

C (ObAuthentication
Scheme_t)

C# (ObAuthentication
SchemeMgd) Java (ObAuthentication Scheme)

About the Access Manager API

4-24 Oracle Access Manager Developer Guide

Equivalent Methods
Table 4–10 lists the names of equivalent methods across the four implementations of
the ObResourceRequest class.

ObUserSession
After the Access Server validates the user credentials necessary for successful login (or
"authentication"), the AccessGate creates an ObUserSession structure to store, pass,
and retrieve information about the user, the target resource, and various types of
authentication policy information. This structure can be created from information
drawn from the ObResourceRequest and ObAuthenticationScheme structures as well
as information returned by the Access Server. Alternatively, the ObUserSession
structure can be created from information contained in a session token, which is an
ASCII character string that stores information about a currently valid user session.

A session token can be generated from a ObUserSession structure. An ObUserSession
structure can be constructed from a valid session token, except for actions and error
information, which are not carried in the session token. For details about obtaining
data from an external source for an authentication request and form-based
authentication to pass the originally requested URL to a change password servlet, see
the Oracle Access Manager Access Administration Guide.

A key method in ObUserSession returns information from the Access Server as to
whether the user, who has passed authentication successfully, is authorized to access
the target resource. Other ObUserSession methods return information about when the
user authenticated (and, by extension, when the current session will expire), the most
recent time at which the user was authorized to access a resource, and so forth. In any
case, a ObUserSession structure contains the pieces of information presented in
Table 4–11:

Table 4–10 Methods for the ObResourceRequest Class Compared

C++ (ObResource
Request) C (ObResource Request_t)

C# (ObResource
RequestMgd) Java (ObResource Request)

getResourceType ObResource_ getResourceType get_ResourceType getResourceType

getResource ObResource_getResource get_Resource getResource

getOperation ObResource_getOperation get_Operation getOperation

getParameters ObResource_ getParameters get_Parameters getParameters

getNumberOf
Parameters

ObResource_getNumber
OfParameters

get_NumberOf Parameters getNumberOf Parameters

isProtected ObResource_isProtected get_IsProtected isProtected

getAuthorization
Parameters

ObResource_ getParameters get_Authorization Parameters getAuthorization Parameters

getNumberOf
Authorization
Parameters

ObResource_getNumber
OfAuthorizationParameters

get_NumberOf Authorization
Parameters

getNumberOf Authorization
Parameters

(copy constructor) (not implemented) Clone Clone

Delete ObMap_free (built-in garbage collection) (built-in garbage collection)

(constructor) ObResourceRequest_new (constructor) (constructor)

About the Access Manager API

Building AccessGates with the Access Manager SDK 4-25

Equivalent Methods
Table 4–12 presents the names of equivalent methods for the ObUserSession class in
the Access Manager API.

Table 4–11 ObUserSession Elements

Element Description

User Identity The Distinguished Name (DN) of the user's profile entry in the
LDAP user directory.

Level The security level of the authentication scheme used to
authenticate the user. This is a relative number assigned by the
Access System Administrator. For additional discussion of
changing the security level of an authentication scheme, see the
Oracle Access Manager Access Administration Guide.

Location (optional) The location of the user web browser (or the proxy server representing
the user's web browser). Examples are the DNS hostname of the
proxy server or the IP address of the user's browser.

Session start time The time when the user authenticated. This and the maximum
permitted session time can be used to calculate when the session
expires.

Last use time The most recent time at which the user was authorized; this is
used to determine when an idle session expires.

Actions Actions set during authentication and authorization according to
Access System policy rules. Each rule includes a type, which can
be user created, that tells the application how the action is to be
interpreted. Examples for HTTP are "cookie" and "headerVar."

Status The current status of the session, which may be one of the
following:

■ logged in

■ logged out

■ login failed

■ expired

Error number and Error
Message

Errors resulting from the most recent authentication or
authorization.

Table 4–12 Methods for the ObUserSession Class Compared

C++ (ObUserSession) C (ObUserSession_t)
C#
(ObUserSessionMgd)

Java
(ObUserSession)

getLocation ObUser_getLocation get_Location getLocation

getAction ObUser_getAction getAction getAction

getActions ObUser_getActions getActions getActions

getActionTypes ObUser_ getActionTypes get_ActionTypes getActionTypes

getNumberOfActions ObUser_
getNumberOfActions

getNumberOfActions getNumberOfActions

getLevel ObUser_getLevel get_Level getLevel

getStartTime ObUser_ getStartTime get_StartTime getStartTime

getLastUseTime ObUser_ getLastUseTime get_LastUseTime getLastUseTime

getStatus ObUser_getStatus get_Status getStatus

getUserIdentity ObUser_ getUserIdentity get_UserIdentity getUserIdentity

About the Access Manager API

4-26 Oracle Access Manager Developer Guide

ObConfig
The ObConfig class includes methods to initialize and shut down the Access Manager
API as well as store, pass, retrieve, and in some cases, modify, configuration data for
the AccessGate.

The ObConfig.initialize method does the following:

■ Passes the name of the installation directory to the AccessGate after retrieving that
value from either the "installDir" parameter or the environment variable
OBACCESS_INSTALL_DIR

■ Verifies that the ObAccessClient.xml file exists in the Access Server installation
directory and is readable by the AccessGate

■ Reads the bootstrap (current) AccessGate configuration from ObAccessClient.xml

■ Opens the ObAccessGate.msg message catalog to obtain the text to be used for
user errors and exceptions

■ Connects to one or more Access Servers as specified in the bootstrap configuration

■ Obtains the full AccessGate configuration from the Access Server

■ Creates the local resource request and authentication scheme caches

■ Creates a thread to update the AccessGate configuration periodically

ObConfig also contains a shutdown method that you must call to release resources
when an application no longer needs to use the Access Manager API.

Configuration Parameters
Table 4–13 details the configuration information maintained for each AccessGate.
These items are read into the ObConfig structure each time the AccessGate is
initialized. They can be Accessed through ObConfig.getItem and
ObConfig.getAllItems in the C++ implementation. For the C, C#, and Java
implementations, the corresponding methods are ObConfig_getItem and
ObConfig_getAllItems, ObConfigMgd.getItem and ObConfigMgd.getAllItems, and
Com.Oblix.Access.getItem and Com.Oblix.Access.getAllItems, respectively.

getError ObUser_getError get_Error getError

getErrorMessage ObUser_ getErrorMessage get_ErrorMessage getErrorMessage

isAuthorized ObUser_isAuthorized isAuthorized IsAuthorized

isAuthorizedWith
Parameters

ObUser_isAuthorized
WithParameters

isAuthorized
WithParameters

IsAuthorized (with
additional parameters)

getSessionToken ObUser_ getSessionToken get_SessionToken getSessionToken

setLocation ObUser_setLocation set_Location setLocation

(copy constructor) (not implemented) Clone Clone

logoff ObUser_logoff LogOff logoff

Delete ObUser_free (built-in garbage
collection)

(built-in garbage
collection)

ObUserSession
(constructor)

ObUserSession_from Token

ObUserSession_
Authenticate

ObUserSessionMgd
(constructor)

ObUserSession
(constructor)

Table 4–12 (Cont.) Methods for the ObUserSession Class Compared

C++ (ObUserSession) C (ObUserSession_t)
C#
(ObUserSessionMgd)

Java
(ObUserSession)

About the Access Manager API

Building AccessGates with the Access Manager SDK 4-27

Table 4–13 AccessGate Configuration Parameters

Parameter Name Parameter Value

accessServerTimeout The number of seconds that a connection to an Access Server
is left open before the connection is re-established.

cacheTimeout The number of seconds that a cached authentication scheme
or resource request object can exist before being flushed
automatically. A value of zero specifies that cached elements
should never be flushed.

debug On or Off. If debug is on, the AccessGate traces all messages
sent to Access Servers.

failoverThreshold If the number of primary Access Servers connected to the
AccessGate falls under this threshold, the Access Manager
API opens one or more connections to secondary Access
Servers.

id The string identifier for the AccessGate in the Oracle
configuration directory.

idleTimeout The maximum number of seconds allowed to elapse between
authorizations. When this value is exceeded, the user needs
to authenticate again.

transportSecurity One of the following security modes used to connect to the
Access Servers:

open: no encryption

simple: TLS encryption, using certificates generated from a
built-in CA

cert: TLS encryption, using certificates issued by a full CA

lastUpdateTime The number of seconds between 1/1/1970 00:00 and the most
recent time the AccessGate configuration was updated.

maxCacheElements The maximum number of resource-request objects in the
authentication scheme cache, which is of a fixed size.

maxConnections The maximum number of connections that can be opened to
AccessGates.

preferredHost The Web server host address to which the user's browser is
redirected when an authentication scheme requires secure
authentication. For example, the AccessGate uses this value
to specify the host in the authorization request.

primaryDomain The domain used to set ObSSOCookies, as for a single
sign-on domain. Other applications are free to interpret or
ignore this parameter, as needed.

primary_server_list A list of Access Servers to which the AccessGate connects
first.

The list follows the form:

host1:port1,numConn1, host2:port2,numConn2 . . .

where hostn is the DNS of the Access Server.

secondary_server_list List of Access Servers to which the AccessGate connects if the
number of connections to the primary servers falls under the
failoverThreshold.

The list follows the form:

host1:port1,numConn1, host2:port2,numConn2 . . .

where hostn is the DNS of the Access Server.

About the Access Manager API

4-28 Oracle Access Manager Developer Guide

Equivalent Methods
Table 4–14 presents the names of equivalent methods for the ObConfig class in the
Access Manager API.

ObAccessException
When the Access Manager API methods detect problems, they throw an
ObAccessException. The kind of error that has occurred is deducible from the
enumerated list of C-family error message names beginning on "C-Family Status and
Error Message Strings" on page 4-128. (The Java equivalents are on "Java Status and
Error Message Fields" on page 4-121).

Depending upon the particular error, zero to five substrings of data can be inserted
into the exception message text provided in the ObAccessGate.msg catalog. (This
insertion feature applies only to the C-family of implementations; the Java message
strings must be handled as indivisible units).

For example, ObAccessException_ NOT_PROTECTED, error code 208, is defined as
follows:

 ObAccessException_NOT_PROTECTED {
 Unprotected resource %1 used in an
 ObAuthenticationScheme or ObUserSession
 constructor.}

If this error occurs while the application is processing an unprotected resource named
xresource, the API builds an ObAccessException, whose structure contains the error
code 208 and the text "xresource," which replaces the %1 substring.

C-family methods for this class allow you to extract the error code and the substring,
by its index (1 to 5). You can also generate a string equal to the entire message with the

sessionTimeout The maximum number of seconds a user session created by
the application remains valid.

sleepFor How often (in seconds) the AccessGate checks to confirm that
the Access Server connections are up.

state enabled or disabled. Interpretation of this parameter is up to
the application. When disabled, an AccessGate immediately
enables access to all resources.

Table 4–14 Methods for the ObConfig Class Compared

C++ ObConfig C ObConfig_t C# ObConfigMgd Java ObConfig

initialize ObConfig_initialize initialize initialize

shutdown ObConfig_shutdown shutdown shutdown

getAllItems ObConfig_getAllItems get_AllItems getAllItems

getNumberOfItems ObConfig_ getNumberOfItems get_NumberOfIte
ms

getNumberOfItems

getItem ObConfig_getItem getItem getItem

getSDKVersion ObConfig_getSDKVersion get_SDKVersion getSDKVersion

getNAPVersion ObConfig_getNAPVersion get_NAPVersion getNAPVersion

Table 4–13 (Cont.) AccessGate Configuration Parameters

Parameter Name Parameter Value

Globalization and the Access Manager SDK, Access Manager APIs, Custom AccessGates

Building AccessGates with the Access Manager SDK 4-29

substring(s) inserted. In the C++ environment, you should delete the
ObAccessException that it catches.

By comparison, the Java implementation is limited, because it only supports the
retrieval of entire messages. In other words, you cannot extract or otherwise
manipulate substrings.

The C implementation of ObAccessException requires you to write an exception
handler to trap errors. See "C-language Error Handlers" on page 4-101 for a full
discussion. Such an error handler is implemented in the sample program "Example of
a Simple AccessGate Using C Psuedo Classes: access_test_c.cpp" on page 4-36.

Equivalent Methods
Table 4–15 lists equivalent methods across the four implementations of the
ObAccessException class.

Globalization and the Access Manager SDK, Access Manager APIs,
Custom AccessGates

After installing the Access Manager SDK, you can use the Access Manager API to
write custom AccessGate code in any of the four supported development languages:
Java, C and C++, and C# (.NET). The four implementations are functionally equivalent
even though each takes advantage of platform-specific features to implement the API.

While you can select any of the four implementations as the development language
interface you use to write your custom AccessGate code, your code will interact with
underlying C++ binaries in the API, as described in this guide.

When you develop custom AccessGates using the 10g (10.1.4.0.1) C and C++ Access
Manager APIs, data is sent and received in UTF-8 encoding automatically. In older
releases, data was sent and received in Latin-1 encoding.

For the 10g (10.1.4.0.1) C# (.NET) Managed Code implementation of the Access
Manager API, there have been no external changes. The C# .NET implementation
internally uses UTF-16 encoding, which was converted to Latin-1 in earlier NetPoint
releases. 10g (10.1.4.0.1) Access Servers and C# AccessGates use UTF-8 encoding
automatically.

For Java interfaces and the Java implementation of the Access Manager API, there
have been no external changes for 10g (10.1.4.0.1). JNI calls use UTF-16 encoded Java
string objects. Earlier NetPoint releases converted this data to Latin-1. 10g (10.1.4.0.1)
Access Servers and AccessGates use UTF-8 encoding automatically.

Table 4–15 Methods for the ObResourceRequest Class Compared

C++ (ObAccess
Exception) C (ObAccess Exception) C# (ObAccess ExceptionMgd)

Java (ObResource
Request)

getCode ObAccessException_getCode get_Code

getParameter ObAccessException_getParameter getParameter

toString ObAccessException_toString get_String

getCodeString ObAccessException_getCodeString
(now deprecated; see "C-language Error
Handlers" on page 4-101.

getCodeString

(constructor) Exception Handler (registered callback
function)

(constructor) (constructor)

About Custom AccessGate Code

4-30 Oracle Access Manager Developer Guide

About Custom AccessGate Code
The structure of a typical AccessGate application roughly mirrors the sequence of
events required to set up an AccessGate session.

AccessGate application structure contains the following sections
1. Include or import requisite libraries

2. Get resource

3. Get authentication scheme

4. Gather user credentials required by authentication scheme

5. Create user session

6. Check user authorization for resource

7. Clean up (for C and C++ only: C# and Java use automatic garbage collection)

8. Shut down

Typical AccessGate Execution Flow
All HTTP FORM-based AccessGate applications and plug-ins follow the same basic
pattern, as illustrated by the following figure. The figure shows a process flow for
form-based applications:

■ The main flow: import libraries, initialize the Access Server SDK, create
ObResource Request object, determine if the requested resource is protected.

■ If the requested resource is protected: Create an obAuthentication Scheme object.
If the authentication scheme is HTTP FORm based: create a structure for user ID
and password, create obUserSession object, determine if the user is authenticated.

■ If the user is authenticated: determine if the user is authorized.

■ If the user is authorized: grant access to the requested resource, shut down the API
and end program.

 If the user is not authorized: deny access, report reason, shut down the API and
end program.

■ If the authentication scheme is not HTTP FORM based: deny access and report
reason, shut down the API and end program.

If the resource is not protected: grant access, shut down the API, and end program.

Note: The 10g (10.1.4.0.1) Access Manager SDK and custom 10g
(10.1.4.0.1) AccessGates are not backward compatible with older
Access Servers, nor with the older Access Manager SDK and
AccessGates. However, you can use older AccessGates with 10g
(10.1.4.0.1) Access Servers that are enabled to be backward compatible.
See also the Oracle Access Manager Introduction.

About Custom AccessGate Code

Building AccessGates with the Access Manager SDK 4-31

Example of a Simple AccessGate: JAccessGate.java
This example is the simplest AccessGate program presented in this document. It
illustrates how to implement the bare minimum tasks required for a working
AccessGate:

■ Connect to the Access Server

■ Log in using an authentication scheme employing the HTTP FORM challenge
method

■ Check authorization for a certain resource using an HTTP GET request

■ Catch and report Access Manager API exceptions

Typically, this calling sequence is quite similar among AccessGates using the FORM
challenge method. FORM-method AccessGates differ principally in the credentials
they require for authentication and the type of resources they protect.

Note: To run this test application, or any of the other examples, in
this chapter, you must make sure that your Access System is installed
and set up correctly. Specifically, check that it has been configured to
protect resources that match exactly the URLs and authentication
schemes expected by the sample programs. For details on creating
policy domains and protecting resources with policy domains, see the
Oracle Access Manager Access Administration Guide.

Import
Libraries

Create
ObResource

Request object

Initialize
Access Server

SDK

Create an
ObAuthentication
Scheme object

Grant access
to requested

resource

Create a structure
for userid

and password

Create
obUserSession

object

No

No

Yes

Is the requested
resource

protected? Yes

Yes

Yes

No

Shutdown API;
End Program

No

Is authentication
scheme HTTP
FORM based?

Is the user
authenticated?

Is the user
authorized to
access the

requested object?

Deny access;
Report reason

About Custom AccessGate Code

4-32 Oracle Access Manager Developer Guide

A complete listing for JAccessGate.java appears in Example 4–1. You can copy this
code verbatim into the text file JAccessGate.java and execute it on the machine where
your Access Manager SDK is installed. The subsection that follows the listing
annotates the code line-by-line so that developers can become familiar with the Java
versions of the Access Manager API calls.

Example 4–1 JAccessGate.java

import java.io.*;
import java.util.*;
import java.text.*;
import com.oblix.access.*;

public class JAccessGate {
 public static final String ms_resource = "//Example.com:80/secrets/
 index.html";
 public static final String ms_protocol = "http";
 public static final String ms_method = "GET";
 public static final String ms_login = "jsmith";
 public static final String ms_passwd = "j5m1th";
 public static void main(String argv[]) {
 try {
 ObConfig.initialize();
 ObResourceRequest rrq = new ObResourceRequest(ms_protocol, ms_resource,
 ms_method);
 if (rrq.isProtected()) {
 System.out.println("Resource is protected.");
 ObAuthenticationScheme authnScheme = new ObAuthenticationScheme(rrq);
 if (authnScheme.isForm()) {
 System.out.println("Form Authentication Scheme.");
 Hashtable creds = new Hashtable();
 creds.put("userid", ms_login);
 creds.put("password", ms_passwd);
 ObUserSession session = new ObUserSession(rrq, creds);
 if (session.getStatus() == ObUserSession.LOGGEDIN) {
 if (session.isAuthorized(rrq)) {
 System.out.println("User is logged in and authorized for the
 request at level " + session.getLevel());
 } else {
 System.out.println("User is logged in but NOT authorized");
 }
 } else {
 System.out.println("User is NOT logged in");
 }
 } else {
 System.out.println("non-Form Authentication Scheme.");
 }
 } else {
 System.out.println("Resource is NOT protected.");
 }
 }
 catch (ObAccessException oe) {
 System.out.println("Access Exception: " + oe.getMessage());
 }
 ObConfig.shutdown();
 }
}

About Custom AccessGate Code

Building AccessGates with the Access Manager SDK 4-33

Annotated Code
Import three standard Java libraries to provide system input and output, text
handling, and other basic functions.

import java.io.*;
import java.util.*;
import java.text.*;

Import the library containing the Java implementation of the Access Manager API
classes. To ensure that these libraries are visible, check that the CLASSPATH
environment variable (for both UNIX and Windows platforms) points to the directory
containing jobaccess.jar, which is installed by default in
SDK_install_dir/oblix/lib.

import com.oblix.access.*;

This application is named JAccessGate.

public class JAccessGate {

Since this is the simplest of example applications, we are declaring global constants to
represent the parameters associated with a user request for access to a resource.

Typically, a real-world application receives this set of parameters as an array of strings
passed from a requesting application, HTTP FORM-based input, or command-line
input.

 public static final String ms_resource = "//Example.com:80/secrets/index.html";
 public static final String ms_protocol = "http";
 public static final String ms_method = "GET";
 public static final String ms_login = "jsmith";
 public static final String ms_passwd = "j5m1th";

Launch the main method on the Java interpreter. An array of strings named argv is
passed to the main method. In this particular case, the user "jsmith," whose password
is "j5m1th," has requested the HTTP resource //Example.com:80/secrets/index.html.
GET is the specific HTTP operation that will be performed against the requested
resource. For details about supported HTTP operations and protecting resources with
policy domains chapter of the Oracle Access Manager Access Administration Guide.

 public static void main(String argv[]) {

Place all relevant program statements in the main method within a large try block so
that any exceptions will be caught by the catch block at the end of the program.

 try {

Initialize the Access Manager SDK so that both the Com.Oblix.Access Java classes and
the native JNI objects are available to the JAccessGate application. Since you do not
specify the SDK installation root here, we use the value stored in the
OBACCESS_INSTALL_DIR environment variable.

You only need to initialize the SDK once, but the initialization must occur before you
attempt any calls to the Access Manager API.

 ObConfig.initialize();

Create a new resource request object named "rrq" using the ObResourceRequest
constructor with the following three parameters:

■ ms_protocol, which represents the type of resource being requested. When left
unspecified, the default value is HTTP. EJB is another possible value, although this

About Custom AccessGate Code

4-34 Oracle Access Manager Developer Guide

particular example does not cover such a case. You can also create custom types, as
described in the Oracle Access Manager Access Administration Guide.

■ ms_resource, which is the name of the resource. Since the requested resource type
for this particular example is HTTP, it is legal to prepend a host name and port
number to the resource name, as in the following:

//Example.com:80/secrets/index.html

■ ms_method, which is the type of operation to be performed against the resource.
When the resource type is HTTP, the possible operations are GET and POST. For
EJB-type resources, the operation must be EXECUTE. For custom resource types,
you define the permitted operations when you set up the resource type in the
Access System Console. For more information on defining resource types and
protecting resources with policy domains, see the Oracle Access Manager Access
Administration Guide.

ObResourceRequest rrq = new ObResourceRequest(ms_protocol,
 ms_resource, ms_method);

Determine whether the requested resource "rrq" is protected by an authentication
scheme.

 if (rrq.isProtected()) {

If the resource is protected, report that fact.

 System.out.println("Resource is protected.");

Use the ObAuthenticationScheme constructor to create an authorization scheme object
named authnScheme. Specify the resource request "rrq" so that ObAuthentication
Scheme checks for the specific authorization scheme associated with that particular
resource.

 ObAuthenticationScheme authnScheme =new ObAuthenticationScheme(rrq);

Determine if the authorization scheme is FORM-based.

 if (authnScheme.isForm()) {

If the authorization scheme does use HTTP FORM as the challenge method, report that
fact, then create a hashtable named creds to hold the name:value pairs representing the
user name (userid) and the user password (password). Read the values for "ms_login"
and "ms_passwd" into the hashtable.

System.out.println("Form Authentication Scheme.");
Hashtable creds = new Hashtable();
creds.put("userid", ms_login);
creds.put("password", ms_passwd);

Using the ObUserSession constructor, create a user session object named session.
Specify the resource request as "rrq" and the authentication scheme as "creds" so that
ObUserSession can return the new structure with state information as to whether the
authentication attempt has succeeded.

ObUserSession session = new ObUserSession(rrq, creds);

Invoke the getStatus method on the ObUserSession state information to determine if
the user is now successfully logged in (authenticated).

if (session.getStatus() == ObUserSession.LOGGEDIN) {

About Custom AccessGate Code

Building AccessGates with the Access Manager SDK 4-35

If the user is authenticated, determine if the user is authorized to access the resource
specified through the resource request structure "rrq."

if (session.isAuthorized(rrq)) {
 System.out.println(
 "User is logged in " +
 "and authorized for the request " +

Determine the authorization level returned by the getLevel method for the user
session named "session."

 "at level " + session.getLevel());

If the user is not authorized for the resource specified in "rrq," then report that the user
is authenticated but not authorized to access the requested resource.

} else {
 System.out.println("User is logged in but NOT authorized");

If the user is not authenticated, report that fact. (A real world application might give
the user additional chances to authenticate).

} else {
 System.out.println("User is NOT logged in");

If the authentication scheme does not use an HTTP FORM-based challenge method,
report that fact. At this point, a real-world application might branch to facilitate
whatever other challenge method the authorization scheme specifies, such as "basic"
(which requires only userid and password), "certificate" (SSL or TLS over HTTPS), or
"secure" (HTTPS through a redirection URL). For more information about challenge
Methods and configuring user authentication, see the Oracle Access Manager Access
Administration Guide.

} else {
 System.out.println("non-Form Authentication Scheme.");
}

If the resource is not protected, report that fact. (By implication, the user gains access
to the requested resource, because the AccessGate makes no further attempt to protect
the resource).

} else {
 System.out.println("Resource is NOT protected.");
}
}

If an error occurs anywhere within the preceding try block, get the associated text
message "oe" and report it.

catch (ObAccessException oe) {
 System.out.println(
 "Access Exception: " + oe.getMessage());
}

Now that the program is finished calling the Access Server, shut down the API, thus
releasing any memory the API might have maintained between calls.

 ObConfig.shutdown();
}
}

About Custom AccessGate Code

4-36 Oracle Access Manager Developer Guide

Exit the program. You don't have to deallocate the memory used by the structures
created by this application because Java Garbage Collection automatically cleans up
unused structures when it determines that they are no longer needed.

Example of a Simple AccessGate Using C Psuedo Classes: access_test_c.cpp
This sample demonstrates the use of C-language pseudo classes to implement a simple
AccessGate. The member functions of these classes are really wrapped pointers that
call C++ code.

Exception handling is performed by a callback function that is registered with the SDK
before it is initialized. This error handling function is called from within SDK methods
when an error condition needs to be reported. In this example, the error handler
simply prints out the error message associated with the error code returned, then shuts
down the program.

The complete listing for access_test_c.exe appears in Example 4–2. You can
cut-and-paste the code into a text file with the ".cpp" file name extension and then
generate executable code using a compiler appropriate for C-language programs on
the server platform where your AccessGate will reside. The subsection that follows the
listing annotates this code sample.

Example 4–2 access_test_c.cpp

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <obaccess_api_c.h>

void myExceptionHandler(ObAccessExceptionCode_t code) {
 printf("EXCEPTION: %s\n", ObAccessException_getCodeString(code));
 exit(1);
}

int main(int argc, char *argv[]) {
 const char *userid, *password, *method, *url, *location;
 ObResourceRequest_t res;
 ObAuthnScheme_t authnScheme;
 ObMap_t credentials;
 ObUserSession_t user;
 ObMap_t actions;
 ObMap_t parameters;
 ObMap_t requiredParameters;
 ObMapIterator_t iter;
 const char **actionTypes;
 const char *name, *val;
 int i;
 if (argc < 5 || argc > 7) {
 printf("EXPECTED: userid password HTTP-method URL(without http:)
 [client-location [authz-parameters]]\n");
 return 1;
 }
 userid = argv[1];
 password = argv[2];
 method = argv[3];
 url = argv[4];
 location = argc >= 6 ? argv[5] : NULL;
 if (argc == 7) {
 parameters = ObMap_new();
 for (name = strtok(argv[6], "="); name != NULL; name = strtok(NULL, "=")) {

About Custom AccessGate Code

Building AccessGates with the Access Manager SDK 4-37

 val = strtok(NULL, "&");
 ObMap_put(parameters, name, val);
 }
 } else {
 parameters = NULL;
 }
 ObAccessException_setHandler(myExceptionHandler);
 ObConfig_initialize(NULL);
 res = ObResourceRequest_new("http", url, method, NULL);
 if (ObResource_isProtected(res)) {
 authnScheme = ObAuthn_new(res);
 if (ObAuthn_isBasic(authnScheme)) {
 credentials = ObMap_new();
 ObMap_put(credentials, "userid", userid);
 ObMap_put(credentials, "password", password);
 user = ObUserSession_authenticate(res, credentials, NULL);
 if (ObUser_getStatus(user) == ObUser_LOGGEDIN) {
 ObUser_setLocation(user, location);
 if (parameters != NULL
 ? ObUser_isAuthorizedWithParameters(user, res, parameters)
 : ObUser_isAuthorized(user, res)) {
 printf("GRANTED\n");
 } else {
 printf("DENIED\n");
 printf("ERROR: %s\n", ObUser_getErrorMessage(user));
 if (ObUser_getError(user) == ObUser_ERR_NEED_MORE_DATA) {
 requiredParameters = ObResource_getAuthorizationParameters(res);
 printf("REQUIRED PARAMETERS:");
 iter = ObMapIterator_new(requiredParameters);
 while (ObMapIterator_hasMore(iter)) {
 ObMapIterator_next(iter, &name, &val);
 printf(" ");
 printf(name);
 }
 printf("\n");
 ObMapIterator_free(&iter);
 ObMap_free(&requiredParameters);
 }
 }
 if (parameters != NULL) ObMap_free(¶meters);
 printf("ACTIONS:");
 actionTypes = ObUser_getActionTypes(user);
 for (i = 0; actionTypes[i] != NULL; i++) {
 actions = ObUser_getActions(user, actionTypes[i]);
 iter = ObMapIterator_new(actions);
 while (ObMapIterator_hasMore(iter)) {
 printf("\n");
 ObMapIterator_next(iter, &name, &val);
 printf("%s: %s=%s", actionTypes[i], name, val);
 }
 ObMapIterator_free(&iter);
 }
 ObUser_logoff(user);
 } else {
 const char *errmsg;
 errmsg = ObUser_getErrorMessage(user);
 printf("LOGIN FAILED: %s", errmsg);
 }
 ObUser_free(&user);
 ObMap_free(&credentials);

About Custom AccessGate Code

4-38 Oracle Access Manager Developer Guide

 } else {
 printf("RESOURCE SCHEME NOT BASIC");
 }
 ObAuthn_free(&authnScheme);
 } else {
 printf("NOT PROTECTED");
 }
 ObResource_free(&res);
 ObConfig_shutdown();
 return 0;
}

Annotated Code
Import three standard C libraries to support input and output, string manipulation,
and other basic functionality.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

Import the C implementation of the Access Manager API.

#include <obaccess_api_c.h>

Set up an exception handler, which responds to an error by reporting the associated
error message, then terminating the program.

void myExceptionHandler(ObAccessExceptionCode_t code) {
 printf("EXCEPTION: %s\n", ObAccessException_getCodeString(code));
 exit(1);
}
Declare the requisite variables and constants for the main method. Argc represents the
total number of strings in the space-delimited array argv. The first string in argv is
always the name of the program, access_test_c.exe.

int main(int argc, char *argv[]) {
 const char *userid, *password, *method, *url, *location;
 ObResourceRequest_t res;
 ObAuthnScheme_t authnScheme;
 ObMap_t credentials;
 ObUserSession_t user;
 ObMap_t actions;
 ObMap_t parameters;
 ObMap_t requiredParameters;
 ObMapIterator_t iter;
 const char **actionTypes;
 const char *name, *val;
 int i;

If the command-line input contains fewer that 5 or more than 7 strings, tell the user
what information needs to be entered from the command line, and in what order.

 if (argc < 5 || argc > 7) {
 printf("EXPECTED: userid password HTTP-method URL(without http:)
 [client-location [authz-parameters]]\n");
 return 1;
 }

About Custom AccessGate Code

Building AccessGates with the Access Manager SDK 4-39

If the command-line input contains 5 to 7 strings, assign the second through fifth
strings (argv[1]-arg[4]) to the variables "userid," "password," "method," and "url,"
respectively.

 userid = argv[1];
 password = argv[2];
 method = argv[3];
 url = argv[4];

If six or more strings exist in the array received from command-line input, assign the
sixth argument to the variable "location." Otherwise, set "location" to NULL.

 location = argc >= 6 ? argv[5] : NULL;

If the command-line input array contains exactly 7 strings, create a new ObMap list
structure and name it "parameters."

if (argc == 7) {
 parameters = ObMap_new();

By convention, the seventh string (argv[6]) takes the form "n1=v1&n2=v2..." We invoke
the "strtok" method to break this string into name:value token pairs and read them into
the list "parameters." The opening delimiter for each token is always NULL, because
"strtok" considers the beginning of any string it parses to be NULL. Furthermore, after
"strtok" finds the concluding delimiter for a token and returns the characters that
compose the token, it sets everything prior to and including the concluding delimiter
to NULL. Thus, the opening delimiter for every token is always NULL.

The concluding delimiter, on the other hand, changes from "=" to "&" and back again
as "strtok" parses the name and value for successive parameters in the string.

 for (name = strtok(argv[6], "="); name != NULL; name = strtok(NULL, "=")) {
 val = strtok(NULL, "&");
 ObMap_put(parameters, name, val);
 }

If only 5 or 6 arguments exist in "argv," set "parameters" to NULL.

 } else {
 parameters = NULL;
 }

Register the callback function "myExceptionHandler" with the Access Manager SDK.

 ObAccessException_setHandler(myExceptionHandler);

Initialize the AccessGate without specifying the directory in which the Access
Manager API SDK is installed. Since no location is specified here, the operating system
uses the value stored in the environment variable OBACCESS_INSTALL_ DIR.

 ObConfig_initialize(NULL);

Create an ObResourceRequest structure that specifies the following:

■ The resource type is HTTP.

■ The target resource is the value stored in "url".

■ The operation to be performed against the resource is the value stored in
"method".

■ The parameters required for authorization are NULL.

 res = ObResourceRequest_new("http", url, method, NULL);

About Custom AccessGate Code

4-40 Oracle Access Manager Developer Guide

If the requested resource is protected, create an ObAuthn structure named
"authnScheme" to return information on the specific authorization scheme used to
protect the resource.

if (ObResource_isProtected(res)) {
 authnScheme = ObAuthn_new(res);

If the authorization scheme is "basic," create an ObMap structure and read into it the
values for "userid" and "password" that represent the user credentials.

if (ObAuthn_isBasic(authnScheme)) {
 credentials = ObMap_new();
 ObMap_put(credentials, "userid", userid);
 ObMap_put(credentials, "password", password);

Invoke the "ObUserSession_authenticate" method for the specified resource request
and the supplied userid and password.

 user = ObUserSession_authenticate(res, credentials, NULL);

If the user is logged in, which is to say, the user has authenticated successfully, assign
the value stored in "location" as the IP address of the user's machine.

 if (ObUser_getStatus(user) == ObUser_LOGGEDIN) {
 ObUser_setLocation(user, location);

If the structure "parameters" is not empty, then determine whether the user is
authorized to access the target resource under the parameters specified by
"parameters." Otherwise, determine whether the user is authorized to access the target
resource without any parameters attached.

if (parameters != NULL
 ? ObUser_isAuthorizedWithParameters(user, res, parameters)
 : ObUser_isAuthorized(user, res)) {

If the user is authorized to access the target resource, report that fact.

 printf("GRANTED\n");

Otherwise, report that the request has been denied, and report the associated error
message as well.

If the error code returned is ObUser_ERR_NEED_MORE_DATA, report the names of
all the parameters needed for authorization. Do this by creating an ObMapIterator
structure named "requiredParameters" and then reporting the names of all the
required parameters (but not the corresponding values that the user must supply!)

} else {
 printf("DENIED\n");
 printf("ERROR: %s\n", ObUser_getErrorMessage(user));

Note: The access policy for the resource requires authorization
parameters that were not supplied in the original
ObUser_isAuthorized call. This happens when the authorization rule
for the policy uses an authorization scheme with an authorization
plug-in that requires parameters. See Chapter 5, "Policy Manager API"
on page 5-1.

About Custom AccessGate Code

Building AccessGates with the Access Manager SDK 4-41

if (ObUser_getError(user) == ObUser_ERR_NEED_MORE_DATA) {
 requiredParameters = ObResource_getAuthorizationParameters(res);
 printf("REQUIRED PARAMETERS:");
 iter = ObMapIterator_new(requiredParameters);
 while (ObMapIterator_hasMore(iter)) {
 ObMapIterator_next(iter, &name, &val);
 printf(" ");
 printf(name);
 }

Clean up by destroying both the requiredParameters structure and the iterator iter,
which is used to extract name strings from requiredParameters.

 printf("\n");
 ObMapIterator_free(&iter);
 ObMap_free(&requiredParameters);
 }
}

If "parameters" is not empty, deallocate the memory used by the structure.

 if (parameters != NULL) ObMap_free(¶meters);

Report all the actions defined by the authentication and authorization rules for the
policy that applies to the resource. These can be any sequence of the form
type:name:value:value:type. ObUser_getActionTypes returns an array of the action
types (such as headerVar) present in the sequence of actions. ObUser_getActions
returns an ObMap structure of the actions for each action type in turn. "iter" steps
through each action in each ObMap structure.

printf("ACTIONS:");
actionTypes = ObUser_getActionTypes(user);
for (i = 0; actionTypes[i] != NULL; i++) {
 actions = ObUser_getActions(user, actionTypes[i]);
 iter = ObMapIterator_new(actions);
 while (ObMapIterator_hasMore(iter)) {
 printf("\n");
 ObMapIterator_next(iter, &name, &val);
 printf("%s: %s=%s", actionTypes[i], name, val);
 }

Destroy the string "iter" used to extract the information from the ObMapIterator
structure "actions."

 ObMapIterator_free(&iter);

Set the local ObUserSession structure to the logged off state.

}
ObUser_logoff(user);

Otherwise, report that authentication has failed, and report the associated error
message as well.

} else {

Note: To prevent residual session tokens (such as those stored in
cookies on the user's browser) from being used to recreate the session,
you must explicitly reset them using the logged off user session.

About Custom AccessGate Code

4-42 Oracle Access Manager Developer Guide

 const char *errmsg;
 errmsg = ObUser_getErrorMessage(user);
 printf("LOGIN FAILED: %s", errmsg);
}

Clean up by deallocating the memory for the ObUser and ObMap structures named
"user" and "credentials," respectively.

 ObUser_free(&user);
ObMap_free(&credentials);

If the authentication scheme is not basic, report that fact.

 } else {
 printf("RESOURCE SCHEME NOT BASIC");
}

Clean up by deallocating the memory used by the ObAuthn structure named
authnScheme.

 ObAuthn_free(&authnScheme);

If the requested resource is not protected, report that fact.

 } else {
 printf("NOT PROTECTED");
}

Clean up by deallocating the memory used by the ObResourceRequest structure
named "res." Then shutdown the AccessGate, returning 0 to indicate successful
completion.

 ObResource_free(&res);
 ObConfig_shutdown();
 return 0;
}

Exit the program.

Example: Java Login Servlet
This example follows the basic pattern of API calls that define an AccessGate, as
described in the JAccessGate example. However, this example is implemented as a
Java servlet running within a Web server, or even an application server. In this
environment, the AccessGate servlet has an opportunity to play an even more
important role for the user of a Web application. By storing an Access System session
token in the user's HTTP session, the servlet can facilitate single sign-on for the user. In
other words, the authenticated Access Server session information that the first request
establishes is not discarded after one authorization check. Instead, the stored session
token is made available to server-side application components such as beans and other
servlets, so that they do not need to interrupt the user again and again to request the
same credentials. For a detailed discussion of session tokens, ObSSOCookies, and
configuring single sign-on, see the Oracle Access Manager Access Administration Guide.

This sample login servlet accepts userid/password parameters from a form on a
custom login page, and attempts to log the user in to Oracle Access Manager. On
successful login, the servlet stores a session token in the ObUserSession object. This
enables subsequent requests in the same HTTP session to bypass the authentication
step (providing the subsequent requests use the same authentication scheme as the
original request), thereby achieving single sign-on.

About Custom AccessGate Code

Building AccessGates with the Access Manager SDK 4-43

Example 4–3 shows a complete listing for the Java login servlet. This code can provide
the basis for a plug-in to a web server or application server. An annotated version of
this code is given after this code sample.

Example 4–3 Java LoginServlet Example.

package obaccess;

import java.io.*;
import java.util.*;
import java.text.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.io.IOException;
import java.util.*;
import com.oblix.access.*;

public class LoginServlet extends HttpServlet {

 public void init(ServletConfig config) throws ServletException {
 try {
 ObConfig.initialize("install directory of access server sdk");
 } catch (ObAccessException oe) {
 oe.printStackTrace();
 }
 }

 public void service(HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException {
 ObAuthenticationScheme authnScheme = null;
 ObUserSession user = null;
 ObResourceRequest resource = null;
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<HTML>");
 out.println("<HEAD><TITLE>LoginServlet: Error Page</TITLE></HEAD>");
 out.println("<BODY>");
 HttpSession session = request.getSession(false);
 String requestedPage = request.getParameter(Constants.REQUEST);
 String reqMethod = request.getMethod();
 Hashtable cred = new Hashtable();
 try {
 if (requestedPage == null) {
 out.println("<p>REQUESTED PAGE NOT SPECIFIED\n");
 out.println("</BODY></HTML>");
 return;
 }
 resource = new ObResourceRequest("http", requestedPage, "GET");
 if (resource.isProtected()) {
 authnScheme = new ObAuthenticationScheme(resource);
 if (authnScheme.isBasic()) {
 if (session == null) {
 String sUserName = request.getParameter(Constants.USERNAME);
 String sPassword = request.getParameter(Constants.PASSWORD);
 if (sUserName != null) {
 cred.put("userid", sUserName);
 cred.put("password", sPassword);
 user = new ObUserSession(resource, cred);
 if (user.getStatus() == ObUserSession.LOGGEDIN) {
 if (user.isAuthorized(resource)) {

About Custom AccessGate Code

4-44 Oracle Access Manager Developer Guide

 session = request.getSession(true);
 session.putValue(Constants.OBUSER, user);
 response.sendRedirect(requestedPage);
 } else {
 out.println("<p>User " + sUserName + " not
 authorized for " + requestedPage + "\n");
 }
 } else {
 out.println("<p>User" + sUserName + "NOT LOGGED IN\n");
 }
 } else {
 out.println("<p>USERNAME PARAM REQUIRED\n");
 }
 } else {
 user = (ObUserSession)session.getValue(Constants.OBUSER);
 if (user.getStatus() == ObUserSession.LOGGEDIN) {
 out.println("<p>User " + user.getUserIdentity() + " already
 LOGGEDIN\n");
 }
 }
 } else {
 out.println("<p>Resource Page" + requestedPage + " is not
 protected with BASIC\n");
 }
 } else {
 out.println("<p>Page " + requestedPage + " is not protected\n");
 }
 } catch (ObAccessException oe) {
 oe.printStackTrace();
 }
 out.println("</BODY></HTML>");
 }
}

Annotated Code
All the classes defined in this listing belong to the package named "obaccess."

package obaccess;

Import three standard Java packages to support input and output, text manipulation,
and basic functionality.

import java.io.*;
import java.util.*;
import java.text.*;

Import two packages of Java extensions to provide servlet-related functionality.

import javax.servlet.*;
import javax.servlet.http.*;

Import a standard Java package to handle exceptions.

import java.io.IOException;

Import the package com.oblix.access.jar, which is the Java implementation of the
Access Manager API.

import com.oblix.access.*;

About Custom AccessGate Code

Building AccessGates with the Access Manager SDK 4-45

This servlet, which builds on the functionality of the generic HttpServlet supported by
the Java Enterprise Edition, is named LoginServlet.

public class LoginServlet extends HttpServlet {

The "init" method is called once by the servlet engine to initialize the AccessGate. In
the case of initialization failure, report that fact, along with the appropriate error
message.

public void init() {
 ObConfig.initialize(“install directory of the access server sdk”);
 } catch (ObAccessException oe) {
 oe.printStackTrace();
 }
}

Invoke the javax.servlet.service method to process the user's resource request.

public void service(HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException {

Initialize as NULL the variables that store the ObAccess structures used to process the
resource request, then set the response type used by this application to "text/html."

ObAuthenticationScheme authnScheme = null;
ObUserSession user = null;
ObResourceRequest resource = null;
response.setContentType("text/html");

Open an output stream titled "LoginServlet: Error Page" and direct it to the user's
browser.

PrintWriter out = response.getWriter();
out.println("<HTML>");
out.println("<HEAD><TITLE>LoginServlet: Error Page</TITLE></HEAD>");
out.println("<BODY>");

Determine if a session already exists for this user. Invoke the getSession method with
"false" as a parameter, so the value of the existing servlet session (and not the
ObUserSession) will be returned if it is present; otherwise, NULL will be returned.

 HttpSession session = request.getSession(false);

Retrieve the name of the target resource, assign it to the variable requestedPage, then
retrieve the name of the HTTP method (such as GET, POST, or PUT) with which the
request was made and assign it to the variable reqMethod.

String requestedPage = request.getParameter(Constants.REQUEST);
String reqMethod = request.getMethod();

Create a hashtable named "cred" to hold the user's credentials.

 Hashtable cred = new Hashtable();

If the variable requestedPage is returned empty, report that the name of the target
resource has not been properly specified, then terminate the servlet.

try {
 if (requestedPage == null) {
out.println("<p>REQUESTED PAGE NOT SPECIFIED\n");
out.println("</BODY></HTML>");
return;
 }

About Custom AccessGate Code

4-46 Oracle Access Manager Developer Guide

If the name of the requested page is returned, create an ObResourceRequest structure
and set the following:

■ The resource type is HTTP

■ The HTTP method is GET

■ "resource" is the value stored by the variable requestedPage

 resource = new ObResourceRequest("http", requestedPage, "GET");

If the target resource is protected, create an ObAuthenticationScheme structure for the
resource request and name it authnScheme.

if (resource.isProtected()) {
 authnScheme = new ObAuthenticationScheme(resource);

If the authentication scheme associated with the target resource is HTTP "basic" and no
user session currently exists, invoke javax.servlet.servletrequest. getParameter to
return the user's credentials (user name and password) and assign them to the
variables sUserName and sPassword, respectively.

Additional Code for authnScheme.isForm will
1. Process the original request and determine that form-based login is required.

2. Send a 302 redirect response for the login form and also save the original resource
information in the HTTP session.

3. Authenticate the user by processing the posted form data with the user's name
and password.

4. Retrieve the original resource from the HTTP resource and send a 302 redirect
response for the original resource.

5. Process the original request once again, this time using the ObUserSession stored
in the HTTP session.

if (authnScheme.isBasic()) {
 if (session == null) {
 String sUserName = request.getParameter(Constants.USERNAME);
 String sPassword = request.getParameter(Constants.PASSWORD);

If the user name exists, read it, along with the associated password, into the hashtable
named "cred."

Note: For the authnScheme.isBasic call in the following statement to
work properly, the user name and password must be included in the
query string of the user's HTTP request, as in the following:

http://host.example.com/resource?username=bob&userpa
ssword=bobspassword

where resource is the resource being requested, bob is the user making
the request, and bobspassword is the user's password.

Note: If you substitute authnScheme.isForm for
authnScheme.isBasic, you need to write additional code to implement
the following steps.

About Custom AccessGate Code

Building AccessGates with the Access Manager SDK 4-47

if (sUserName != null) {
 cred.put("userid", sUserName);
 cred.put("password", sPassword);

Create a user session based on the information in the ObResourceRequest structure
named "resource" and the hashtable "cred."

 user = new ObUserSession(resource, cred);

If the status code for the user returns as LOGGEDIN, that user has authenticated
successfully.

 if (user.getStatus() == ObUserSession.LOGGEDIN) {

Determine if the user is authorized to access the target resource.

 if (user.isAuthorized(resource)) {

Create a servlet user session (which is not to be confused with an ObUserSession) and
add the name of the user to it.

 session = request.getSession(true);
session.putValue(Constants.OBUSER, user);

Redirect the user's browser to the target page.

 response.sendRedirect(requestedPage);

If the user is not authorized to access the target resource, report that fact.

 } else {
 out.println("<p>User " + sUserName + " not authorized
 for " + requestedPage + "\n");
 }

If the user is not properly authenticated, report that fact.

} else {
 out.println("<p>User" + sUserName + "NOT LOGGED IN\n");
}

If the user name has not been supplied, report that fact.

 } else {
out.println("<p>USERNAME PARAM REQUIRED\n");
}

If a session already exists, retrieve OBUSER and assign it to the session variable "user."

 } else {
 user = (ObUserSession)session.getValue(Constants.OBUSER);

If the user is logged in, which is to say, the user has authenticated successfully, report
that fact along with the user's name.

 if (user.getStatus() == ObUserSession.LOGGEDIN) {
 out.println("<p>User " + user.getUserIdentity() + " already
 LOGGEDIN\n");
 }
}

If the target resource is not protected by a "basic" authentication scheme, report that
fact.

About Custom AccessGate Code

4-48 Oracle Access Manager Developer Guide

} else {
 out.println("<p>Resource Page" + requestedPage + " is not protected
 with BASIC\n");
}

If the target resource is not protected by any authentication scheme, report that fact.

} else {
 out.println("<p>Page " + requestedPage + " is not protected\n");
}

If an error occurs, report the backtrace.

 } catch (ObAccessException oe) {
 oe.printStackTrace();
}

Complete the output stream to the user's browser.

 out.println("</BODY></HTML>");
 }
}

Example Using the C# API: access_api_test.cs
This sample program demonstrates the C# (.NET managed code) API.

Process overview: Sample program
1. Initializes the system

2. Creates a resource request and determines if the target resource is protected.

3. Checks whether authentication for this resource is "basic."

4. Logs in the user named cuser10k429, as defined in the Oracle Access Manager user
directory.

5. Verifies that the user is logged in.

6. Checks if the user is authorized to access the target resource.

7. Obtains the identity of the user and the location of the user's machine.

The following line represents typical command-line input for this program:

 access_api_test //www.example.com:88/managed

For specifics on compiling, linking, and running this .NET program, consult the
following file:

SDK_install_dir\samples\access_csharp\README.txt

Note: Before you run this program on either a Windows or UNIX,
make sure the environment variable OBACCESS_INSTALL_DIR is
defined to point to SDK_install_dir.

Note: Change the name of the user and other particulars to match a
valid entry in your Oracle Access Manager user directory.

About Custom AccessGate Code

Building AccessGates with the Access Manager SDK 4-49

Example 4–4 shows a complete listing for Access_API_Test, with an annotated code
section following the listing.

Example 4–4 Access_API_Test

using System;
using System.Reflection;
using System.Collections;
using Oblix.Access.Server;
using Oblix.Access.Common;

class Access_API_Test {
 public static int Main(string[] args) {
 String resourceString = "//www.oblix.com:80/managed";
 if (args.Length > 0)resourceString = args[0];
 Console.WriteLine("Initialize the configuration directory!");
 try {
 String config = "../../../../";
 ObConfigMgd.initialize(config);
 } catch (ObAccessExceptionMgd ex) {
 Console.WriteLine("Initialization Exception caught: " + ex.String);
 return -1;
 }
 ObDictionary parameters = new ObDictionary();
 ObResourceRequestMgd resource = new
 ObResourceRequestMgd("http",resourceString,"GET",parameters);
 if (resource.IsProtected == true) {
 Console.WriteLine("Resource " + resourceString + " is protected ...");
 try {
 ObAuthenticationSchemeMgd authnScheme = new
 ObAuthenticationSchemeMgd(resource);
 if (authnScheme.IsBasic) {
 Console.WriteLine("Authentication is basic");
 ObDictionary credentials = new ObDictionary();
 credentials.Add("userid","cuser10k429");
 credentials.Add("password","oblix");
 ObUserSessionMgd user = new ObUserSessionMgd(resource,credentials);
 ObUserStatusMgd status = user.Status;
 if (!status.IsLoggedIn) {
 Console.WriteLine("User is not logged in");
 return -1;
 }
 user.Location = "127.0.0.1";
 Console.WriteLine("User: " + user.UserIdentity + " is logged
 in...");
 Console.WriteLine("User location is: " + user.Location);
 if (user.IsAuthorized(resource)) {
 Console.WriteLine("User is authorized");
 } else {
 Console.WriteLine("User is not authorized");
 }
 } else {
 Console.WriteLine("Authentication is not basic");
 }
 } catch (ObAccessExceptionMgd ex) {
 Console.WriteLine("Access Exception caught: " + ex.String);
 return -1;
 }
 } else {

About Custom AccessGate Code

4-50 Oracle Access Manager Developer Guide

 Console.WriteLine("Resource is NOT protected ... ");
 }
 return 1;
 }

Annotated Code
Import three .NET framework libraries to provide type management for loaded
methods, support for lists and hashtables, and basic functionality.

using System;
using System.Reflection;
using System.Collections;

Import the C# implementation of the Access Manager API, which resides in a main
library as well as a shared library for code used in common with the Policy Manager
API.

using Oblix.Access.Server;
using Oblix.Access.Common;

This program is named Access_API_Test.cs.

class Access_API_Test {
 public static int Main(string[] args) {

This program does not retrieve user input from forms or session tokens. For
convenience, we simply assign sample values to the parameters associated with the
methods being demonstrated.

 String resourceString = "//www.example.com:80/managed";

The C# application expects a maximum of one argument in the command line. If the
array "args" contains one or more arguments, assign the first string in "args" to the
variable resourceString, thus replacing the URL string we just assigned to it. If there
are no arguments, go ahead and use the string we assigned to resourceString in the
previous statement.

if (args.Length > 0)resourceString = args[0];
Console.WriteLine("Initialize the configuration directory!");
try {
 String config = "../../../../";
 ObConfigMgd.initialize(config);

If initialization fails, report that fact, along with the associated error message, then
return a value of "-1," effectively terminating the program. (In this particular C#
program, execution failure returns "-1." By contrast, the C++ sample "access_test_c"
returns a "1" when execution fails and "0" when execution completes successfully.)

} catch (ObAccessExceptionMgd ex) {
..Console.WriteLine("Initialization Exception caught: " + ex.String);
..return -1;
}

Create an ObDictionary structure named "parameters" to hold the user's credentials.

 ObDictionary parameters = new ObDictionary();

Create a resource request object, specifying parameters to accomplish the following:

■ Set HTTP as the resource type

About Custom AccessGate Code

Building AccessGates with the Access Manager SDK 4-51

■ Designate the URL previously assigned to "resourceString" as the target resource

■ Specify GET as the action to be performed against the resource

■ Store the parameters required for authentication in the ObDictionary structure
"parameters"

ObResourceRequestMgd resource = new
 ObResourceRequestMgd("http",resourceString,"GET",parameters);

Determine whether the target resource is protected, and if it is, report that fact.

if (resource.IsProtected == true) {
 Console.WriteLine("Resource " + resourceString + " is protected ...");

Create an object to return information about the authentication scheme associated with
the requested resource.

try {
 ObAuthenticationSchemeMgd authnScheme = new
 ObAuthenticationSchemeMgd(resource);

If the authentication scheme is "basic," report that fact.

if (authnScheme.IsBasic) {
 Console.WriteLine("Authentication is basic");

Create an ObDictionary structure named "credentials" to store the user's login
credentials. In this test application, the userid and password are supplied within the
source code; in a real-world application, these would be retrieved from keyboard input
or a session token.

ObDictionary credentials = new ObDictionary();
credentials.Add("userid","cuser10k429");
credentials.Add("password","oblix");

Create a ObUserSessionMgd structure to store information about the current user, the
resource requested, and the authentication scheme associated with that resource.

ObUserSessionMgd user = new ObUserSessionMgd(resource,credentials);
ObUserStatusMgd status = user.Status;

If the user is not logged in (in other words, the user has not authenticated
successfully), report that fact and return -1, effectively terminating the program.

if (!status.IsLoggedIn) {
 Console.WriteLine("User is not logged in");
 return -1;
}

Set the IP of the user's machine to "127.0.0.1." If this were a real-life application, we
would retrieve this location from keyboard input or the session token.

 user.Location = "127.0.0.1";

Report that the user is logged in, then report the IP of the user's browser.

Console.WriteLine("User: " + user.UserIdentity + " is logged
 in...");
Console.WriteLine("User location is: " + user.Location);

Report whether or not the user is authorized to access the specified resource.

if (user.IsAuthorized(resource)) {

About Custom AccessGate Code

4-52 Oracle Access Manager Developer Guide

 Console.WriteLine("User is authorized");
} else {
 Console.WriteLine("User is not authorized");
}

If the authentication scheme associated with the requested resource is not basic, report
that fact.

} else {
 Console.WriteLine("Authentication is not basic");
}

If an execution error occurs, report the associated error message, then return "-1,"
effectively terminating the program.

} catch (ObAccessExceptionMgd ex) {
 Console.WriteLine("Access Exception caught: " + ex.String);
 return -1;
}

If the resource is not protected, report that fact and return "1," thus terminating the
program after indicating successful execution.

 } else {
 Console.WriteLine("Resource is NOT protected ... ");
 }
 return 1;
 }
}

Example Using Additional Methods: access_test_java.java
Building on the basic pattern established in the sample application "JAccessGate.java,"
the following sample program invokes several additional Access Server methods. For
instance, it inspects the Access System session object to determine which actions are
currently configured in the policy rules associated with the current authentication
scheme.

For this demonstration to take place, you must configure some actions through the
Access System console prior to running the application. For details about
authentication action and configuring user authentication, see the Oracle Access
Manager Access Administration Guide. The complete listing for this sample application
appears in Example 4–5 and also in the file access_test_java.java, which is located in
the directory SDK_install_dir\Samples. An annotated version of the code begins after
this listing.

Example 4–5 access_test_java.java

import java.util.*;
import java.util.Enumeration;
import java.util.StringTokenizer;
import com.oblix.access.*;

public class access_test_java {

 public static void main(String[] arg) {
 String userid, password, method, url, configDir, type, location;
 ObResourceRequest res;
 Hashtable parameters = null;

About Custom AccessGate Code

Building AccessGates with the Access Manager SDK 4-53

 Hashtable cred = new Hashtable();
 if (arg.length < 5) {
 System.out.println("Usage: EXPECTED: userid password Type HTTP-method
 URL [Installdir [authz-parameters] [location]]]");
 return;
 } else {
 userid = arg[0];
 password = arg[1];
 type = arg[2];
 method = arg[3];
 url = arg[4];
 }
 if (arg.length >= 6) {
 configDir = arg[5];
 } else {
 configDir = null;
 }
 if (arg.length >= 7 && arg[6] != null) {
 parameters = new Hashtable();
 StringTokenizer tok1 = new StringTokenizer(arg[6], "&");
 while (tok1.hasMoreTokens()) {
 String nameValue = tok1.nextToken();
 StringTokenizer tok2 = new StringTokenizer(nameValue, "=");
 String name = tok2.nextToken();
 String value = tok2.hasMoreTokens() ? tok2.nextToken() : "";
 parameters.put(name, value);
 }
 }
 location = arg.length >= 8 ? arg[7] : null;
 try {
 if (configDir != null) {
 ObConfig.initialize(configDir);
 } else {
 ObConfig.initialize();
 }
 } catch (ObAccessException ie) {
 System.out.println("Access Server SDK Initialization failed");
 ie.printStackTrace();
 return;
 }
 cred.put("userid", userid);
 cred.put("password", password);
 try {
 res = new ObResourceRequest(type, url, method);
 if (res.isProtected()) {
 System.out.println("Resource " + type + ":" + url + " protected");
 } else {
 System.out.println("Resource " + type + ":" + url + " unprotected");
 }
 } catch (Throwable t) {
 t.printStackTrace();
 System.out.println("Failed to created new resource request");
 return;
 }
 ObUserSession user = null;
 try {
 user = new ObUserSession(res, cred);
 } catch (Throwable t) {
 t.printStackTrace();
 System.out.println("Failed to create new user session");

About Custom AccessGate Code

4-54 Oracle Access Manager Developer Guide

 return;
 }
 if (user.getStatus() == ObUserSession.LOGGEDIN) {
 if (location != null) user.setLocation(location);
 System.out.println("user status is " + user.getStatus());
 try {
 if (parameters != null ? user.isAuthorized(res, parameters) :
 user.isAuthorized(res)) {
 System.out.println("Permission GRANTED");
 System.out.println("User Session Token =" +
 user.getSessionToken());
 if (location != null) {
 System.out.println("Location = " + user.getLocation());
 }
 } else {
 System.out.println("Permission DENIED");
 if (user.getError() == ObUserSession.ERR_NEED_MORE_DATA) {
 int nParams = res.getNumberOfAuthorizationParameters();
 System.out.print("Required Authorization Parameters (" +
 nParams + ") :");
 Enumeration e = res.getAuthorizationParameters().keys();
 while (e.hasMoreElements()) {
 String name = (String) e.nextElement();
 System.out.print(" " + name);
 }
 System.out.println();
 }
 }
 } catch (ObAccessException obe) {
 System.out.println("Failed to get user authorization");
 }
 } else {
 System.out.println("user status is " + user.getStatus());
 }
 String[] actionTypes = user.getActionTypes();
 for(int i =0; i < actionTypes.length; i++) {
 Hashtable actions = user.getActions(actionTypes[i]);
 Enumeration e = actions.keys();
 int item = 0;
 System.out.println("Printing Actions for type " + actionTypes[i]);
 while(e.hasMoreElements()) {
 String name = (String)e.nextElement();
 System.out.println("Actions[" + item +"]: Name " + name + " value " +
 actions.get(name));
 item++;
 }
 }
 ObAuthenticationScheme auths;
 try {
 auths = new ObAuthenticationScheme(res);
 } catch (ObAccessException ase) {
 ase.printStackTrace();
 return;
 }
 if (auths.isBasic()) {
 System.out.println("Auth scheme is Basic");
 } else {
 System.out.println("Auth scheme is NOT Basic");
 }
 try {

About Custom AccessGate Code

Building AccessGates with the Access Manager SDK 4-55

 ObResourceRequest resNew = (ObResourceRequest) res.clone();
 System.out.println("Clone resource Name: " + resNew.getResource());
 } catch (Exception e) {
 e.printStackTrace();
 }
 res = null;
 auths = null;
 ObConfig.shutdown();
 }
}

Annotated Code
Import standard Java libraries to provide basic utilities, enumeration, and token
processing capabilities.

import java.util.*;
import java.util.Enumeration;
import java.util.StringTokenizer;

Import the Access Manager API libraries.

import com.oblix.access.*;

This servlet is named access_test_java.

public class access_test_java {

Declare seven variable strings to store the values passed through the array named
"arg."

public static void main(String[] arg) {
 String userid, password, method, url, configDir, type, location;

Set the current ObResourceRequest to "res."

ObResourceRequest res;

Initialize the hashtable parameters to NULL, just in case they were not already empty.

Hashtable parameters = null;

Create a new hashtable named "cred."

Hashtable cred = new Hashtable();

If the array named "arg" contains less than five strings, report the expected syntax and
content for command-line input, which is five mandatory arguments in the specified
order, as well as the optional variables configDir, authz-parameters, and location.

if (arg.length < 5) {
 System.out.println("Usage: EXPECTED: userid password type
 HTTP-method URL [configDir [authz-parameters] [location]]]");

Since fewer than five arguments were received the first time around, break out of the
main method, effectively terminating program execution.

 return;
} else {

If the array named "arg" contains five or more strings, assign the first five arguments
(arg[0] through arg[4]) to the variables userid, password, type, method, and url,
respectively.

About Custom AccessGate Code

4-56 Oracle Access Manager Developer Guide

 userid = arg[0];
 password = arg[1];
 type = arg[2];
 method = arg[3];
 url = arg[4];
}

If "arg" contains six or more arguments, assign the sixth string in the array to the
variable configDir.

if (arg.length >= 6)
 configDir = arg[5];

If "arg" does not contain six or more arguments (in other words, we know it contains
exactly five arguments, because we have already determined it does not contain fewer
than five) then set configDir to NULL.

else
 configDir = null;

If "arg" contains at least seven strings, and arg[6] (which has been implicitly assigned
to the variable authz-parameters) is not empty, create a new hashtable named
"parameters." The syntax for the string authz-parameters is: p1=v1&p2=v2&...

if (arg.length >= 7 && arg[6] != null) {
 parameters = new Hashtable();

Create a string tokenizer named tok1 and parse arg[6], using the ampersand character
(&) as the delimiter. This breaks arg[6] into an array of tokens in the form pn=vn,
where n is the sequential number of the token.

 StringTokenizer tok1 = new StringTokenizer(arg[6], "&");

For all the items in tok1, return the next token as the variable nameValue. In this
manner, nameValue is assigned the string pn=vn, where n is the sequential number of
the token.

while (tok1.hasMoreTokens()) {
 String nameValue = tok1.nextToken();

Create a string tokenizer named tok2 and parse nameValue using the equal character
(=) as the delimiter. In this manner, pn=vn breaks down into the tokens pn and vn.

 StringTokenizer tok2 = new StringTokenizer(nameValue, "=");

Assign the first token to the variable "name."

 String name = tok2.nextToken();

Assign the second token to "value." If additional tokens remain in tok2, return the next
token and assign it to "value;" otherwise, assign an empty string to "value."

 String value = tok2.hasMoreTokens() ? tok2.nextToken() : "";

Insert "name" and "value" into the hashtable "parameters."

 parameters.put(name, value);
 }
}

If there are eight or more arguments in "arg," assign arg[7] to the variable "location;"
otherwise make location empty.

About Custom AccessGate Code

Building AccessGates with the Access Manager SDK 4-57

location = arg.length >= 8 ? arg[7] : null;

If configDir" is not empty, initialize the Access Manager API using the current value of
configDir.

try {
 if (configDir != null)
 ObConfig.initialize(configDir);

Otherwise, initialize the Access Manager API without specifying an explicit configDir
location.

else
 ObConfig.initialize();
}

If the initialization attempt produces an error, report the appropriate error message (ie)
to the standard error stream along with the backtrace.

catch (ObAccessException ie) {
 System.out.println("Initialize failed");
 ie.printStackTrace();

Break out of the main method, effectively terminating the program.

 return;
}

Read the variables, user ID, and password into the hashtable named "cred."

 cred.put("userid", userid);
cred.put("password", password);

Create an ObResourceRequest object named "res," which will return values for the
variables type, url and method from the Access Server.

try {
res = new ObResourceRequest(type, url, method);

Determine whether the requested resource "res" is protected and display the
appropriate message.

if (res.isProtected())
 System.out.println("Resource " + type ":" + url + " protected");
else
 System.out.println("Resource " + type + ":" + url + " unprotected");
}

If the attempt to create the ObResourceRequest structure does not succeed, report the
failure along with the error message "t."

catch (Throwable t) {
 t.printStackTrace();
 System.out.println("Failed to create new resource request");

Break out of the main method, effectively terminating the program.

 return;
}

Set the ObUserSession parameter "user" to empty.

ObUserSession user = null;

About Custom AccessGate Code

4-58 Oracle Access Manager Developer Guide

Create a ObUserSession structure named "user" so that it will return values for the
ObResourceRequest structure "res" and the ObAuthenticationScheme structure "cred."

try
 user = new ObUserSession(res, cred);

If the attempt to create the ObUserSession structure does not succeed, then report the
failure along with the error message "t."

catch (Throwable t) {
 t.printStackTrace();
 System.out.println("Failed to create new user session");

Break out of the main method, effectively terminating the program.

 return;
}

Determine if the user is currently logged in, which is to say, authentication for this user
has succeeded.

if (user.getStatus() == ObUserSession.LOGGEDIN) {

If the user is logged in, determine whether the variable "location" is not empty. If
"location" is not empty, set the "location" parameter for ObConfig to the value of the
variable "location," then report that the user is logged in along with the status code
returned by the Access Server.

if (location != null) user.setLocation(location);
System.out.println("user status is " + user.getStatus());

Check authorization. To accomplish this, determine whether "parameters" exists. If it
does, determine whether the user is authorized with respect to the target resource
when the parameters stored in "parameters" are attached. If "parameters" does not
exist, simply determine whether the user is authorized for the target resource.

try {
 if (parameters != null ? user.isAuthorized(res, parameters) :
 user.isAuthorized(res)) {

If the user is authorized to access the resource when all the appropriate parameters
have been specified, report that permission has been granted.

System.out.println("Permission GRANTED");

Display also a serialized representation of the user session token.

System.out.println("User Session Token =" + user.getSessionToken());

If the variable location is not empty, report the location.

if (location != null) {
 System.out.println("Location = " + user.getLocation());
}

If the user is not authorized to access the resource, report that permission has been
denied.

} else {
System.out.println("Permission DENIED");

About Custom AccessGate Code

Building AccessGates with the Access Manager SDK 4-59

If ObUserSession returns ERR_NEED_MORE_DATA, set the variable "nParams" to the
number of parameters required for authorization, then report that number to the user.

if (user.getError() == ObUserSession.ERR_NEED_MORE_DATA) {
 int nParams = res.getNumberOfAuthorizationParameters();
 System.out.print("Required Authorization Parameters (" +
 nParams + ") :");

Set "e" to the value of the "keys" parameter in the hashtable returned by the
getAuthorizationParameters method for the ObResourceRequest object named "res."

 Enumeration e = res.getAuthorizationParameters().keys();

Report the names of all the elements contained in "e."

while (e.hasMoreElements()) {
 String name = (String) e.nextElement();
 System.out.print(" " + name);
}
System.out.println();
}

Otherwise, simply proceed to the next statement.

 else
 }
}

In the case of an error, report that the authorization attempt failed.

 catch (ObAccessException obe)
 System.out.println("Failed to get user authorization");
}

If the user is not logged in, report the current user status.

else
 System.out.println("user status is " + user.getStatus());

Now report all the actions currently set for the current user session. Do this by creating
an array named actionTypes from the strings returned by the getActionTypes method.
Next, read each string in actionTypes into a hashtable named "actions." Report the
name and value of each of the keys contained in "actions."

String[] actionTypes = user.getActionTypes();
for(int i =0; actionTypes[i] != null; i++){
 Hashtable actions = user.getActions(actionTypes[i]);
 Enumeration e = actions.keys();
 int item = 0;
 System.out.println("Printing Actions for type " + actionTypes[i]);
 while(e.hasMoreElements()) {
String name = (String)e.nextElement();
System.out.println("Actions[" + item +"]: Name " + name + " value " +
 actions.get(name));
item++;
 }
}

Attempt to create an ObAuthenticationScheme object named "auths" for the
ObResourceRequest object "res."

ObAuthenticationScheme auths;
try

About Custom AccessGate Code

4-60 Oracle Access Manager Developer Guide

 auths = new ObAuthenticationScheme(res);

If the ObAuthenticationScheme creation attempt is unsuccessful, report the failure
along with the error message "ase."

catch (ObAccessException ase) {
 ase.printStackTrace();

Break out of the main method, effectively terminating the program.

 return;
}

Determine if the authorization scheme is basic.

if (auths.isBasic())

If it is, report the fact.

System.out.println("Auth scheme is Basic");

It it is not basic, report the fact.

else
 System.out.println("Auth scheme is NOT Basic");

Use the copy constructor to create a new ObResourceRequest object named resNEW
from the original object "res."

try {
 ObResourceRequest resNew = (ObResourceRequest) res.clone();

Report the name of the newly cloned object.

 System.out.println("Clone resource Name: " + resNew.getResource());

If the ObResourceRequest object cannot be cloned for any reason, report the failure
along with the associated backtrace.

}
catch (Exception e) {
 e.printStackTrace();
}

Set the ObResourceRequest object "res" and the ObAuthenticationScheme object
"auths" to NULL, then disconnect the Access Manager API.

 res = null;
 auths = null;
 ObConfig.shutdown();
 }
}

Example in C++ that Implements Several Features: access_test_cplus.cpp
Access_test_cplus.cpp, which is written with the C++ implementation of the Access
Manager API, demonstrates a wide range of possible AccessGate features. The code
sections roughly parallel those of the sample program access_test_java.java, but the
syntax, I/O, and exception handling conform to C++.

The following subsections present an overview of the application, followed by the
complete, unannotated listing, which can be copied into a C++ development

About Custom AccessGate Code

Building AccessGates with the Access Manager SDK 4-61

environment for editing and compilation. Line-by-line annotations of the code begin
on after this listing.

The program calls Access Manager API methods to set up a user session through
either a session token or a user ID and password. The program then determines
whether to grant the user access to the requested HTTP resource.

There are two modes of operation:

■ Command Line: Command-line arguments are used for a single transaction.

■ Interactive: No command-line arguments are used; instead, multiple transactions
are read from stdin.

The possible transaction types are:

■ Userid/password/method/URL: Uses a specified challenge method to
authenticate the user and to determine whether to grant access to the requested
URL.

■ Token/method/URL: Retrieves user information from a serial token, then
employs a specified challenge method to determine whether to grant access to the
requested URL.

■ Method/URL (Interactive mode only): Retrieves user information from a previous
login and employs a specified challenge method to determine whether to grant
access to the requested URL.

The URL to the requested resource takes the following form:

[resourceType:][//host[:port]]/resource[?p1=v1&p2=v2...]

The default resourceType is HTTP.

Examples
J.Smith 84CharingXRd GET /example/resource:

This command-line input logs in the user J. Smith with the password 84CharingXRd
and checks GET access for the URL /example/resource.

GET /a/b.cgi?a=1&b=2:

This command-line input, which bases the transaction on an existing session, checks
GET access to determine authorization for the URL /a/b.cgi with parameters a=1 and
b=2.

Example 4–6 Access_test_cplus.cpp

#ifdef _WIN32
#pragma warning(disable : 4995)
#endif
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <iostream.h>
#ifdef _WIN32
include <sys/timeb.h>
#else
include <time.h>
#endif
#include <obaccess_api_cplus.h>
const char *sessionToken = NULL;

About Custom AccessGate Code

4-62 Oracle Access Manager Developer Guide

void parseUrl(char *urlCopy, const char **resourceType, const char **resource,
 ObMap ¶meters) {
 char *colon = strstr(urlCopy, ":");
 char *slashes = strstr(urlCopy, "//");
 if (colon != NULL && (slashes == NULL || colon < slashes)) {
 *resourceType = strtok(urlCopy, ":");
 *resource = strtok(NULL, "?");
 } else {
 *resourceType = "http";
 *resource = strtok(urlCopy, "?");
 }
 char *name, *val;
 for (name = strtok(NULL, "="); name != NULL; name = strtok(NULL, "=")) {
 val = strtok(NULL, "&");
 if (val != NULL) parameters.put(name, val);
 }
}

void isAuthorized(ObUserSession &user, ObResourceRequest &res, const char
 *authzParmString){
 ObBoolean_t authz = ObFalse;
 if (authzParmString != NULL) {
 ObMap authzParameters;
 char *authzParms = strdup(authzParmString);
 char *name, *val;
 for (name = strtok(authzParms, "="); name != NULL; name = strtok(NULL,
 "=")) {
 val = strtok(NULL, "&");
 if (val != NULL) authzParameters.put(name, val);
 }
 authz = user.isAuthorized(res, authzParameters);
 } else {
 authz = user.isAuthorized(res);
 }
 if (authz) {
 cout << "GRANTED\n";
 } else {
 cout << "DENIED\n";
 cout << "ERROR: " << user.getErrorMessage() << "\n";
 if (user.getError() == ObUser_ERR_NEED_MORE_DATA) {
 ObMap *pRequiredParameters = res.getAuthorizationParameters();
 cout << "EXPECTED PARAMETERS:";
 ObMapIterator iter(*pRequiredParameters);
 while (iter.hasMore()) {
 const char *name = NULL, *value = NULL;
 iter.next(&name, &value);
 cout << " " << name;
 }
 cout << "\n";
 delete pRequiredParameters;
 }
 }
 cout << "ACTIONS:";
 const char **actionTypes = user.getActionTypes();
 for (int i = 0; actionTypes[i] != NULL; i++) {
 const ObMap &actions = user.getActions(actionTypes[i]);
 ObMapIterator iter(actions);
 while (iter.hasMore()) {
 cout << "\n";
 const char *name = NULL, *value = NULL;

About Custom AccessGate Code

Building AccessGates with the Access Manager SDK 4-63

 iter.next(&name, &value);
 cout << actionTypes[i] << ": " << name << "=" << value;
 }
 }
}

void testLogin(const char *userid, const char *password, const char *method,
 const char *url, const char *location, const char *authzParmString) {
 char *urlCopy = strdup(url);
 const char *resourceType = NULL;
 const char *resource = NULL;
 ObMap parameters;
 parseUrl(urlCopy, &resourceType, &resource, parameters);
 ObResourceRequest res(resourceType, resource, method, parameters);
 if (res.isProtected()) {
 ObAuthenticationScheme authnScheme(res);
 if (authnScheme.isBasic()) {
 cout << "BASIC REALM : " << authnScheme.getChallengeParameter("realm")
 << "\n";
 ObMap credentials;
 credentials.put("userid", userid);
 credentials.put("password", password);
 ObUserSession user(res, credentials, location);
 if (user.getStatus() == ObUser_LOGGEDIN) {
 if (sessionToken != NULL) free((void *) sessionToken);
 sessionToken = strdup(user.getSessionToken());
 cout << "SESSION TOKEN : " << sessionToken << "\n";
 isAuthorized(user, res, authzParmString);
 } else {
 cout << "LOGIN FAILED: " << user.getErrorMessage() << "\n";
 }
 } else {
 cout << "RESOURCE SCHEME NOT BASIC";
 }
 } else {
 cout << "NOT PROTECTED";
 }
 free(urlCopy);
}

void testToken(const char *token, const char *method, const char *url) {
 if (sessionToken != NULL) free((void *) sessionToken);
 sessionToken = token;
 char *urlCopy = strdup(url);
 const char *resourceType = NULL;
 const char *resource = NULL;
 ObMap parameters;
 parseUrl(urlCopy, &resourceType, &resource, parameters);
 ObResourceRequest res(resourceType, resource, method, parameters);
 if (res.isProtected()) {
 ObUserSession user(sessionToken);
 if (user.getStatus() == ObUser_LOGGEDIN) {
 cout << "USER: " << user.getUserIdentity() << "\n";
 if (user.getLocation() != NULL) {
 cout << "LOCATION: " << user.getLocation() << "\n";
 } else {
 cout << "LOCATION: (none)\n";
 }
 isAuthorized(user, res, NULL);
 } else {

About Custom AccessGate Code

4-64 Oracle Access Manager Developer Guide

 cout << "BAD TOKEN";
 }
 } else {
 cout << "NOT PROTECTED";
 }
 free(urlCopy);
}

void setLocation(const char *location) {
 ObUserSession user(sessionToken);
 user.setLocation(location);
 sessionToken = strdup(user.getSessionToken());
}

void showConfig() {
 cout << "CONFIGURATION:\n";
 cout << "The current version of SDK is " << ObConfig::getSDKVersion() << "\n";
 cout << "The current version of NAP is " << ObConfig::getNAPVersion() << "\n";
 ObMapIterator iter(ObConfig::getAllItems());
 while (iter.hasMore()) {
 const char *name, *val;
 iter.next(&name, &val);
 cout << name << ": " << (val != NULL ? val : "(none)") << "\n";
 }
}

void help() {
 cout << "EXPECT ONE OF\n";
 cout << "<userid> <password> <method> <url> [<location> [<authz-parameters>]]
 (sets sessionToken)\n";
 cout << "<sessionToken> <method> <url> (sets sessionToken)\n";
 cout << "<method> <url> (uses prior sessionToken)\n";
 cout << "setLocation <newLocation> (uses prior sessionToken)\n";
 cout << "showconfig\n";
 cout << "quit\n";
 cout << "exit\n";
}

int innerMain(int argc, char *argv[]) {
 float timeMilliSec;
#ifdef _WIN32
 struct _timeb startTime;
 struct _timeb stopTime;
 _ftime(&startTime);
#else
 struct timeval startTime;
 struct timeval stopTime;
 gettimeofday(&startTime, NULL);
#endif
 try {
 if (argc == 2) {
 if (strcmp(argv[1], "quit") == 0 || strcmp(argv[1], "exit") == 0) {
 return 1;
 } else
 if (strcmp(argv[1], "showconfig") == 0) showConfig();
 } else if (argc == 3) {
 if (sessionToken != NULL) {
 if (strcmp(argv[1], "setLocation") == 0) {
 setLocation(argv[2]);
 } else {

About Custom AccessGate Code

Building AccessGates with the Access Manager SDK 4-65

 testToken(strdup(sessionToken), argv[1], argv[2]);
 }
 } else {
 cout << "NO PRIOR LOGIN";
 }
 } else if (argc == 4) {
 testToken(argv[1], argv[2], argv[3]);
 } else if (argc == 5) {
 testLogin(argv[1], argv[2], argv[3], argv[4], NULL, NULL);
 } else if (argc == 6) {
 testLogin(argv[1], argv[2], argv[3], argv[4], argv[5], NULL);
 } else if (argc == 7) {
 testLogin(argv[1], argv[2], argv[3], argv[4], argv[5], argv[6]);
 } else {
 help();
 }
 }

Example 4–7 Access_test_cplus.cpp (more)

 catch (ObAccessException *e) {
 cout << "EXCEPTION: " << e->toString();
 delete (e);
 }
#ifdef _WIN32
 _ftime(&stopTime);
 timeMilliSec = ((float) (stopTime.time - startTime.time) * 1000) +
 (float) (stopTime.millitm - startTime.millitm);
#else
 gettimeofday(&stopTime, NULL);
 timeMilliSec = (((float) (stopTime.tv_sec - startTime.tv_sec) * 1000) +
 ((float) (stopTime.tv_usec - startTime.tv_usec) / 1000));
#endif
 cout << "\nTIME : " << timeMilliSec << " milliseconds";
 return 0;
}

int main(int argc, char *argv[]) {
 try {
 ObConfig::initialize();
 if (argc == 1) {
define MAX_ARGS 6
define MAX_INPUT_CHARS 1000
 int ac;
 char *av[MAX_ARGS];
 char inputString[MAX_INPUT_CHARS];
 char *arg;
 help();
 int stop = 0;
 while (stop == 0) {
 cout << "\n>";
 cin.getline(inputString, MAX_INPUT_CHARS);
 av[0] = (char *) "access_test_cplus";
 ac = 1;
 for (arg = strtok(inputString, " ");
 arg != NULL && ac <= MAX_ARGS;
 arg = strtok(NULL, " ")) {
 av[ac] = arg;
 ac++;
 }

About Custom AccessGate Code

4-66 Oracle Access Manager Developer Guide

 if (ac > 1) {
 stop = innerMain(ac, av);
 cout << "\n";
 }
 }
 } else {
 innerMain(argc, argv);
 }
 cout << "\n";
 if (sessionToken != NULL) free((void *) sessionToken);
 ObConfig::shutdown();
 }
 catch (ObAccessException *e) {
 cout << "EXCEPTION: " << e->toString();
 delete (e);
 }
 return 0;
}

Annotated Code
If the host machine for the AccessGate is running the Win32 platform, then disable the
warning relating to the deprecation of old i/o streams.

#ifdef _WIN32
#pragma warning(disable : 4995)
#endif

Include several standard C++ libraries. In addition to basic functionality, they cover
input and output, strings, and streams.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <iostream.h>

Import the time-handling library appropriate for the operating system platform
(Win32 or other) used by the machine hosting the AccessGate.

#ifdef _WIN32
include <sys/timeb.h>
#else
include <time.h>
#endif

Include the C++ implementation of the Access Manager API.

