ORACLE

Oracle® Access Manager
Developer Guide
10g(10.1.4.2.0)

E10355-01

August 2007

This guide explains how to write custom applications and
plug-ins that enable programmatic access to Identity System
functions and to extend the Access System's single sign-on
and authorization functions.

Oracle Access Manager Developer Guide 10g (10.1.4.2.0)
E10355-01

Copyright © 2000, 2007, Oracle. All rights reserved.
Primary Author: Nina Wishbow

Contributing Author: Gail Tiberi

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Contents

PUOIACE ... et s et s e e XXi
AN S Lo T VLT ORRTRRRRRRT XXi
Documentation AcCesSSIDILityccccciiiiiiiiiiiiiiiiii e XXi
Related DOCUITIEIESooviiceiiecteeceeeeteeeee ettt ettt ettt et e ete e et eeteeeaaeeaeeeaeeesesesesestesssseenseessesneeaneeas XXii
COMVEIILIONS ..oeititeieeeeettee e e ettt e eee e e ee ettt e e e eesaabeeeeeeeataseeesessaaseessessaaeesesassssasesessnnseesessssstaseeesnnnsarees XXiii

What’s New in Oracle Access Manager?.............. e XXV
Product and Component Name Changes............c.cccuouiriiiiiiiiiiicece e XXV
GlODALIZATION ettt ettt et et e e ettt e et e e s eabeeesateessaaeesenseeesseeesaseesanseessnteesnreesanaeeseaeesannes XXVi
WWEDGAE ROWTIEE......ceeeiieeeeeeeeee ettt e e e e e eeae e e e eaeeeeenseseenseeeenseeeeseeeennneeenneeeean XXVii
Sample Web Services Code.........oiiiiice e XXviii
Updates to Identity XML.........cccccouiiiiiiiiiiiiiiiiiinc e XXViii
Authorization PIUug-in APL..........ccccoii e XXViii

1 IdentityXML and Identity Web Services

About IdentityXIML.........cccooiuiiiiiiiiiiiiiiic e 1-1
Implementing an Identity XML RequUeStccccceiuiiiiiiiiiiiiiiiiiiiiinas 1-3
Sending Multiple Identity XML ReqUESLSc.covruiiiiiieiiiiccecce e 1-4

Formatting an IdentityXML Request...........ccccccociiiiiiiiiiniiiiiiiiicc e 1-4
XML SEart TaG...cocvoveiciiiiiiiiiii s 1-5
S0P TAZS...cviuiiitiniiicc s 1-5
Authentication TagS.......ccoviiiiiiiiiiii s 1-6

Authentication and Single Sign-on Considerations. ..., 1-6
ReQUESE TAG......ovoviiiiciciic s 1-6
Parameter Tagsccoceeiiiiiiiiiiiii s 1-7

Request EXamPLEScccccoiiiiiiiiiiiiiiiiiiii s 1-8
Handling Special Characters in Requests.............ccccceiiiiiiiiiiiiiiiiiciiccccccecees 1-10

Locations for Each Application............cccocooiiiiiiiiiiiii s 1-10

Types of Identity XML FUNCHONS..............cooouiiii s 1-10
Functions to Test AcCeSS t0 Data......c.cccvieiiiiiiiiieieciieeeee ettt 1-11
FUNCHONS 10 GEE DIALAevevieeiiiicieeieeece ettt sttt ettt s b e s e et e eseeaesreensennees 1-12
FUNCHONS 10 SOt Data.cc.uviiiieiiiiiieiecieeeee ettt ettt et e s ve e te e stb e e be e saeense e saessaeenns 1-13
Privileges to View and Modify ... 1-14

Privileges Required for Direct Access APIS ..o 1-14

Privileges Required for Indirect Access APIs.........cccccovviiiiiniinniiiii 1-15

Privileges Required for Application-Specific IdentityXML Requests............ccccceuevevnncnn. 1-15

Privileges Required for DN Operationscccoocueieiiiicieiniicie e 1-15
Formatting an IdentityXML ReSPonse..............cccocouiiiiiiiiiiiiiniiiicns 1-16
Parsing a RESPONSEcccuiiiiiiiiiiiiicieiii s 1-17
ReSpONse EXAMPILEooiriiiiiiieieece e 1-17
EITOT RESPONSES ...ttt s 1-18
Creating IdentityXML Requests Using WSDL.............c.ccocoooiiiiiiceene 1-20
Benefits Of WSDLccuiiiiiiiiici e 1-20
About Identity System WSDL Files.........cccoooiiiiiiiiiiiiceeeeeeeeeeeeeeeee e 1-20
WSDL Directory StrUCHUTe........cooiviiiicie s 1-21

WSDL DOCUMENES ...ttt 1-21
Sample WSDL FIIES.......c.cuiuiiiiiiiiiciciccccicie et 1-22
About Working With WSDL FiLeScccccuiiiiiieiiiic i 1-23
NET Implementation of WSDL..........ccoouiiiiic s 1-25
Invoking a WSDL-Based Web Service Using Javac.cccccccvceueieccceeiiiceccccceeeeenenens 1-26
Required Software for Using the Sample Code.........ccccouiiiiniiniiiiiiiiiiiins 1-27

Setting Up the Access Manager SDKcccoooiiiiiiiiiiicc s 1-27
Compiling and Running the Sample Codecccccoeeiiiiiiiiiiiiccecceeceeeenens 1-27
Making WSDL Functions Available Using UDDIL..............ccccccoviiiiiiiiiiiicccs 1-29

2 IdentityXML Functions and Parameters

About IdentityXIML.........ccoiiiiiiiiiiii e 2-1
Identity XML OVEIVIEWccviviiiiiiiiiiiiiiiiiiiccc e 2-2
About IdentityXML Functions and Parametersccocooeerrerrrirnnnnnnrserreeeceeeeeseeenne 2-2

FUNCHON TYPES ..ttt 2-2
Finding the Right Parameter Values for a Function ... 2-3

Search Parameters ... s 2-3

Attribute Parameters.............cccooviiiiiiiiiiiiiiii s 2-5
Syntax for Most Attribute Parametersccoooiiiiiiiiiii 2-5
Syntax for Lost Password Management Attribute Parameters...........ccccccococieciicccccccnnes 2-9

Add OPerationccceviiiiiiiiiiiiiii s 2-9
Delete OPerationcccccuiiiiiiiiiiiiiicce s 2-10
Replace Operations.........ccociiiiiiiiiiiiiiiiic s 2-10
Replace_All OPerations ...t 2-12

Exceptions to Attribute Values ... 2-13