#include <obaccess_api_cplus.h>

Set to NULL the pointer to the current session token.

const char *sessionToken = NULL;

The parseURL method breaks the string "urlCopy" into its constituent elements, which
are illustrated by the following:

[resourceType:][//host[:port]]/resource

urlCopy might also contain an optional set of parameters in the following form:

[?p1=v1&p2=v2...]

About Custom AccessGate Code

Building AccessGates with the Access Manager SDK 4-67

where p represents the name of the parameter and v represents the value associated
with that parameter name. In any case, urlCopy is optional.

void parseUrl(char *urlCopy, const char **resourceType, const char **resource,
 ObMap ¶meters) {

Create pointers to the first colon (:) and double slash (//) within urlCopy and name
them "colon" and "slashes," respectively.

char *colon = strstr(urlCopy, ":");
char *slashes = strstr(urlCopy, "//");

Determine whether urlCopy contains a colon but not a double slash, or whether it
contains a colon which precedes a double slash.

if (colon != NULL && (slashes == NULL || colon < slashes)) {

If either of the preceding statements is true, we can assume that urlCopy follows the
form resourceType:[//host[:port]]/resource[?p1=v1&p2=v2...].

Therefore, we need to return a pointer to the token "resourceType," which consists of
everything in the string "urlCopy" prior to the delimiter colon (:).

*resourceType = strtok(urlCopy, ":");

Each time the strtok method is invoked, it changes the delimiter to NULL. Therefore,
we retrieve the second token in the string by specifying NULL as the start point and
the question mark (?) as the closing delimiter. This returns the URL for the requested
resource.

*resource = strtok(NULL, "?");

If either part of the preceding "if" statement does not evaluate to true, we can assume
that urlCopy follows the form [//host[:port]]/resource[?p1=v1&p2=v2...].

Therefore, we set resourceType to HTTP, and set a pointer to the token "resource,"
which consists of everything in urlCopy that precedes the delimiter question mark (?).

} else {
 *resourceType = "http";
 *resource = strtok(urlCopy, "?");
}

Now parse the optional parameters section of the urlCopy string. Do this by assigning
to "name" everything between NULL (formerly the question mark delimiter) and the
equal sign (=), which is the new closing delimiter. As long as "name" is not empty,
assign the next token to "val," this time using the ampersand (&) as the closing
delimiter. Repeat this process until "name" is returned as NULL. This indicates that the
end of the string has been reached.

 char *name, *val;
 for (name = strtok(NULL, "="); name != NULL; name = strtok(NULL, "=")) {
 val = strtok(NULL, "&");
 if (val != NULL) parameters.put(name, val);
 }
}

The isAuthorized method determines if the user submitting the request has
permission to access a particular resource.

void isAuthorized(ObUserSession &user,ObResourceRequest &res, const char
 *authzParmString) {

About Custom AccessGate Code

4-68 Oracle Access Manager Developer Guide

Initiate the boolean variable "authz" as false.

ObBoolean_t authz = ObFalse;

Determine if the optional string authzParmString exists.

 if (authzParmString != NULL) {

If authzParmString, which takes the format p1=v1&p2=v2...., does exist, break it into
its constituent name:value pairs. Accomplish this by invoking the strtok method to
read the name and value elements for each parameter into an ObMap structure named
authzParameters. Keep reading name:value pairs into authzParameters until the token
"name" returns a NULL value, indicating that the end of the list has been reached.

ObMap authzParameters;
char *authzParms = strdup(authzParmString);
char *name, *val;
for (name = strtok(authzParms, "="); name != NULL; name = strtok(NULL,
 "=")) {
 val = strtok(NULL, "&");
 if (val != NULL) authzParameters.put(name, val);
}

Determine if the user specified in the ObUserSession object "user" is authorized to
access the ObResourceRequest object "res" by supplying the credentials specified in
authzParmString.

 authz = user.isAuthorized(res, authzParameters);
}

If the optional authzParmString variable has not been supplied, determine if the user
specified by the ObUserSession object "user" is authorized to access the resource
requested through the ObResourceRequest structure "res."

else {
 authz = user.isAuthorized(res);
}

If the user is authorized, report that access permission has been granted.

if (authz) {
 cout << "GRANTED\n";

Otherwise, report that access has been denied and append whatever error message has
been returned.

} else {
 cout << "DENIED\n";
 cout << "ERROR: " << user.getErrorMessage() << "\n";

If ERR_NEED_MORE_DATA is returned, retrieve the required authorization parameters
for the resource specified by "res." Place the pointers for the name and value associated
with each parameter into the ObMap structure pointed to by pRequiredParameters.
Report on a new line the name (but not the corresponding value!) of each required
parameter.

if (user.getError() == ObUser_ERR_NEED_MORE_DATA) {
 ObMap *pRequiredParameters = res.getAuthorizationParameters();
 cout << "EXPECTED PARAMETERS:";
 ObMapIterator iter(*pRequiredParameters);
 while (iter.hasMore()) {

About Custom AccessGate Code

Building AccessGates with the Access Manager SDK 4-69

 const char *name = NULL, *value = NULL;
 iter.next(&name, &value);
 cout << " " << name;
 }
 cout << "\n";

To free the memory used by pRequiredParameters which is no longer needed, invoke
"delete."

 delete pRequiredParameters;
 }
}

Place the actions to be performed against the ObUserSession object "user" into the
ObMap object "actions." Use ObMapIterator to report the name and value associated
with each action.

 cout << "ACTIONS:";
 const char **actionTypes = user.getActionTypes();
 for (int i = 0; actionTypes[i] != NULL; i++) {
 const ObMap &actions = user.getActions(actionTypes[i]);
 ObMapIterator iter(actions);
 while (iter.hasMore()) {
 cout << "\n";
 const char *name = NULL, *value = NULL;
 iter.next(&name, &value);
 cout << actionTypes[i] << ": " << name << "=" << value;
 }
 }
}

The testLogin method demonstrates AccessGate login capabilities. Start by initializing
or retrieving the necessary variables and constants.

void testLogin(const char *userid, const char *password, const char *method,
 const char *url, const char *location, const char *authzParmString) {
 char *urlCopy = strdup(url);
 const char *resourceType = NULL;
 const char *resource = NULL;
 ObMap parameters;
 parseUrl(urlCopy, &resourceType, &resource, parameters);
 ObResourceRequest res(resourceType, resource, method, parameters);

Determine whether the resource specified by the ObResourceRequest object "res" is
protected.

 if (res.isProtected()) {

If the resource is protected, determine if the authentication scheme associated with
"res" uses the basic challenge method.

ObAuthenticationScheme authnScheme(res);
if (authnScheme.isBasic()) {

If the authentication scheme does use the basic challenge method, report that fact
along with the value of "realm," which is usually the name of the authentication
domain (an LDAP directory, for instance).

cout << "BASIC REALM : " << authnScheme.getChallengeParameter("realm")
 << "\n";

About Custom AccessGate Code

4-70 Oracle Access Manager Developer Guide

Create an ObMap list named "credentials," and place into it the user ID and password
supplied for the current user session.

ObMap credentials;
credentials.put("userid", userid);
credentials.put("password", password);
ObUserSession user(res, credentials, location);

Determine whether the user is logged in, which is to say, the user has authenticated
successfully.

if (user.getStatus() == ObUser_LOGGEDIN) {

If the user is currently authenticated, determine whether the variable sessionToken
exists. If it does, guard against stale data by deallocating the memory used by the
sessionToken object.

if (sessionToken != NULL) free((void *) sessionToken);

Retrieve a copy of the session token associated with "user" and assign it to the variable
sessionToken.

sessionToken = strdup(user.getSessionToken());

Report the contents of the serialized session token, which is an ASCII string
representing the userid and password in encoded form.

cout << "SESSION TOKEN : " << sessionToken << "\n";

Check whether the user is authorized to access the resource using the credentials
passed through authzParmString.

 isAuthorized(user, res, authzParmString);

If the user has not authenticated successfully, report that along with the associated
error message.

} else {
 cout << "LOGIN FAILED: " << user.getErrorMessage() << "\n";
}

If the challenge method is not basic, report that fact.

} else {
 cout << "RESOURCE SCHEME NOT BASIC";
}

If the resource is not protected, report that fact.

 } else {
cout << "NOT PROTECTED";
}

Deallocate the memory used by the variable urlCopy.

free(urlCopy);
}

The testToken method demonstrates how authentication is achieved through an
existing session token.

void testToken(const char *token, const char *method, const char *url) {

About Custom AccessGate Code

Building AccessGates with the Access Manager SDK 4-71

If the variable sessionToken exists, deallocate the memory assigned to it so as to avoid
stale session data.

 if (sessionToken != NULL) free((void *) sessionToken);

Initialize or retrieve the necessary variables and constants.

sessionToken = token;
char *urlCopy = strdup(url);
const char *resourceType = NULL;
const char *resource = NULL;
ObMap parameters;
parseUrl(urlCopy, &resourceType, &resource, parameters);
ObResourceRequest res(resourceType, resource, method, parameters);

Determine if the resource specified by the ObResourceRequest structure "res" is
protected.

if (res.isProtected()){

If the resource is protected, determine whether the user is logged in (which is to say,
has successfully authenticated).

ObUserSession user(sessionToken);
if (user.getStatus() == ObUser_LOGGEDIN) {

If the user is authenticated, report the DN (Distinguished Name) of the user as it exists
in the LDAP directory.

 cout << "USER: " << user.getUserIdentity() << "\n";

Determine if an IP address has been set for the user. Report the location, if that
information it exists. Otherwise, report the location as "(none)".

if (user.getLocation() != NULL) {
 cout << "LOCATION: " << user.getLocation() << "\n";
} else {
 cout << "LOCATION: (none)\n";
}
isAuthorized(user, res, NULL);

If the user is not authenticated, report that the token is invalid.

} else {
 cout << "BAD TOKEN";
}

If the resource is not protected, report that fact.

} else {
 cout << "NOT PROTECTED";
}

Clean up by deallocating the memory used by the variable urlCopy.

 free(urlCopy);
}

Set the IP address of the user's machine.

void setLocation(const char *location) {

Create a session with the existing token.

About Custom AccessGate Code

4-72 Oracle Access Manager Developer Guide

ObUserSession user(sessionToken);

Update the session token with the IP address returned by the setLocation method.

 user.setLocation(location);
 sessionToken = strdup(user.getSessionToken());
}
The showConfig method reports the configuration information currently set for the
AccessGate. This includes the version of the Access Manager SDK in use, the version
of the access control protocol in use, all of the other configuration parameters in the
configuration file ObAccessClient.xml. This may include items such as the maximum
number of resource request objects that can be cached, the maximum number of
seconds before the user must re-authenticate, or the frequency with which the
AccessGate checks to make sure its connection to the Access Server is still up.

void showConfig() {
 cout << "CONFIGURATION:\n";
 cout << "The current version of SDK is " << ObConfig::getSDKVersion() << "\n";
 cout << "The current version of NAP is " << ObConfig::getNAPVersion() << "\n";
 ObMapIterator iter(ObConfig::getAllItems());
 while (iter.hasMore()) {
 const char *name, *val;
 iter.next(&name, &val);
 cout << name << ": " << (val != NULL ? val : "(none)") << "\n";
 }
}

The help method reports the command-line syntax and options available for this
application.

void help() {
 cout << "EXPECT ONE OF\n";
 cout << "<userid> <password> <method> <url> [<location> [<authz-parameters>]]
 (sets sessionToken)\n";
 cout << "<sessionToken> <method> <url> (sets sessionToken)\n";
 cout << "<method> <url> (uses prior sessionToken)\n";
 cout << "setLocation <newLocation> (uses prior sessionToken)\n";
 cout << "showconfig\n";
 cout << "quit\n";
 cout << "exit\n";
}

This is the innerMain method, which enables the program to execute with supplied
command-line arguments or without command-line arguments in interactive mode.
The innerMain method contains the code to execute a single operation; the main
method reads in the operations, then calls "innermain."

int innerMain(int argc, char *argv[]) {

Set up a variable to measure how long the application runs.

 float timeMilliSec;

Have the compiler set the time format correctly for the host machine platform running
the AccessGate.

#ifdef _WIN32
 struct _timeb startTime;
 struct _timeb stopTime;
 _ftime(&startTime);
#else

About Custom AccessGate Code

Building AccessGates with the Access Manager SDK 4-73

 struct timeval startTime;
 struct timeval stopTime;
 gettimeofday(&startTime, NULL);
#endif
 try {

If precisely two strings exist in the array named "argc," determine whether the second
string (arg[1]) is quit or exit. If the user has entered quit or exit, break out of this
method.

if (argc == 2) {
 if (strcmp(argv[1], "quit") == 0 || strcmp(argv[1], "exit") == 0) {
 return 1;

If the user has not entered quit or exit, determine whether the second string in the
array "argv" is "showconfig." If so, invoke the showConfig method.

} else if (strcmp(argv[1], "showconfig") == 0) showConfig();

If precisely three strings exist in "argc," we can assume that input follows the form
<method> <URL>. Therefore, determine if a session token exists.

} else if (argc == 3) {
 if (sessionToken != NULL) {

If a session token does exist, determine whether the user has entered setLocation. If so,
invoke the setLocation method.

if (strcmp(argv[1], "setLocation") == 0) {
 setLocation(argv[2]);

If the user did not enter setLocation as the second element in the input string, invoke
the testToken method, using the second and third arguments in "argc" as parameters.

} else {
 testToken(strdup(sessionToken), argv[1], argv[2]);
}

If a session token does not exist, report that the user is not currently authenticated.

} else {
 cout << "NO PRIOR LOGIN";
}

If precisely four strings exist in "argc," we can assume that input follows the form
<sessionToken> <method> <URL>. Therefore, invoke the testToken method, using the
second through fourth strings in "argc" as parameters.

} else if (argc == 4) {
 testToken(argv[1], argv[2], argv[3]);

If precisely five strings exist in "argc," we can assume that input follows the form
<userid><password> <method> <URL>. Therefore, invoke the testLogin method,
using the second through fifth strings in "argc" as parameters. Also, set the final two
arguments for testLogin to NULL.

} else if (argc == 5) {
 testLogin(argv[1], argv[2], argv[3], argv[4], NULL, NULL);

If precisely six strings exist in "argc," we can assume that input follows the form
<userid><password> <method> <URL><location>. Therefore, invoke testLogin, using

About Custom AccessGate Code

4-74 Oracle Access Manager Developer Guide

the second through sixth strings in "argc" as parameters. Set the final argument for
testLogin to NULL.

} else if (argc == 6) {
 testLogin(argv[1], argv[2], argv[3], argv[4], argv[5], NULL);

If precisely seven strings exist in "argc," we can assume that input follows the form
<userid><password> <method> <URL><location><authzParameters>. Therefore,
invoke testLogin, using the second through sixth strings in "argc" as parameters.

} else if (argc == 7) {
 testLogin(argv[1], argv[2], argv[3], argv[4], argv[5], argv[6]);
} else {

If the number of strings in "argc" is either one or more than seven, invoke the help
method, which displays the command-line syntax for the application. This teaches the
user how to enter the right type of information in the proper format.

 help();
}

If an error occurs in the main part of the innerMain method, report that fact, along
with the error message "e."

} catch (ObAccessException *e) {
 cout << "EXCEPTION: " << e->toString();

To free the memory used by "e," which is no longer needed, invoke "delete."

 delete (e);
}

Have the compiler set up the appropriate time-related functions for the platform in
use.

#ifdef _WIN32
 _ftime(&stopTime);
 timeMilliSec = ((float) (stopTime.time - startTime.time) * 1000) +
 (float) (stopTime.millitm - startTime.millitm);
#else
 gettimeofday(&stopTime, NULL);
 timeMilliSec = (((float) (stopTime.tv_sec - startTime.tv_sec) * 1000) +
 ((float) (stopTime.tv_usec - startTime.tv_usec) / 1000));
#endif

Report how long the application has been running.

 cout << "\nTIME : " << timeMilliSec << " milliseconds";
 return 0;
}

The main method ties everything together.

int main(int argc, char *argv[])
{
 try {

Initialize the Access Manager SDK using the scope resolution operator to make sure
we are calling the "initialize" method defined in Com.Oblix.Access.ObConfig.

ObConfig::initialize();

Determine whether "argc" contains a single string.

About Custom AccessGate Code

Building AccessGates with the Access Manager SDK 4-75

if (argc == 1) {

If it does, we are in interactive mode. Therefore, use the compiler to accept input lines
containing no more than 1000 characters organized into a maximum of six
(space-separated) arguments.

define MAX_ARGS 6
define MAX_INPUT_CHARS 1000

Initialize the appropriate variables. "ac" tracks the number of arguments in the input
string. inputString stores the input retrieved from the command line, as long as it does
not exceed 1,000 characters in length. "arg" stores each argument as it is parsed out of
inputString. The array named "av" stores the space-separated arguments parsed from
"inputString."

 int ac;
char *av[MAX_ARGS];
char inputString[MAX_INPUT_CHARS];
char *arg;

Invoke the help method so that user knows the required syntax and permissible range
for command-line input.

help();
int stop = 0;

Retrieve the command-line input string named inputString, as long as it does not
exceed the permitted maximum length. The new line character that terminates input is
not included in inputString.

while (stop == 0) {
 cout << "\n>";
 cin.getline(inputString, MAX_INPUT_CHARS);

Assign a pointer to the string access_test_plus to the first element in the array named
"av." Casting is necessary here because the character string access_test_cplus is "const
char *", while the array "av" must be declared "char *".

 av[0] = (char *) "access_test_cplus";

Using the space character () as the delimiter, return the first argument in inputString
and assign it to the second argument in "av" (av[1]). Repeat this sequence as long as
substrings remain in inputString, and the maximum number of arguments permitted
for "av" has not been exceeded.

ac = 1;
for (arg = strtok(inputString, " ");
 arg != NULL && ac <= MAX_ARGS;
 arg = strtok(NULL, " ")) {
 av[ac] = arg;
 ac++;
}

When no more substrings exist to be extracted from inputString, determine whether
any substring from inputString was assigned to the array "av." If so, pass "av" and "ac"
to the innermain method for processing, then store the return status in the variable
"stop."

 if (ac > 1) {
 stop = innerMain(ac, av);
 cout << "\n";

About Custom AccessGate Code

4-76 Oracle Access Manager Developer Guide

 }
 }
}

Otherwise, invoke the innerMain method, passing it the current values for "argc" and
"argv." If a session token exists, deallocate the memory it uses, then shutdown the
Access Manager API.

 else {
 innerMain(argc, argv);
 }
 cout << "\n";
 if (sessionToken != NULL) free((void *) sessionToken);
 ObConfig::shutdown();
 }
If an error occurs anywhere within the main method, report the appropriate error
message.

catch (ObAccessException *e) {
 cout << "EXCEPTION: " << e->toString();

To free the memory used by "e," which is no longer needed, invoke "delete."

 delete (e);
}

End the application.

 return 0;
}

Example of Implementing Certificate-Based Authentication
The following is a code snippet that demonstrates implementing an AccessGate in Java
that processes an X.509 certificate. This snippet is appropriate when an administrator
configures certificate-based authentication in the Access System.

Note that the certificate must be Base 64-encoded. Also, the Access Server does not
validate items, for example, the root certificate and validity period. It only maps the
items to the user.

// cert must point to a valid java.security.cert.X509Certificate instance.
 X509Certificate cert = ...

// Convert the certificate into a byte array
 byte[] encodecCert = cert.getEncoded();

// Encode the byte array using Base 64-encoding and convert it into a string
 String base64EncodedCert = new String(Codecs.base64Encode(encodedCert));

// Create hashtable to hold credentials
 Hashtable creds = new Hashtable();

// Store the Base 64-encoded under the key "certificate"
 cred.put("certificate", base64EncodedCert);

// Create ObResourceResource request object including all information about the //
// resource being accessed
 ObResourceRequest resourceRequest = new ObResourceRequest(resourceType,
resourceUrl, operation);

C++ Implementation Details

Building AccessGates with the Access Manager SDK 4-77

// Create a ObUserSession with the requestRequest and the cred hashtable
 ObUserSession userSession = new ObUserSession(resourceRequest, creds);

// The above statement will throw an exception if the certificate cannot be mapped
// to a valid user by the Access Server.

The following import statements are associated with the snippet:

 import HTTPClient.Codecs;
 import com.cfluent.ccore.message.SOAPMessage;
 import com.cfluent.ccore.util.logging.ILogger;
 import com.cfluent.ccore.util.logging.Level;
 import com.cfluent.ccore.util.logging.LogManager;
 import com.cfluent.pipelineengine.container.MessageContext;
 import com.cfluent.pipelineengine.container.SecCredentials;
 import com.cfluent.policysteps.Constants;
 import com.cfluent.policysteps.sdk.Fault;
 import com.oblix.access.ObAccessException;
 import com.oblix.access.ObResourceRequest;
 import com.oblix.access.ObUserSession;
 import java.security.Principal;
 import java.security.cert.X509Certificate;
 import java.util.ArrayList;
 import java.util.Enumeration;
 import java.util.HashMap;
 import java.util.Hashtable;
 import java.util.Iterator;
 import java.util.StringTokenizer;
 import javax.xml.soap.Name;
 import javax.xml.soap.SOAPElement;
 import javax.xml.soap.SOAPException;
 import javax.xml.soap.SOAPFactory;
 import javax.xml.soap.SOAPHeader;
 import javax.xml.soap.SOAPHeaderElement;
 import org.apache.axis.Message;
 import org.apache.axis.message.MessageElement;
 import org.apache.axis.message.SOAPEnvelope;

C++ Implementation Details
This section details the classes, constructors, methods, and parameters associated with
the C++ implementation of the Access Manager API. For an overview of the Access
Manager API classes, see "About the Access Manager API" on page 4-17. The header
file obaccess_api_cplus.h, also contains information on the C++ implementation of the
API. This file resides at the following location:

SDK_install_dir\include

The C++ implementation of the Access Manager API includes the classes listed in
Table 4–16:

Table 4–16 Overview of the Classes belonging to ObAccess (C++)

Class Description

ObMap Enables creation of and interaction with lists of name:value
pairs.

ObMapIterator Enables stepping through a list. You can determine the number
of items in that list or retrieve a name:value pair from a specific
position in that list.

C++ Implementation Details

4-78 Oracle Access Manager Developer Guide

ObMap
ObMap facilitates the storage of Access Manager API data by providing list structures
into which name:value pairs can be written. The class also provides methods for
retrieving information from the list, determining the number of items in that list, and
copying the list. For a general discussion of ObMap, see "ObMap" on page 4-18.

For a list of the messages thrown in response to errors by the C++ implementation of
ObMap, see "C-Family Status and Error Message Strings" on page 4-128.

Constructors (ObMap, C++)
Table 4–17 describes and details the constructors associated with the ObMap class.

Methods (ObMap, C++)
Table 4–18 lists the ObMap methods and associated parameters.

ObAuthenticationScheme Enables creation of and interaction with the structures that
represent the authentication schemes used to authenticate users.

ObResourceRequest Enables creation of and interaction with the structures that
represent user requests to access resources.

ObUserSession Enables creation of and interaction with structures representing
sessions for users who have completed authentication
successfully.

ObConfig Enables your application to initialize or shut down the Access
Server. You can also obtain AccessGate configuration data from
the Access Server.

ObAccessException Enables you to extract the entire error message string thrown by
the Access Manager API in response to an error. Alternatively,
you can extract any or all of the embedded substrings (up to
five) in an error message.

Note: For the C++ implementation of the Access Manager API, you
must invoke the "delete" method to clean up structures when they are
no longer needed. See "About Memory Management" on page 4-17.

Table 4–17 ObMap Constructors (C++)

Key Parameter Details

NULL ObMap() creates an empty list to hold name:value pairs. The
name of this list is specified by the user when declaring the
variable that represents this object.

otherMap ObMap(const ObMap &otherMap) creates a copy of an existing
list. The name of the new list is specified by the user.

Parameters:

OtherMap: The name of the list to be copied.

Returns: A list to hold name:value pairs.

Table 4–16 (Cont.) Overview of the Classes belonging to ObAccess (C++)

Class Description

C++ Implementation Details

Building AccessGates with the Access Manager SDK 4-79

ObMapIterator
ObMapIterator enables you to step through a list created by ObMap and extract a
name:value pair from a specific position in the list. Alternatively, you can use the
ObMapIterator pointer to determine when the end of the list has been reached. For a
general discussion of ObMapIterator, see "ObMapIterator" on page 4-20.

For a list of the messages thrown in response to errors by the C++ implementation of
ObMapIterator, see "C-Family Status and Error Message Strings" on page 128.

Constructors (ObMapIterator, C++)
Table 4–19 lists details for the ObMapIterator constructors.

Methods (ObMapIterator, C++)
Table 4–20 lists the methods and associated details for ObMapIterator.

Table 4–18 ObMap Methods (C++)

Method Details

get const char *get(const char *name) const returns from the list the
string value corresponding to the name specified.

Parameters:

name: The name member of the name:value pair for which the
corresponding value is to be returned.

Returns: The value member of the name:value pair. If the name
is not found in the list, the method returns NULL.

put void put(const char *name, const char *val) stores a name:value
pair in the list. If the name is already in the list, its value is
replaced; otherwise the name:value pair is added to the list. By
implication a name can map to a just one value at any given
time.

Parameters:

name: A string representing the name to be stored.

val: A string representing the value to be stored.

size int size()const returns the total number of the name:value pairs
in the list.

copy ObMap *copy() const creates a copy of ObMap.

Returns: A pointer to the copy.

Table 4–19 ObMapIterator Constructors (C++)

Key Parameter Details

map ObMapIterator(const ObMap &map) creates an iterator (pointer) to a
specified ObMap list. This pointer is used with ObMapIterator(next).

Parameters:

map: The name of the list.

other ObMapIterator(const ObMapIterator &other) creates an iterator (pointer)
to a copy of a specified ObMap list. This pointer is used with
ObMapIterator(next).

Parameters:

other: The name of the list to be copied.

C++ Implementation Details

4-80 Oracle Access Manager Developer Guide

ObAuthenticationScheme
ObAuthenticationScheme enables creation of and interaction with the structures that
define the challenge methods and other parameters used by your AccessGate to
authenticate users. For a general discussion of ObAuthenticationScheme, see
"ObAuthenticationScheme" on page 4-20.

For a list of the messages thrown in response to errors by the C++ implementation of
ObAuthenticationScheme, see "C-Family Status and Error Message Strings" on
page 4-128.

Constructors (ObAuthenticationScheme, C++)
Table 4–21 lists details for the ObAuthenticationScheme constructors.

Methods (ObAuthenticationScheme, C++)
Table 4–22 lists the ObAuthenticationScheme methods and associated details.

Table 4–20 ObMapIterator Methods (C++)

Method Details

next void next(const char **name, const char **val) returns the
name:value pair from the current position in the list and moves
the iterator to the following pair.

Returns: Text strings for the next name:value pair.

hasMore ObBoolean_t hasMore() const watches for the end of a list. It
returns ObTrue if more name:value pairs exist in the map. It
returns ObFalse if the end of the list has been reached.

Table 4–21 ObAuthenticationScheme Constructors (C++)

Key Parameter Details

resource public ObAuthenticationScheme(const ObResourceRequest &resource)
constructs an ObAuthenticationScheme object for the specified
ObResourceRequest.

Parameters:

resource: The resource request for which the authentication scheme
object is being constructed.

Returns: A structure holding the object.

presource ObAuthenticationScheme(const ObResourceRequest *presource)
constructs an ObAuthenticationScheme object for the specified
ObResourceRequest.

Parameters:

resource: The resource request for which the authentication scheme
object is being constructed.

Returns: A structure holding the object.

other ObAuthenticationScheme(const ObAuthenticationScheme &other) is the
copy constructor for this class.

Parameters:

other: The existing authentication scheme object to be copied.

Returns: A structure holding a copy of the object.

C++ Implementation Details

Building AccessGates with the Access Manager SDK 4-81

ObResourceRequest
ObResourceRequest enables creation of and interaction with the structures that
represent user requests to access resources. For a general discussion of
ObResourceRequest, see "ObResourceRequest" on page 4-23.

For a list of the messages thrown in response to errors by the C++ implementation of
ObResourceRequest, see "C-Family Status and Error Message Strings" on page 4-128.

Table 4–22 ObAuthenticationScheme Methods (C++)

Methods Details

getName const char *getName() const returns the display name assigned to
the authentication scheme during configuration.

getMask int getMask() const returns a mask byte defining the security level.

requiresSecure
Transport

ObBoolean_t requiresSecureTransport() const returns ObTrue if the
scheme requires an SSL client connection; otherwise, it returns
ObFalse. If the return flag is ObTrue, a redirectUrl is required.

isBasic ObBoolean_t isBasic() const returns a flag indicating if the
authentication scheme requires only a userid-and-password
challenge method.

Returns: ObTrue if the scheme is Basic; otherwise, it returns
ObFalse.

isCertificate ObBoolean_t isCertificate() const returns ObTrue if the scheme
requires a digital certificate; otherwise, it returns ObFalse.

isForm ObBoolean_t isForm() const returns ObTrue if the authentication
scheme uses customer-defined credential fields in an HTML login
form (FORM-based authentication). Otherwise, it returns ObFalse.

isNone ObBoolean_t isNone() const returns ObTrue if no credentials are
required for authentication; otherwise, it returns ObFalse.

getLevel int getLevel() const returns a numeric representation of the security
level specified during authentication scheme configuration.

getRedirectUrl const char *getRedirectUrl() const returns a string specified during
configuration that represents the URL to which clients are
redirected for authentication.

getChallenge
Parameter

const char *getChallengeParameter(const char *parameterName)
const returns the value for a challenge parameter that was specified
by name during configuration. This parameter can be used to
retrieve a space-separated list of context requests in the creds
challenge parameter of an authorization scheme. The caller must
parse the list to obtain the individual parameter names.

Parameters:

parameterName: The name of the challenge parameter.

Returns: The corresponding challenge parameter value.

getAllChallenge
Parameters

const ObMap &getAllChallengeParameters() const returns all the
challenge parameters specified during configuration for a given
authentication scheme.

Returns: An ObMap list of name:value pairs.

getNumberOf
Challenge Parameters

int getNumberOfChallengeParameters() const returns the total
number of challenge parameters assigned to the Authentication
Scheme during configuration.

C++ Implementation Details

4-82 Oracle Access Manager Developer Guide

Constructors (ObResourceRequest, C++)
Table 4–23 details the ObResourceRequest constructors.

Methods (ObResourceRequest, C++)
Table 4–24 details the ObResourceRequest methods.

Table 4–23 ObResourceRequest Constructors (C++)

Key Parameter Details

operation ObResourceRequest(const char *resType,const char
*resource,const char *operation) constructs an
ObResourceRequest object. The parameters are left as NULL
values.

Parameters:

resType: The resource type (If resType is NULL, HTTP is used as
a default.)

resource: The name of the resource

operation: The operation to be performed

Returns: A structure holding the ObResourceRequest object.

parameters ObResourceRequest(const char *resType, const char *resource,
const char *operation, const ObMap ¶meters) constructs an
ObResourceRequest object. The parameter list is left as NULL
values.

Parameters:

resource: The name of the resource. operation: The operation to
be performed.

parameters: A pointer to a list of context data (authorization
parameters)

resType: The resource type. (If resType is NULL, HTTP is used
as a default.)

Returns: A structure holding the object.

other ObResourceRequest(const ObResourceRequest &other) is the
copy constructor for this class.

Parameters:

other: The name of an existing ObResourceRequest structure to
be copied.

Returns: A structure holding a copy of the object.

Table 4–24 ObResourceRequest Methods (C++)

Methods Details

getResourceType const char *getResourceType() const returns the resource type for
the request.

getResource const char *getResource() const returns the resource name for the
request.

getOperation const char *getOperation() const returns the name of the
requested operation.

getParameters const ObMap &getParameters() const returns a pointer to the
first name:value pair in the list of parameters provided as a set
of name:value pairs.

getNumberOf Parameters int getNumberOfParameters() const returns a count of the
number of pairs in the list.

C++ Implementation Details

Building AccessGates with the Access Manager SDK 4-83

ObUserSession
ObUserSession enables creation of and interaction with structures that represent
sessions for users who have completed authentication successfully. For a general
discussion of ObUserSession, see "ObUserSession" on page 4-24.

For a list of the messages thrown in response to errors by the C++ implementation of
ObUserSession, see "C-Family Status and Error Message Strings" on page 4-128.

Constructors (ObUserSession, C++)
Table 4–25 lists the ObUserSession constructors and associated details.

isProtected ObBoolean_t isProtected() returns ObTrue if the resource is
protected by Access System policies; it returns ObFalse if it is not

getAuthorization
Parameters

ObMap *getAuthorizationParameters() const When a response
to the "ObUserSession.IsAuthorized" method includes a list of
required data points from an external source, the list is cached in
the ObResourceRequest object specified through the
isAuthorized call. An AccessGate can obtain the list through the
getAuthorizationParameters method. The AccessGate can add
the appropriate values and pass the ObMap through a
subsequent isAuthorized call. The caller is responsible for using
the "delete" method to deallocate the ObMap object returned by
getAuthorizationParameters.

Returns: A list of name-value pairs with NULL values.

getNumberOf
Authorization Parameters

int getNumberOfAuthorizationParameters() const; returns the
number of required context data items.

Table 4–25 ObUserSession Constructors (C++)

Key Parameter Details

sessionToken ObUserSession(const char *sessionToken) creates a user session
object. Used for calls that load the session information immediately.

Parameters:

sessionToken: An ASCII text string that is parsed to obtain the result
of authentication, which is to say, the user's DN and the level of the
authentication scheme used.

Returns: a structure holding a user session object.

Throws: an ObAccessException if the user session object cannot be
created for some reason or the sessionToken value is NULL.

lazyload ObUserSession(const char* sessionToken, bool lazyload) creates a
user session on demand.

Parameters:

lazyload: This flag, if true, indicates that the session token is not to be
loaded immediately. Relies on getUserIdentity(), getLocation(),
getLevel(), getStartTime(), and getEndTime() functions to make calls
if the session token information is invalid, and lazyload loads the
token on demand.

Returns: A user session object.

Throws: An ObAccessException if the user session object cannot be
created for some reason or the resource object is NULL.

Table 4–24 (Cont.) ObResourceRequest Methods (C++)

Methods Details

C++ Implementation Details

4-84 Oracle Access Manager Developer Guide

Methods (ObUserSession, C++)
Table 4–26 lists ObUserSession methods and associated details.

resource ObUserSession(const ObResourceRequest &resource, const ObMap
&credentials, const char *location = NULL) creates a user session
object, as described under "ObUserSession" on page 4-24.

Parameters:

resource: The resource object for which the user is being
authenticated.

credentials: The user credentials.

location: The location of the user, if it needs to be specified. A valid
DNS name or IP address can be used to specify the location of the
user's machine.

Returns: A structure holding a user session object.

Throws: An ObAccessException if the user session object cannot be
created for some reason or the resource object is NULL.

presource ObUserSession(const ObResourceRequest *presource, const ObMap
&credentials, const char *location = NULL) creates a user session
object.

Parameters:

presource: The name of the resource

credentials: The user credentials.

location: The location of the user, if it needs to be specified. A valid
DNS name or IP address can be used to specify the location of the
user's machine.

Returns: A user session object.

Throws: An ObAccessException if the user session object cannot be
created for some reason or the resource object is NULL.

&other ObUserSession(const ObUserSession &other) creates a copy of a user
session object.

Parameters:

other: The existing user session object to be copied.

Returns: A copy of the user session object.

Throws: An ObAccessException if the user session object cannot be
created for some reason or the resource object is NULL.

Table 4–26 ObUserSession Methods (C++)

Method Details

getUserIdentity const char *getUserIdentity() const returns the DN of the user's
profile entry in the user directory.

getLocation const char *getLocation() const returns the IP address of the user's
web browser.

Table 4–25 (Cont.) ObUserSession Constructors (C++)

Key Parameter Details

C++ Implementation Details

Building AccessGates with the Access Manager SDK 4-85

getAction const char *getAction(const char *actionType, const char *name)
const returns an action corresponding to the action name and type
specified.

Parameters:

actionType: The type of action for which the value is returned. If this
is left NULL, the default is headerVar.

name: The name of the action for which the value is returned.

getActions const ObMap &getActions(const char *actionType)const returns an
ObMap list of action names and values in response to a specified
action type.

Parameters:

actionType: The type of action for which the list is returned. If this is
left NULL, the default is "headerVar".

getActionTypes const **getActionTypes() const returns all the action types as an array
of pointers to strings. The array is terminated by a NULL pointer.

getNumberofActions int getNumberOfActions(const char *actionType) const returns the
total number of actions of the specified action type that are
associated with the user session.

Parameters:

actionType: The name of the action type for which a count of actions
is needed. If this is left NULL, the default is headerVar.

getLevel int getLevel() const returns a numeric value representing the level of
the authentication scheme used to authenticate the user.

getStartTime int getStartTime() const returns the time at which the user was
authenticated. This value is used to determine when a session
expires.

Returns: The number of seconds since midnight, January 1, 1970
since the user was authenticated.

getLastUseTime int getLastUseTime() const returns the time since the most recent
user request was authorized. This value is used to determine when
an idle session expires.

Returns: The number of seconds since midnight, January 1, 1970
since the most recent user request was authorized.

getStatus ObUserStatus_t getStatus() const describes the current session status.

Returns: An ObUserStatus_t value, such as logged out, logged in,
login failed, or expired.

getError ObUserError_t getError() const returns one of the ObUserError_t
error values determined by the most recent authentication or
authorization.

getErrorMessage const char *getErrorMessage(int err) const returns the detailed error
message for the authentication or authorization failure. The text of
this message is derived by the Access API and is not for user
modification.

Parameters:

err: The numerical error code corresponding to the authentication or
authorization failure.

getSessionToken const char *getSessionToken() const returns the saved, encrypted
ASCII string representing the user session.

Table 4–26 (Cont.) ObUserSession Methods (C++)

Method Details

C++ Implementation Details

4-86 Oracle Access Manager Developer Guide

getUserIdentity const char *getUserIdentity() const returns the Distinguished Name
of the user's profile entry in the user directory.

setLocation void setLocation(const char *location) sets the location of the user's
browser.

isAuthorized

(resource)

ObBoolean_t isAuthorized() const ObResourceRequest &resource)
returns ObTrue if the user is authorized to perform an operation for a
particular resource; otherwise, it returns ObFalse.

Parameters:

resource: The resource object whose authorization is to be checked.

Throws: An ObAccessException, if the authorization check cannot be
completed for any reason.

isAuthorized

(presource)

ObBoolean_t isAuthorized(const ObResourceRequest *presource)
returns ObTrue if the user is authorized to request an operation for a
particular resource; otherwise, it returns ObFalse.

Parameters:

presource: The resource object whose authorization is to be checked.

Throws: An ObAccessException, if the authorization check cannot be
completed for any reason.

isAuthorized (...res,
parameters)

ObBoolean_t isAuthorized(const ObResourceRequest &res [const
ObMap ¶meters]) returns ObTrue if the user is authorized to
request an operation for a particular resource; otherwise it returns
ObFalse.

Parameters:

res: The resource object whose authorization is to be checked.

ObMap ¶meters: A list of name-value pairs that the Access
Manager API will send in the request context object to the Access
Server for authorization. The parameter argument is optional. When
specified, the name-value pairs in the parameters are passed to the
Access Server for authorization.

Throws: An ObAccessException if the authorization check cannot be
completed for any reason.

isAuthorized (...pRes,
parameters)

ObBoolean_t isAuthorized(const ObResourceRequest &pRes [const
ObMap ¶meters]) returns ObTrue if the user is authorized to
request an operation for a particular resource; otherwise it returns
ObFalse.

Parameters:

pRes: The resource object whose authorization is to be checked.

ObMap ¶meters: A list of name-value pairs that the Access
Manager API will send in the request context object to the Access
Server for authorization. The parameter argument is optional. When
specified, the name-value pairs in the parameters are passed to the
Access Server for authorization.

Throws: An ObAccessException if the authorization check cannot
be completed for any reason.

logoff void logoff() logs off the authenticated user and terminates the
session.

Table 4–26 (Cont.) ObUserSession Methods (C++)

Method Details

C++ Implementation Details

Building AccessGates with the Access Manager SDK 4-87

ObConfig
ObConfig enables the application to initialize or shut down the Access Server or obtain
AccessGate configuration data from the Access Server. For a list of AccessGate
configuration parameters returned by ObConfig.getItem and ObConfig.getAllItems,
see "Configuration Parameters" on page 4-26.

For a general discussion of ObConfig, see "ObAccessException" on page 4-28.

No constructors exist for the C++ implementation of the class ObAccess.ObConfig.

For a list of the messages thrown in response to errors by the C++ implementation of
ObConfig, see "C-Family Status and Error Message Strings" on page 4-128.

Methods (ObConfig, C++)
Table 4–27 details the methods associated with ObConfig.

Table 4–27 ObConfig Methods (C++)

Method Details

initialize static void initialize(const char *installDir = NULL) initializes the
AccessGate, including reading all AccessGate configuration parameters
into the ObConfig structure. See "Configuration Parameters" on
page 4-26.

Parameters:

installDir: A coded internal value provided for this parameter; otherwise,
the value for the environment variable OBACCESS_INSTALL_DIR.

Throws: An ObAccessException, if the user session object cannot be
created, or if the OBACCESS_INSTALL_DIR is invalid.

shutdown static void shutdown() disconnects the AccessGate from the Access
Server, and releases memory and other resources.

getAllitems static ObMap &getAllItems() reads all the configuration variables from
the configuration file into an ObMap name:value list. See "Configuration
Parameters" on page 4-26.

Throws: An ObAccessException if an attempt is made to invoke the
method before successful initialization takes place.

getSDKVersion static const char *getSDKVersion() returns the SDK version as an internal
value known to the API.

Throws: An ObAccessException if an attempt is made to invoke the
method before a successful initialization takes place.

getNAPVersion static const char *getNAPVersion() returns, as an internal value known to
the API, the version of the access control protocol being used by the API.

Throws: An ObAccessException if an attempt is made to invoke the
method before a successful initialization takes place.

getNumberOf

Items

static int getNumberOfItems() returns the total number of items that can
be extracted from the configuration file.

Throws: An ObAccessException if an attempt is made to invoke the
method before a successful initialization takes place.

getItem static const char *getAction(const char* name) returns a string
representing the name of a configuration item listed in "Configuration
Parameters" on page 4-26.

Parameters:

name: The name of a configuration item.

Throws: An ObAccessException if an attempt is made to invoke the
method before a successful initialization takes place.

C++ Implementation Details

4-88 Oracle Access Manager Developer Guide

ObAccessException
The ObAccessException class enables you to trap errors generated in connection with
the Access Manager API. The C++ implementation of ObAccessException enables you
to return the full error message associated with an error code, or, in the case of the
most recently generated error code, return up to five substrings from the full message
so that you can embed them in custom error message text.

Constructors (ObAccessException, C++)
Table 4–28 lists the constructors for the C++ implementation of the ObAccessException
class.

Methods (ObAccessException, C++)
Table 4–29 lists the methods for the C++ implementation of ObAccessException.

Table 4–28 ObAccessException Constructors (C++)

Key Parameter Details

code ObAccessException(ObAccessExceptionCode_t code, const char
*p1 = NULL, const char *p2 = NULL, const char *p3 = NULL,
const char *p4 = NULL, const char *p5 = NULL) constructs an
exception in response to an error code.

Parameters:

code: The number corresponding to the error that has occurred.

p1 to p5: Parameters that can be inserted into the message string,
if the string permits variable content. Parameters are intended
for internal use only.

other ObAccessException(const ObAccessException &other) copies an
existing exception.

Parameters:

other: The name of an existing exception.

Table 4–29 ObAccessException Methods (C++)

Parameter Details

getCode ObAccessExceptionCode_t get code returns the value of the last
error code generated within the Access Manager API. (This is
also the code that appears in the exception created by the API).

getParameter const char *getParameter(int index) returns the substring that
normally appears in the full error message at the location
"%index." You can insert such a substring into custom message
strings you have created.

parameters:

index: The index number of the location where the substring
normally appears in the full error message generated by the API.

toString const char *toString() returns the full error message string
(including all applicable substrings) for the most recent error
code generated within the API. To allow reporting of the
message, do not free the return value.

C++ Implementation Details

Building AccessGates with the Access Manager SDK 4-89

ObDiagnostic (C++)
The ObDiagnostic class enables you to display diagnostic information such as the
name and port of the Access Server, its location, the number of connections the
AccessGate has with the Access Server, and so on. This class also displays diagnostic
information about the directory that is associated with the Access Server.

Example:

class ObDiagnostic {
public:
 OBDLLEXPORT static const ObMap* getServerDiagnosticInfo() ;
 OBDLLEXPORT static const ObMap* getDirectoryDiagnosticInfo() ;
 OBDLLEXPORT static const ObMap* getClientDiagnosticInfo() ;
 };

Methods (ObDiagnostic, C++)
Table 4–30 lists the methods for the C++ implementation of ObDiagnostic.

getCodeString const char *getCodeString(ObAccessExceptionCode_t code)
returns the error message corresponding to the specified
ObAccessExceptionCode_t error code.

Since you specify the error code, this doesn't have to be the most
recent error message generated by the API.

Since the string is returned verbatim for the ObAccessGate.msg
file, in which al the substrings are set to NULL, it does not
contain current values for the substrings p1 to p5.

To allow reporting of the message, do not free the return value.

parameters:

code: The ObAccessExceptionCode_t error code corresponding
to the error message to be returned from ObAccessGate.msg.

Table 4–30 ObDiagnostic Methods (C++)

Parameter Details

getServerDiagnosticInfo() This parameter returns the following items on the ObMap
structure:

■ Access Server host name

■ Access Server port

■ Number of connections with the Access Server established
by the current WebGate

■ Access Server state (up or down)

■ Access Server creation date and time (based on when it
was installed)

■ Access Server installation directory

■ Maximum number of threads allowed in this Access
Server.

Table 4–29 (Cont.) ObAccessException Methods (C++)

Parameter Details

C Implementation Details

4-90 Oracle Access Manager Developer Guide

C Implementation Details
The functions belonging to the "pseudo-classes" in the C implementation of the Access
Manager API have been systematically named so as to parallel the naming scheme
used by the paradigmatic C++ implementation of the Access Manager API. For
example, the C function "ObMap_get" corresponds to the C++ method "ObMap.get,"
and "ObUser_isAuthorized" in C corresponds to "ObUserSession.isAuthorized"in C++.
In fact, the "class member functions" in the C implementation are merely opaque
pointers to methods in the C++ implementation.

The header file "obaccess_api_c.h" details the members of the "pseudo classes"
belonging to the C implementation of the Access Manager API. It can be found at the
following location:

SDK_install_dir\include.

For a comparative discussion of the implementations of the Access Manager API, see
"About the Access Manager API" on page 4-17.

ObMap_t
The ObMap_t "pseudo class" provides list structures to hold the various sets of
name:value pairs used by the Access Manager API. In addition to creating such
structures, you can write to them, retrieve information from them, determine how
many item pairs they contain, and copy their contents. Another function exists to
deallocate the memory used by a list structure. To avoid memory leaks, use this
destructor whenever you no longer need a list.

For a general discussion of the ObMap class, see "ObMap" on page 4-18.

getDirectoryDiagnosticInfo() This parameter returns the following items in an ObMap
structure:

■ Directory type (Config, User, Policy)

■ Directory host

■ Directory port

■ Directory state (up or down)

■ Priority (primary or secondary)

■ Mode (open or SSL)

■ Size limit (the maximum number of search results)

■ Time limit (the timeout threshold)

■ Login DN

■ Creation date and time based on when the Access server
establishes connection with the Directory Server. (If you
restart either server, the creation date and time change.)

Note: For the C-language implementation of the Access Manager
API, you must "clean up" structures that are no longer needed by
invoking the appropriate "_free" function for structures when they are
no longer needed. See "About Memory Management" on page 4-17.

Table 4–30 (Cont.) ObDiagnostic Methods (C++)

Parameter Details

C Implementation Details

Building AccessGates with the Access Manager SDK 4-91

For a list of the messages thrown in response to errors by the C implementation of
ObMap_t, see "C-Family Status and Error Message Strings" on page 4-128.

Functions (ObMap_t, C)
Table 4–31 details the functions associated with ObMap_t.

ObMapIterator_t
The ObMapIterator_t "pseudo class" provides functions that enable you to place a
pointer within a list structure, so as to count the number of items in the list. Other
functions enable you to "step through" a list by pointing to successive items in the list,
determine when the end of a list has been reached, and deallocate the memory used by
the pointer.

Table 4–31 ObAccess.ObMap_t Pseudo-Class Functions (C)

Function Details

ObMap_new ObMap_t ObMap_new() creates an empty list with a name
specified by the user. (This function serves as the constructor for
this pseudo class).

Returns: A list to hold name:value pairs.

ObMap_get const char *ObMap_get(ObMap_t map, const char *name)
returns a string value in response to a specified name from a
specified list.

Parameters:

map: A pointer to a list.

name: The name half of the name:value pair in a specified list for
which a corresponding value is to be returned.

ObMap_put void ObMap_put(ObMap_t map, const char *name, const char
*val) stores a name:value pair in a specified list. If the name
already exists in the list, its value is replaced.

Parameters:

map: The name of the list.

name: A string representing the name of the item to be stored.

val: A string representing the value to be stored.

ObMap_size int ObMap_size(ObMap_t map) returns a number of name:value
pairs in a specified list.

Parameters:

map: The name of the list.

ObMap_copy ObMap_t ObMap_copy(ObMap_t map) makes a copy of a
specified list.

Parameters:

map: The name of the list.

Returns: A pointer to the copy.

ObMap_free void ObMap_free(ObMap_t *pMap) frees the memory occupied
by a specified list. (This function serves as the destructor for this
pseudo class).

Parameters:

pMap: Pointer to the list location.

C Implementation Details

4-92 Oracle Access Manager Developer Guide

For a general discussion of the ObMapIterator class, see "ObMapIterator" on
page 4-20.

For a list of the messages thrown in response to errors by the C implementation of
ObMapIterator_t, see "C-Family Status and Error Message Strings" on page 4-128.

Functions (ObMapIterator_t, C)
Table 4–32 details the functions for ObMapIterator_t.

ObAuthenticationScheme_t
The ObAuthenticationScheme "pseudo class" enables the creation of and interaction
with the structures used to authenticate users. For a general discussion of
ObAuthenticationScheme, see "ObAuthenticationScheme" on page 4-20.

For a list of the messages thrown in response to errors by the C implementation of
ObAuthenticationScheme_t, see "C-Family Status and Error Message Strings" on
page 4-128.

Table 4–32 ObAccess.ObMapIterator_t Pseudo-Class Functions (C)

Function Details

ObMapIterator_ new ObMapIterator_t ObMapIterator_new(ObMap_t map) creates an
iterator for a specified list and points it initially at the first
name:value pair in the list. (This function serves as the
constructor for this pseudo class).

Parameters:

map: The name of the list.

Returns: A pointer to the list.

ObMapIterator_ hasMore ObBoolean_t ObMapIterator_hasMore(ObMapIterator_t iter)
watches for the end of the list, returning ObTrue if name:value
pairs exist beyond the current position of the iterator. It returns
ObFalse when the iterator reaches the end of the list.

Parameters:

iter: A pointer to the next item in the list.

ObMapIterator_ next void ObMapIterator_next(ObMapIterator_t iter, const char
**name, const char **val) returns a text string representing the
name:value pair existing at the current iterator position in the
list. This function then moves the iterator to the following pair.
Technically speaking, the "const char **" parameters are pointers
to variables that will be set to pointers to character strings.

Parameters:

iter: A pointer to the next item in the list.

name: The address of the variable that will receive the pointer to
the character string represented by "name."

val: The address of the variable that will receive the pointer to
the character string represented by "val."

ObMapIterator_ free void ObMapIterator_free(ObMapIterator_t *pIter) frees the
memory used by the list. (This function serves as the destructor
for this pseudo class).

Parameters:

pIter: A pointer to the list location.

C Implementation Details

Building AccessGates with the Access Manager SDK 4-93

Functions (ObAuthenticationScheme_t, C)
Table 4–33 details the functions belonging to ObAuthenticationScheme_t.

Table 4–33 ObAccess.ObAuthenticationScheme_t Functions (C)

Function Details

ObAuthn_ new ObAuthnScheme_t ObAuthn_new(ObResourceRequest_t
resource) constructs an ObAuthenticationScheme object that
returns information on the specified ObResourceRequest, such
as the challenge method required for authentication.

Parameters:

resource: The resource request for which the authentication
scheme object is to be created.

ObAuthn_ getName const char *ObAuthn_getName(ObAuthnScheme_t scheme)
returns the display name assigned to the authentication scheme
during configuration.

Parameters:

scheme: A pointer to the specified authentication scheme.

ObAuthn_ getMask int ObAuthn_getMask(ObAuthnScheme_t scheme) returns the
mask byte indicating the authorization challenge method and
whether credentials must be sent over a secure connection. For
details on the mask byte, see "ObAuthenticationScheme" on
page 4-20.

Parameters:

scheme: A pointer to the specified authentication scheme.

ObAuthn_ requires Secure
Transport

ObBoolean_t ObAuthn_requiresSecureTransport
(ObAuthnScheme_t scheme) returns ObTrue if the specified
authentication scheme requires credentials to be sent over a
secure (SSL or TLS) connection; otherwise, it returns ObFalse. If
a secure connection is required, a redirectUrl must be specified
during authenticate scheme configuration.

Parameters:

scheme: A pointer to the specified authentication scheme.

ObAuthn_ isBasic ObBoolean_t ObAuthn_isBasic(ObAuthnScheme_t scheme)
returns ObTrue if the challenge method for the specified
authentication scheme is HTTP BASIC. (In other words, it
requires only a userid and password as credentials). Otherwise,
it returns ObFalse.

Parameters:

scheme: A pointer to he specified authentication scheme.

ObAuthn_ isCertificate ObBoolean_t ObAuthn_isCertificate(ObAuthnScheme_t scheme)
returns ObTrue if the authentication scheme requires a digital
security certificate; otherwise, it returns ObFalse.

Parameters:

scheme: A pointer to the specified authentication scheme.

ObAuthn_ isForm ObBoolean_t ObAuthn_isForm(ObAuthnScheme_t scheme)
returns ObTrue if the authentication scheme requires
customer-defined credential fields in an HTML login form;
otherwise, it returns ObFalse.

Parameters:

scheme: A pointer to the specified authentication scheme.

C Implementation Details

4-94 Oracle Access Manager Developer Guide

ObResourceRequest_t
The ObResourceRequest_t "pseudo class" enables creation of and interaction with the
structures that represent user requests to access resources. For a general discussion of
ObResourceRequest, see "ObResourceRequest" on page 4-23.

For a list of the messages thrown in response to errors by the C implementation of
ObResourceRequest_t, see "C-Family Status and Error Message Strings" on
page 4-128.

ObAuthn_ isNone ObBoolean_t ObAuthn_isNone(ObAuthnScheme_t scheme)
returns ObTrue if no credentials are required for authentication.
If credentials are required, it returns ObFalse.

Parameters:

scheme: A pointer to the specified authentication scheme.

ObAuthn_ getLevel int ObAuthn_getLevel(ObAuthnScheme_t scheme) returns a
numeric representation of the authentication strength, as
specified during authentication scheme configuration.

Parameters:

scheme: A pointer to the specified authentication scheme.

ObAuthn_ getRedirectUrl const char *ObAuthn_getRedirectUrl(ObAuthnScheme_t
scheme) returns a URL representing the location where secure
authentication is to be performed. If secure authentication is not
required by the specified authentication scheme, this value is set
to NULL.

Parameters:

scheme: A pointer to the specified authentication scheme.

ObAuthn_ getChallenge
Parameter

const char *ObAuthn_getChallengeParameter
(ObAuthnScheme_t scheme, const char *parameterName)
returns a value corresponding to a specified challenge parameter
associated with a specified authorization scheme.

Parameters:

scheme: A pointer to the authentication scheme.

parameterName: The name of the challenge parameter.

ObAuthn_ getAll Challenge
Parameters

ObMap_t ObAuthn_getAllChallengeParameters
(ObAuthnScheme_t scheme) returns a name:value list
containing all the challenge parameters specified for the
specified authentication scheme.

Parameters:

scheme: A pointer to the specified authentication scheme.

ObAuthn_ getNumberOf
Challenge Parameters

int ObAuthn_getNumberOfChallengeParameters
(ObAuthnScheme_t scheme) returns the number of challenge
parameters assigned to the specified authentication scheme.

Parameters:

scheme: A pointer to the specified authentication scheme.

ObAuthn_free void ObAuthn_free(ObAuthnScheme_t *pScheme) frees the
memory used by the specified authentication scheme, and sets
the pointer value to NULL.

Parameters:

pScheme: A pointer to the specified authentication scheme.

Table 4–33 (Cont.) ObAccess.ObAuthenticationScheme_t Functions (C)

Function Details

C Implementation Details

Building AccessGates with the Access Manager SDK 4-95

Functions (ObResourceRequest_t, C)
Table 4–34 details the functions associated with ObResourceRequest_t.

Table 4–34 ObAccess.ObResourceRequest_t Pseudo-Class Functions (C)

Function Details

ObResource Request_new ObResourceRequest_t ObResourceRequest_new(const char
*resType, const char *resource, const char *operation, ObMap_t
parameters) constructs an ObResourceRequest using the
specified resource type, resource name, operation, and
parameters.

Parameters:

resType: The resource type. (If resType is NULL, HTTP is used
by default).

resource: A pointer to the resource.

operation: The operation to be performed against the resource.

parameters: A pointer to a list of parameters associated with the
resource request.

Returns: Pointer to a structure holding the object.

ObResource_ getResource
Type

const char *ObResource_getResourceType
(ObResourceRequest_t resource) returns the resource type for
the specified resource request.

Parameters:

resource: A pointer to the resource being requested.

ObResource_ getResource const char *ObResource_getResource (ObResourceRequest_t
resource) returns the name of the resource being requested
through the specified resource request.

Parameters:

resource: A pointer to the resource being requested.

ObResource_ getOperation const char *ObResource_getOperation (ObResourceRequest_t
resource) returns the name of the operation to be invoked
against the resource through the specified resource request.

Parameters:

resource: A pointer to the resource being requested.

ObResource_ getParameters const ObMap_t ObResource_getParameters
(ObResourceRequest_t resource) returns a pointer to the
name:value list of parameters associated with the specified
resource request.

Parameters:

resource: A pointer to the resource being requested.

ObResource_ getNumberOf
Parameters

int ObResource_getNumberOfParameters
(ObResourceRequest_t resource) returns the number items in the
name:value parameter list associated with the specified resource
request.

Parameters:

resource: A pointer to the resource being requested.

ObResource_ isProtected ObBoolean_t ObResource_isProtected (ObResourceRequest_t
resource) returns ObTrue if the resource is protected by Access
System policies. Otherwise, it returns ObFalse.

Parameters:

resource: A pointer to the resource being requested.

C Implementation Details

4-96 Oracle Access Manager Developer Guide

ObUserSession_t
The ObUserSession_t pseudo class enables creation of and interaction with structures
representing sessions for users who have successfully completed Access System
authentication. For a general discussion of ObUserSession, see "ObUserSession" on
page 4-24.

For a list of the messages thrown in response to errors by the C implementation of
ObUserSession_t, see "C-Family Status and Error Message Strings" on page 4-128.

Functions (ObUserSession, C)
Table 4–35 details the functions associated with ObUserSession:

ObResource_ free ObBoolean_t isCertificate() const ObResourceRequest_t
*resource) frees the memory used by the resource object and sets
to NULL the pointer to the list of parameters associated with the
specified resource request.

Parameters:

resource: A pointer to the resource being requested.

ObResource_
getAuthorization
Parameters

ObMap_t ObResource_getAuthorizationParameters
(ObResourceRequest_t res) returns a list of parameters for the
particular authorization scheme associated with the specified
resource request. All the parameter names are returned with the
associated values set to NULL. Once the returned value is no
longer in use, you must use ObMap_free() to deallocate the
ObMap_t object returned by getAuthorizationParameters().

Returns: A list of required credentials.

ObResource_ getNumberOf
Parameters

int ObResource_getNumberOfAuthorizationParameters
(ObResourceRequest_t res) returns the number of context
parameters required for the specified resource request.

ObResource_free void ObResource_free(ObResourceRequest_t *pRes) deallocates
the memory for the specified ObResourceRequest structure.

Table 4–35 ObAccess.ObUserSession_t Pseudo-Class Functions (C)

Function Details

ObUserSession_
authenticate

ObUserSession_t ObUserSession_authenticate
(ObResourceRequest_t resource, ObMap_t credentials, const
char *location) creates a user session object.

Parameters:

resource: The resource request object for which the user is being
authenticated.

credentials: User credentials.

location: The location of the user, if it needs to be specified. A
valid DNS name or IP address can be used to specify the
location of the user's machine.

Returns: A user session object.

Exception: An internally generated ObAccessException if the user
session object cannot be created for some reason or the resource
object is NULL.

Table 4–34 (Cont.) ObAccess.ObResourceRequest_t Pseudo-Class Functions (C)

Function Details

C Implementation Details

Building AccessGates with the Access Manager SDK 4-97

ObUserSession_ fromToken ObUserSession_t ObUserSession_fromToken(const char
*sessionToken) creates a user session object. Used when a session
token is needed immediately.

Parameters:

sessionToken: A session token, which is parsed to obtain the
associated credentials and user location information.

Returns: A user session object.

Exception: An internally generated ObAccessException if the user
session object cannot be created for some reason or the session
token is NULL.

ObUserSession_fromToken
withLazyLoad

ObUserSession_t
ObUserSession_fromTokenwithLazyLoad(const char
*sessionToken,bool lazyload) creates a user session on demand.

Parameters:

lazyload: This flag, if true, indicates that the session token is not
to be loaded immediately. Relies on getUserIdentity(),
getLocation(), getLevel(), getStartTime(), and getEndTime()
functions to make calls if the session token information is
invalid, and lazyload loads the token on demand.

Returns: A user session object.

Throws: An internally generated ObAccessException if the user
session object cannot be created for some reason or the session
token is NULL.

ObUser_get UserIdentity const char *ObUser_getUserIdentity(ObUserSession_t user)

Parameters:

user: A pointer to the user session object.

ObUser_get Location const char *ObUser_getLocation(ObUserSession_t user) returns
the IP address of the user's web browser.

Parameters:

user: A pointer to the user session object.

Returns: IP address of the user's web browser.

ObUser_get Action const char *ObUser_getAction(ObUserSession_t user, const char
*actionType, const char *name) returns a value corresponding to
the specified action name and action type for the specified user
session.

Parameters:

user: A pointer to the user session object.

actionType: The type of action for which the corresponding
value is returned. (If this is left NULL, the default is headerVar).

name: The name of the action for which the corresponding value
is to be returned.

ObUser_get Actions const ObMap_t ObUser_getActions(ObUserSession_t user, const
char *actionType) returns a pointer to list of action name:value
pairs corresponding to the specified action type for the specified
user session.

Parameters:

user: A pointer to the user session object.

actionType: The type of action for which the list is returned. If
actionType is left NULL, the default is headerVar.

Table 4–35 (Cont.) ObAccess.ObUserSession_t Pseudo-Class Functions (C)

Function Details

C Implementation Details

4-98 Oracle Access Manager Developer Guide

ObUser_get ActionTypes const **getActionTypes(ObUserSession_t user) returns an array
of pointers to strings. This array, which is terminated by a NULL
pointer, represents all the action types associated with the
specified user session.

Parameters:

user: A pointer to the user session object.

ObUser_get Numberof
Actions

int getNumberOfActions(ObUserSession_t user, const char
*actionType) returns the number of actions of the specified type
that are associated with the specified user session.

Parameters:

user: A pointer to the user session object.

actionType: The name of the action type for which a count of
actions is needed. If this is left NULL, the default is headerVar.

ObUser_get Level int ObUser_getLevel(ObUserSession_t user) returns a number
representing the authentication level of the authentication
scheme associated with the specified user session.

Parameters:

user: A pointer to the user session object.

ObUser_get StartTime int ObUser_getStartTime(ObUserSession_t user) returns the
number of seconds between midnight January 1, 1970 and the
initial time the user was authenticated for the specified session.
This value is used to determine session expiration.

Parameters:

user: A pointer to the user session object.

ObUser_get LastUseTime int ObUser_getLastUseTime(ObUserSession_t user) returns the
number of seconds between midnight January 1, 1970 and the
most recent time the user was authenticated for the specified
session. This value is used to determine expiration for an idle
session.

Parameters:

user: A pointer to the user session object.

Returns: A numeric value for the time.

ObUser_get Status ObUserStatus_t ObUser_getStatus(ObUserSession_t user)
returns one of the ObUserStatus_t values describing the status of
the session, such as logged out, logged in, login failed, or
expired.

Parameters:

user: A pointer to the user session object.

ObUser_get Error ObUserError_t ObUser_getError(ObUserSession_t user) returns
one of the ObUserError_t error values, as determined by the
most recent authentication or authorization failure for the
specified user session.

Parameters:

user: A pointer to the user session object.

Table 4–35 (Cont.) ObAccess.ObUserSession_t Pseudo-Class Functions (C)

Function Details

C Implementation Details

Building AccessGates with the Access Manager SDK 4-99

ObUser_get ErrorMessage const char *ObUser_getErrorMessage(ObUserSession_t user)
returns a detailed error message associated with the most recent
authentication or authorization failure for the specified user
session. The text of this message is derived by the Access API
and is not intended to be changed by the user.

Parameters:

user: A pointer to the user session object.

ObUser_is Authorized ObBoolean_t ObUser_isAuthorized(ObUserSession_t user,
ObResourceRequest_t resource) returns ObTrue if the user is
authorized to request an operation for a particular resource;
otherwise, it returns ObFalse.

Parameters:

user: A pointer to the user session object.

resource: The name of the resource request object whose
authorization is to be checked.

ObUser_is AuthorizedWith
Parameters

ObBoolean_t ObUser_isAuthorizedWithParameters
(ObUserSession_t user, ObResourceRequest_t res, ObMap_t
parameters) returns ObTrue if the user is authorized to request
an operation for a particular resource. Otherwise, it returns
ObFalse.

Parameters:

user: A pointer to the user session object.

resource: The name of the resource request object whose
authorization is to be checked.

parameters: Any data associated with the resource request. This
parameter is optional.

ObUser_get SessionToken const char *ObUser_getSessionToken(ObUserSession_t user)
returns from a session token saved on the user's hard disk an
ASCII string containing information on the specified user
session.

Parameters:

user: The name of the user session object.

ObUser_set Location void ObUser_setLocation(ObUserSession_t user, const char
*location) sets the location of the user's browser.

Parameters:

user: A pointer to the user session object.

location: A DNS or IP address representing the location of the
user's browser.

ObUser_logoff void ObUser_logoff(ObUserSession_t user); logs off the
authenticated user and terminates the specified user session.

Parameters:

user: A pointer to the user session object.

ObUser_free void ObUser_free(ObUserSession_t *puser) frees the memory
assigned for the list and sets the list pointer to NULL.

Parameters:

puser: A pointer to the user session object.

Table 4–35 (Cont.) ObAccess.ObUserSession_t Pseudo-Class Functions (C)

Function Details

C Implementation Details

4-100 Oracle Access Manager Developer Guide

ObConfig_t
The ObConfig_t pseudo class enables your application to initialize or shut down the
Access Server. You can also obtain AccessGate configuration data from the Access
Server. See "Configuration Parameters" on page 4-26.

For a general discussion of ObConfig, see "ObConfig" on page 4-26.

For a list of the messages thrown in response to errors by the C implementation of
ObConfig_t, see "C-Family Status and Error Message Strings" on page 4-128.

Functions (ObConfig, C)
Table 4–36 lists the functions and details for the ObConfig pseudo class.

Table 4–36 ObAccess.ObConfig_t Pseudo-Class Functions (C)

Function Details

ObConfig_ initialize void ObConfig_initialize(const char *installDir) initializes the
Access Manager API. This includes reading all the configuration
parameters listed in "Configuration Parameters" on page 4-26.

Parameters:

installDir: The root of the Access Manager API installation. If no
coded value is provided for this parameter, the value from the
environment variable OBACCESS_INSTALL_DIR is used.

Throws: An internally generated ObAccessException if the
configuration object cannot be created for some reason, or if the
OBACCESS_INSTALL_DIR is invalid.

ObConfig_ shutdown void ObConfig_shutdown() disconnects the AccessGate from the
Access Server and releases memory and other resources used by
the AccessGate and the Access Manager API.

ObConfig_ getAllitems ObMap_t ObConfig_getAllItems() returns a pointer to the list of
all the AccessGate configuration items listed in "Configuration
Parameters" on page 4-26.

Throws: An internally generated ObAccessException if an
attempt is made to invoke the method before the Access
Manager SDK has been successfully initialized.

ObConfig_ getNumber
OfItems

int ObConfig_getNumberOfItems() returns the number of items
in the AccessGate configuration file.

Throws: An internally generated ObAccessException if an
attempt is made to invoke the method before the Access
Manager SDK has been successfully initialized.

ObConfig_ getItem const char *ObConfig_getItem(const char* name) returns a value
corresponding to a name specified from the list of AccessGate
configuration items.

Parameters:

name: The name of the item whose value is to be extracted.

Throws: An internally generated ObAccessException if an
attempt is made to invoke the method before the Access
Manager SDK has been successfully initialized.

ObConfig_ getSDK Version const char *ObConfig_getSDKVersion() returns the version of
the Access Manager SDK as an internal value known to the API.

C Implementation Details

Building AccessGates with the Access Manager SDK 4-101

ObAccessException_t
ObAccess exceptions occur when the Access API detects unexpected, unrecoverable
problems such as not being able to connect to an Access Server. For a general
discussion of ObAccessException, see "ObAccessException" on page 4-28.

C-language Error Handlers
For an AccessGate written using the C implementation of the Access Manager API,
you must write an ObAccessExceptionHandler_t function, which is called when an
ObAccessException occurs. Otherwise, the C implementation of the API simply will
not catch exceptions. Thus, if you use the C API to construct an object, and an
exception occurs, that object will be returned empty, since no exception handler exists
to report and otherwise handle the exception.

The C version of ObAccessExceptionHandler_t prior to version 6 has been deprecated,
because it passed only the exception code, not the full exception. Consequently,
"ObAccessException_getCodeString" could not insert any exception parameter data
into the exception message.

A new version of the exception handler for AccessGates using the C implementation
of the Access Manager API. This new version, ObAccessExceptionHandler2_t, passes
the entire exception, so that ObAccessException_toString can display the exception
message, complete with embedded parameters. When you create AccessGates, be sure
to use ObAccessExceptionHandler2_t instead of the previous version.

The preferred way to write an exception handler is:

void myExceptionHandler(ObAccessException e){
 printf("EXCEPTION: %s\n", ObAccessException_toString(e));
 exit(1);
}

The following line then informs the API (in other words, it registers the callback
function) as to the name of the exception:

 ObAccessException_setHandler2(myExceptionHandler);

Functions (ObAccessException, C)
Table 4–37 lists the functions and details for the C implementation of the
ObAccessException class.

Note: If the calling program is written in C++, the calling program,
rather than the AccessGate, which is written without any exception
handler in C, might catch some exceptions.

C Implementation Details

4-102 Oracle Access Manager Developer Guide

ObDiagnostic (C)
The ObDiagnostic class enables you to display diagnostic information such as the
name and port of the Access Server, its location, the number of connections the
AccessGate has with the Access Server, and so on. This class also displays diagnostic
information about the directory that is associated with the Access Server.

Example:

OBDLLEXPORT const ObMap_t ObDiagnostic_getServerDiagnosticInfo();
OBDLLEXPORT const ObMap_t ObDiagnostic_getDirectoryDiagnosticInfo();
OBDLLEXPORT const ObMap_t ObDiagnostic_getClientDiagnosticInfo();

Table 4–37 ObAccess.ObAccessException_t Pseudo-Class Functions (C)

Parameter Details

ObAccess Exception
Handler2_t

typedef void (*ObAccessExceptionHandler2_t) (ObAccess
ExceptionCode_t exception) This is not actually a function.
Rather, it defines a pointer to a C++ function used within the
API. You implement this definition with your own code. See
"C-language Error Handlers" on page 4-101.

Parameters:

None. Rather, the pointer name you specify is passed to the
ObAccessException_setHandler2 function and used
automatically by other functions when exceptions occur. The
exception argument that appears in this function is the exception
generated by the API.

ObAccess Exception_
setHandler2

void ObAccessException_setHandler(ObAccessException
Handler2_t handler) connects exception handling to whatever
activities the user has chosen to include in the user-written
exception handler.

Parameters:

handler: A pointer to the user-written exception handler
function.

ObAccess Exception_
getCode

ObAccessExceptionCode_t ObAccessException_getCode
(ObAccessException_t e) returns the error code associated with
the full exception generated by the API.

Parameters:

e: The exception provided by the API.

ObAccess Exception_
getParameter

const char *ObAccessException_getParameter
(ObAccessException_t e, int which) returns a text substring
corresponding to the specified exception and the index of the
substring (1 to 5).

Parameters:

e: The exception provided by the API.

which: The index of the parameter (1 to 5), for which a text
string equivalent is needed.

ObAccess Exception_
toString

const char *ObAccessException_toString(ObAccessException_t
e) returns the full error message string (including all applicable
substrings) for the most recent error code generated within the
API. To allow reporting of the message, do not free the return
value.

Parameters:

e: The exception provided by the API.

C# Implementation Details

Building AccessGates with the Access Manager SDK 4-103

Methods (ObDiagnostic, C)
Table 4–38 lists the methods for the C implementation of ObDiagnostic.

C# Implementation Details
The following sections describe the C# (.NET) managed code implementation for the
Access Manager API.

For the most part, the classes in the C# version follow the pattern established by the
Java implementation of the Access Manager API. However, the C# version departs
from the Java paradigm in the following significant ways:

■ The enumerators used to specify various conditions are wrapped by managed
classes

■ The class ObMap is wrapped by ObDictionary

■ The class ObMapIterator is wrapped by ObDictionaryEnumerator

■ Certain method names have been changed to match the naming conventions used
for .NET properties.

Table 4–38 ObDiagnostic Methods (C)

Parameter Details

getServerDiagnosticInfo() This parameter returns the following items on the ObMap
structure:

■ Access Server host name

■ Access Server port

■ Number of connections with the Access Server established
by the current WebGate

■ Access Server state (up or down)

■ Access Server creation date and time (based on when it
was installed)

■ Access Server installation directory

■ Maximum number of threads allowed in this Access
Server.

getDirectoryDiagnosticInfo() This parameter returns the following items:

■ Directory type (Config, User, Policy)

■ Directory host

■ Directory port

■ Directory state (up or down)

■ Priority (primary or secondary)

■ Mode (open or SSL)

■ Size limit (the maximum number of search results)

■ Time limit (the timeout threshold)

■ Login DN

■ Creation date and time based on when the Access server
establishes connection with the Directory Server. (If you
restart either server, the creation date and time change.)

C# Implementation Details

4-104 Oracle Access Manager Developer Guide

■ The Mgd suffix has been appended to all the managed classes. Thus,
ObAuthenticationScheme. ObResourceRequest, ObUserSession, ObConfig, and
ObAccessException become, respectively, ObResourceRequestMgd,
ObUserSessionMgd, ObConfigMgd, and ObAccessExceptionMgd.

■ In contrast to the C and C++ development-language interfaces, but like Java, the
C# environment features a garbage collection service which automatically cleans
up objects when they are no longer needed. Therefore, you do not invoke the
delete or _free methods to clean up unused structures. See "About Memory
Management" on page 4-17.

The listings in this document can also be found in the header file obaccess_api_mgd.h,
which resides in the following location:

SDK_install_dir/include

The classes common to both the Access Manager API and Policy Manager API are
listed in the file obaccess_api_common_mgd.h, which is also in the directory:
SDK_install_dir/include.

ObDictionary
ObDictionary provides hashtable into which key-and-value pairs (the .NET equivalent
of the name:value pairs in Java hashtables) can be written. The class also provides
methods for retrieving information from the dictionary hashtable, determining the
number of items in that list, and copying the list.

The ObDictionary class is derived from the .NET IDictionary class and corresponds to
the ObMap class in the Java and C++ implementations of the Access Manager API. It
also corresponds to the ObMap_t "pseudo class" in the C implementation of the Access
Manager API. For a general discussion of the ObMap class, see "ObMap" on
page 4-18.

For a list of the messages thrown in response to errors by the C# implementation of
ObDictionary, see "C-Family Status and Error Message Strings" on page 4-128.

Constructors (ObDictionary, C#)
Table 4–39 provides details for the ObDictionary constructor.

Methods (ObDictionary, C#)
Table 4–40 presents the ObDictionary methods and associated details

Note: A .NET property resembles a Java member variable in that
both enable the user to read and write values to an object, but a .NET
property is implemented using the get and set methods.

Table 4–39 ObDictionary Constructors (C#)

Key Parameter Details

(none) ObDictionary()

map ObDictionary(const ObMap &map) using a name specified by
the user, creates a copy of an existing list in the form of an
ObDictionary object.

Parameters:

map: The name of the list to be copied.

C# Implementation Details

Building AccessGates with the Access Manager SDK 4-105

ObDictionaryEnumerator
You use the ObDictionaryEnumerator class to locate the entries in a dictionary
hashtable. You can also determine the number of items in that list or retrieve a
key-and-value pair from a specific position in that list.

For the C++ managed classes version of the Access Manager API, the ObMapIterator
class is implemented as the ObDictionaryEnumerator class, which is derived from the
IDictionaryEnumerator class in the .NET Framework class library. Instead of the
name:value pairs found in a Java hashtable, an ObDictionaryEnumerator dictionary
contains key-and-value pairs.

For a general discussion of the ObMapIterator class, see "ObMapIterator" on
page 4-20.

For a list of the messages thrown in response to errors by the C# implementation of
ObDictionaryEnumerator, see "C-Family Status and Error Message Strings" on
page 4-128.

Constructors (ObDictionaryEnumerator, C#)
Table 4–41 presents details for the ObDictionaryEnumerator constructor.

Table 4–40 ObDictionary Methods (C#)

Method Details

get_Item __property virtual System::Object *get_Item(System::Object
*key) returns a string value that corresponds to a name supplied
from a dictionary list. If the name is not found in the list, NULL
is returned. The item is returned as the base class object. The
user is responsible for casting this item to an appropriate form.

Parameters:

key: The key (or name) in a dictionary list for which a value is to
be returned.

add virtual void Add (System::Object *key, System::Object *value)
stores a key-and-value pair in the list. If the name is already in
the list, its value is replaced; otherwise the pair is added.

Parameters:

key: The name half of the item to be stored in the dictionary.

value: The value half of the item to be stored.

get_Count __property int get_Count() returns the total number of
key-and-value pairs in the list.

Clone Object *Clone() makes a copy of ObDictionary.

Returns: A pointer to the copy.

Table 4–41 ObDictionaryEnumerator Constructors (C#)

Key Parameter Details

dictionary ObDictionaryEnumerator(ObDictionary *dict) creates an
enumerator, which initially points to the first item in a specified
ObDictionary hashtable. MoveNext and other
ObDictionaryEnumerator methods make use of this structure.

Parameters:

dict: The name of the ObDictionary hashtable you want to step
through.

C# Implementation Details

4-106 Oracle Access Manager Developer Guide

Methods (ObDictionaryEnumerator, C#)
Table 4–42 lists the ObDictionaryEnumerator methods and associated details.

ObAuthenticationSchemeMgd
ObAuthenticationSchemeMgd structures enable users to store, pass, and retrieve
information related to authentication schemes. An authentication scheme specifies
how a user is challenged for a set of credentials. For a general discussion of the
ObAuthenticationScheme class, see "ObAuthenticationScheme" on page 4-20.

For a list of the messages thrown in response to errors by the C# implementation of
ObAuthenticationSchemeMgd, see "C-Family Status and Error Message Strings" on
page 4-128.

Constructors (ObAuthenticationSchemeMgd, C#)
Table 4–43 provides details for the ObAuthenticationSchemeMgd constructor.

Methods (ObAuthenticationSchemeMgd, C#)
Table 4–44 lists the methods and associated details for the
ObAuthenticationSchemeMgd class.

Table 4–42 ObDictionaryEnumerator Methods (C#)

Method Details

MoveNext bool MoveNext() watches for the end of the list. It returns
ObTrue when additional key-and-value pairs exist in the
dictionary list. It returns ObFalse when it reaches the final item
in the list.

get_Current __property Object *get_Current() returns an object that
represents the dictionary entry currently referenced by the
enumerator.

get_Entry __property DictionaryEntry get_Entry() returns a dictionary
key-and-value pair for the current dictionary entry.

get_Key __property Object *get_Key() returns the key (name) value from
the current dictionary entry. The user must then cast the
returned object to the appropriate class.

get_Value __property Object *get_Value() returns the value from the
current dictionary entry. The user must then cast the returned
object to the appropriate class.

Reset void Reset() points the enumerator to the first entry in the
dictionary list.

Table 4–43 ObAuthenticationSchemeMgd Constructors (C#)

Key Parameter Details

pRes ObAuthenticationSchemeMgd(ObResourceRequestMgd *pRes)
creates an ObAuthenticationScheme object for the specified
ObResourceRequest.

Parameters:

pRes: A pointer to the resource request for which the
authentication scheme object is being constructed.

Returns: A structure holding the object.

C# Implementation Details

Building AccessGates with the Access Manager SDK 4-107

ObResourceRequestMgd
The constructors and methods for the ObResourceRequestMgd class enable creation of
and interaction with the structures that represent user requests to access resources. For
a general discussion of the ObResourceRequest class, see "ObResourceRequest" on
page 4-23.

Table 4–44 ObAuthenticationSchemeMgd Methods (C#)

Method Details

get_Name __property System::String *get_Name() returns the display name
assigned to the authentication scheme.

get_Mask __property int get_Mask() returns the mask byte defining the
security level of the authentication scheme.

get_Requires Secure
Transport

__property bool get_RequiresSecureTransport() returns ObTrue
if the authentication scheme requires an SSL client connection;
otherwise, it returns ObFalse. When the return flag is ObTrue, a
redirectUrl is required to implement Secure Transport.

get_IsBasic __property bool get_IsBasic() returns ObTrue if the
authentication scheme requires only a "HTTP basic" challenge
method (in other words, it requires only a userid and password);
otherwise it returns ObFalse.

get_IsCertificate __property bool get_IsCertificate() returns ObTrue if the
authentication scheme requires a digital security certificate;
otherwise it returns ObFalse.

get_IsForm property bool get_IsForm() returns ObTrue if the authentication
scheme uses "HTML form" login (in other words, it uses
customer-defined credential fields); otherwise it returns ObFalse.

get_IsNone __property bool get_IsNone() returns ObTrue if no credentials
are required for authentication. If credentials are required, it
returns ObFalse.

get_Level __property int get_Level() returns a number representing the
level of authentication strength, as specified during
authentication scheme configuration.

get_RedirectUrl __property System::String *get_RedirectUrl() returns a string
representing the URL to which clients are redirected for Secure
Transport authentication.

getChallenge Parameter System::String *getChallengeParameter(System::String
*parameterName) returns the value for a parameter
corresponding to the current challenge method. For instance, the
creds parameter for the form challenge method retrieves a
space-separated list of context-dependent login requests. You
must parse this list to obtain the individual parameter names.

Parameters:

parameterName: The name of the parameter corresponding to
the current challenge method.

get_AllChallenge
Parameters

__property ObDictionary *get_AllChallengeParameters() returns
an ObDictionary list containing a key-and-value pair for each of
challenge parameter assigned to the authentication scheme.

get_NumberOf Challenge
Parameters

__property int get_NumberOfChallengeParameters() returns the
total number of challenge parameters assigned to the
authentication scheme during configuration.

Clone Object* Clone() crates a copy of the specified authentication
scheme structure.

C# Implementation Details

4-108 Oracle Access Manager Developer Guide

For a list of the messages thrown in response to errors by the C# implementation of
ObResourceRequestMgd, see "C-Family Status and Error Message Strings" on
page 4-128.

Constructors (ObResourceRequestMgd, C#)
Table 4–45 lists the ObResourceRequestMgd constructors and associated details.

Methods (ObResourceRequestMgd, C#)
Table 4–46 lists the methods and associated details belonging to
ObResourceRequestMgd.

Table 4–45 ObResourceRequestMgd Constructors (C#)

Key

Parameter Details

op ObResourceRequestMgd(System::String *resType, System::String
*res, System::String *op) constructs an ObResourceRequest
object.

Parameters:

resType: The resource type. (If resType is NULL, HTTP is used
as a default.)

res: The name of the resource.

op: The operation to be performed.

Returns: A structure representing the ObResourceRequest object.

parameters ObResourceRequestMgd(System::String *resType, System::String
*res, System::String *op, ObDictionary *parameters) constructs
an ObResourceRequest object.

Parameters:

resType: The resource type. (If resType is NULL, HTTP is used
as a default.)

res: The name of the resource.

op: The operation to be performed.

parameters: A pointer to a list of parameters to be used.

Returns: A structure representing the object.

Table 4–46 ObResourceRequestMgd Methods (C#)

Method Details

get_Resource Type __property System::String *get_ResourceType() returns a string
representing the resource type for the request.

get_Resource __property System::String *get_Resource() returns the resource
name for the request.

get_Operation __property System::String *get_Operation() returns the name of
the requested operation.

get_Parameters __property ObDictionary *get_Parameters() returns a pointer to
the first key-and-value pair in a list of parameters.

get_Number OfParameters __property int get_NumberOfParameters() returns the number
of pairs in the list.

C# Implementation Details

Building AccessGates with the Access Manager SDK 4-109

ObUserSessionMgd
ObUserSession enables creation of and interaction with structures that represent
sessions for users who have completed authentication successfully. For a general
discussion of ObUserSession, see "ObUserSession" on page 4-24.

For a list of the messages thrown in response to errors by the C# implementation of
ObUserSessionMgd, see "C-Family Status and Error Message Strings" on page 4-128.

Constructors (ObUserSessionMgd, C#)
Table 4–47 presents ObUserSessionMgd constructor details.

get_Is Protected __property bool get_IsProtected() returns ObTrue if the resource
is protected by Access System policies; otherwise, it returns
ObFalse.

Throws: an ObAccessException in response to a fatal error such
as failure to connect with the Access Server.

get_ Authorization
Parameters

__property ObDictionary *get_AuthorizationParameters() when
an IsAuthorized response includes a list of required context
data, the list is cached in the ObResourceRequest object specified
by the isAuthorized() call. An AccessGate can get the list
through the get_AuthorizationParameters method. The
AccessGate can add the appropriate values and pass the
ObDictionary into a subsequent isAuthorized call. The caller is
responsible for using delete to deallocate the ObDictionary
object returned by get_AuthorizationParameters.

Returns: List of key-and-value pairs with null values.

get_NumberOf
Authorization Parameters

__property int get_NumberOfAuthorizationParameters() returns
the number of required context data items.

Table 4–47 ObUserSessionMgd Constructors (C#)

Key Parameter Details

sessionToken UserSessionMgd(System::String *sessionToken) creates a user
session object immediately.

Parameters:

sessionToken: An ASCII text string that is parsed to obtain the
credentials and location information.

Returns: A structure holding a user session object.

Throws: An ObAccessException if the user session object cannot
be created for some reason, or if the sessionToken value is
NULL.

Table 4–46 (Cont.) ObResourceRequestMgd Methods (C#)

Method Details

C# Implementation Details

4-110 Oracle Access Manager Developer Guide

Methods (ObUserSessionMgd, C#)
Table 4–48 lists the methods and associated details for the ObUserSessionMgd class.

lazyload ObUserSessionMgd::ObUserSessionMgd(string sessionToken,
bool lazyload) creates a user session on demand.

Parameters:

lazyload: This flag, if true, indicates that the session token is not
to be loaded immediately. Relies on getUserIdentity(),
getLocation(), getLevel(), getStartTime(), and getEndTime()
functions to make calls if the session token information is
invalid, and lazyload loads the token on demand.

Returns: A user session object.

Throws: An internally generated ObAccessExceptionMgd if the
user session object cannot be created for some reason or the
session object is NULL.

credentials ObUserSessionMgd(ObResourceRequestMgd *pRes,
ObDictionary *credentials) creates a user session object.

Parameters:

pRes: The resource object requested by the user.

credentials: User credentials.

Returns: A structure holding a user session object.

Throws: An ObAccessException if the user session object cannot
be created for some reason, or if the resource object is NULL.

location ObUserSessionMgd(ObResourceRequestMgd *pRes,
ObDictionary *credentials, System::String *location) creates a
user session object.

Parameters:

pRes: The name of the resource.

credentials: User credentials.

location: The location of the user, if it needs to be specified. A
valid DNS name or IP address can be used to specify the
location of the user's machine.

Returns: A user session object.

Throws: An ObAccessException if the user session object cannot
be created for some reason, or if the resource object is NULL

Table 4–48 ObUserSessionMgd Methods (C#)

Method Details

get_UserIdentity __property System::String *get_UserIdentity() returns the
Distinguished Name of the user's profile entry in the user
directory.

get_Location __property System::String *get_Location() returns the location of
the user. A valid DNS name or IP address can be used to specify
the location of the user's machine.

Table 4–47 (Cont.) ObUserSessionMgd Constructors (C#)

Key Parameter Details

C# Implementation Details

Building AccessGates with the Access Manager SDK 4-111

getAction System::String *getAction(System::String *actionType,
System::String *name) returns an action corresponding to the
name of the action and action type specified.

Parameters:

actionType: The type of action for which the value is returned. If
this is left NULL, the default is headerVar.

name: Name of the action for which the value is to be returned.

Returns: A string representing the action.

getActions ObDictionary *getActions(System::String *actionType); returns
an ObDictionary list of action names and values, given an action
type.

Parameters:

actionType: The type of action for which the list is returned. If
this is left NULL, the default is "headerVar".

get_ActionTypes __property System::String *get_ActionTypes() returns an array
of pointers to strings, representing all the action types. The array
is terminated by a NULL pointer.

getNumber OfActions int getNumberOfActions(System::String *actionType) returns the
total number of actions belonging to the specified action type
that are also associated with the current user session.

Parameters:

actionType: The name of the action type for which a count of
actions is needed. If this is left NULL, the default is headerVar.

get_Level _property int get_Level() returns a number representing the
level of the current authentication scheme.

get_StartTime __property int get_StartTime() returns the time when the user
was authenticated, in seconds since midnight January 1, 1970.
Used to determine a session expiration.

get_LastUseTime __property int get_LastUseTime() returns the time set when user
request is authorized, in seconds since midnight January 1, 1970.
Used to determine an idle session expiration.

get_Status __property ObUserStatusMgd *get_Status() returns one of the
ObUserStatus_t values describing the status of the session, such
as logged out, logged in, login failed, or expired.

get_Error __property ObUserError_t get_Error() returns one of the
ObUserError_t error values determined by the most recent
authentication or authorization.

get_ErrorMessage __property System::String *get_ErrorMessage() returns a
detailed error message pertaining to authentication or
authorization failure. The text of this message is derived by the
Access API and is not intended to be changed by the user.

IsAuthorized bool IsAuthorized(ObResourceRequestMgd *pRes) determines if
the user is authorized to perform an operation in reference to a
particular resource.

Parameters:

pRes: The resource object whose authorization is to be checked.

Returns: ObTrue if authorization succeeds, otherwise ObFalse.

Throws: An ObAccessExceptionMgd if the authorization check
cannot be completed for any reason.

Table 4–48 (Cont.) ObUserSessionMgd Methods (C#)

Method Details

C# Implementation Details

4-112 Oracle Access Manager Developer Guide

ObConfigMgd
ObConfigMgd enables the application to initialize or shut down the Access Server or
obtain AccessGate configuration data from the Access Server.

For a list of AccessGate configuration items see "Configuration Parameters" on
page 4-26.

For a general discussion of the ObConfig class, see "ObConfig" on page 4-26.

For a list of the messages thrown in response to errors by the C# implementation of
ObConfigMgd, see "C-Family Status and Error Message Strings" on page 4-128.

Constructors (ObConfigMgd, C#)
There are no constructors for the C# implementation of this class.

Methods (ObConfigMgd, C#)
Table 4–49 lists the methods and associated details for the ObConfigMgd class.

IsAuthorizedWith
Parameters

bool IsAuthorizedWithParameters(ObResourceRequestMgd
*pRes, ObDictionary *parameters) determines if the user is
authorized to request an operation for a particular resource. The
parameters argument is optional. If specified, the key-and-value
pairs in the parameters will be passed to the Access Server.

Parameters:

pRes: The resource object whose authorization is to be checked.

parameters: A list of key-and-value pairs sent to the Access
Server as part of the request-context object.

Returns: ObTrue if authorization succeeds, otherwise ObFalse.

Throws: An ObAccessException if the authorization check cannot
be completed for any reason.

get_SessionToken __property System::String *get_SessionToken() returns the saved
encrypted ASCII representation of the user session.

Returns: The ASCII string representing the user session.

LogOff void LogOff() logs off the authenticated user and terminates the
session.

Table 4–49 ObConfigMgd Methods (C#)

Method Details

initialize static void initialize(System::String *configDir) initializes the
AccessGate, including reading all parameters into the structure
defined under "Configuration Parameters" on page 4-26.

Parameters:

configDir: If no coded value is provided for this parameter, the
value from the environment variable
OBACCESS_INSTALL_DIR is used.

Throws: An ObAccessException if the user session object cannot
be created for some reason, or if the OBACCESS_INSTALL_DIR
is invalid.

shutdown static void shutdown() disconnects the AccessGate from the
Access Server, and releases memory and other resources.

Table 4–48 (Cont.) ObUserSessionMgd Methods (C#)

Method Details

C# Implementation Details

Building AccessGates with the Access Manager SDK 4-113

ObAccessExceptionMgd
This class enables you to extract the entire error message string thrown by the Access
Manager API in response to an error. Alternatively, you can extract from the full error
message one or more (up to five) of the indexed substrings that may be embedded in
the full error message.

For a general discussion of the ObAccessException class, see "ObAccessException" on
page 4-28.

Constructors (obAccessExceptionMgd, C#)
Table 4–50 lists the ObAccessExceptionMgd constructor and associated details for the
class.

getItem static System::String *getItem(System::String *name) returns the
value corresponding to the key from a key-and-value pair in an
ObDictionary hashtable. For a list of possible items, see
"Configuration Parameters" on page 4-26.

Parameters:

name: The name of a configuration item in a dictionary list.

Throws: An ObAccessException if an attempt is made to invoke
the method before a successful initialization is achieved.

get_AllItems __property static ObDictionary *get_AllItems() reads all the
configuration variables from the configuration file into a named
ObDictionary key-and-value dictionary list. See the list of
possible items in "Configuration Parameters" on page 4-26.

Throws: An ObAccessExceptionMgd exception, if an attempt
is made to invoke the method before a successful initialization is
achieved.

get_Number OfItems __property static int get_NumberOfItems() returns the total
number of items extracted from the configuration file.

Throws: An ObAccessExceptionMgd exception, if an attempt is
made to invoke the method before a successful initialization is
achieved.

get_SDKVersion __property static System::String *get_SDKVersion() returns the
SDK version, an internal value known to the API.

Throws: An ObAccessExceptionMgd exception, if an attempt is
made to invoke the method before a successful initialization is
achieved.

get_NAPVersion __property static System::String *get_NAPVersion() returns a
string representing the version of the access control protocol
being used by the Access Manager API This internal value is
known to the API.

Throws: An ObAccessExceptionMgd exception, if an attempt is
made to invoke the method before a successful initialization is
achieved.

Table 4–49 (Cont.) ObConfigMgd Methods (C#)

Method Details

C# Implementation Details

4-114 Oracle Access Manager Developer Guide

Methods (ObAccessExceptionMgd, C#)
Table 4–51 lists the details for the methods associated with ObAccessExceptionMgd.

ObDiagnostic (C#)
The ObDiagnostic class enables you to display diagnostic information such as the
name and port of the Access Server, its location, the number of connections the
AccessGate has with the Access Server, and so on. This class also displays diagnostic
information about the directory that is associated with the Access Server.

Example:

public __gc class ObDiagnosticMgd {
public:
__property static ObDictionary *get_ServerDiagnosticInfo();
__property static ObDictionary *get_DirectoryDiagnosticInfo();

Table 4–50 ObAccessExceptionMgd Constructor (C#)

Parameter Details

ex ObAccessExceptionMgd(ObAccessException *ex) takes
ownership of the passed-in value of ObAccessException and
then cleans up the memory it uses.

Parameters:

ex: An ObAccessException.

Table 4–51 ObAccessExceptionMgd Methods (C#)

Method Details

get_Code __property ObAccessExceptionCode_t get_Code() returns the
value of the last error code generated by the API.

getParameter System::String *getParameter(int index) returns just the
substring that would appear in a full error message at location
%index. This enables you to obtain the substring in isolation,
perhaps for insertion into a logged message along with
customized text.

Parameters:

Index: The location where the substring (parameter) would
ordinarily appear in the message generated by the API.

get_String __property System::String *get_String() returns the error
message string corresponding to the last error code generated by
the API. This enables you to get the entire message as defined by
the API, perhaps for insertion verbatim into an error log. Do not
free the return value.

getCodeString System::String *getCodeString(ObAccessExceptionCode_t code)
returns the error message string corresponding to the specified
error code, which need not be the last one generated within the
API. Because the substring (parameter) pointers are all set to
NULL, the ObAccessGate.msg file text is returned verbatim,
without the substrings (parameters) inserted. Do not free the
return value.

Parameters:

code: The number corresponding to the error message string that
should be found.

Returns: The verbatim ObAccessGate.msg file text for the
specified error.

Java Implementation Details

Building AccessGates with the Access Manager SDK 4-115

__property static ObDictionary *get_ClientDiagnosticInfo();
 };

Methods (ObDiagnostic, C#)
Table 4–52 lists the methods for the C# implementation of ObDiagnostic.

Java Implementation Details
The Java package that implements the Access Manager API consists of the following:

■ Three interfaces, which contain pure virtual methods and no implementation code

■ Four implementing (base) classes, which inherit most of their member methods
from the ObAccess interfaces

■ One class that handles program errors

All of these classes implement the interface "java.lang.cloneable," and all except
ObConfig and ObAccessException implement a corresponding Com.Oblix.Access
interface.

For a general discussion of the classes in the Access Manager API, see "About the
Access Manager API" on page 4-17.

Table 4–52 ObDiagnostic Methods (C#)

Parameter Details

getServerDiagnosticInfo() This parameter returns the following items on the ObMap
structure:

■ Access Server host name

■ Access Server port

■ Number of connections with the Access Server established
by the current WebGate

■ Access Server state (up or down)

■ Access Server creation date and time (based on when it
was installed)

■ Access Server installation directory

■ Maximum number of threads allowed in this Access
Server.

getDirectoryDiagnosticInfo() This parameter returns the following items:

■ Directory type (Config, User, Policy)

■ Directory host

■ Directory port

■ Directory state (up or down)

■ Priority (primary or secondary)

■ Mode (open or SSL)

■ Size limit (the maximum number of search results)

■ Time limit (the timeout threshold)

■ Login DN

■ Creation date and time based on when the Access server
establishes connection with the Directory Server. (If you
restart either server, the creation date and time change.)

Java Implementation Details

4-116 Oracle Access Manager Developer Guide

Interfaces
In the Java programming language, an interface is a special class that contains
methods, but does not contain the code to implement those methods. An interface
does not allow the construction of objects, nor can you instantiate variables. Instead,
one or more implementing classes inherit methods from the interface. Typically, each
base class implements the methods it inherits from the interface in a fashion that
distinguishes it from its sibling base classes.

At present, however, the three interfaces in the Access Manager API each have just one
implementing class. Therefore, polymorphism does not come into play for the Access
Manager API.

The name of each interface matches the name of its sole implementing class, except
"interface" is appended at the end. Thus, the ObAuthenticationScheme base class
implements ObAuthenticationSchemeInterface.

Table 4–53 correlates interfaces and corresponding base classes in the Access Manager
API.

ObAuthenticationSchemeInterface
ObAuthenticationSchemeInterface provides methods to enable the creation and
manipulation of the structures used to authenticate users who have requested access to
a resource. You cannot directly invoke any of the member methods in this interface.
Instead, you invoke the corresponding member methods of ObAuthenticationScheme,
the base class that implements ObAuthenticationSchemeInterface.

Methods
ObAuthenticationSchemeInterface contains the following methods: getName(),
requiresSecureTransport(), isBasic(), isCertificate(), isForm(), isNone(), getLevel(),
getRedirectUrl(), getNumberOfChallengeParameters(), getAllChallengeParameters(),
and getChallengeParameter(). See "ObAuthenticationScheme" on page 4-20.

ObResourceRequestInterface
ObResourceRequestInterface provides methods to enable manipulation of structures
used to represent user requests for access to specified resources. You cannot directly
invoke any of the member methods in this interface. Instead, you invoke the

Note: Java Garbage Collection automatically deallocates the memory
of Access Manager API objects when they are no longer needed. For a
discussion of how memory management is handled by the four
implementations of the Access Manager API, see "About Memory
Management" on page 4-17.

Table 4–53 Java Interface Implementation for Com.Oblix.Access

Implementing ObAccess
Base Class Corresponding ObAccess Interface

ObAccessException none

ObAuthenticationScheme ObAuthenticationSchemeInterface

ObConfig none

ObResourceRequest ObResourceRequestInterface

ObUserSession ObUserSessionInterface

Java Implementation Details

Building AccessGates with the Access Manager SDK 4-117

corresponding member methods of ObResourceRequest, the base class that
implements ObResourceRequestInterface.

Methods
ObResourceRequestInterface contains the following methods: isProtected(),
getResourceType(), getResource(), getOperation(), getParameters(), and
getAuthorizationParameters(). See "ObResourceRequest" on page 4-23.

ObUserSessionInterface
ObUserSessionInterface provides methods to enable the creation and manipulation of
the structures that represent a user session. You cannot directly invoke any of the
member methods in this interface. Instead, you invoke the corresponding member
methods of ObUserSession, the base class that implements ObUserSessionInterface.

Methods
ObUserSessionInterface contains the following methods: getUserIdentity(), getLevel(),
getLocation(), setLocation(), getStartTime(), getLastUseTime(), getNumberOfActions(),
getActions(), getAction(), getActionTypes(), getStatus(), getError(), getErrorMessage(),
getSessionToken(), and logoff(). See "ObUserSession" on page 4-24.

(java.util.Hashtable)
The Java implementation of the Access Manager API does not include its own class to
handle the storage and manipulation of API-related parameters, which is handled by
ObMap and ObMapIterator in the C++ implementation of the API. The equivalent
classes for the C implementations are ObMap_t and ObMapIterator, respectively. For
the C# implementation, the equivalents are ObDictionary and
ObDictionaryEnumerator, respectively.

By contrast, the Java implementation relies on the standard Java class
java.util.Hastable to provide equivalent functionality in this area. For a discussion of
ObMap and ObMapIterator, see "Implementations Compared" on page 4-17.

Constructors (java.util.Hashtable, Java)
The following table details the constructors in java.util.Hashtable that provide relevant
hashtable functionality for Com.Oblix.Access. It lists only those constructors
corresponding to constructors in the C-family implementations of the ObMap and
ObMapIterator classes.

java.util.Hashtable Constructors (Java)

Hashtable() creates a new, empty hashtable with a default initial capacity of 11 items
and load factor of 0.75. (The size of the hashtable is automatically increased when it is
filled beyond 0.75 of its maximum capacity).

Methods (java.util.Hashtable, Java)
Table 4–54 details the methods in java.util.Hashtable that provide relevant hashtable
functionality for Com.Oblix.Access. It lists only those methods corresponding to
methods in the C-family implementations of the ObMap and ObMapIterator classes.

Table 4–54 java.util.Hashtable Methods (Java)

Method Details

get get() returns the value corresponding to the name of the
specified item in the specified hashtable.

Java Implementation Details

4-118 Oracle Access Manager Developer Guide

ObAuthenticationScheme
ObAuthenticationScheme enables you to create and manipulate structures that
represent the authentication scheme associated with the resource requested by the
specified user.

For a general discussion of ObAuthenticationScheme, see "ObAuthenticationScheme"
on page 4-20.

For a list of the messages thrown in response to errors by the Java implementation of
ObAuthentication Scheme, see "Java Status and Error Message Fields" on page 4-121.

Constructors (ObAuthenticationScheme, Java)
Table 4–55 presents the constructor for ObAuthenticationScheme.

Methods (ObAuthenticationScheme, Java)
Table 4–56 details the methods belonging to the ObAuthenticationScheme class. The
"clone" method implements a corresponding method inherited from the interface
java.lang.Clonable. The method "setNativeHandle" is reserved for internal use only.
All the other methods in ObAuthenticationScheme implement corresponding methods
inherited from ObAuthenticationSchemeInterface or the ObAuthenticationScheme
superclass java.lang.Object.

put put() inserts a specified name:value pair the specified hashtable.

size size() returns the number of items in the specified hashtable

(copy constructor) Hashtable(map_t) copies a specified hashtable.

Parameter:

map_t - The name of the hashtable to be copied.

Table 4–55 Com.Oblix.Access.ObAuthenticationScheme Constructors (Java)

Key Parameter Details

res public ObAuthenticationScheme(ObResourceRequest res)
creates an ObAuthenticationScheme object for the specified
ObResourceRequest.

Parameter:

res - The resource request object for which the authentication
scheme object is being constructed.

Throws: ObAccessException if the attempt to create the object
fails or if resource object is NULL.

Table 4–56 Com.Oblix.Access.ObAuthenticationScheme Methods (Java)

Method Details

clone public java.lang.Object clone() clones ObAuthenticationScheme
objects.

Throws: java.lang.CloneNotSupportedException.

getAllChallenge Parameters public java.util.Hashtable getAllChallengeParameters() returns a
hashtable containing name:value pairs representing all the
challenge parameters currently set for the specified
authentication scheme.

Table 4–54 (Cont.) java.util.Hashtable Methods (Java)

Method Details

Java Implementation Details

Building AccessGates with the Access Manager SDK 4-119

ObResourceRequest
This class enables the creation, passing, and retrieval of structures that represent user
requests to access resources. For a general discussion of ObResourceRequest, see
"ObResourceRequest" on page 4-23.

For a list of the error messages thrown in response to errors by member methods of the
Java implementation of ObResourceRequest, see "Java Status and Error Message
Fields" on page 4-121.

Constructors (ObResourceRequest, Java)
Table 4–57 lists the constructors for the ObResourceRequest class.

getChallenge Parameter public java.lang.String getChallengeParameter(java.lang.String
parameterName) returns a value corresponding to the specified
challenge parameter name for the specified authentication
scheme.

Parameters:

parameterName - name of the challenge parameter

getLevel public int getLevel() returns the authentication level currently
set for the specified authentication scheme.

getName public java.lang.String getName() returns the display name of
the specified authentication scheme.

getNumberOf Challenge
Parameters

public int getNumberOfChallengeParameters() returns the
number of challenge parameters currently set for the specified
authentication scheme.

getRedirectUrl public java.lang.String getRedirectUrl() returns the URL to
which the user's browser is redirected for secure authentication.

isBasic public boolean isBasic() returns true if the specified
authorization scheme is Basic (in other words, it requires only
userid and password for authentication); otherwise, it returns
false.

isCertificate public boolean isCertificate() returns true if the specified
authorization scheme requires a digital certificate; otherwise, it
returns false.

isForm public boolean isForm() returns true if the specified
authorization scheme requires HTTP FORM-based
authentication; otherwise, it returns false.

isNone public boolean isNone() returns true if the authentication
scheme does not have a specified challenge method. If the
resource is protected by an authorization scheme that does
specify a challenge method, it returns false.

requiresSecure Transport public boolean requiresSecureTransport() returns true if the
authentication scheme requires a secure connection; otherwise, it
returns false.

setNativeHandle public void setNativeHandle(int nativeHandle) Users must not
invoke this method; it is reserved of internal use only.

equals, getClass, hashCode,
notify, notifyAll, toString,
wait

All of the methods in the cell to the left were inherited by
ObAuthenticationScheme from the superclass java.lang.Object.

Table 4–56 (Cont.) Com.Oblix.Access.ObAuthenticationScheme Methods (Java)

Method Details

Java Implementation Details

4-120 Oracle Access Manager Developer Guide

Methods (ObResourceRequest, Java)
Table 4–58 lists the methods and details for the ObResourceRequest class. The clone
method implements a corresponding method inherited from the interface
Java.lang.Cloneable. The method getNativeHandle is reserved for internal use only.
All the other methods in ObResourceRequest implement corresponding methods
inherited from the interface ObResourceRequestInterface and the ObResourceRequest
superclass java.lang.Object.

Table 4–57 Com.Oblix.Access.ObResourceRequest Constructors (Java)

Key Parameter Constructor

operation public ObResourceRequest(java.lang.String resType,
java.lang.String resName, java.lang.String operation) constructs
a ObResourceRequest object of the specified resource type, name
and operation.

Parameters:

resType - The type of the requested resource, which can be
HTTP, EBJ, or user-defined. When this value is NULL, the
default value is HTTP.

res - The name of the resource being requested.

operation - The operation to be performed against the resource
request object. This can be GET or POST for HTTP resources and
EXECUTE for EJB resources.

Throws: ObAccessException if an error occurs during native
object creation or if either the resName or operation parameters
are NULL.

parameters public ObResourceRequest(java.lang.String resType,
java.lang.String resName, java.lang.String operation,
java.util.Hashtable parameters) constructs a ObResourceRequest
object of the specified resource type, name, operation. When
"parameters" is specified as an argument, a hashtable containing
all the authorization parameters currently assigned to the
resource is passed to the constructor. The Access Server uses this
information to determine the applicable policies and
authorization decisions.

Parameters:

resType - The type of the requested resource, which can be
HTTP, EBJ, or user-defined. When this value is NULL, the
default value is HTTP.

res - The name of the resource being requested.

operation - The operation to be performed against the resource
request object. This can be GET or POST for HTTP resources and
EXECUTE for EJB resources.

parameters - a hashtable containing all the authorization
parameters currently assigned to the resource.

Throws: ObAccessException if an error occurs during native
object creation or if either the resName or operation parameters
are NULL.l

Table 4–58 Com.Oblix.Access.ObResourceRequest Methods (Java)

Method Details

isProtected public boolean isProtected() returns true if the resource specified
by the ObResourceRequest structure is protected; otherwise it
returns false.

Java Implementation Details

Building AccessGates with the Access Manager SDK 4-121

ObUserSession
ObUserSession enables creation of and interaction with structures representing
sessions for users who have successfully completed authentication. For a general
discussion of ObUserSession, see "ObUserSession" on page 4-24.

A list of error messages thrown by ObUserSession methods in response to errors
follows.

Java Status and Error Message Fields
The following table lists the self-descriptive field names thrown in response to errors
by the constructors and methods for the ObUserSession class. The syntax for declaring
these fields is the following:

public static final int fieldname

where fieldname represents the specified status message string.

The following table lists the fields associated with the Java implementation of the
ObUserSession class. The first five fields constants refer to session states, while the rest
refer to errors

The following are Com.Oblix.Access.ObUserSession fields (Java):

AWAITINGLOGIN

getResourceType public java.lang.String getResourceType() returns the resource
type of the specified resource.

getResource public java.lang.String getResource() returns the name of the
resource associated with the specified resource request object.

getOperation public java.lang.String getOperation() returns the name of the
operation (such as GET or POST for HTTP) to be performed
against the resource associated with the specified resource
request object.

getParameters public java.util.Hashtable getParameters() returns a hashtable
containing name:value pairs representing all the parameters that
have been set to define the resource associated with the specified
resource request object.

getAuthorization
Parameters

public java.util.Hashtable getAuthorizationParameters() returns
a hashtable containing the parameters required for authorization
of the resource associated with the specified resource request
object. All the value halves of the name:value pairs representing
these parameters are set to NULL. In other words, the hashtable
contains only the names of the parameters.

getNumberOf
Authorization Parameters

public int getNumberOfAuthorizationParameters() returns the
number of parameters required for authorization of the resource
associated with the specified resource request object. This total
equals the number of items contained in the hashtable returned
by the getAuthorizationParameters method.

clone public java.lang.Object clone() clones ObResourceRequest
objects.

Throws: java.lang.CloneNotSupportedException.

equals, getClass, hashCode,
notify, notifyAll, toString,
wait

All of the methods in the cell to the left were inherited from the
ObResourceRequest superclass java.lang.Object.

Table 4–58 (Cont.) Com.Oblix.Access.ObResourceRequest Methods (Java)

Method Details

Java Implementation Details

4-122 Oracle Access Manager Developer Guide

LOGGEDIN
LOGGEDOUT
LOGINFAILED
EXPIRED
OK
ERR_UNKNOWN
ERR_NO_USER
ERR_USER_REVOKED
ERR_WRONG_PASSWORD
ERR_INVALID_CERTIFICATE
ERR_AUTHN_PLUGIN_DENIED
ERR_INSUFFICIENT_LEVEL
ERR_NOT_LOGGED_IN
ERR_SESSION_TIMEOUT
ERR_IDLE_TIMEOUT
ERR_DENY
ERR_PASSWORD_EXPIRED
ERR_PASSWORD_CHANGE_ON_RESET
ERR_USER_LOCKED_OUT
ERR_NEED_MORE_DATA
ERR_INCONCLUSIVE
AWAITINGLOGIN = 0
SessionExpired
SessionInvalid
DIAGNOSTICS_FAILED
UNKNOWN_CLIENT_ID
MODUSER_FAILED

The following status code is used to indicate to clients that the session has expired:

ObAAAStatus_SessionExpired = 70

The following status code is used to indicate to clients that the session is invalid:

SessionInvalid = 71,
SessionIdle = 72,
SessionTimeout = 73,
ModUserFailed = 74,
DBInfoUnavailable = 75

Constructors (ObUserSession, Java)
Table 4–59 lists the ObUserSession constructors along with their associated parameters
and details.

Table 4–59 Com.Oblix.Access.ObUserSession Constructors (Java)

Parameter Details

NULL public ObUserSession() is the default constructor for
ObUserSession Object

sessionToken public ObUserSession(java.lang.String sessionToken) used the
specified session token to create an ObUserSession object
immediately.

Parameters:

sessionToken - A serialized representation of a user session

Throws: ObAccessException if object creation fails or if session
token is NULL.

Java Implementation Details

Building AccessGates with the Access Manager SDK 4-123

Methods (ObUserSession, Java)
Table 4–60 lists the methods and details associated with the Java implementation of the
ObUserSession class.The clone method implements a corresponding method inherited
from the interface java.lang.Clone. The method setNativeHandle is reserved for
internal use only. All the other methods in ObUserSession implement corresponding
methods inherited from ObUserSessionInterface or the ObUserSession superclass
java.lang.Object.

lazyload public ObUserSession(java.lang.String sessionToken, boolean
lazyload) creates a user session on demand.

Parameters:

lazyload: This flag, if true, indicates that the session token is not
to be loaded immediately. Relies on getUserIdentity(),
getLocation(), getLevel(), getStartTime(), and getEndTime()
functions to make calls if the session token information is
invalid, and lazyload loads the token on demand.

Returns: A user session object.

Throws: An internally generated ObAccessException if the user
session object cannot be created for some reason or the session
token is NULL.

location public ObUserSession(ObResourceRequest res,
java.util.Hashtable Credentials, java.lang.String location)
constructs a user session object for the specified resource and
credentials

Parameters:

res - The resource request object for which user is being
authenticated.

credentials - The user credentials formatted as name:value paris
in a hashtable

location - The location of the user, if it needs to be specified. A
valid DNS name or IP address can be used to specify the
location of the user's machine.

Throws: ObAccessException if object creation fails or if session
token is NULL.

credentials public ObUserSession(ObResourceRequest res,
java.util.Hashtable Credentials) creates a user session object for
the specified resource and credentials.

Parameters:

res - The resource object for which user is being authenticated.

credentials - The name of the hashtable containing the
name:value pairs that represent the user's credentials.

Throws: ObAccessException if object creation fails or if session
token is NULL.

Table 4–60 Com.Oblix.Access.ObUserSession Methods (Java)

Method Details

clone public java.lang.Object clone() clones ObUserSession objects.

Throws: java.lang.CloneNotSupportedException.

Table 4–59 (Cont.) Com.Oblix.Access.ObUserSession Constructors (Java)

Parameter Details

Java Implementation Details

4-124 Oracle Access Manager Developer Guide

getAction public java.lang.String getAction(java.lang.String actionType,
java.lang.String name) returns the name of an action that
corresponds to the type of action that has been specified.

Parameters:

actionType - The action type corresponding to the action to be
named. For instance, the action type can be "cookie" or
"headerVar" for HTTP resources. If the type of the action is
unspecified, the default type is "headerVar."

actionName - The name of the action associated with the
specified action type.

getActions public java.util.Hashtable getActions(java.lang.String
actionType) returns the names of all the actions of the specified
action type that are currently set for the specified user session.

Parameters:

actionType -The type of action for which the actions set for the
specified user session are returned. For instance, the action type
can be cookie or headerVar for HTTP resources. If the type of the
action is unspecified, the default type is "headerVar".

getAction Types public java.lang.String[] getActionTypes() returns an array of
action types for the specified user session.

getError public int getError() returns the error number from the most
recent authentication or authorization.

getError Message public java.lang.String getErrorMessage() returns the detailed
error message for the authentication or authorization failure.

getLastUseTime public int getLastUseTime() returns the number of seconds
between January 1, 1970 and the time when the user request was
authorized. This value is used to determine when an idle session
expires.

getLevel public int getLevel() returns the level of the authentication
scheme used to authenticate the user making the resource
request.

getLocation public java.lang.String getLocation() returns the location of the
user. A valid DNS name or IP address can be used to specify the
location of the user's machine.

getNumber OfActions public int getNumberOfActions(java.lang.String actionType)
returns the number of actions currently set for the specified
action type.

Parameters:

actionType - The type of action. For instance, the action type can
be cookie or headerVar for HTTP resources. If the type of the
action is unspecified, the default type is "headerVar".

getSession Token public java.lang.String getSessionToken() returns a serialized
representation of user session.

getStartTime public int getStartTime() returns the time when the user was
authenticated; used to determine a session expiration.

getStatus public int getStatus() returns the status of the specified session,
such as logged out, logged in, login failed, or expired.

getUserIdentity public java.lang.String getUserIdentity() returns the
Distinguished Name of the authenticated user's profile entry in
the current LDAP directory.

Table 4–60 (Cont.) Com.Oblix.Access.ObUserSession Methods (Java)

Method Details

Java Implementation Details

Building AccessGates with the Access Manager SDK 4-125

ObConfig
The ObConfig class enables you to store, pass, retrieve, and modify configuration
information for your AccessGate.

Constructors (ObConfig, Java)
The following table presents the constructors for the ObConfig class.

public ObConfig() is the default constructor for the ObConfig Object.

Methods (ObConfig, Java)
Table 4–61 presents the methods for the ObConfig class.:

isAuthorized public boolean isAuthorized(ObResourceRequest res) returns
true if the user is authorized to request the specified operation
for the specified resource. Otherwise, returns false.

Parameters:

res - resource object being checked for authorization

Throws: ObAccessException if the operation fails.

isAuthorized (parameters) public boolean isAuthorized(ObResourceRequest res,
java.util.Hashtable parameters) returns true if the user is
authorized to request a specified operation against a specified
resource when a set of additional parameters is specified.
Otherwise, it returns false.

Parameters:

res - The resource object being checked for authorization

parameters - A hashtable of parameter names and values

Throws: ObAccessException if the operation fails.

logoff public void logoff() logs off the authenticated user and
terminates the session

setLocation public void setLocation(java.lang.String location) sets the
location of the user. A valid DNS name or IP address can be
used to specify the location of the user's machine.

setNativeHandle public void setNativeHandle(int nativeHandle) Do not invoke
this method. It is reserved for internal use only.

equals, getClass, hashCode,
notify, notifyAll, toString,
wait

All of the methods listed in the cell to the left have been
inherited from the ObUserSession superclass java.lang.Object.

Table 4–61 Com.Oblix.Access.ObConfig Methods (Java)

Method Details

getAllItems public static java.util.Hashtable getAllItems() a hashtable
containing name:value pairs representing all the configuration
parameters currently in the AccessGate configuration file.

Throws: ObAccessException if this method is invoked before
initialization of the Access Manager API succeeds.

Table 4–60 (Cont.) Com.Oblix.Access.ObUserSession Methods (Java)

Method Details

Java Implementation Details

4-126 Oracle Access Manager Developer Guide

ObAccessException
The Java implementation of ObAccessException differs from the corresponding
C-family implementations, in that the Java environment only permits the extraction of
entire error message strings, and not the extraction of the individual, indexed
substrings that can be extracted through the C-family implementations. For a general
discussion of ObAccessException, see "ObAccessException" on page 4-28.

An ObAccessException is thrown by the Access Manager API whenever unexpected,
unrecoverable errors occur between an AccessGate and an Access Server.

Constructors (ObAccessException, Java)
Table 4–62 presents the constructor for the ObAccessException class.

getItem public static java.lang.String getItem(java.lang.String itemName)
returns a value corresponding to the specified configuration
parameter.

Parameters:

itemName - the name of the configuration parameter whose
value is being requested.

Throws: ObAccessException if this method is invoked before
initialization of the Access Manager API succeeds.

getNAPVersion public static java.lang.String getNAPVersion() returns the
version of the Oracle Access Protocol that is in use.

getNumber OfItems public static int getNumberOfItems() returns the number of
configuration items currently set for the AccessGate.

Throws: ObAccessException if this method is invoked before
initialization of the Access Manager API succeeds.

getSDK Version public static java.lang.String getSDKVersion() returns version of
the Access Server SDK that is in use.

initialize (installDir) public static void initialize(java.lang.String installDir) initializes
the Accessgate using the Access Manager SDK whose root is
installDir. (Sometimes it is helpful to specify the location of the
SDK instance supporting your AccessGate, especially when
multiple server instances, each one protected by a different
AccessGate or WebGate, have been installed on the same host
machine.

Parameters:

installDir - The directory on the AccessGate host machine where
the Access Manager SDK is installed.

Throws: ObAccessException if initialization fails.

initialize public static void initialize() initializes the AccessGate using the
environment variable OBACCESS_INSTALL_DIR for
AccessGates running on either UNIX or WIndows host
machines.

Throws: ObAccessException if initialization fails.

shutdown public static void shutdown() disconnects the AccessGate from
the Access Server.

Table 4–61 (Cont.) Com.Oblix.Access.ObConfig Methods (Java)

Method Details

Java Implementation Details

Building AccessGates with the Access Manager SDK 4-127

Inherited Methods (ObAccessException, Java)
The Java implementation of ObAccessException has no native methods of its own.
Table 4–63 presents the ObAccessException classes inherited from java.lang.Throwable
and java.lang.Object.

ObDiagnostic (Java)
The ObDiagnostic class enables you to display diagnostic information such as the
name and port of the Access Server, its location, the number of connections the
AccessGate has with the Access Server, and so on. This class also displays diagnostic
information about the directory that is associated with the Access Server.

Example:

public class ObDiagnostic{
public static Hashtable getServerDiagnosticInfo() throws ObAccessException
public static Hashtable getClientDiagnosticInfo() throws ObAccessException
public static Hashtable getDirectoryDiagnosticInfo() throws ObAccessException
}

Methods (ObDiagnostic, Java)
Table 4–64 lists the methods for the Java implementation of ObDiagnostic.

Table 4–62 Com.Oblix.Access.ObAccessException Constructors (Java)

Key Parameter Details

NULL public ObAccessException() constructs an ObAccessException.

message public ObAccessException(java.lang.String message) constructs
an ObAccessException that includes a specified message.

Parameters:

message - The exception message string.

Table 4–63 Com.Oblix.Access.ObAccessException Inherited Methods (Java)

Inherited Methods Source

fillInStackTrace,
getLocalizedMessage,
getMessage,
printStackTrace, toString

All of the methods in the cell to the left were inherited from the
ObAccessException superclass java.lang.Throwable

equals, getClass, hashCode,
notify, notifyAll, wait

All of the methods in the cell to the left were inherited from the
ObAccessException superclass java.lang.Object

C-Family Status and Error Message Strings

4-128 Oracle Access Manager Developer Guide

C-Family Status and Error Message Strings
This section lists constants that are common to all of the C-family implementations of
the Access Manager API (C, C++, and C#). The list presented here is also included in
obaccess_api_defs.h, which resides in the following directory:

SDK_install_dir/include

The exception codes in the following table are returned by the Access Server if it
cannot perform an operation because of missing data or system problems.

Table 4–64 ObDiagnostic Methods (Java)

Parameter Details

getServerDiagnosticInfo() This parameter returns the following items on the ObMap
structure:

■ Access Server host name

■ Access Server port

■ Number of connections with the Access Server established
by the current WebGate

■ Access Server state (up or down)

■ Access Server creation date and time (based on when it
was installed)

■ Access Server installation directory

■ Maximum number of threads allowed in this Access
Server.

getDirectoryDiagnosticInfo() This parameter returns the following items:

■ Directory type (Config, User, Policy)

■ Directory host

■ Directory port

■ Directory state (up or down)

■ Priority (primary or secondary)

■ Mode (open or SSL)

■ Size limit (the maximum number of search results)

■ Time limit (the timeout threshold)

■ Login DN

■ Creation date and time based on when the Access server
establishes connection with the Directory Server. (If you
restart either server, the creation date and time change.)

Note: In Java, errors are handled by reference, rather than by code
number. For example, ObAccessException_NOT_INITIALIZED, error
205, is referenced as ObAccessException.NOT_INITIALIZE. See "Java
Status and Error Message Fields" on page 4-121.

Note: All of the strings the following table must be prepended with
the string ObAccessException_. Thus, OK = 0 becomes
ObAccessException_OK = 0.

C-Family Status and Error Message Strings

Building AccessGates with the Access Manager SDK 4-129

The following are Access Server error codes:

OK = 0
UNKNOWN = 200
BAD_SESSION_TOKEN
NO_SCHEME_ID
NEED_PARAMETERS
NOT_INITIALIZED
CACHE_PROBLEM
NO_CONFIG_FILE
NO_INSTALL_DIR_ENV
NOT_PROTECTED
MISSING_RESOURCE
MISSING_OPERATION
BAD_LOCATION
NO_CLIENT_ID
JNI_ERROR
OUT_OF_MEMORY
MISSING_ITEM
NO_MSG_CAT
CLIENT_NOT_IN_DIR
OBERROR
DIAGNOSTICS_FAILED
UNKNOWN_CLIENT_ID
MODUSER_FAILED

The exception codes in the following table are returned by the Access Server if it
cannot perform an operation because of missing data or system problems.

The following are AccessGate error codes:

AS_UNKNOWN = 300
ENGINE_DOWN
NOCODE
NULL_RESOURCE
HOSTPORT_LOOKUP_FAILED
URL_LOOKUP_FAILED
SD_LOOKUP_FAILED
WROR_LOOKUP_FAILED
WROR_AUTHENT_LOOKUP_FAILED
NO_AUTHENT_SCHEME
EXCEPTION
INVALID_SCHEME_ID
INVALID_SCHEME_MAPPING
AS_UNKNOWN = 300
ENGINE_DOWN
INVALID_SCHEME_PARAMETERS
NO_USER
NONUNIQUE_USER
USER_REVOKED
MISSING_OBCRED_PASSWORD
WRONG_PASSWORD
MISSING_PASSWORD
MISSING_CERTIFICATE,
INVALID_CERTIFICATE

Note: All of the strings the following table must be prepended with
the string "ObAccessException_." Thus, "AS_UNKNOWN = 300"
becomes "ObAccessException_AS_UNKNOWN = 30"

C-Family Status and Error Message Strings

4-130 Oracle Access Manager Developer Guide

INVALID_SELECTION_FILTER
MISSING_AUTHN_PLUGIN
AUTHN_PLUGIN_ABORT
AUTHN_PLUGIN_DENIED
AUTHN_PLUGIN_NO_USER

The codes in the following table are returned to indicate the status of a user session.

The following are Session Status codes:

AWAITINGLOGIN = 0
LOGGEDIN
LOGGEDOUT
LOGINFAILED
EXPIRED

The codes in the following table are returned to indicate the status of a user session.

The following status code is used to indicate to clients that the session has expired:

ObAAAStatus_SessionExpired = 70

The following status code is used to indicate to clients that the session is invalid:

SessionInvalid = 71,
SessionIdle = 72,
SessionTimeout = 73,
ModUserFailed = 74,
DBInfoUnavailable = 75

The following table lists the codes that describe problems that might occur in the
authentication or authorization process.

The following are authentication and authorization error codes:

OK = 0
ERR_UNKNOWN = 100
ERR_NO_USER,

Note: All of the strings listed in the following table must be
prepended with the string "ObUser_." Thus, "AWAITINGLOGIN = 0"
becomes "ObUser_ AWAITINGLOGIN = 0".

Note: All of the strings listed in the following table must be
prepended with the string "OAAAStatus_." Thus, "SessionExpired"
becomes "ObAAAStatus_ SessionExpired".

Note: All of the strings listed in the following table must be
prepended with the string "ObUser_." Thus, "AWAITINGLOGIN = 0"
becomes "ObUser_ AWAITINGLOGIN = 0".

Note: All of the strings listed in the following table must be
prepended with the string ObUser_. Thus, OK = 0 becomes
ObUser_OK = 0.

Best Practices

Building AccessGates with the Access Manager SDK 4-131

ERR_USER_REVOKED
ERR_WRONG_PASSWORD
ERR_INVALID_CERTIFICATE
ERR_AUTHN_PLUGIN_DENIED
ERR_INSUFFICIENT_LEVEL
ERR_NOT_LOGGED_IN
ERR_SESSION_TIMEOUT
ERR_IDLE_TIMEOUT
ERR_DENY

The following table lists the codes used to ensure consistent meaning of true and false
within the Access Manager API.

The following are ObBoolean return codes:

ObFalse = 0
ObTrue = 1

Best Practices
This section presents a number of ways to avoid problems and to resolve the most
common problems that crop up during development.

Avoiding Problems
Here are some suggestions for avoiding problems with the AccessGates you create:

■ Make sure that your AccessGate attempts to connect to the correct Access Server.

■ Make sure the configuration information on your Access Server matches the
configuration information on your AccessGate. You can check the AccessGate
configuration information on your Access Server, which is stored in the Oracle
configuration directory. Go to the Access System Console and click Access System
Configuration, then AccessGate Configuration, then the name of the AccessGate
whose configuration information you want to check. For details about AccessGate
and Access Server configuration, see the Oracle Access Manager Access
Administration Guide.

■ To ensure clean connect and disconnect from the Access Server, use the "initialize"
and "shutdown" methods in the ObConfig class.

■ The environment variable, OBACCESS_INSTALL_DIR, must be set on your
Windows or Solaris host machine so that you can compile and link your
AccessGate. In general, you also want the variable to be set whenever your
AccessGate is running.

■ Use the exception handling features (try, throw, and catch) of the language used to
write your custom AccessGate code to trap and report problems during
development.

Thread Safe Code
Your AccessGate represents just one thread in your entire, multithreaded application.

To ensure safe operation within such an environment, Oracle recommends that
developers observe the following practices:

■ Use a thread safe function instead of its single thread counterpart. For instance,
use localtime_r instead of localtime.

Best Practices

4-132 Oracle Access Manager Developer Guide

■ Specify the appropriate build environment and compiler flags to support
multithreading. For instance, use -D_REENTRANT. Also, use -mt for Solaris
platforms and /MD for Windows platforms.

■ Take care to use in thread-safe fashion shared local variables such as FILE pointers.

Identifying and Resolving Problems
Here are some things to look at if your AccessGate fails to perform:

■ Make sure that your Access Server is running. On Windows systems, you can
check this by navigating to Computer Management, then to Services, then to
AccessServer.

where AccessServer is the name of the Access Server to which you want to connect
your AccessGate.

■ Check that the domain policies your code assumes are in place and enabled for
your Access System.

■ Read the Release Notes that accompanies the Access System product you are
working with.

■ Check that your AccessGate is not being answered by a lower-level Access System
policy which overrides the one you think you are testing.

■ Check that you have run the configureAccessGate tool and that you did not make
any input errors when you did so. See "Running the configureAccessGate Utility"
on page 4-13 for a description of how to run the tool.

■ The Access Tester in the Policy Manager enables you to check which policy applies
to a particular resource. For details about using the Access Tester and protecting
resources with policy domains, see the Oracle Access Manager Access Administration
Guide.

Policy Manager API 5-1

5
Policy Manager API

The Policy Manager API provides programmatic access to most of the functions in the
Policy Manager user interface. You can use the Policy Manager API to create and
manage policy domains and their contents. For example, you can write applications
that use the programmatic interface instead of the GUI to create, modify, delete, and
retrieve policy domains and their contents.

This chapter explains how to write applications that use the Policy Manager API. The
following topics are discussed:

■ How the API works.

■ The source and header files for the API and describes the build process.

■ Some of the methods common to most classes which are included in the API. This
section discusses the ObAccessManager class. This section lists and describes the
content of Access Configuration and Access Policy classes. It describes the Test
classes that you use to perform access tests against one or more users whose
information you specify. The section concludes with a discussion of the
ObAMException class, which is used for error handling.

■ The classes that make up the Policy Manager API and gives examples of the class
definitions in the Java programming language, managed code for C++, and, in
some cases, the C programming language. For some classes, code samples are
included to show how objects of the class are created and how methods of the
class are used to act on those objects.

This chapter contains the following sections:

■ About the Policy Manager API

■ Development Environment

■ Coding With the Policy Manager API

■ Policy Manager API Classes

About the Policy Manager API
The Policy Manager API provides an interface which enables custom applications to
access the authentication, authorization, and auditing services of the Access Server to
create and modify Access System policy domains and their contents. Before using the
Policy Manager API, see the Oracle Access Manager Access Administration Guide. To
better understand the functions provided by the Policy Manager API, explore the
Policy Manager GUI.

The Policy Manager API provides Java, C, and managed code bindings for classes
which you can use to instantiate these objects:

About the Policy Manager API

5-2 Oracle Access Manager Developer Guide

Access Policy Objects: These objects are used for data that is part of policy domains,
policies, access conditions, audit rules and other policy domain content that Access
Administrators ordinarily configure through the Policy Manager.

System Configuration Objects: These objects are used for data that is part of
Authentication Plug-ins, Authentication and Authorization Schemes, and other policy
domain content that the Access System Administrator ordinarily provides through the
Access System Manager in the Access System Console.

Some system configuration objects, including authentication and authorization
schemes, the master audit rule, and host identifiers, are exposed by the API as
read-only objects. You can use these objects within your programs just as you would
use their corresponding Access System components. For example, just as you cannot
modify an authentication scheme from the Policy Manager, you cannot modify an
authentication scheme object using the Policy Manager API.

Access Server Connections: The ObAccessManager class represents one or more
connections to Access Servers hosting the Policy Manager Service. An application uses
ObAccessManager methods to send requests to get and set policy objects and to get
configuration objects (setting of configuration objects is not supported in this release).

The following two diagrams show the structure of the Java and C bindings for the
Policy Manager API.

In both cases, communication between the Access Client and the Access Server is
provided by the Transport Protocol.

About the Policy Manager API

Policy Manager API 5-3

com.oblix.access com.oblix.accessmgr

obaccess Library

AAA Client

Java Program

Policy Mgmt Engine AAA Engine

Access Server

Access API JNI ObAccessManager JNI

obaccessmgr.h obaccess_api.h

AAA Client

C Program

Policy Mgmt Engine AAA Engine

Access Server

AccessMgr C
Functions

Access C
Functions

Access API
Implementation

AccessMgr Object
Implementation

Development Environment

5-4 Oracle Access Manager Developer Guide

Notes on Managed Code
In the following sections, managed code examples are depicted as managed C++.
However, managed code can be written in any language supported by the Microsoft
.NET managed code framework.

The managed code API resembles very closely the C and Java APIs. Classes and
method names between the APIs are very similar. Here are some of the key
differences:

■ The C enumerators used to specify various conditions are wrapped by managed
classes.

■ Certain method names have been changed to match the naming conventions for
properties. A property is similar to a member variable in that it enables the user to
read and write values to an object. However, the property is implemented using
get and set methods.

All managed class names are appended with the Mgd tag. Managed helper classes are
documented in Appendix F, "Managed Helper Classes" on page F-1.

Development Environment
The Policy Manager API is a subset of the Access Manager Software Developer's Kit
(SDK), which also supports the Access Manager API. This section describes the
structure of the installed Access Manager SDK directory and subdirectories, and
describes the initial steps in the build process. See Appendix D, "Installing the Access
Manager SDK" on page D-1 for installation process details.

Installation Location
The Access Manager SDK is packaged as a product distinct from the Access Server,
and must be installed in a separate step. Oracle recommends that you install the SDK
on the same system that will run the application you want to build using the API.
Note the location where the SDK is actually installed. The installation location is
needed as part of various path definitions to be set up later, and is called sdk_install_dir
in the rest of this chapter. For example, for the Windows programming environment,
you might specify the following path as the installation directory:

Oblix.Access.Server Oblix.Access.Manager

AAA Client

Managed Program

Policy Mgmt Engine AAA Engine

Access Server

AccessMgr Object
Implementation

Access API
Implementation

Development Environment

Policy Manager API 5-5

C:\COREid\AccessServerSDK

Installation Content
Within the installation directory, the following directories and content are provided:

apidoc: Provides online documentation for the Java version of the API in HTML
format. The documentation describes two distinct packages. First of these is
com.oblix.access, which is used by both the Policy Manager API and the Access
Manager API; see Chapter 4, "Building AccessGates with the Access Manager SDK" on
page 4-1 The other is com.oblix.accessmgr, which is used only by the Policy Manager
API.

examples: Includes a sample build file and sample make script, and example
applications in subdirectories. The subdirectory obaccess contains an example servlet,
and prototypes for classes that can be used to extend the startup and shutdown classes
for the server application.

include: Contains header files that define the classes, methods and functions that
make up the C++ and C classes for the obaccess library. In particular, the
obaccessmgr_api.h file contains the descriptions for the Policy Manager API C
functions.

oblix: Holds these five subdirectories and their contents:

apps: Contains the netlibmsg.lst file of messages available to the AccessGate if errors
occur. This is located in the path common/bin. At the discretion of the AccessGate,
these could be logged locally (if the AccessGate has been configured to maintain a log),
displayed locally, or ignored.

config: Contains nothing, immediately following installation. When you run the
configuration tool and set the AccessGate to run in simple or cert mode, configuration
data for the AccessGate is stored here. This includes an encrypted password file and
the random seed for the key used to do the encryption. If the connection to the Access
Server is secured, then Public Key certificate data is also provided in this directory.

lib: Contains the Access Manager SDK libraries and Java archive files that are built
into the application.

■ Various library files: Contain the libraries required by the API: obaccess.dll for NT
and Windows 2000, obaccessmgr.so for Solaris and for AIX, and obaccessmgr.sl for
HP-UX. Each of these libraries contains the complete implementations of the
policy and configuration objects and the ObAccessManager. The
ObAccessManager uses methods from the aaa_client library appropriate to each
platform to communicate with one or more Access Server(s) hosting the Policy
Manager Engine(s).

The obaccess libraries also contain the policy objects, get functions for some of the
configuration objects, and a subset of the ObAccessManager functions. The
libraries also carry the native side of the JNI interface used by the Java binding.

■ jobaccess.jar: Is the Java archive file for the API. It contains two packages,
com.oblix.access and com.oblix.accessmgr. Some methods from com.oblix.access

Note: The Access Server is distinct from the Access Manager SDK and
installs in a different default location. See Chapter 6, "Authentication
Plug-in API" on page 6-1 and Chapter 7, "Authorization Plug-in API"
on page 7-1 for information about the APIs you can use to create
custom authentication and authorization plug-ins.

Development Environment

5-6 Oracle Access Manager Developer Guide

are used by the Policy Manager API to communicate with Access Servers.The
com.oblix.accessmgr package contains all other Policy Manager API methods.

■ ObAccessGate.msg: Provides the text of messages that the AccessGate may need
to display.

■ ObAccessClient.xml file: An example of the configuration file that is used by the
AccessGate. For details on the contents of this file and modifying an AccessGate,
see theOracle Access Manager Access Administration Guide.

orig: Contains information created during the installation of the SDK; this directory
can be ignored.

tools: Contains three significant directories:

■ configureAccessGate directory: Contains the tool used to configure the
AccessGate and the messages needed by it.

■ The migrationtools directory: Contains information useful for migrating earlier
versions of the API.

■ The openssl directory: Contains a tool and certificate file used to configure the
AccessGate for simple or cert mode operation.

samples: Contains versions of the standalone Access Test application, in Java, C, C++
as well as example Policy Manager API applications. You can use these applications to
become familiar with the SDK build process before going on to more complex
applications.

About Building an AccessGate
Before you build your application that implements an AccessGate using the Policy
Manager API, you must set or modify certain environment variables.

Environment Variables
To ensure that API components can be located, you must set certain environment
variables before you compile the application that uses the API. See the discussion in
"Setting Environment Variables" on page 4-10.

Build Process
Sample files to create servlets and build JAR files are provided at different levels
within the examples directory. See"Installation Content" on page 5-5.

Configuration File
The AccessGate you build with the API must be properly configured or it will not be
able to interact with the Access Server. You configure the AccessGate by defining the
content of a configuration file on the system where the AccessGate is running. A
discussion of the content and use of this file, and modifying an AccessGate, is in the
Oracle Access Manager Access Administration Guide.

Note: Do not change the relative locations of the subdirectories and
files within the SDK once it is installed. Doing so may prevent an
accurate build and proper operation of the API.

Coding With the Policy Manager API

Policy Manager API 5-7

Coding With the Policy Manager API
The Policy Manager API provides functionality equivalent to that of the Access
System's standard Policy Manager user interface. The API includes classes to represent
and manage the same data objects managed through these user interfaces.

Access System Configuration Objects: Represent data managed through the Access
System Console, including authentication and authorization schemes, host identifiers,
resource types, and the master audit rule. Discussion of these objects starts at "Access
System Configuration Objects" on page 5-25.

Access Policy Objects: Represent the data managed through the Policy Manager GUI,
including policy domains with all their subordinate information: policies and
authentication, authorization, audit, and administration rules, and authorization
expressions. Discussion of these objects begins on "Access Policy Objects" on
page 5-33.

The ObAccessManager Class: Provides a way to connect to the Access Server and to
create, retrieve, modify, and delete Access Policy objects, and to retrieve Access System
Configuration objects. This class also provides methods to test access policies.
Discussion of this class starts at "ObAccessManager Class" on page 5-16.

Exception Classes: Provide methods for capturing and presenting errors that may
occur. Discussion starts at "Class ObAMException" on page 5-81.

API Conventions
The Policy Manager API follows the object-oriented programming concept, in which
classes define objects and methods, and the methods in the class operate on the
content of the objects.

The Policy Manager API classes are implemented in the Java programming language
and as managed code classes. The Policy Manager API also includes an equivalent C
programming language implementation. Definitions of the classes and functions for
the supported languages are provided in Appendix B, "Policy Manager API
Definitions" on page B-1.

Programmatic and Implementation Conventions
In Java, methods are called by reference. The application knows what class the object
was created under and therefore which method to use. For example, to first create an
authentication rule named myauthrule, and then set a description for it, you would
write the following code in Java:

 ObAMAuthenticationRule myauthnrule = new ObAMAuthenticatonRule[];
 myauthnrule.setDescription(“The description text”);

For managed code, how the methods are used depends on the implementation
language. For example, to create an authentication rule and a description for it, you
would write the following code:

 ObAMAuthenticationRuleMgd *myauthnrule = new
 new ObAMAuthenticatonRule();

Note: In the examples of this chapter, the managed code is
appropriate for managed C++. However, keep in mind that you can
write managed code using any language supported by the Microsoft
.NET framework for managed code, including Visual Basic, C#, and
C++.

Coding With the Policy Manager API

5-8 Oracle Access Manager Developer Guide

 myauthnrule->Description=“The description text”;

The C implementation mimics the Java operation by the extensive use of opaque
pointers to an underlying set of structures. (Fortunately, you need to deal with only
the top layer of these.)

Classes and objects are referenced by pointers to their structures. When an object is
created, the returned value is a pointer to a structure defining that object. The pointer
type is always the object's class name with the text _t appended. When you use a C
function to change a member of the structure for the object, you include the pointer as
an argument to indicate which object you are referring to.The pseudo-method name
used to make the change is precisely defined by preceding it with the class name of the
object whose structure is being modified. In C, to create an Authentication Rule named
myauthrule and set a description for it, you would write the following code:

 ObAMAuthenticationRule_t myauthnrule;
 myauthnrule = ObAMAuthenticationRule_new();
 ObAmAuthenticationRule_setDescription(myauthnrule, “The description text”)

Naming Conventions
To the greatest extent possible, classes, objects, and methods all have names that
describe what they contain or what they do. For example, the class
ObAMAuthenticationRule provides methods for manipulating Authentication Rule
objects. In this class, the method setDescription is used to add a description for an
Authentication Rule object. The ObAMAuthenticationRule class can have associated
with it actions to be taken depending on the outcome of the authentication process.

The ObAMAuthenticationRule class inherits automatically the abstract class
ObAMObjectWithActions class, and it uses its methods of this class for dealing with
actions. As do the methods of most classes, those of the ObAMObjectWithActions class
also have meaningful names. Any class that uses actions inherits the
ObAMObjectWithActions class. For this reason, the names of the methods of the
ObAMObjectWithActions class are general. For example, this class includes a method
called addActionofType.

Creating New Objects
Each class has a method which acts as a constructor to build an empty object of the
class. Java uses its built-in new() method to do this and the new object is manipulated
by reference. The C version of the constructor is named after the object to be created
with the text _new appended. The constructor returns a pointer, whose type is the
object's class name with _t appended.

For example, to create a new Policy object in Java you would write the following code:

 ObAMPolicy mypolicy = new ObAMPolicy();
In managed code, to create a new Policy object in managed C++, you would write the
following code:

 ObAMPolicyMgd * mypolicy = new ObAMPolicyMgd();

and in C you would write the following code:

 ObAMPolicy_t mypolicy;
 mypolicy = ObAMPolicy_new();

Coding With the Policy Manager API

Policy Manager API 5-9

Copying Existing Objects
Each class has the equivalent of a copy constructor that makes a copy of an existing
object of the same class, including all its members. In Java the clone() method is
used to copy an object, and the new object is manipulated by reference. Be sure to cast
the cloned object to the right class.

The equivalent C function is named after the class, with the text, _copy, appended.
The function returns a pointer to the new object. The function takes an argument that
is the name of the object to be copied.

For example, in Java to make a copy of an existing action object called action1 and to
call the new object action2, you would write the following code:

 ObAMAction action2 = (ObAMAction) action1.clone();

In managed C++, you would write the following code:

 ObAMActionMgd *action2=(ObAMActionMgd *) action1->Clone();

 In C you would write the following code:

 ObAMAction_t action2;
 action2 = ObAmAction_copy(action1);

About Cloning Objects Explicitly
To clone an object, you must copy it explicitly. For example, you cannot set a new
value for an existing object and presume that by adding the object to the policy
domain it will be cloned. The following snippet of code attempts to implicitly clone a
resource object called resource1.

 ObAMResource resource = new ObAMResource();
 resource.setResourceType(“http”);
 resource.setHostID(“host1”);
 resource.setURLPrefix(“/myresource1”);
 domain.addResoure(resource);
 resource.setURLPrefix(“/myresource2”);
 domain.addResource(resource);

The Access Server interprets the code as an attempt to change the URL of the first
resource from /myresource1 to /myresource2. The resource object called resource has
already been added to the policy domain. Rather than clone that resource, the Access
Server interprets the following line of code as instruction simply to change the URL of
the resource:

 resource.setURLPrefix("/myresource2");

When the last line of code attempts to add the same resource again to the domain, the
Access Server reports that it already exists.

The correct way to accomplish the intended task is to create a copy of the object and
change the current values of any of its properties as required. Here is an example of
how you might clone an object. This snippet of code attempts to add two resources to
a policy domain. The second resource to be added is of the same type and has the
same host ID as the original one.

 ObAMResource resource1 = new ObAMResource();
 resource1.setResourceType(“http”);
 resource1.setHostID(“host1”);
 resource1.setURLPrefix(“/myresource1”);
 domain.addResource(resource1);

Coding With the Policy Manager API

5-10 Oracle Access Manager Developer Guide

 ObAMResource resource2 = (ObAMResource) resource1.clone();
 resource2.setURLPrefix(“/myresource2”);
 domain.addResource(resource2);

The programmer wants to add a resource of type http whose host ID is host1 and
whose URL is /myresource1 to the policy domain called domain. The code creates an
object of type ObAMResource called resource1, and sets its values. Then it adds
resource1 to the policy domain (domain).

After adding the first resource to domain, the programmer wants to add another
resource of the same type (http) that is on the same host (host1). The URL for that
resource is /myresource2.

For this purpose, the developer clones resource1, creating an object called resource2,
which inherits all of the properties of resource1.The only property the developer
changes is the URL. The developer sets the URL for resource2 to /myresource2.

Deleting Objects
Each class provides the equivalent of a destructor that deallocates memory used for an
object, including member objects.

Java does not actually use destructors but rather garbage-collects objects that are no
longer referenced.

Managed code is similar to Java in its use of a garbage collector. When an object goes
out of scope and it is no longer referenced, it is automatically deleted.

In C, a specific function is used, which is named after the class to which the object
belongs and which has appended to it _delete. The function takes one argument, a
pointer to the pointer to the object to be deleted. The multiple levels of pointing are
used by the function first to deallocate memory for the object and then to reset the
object pointer to NULL after the object has been deleted.

For example, in C to deallocate an existing action called actionname from the
ObAMPolicy class, you would write the following code:

ObAMPolicy_delete(&actionname);

Managing Data for Single-Valued Object Members
Objects can contain members having single-valued data members, and they can
contain arrays of data or objects. For example, a policy domain can contain arrays
having multiple resources (an array of objects) and multiple operations (an array of
strings) for each resource type of a policy.

This section explains how to manage objects which contain single-valued data
members.

Setting Data for Single-Valued Object Members
Each class has methods beginning with those that set the content for single-valued
members of objects in the class. For these cases, the data is a string, integer, Boolean
flag, or a reference to an object. The method name is always setwidget, where widget

Note: Member objects are other objects that the primary object
contains. For example, AdminRule objects contain Identity objects.

Coding With the Policy Manager API

Policy Manager API 5-11

is the type of information to be set. In Java, the new data for the member is set by
reference, and old data for the member may become eligible for garbage collection.

In the managed code API, any set method that takes only one value is used as if you
were directly accessing the data member. For example, to set the description in the
ObAMAuthenticationRuleMgd class, the method is treated as if it were a data
member:

 myauthnrule->Description = "The description text";

C is a bit more complicated. The first use of the set method stores a reference to the
source object. Subsequent use of set for the same source object copies from the source
to the receiving object member. The C function always takes two arguments. The first
argument is always the name of the object for which data is being set. If the function is
inserting a value, then the second argument is that value. If the set is inserting a
reference to an object then the second argument is the reference.

For example, the code to set the value for a resource type (a string) and to add an
authentication rule called myauthrule1 (an object) in an existing policy called
mypolicy looks like this for Java:

 mypolicy.setResourceType("http"); mypolicy.setAuthenticationRule(myauthrule);

And like this for managed C++:

 mypolicy->ResourceType="http";
 mypolicy->AuthenticationRule=myauthrule;

And it looks like this in C:

 ObAMPolicy_setResourceType(mypolicy, "http");
 ObAMPolicy_setAuthenticationRule(mypolicy, myauthrule);

Getting Data for Single-Valued Object Members
Each class has get methods that are used to retrieve the content for single-valued data
members. For both Java and C, the method returns NULL if no value has been set. The
function name is always getwidget, where widget is the type of information to be
retrieved. In Java, the object is identified by reference. In C, the object name is
provided as an argument to the function.

For example, the methods to get the value for the policy name and to get a pointer to
an authentication rule object within a policy object called mypolicy are represented
this way in Java:

 namevar = mypolicy.getName();
 rule1 = mypolicy.getAuthenticationRule();

and in this way in managed C++:

 namevar = mypolicy->Name;
rule1 = mypolicy->getAuthenticationRule;

and in this way in C:

 const char *namevar;
 amevar = ObAMPolicy_getName(mypolicy);
 ObAMAuthenticationRule_t rule1;
 rule1 = ObAMPolicy_getAuthenticationRule(mypolicy);

Coding With the Policy Manager API

5-12 Oracle Access Manager Developer Guide

Managing Arrays
An object member with multiple elements each having its own value is organized as
an array indexed from 0. In order to retrieve information for an element of the array,
you need to ask for it based on its position in the array specified as an index.

Objects can contain arrays of either values or other objects. This section describes the
following topics, which discuss the kinds of functions you can perform on array
members of objects:

■ About Keys

■ Adding Data to Arrays

■ Modifying Data for Objects in Arrays

■ Getting a Count of Members in an Array

■ Getting Data for Elements of Arrays

■ Removing Data from Arrays

About Keys
Many objects contain key members. Key members are useful in cases where an object
contains an array of member objects. The key enables methods to search for the
member object in the array before performing the requested operation.

Adding Data to Arrays
Objects that contain arrays have methods that allow you to add a new member to the
array. If the array is an array of values, then the value is appended to the array and the
number of elements in the array increases by one. If the array is an array of objects,
then a reference to the new object is added, and the number of elements in the array
increases by one. The method name is always addwidget, where widget is the type of
information being added. In Java, managed code, and C, the method takes an
argument, either the value to be added or the name of the object being added.

For example, given a Policy object called mypolicy, to add another Operation (a string)
or to add another resource (an object), the Java code looks like this:

 mypolicy.addOperation("GET");
 mypolicy.addResource(myresource);

The managed C++ code looks like this:

 mypolicy->AddOperation="GET";
 mypolicy->AddResource=myresource;

The equivalent C code requires an additional argument, the object to which the value
or object is being added, and looks like this:

 ObAMPolicy_addOperation(mypolicy, "GET");
 ObAMPolicy_addResource(mypolicy, myresource);

Note: No set methods are provided for object members which are
arrays. Instead, you must replace the old value with a new one. For
example, to change the value of an operation in an array of operations
for a Policy object (of the policy class), you must remove the old value
and add the new value in two steps.

Coding With the Policy Manager API

Policy Manager API 5-13

Modifying Data for Objects in Arrays
Objects can contain arrays of member objects whose values you can modify. You can
do this by getting the member from the object, changing its data, and then storing it
back in the object. A more facile way to do this is to create an empty member object, fill
in the data that needs to be modified, and then use the modify method to overwrite
the existing version of the member object in the array of objects.

To modify data for objects in arrays
1. Create an empty member object (of an array of objects), all of whose members will

initially be filled with NULL.

2. Set the value for the key member in the empty member object to match the value
for the key member in the member object to be overwritten.

3. Set values in the members of the member object that you want to change. Leave
the values of members that are not to be changed set to NULL.

4. Use the modify method to overwrite the old member object. The function name is
always modifywidget, where widget is the type of object being modified. Modify
takes one argument, the name of the source member object. Based on the value of
the key member, modify locates the matching member object. Where the source
member object members are set to NULL, those values in the receiving member
object will be unchanged. Where values were specified for members, those values
will be changed in the receiving member object.

For example, suppose you want to change the description for a resource whose
resource type member is EJB, and the resource is one of the resource members of an
array of resource objects for the Policy object mypolicy.

To accomplish this in Java, you would write the following code:

 ObAMResource exmplResr = new ObAMResource();
 exmplResr.setResourceType("EJB");
 exmplResr.setDescription(“The New Description”);
 mypolicy.modifyResourceType(exmplResr);

To accomplish this in managed C++, you would write the following code:

 ObAMResource *exmplResr
 exmplResr = new ObAMResource();
 exmplResr->ResourceType="EJB";
 exmplResr->Description=“The New Description”;
 mypolicy->ModifyResourceType=exmplResr;

To do the same in C, you would write the following code:

 ObAMResource_t exmplResr;
 exmplResr = ObAMResource_new();
 ObAMResource_setResourceType(exmplResr, "EJB");
 ObAMResource_setDescription (exmplResr,"The New Description");
 ObAMPolicy_modifyResourceType(exmplResr, exmplResr);

Getting a Count of Members in an Array
A member with multiple elements each having its own value is organized as an array,
indexed from 0. Your application can obtain the value of any element of an array. To do

Note: Refer to the tables for each object type to see which is the key
member.

Coding With the Policy Manager API

5-14 Oracle Access Manager Developer Guide

so, you use the get method, which returns the value for the requested element.
However, to retrieve information for an element of the array, you need to ask for it by
its position in the array.

Before your application calls the get method to get the value of an element of an array,
you must know how many members the array contains. You use the
getnumberofwidgets method for this purpose, where widget is the type of information
the array contains.

The Java version of this method provides the object name by reference, and has no
arguments. The C version takes a single argument, the name of the object.

To get the number of resources or the number of operations in a Policy object for a
policy domain named mypolicy, example Java code is:

 mypolicy.getNumberOfResources();
 mypolicy.getNumberOfOperations();

The equivalent managed C++ code is:

 int resNumber = mypolicy->NumberOfResources;
 int operNumber = mypolicy->NumberOfOperations;

The equivalent C code is:

 ObAMPolicy_getNumberOfResources(mypolicy);
 ObAMPolicy_getNumberOfOperations(mypolicy);

Getting Data for Elements of Arrays
After your application has called the getNumberOfwidgets method to obtain a count
of the number of elements of an array, you can get the value of an element of the array.
You pass the appropriate get method the index to the element of the array whose value
you want returned.

The Java methods take one argument, the index. The C functions take the index as the
second argument. For C functions, the first argument is the name of the object holding
the member from which the data is being retrieved.

For example, from the policy domain called mypolicy, to get the value for one
operation in an array of operations or for one policy in an array of policies, the Java
code is:

 mypolicy.getOperation(myindex);
 mypolicy.getPolicy(myindex);

The managed C++ code is:

 System::String *operation = mypolicy->getOperation(myindex);
 ObAMPolicyDomainMd *policy = mypolicy->getPolicy(myindex);

The C code looks like this:

 ObAMPolicyDomain_getOperation(mypolicy, myindex);
 ObAMPolicyDomain_getPolicy(mypolicy, myindex);

Note: Be careful not to confuse these get methods with the ones used
to extract values for single-valued data. You can tell which to use from
the member type. If the member type is array, then the get is asking for
the value of an element in the array and you must pass the method the
index of the element.

Coding With the Policy Manager API

Policy Manager API 5-15

Removing Data from Arrays
Objects that contain arrays of values or of member objects have methods that allow
you to remove members of the array. To do this, you specify a value to be matched. If
the array is an array of values, then the match is done on one of those values. If the
array is an array of member objects, then the match is done on the value stored for the
key member of the object.

Both Java and C take the value to be matched as an argument. For C, this is the second
argument; the first is the object from which the value is to be removed.

For example, if you want to remove the operation GET from the Policy mypolicy, the
Java code is:

 mypolicy.removeOperation("GET");

The managed C++ code is:

 mypolicy->removeOperation="GET";

The C code:

 ObAMPolicy_removeOperation(mypolicy, "GET");

Using setIDFrom
Every object received from the Access Server contains within its structure a unique
identifier, in addition to its name or other key information. Another object of the same
type can have its ID set to the same value. A minor change can then be made to the
second object, and modify can be used to write just the change back to the original. For
simple changes, this is superior to using copy, because no processing time needs to be
spent to copy data that will not be changed.

Both Java and C take the name of the object whose ID is to be copied as an argument.
For C, this is the second argument; the first is the object whose ID is to be set.

For example, if you want to set the ID for a Policy called workingpolicy to be the same
as the ID for an existing Policy called oldpolicy, the Java code is:

 workingpolicy.setIDFrom(oldpolicy);

The equivalent managed C++ code is:

 workingpolicy->IDFrom=oldpolicy;

The equivalent C code is:

 ObAMPolicy_setIDFrom(workingpolicy, oldpolicy);

Using Enumerations
Integer constant values are used to represent sets of predefined valid inputs for certain
object members. In this chapter, these are listed as part of the description for the object.
For example, the ObAMAction class contains an enumeration with three values:

 UNDEFINED = 0;
 FIXEDVALUE = 1;
 ATTRIBUTE = 2;

Note: Refer to the tables for each object type to see which is the key
member.

Coding With the Policy Manager API

5-16 Oracle Access Manager Developer Guide

It is possible for a programmer to pass an incorrect enumerated value to an object
within the Policy Manager API. To catch this kind of error, the Java binding checks the
enumerated values at run time and throws an ObAMException if an incorrect value is
passed.

Managed code uses the ObAmAction_ValueTypeMgd class with the following
methods:

 isUndefined
 isAttribute
 isFixedValue
 setUndefined

The managed code has wrapped all the needed enums as objects. Each enum has the
prerequisite getter and setter methods. For example, the ObAMAction_ValueType
enum has been wrapped by the object ObAMAction_ValueTypeMgd class. To create
this class and set the value type as FixedValue, you would write the following code:

 ObAMAction_ValueTypeMgd valueType = new
 ObAMAction_ValueTypeMgd();
 valueType->setFixedValue();
 if (valueType->isFixedValue == true) {
 <do something here>
 }

The Policy Manager code within the Access Server also checks input enumerated
values sent to it for an improperly formatted request. If an error exists, the
ObAccessManager method that originated the request receives the error and throws
the exception.

ObAccessManager Class
ObAccessManager objects are the main objects used by the Policy Manager API to
interact with the Access Server. Each ObAccessManager object represents one or more
connections to Access Servers to which requests can be sent to get or set policy or
system configuration objects. ObAccessManager objects support methods to perform
the following functions:

■ Establishment of Policy Manager object(s)

■ Connection to the Access Server

■ Listing of top level existing objects, by using a special form of get

■ Setting of values for new policy domains or changing values for existing policy
domains, by using a special form of set

■ Testing access to the Access Server

Methods to Handle AccessManager Objects
The following methods create a named AccessManager object and define the login
information for the user. They are:

■ A constructor for the AccessManager Object

These use the standard constructor syntax described earlier. See "Creating New
Objects" on page 5-8.

For Java, to create a new AccessManager object myam, you would write the
following code:

Coding With the Policy Manager API

Policy Manager API 5-17

 ObAccessManager myam = new ObAccessManager();

For managed C++, to create a new AccessManager object myam, you would write
the following code:

 ObAccessManagerMgd myam = new ObAccessManagerMgd();

For C, to create a new AccessManager object myam, you would write the
following code:

 ObAccessManager_t myam;
 myam = ObAccessManager_new();

■ A destructor for the AccessManager Object

These processes use the standard destructor syntax described earlier. See "Deleting
Objects" on page 5-10 For Java, the AccessManager objects are removed when they
are no longer referenced.

For managed C++, to remove the AccessManager object called myam, you let it go
out of scope. Garbage collection will take care of removing the object.

For C, to remove the AccessManager object called myam, you would write the
following code:

 ObAccessManager_delete(&myam);

■ The setAdmin method

This method specifies the user ID and password for an administrator for whom
requests will be authorized. If the administrator does not exist or the password is
not correct, ObAccessManager throws an exception with code
ADMIN_LOGIN_FAILED.

Example code for this in Java is:

 myam.setAdmin("A. Loomis", "ALoomisPassword");

Example code for this in managed C++ is:

 myam->setAdmin("A. Loomis", "ALoomisPassword");

and in C is:

 ObAccessManager_setadmin_password(myam,“A. Loomis”,“ALoomisPassword”);

■ The setCacheUpdates method

This method sets a Boolean flag to specify whether or not Access Server caches are
to be updated for each ObAccessManager set request.

Example code for this in Java is:

 myam.setCacheUpdates(true);

Example code for this in managed C++ is:

 myam->CacheUpdates=true;

and example code for this in C is:

 ObAccessManager_setCacheUpdates(myam, 1);

Coding With the Policy Manager API

5-18 Oracle Access Manager Developer Guide

Connection Methods
The Policy Manager API uses the Access Manager API connection methods from the
ObConfig class to establish one or more connections with the Access Server. The
following methods are described in more detail in "ObConfig" on page 4-26.

■ The initialize method

The initialize method takes an optional argument that specifies the (local)
directory path where the Policy Manager API has been installed. If this argument
is not given, ObAccessManager will get the directory path from the local
environment variable OBACCESSMGR_INSTALL_DIR.

The initialize method creates a connection to an Access Server specified in the
installation configuration file. See the discussion of this file and modifying an
AccessGate in the Oracle Access Manager Access Administration Guide. This
connection will be maintained until one of the following occurs:

■ The shutdown method is called.

■ The connection is broken, in which case ObAccessManager will attempt to
re-establish the connection to the same or another configured Access Server.

■ The configured (API) client session timeout is reached.

If no connection can be established to any configured Access Server,
ObAccessManager will throw an ObAMException with code CANNOT_CONNECT.

Assuming that the local environment variable is set to specify the installation directory
location, here is the Java call:

 Obconfig.initialize();

For C it is:

 Obconfig_initialize(myam);

For managed code, name space for the common classes is:

 Oblix::Access::Common

For managed code, the initialize method is a static method of the ObConfigMgd class:

 ObConfigMgd.initialize();

■ The shutdown method

The shutdown method closes all connections and deallocates resources used by
the Access Client.

Example coding for this in Java is:

 Obconfig.shutdown();

In managed C++ it is:

 ObConfigMgd.shutdown();

In C it is:

 Obconfig_shutdown(myam);

■ The getSDKVersion method

The getSDKVersion method returns the version of the Access Manager SDK under
which the Policy Manager API was built.

Coding With the Policy Manager API

Policy Manager API 5-19

To make this call in Java, you would write the following line of code:

 theSDKv = Obconfig.getSDKVersion();

To make this call in managed C++, you would write the following line of code:

 string theSDKv = ObConfigMgd.SDKVersion;

and to make the call in C:

 char * theSDKv;
 theSDKv = Obconfig_getSDKVersion(myam);

■ The getNAPVersion method

The getNAPVersion method returns the version of the Oracle Access Protocol used
to communicate with Access Servers as defined by the Access Server.

To make this call in Java, you would write the following line of code:

 theNAPv = Obconfig.getNAPVersion();

To make this call in C++, you would write the following line of code:

 theNAPv = Obconfig.NAPVersion;

and in C is:

 char * theNAPv;
 theNAPv = Obconfig_getNAPVersion(myam);

Get Methods
The ObAccessManager get methods return one or more policy domains or
configuration objects from the policy directory through the Access Server. The
ObAccessManager get methods allow the developer to get information of varying
degrees of complexity for the following objects:

■ AuthenticationScheme

■ AuthorizationScheme

■ HostIdentifier

■ MasterAuditRule

■ PolicyDomains

■ ResourceType

■ EscapeCharacter

The get methods return an array of objects dependent on the values passed to the
method for the following arguments:

■ matchName: selects the objects; if NULL, returns all objects.

■ matchCriterium: specifies how objects are to be selected by the matchName.

For example, here are the prototypes of the get method for policy domains in the Java
and C programming languages.

Java
public PolicyDomain[] ObAccessManager.getPolicyDomains(int responselength, String
matchName, int matchCriterium)throws ObAMException;

Coding With the Policy Manager API

5-20 Oracle Access Manager Developer Guide

C
ObAMArrayOfPolicyDomains_t ObAccessManager_getPolicyDomains(
 ObAccessManager_t am,
 ObAccessManager_ResponseLength responseLength,
 const char *matchName,
 ObAccessManager_MatchCriteria matchCriterium);

The arguments allow the developer to control the precision of the information
returned for each object.

■ am: For the C programming language, the name of an ObAccessManager object
created using the ObAccessManager_new function.

■ responseLength: Specifies how much information about the objects is to be
returned.

– There are three levels of increasing response complexity: MIN, MID, and
MAX. If responseLength is omitted, the default is MIN.

– Each get method knows implicitly which data items are to be returned for
each level, as indicated by the following table.

– Placeholders are returned for all possible data in the structure(s) defining the
object. For items for which they do not return values, MIN and MID return
NULL pointers/references.

Enumerated values for specifying responseLength are:

 MIN = 0

 MID = 1

 MAX = 2

Object Type MIN MID MAX

Authentication
Scheme

-Name
-Description

(In effect, list all
Authentication
Schemes)

Same as MIN values -Level
-Challenge method
-Challenge parameters
-SSL required
-Challenge redirection
-Plug-ins

Authorization
Scheme

-Name
-Description

(In effect, list all
Authorization
Schemes)

Same as MIN values -Shared Library

- User parameters

-Required parameters

-Optional parameters

EscapeCharacter (In effect, returns all
UTF-8 encoded escape
character strings used
in an audit rule)

Same as MIN values

HostIdentifier -Name
-Description

(In effect, list all host
identifiers)

Same as MIN values -Hostname variants

MasterAuditRule All of the object data;
no criteria may be
applied

Same as MIN same as MIN

Coding With the Policy Manager API

Policy Manager API 5-21

■ matchName: along with matchCriterium, is used to select specific objects for
which values are to be returned. The value of matchName is compared to the
value of the name member for each candidate object. If matchName is omitted, all
objects of the class are retrieved.

■ matchCriterium: specifies how object names are to be compared with matchName.
The comparison is applied after the matchName has been applied. The choices are
as described in the following table. If matchCriterium is omitted, the default is
EQUALS = 0 .

Enumerated values for matchCriterium are:

 EQUALS =0

 CONTAINS = 1

 CONTAINS_IN_ORDER = 2

 BEGINS_WITH =3

 ENDS_WITH =4

PolicyDomain -Name
-Description
-Resource types
-URL prefixes
-Enabled/disabled flag

(In effect, show "My
Policy Domain")

-Domain names
-Policy names
-Default rule names
-URL prefixes

(In effect, show search
results for policy
domains)

-Complete default rules
-Complete policies
-Complete admin rules

ResourceType -Name
-Display Name

Same as MIN values. -caseSensitive

Matching operations

Parameter Meaning

EQUALS The object name matches exactly the value
provided.

CONTAINS The object name contains the exact string
specified. It may be embedded within other
characters.

CONTAINS_IN_ORDER The object name matches in the string the
characters specified, in the specified order, but
not necessarily as one contiguous string.

For example, "123" would find a match in both
"01234" and "102030".

BEGINS_WITH The object name begins with the exact value
provided, however long it may be.

ENDS_WITH The object name ends with the exact value
provided, however long it may be.

Note: Security. The getPolicyDomains method returns only those
policy domains and policies within domains for which the Policy
Manager administrator has at least basic admin rights. All other
ObAccessManager get methods require that the admin user be a
Master Access Administrator.

Object Type MIN MID MAX

Coding With the Policy Manager API

5-22 Oracle Access Manager Developer Guide

Managed Code Form
For managed code, the get method returns an array of objects for the class the method
belongs to.

ArrayList*ObAccessManagerMgd::getPolicyDomains(
 ObAccessManager_ResponseLengthMgd *responseLength,
 System::String *matchName,
 ObAccessManager_MatchCriteriaMgd *matchCriterium);
To set the arguments to the AccessManagerMgd get method, you can use the
ObAccessManager_ResponseLengthMgd and the
ObAccessManager_MatchCriteriaMgd classes.

Class ObAccessManager_ResponseLengthMgd
To set the responseLength argument for the AccessManagerMgd get method, you can
use the ObAccessManager_ResponseLengthMgd class. This class provides a wrapper
around the enumeration ObAccessManager_ResponseLength.

The ObAccessManager_ResponseLengthMgd class includes get and set methods. The
methods you use to set values are shown here.

ObAccessManager_ResponseLengthMgd();
__property void set_Value(ObAccessManager_ResponseLength value);
void setMin();
void setMid();
void setMax();

where:

 setMin() is equivalent to enum value MIN

 setMid() is equivalent to enum value MID

 setMax() is equivalent to enum value MAX

Class ObAccessManager_MatchCriteriaMgd
To set the MatchCriteria argument for the AccessManagerMgd get method, you can
use the ObAccessManager_MatchCriteriaMgd class. This class provides a wrapper
around the enumeration ObAccessManager_MatchCriteria.

The ObAccessManager_MatchCriteriaMgd class includes get and set methods. Here
are the methods you use to set values:

 ObAccessManager_MatchCriteriaMgd();
 __property void set_Value(ObAccessManager_MatchCriteria value);
 void setEquals();
 void setContains();
 void setContainsInOrder();
 void setBeginsWith();
 void setEndsWith();

where:

 setEquals() equivalent to enum value EQUALS

 setContains() equivalent to enum value CONTAINS

 setContainsInOrder() equivalent to enum value CONTAIN_IN_ORDER

 setBeginsWith() equivalent to enum value BEGINS_WITH

 setEndsWith() equivalent to enum value ENDS_WITH

Coding With the Policy Manager API

Policy Manager API 5-23

Get Method Examples
To get minimum information for all policy domains whose names contain the string
"oblix", you would write the following Java code:

 myam.getPolicyDomains(MIN, "oblix", CONTAINS);

For managed C++ code, you would write the following code:

 ObAccessManager_ResponseLengthMgd* len = new
 ObAccessManager_ResponseLengthMgd();
 ObAccessManager_MathCriteriaMgd *matchCriterium = new
 ObAccessManager_MatchCriteriaMgd();
 len->setMin();
 matchCriterium->setContains();
 policyDomains = myam->getPolicyDomains(len, “Oblix”,matchCriterium);

For C, you would write the following code:

ObAccessManager_getPolicyDomains(myam, ObAccessManager_MIN,
 “oblix”, ObAccessManager_CONTAINS);

Set Method
The API includes one ObAccessManager set method which can be used in the process
of creating, modifying, and removing policy domains only. The definition for this
method in the Java, Managed Code, and C programming languages is provided in the
following sections.

Java
public void setPolicyDomain(ObAMPolicyDomain PDname, int setAction);
 throws ObAMException;

Managed Code
void setPolicyDomain(obAMPolicyDomainMgd
 *value, ObAccessManager_SetActionMgd *setAction);

C Form
void ObAccessManager_setPolicyDomain(
 ObAccessManager_t accessmanagerObjectName,
 ObAMPolicyDomain_t PDname,
 ObAccessManager_SetAction setAction);

For the C definition, PDname represents the name of a PolicyDomain. You use the
setAction parameter to specify the kind of action to be taken in relation to the specified
policy domain object. These are the possible actions:

■ Create: A PolicyDomain object is to be created. If objects with the same name
already exist, the object will be not be created and the set method returns the
error code EXISTING_OBJECT along with the name of the existing object.

■ Modify: An existing PolicyDomain object is to be modified. All specified data for
the object is modified; undefined data is not affected. If a specified object does not

Note: To set values for other high-level objects, you use methods
specific to their content. These methods are described in the pertinent
sections that follow.

Coding With the Policy Manager API

5-24 Oracle Access Manager Developer Guide

exist, the set method will return the error code NO_OBJECT and the name of the
missing object.

■ Remove: An existing PolicyDomain object is to be removed. Only the object name
is relevant; any data provided along with the object is ignored. If the object does
not exist, the set method returns the error code NO_OBJECT and gives the name of
the missing object.

Enumerated values for setAction are:

 CREATE = 0

 MODIFY = 1

 REMOVE = 2

For example, to create a new Policy Domain in Java, you would write the following
code:

 myam.setPolicyDomain(mypolicy, CREATE);

In managed C++, you would write the following code:

 public void setPolicyDomain(ObAmPolicyDomainMgd *pdName,
 ObAccessManager_SetActionMgd *setAction);

using the ObAccessManager_SetActionMgd setCreate method. The
ObAccessManager_SetActionMgd class includes the following methods for specifying
the action:

 void setCreate() = CREATE enum
 void setModify() = MODIFY enum
 void setRemove() = REMOVE enum

and in C you would write the following code:

 AccessManager_setPolicyDomain(myam, mypolicy, ObAccessManager_CREATE);

Test Access Method
ObAccessManager provides a method to perform an access check, taking as its input
an ObAMAccessTest object in which you specify a resource, an optional location, date
and time, and a set of users. The testAccess method returns an
ObAMAccessTestResults object that includes the applicable policy domain, policies,
authorization expression, and determining authorization rules contributing to the
outcome of evaluation of the authorization expression. The object also includes
information specifying if access by each user is authorized.

Note: Security. The ObAccessManager administrative user must
have basic administration rights for the policy domains in question to
be able to call setPolicyDomain. If setPolicyDomain changes the
delegate, grant, or basic admin rules of the domain, the administrative
user must have delegate or grant rights to do that, as appropriate. If
the administrator does not have sufficient rights, the set method
returns a NOT_AUTHORIZED error code.

Coding With the Policy Manager API

Policy Manager API 5-25

In C, the caller is responsible for deleting the returned ObAMAccessTestResults object.

Note that this access test is similar but not identical to the ObUserSession.isAuthorized
method of the Access Manager API. See "ObUserSession" on page 4-24. The differences
are:

■ testAccess can test access for any user, while isAuthorized can only be used by an
authenticated user

■ testAccess can test access for any date and time, while isAuthorized always uses
the current time.

■ testAccess gets its information from the directory; the results are always current.
isAuthorized gets its information from the Access Server cache, which may not be
current.

The definition (not code example) for this method is:

Java
public ObAMAccessTestManaResults testAccess(ObAMAccessTest testname);

Managed C++ Form
public ObAMAccessTestResultsMgd *getTestAccess(ObAMAccessTestMgd *test);

C Form
ObAMAccessTestResults_t ObAccessManager_testAccess(ObAMAccessTest_t testname);

For example, presuming that the AccessTest object is already built then to do an Access
Test in Java, you would write the following code:

 myam.testAccess(myaccesstestobject);

In Managed C++, the code is:

 myam.gettestAccess(myaccesstestobject);

and in C is:

 ObAccessManager_TestAccess(myam, myaccesstestobject);

Access System Configuration Objects
Access System configuration objects represent certain basic object types for which
information can be created, modified, deleted, and viewed through the Access System
Console GUI. Because they underpin most of the access security supported by the
Access System, they cannot be changed using the Policy Manager API. However, these
objects are used in creating policy domains and policies. With the exception of
managed code supporting classes, you can get but not set values for the following
objects included in this group:

Important: If you do not specify explicitly the users who are to be
used in the access check test, all of the users in the LDAP directory
will included in the test. You may want to perform an access test check
using all of the users in the directory. However, if a test of this kind
occurs unintentionally because you forgot to specify users, it can incur
overhead and consume processing cycles, depending on the size of
your LDAP directory.

Policy Manager API Classes

5-26 Oracle Access Manager Developer Guide

■ "Class ObAMHostIdentifier" on page 5-26

■ "Class ObAMHostIdentifierMgd" on page 5-27

■ "Class ObAMResourceType" on page 5-27

■ "Class ObAMResourceTypeMgd" on page 5-27

■ "Class ObAMAuthenticationScheme" on page 5-28

■ "Class ObAMAuthenticationSchemeMgd" on page 5-29

■ "Class ObAMAuthenticationScheme_ChallengeMethodMgd" on page 5-29

■ "Class ObAMAuthenticationPlugin" on page 5-30

■ "Class ObAMAuthenticationPluginMgd" on page 5-30

■ "Class ObAMAuthorizationScheme" on page 5-31

■ "Class ObAMAuthorizationSchemeMgd" on page 5-31

■ "Class ObAMMasterAuditRule" on page 5-32

■ "Class ObAMMasterAuditRuleMgd" on page 5-33

Policy Manager API Classes
This section describes the Policy Manager API classes, including Java and managed
code classes. In some cases, the Java class methods are followed by a list of the
equivalent C programming language methods.

Also for each Java class, a table is provided showing the data members of the object
manipulated by its methods and those of any classes it inherits. Here is how the table
is organized:

■ Each row of the table begins with the label used to identify the data member.

■ The second column indicates the data type, and whether it is a single value or an
array.

■ The third column describes the range of legal values for the data, enumerated
where appropriate

■ The last column describes what each data item represents.

Some methods and functions use key data items in order to uniquely identify the
object. Where there is only one key data item, that item is indicated as (key). Where
two or more data items must be concatenated together to act as a key, they are
indicated as (key1), (key2), and so on, in the order of concatenation.

Class ObAMHostIdentifier
Each object of the ObAMHostIdentifier class represents a configured host identifier.

Label Type Range Description

Name

(key)

A string Required Any The identifying name of the Host
Identifier

Description A string Optional Any An optional description

HostName An array of strings

Optional

Any A set of hostname variations.

Policy Manager API Classes

Policy Manager API 5-27

Class ObAMHostIdentifierMgd
(Managed Code). Each ObAMHostIdentifier object represents a configured host
identifier. For information on the object components, see "Class ObAMHostIdentifier"
on page 5-26.

Managed Code Form
// getters
__property System::String *get_Name();
__property System::String *get_Description();
__property int get_NumberOfHostnames();
System::String *getHostname(int index);

Class ObAMResourceType
Each object of the ObAMResourceType class represents a built-in or custom resource
type.

Java
 public String getName();
 public String getDisplayName();
 public boolean getCaseSensitiveMatching();
 public int getNumberOfOperations();
 public String getOperation(int index);

Class ObAMResourceTypeMgd
(Managed Code). Each object of the ObAMResourceType class represents a built-in or
custom resource type.

Label Type Range Description

Name

(key)

A string Required Any The identifying
name of the resource
type, which enables
its reuse

DisplayName A string Required Any The displayed name

Case-

Sensitive

Matching

A Boolean flag
Required

0, meaning no, or
other, meaning yes

A flag indicating
whether URL
matching for the
resource type is
case-sensitive

Operations An array of strings

Optional

Any A set of operations
defined for the
resource type

Label Type Range Description

Name

(key)

A string Required Any The identifying name
of the resource type,
which enables its reuse

DisplayName A string Required Any The displayed name

Case-

Sensitive

Matching

A Boolean flag
Required

True, false A flag indicating
whether URL matching
for the resource type is
case-sensitive

Policy Manager API Classes

5-28 Oracle Access Manager Developer Guide

Managed Code Form
// getters
__property System::String *get_Name();
__property System::String *get_DisplayName();
__property bool get_CaseSensitiveMatching();
__property int get_NumberOfOperations();
System::String *getOperation(int index);

Class ObAMAuthenticationScheme
Each object of the ObAMAuthenticationScheme class represents a configured
authentication scheme. Every authentication rule must contain the name of an existing
authentication scheme.

Operations An array of strings

Optional

Any A set of operations
defined for the resource
type

Label Type Range Description

Name

(key)

A string (Required) Any The identifying name
of the Authentication
Scheme

Description A string (Optional) Any An optional
description

Level Numeric (Required) Any A level ranking the
security of the
scheme relative to
other configured
schemes

Challenge Method A member of the
enumerated list
(Required)

Any item in the
following
enumerated list:

UNDEFINED=0

NONE=1

BASIC=2

X509=3

FORM=4

EXTERNAL=5

The method to be
used to challenge the
user for credentials.

Challenge

Parameters

An array of strings
(Required)

Any A set of parameters
to be used in the
challenge

SSLrequired A Boolean flag
(Required_

0, meaning no, or
other, meaning yes

A flag indicating
whether an SSL
security connection is
required for the
challenge

Plugin An array of
authentication plugin
objects (Optional)

See the class
definition on
page 5-30

An array of plug-ins
to process the
credentials to
produce the
authenticated user

Label Type Range Description

Policy Manager API Classes

Policy Manager API 5-29

Java
 public String getName();
 public String getDescription();
 public int getLevel();
 public int getChallengeMethod();
 public boolean getSSLrequired();
 public int getNumberOfChallengeParameters();
 public String getChallengeParameter(int index);
 public int getNumberOfPlugins();
 public ObAMAuthenticationPlugin getPlugin(int index);
 public boolean getEnabled();

Class ObAMAuthenticationSchemeMgd
(Managed Code). Each object of the ObAMAuthenticationSchemeMgd class represents
a configured authentication scheme. See "Class ObAMAuthenticationScheme" on
page 5-28 for details on the components of this object.

// getters
__property System::String *get_Name();
__property System::String *get_Description();

Class ObAMAuthenticationScheme_ChallengeMethodMgd
(Managed Code). This is a Managed Value Type class which defines the value types
used by the ObAMAuthenticationSchemeMgd class. This class provides a wrapper
around the enum ObAMAuthenticationScheme_ChallengeMethod. You can set the
value using the setter methods, or you can use an
ObAMAuthenticationScheme_ChallengeMethod value.

 __property int get_Level();
 __property ObAMAuthenticationScheme_ChallengeMethodMgd *get_ChallengeMethod();
 __property bool get_SSLrequired();
 __property bool get_Enabled();
 __property System::String *get_ChallengeRedirectURL();
 __property int get_NumberOfChallengeParameters();
 __property int get_NumberOfPlugins();
 System::String *getChallengeParameter(int index);
 ObAMAuthenticationPluginMgd *getPlugin(int index);

// Get and set values
__property bool get_isUndefined();
__property bool get_isNone();
__property bool get_isBasic();
__property bool get_isX509();
__property bool get_isForm();
__property bool get_isExt();
__property ObAMAuthenticationScheme_ChallengeMethod get_Value();
__property void
set_Value(ObAMAuthenticationScheme_ChallengeMethod value);
void setUndefined();
void setNone();

Enabled A boolean flag A flag to enable and
disable the
authentication
scheme

Label Type Range Description

Policy Manager API Classes

5-30 Oracle Access Manager Developer Guide

void setBasic();
void setX509();
void setForm();
void setExt();

For managed code, the mapping between the enumerated list (the challenge method)
and the managed code class is as follows:

ObAMAuthenticationScheme_ChallengeMethod:
setUndefined() = UNDEFINED
setNone() = NONE
setBasic() = BASIC
setX509 = X509
setForm() = FORM
setExt() = EXT

Class ObAMAuthenticationPlugin
Each object of the ObAMAuthenticationPlugin class represents an authentication
plug-in that can be configured into an authentication scheme.

Java
 public int getOrder();
 public String getName();
 public String getParameter();

Class ObAMAuthenticationPluginMgd
(Managed Code). Each ObAMAuthenticationPlugin represents an Authentication
Plug-in that can be configured into an authentication scheme. For details on the object
components, see "Class ObAMAuthenticationPlugin" on page 5-30.

Managed Code Form
// getters
__property int get_Order();
__property System::String *get_Name();
__property System::String *get_Parameters();

Label Type Range Description

Order An integer

Required

Any The order in which
the plug-in is
executed in the
authentication
scheme

Name

(key)

A string Required Any The name of the
plug-in (without the
file extension), which
is either a built-in
plug-in name or the
name of the custom
plug-in library

Parameters A string

Optional

Any A single string, of
user defined
parameters for the
plug-in

Policy Manager API Classes

Policy Manager API 5-31

Class ObAMAuthorizationScheme
Each object of the ObAMAuthorizationScheme class represents a custom authorization
scheme.

Java
 public String getDescription();
 public String getLibrary();
 public int getNumberOfUserParameters();
 public int getNumberOfRequiredParameters();
 public int getNumberOfOptionalParameters();
 public String getUserParameter(int index);
 public ObAMParameter getRequiredParameter(int index);
 public ObAMParameter getOptionalParameter(int index);

Class ObAMAuthorizationSchemeMgd
(Managed Code). Each ObAMAuthorizationSchemeMgd represents a custom
authorization scheme. For details on components of this object, see "Class
ObAMAuthorizationScheme" on page 5-31.

Managed Code Form
// getters
__property System::String *get_Name();
__property System::String *get_Description();
__property System::String *get_Library();
__property int get_NumberOfUserParameters();
__property int get_NumberOfRequiredParameters();
__property int get_NumberOfOptionalParameters();
System::String *getUserParameter(int index);
ObAMParameterMgd *getRequiredParameter(int index);
ObAMParameterMgd *getOptionalParameter(int index);

Label Type Range Description

Name

(key)

A string Required Any The identifying name
of the Authorization
Scheme

Description A string Optional Any A description to
displayed for the
scheme

Library A string

Required

Any The name of the
library file
implementing the
scheme

User

Parameters

An array of strings

Optional

Any Parameters defined
by the user

Required Parameters An array of
Parameter objects

Optional

See the class
definition on
page 5-72

Parameters built into
the scheme and
required for its
correct operation, if
any

Optional

Parameters

An array of
Parameter objects

Optional

See the class
definition on
page 5-72.

Parameters with
which the scheme
will work, if they are
provided

Policy Manager API Classes

5-32 Oracle Access Manager Developer Guide

Java
 public String getName();
 public String getDescription();
 public int getNumberOfHostnames();
 public String getHostname(int index);

Class ObAMMasterAuditRule
A object of the ObAMMasterAuditRule class represents the master audit rule, which
specifies global audit parameters and defaults to be used if there is no audit rule
specified for a specific policy.

In 10g (10.1.4.0.1):

■ In the C language API, the ObAMMasterAuditRule_getEscapeCharacter
remains and you may continue using this. However, the audit escape character
must be an ASCII character; otherwise the return value is incorrect. In this case,
you must modify your C code to use the new API.

■ On Java clients, the ObAMMasterAuditRule_getEscapeCharacter works
correctly and you can continue using this even when the audit escape character is
not an ASCII character.

■ In the C language API, a new
ObAMMasterAuditRule_getUTF8EscapeCharacter has been added, which
returns a pointer to the UTF-8 encoded audit escape character.

Java
 public int getDateFormat();
 public char getEscapeCharacter();
 public String getRecordFormat();
 public String getEventMapping(int eventType);

Label Type Range Description

DateFormat Enum

Required

An integer from the
following enumerated
set of possible date
formats:

UNDEFINED=0

INTEGER = 1

MMDDYYYY=2

DDMMYYYY=3

ISO8601 = 4

YYYYMMDD=5

YYYYDDMM=6

The format to be used
for the date in each
audit record

Escape

Character

A string

Required

Any The escape character to
be used in audit records

Note: See behavior
details in the list
preceding this table for
details.

RecordFormat A string

Required

Any The format for the
audit record

EventMapping An array of strings
associated with event
types

Any The mapping of audit
events to character
strings to be used in the
audit record

Policy Manager API Classes

Policy Manager API 5-33

The get method used to work with event mapping in the Master Audit Rule is
unusual. The array of EventMapping strings consists of a series of pairs of data. Each
pair is the association of a character string with an event type. The event type is
provided as an enumerated argument to the getEventMapping method to return the
character string associated with it.

The enumerated values for eventtype are the following:

 AUTHENTICATION_FAILURE = 0
 AUTHENTICATION_SUCCESS = 1
 AUTHORIZATION_FAILURE = 2
 AUTHORIZATION_SUCCESS= 3

Class ObAMMasterAuditRuleMgd
(Managed Code) An ObAMMasterAuditRule object represents the master audit rule,
which specifies global audit parameters and defaults to be used if there is no audit rule
specified for a specific policy.

Managed Code Form
 // getters
 System::String *getEventMapping(ObAMAuditRule_EventTypeMgd *eventType);
 __property ObAMMasterAuditRule_DateFormat get_DateFormat();
 __property const char get_EscapeCharacter();
 __property System::String *get_RecordFormat();

Access Policy Objects
Access policy objects represent certain basic object types for which information can be
created, modified, deleted, and read through the Policy Manager GUI.

Label Type Range Description

DateFormat Enum

Required

An integer from the
following
enumerated set of
possible date
formats:

UNDEFINED=0

INTEGER = 1

MMDDYYYY=2

DDMMYYYY=3

ISO8601 = 4

YYYYMMDD=5

YYYYDDMM=6

The format to be used
for the date in each
audit record

Escape

Character

A string

Required

Any The escape character
to be used in audit
records

RecordFormat A string

Required

Any The format for the
audit record

EventMapping An array of strings
associated with event
types

Any The mapping of audit
events to character
strings to be used in
the audit record

Policy Manager API Classes

5-34 Oracle Access Manager Developer Guide

From the perspective of a policy domain, there are several tiers of objects in which the
higher-level objects include objects subordinate to them. This perspective is not a true
one in that policies which a policy domain contains can include their own rules and
expressions containing access conditions and actions. However, taking policies into
account, from a hierarchical perspective, the objects are:

Level 1: "Class ObAMPolicyDomain" on page 5-35

Level 2: "Class ObAMAdminRule" on page 5-39

Level 3: "Class ObAMAuthorizationExpr" on page 5-54

Level 4: "Class ObAMAuthorizationRule" on page 5-48

Level 5: "Class ObAMAuthenticationRule" on page 5-45 and "Class
ObAMAuthorizationRule" on page 5-48

Level 6: "Class ObAMAccessConditionsMgd" on page 5-60 and "Class
ObAMTimingConditions" on page 5-62

Level 7: "Class ObAMAction" on page 5-66, "Class ObAMAuditRule" on page 5-68,
"Class ObAMDate" on page 5-69, "Class ObAMIdentity" on page 5-71, "Class
ObAMParameter" on page 5-72, "Class ObAMTime" on page 5-74

Level 8: "Class ObAMPolicy" on page 5-41

Description of these classes follows the form that is used for the"Access System
Configuration Objects" on page 5-25.

Definitions for the enumerated values and methods of these classes are given in
Appendix B, "Policy Manager API Definitions" on page B-1.

About String Names
Many objects contain a name data member whose value you specify as a string, and a
method to set that value, as shown in the following method definition:

public void setName(String value);

To refer to the object elsewhere, for example, passing it as a parameter to a method of
another class, you must specify exactly the string that you gave for that name when
you created the object.

For example, if you created an authorization rule called "Authz Rule 1" as is done in
the following snippet of code,

 ObAMAuthorizationRule authzRule1 = new
 ObAMAuthorizationRule();
 authzRule1.setName("Authz Rule 1");
 authzRule1.setEnabled(true);

and then you created another authorization rule called "Authz Rule 2", you could use
those rules in an authorization expression.

To create an authorization expression containing the two rules, you would refer to
each one of them by the exact string given as its name, as shown in the following line
of code:

p1_authzExpr.setExpression("Authz Rule 1 & Authz Rule 2");

This concept applies to all objects having a name data member.

Policy Manager API Classes

Policy Manager API 5-35

Class ObAMPolicyDomain
An object of the ObAMPolicyDomain class represents an access policy domain that
includes a set of resources and the authentication rule and authorization expression
that control access to those resources. Optionally, a policy domain can contain audit
rules. A policy domain also specifies the administrators who can manage the domain.
For details about policy domains and protecting resources with policy domains, see
the Oracle Access Manager Access Administration Guide.

A policy domain can also include one or more policies, each of which can have its own
rules and authorization expression. For information, see "Class ObAMPolicy" on
page 5-41.

Adding Objects to a Policy Domain: When you add to a policy domain a previously
created object containing a named data member, you must refer to the object by the
exact string given as the name when you created the object. For details, see "About
String Names" on page 5-34.

Label Type Range Description

Name

(key)

A string
Required

Any A unique name

Description A string
Optional

Any The displayed description for the
Policy Domain

Enabled A Boolean flag,
Optional

0, meaning no,
or other,
meaning yes.

A flag indicating if the Policy
Domain is enabled

Resource An array of
resource
objects

Optional

See the class
definition on
page 5-73.

A set of resources with resource
types, host IDs, and URL prefixes
that identify the world to which
the policy domain applies

Default

Authentication

Rule

One
Authentication

Rule object

Optional

See the class
definition on
page 5-45.

An authentication rule that
specifies, among other things, the
challenge method to be used to
obtain credentials from the user.

Default
Authorization
Expression

One
Authorization
Expression
object for a
policy domain

See the class
definition on
page 5-54.

An authorization expression
contains one or more
authorization rules whose
collective evaluation determines
if the requesting user is granted
access to the resource

The authorization rules of an
expression must be specified as
strings matching exactly the
names of the rules given when
they were created. For details, see
"Class ObAMAuthorizationRule"
on page 5-48 and "Class
ObAMAuthorizationExpr" on
page 5-54.

Rules of an authorization
expression are evaluated based
on precedence and priority. See
details about valuation of the
rules of an expression in the
Oracle Access Manager Access
Administration Guide.

Policy Manager API Classes

5-36 Oracle Access Manager Developer Guide

Java
 public String getName();
 public String getDescription();
 public boolean getEnabled();
 public int getEnabled();
 public int getNumberOfResources();
 public ObAMResource getResource(int index);
 public ObAMAuthenticationRule getDefaultAuthenticationRule(int index);
 public int getNumberOfPolicies();
 public OAMPolicy getPolicy(int index);
 public int getNumberOfAuthorizationRules();
 public ObAMAuthorizationRule getAuthorizationRule(int index);
 public ObAMAuthorizationExpr getDefaultAuthorizationExpr();
 public ObAMAuditRule getDefaultAuditRule();
 public ObAMAdminRule getDelegateAdminRule();
 public ObAMAdminRule getGrantAdminRule();
 public ObAMAdminRule getBasicAdminRule();
 public void modifyAuthorizationRule(ObAMAuthorizationRule value);
 public void modifyPolicy(ObAMPolicy value);
 public void modifyResource(ObAMResource value);

Authorization

Rule

One or more
Authorization
Rule objects for
a policy
domain

See the class
definition on
page 5-48.

A rule specifying who is allowed
or not allowed to use a protected
resource and under what
conditions.

Authorization Rules are included
in Authorization Expressions. To
specify an authorization rule in
an authorization expression, the
string given as its name must be
specified exactly.

Authorization Rules created for a
policy domain can be used for the
policy domain or any of its
policies.

Default

AuditRule

One Audit
Rule object

Optional

See the class
definition on
page 5-68.

An audit rule that is used if no
policy-specific audit rule applies

Policy An array of
Policy objects

Optional

See the class
definition on
page 5-41.

A policy that further qualifies
access requirements for the set of
resources it applies to.

Delegate

AdminRule

One
AdminRule
object

Optional

See the class
definition on
page 5-39.

An admin rule that specifies who
is allowed to delegate
administration rights for this
policy domain, including the
right to further delegate rights

Grant

AdminRule

One
AdminRule
object

Optional

See the class
definition on
page 5-39.

An admin rule that specifies who
is allowed to grant basic rights
for this Policy Domain to other
users

Basic

AdminRule

One
AdminRule

object

Optional

See the class
definition on
on page 5-39

An admin rule that specifies who
is allowed basic rights to manage
this Policy Domain

Label Type Range Description

Policy Manager API Classes

Policy Manager API 5-37

 public void setDescription(String value);
 public void setName(String value);
 public void setEnabled(boolean value);
 public void setDefaultAuthenticationRule(ObAMAuthenticationRule value);
 public void setDefaultAuthorizationExpr(ObAMAuthorizationExpr value);
 public void setDefaultAuditRule(ObAMAuditRule value);
 public void setDelegateAdminRule(ObAMAdminRule value);
 public void setGrantAdminRule(ObAMAdminRule value);
 public void setIDFrom(ObAMPolicyDomain other);
 public void setBasicAdminRule(ObAMAdminRule value);
 public void addResource(ObAMResource value);
 public void addAuthorizationRule(ObAMAuthorizationRule value);
 public void addPolicy(ObAMPolicy value);
 public void removeResource(ObAMResource value);
 public void removeAuthorizationRule(ObAMAuthorizationRule value);
 public void removePolicy(ObAMPolicy value);

Creating a Policy Domain
Example 5–1 shows an excerpt from an example program that creates a policy domain
called My Domain to protect certain resources, and then it enables the domain.

The code that would call the rest of the methods necessary to define a policy domain,
methods to set the default authentication rule, add authorization rules to the policy
domain, set the default authorization expression, and so forth, is not shown here.
Those ObAMPolicyDomain methods and others add objects to the policy domain, and
they are called only after the objects are created.

The code excerpt in Example 5–1 performs the following functions:

■ It creates a new policy domain object (domain), and it sets the name of the policy
domain to My Domain.

 ObAMPolicyDomain domain = new ObAMPolicyDomain();
 domain.setName("My Domain");

■ It sets a description for the policy domain

 domain.setDescription("This domain was created by the
 ObAM example program.");

■ It enables the policy domain. (You must enable a policy domain before you can use
it.)

 domain.setEnabled(true);

■ It creates an ObAMResource object called resource and sets the resource type to
http.

 ObAMResource resource = new ObAMResource();
 resource.setResourceType("http");

■ Using the new resource object, it specifies the location of the resources to be
included in the policy domain. It sets the host ID and it sets the URL prefix.

Together with the host ID, the URL defines the path for the resources protected by
the policy domain (http://host1/myresources).

All resources added to a policy domain are identified by the host ID for the host
on which they reside and their URLs.

 resource.setHostID("host1");
 resource.setURLPrefix("/myresources");

Policy Manager API Classes

5-38 Oracle Access Manager Developer Guide

■ It adds the resources to the policy domain

 domain.addResource(resource);

Example 5–1 Creating a Policy Domain

 .
 .
 .
 ObAMPolicyDomain domain = new ObAMPolicyDomain();
 domain.setName("My Domain");
 domain.setDescription("This domain was created by the ObAM example program.");
 domain.setEnabled(true);
 ObAMResource resource = new ObAMResource();
 resource.setResourceType("http");
 resource.setHostID("host1");
 resource.setURLPrefix("/myresources");
 domain.addResource(resource);
 .
 .
 .

Class ObAMPolicyDomainMgd
(Managed Code) An object of the ObAMPolicyDomainMgd class represents an access
policy domain that determines if access to a set of resources is authorized for a set of
users meeting certain conditions. A Policy Domain contains default rules and it can
contain policies that further qualify access requirements for subsets of resources. A
policy domain also specifies the administrators who can manage the domain. For
details on the object class components, see "Class ObAMPolicyDomain" on page 5-35.

Managed Code Form
// Getters and setters
__property System::String *get_Name();
__property System::String *get_Description();
__property bool get_Enabled();
__property int get_NumberOfResources();
__property int get_NumberOfAuthorizationRules();
__property int get_NumberOfPolicies();
ObAMResourceMgd *getResource(int index);
ObAMAuthorizationRuleMgd *getAuthorizationRule(int index);
__property ObAMAuthorizationExprMgd *get_DefaultAuthorizationExpr();
ObAMPolicyMgd *getPolicy(int index);
__property ObAMAuthenticationRuleMgd *get_DefaultAuthenticationRule();
__property ObAMAuditRuleMgd *get_DefaultAuditRule();
__property ObAMAdminRuleMgd *get_DelegateAdminRule();
__property ObAMAdminRuleMgd *get_GrantAdminRule();
__property ObAMAdminRuleMgd *get_BasicAdminRule();
__property void set_IDFrom(ObAMPolicyDomainMgd *other);
__property void set_Name(System::String *value);
__property void set_Description(System::String *value);
__property void set_Enabled(bool value);
__property void set_DefaultAuthenticationRule(ObAMAuthenticationRuleMgd *value);
__property void set_DefaultAuthorizationExpr(ObAMAuthorizationExprMgd *expr);
__property void set_DefaultAuditRule(ObAMAuditRuleMgd *value);
__property void set_DelegateAdminRule(ObAMAdminRuleMgd *value);
__property void set_GrantAdminRule(ObAMAdminRuleMgd *value);
__property void set_BasicAdminRule(ObAMAdminRuleMgd *value);
__property void set_AddResource(ObAMResourceMgd *value);

Policy Manager API Classes

Policy Manager API 5-39

__property void set_AddAuthorizationRule(ObAMAuthorizationRuleMgd *value);
__property void set_AddPolicy(ObAMPolicyMgd *value);
__property void set_ModifyResource(ObAMResourceMgd *value);
__property void set_ModifyPolicy(ObAMPolicyMgd *value);
__property void set_ModifyAuthorizationRule(ObAMAuthorizationRuleMgd *value);
__property void set_RemoveResource(ObAMResourceMgd *value);
__property void set_RemoveAuthorizationRule(ObAMAuthorizationRuleMgd *value);
__property void set_RemovePolicy(ObAMPolicyMgd *value);

Class ObAMAdminRule
An object of the ObAMAdminRule class specifies users who are authorized to
administer a policy domain.

Java
 public int getNumberOfPersons();
 public int getNumberOfGroups();
 public int getNumberOfRoles();
 public int getNumberOfRules();
 public ObAMIdentity getPerson(int index);
 public ObAMIdentity getGroup(int index);
 public String getRole(int index);
 public String getRule(int index);
 public void addRole(String value);
 public void addPerson(ObAMIdentity value);
 public void addGroup(ObAMIdentity value);
 public void addRule(String value)

Label Type Range Description

Role

(no key)

An array of
strings.

At least one
required.

One of:

none

anyone

noone

A set of roles.

NOTE: The array format here
allows for future use.
Currently, the "array" is
limited to one value.

Person An array of
Identity objects.

Optional, but at
least one of
Person, Group,
or Rule is
required.

See the class
definition on
page 5-71.

A set of people.

Group An array of
Identity objects.

Optional, but at
least one of
Person, Group,
or Rule is
required.

See the class
definition on
page 5-71.

A set of named groups (of
people).

Rule An array of
strings.

Optional, but at
least one of
Person, Group,
or Rule is
required.

Any A set of LDAP rules that select
user profiles.

Policy Manager API Classes

5-40 Oracle Access Manager Developer Guide

 public void removeRole(String value);
 public void removePerson(ObAMIdentity value);
 public void removeGroup(ObAMIdentity value);
 public void removeRule(String value);
 public void setIDFrom(ObAMAdminRule other);

Creating an Administrator Rule
The code in Example 5–2 performs the following functions:

■ It creates an administrator rule object (ObAMAdminRule) to be used to assign to
someone Delegated Administrator rights and responsibilities for the policy
domain called My Domain.

 ObAMAdminRule adminRule = new ObAMAdminRule();

This listing presupposes that the policy domain was created previously and called
My Domain.

■ It creates an identity object (ObAMIdentity) called adminPerson to be used to
identify the person to be assigned administrative rights for the domain.

 ObAMIdentity adminPerson = new ObAMIdentity();

■ Using the methods of the ObAMIdentity class, it sets the login ID for the person
designated administrator of the policy domain.

 adminPerson.setLoginID("A.Loomis");

■ Then it adds the ObAMIdentity object called adminPerson to the administrator
rule created at the outset of the code excerpt.

 adminRule.addPerson(adminPerson);

■ Finally, it calls the ObAMPolicyDomain's setDelegateAdminRule method to add
the adminRule rule to the policy domain called My Domain.

domain.setDelegateAdminRule(adminRule);

Example 5–2 Assigning Administrator Rights

 .
 .
 .
 ObAMAdminRule adminRule = new ObAMAdminRule();
 ObAMIdentity adminPerson = new ObAMIdentity();
 adminPerson.setLoginID("A.Loomis");
 adminRule.addPerson(adminPerson);
 domain.setDelegateAdminRule(adminRule);
 .
 .
 .

Class ObAMAdminRuleMgd
(Managed Code). An object of the ObAMAdminRule class specifies users who are
authorized to administer a policy domain. For details on the object class components,
see "Class ObAMAdminRule" on page 5-39.

Managed Code Form
// Getters and setters

Policy Manager API Classes

Policy Manager API 5-41

__property int get_NumberOfPersons();
__property int get_NumberOfGroups();
__property int get_NumberOfRoles();
__property int get_NumberOfRules();
ObAMIdentityMgd *getPerson(int index);
ObAMIdentityMgd *getGroup(int index);
System::String *getRole(int index);
System::String *getRule(int index);
__property void set_IDFrom(ObAMAdminRuleMgd *other);
__property void set_AddRole(System::String *value);
__property void set_AddPerson(ObAMIdentityMgd *person);
__property void set_AddGroup(ObAMIdentityMgd *group);
__property void set_AddRule(System::String *value);
__property void set_RemoveRole(System::String *value);
__property void set_RemovePerson(ObAMIdentityMgd *person);
__property void set_RemoveGroup(ObAMIdentityMgd *group);
__property void set_RemoveRule(System::String *value);

Class ObAMPolicy
An object of the ObAMPolicy class represents an access policy within a policy domain.
The policy determines who can access a set of resources within the policy domain
protected by the policy. It specifies the users allowed or denied access and the
conditions controlling access. If any of the Authentication or Audit rules or the
Authorization Expression in the policy are omitted, the corresponding default rule or
expression for the policy domain that includes the policy is used. For background
information about policies nd policy domains, see the Oracle Access Manager Access
Administration Guide.

Adding Objects to a Policy: When you add to a policy a previously created object
containing a named data member, you must refer to the object by the exact string
given as the name when you created the object. For example, you must specify the
names of authorization rules as strings matching exactly the names that were given
when the authorization rules were created and added to the policy domain. For
details, see "About String Names" on page 5-34.

Label Type Range Description

Name

(key)

A string

Required

Any A unique name

Description A string

Optional

Any A description

ResourceType A string

Optional

Any The resource type for the set
of resources to which the
policy applies

Operations An array of
strings

Required

Any A set of access operations
(defined for the resource
type) to which the policy
applies.

HostID A string

Optional

Any A host ID for the set of
resources.

Resources An array of
Resource objects
Required

See the class
definition on
page 5-73.

A set of resources that
further qualify the set of
resources.

Policy Manager API Classes

5-42 Oracle Access Manager Developer Guide

Java
 public String getName();

URLPattern A string

Optional

Any A URL pattern that further
qualifies the set of resources.

QueryString A string

Optional

Any A query string to be matched
against request data.

Parameters A array of
Parameter
objects

Optional

See the class
definition on
page 5-72.

A set of parameters to be
matched against request
data.

AuthenticationRule One
Authentication

Rule object

Optional

See the class
definition on
page 5-45.

An authentication rule
includes an authentication
scheme, which among other
things, specifies the
challenge method used to
obtain credentials from the
user.

You must specify an
authentication scheme that
has already been created.

Authorization
Expression

One
Authorization
Expression for
each policy

Optional

See the class
definition on
page 5-54.

An authorization expression
contains one or more
authorization rules whose
evaluation determines if the
user requesting the resource
is granted access to it.

The authorization rules of an
expression must be specified
as strings matching exactly
the names of the rules given
when they were created.

If a policy does not include
an authorization expression,
the expression for the policy
domain applies.

For details, see "Class
ObAMAuthorizationRule"
on page 5-48 and "Class
ObAMAuthorizationExpr"
on page 5-54.

Rules of an authorization
expression are evaluated
based on precedence and
priority. See details about
evaluation of the rules of an
expression and configuring
user authorization in the
Oracle Access Manager Access
Administration Guide.

AuditRule One AuditRule
object

Optional

See the class
definition on
page 5-68.

An audit rule that specifies
how the access is to be
audited.

Label Type Range Description

Policy Manager API Classes

Policy Manager API 5-43

 public String getDescription();
 public String getResourceType();
 public String getHostID();
 public String getURLPattern();
 public String getQueryString();
 public int getNumberOfOperations();
 public int getNumberOfResources();
 public int getNumberOfParameters();
 public ObAMAuthorizationExpr getAuthorizationExpr();
 public ObAMAuthenticationRule getAuthenticationRule();
 public String getOperation(int index);
 public ObAMResource getResource(int index);
 public ObAMParameter getParameter(int index);
 public ObAMAuditRule getAuditRule();
 public void setName(String value);
 public void setDescription(String value);
 public void setResourceType(String value);
 public void setHostID(String value);
 public void setURLPattern(String value);
 public void setQueryString(String value);
 public void setAuthorizationExpr(ObAMAuthorizationExpr value);
 public void setAuthenticationRule(ObAMAuthenticationRule value);
 public void setAuditRule(ObAMAuditRule value);
 public void setIDFrom(ObAMPolicy other);
 public void addOperation(String value);
 public void addResource(ObAMResource value);
 public void addParameter(ObAMParameter value);
 public void removeOperation(String value);
 public void removeResource(ObAMResource value);
 public void removeParameter(ObAMParameter value);
 public void modifyParameter(ObAMParameter value);
 public void modifyResource(ObAMResource value);

Creating a Policy
The code in Example 5–3 creates a policy called My Domain Policy 1. The policy
protects a resource within the policy domain called My Domain. My Domain was
created previously by the application this code was excerpted from.

The code in this listing sets an authorization expression for the policy domain. An
authorization expression includes authorization rules, which together are used to
control access to resources of the policy domain.

The code performs the following functions:

■ It creates a policy object called policy1 for the new policy, and it sets the name of
the policy to My Domain Policy 1.

 ObAMPolicy policy1 = new ObAMPolicy();
 policy1.setName("My Domain Policy 1");

■ It specifies the type of resource the policy applies to, and it identifies the resource
by giving its host ID and URL.

 policy1.setResourceType("http");
 policy1.setHostID("host1");
 policy1.setURLPattern("/myresources/doc1.html");

■ It defines for the My Domain Policy 1 policy the kinds of operations that can be
performed on the protected http resource. The GET and POST operations are
allowed.

Policy Manager API Classes

5-44 Oracle Access Manager Developer Guide

 policy1.addOperation("GET");
 policy1.addOperation("POST");

■ It adds the resource to the My Domain Policy 1 policy.

 policy1.addResource(resource);

■ It creates an ObAMAuthorizationExpr object called p1_authzExpr to be used for
the My Domain Policy 1 policy's authorization protection.

ObAMAuthorizationExpr p1_authzExpr = new;
ObAMAuthorizationExpr();

■ It defines the authorization expression for the p1_authzExpr object. The expression
consists of authorization rule 1 (Authz Rule 1) and authorization rule 2 (Authz
Rule 2). These are the names of the rules given as unique strings when the rules
were created. To identify the rules of an expression, you must specify exactly the
strings given as their names. For details, see "Class ObAMAuthorizationRule" on
page 5-48 and "Class ObAMAuthorizationExpr" on page 5-54.

p1_authzExpr.setExpression("Authz Rule 1 & Authz Rule 2");

For details about how authorization expressions are evaluated see details about
authorization expression evaluation and configuring user authorization in the
Oracle Access Manager Access Administration Guide.

■ It sets the duplicate actions policy for the p1_authzExpr authorization expression,
and then it adds the authorization expression to the My Domain Policy 1 policy.

 p1_authzExpr.setDuplicateActionsPolicy(ObAMAuthorizationExpr.UNDEFINED);
 policy1.setAuthorizationExpr(p1_authzExpr);

The duplicate actions policy for My Domain Policy 1 takes precedence over the
one set for the default authorization expression for the policy domain My Domain.

For information explaining what duplicate actions are and how they are handled
for a policy based on your specification, see "Class ObAMAuthorizationExpr" on
page 5-54. Also, see details about Duplicate actions and configuring user
authorization in the Oracle Access Manager Access Administration Guide.

■ Finally, it adds the My Domain Policy 1 policy to the My Domain domain.

 domain.addPolicy(policy1);

Example 5–3 Creating Policies Within the My Domain Policy Domain

 .
 .
 .
 ObAMPolicy policy1 = new ObAMPolicy();
 policy1.setName("My Domain Policy 1");
 policy1.setResourceType("http");
 policy1.setHostID("host1");
 policy1.setURLPattern("/myresources/doc1.html");
 policy1.addOperation("GET");
 policy1.addOperation("POST");
 policy1.addResource(resource);
 ObAMAuthorizationExpr p1_authzExpr = new ObAMAuthorizationExpr();
 p1_authzExpr.setExpression("Authz Rule 1 & Authz Rule 2");
 p1_authzExpr.setDuplicateActionsPolicy(ObAMAuthorizationExpr.UNDEFINED);
 policy1.setAuthorizationExpr(p1_authzExpr);

Policy Manager API Classes

Policy Manager API 5-45

 domain.addPolicy(policy1);

Class ObAMPolicyMgd
(Managed Code). An ObAMPolicyMgd object represents an access policy that
determines if access to a set of resources is authorized for a set of users meeting certain
conditions. If any of the Authentication or Audit rules or the Authorization Expression
are omitted, the corresponding rule in the policy domain that contains the policy will
be used. For details on the object class components, see "Class ObAMPolicy" on
page 5-41.

Managed Code Form
// Getters and setters
__property System::String *get_Name();
__property System::String *get_Description();
__property System::String *get_ResourceType();
__property System::String *get_HostID();
__property System::String *get_URLPattern();
__property System::String *get_QueryString();
__property int get_NumberOfOperations();
__property int get_NumberOfResources();
__property int get_NumberOfParameters();
System::String *getOperation(int index);
ObAMResourceMgd *getResource(int index);
ObAMParameterMgd *getParameter(int index);
__property ObAMAuthorizationExprMgd *get_AuthorizationExpr();
__property ObAMAuthenticationRuleMgd *get_AuthenticationRule();
__property ObAMAuditRuleMgd *get_AuditRule();
__property void set_IDFrom(ObAMPolicyMgd *other);
__property void set_Name(System::String *value);
__property void set_Description(System::String *value);
__property void set_ResourceType(System::String *value);
__property void set_HostID(System::String *value);
__property void set_URLPattern(System::String *value);
__property void set_QueryString(System::String *value);
__property void set_AuthenticationRule(ObAMAuthenticationRuleMgd *rule);
__property void set_AuthorizationExpr(ObAMAuthorizationExprMgd *expr);
__property void set_AuditRule(ObAMAuditRuleMgd *rule);
__property void set_AddOperation(System::String *value);
__property void set_AddResource(ObAMResourceMgd *resource);
__property void set_AddParameter(ObAMParameterMgd *parameter);
__property void set_ModifyResource(ObAMResourceMgd *resource);
__property void set_RemoveOperation(System::String *value);
__property void set_RemoveResource(ObAMResourceMgd *resource);
__property void set_RemoveParameter(ObAMParameterMgd *parameter);

Class ObAMAuthenticationRule
An object of the ObAMAuthenticationRule class specifies how authentication is to be
performed when users request access to resources protected by the rule. Every policy
domain must include one and only one default authentication rule containing an
ObAMAuthenticationScheme object. Optionally, each policy a policy domain contains
can include its own authentication rule. If it does not include one, the policy is
protected by the policy domain's authentication rule.

Authentication Schemes: An authentication rule must contain an authentication
scheme, which specifies, among other information, the challenge method used to
obtain the user's credentials and authenticate the user. You can use a predefined

Policy Manager API Classes

5-46 Oracle Access Manager Developer Guide

authentication scheme, or you can use a custom one. In any case, you must specify an
authentication scheme that has already been created. To get a list of existing
authentication schemes, you must use the Access System Console. See details about
configuring user authentication in the Oracle Access Manager Access Administration
Guide.

Actions for Authentication Rule Objects: For an authentication rule object, you can
set the kinds of actions to be taken if authentication of the user is successful. You can
also set the kinds of actions to be taken if user authentication fails.

When you create it, the ObAMAuthenticationRule class inherits the
ObAMObjectWithActions class. It uses the methods of this class to manipulate any
information pertaining to actions for the authentication rule. Do not instantiate
directly the ObAMObjectWithActions class because the ObAMAuthenticationRule
class inherits it automatically. For details, see "Class ObAMObjectWithActions" on
page 5-61.

For conceptual information about authentication rules and schemes, including the
kinds of challenge methods that can be used to authenticate users, see the Oracle Access
Manager Access Administration Guide.

Java
 public ObAMAuthenticationRule();
 public String getDescription();
 public String getScheme();
 public void setDescription(String value);
 public void setScheme(String value);
 public void setIDFrom(ObAMObjectWithActions other);
 public int getNumberOfActions(int actionType) throws ObAMException;
 public ObAMAction getActionOfType(int actionType, int index)
 throws ObAMException;
 public void addActionOfType(int actionTtype, ObAMAction value)
 throws ObAMException;

Label Type Range Description

Name

(key)

A string

Required

Any A unique name.

Description A string

Optional

Any A description.

Authentication
Scheme

A string

Required

Any An authentication
scheme that specifies
how credentials are
to be obtained and
processed.

Action Type An enumerated
value, integer

Required

SUCCESS = 0

FAILURE = 1

INCONCLUSIVE = 2

See the class
definition on
page 5-66.

A value that
identifies the type of
action that the
method applies to.

For actions, the
ObAMAuthenticatio
nRule uses the
methods of the
ObAMObjectWithAct
ions class, which it
inherits.

Policy Manager API Classes

Policy Manager API 5-47

 public void removeActionOfType(int actionType, ObAMAction value)
 throws ObAMException;
 public String getName();
 public void setName(String value);

C Form
 typedef const void * ObAMAuthenticationRule_t;
 ObAMAuthenticationRule_t ObAMAuthenticationRule_new();
 ObAMAuthenticationRule_t ObAMAuthenticationRule_copy(
 ObAMAuthenticationRule_t authn);
 void ObAMAuthenticationRule_delete(
 ObAMAuthenticationRule_t *pAuthn);
 const char *ObAMAuthenticationRule_getName(
 ObAMAuthenticationRule_t authn);
 const char *ObAMAuthenticationRule_getDescription(
 ObAMAuthenticationRule_t authn);
 const char *ObAMAuthenticationRule_getScheme(
 ObAMAuthenticationRule_t authn);
 void ObAMAuthenticationRule_setIDFrom(
 ObAMAuthenticationRule_t authn,
 ObAMAuthenticationRule_t other);
 void ObAMAuthenticationRule_setName(
 ObAMAuthenticationRule_t authn,const char *value);
 void ObAMAuthenticationRule_setDescription(
 ObAMAuthenticationRule_t authn,const char *value);
 void ObAMAuthenticationRule_setScheme(
 ObAMAuthenticationRule_t authn,const char *value);
 int ObAMAuthenticationRule_getNumberOfActions(
 ObAMObjectWithActions_ActionType type,
 ObAMAuthenticationRule_t authn);
 ObAMAction_t ObAMAuthenticationRule_getActionOfType(
 ObAMObjectWithActions_ActionType type,
 ObAMAuthenticationRule_t authn, OBAMAction_t value);
 ObAMAuthenticationRule_t authn, int index);
 void ObAMAuthenticationRule_removeActionOfType(
 ObAMObjectWithActions_ActionType type,
 ObAMAAutbenticationRule_t authn,
 ObAMAction_t value);

Creating an Authentication Rule
The code in Example 5–4 creates an authentication rule for the My Domain policy
domain object. The code sets the default authentication rule for My Domain to use the
Oracle Access and Identity scheme.

The code performs the following functions:

■ It creates an ObAMAuthenticationRule object called authnRule to be used for the
default authentication rule, and it sets the name of the rule to authnRule.

 ObAMAuthenticationRule authnRule = new;
 ObAMAuthenticationRule();
 authnRule.setName("My Domain Default Authn Rule");

■ It sets the scheme to be used for the default authentication rule to Oracle Access
and Identity.

 authnRule.setScheme("Oracle Access and Identity");

■ It defines an action to be performed if authentication of the user is successful, and
it adds the action to the default authentication rule.

Policy Manager API Classes

5-48 Oracle Access Manager Developer Guide

 authnAction2.setType("otherType");
 authnAction2.setName("authnAction");
 authnAction2.setValue("z");
 authnAction2.setValueType(ObAMAction.FIXEDVALUE);
 authnRule.addSuccessAction(authnAction2);

■ It adds the default authentication rule to the My Domain policy domain created
previously by the application from which this code is excerpted.

 domain.setDefaultAuthenticationRule(authnRule);

Example 5–4 Creating a Default Authentication Rule for a Policy Domain

 .
 .
 .
 ObAMAuthenticationRule authnRule = new ObAMAuthenticationRule();
 authnRule.setName("My Domain Default Authn Rule");
 authnRule.setScheme(“Oracle Access and Identity”);
 ObAMAction authnAction2 = new ObAMAction();
 authnAction2.setType("otherType");
 authnAction2.setName("authnAction");
 authnAction2.setValue("z");
 authnAction2.setValueType(ObAMAction.FIXEDVALUE);
 authnRule.addSuccessAction(authnAction2);
 domain.setDefaultAuthenticationRule(authnRule);
 .
 .
 .

Class ObAMAuthenticationRuleMgd
(Managed Code). An ObAMAuthenticationRule object specifies how authentication is
to be performed for access to resources covered by a policy or policy domain. For
details on object class components, see "Class ObAMAuthenticationRule" on
page 5-45.

Managed Code
// Getters and setters
__property System::String *get_Name();
__property System::String *get_Description();
__property System::String *get_Scheme();
int getNumberOfActions(ObAMActionTypeMgd *action);
ObAMActionMgd *getActionOfType(ObAMActionTypeMgd *type, int index);
__property void set_IDFrom(ObAMAuthenticationRuleMgd *other);
__property void set_Name(System::String *value);
__property void set_Description(System::String *value);
__property void set_Scheme(System::String *value);
void addActionOfType(ObAMActionTypeMgd *action, ObAMActionMgd *value);
void modifyActionOfType(ObAMActionTypeMgd *action, ObAMActionMgd *value);
void removeActionOfType(ObAMActionTypeMgd *action, ObAMActionMgd *value);

Class ObAMAuthorizationRule
An object of the ObAMAuthorizationRule class specifies the conditions for allowing or
denying user access to the resources it protects. An authorization rule contains an
authorization scheme. It can also contain actions to be returned depending on the
outcome of the attempt to authorize the user requesting access to the protected
resource. Actions can be associated with a result of Success or Failure.

Policy Manager API Classes

Policy Manager API 5-49

An authorization rule can:

■ Appear in more than one authorization expression.

■ Appear in a single authorization expression more than once.

Any of the authorization rules you create can be used in an authorization expression
for a policy domain or any of its policies.

It is the result of evaluation of the expression, that is, all of the rules it contains and the
way in which they are combined, that determines the access controls for the protected
resources.

For conceptual details on authorization rules and their contents and authorization
expression evaluation, see the Oracle Access Manager Access Administration Guide.

Authorization Schemes: An authorization rule must contain an authorization scheme.
You can use the default authorization scheme, or you can use a custom one, if any
custom authorization schemes have been created. To get a list of existing authorization
schemes, you must use the Access System Console. For details about authorization
schemes for custom plug-ins and configuring user authorization, see the Oracle Access
Manager Access Administration Guide.

About the Names of Authorization Rules and Authorization Expressions: To name
an authorization rule, you specify a unique string. You use this string later in an
authorization expression for a policy domain and its policies to identify rules an
authorization expression contains. (Authorization rules are included in an
authorization expression.) For each authorization rule an authorization expression
contains, you must specify exactly the string given as the name of the authorization
rule. For details, see "About String Names" on page 5-34. For details, see "Class
ObAMAuthorizationExpr" on page 5-54.)

Actions for Authorization Rules: For an authorization rule, you can specify the kinds
of actions to be taken based on the result of evaluation of the rule. You can specify
actions to be taken if authorization succeeds as a result of the rule or if it fails.

When you create the ObAMAuthorizationRule object, it inherits automatically the
ObAMObjectWithActions class, and it uses the methods of the
ObAMObjectWithActions class for any functions pertaining to actions. Do not
instantiate directly the ObAMObjectWithActions class. For details, see "Class
ObAMObjectWithActions" on page 5-61.

Not all rules contribute to the result of an authorization expression. Those rules that do
participate in the outcome of evaluation of the expression are referred to as
determining rules. If a rule is a determining rule, its resulting actions are taken after
the expression is evaluated.

Note: In the first version of the Policy Manager API (version 6),
custom Authorization Plug-ins are not supported by the Policy
Manager engine. For that reason, custom Authorization rules using
custom Authorization Plug-ins cannot be created.

Policy Manager API Classes

5-50 Oracle Access Manager Developer Guide

Label Type Range Description

Name

(key)

A string

Required

Any A unique name.

This is the name that you
specify in an authorization
expression to include the
rule in the expression.

Description A string

Optional

Any A description.

Enabled A Boolean flag
Required

0, meaning no, or
other, meaning yes.

Answers the question: Is the
rule enabled?

AllowTakes
Precedence

A Boolean flag
Required

0, meaning no, or
other, meaning yes

Answers the question: Do
the allow conditions take
precedence over the deny
conditions?

Timing
Conditions

An array of
Timing
Condition
objects

Optional

See the class
definition on
page 5-62.

Timing conditions
specifying when the rule is
in effect.

ActionType An enumerated
value, integer

Required

SUCCESS = 0

FAILURE = 1

INCONCLUSIVE = 2

See the class
definition on
page 5-66.

A value that identifies the
type of action that the
method applies to.

For actions, the
ObAmAuthorizationRule
uses the methods of the
ObAMObjectWithActions
class, which it inherits.

AllowAccess
Conditions

One Access

Condition
object

Optional

See the class
definition on
page 5-59.

Conditions under which
access is allowed.

DenyAccess

Conditions

One Access

Condition
object

Optional

See the class
definition on
page 5-59.

Conditions under which
access is denied.

Authorization

Scheme

A string

Optional

Any The name of a custom or
predefined authorization
scheme.

You must specify the name
of an authorization scheme
that has already been
created. To get a list of
authorization schemes, use
the Access System Console
GUI.

If this is provided, then it is
illegal to also enter timing
and access conditions.

Scheme

Parameter

An array of
Parameter
Objects

Optional

See the class
definition on
page 5-72.

Parameters to be used with
a custom Authorization
Scheme

Policy Manager API Classes

Policy Manager API 5-51

Java
 public obAMAuthorizationRule();
 public String getName();
 public String getDescription();
 public boolean getEnabled();
 public boolean getAllowTakesPrecedence();
 public int getNumberOfActions(int actionType)
 throws ObAMException;
 public ObAMAction getActionOfType(int actionType, int index)
 throws ObAMException;
 public void addActionOftype(int actionType, obAMAction value)
 throws ObAMException;
 public void removeActionOfType(int actionType, ObAMAction value)
 throws ObAMException;
 public ObAMTimingConditions getTimingConditions();
 public int getNumberOfSchemeParameters();
 public ObAMParameter getSchemeParameter(int index);
 public ObAMAccessConditions getAllowAccessConditions();
 public String getAuthorizationScheme();
 public ObAMAccessConditions getDenyAccessConditions();
 public void setName(String value);
 public void setDescription(String value);
 public void setEnabled(boolean value);
 public void setAllowTakesPrecedence(boolean value);
 public void setTimingConditions(ObAMTimingConditions value);
 public void setAllowAccessConditions(ObAMAccessConditions value);
 public void setDenyAccessConditions(ObAMAccessConditions value);
 public void setAuthorizationScheme(String value);
 public void addSchemeParameter(ObAMParameter value);
 public void removeSchemeParameter(ObAMParameter value);
 public void modifySchemeParameter(ObAMParameter value);
 public void setIDFrom(ObAMAuthorizationRule other);

C
 typedef const void * ObAMAuthorizationRule_t;
 ObAMAuthorizationRule_t ObAMAuthorizationRule_new()
 ObAMAuthorizationRule_t ObAMAuthorizationRule_copy(
 ObAMAuthorizationRule_t authz);
 void ObAMAuthorizationRule_delete(
 ObAMAuthorizationRule_t *pAuthz);
 const char *ObAMAuthorizationRule_getName(
 ObAMAuthorizationRule_t authz);
 const char *ObAMAuthorizationRule_getDescription(
 ObAMAuthorizationRule_t authz);
 ObAMAuthorizationRule_getEnabled(
 ObAMAuthorizationRule_t authz);
 int ObAMAuthorization_getAllowTakesPrecedence(
 ObAMAuthorizationRule_t authz);
 ObAMTimingConditions_t ObAMAuthorizationRule_getTimingConditions(
 ObAMAuthorizationRule_t authz);
 int ObAMAuthorizationRule_getNumberOfActions(
 ObAMObjectWithActions_ActionType type,
 ObAMAuthorizationRule_t authz);
 ObAMAction_t ObAMAuthorizationRule_getActionOfType(
 ObAMObjectWithActions_ActionType type,
 ObAMAuthorizationRule_t authz,
 int index);
 ObAMAccessConditions_t
 ObAMAuthorizationRule_getAllowAccessConditions(

Policy Manager API Classes

5-52 Oracle Access Manager Developer Guide

 ObAMAuthorizationRule_t authz);
 ObAMAccessConditions_t
 ObAMAuthorizationRule_getDenyAccessConditions(
 ObAMAuthorizationRule_t authz);
 const char *ObAMAuthorizationRule_getAuthorizationScheme(
 ObAMAuthorizationRule_t authz);
 int ObAMAuthorizationRule_getNumberOfSchemeParameters(
 ObAMAuthorizationRule_t authz);
 ObAMParameter_t ObAMAuthorizationRule_getSchemeParameter(
 ObAMAuthorizationRule_t authz, int index);
 void ObAMAuthorizationRule_setIDFrom(
 ObAMAuthorizationRule_t authz,
 ObAMAuthorizationRule_t other);

Obsoleted Methods
 ObAMAuthorizationRule_getSuccessAction();
 ObAMAuthorizationRule_getFailureAction();
 ObAMAuthorizationRule_getNumberOfSuccessActions();
 ObAMAuthorizationRule_getNumberOfFailureActions();
 ObAMAuthorizationRule_addSuccessAction();
 ObAMAuthorizationRule_addFailureAction();
 ObAMAuthorizationRule_removeSuccessAction();
 ObAMAuthorizationRule_removeFailureAction();

Creating Authorization Rules
The code in Example 5–5 creates an authorization rule and adds it to the My Domain
policy domain object. The rule can be used for My Domain's default authorization
expression and it can be used for the authorization expressions of any of the policies
included in the My Domain policy domain. An application can create many instances
of authorization rule objects to be used for a policy domain and its policies.

The code performs the following functions:

■ It creates an ObAMAuthorizationRule object called authzRule1. It gives the rule
the name Authz Rule 1, and it enables the rule. In the following code segment the
rule is named Authz Rule 1. If you were to include this rule in an authorization
expression, you would identify it by specifying the string "Authz Rule 1". For
details, see Example 5–5, "Creating an Authorization Rule" on page 5-53.

 ObAMAuthorizationRule authzRule1 = new
 ObAMAuthorizationRule();
 authzRule1.setName("Authz Rule 1");
 authzRule1.setEnabled(true);

■ It creates an ObAMAccessConditions object called access1 to be used for the rule's
access conditions, whether Allow Access or Deny Access is not defined at this
point.

 ObAMAccessConditions access1 = new ObAMAccessConditions();

■ It identifies to whom the access conditions apply, two individuals and one group.

To identify each of these entities, the code:

■ Creates an ObAMIdentity object to set the login ID for the person or group.

■ Adds the person or group to the access1 object (ObAccessObject) of the
ObAMAuthorizationRule authorization rule. The code which does this for
person1 is shown in the following snippet.

 ObAMIdentity person1 = new ObAMIdentity();

Policy Manager API Classes

Policy Manager API 5-53

 person1.setLoginID("A.Loomis");
 access1.addPerson(person1);

■ Adds the access1 object to the Authz Rule 1 (authzRule1) authorization rule object
to set its Allow Access conditions.

 authzRule1.setAllowAccessConditions(access1);
■ Adds the Authz Rule 1 rule to the My Domain policy domain.

domain.addAuthorizationRule(authzRule1);

Example 5–5 Creating an Authorization Rule

 ObAMAuthorizationRule authzRule1 = new ObAMAuthorizationRule();
 authzRule1.setName("Authz Rule 1");
 authzRule1.setEnabled(true);
 ObAMAccessConditions access1 = new ObAMAccessConditions();

 ObAMIdentity person1 = new ObAMIdentity();
 person1.setLoginID("A.Loomis");
 access1.addPerson(person1);

 ObAMIdentity person2 = new ObAMIdentity();
 person2.setLoginID("E.Lawrence");
 access1.addPerson(person2);

 ObAMIdentity group = new ObAMIdentity();
 group.setName("group1");
 access1.addGroup(group);
 person1.setLoginID("admin");
 access1.addPerson(person1);

 authzRule1.setAllowAccessConditions(access1);
 ObAMAction action1 = new ObAMAction();
 action1.setType("headerVar");
 action1.setName("UserIs");
 action1.setValue("uid");
 action1.setValueType(ObAMAction.ATTRIBUTE);
 authzRule1.addActionOfType(ObAMObjectWithActions.SUCCESS, action1);

 domain.addAuthorizationRule(authzRule1);

Class ObAMAuthorizationRuleMgd
(Managed Code). An ObAMAuthorizationRule specifies the conditions for allowing or
denying access to resources covered by a policy or policy domain. For details on the
object class components, see Class ObAMAuthorizationRule on page 5-48.

Managed Code Form
// Getters and setters
__property System::String *get_Name();
__property System::String *get_Description();
__property bool get_Enabled();
__property bool get_AllowTakesPrecedence();

Note: In the first version of the Policy Manager API (version 6),
custom Authorization Plug-ins are not supported by the Policy
Manager engine. For that reason, custom Authorization rules using
custom Authorization Plug-ins cannot be created.

Policy Manager API Classes

5-54 Oracle Access Manager Developer Guide

__property ObAMTimingConditionsMgd *get_TimingConditions();
int getNumberOfActions(ObAMActionTypeMgd *action, int index);
ObAMActionMgd *getActionOfType(ObAMActionTypeMgd *action, int index);
__property ObAMAccessConditionsMgd *get_AllowAccessConditons();
__property ObAMAccessConditionsMgd *get_DenyAccessConditons();
__property System::String *get_AuthorizationScheme();
__property int get_NumberOfSchemeParameters();
ObAMParameterMgd *getSchemeParameter(int index);
__property void set_IDFrom(ObAMAuthorizationRuleMgd *other);
__property void set_Name(System::String *value);
__property void set_Description(System::String *value);
__property void set_Enabled(bool value);
__property void set_AllowTakesPrecedence(bool value);
__property void set_TimingConditions(ObAMTimingConditionsMgd *value);
__property void set_AllowAccessConditions(ObAMAccessConditionsMgd *value);
__property void set_DenyAccessConditions(ObAMAccessConditionsMgd *value);
void addActionOfType(ObAMActionTypeMgd *action, ObAMActionMgd *value);
void modifyActionOfType(ObAMActionTypeMgd *action, ObAMActionMgd *value);
void removeActionOfType(ObAMActionTypeMgd *action, ObAMActionMgd *value);

Class ObAMAuthorizationExpr
An object of the ObAMAuthorizationExpr class specifies an authorization expression.
An authorization expression can consist of one or more authorization rules, specifying
a simple or complex condition whose evaluation determines whether a user is granted
access to a resource protected by the expression. In addition to authorization rules, an
authorization expression contains symbols representing different ways to combine,
and thus evaluate, the rules of the expression. You include in an authorization
expression the names of the authorization rules you want to use.

It is an authorization expression that is included in a policy domain or a policy. Every
policy domain must include a single authorization expression. A policy can include an
authorization expression, but it is not a requirement. If it does not, the default
authorization expression created for the policy domain is used for the policies
resources.

Rules of an authorization expression can be combined in various ways to express
particular authorization requirements. It is the result of the Access Server's evaluation
of the authorization expression that determines if a user is given access to the
requested resource.

An authorization expression includes:

■ The authorization rules controlling user access to resources. If the expression
contains more than one rule, the + and | symbols are used to specify how the rules
are to be interpreted. For details on the content of authorization rules and how to
use the + and | symbols to create the logic of the expression, see the Oracle Access
Manager Access Administration Guide.

■ A policy for dealing with duplicate actions.

■ Optional actions to be performed by the client if evaluation of the expression
succeeds, if it fails, or if the result is inconclusive.

About the Symbols Used in an Authorization Expression: If an authorization
expression contains more than one authorization rule, you must include in it the
symbols that specify the way in which those rules are combined and are to be
interpreted for users requesting access to the protected resources. These symbols
include + (AND) and | (OR) and parenthesis. They are referred to as operators. In the
Policy Manager GUI, either AND and OR can be specified or the symbols + and | can

Policy Manager API Classes

Policy Manager API 5-55

be specified as operators. However, for the Policy Manager API, you must use the
symbols. For further explanation about the symbols and modifying an authorization
scheme, see the Oracle Access Manager Access Administration Guide.

How Authorization Expressions Are Interpreted: It is possible to create complex
authorization expressions. For this reason, it is important to understand how the
Access System interprets those expressions in regard to precedence of operators and
position of rules within the expression. For details about evaluation of the rules of an
expression and configuring user authorization, see the Oracle Access Manager Access
Administration Guide.

About an Expression Result of Inconclusive: If an expression evaluates to a result of
Inconclusive, the Access System returns a major status code of Deny and a minor
status code of Inconclusive. The minor status code of Inconclusive enables those
systems to distinguish between true Deny results and Deny results returned because
of an Inconclusive state.

An authorization expression result of Deny differs from an authorization expression
result of Inconclusive even though the user is denied access to the requested resource
in both cases. Making this distinction gives you, as a developer, more options. For
example, an application can interpret the two status codes for an Inconclusive result
and use the additional information for other purposes. The application might then
invoke other authorization engines instead of denying the user access to the resource.

Actions for an Authorization Expression: An authorization expression can have
associated with it actions to be taken based on the result of evaluation of the
expression. When it is created, the ObAMAuthorizationExpr objects inherits
automatically the ObAMObjectWithActions class--do not directly instantiate this class.

The ObAMAuthorizationExpr object uses the methods of the
ObAMObjectWithActions class to manipulate actions associated with it. These actions
include

■ Success Actions

■ Failure Actions

■ Inconclusive Actions

An authorization expression is evaluated to a result of Inconclusive if the rules of
the expression produce conflicting results. In this case the user is denied access to
the resource. However, your application can use this information.

About the Result of an Authorization Expression and Actions Returned: It is
important to understand which actions are returned after evaluation of an
authorization expression. The actions of only those rules that contributed to the result
of evaluation of the expression are returned. These rules are referred to as definitive
rules. Because the concept of definitive rules is complex, you should review the
explanation and examples in discussions on authorization rule evaluation and
configuring user authorization in the Oracle Access Manager Access Administration
Guide.

Duplicate Actions Policy: Because an authorization rule can be reused within an
authorization expression, it is possible that evaluation of each instance of the
authorization rule producing the same result can cause the Access Server to return the
same action more than once. It is also possible that different rules of an expression
could return the same actions. Conflict can occur when, as a result of evaluation of the
expression, two or more rules contributing to the definitive result produce the same
actions. You can set the policy for how duplicate actions are to be handled, if any
occur. For this purpose, you use the following values

Policy Manager API Classes

5-56 Oracle Access Manager Developer Guide

■ ACTION_DUPLICATE = 0

■ ACTION_IGNORE = 1

■ ACTION_OVERWRITE = 2

■ UNDEFINED = 3

Here is how these values are interpreted:

■ ACTION_DUPLICATE: If you choose this option, the Access Server appends each
new value it encounters to the information it returns to the application requesting
authorization for the user. (The Access Server does not check for duplicate
information.) Select this option if the application expects to receive information for
all instances of the action. In this case, the application must process the values of
all duplicate actions returned to it. Use of this option may incur performance
issues.

■ ACTION_IGNORE: If you chose this option, the Access Server removes all
duplicate actions, and only the first instance of the action is returned to the
application requesting authorization for the user. Each time an action value is
added, the Access Server checks existing values to determine if the new action
duplicates an existing one. If the Access Server finds one, it does not add the new
value to those it returns to the application. In this case, any information inherent to
the value of the repeated action is lost. Because the Access Server must check for
duplicate actions, use of this option may incur performance costs

■ ACTION_OVERWRITE: If you choose this option, only the value of the last
instance of the action is returned. Each new value overwrites the previous one,
and previous values are lost. Do not select this option if the application requesting
the authorization expects the results of all duplicate actions. This option is the
most efficient one.

Duplicate Actions and WebGate Restrictions: The ability to process duplicate actions
applies to AccessGates only. The Access Server sends to the WebGate the actions as
specified by the duplicate actions policy, whether Duplicate, Ignore Duplicate, or
Overwrite. However, the WebGate supports only a single value for each header
variable. Although it receives the duplicate actions, the WebGate overrides duplicates
such that the last value set for the header variable is used. Values set for the same
header variable by previous actions are lost.

Label Type Range Description

Authorization
Expression

A string

Required

Any An expression containing one or
more authorization rules,
specified by name, and the
symbols used to combine them.

Name

(key)

A string

Required

Any A unique name.

Description A string

Optional

Any A description.

Enabled A Boolean flag
Required

0, meaning no, or
other, meaning yes.

Answers the question: Is the
rule enabled?

Policy Manager API Classes

Policy Manager API 5-57

Java
 public ObAMAuthorizationExpr();
 public String getExpression();
 public void setExpression(String value)throws ObAMException;
 public int getDuplicateActionsPolicy();
 public void setDuplicateActionsPolicy(int value)throws ObAMException;
 public int getNumberOfActions(int actionType)throws ObAMException;
 public ObAMAction getActionOfType(int actionType,int index)throws ObAMException;
 public void addActionOfType(int actionType,
 ObAMAction value) throws ObAMException;
 public void removeActionOfType(int actionType,

Duplicate
Actions Policy

A string

Optional

Any one of the
following constants:

ACTION_DUPICAT
E = 0 (Duplicate)

ACTION_IGNORE =
1

(Ignore)

ACTION_OVERWRI
TE = 2

(Overwrite)

UNDEFINED = 3

The policy for the Access Server
to follow if it encounters
duplicate actions as a result of
evaluation of this expression.

Success

Actions

An array of
Action objects

Optional

See the class
definition on
page 5-66.

Actions to be performed by the
client if authorization succeeds
as a result of evaluation of the
expression.

The ObAmObjectWithActions
class is used to manage success
actions.

Failure

Actions

An array of
Action objects

Optional

See the class
definition on
page 5-66.

Actions to be performed by the
client if the authorization fails
and the user is denied access as
a result of evaluation of the
expression.

The ObAMObjectWithActions
class is used to manage failure
actions.

Inconclusive
Actions

An array of
Action objects

Optional

See the class
definition on
page 5-66.

Actions to be performed by the
client if authorization cannot be
conclusively determined as a
result of evaluation of the
expression. In this case, the user
is denied access to the resource.

The ObAmObjectWithActions
class is used to manage success
actions.

Label Type Range Description

Policy Manager API Classes

5-58 Oracle Access Manager Developer Guide

 ObAMAction value) throws ObAMException;
 public String getName();
 public void setName(String value);
 public void setIDFrom(ObAMObjectWithActions other);

C
 typedef const void * ObAMAuthorizationExpr_t;
 ObAMAuthorizationExpr_t ObAMAuthorizationExpr_new();
 ObAMAuthorizationExpr_t ObAMAuthorizationExpr_copy(
 ObAMAuthorizationExpr_t authz);
 void ObAMAuthorizationExpr_delete(
 ObAMAuthorizationExpr_t *pAuthz);
 const char *ObAMAuthorizationExpr_getExpr(
 ObAMAuthorizationExpr_t authz);
 int ObAMAuthorizationExpr_getDuplicateActionsPolicy(
 ObAMAuthorizationExpr_t authz);
 int ObAMAuthorizationExpr_getNumberOfActions(
 ObAMObjectWithActions_ActionType type,
 ObAMAuthorizationExpr_t authz);
 ObAMAction_tObAMAuthorizationExpr_getActionOfType(
 ObAMObjectWithActions_ActionType type,
 ObAMAuthorizationExpr_t authz, int index);
 void ObAMAuthorizationExpr_setIDFrom(
 ObAMAuthorizationExpr_t authz,
 ObAMAuthorizationExpr_t other);
 void ObAMAuthorizationExpr_setExpr(
 ObAMAuthorizationExpr_t authz, const char *value);
 voidObAMAuthorizationExpr_setDuplicateActionsPolicy(
 ObAMAuthorizationExpr_t authz,
 ObAMAuthorizationExpr_DuplicateActionsPolicy value);

Creating an Authorization Expression
Example 5–6 shows a portion of an example program. This code creates a default
authorization expression for a policy domain. It performs the following functions:

■ It creates an ObAMAuthorizationExpr object called pd_expr and specifies the
content of the expression, that is, the authorization rules of the expression and
how they are combined in the expression.

 ObAMAuthorizationExpr pd_expr =new ObAMAuthorizationExpr();
 pd_expr.setExpression ("Authz Rule 1 & Authz Rule 2");

■ It sets the duplicate actions policy for the expression to OVERWRITE.

 pd_expr.setDuplicateActionsPolicy(ObAMAuthorizationExpr.ACTION_OVERWRITE);

■ It creates an ObAMAction object to be used for an action. Using the object, it
defines an action to be taken if the result of evaluation of the expression is
Inconclusive.

 ObAMAction action3 = new ObAMAction();
 action3.setType("otherType");
 action3.setName("authzAction");
 action3.setValue("a");
 action3.setValueType(ObAMAction.FIXEDVALUE);

■ It adds the Inconclusive action to the authorization expression

 pd_expr.addActionOfType(ObAMObjectWithActions.INCONCLUSIVE, action3);

Policy Manager API Classes

Policy Manager API 5-59

■ It adds the authorization expression to the policy domain.

 domain.setDefaultAuthorizationExpr(pd_expr);

Example 5–6 Creating an Authorization Expression

 .
 .
 .
 ObAMAuthorizationExpr pd_expr = new ObAMAuthorizationExpr();
 pd_expr.setExpression("Authz Rule 1 & Authz Rule 2");
 pd_expr.setDuplicateActionsPolicy(ObAMAuthorizationExpr.ACTION_OVERWRITE);
 ObAMAction action3 = new ObAMAction();
 action3.setType("otherType");
 action3.setName("authzAction");
 action3.setValue("a");
 action3.setValueType(ObAMAction.FIXEDVALUE);
 pd_expr.addActionOfType(ObAMObjectWithActions.INCONCLUSIVE, action3);
 domain.setDefaultAuthorizationExpr(pd_expr);
 .
 .
 .

Class ObAMAuthorizationExprMgd
(Managed Code). This class defines a managed authorization expression. It specifies
the conditions for allowing or denying access to resources covered by a policy or
policy domain.

Managed Code Form
__property System::String *get_Expr();
__property int get_DuplicateActionsPolicy();
int getNumberOfActions(ObAMActionTypeMgd *type);
ObAMActionMgd *getActionOfType(ObAMActionTypeMgd *type,int index);
__property void set_Expr(System::String *value);
void setDuplicateActionsPolicy(ObDuplicationActionPolicyMgd *value);
void addActionOfType(ObAMActionTypeMgd *type, ObAMActionMgd *value);
void modifyActionOfType(ObAMActionTypeMgd *type,ObAMActionMgd *value);
void removeActionOfType(ObAMActionTypeMgd *type,ObAMActionMgd *value);

Class ObAMDuplicateActionPolicyMgd
(Managed Code). Class used to describe the policy for dealing with duplicate actions.
The choices are to duplicate, ignore, overwrite, or undefined.

Managed Code Form
 void setDuplicate();
 void setIgnore();
 void setOverWrite();
 void setUndefined();

Class ObAMAccessConditions
An object of the ObAMAccessConditions class specifies for an authorization rule the
conditions under which access is allowed or denied to the protected resource.

Policy Manager API Classes

5-60 Oracle Access Manager Developer Guide

Java
 public int getNumberOfPersons();
 public int getNumberOfGroups();
 public int getNumberOfRoles();
 public int getNumberOfRules();
 public int getNumberOfIPaddresses();
 public ObAMIdentity getPerson(int index);
 public ObAMIdentity getGroup(int index);
 public String getRole(int index);
 public String getRule(int index);
 public String getIPaddress(int index);
 public void addRole(String value);
 public void addPerson(ObPerson value);
 public void addGroup(ObGroup value);
 public void addRule(String value);
 public void addIPAddress(String value);
 public void removeRole(String value);
 public void removePerson(ObPerson value);
 public void removeGroup(ObGroup value);
 public void removeRule(String value);
 public void removeIPAddress(String value);
 public void setIDFrom(ObAMAccessConditions other);

Class ObAMAccessConditionsMgd
(Managed Code). An ObAMAccessConditionsMgd object specifies the conditions
under which access is allowed or denied in an authorization rule. For details on object
components, see "Class ObAMAccessConditions" on page 5-59.

Managed Code
 // Getters and setters
 _property int get_NumberOfPersons();
 _property int get_NumberOfGroups();

Label Type Range Description

Role

(no key)

An array of
strings

At least one
required

One of:

none

anyone

noone

A set of roles

Person An array of
Identity objects

Optional

See the class
definition on
page 5-71.

A set of people against which the
user requesting access is
compared

Group An array of
Identity objects

Optional

See the class
definition on
page 5-71.

A set of groups against which the
user is compared

Rule An array of
strings

At least one
required

Any A set of LDAP rules that select
user profiles

IPAddress An array of
strings

At least one
required

Any A set of IP addresses against
which the user's IP address is
compared

Policy Manager API Classes

Policy Manager API 5-61

 _property int get_NumberOfRoles();
 _property int get_NumberOfRules();
 _property int get_NumberOfIPaddresses();
 ObAMIdentityMgd *getPerson (int index);
 ObAMIdentityMgd *getGroup (int index);
 System::String *getRole(int index);
 System::String *getRule(int index);
 System::String *getIPaddress(int index);
 _property void set_IDFrom(ObAMAccessConditionsMgd *access);
 _property void set_AddRole(System::String *value);
 _property void set_AddPerson(ObAMIdentityMgd *value);
 _property void set_AddGroup(ObAMIdentityMgd *value);
 _property void set_AddRule(System::String *value);
 _property void set_AddIPaddress(System::String *value);
 _property void set_RemoveRole(System::String *value);
 _property void set_RemovePerson(ObAMIdentityMgd *value);
 _property void set_RemoveGroup(ObAMIdentityMgd *value);
 _property void set_RemoveRule(System::String *value);
 _property void set_RemoveIPaddress(System::String *value);

Class ObAMActionTypeMgd
(Managed Code). Class used to describe the type of action being requested. The set
methods are used to define the type of action requested.

Managed Code
 void setSuccess();
 void setFailure();
 void setInconclusive();

Class ObAMObjectWithActions
The ObAMObjectWithActions class is an abstract class that is inherited by the
ObAMAuthenticationRule class, the ObAMAuthorizationRule class, and the
ObAMAuthorizationExpr class when they are instantiated. Do not instantiate this class
directly.

You use the methods of this class to get and set information about actions for objects of
any of these other classes. The ObAMObjectWithActions class methods allow you to
specify the kind of action you are interested in. The class defines an enumeration to
specify the three types of actions: Success, Failure, and Inconclusive.

Label Type Range Description

Name String,

Optional

any The name of the authorization
expression object

Policy Manager API Classes

5-62 Oracle Access Manager Developer Guide

Java
 public int getNumberOfActions(int actionType)
 throws ObAMException;
 public ObAMAction getActionOfType(int actionType, int index)
 throws ObAMException;
 public void addActionOfType (int actionType, ObAMAction value)
 throws ObAMException;
 public void removeActionOfType(int actionType, ObAMAction value)
 throws ObAMException;
 public String getName();
 public void setName(String value);
 public void setIDFrom(ObAMObjectWithActions other);

Class ObAMTimingConditions
An authorization rule can include timing conditions that set the period of time when
the rule is in effect. If you do not set a timing condition, by default the authorization
rule is always in effect. Timing conditions affect both the Allow Access and the Deny
Access conditions of the rule.

An object of the ObAMTimingConditions class contains timing conditions specifying
when the rule is in effect.

Action Type An
enumerated
value,

Integer

SUCCESS = 0

FAILURE = 1

INCONCLUSIVE = 2

See the class
definition on
page 5-66.

A value that identifies the type
of action that the method applies
to.

The types apply in the following
way:

■ For
ObAMAuthenticationRule
An authentication rule can
have associated with it
SUCCESS actions and
FAILURE actions.

■ For
ObAMAuthorizationRule
An authorization rule can
have associated with it
SUCCESS actions and
FAILURE actions.

■ For
ObAMAuthorizationExpr
An authorization expression
can have associated with it
SUCCESS, FAILURE, and
INCONCLUSIVE actions.

Label Type Range Description

RelativeTo

(no key)

Integer

Optional

UNDEFINED=0

GMT=1

LOCAL_TIME=2

A flag indicating whether the
timing conditions are relative to
GMT or local time

StartDate A single Date
object

Optional

See the class
definition on
page 5-70.

A start date for the period during
which the Timing Condition applies

Label Type Range Description

Policy Manager API Classes

Policy Manager API 5-63

Java
 public int getRelativeTo();
 public ObAMDate getStartDate();
 public ObAMTime getStartTime();
 public ObAMDate getEndDate();
 public ObAMTime getEndTime();
 public int getNumberOfMonths();
 public int getNumberOfDaysOfMonth();
 public int getNumberOfDaysOfWeek();
 public int getMonth(int index);
 public int getDayOfMonth(int index);
 public int getDayOfWeek(int index);
 public void setRelativeTo(int value)throws ObAMException;
 public void setStartDate(ObAMDate value);
 public void setStartTime(ObAMTime value);
 public void setEndDate(ObAMDate value);
 public void setEndTime(ObAMTime value)
 public void addMonth(int value)throws ObAMException;
 public void addDayOfMonth(int value)throws ObAMException;
 public void addDayOfWeek(int value)throws ObAMException;
 public void removeMonth(int value)throws ObAMException;
 public void removeDayOfMonth(int value)throws ObAMException;
 public void removeDayOfWeek(int value)throws ObAMException;
 public void setIDFrom(ObAMTimingConditions other);

The code in Example 5–7 creates an authorization rule and sets the timing conditions
for it. The code performs the following functions:

■ It creates an ObAMAuthorizationRule object called authzRule2, sets the name
member of the object to Authz Rule 2, and it enables the rule.

StartTime A single Time
object

Optional

See the class
definition on
page 5-74.

A start time for the period during
which the Timing Condition applies

EndDate A single Date
object

Optional

See the class
definition on
page 5-70.

An end date for the period during
which the Timing Condition applies

EndTime A single Time
object

Optional

See the class
definition on
page 5-74.

An end time for the period during
which the Timing Condition applies

Months An array of
strings

Optional

See the list of
valid month
values under
Date objects on
page 5-70.

Sets of months

DayofMonth An array of
strings

Optional

See the list of
valid day values
under Date
objects on
page 5-70.

Sets of days of the month

DayofWeek An array of
strings

Optional

See the
discussion for
this value under
Date objects on
page 5-70.

Sets of days of the week.

Label Type Range Description

Policy Manager API Classes

5-64 Oracle Access Manager Developer Guide

 ObAMAuthorizationRule authzRule2 = new ObAMAuthorizationRule();
 authzRule2.setName("Authz Rule 2");
 authzRule2.setEnabled(true);

■ It creates an ObAMTimingConditions object called timing2 to be used for the rule's
timing conditions.

 ObAMTimingConditions timing2 = new ObAMTimingConditions();

■ It creates an ObAMDate object called startDate to specify the date beginning from
which the rule is applicable. It creates an ObAMTime object to specify the time
beginning from which the rule applies. It sets the starting date and it sets the
starting time in these objects.

 ObAMDate startDate = new ObAMDate();
 ObAMTime startTime = new ObAMTime();
 startDate.set(2001, ObAMDate.OCTOBER, 31);
 startTime.set(12, 0, 0);

■ It specifies that the time is relative to the local time on the Web server.

timing2.setRelativeTo(ObAMTimingConditions.LOCAL_TIME);

The remainder of the code sets the timing conditions to allow anyone access after
12:00:00 of October 15, 2001 on the 1st, 2nd, and 30th of January and November if the
day is either a Monday or a Tuesday.

Example 5–7 Creating an Authorization Rule with Timing Conditions

 .
 .
 .
 ObAMAuthorizationRule authzRule2 = new ObAMAuthorizationRule();
 authzRule2.setName("Authz Rule 2") ;
 authzRule2.setEnabled(true);
 ObAMTimingConditions timing2 = new ObAMTimingConditions();
 ObAMDate startDate = new ObAMDate();
 ObAMTime startTime = new ObAMTime();
 startDate.set(2001, ObAMDate.OCTOBER, 31);
 startTime.set(12, 0, 0);
 timing2.setRelativeTo(ObAMTimingConditions.LOCAL_TIME);
 timing2.setStartDate(startDate);
 timing2.setStartTime(startTime);
 timing2.addMonth(ObAMDate.JANUARY);
 timing2.addMonth(ObAMDate.NOVEMBER);
 timing2.addDayOfMonth(1);
 timing2.addDayOfMonth(2);
 timing2.addDayOfMonth(30);
 timing2.addDayOfWeek(ObAMDate.MONDAY);
 timing2.addDayOfWeek(ObAMDate.TUESDAY);
 authzRule2.setTimingConditions(timing2);
 .
 .
 .

Class ObAMTimingConditionsMgd
An object of the ObAMTimingConditions class contains timing conditions to be set for
an authorization rule to specify when that rule is in effect.

Policy Manager API Classes

Policy Manager API 5-65

In addition to the other settings for timing conditions, the class
ObAMTimingConditionsMgd indicates whether the timing conditions are relative to
GMT or local time. See "Class ObAMTimingConditions_RelativeToMgd" on page 5-66
for details.

Managed Code Form
// Getters and setters
_property ObAMDateMgd *get_StartDate();
_property ObAMTimingConditions_RelativeToMgd *get_RelativeTo();
_property ObAMTimeMgd *get_StartTime();
_property ObAMTimeMgd *get_EndDate();
_property ObAMTimeMgd *get_EndTime();
_property int get_NumberOfMonths();
_property int get_NumberOfDaysOfMonth();
_property get_NumberofDaysOfWeek();
int getMonth(int index);
int getDayOfMonth(int index);
int getDayOfWeek(int index);
_property void set_IDFrom(ObAMTimingConditionsMgd *other);
_property void set_RelativeTo(ObAMTimingConditions_RelativeToMgd*value);
_property void set_StartDate(ObAMDateMgd *date);
_property void set_EndTime(ObAMTimeMgd *time);
_property void set_EndDate(ObAMDateMgd *date);
_property void set_StartTime(ObAMDateMgd *time);
_property void set_AddMonth(ObAMDate_MonthsMgd *value);

Label Type Range Description

StartDate A single Date
object

Optional

See the class
definition on
page 5-70.

A start date for the period during
which the Timing Condition applies

StartTime A single Time
object

Optional

See the class
definition on
page 5-74.

A start timefor the period during
which the Timing Condition applies

EndDate A single Date
object

Optional

See the class
definition on
page 5-70.

An end date for the period during
which the Timing Condition applies

EndTime A single Time
object

Optional

See the class
definition on
page 5-74.

An end time for the period during
which the Timing Condition applies

Months An array of
strings

Optional

See the list of
valid month
values under
Date objects on
page 5-70.

Sets of months

DayofMonth An array of
strings

Optional

See the list of
valid day
values under
Date objects on
page 5-70.

Sets of days of the month

DayofWeek An array of
strings

Optional

See the
discussion for
this value under
Date objects on
page 5-70.

Sets of days of the week.

Policy Manager API Classes

5-66 Oracle Access Manager Developer Guide

_property void set_AddDayOfMonth(int value);
_property void set_AddDayOfWeek(ObAMDate_DaysOfWeekMgd *value);
_property void set_RemoveMonth(ObAMDate_MonthsMgd *value);
_property void set_RemoveDayOfMonth(int value);
_property void set_RemoveDayOfWeek(ObAMDate_DaysOfWeekMgd *value);

Class ObAMTimingConditions_RelativeToMgd
(Managed Code). This class defines a managed value type for defining the various
timing conditions used by the ObAMTimingConditionsMgd class. This class provides
a wrapper around the enum ObAMTimingConditions_RelativeTo. You can either set
the value using the setter methods, or you can use an
ObAMTimingConditions_RelativeTo value.

The methods for this class are as follows:

setUndefined() = UNDEFINED
setGMT() = GMT
setLocalTime() = LOCAL_TIME

Managed Code Form
// Getters and setters
_property bool get_isUndefined();
_property bool get_isGMT();
_property bool get_isLocalTime();
_property ObAMTimingConditions_RelativeTo get_Value();
void setUndefined();
void setAsGMT();
void setAsLocalTime();

Class ObAMDate_DaysOfWeekMgd
(Managed Code). This is a wrapper around unmanaged enum of days of the week.
Use this class to define a day of the week when setting timing conditions.

Managed Code Form
 ObAMDate_DaysOfWeekMgd();
 void setSunday();
 void setMonday();
 void setTuesday();
 void setWednesday();
 void setThursday();
 void setFriday();
 void setSaturday();

Class ObAMAction
An object of the ObAMAction class represents an action to be returned on success or
failure of an authentication or authorization process. The action is interpreted by a
WebGate or other Access Client.

Policy Manager API Classes

Policy Manager API 5-67

Java
 public String getType();
 public String getName();
 public String getValue();
 public int getValueType();
 public void setType(Stromg value);
 public void setName(String value);
 public void setValue(String value);

Class ObAMActionMgd
(Managed Code). An ObAMActionMgd class represents an action to be performed on
a successful or failed authentication or authorization. The action is interpreted by a
WebGate or other Access Client.

Managed CodeForm
// Getters and Setters
_property System::String *get_Type();
_property System::String *get_Name();
_property System::String *get_value();

Label Type Range Description

Type

(key1)

A string

Required

Any f the values:

redirectURL

headerVars

custom

A type indicating
what action should
be taken

Name

(key2)

A string

Required

Any The action name

Value A string

Required

Any The action value

ValueType A string

Required

Any The type of the value,
which can be a fixed
value or a user
attribute

Label Type Range Description

Type

(key1)

A string

Required

Any of the
values:

redirectURL

headerVars

custom

A type indicating what action should
be taken

Name

(key2)

A string

Required

Any The action name

Value A string

Required

Any The action value

ValueType A string

Required

Any The type of the value, which can be a
fixed value or a user attribute

Policy Manager API Classes

5-68 Oracle Access Manager Developer Guide

_property ObAMAction_ValueTypeMgd *get_ValueType();
_property void set_IDFrom(ObAMActionMgd *other);
_property void set_Type(System::String *value);
_property void set_Name(System::String *value);
_property void set_Value(System::String *value);
_property void set_ValueType(ObAMAction_ValueTypeMgd *value);

Class ObAMAction_ValueTypeMgd
(Managed Code). An ObAMAction_ValueTypeMgd object represents the value types
used by the ObAMActionMgd class. This class provides a wrapper around the enum
ObAMAction_ValueType.

Managed CodeForm
// Getters and Setters
_property bool get_isUndefined();
_property bool get_isFixedValue();
_property bool get_isAttribute();
_property obAMAction_ValueType get_Value();
_property void set_Value(ObAMAction_ValueType value);
void setUndefined();
void setFixedValue();
void setAttribute();

Class ObAMAuditRule
An object of the ObAMAuditRule class defines the kind of auditing to be done for a
policy or policy domain.

Java
 public int getNumberOfEvents();
 public int getNumberOfAttributes();
 public int getEvent(int index);
 public String getAttribute(int index);
 public void addEvent(int value);
 public void addAttribute(String value);
 public void removeEvent(int value);
 public void removeAttribute(String value);
 public void setIDFrom(ObAMAuditRule other);

Class ObAMAuditRuleMgd
(Managed Code). An ObAMAuditRuleMgd object specifies how auditing is to be done
for a policy or policy domain.

Label Type Range Description

Events

(no key)

An array of
strings

At least one
required

See the list
provided for
Master Audit
Rule on
page 5-32.

A set of events for which audit records
will be generated

Attributes An array of
strings

At least one
required

Any A set of user profile attributes to be
included in the audit records

Policy Manager API Classes

Policy Manager API 5-69

Managed Code Form
// Getters and setters
__property int get_NumberOfEvents();
__property int get_NumberOfAttributes();
ObAMAuditRule_EventTypeMgd *getEvent(int index);
System::String *getAttribute(int index);
__property void set_IDFrom(ObAMAuditRuleMgd *other);
__property void set_AddEvent(ObAMAuditRule_EventTypeMgd *value);
__property void set_AddAttribute(System::String *value);
__property void set_RemoveEvent(ObAMAuditRule_EventTypeMgd *value);
__property void set_RemoveAttribute(System::String *value);

Class ObAMAuditRule_EventTypeMgd
(Managed Code). This is a Managed Value Type class that defines the event types used
by the ObAuditRuleMgd class. This class provides a wrapper around the enum
ObAMAuditRule_eventType. You may either set the value using the setter methods, or
use an ObAMAuditRule_EventType value.

Managed Code Form
// Get and set values
__property bool get_isUndefined();
__property bool get_isAuthenticationSuccess();
__property bool get_isAuthenticationFailure();
__property bool get_isAuthorizationSuccess();
__property bool get_isAuthorizationFailure();
__property ObAMAuditRule_EventType get_Value();
__property void set_Value(ObAMAuditRule_EventType value);
void setUndefined();
void setAuthenticationSuccess();
void setAuthenticationFailure();
void setAuthorizationSuccess();
void setAuthorizationFailure();

Class ObAMDate
An object of the ObAMDate class represents a date. The ObAMDate class includes one
set method to set the year, month, and day. If the date or time is invalid, the method
throws an ObAMException with the BAD_OBJECT code.

Label Type Range Description

Events

(no key)

An array of strings

At least one required

See the list provided
for Master Audit
Rule on page 5-32

A set of events for
which audit records
will be generated

Attributes An array of strings

At least one required

Any A set of user profile
attributes to be
included in the audit
records

Label Type Range Description

Year

(no key)

Integer

Required

The full year An integer representing the year
value in the object

Policy Manager API Classes

5-70 Oracle Access Manager Developer Guide

Java
 public int getYear();
 public int getMonth();
 public int getDay();

Class ObAMDateMgd
(Managed Code) An ObAMDateMgd object represents a date. The ObAMDateMgd
class has one set method to set the year, month, and day. If the date or time is invalid,
set will throw an ObAMException with the BAD_OBJECT code. For details on the
object components, see "Class ObAMDate" on page 5-69.

Managed Code Form
// Getters and setters
_property int get_Year();
_property int get_Month();
_property int get_Day();
void set(int year, int month, int day_);

Class ObAMDate_MonthsMgd
Use this class to define months of the year when setting timing conditions.

Month Integer

Required

One of an
enumerated list,
as follows:

JANUARY=1

FEBRUARY=2

MARCH=3

APRIL=4

MAY=5

JUNE=6

JULY=7

AUGUST=8

SEPTEMBER=9

OCTOBER=10

NOVEMBER=11

DECEMBER=12

An integer representing the
month value in the object

Day Integer

Required

One of an
enumerated list,
as follows:

SUNDAY=1

MONDAY=2

TUESDAY=3

WEDNESDAY=4

THURSDAY=5

FRIDAY=6

SATURDAY=7

An integer representing the day
value in the object

Label Type Range Description

Policy Manager API Classes

Policy Manager API 5-71

Managed Code Form
ObAMDate_MonthsMgd();
void setJanuary();
void setFebruary();
void setMarch();
void setApril();
void setMay();
void setJune();
void setJuly();
void setAugust();
void setSeptember();
void setOctober();
void setNovember();
void setDecember();

Class ObAMDate_DaysOfWeekMgd
Use this class to define days of the week when setting the timing conditions (using
ObAMATimingConditionsMgd class) or setting the date (using the ObAMADateMgd
class).

Managed Code Form
ObAMDate_DaysOfWeekMgd();
void setSunday();
void setMonday();
void setTuesday();
void setWednesday();
void setThursday();
void setFriday();
void setSaturday();

Class ObAMIdentity
An object of the ObAMIdentity class identifies a user or group profile in the user
directory used in an access condition or an admin rule.

Java
 public String getUID();
 public String getName();
 public String getLoginID();
 public void setUID(String value);
 public void setName(String value);
 public void setLoginID(String value);
 public void serialize(String value);

Label Type Range Description

UID

(no key)

A string

Required

Any A unique ID for the identity

Name A string

Required

Any A name

LoginID A string

Required

Any A login ID, as defined by the person
object class in the Identity System.
Empty for group identities.

Policy Manager API Classes

5-72 Oracle Access Manager Developer Guide

Class ObAMIdentityMgd
(Managed Code). An ObAMIdentityMgd object identifies a user or group profile in the
user directory used in an access condition or an admin rule.

Managed Code Form
// Getters and setters
_property System::String *get_UID();
_property System::String *get_Name();
_property System::String *get_LoginID();
_property ObAMIdentity *get_UnmanageIdentity();
_property void set_UID(System::String *value);
_property void set_Name(System::String *value);
_property void set_LoginID(System::String *value);

Class ObAMParameter
An object of the ObAMParameter class supplies a name-value pair to be matched
against request data (for example, an HTTP query string or POST data) when
determining if a policy applies to an access request. ObAMParameter objects are also
used in authorization schemes.

Java
 public String getName();

Note: For an Identity object, the Name member is strictly a label and
does not correspond to a directory entry. For that reason, an
ObAMIdentityObject for which only the Name has been set cannot
be added to any other object.

Label Type Range Description

UID

(no key)

A string

Required

Any A unique ID for the identity

Name A string

Required

Any A name

LoginID A string

Required

Any A login ID, as defined by the person
object class in the Identity System.
Empty for group identities.

Note: Unique to the Identity object, the Name member is strictly a
label and does not correspond to a directory entry. For that reason, an
ObAMIdentityObjectMgd for which only the Name has been set
cannot be added to any other object.

Label Type Range Description

Name

(key)

A string

Required

Any A name

Value A string

Required

Any A value for the name

Policy Manager API Classes

Policy Manager API 5-73

 public String getValue();
 public void setName(String value);
 public void setValue(String value);

Class ObAMParameterMgd
(Managed Code) An ObAMParameterMgd object supplies a name-value pair to be
matched against request data (for example, an HTTP query string or POST data) when
determining if a policy applies to an access request. ObAMParameterMgd objects are
also used in authorization schemes. For details on the object components, see "Class
ObAMParameter" on page 5-72.

Managed Code
// Getters and setters
_property System::String *get_Value();
_property System::String *get_Name();
_property void set_Name(System::String *value);
_property void set_Value(System::String *value);

Class ObAMResource
An object of the ObAMResource class represents a set of resources to which policy
domains or policies apply. The resource set is selected by matching components of the
Resource URL to ObAMResource members.

Java
 public String getResourceType();
 public String getHostID();
 public String getURLPrefix();
 public String getDescription();
 public void setResourceType(String value);
 public void setHostID(String value);
 public void setURLPrefix(String value);
 public void setDescription(String value);
 public void setIDFrom(ObAMResource other);

Class ObAMResourceMgd
(Managed Code). An ObAMResourceMgd object represents a set of resources to which
policy domains or policies apply. The resource set is selected by matching components

Label Type Range Description

ResourceType

(key1)

A string

Required

Any A built-in or custom
resource type

HostID

(key2)

A string

Required

Any A host ID that
specifies a set of host
names, IP address,
and ports

URLPrefix

(key3)

A string

Required

Any A URL prefix that
matches the initial
local part of the URL

Description A string

Optional

Any An optional
description

Policy Manager API Classes

5-74 Oracle Access Manager Developer Guide

of the Resource URL to ObAMResourceMgd members. For details on the object
components, see "Class ObAMResourceMgd" on page 5-73.

Managed Code
// Getters and setters
_property System::String *get_ResourceType();
_property System::String *get_HostID();
_property System::String *get_URLPrefix();
_property System::String *get_Description();
_property void set_IDFrom(ObAMResourceMgd *other);
_property void set_ResourceType(System::String *value);
_property void set_HostID(System::String *value);
_property void set_URLPrefix(System::String *value);
_property void set_Description(System::String *value);

Class ObAMTime
An object of the ObAMTime class represents a specific time. The ObAMTime class has
one set method to set the hour, minutes and seconds. If the values provided are
invalid, set will throw an ObAMException with the BAD_OBJECT code.

Java
 public int getHours();
 public int getMinutes();
 public int getSeconds();
 public void set(int hours, int minutes, int seconds)throws ObAMException;

Class ObAMTimeMgd
(Managed Code). An ObAMTimeMgd object represents a time. The ObAMTimeMgd
class has one set method to set the hour, minutes and seconds. If the values provided
are invalid, set will throw an ObAMException with the BAD_OBJECT code. For details
on the object components, see "Class ObAMTime" on page 5-74.

Label Type Range Description

Hours

(no key)

Integer

Required

0 to 23 An integer representing the
hour value in the object

Minutes Integer

Required

0 to 59 An integer representing the
minutes value in the object

Seconds Integer

Required

0 to 59 An integer representing the
seconds value in the object

Label Type Range Description

Hours

(no key)

Integer

Required

0 to 23 An integer
representing the hour
value in the object

Minutes Integer

Required

0 to 59 An integer
representing the
minutes value in the
object

Test Objects

Policy Manager API 5-75

Managed Code
// Getters and setters
_property int get_Hours();
_property int getMinutes();
_property int get_Seconds();
void set(int hours, int minutes, int seconds);

Test Objects
Test objects are objects that are used to provide input to and capture output from the
ObAccessManager testAccess method. Because none of these objects is intended to be
stored, they contain no key fields. This section describes the three test objects:

■ Class ObAMAccessTest

■ Class ObAMAccessTestResults

■ Class ObAMAccessTestResult

Class ObAMAccessTest
An object of the ObAMAccessTest class represents a test of access policies. It specifies a
resource and one or more users for whom access to the resource is to be tested.

The ObAMAccessTest object is the input argument to the ObAccessManager
testAccess method, which returns an ObAMAccessTestResults object with the results
of the access test.

Seconds Integer

Required

0 to 59 An integer
representing the
seconds value in the
object

Label Type Range Description

URL

(no key)

A string
Required

Any The URL (minus the
resource type)

Resource A string
Required

Any The resource type

Operation An array

At least one
required

Any The list of operations
(defined by the resource
type)

IPAddress A string

Optional

Any An IP address

Date One Date object
Optional

See the class
definition on
page 5-69.

A date

Time One Time object
Optional

See the class
definition on
page 5-74.

A time

Label Type Range Description

Test Objects

5-76 Oracle Access Manager Developer Guide

Java
 public String getURL();
 public String getResourceType();
 public String getIPaddress();
 public ObAMDate getDate();
 public ObAMTime getTime();
 int getNumberOfOperations();
 int getNumberOfUsers();
 String getOperation(int index);
 public boolean getShowMatchingPolicy();
 public boolean getShowMatchingExpr();
 public boolean getShowDeterminingRules();
 ObAMIdentity getUser(int index);
 public boolean getShowAllowed();
 public boolean getShowDenied();
 public void setURL(String value);
 public void setResourceType(String value);
 public void addOperation(String value);
 public void setIPaddress(String value);
 public void setDate(ObAMDate value);
 public void setTime(ObAMTime value);
 public void addUser(ObAMIdentity value);
 public void setShowAllowed(boolean value);
 public void setShowDenied(boolean value);
 public void setShowMatchingPolicy(boolean value);
 public void setShowMatchingExpr(boolean value);
 public void setShowDeterminingRules(boolean value);

User An array of
Identity objects

Optional

See the class
definition on
page 5-71.

An array of users. If
omitted, access is tested
for all users in the user
directory

ShowAllowed A Boolean flag,
Required

0, meaning no, or
other, meaning
yes.

Specifies if the test should
show users that are
allowed accesses.

ShowDenied A Boolean flag,
Required

0, meaning no, or
other, meaning
yes.

Specifies if the test should
show users that are denied
accesses

ShowMatchingPolicy A Boolean flag,
Required

0, meaning no, or
other, meaning
yes.

Specifies if the test should
show the policies that
apply for each user

ShowMatchingExpr A Boolean flag,

Required

0, meaning no,

or other, meaning
yes.

Specifies if the test should
show the authorization
expression that applies for
each user

ShowDeterminingRules A Boolean flag,

Required.

0, meaning no,

or other, meaning
yes.

Specifies if the test should
show the authorization
rules that were the
determining rules of the
authorization expression.

For a description of
determining rules, see
"Class
ObAMAuthorizationExpr"
on page 5-54.

Label Type Range Description

Test Objects

Policy Manager API 5-77

Setting Up a Test Using Two Users
Example 5–8 shows an excerpt from a sample program. The code sets up a test to
check authorization for two users, and it displays the results. The code uses an object
of the ObAMAccessTest class to set up the test and an object of the
ObAMAccessTestResults class for the results. See "Class ObAMAccessTestResults" on
page 5-79 for details. The code creates two ObAMIdentity objects, one for each user for
whom authorization will be checked. It defines the policy to be used for the test, and it
specifies the information to be returned for each user, including the result of
evaluation of the authorization expression, whether authorization succeeded, failed, or
whether a processing error occurred. For each user, it prints out the test information,
including the determining rules that led up to the outcome of the expression
result.Example 5–8 shows the code segment.

Example 5–8 Testing the System for Authorization Using Two Users

static void example5(ObAccessManager am) throws ObAMException
{ .
 .

 ObAMAccessTest test = new ObAMAccessTest();
 ObAMIdentity person1 = new ObAMIdentity();
 ObAMIdentity person2 = new ObAMIdentity();

 test.setResourceType("http");
 test.setURL("host1/myresources/doc1.html")
 test.addOperation("GET");
 test.addOperation("POST");
 test.setIPaddress(“192.168.1.14");
 ObAMDate date = new ObAMDate();
 ObAMTime time = new ObAMTime();
 date.set(2001, ObAMDate.NOVEMBER, 15);
 time.set(12, 0, 0);
 test.setDate(date);
 test.setTime(time);

 person1.setLoginID("A.Loomis");
 person2.setLoginID("J.Himes");
 person1.setLoginID("admin")
 test.addUser(person1);
 test.addUser(person2);

 test.setShowAllowed(true);
 test.setShowDenied(true);
 test.setShowMatchingPolicy(true);
 test.setShowMatchingExpr(true);
 test.setShowDeterminingRules(true);

 ObAMAccessTestResults results = am.testAccess(test);
 System.out.println("Policy Domain : " + results.getPolicyDomain());
 for (int i = 0; i < results.getNumberOfResults(); i++) {
 ObAMAccessTestResult result = results.getResult(i);
 System.out.println("Result:");
 System.out.println("User : " + result.getUser().getUID());
 if (result.getAuthorized() == true)
 {
 System.out.println("Authorized : ALLOWED");
 }
 else
 {

Test Objects

5-78 Oracle Access Manager Developer Guide

 if (result.getAuthorizationStatus() ==
 ObAMAccessTestResult.DENIED)
 {
 System.out.println("Authorized : DENIED");
 }
 else if (result.getAuthorizationStatus() ==
 ObAMAccessTestResult.INCONCLUSIVE)
 {
 System.out.println("Authorized : INCONCLUSIVE");
 }
 else
 {
 System.out.println("Authorized : ERROR");
 }
 }
 System.out.println("Policy : " + result.getPolicy());
 System.out.println(" Expr : " + result.getExpr());
 System.out.println(“Determining Rules: ");
 for (int j=0; j<result.getNumberOfDeterminingRules(); j++)
 {
 System.out.println(“ “ +result.getDeterminingRule(j)) ;
 }
 }
 }

Class ObAMAccessTestMgd
(Managed Code). An object of the ObAMAccessTestMgd class represents a test of
access policies. It specifies a resource request and one or more users for whom access
to the resource is to be tested. The ObAMAccessTestMgd object is the argument to the
ObAccessManager testAccess method, which returns an ObAMAccessTestResultsMgd
object with the results of the access test for each user. For details on the object
components, see "Class ObAMAccessTest" on page 5-75.

Managed Code
// getters and setters
__property System::String *get_URL();
__property System::String *get_ResourceType();
__property System::String *get_IPaddress();
__property ObAMDateMgd *get_Date();
__property ObAMTimeMgd *get_Time();
__property int get_NumberOfOperations();
__property int get_NumberOfUsers();
System::String *getOperation(int index);
ObAMIdentityMgd *getUser(int index);
__property bool get_ShowAllowed();
__property bool get_ShowDenied();
__property bool get_ShowMatchingPolicy();
__property bool get_ShowMatchingExpr();
__property void set_URL(System::String *value);
__property void set_ResourceType(System::String *value);
__property void set_AddOperation(System::String *value);
__property void set_IPaddress(System::String *value);
__property void set_Date(ObAMDateMgd *date);
__property void set_Time(ObAMTimeMgd *time);
__property void set_AddUser(ObAMIdentityMgd *value);
__property void set_ShowAllowed(bool value);
__property void set_ShowDenied(bool value);
__property void set_ShowMatchingPolicy(bool value);

Test Objects

Policy Manager API 5-79

__property void set_ShowMatchingExpr(bool value);

Class ObAMAccessTestResults
An object of the ObAMAccessTestResults class contains the results of an access test. It
includes an array of one or more AccessTestResult objects, described on"Class
ObAMAccessTestResults" on page 5-79 one for each user specified in the AccessTest.

Java
 public class ObAMAccessTestResults {
 public String getPolicyDomain();
 public int getNumberOfResults();
 public ObAMAccessTestResult getResult(int index);

C
typedef const void * ObAMAccessTestResults_t;
void ObAMAccessTestResults_delete(
 ObAMAccessTestResults_t results);
const char *ObAMAccessTestResults_getPolicyDomain(
 ObAMAccessTestResults_t results);
int ObAMAccessTestResults_getNumberOfResults(
 ObAMAccessTestResults_t results);
ObAMAccessTestResult_t ObAMAccessTestResults_getResult(
 ObAMAccessTestResults_t results, int index);

Class ObAMAccessTestResultsMgd
Managed Code. An ObAMAccessTestResultsMgd object contains the results of an
access test.See "Class ObAMAccessTestResults" on page 5-79. It includes an array of
one or more AccessTestResultMgd objects, described on "Class
ObAMAccessTestResultMgd" on page 5-80, one for each user specified in the
AccessTest.

// getters and setters
__property System::String *get_PolicyDomain();
__property int get_NumberOfResults();
ObAMAccessTestResultMgd *getResult(int index);

Note: The trailing s in Results

Label Type Range Description

PolicyDomain

(no key)

A string

Optional

Any The name of the policy domain that
includes the resources specified in
the test.

Results An array of
AccessTestResul
t objects

See the class
definition on
page 5-79.

An array of results
(AccessTestResult objects), one for
each user specified in the test.

Note: The trailing s in Results.

Test Objects

5-80 Oracle Access Manager Developer Guide

Class ObAMAccessTestResult
An object of the ObAMAccessTestResult class contains the results of an access test,
including the following information:

■ The name of the policy, if any, that applies to the resource specified in the test.

■ The identity of the user requesting the resource as a test case.

■ The name of the authorization expression that applies to the user and the resource.

■ The set of determining rules from the expression, if any, that determine the user's
access rights and whether access to the resource is authorized for the user.

Java
 public ObAMIdentity getUser();
 public String getPolicy();
 public boolean getAuthorized();
 public String getExpr();
 public int getNumberOfDeterminingRules();
 public String getDeterminingRule (int index);
 public int getAuthorizationStatus();

Class ObAMAccessTestResultMgd
(Managed Code). An ObAMAccessTestResultMgd object contains the results of an
access test for a single user. See "Class ObAMAccessTestResultsMgd" on page 5-79 and
"Class ObAMAccessTestResults" on page 5-79. For details on the object components,
see "Class ObAMAccessTestResult" on page 5-80.

Label Type Range Description

User

(no key)

An Identity
Object

See the class
definition on
page 5-71.

Information about the user.

Policy A string

Optional

Any The name of the policy, if any, that
applies to the user and the resource.

Authorization
Expression

A string,
Optional

Any

See the class
definition on
page 5-59.

The name of the authorization
expression that applies to the user
and the requested resource.

Determining
Rules

A string,

Optional

Any

See the class
definition on
page 5-48.

The set of one or more rules that
contributed to the determination of
the outcome of the authorization.

These are the rules that determined
the result of the authorization
expression evaluation.

Authorized A Boolean flag,
Required

0, meaning no,
or other,
meaning yes.

Answers the question: Is access to
the resource authorized for the user?

Note: No trailing s in Result.

Test Objects

Policy Manager API 5-81

Class ObAMException
The Policy Manager API Java methods throw exceptions of the class ObAMException
when they detect problems with input data or with the connection to the Access
Server.

Java
The Java ObAMException class extends the ObAccessException class as follows:

public static final int UNDEFINED = 400;
public static final int ADMIN_LOGIN_FAILED = 401;
public static final int NOT_AUTHORIZED = 402;
public static final int BAD_ARGUMENT = 403;
public static final int EXISTING_OBJECT = 404;
public static final int NO_OBJECT = 405;
public static final int BAD_MESSAGE = 406;
public static final int ALREADY_SET = 407;
public static final int FINALIZED = 408;
public static final int UNSUPPORTED_VERSION = 409;
public static final int END_BEFORE_START = 410;
public static final int NO_SET_ADMIN = 411;
public static final int DATA_STORE_ERROR = 412;
public static final int INVALID_LDAP_FILTER = 413;
public static final int MISSING_REQUIRED_PARAM = 414;
public static final int INVALID_PARAM = 415;
public static final int NAME_REQUIRED = 416;
public static final int MODIFY_OBJECT_INVALID = 417;
public static final int INVALID_PROFILE_ATTRIBUTE = 418;
public static final int AUTHZ_SCHEME_CONFLICT = 419;
public static final int BAD_CHARACTER_DATA = 420;
public static final int CACHE_FLUSH_FAILED = 421;
public static final int AUTHN_SCHEME_PARAM = 422;
public static final int OBJECT_IN_USE = 423;
public static final int CANNOT_DELETE = 424;
public static final int POLICY_RESOURCE_TYPE_MISMATCH = 425;
public static final int INTERNAL_ERROR = 426;
public static final int INVALID_USER = 427;
public static final int INVALID_GROUP = 428;
public static final int FEATURE_NOT_SUPPORTED = 429;
public static final int INVALID_FAILURE_ACTION_ATTIBUTE = 430;
public static final int MISSING_AUTHN_STEP = 431;
public static final int INVALID_AUTHZ_EXPR_SYNTAX = 432;
public static final int AUTHZ_RULE_NOT_FOUND = 433;
public static final int AUTHN_SCHEME_DISABLED = 434;
public static final int INVALID_ACTION_TYPE = 435;
public static final int INVALID_DUPLICATE_ACTIONS_POLICY = 436;

Class ObAccessException

C
An ObAccessException object is thrown when the unexpected, unrecoverable
problems occur. Because C does not provide an exception mechanism, the C binding
includes methods to set up a handler to be called when an exception is thrown. The
handler passes the exception, and it can extract the code and data from the exception.

Note: No trailing s in Result.

Test Objects

5-82 Oracle Access Manager Developer Guide

For C, the ObAccessExceptionClass is used. For details about the ObAccessException
class, see "Class ObAccessException" on page 5-81.

The following list of ObAccessException codes from the ObAccessException class is
used.

ObAccessException_AM_UNKNOWN = 400,
ObAccessException_AM_ADMIN_LOGIN_FAILED,
ObAccessException_AM_NOT_AUTHORIZED,
ObAccessException_AM_BAD_ARGUMENT,
ObAccessException_AM_EXISTING_OBJECT,
ObAccessException_AM_NO_OBJECT,
ObAccessException_AM_BAD_MESSAGE,
ObAccessException_AM_GET_OBJECT_IN_SET,
ObAccessException_AM_FINALIZED,
ObAccessException_AM_UNSUPPORTED_VERSION,
ObAccessException_AM_END_BEFORE_START,
ObAccessException_AM_UNSUPPORTED_OPERATION,
ObAccessException_AM_NO_SET_ADMIN,
ObAccessException_AM_DATA_STORE_ERROR,
ObAccessException_AM_READ_DATA_STORE_ERROR,
ObAccessException_AM_INVALID_LDAP_FILTER,
ObAccessException_AM_MISSING_REQUIRED_PARAM,
ObAccessException_AM_INVALID_PARAM,
ObAccessException_AM_NAME_REQUIRED,
ObAccessException_AM_MODIFY_OBJECT_INVALID,
ObAccessException_AM_INVALID_PROFILE_ATTRIBUTE,
ObAccessException_AM_AUTHZ_SCHEME_CONFLICT,
ObAccessException_AM_BAD_CHARACTER_DATA,
ObAccessException_AM_CACHE_FLUSH_FAILED,
ObAccessException_AM_AUTHN_SCHEME_PARAM,
ObAccessException_AM_OBJECT_IN_USE,
ObAccessException_AM_CANNOT_DELETE,
ObAccessException_AM_POLICY_RESOURCE_TYPE_MISMATCH,
ObAccessException_AM_INTERNAL_ERROR,
ObAccessException_AM_INVALID_USER,
ObAccessException_AM_INVALID_GROUP,
ObAccessException_AM_FEATURE_NOT_SUPPORTED,
ObAccessException_AM_INVALID_FEATURE_ACTION_ATTRIBUTE

typedef void (*ObAccessExceptionHandler2_t)
 (ObAccessException_t e);
void ObAccessException_setHandler2(
 ObAccessExceptionHandler2_t handler);
ObAccessExceptionCode_t ObAccessException_getCode(
 ObAccessException_t e);
const char *ObAccessException_getParameter(
 ObAccessException_t e, int which);
const char *ObAccessException_toString(ObAccessException_t e);

Class ObAccessExceptionMgd

Managed Code
When the Policy Manager API methods for managed code detect problems, they
throw an ObAccessExceptionMgd exception. For enumeration and description of the
constants that define the exception codes returned for errors encountered, see
"C-Family Status and Error Message Strings" on page 4-128. For a complete description
of the class, see "ObAccessException" on page 4-28.

Sample Program

Policy Manager API 5-83

public:
 ObAccessExceptionMgd: public System::Exception {
 ObAccessExceptionMgd(ObAccessException *ex);
 System::String *getParameter(int index);
 System::String *getCodeString(ObAccessExceptionCode_t code);
 __property System::String *get_String(); };

Sample Program
The following listing is part of a sample program that is installed with the software in
the Identity_install_dir/identity/oblix/access_server_sdk/samples
folder. The sample program uses many of the Policy Manager API classes. Code
listings shown throughout this chapter are excerpted from the sample program.

This portion of the sample program creates a policy domain called My Domain for
resources in http://host1/myresources. Here are some of the tasks the code in
Example 5–9 performs:

■ The program sets the default authentication rule for My Domain to use the Oracle
Access and Identity authentication scheme.

■ It sets the default audit rule for the policy domain to audit authentication
successes, authentication failures, and authorization failures. For these events, it
specifies that the user's uid and cn attributes are to be logged.

■ It creates an authorization rule that enables J. Smith, J. Himes, and anyone in
group1, access to the protected resources. On successful authorization, the rule
returns a header variable userId that is set to the user's uid attribute.

■ The application creates a second authorization rule with access conditions which
include timing conditions and an IP address requirement. This rule gives anyone
access after 12:00:00 of October 15, 2001 on the 1st, 2nd, and 30th of January and
November if the day is either a Monday or a Tuesday and the user's browser has
an IP address of 192.168.*.*.

■ The code adds an action to the second rule that the rule returns on successful
authorization.

■ The code creates a third authorization rule that enables anyone access to the
protected resources.

■ The code creates a default authorization expression for the policy domain and it
sets the duplicate actions policy to Overwrite. It adds an action to be returned if
the authorization expression is evaluated to a result of Inconclusive.

■ It sets up two policies within the policy domain.

■ It creates an administrator rule to assign delegate administrator rights for the
policy domain to J. Smith.

■ The code creates the My Domain policy domain. If the policy domain exists, the
code throws an exception.

■ It gets and displays the names of all policy domains that begin with My. If the
code successfully created the new policy domain, the list will include the My
Domain policy domain.

Example 5–9 Sample Program for Creating a Policy Domain

 domain.setName("My Domain");
 domain.setDescription("excerpted from the sample program");
 domain.setEnabled(true);

Sample Program

5-84 Oracle Access Manager Developer Guide

 ObAMResource resource = new ObAMResource();
 resource.setResourceType("http");
 resource.setHostID("host1");
 resource.setURLPrefix("/myresources");
 domain.addResource(resource);

// Set the default authentication rule

 ObAMAuthenticationRule authnRule = new ObAMAuthenticationRule();
 authnRule.setScheme("Oracle Access and Identity");
 domain.setDefaultAuthenticationRule(authnRule);

// Set the default audit rule

 ObAMAuditRule auditRule = new ObAMAuditRule();
 auditRule.addEvent(ObAMAuditRule.AUTHENTICATION_SUCCESS);
 auditRule.addEvent(ObAMAuditRule.AUTHENTICATION_FAILURE);
 auditRule.addEvent(ObAMAuditRule.AUTHORIZATION_FAILURE);
 auditRule.addAttribute("uid");
 auditRule.addAttribute("cn");
 domain.setDefaultAuditRule(auditRule);

// Create an authorization rule

 ObAMAuthorizationRule authzRule1 = new ObAMAuthorizationRule();
 authzRule1.setName("Authz Rule 1");
 authzRule1.setEnabled(true);
 ObAMAccessConditions access1 = new ObAMAccessConditions();
 ObAMIdentity person1 = new ObAMIdentity();

 person1.setLoginID("J.Smith");
 access1.addPerson(person1);
 ObAMIdentity person2 = new ObAMIdentity();
 person2.setLoginID("J.Himes");
 access1.addPerson(person2);
 ObAMIdentity group = new ObAMIdentity();
 group.setName("group1");
 access1.addGroup(group);
 person1.setLoginID("admin");
 access1.addPerson(person1);
 authzRule1.setAllowAccessConditions(access1);

// Add a success action to the authorization rule

 ObAMAction action1 = new ObAMAction();
 action1.setType("headerVar");
 action1.setName("UserIs");
 action1.setValue("uid");action1.setValueType(ObAMAction.ATTRIBUTE);
 authzRule1.addActionOfType(ObAMObjectWithActions.SUCCESS, action1);

/ Add the authorization rule to the policy domain

 domain.addAuthorizationRule(authzRule1);

// Create a second authorization rule

 ObAMAuthorizationRule authzRule2 = new ObAMAuthorizationRule();
 authzRule2.setName("Authz Rule 2");
 authzRule2.setEnabled(true);

Sample Program

Policy Manager API 5-85

 authzRule2.setName("Authz Rule 2");
 authzRule2.setEnabled(true);
 ObAMTimingConditions timing2 = new ObAMTimingConditions();
 ObAMDate startDate = new ObAMDate();
 ObAMTime startTime = new ObAMTime();
 startDate.set(2001, ObAMDate.OCTOBER, 31);
 startTime.set(12, 0, 0);
 timing2.setRelativeTo(ObAMTimingConditions.LOCAL_TIME);
 timing2.setStartDate(startDate);
 timing2.setStartTime(startTime);
 timing2.addMonth(ObAMDate.JANUARY);
 timing2.addMonth(ObAMDate.NOVEMBER);
 timing2.addDayOfMonth(1);
 timing2.addDayOfMonth(2);
 timing2.addDayOfMonth(30);
 timing2.addDayOfWeek(ObAMDate.MONDAY);
 timing2.addDayOfWeek(ObAMDate.TUESDAY);
 authzRule2.setTimingConditions(timing2);
 ObAMAccessConditions access2 = new ObAMAccessConditions();
 access2.addIPAddress("192.168.*.*");
 authzRule2.setAllowAccessConditions(access2);

// Add a failure action to the second authorization rule
 ObAMAction action2 = new ObAMAction();
 action2.setType("otherType");
 action2.setName("authzAction");
 action2.setValue("b");
 action2.setValueType(ObAMAction.FIXEDVALUE);
 authzRule2.addActionOfType(
 ObAMObjectWithActions.FAILURE,
action2);

// Add the rule to the domain
 domain.addAuthorizationRule(authzRule2);

// Create a third authorization rule to allow anyone access
 ObAMAuthorizationRule authzRule3 = new ObAMAuthorizationRule();
 authzRule3.setName("Authz Rule 1");
 authzRule3.setEnabled(true);
 ObAMAccessConditions access3 = new ObAMAccessConditions();
 access3.addRole("Anyone");
 authzRule3.setAllowAccessConditions(access3);

// Add the rule to the domain
 domain.addAuthorizationRule(authzRule3);

/ Create a fourth authorization rule to deny anyone access

 ObAMAuthorizationRule authzRule4 = new ObAMAuthorizationRule();
 authzRule4.setName("Authz Rule 2");
 authzRule4.setEnabled(true);
 ObAMAccessConditions access4 = new ObAMAccessConditions();
 access4.addRole("Anyone");
 authzRule4.setDenyAccessConditions(access4);

// Add the rule to the domain

 domain.addAuthorizationRule(authzRule4);

// Create a default authorization expression for the policy domain

Sample Program

5-86 Oracle Access Manager Developer Guide

 ObAMAuthorizationExpr pd_expr = new ObAMAuthorizationExpr();
 pd_expr.setExpression("Authz Rule 1 & Authz Rule 2");
 pd_expr.setDuplicateActionsPolicy(
 ObAMAuthorizationExpr.ACTION_OVERWRITE);
// Add an Inconclusive action
 ObAMAction action3 = new ObAMAction();
 action3.setType("otherType");
 action3.setName("authzAction");
 action3.setValue("a");
 action3.setValueType(ObAMAction.FIXEDVALUE);
 pd_expr.addActionOfType(ObAMObjectWithActions.INCONCLUSIVE, action3);

// Add the expression to the policy domain
 domain.setDefaultAuthorizationExpr(pd_expr);

// Set policy 1 for My Domain for GET
// and POST to http://host1/myresources/doc1.html

 ObAMPolicy policy1 = new ObAMPolicy();
 policy1.setName("My Domain Policy 1");
 policy1.setResourceType("http");
 policy1.setHostID("host1");
 policy1.setURLPattern("/myresources/doc1.html");
 policy1.addOperation("GET");
 policy1.addOperation("POST");
 policy1.addResource(resource);
 ObAMAuthorizationExpr p1_authzExpr = new ObAMAuthorizationExpr();
 p1_authzExpr.setExpression("Authz Rule 1 & Authz Rule 2");
 p1_authzExpr.setDuplicateActionsPolicy(ObAMAuthorizationExpr.UNDEFINED);
 policy1.setAuthorizationExpr(p1_authzExpr);
 domain.addPolicy(policy1);

/ Set policy 2 for My Domain for GET
// and POST to http://host1/myresources/prog
// with a query string or post data of progid=1.
 ObAMPolicy policy2 = new ObAMPolicy();
 policy2.setName("My Domain Policy 2");
 policy2.setResourceType("http");
 policy2.setURLPattern("/myresources/prog");
 policy2.addOperation("GET");
 policy2.addOperation("POST");
 policy2.addResource(resource);
 ObAMAuthorizationExpr p2_authzExpr = new ObAMAuthorizationExpr();
 p2_authzExpr.setExpression("Authz Rule 1 & Authz Rule 2");
 p2_authzExpr.setDuplicateActionsPolicy(
 ObAMAuthorizationExpr.ACTION_IGNORE);
 policy2.setAuthorizationExpr(p2_authzExpr);
 ObAMParameter parameter2 = new ObAMParameter();
 parameter2.setName("progid");
 parameter2.setValue("1");
 policy2.addParameter(parameter2);
 domain.addPolicy(policy2);
// Set an admin rule for My Domain that gives delegate
// rights to J.Smith

 ObAMAdminRule adminRule = new ObAMAdminRule();
 ObAMIdentity adminPerson = new ObAMIdentity();
 adminPerson.setLoginID("J.Smith");

 adminPerson.setLoginID("admin");

Sample Program

Policy Manager API 5-87

 adminRule.addPerson(adminPerson);
 domain.setDelegateAdminRule(adminRule);

/ Create My Domain. If it already exists, this will throw an exception.

 am.setPolicyDomain(domain, ObAccessManager.CREATE);
// Get and display all domains that start with My
 ObAMPolicyDomain[] domains =
 am.getPolicyDomains(ObAccessManager.MAX,
 "My", ObAccessManager.BEGINS_WITH);
 if (domains != null) {
 for (int i = 0; i < domains.length; i++) {
 displayPolicyDomain(0, "Policy Domain:", domains[i]);
 }
 };
 }

Sample Program

5-88 Oracle Access Manager Developer Guide

Authentication Plug-in API 6-1

6
Authentication Plug-in API

The Access Server uses both authentication and authorization controls to limit access
to resources that it protects. Authentication is governed by authentication rules. The
authentication rules use authenticating schemes, and the schemes use one or more
plug-ins to do tests on the credentials provided by a user when he or she tries to access
a resource. The plug-ins can be taken from a set provided as part of the Access Server
installation, or they can be custom plug-ins.

This chapter provides information on creating custom authentication plug-ins. It
covers the following topics:

■ About the Authentication Plug-in API

■ C API Environment

■ C API Data

■ C API Functions

■ C Authentication Plug-in Example

■ Managed Code API Environment

■ Managed Code API Data

■ Troubleshooting

■ Standard Plug-Ins

About the Authentication Plug-in API
When a browser requests a resource from a Access System-protected Web server, the
Access Server checks to see if the resource is protected, and if it is, whether the user
needs to authenticate. If the user has not already logged in, the Access Server requires
a new login for the user and sends an authentication challenge to the browser. The
challenge conforms to the challenge method defined in an Authentication Scheme. The
authentication scheme is part of an Authentication Rule which is part of the access
policy protecting the resource. When the scheme is carried out, it invokes an
authentication plug-in, or two or more chained plug-ins that are performed in the
order specified in the scheme.

All schemes follow the same general flow. In response to an authentication challenge,
the browser obtains credentials from the user, such as a user name and password or a
client certificate. In some cases, for example client certificate authentication, the
browser generates credentials on behalf of the user. The browser sends the credentials
to the server, in a format determined by the challenge. The Access Server re-formats
the credentials as a set of name:value pairs for use during processing, and treats them
as an authentication request.

C API Environment

6-2 Oracle Access Manager Developer Guide

The user’s credentials are input to the single plug-in or to each plug-in in the scheme.
Output is a status to accept, continue, deny or end the authentication, plus a set of
credentials, possibly different from the originals.

If authentication fails, result messages are logged in the Access Server audit file, if it is
provided by the plug-in. When the authentication scheme finishes, the result must
have produced one and only one valid user DN, or no user DN.

If authentication succeeds, the Access Server creates a session cookie containing the
user’s profile DN, the IP address of the user’s browser, the level of the authentication
scheme, and the expiration time for the cookie. The Access Server can also set HTTP
header variables based on the authentication actions defined for the authentication
scheme. The cookie and HTTP information are returned to the browser, and access is
granted.

If authentication does not succeed, the Access Server sets an HTTP return status of 401
(Not Authorized), the standard response for unauthenticated access, and access to the
resource is denied.

Authentication schemes can be created which use only the predefined authentication
plug-ins; see "Standard Plug-Ins" on page 6-32. In addition, developers can create their
own plug-ins and use them in schemes, alone or in combination with the standard
plug-ins.

Globalization and Custom C Authentication Plug-ins and Interfaces
With 10g (10.1.4.0.1) there are some changes and backward compatibility, as described
here.

The 10g (10.1.4.0.1) Authentication Plug-In API for C uses UTF-8 encoding for plug-in
processing. In earlier releases, the Authentication Plug-In API for C used Latin-1
encoding for data exchanged between the Access Server and the custom plug-ins.

Backward Compatibility
When you upgrade an older Access Server to 10g (10.1.4.0.1),
="IsBackwardCompatible" Value="false" is set in the Access Server globalparams.xml
file automatically. A backward-compatible Access Server continues to send data to
authentication plug-ins in Latin-1 encoding and expects that the plug-ins will set data
in Latin-1 encoding. There is no change in plug-in data encoding.

When you add a new 10g (10.1.4.0.1) Access Server to an upgraded environment, you
need manually set ="IsBackwardCompatible" Value="false" in the Access Server
globalparams.xml to enable communication with older plug-ins and interfaces, as well
as older WebGates and custom AccessGates.

C API Environment
The following sections describe the development environment for the plug-in API,
including support file location and major components.

Support Files Location for the C API
When you install the Access Server component of the Access System, you put it into an
installation directory, ASInstall_Dir, for example:

C:/COREid/access/oblix

Sample files for the authentication plug-in API are installed within this directory, at:

C API Data

Authentication Plug-in API 6-3

AccessServer_install_dir/access/oblix/sdk/authentication/samples

The samples directory contains an authn_api subdirectory.

The samples directory does not contain all of the files required to build and run the
source code. For example, the header files, include files, and others are not provided.

Authn_api contains source code for a simple example authentication plug-in, an
example make file and, one level down in the include directory, the header file
authn_api.h.

The file authn_api.h contains two important sets of information:

■ Definitions of the set of utilities that the Access Server provides to all
authentication plug-ins

■ Definitions of the API data and functions

To build
1. Under the samples directory, copy the content of the authn_api directory to a

second directory, for example myplugin.

2. Within the new directory, change the content of the authn.c file, or create
additional files, or both, to provide the desired functionality specific to your
plug-in.

3. Change the make file to show the actual path to your C compiler and to the
authn_api.h file, and to include and compile all of your source code.

Run the make file. (The example supplied applies only to UNIX; you need to create
your own for the Windows environment.)

The resulting *.so or *.dll is your new plug-in.

C API Plug-in Directory
The plug-in you created must be stored in the system where the Access Server is
running, in the directory:

ASInstall_Dir/lib

The Access Administrator needs to know the filename of the plug-in, and its required
and optional data names in order to properly configure the plug-in into an
authentication scheme. See theOracle Access Manager Access Administration Guide for a
more detailed discussion of authentication scheme configuration. Following the "C
Authentication Plug-in Example" on page 6-18 is a screen showing the authentication
scheme configuration used to support the example.

C API Data
This section describes the various types of constant and variable data that the API
uses.

Note: Some of the definitions provided in this file are essential in
order to correctly build and operate the API. When the plug-in is
loaded by the Access Server, it expects to find the set of five functions
in authn_api.h implemented within the plug-in. You may add
information to the file, but do not remove any of the existing content.

C API Data

6-4 Oracle Access Manager Developer Guide

Defines (C)
Authn_api.h predefines several values for use as fixed argument values when working
with some functions.

#define OB_AN_PLUGIN_VERSION "8.0"
#define ObAnPluginRequestResource "Resource"
#define ObAnPluginRequestOperation "Operation"
#define ObAnPluginRequesterDN "RequesterDn"

Handles (C)
The Access Server and API use pointers, also called handles, to allow manipulation of
data structures that the Access Server maintains for use by the plug-in. These handles
are named and described in the following table. The description of content for all
structures begins at "C Structures" on page 6-7. The terms list, name, value and item
describe the data relationships within the ObAnPluginInfo structure, described on 526.

Value Name Meaning

OB_AN_PLUGIN_VERSION When ObAnPluginGetVersion is called, this value must
be returned to the Access Server. The value in the
header file may change with releases of the product.

ObAnPluginRequestResource The resource after the host name and port, for example:
/basic/page.htm.

ObAnPluginRequestOperation The operation being performed on the resource.

ObAnPluginRequesterDN If an authentication plug-in has set the DN, this is
where other plug-ins can access that DN. The plug-in
named credential_mapping always sets the DN.

Custom authentication plug-ins can set the DN, once
they have determined what it is, by calling SetCredFn.

ObAnPluginRequesterIP The IP address of the client that issued this request.

Data Type/Name Purpose

void const*

ObAnPluginSVData_t

A handle to a data structure containing names that
are single valued. It is used to locate Creds and
ActionInfo in the ObAnPluginInfo structure.

void*

ObAnPluginMVData_t

A handle to a data structure containing names that
can be multivalued. They are used to locate Params
and Context in the ObAnPluginInfo structure.

char**ObAnPluginStatusMsg_t A NULL-terminated string that a plug-in function
returns to report on the result of the function.

void const*ObAnPluginList_t A handle pointing to a list of items for a multivalued
name that is part of the data for the Params or
Context members of the structure ObAnPluginInfo.
This handle is obtained using the function GetData.

void const*

ObAnPluginListItem_t

A handle pointing to the current item in a list for a
multivalued name. This handle is obtained using the
functions GetFirstItem or GetNext.

struct ObAnPluginInfo*

ObAnPluginInfo_t

A handle pointing to the structure ObAnPluginInfo
that contains information from the Access Server
and data generated by the plug-in.

C API Data

Authentication Plug-in API 6-5

C Return Values
Many of the functions the Access Server and API use to communicate are expected to
return a status value. These are all predefined in several categories as described in this
section.

ObAnActionType_t
These are action flags that the API returns to the Access Server, to tell it what actions to
take.

typedef enum {
ObAnSuccessRedirect = 0,
ObAnFailRedirect = 1,
ObAnSuccessProfileAttrs = 2,
ObAnFailProfileAttrs = 3,
ObAnSuccessFixedVals = 4,
ObAnFailFixedVals = 5
} ObAnActionType_t;

ObAnPluginstatus_t
Plug-ins must return one of these values to the Access Server to show the result of the
attempt to authenticate.

typedef enum {
ObAnPluginstatusContinue = 0,
ObAnPluginstatusAllowed = 1,
ObAnPluginstatusDenied = 2,

struct ObAnServerContext*

ObAnServerContext_t

A handle pointing to the structure
ObAnServerContext. The structure provides general
information about the Access Server.

Name Description

ObAnSuccessRedirect For successful authentication, tells the Access Server to
set the redirection URL, as defined in the authentication
rule.

ObAnFailRedirect For failed authentication, tells the Access Server to set
the redirection URL, as defined in the authentication
rule.

ObAnSuccessProfileAttrs For successful authentication, tells the Access Server to
set the profile attributes for the action using values
provided by the authentication rule, which may have
been added to by the plug-in.

ObAnSuccessProfileAttrs For failed authentication, tells the Access Server to set
the profile attributes for the action using values
provided by the authentication rule, which may have
been added to by the plug-in.

ObAnSuccessFixedVals For successful authentication, tells the Access Server to
set the fixed values defined in the authentication rule,
which may have been added to by the plug-in.

ObAnFailFixedVals For failed authentication, tells the Access Server to set
the fixed values defined in the authentication rule,
which may have been added to by the plug-in.

Data Type/Name Purpose

C API Data

6-6 Oracle Access Manager Developer Guide

ObAnPluginstatusAbort = 3
}ObAnPluginstatus_t;

ObAnASStatus_t
When a plug-in calls upon the Access Server to perform one of its built-in functions,
the Access Server attempts to execute the function, and returns one of these values.

typedef enum {
ObAnASStatusSuccess = 0,
ObAnASStatusFailed
}ObAnASStatus_t;

Value Name Meaning

ObAnPluginStatusContinue Your plug-in returns this code if it completed execution
successfully.

The Access Server interprets a return code of Continue
as indication that the current plug-in succeeded, and
that it should continue processing the plug-ins of the
steps of the authentication scheme.

If all of the plug-ins of an authentication scheme return
this result code, authentication is successful.

ObAnPluginStatusAllowed Your plug-in returns this code if authentication is
successful.

The Access Server interprets a return code of Allowed as
indication that credentials were processed and
authentication succeeded.

The Access Server performs no further processing of
authentication plug-ins in any of the steps of the
authentication scheme.

ObAnPluginStatusDenied Your plug-in returns this code if authentication failed.

The Access Server interprets a return code of Denied as
indication that credentials were processed and
authentication failed.

The Access Server performs no further processing of
authentication plug-ins of any steps of the
authentication scheme because authentication failed.

ObAnPluginStatusAbort Your plug-in returns this code if a fatal error occurs
during its processing.

The Access Server interprets a return code of Abort as a
direction to end the authentication process specified by
the authentication scheme, not just the step containing
the plug-in.

If Abort is returned during initialization, the Access
Server will log the condition, but it will not end the
process.

Value Name Meaning

ObAnASStatusSuccess The Access Server successfully performed the operation.

ObAnASStatusFailed The Access Server did not perform the operation. The most likely
cause of this error is that the plug-in tried to change values that it
is not allowed to change. An example is an attempt to add a
second value for a name, to an array member which permits only
single values.

C API Data

Authentication Plug-in API 6-7

C Structures
The Access Server groups related data items into named structures, allocates the
memory for them, and carries the data for them. Structures are opaque to the
developer, meaning that they can be used to transfer information to and from the
Access Server, but the developer cannot change the way the structure is organized or
the format of the data that it contains. The content of the structure can be changed in
some instances.

Here are the structures used in the Authentication Plug-in API.

ObAnServerContext
This structure carries information about the Access Server that the plug-in may need.

struct ObAnServerContext {
char*AccessServerInstallDir;
char*AccessServerAnPluginAPIVersion;
};

ObAnServerContext_t is the handle that works with this structure.

Data held in this structure is read only.

ObAnPluginInfo
The Access Server fills this structure with data determined by the Authentication Rule
to be used, and provides the filled structure to the plug-in. The plug-in modifies data
within the structure and may append new data to it as work progresses through the
plug-in. When there are multiple plug-ins being carried out as part of an
authentication scheme, it also provides a means to set variable information for the first
plug-in in the rule, and pass information from one plug-in to another within the
scheme.

struct ObAnPluginInfo {
ObAnPluginsVData_tCreds;
ObAnPluginMVData_tParams;
ObAnPluginMVData_tContext;
ObAnPluginsVData_tActionInfo;
};

ObAnPluginInfo_t is the handle pointing to this structure.

Data is extracted from structures and stored to them using the functions described
under "Functions Provided by the Access Server (C API)" on page 6-9.

Data Type/Name Purpose

AccessServerInstallDir Path to the Installation directory for the Access Server, for
example COREid/Access.

Note: this does not include the /oblix directory.

AccessServerAnPlugin

APIVersion

The lowest authentication plug-in API version the instance
of the Access Server supports.

C API Data

6-8 Oracle Access Manager Developer Guide

Understanding the organization of the ObAnPluginInfo structure in is key to
understanding how the Authentication Plug-in API works. This structure can be
thought of as an array of four nested arrays, the structure members. Each member holds
one or more names.

For structure members that are of type ObAnPluginSVData_t, the array consists of a
set of names and the single value associated with each one. For example, the creds
member can be thought of this way:

To get the value, you use GetCredFn and provide the name of the credential for which
you want the value. The function returns the single value. GetActionFn operates the
same way, with actions.

For structure members that are of type ObAnPluginMVData_t, each name has an
associated handle that points to a list of one or more items. Each item contains a value
and a handle to the next item in the list. A handle for the next item set to NULL
indicates the end of the list.

The params member can be thought of according to the following diagram. You use
GetDataFn to get the pointer to the list, for a specified parameter name within the
params array.You then use GetFirstFn to get a handle to the information for the first
item in the list. GetValueFn at this point returns the value for item 1, GetNextFn
returns the handle to the information for item 2, and so on.

Data Type/Name Purpose

Creds Creds is all information submitted by the entity (user or
application) trying to access a resource. The plug-in may add
to or replace this data. The data is passed to the next plug-in in
sequence and hence can be used by the plug-in to
communicate with the plug-in following it in an
authentication scheme. The Access Server provides four
predefined names within this list: Resource, Operation,
RequesterDN, and RequesterIP.

Params The parameters specified in the plug-in configuration. The
plug-in may add to or replace this data, within the plug-in.
However, this data is not passed to the next plug-in.

Context Data created by the plug-in. The plug-in may add to or replace
this data. The data is passed to the next plug-in in sequence.

ActionInfo Action information specified in the plug-in configuration. The
plug-in may add to or replace this data. Actions can also be set
and passed to the next plug-in, keeping in mind that the final
user of the action information is the Access Server.

Name Value

"Resource" 1 value

"Operation" 1 value

"RequesterDN" 1 value

"RequesterIP" 1 value

User Created Credential Name 1 value

C API Functions

Authentication Plug-in API 6-9

ObAnPluginFns
This structure provides handles to a block of functions available in the Access Server,
which the plug-in uses to manipulate data in the ObAnPluginInfo structure.

struct ObAnPluginFns {
ObASPluginGetFirstItem_t GetFirstItemFn;
ObASPluginGetValue_t GetValueFn;
ObASPluginGetNext_t GetNextFn;
ObAnPluginGetData_t GetDataFn;
ObAnPluginsetData_t SetDataFn;
ObAnPluginGetCred_t GetCredFn;
ObAnPluginsetCred_t SetCredFn;
ObAnPluginGetAction_t GetActionFn;
ObAnPluginSetAuthnUid_t SetAuthnUidFn
};

ObAnPluginFns_t is the handle pointing to this structure.

You refer to this structure when implementing ObAnPluginFn. The functions are
described separately under "Functions Provided by the Access Server (C API)" on
page 6-9.

C API Functions
Functions used by the API to talk to the Access Server are of two types. They can be
provided by the Access Server, in which case they are called by reference to it.
Otherwise, they must be implemented in the plug-in, following the prototypes in
authn_api.h.

Functions Provided by the Access Server (C API)
To use these functions you must call them out as members of the structure of type
ObAnPluginFns that you named in your code. For example, if you implemented

Handle to Item 2 Value for Item 1

User defined name Handle to list of values
for that name

Item 1

Handle to Item 3 Value for Item 2

Item 2

Null, end of list. Value for Item 3

Item 3

C API Functions

6-10 Oracle Access Manager Developer Guide

ObAnPluginFn and set the variable name of type ObAnPluginFns to pFnBlock, then
you call GetCredFn by reference to its place in the structure, as pFnBlock->GetCredFn.

GetDataFn
This function returns a handle to a list of multivalued data for either the Params or the
Context members of the ObAnPluginInfo structure. Given the handle, the plug-in
must then use the list manipulation functions—GetFirstItemFns, GetValueFn,
GetNextFn, GetValueFn and so on—to extract information from the list.

The function takes the form:

ObAnPluginList_t GetDataFn(
ObAnPluginMVData_tprequesterinfo,
const char* pName
);

Table 6–1 describes the input parameters for this function.

Output Parameters

There are no output parameters for this function.

The function returns a handle to a list of values for the given name. If the handle value
is NULL, the name is not present for the structure member.

SetDataFn
This function sets a value for a name in the Params or Context members of the
ObAnPluginInfo structure. The Access Server checks to see if the name already exists,
and appends or overwrites the value, depending on the value of the replace flag.

The function takes the form:

ObAnASStatus_t SetDataFn(
ObAnPluginMVData_t pRequesterContext,
const char* pName,
const char* pValue,
const int replace
);

Table 6–2 describes the input parameters for this function.

Table 6–1 Input Parameters

Variable Name Purpose

prequesterInfo Handle to a multivalued member of the ObAnPluginInfo
structure passed to the plug-in.

pName Retrieves the list of items for this name.

Table 6–2 Input Parameters

Variable Name Purpose

pRequesterContext Handle to a writable, multivalued member of the
ObAnPluginInfo structure passed to the plug-in.

pName Name for the information whose value is to be set.

pValue The value to be inserted.

C API Functions

Authentication Plug-in API 6-11

Output Parameters

There are no output parameters from this function.

The function returns one of the values for ObAnASStatus_t.

GetFirstItemFn
This function returns the handle to the first item in a list of multivalued data, once a
handle to the full list has been obtained using GetDataFn. You must do at least this
first step before asking for a value using GetValueFn. The handle to the full list is not
the handle to the first item in the list.

The function takes the form:

ObAnPluginListItem_t GetFirstItemFn(
ObAnPluginList_t plist
);

Table 6–3 describes the input parameters for this function.

Output Parameters

There are no output parameters for this function.

The function returns the string value of an item.

GetNextFn
This function gets a handle to the next item in a multivalued list, given the handle to
the current item, which you get either with GetFirstItemFn or an earlier use of
GetNextFn.

The function takes the form:

ObAnPluginListItem_t GetNextFn(
ObAnPluginListItem_t pItem
);

Table 6–4 describes the input parameters for this function.

replace Specifies whether to replace or append to existing values for the
name. An integer value of 0 indicates append, all other values
are a request to replace the current first value for pName.

Note: The replace option applies only to the first item in the list.

Table 6–3 Input Parameters

Variable Name Purpose

pItem Handle to an item.

Table 6–4 Input Parameters

Variable Name Purpose

pItem Handle to the current item in the list.

Table 6–2 (Cont.) Input Parameters

Variable Name Purpose

C API Functions

6-12 Oracle Access Manager Developer Guide

Output Parameters

There are no output parameters for this function.

The function returns a handle to the next item in the list. If the value returned is
NULL, then you have reached the end of the list.

GetCredFn
This function retrieves the value corresponding to a credential name, given the handle
to the credential information and the name. A user’s authentication level can be tied to
a scheme or to a resource where the user has logged in. For example, you can set the
authentication level based on whether the user has logged in through Active Directory
or a reverse proxy. The custom plug-in extracts this information by querying the
Access Server for an ObAuthentSchemeLevel variable that is maintained in a
credential list.

Only one value is allowed for a credential name.

The function takes the form:

const char *GetCredFn(
ObAnPluginSVData_t pCreds,
const char* pName
);

Table 6–5 describes the input parameters for this function.

Output Parameters

There are no output parameters for this function.

The function returns the value for the credential, or NULL if no value is found

schemeLevel = pFnBlock->GetCredFn(pInfo->Creds, "ObAuthentSchemeLevel");

SetCredFn
This function sets a value for a specified name in the credential information passed to
the plug-in, given the handle to the credential information, the name of the credential
to modify, and the value to store. If the name already exists, its current value is
overwritten. If not, the name and value are added.

The function takes the form:

ObAnASStatus_t SetCredFn(
ObAnPluginSVData_t pCreds,
const char* pName,
const char* pValue
);

Table 6–6 describes the input parameters for this function.

Table 6–5 Input Parameters

Variable Name Purpose

pCreds Handle for the credential information passed to the plug-in.

pName Name of the credential information to retrieve.

C API Functions

Authentication Plug-in API 6-13

Output Parameters

There are no output parameters for this function.

The following function returns one of the values for ObAnASStatus_t.

schemeLevel = pFnBlock->GetCredFn(pInfo->Creds, "ObAuthentSchemeLevel");
if(schemeLevel != NULL){
schemeLevelAsInt = atoi(schemeLevel);
schemeLevelAsInt +=10;
itoa(schemeLevelAsInt, buff, 10);
pFnBlock->SetCredFn(pInfo->Creds, "ObAuthentSchemeLevel", buff);

Example 6–1 illustrates setting the UID.

Example 6–1 To set the UID

This function sets the uid that is internal to authentication for the current
user. If the uid has already been set, its value is overwritten. If not the value
is added. The following example illustrates setting the UID for the user:

pFnBlock->SetCredFn(pInfo->Creds, ObAnPluginRequesterDN, "cn=Halley Starks,
ou=LHuman Resource, ou=Los Angles, ou=Dealer1k1, ou=Latin America, ou=Ford,
o=Company,c=US");

GetActionFn
This function retrieves action information, given the handle to the action information,
the name of the action to retrieve, and its type. Only one value is allowed for an action
name/type combination.

The function takes the form:

const char *AnGetAction(
ObAnPluginSVData_t pActionInfo,
const char* pName,
ObAnActionType_t pActionType);

Table 6–7 describes the input parameters for this function.

Output Parameters

There are no output parameters for this function.

Table 6–6 Input Parameters

Variable Name Purpose

pCreds Handle for the credential information passed to the plug-in.

pName Key/name for the credential information to set.

pValue The value to write to the credentials

Table 6–7 Input Parameters

Variable Name Purpose

pActionInfo Handle to action information passed to the plug-in

pName Key/name for the action information to retrieve.

pActionType Type of action information to get.

C API Functions

6-14 Oracle Access Manager Developer Guide

The function returns the value for the action/type combination, or NULL if no value is
found.

SetActionFn
This function sets a value in the action information passed to the plug-in, using the
handle to the action information, the name of the action to modify, the value to store,
and the action type. If the name and type combination already exists, its value is
overwritten. If not, the name and value are added.

The function takes the form:

ObAnASStatus_t SetActionFn(
ObAnPluginSVData_t Creds,
const char* pName,
const char* pValue
ObAnActionType pActionType);

Table 6–8 describes the input parameters for this function.

Output Parameters

There are no output parameters for this function.

The function returns one of the values for ObAnASStatus_t.

SetAuthnUidFn
This function sets the uid that is internal to authentication for the current user. If the
uid has already been set, its value is overwritten. If not the value is added.

The function takes the form:

ObAnASStatus_t SetAuthnUidFn(
char* pUid
);

Table 6–9 describes the input parameters for this function.

Output Parameters

There are no output parameters for this function.

Table 6–8 Input Parameters

Variable Name Purpose

pActions Handle for the action information passed to the plug-in.

pName Key/name for the action information to set.

pValue The value to write to the action.

pActionType Type of action information to set.

WARNING: This function is obsolete. Use SetCredFn instead.

Table 6–9 Input Parameters

Variable Name Purpose

pUid The new uid to be set.

C API Functions

Authentication Plug-in API 6-15

The function returns one of the values for ObAnASStatus_t.

C Functions Implemented in the Plug-in
All of the functions described in this section must be implemented by the developer in
the plug-in, following the prototype provided in authn_api.h. The Access Server
expects them all to be present and refuses to execute the plug-in if they are not.

The OBDLLEXPORT entry for each function is required. It provides a means for the
Access Server to locate and call these functions from within the plug-in.

The Access Server calls the functions in this order:

■ GetVersion: The first time the plug-in is loaded.

■ Init: The first time the plug-in is loaded.

■ DeAllocStatusMessage: Automatically, following any of the other functions
which returns a status message.

■ Fn: Each time the plug-in is used.

■ Terminate: When the Access Server shuts down, or the plug-in is unloaded

ObAnPluginGetVersion
The Access Server calls this function immediately after the plug-in is loaded. The
plug-in returns the version number of the library with which it was built. The Access
Server uses this version to determine if it can support the plug-in. That is, it would
catch a situation in which an older version of the Access Server was being asked to
support a newer version of the API, or a newer version of the Access Server was being
asked to work with a plug-in version no longer supported.

The function takes the form:

OBDLLEXPORT

const char* ObAnPluginGetVersion(void);

There are no input parameters to this function.

Output parameters

There are no output parameters from this function.

The function returns the version of the authentication plug-in. This is the value set by
the following line in the authn_api.h file:

#define OB_AN_PLUGIN_VERSION"X.X"

ObAnPluginInit
The Access Server calls this function immediately after making the version check. The
function initializes the work space for the plug-in, which could include tasks such as
connecting to a database and initializing global data for the plug-in. This function, and
the two others where a presult string might be built, must allocate memory in order to
return the presult string. The Access Server automatically calls the
ObAnPluginDeallocStatusMsg function to deallocate this memory.

The function takes the form:

OBDLLEXPORT
ObAnPluginStatus_t ObAnPluginInit(
ObAnServerContext_t pServerContext,
ObAnPluginStatusMsg_t pResult

C API Functions

6-16 Oracle Access Manager Developer Guide

);

Table 6–10 describes the input parameters for this function.

Table 6–11 describes the output parameters for this function.

The function should return one of the ObAnPluginStatus_t values, either
ObAnPluginStatusContinue or ObAnPluginStatusAbort.

ObAnPluginTerminate
The Access Server calls this function when it is about to terminate. The function
should be written to clear whatever work space the plug-in set for itself and
disconnect from any other applications, such as a database, that the plug-in might
have opened.

The function takes the form:

OBDLLEXPORT
ObAnPluginStatus_t ObAnPluginTerminate(
ObAnServerContext_t pServerContext,
ObAnPluginstatusMsg_t pResult);

Table 6–12 describes the input parameters for this function.

Table 6–13 describes the output parameters for this function.

The function should return one of two ObAnPluginStatus_t values, either
ObAnPluginStatusContinue or ObAnPluginStatusAbort.

ObAnPluginFn
The Access Server calls this function to request the plug-in to do the actual custom
authentication work using the plug-in information and the server context. This
function can also modify some of the plug-in information for use by subsequent
authentication plug-ins in a scheme.

Table 6–10 Input Parameters

Variable Purpose

pServerContext Context information of the Access Server.

Table 6–11 Output Parameters

Variable Purpose

pResult Result message reported by the function.

Table 6–12 Input Parameters

Variable Purpose

pServerContext Context information from the Access Server.

Table 6–13 Output Parameters

Variable Purpose

pResult Result message reported by the function.

C API Functions

Authentication Plug-in API 6-17

The function takes the form:

OBDLLEXPORT
ObAnPluginStatus_t ObAnPluginFn(
ObAnServerContext_t pServerContext,
ObAnPluginFns_t pFuncBlock,
ObAnPluginInfo_t pData
ObAnPluginstatusMsg pResult
);

Table 6–14 describes the input parameters for this function.

Table 6–15 describes the output parameters for this function.

The function can return any one of the four ObAnPluginstatus_t values.

ObAnPluginDeallocStatusMsg
If another of these implemented functions sent a pResult string, the Access Server
automatically calls this function to delete the memory that was assigned by the plug-in
to build the message. You should ensure that it does so.

The function takes the form:

OBDLLEXPORT
void ObAnPluginDeallocStatusMsg(
ObAnPluginstatusMsg_t pStatusMsg
);

Table 6–16 describes the input parameters for this function.

Output Parameters

There are no output parameters from this function.

The function returns nothing

Table 6–14 Input Parameters

Variable Purpose

pServerContext Context information for the Access Server.

pFuncBlock Handle to a block of functions provided by the Access Server,
that the plug-in needs to manipulate data.

pData Handle to data passed to the plug-in.

Table 6–15 Output Parameters

Variable Purpose

pData Handle to data modified by the plug-in.

pResult Result message reported by the function.

Table 6–16 Input Parameters

Variable Purpose

pStatusMsg Status Message to be deallocated.

C Authentication Plug-in Example

6-18 Oracle Access Manager Developer Guide

C Authentication Plug-in Example
Example 6–2 shows some basic uses of the plug-in functions.

Example 6–2 Authentication Plug-in Example.

/*
* Copyright (c) 2005, Oracle Inc. All Rights Reserved.
*
* authn_api.c

* Custom Authentication plugin.
*
* This implementation of the 5 authentication functions is built
* into a DLL named SimpleAPI, and then, in a slightly modified
* form, into a DLL called SimpleAPI2.
* The differences between the two forms of the plugin are these:
* 1) the second form writes the number 2 into all of its
* log messages
* 2) the second form does not make a check on the param
* values or write context data back to the info structure.
*
* It shows:
*
* 1. Example implementations of all 5 functions.
* 2. Examples for extracting data from many of the structures.
* 3. An example of writing new data to the info structure.
* 3. A simple way to log results for testing.
*/

#include "authn_api.h"
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream.h>
#include <malloc.h>
#include <fstream.h>

#ifdef _WIN32
#undef strcasecmp
#define strcasecmp stricmp
#endif
/*
* Implementation of ObAnPluginGetVersion
*
* The data logged by this function appears only once, when the
* Plugin is first loaded.
*
*/
OBDLLEXPORT const char* ObAnPluginGetVersion(void)
{
FILE *file = fopen("d:\\ANtestfile.txt", "a+");
fprintf (file, "\n%s%s\n", "sending Authn version,
which is ",OB_AN_PLUGIN_VERSION);
fclose(file);
return OB_AN_PLUGIN_VERSION;
}
/*
* Implementation of ObAnPluginInit

C Authentication Plug-in Example

Authentication Plug-in API 6-19

*
* The logged data appears only once, when the Plugin is first loaded.
*
*/
OBDLLEXPORT ObAnPluginStatus_t ObAnPluginInit(
ObAnServerContext_t pContext,
ObAnpluginStatusMsg_t pResult)
{
//Values to be read in by this function are initialized.
ObAnpluginStatus_t rtval;
const char* pASPluginVersion = NULL;
const char* pASInstallDir = NULL;
FILE *file = fopen("d:\\ANtestfile.txt", "a+");
fprintf (file, "\n%s\n", "initializing");
if(pContext != NULL) {
pASPluginVersion = pContext->AccessServerAnPluginAPIVersion;
pASInstallDir = pContext->AccessServerInstallDir;
fprintf (file, "\n%s%s\n", " version is ",pASPluginVersion);
fprintf (file, "\n%s%s\n", " AS directory is ",
pASInstallDir);
}
if((pASPluginVersion != NULL) &&
 (strcmp(pASPluginVersion, OB_AN_PLUGIN_VERSION) == 0)) {
rtval = ObAnPluginStatusContinue;
*pResult = strdup("Success version check");
}
else {
/*
* return failure, because the version provided by the AS
* is not what was expected.
*/
rtval = ObAnPluginStatusAbort;
}
fclose(file);
return rtval;
}
/*
* Implementation of ObAnPluginTerminate
* The logged data appears only when the Access Server terminates.
*/
OBDLLEXPORT ObAnPluginStatus_t ObAnPluginTerminate(
ObAnServerContext_t pContext,
ObAnPluginStatusMsg_t pResult)
{
FILE *file = fopen("d:\\ANtestfile.txt", "a+");
fprintf (file, "\n%s\n", "terminating gracefully");
*pResult = strdup("Success, terminated");
fclose(file);
return ObAnPluginStatusContinue;
}
/*
* Implementation of ObAnPluginDeallocStatusMsg
* The logged data appears following each other function
* that provides a presult.
*/
OBDLLEXPORT void ObAnPluginDeallocStatusMsg(
ObAnPluginStatusMsg_t pResult)
{
FILE *file = fopen("d:\\ANtestfile.txt", "a+");
fprintf (file, "\n%s\n", "deallocating");

C Authentication Plug-in Example

6-20 Oracle Access Manager Developer Guide

if(pResult != NULL && *pResult != NULL) {
free(*pResult);
*pResult = NULL;
}
fclose(file);
}
/*
* Implementation of ObAnPluginFn
*/
OBDLLEXPORT ObAnpluginstatus_t ObAnPluginFn(
ObAnServerContext_t pContext,
ObAnPluginFns_t pFnBlock,
ObAnPluginInfo_t pInfo,
ObAnPluginStatusMsg_t pResult)
{
// rtval is initialized to allow continuing to the next
// plugin
ObAnPluginStatus_t rtval = ObAnPluginStatusContinue;

ObAnPluginList_t list;
ObAnPluginListItem_t item;
ObAnASStatus_t writeres=100;

// These are initialized, and get overwritten with real data
// if any is found below
const char* Resource;
const char* Operation;
const char* UserDN;
const char* con1 = "cdummy1";
const char* con2 = "cdummy2";
const char* con3 = "cdummy3";
const char* param1 = "pdummy1";
/* this initialization is key to the example*/
const char* param2 = NULL;
const char* param3 = "pdummy3";
FILE *file = fopen("d:\\testfilen_fn.txt", "a+");
fprintf (file, "\n%s\n", "Starting Fn");
// This is an example of getting data from the Creds member
// of Info, using the predefined names
Resource =pFnBlock->GetCredFn
(pInfo->Creds,ObAnPluginRequestResource);
Operation=pFnBlock->GetCredFn
(pInfo->Creds,ObAnPluginRequestOperation);
UserDN =pFnBlock->GetCredFn
(pInfo->Creds,ObAnPluginRequesterDN);
fprintf (file, "\n%s%s\n", "resource is ",Resource);
fprintf (file, "\n%s%s\n", "operation is ",Operation);
fprintf (file, "\n%s%s\n", "user DN is ",UserDN);
// This set of code tries to extract the context information.
//
list = pFnBlock->GetDataFn(pInfo->Context,"isthereany");
// For the first use of the plugin, none has been set.
// There is no context data, and no context name called isthereany.
//
// For the second use of the plugin, context data may be present
// and if so will be read in.
if (list != NULL){
fprintf(file, "\n%s\n","found context data!!");
item = pFnBlock->GetFirstItemFn(list);

C Authentication Plug-in Example

Authentication Plug-in API 6-21

if (item != NULL){
con1 = pFnBlock->GetValueFn(item);
item = pFnBlock->GetNextFn(item);
if (item != NULL){
con2 = pFnBlock->GetValueFn(item);
item = pFnBlock->GetNextFn(item);
if (item != NULL){
param3 = pFnBlock->GetValueFn(item);
}
}
}
}
fprintf (file, "\n%s%s\n", "first context is ",con1);
fprintf (file, "\n%s%s\n", "second context is ",con2);
fprintf (file, "\n%s%s\n", "third context is ",con3);
//This set of code extracts the param information.
// The value of param2, which is set, or not, in the Authentication
// Scheme, controls the test.
list = pFnBlock->GetDataFn(pInfo->Params,"myparam");
if (list != NULL){
item = pFnBlock->GetFirstItemFn(list);
if (item != NULL){
param1 = pFnBlock->GetValueFn(item);
item = pFnBlock->GetNextFn(item);
if (item != NULL){
param2 = pFnBlock->GetValueFn(item);
item = pFnBlock->GetNextFn(item);
if (item != NULL){
param3 = pFnBlock->GetValueFn(item);
}
}
}
}

fprintf (file, "\n%s%s\n", "first param is ",param1);
fprintf (file, "\n%s%s\n", "second param is ",param2);
fprintf (file, "\n%s%s\n", "third param is ",param3);
*pResult = strdup("Success");
// -----> The second form of the plugin omits the code from here
//If there is a value set for param2 under the myparam
// name in the authentication scheme, then the logic here
// returns allowed to the Access Server, and the next plugin
// will not be used.
// If there is no value set for param2, then the logic here
// sets a value in the context data, which will be seen by the
// next plugin.
if (param2 != NULL){
rtval = ObAnPluginStatusAllowed;
fprintf (file, "\n%s\n", "second param is not NULL");
}
else {
fprintf (file, "\n%s\n", "second param was NULL");
writeres=pFnBlock->SetDataFn
(pInfo->Context, "isthereany", "context1", 0);
fprintf (file, "\n%s%i\n", "AS returned", writeres);
}
// -----> to here
fclose(file);
return rtval;
}

C Authentication Plug-in Example

6-22 Oracle Access Manager Developer Guide

The following are screens shot that show the authentication scheme that uses the
example plug-in. Note that no second value is entered for the myparam parameter
name.

Given this version of the authentication scheme, the corresponding trace information
from the example code is:

sending Authn version, which is 5.0
initializing
version is 5.0
AS directory is
d:\netscape\server4\ws41sp6\docs\techpubs_fcs88\as\access

deallocating
in 2, sending Authn version, which is 5.0

in 2, initializing
version is 5.0

AS directory is
d:\netscape\server4\ws41sp6\docs\techpubs_fcs88\as\access

Managed Code API Environment

Authentication Plug-in API 6-23

Starting Fn
resource is /test3
operation is GET
user DN is cn=Rohit Valiveti,ou=Sales,ou=Dealer1k1,ou=Latin
America,ou=Ford,o=Company,c=US
first context is cdummy1
second context is cdummy2
third context is cdummy3
first param is thedata1
second param is (null)
third param is pdummy3
second param was NULL

AS returned 0

in 2, Starting Fn
resource is /test3
operation is GET
user DN is cn=Rohit Valiveti,ou=Sales,ou=Dealer1k1,ou=Latin
America,ou=Ford,o=Company,c=US
found context data!!
first context is context1
second context is cdummy2
third context is cdummy3
first param is pdummy1
second param is (null)
third param is pdummy3

Managed Code API Environment
The following sections describe the development environment for the managed
plug-in API, including support file location and major components.

Support Files Location for the Managed Code API

When you install the Access Server component of the Access System, you put it into an
installation directory, ASInstall_Dir, for example:

C:/COREid/access/oblix

Sample files for the authentication plug-in API are installed within this directory, at:

ASInstall_Dir/sdk/managed/authn++

Authn_api contains source code for a simple example authentication plug-in, an
example project file. Some of the definitions in this file are essential for building and
operating the API. When the plug-in is loaded by the Access Server, it expects to find
the set of four functions in authn_api.h implemented within the plug-in.

To build
1. Under the samples directory, copy the content of the authn_api directory to a

second directory, for example myplugin.

2. Within the new directory, change the content of the authn.c file, create additional
files, or both to provide the desired functionality specific to your plug-in.

3. Modify the project to include and compile all of your source code.

4. Build the project.

Managed Code API Data

6-24 Oracle Access Manager Developer Guide

The resulting *.dll is your new plug-in.

5. See "Managed Code API Plug-in Directory" on page 6-24 for details about storing
the plug-in and implementing an example.

Managed Code API Plug-in Directory
The plug-in you created must be stored in the system where the Access Server is
running, in the directory:

ASInstall_Dir/lib

The Access Administrator needs to know the filename of the plug-in, and its required
and optional data names in order to properly configure the plug-in in an
authentication scheme. If you want to write a plug-in as managed code, you must
explicitly identify the plug-in as managed code so that the Access Server runs the
plug-in correctly. The Access Server also has to know the namespace in which the code
is run.

A sample page is provided after the "C Authentication Plug-in Example" on page 6-18.
The sample page shows an authentication scheme that supports the example. A
managed code authentication plug-in must include two plug-in parameters:
obtype="managed" and obnamespace="namespace", where namespace is the namespace
of the managed code. For example, with managed code, you could add the following
in the Parameters text box for the authn_api plug-in:

obtype="managed", obnamespace="sample"

See the Oracle Access Manager Access Administration Guide for details on authentication
scheme configuration.

Managed Code API Data
This section describes the various types of constant and variable data that the API
uses.

Defines (Managed Code)
The managed_plugin_interface.h predefines several values for use as fixed argument
values when working with some functions.

pubic_value class AnDefines {
static string *ObAnPluginResourceRequest= S"Resource";
static string *ObAnPluginRequestOperation= S"Operation";
static string *ObAnPluginRequesterIP = S"RequesterIP";
static string *ObAnPluginRequesterDN = S"RequesterDN";
static string *OB_AN_PLUGIN_VERSION = S"8.0";
};

Value Name Meaning

OB_AN_PLUGIN_VERSION When ObAnPluginGetVersion is called, this value must
be returned to the Access Server. The value in the
header file may change with releases of the product.

ObAnPluginRequestResource The resource after the host name and port, for example:
/basic/page.htm.

ObAnPluginRequestOperation The operation being performed on the resource.

Managed Code API Data

Authentication Plug-in API 6-25

Interfaces (Managed Code)
The Access Server and API use interfaces to allow manipulation of data structures that
the Access Server maintains for use by the plug-in. These interfaces are named and
described in the following paragraphs.

The Access Server groups related data items into named structures, allocates the
memory for them, and carries the data for them. Structures are opaque to the
developer, meaning that they can be used to transfer information to and from the
Access Server, but you cannot change the way the structure is organized or the format
of the data that it contains. The content of the structure can be changed in some
instances.

The following are the interfaces that are used in the Authentication Plug-in API.

IObAnServerContext
This interface provides information about the Access Server that the plug-ins may
need.

public _gc _interface IObAnServerContext {
_property String* get_AccessServerInstallDir();
_property String* get_AccessServerAnPluginAPIVersion();
};

ObAnPluginRequesterDN If an authentication plug-in has set the DN, this is
where other plug-ins can access that DN. The plug-in
named credential_mapping always sets the DN.

Custom authentication plug-ins can set the DN, once
they have determined what it is, by calling SetCredFn.

ObAnPluginRequesterIP The IP address of the client that issued this request.

Interface Purpose

IObAnPluginSVData An interface that provides functions to get singe-valued data.
It is used to locate Creds and ActionInfo in the
ObAnPluginInfo interface.

IObAnPluginMVData An interface that provide functions to multivalued data. They
are used to locate Params and Context in the ObAnPluginInfo
interface.

IObASPluginListItem An interface pointing to an item in a list.

IObAnPluginInfo An interface providing functions that contain information
from the Access Server and data generated by the plug-in.

IObAnServerContext An interface that provides functions that contain general
information about the Access Server.

Data Type/Name Purpose

get_AccessServer
InstallDir

Path to the installation directory for the Access
Server, for example, COREid/Access. Note: this
does not include the /oblix directory.

get_AcessServerAn
PluginAPIVersion

The lowest authentication plug-in API version that
the instance of the Access Server supports.

Value Name Meaning

Managed Code API Data

6-26 Oracle Access Manager Developer Guide

IObAnPluginInfo
The Access Server creates an object with data determined by an authentication rule,
and provides the interface to the plug-in. The plug-in modifies data within the
structure and may append new data to it as work progresses through the plug-in.
When there are multiple plug-ins being carried out as part of an authentication
scheme, it also provides a means to set variable information for the first plug-in in the
rule, and passes information from one plug-in to another within the scheme.

public _gc _interface IObAnPluginInfo {
IObAnPluginSVData* get_Creds();
IObAnPluginMVData* get_Params();
IObAnPluginMVData* get_Context();
IObAnPluginSVData* get_ActionInfo();
};

This interface can be thought of as an array of four nested arrays, the structure
members. Each member holds one or more names.

IObAnPluginSVData
To get the value, you use the GetCred function in the IObAnPluginSVData interface,
and provide the name of the credential for which you want the value. The function
returns a single value. GetAction operates in the same actions.

For structure members that are of type IObAnPluginSVData, the array consists of a set
of names and a single value associated with each one. For example, the creds member
can be though of this way:

Function Purpose

get_Creds The creds function consists of all information submitted by the
user or application that is trying to access a resource. The
plug-in may add to or replace this data. The data is passed to
the next plug-in in sequence. As a result, the data can be used
by the plug-in to communicate with the plug-in following it in
an authentication scheme. The Access Server provides four
predefined names within this list: Resource, Operation,
RequesterDN, and RequesterIP.

get_Params The parameters specified in the plug-in configuration. The
plug-in may add to or replace this data within the plug-in.
This data is not passed to the next plug-in.

get_Context Data created by the plug-in. The plug-in may add to or replace
this data. The data is passed to the next plug-in in sequence.

get_ActionInfo Action information that is specified in the plug-in
configuration. The plug-in may add to or replace this data.
Actions can also be set and passed to the next plug-in, but the
final user of the action information is the Access Server.

Name value

"Resource" 1 value

"Operation" 1 value

"RequesterDN" 1 value

"RequesterIP" 1 value

Managed Code API Data

Authentication Plug-in API 6-27

IObAnPluginMVData
The IObAnPluginMVData interface provides functions to work on objects that contain
a list of one or more items. Each item contains a value.

IObAsPluginListItem
The list returned by the get_Data function can be traversed using standard
Enumerator functions. Each item in the list is returned whose value can be obtained by
using this interface.

User Created
Credential Name

1 value

Function Purpose

GetCred This function retrieves the value corresponding to a credential
name, given the handle to the credential information and the
name. A user’s authentication level can be tied to a scheme or
to a resource where the user has logged in. For example, you
can set the authentication level based on whether the user has
logged in through Active Directory or a reverse proxy. The
custom plug-in extracts the information by querying the Access
Server for an ObAuthntSchemeLevel variable that is maintained
in a credential list.

SetCred This function sets a value for a specified name in the credential
information passed to the plug-in, given the handle to the
credential information, the name of the credential to notify, and
the value to store. If the name already exists, its current value is
overwritten. If not, the name and value are added.

GetAction This function retrieves action information, given the handle to
the action information, the name of the action to retrieve, and
its type. Only one value is allowed for an action name/type
combination.

SetAction This function sets a value in the action information passed to
the plug-in, using the handle to the action information, the
name of the action to modify, the value to store, and the action
type. If the name and type combination already exists, its value
if overwritten. If not, the name and value are added.

Function Purpose

get_Data This function returns a handle to a list of multivalued data for
either the Params or the Context members of the IObAnPluginInfo
interface. Given the handle, the plug-in must then use the list
manipulation functions—GetFirstItemFns, GetValueFn,
GetValueFn, and so on—to extract information from the list.

set_Data This function sets a value for a specified name in the credential
information passed to the plug-in, given the handle to the
credential information, the name of the credential to modify, and
the value to store. If the name already exists, its current value is
overwritten. If not, the name and value are added.

Function Purpose

get_Value This interface provides the function to get the value of
an item.

Name value

Managed Code API Data

6-28 Oracle Access Manager Developer Guide

Managed Code Return Values
Many of the functions the Access Server and API use to communicate are expected to
return a status value. These are all predefined in several categories as described here.

ObAnActionType
These are action flags that the API returns to the Access Server, to tell it what actions to
take.

_value enum ActionType {
ObAnSuccessRedirect = 0,
ObAnFailRedirect = 1,
ObAnSuccessProfileAttrs = 2,
ObAnFailProfileAttrs = 3,
ObAnSuccessFixedVals = 4,
ObAnFailFixedVals = 5
};

ObAnPluginstatus
Plug-ins must return one of these values to the Access Server to show the result of the
attempt to authenticate.

_value enum ObAnPluginStatus {
ObAnPluginstatusContinue = 0,
ObAnPluginstatusAllowed = 1,
ObAnPluginstatusDenied = 2,
ObAnPluginstatusAbort = 3
};

Name Description

ObAnSuccessRedirect For successful authentication, tells the Access Server to set
the redirection URL, as defined in the authentication rule.

ObAnFailRedirect For failed authentication, tells the Access Server to set the
redirection URL, as defined in the authentication rule.

ObAnSuccessProfileAttrs For successful authentication, tells the Access Server to set
the profile attributes for the action using values provided
by the authentication rule, which may have been added to
by the plug-in.

ObAnFailProfileAttrs For failed authentication, tells the Access Server to set the
profile attributes for the action using values provided by
the authentication rule, which may have been added to by
the plug-in.

ObAnSuccessFixedVals For successful authentication, tells the Access Server to set
the fixed values defined in the authentication rule, which
may have been added to by the plug-in.

ObAnFailFixedVals For failed authentication, tells the Access Server to set the
fixed values defined in the authentication rule, which may
have been added to by the plug-in.

Managed Code API Data

Authentication Plug-in API 6-29

ObAnASStatus
When a plug-in calls upon the Access Server to perform one of its built-in functions,
the Access Server attempts to execute the function, and returns one of these values.

_value enum ASStatus{
 bAnASStatusSuccess = 0,
 bAnASStatusFailed
};

Managed Code Functions Implemented in the Plug-in
All of the functions described in this section must be implemented by the developer in
the plug-in, following the prototype provided in managed_plugin_interface.h.

For Authentication plug-ins, you must define a class with the following functions:

public _gc class ObAuthzPlugin
{
public:
 ObAuthnPlugin();
 String* ObAnPluginGetVersion();
 IObAuthnPlugin::Status ObAnPluginInit
Oblix::IObAnServerContext* context, String* msg);
 ObAuthnPlugin::Status
ObAnPluginFN(Oblix::IObAnServerContext* context, Oblix::IObAnPluginInfo* info);
 IObAuthnPlugin::Status ObAnPluginTerminate
(Oblix::IObAnServerContext* context, String* msg);
};

The Access Server calls the functions in this order:

■ ObAnPluginGetVersion—The first time the plug-in is loaded.

Value Name Meaning

ObAnPluginStatusAbort You set this value to show that a fatal error occurred
while processing authentication.

Processing for this authentication request does not
continue after this plug-in.

ObAnPluginStatusAllowed Credentials were processed and authentication
succeeded. No further authentication plug-ins are
processed.

ObAnPluginStatusDenied Credentials were processed and authentication failed.
Processing does not continue after the function.
Authentication fails.

ObAnPluginStatusContinue Authentication processing continues after the function.
If all plug-ins in an authentication scheme return
continue, authentication is implicitly allowed.

Value Name Meaning

ObAnASStatusSuccess The Access Server successfully performed the operation.

ObAnASStatusFailed The Access Server did not perform the operation. The most
likely cause of this error is that the plug-in tried to change
values that it is not allowed to change. An example is an
attempt to add a second value for a name, to an array
member which permits only single values.

Managed Code API Data

6-30 Oracle Access Manager Developer Guide

■ ObAnPluginInit—The first time the plug-in is loaded.

■ ObAnPluginFn—Each time the plug-in is used.

■ ObAnPluginTerminate—When the Access Server shuts down, or the plug-in is
unloaded.

ObAnPluginGetVersion
The Access Server calls this function immediately after the plug-in is loaded. The
plug-in returns the version number of the library with which it was built. The Access
Server uses this version to determine if it can support the plug-in. That is, it would
catch a situation in which an older version of the Access Server was being asked to
support a newer version of the API, or a newer version of the Access Server was being
asked to work with a plug-in version no longer supported.

The function takes the form:

OBDLLEXPORT
const char* ObAnPluginGetVersion(void);

Input Parameters

There are no input parameters to this function.

Output Parameters

There are no input parameters to this function.

The function returns the version of the authentication plug-in. This is the value set by
the following line in the authn_api.h file:

#define OB_AN_PLUGIN_VERSION"X.X"

ObAnPluginInit
The Access Server calls this function immediately after making the version check. The
function initializes the work space for the plug-in, which could include tasks such as
connecting to a database and initializing global data for the plug-in. This function, and
the two others where a presult string might be built, must allocate memory in order to
return the presult string. The Access Server automatically calls the
ObAnPluginDeallocStatusMsg function to deallocate this memory.

The function takes the form:

OBDLLEXPORT
ObAnPluginStatus_t ObAnPluginInit(
ObAnServerContext_tpServerContext,
ObAnPluginStatusMsg_tpResult
};

Input Parameters

Output Parameters

Variable Purpose

pServerContext Context information of the Access Server.

Managed Code API Data

Authentication Plug-in API 6-31

The function should return one of the ObAnPluginStatus_t values, either
ObAnPluginStatusContinue or ObAnPluginStatusAbort.

ObAnPluginTerminate
The Access Server calls this function when it is about to terminate. The function
should be written to clear whatever work space the plug-in set for itself and
disconnect from any other applications, such as a database, that the plug-in might
have opened.

Input Parameters

Output Parameters

The function should return one of two ObAnPluginStatus_t values, either
ObAnPluginStatusContinue or ObAnPluginStatusAbort.

ObAnPluginFn
The Access Server calls this function to request the plug-in to do the actual custom
authentication work using the plug-in information and the server context. This
function can also modify some of the plug-in information for use by subsequent
authentication plug-ins in a scheme.

Input Parameters

Output Parameters

The function can return any one of the four ObAnPluginstatus_t values.

Variable Purpose

pResult Result message reported by the function.

Variable Purpose

pServerContext Context information from the Access Server.

Variable Purpose

pResult Result message reported by the function

Variable Purpose

pServerContext Context information for the Access Server.

pFuncBlock Handle to a block of functions provided by the
Access Server, that the plug-in needs to
manipulate data.

pData Handle to data passed to the plug-in.

Variable Purpose

pData Handle to data modified by the plug-in.

pResult Result message reported by the function.

Troubleshooting

6-32 Oracle Access Manager Developer Guide

Troubleshooting
For unit testing of plug-ins, writing the results to a file as the example here does is the
best approach. The pResult text is captured by the Access Server audit log only if
authentication fails, and then only for Solaris. If you write to a file, be sure you have
the correct permissions for writing into the directory holding the file.

Performance is a developer responsibility and should be considered when designing a
plug-in. The total time required to process one authentication request depends on the
performance of all the plug-ins that are invoked while processing that request.

Plug-ins are trusted by the Access Server. No access check is performed when giving
pre-configured information to the plug-in.

A coding problem in a plug-in, such as a memory or access violation or segmentation,
or bus error fault, can cause the Access Server to fail.

Plug-ins allow optional parameters, which would usually be filled in by an Access
Administrator when schemes are created. Plug-ins should be able to gracefully handle
the situation in which values for these parameters are not supplied.

If requests seem to fail without reason, check the path of the shared library to be sure it
is correct; it must be available at ASInstall_Dir/lib. Also check to be sure that the
Authentication Scheme refers to the correctly spelled shared library name.

Be sure that the ObAuthnplug-inInit function gets called and does not return abort
(turn auditing on for authentication failure and see if anything appears in the audit
logs.)

Standard Plug-Ins
The Access System provides several authentication plug-ins as part of a standard
installation. They are described in this section. You can use these plug-ins in
combination with your own custom plug-ins to create Authentication Schemes.

The Access System supports several challenge methods (Basic, X.509 Certificate, and
Form), as described in the Oracle Access Manager Access Administration Guide. The
plug-ins described here can be used with challenge methods as follows:

■ Credential Mapping—All methods

■ Validate Password—Basic, Form

■ Certificate Decode—X.509 Certificate

■ Selection Filter—All methods

■ NT/Windows 2000—Basic, Form

■ Secure ID—Form

Credential Mapping Plug-In
The following are the details for the plug-in.

Characteristic Description

Name credential_mapping

Purpose Maps user-entered information to match a valid Distinguished Name
(DN) in the directory

Standard Plug-Ins

Authentication Plug-in API 6-33

By default, the credential mapping cache is turned on. The following table shows the
values for obEnableCredentialCache:

obEnableCredentialCache

An example of the credential_mapping Authentication plug-in with credential
mapping cache turned off:

credential_mapping
obMappingBase="%domain%",obMappingFilter="(&(&(objectclass=user)(samaccountname=
%userid%))(|(!(obuseraccountcontrol=*))(obuseraccountcontrol=ACTIVATED)))",obdom
ain="domain",obEnableCredentialCache="false"

To set the obEnableCredentialCache parameter
1. In the System Console, select Access System Configuration.

2. Click Authentication Schemes.

3. Select the Authentication Scheme you want to modify.

Result If one, and only one, DN matches the specified criteria, execution of the
authentication scheme continues. The obMappingBase and
obMappingFilter are added to the list of credentials and the uid carried in
the credentials is set to the value of the DN. Authentication fails if zero or
more than one DN is returned.

Dependency This plug-in should be present in the scheme, if you are going to need a
DN.

obMappingBase - Base DN for the LDAP search. If omitted or empty, the
directory base is used

obMapping Filter - Filter for the LDAP search. This parameter is
required.

Parameters ObDomain - Used only when authentication is being done against a
specific directory in an Active Directory Forest and the authentication
method is basic. Value for this parameter is one of the configured
Directory Server profile names.

obEnable Credential Cache - Turns off the credential mapping
cache in the credential_mapping plugin. Using this parameter, a
deactivation takes effect the next time the user authenticates. If you
deactivate a user while they are logged in, the user will still have access to
resources based on policy information. However, if the
obEnableCredentialCache parameter is set to false, once the user’s session
token expires or the user logs out, the next time the user is authenticated,
they are not allowed into a protected site

Example
Parameters

obMappingBase="o=Company,c=US",

obMappingFilter="(&(objectclass=inetOrgPerson)(uid=%us
erid%))"

Value Interpretation

no value Credential mapping cache turned on

true Credential mapping cache turned on

false Credential mapping cache turned off

Characteristic Description

Standard Plug-Ins

6-34 Oracle Access Manager Developer Guide

4. Click Modify.

5. Add the obEnableCredentialCache="false" parameter to the credential_mapping
plug-in

Validate Password Plug-In
The following are details for this plug-in.

Certificate Decode Plug-In
The following are details for this plug-in.

Note: For details about context-specific data for an authentication
request and form-based authentication to pass the originally
requested URL to a change password servlet, see the Oracle Access
Manager Access Administration Guide.

Characteristic Description

Name validate_ password

Purpose Validates the password entered at the browser against the user’s
password in the directory.

Result If the user-entered password matches the password in that user’s
directory entry, execution of the authentication scheme continues. If not,
it fails. Nothing is added to the list of credentials.

Dependency This plug-in requires a valid Distinguished Name (DN) therefore it is best
to call the credential_mapping plug-in before calling this plug-in.

Parameters obCredentialPassword -Specifies the name of the password field.
This parameter must be listed first

obAnonUser - (optional) Specifies a user ID that is considered
authenticated with any password, for example, guest or anonymous. This
user ID must map to a user profile in the directory, preferably one with
restricted access. Multiple obAnonUser parameter values are allowed for
a single plug-in

Example
Parameters

obCredentialPassword="password"

obAnonUser="cn=anonymous, o=Company, c=US"

Characteristic Description

Name cert_decode

Purpose Decodes an X.509 certificate and extracts the components of the
certificate’s subject and issuer DNs.

Result If the decoding of the certificate is successful, for each component
the plug-in inserts a credential with a certSubject or certIssuer
prefix. For instance, if your certificates have a subject name such
as givenName=somename, the plug-in will add the credential
certSubject.givenName=somename to the credential list. If not,
authentication fails.

Dependency The browser must supply an X.509 certificate as part of the
credentials.

Parameters None

Standard Plug-Ins

Authentication Plug-in API 6-35

Selection Filter Plug-In
The following are details for this plug-in.

NT/Win2000 Plug-In
The following are details for this plug-in.

SecurID Plug-In
The following are details for this plug-in.

Notes For additional information on this plug-in, see the Oracle Access
Manager Access Administration Guide.

Characteristic Description

Name Selection Filter Plug-In

Purpose Applies a filter to a user’s credentials.

Result If the credentials meet the criteria specified by the filter, the
credentials are accepted and authentication continues. If not,
authentication fails.

Dependency The data to be substituted in ObSelectionfilter must be in
credentials before this plug-in runs. For the example parameters
provided in this table, cert-decode must run before
selection-filter, in order to provide the certissuer information.

Parameters obSelectionFilter - Filter to apply to the user credentials.

Example Parameters obSelectionFilter="(%certIssuer.CN%=Verisign
Class I CA)"

Characteristic Description

Name authn_windows

Purpose Given a user name, password, and domain in the credentials,
authenticates these against an NT domain, Windows 2000 domain, or
Windows 2000 Kerberos. When using the Basic challenge method, the
domain should be entered in the user name field. However, when using
the Forms challenge method you may want to provide a field in the form
for the user to type in a distinct domain name.

Dependency When using the Basic Challenge method, the domain name should be
entered in the user name field in the form Domain\Name.

When using the Forms Challenge method, the form can be designed to
include a field specifically for domain.

Parameters ntusername - Name of the parameter containing the user name.

ntpwd - Name of the parameter containing the password.

ntdomain - (optional) Name of the parameter containing the domain

Example
Parameters

ntusername="userid"

ntpwd="password"

ntdomain="domain"

Characteristic Description

Standard Plug-Ins

6-36 Oracle Access Manager Developer Guide

Characteristic Description

Name authn_securid

Purpose Authenticates
credentials from a
user’s SecurID token
against a SecurID
ACE Server. Supports
SecurID Next
Tokencode Mode and
New PIN Mode
operations.

Result If the ACE Server
returns success,
authentication
continues. If not,
authentication fails.

Dependency None

Standard Plug-Ins

Authentication Plug-in API 6-37

Parameters Name Default REQ/OPT Comments

fullformdir none REQ Full path to the SecurID
forms.

machine none REQ Name of the Web server
doing the SecurID
authentication. If you are
redirecting all SecurID
authentications, this is the
Web server name that you
are redirecting to. Example:
securid.abc.com:8888.

username login OPT If you are using the sample
forms, set this value to
login. Enter the value as a
creds challenge parameter
for the plug-in, and in the
ObMappingFilter parameter
for the Credential Mapping
plug-in.

passcode password OPT If you are using the sample
forms, set this value to
password. If you want to
specify a different value,
you must provide it as a
creds challenge parameter
for the plug-in.

formdir <WebGate
install
dir>/
securid-fo
rms/

OPT The path, relative to where
the WebGate is installed, to
the SecurID forms. It
requires a trailing slash(/).
To use a different path, use
the new value here and for
fullformdir, and change the
value for the form challenge
parameter when
configuring the plug-in.

httpType http:// OPT Type of Web server that is
handling SecurID
authentications. The two
valid values are http:// and
https://.

choiceLabel choice OPT Name of the field in the
HTML form corresponding
to the user's choice of how a
PIN is generated. Set this
using the creds challenge
parameter.

newpinLabel newpin OPT Name of the field in the
HTML form corresponding
to the new PIN entered by
the user. Set this using the
creds challenge parameter.

newpinLabel2 newpin2 OPT Name of the field in the
HTML form corresponding
to the user’s re-entered new
PIN. Set this using the creds
challenge parameter.

Characteristic Description

Standard Plug-Ins

6-38 Oracle Access Manager Developer Guide

Example
Parameters

fullformdir="<WebGate_install_dir>/access/oblix/securid-f
orms/"machine="securid.abc.com:8888"

Characteristic Description

Authorization Plug-in API 7-1

7

Authorization Plug-in API

The Access Server controls access to resources by requiring requestors to be both
authenticated and authorized. Authentication is the processes by which users establish
and prove their identities in order to gain access. Authorization determines what
operations users are permitted to perform after they have been authenticated. See
Oracle Access Manager Access Administration Guide for details on configuring
authentication and authorization using the administration console.

This chapter describes support for authorization.

This chapter discusses the following topics:

■ About the Authorization Plug-In API

■ API Environment

■ C API Data

■ C API Functions

■ C Example

■ Managed Code API Interfaces

■ Troubleshooting

About the Authorization Plug-In API
The Authorization plug-in API provides a way for developers to create modules,
called plug-ins, that are used within an authorization scheme. Schemes are included in
authorization rules, and one or more authorization rules, along with one
authentication rule and one audit rule, make up a policy that controls access to
resources within a domain, such as URLs within a Web site or a set of methods within
an application. Oracle Access Manager provides two standard resource types, HTTP
and EJB, but others can be easily added and defined by administrators. See the Oracle
Access Manager Access Administration Guide for instructions on creating resource types,
domains, policies, rules and schemes.

Plug-ins within authorization schemes are used for two purposes:

■ To confirm or deny access to a resource, or to acquire data to be used by the next
authorization rule in the policy. This is called an authorization plug-in.

■ To perform an action of some sort after the access decision is made. This is called a
custom action plug-in.

Execution of an authorization plug-in delivers one of the following results, which are
described in more detail in the sections that follow, at "ObAzplug-instatus_t" on
page 7-6

About the Authorization Plug-In API

7-2 Oracle Access Manager Developer Guide

■ Continue

■ Access allowed

■ Access denied

■ Abort

Custom action plug-ins can be directed to execute if the authorization plug-in has
allowed access or if access has been denied. They are used to return data to the
AccessGate or to perform a service, such as to notify some person or log a transaction.

To use a plug-in created by the Authorization Plug-in API, two types of information
need to be configured by an administrator.

■ An authorization scheme to use the plug-in. A given scheme can use both
authorization plug-ins and custom action plug-ins.

■ A custom authorization rule to use the scheme.

To create the plug-in itself, refer to the other sections in this chapter:
■ "API Environment" on page 7-3 to find out where the API library is installed, its

build environment, and how to use it.

■ "C API Data" on page 7-4 to understand the data used within the API.

■ "C API Functions" on page 7-11 to understand what the API does.

■ "C Example" on page 7-17 to see the API in use.

Support for C and Managed Code
You can now write plug-ins using any language supported by the Microsoft .NET
framework, including C, MC++, and Visual Basic. If you are using the plug-in in a
Windows environment, managed code enables you to select from a variety of
implementation languages and provides the other benefits of managed code.

Globalization and Custom C Authorization Plug-in Interfaces
With 10g (10.1.4.0.1) there are some changes and backward compatibility, as described
here.

Before 10g (10.1.4.0.1), the Authorization Plug-In API for C used Latin-1 encoding for
data exchanged between the Access Server and custom plug-ins. However, 10g
(10.1.4.0.1) the Authorization Plug-In API for C uses UTF-8 encoding for plug-in
processing.

Backward Compatibility
When you upgrade an older Access Server to 10g (10.1.4.0.1), the value
="IsBackwardCompatible" Value="false" is set in the Access Server
globalparams.xml file automatically. A backward-compatible Access Server continues
to send data to authorization plug-ins in Latin-1 encoding and expects that the
plug-ins will set data in Latin-1 encoding. There is no change in plug-in data encoding.

When you add a new 10g (10.1.4.0.1) Access Server to an upgraded environment, you
need manually set ="IsBackwardCompatible" Value="false" in the Access
Server globalparams.xml to enable communication with older plug-ins and interfaces,
as well as older WebGates and custom AccessGates.

API Environment

Authorization Plug-in API 7-3

API Environment
The following sections describe the API environment.

C Code Location
The authorization plug-in SDK is installed as a standard component when the Access
Server is installed, at

ASInstall_dir /sdk/authorization/samples

where ASInstall_dir is the location where you have installed the Access Server, for
example

COREid/access/oblix

The samples directory contains an example of plug-in code, and one or more make
files, as well as an include subdirectory. The include subdirectory contains two header
files, to be included in the plug-ins to be written. The file as_plugin_utils.h defines a
set of utilities that the Access Server provides to all authorization plug-ins.
authz_plugin_api.h defines the API data and functions, and includes the other header
file.

To build
1. Under the samples directory, create a new directory named, for example,

myplugin. Copy the make files and sample code to this new directory.

Within the new directory, the authz_api.c file provides a good example of the
structure and operation of a plug-in. You probably want to create your own file to
add some functionality specific to your site.

2. Change the make file to show the actual path to your C compiler, and to include
and compile all of your source code.

3. Run the make file.

The resulting *.so or *.dll is your new plug-in.

Managed C++ Code Location
The authorization plug-in SDK is installed as a standard component when the Access
Server is installed, at

ASInstall_dir/sdk/authorization/managed/authz_c++

where ASInstall_dir is the location where you have installed the Access Server, for
example,

COREid/access/oblix

Note: The header file contains definitions for the API data and
functions. Content provided for this file as part of the installation is
essential in order to correctly build and operate the API. When the
plug-in is loaded by the Access Server, it expects to find the set of
functions implemented in authz_plugin_api.h available within the
plug-in. You may add information to the file, but do not remove any
of the existing content.

C API Data

7-4 Oracle Access Manager Developer Guide

The directory contains an example of plug-in code in C++. The file
managed_plugin_interface in the following location:

ASInstall_dir/apps/common/bin

defines a set of interfaces that the Access Server provides to all managed authorization
plug-ins. Managed_plugin_interface.h defines and documents the interfaces that can
be used by the plug-in writer.

Note that the header file contains definitions for the API data and functions. Content
provided for this file as part of the installation is essential in order to correctly build
and operate the API. When the plug-in is loaded by the Access Server, it expects to
find the set of functions implemented in managed_plugin_interface.h available within
the plug-in.

To build
1. Under the samples directory, create a new directory.

This directory can have any name, for example, mydirectory.

You will probably want to create a new file and add functionality specific to your
site.

2. In the new directory, the file cplusplus.cpp provides an example of the structure
and operation of a plug-in.

3. Use the cplusplus.vcproj project file to load and build the plug-in.

The resulting .dll is your new plug-in.

Plug-in Location
The plug-in you create (in C or in managed code), as either a *.so or *.dll file, can be
stored anywhere on the system where the Access Server is running. To be consistent
with Authentication Plug-in APIs, you can copy Authorization plug-ins to:

<$ASInstall_dir >/lib

This is not a requirement, however; the file can be stored anywhere on the machine
running the Access Server. For this reason, the Access Administrator needs to know
the full path to the file, to be able to refer to the plug-in when configuring an
authorization scheme. The Access Administrator also needs to know the required and
optional input parameters needed by the plug-in. See the Oracle Access Manager Access
Administration Guide for a full discussion of authorization scheme configuration.
Following the "C Example" on page 7-17 is a screen showing the authorization scheme
configuration used to support the example.

C API Data
The following sections describe the C API.

Important: Do not remove any of the existing content.

Note: When you migrate your system, custom plug-ins are not
carried forward. This is another good reason to put all of these in one
place, to make the manual migration task easier.

C API Data

Authorization Plug-in API 7-5

C Constant Definitions
The authz_plugin_api.h file includes several defined values to aid in programming.

One provides the value that is returned to the Access Server when
ObAzPluginGetVersion is called:

#define OB_AZ_PLUGIN_VERSION "10.1.3"

Other defined values map to names for data that is provided by the Access Server in
either the RequestorInfo or RequestContext members of the ObAzPluginInfo structure:

#define ObAzPluginRequesterDn "RequesterDn"
#define ObAzPluginRequesterIP "RequesterIP"
#define ObAzPluginRequestResourceType "ResourceType"
#define ObAzPluginRequestResource "Resource"
#define ObAzPluginRequestOperation "Operation"
#define ObAzPluginRequesterDn "RequesterDn" #define ObAzPluginRequesterIP
"RequesterIP" #define ObAzPluginRequestResourceType "ResourceType" #define
ObAzPluginRequestResource "Resource" #define ObAzPluginRequestOperation
"Operation"

As described in the Oracle Access Manager Access Administration Guide, an authorization
scheme can obtain data from an external source. This data is passed to a custom
authorization plug-in. By obtaining external data (usually in the form of information
about the user) authorization decisions can be made dynamically, based on user input.

For example, if a user goes to a form to purchase an item for $1000, this $1000 amount
can be dynamically evaluated against a limit—perhaps stored in a database—to
determine if the purchase is authorized.

The process of retrieving authorization data from an external source is sometimes
known as a reverse action.

Note that when creating an authorization plug-in that uses a reverse action, the calls to
retrieve reverse actions will not fail if no reverse actions are present. For example, the
following returns NULL for a list if there is no user-agent value in
RequestContext:

ObASPluginList_t list =
pFnBlock->GetDataFn(pInfo->RequestContext, "user-agent");

Plug-ins should check if the data list returned for a reverse action (or anything else) is
NULL before using it to retrieve individual data values. This situation can occur if the
client did not specify a value for a reverse action.

C Handles
The Access Server and API use pointers, also called handles, to allow manipulation of
data structures that the Access Server maintains for use by the plug-in. These handles
are named and described in the following table. The description of content for all
structures begins at "C Structures" on page 7-7. The terms list, name, value, and item
describe the data relationships within the ObAzPluginInfo structure, described
on"ObAzPluginInfo" on page 7-8.

Note: The value provided for the version may differ for later
versions.

C API Data

7-6 Oracle Access Manager Developer Guide

C Return Values
Many of the functions the Access Server and API use to communicate return a status
value. These are all predefined, as described here.

ObAzplug-instatus_t
These are the possible values that plug-ins can return to show the result of the attempt
to authorize.

typedef enum {
ObAzplug-instatusContinue = 0,
ObAzplug-instatusAccessDenied = 2,
ObAzplug-instatusAccessAllowed = 1,
ObAzplug-instatusAbort = 3

Data Type and Name Description

void const*
ObASPluginList_t

A handle pointing to a list of values for a named member
of the structure ObAzPluginInfo. This handle is obtained
using the function GetDataFn.

void const*
ObASPluginListItem_t

A handle pointing to one of the items within a list of
values. This handle is obtained using GetFirstItemFn or
GetNextFn.

ObASPluginListItem_t
*ObASPluginGetFirstItem_t

A handle pointing to an Access Server function that gets
the handle to the head of a list for a name.

const char*
*ObASPluginGetValue_t

A handle pointing to an Access Server function that gets
the value for the current item.

ObASPluginListItem_t
*ObASPluginGetNext_t

A handle pointing to an Access Server function that gets
the handle to the next item in a list.

ObASPluginList_t
*ObAzPluginGetData_t

A handle pointing to an Access Server function that gets
the handle to the head of a list for a name.

ObAzASStatus_t
*ObAzplug-insetData_t

A handle pointing to an Access Server function that stores
a value to a list.

void const*

ObAzPluginData_t

A handle to the head of the list of names for any of the
read-only members of the opaque data structure,
ObAzPluginInfo.

struct ObAzPluginFns

ObAzPluginFns_t

A handle pointing to the structure ObAzPluginFns that
contains handles to functions provided by the Access
Server, used to manipulate data in the ObAzPluginInfo
structure.

struct ObAzPluginInfo*

ObAzPluginInfo_t

A handle pointing to the head of the structure
ObAzPluginInfo.

char**

ObAzplug-instatusMsg_t

A handle to a NULL-terminated string that a plug-in
function returns to the Access Server to report on the result
of the function.

void*

ObAzPluginWritableData_t

A handle to the head of the list of names for any of the
read and write members of the opaque data structure
ObAzPluginInfo.

struct ObAzServerContext*

ObAzServerContext_t

A handle pointing to the head of the structure
ObAzServerContext.

C API Data

Authorization Plug-in API 7-7

ObAzASStatus_t
When the plug-in calls SetDataFn to write data to the ObAzPluginInfo structure, the
Access Server tries to do so, and returns one of these values.

typedef enum {
ObAzASStatusSuccess = 0,
ObAzASStatusWriteNotAllowed = 1
}ObAzASStatus_t;

C Structures
The Access Server groups related data items into named structures, allocates the
memory for them, and holds the data that is in the structures. The API uses handles to
read from and write data into these structures. Structures are opaque to the user,
meaning that they can be used to transfer information to and from the Access Server,
but the user cannot change the way the structure is organized or the format of the data
that it contains. Following are the structures used in the Authorization Plug-in API.

ObAzServerContext
This structure carries information about the Access Server that the plug-in may need.
It has two members.

const *ObAzserverContext{

Name Description

ObAzplug-instatusAbort You indicate that a fatal error occurred within the
plug-in. Processing is not passed to the following
plug-in (if any). If this error is returned by an
authorization plug-in, authorization fails and access
is denied. If the error is returned by a custom action
plug-in, an error message is logged, but
authorization status is not affected. If returned
during initialization, the Access Server logs an error
message.

ObAzplug-instatusAccessAllowed The plug-in authorizes access to the target by the
requester. If the plug-in is an authorization plug-in,
authorization processing stops and the Access
Server moves on to success action processing. If the
plug-in is a custom action plug-in, this response is
ignored.

ObAzplug-instatusAccessDenied The plug-in denies access to the target by the
requester. If the plug-in is an authorization plug-in,
authorization processing stops and the Access
Server moves on to denied action processing. If the
plug-in is a custom action plug-in, this response is
ignored.

ObAzplug-instatusContinue Authorization or custom action processing
continues after the plug-in ends.

Name Purpose

ObAzASStatusSuccess The Access Server successfully performed the
operation.

ObAzASStatusWriteNotAllowed The Access Server did not perform the operation;
specifically, the plug-in tried to change values it
is not allowed modify.

C API Data

7-8 Oracle Access Manager Developer Guide

char*AccessServerInstallDir;
char*AccessServerAzPluginAPIVersion;
};

The constant *ObAzServerContext_t is a handle pointing to the head of this structure.

Data held in the structure is read only.

The following table describes the structure members.

ObAzPluginInfo
The Access Server fills this structure with data determined by the Authorization
Scheme using the plug-in, in combination with the Authorization Rule that uses the
scheme. The plug-in modifies data within the structure and may append new data to it
as work progresses through the plug-in. When there are multiple authorization rules
being carried out as part of a policy, the structure also provides a means to pass
information from one plug-in to another within the rules.

struct ObAzPluginInfo{
ObAzPluginData_tRequesterInfo;
ObAzPluginData_tRequestContext;
ObAzPluginData_tParams;
ObAzPluginWritableData_tContext;
ObAzPluginWritableData_tActionInfo;
};
The constant *ObAzPluginInfo_t is a handle pointing to this structure.

Data of type ObAzPluginWritableData_t can be both read and written. Data of type
ObAzPluginData_t is read only.

Data is extracted from the structure and stored to it using the functions described
under"ObAzPluginFns" on page 7-10.

The following table describes the information provided by the members of this
structure.

Name Description

AccessServerInstallDir Path to the installation directory for the Access Server.

AccessServerAzPluginAPI
Version

The lowest Authorization Plug-in API version the
Access Server currently supports.

Data Type and
Name Description

RequesterInfo Data describing the user or application trying to access a resource.
The plug-in cannot change this data. The Access Server provides
two predefined names within this list: RequesterDn and
RequesterIP. Users can add other names as a User Parameter when
the Authorization Scheme is configured. The parameter entered is
the name of an attribute that can be found in the directory. The
Access Server provides the name of the attribute and the value(s) of
the entry for that attribute.

RequestContext Request-specific information that is passed to the plug-in, such as a
resource type. The plug-in cannot change this data. The Access
Server provides three predefined names within this list:
ResourceType, Resource, and Operation. Users cannot add others.

C API Data

Authorization Plug-in API 7-9

Understanding the organization of the ObAzPluginInfo structure is key to
understanding how the Authorization Plug-in API works.

In the Authorization Plug-in API, all structure members are multivalued, meaning that
the names held within each structure may each have more than one value. Each name
has an associated handle that points to a list of one or more items. Each item contains a
value and a handle to the next item in the list. A handle for the next item set to NULL
indicates the end of the list.

The params member can be thought of according to the following diagram. You use
GetDataFn to get the pointer to the list, for a specified parameter name within the
params array.You then use GetFirstItemFn to get a handle to the information for the
first item in the list. GetValueFn at this point returns the value for item 1, GetNextFn
returns the handle to the information for item 2, and so on.

Figure 7–1 illustrates the process flow for the authorization plug-in API.

Params Names and values for all required, optional, and additional
parameters specified in the plug-in configuration. The plug-in
cannot change this data. Names are created when an Authorization
scheme is first created by the System or Master Access
Administrator. Values can be provided when the scheme is first
created, or added later by a Delegated Access Administrator when
the scheme is used in an Authorization Rule.

Context The plug-in uses this data to temporarily store or transfer
information, for example to keep track of its own state when
moving between logical modules, or to pass information to another
plug-in. The plug-in may add new data or replace existing data.
The Access Server maintains this data until the authorization
request completes.

ActionInfo The plug-in uses this data to return information, such as the
authorization result, to the AccessGate. The plug-in may add new
data or replace existing data. The Access Server maintains this data
until the authorization request completes, when it is provided to
the Client.

Data Type and
Name Description

C API Data

7-10 Oracle Access Manager Developer Guide

Figure 7–1 Flow for Authorization Plug-in API

ObAzPluginFns
This structure provides handles to a block of functions provided by the Access Server,
which the plug-in uses to manipulate data in the ObAzPluginInfo structure.

struct ObAzPluginFns
ObAzPluginFns_t{
ObASPluginGetFirstItem_tGetFirstItemFn;
ObASPluginGetValue_tGetValueFn;
ObASPluginGetNext_tGetNextFn;
ObAzPluginGetData_tGetDataFn;
ObAzPluginsetData_tSetDataFn;
};

The following table describes the members of this structure. You may want to refer
to"ObAzPluginInfo" on page 7-8 to understand how data is organized.

Note: The constant ObAzPluginFns_t is a handle pointing to this
structure.

Name Description

GetFirstItemFn A function to get a handle for the first item in a list associated with
a name.

GetValueFn A function to read the value of an item, once the item's handle has
been defined using either GetFirstItemFn or GetNextFn.

GetNextFn A function to get the handle for the next item in a list associated
with a name. A returned handle value NULL means there are no
more items in the list.

Handle to Item 2 Value for Item 1

User defined name Handle to list of values
for that name

Item 1

Handle to Item 3 Value for Item 2

Item 2

Null, end of list. Value for Item 3

Item 3

C API Functions

Authorization Plug-in API 7-11

C API Functions
Functions used by the API to talk to the Access Server are of two types. They can be
provided by the Access Server, in which case they are called by reference to it.
Otherwise, they must be implemented in the plug-in, following the prototypes in
authz_plugin_api.h.

C Functions Provided by the Access Server
These functions get and set data in the structures that have been passed. To use these
functions you must call them as members of the structure of type ObAzPluginFns that
you named in your code. For example, if you implemented ObAzPluginFn and set the
variable name of type ObAzPluginFns to pFnBlock, then you call GetDataFn by
reference to its place in the structure, as pFnBlock->GetDataFn.

GetDataFn
The plug-in uses this function to get a handle to the head of a list of values associated
with a name in one of the members of the ObAzPluginInfo structure. The plug-in must
then use the list manipulation functions GetFirstItemFn, GetValueFn, GetNextFn,
GetValueFn, and so on, to extract information from the list. The function takes the
form:

ObASPluginList_t GetDataFn(
 ObAzPluginData_tpmember,
 const char*pName);
Input Parameters

Output Parameters

There are no output parameters for this function.

The function returns a handle to a list of values for the given name. If the handle value
is NULL, the name is not present for the structure member.

SetDataFn
The plug-in uses this function to store a single value for a name in one of the members
of the ObAzPluginInfo structure. The function takes the form:

 ObAzASStatus_t SetDataFn(
ObAzPluginData_t pMember,
const char* pName,

GetDataFn A function to get a handle to a name in a specified member of the
ObAzPluginInfo structure, given the text value for the name. A
returned handle value NULL means that name is not present in that
member of the structure.

SetDataFn A function to store a value to a name in a specified member of the
ObAzPluginInfo structure, given the text value for the name.

Name Description

pmember The member of the ObAzPluginInfo structure in which the name is
expected to be found.

pName The name for which values are to be retrieved.

Name Description

C API Functions

7-12 Oracle Access Manager Developer Guide

const char* Value,
const int replace);

Input Parameters

There are no output parameters from this function.

Output Parameters

The function returns one of the ObAzASStatus_t values.

GetFirstItemFn
The plug-in uses this function to get a handle to the first item in a list of values, once
the handle to the head of the list has been obtained using GetDataFn. You must then
use the GetValueFn to extract the value or GetNextFn to get a handle to the next item
in the list.

The function takes this form:

 ObASPluginListItem_t GetFirstItemFn(
 ObASPluginList_tplist);
Input Parameters

Output Parameters

There are no output parameters for this function.

The function returns a handle to the first item in a list of values. If the handle value is
NULL, there is no first item.

GetValueFn
The plug-in uses this function to get the value for an item, once a handle to the item
has been obtained.

The function takes this form:

const char* GetValueFn(
 ObASPluginListItem_tPItem);

Input Parameters

Name Description

pMember The name of a writable member of the ObAzPluginInfo structure.

pName Name for the information whose value is to be set.

pValue The value to be inserted.

replace Specifies whether to replace or append to existing values for the
name. A value of 0 indicates append, all other values are a request
to replace the current first value for pName.

Note: The replace option applies only to the first item in the list.

Name Description

pList Handle to the head of a list of values, returned by GetDataFn.

C API Functions

Authorization Plug-in API 7-13

Output Parameters

There are no output parameters for this function.

The function returns the value of an item.

GetNextFn
The plug-in uses this function to get a handle to the next item in a list, given the
handle to the current item.

The function takes this form:

ObASPluginListItem_t GetNextFn(
ObASPluginListItem_tpItem);
Input Parameters

Output Parameters

There are no output parameters for this function.

The function returns a handle to the next item in the list.

C Functions Implemented in the Plug-In
These functions describe the entry points that need to be in the .dll. Prototypes for
these five functions are provided in authz_plugin_api.h. They must all be
implemented in the plug-in.

The OBDLLEXPORT entry for each method is required. It provides a means for the
Access Server to locate and call these methods from within the plug-in.

The Access Server calls the functions in this order:

■ GetVersion: The first time the plug-in is loaded.

■ Init: The first time the plug-in is loaded.

■ DeAllocStatusMessage: Automatically, following any of the other functions
which returns a status message.

■ Fn: Each time the plug-in is used.

■ Terminate: When the Access Server shuts down, or the plug-in is unloaded.

ObAzPluginGetVersion
The Access Server calls this function once when the plug-in is first loaded. The plug-in
returns its version number, as defined in the authz_plugin_api.h file with which it was
built. The Access Server uses this version to determine if it can support the plug-in.
That is, it would catch a situation in which an older version of the Access Server was

Name Description

pItem Handle to the current item in a list, returned by GetFirstItemFn or
GetNextFn.

Name Description

pItem Handle to the current item in a list, returned by GetFirstItemFn or
GetNextFn.

C API Functions

7-14 Oracle Access Manager Developer Guide

being asked to support a newer version of the API, or a newer version of the Access
Server was being asked to support an obsolete version of the plug-in.

The function takes the form:

OBDLLEXPORT
 const char* ObAzPluginGetVersion(void)

Input parameters

There are no input parameters to this function.

Output parameters

There are no output parameters from this function.

The function returns the version of the authorization plug-in.

ObAzPluginInit
The Access Server calls this function after making the version check. You use
ObAzPluginInit to initialize the work space for the plug-in, which could include tasks
such as connecting to a database and initializing global data for the plug-in. This
function allocates memory in order to return the presult string, which must later be
de-allocated using ObAzPluginDeallocStatusMsg.

The function takes the form:

OBDLLEXPORT
 ObAzplug-instatus_t ObAzPluginInit(
 ObAzServerContext_tpServerContext,
 ObAzplug-instatusMsg_tpResult)

Input Parameters

Output Parameters

The function must return one of two ObAzASStatus_t values, whose meaning is
described in the following table.

ObAzPluginTerminate
The Access Server calls this function when the Access Server terminates or the plug-in
is unloaded. You use this function to clear the plug-in work area, for example to
disconnect from a database or to free memory.

Name Description

pServerContext The name assigned by the plug-in to the Context information
structure provided by the Access Server.

Name Description

pResult Result message reported by the function.

Name Description

ObAzplug-instatusContinue The work space is successfully initialized. Processing of
other plug-ins, of either type, if any, continues.

ObAzplug-instatusAbort Initialization has failed. No additional plug-ins, of
either type, are processed.

C API Functions

Authorization Plug-in API 7-15

The function takes the form:

OBDLLEXPORT
 ObAzplug-instatus_t ObAzPluginTerminate(
 ObAzServerContext_tpServerContext,
 ObAzplug-instatusMsg_tpResult);

Input Parameters

Output Parameters

The function must return one of two ObAzASStatus_t values, whose meaning is
described in the following table.

ObAzPluginFn
The Access Server calls this function whenever a protected resource calls for
authorization covered by a policy of which the plug-in is a part. You use this function
to make the detailed decision or chain of decisions that determines whether access is
denied or granted. The function defines either a custom authorization or a custom
action process.

The function takes the form:

BDLLEXPORT
 ObAzplug-instatus_t ObAzPluginFn(
 ObAzServerContext_tpServerContext,
 ObAzPluginFns_tpFuncBlock,
 ObAzPluginInfo_tpData)

Input Parameters

Name Description

pServerContext The name assigned by the plug-in to the Context information
structure provided by the Access Server.

Name Description

pResult The result message reported by the function.

Name Description

ObAzplug-instatusContinue The work space is successfully cleared. Processing of
other plug-ins, of either type, if any, continues.

ObAzplug-instatusAbort The work space could not be cleared. For example, a
database connection could not be closed because the
database was down. Processing of plug-ins ends.

Name Description

pServerContext The name you want to assign to the Context information structure
provided by the Access Server.

pFuncBlock Handle to the block of functions provided by the Access Server that
the plug-in needs to manipulate data. You specify the name of this
block.

pData Handle to the ObAzPluginInfo structure in the Access Server. You
specify the name of this structure.

C API Functions

7-16 Oracle Access Manager Developer Guide

Output Parameters

The function returns one of the ObAzplug-instatus_t values, whose meaning is
described in the following table:

ObAzPluginDeallocStatusMsg
The Access Server calls this function automatically when the plug-in terminates. You
use it to delete the memory allocated by other plug-ins which returned a status
message.

The function takes the form:

OBDLLEXPORT
 void ObAzPluginDeallocStatusMsg(
 ObAzplug-instatusMsg_tpStatusMsg);

Input Parameters

Output Parameters

There are no output parameters from this function.

The function returns nothing

Name Description

pData Handle to data modified by the plug-in.

Name Description

ObAzplug-instatusContinue Regardless of the plug-in type, this signals the
Access Server to move on to the next plug-in
in the sequence. For an authorization plug-in,
this means that the plug-in did not explicitly
allow or deny access to the requester.

ObAzplug-instatusAccessAllowed If this results from an authorization plug-in,
the requester is allowed access to the target.
The Access Server stops evaluating
authorization plug-ins and moves on to
success action plug-ins, if any. For a custom
action plug-in this status is ignored.

ObAzplug-instatusAccessDenied If this results from an authorization plug-in,
the requester is denied access to the target.
The Access Server stops evaluating
authorization plug-ins and moves on to
denied action plug-ins, if any. For a custom
action plug-in this status is ignored.

ObAzplug-instatusAbort Regardless of the plug-in type, processing
does not continue after the function. If this
results from an authorization plug-in,
authorization fails.

Name Description

pStatusMsg Status Message to be deallocated.

C API Functions

Authorization Plug-in API 7-17

C Example
Example 7–1 shows some basic uses of the plug-in functions. It is a modification of the
authz_api.c sample function provided as part of the Access System Installation.

Example 7–1 Authorization Plug-in Example.

OBDLLEXPORT const char* ObAzPluginGetVersion(void)
{
 FILE *file = fopen("d:\\AZtestfile.txt", "a+");
 fprintf (file, "\n%s %s\n", "getting version, it is",
 OB_AZ_PLUGIN_VERSION);
 fclose(file);
 return OB_AZ_PLUGIN_VERSION;
}

/*
* ---
* Implementation of ObAnPluginInit
*
* The logged data appears only once, when the Plugin is first loaded.
*
*/

OBDLLEXPORT ObAzplug-instatus_t ObAzPluginInit(ObAzServerContext_t pContext,
ObAzplug-instatusMsg_t pResult)
{

// Values to be read in by this function are initialized.

 ObAzplug-instatus_t rtval;
 const char* pASPluginVersion = NULL;

 FILE *file = fopen("d:\\AZtestfile.txt", "a+");
 fprintf (file, "\n%s\n", "initializing");

 if(pContext != NULL) {
 pASPluginVersion = pContext->AccessServerAzPluginAPIVersion;
 }

 if((pASPluginVersion != NULL) &&
 (strcmp(pASPluginVersion, OB_AZ_PLUGIN_VERSION) == 0)) {
 rtval = ObAzplug-instatusContinue;
 *pResult = strdup("Success version check");
 } else {
/*
* return failure, because the version provided by the AS
* is not what was expected.
*/
 rtval = ObAzplug-instatusAbort;
 }

 fclose(file);
 return rtval;
}
/*
* ---
* Implementation of ObAnPluginTerminate
*
* The logged data appears only when the Access Server terminates.
*

C API Functions

7-18 Oracle Access Manager Developer Guide

*/
OBDLLEXPORT ObAzplug-instatus_t ObAzPluginTerminate
 (ObAzServerContext_t pContext,
 ObAzplug-instatusMsg_t pResult)
{
 FILE *file = fopen("d:\\AZtestfile.txt", "a+");
 fprintf (file, "\n%s\n", "terminating gracefully");
 *pResult = strdup("Success, terminated");
 fclose(file);
 return ObAzplug-instatusContinue;
}
/*
* ---
* Implementation of ObAnPluginDeallocStatusMsg
* The logged data appears following each other function
* that provides a presult.
*/
OBDLLEXPORT void ObAzPluginDeallocStatusMsg
 (ObAzplug-instatusMsg_t pResult)
{
 FILE *file = fopen("d:\\AZtestfile.txt", "a+");
 fprintf (file, "\n%s\n", "deallocating");

 if(pResult != NULL && *pResult != NULL) {
 free(*pResult);
 *pResult = NULL;
 }
 fclose(file);
}
/*
* ---
* Implementation of ObAnPluginFn
*/
OBDLLEXPORT ObAzplug-instatus_t ObAzPluginFn
 (ObAzServerContext_t pContext,
 ObAzPluginFns_t pFnBlock,
 ObAzPluginInfo_t pInfo)
{
/*
* Default will be to continue without granting or denying
* authorization.
*/
 ObAzplug-instatus_t rtval = ObAzplug-instatusContinue;
* Pointers are defined.
*/
 ObASPluginList_t list;
 ObASPluginListItem_t item;
/*
* Data that might be read in is initialized.
*/
 const char* ou = NULL;
 const char* deny1 = NULL;
 const char* deny2 = NULL;
 const char* allow1 = NULL;
 const char* allow2 = NULL;
 const char* allow3 = NULL;
 const char* allow4 = NULL;
 int i = 0;
 FILE *file = fopen("d:\\AZtestfile.txt", "a+");
 fprintf (file, "\n%s\n", "doing real work");

C API Functions

Authorization Plug-in API 7-19

 if((pFnBlock != NULL) && (pInfo != NULL)){
 fprintf (file, "%s\n", "first test okay, getting ou");
/*
* get user's "ou" from pInfo.
*/
 list = pFnBlock->GetDataFn(pInfo->RequesterInfo, "ou");
 item = pFnBlock->GetFirstItemFn(list);
 ou = pFnBlock->GetValueFn(item);
 }
/*
* show the ou value.
*/
 if(ou != NULL){
 fprintf (file, "%s\n", "ou was not null");
 fprintf (file,"%s %s \n", "ou is", ou);
 } else {
 fprintf (file, "%s\n", "ou was not found");
 rtval = ObAzplug-instatusAccessDenied;
 pFnBlock->SetDataFn
 (pInfo->ActionInfo, "access_status", "deny", 1);
 fclose(file);
 return rtval;
)
/*
* now get two deny_organization values.
* This is risky coding, since it could be that "deny_organization"
* does not exist, or only has one value. In either case, the code
* will be generating NULL pointers, which could be misused elsewhere
*/
 list = pFnBlock->GetDataFn(pInfo->Params, "deny_organization");
if(list == NULL){
 fprintf (file, "%s\n", "missing deny org");
 rtval = ObAzplug-instatusAccessDenied;
 pFnBlock->SetDataFn
 (pInfo->ActionInfo, "access_status", "deny", 1);
 fclose(file);
 return rtval;
 }
 item = pFnBlock->GetFirstItemFn(list);
 deny1 = pFnBlock->GetValueFn(item);
 fprintf (file,"%s %s \n", "deny1 is", deny1);
 item = pFnBlock->GetNextFn(item);
 deny2 = pFnBlock->GetValueFn(item);
 fprintf (file,"%s %s \n", "deny2 is", deny2);
/*
* now get up to 4 allow_organization values.
*/
 list = pFnBlock->GetDataFn(pInfo->Params,"allow_organization");
 if(list == NULL){
 fprintf (file, "%s\n", "missing allow org");
 rtval = ObAzplug-instatusAccessDenied;
 pFnBlock->SetDataFn
 (pInfo->ActionInfo, "access_status", "deny", 1);
 fclose(file);
 return rtval; }
/*
* This is a better approach; it avoids generating null pointers.
*/
 for(i = 0, item = pFnBlock->GetFirstItemFn(list);
 item != NULL; i++, item = pFnBlock->GetNextFn(item)) {

C API Functions

7-20 Oracle Access Manager Developer Guide

 switch(i) {
 case 0:
 allow1 = pFnBlock->GetValueFn(item);
 fprintf (file,"%s %s \n", "allow1 is", allow1);
 break;
 case 1:
 allow2 = pFnBlock->GetValueFn(item);
 fprintf (file,"%s %s \n", "allow2 is", allow2);
 break;
 case 2:
 allow3 = pFnBlock->GetValueFn(item);
 fprintf (file,"%s %s \n", "allow3 is", allow3);
 break;
 case 3:
 allow4 = pFnBlock->GetValueFn(item);
 fprintf (file,"%s %s \n", "allow4 is", allow4);
 break; }}

The following screen shows the initial setup for the Authorization Scheme, as set by
the Access Administrator. Note that space has been left for a required parameter, but
no value has been entered.

Later, when a policy is defined to cover a resource that uses this Authorization scheme,
the Delegated Access Administrator provides the missing required parameter value. In
the following example, an additional value is also added.

Managed Code API Interfaces

Authorization Plug-in API 7-21

Given this version of the authorization scheme, the corresponding trace information
given by the sample code is:

 initializing

 deallocating

 doing real work
 first test okay, getting ou
 ou was not null
 ou is Sales
 deny1 is nosuch
 deny2 is reqdenparam
 allow1 is sales
 allow2 is addallowparam
 allow3 is optallowparam
 access was allowed

Managed Code API Interfaces
The following sections detail the managed code API interfaces.

Defines
The managed_plugin_interface.h file includes several defined values to aid in
programming. One provides the value that is returned to the Access Server when
ObAZPluginGetVersion is called:

#define OB-AZ_PLUGIN_VERSION "10.1.3"

Note: The value provided for the version may differ for later
versions.

Managed Code API Interfaces

7-22 Oracle Access Manager Developer Guide

Interfaces
The Access Server and API use interfaces to allow manipulation of data structures that
the Access Server maintains for use by the plug-in. These interfaces are named and
described in the following table.

Return Values
Many of the functions that the Access Server and the API use to communicate return a
status value. These are described in the following section.

Status
The following are the possible values that plug-ins can return to show the result of the
authorization attempt.

IObAuthzPlugin::Status {
 ObAzpluginstatusContinue = 0,
 ObAzpluginstatusAccessAllowed = 1,
 ObAzpluginstatusAccessDenied = 2,
 ObAzpluginstatusAbort = 3

Name Description

IObASPluginListItem An interface that provides functions to access one of the
items in a list of values.

IObAzPluginData An interfaces that provides functions to access the list of
read-only values.

IObAzPluginInfo An interface that provides functions to access various data
items that the plug-in can use.

IObAzPluginWritableData An interface that provides functions to access and modify
the list of values.

IObAzServerContext An interface that provides functions to access server
context information.

Name Meaning

ObAzpluginStatus
Abort

enables you to indicate that a fatal error occurred in the plug-in.
Processing is not passed to the next plug-in (if there is any). If this
error is returned by an authorization plug-in, authorization fails and
access is denied. If the error is returned by a custom action plug-in, an
error message is logged, but authorization status is not affected. If
returned during initialization, the Access Server logs an error message.

ObAzpluginStatus
AccessAllowed

The plug-in authorizes access to the target by the requester. If the
plug-in is an authorization plug-in, authorization processing stops and
the Access Server moves on to success action processing. If the plug-in
is a custom action plug-in, this response is ignored.

ObAzpluginStatus
AccessDenied

The plug-in denies access to the target by the requester. If the plug-in
is an authorization plug-in, authorization processing stops and the
Access Server moves on to denied action processing. If the plug-in is a
custom action plug-in, this response is ignored.

ObAzpluginStatus
Continue

Authorization or custom action processing continues after the plug-in
ends.

Managed Code API Interfaces

Authorization Plug-in API 7-23

ASStatus
When the plug-in calls set_Data to write data to the ObAzPluginInfo structure, the
Access Server tries to do this, and returns one of these values:

IObAuthzPlugin::ASStatus {
 ObAzASStatusSuccess = 0,
 ObAzASStatusWriteNotAllowed = 1
 };

Managed Code Interfaces
The Access Server groups related data items into structures and provides interfaces to
access various members. The following are the interfaces used in the Authorization
Plug-in API.

IObAzServerContext
This structure carries information about the Access Server that the plug-in may need.
It has two members:

public _gc _interface IObAzServerContext
 {
 _property String* get_AccessServerInstallDir();
 _property String* get_AccessServerAzPluginAPIVersion();
 };

IObAZPluginInfo
The Access Server fills this structure with data that is determined by the authorization
scheme that uses the plug-in, along with the authorization rule that uses the scheme.
The plug-in can modify data within the structure and may append new data to it as
work progresses through the plug-in. When there are multiple authorization rules
being carried out as part of a policy, the structure also provides a means to pass
information from one plug-in to another within the rules.

public _gc _interface IObAzPluginInfo
 {
 IObAzPluginData* GetRequesterInfo();
 IObAzPluginData* GetRequestContext ();
 IObAzPluginData* GetParams ();

 IObAzPluginWritableData* GetContext ();
 IObAzPluginWritableData* GetActionInfo ();

Name Meaning

ObAzASStatusSuccess The Access Server successfully performed this operation.

ObAzASStatusWrite
NotAllowed

The Access Server did not perform the operation. Specifically, the
plug-in tried to change values that it is not allowed to modify.

Name Description

get_AccessServer
InstallDir

Path to the installation directory for the Access Server.

get_AccessServer
Az
PluginAPIVersion

The lowest Authorization Plug-in API version the
Access Server currently supports.

Managed Code API Interfaces

7-24 Oracle Access Manager Developer Guide

Data of type IObAzPluginWritableData can be both read and written. Data of type
IObAzPluginData is read only.

The following table describes the information provided by the members of this
structure

In the authorization plug-in API, all structure members are multi-valued, meaning that
the names help within each structure may each have more than one value. Each name
has an associated list of one or more items. Each item contains a value.

IObAzPluginData
This interface provides the functions to get the list of items.

public _gc _interface IObAzPluginData
 {
 _property IEnumerator* get_Data(String* pName);
 };

get_Data The plug-in uses this function to get a list of values associated with a name in
one of the members of the ObAzPluginInfo structure. The plug-in must then use the
enumeration functions Current, MoveNext, and Reset to obtain items from the list.

Name Description

GetRequestInfo Returns data that describes the user or application that is trying
to access a resource. The plug-in cannot change this data. The
Access Server provides two predefined names in this list:
RequesterDN and RequesterIP. Users can add other names as a
User Parameter when the authorization scheme is configured.
The parameter entered is the name of an attribute that can be
found in the directory. The Access Server provides the name of
the attribute and the value(s) of the entry for that attribute.

GetRequestContext Returns request-specific information that is passed to the
plug-in, such as a resource type. The plug-in cannot change this
data. The Access Server provides three predefined names in this
list: ResourceType, Resource, and Operation. Users cannot add
others. See "C Constant Definitions" on page 7-5 for details on a
"request context" operation.

GetParams Returns names and values for all required, optional, and
additional parameters specified in the plug-in configuration.
The plug-in cannot change this data. Names are created when
an authorization scheme is first created by the System or Master
Access Administrator. Values can be provided when the scheme
is first created, or added later by a Delegated Access
Administrator when the scheme is used in an authorization
rule.

GetContext The plug-in uses this data to temporarily store or transfer
information, for example to keep track of its own state when
moving between logical modules, or to pass information to
another plug-in. The plug-in may add new data or replace
existing data. The Access Server maintains this data until the
authorization request completes.

GetActionInfo The plug-in uses this data to return information, such as the
authorization result, to the AccessGate. The plug-in may add
new data or replace existing data. The Access Server maintains
this data until the authorization request completes, when it is
provided to the client.

Managed Code API Interfaces

Authorization Plug-in API 7-25

The function returns an object which implements the interface IEnumerator.

IObAzPluginWriteableData
This interface provides the functions to get and set the list of items.

public _gc _interface IObAzPluginWritableData
 {
 IEnumerator* get_Data(String* pName);
 IObAuthzPlugin::ASStatus set_Data(String* key, String* val,
Oblix::ObListOper operation);
 };

get_Data The plug-in uses this function to get a list of values associated with a name in
one of the members of the ObAzPluginInfo structure. The plug-in must then use the
enumeration functions Current, MoveNext, and Reset to obtain items from the list.

The function returns an object which implements the interface IEnumerator.

set_Data The plug-in uses this function to store a single value for a name in one of the
members of the ObAzPluginInfo structure. The function takes the following form:

The function returns one of the ObAzASStatus_t values.

IObAsPluginListItem
This interface provides the function to get the value of an item.

public _gc _interface IObASPluginListItem
 _property Sting* get_Value();
 };

get_Value The plug-in uses this function to get the value for an item once the item has
been obtained. The function returns the value of an item.

Name Purpose

pName The name for which values are to be retrieved.

Name Purpose

pName The name for which values are to be retrieved.

Name Purpose

key Name for the information whose value is to be set.

Val The value to be inserted.

operation Specifies whether to replace or append to existing values for the
name. A value of ObListOper::ObAdd indicates append. All other
values are a request to replace the current first value for key.

Note: The replace option applies only to the first item in the list.

Managed Code API Interfaces

7-26 Oracle Access Manager Developer Guide

Interfaces to be Implemented in the Plug-In
For authorization plug-ins the plug-in writer must define a class with the following
functions:

namespace sample
{
 public _gc class ObAuthzPlugin
 {
 public:
 ObAuthzPlugin();
 String* ObAzPluginGetVersion();
 IObAuthzPlugin::Status ObAzPluginInit
(Oblix::IObAzServerContext* context, String* msg);
 IObAuthzPlugin::Status
ObAzPluginFn(Oblix::IObAzServerContext* context, Oblix::IObAzPluginInfo* info);
 IObAuthzPlugin::Status ObAzPluginTerminate (Oblix::IObAzServerContext*
context, String* msg);
 };
};

The class must be named ObAuthzPlugin, and may or may not be included in a
namespace. All the functions need to have public access.

The Access Server calls the functions in this class in the following order:

■ ObAzGetVersion: The first time the plug-in is loaded.

■ ObAzPluginInit: The first time the plug-in is loaded.

■ ObAzPluginFn: Each time the plug-in is used.

■ ObAzPluginTerminate: When the Access Server shuts down.

ObAzPluginGetVersion
The Access Server calls this function once when the plug-in is first loaded. The plug-in
returns its version number, as defined in the managed_plugin_interface.h file with
which it was built. The Access Server uses this version to determine if it can support
the plug-in. That is, it would catch a situation in which an older version of the Access
Server was being asked to support a newer version of the API, or a newer version of
the Access Server was being asked to support an obsolete version of the plug-in.

ObAzPluginInit
The Access Server calls this function after making the version check. You use
ObAsPluginInit to initialize the work space for the plug-in, which could include tasks
such as connecting to a database and initializing global data for the plug-in.

The function must return one of two ObAzASStatus values, describe in the following
table:

Name Description

pServerContext The name assigned by the plug-in to the Context information
structure provided by the Access Server.

Name Description

ObAzpluginStatusContinue The work space is successfully initialized.

Managed Code API Interfaces

Authorization Plug-in API 7-27

ObAzPluginTerminate
The Access Server calls this function when it terminates. You use this function to clear
the plug-in work area, for example, to disconnect from a database.

The function must return one of two ObAzASStatus_t values, described in the
following table:

ObAzPluginFn
The Access Server calls this function when a protected resource calls for authorization
covered by a policy of which the plug-in is a part. You use this function to make the
detailed decision or chain of decisions that determines whether access is denied or
granted. The function defines either a customer authorization or a custom action
process.

The function returns one of the ObAzpluginstatus_t values, described in the following
table:

ObAzpluginStatusAbort Initialization has failed.

Name Description

pServerContext The name assigned by the plug-in to the context information
structure provided by the Access Server.

Name Description

ObAzpluginStatus
Continue

The work space is successfully initialized.

ObAzpluginStatusAbort Initialization has failed.

Name Description

pServerContext The name you want to assign to the context information structure
provided by the Access Server.

pInfo Handle to the ObAzPluginInfo structure in the Access Server. You
specify the name of this structure.

Name Description

ObAzpluginStatus
Continue

Regardless of the plug-in type, this signals the Access Server to move
on to the next plug-in in the sequence. For an authorization plug-in,
this means that the plug-in did not explicitly allow or deny access to
the requester.

ObAzpluginStatus
AccessAllowed

If this results from an authorization plug-in, the requester is allowed
to access the target. The Access Server stops evaluating authorization
plug-ins and moves on to denied action plug-ins, if there are any. For
a custom action plug-in, this status is ignored.

ObAzpluginStatus
AccessDenied

If this results from an authorization plug-in, the requester is denied
access to the target. The Access Server stops evaluating authorization
plug-ins and moves on to denied action plug-ins, if there are any. For
a custom action plug-in this status is ignored.

Name Description

Troubleshooting

7-28 Oracle Access Manager Developer Guide

Troubleshooting
For unit testing of plug-ins, writing the results to a file as the example here does is the
best approach. The pResult text is captured only if authentication fails, and then only
when the Access Server is running on Solaris. If you write to a file, be sure you have
the correct permissions for writing into the directory holding the file.

Performance is a user responsibility and should be considered when designing a
plug-in. The total time required to process one authorization request depends on the
performance of all the plug-ins that are invoked while processing that request.

Plug-ins are trusted by the Access Server. No access check is performed when giving
pre-configured information to the plug-in.

Coding errors at the system level in a plug-in, such as a memory or access violation,
segmentation, or bus error fault, can cause the Access Server to fail.

Plug-ins allow optional parameters, that would usually be filled in by a Delegated
Administrator when schemes are created. Plug-ins should be able to gracefully handle
the situation in which values for these parameters are not supplied.

If requests seem to fail without reason, check the path of the shared library to be sure it
is correct.

ObAzpluginStatus
Abort

Regardless of the plug-in type, processing does not continue after the
function. If this results from an authorization plug-in, authorization
fails.

Name Description

Part III
Appendices

Part III contains the following supplementary information:

■ Appendix A, "XML Background"

■ Appendix B, "Policy Manager API Definitions"

■ Appendix C, "Identity Events"

■ Appendix D, "Installing the Access Manager SDK"

■ Appendix E, "SOAP and HTTP Client"

■ Appendix F, "Managed Helper Classes"

XML Background A-1

A
XML Background

This appendix provides overviews of XML, XML schemas, and XSLT, for those who
may need it in order to follow the discussion and examples for these topics in the main
chapters of this Guide. Topics in this appendix include:

■ About XML

■ XML Schema

■ XSL and XSLT

■ Resources

About XML
XML stands for Extensible Markup Language. It is a set of rules that define tags that
break a document into parts and identify the parts of the document. These tags define
a syntax that can then be used, in combination with an XSL stylesheet, to reconstruct
the document.

The tags that are defined must follow the XML rules, but their content and
arrangement can be anything the developer wants. A file of XML text, arranged to
represent a certain document, is called an XML application. Oracle Access Manager's
OutputXML is an XML application, designed to create HTML which will in turn
present Identity System pages to a browser.

Oracle Access Manager also uses XML as a structured way to provide some
parameters that control its operation. This is a different use than for OutputXML, but
since the applications are much shorter and the XML syntax rules are followed here as
well, one of these files will serve as an example. For example,
frontpageadminparams.xml has the following content:

<?xml version="1.0" ?>
<ParamsCtlg xmlns="http://www.oblix.com"
 CtlgName="frontpageadminparams">
 <CompoundList ListName="">
 <SimpleList>
 <NameValPair ParamName="top_frame"
 Value="_top" />
 <NameValPair ParamName="top_main_frame"
 Value="main_frame" />
 <NameValPair ParamName="min_location_area"
 Value="400" />
 </SimpleList>
 </CompoundList>
</ParamsCtlg>

XML Schema

A-2 Oracle Access Manager Developer Guide

This indented presentation, showing the tag levels, is an automatic feature of
Microsoft's Internet Explorer. XML editors will also show the file in this way.

Some important parts of this file are the following:

<?xml version="1.0" ?>

This, the XML declaration, is the first line of any well-formed XML application.
Internet Explorer and some editors will not show the file as formatted XML unless this
line is present. The starting and ending ? make this an XML processing instruction.
version="1.0" is an attribute. Attributes are name-value pairs separated by an equals
sign, which provide additional information for the instruction. Currently there is only
one version of XML.

<ParamsCtlg xmlns="http://www.oblix.com"
CtlgName="frontpageadminparams">

<ParamsCtlg> is a tag, which starts the definition of the first element in the XML
application. The definition ends with the matching closing tag, which has the same
form except it uses a / before the tag name:

 </ParamsCtlg>

Everything between the starting and ending tags defines the element ParamsCtlg.
Nested within it is the element CompoundList, which has elements nested within it,
and so on. An important attribute is xmlns, which stands for XML namespace.This
specifies an owner and possible reference source for this XML application. We identify
ourselves as creators of this application.

The technically precise way to write this element would have been

<NameValPair ParamName="top_frame" Value="_top" />
<NameValPair>
ParamName="top_frame" Value="_top"
</NameValPair>

However, when the definition is a short one like this, the XML rules allow use of an
abbreviated closing tag. /> indicates the closing tag for the immediately preceding
start tag.

The attributes ParamName="top_frame" and Value="_top" provide the useful content
of the file, which is the name of a variable used by Oracle Access Manager and its
value.

An important concept, essential to the application of stylesheets, is a node. A node is a
level within the XML application, described by stringing together the elements that
locate it uniquely within the nested elements. For example, ParamsCtlg is the root
node for the application. The root node is the element name immediately following the
XML processing instruction(s); all other elements are nested within it. Other examples
of nodes are ParamsCtlg/CompoundList and
ParamsCtlg/CompoundList/SimpleList.

XML Schema
An XML Schema shows and describes the content of an XML application. The
following list interprets some of the elements that appear within a schema definition
file, based on the first few characters of each element. This is not intended to be an
explanation of the full XML Schema syntax; see the referenced site for that.

XML Schema

XML Background A-3

xsd:attribute : Appears within the body of an element being defined, and defines an
attribute that belongs to it. Parts of the definition usually present are:

■ name="xxxx": The name of the attribute

■ type="yyyy": The data type for the attribute; see the following list.

■ use="required": This is present only if the attribute must be present in the output.

■ value="zzzz": This is present only if the attribute takes a fixed value.

xsd:choice: Precedes a list of other elements, indicating that one and only one of those
elements is allowed. The choice itself can be made from zero to many times, as
controlled by the values of minOccurs and maxOccurs. The value of minOccurs is the
fewest number of times this element can appear in the list. If the value is zero, the
element is optional in the list. The value of maxOccurs is the greatest number of times
the element can appear in the list. A value of Unbounded means there is no limit.

xsd:complexType: Most often used in the body of an element that is being defined,
and means that the element will contain other elements.

xsd:element name="xxxx": Declares and within its body goes on to fully define a
category of information describing the element xxxx. Most instances of this in the
schema files go on to provide a body for the element and build it up from
subelements. A few, for example ObTextMesage in the displaytype.xsd file, have no
body, in which case they use type to immediately specify the data type of the element.

xsd:element ref="xxxx": Most often used to provide the name of a subelement for
inclusion in a list that is part of the body defining an element. The referenced element
will have been defined elsewhere. The element may also include the attributes
minOccurs and maxOccurs.

xsd:enumeration: Provides a list of possible values.

xsd:include schemalocation="xxxx": An element that specifies a file which contains
additional XML schema information, to be treated just as if it were provided inline in
the current file.

xsd:restriction base="xxxx": Defines the pattern for values that are used for a data type
being defined; see xsd:simpletype. Oracle Access Manager uses the restriction base
NMTOKEN, which means the value must be a legal XML string and contain no white
spaces.

xsd:sequence: Precedes a list of subelements within another element, and indicates
that, if they are present, they will appear in the order listed.

xsd:simpletype: This begins the definition of a data type, usually followed by an
xsd:restriction definition.

Some possible data types are:

xsd:boolean: Acceptable values are true/false, or 1/0.

xsd:date: Acceptable values are dates in the form YYYY-MM-DD (many other date
types are possible).

xsd:decimal: Acceptable values are decimal numbers (other number types are
possible)

xsd:string: Acceptable values are a string of characters

xsd:time: Acceptable values are a time of day in the form hh:mm:ss.sss.

xsd:uri-reference: Acceptable values are URLs.

XML Schema

A-4 Oracle Access Manager Developer Guide

All of the Oracle XML schemas are defined within a root element called oblix. The
following table shows the schema for the usc_profile.xsd definition of oblix, beginning
with its initial definition in component_profile.xsd. The table shows the schema only
to the first two node levels under oblix; the full schema goes much deeper. If you look
at just the pure OutputXML provided by the Identity System for the view (My
Identity) program, this information, in this order, is what you see.

Level 1 Level 2

ObProfile (defined in
component_profile.xsd)

ObPanel

ObHeaderPanel

ObRequestInfo

ObScripts

ObForm

ObDisplay

ObTextMessage

ObButton

ObStatus

ObNavBar (defined in
navbar.xsd)

ObRequestInfo

ObScripts

ObMisc

ObApps

ObApplication

ObFunctionsButtons

ObStatus

ObSearchForm (defined in
searchform.xsd)

ObHelpContext

ObRequestInfo

ObScripts

ObForm

ObDisplay

ObButton

ObAdvancedSearch

ObSearchRow

ObStatus

ObApplicationFunc (defined in
navbar.xsd)

ObFunctions

ObRequestInfo

ObStatus

ObStatus (defined in
component_basic.xsd)

This is a string of
type xsd:string; it
contains no other
elements.

XSL and XSLT

XML Background A-5

XSL and XSLT
XSL stands for Extensible Style Language. Files written in this language are used along
with XSLT to create documents. The XSL file itself is a well-formed XML document.
The language relies heavily upon the use of templates, which are sets of instructions to
the XSL transformer, telling it what to produce as output for a particular node within
the XML.

XSLT stands for XSL Transformation. This is a process that combines an XML
application with an XSL stylesheet to create a document.

General Syntax
The following list interprets some of the elements that appear within an Identity
System style sheet file, based on the first few characters of each element. This is not
intended to be an explanation of the full XSLT syntax; see the referenced site for that.

xsl:apply-templates select="xxxx" : Once the transformer is positioned to a node
within the XML, using xsl:template-match, this element identifies which subnodes or
sub-subnodes are to be processed. Point at sub-subnodes within the selected node by
providing their nested structure, for example xsl:apply-templates="xxxx/yyyy", where
yyyy is a node nested within xxxx. If the select option is omitted, templates for all the
subnodes under the matched node are processed.

The transformer decides which templates to use by identifying each subnode by name,
and then searching the entire stylesheet for the best xsl:template match for that name.
The match will generally be on the last node in the nested list, for example yyyy in the
previous example. The instructions for that matched node are applied immediately.

xsl:attribute name="string" : Inserts the text specified by string into the output.

xsl:call-template name="xxxx" : Immediately performs the transformation required by
the template xxxx. The template to be called will have been specified using
xsl:template name="xxxx".

xsl:choose : Precedes a list of possible transformations, each of which is indicated by
the use of the xsl:when element. It may be that none of the xsl:when elements applies;
the xsl:otherwise element covers this possibility. If more than one of the xsl:when
elements is true, only the first true xsl:when element is applied.

xsl:for-each select="xxxx" : Applies the content of this element to all occurrences of
xxxx.

xsl:if test="expression" : Permits a choice to be made. If expression evaluates to a
Boolean true, the content of the xsl:if element is performed. If not, it's not performed.
Expression syntax is described in the following paragraphs.

xsl:include href ="xxxx": An element that specifies a file which contains additional
XSL stylesheet information, to be treated just as if it were provided inline in the
current file.

xsl:number value="expression" : Used to insert a formatted integer into the output. In
Identity System stylesheets, expression often uses the position() function, which
indicates the position of a node in a list, starting with 1.

Note: In XSL files, lines starting with <xsl: are instructions to the XSL
transformer. All others are HTML text to be written verbatim into the
HTML output.

XSL and XSLT

A-6 Oracle Access Manager Developer Guide

xsl:otherwise : The last element in the list of elements under an xsl:choose, following
the xsl:whens, which is to be applied if none of the xsl:whens is true.

xsl:template match="xxxx" : Point the transformer to the node named xxxx in the XML
data. Point at subnodes by providing their nested structure, for example
xsl:template-match="xxxx/yyyy", where yyyy is a node nested within xxxx. This must
be followed by one or more uses of xsl:apply-templates, otherwise no transformation
of the XML data will be done.

xsl:template name="xxxx" : Create a named template, to be applied when
xsl:call-template="xxxx" is used.

xsl:value-of select="expression" : Inserts the value specified by expression into the
output.

xsl:when test="expression" : Permits a choice to be made. If expression evaluates to a
Boolean true, the content of the xsl:when element is performed. If not, it's not
performed. Usually, multiple xsl:when elements are nested under an xsl:choose
element.

Expression Syntax
Again, this is only a subset of a much longer list, provided to allow you to interpret
Oracle Access Manager XSL files. Expressions can be of several kinds:

■ Node Sets

A node set describes a set of nested elements, in the form xxxx/yyyy/zzzz,
meaning the element zzzz is nested within the element yyyy which is then nested
within the element xxxx. When a node set is used as the expression for a test, the
test is true if the nested set exists in the XML, false if it does not.

Further, this may be used in the form xxxx/yyyy/zzzz[@attribute = a value]. This
means to look at the value of the attribute belonging to element zzzz. The
expression is true if the attribute has the specified value and false otherwise.

■ String Content

One form of this is

 <xsl:value-of select="@attribute" />

which means return the value of the attribute.

Another is

 <xsl:if test="@attribute">

which is true if the attribute is valid for the element and has a non-NULL value.

■ Numeric Content

In this case, the expression reduces to a number. An example is

 <xsl:number value="position()-1">

which gives a number one less than the position of the current element in a list
of elements.

Client-Side Transformation
Client-side processing of stylesheets is supported only with Microsoft Internet
Explorer (IE) 5.0 and later. Earlier versions of IE require installation of a patch..

XSL and XSLT

XML Background A-7

To set up client side processing
1. Install the latest msxml patch.

2. Install the registration tool for msxml.

This can be obtained from:

http://msdn.microsoft.com/msdn-files/027/001/469/xmlinst.exe

3. Enter the following command sequence:

 xmlinst -u
 regsvr32 -u msxml.dll
 regsvr32 msxml3.dll
 xmlinst

4. Change the controlling parameter.

In the $Identity_install_dir/apps/common/bin/globalparams.xml parameter file,
change the value for OutputFormat from default to xml.

5. Restart the Identity Server.

6. Verify the change.

To verify that this change indeed took place, enter the Identity System using an
Internet Explorer 5 browser.

If you do a view source, you will see XML instead of HTML.

XSL Transformation Limits
Oracle Access Manager has a built in XSL Transformation processor. This processor
implements most, but not all, of the XSLT standard. The following is some information
applying to the current version.

■ The processor does not automatically insert the declaration line:

 <?xml version="1.0" ?>

in XML files that it generates. If this is needed because you want to see an
indented XML presentation, you must include it in the stylesheet.

■ The processor does not support UTF characters in a sort. An attempt to do this will
generate an error report.

■ The processor has a stack limit depth of 5298; recursive templates can go no
deeper than this.

■ The processor assumes that its output is intended for use by a browser and
therefore formats output with an HTML formatter.

■ The processor is intended primarily for use in a production environment, where
performance is important. For this reason, it does only minimal checking of
stylesheet syntax. Very bad syntax can cause the processor to fail. For this reason,
only known stylesheets with validated content should be used in the production
environment. Some validation tools are listed in the Oracle Access Manager
Customization Guide.

■ Embedded stylesheets in the XML are not supported.

■ Full support, or in some cases, any support, of the following commands is not
provided. If you need to use these commands, double-check your results before
putting the stylesheet into production.

Resources

A-8 Oracle Access Manager Developer Guide

– XSL:format-number

– XSL:output

– XSL:document

– XSL:namespace

– XSL:comment

– XSL:format

– XSL:processing instruction

– XSL:sort: case order

– XSL: id

Resources
Full descriptions and specifications for this information are available at:

http://www.ww3.org

See the information under XML, XML Schema, and XSL

You can find documentation for XML at:

http://www.w3.org/XML/

You can find documentation for XML Schema at:

http://www.w3.org/XML/Schema

A tutorial on the XML schema syntax is available at:

http://www.w3.org./TR/xmlschema-0

You can find documentation for XSL and XSLT at:

http://www.w3.org/Style/XSL/

http://www.w3.org/TR/xslt

Policy Manager API Definitions B-1

B
Policy Manager API Definitions

This appendix contains definitions for the Java, C, and managed code application
programming interfaces referred to as the Policy Manager API. It includes the
following topics:

■ Class ObAccessManager

■ Access Policy Objects

■ Access System Configuration Objects

■ Class ObAMException

The interfaces are defined here for easy reference. For complete header file content,
refer to:

■ Javadocs for Java definitions.

■ The obaccessmgr_api.h file for C definitions.

■ The obaccessmgr_api_mgd.h and the obaccess_api_common_mgd2.h file for
managed code definitions.

■ For detailed information about the Policy Manager API, see Chapter 5, "Policy
Manager API" on page 5-1.

Class ObAccessManager
This section contains the following topics:

■ Java

■ C

■ Managed Code

Java

public class ObAccessManager {
// INITIALIZATION METHODS
public ObAccessManager();
public void setAdmin(
String userid,
String password) throws ObAMException;
public void setCacheUpdates(bool update);
// GET METHODS
public Object[] getObjects(
int responselength,

Class ObAccessManager

B-2 Oracle Access Manager Developer Guide

String matchName,
int matchCriterium) throws ObAMException;
// RESPONSE LENGTHS
public static final int MIN = 0;
public static final int MID = 1;
public static final int MAX = 2;
// MATCH CRITERIA
public static final int EQUALS = 0;
public static final int CONTAINS = 1;
public static final int CONTAINS_IN_ORDER = 2;
public static final int BEGINS_WITH = 3;
public static final int ENDS_WITH = 4;
public ObAMPolicyDomain[] getPolicyDomains(
int responselength,
String matchName,
int matchCriteria) throws ObAMException;
public ObAMAuthenticationScheme[]
getAuthenticationSchemes(
int responselength, String matchName,
int matchCriteria) throws ObAMException;
public ObAMAuthorizationScheme[]
getAuthorizationSchemes(
int responselength, String matchName,
int matchCriteria) throws ObAMException;
public ObAMResourceType[] getResourceTypes(
int responselength,
String matchName,
int matchCriteria) throws ObAMException;
public ObAMHostIdentifier[] getHostIdentifiers(
int responselength,
String matchName,
int matchCriteria) throws ObAMException;
// SET METHOD AND SET ACTIONS
public static final int CREATE = 0;
public static final int MODIFY = 1;
public static final int REMOVE = 2;
public void setPolicyDomain(
ObAMPolicyDomain value,
int setAction) throws ObAMException;
//ACCESS TEST METHOD
public ObAMAccessTestResults testAccess(
ObAMAccessTest test);
}

C
/* INITIALIZATION METHODS */
typedef const void * ObAccessManager_t;
ObAccessManager_t ObAccessManager_new();
void ObAccessManager_delete(ObAccessManager_t *pAm);
void ObAccessManager_setAdmin_password(
ObAccessManager_t am,
const char *userid,
const char *password)
void ObAccessManager_setCacheUpdates(int update);
/* GET METHODS */
enum ObAccessManager_ResponseLength {
ObAccessManager_MIN,
ObAccessManager_MID,

Class ObAccessManager

Policy Manager API Definitions B-3

ObAccessManager_MAX};
enum ObAccessManager_MatchCriteria {
ObAccessManager_EQUALS,
ObAccessManager_CONTAINS,
ObAccessManager_CONTAINS_IN_ORDER,
ObAccessManager_BEGINS_WITH,
ObAccessManager_ENDS_WITH};
ObAMArrayOfObjects_t ObAccessManager_getObjects(
ObAccessManager_t am,
ObAccessManager_ResponseLength responseLength,
const char *matchName,
ObAccessManager_MatchCriteria matchCriterium);
ObAMArrayOfPolicyDomains_t
ObAccessManager_getPolicyDomains(
ObAccessManager_t am,
ObAccessManager_ResponseLength responseLength,
const char *matchName,
ObAccessManager_MatchCriteria matchCriterium);
ObAMArrayOfAuthenticationSchemes_t
ObAccessManager_getAuthenticationSchemes(
ObAccessManager_t am,
ObAccessManager_ResponseLength responseLength,
const char *matchName,
ObAccessManager_MatchCriteria matchCriterium);
ObAMArrayOfAuthorizationSchemes_t
ObAccessManager_getAuthorizationSchemes(
ObAccessManager_t am,
ObAccessManager_ResponseLength responseLength,
const char *matchName,
ObAccessManager_MatchCriteria matchCriterium);
ObAMArrayOfResourceTypes_t
ObAccessManager_getResourceTypes(
ObAccessManager_t am,
ObAccessManager_ResponseLength responseLength,
const char *matchName,
ObAccessManager_MatchCriteria matchCriterium);
ObAMArrayOfHostIdentifiers_t
ObAccessManager_getHostIdentifiers(
ObAccessManager_t am,
ObAccessManager_ResponseLength responseLength,
const char *matchName,
ObAccessManager_MatchCriteria matchCriterium);
ObAMMasterAuditRule_t
ObAccessManager_getMasterAuditRule(
ObAccessManager_t am);
/* SET METHOD */
enum ObAccessManager_SetAction {
ObAccessManager_CREATE,
ObAccessManager_MODIFY,
ObAccessManager_REMOVE};
void ObAccessManager_setPolicyDomain(
ObAccessManager_t am,
ObAMPolicyDomain_t value,
ObAccessManager_SetAction setAction);

/* ACCESS TEST METHOD */
ObAMAccessTestResults_t ObAccessManager_testAccess(
ObAMAccessTest_t test);

Class ObAccessManager

B-4 Oracle Access Manager Developer Guide

Managed Code

public __gc class ObAccessManager_ResponseLengthMgd {
public:
ObAccessManager_ResponseLengthMgd();
// GET AND SET VALUES
__property bool get_isMin();
__property bool get_isMid();
__property bool get_isMax();
__property ObAccessManager_ResponseLength get_Value();
__property void set_Value(ObAccessManager_ResponseLength value);
void setMin();
void setMid();
void setMax();
};

public _gc class ObAccessManager_MatchCriterMgd {
public:
ObAccessManager_MatchCriteriaMgd():
//GET AND SET VALUES
__property bool get_isEquals();
__property bool get_isContains();
__property bool get_isContainsInOrder();
__property bool get_isBeginsWith():
__property bool get_isEndsWith();
__property ObAccessManager_MatchCriteria get_Value();
__property void set_Value(ObAccessManager_MatchCriteria value);
void setEquals();
void setContains();
void setContainsInOrder();
void setBeginsWith();
void setEndsWith();
};

public _gc class ObAccessManager_SetActionMgd {
public:
ObAccessManager_SetActionMgd();
// GET AND SET VALUES
_property bool get_isCreate():
_property bool get_isModify();
_property bool get_isRemove();
_property ObAccessManager_SetAction get_Value();
_property void set_Value(ObAccessManager_SetAction value);
void setCreate();
void setModify();
void setRemove();
};

// INITIALIZATION
public _gc class ObAccessManagerMgd : public System::IDisposable {
public:
ObAccessManagerMgd();
ObAccessManager();
void Dispose();
void Dispose(bool disposing);
// GETTERS AND SETTERS
void setAdmin(System::String *userid, System::String *password);
_property void set_CacheUpdates(bool update);
// RETURNS AN ARRAY OF ObAMPolicyDomainMgd OBJECTS

Access Policy Objects

Policy Manager API Definitions B-5

ArrayList
ObAccessManager::getPolicyDomains(ObAccessManager_ResponseLengthMgd
*responseLength, System::String *matchName,
ObAccessManager_MatchCriteriaMgd *matchCriterium);
// RETURNS AN ARRAY OF ObAMAuthenticationSchemeMgd OBJECTS
ArrayList *getAuthenticationSchemes(ObAccessManager_ResponseLengthMgd
*responseLength, System::String *matchName,
ObAccessManager_MatchCriteriaMgd *matchCriterium);
// RETURNS AN ARRAY OF ObAMResourceTypeMgd OBJECTS
ArrayList *getResourceTypes(ObAccessManager_ResponseLengthMgd
*responseLength, System::String *matchName,
ObAccessManager_MatchCriteriaMgd *matchCriterium);
// RETURNS AN ARRAY OF ObAMHostIdentifierMgd OBJECTS
ArrayList *getHostIdentifiers (ObAccessManager_ResponseLengthMgd
*responseLength, System::String *matchName,
ObAccessManager_MatchCriteriaMgd *matchCriterium);
__property bool get_isContains();
ObAMMasterAuditRuleMgd *get_MasterAuditRule();
void setPolicyDomain(ObAMPolicyDomainMgd *value,
ObAccessmanager_SetActionMgd *setAction);
ObAMAccessTestResultsMgd *getTestAccess(ObAMAccessTestMgd *test);
};

Access Policy Objects
This section contains the following topics:

■ Java

■ C

■ Managed Code

Java

Class ObAMResource

public class ObAMResource {
public ObAMResource();
public String getResourceType();
public String getHostID();
public String getURLPrefix();
public String getDescription();
public void setResourceType(String value);
public void setHostID(String value);
public void setURLPrefix(String value);
public void setDescription(String value);
public void setIDFrom(ObAMResource other);
}

Class ObAMAccessConditions

public class ObAMAccessConditions {
public ObAMAccessConditions();

Access Policy Objects

B-6 Oracle Access Manager Developer Guide

public int getNumberOfPersons();
public int getNumberOfGroups();
public int getNumberOfRoles();
public int getNumberOfRules();
public int getNumberOfIPaddresses();
public ObAMIdentity_t getPerson(int index);
public ObAMIdentity_t getGroup(int index);
public String getRole(int index);
public String getRule(int index);
public String getIPaddress(int index);
public void addRole(String value);
public void addPerson(ObPerson value);
public void addGroup(ObGroup value);
public void addRule(String value);
public void addIPAddress(String value);
public void removeRole(String value);
public void removePerson(ObPerson value);
public void removeGroup(ObGroup value);
public void removeRule(String value);
public void removeIPAddress(String value);
public void setIDFrom(ObAMAccessConditions other);
}

Class ObAMDate

public class ObAMDate {
// DAYS OF THE WEEK
public static final int SUNDAY = 1;
public static final int MONDAY = 2;
public static final int TUESDAY = 3;
public static final int WEDNESDAY = 4;
public static final int THURSDAY = 5;
public static final int FRIDAY = 6;
public static final int SATURDAY = 7;
// MONTHS
public static final int JANUARY = 1;
public static final int FEBRUARY = 2;
public static final int MARCH = 3;
public static final int APRIL = 4;
public static final int MAY = 5;
public static final int JUNE = 6;
public static final int JULY = 7;
public static final int AUGUST = 8;
public static final int SEPTEMBER = 9;
public static final int OCTOBER = 10;
public static final int NOVEMBER = 11;
public static final int DECEMBER = 12;
public ObAMDate();
public int getYear();
public int getMonth();
public int getDay();
public void set(int year, int month, int day)
throws ObAMException;
}

Access Policy Objects

Policy Manager API Definitions B-7

Class ObAMTime

public class ObAMTime {
public ObAMTime();
public int getHours();
public int getMinutes();
public int getSeconds();
public void set(int hours, int minutes,int seconds)
throws ObAMException;
}

Class ObAMTimingConditions

class ObAMTimingConditions {
// VALUE FOR RelativeTo
public static final int UNDEFINED = 0;
public static final int GMT = 1;
public static final int LOCAL_TIME = 2;
ObAMTimingConditions();
public int getRelativeTo();
public ObAMDate getStartDate();
public ObAMTime getStartTime();
public ObAMDate getEndDate();
public ObAMTime getEndTime();
public int getNumberOfMonths();
public int getNumberOfDaysOfMonth();
public int getNumberOfDaysOfWeek();
public int getMonth(int index);
public int getDayOfMonth(int index);
public int getDayOfWeek(int index);
public void setRelativeTo(
int value) throws ObAMException;
public void setStartDate(ObAMDate value);
public void setStartTime(ObAMTime value);
public void setEndDate(ObAMDate value);
public void setEndTime(ObAMTime value);
public void addMonth(
int value) throws ObAMException;
public void addDayOfMonth(
int value) throws ObAMException;
public void addDayOfWeek(
int value) throws ObAMException;
public void removeMonth(
int value) throws ObAMException;
public void removeDayOfMonth(
int value) throws ObAMException;
public void removeDayOfWeek(
int value) throws ObAMException;
public void setIDFrom(ObAMTimingConditions other);
}

Class ObAMIdentity

public class ObAMIdentity {

Access Policy Objects

B-8 Oracle Access Manager Developer Guide

public ObAMIdentity();
public String getUID();
public String getName();
public String getLoginID();
public void setUID(String value);
public void setName(String value);
public void setLoginID(String value);
}

Class ObAMObjectWithActions

public class ObAMObjectWithActions {
// ACTION TYPE ENUMS
public static final int SUCCESS = 0 ;
public static final int FAILURE = 1 ;
public static final int INCONCLUSIVE = 2 ;
public int getNumberOfActions(int actionType)
throws ObAMException;
public ObAMAction getActionOfType(int actionType, int index)
throws ObAMException;
public void addActionOfType(int actionType, ObAMAction value)
throws ObAMException;
public void removeActionOfType(int actionType,
ObAMAction value) throws ObAMException;
public String getName();
public void setName(String value);
public void setIDFrom(ObAMObjectWithActions other);
}

Class ObAMAction

public class ObAMAction {
public static final int UNDEFINED = 0;
public static final int FIXEDVALUE = 1;
public static final int ATTRIBUTE = 2;
public ObAMAction();
public String getType();
public String getName();
public String getValue();
public int getValueType();
public void setType(Stromg value);
public void setName(String value);
public void setValue(String value);
public void setValueType(
int value) throws ObAMException;
public void setIDFrom(ObAMAction other);
}

Class ObAMAuthenticationRule

public class ObAMAuthenticationRule {
public ObAMAuthenticationRule();
public String getName();

Access Policy Objects

Policy Manager API Definitions B-9

public String getDescription();
public String getScheme();
public void setName(String value);
public void setDescription(String value);
public void setScheme(String value);
public void setIDFrom(
ObAMAuthenticationRule other);
public int getNumberOfActions(int actionType)
throws ObAMObjection;
public ObAMAction getActionOfType(int actionType,
int index)throws ObAMException;
public void addActionOfType(int actionTtype,
ObAMAction value)throws ObAMException;
public void removeActionOfType(int actionType,
ObAMAction value)throws ObAMException;
}

Class ObAMAuthorizationRule

public class ObAMAuthorizationRule {
public ObAMAuthorizationRule();
public String getName();
public String getDescription();
public boolean getEnabled();
public boolean getAllowTakesPrecedence();
public ObAMTimingConditions getTimingConditions();
public int getNumberOfActions(int actionType)
throws ObAMObjection;
public ObAMAction getActionOfType(int actionType,
int index)throws ObAMException;
public void addActionOfType(int actionTtype,
ObAMAction value)throws ObAMException;
public void removeActionOfType(int actionType,
ObAMAction value)throws ObAMException;
public ObAMParameter getSchemeParameter(int index);
public ObAMAccessConditionsgetAllowAccessConditions();
public ObAMAccessConditionsgetDenyAccessConditions();
public String getAuthorizatonScheme();
public void setName(String value);
public void setDescription(String value);
public void setEnabled(boolean value);
public void setAllowTakesPrecedence(boolean value);
public void setTimingConditions(
ObAMTimingConditions value);
public void setAuthorizationScheme(String value);
public void addSchemeParameter(
ObAMParameter value):
public void removeSchemeParameter(
ObAMParameter value);
public void modifySchemeParameter(
ObAMParameter value);
public void setIDFrom(ObAMAuthorizationRule other);
}

Class ObAMAuthorizationExpr

Access Policy Objects

B-10 Oracle Access Manager Developer Guide

public class ObAMAuthorizationExpr {
public static final int ACTION_DUPLICATE = 0;
public static final int ACTION_IGNORE = 1;
public static final int ACTION_OVERWRITE = 2;
public static final int UNDEFINED = 3;
public ObAMAuthorizationExpr();
public String getExpression();
public void setExpression(String value) throws ObAMException;
public int getDuplicateActionsPolicy();
public void setDuplicateActionsPolicy(int value)
throws ObAMException;
public int getNumberOfActions(int actionType)
throws ObAMException;
public ObAMAction getActionOfType(
int actionType,int index) throws ObAMException;
public void addActionOfType(int actionType, ObAMAction value)
throws ObAMException;
public void removeActionOfType(int actionType,
ObAMAction value) throws ObAMException;
public String getName();
public void setName(String value);
public void setIDFrom(ObAMObjectWithActions other);
}

Class ObAMAuditRule

public class ObAMAuditRule {
public static final int AUTHENTICATION_SUCCESS = 0x01;
public static final int AUTHENTICATION_FAILURE = 0x02;
public static final int AUTHORIZATION_SUCCESS = 0x04;
public static final int AUTHORIZATION_FAILURE = 0x08;
public static final int NUMBER_OF_AUDIT_EVENTS = 4;
public ObAMAuditRule();
public int ObAMAuditRule_getNumberOfEvents(
ObAMAuditRule_t audit);
public int ObAMAuditRule_getNumberOfAttributes(
ObAMAuditRule_t audit);
public int ObAMAuditRule_getEvent(
ObAMAuditRule_t audit, int index);
public String ObAMAuditRule_getAttribute(
ObAMAuditRule_t audit,int index);
public void addEvent(int value);
public void addAttribute(String value);
public void removeEvent(int value) ;
public void removeAttribute(String value);
public void setIDFrom(ObAMAuditRule other);
}

Class ObAMAdminRule

public class ObAMAdminRule {
public ObAMAdminRule();
public int getNumberOfPersons();
public int getNumberOfGroups();
public int getNumberOfRoles();

Access Policy Objects

Policy Manager API Definitions B-11

public int getNumberOfRules();
public ObAMIdentity_t getPerson(int index);
public ObAMIdentity_t getGroup(int index);
public String getRole(int index);
public String getRule(int index);
public void addRole(String value);
public void addPerson(ObAMIdentity value);
public void addGroup(ObAMIdentity value);
public void addRule(String value)
public void removeRole(String value);
public void removePerson(ObAMIdentity value);
public void removeGroup(ObAMIdentity value);
public void removeRule(String value);
public void setIDFrom(ObAMAdminRule other);
}

Class ObAMParameter

public class ObAMParameter {
public ObAMParameter();
public String getName();
public String getValue();
public void setName(String value);
public void setValue(String value);
}

Class ObAMPolicy

public class ObAMPolicy {
public ObAMPolicy();
public String getName();
public String getDescription();
public String getResourceType();
public String getHostID();
public String getURLPattern();
public String getQueryString();
public int getNumberOfOperations();
public int getNumberOfResources();
public int getNumberOfParameters();
public int ObAMAuthorizationExpression
getAuthorizationExpr();
public void setAuthorizationExpr(
ObAMAuthorizationExpr value);
public String getOperation(int index);
public ObAMResource getResource(int index);
public ObAMParameter getParameter(int index);
public ObAMAuthenticationRule
getAuthenticationRule();
public ObAMAuditRule getAuditRule();
public void setName(String value);
public void setDescription(String value);
public void setResourceType(String value);
public void setHostID(String value);
public void setURLPattern(String value);
public void setQueryString(String value);

Access Policy Objects

B-12 Oracle Access Manager Developer Guide

public void setAuditRule(ObAMAuditRule value);
public void addOperation(String value);
public void addResource(ObAMResource value);
public void addParameter(ObAMParameter value);
public void removeOperation(String value);
public void removeResource(ObAMResource value);
public void removeParameter(Map value);
public void setIDFrom(ObAMPolicy other);
}

Class ObAMPolicyDomain

public class ObAMPolicyDomain extends ObListElement {
public ObAMPolicyDomain()
public String getName()
public String getDescription()
public boolean getEnabled()
public int getNumberOfResources();
public int getNumberOfAuthorizationRules();
public ObAMAuthorizationRule getAuthorizationRule(int index);
public ObAMAuthorizationExpr getDefaultAuthorizationExpr();
public int getNumberOfPolicies();
public ObAMResource getResource(int index);
public ObAMAuthenticationRule
getDefaultAuthenticationRule(int index);
ObAMPolicy getPolicy(int index);
public ObAMAuditRule getDefaultAuditRule();
public ObAMAdminRule getDelegateAdminRule();
public ObAMAdminRule getGrantAdminRule();
public ObAMAdminRule getBasicAdminRule();
public void modifyPolicy(ObAMpolicy value):
public void modifyAuthorizationRule(
ObAMAuthorizationRule value):
public void modifyResource(ObResource value):
public void setName(String value);
public void setDescription(String value);
public void setEnabled(boolean value);
public void setDefaultAuthenticationRule(
ObAMAuthenticationRule value);
public void setDefaultAuditRule(
ObAMAuditRule value);
public void setDefaultAuthorizationExpr(
ObAMAuthorizationExpr value);
public void setDelegateAdminRule(
ObAMAdminRule value);
public void setGrantAdminRule(ObAMAdminRule value);
public void setBasicAdminRule(ObAMAdminRule value);
public void addResource(ObAMResource value);
public void addPolicy(ObAMPolicy value);
public void addAuthorizationRule(
ObAMAuthorizationRule value);
public void removeAuthorizationRule(
ObAMAuthorizationRule value);
public void removeResource(ObAMResource value);
public void removePolicy(ObAMPolicy value);
public void setIDFrom(ObAMPolicyDomain other);
}

Access Policy Objects

Policy Manager API Definitions B-13

Class ObAMAccessTest

public class ObAMAccessTest {
public ObAMAccessTest();
public String getURL();
public String getResourceType();
public String getIPaddress();
public ObAMDate getDate();
public ObAMTime getTime();
int getNumberOfOperations();
int getNumberOfUsers();
String getOperation(int index);
ObAMIdentity getUser(int index);
public boolean getShowAllowed();
public boolean getShowDenied();
public boolean getShowMatchingPolicy();
public boolean getShowMatchingExpr();
public boolean getShowDeterminingRules();
public void setURL(String value);
public void setResourceType(String value);
public void addOperation(String value);
public void setIPaddress(String value);
public void setDate(ObAMDate value);
public void setTime(ObAMTime value);
public void addUser(ObAMIdentity value);
public void setShowAllowed(boolean value);
public void setShowDenied(boolean value);
public void setShowMatchingPolicy(boolean value);
public void setShowMatchingExpr(boolean value);
public void setShowDeterminingRules(boolean value);
}

Class ObAMAccessTestResults

public class ObAMAccessTestResults {
public String getPolicyDomain();
public int getNumberOfResults();
public ObAMAccessTestResult getResult(int index);
}

Class ObAMAccessTestResult(s)

public class ObAMAccessTestResult {
public ObAMIdentity getUser();
public String getPolicy();
public boolean getAuthorized();
public String getExpr();
public int getNumberOfDeterminingRules();
public String getDeterminingRule (int index);
public int getAuthorizationStatus();
}

Access Policy Objects

B-14 Oracle Access Manager Developer Guide

C

Class ObAMResource

typedef const void * ObAMResource_t;
ObAMResource_t ObAMResource_new();
ObAMResource_t ObAMResource_copy(
ObAMResource_t resource);
void ObAMResource_delete(ObAMResource_t *pResource);
const char *ObAMResource_getResourceType(
ObAMResource_t resource);
const char *ObAMResource_getHostID(ObAMResource_t resource);
const char *ObAMResource_getURLPrefix(
ObAMResource_t resource);
const char *ObAMResource_getDescription(
ObAMResource_t resource);
void ObAMResource_setResourceType(ObAMResource_t resource,
const char *value);
void ObAMResource_setHostID(ObAMResource_t resource,
const char *value);
void ObAMResource_setURLPrefix(ObAMResource_t resource,
const char *value);
void ObAMResource_setDescription(ObAMResource_t resource,
const char *value);
void ObAMResource_SetIDFrom(ObAMResource_t resource,
ObAMResource_t other);

Class ObAMAccessConditions

typedef const void * ObAMAccessConditions_t;
ObAMAccessConditions_t ObAMAccessConditions_new();
ObAMAccessConditions_t ObAMAccessConditions_copy(
ObAMAccessConditions_t access);
void ObAMAccessConditions_delete(
ObAMAccessConditions_t *pAccess);
int ObAMAccessConditions_getNumberOfPersons(
ObAMAccessConditions_t access);
int ObAMAccessConditions_getNumberOfGroups(
ObAMAccessConditions_t access);
int ObAMAccessConditions_getNumberOfRoles(
ObAMAccessConditions_t access);
int ObAMAccessConditions_getNumberOfRules(
ObAMAccessConditions_t access);
int ObAMAccessConditions_getNumberOfIPaddresses(
ObAMAccessConditions_t access);
ObAMIdentity_t ObAMAccessConditions_getPerson(
ObAMAccessConditions_t access, int index);
ObAMIdentity_t ObAMAccessConditions_getGroup(
ObAMAccessConditions_t access, int index);
const char *ObAMAccessConditions_getRole(
ObAMAccessConditions_t access, int index);
const char *ObAMAccessConditions_getRule(
ObAMAccessConditions_t access, int index);
const char *ObAMAccessConditions_getIPaddress(
ObAMAccessConditions_t access, int index);

Access Policy Objects

Policy Manager API Definitions B-15

void ObAMAccessConditions_addRole(
ObAMAccessConditions_t access,const char *value);
void ObAMAccessConditions_addPerson(
ObAMAccessConditions_t access, ObAMIdentity_t value);
void ObAMAccessConditions_addGroup(
ObAMAccessConditions_t access, ObAMIdentity_t value);
void ObAMAccessConditions_addRule(
ObAMAccessConditions_t access, const char *value);
void ObAMAccessConditions_addIPAddress(
ObAMAccessConditions_t access, const char *value);

Class ObAMDate

enum ObAMDate_DaysOfWeek {
ObAMDate_SUNDAY = 1,
ObAMDate_MONDAY = 2,
ObAMDate_TUESDAY = 3,
ObAMDate_WEDNESDAY = 4,
ObAMDate_THURSDAY = 5,
ObAMDate_FRIDAY = 6,
ObAMDate_SATURDAY = 7};
enum ObAMDate_Months {
ObAMDate_JANUARY = 0,
ObAMDate_FEBRUARY = 1,
ObAMDate_MARCH = 2,
ObAMDate_APRIL = 3,
ObAMDate_MAY = 4,
ObAMDate_JUNE = 5,
ObAMDate_JULY = 6,
ObAMDate_AUGUST = 7,
ObAMDate_SEPTEMBER = 8,
ObAMDate_OCTOBER = 9,
ObAMDate_NOVEMBER = 10,
ObAMDate_DECEMBER = 11};
typedef const void * ObAMDate_t;
ObAMDate_t ObAMDate_new();
ObAMDate_t ObAMDate_copy(ObAMDate_t date);
void ObAMDate_delete(ObAMDate_t date);
int ObAMDate_getYear(ObAMDate_t date);
int ObAMDate_getMonth(ObAMDate_t date);
int ObAMDate_getDay(ObAMDate_t date);
void ObAMDate_set(
ObAMDate_t date, int year, int month, int day);

Class ObAMTime

typedef const void * ObAMTime_t;
ObAMTime_t ObAMTime_new();
ObAMTime_t ObAMTime_copy(ObAMTime_t time);
void ObAMTime_delete(ObAMTime_t time);
int ObAMTime_getMonth(ObAMTime_t time);
int ObAMTime_getDay(ObAMTime_t time);
int ObAMTime_getYear(ObAMTime_t time);
void ObAMTime_set(ObAMTime_t time, int hours, int minutes,
int seconds);

Access Policy Objects

B-16 Oracle Access Manager Developer Guide

Class ObAMTimingConditions

enum ObAMTimingConditions_RelativeTo {
ObAMTimingConditions_UNDEFINED,
ObAMTimingConditions_GMT,
ObAMTimingConditions_LOCAL_Time
};
typedef const char * ObAMTimingConditions_t;
ObAMTimingConditions_t ObAMTimingConditions_new();
ObAMTimingConditions_t ObAMTimingConditions_copy(
ObAMTimingConditions_t timing);
void ObAMTimingConditions_delete(
ObAMTimingConditions_t *pTiming);
ObAMTimingConditions_RelativeTo ObAMTimingConditions_getRelativeTo(
ObAMTimingConditions_t timing);
ObAMDate_t ObAMTimingConditions_getStartDate(
ObAMTimingConditions_t timing);
ObAMTime_t ObAMTimingConditions_getStartTime(
ObAMTimingConditions_t timing);
ObAMDate_t ObAMTimingConditions_getEndDate(
ObAMTimingConditions_t timing);
ObAMTime_t ObAMTimingConditions_getEndTime(
ObAMTimingConditions_t timing);
int ObAMTimingConditions_getNumberOfMonths(
ObAMTimingConditions_t timing);
int ObAMTimingConditions_getNumberOfDaysOfMonth(
ObAMTimingConditions_t timing);
int ObAMTimingConditions_getNumberOfDaysOfWeek(
ObAMTimingConditions_t timing);
int ObAMTimingConditions_getMonth(
ObAMTimingConditions_t timing,int index);
int ObAMTimingConditions_getDayOfMonth(
ObAMTimingConditions_t timing,int index);
int ObAMTimingConditions_getDayOfWeek(
ObAMTimingConditions_t timing,int index);
void ObAMTimingConditions_setRelativeTo(
ObAMTimingConditions_t timing,
ObAMTimingConditions_RelativeTo value);
void ObAMTimingConditions_setStartDate(
ObAMTimingConditions_t timing,ObAMDate_t value);
void ObAMTimingConditions_setStartTIME(
ObAMTimingConditions_t timing, ObAMTime_t value);
void ObAMTimingConditions_setEndDate(
ObAMTimingConditions_t timing, ObAMDate_t value);
void ObAMTimingConditions_setEndTime(
ObAMTimingConditions_t timing, ObAMTime_t value);
void ObAMTimingConditions_addMonth(
ObAMTimingConditions_t timing, int value);
void ObAMTimingConditions_addDayOfMonth(
ObAMTimingConditions_t timing, int value);
void ObAMTimingConditions_addDayOfWeek(
ObAMTimingConditions_t timing, int value);
void ObAMTimingConditions_removeMonth(
ObAMTimingConditions_t timing, int value);
void ObAMTimingConditions_removeDayOfMonth(
ObAMTimingConditions_t timing, int value);
void ObAMTimingConditions_removeDayOfWeek(

Access Policy Objects

Policy Manager API Definitions B-17

ObAMTimingConditions_t timing, int value);
void ObAMTimingConditions_setIDFrom(
ObAMTimingConditions_t timing,
ObAMTimingConditions_t other);

Class ObAMIdentity

typedef const void * ObAMIdentity_t;
ObAMIdentity_t ObAMIdentity_new();
ObAMIdentity_t ObAMIdentity_copy(
ObAMIdentity_t identity);
void ObAMIdentity_delete(ObAMIdentity_t *pIdentity);
const char *ObAMIdentity_getUID(
ObAMIdentity_t identity);
const char *ObAMIdentity_getName(ObAMIdentity_t identity);
const char *ObAMIdentity_getLoginID(
ObAMIdentity_t identity);
void ObAMIdentity_setUID(ObAMIdentity_t identity,
const char *value);
void ObAMIdentity_setName(ObAMIdentity_t identity,
const char *value);
void ObAMIdentity_setLoginID(ObAMIdentity_t identity,
const char *value);

Class ObAMAction

enum ObAMAction_ValueType {
ObAMAction_UNDEFINED,
ObAMAction_FIXEDVALUE,
ObAMAction_ATTRIBUTE;
};
typedef const void *ObAMAction_t;
ObAMAction_t ObAMAction_new();
ObAMAction_t ObAMAction_copy(ObAMAction_t action);
void ObAMAction_delete(ObAMAction_t *pAction);
const char *ObAMAction_getType(ObAMAction_t action);
const char *ObAMAction_getName(ObAMAction_t action);
const char *ObAMAction_getValue(ObAMAction_t action);
ObAMAction_ValueType ObAMAction_getValueType(
ObAMAction_t action);
void ObAMAction_setType(
ObAMAction_t action, const char *value);
void ObAMAction_setName(
ObAMAction_t action, const char *value);
void ObAMAction_setValue(ObAMAction_t action,
const char *value);
void ObAMAction_setValueType(ObAMAction_t action,
ObAMAction_ValueType value);
void ObAMAction_setIDFrom(ObAMAction_t action,
ObAMAction_t other);

Class ObAMObjectWithActions

Access Policy Objects

B-18 Oracle Access Manager Developer Guide

enum ObAMObjectWithActions_ActionType{
ObAMObjectWithActions_SUCCESS,
ObAMObjectWithActions_FAILURE,
ObAMObjectWithActions_INCONCLUSIVE
};

Class ObAMAuthenticationRule

typedef const void * ObAMAuthenticationRule_t;
ObAMAuthenticationRule_t ObAMAuthenticationRule_new();
ObAMAuthenticationRule_t ObAMAuthenticationRule_copy(
ObAMAuthenticationRule_t authn);
void ObAMAuthenticationRule_delete(
ObAMAuthenticationRule_t *pAuthn);
const char *ObAMAuthenticationRule_getName(
ObAMAuthenticationRule_t authn);
const char *ObAMAuthenticationRule_getDescription(
ObAMAuthenticationRule_t authn);
const char *ObAMAuthenticationRule_getScheme(
ObAMAuthenticationRule_t authn);
int ObAMAuthenticationRule_getNumberOfActions(
ObAMObjectWithActions_ActionType type,
ObAMAuthenticationRule_t authn);
ObAMAction_t ObAMAuthenticationRule_getActionOfType(
ObAMObjectWithAction_ActionType type,
ObAMAuthenticationRule_t authn, int index);
vvoid ObAMAuthenticationRule_addActionOfType(
ObAMObjectWithActions_ActionType type,
ObAMAuthationRule_t authn,ObAMAction_t value);
void ObAMAuthnenticationRule_removeActionOfType(
ObAMObjectWithActions_ActionType type,
ObAMAuthenticationRule_t authn, ObAMAction_t value);
void ObAMAuthenticationRule_setName(
ObAMAuthenticationRule_t authn, const char *value);
void ObAMAuthenticationRule_setDescription(
ObAMAuthenticationRule_t authn, const char *value);
void ObAMAuthenticationRule_setScheme(
ObAMAuthenticationRule_t authn, const char *value);
void ObAMAuthenticationRule_setIDFrom(
ObAMAuthenticationRule_t authn,
ObAMAuthenticationRule_T other);

Class ObAMAuthorizationRule

typedef const void * ObAMAuthorizationRule_t;
ObAMAuthorizationRule_t ObAMAuthorizationRule_new();
ObAMAuthorizationRule_t ObAMAuthorizationRule_copy(
ObAMAuthorizationRule_t authz);
void ObAMAuthorizationRule_delete(
ObAMAuthorizationRule_t *pAuthz);
const char *ObAMAuthorizationRule_getName(
ObAMAuthorizationRule_t authz);
const char *ObAMAuthorizationRule_getDescription(
ObAMAuthorizationRule_t authz);
int ObAMAuthorizationRule_getEnabled(

Access Policy Objects

Policy Manager API Definitions B-19

ObAMAuthorizationRule_t authz);
int ObAMAuthorizationRule_getAllowTakesPrecedence(
ObAMAuthorizationRule_t authz);
ObAMTimingConditions_t
ObAMAuthorizationRule_getTimingConditions(
ObAMAuthorizationRule_t authz);
int ObAMAuthorizationRule_getNumberOfSchemeParameters(
ObAMAuthorizationRule_t authz);
ObAMAuthorizationRule_getSchemeParameter(
ObAMAuthorizationRule_t authz, int index);
int ObAMAuthorizationRule_getNumberOfActions(
ObAMObjectWithActions_ActionType type,
ObAMAuthorizationRule_t authz);
ObAMAction_t ObAMAuthorizationRule_getActionOfType(
ObAMObjectWithActions_ActionType type,
ObAMAuthorizationRule_t authz, int index);
ObAMAccessConditions_t
ObAMAuthorizationRule_getAllowAccessConditions(
ObAMAuthorizationRule_t authz);
ObAMAccessConditions_t
ObAMAuthorizationRule_getDenyAccessConditions(
ObAMAuthorizationRule_t authz);
const char *ObAMAuthorizationRule_getAuthorizationScheme(
ObAMAuthorizationRule_t authz);
void ObAMAuthorizationRule_setName(
ObAMAuthorizationRule_t authz, const char *value);
void ObAMAuthorizationRule_setDescription(
ObAMAuthorizationRule_t authz, const char *value);
void ObAMAuthorizationRule_setEnabled(
ObAMAuthorizationRule_t authz, int value);
void ObAMAuthorizationRule_setAllowTakesPrecedence(
ObAMAuthorizationRule_t authz, int value);
void ObAMAuthorizationRule_setTimingConditions(
ObAMAuthorizationRule_t authz,
ObAMTimingConditions_t value);
void ObAMAuthorizationRule_setAllowAccessConditions(
ObAMAuthorizationRule_t authz,
ObAMAccessConditions_t value);
void ObAMAuthorizationRule_setDenyAccessConditions(
ObAMAuthorizationRule_t authz,
ObAMAccessConditions_t value);
void ObAMAuthorizationRule_setAuthorizationScheme(
ObAMAuthorizationRule_t authz,
void ObAMAuthorizationRule_addSchemeParameter(
ObAMAuthorizationRule_t authz, ObAMParameter_t value);
void ObAMAuthorizationRule_removeSchemeParamter(
ObAMAuthorizationRule_t authz, ObAMParameter_t value);
void ObAMAuthorizationRule_modifySchemeParameter(
ObAMAuthorizationRule_t authz, ObAMParameter_t value);
void ObAMAuthorizationRule_setIDFrom(
ObAMAuthorizationRule_t authz,
ObAMAuthorizationRule_t other);
int ObAMAuthorizationRule_getNumberOfActions(
ObAMObjectWithActions_ActionType type,
ObAMAuthorizationRule_t authz);
ObAMAction_t ObAMAuthorizationRule_getActionOfType(
ObAMObjectWithActions_ActionType type,
OAMAuthorizationRule_t authz, int index);
void ObAMAuthorizationRule_addActionOfType(
OAMObjectWithActions_ActionType type,

Access Policy Objects

B-20 Oracle Access Manager Developer Guide

ObAMAuthorizationRule_t authz, ObAMAction_t value);

Class ObAMAuthorizationExpr

enum ObAMAuthorizationExpr_DuplicateActionsPolicy {
ObAMAuthorizationExpr_ACTION_DUPLICATE,
ObAMAAuthorizationExpr_ACTION_DUPLICATE,
ObAMAuthorizationExpr_ACTION_IGNORE,
ObAMAuthorizationExpr_ACTION_OVERWRITE,
ObAMAuthorizationExpr_UNDEFINED
};
typedef const void * ObAMAuthorizationExpr_t;
ObAMAuthorizationExpr_t ObAMAuthorizationExpr_new();
ObAMAuthorizationExpr_t ObAMAuthorizationExpr_copy(
ObAMAuthorizationExpr_t authz);
void ObAMAuthorizationExpr_delete(
ObAMAuthorizationExpr_t *pAuthz);
const char *ObAMAuthorizationExpr_getExpr(
ObAMAuthorizationExpr_t authz);
int ObAMAuthorizationExpr_getDuplicateActionsPolicy(
ObAMAuthorizationExpr_t authz);
int ObAMAuthorizationExpr_getNumberOfActions(
ObAMObjectWithActions_ActionType type,
ObAMAuthorizationExpr_t authz);
ObAMAction_t ObAMAuthorizationExpr_getActionOfType(
ObAMObjectWithActions_ActionType type,
ObAMAuthorizationExpr_t authz, int index);
void ObAMAuthorizationExpr_setExpr(
ObAMAuthorizationExpr_t authz, const char *value);
void ObAMAuthorizationExpr_setDuplicateActionsPolicy(
ObAMAuthorizationExpr_t authz,
ObAMAuthorizationExpr_DuplicateActionsPolicy value);
void ObAMAuthorizationExpr_addActionOfType(
ObAMObjectWithActions_ActionType type,
ObAMAuthorizationExpr_t authz,ObAMAction_t value);
void ObAMAuthorizationExpr_removeActionOfType(
ObAMObjectWithActions_ActionType type,
ObAMAuthorizationExpr_t authz, ObAMAction_t value);

Class ObAMAuditRule

enum ObAMAuditRule_EventType {
ObAMAuditRule_AUTHENTICATION_SUCCESS = 0x01,
 ObAMAuditRule_AUTHENTICATION_FAILURE = 0x02,
 ObAMAuditRule_AUTHORIZATION_SUCCESS = 0x04,
ObAMAuditRule_AUTHORIZATION_FAILURE = 0x08};
typedef const void * ObAMAuditRule_t;
typedef unsigned int ObAMAuditRule_EventTypeMask;
ObAMAuditRule_t ObAMAuditRule_new();
ObAMAuditRule_t ObAMAuditRule_copy(ObAMAuditRule_t audit);
void ObAMAuditRule_delete(ObAMAuditRule_t *pAudit);
int ObAMAuditRule_getNumberOfEvents(ObAMAuditRule_t audit);
int ObAMAuditRule_getNumberOfAttributes(ObAMAuditRule_t audit);
ObAMAuditRule_EventType ObAMAuditRule_getEvent(
ObAMAuditRule_t audit, int index);

Access Policy Objects

Policy Manager API Definitions B-21

const char *ObAMAuditRule_getAttribute(ObAMAuditRule_t audit,
int index);
void ObAMAuditRule_addEvent(ObAMAuditRule_t audit,
ObAMAuditRule_EventType value);
void ObAMAuditRule_addAttribute(ObAMAuditRule_t audit,
const char *value);
void ObAMAuditRule_removeEvent(ObAMAuditRule_t audit,
ObAMAuditRule_EventType value);
void ObAMAuditRule_removeAttribute(ObAMAuditRule_t audit,
const char *value);
void ObAMAuditRule_setIDFrom(ObAMAuditRule_t audit,
ObAMAuditRule_t other);

Class ObAMAdminRule

typedef const void * ObAMAdminRule_t;
ObAMAdminRule_t ObAMAdminRule_new();
ObAMAdminRule_t ObAMAdminRule_copy(
ObAMAdminRule_t admin);
void ObAMAdminRule_delete(ObAMAdminRule_t *pAdmin);
int ObAMAdminRule_getNumberOfPersons(
ObAMAdminRule_t admin);
int ObAMAdminRule_getNumberOfGroups(
ObAMAdminRule_t admin);
int ObAMAdminRule_getNumberOfRoles(
ObAMAdminRule_t admin);
int ObAMAdminRule_getNumberOfRules(
ObAMAdminRule_t admin);
ObAMIdentity_t ObAMAdminRule_getPerson(
ObAMAdminRule_t admin, int index);
ObAMIdentity_t ObAMAdminRule_getGroup(
ObAMAdminRule_t admin, int index);
const char *ObAMAdminRule_getRole(
ObAMAdminRule_t admin, int index);
const char *ObAMAdminRule_getRule(
ObAMAdminRule_t admin,int index);
void ObAMAdminRule_addRole(ObAMAdminRule_t admin,
const char *value);
void ObAMAdminRule_addPerson(
ObAMAdminRule_t admin,ObAMIdentity_t value);
void ObAMAdminRule_addGroup(ObAMAdminRule_t admin,
ObAMIdentity_t value);
void ObAMAdminRule_addRule(ObAMAdminRule_t admin,
const char *value);
void ObAMAdminRule_removeRole(ObAMAdminRule_t admin,
const char *value);
void ObAMAdminRule_removePerson(ObAMAdminRule_t admin,
ObAMIdentity_t value);
void ObAMAdminRule_removeGroup(ObAMAdminRule_t admin,
ObAMIdentity_t value);
void ObAMAdminRule_removeRule(ObAMAdminRule_t admin,
const char *value);
void ObAMAdminRule_setIDFrom(ObAMAdminRule_t admin,
ObAMAdminRule_t other);

Access Policy Objects

B-22 Oracle Access Manager Developer Guide

Class ObAMParameter

typedef const void * ObAMParameter_t;
ObAMParameter_t ObAMParameter_new();
ObAMParameter_t ObAMParameter_copy(ObAMParameter_t param);
void ObAMParameter_delete(ObAMParameter_t *pParam);
const char *ObAMParameter_getName(ObAMParameter_t param);
const char *ObAMParameter_getValue(ObAMParameter_t param);
void ObAMParameter_setName(ObAMParameter_t param,
const char *value);
void ObAMParameter_setValue(ObAMParameter_t param,
const char *value);

Class ObAMPolicy

typedef const void * ObAMPolicy_t;
ObAMPolicy_t ObAMPolicy_new();
ObAMPolicy_t ObAMPolicy_copy(ObAMPolicy_t policy);
void ObAMPolicy_delete(ObAMPolicy_t *pPolicy);
const char *ObAMPolicy_getName(ObAMPolicy_t policy);
const char *ObAMPolicy_getDescription(ObAMPolicy_t policy);
const char *ObAMPolicy_getResourceType(ObAMPolicy_t policy);
const char *ObAMPolicy_getHostID(ObAMPolicy_t policy);
const char *ObAMPolicy_getURLPattern(ObAMPolicy_t policy);
const char *ObAMPolicy_getQueryString(ObAMPolicy_t policy);
int ObAMPolicy_getNumberOfOperations(ObAMPolicy_t policy);
int ObAMPolicy_getNumberOfResources(ObAMPolicy_t policy);
int ObAMPolicy_getNumberOfParameters(ObAMPolicy_t policy);
const char *ObAMPolicy_getOperation(ObAMPolicy_t policy,
int index);
ObAMResource_t ObAMPolicy_getResource(ObAMPolicy_t policy,
int index);
ObAMParameter_t ObAMPolicy_getParameter(ObAMPolicy_t policy,
int index);
ObAMAuthenticationRule_t
ObAMPolicy_getAuthenticationRule(ObAMPolicy_t policy);
ObAMAuditRule_t ObAMPolicy_getAuditRule(ObAMPolicy_t policy);
void ObAMPolicy_setName(
ObAMPolicy_t policy, const char *value);
void ObAMPolicy_setDescription(ObAMPolicy_t policy
const char *value);
void ObAMPolicy_setResourceType(ObAMPolicy_t policy,
const char *value);
void ObAMPolicy_setHostID(ObAMPolicy_t policy,
const char *value);
void ObAMPolicy_setURLPattern(ObAMPolicy_t policy,
const char *value);
void ObAMPolicy_setQueryString(ObAMPolicy_t policy,
const char *value);
void ObAMPolicy_setAuthenticationRule(ObAMPolicy_t policy,
ObAMAuthenticationRule_t value);
void ObAMPolicy_setAuditRule(ObAMPolicy_t policy,
ObAMAuditRule_t value);
void ObAMPolicy_addOperation(ObAMPolicy_t policy,
const char *value);
void ObAMPolicy_addResource(ObAMPolicy_t policy,
ObAMResource_t value);

Access Policy Objects

Policy Manager API Definitions B-23

void ObAMPolicy_addParameter(ObAMPolicy_t policy,
ObAMParameter_t value);
void ObAMPolicy_removeOperation(ObAMPolicy_t policy,
const char *value);
void ObAMPolicy_removeResource(ObAMPolicy_t policy,
ObAMResource_t value);
void ObAMPolicy_removeParameter(ObAMPolicy_t policy,
ObAMParameter_t value);
void ObAMPolicy_setIDFrom(ObAMPolicy_t policy,
ObAMPolicy_t other);

Class ObAMPolicyDomain

typedef const void * ObAMPolicyDomain_t;
ObAMPolicyDomain_t ObAMPolicyDomain_new();
ObAMPolicyDomain_t ObAMPolicyDomain_copy(
ObAMPolicyDomain_t domain);
void ObAMPolicyDomain_delete(
ObAMPolicyDomain_t *pDomain);
const char *ObAMPolicyDomain_getName(
ObAMPolicyDomain_t domain);
const char *ObAMPolicyDomain_getDescription(
ObAMPolicyDomain_t domain);
int ObAMPolicyDomain_getEnabled(
ObAMPolicyDomain_t domain);
int ObAMPolicyDomain_getNumberOfResources(
ObAMPolicyDomain_t domain);
int ObAMPolicyDomain_getNumberOfPolicies(
ObAMPolicyDomain_t domain);
ObAMResource_t ObAMPolicyDomain_getResource(
ObAMPolicyDomain_t domain, int index);
ObAMPolicy_t ObAMPolicyDomain_getPolicy(
ObAMPolicyDomain_t domain, int index);
ObAMAuditRule_t ObAMPolicyDomain_getDefaultAuditRule(
ObAMPolicyDomain_t domain);
ObAMAuthorizationRule_t
ObAMAPolicyDomain_getAuthorizationRule(
ObAMPolicyDomain_t domain, int index);
ObAMAuthorizationExpr_t
ObAMPolicyDomain_getDefaultAuthorizationExpr(
ObAMPolicyDomain_t domain);
void ObAMPolicyDomain_setDefaultAuthorizationExpr(
ObAMPolicyDomain_t domain,
ObAMAuthorizationExpr_t value);
ObAMAdminRule_t ObAMPolicyDomain_getDelegateAdminRule(
ObAMPolicyDomain_t domain);
ObAMAdminRule_t ObAMPolicyDomain_getGrantAdminRule(
ObAMPolicyDomain_t domain);
ObAMAdminRule_t ObAMPolicyDomain_getBasicAdminRule(
ObAMPolicyDomain_t domain);
void ObAMPolicyDomain_setName(ObAMPolicyDomain_t domain,
const char *value);
void ObAMPolicyDomain_setDescription(
ObAMPolicyDomain_t domain, const char *value);
void ObAMPolicyDomain_setEnabled(ObAMPolicyDomain_t domain,
bool value);
void ObAMPolicyDomain_setDefaultAuthenticationRule(
ObAMPolicyDomain_t domain,

Access Policy Objects

B-24 Oracle Access Manager Developer Guide

ObAMAuthenticationRule_t value);
void ObAMPolicyDomain_setDefaultAuditRule(
ObAMPolicyDomain_t domain, ObAMAuditRule_t value);
void ObAMPolicyDomain_setDelegateAdminRule(
ObAMPolicyDomain_t domain, ObAMAdminRule_t value);
void ObAMPolicyDomain_setGrantAdminRule(
ObAMPolicyDomain_t domain, ObAMAdminRule_t value);
void ObAMPolicyDomain_setBasicAdminRule(
ObAMPolicyDomain_t domain, ObAMAdminRule_t value);
void ObAMPolicyDomain_addResource(ObAMPolicyDomain_t domain,
ObAMResource_t value);
void ObAMPolicyDomain_addPolicy(ObAMPolicyDomain_t domain,
ObAMPolicy_t value);
void ObAMPolicyDomain_addAuthorizationRule(
ObAMPolicyDomain_t domain,
ObAMAuthorizationRule_t value);
void ObAMPolicyDomain_modifyAuthorizationRule(
ObAMPolicyDomain_t domain,
ObAMAuthorizationRule_t value);
void ObAMPolicyDomain_removeAuthorizationRule(
ObAMPolicyDomain_t domain,
ObAMAuthorizationRule_t value);
void ObAMPolicyDomain_removeResource(
ObAMPolicyDomain_t domain,ObAMResource_t value);
void ObAMPolicyDomain_removePolicy(ObAMPolicyDomain_t domain,
ObAMPolicy_t value);

Class ObAMAccessTest

typedef const void * ObAMAccessTest_t;
ObAMAccessTest_t ObAMAccessTest_new();
ObAMAccessTest_t ObAMAccessTest_copy(ObAMAccessTest_t test);
void ObAMAccessTest_delete(ObAMAccessTest_t *pTest);
const char *ObAMAccessTest_getURL(ObAMAccessTest_t test);
const char *ObAMAccessTest_getResourceType(
ObAMAccessTest_t test);
const char *ObAMAccessTest_getIPaddress(
ObAMAccessTest_t test);
ObAMDate_t ObAMAccessTest_getDate(
ObAMAccessTest_t test);
ObAMTime_t ObAMAccessTest_getTime(
ObAMAccessTest_t test);
int ObAMAccessTest_getNumberOfOperations(
ObAMAccessTest_t test);
int ObAMAccessTest_getNumberOfUsers(
ObAMAccessTest_t test);
const char *ObAMAccessTest_getOperation(
ObAMAccessTest_t test, int index);
ObAMIdentity_t ObAMAccessTest_getUser(ObAMAccessTest_t test,
int index);
int ObAMAccessTest_getShowAllowed(ObAMAccessTest_t test);
int ObAMAccessTest_getShowDenied(ObAMAccessTest_t test);
int ObAMAccessTest_getShowMatchingPolicy(
ObAMAccessTest_t test);
void ObAMAccessTest_setURL(ObAMAccessTest_t test,
const char *value);
void ObAMAccessTest_setResourceType(ObAMAccessTest_t test,
const char *value);

Access Policy Objects

Policy Manager API Definitions B-25

void ObAMAccessTest_addOperation(ObAMAccessTest_t test,
const char *value);
void ObAMAccessTest_setIPaddress(ObAMAccessTest_t test,
const char *value);
void ObAMAccessTest_setDate(ObAMAccessTest_t test,
ObAMDate_t value);
void ObAMAccessTest_setTime(ObAMAccessTest_t test,
ObAMTime_t value);
void ObAMAccessTest_addUser(ObAMAccessTest_t test,
ObAMIdentity_t value);
void ObAMAccessTest_setShowAllowed(ObAMAccessTest_t test,
int value);
void ObAMAccessTest_setShowDenied(ObAMAccessTest_t test,
int value);
void ObAMAccessTest_setShowMatchingPolicy(
ObAMAccessTest_t test, int value);

Class ObAMAccessTestResults

typedef const void * ObAMAccessTestResults_t;
void ObAMAccessTestResults_delete(
ObAMAccessTestResults_t results);
const char *ObAMAccessTestResults_getPolicyDomain(
vbAMAccessTestResults_t results);
int ObAMAccessTestResults_getNumberOfResults(
ObAMAccessTestResults_t results);
ObAMAccessTestResult_t ObAMAccessTestResults_getResult(
ObAMAccessTestResults_t results, int index);results);

Class ObAMAccessTestResult(s)

typedef const void * ObAMAccessTestResult_t;
ObAMIdentity_t ObAMAccessTestResult_getUser(
ObAMAccessTestResult_t result);
const char *ObAMAccessTestResult_getPolicy(
ObAMAccessTestResult_t result);
int ObAMAccessTestResult_getAuthorized(
ObAMAccessTestResult_t result);
const char *ObAMAccessTestResult_getExpr(
ObAMAccessTestResult_t result);
int ObAMAccecssTestResult_getNumberOfDeterminingRules(
ObAMAccessTestResult_t result);
const char *ObAMAccessTestResult_getDeterminingRule(
ObAMAccessTestResult_t result, int index);
int ObAMAccessTestResult_getAuthorizationStatus(
ObAMAccessTestResult_t result);

Managed Code

Class ObAMResourceMgd

Access Policy Objects

B-26 Oracle Access Manager Developer Guide

public __gc class ObAMResourceMgd {
public:
ObAMResourceMgd();
_property System::String *get_ResourceType();
_property System::String *get_HostID();
_property System::String *get_URLPrefix();
_property System::String *get_Description();
_property void set_IDFrom(ObAMResourceMgd *other);
_property void set_ResourceType(System::String *value);
_property void set_HostID(System::String *value);
_property void set_URLPrefix(System::String *value);
_property void set_Description(System::String *value);
};

Class ObAMAccessConditionsMgd

public __gc class ObAMAccessConditionsMgd {
public:
ObAMAccessConditionsMgd();
_property int get_NumberOfPersons();
_property int get_NumberOfGroups();
_property int get_NumberOfRoles();
_property int get_NumberOfRules();
_property int get_NumberOfIPaddresses();
ObAMIdentityMgd *getPerson (int index);
ObAMIdentityMgd *getGroup (int index);
System::String *getRole(int index);
System::String *getRule(int index);
System::String *getIPaddress(int index);
_property void set_IDFrom(ObAMAccessConditionsMgd *access);
_property void set_AddRole(System::String *value);
_property void set_AddPerson(ObAMIdentityMgd *value);
_property void set_AddGroup(ObAMIdentityMgd *value);
_property void set_AddRule(System::String *value);
_property void set_AddIPaddress(System::String *value);
_property void set_RemoveRole(System::String *value);
_property void set_RemoveGroup(ObAMIdentityMgd *value);
_property void set_RemoveRule(System::String *value);
_property void set_RemoveIPaddress(System::String *value);
};

Class ObAMDateMgd

public __gc class ObAMDateMgd {
public:
ObAMDATEmGD();
_property int get_Year();
_property int get_Month();
_property int get_Day();
void set(int year, int month, int day_);
};

Class ObAMDate_MonthsMgd

Access Policy Objects

Policy Manager API Definitions B-27

public __gc class ObAMDateMgd {
public:
ObAMDate_MonthsMgd();
void setJanuary();
void setFebruary();
void setMarch();
void setApril();
void setMay();
void setJune();
void setJuly();
void setSeptember();
void setOctober();
void setNovember();
void setDecember();
void setOctober();
void setNovember();
void setDecember();
};

Class ObAMDate_DaysOfWeekMgd

public __gc class ObAMDate_DaysOfWeekMgd {
public:
ObAMDate_DaysOfWeekMgd();
void setSunday();
void setMonday();
void setTuesday();
void setWednesday();
void setThursday();
void setFriday();
void setSaturday();
};

Class ObAMTimeMgd

public __gc class ObAMTimeMgd {
public:
ObAmTimeMgd();
__property int get_Hours();
__property int getMinutes();
__property int get_Seconds();
void set(int hours, int minutes, int seconds);
};

Class ObAMTimingConditionsMgd

public __gc class ObAMTimingConditions_RelativeToMgd {
public:
ObAMTimingConditionsMgd();
__property ObAMDateMgd *get_StartDate();
__property ObAMTimingConditions_RelativeToMgd
*get_RelativeTo();
__property ObAMTimeMgd *get_StartTime();

Access Policy Objects

B-28 Oracle Access Manager Developer Guide

__property ObAMTimeMgd *get_EndDate();
__property ObAMTimeMgd *get_EndTime();
__property int get_NumberOfMonths();
__property int get_NumberOfDaysOfMonth();
__property get_NumberofDaysOfWeek();
int getMonth(int index);
int getDayOfMonth(int index);
int getDayOfWeek(int index);
__property void set_IDFrom(ObAMTimingConditionsMgd *other);
__property void set_RelativeTo(
ObAMTimingConditions_RelativeToMgd *value);
__property void set_StartDate(ObAMDateMgd *date);
__property void set_EndTime(ObAMTimeMgd *time);
__property void set_EndDate(ObAMDateMgd *date);
__property void set_StartTime(ObAMDateMgd *time);
__property void set_AddMonth(ObAMDate_MonthsMgd *value);
__property void set_AddDayOfMonth(int value);
__property void set_AddDayOfWeek(
ObAMDate_DaysOfWeekMgd *value);
__property void set_RemoveMonth(ObAMDate_MonthsMgd *value);
__property void set_RemoveDayOfMonth(int value);
__property void set_RemoveDayOfWeek(
ObAMDate_DaysOfWeekMgd *value);

Class ObAMIdentityMgd

public __gc class ObAMIdentityMgd {
public:ObAMIdentityMgd();
__property System::String *get_UID();
__property System::String *get_Name();
__property System::String *get_LoginID();
__property ObAMIdentity *get_UnmanageIdentity();
__property void set_UID(System::String *value);
__property void set_Name(System::String *value);
__property void set_LoginID(System::String *value);
};

Class ObAMActionTypeMgd

public __gc class ObAMActionTypeMgd {
public:
void setSuccess();
void setFailure();
void setInconclusive();
};

Class ObAMActionMgd

public __gc class ObAMActionMgd {
public:
ObAMActionMgd();
__property System::String *get_Type();
__property System::String *get_Name();

Access Policy Objects

Policy Manager API Definitions B-29

__property System::String *get_value();
__property ObAMAction_ValueTypeMgd *get_ValueType();
__property void set_IDFrom(ObAMActionMgd *other);
__property void set_Type(System::String *value);
__property set_Name(System::String *value);
__property set_Value(System::String *value);
};

Class ObAMAction_ValueTypeMgd

public __gc class ObAMAction_ValueTypeMgd {
public:
ObAMAction_ValueTypeMgd();
__property bool get_isUndefined();
__property bool get_isFixedValue();
__property bool get_isAttribute();
__property ObAMAction_ValueType get_Value();
__property void set_Value(ObAMAction_ValueType value);
void setUndefined();
void setFixedValue();
void setAttribute();
};

Class ObAMAuthenticationRuleMgd

public __gc class ObAMAuthenticationMgd {
public:
ObAMAuthenticationRuleMgd();
__property System::String();
__property System::String *get_Description();
__property System::String *get_Scheme();
int getNumberOfActions(ObAMActionTypeMgd *action);
ObAMActionMgd *getActionOfType(
ObAMActionTypeMgd *type, int index);
__property void set_IDFrom(ObAMAuthenticationRuleMgd *other);
__property void set_Name(System::String *value);
__property void set_Description(System::String *value);
__property void set_Scheme(System::String *value);
void addActionOfType(ObAMActionTypeMgd *action,
ObAMActionMgd *value);
void modifyActionOfType(ObAMActionTypeMgd *action,
ObAMActionMgd *value);
void removeActionOfType(ObAMActionTypeMgd *action,
ObAMActionMgd *value);
};

Class ObAMAuthorizationRuleMgd

public __gc class ObAMAuthorizationMgd {
public:
ObAMAuthorizationRuleMgd();
__property System::String *get_Name();
__property bool get_Enabled();

Access Policy Objects

B-30 Oracle Access Manager Developer Guide

__property bool get_AllowTakesPrecedence();
__property ObAMTimingConditionsMgd *get_TimingConditions();
ObAMActionMgd *getActionOfType(ObAMActionTypeMgd *action,
int index);
__property ObAMAccessConditionsMgd
*get_AllowAccessConditons();
__property ObAMAccessConditionsMgd
*get_DenyAccessConditons();
__property System::String *get_AuthorizationScheme();
__property int get_NumberOfSchemeParameters();
ObAMParameterMgd *getSchemeParameter(int index);
__property void set_IDFrom(ObAMAuthorizationRuleMgd *other);
__property void set_Name(System::String *value);
__property void set_Description(System::String *value);
__property void set_Enabled(bool value);
__property void set_AllowTakesPrecedence(bool value);
__property void set_TimingConditions(
ObAMTimingConditionsMgd *value);
__property void set_AllowAccessConditions(
ObAMAccessConditionsMgd *value);
__property void set_DenyAccessConditions(
ObAMAccessConditionsMgd *value);
void addActionOfType(ObAMActionTypeMgd *action,
ObAMActionMgd *value);
void modifyActionOfType(ObAMActionTypeMgd *action,
ObAMActionMgd *value);
void removeActionOfType(ObAMActionTypeMgd *action,
ObAMActionMgd *value)
};

Class ObAMAuthorizationExprMgd

public __gc class ObAMAuthorizatitonExprMgd {
public:
ObAMAuthorizationExprMgd();
__property System::String *get_Expr();
__property int get_DuplicateActionsPolicy();
int getNumberOfActions(ObAMActionTypeMgd *type);
ObAMActionMgd *getActionOfType(ObAMActionTypeMgd *type,
int index);
__property void set_Expr(System::String *value);
void setDuplicateActionsPolicy(
ObDuplicationActionPolicyMgd *value);
void addActionOfType(ObAMActionTypeMgd *type,
ObAMActionMgd *value);
void modifyActionOfType(ObAMActionTypeMgd *type,
ObAMActionMgd *value);
void removeActionOfType(ObAMActionTypeMgd *type,
ObAMActionMgd *value);
};

Class ObAMAuditRuleMgd

public __gc class ObAMAction_ValueTypeMgd {
public:

Access Policy Objects

Policy Manager API Definitions B-31

ObAMAuditRuleMgd();
__property int get_NumberOfEvents();
__property int get_NumberOfAttributes();
ObAMAuditRule_EventTypeMgd *getEvent(int index);
System::String *getAttribute(int index);
__property void set_IDFrom(ObAMAuditRuleMgd *other);
__property void set_AddEvent(
ObAMAuditRule_EventTypeMgd *value);
__property void set_AddAttribute(System::String *value);
__property void set_RemoveEvent(
ObAMAuditRule_EventTypeMgd *value);
__property void set_RemoveAttribute(System::String *value);
};

Class ObAMAdminRuleMgd

public __gc class ObAMAdminRuleMgd {
public:
ObAMAdminRuleMgd();
__property int get_NumberOfPersons();
__property int get_NumberOfGroups();
__property int get_NumberOfRoles();
__property int get_NumberOfRules();
ObAMIdentityMgd *getPerson(int index);
ObAMIdentityMgd *getGroup(int index);
System::String *getRole(int index);
System::String *getRule(int index);
__property void set_IDFrom(ObAMAdminRuleMgd *other);
__property void set_AddRole(System::String *value);
__property void set_AddPerson(ObAMIdentityMgd *person);
__property void set_AddGroup(ObAMIdentityMgd *group);
__property void set_AddRule(System::String *value);
__property void set_RemoveRole(System::String *value);
__property void set_RemovePerson(ObAMIdentityMgd *person);
__property void set_RemoveGroup(ObAMIdentityMgd *group);
__property void set_RemoveRule(System::String *value);
};

Class ObAMParameterMgd

public __gc class ObAMParameterMgd {
public:
ObAMParameterMgd();
__property System::String *get_Value();
__property System::String *get_Name();
__property void set_Name(System::String *value);
__property void set_Value(System::String *value);
};

Class ObAMPolicyMgd

public __gc class ObAMPolicyMgd {
public:

Access Policy Objects

B-32 Oracle Access Manager Developer Guide

ObAMPolicyMgd();
__property System::String *get_Name();
__property System::String *get_Description();
__property System::String *get_ResourceType();
__property System::String *get_HostID();
__property System::String *get_URLPattern();
__property System::String *get_QueryString();
__property int get_NumberOfOperations();
__property int get_NumberOfResources();
__property int get_NumberOfParameters();
System::String *getOperation(int index);
ObAMResourceMgd *getResource(int index);
ObAMParameterMgd *getParameter(int index);
__property ObAMAuthorizationExprMgd *get_AuthorizationExpr();
__property ObAMAuthenticationRuleMgd
*get_AuthenticationRule();
__property ObAMAuditRuleMgd *get_AuditRule();
__property void set_IDFrom(ObAMPolicyMgd *other);
__property void set_Name(System::String *value);
__property void set_Description(System::String *value);
__property void set_ResourceType(System::String *value);
__property void set_HostID(System::String *value);
__property void set_URLPattern(System::String *value);
__property void set_QueryString(System::String *value);
__property void set_AuthenticationRule(
ObAMAuthenticationRuleMgd *rule);
__property void set_AuthorizationExpr(
ObAMAuthorizationExprMgd *expr);
__property void set_AuditRule(ObAMAuditRuleMgd *rule);
__property void set_AddOperation(System::String *value);
__property void set_AddResource(ObAMResourceMgd *resource);
__property void set_AddParamter(ObAMParameterMgd *parameter);
__property void set_ModifyResource(ObAMResourceMgd
*resource);
__property void set_RemoveOperation(System::String *value);
__property void set_RemoveResource(ObAMResourceMgd
*resource);
__property void set_RemoveParameter(
ObAMParameterMgd *parameter);
};

 Class ObAMPolicyDomainMgd

public __gc class ObAMPolicyDomainMgd {
public:
ObAMPolicyDomainMgd();
__property System::String *get_Name();
__property System::String *get_Description();
__property bool get_Enabled();
__property int get_NumberOfResources();
__property int get_NumberOfAuthorizationRules();
__property int get_NumberOfPolicies();
ObAMResourceMgd *getResource(int index);
ObAMAuthorizationRuleMgd *getAuthorizationRule(int index);
__property ObAMAuthorizationExprMgd
*get_DefaultAuthorizationExpr();
ObAMPolicyMgd *getPolicy(int index);
__property ObAMAuthenticationRuleMgd

Access Policy Objects

Policy Manager API Definitions B-33

*get_DefaultAuthenticationRule();
__property ObAMAuditRuleMgd *get_DefaultAuditRule();
__property ObAMAdminRuleMgd *get_DelegateAdminRule();
__property ObAMAdminRuleMgd *get_GrantAdminRule();
__property ObAMAdminRuleMgd *get_BasicAdminRule();
__property void set_IDFrom(ObAMPolicyDomainMgd *other);
__property void set_Name(System::String *value);
__property void set_Description(System::String *value);
__property void set_Enabled(bool value);
__property void set_DefaultAuthenticationRule(
ObAMAuthenticationRuleMgd *value);
__property void set_DefaultAuthorizationExpr(
ObAMAuthorizationExprMgd *expr);
__property void set_DefaultAuditRule(
ObAMAuditRuleMgd *value);
__property void set_DelegateAdminRule(
ObAMAdminRuleMgd *value);
__property void set_GrantAdminRule(ObAMAdminRuleMgd *value);
__property void set_BasicAdminRule(ObAMAdminRuleMgd *value);
__property void set_AddResource(ObAMResourceMgd *value);
__property void set_AddAuthorizationRule(
ObAMAuthorizationRuleMgd *value);
__property void set_AddPolicy(ObAMPolicyMgd *value);
__property void set_ModifyResource(ObAMResourceMgd *value);
__property void set_ModifyPolicy(ObAMPolicyMgd *value);
__property void set_ModifyAuthorizationRule(
ObAMAuthorizationRuleMgd *value);
__property void set_RemoveResource(ObAMResourceMgd *value);
__property void set_RemoveAuthorizationRule(
ObAMAuthorizationRuleMgd *value);
__property void set_RemovePolicy(ObAMPolicyMgd *value);
};

Class ObAMAccessTestMgd

public __gc class ObAMAccessTestMgd {
public:
ObAMAccessTestMgd();
__property System::String *get_URL();
__property System::String *get_ResourceType();
__property System::String *get_IPaddress();
__property ObAMDateMgd *get_Date();
__property ObAMTimeMgd *get_Time();
__property int get_NumberOfOperations();
__property int get_NumberOfUsers();
System::String *getOperation(int index);
ObAMIdentityMgd *getUser(int index);
__property bool get_ShowDeterminingRules();
__property bool get_ShowAllowed();
__property bool get_ShowDenied();
__property bool get_ShowMatchingPolicy();
__property bool get_ShowMatchingExpr();
__property void set_URL(System::String *value);
__property void set_ShowDeterminingRules(bool value);
__property void set_ResourceType(System::String *value);
__property void set_AddOperation(System::String *value);
__property void set_IPaddress(System::String *value);
__property void set_Date(ObAMDateMgd *date);

Access System Configuration Objects

B-34 Oracle Access Manager Developer Guide

__property void set_Time(ObAMTimeMgd *time);
__property void set_AddUser(ObAMIdentityMgd *value);
__property void set_ShowAllowed(bool value);
__property void set_ShowDenied(bool value);
__property void set_ShowMatchingPolicy(bool value);
__propertyy void set_ShowMatchingExpr(bool value);
};

Class ObAMAccessTestResultsMgd

public _gc class ObAMAccessTestResultMgd {
public:
ObAMAccessTestResultsMgd();
__property System::String *get_PolicyDomain();
__property int get_NumberOfResults();
ObAMAccessTestResultMgd *getResult(int index);
};

Class ObAMAccessTestResultMgd

public _gc class ObAMAccessTestResultMgd {
public:
ObAMAccessTestResultMgd();
__property ObAMIdentityMgd *get_User();
__property System::String *get_Policy();
__property System::String *get_Expr();
__property int get_NumberOfDeterminingRules();
__property ObAMAccessTestResult_AuthzCodeMgd
*get_AuthorizationStatus();
System::String *getDeterminingRule(int index);
__property bool get_Authoriszed();
};

Access System Configuration Objects
This section contains the following topics:

■ Java

■ C

■ Managed Code

Java

Class ObAMHostIdentifier

public class ObAMHostIdentifier extends ObListElement {
public String getName();
public String getDescription();
public int getNumberOfHostnames();

Access System Configuration Objects

Policy Manager API Definitions B-35

public String getHostname(int index);
}

Class ObAMResourceType

public class ObAMResourceType {
public String getName();
public String getDisplayName();
public boolean getCaseSensitiveMatching();
public int getNumberOfOperations();
public String getOperation(int index);
}

Class ObAMAuthenticationScheme

public class
ObAMAuthenticationScheme extends ObListElement {
public static final int UNDEFINED = 0;
public static final int NONE = 1;
public static final int BASIC = 2;
public static final int X509 = 3;
public static final int FORM = 4;
public static final int EXT = 5;
public String getName();
public String getDescription();
public int getLevel();
public int getChallengeMethod();
public boolean getSSLrequired();
public String getChallengeRedirectURL();
public int getNumberOfChallengeParameters();
public int getNumberOfPlugins();
public String getChallengeParameter(int index);
ppublic ObAMAuthenticationPlugin getPlugin(
int index);
public boolean getEnabled();
}

Class ObAMAuthenticationPlugin

public class ObAMAuthenticationPlugin {
public int getOrder();
public String getName();
public String getParameters();
}

Class ObAMAuthorizationScheme

public class ObAMAuthorizationScheme extends
ObListElement {
public String getName();
public String getDescription();

Access System Configuration Objects

B-36 Oracle Access Manager Developer Guide

public String getLibrary();
public int getNumberofUserParameters();
public int getNumberofRequiredParameters();
public int getNumberofOptionalParameters();
public String getUserParameter(int index);
public ObAMParameter getRequiredParameter(
int index);
public ObAMParameter getOptionalParameter(
int index);
}

Class ObAMMasterAuditRule

public class ObAMMasterAuditRule extends
ObAMAuditRule {
public static final int UNDEFINED = 0;
public static final int INTEGER = 1;
public static final int MMDDYYYY = 2;
public static final int DDMMYYYY = 3;
public static final int ISO8601 = 4;
public static final int YYYYMMDD = 5;
public static final int YYYYDDMM = 6;
public String getEventMapping(int eventType);
public int getDateFormat();
public char getEscapeCharacter();
public String getRecordFormat();
}

C

Class ObAMHostIdentifier

typedef const void * ObAMHostIdentifier_t;
const char *ObAMHostIdentifier_getName(
ObAMHostIdentifier_t hostID);
const char *ObAMHostIdentifier_getDescription(
ObAMHostIdentifier_t hostID);
int ObAMHostIdentifier_getNumberOfHostnames(
ObAMHostIdentifier_t hostID);
const char *ObAMHostIdentifier_getHostname(
ObAMHostIdentifier_t hostID, int index);

Class ObAMResourceType

typedef const void * ObAMResourceType_t;
const char *ObAMResourceType_getName(
ObAMResourceType_t resType);
const char *ObAMResourceType_getDisplayName(
ObAMResourceType_t resType);
int ObAMResourceType_getCaseSensitiveMatching(
ObAMResourceType_t resType);

Access System Configuration Objects

Policy Manager API Definitions B-37

int ObAMResourceType_getNumberOfOperations(
ObAMResourceType_t resType);
const char *ObAMResourceType_getOperation(
ObAMResourceType_t resType, int index);

typedef const void * ObAMArrayOfResourceTypes_t;
int ObAMArrayOfResourceTypes_numberOf(
ObAMArrayOfResourceTypes_t array);
ObAMResourceType_t ObAMArrayOfResourceTypes_get(
ObAMArrayOfResourceTypes_t array,
int index);
void ObAMArrayOfResourceTypes_delete(
ObAMArrayOfResourceTypes_t *pArray);

Class ObAMAuthenticationScheme

enum ObAMAuthenticationScheme_ChallengeMethod {
 ObAMAuthenticationScheme_UNDEFINED,
 ObAMAuthenticationScheme_NONE,
 ObAMAuthenticationScheme_BASIC,
 ObAMAuthenticationScheme_X509,
 ObAMAuthenticationScheme_FORM,
 ObAMAuthenticationScheme_EXT};

typedef const void * ObAMAuthenticationScheme_t;
const char *ObAMAuthenticationScheme_getName(
ObAMAuthenticationScheme_t scheme);
const char *ObAMAuthenticationScheme_getDescription(
ObAMAuthenticationScheme_t scheme);
int ObAMAuthenticationScheme_getLevel(
ObAMAuthenticationScheme_t scheme);
ObAMAuthenticationScheme_ChallengeMethod
ObAMAuthenticationScheme_getChallengeMethod(
ObAMAuthenticationScheme_t scheme);
int ObAMAuthenticationScheme_getSSLrequired(
ObAMAuthenticationScheme_t scheme);
const char *ObAMAuthenticationScheme_getChallengeRedirectURL(
ObAMAuthenticationScheme_t scheme);
int ObAMAuthenticationScheme_getNumberOfChallengeParameters(
ObAMAuthenticationScheme_t scheme);
int ObAMAuthenticationScheme_getNumberOfPlugins(
ObAMAuthenticationScheme_t scheme);
const char *ObAMAuthenticationScheme_getChallengeParameter(
ObAMAuthenticationScheme_t scheme,int index);
ObAMAuthenticationPlugin_tObAMAuthenticationScheme_getPlugin(
ObAMAuthenticationScheme_t scheme, int index);

typedef const void * ObAMArrayOfAuthenticationSchemes_t;
int ObAMArrayOfAuthenticationSchemes_numberOf(
ObAMArrayOfAuthenticationSchemes_t array);
ObAMAuthenticationScheme_t
ObAMArrayOfAuthenticationSchemes_get(
ObAMArrayOfAuthenticationSchemes_t array,int index);
void ObAMArrayOfAuthenticationSchemes_delete(
ObAMArrayOfAuthenticationSchemes_t *pArray);
int ObAMAuthenticationScheme_getEnabled(
ObAMAuthenticationScheme_tscheme);

Access System Configuration Objects

B-38 Oracle Access Manager Developer Guide

Class ObAMAuthenticationPlugin

typedef const void * ObAMAuthenticationPlugin_t;
int ObAMAuthenticationPlugin_getOrder(
ObAMAuthenticationPlugin_t plugin);
const char *ObAMAuthenticationPlugin_getName(
ObAMAuthenticationPlugin_t plugin);
const char *ObAMAuthenticationPlugin_getParameters(
ObAMAuthenticationPlugin_t plugin);

Managed Code

Class ObAMHostIdentifierMgd

public __gc class ObAMHostIdentifierMgd {
public:
ObAMHostIdentifierMgd();
__property System::String *get_Name();
__property System::String *get_Description();
__property int get_NumberOfHostnames();
System::String *getHostname(int index);
};

Class ObAMResourceTypeMgd

public __gc class ObAMResourceTypeMgd {
public:
ObAMResourceTypeMgd();
__property System::String *get_Name();
__property System::String *get_DisplayName();
__property bool get_CaseSensitiveMatching();
__property int get_NumberOfOperations();
System::String *getOperation(int index);
};

Class ObAMAuthenticationSchemeMgd

public __gc class ObAMAuthenticationSchemeMgd {
public:
ObAMAuthenticationSchemeMgd();
__property System::String *get_Name();
__property int get_Level();
__property ObAMAuthenticationScheme_ChallengeMethodMgd
*get_ChallengeMethod();
__property bool get_SSLrequired();
__property bool get_Enabled();
__property System::String *get_ChallengeRedirectURL();
__property int get_NumberOfChallengeParameters();
__property int get_NumberOfPlugins();
System::String *getChallengeParameter(int index);

Class ObAMException

Policy Manager API Definitions B-39

ObAMAuthenticationPluginMgd *getPlugin(int index);
};

Class ObAMAuthenticationPluginMgd

public __gc class ObAMAAuthenticationPluginMgd {
public:
ObAMAuthenticationPluginMgd();
__property int get_Order();
__property System::String *get_Name();
__property System::String *get_Parameters();
};

Class ObAMAuthorizationSchemeMgd

public __gc class ObAMAuthorizationSchemeMgd {
public:
ObAMAuthorizationSchemeMgd();
__property System::String *get_Name();
__property System::String *get_Description();
__property System::String *get_Library();
__property int get_NumberOfUserParameters();
__property int get_NumberOfRequiredParameters();
__property int get_NumberOfOptionalParameters();
System::String *getUserParameter(int index);
ObAMParameterMgd *getRequiredParameter(int index);
ObAMParameterMgd *getOptionalParameter(int index);
};

Class ObAMMasterAuditRuleMgd

public __gc class ObAMMasterAuditRuleMgd {
public:
ObAMMasterAuditRuleMgd();
System::String *getEventMapping(
ObAMAuditRule_EventTypeMgd *eventType);
__property ObAMMasterAuditRule_DateFormat get_DateFormat();
__property const char get_EscapeCharacter();
__property System::String *get_RecordFormat();
};

Class ObAMException
This section contains the following topics:

■ Java

■ Class ObAccessException

■ C

■ Class ObAccessExceptionMgd

Class ObAMException

B-40 Oracle Access Manager Developer Guide

Java

public class ObAMException extends
com.oblix.access.ObAccessException{
public static final int UNDEFINED = 400;
public static final int ADMIN_LOGIN_FAILED = 401;
public static final int NOT_AUTHORIZED = 402;
public static final int BAD_ARGUMENT = 403;
public static final int EXISTING_OBJECT = 404;
public static final int NO_OBJECT = 405;
public static final int BAD_MESSAGE = 406;
public static final int ALREADY_SET = 407;
public static final int FINALIZED = 408;
public static final int UNSUPPORTED_VERSION = 409;
public static final int END_BEFORE_START = 410;
public static final int NO_SET_ADMIN = 411;
public ObAMException(int code);
public ObAMException(int code, String p1);
public ObAMException(int code, String p1, String p2);
ppublic ObAMException(int code, String p1, String p2,
String p3);
public ObAMException(int code, String p1, String p2,
String p3, String p4);
public ObAMException(int code, String p1, String p2,
String p3, String p4, String p5);
public int getCode();
public String toString();
}

Class ObAccessException

C

enum ObAccessException_Code {
. . .
ObAccessException_AM_UNKNOWN = 400,
ObAccessException_AM_ADMIN_LOGIN_FAILED,
ObAccessException_AM_NOT_AUTHORIZED,
ObAccessException_AM_BAD_ARGUMENT,
ObAccessException_AM_EXISTING_OBJECT,
ObAccessException_AM_NO_OBJECT,
ObAccessException_AM_BAD_MESSAGE,
ObAccessException_AM_ALREADY_SET,
ObAccessException_AM_FINALIZED,
ObAccessException_AM_UNSUPPORTED_VERSION,
ObAccessException_AM_END_BEFORE_START,
ObAccessException_AM_UNSUPPORTED_OPERATION,
ObAccessException_AM_NO_SET_ADMIN ,
ObAccessException_AM_DATA_STORE_ERROR,
ObAccessException_AM_READ_DATA_STORE_ERROR,
ObAccessException_AM_INVALID_LDAP_FILTER,
ObAccessException_AM_MISSING_REQUIRED_PARAM,
ObAccessException_AM_INVALID_PARAM,
ObAccessException_AM_NAME_REQUIRED,

Class ObAMException

Policy Manager API Definitions B-41

ObAccessException_AM_MODIFY_OBJECT_INVALID,
ObAccessException_AM_INVALID_PROFILE_ATTRIBUTE,
ObAccessException_AM_AUTHZ_SCHEME_CONFLICT,
ObAccessException_AM_BAD_CHARACTER_DATA,
ObAccessException_AM_CACHE_FLUSH_FAILED,
ObAccessException_AM_AUTHN_SCHEME_PARAM,
ObAccessException_AM_OBJECT_IN_USE,
ObAccessException_AM_CANNOT_DELETE,
ObAccessException_AM_POLICY_RESOURCE_TYPE_MISMATCH,
ObAccessException_AM_INTERNAL_ERROR,
ObAccessException_AM_INVALID_USER,
ObAccessException_AM_INVALID_GROUP,
ObAccessException_AM_FEATURE_NOT_SUPPORTED,
ObAccessException_AM_INVALID_FAILURE_ACTION_ATTIBUTE,
ObAccessException_MISSING_AUTHN_STEP
ObAccessException_INVALID_AUTHZ_EXPR_SYNTAX,
ObAccessExcpetion_AUTHZ_RULE_NOT_FOUND,
ObAccessException_AUTHN_SCHEME_DISABLED,
ObAccessException_INVALID_ACTION_TYPE,
ObAccessException_INVALID_DUPLICATE_ACTIONS_POLICY
};

typedef void (
*ObAccessExceptionHandler2_t) (ObAccessException_t e);
void ObAccessException_setHandler2(
ObAccessExceptionHandler2_t handler);
ObAccessExceptionCode_t ObAccessException_getCode(
ObAccessException_t e);
const char *ObAccessException_getParameter(
ObAccessException_t e,int which);
const char *ObAccessException_toString(
ObAccessException_t e);

Class ObAccessExceptionMgd
For the enumerated list of exception codes, see "Class ObAccessException" on
page B-40.

Managed Code

public _gc class ObAccessExceptionMgd {
public:
ObAccessExceptionMgd();
ObAccessExceptionMgd(ObAccessException *ex);
__property ObAccessExceptionCode_t get_Code();
System::String *getParameter(int index);
System::String *getParameter(int index);
__property System::String *get_String();
};

Class ObAMException

B-42 Oracle Access Manager Developer Guide

Identity Events C-1

C
Identity Events

In the material on events and the custom actions that you can write to handle them,
described in Chapter 3, "Identity Event Plug-in API" on page 3-1, the code examples
introduce you to several Oracle Access Manager events. What was not described is
how to find out what events are available, so that you can determine the best place to
insert your custom code.

An event is defined as a significant point in the life cycle of an interactive user request
or workflow within Oracle Access Manager. Each Identity System application defines
its own events, and Oracle Access Manager automatically generates additional events
to correspond with life cycle steps in a workflow.

Application Events
Currently, only the Identity System applications generate events. To determine which
Identity System application generates which events, you need to examine the
application registration files within the installation. The registration files for the
Identity System applications are found in the following locations:

See the chapter on PresentationXML in the Oracle Access Manager Customization Guide
for a discussion of how these files are used in a more general way.

In each registration file, you will find a set of XML elements named ObProgram. Each
ObProgram element has a name attribute. The values of these name attributes are also
the names of the events generated by the Identity System applications.

Taking userservcenterreg.xml as an example, a snippet is

...

...
<ObProgram name="view">
 <ObStyleSheet name="usc_profile.xsl" />
 <ObButton name="initiateDeactivateUser" />
 <ObButton name="userreactivate" />
 <ObButton name="userModify" />

Application Registration File

Common to all
applications

$Identity_install_dir/apps/common/bin/oblixbasereg.xml

User Manager $Identity_install_dir/apps/userservcenter/bin/userservcenterreg.xml

Group Manager $Identity_install_dir/apps/groupservcenter/bin/groupservcenterreg.xml

Organization
Manager

$Identity_install_dir/apps/objservcenter/bin/objservcenterreg.xml

Workflow Events

C-2 Oracle Access Manager Developer Guide

 <ObSchema name="usc_view.xsd" />
</ObProgram>
...
...

Notice the ObProgram element named view. View is also an event name, in this case
the name of the event that corresponds to a page being displayed when you click on
the My Identity (personal profile) tab in the User Manager.

Workflow Events
In addition to application events, Oracle Access Manager generates events that you
can associate with custom actions at predefined points in a workflow.

Workflow events are defined in the catalog in exactly the same way as application
events. The difference is that their names are dynamically generated when the
workflow steps are created. The name of a workflow event takes the following form:

<workflow>_<sequence>_<type>

where workflow is the name of the workflow, sequence is an integer representing the
position of the step within the workflow, and type is either preaction or postaction.

Note: Another way to determine the name of an event, while
interacting with Identity System as an end user, is to examine the URL
of the page currently being displayed. You will notice in the URL
query string a pattern of the form: program=xxxx. When you see this,
you can tell that the page was generated as the result of an event
called xxxx.

Installing the Access Manager SDK D-1

D
Installing the Access Manager SDK

The Access Manager Software Developer's Kit (SDK) enables you to enhance the
access management capabilities of the Access System. This SDK enables you to create a
specialized AccessGate. Its use is optional. For that reason, the installation instructions
are provided here, rather than in the Oracle Access Manager Installation Guide.

This appendix includes:

■ About the Access Manager SDK Environment

■ Software Developer Kit Installation Prerequisites

■ Installing the Access Manager SDK on Windows

■ Installing the Access Manager SDK on Unix

■ Installing the Access Manager SDK on Linux

About the Access Manager SDK Environment
The Access Manager SDK creates an environment for you to build a dynamic link
library or a shared object to perform as an AccessGate. You need the documentation,
supporting files, and runtime library provided with the SDK package. You also need
the configureAccessGate.exe tool to verify that your client works correctly.

Once an AccessGate is built, you can move it to any machine that can reach the system
where an Access Server is installed. Once moved, the AccessGate needs to be able to
find its runtime library. You need to have the configureAccessGate.exe tool to
configure the AccessGate to be able to connect to the Access server. The simplest way
to have both the runtime library and the tool in the correct location is to install the
SDK on the machine where the AccessGate is going to run.

Software Developer Kit Installation Prerequisites
Before installing the SDK, you must have installed at least one instance of the Identity
Server, WebPass, Policy Manager, and Access Server. However, the SDK can be
installed anywhere you wish; there is no fixed relationship to the Access System or
Identity System files. For details, see the Oracle Access Manager Installation Guide.

Note: You can create an AccessGate using a hard-coded installation
directory. If you move this AccessGate to a new machine, be sure there
is a matching directory structure on the new machine. If the directory
structure does not match, the AccessGate will not find its
configuration file or the runtime library, and it will generate an error
and stop.

Installing the Access Manager SDK on Windows

D-2 Oracle Access Manager Developer Guide

For details about upgrading an older SDK to 10g (10.1.4.0.1), see the Oracle Access
Manager Upgrade Guide.

To see the supported versions and platforms for this integration, refer to Metalink, as
follows.

To view information on Metalink
1. Go to the following URL:

http://metalink.oracle.com

2. Click the Certify tab.

3. Click View Certifications by Product.

4. Select the Application Server option and click Submit.

5. Choose Oracle Application Server and click Submit.

Installing the Access Manager SDK on Windows
 The Access Manager SDK installation includes the .NET API.

To install the Access Manager SDK on Windows
1. Locate and launch the Access Manager SDK installer from the temporary directory

you created (or the Oracle Access Manager installation media).

Installation files are extracted, and the Welcome Screen appears. Confirm at the
top of the screen that you have in fact selected Access Manager SDK installation.

2. Click Next to dismiss the Welcome screen.

The Customer Information screen appears

3. Enter a user name and company name of your choice, then click Next.

The Customer Information screen appears.

4. Accept the default installation directory or select an alternate location, then click
Next.

Make a note of the installation location. This information is important to the
operation of the API that will be built using the SDK.

You are reminded to note the installation location.

5. Click OK on the reminder.

The Start Copying Files screen appears, giving you a chance to review the
Installation directory and User Information (Customer Information) settings you
have selected.

6. Click Next to continue.

The program files are copied to the directory you selected.

7. Click Finish to exit the installation process (and optionally view the README file.)

Installing the Access Manager SDK on Unix
You cannot install components in any directory that contains special characters in its
path. Special characters are: blank spaces, new lines, *, [], {}, and so on. For more
information, see the Oracle Access Manager Installation Guide.

Installing the Access Manager SDK on Linux

Installing the Access Manager SDK D-3

To install the Access Manager SDK on a Unix system
1. Locate and launch the Access Manager SDK installer from the temporary directory

you created (or the Oracle Access Manager installation media).

Another screen appears, advising you that the Access Manager SDK is about to be
installed for the owner and group running the installation script, and telling you
to exit the script if this ownership is not correct. If the suggested ownership is not
correct, type no to exit the installation process.

2. Type yes, or press Return to continue.

A screen appears stating that the installer will install the Access Manager SDK in
the directory you specify. You are prompted to enter a directory path.

3. Specify the path to the directory where you want to install the SDK, or accept the
default by pressing Return.

You are prompted to confirm the installation directory.

4. Confirm by pressing Return or typing Yes.

If the directory does not exist, the installer creates it.

Another screen appears, stating that the Access Manager SDK is being installed in
the directory you specified., and monitoring the progress of the installation.

5. Wait for the installation to finish.

When the installation is done, a final screen appears stating that the installation
was successful.

Installing the Access Manager SDK on Linux
Installing the SDK on Linux is similar to installing on Unix and steps are not repeated
here.

However, the LD_ASSUME_KERNEL=2.4.19 environment variable must be set for
Linux at runtime because the older Linux threading model is supported (not the native
posix thread library (NPTL)).

Installing the Access Manager SDK on Linux

D-4 Oracle Access Manager Developer Guide

SOAP and HTTP Client E-1

E
SOAP and HTTP Client

Several components, such as IdentityXML and AccessXML, allow you to gain access to
Oracle Access Manager by using SOAP (Simple Object Access Protocol). To do this,
you build a properly formatted SOAP request, with the Oracle Access Manager-related
information contained within it.

SOAP provides a way to exchange information in a decentralized, distributed
environment. It uses XML as a basis for its protocol, which consists of three parts:

■ An envelope

This defines a framework for describing what is in a message and how to process
it. IdentityXML relies heavily upon this part.

■ A set of encoding rules

This provides a way to create application-defined data types. Both IdentityXML
and AccessXML use this.

■ A convention for communication

SOAP defines a set of remote procedure calls and responses. Content for these can
be established using the encoding rules. SOAP could be used in combination with
almost any protocols. For Oracle Access Manager, the focus is on its use in
combination with HTTP and servers.

A full discussion of the protocol can be found at:

http://www.w3.org/TR/SOAP/

Though SOAP provides the means to communicate with Oracle Access Manager, it is
still necessary to transport the message content using the Web to the Identity or Access
System Server that will process it. This requires the use of an HTTPClient.The
HTTPClient is an application that simulates the HTTP communication capabilities of a
browser, without an HTML presentation.

Though such a client could be written from scratch, toolkits are available that provide
the necessary components. One such toolkit is available from Innovation:

http://www.innovation.ch/java/HTTPClient/

The toolkit is free and internally documented. It includes support for the request
methods HEAD, GET, POST and PUT, and contains modules that support automatic
handling of authorization, redirection requests, and cookies.

You use the toolkit to provide the HTTP communication modules that will be the back
end of an HTTPClient that you write. The front end of your client will have these
features:

■ Host Identification

E-2 Oracle Access Manager Developer Guide

You need to be able to identify the full Host URL that you want to communicate
to, including the port number, and provide this information to the back end.

■ Data Transmission

You need a way to pick up and send data to the host. The data to be picked up
could be the entire SOAP envelope with data, or just the data, with the envelope
being applied by your client, or could be assembled almost entirely within the
client. You provide the data to the back end for transmission, and expect the back
end to return the response to you. You can include modules in the back end that
will work with redirection responses and maintain cookies to support single
sign-on.

■ Response Interpretation

You need a way to parse and use the information returned by Oracle Access
Manager.

A sample of such a client is provided in the following directory:

Identity_install_dir /unsupported/integsvcs

in the file ObSoapClient.java. You need to compile this file into a class version, within
the HTTPClient build environment.

The resulting example enables you to send a selected request file to a selected port of a
selected host. The command line arguments are:

java ObSoapClient -h hostname -p port -f file

where hostname is the URL you want to communicate with, por t is the port number,
and file is the name of the request file you want to send. The response is displayed to
the screen. You will probably want to pipe this to a file, or modify the example to print
to a file you name on the command line.

The file ObSoapClient.pl provides a similar example for use with PERL.

Several example request files are provided for you, also in the location:

Identity_install_dir /unsupported/integsvcs

You will not be able to use these files as is. You will need to change at least the login
and password information in each one to information matching a valid user on the
system you are trying to access. And, you will probably need to change the uid
information in each file to match your directory structure and content.

Managed Helper Classes F-1

F
Managed Helper Classes

This appendix contains information on managed helper classes for the Access Server
and Policy Manager APIs.

Managed Helper Classes for the APIs

Namespace: Oblix.Access.Common

 /*
 * ObDictionary class methods allow the application to
 *
 * - provide .NET style dictionary access to Java style ObMap object
 */
 public __gc class ObDictionary :
 public System::Collections::IDictionary,
 public System::IDisposable,
 public System::ICloneable
 {
 private:
 ObMap __nogc* _map;

 public:
 ObDictionary();
 ObDictionary(const ObMap& map);
 // This constructor takes over the memory of the map object
 ObDictionary(ObMap *map);
 ~ObDictionary();

 //ICloneable
 Object* Clone();

 //IDisposible
 void Dispose();
 void Dispose(bool disposing);

 //IDictionary
 virtual void CopyTo(System::Array* ar, int count);
 virtual IEnumerator* IEnumerable::GetEnumerator() {return
GetEnumeratorImpl();}
 virtual IDictionaryEnumerator* IDictionary::GetEnumerator() {return
GetEnumeratorImpl();}
 virtual IDictionaryEnumerator *GetEnumeratorImpl();

Managed Helper Classes for the APIs

F-2 Oracle Access Manager Developer Guide

 bool Contains(System::Object* key);
 __property bool get_IsFixedSize();
 __property bool get_IsReadOnly();
 __property bool get_IsSynchronized();
 __property int get_Count();
 __property System::Collections::ICollection* get_Keys();
 __property System::Collections::ICollection* get_Values();
 __property ObMap *get_Map();

 // This class is not thread safe, as a result there is no syncroot
object. This method
 // returns a NULL object.
 __property System::Object* get_SyncRoot();

 virtual void Add(System::Object* key, System::Object* value);
 virtual void Clear(void);
 virtual void Remove(System::Object* key);

 //__property virtual void set_Item(System::String* key, System::String*
value);
 __property virtual void set_Item(System::Object* key, System::Object*
value);
 __property virtual System::Object* get_Item(System::Object* key);
 //__property virtual System::String* get_Item(System::String* key);

 //Type specific overloads
 void Add(System::String* key, System::String* value);
 bool Contains(System::String* key);
 };

 __gc class ObDictionaryEnumerator : public IDictionaryEnumerator
 {
 private:
 int _iCurrent;
 int _entrySize;
 DictionaryEntry _ar[];
 public:
 ObDictionaryEnumerator(ObDictionary* dict);

 //IDictionaryEnumerator
 Object* get_Current();
 DictionaryEntry get_Entry();
 Object* get_Key();
 Object* get_Value();
 bool MoveNext();
 void Reset();
 };

/*
 * ObConfigMgd functions allow the application to
 *
 * - initialize the Access API from a configuration file,
 * - shutdown: delete resources used by the API,
 * - get information from the Access API configuration, including
 * - sessionTimeout: the maximum lifetime in seconds for a user session
 * - idleTimeout: the maximum period in seconds allowed between
authorization events
 * - map user session error numbers to messages
 * - get current version number for the Access Server SDK
 * - get current version of Oracle Access Protocol or OAP version.

Managed Helper Classes for the APIs

Managed Helper Classes F-3

 */
public __gc class ObConfigMgd {

 public:
 static void initialize(System::String *configDir);
 static void initialize();
 static void shutdown();
 __property static ObDictionary *get_AllItems();
 __property static int get_NumberOfItems();
 static System::String *getItem(System::String *name);
 static System::String *getErrorMessage(int err);
 __property static System::String *get_SDKVersion();
 __property static System::String *get_NAPVersion();

 private:

 };

/*
 * Access Exception Implementation Objects
 * An ObAccessExceptionImpl object is thrown when a problem is detected by the
Access API
 * implementation methods. Access codes are defined in obaccess_api_defs.h. The
mapAAAStatus()
 * class method maps an ObAAAStatus returned by an ObAAAServiceClient method into
a exception
 * code.
 */
public __gc class ObAccessExceptionMgd : public System::Exception {
 public:
 ObAccessExceptionMgd();
 ObAccessExceptionMgd(ObAccessException *ex);

 //Cleanup
 ~ObAccessExceptionMgd();

 //IDispose()
 void Dispose();
 void Dispose(bool disposing);

 // getters and setters
 __property ObAccessExceptionCode_t get_Code();
 System::String *getParameter(int index);
 System::String *getCodeString(ObAccessExceptionCode_t code);
 __property System::String *get_String();

 private:

 /// Unmanaged Oblix object.
 ObAccessException __nogc *_exception;
 };
 }
 }

Managed Helper Classes for the APIs

F-4 Oracle Access Manager Developer Guide

Index-1

Index

A
Access Domain

formerly named NetPoint or COREid Access
Manager Domain, xxvi

Access Management API
now named Policy Manager API, xxvi

Access Manager
now named Policy Manager, xxvi

Access Manager API, 4-17
see also Access Manager SDK
formerly named Access Server API, xxvi
supported languages, 4-18

Access Manager SDK
about, 4-1, 4-15
best practices, 4-131
C implementation

, 4-90
ObAccessException_t, 4-101
ObAuthenticationScheme_t, 4-92
ObConfig_t, 4-100
ObDiagnostic, 4-102
ObMap_t, 4-90
ObMapIterator_t, 4-91
ObResourceRequest_t, 4-94
ObUserSession_t, 4-96

C# implementation, 4-103
ObAccessExceptionMgd, 4-113
ObAuthenticationSchemeMgd, 4-106
ObConfigMgd, 4-112
ObDiagnostic, 4-114
ObDictionary, 4-104
ObDictionaryEnumerator, 4-105
ObResourceRequestMgd, 4-107
ObUserSessionMgd, 4-109

C++ implementation, 4-77
ObAccessException, 4-88
ObAuthenticationScheme, 4-80
ObConfig, 4-87
ObDiagnostic, 4-89
ObMap, 4-78
ObMapIterator, 4-79
ObResourceRequest, 4-81
ObUserSession, 4-83

creating a user session, 4-24
error messages, 4-128

exception processing, 4-28
formerly named Access Server SDK, xxvi
globalization, 4-29
initialize and shut down, 4-26
installing, 4-7
installing on UNIX, 4-9
installing on Windows, 4-8
Java implementation, 4-115

interfaces, 4-116
ObAuthenticationScheme, 4-118
ObAuthenticationSchemeInterface, 4-116
ObConfig, 4-125
ObDiagnostic, 4-127
ObResourceRequest, 4-119
ObResourceRequestInterface, 4-116
ObUserSessionInterface, 4-117

libraries, 5-5
lists of entries
ObAccessException, 4-28
ObAuthenticationScheme, 4-20
ObConfig, 4-26
ObMap

implementations of, 4-19
ObMapIterator, 4-20
ObResourceRequest, 4-23
ObUserSession, 4-24
processing authentication schemes, 4-20
processing resource requests, 4-23
status messages, 4-128
stepping through a list, 4-20
supported languages, 4-18
tools, 5-6

Access Server
client, 4-2
connections to, 5-2

Access Server API
now named Access Manager API, xxvi

Access Server SDK
now named Access Manager SDK, xxvi

Access System Behavior Changes
ObAMMasterAuditRule_getEscapeCharacter, 5-3

2
ObAMMasterAuditRule_getUTF8EscapeCharacter

, 5-32
AccessGates

about, 4-2

Index-2

about AccessGate code, 4-30
architecture, 4-3
best practices, 4-131
building custom AccessGates, 4-1
cloning a custom AccessGate, 4-14
configuration, 4-10, 5-6
configureAccessGate, 4-13
creating

when to create, 4-2
creating an instance, 4-12
custom, 4-2
environment variables for, 4-10
example of java code for, 4-31
globalization of, 4-29
how deployed, 4-5
installing Access Manager SDK, 4-7
prefabricated, 4-2
resource request processing, 4-4
type of, 4-4

actions
getting and setting, 5-61
guidelines for writing, 3-9

administration, xxiii
AM Service State

now named Policy Manager API Support
Mode, xxvi

Anonymous authentication scheme
formerly named NetPoint or COREid None, xxvi

applications
protecting, 4-15
protecting custom applications, 5-1

auditing
for a policy or policy domain, 5-68

authentication
about, 7-1
action returned on success or failure, 5-66
actions, 5-46
controlling how it is performed, 5-45
plug-in, 5-2, 5-30
rules

actions for, 5-46
creating, 5-47
getting and setting actions, 5-61

scheme, 5-28, 5-45
default schemes, xxvi
plug-ins for, 5-30

schemes, 5-2
success or failure, 5-66

authentication plug-in API
about, 6-1
API functions, 6-9
API plug-in directory, 6-3
backward compatibility, 6-2
C API data, 6-3
Defines, 6-4
defines, 6-24
functions implemented in the plug-in, 6-15, 6-29
functions provided by the Access Server, 6-9
globalization, 6-2
handles, 6-4

interfaces, 6-25
managed code environment, 6-23
return values, 6-5, 6-28
standard plug-ins, 6-32
structures, 6-7
support files, 6-2
troubleshooting, 6-32

authorization
about, 7-1
action returned on success or failure, 5-66
actions, 5-49
expressions, 5-49
rule, 5-49

actions for, 5-49
allow and deny conditions, 5-59
allow or deny access, 5-48
in an expression, 5-54
time it is in effect, 5-62
timing conditions, 5-62

schemes, 5-2, 5-49
custom, 5-31
plug-ins for, 7-1

success or failure, 5-66
authorization expression, 5-54

actions for, 5-55
creating, 5-58
duplicate actions for, 5-55
getting and setting actions, 5-61
how interpreted, 5-55
inconclusive results, 5-55
symbols in, 5-54

authorization plug-in API
about, 7-1
Access Server functions, 7-11
C API, 7-4
C API functions, 7-11
C code location, 7-3
C constants, 7-5
C handles, 7-5
C structures, 7-7
external call for data, xxviii
interfaces implemented in the plug-in, 7-26
managed C++ code location, 7-3
managed code API interfaces, 7-21
plug-in functions, 7-13
request context, xxviii
return values, 7-6
reverse action, xxviii
troubleshooting, 7-28

B
backward compatibility, 6-2, 7-2

C
certifcate decode plug-in, 6-34
certificate decode, selection filter, 6-32
configuration data

formerly named Oblix data, xxvi

Index-3

configuration tree
formerly named Oblix tree, xxvi

configureAccessGate, 4-13
cookies

ecryption, 3-4
COREid

now named Oracle Access Manager, xxv
COREid Access Manager Domain

now named Access Domain, xxvi
COREid Administrator

now named Master Administrator, xxvi
COREid Basic Over LDAP authentication

now named Oracle Access and Identity, xxvi
COREid for AD Forest Basic Over LDAP

authentication
now named Oracle Access and Identity for AD

Forest Basic over LDAP, xxvi
COREid Identity Domain

now named Identity Domain, xxvi
COREid None authentication

now named Anonymous authentication, xxvi
COREid System Console

now named Identity System Console, xxvi
credential mapping, 6-32
customization, xxiii

D
date object class, 5-69
deployment, xxiii
directory schema, xxiii
DN values

finding, 2-3
duplicate actions, 5-55

E
encryption

Identity Event API events, 3-33
Example

Calling Logger as a Post-Processing Action After a
Workflow Step, 3-26

Examples
IdentityXML, 2-70

EXEC action example, 3-48
EXEC actions, 3-6, 3-12, 3-34

F
features

new, xxv
new in this release, xxv

G
globalization, xxvi

of Access Manager SDK, 4-29
of plug-ins, 7-2

Group Manager
getting data from, 1-12
groupservcenter, 1-7

IdentityXML functions for, 2-49
IdentityXML usage for, 2-1
sending information to programmatically, 1-1
setting data in, 1-13
testing if you can perform a function, 1-11
URL to access, 1-10

groups
create group, 2-57
delete group, 2-58
expand groups, 2-62
flush group cache, 2-63
get groups, 2-58, 2-59
membership, 2-52
modify group attributes, 2-56
permission to create a group, 2-51, 2-54
permission to delete a group, 2-51, 2-54
permission to modify, 2-50
permission to modify a group, 2-54, 2-55
permission to request modification, 2-50
permission to subscribe to a group, 2-52
permission to unsubscribe from a group, 2-52
permission to view, 2-49
permission to view a group, 2-53
permission to view a group attribute, 2-50, 2-53
permission to view group membership, 2-55
subscribe to a group, 2-63
subscribe to using IdentityXML, 2-22
unsubscribe any user via IdentityXML, 2-24
unsubscribe using IdentityXML, 2-23
view group attributes, 2-56
view groups, 2-61

GUI customization, xxiii

H
host identifiers, 5-26

I
Identity applications

example of using IdentityXML with, 1-9
sending information to programmatically, 1-1
URLs to access, 1-10

Identity Domain
formerly named COREid Identity Domain, xxvi
formerly named NetPoint Identity Domain, xxvi

Identity Event Plug-in API
about, 3-1
action completed successfully, 3-11
actions, 3-2

guidelines for writing, 3-9
catalog entry

encryption events, 3-33
OnChange events, 3-24
password management events, 3-31
pre and post events, 3-21
workflow events, 3-26

catalog file, 3-7
configuration file, 3-7
Dynamically Shared Object (DSO), 3-14

Index-4

encryption events, 3-4, 3-33
error signal, 3-11
errors

returning, 3-37
event handling, 3-20
events, 3-2
EventXML format, 3-18
example files, 3-45, 3-46
examples, 3-48
examples of use, 3-2
EXEC action example, 3-48
EXEC actions, 3-6, 3-9, 3-12, 3-16, 3-34

about, 3-36
EXEC examples, 3-17
get function, 3-13, 3-15
global parameters, 3-17
how it works, 3-9
initialization and shutdown, 3-20
LIB action example, 3-48
LIB actions, 3-5, 3-9, 3-12, 3-13, 3-34

about, 3-35
LIB examples, 3-14
LIB interface, 3-13
libraries, 3-44
load behavior, 3-12, 3-14, 3-15, 3-17
lost password management events, 3-4
MANAGEDLIB actions, 3-6, 3-9, 3-12, 3-14, 3-16,

3-34
about, 3-35
example, 3-48

MANAGEDLIB examples, 3-15
ObInitEventAPI, 3-20
oblixpppcatalog.lst, 3-27
ObTermEventAPI, 3-21
OnChange events, 3-3, 3-24
password management events, 3-4, 3-31
pre and post events, 3-21
PresentationXML, use with, 3-19
process a request before it reaches a program, 3-3
process the results of a request, 3-3
receive function, 3-13, 3-15
return values, 3-20
send function, 3-13, 3-15
set function, 3-13, 3-15
SetResultString, 3-15
STATUS_PPP_ABORT, 3-11
STATUS_PPP_OK, 3-11
STATUS_PPP_WF_ASYNC, 3-12
STATUS_PPP_WF_RETRY, 3-12
use of XML, 3-18
wait for asynchronous action, 3-12
workflow events, 3-4, 3-26
workflow step failure, 3-12
XML, parsing, 3-19

Identity System
see also Identity application
see also Identity Event Plug-in API
Administration Guide, xxii
and WSDL, 1-20
communicating with external systems, 3-1

events, C-1
extending, 3-1
extending its base functionality, 3-1
getting data from, 1-12
Identity Event Plug-in API, 3-1
IdentityXML

about, 1-1
implementing requests, 1-3
reference, 2-1

integrating with external systems, 3-1
language for interacting with, 2-1
parser for, 3-36
post event, 3-3
pre event, 3-3
program events, 3-3
programmatic interface for, 1-1
sending data to multiple Identity

applications, 3-47
setting data in, 1-13
testing if you can perform a function, 1-11
Web services, 1-21
Web services for, about, 1-1
WSDL for, 1-21

Identity System Console
formerly named COREid System Console, xxvi

IdentityXML
application-specific requests, 1-15
asynchronous workflows, resuming, 2-19
attributes, 2-5
authentication considerations, 1-6
authentication tags, 1-6
automatically generating client objects, 1-24
challenge and response configuration, xxviii
create a user, 2-41
create group, 2-57
create object, 2-66, 2-68, 2-69
deactivate a user, 2-46
delete group, 2-58
delete object, 2-66, 2-68, 2-70
DN operations, 1-15
errors, 1-18
examples, 2-70
exceptions to attribute values, 2-13
expand groups, 2-62
finding DN values, 2-3
finding LDAP schema names, 2-3
finding valid parameter values, 2-3
flush group cache, 2-63
functions and parameters, overview, 2-2
functions common to all Identity

applications, 2-14
functions, types of, 1-10
get function, 1-10
get groups, 2-58, 2-59
get workflow ticket information, 2-19
getting data from an application, 1-12
group membership, 2-52
implementing a request, 1-3
location of Identity applications, 1-10
modify a user, 2-32

Index-5

modify group attributes, 2-56
modify object, 2-65, 2-67, 2-69
overview, graphical, 1-2
parameter tags, 1-7
parameters, 2-5
permission to create a group, 2-51, 2-54
permission to create a user, 2-27, 2-29
permission to delete a group, 2-51, 2-54
permission to delete a user, 2-28, 2-30
permission to modify a group, 2-50, 2-55
permission to modify a group profile, 2-54
permission to modify a profile, 2-26
permission to modify a profile using a

workflow, 2-27
permission to modify a user, 2-29, 2-30, 2-36
permission to request modification of a user, 2-30
permission to request modificationprofile, 2-50
permission to subscribe to a group, 2-52
permission to unsubscribe from a group, 2-52
permission to view a group, 2-49, 2-53
permission to view a group attribute, 2-50, 2-53
permission to view a profile, 2-26
permission to view a profile attribute, 2-26
permission to view a user, 2-28
permission to view a user attribute, 2-28
permission to view group membership, 2-55
proxy users, 1-15
reactivate a user, 2-48
reference, 2-1
request and response flow, 1-2
request formatting, 1-4
request tag, 1-6
request to modify object, 2-65, 2-68
requests

examples of, 1-8
response example, 1-17
response format, 1-16
response parsing, 1-17
search, 2-14
search deactivated user, 2-47
search for tickets, 2-16
self-registration, 2-44, 2-69
sending multiple requests, 1-4
set function, 1-10
setting data in an application, 1-13
single sign-on considerations, 1-6
Soap tags, 1-5
special characters, handling, 1-10
start tag, 1-5
subscribe self to group, 2-22
subscribe to a group, 2-63
test function, 1-10
testing if you can perform a function, 1-11
unsubscribe, 2-24
unsubscribe self from group, 2-23
User Manager functions, 2-25
view a user, 2-31
view deactivated user, 2-47
view group attributes, 2-56
view groups, 2-61

view object, 2-64, 2-66, 2-69
view object attribute, 2-65, 2-67

installation, xxii
integration with third-party applications, 3-2
integration with third-party products, xxiii
introduction to Oracle Access Manager, xxii
ISO-8859-1, 3-2

L
Latin-1, 3-2
LDAP schema names

finding, 2-3
LIB actions, 3-5, 3-12, 3-34

example, 3-48

M
MANAGEDLIB actions, 3-6, 3-12, 3-34
MANAGEDLIB interface, 3-14
Master Administrator

formerly named COREid Administrator, xxvi
formerly named NetPoint Administrator, xxvi

master audit rule, 5-32

N
name changes, xxv
names, new, xxv
NetPoint

now named Oracle Access Manager, xxv
NetPoint Access Manager Domain

now named Access Domain, xxvi
NetPoint Access Protocol

now named Oracle Access Protocol, xxvi
NetPoint Administrator

now named Master Administrator, xxvi
NetPoint Basic Over LDAP authentication

now named Oracle Access and Identity, xxvi
NetPoint for AD Forest Basic Over LDAP

authentication
now named Oracle Access and Identity for AD

Forest Basic over LDAP, xxvi
NetPoint Identity Domain

now named Identity Domain, xxvi
NetPoint Identity Protocol

now named Oracle Identity Protocol, xxvi
NetPoint None authetication

now named Anonymous authentication, xxvi
NetPoint SAML Services

now named Oracle Identity Federation, xxv

O
ObAccessException, 4-126
ObAMAccessConditions, 5-59
ObAMAccessConditionsMGD, 5-60
ObAMAccessTest, 5-75
ObAMAccessTestMGD, 5-78
ObAMAccessTestResult, 5-80
ObAMAccessTestResultManaged, 5-80

Index-6

ObAMAccessTestResultMgd, 5-79
ObAMAccessTestResults, 5-79
ObAMAccessTestResultsMgd, 5-79
ObAMAction, 5-66
ObAMActionMgd, 5-66
ObAMActionTypeMgd, 5-61
ObAMAdminRule, 5-39
ObAMAuditRule, 5-68
ObAMAuditRule_EventTypeMgd, 5-69
ObAMAudtiRuleMgd, 5-68
ObAMAuthenticationPlugin, 5-30
ObAMAuthenticationPluginMgd, 5-30
ObAMAuthenticationRule, 5-45
ObAMAuthenticationScheme, 5-28
ObAMAuthenticationSchemeMgd, 5-29
ObAmAuthorizationExpr, 5-54
ObAMAuthorizationExprMgd, 5-59
ObAMAuthorizationRule, 5-48
ObAmAuthorizationRuleMgd, 5-53
ObAMAuthorizationScheme, 5-31
ObAMAuthorizationSchemeMgd, 5-31
ObAMDate, 5-69
ObAMDate_DaysOfWeekMgd, 5-66, 5-71
ObAMDate_MonthsMgd, 5-70
ObAMDuplicateActionPolicyMgd, 5-59
ObAMException, 5-81
ObAMHostIdentifier, 5-26
ObAMHostIdentifierMgd, 5-27
ObAMIdentity, 5-71
ObAMMasterAuditRule, 5-32
ObAMMasterAuditRuleMgd, 5-33
ObAMObjectWithActions, 5-61
ObAMParameter, 5-72
ObAMParameterMgd, 5-73
ObAMPolicy, 5-41
ObAMPolicyDomain, 5-35
ObAMPolicyMgd, 5-45
ObAMResource, 5-73
ObAMResourceType, 5-27
ObAMResourceTypeMgd, 5-27
ObAMTime, 5-74
ObAMTimeMgd, 5-74
ObAMTimingConditions, 5-62
ObAMTimingConditionsMgd, 5-64
ObInitEventAPI, 3-20
objects

create object, 2-66, 2-68, 2-69
delete object, 2-66, 2-68, 2-70
modify object, 2-65, 2-67, 2-69
request to modify object, 2-65, 2-68
schema names for

finding, 2-3
view object, 2-64, 2-66, 2-69
view object attribute, 2-65, 2-67

Oblix data
now named configuration data, xxvi

Oblix tree
now named configuration tree, xxvi

oblixpppcatalog.lst, 3-7, 3-27
entry for Unix, 3-27

ObTermEventAPI, 3-21
ObUserSession, 4-121
OctetString Virtual Directory Engine (VDE)

now named Oracle Virtual Directory, xxv
OnChange events, 3-3, 3-24
Oracle Access and Identity authentication

formerly named NetPoint or COREid Basic Over
LDAP, xxvi

Oracle Access and Identity for AD Forest Basic over
LDAP

formerly named NetPoint or COREid for AD
Forest Basic Over LDAP, xxvi

Oracle Access Manager
Access System administration, xxiii
customization, xxiii
deployment, xxiii
directory schema, xxiii
formerly NetPoint or COREid, xxv
installation, xxii
integration with third-party products, xxiii
introduction, xxii

Oracle Access Manager List of Bugs Fixed Release
10.1.4 Patchset 1 (10.1.4.2.0), xxii

Oracle Access Protocol
formerly named NetPoint Access Protocol, xxvi

Oracle Application Server 10g Release 2 (10.1.2)
also available as Oracle COREid 7.0.4, xxv

Oracle COREid release 7.0.4
also available as part of Oracle Application Server

10g Release 2 (10.1.2), xxv
Oracle Identity Federation, xxv

formerly SHAREid, xxv
Oracle Identity Protocol

formerly named NetPoint Identity Protocol, xxvi
Oracle Virtual Directory Server

formerly OctetString Virtual Directory Engine
(VDE), xxv

Organization, 2-1
Organization Manager

getting data from, 1-12
IdentityXML functions for, 2-64
IdentityXML usage for, 2-1
objservcenter, 1-7
sending information to programmatically, 1-1
setting data in, 1-13
testing if you can perform a function, 1-11
URL to access, 1-10

P
password validation, 3-2
passwords

Identity Event API events, 3-31
lost password management, 3-4
password management events, 3-4

plug-ins
globalization for, 7-2

policies, 5-41, 7-1
audit rules for, 5-32
auditing, 5-68

Index-7

creating, 5-43
matching against request data, 5-72
testing, 5-78

policy domain, 4-15, 5-2, 7-1
administrators, 5-39

creating, 5-40
auditing, 5-68
creating, 5-37
default, xxvi
object class, 5-35
policies

creating, 5-43
policies within, 5-41

Policy Manager
formerly named Access Manager, xxvi
providing its functionality via an API, 5-7

Policy Manager API, xxvi
about, 5-1
access policy objects, 5-33
Access System configuration objects, 5-25
administrators, creating, 5-40
API classes, 5-26
apidoc, 5-5
authentication rule

creating, 5-47
authorization expression

creating, 5-58
cloning objects, 5-9
connecting to the Access Server, 5-18
conventions, 5-7
copying existing objects, 5-9
copying only modified data, 5-15
creating a policy domain, 5-37
creating new objects, 5-8
deleting objects, 5-10
enumerations, 5-15
examples, 5-5
formerly named Access Management API, xxvi
functionality provided in the API, 5-7
header files, 5-5
installing, 5-4
libraries, 5-5
managed code, using with, 5-4
managing arrays, 5-12
messages available, 5-5
naming conventions, 5-8
ObAccessManager objects, 5-16
ObAMAccessConditions, 5-59
ObAMAccessConditionsMgd, 5-60
ObAMAccessTest, 5-75
ObAMAccessTestMgd, 5-78
ObAMAccessTestResult, 5-80
ObAMAccessTestResultMgd, 5-80
ObAMAccessTestResultsMgd, 5-79
ObAMAccesstTestResults, 5-79
ObAMAction, 5-66
ObAMAction_ValueTypeMgd, 5-68
ObAMActionMgd, 5-66
ObAMActionTypeMgd, 5-61
ObAMAdminRule, 5-39

ObAmAdminRuleMgd, 5-40
ObAMAuditRule, 5-68
ObAMAuditRule_EventTypeMgd, 5-69
ObAMAuditRuleMgd, 5-68
ObAMAuthenticationPlugin, 5-30
ObAMAuthenticationPluginMgd, 5-30
ObAMAuthenticationRule, 5-45
ObAmAuthenticationRuleMgd, 5-48
ObAMAuthenticationScheme, 5-28
ObAMAuthenticationScheme_ChallengeMethodM

gd, 5-29
ObAMAuthenticationSchemeMgd, 5-29
ObAMAuthorizationExpr, 5-54
ObAMAuthorizationExprMgd, 5-59
ObAMAuthorizationRule, 5-48
ObAMAuthorizationRuleMgd, 5-53
ObAMAuthorizationScheme, 5-31
ObAMAuthorizationSchemeMgd, 5-31
ObAMDate, 5-69
ObAMDate_DaysOfWeekMgd, 5-66, 5-71
ObAMDate_MonthsMgd, 5-70
ObAMDuplicateActionPolicyMgd, 5-59
ObAMException, 5-81
ObAMHostIdentifier, 5-26
ObAMHostIdentifierMgd, 5-27
ObAMIdentity, 5-71
ObAMMasterAuditRule, 5-32
ObAMMasterAuditRuleMgd, 5-33
ObAMObjectWithActions, 5-61
ObAMParameter, 5-72
ObAMParameterMgd, 5-73
ObAMPolicy, 5-41
ObAMPolicyDomain, 5-35
ObAMPolicyDomainMgd, 5-38
ObAMPolicyMgd, 5-45
ObAMResource, 5-73
ObAMResourceType, 5-27
ObAMResourceTypeMgd, 5-27
ObAMTime, 5-74
ObAMTimeMgd, 5-74
ObAMTimingConditions, 5-62
ObAMTimingConditions_RelativeToMgd, 5-66
ObAMTimingConditionsMgd, 5-64
policy domain administrators, 5-39
policy domain objects, 5-33
prerequisite AccessGate configuration, 5-6
referring to an object elsewhere, 5-34
sample program, 5-77, 5-83
setIDFrom, 5-15
single-valued object members, 5-10
string names, 5-34
tools, 5-6

Policy Manager API Support Mode
formerly named AM Service State, xxvi

post events, 3-21
pre events, 3-21
preface, xxi
PresentationXML

and the Identity Event API, 3-19
Procedure

Index-8

To Create an AccessGate Entry on the Access
Server, 4-12

To find schema names for an attribute, 2-3
To generate a .NET WSDL client, 1-25
To install the Access Manager SDK on a Unix

system, D-3
To install the Access Manager SDK on

Windows, D-2
To Install the SDK on a UNIX Machine, 4-9
To Install the SDK on a Windows Machine, 4-8
To modify data for objects in arrays, 5-13
To run configureAccessGate on a UNIX

Machine, 4-13
To run configureAccessGate.exe on a Windows

Machine, 4-13
To Set Environment Variables on a UNIX

Machine, 4-11
To Set Environment Variables on a Windows

Machine, 4-10
To set the CLASSPATH, and compile and run the

sample code
, 1-27

To set the obEnableCredentialCache
parameter, 6-33

To set up client side processing, A-7
Process overview

Handling a resource request, 4-4
Sample program for Access Manager API, 4-48

provisioning, 3-2

R
read permission, 1-14
resource request

testing, 5-78
resources

allow or deny access, 5-59
defining, 5-73
matching a resource request to a policy, 5-72
protecting, 4-15
protecting custom resources, 5-1
resource type, 5-27

rules
master audit rule, 5-32

S
schema, xxiii
schema names

finding, 2-3
search

for tickets using IdentityXML, 2-16
via IdentityXML, 2-14

Secure ID, 6-32
SecurID plug-in, 6-35
selection filter plug-in, 6-35
SHAREid

now named Oracle Identity Federation, xxv
Soap tags, 1-5
special characters, 1-10

T
Task overview

AccessGate deployment, 4-6
Cloning a custom AccessGate, 4-14
Configuring an AccessGate, 4-10
Implementing an IdentityXML Request, 1-3
Setting up the Access Manager SDK

, 1-27
Using WSDL to generate Java IdentityXML

requests, 1-24
Using WSDL to generate .NET IdentityXML

requests, 1-25
Working with the Identity System WSDL

files, 1-24
third-party products, xxiii

U
UDDI

about
user

authentication, 6-1
profile

identifying, 5-71
User Manager

example of using IdentityXML with, 1-9
getting data from, 1-12
IdentityXML functions for, 2-25
IdentityXML usage for, 2-1
sending information to programmatically, 1-1
setting data in, 1-13
testing if you can perform a function, 1-11
URL to access, 1-10
userservcenter, 1-7

users
allow or deny access, 5-48
create, 2-41
deactivate a user, 2-46
modify a user, 2-32
permission to create, 2-27, 2-29
permission to delete, 2-28, 2-30
permission to modify, 2-26, 2-29, 2-30, 2-36
permission to modify via a workflow, 2-27
permission to request modification of a user, 2-30
permission to view, 2-26, 2-28
permission to view a user attribute, 2-28
permission to view an attribute, 2-26
proxy users, 1-15
reactivate a user, 2-48
read permission, 1-14
search deactivated user, 2-47
self registration, 2-69
self-registration, 2-44
view a user, 2-31
view deactivated user, 2-47
view permission, 1-14
write permission, 1-14

UTF-8, 3-2

Index-9

V
validate password, 6-32
validate password plug-in, 6-34
view permission, 1-14

W
Web applications

protecting, 4-15
Web Services Description Language

see WSDL
WebGates

see also AccessGates
about, 4-2
custom, 4-2
rewrite of, xxvii
when to customize, 4-2

WebLogic
supported platforms, 4-6

what’s new, xxv
Windows 2000, 6-32
windows2000 plug-in, 6-35
workflows

asynch, 1-7
asynchronous

resuming, 2-19
events, 3-4, 3-26
get information, 2-19
URLs to access, 1-10

write permission, 1-14
WSDL

about
automatically generating client objects, 1-23
benefits of, 1-20
compatibility with IdentityXML, 1-4
creating IdentityXML requests with, 1-20
directory structure, 1-21
documents, 1-21
example of invoking a Web service, 1-26
file structure, 1-22
generating Java IdentityXML requests, 1-24
generating .NET IdentityXML requests, 1-25
Identity System functions for, 1-20
publishing using UDDI, 1-29
sample code, xxviii, 1-21
sample files, 1-22
schema files, location, 1-10
template files, 1-21
XML schema, 1-21

X
XML

see also IdentityXML
and the Identity Event API, 3-18
parsing, 3-19
start tag, 1-5

Index-10

	Developer Guide
	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What’s New in Oracle Access Manager?
	Product and Component Name Changes
	Globalization
	WebGate Rewrite
	Sample Web Services Code
	Updates to IdentityXML
	Authorization Plug-in API

	Part I Programmatic Interfaces to the Identity System
	1 IdentityXML and Identity Web Services
	About IdentityXML
	Implementing an IdentityXML Request
	Sending Multiple IdentityXML Requests

	Formatting an IdentityXML Request
	XML Start Tag
	Soap Tags
	Authentication Tags
	Authentication and Single Sign-on Considerations

	Request Tag
	Parameter Tags
	Request Examples

	Handling Special Characters in Requests

	Locations for Each Application
	Types of IdentityXML Functions
	Functions to Test Access to Data
	Functions to Get Data
	Functions to Set Data
	Privileges to View and Modify
	Privileges Required for Direct Access APIs
	Privileges Required for Indirect Access APIs
	Privileges Required for Application-Specific IdentityXML Requests
	Privileges Required for DN Operations

	Formatting an IdentityXML Response
	Parsing a Response
	Response Example
	Error Responses

	Creating IdentityXML Requests Using WSDL
	Benefits of WSDL
	About Identity System WSDL Files
	WSDL Directory Structure

	WSDL Documents
	Sample WSDL Files
	About Working With WSDL Files
	.NET Implementation of WSDL
	Invoking a WSDL-Based Web Service Using Java
	Required Software for Using the Sample Code
	Setting Up the Access Manager SDK
	Compiling and Running the Sample Code

	Making WSDL Functions Available Using UDDI

	2 IdentityXML Functions and Parameters
	About IdentityXML
	IdentityXML Overview
	About IdentityXML Functions and Parameters
	Function Types
	Finding the Right Parameter Values for a Function

	Search Parameters
	Attribute Parameters
	Syntax for Most Attribute Parameters
	Syntax for Lost Password Management Attribute Parameters
	Add Operation
	Delete Operation
	Replace Operations
	Replace_All Operations

	Exceptions to Attribute Values
	Common Functions
	Search for entries based on some criteria
	Search for all pending, completed, or all tickets
	Get information on a particular workflow ticket
	Resume asynchronous workflows
	Subscribe self to group
	Unsubscribe self from group
	Subscribe user to group
	Unsubscribe user from group

	User Manager Functions
	Functions to Test for Attribute Permissions
	Can I view a user's profile
	Can I view an attribute in a user's profile
	Can I modify an attribute in a user's profile
	Can I modify an attribute in a user's profile using a workflow
	Can I create a new user
	Can I delete an existing user
	Can this user view another user's profile
	Can this user view an attribute in another user's profile
	Can this user modify an attribute in another user's profile using a workflow
	Can this user create a new user
	Can this user delete an existing user
	Can this user modify another user's attribute
	Can this user request a change to another user's profile using a workflow

	Functions to Perform User Manager Actions
	View user attributes
	Modify user attributes
	Request user attribute change through a workflow
	Create User Using a Workflow
	Self-Registration Using a Workflow
	Deactivate User Using a Workflow
	View Deactivated User
	Search Deactivated Users
	Reactivate User Using a Workflow

	Group Manager Functions
	Functions to Test for Attribute Permissions
	Can I view a group's profile
	Can I view an attribute in a group's profile
	Can I modify an attribute in a group's profile
	Can I request modification through a workflow of an attribute in a group profile
	Can I create a new group
	Can I delete an existing group
	Can I subscribe to a group
	Can I unsubscribe from a group
	Am I a member of a group
	Can a user view a group's profile
	Can a user view an attribute in a group's profile
	Can a user modify an attribute in a group profile using a workflow
	Can a user create a new group
	Can a user delete an existing group
	Is this person a member of a group
	Request group attribute change
	Request group attribute change through a workflow

	Functions to Perform Group Manager Actions
	View group attributes
	Modify Group attributes
	Create group
	Delete Group
	Get groups that I am a member, owner, or administrator of
	Get groups that a user is a member, owner, or administrator of
	View group members
	Expand group
	Flush the Group Cache
	Subscribe a user to a group

	Organization Manager Functions
	Functions to Test For Attribute Permissions
	Can I view an object's profile
	Can I view an attribute in the object's profile
	Can I modify an attribute in an object's profile
	Can I request modification through a workflow of an attribute in an object's profile
	Can I create a new object
	Can I delete an existing object
	Can this user view an object's profile
	Can this user view an attribute in an object's profile
	Can a user modify an attribute in an object's profile
	Can a user create a new object
	Can a user delete an existing object
	Can this user request an object attribute modification

	Functions to Perform Organization Manager Actions
	View object attributes
	Modify object attributes
	Request object attribute change through a workflow
	Create an object
	Self-registration
	Delete object

	Code Examples of Deployed IdentityXML Functions
	Java Application Example
	Java Servlet Example
	ObSSOCookie Example

	3 Identity Event Plug-in API
	About the Identity Event Plug-in API
	Examples of Uses of the Identity Event Plug-in API

	Connecting Events to Actions
	Types of Events
	Identity System Program Events: Pre and Post
	OnChange
	Workflow Events
	Password Management Events
	Lost Password Management
	Encryption Events

	Types of Actions
	LIB Actions
	MANAGEDLIB Actions
	EXEC Actions

	Configuration File (Catalog)
	Guidelines for Writing an Action
	Task overview: Writing an action
	Availability-The availability of the data

	How the API Works
	Actions, as Seen by Identity System Applications
	Identity System Applications, as Seen by Actions
	LIB Actions
	LIB Interface
	Load Behavior
	LIB Examples
	MANAGEDLIB Actions
	MANAGEDLIB Interface
	Load Behavior for MANAGEDLIB
	MANAGEDLIB Examples
	MANAGEDLIB Actions
	EXEC Actions
	Load Behavior
	EXEC Examples
	Global Parameters

	Working with XML
	Event XML Format
	PresentationXML Format
	Parsing XML

	Event Handling in the API
	Event Handler Initialization and Shutdown Functions
	ObInitEventAPI ()
	Return Values
	ObTermEventAPI ()
	Return Values

	Pre and Post Events
	Catalog Entry
	Interaction Methods

	OnChange Events
	Catalog Entry
	Interaction Methods
	Return Values

	Workflow Events
	Catalog Entry
	Interaction Methods
	Tables of Workflow Attributes
	Return Values

	Password Management Events
	Catalog Entry
	Interaction Methods
	Return Values

	Encryption Events
	Catalog Entry
	Interaction Methods
	Response Values

	The API
	More on LIB Actions
	More on MANAGEDLIB Actions
	More on EXEC Actions
	Returning Error Messages From an EXEC Call
	Returning Error Messages Using EXEC - WF
	EReturning Error Messages Using EXEC - PRE
	Returning Error Messages Using EXEC - POST

	Development Environment
	Library Files for LIB and EXEC Actions
	Library Files for MANAGEDLIB Actions
	LIB Action Example Files
	MANAGEDLIB Action Example Files
	EXEC Action Example Files
	Parser Example Files

	Cross-Application Support
	Examples
	A LIB Action Example-LogActivation
	An EXEC Action Example-AfterHours
	A MANAGEDLIB Action Example

	Part II Programatic Interfaces to the Access System
	4 Building AccessGates with the Access Manager SDK
	About AccessGates
	About Prefabricated AccessGates (WebGates)
	When to Create a Custom AccessGate
	AccessGate Architecture
	AccessGate Variations
	How an AccessGate Handles a Resource Request

	About AccessGate Deployment
	Supported Versions and Platforms
	Installing the Access Manager SDK
	Obtaining the Access Manager SDK
	Installing the SDK on Windows
	Installing the SDK on UNIX

	Configuring an AccessGate
	Setting Environment Variables
	Creating an AccessGate Entry on the Access Server
	Running the configureAccessGate Utility

	Writing AccessGate Code
	Cloning a Custom AccessGate

	Protecting Resources

	About the Access Manager SDK
	SDK Overview
	SDK Content
	BEA WebLogic Support Files

	About the Access Manager API
	Implementations Compared
	About Memory Management
	Corresponding Classes
	About Multi-Language Implementation

	ObMap
	Equivalent Methods

	ObMapIterator
	Equivalent Methods

	ObAuthenticationScheme
	Equivalent Methods

	ObResourceRequest
	Equivalent Methods

	ObUserSession
	Equivalent Methods

	ObConfig
	Configuration Parameters
	Equivalent Methods

	ObAccessException
	Equivalent Methods

	Globalization and the Access Manager SDK, Access Manager APIs, Custom AccessGates
	About Custom AccessGate Code
	Typical AccessGate Execution Flow
	Example of a Simple AccessGate: JAccessGate.java
	Annotated Code

	Example of a Simple AccessGate Using C Psuedo Classes: access_test_c.cpp
	Annotated Code

	Example: Java Login Servlet
	Annotated Code

	Example Using the C# API: access_api_test.cs
	Annotated Code

	Example Using Additional Methods: access_test_java.java
	Annotated Code

	Example in C++ that Implements Several Features: access_test_cplus.cpp
	Annotated Code

	Example of Implementing Certificate-Based Authentication

	C++ Implementation Details
	ObMap
	Constructors (ObMap, C++)
	Methods (ObMap, C++)

	ObMapIterator
	Constructors (ObMapIterator, C++)
	Methods (ObMapIterator, C++)

	ObAuthenticationScheme
	Constructors (ObAuthenticationScheme, C++)
	Methods (ObAuthenticationScheme, C++)

	ObResourceRequest
	Constructors (ObResourceRequest, C++)
	Methods (ObResourceRequest, C++)

	ObUserSession
	Constructors (ObUserSession, C++)
	Methods (ObUserSession, C++)

	ObConfig
	Methods (ObConfig, C++)

	ObAccessException
	Constructors (ObAccessException, C++)
	Methods (ObAccessException, C++)

	ObDiagnostic (C++)
	Methods (ObDiagnostic, C++)

	C Implementation Details
	ObMap_t
	Functions (ObMap_t, C)

	ObMapIterator_t
	Functions (ObMapIterator_t, C)

	ObAuthenticationScheme_t
	Functions (ObAuthenticationScheme_t, C)

	ObResourceRequest_t
	Functions (ObResourceRequest_t, C)

	ObUserSession_t
	Functions (ObUserSession, C)

	ObConfig_t
	Functions (ObConfig, C)

	ObAccessException_t
	C-language Error Handlers
	Functions (ObAccessException, C)

	ObDiagnostic (C)
	Methods (ObDiagnostic, C)

	C# Implementation Details
	ObDictionary
	Constructors (ObDictionary, C#)
	Methods (ObDictionary, C#)

	ObDictionaryEnumerator
	Constructors (ObDictionaryEnumerator, C#)
	Methods (ObDictionaryEnumerator, C#)

	ObAuthenticationSchemeMgd
	Constructors (ObAuthenticationSchemeMgd, C#)
	Methods (ObAuthenticationSchemeMgd, C#)

	ObResourceRequestMgd
	Constructors (ObResourceRequestMgd, C#)
	Methods (ObResourceRequestMgd, C#)

	ObUserSessionMgd
	Constructors (ObUserSessionMgd, C#)
	Methods (ObUserSessionMgd, C#)

	ObConfigMgd
	Constructors (ObConfigMgd, C#)
	Methods (ObConfigMgd, C#)

	ObAccessExceptionMgd
	Constructors (obAccessExceptionMgd, C#)
	Methods (ObAccessExceptionMgd, C#)

	ObDiagnostic (C#)
	Methods (ObDiagnostic, C#)

	Java Implementation Details
	Interfaces
	ObAuthenticationSchemeInterface
	ObResourceRequestInterface
	ObUserSessionInterface

	(java.util.Hashtable)
	Constructors (java.util.Hashtable, Java)
	Methods (java.util.Hashtable, Java)

	ObAuthenticationScheme
	Constructors (ObAuthenticationScheme, Java)
	Methods (ObAuthenticationScheme, Java)

	ObResourceRequest
	Constructors (ObResourceRequest, Java)
	Methods (ObResourceRequest, Java)

	ObUserSession
	Java Status and Error Message Fields
	Constructors (ObUserSession, Java)
	Methods (ObUserSession, Java)

	ObConfig
	Constructors (ObConfig, Java)
	Methods (ObConfig, Java)

	ObAccessException
	Constructors (ObAccessException, Java)
	Inherited Methods (ObAccessException, Java)

	ObDiagnostic (Java)
	Methods (ObDiagnostic, Java)

	C-Family Status and Error Message Strings
	Best Practices
	Avoiding Problems
	Thread Safe Code

	Identifying and Resolving Problems

	5 Policy Manager API
	About the Policy Manager API
	Notes on Managed Code

	Development Environment
	Installation Location
	Installation Content
	About Building an AccessGate
	Environment Variables
	Build Process

	Configuration File

	Coding With the Policy Manager API
	API Conventions
	Programmatic and Implementation Conventions
	Naming Conventions

	Creating New Objects
	Copying Existing Objects
	About Cloning Objects Explicitly

	Deleting Objects
	Managing Data for Single-Valued Object Members
	Setting Data for Single-Valued Object Members
	Getting Data for Single-Valued Object Members

	Managing Arrays
	About Keys
	Adding Data to Arrays
	Modifying Data for Objects in Arrays
	Getting a Count of Members in an Array
	Getting Data for Elements of Arrays
	Removing Data from Arrays

	Using setIDFrom
	Using Enumerations
	ObAccessManager Class
	Methods to Handle AccessManager Objects
	Connection Methods
	Get Methods
	Java
	C
	Get Method Examples
	Set Method
	Test Access Method

	Access System Configuration Objects

	Policy Manager API Classes
	Class ObAMHostIdentifier
	Class ObAMHostIdentifierMgd
	Class ObAMResourceType
	Class ObAMResourceTypeMgd
	Class ObAMAuthenticationScheme
	Class ObAMAuthenticationSchemeMgd
	Class ObAMAuthenticationScheme_ChallengeMethodMgd
	Class ObAMAuthenticationPlugin
	Class ObAMAuthenticationPluginMgd
	Class ObAMAuthorizationScheme
	Class ObAMAuthorizationSchemeMgd
	Class ObAMMasterAuditRule
	Class ObAMMasterAuditRuleMgd
	Access Policy Objects
	About String Names

	Class ObAMPolicyDomain
	Class ObAMPolicyDomainMgd
	Class ObAMAdminRule
	Creating an Administrator Rule
	Class ObAMAdminRuleMgd
	Class ObAMPolicy
	Class ObAMPolicyMgd
	Class ObAMAuthenticationRule
	Class ObAMAuthenticationRuleMgd
	Class ObAMAuthorizationRule
	Class ObAMAuthorizationRuleMgd
	Class ObAMAuthorizationExpr
	Class ObAMAuthorizationExprMgd
	Class ObAMDuplicateActionPolicyMgd
	Class ObAMAccessConditions
	Class ObAMAccessConditionsMgd
	Class ObAMActionTypeMgd
	Class ObAMObjectWithActions
	Class ObAMTimingConditions
	Class ObAMTimingConditionsMgd
	Class ObAMTimingConditions_RelativeToMgd
	Class ObAMDate_DaysOfWeekMgd
	Class ObAMAction
	Class ObAMActionMgd
	Class ObAMAction_ValueTypeMgd
	Class ObAMAuditRule
	Class ObAMAuditRuleMgd
	Class ObAMAuditRule_EventTypeMgd
	Class ObAMDate
	Class ObAMDateMgd
	Class ObAMDate_MonthsMgd
	Class ObAMDate_DaysOfWeekMgd
	Class ObAMIdentity
	Class ObAMIdentityMgd
	Class ObAMParameter
	Class ObAMParameterMgd
	Class ObAMResource
	Class ObAMResourceMgd
	Class ObAMTime
	Class ObAMTimeMgd

	Test Objects
	Class ObAMAccessTest
	Class ObAMAccessTestMgd
	Class ObAMAccessTestResults
	Class ObAMAccessTestResultsMgd
	Class ObAMAccessTestResult
	Class ObAMAccessTestResultMgd
	Class ObAMException
	Class ObAccessException
	Class ObAccessExceptionMgd

	Sample Program

	6 Authentication Plug-in API
	About the Authentication Plug-in API
	Globalization and Custom C Authentication Plug-ins and Interfaces
	Backward Compatibility

	C API Environment
	Support Files Location for the C API
	C API Plug-in Directory

	C API Data
	Defines (C)
	Handles (C)
	C Return Values
	ObAnActionType_t
	ObAnPluginstatus_t
	ObAnASStatus_t

	C Structures
	ObAnServerContext
	ObAnPluginInfo
	ObAnPluginFns

	C API Functions
	Functions Provided by the Access Server (C API)
	GetDataFn
	SetDataFn
	GetFirstItemFn
	GetNextFn
	GetCredFn
	SetCredFn
	GetActionFn
	SetActionFn
	SetAuthnUidFn

	C Functions Implemented in the Plug-in
	ObAnPluginGetVersion
	ObAnPluginInit
	ObAnPluginTerminate
	ObAnPluginFn
	ObAnPluginDeallocStatusMsg

	C Authentication Plug-in Example
	Managed Code API Environment
	Managed Code API Plug-in Directory

	Managed Code API Data
	Defines (Managed Code)
	Interfaces (Managed Code)
	IObAnServerContext
	IObAnPluginInfo
	IObAnPluginSVData
	IObAnPluginMVData
	IObAsPluginListItem

	Managed Code Return Values
	ObAnActionType
	ObAnPluginstatus
	ObAnASStatus

	Managed Code Functions Implemented in the Plug-in
	ObAnPluginGetVersion
	ObAnPluginInit
	ObAnPluginTerminate
	ObAnPluginFn

	Troubleshooting
	Standard Plug-Ins
	Credential Mapping Plug-In
	Validate Password Plug-In
	Certificate Decode Plug-In
	Selection Filter Plug-In
	NT/Win2000 Plug-In
	SecurID Plug-In

	7 Authorization Plug-in API
	About the Authorization Plug-In API
	Support for C and Managed Code
	Globalization and Custom C Authorization Plug-in Interfaces
	Backward Compatibility

	API Environment
	C Code Location
	Managed C++ Code Location
	Plug-in Location

	C API Data
	C Constant Definitions
	C Handles
	C Return Values
	ObAzplug-instatus_t
	ObAzASStatus_t

	C Structures
	ObAzServerContext
	ObAzPluginInfo
	ObAzPluginFns

	C API Functions
	C Functions Provided by the Access Server
	GetDataFn
	SetDataFn
	GetFirstItemFn
	GetValueFn
	GetNextFn

	C Functions Implemented in the Plug-In
	ObAzPluginGetVersion
	ObAzPluginInit
	ObAzPluginTerminate
	ObAzPluginFn
	ObAzPluginDeallocStatusMsg
	C Example

	Managed Code API Interfaces
	Defines
	Interfaces
	Return Values
	Status
	ASStatus

	Managed Code Interfaces
	IObAzServerContext
	IObAZPluginInfo
	IObAzPluginData
	IObAzPluginWriteableData
	IObAsPluginListItem

	Interfaces to be Implemented in the Plug-In
	ObAzPluginGetVersion
	ObAzPluginInit
	ObAzPluginTerminate
	ObAzPluginFn

	Troubleshooting

	Part III Appendices
	A XML Background
	About XML
	XML Schema
	XSL and XSLT
	General Syntax
	Expression Syntax
	Client-Side Transformation
	XSL Transformation Limits

	Resources

	B Policy Manager API Definitions
	Class ObAccessManager
	Java
	C
	Managed Code

	Access Policy Objects
	Java
	Class ObAMResource
	Class ObAMAccessConditions
	Class ObAMDate
	Class ObAMTime
	Class ObAMTimingConditions
	Class ObAMIdentity
	Class ObAMObjectWithActions
	Class ObAMAction
	Class ObAMAuthenticationRule
	Class ObAMAuthorizationRule
	Class ObAMAuthorizationExpr
	Class ObAMAuditRule
	Class ObAMAdminRule
	Class ObAMParameter
	Class ObAMPolicy
	Class ObAMPolicyDomain
	Class ObAMAccessTest
	Class ObAMAccessTestResults
	Class ObAMAccessTestResult(s)

	C
	Class ObAMResource
	Class ObAMAccessConditions
	Class ObAMDate
	Class ObAMTime
	Class ObAMTimingConditions
	Class ObAMIdentity
	Class ObAMAction
	Class ObAMObjectWithActions
	Class ObAMAuthenticationRule
	Class ObAMAuthorizationRule
	Class ObAMAuthorizationExpr
	Class ObAMAuditRule
	Class ObAMAdminRule
	Class ObAMParameter
	Class ObAMPolicy
	Class ObAMPolicyDomain
	Class ObAMAccessTest
	Class ObAMAccessTestResults
	Class ObAMAccessTestResult(s)

	Managed Code
	Class ObAMResourceMgd
	Class ObAMAccessConditionsMgd
	Class ObAMDateMgd
	Class ObAMDate_MonthsMgd
	Class ObAMDate_DaysOfWeekMgd
	Class ObAMTimeMgd
	Class ObAMTimingConditionsMgd
	Class ObAMIdentityMgd
	Class ObAMActionTypeMgd
	Class ObAMActionMgd
	Class ObAMAction_ValueTypeMgd
	Class ObAMAuthenticationRuleMgd
	Class ObAMAuthorizationRuleMgd
	Class ObAMAuthorizationExprMgd
	Class ObAMAuditRuleMgd
	Class ObAMAdminRuleMgd
	Class ObAMParameterMgd
	Class ObAMPolicyMgd
	Class ObAMPolicyDomainMgd
	Class ObAMAccessTestMgd
	Class ObAMAccessTestResultsMgd
	Class ObAMAccessTestResultMgd

	Access System Configuration Objects
	Java
	Class ObAMHostIdentifier
	Class ObAMResourceType
	Class ObAMAuthenticationScheme
	Class ObAMAuthenticationPlugin
	Class ObAMAuthorizationScheme
	Class ObAMMasterAuditRule

	C
	Class ObAMHostIdentifier
	Class ObAMResourceType
	Class ObAMAuthenticationScheme
	Class ObAMAuthenticationPlugin

	Managed Code
	Class ObAMHostIdentifierMgd
	Class ObAMResourceTypeMgd
	Class ObAMAuthenticationSchemeMgd
	Class ObAMAuthenticationPluginMgd
	Class ObAMAuthorizationSchemeMgd
	Class ObAMMasterAuditRuleMgd

	Class ObAMException
	Java
	Class ObAccessException
	C
	Class ObAccessExceptionMgd
	Managed Code

	C Identity Events
	Application Events
	Workflow Events

	D Installing the Access Manager SDK
	About the Access Manager SDK Environment
	Software Developer Kit Installation Prerequisites
	Installing the Access Manager SDK on Windows
	Installing the Access Manager SDK on Unix
	Installing the Access Manager SDK on Linux

	E SOAP and HTTP Client
	F Managed Helper Classes
	Managed Helper Classes for the APIs

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

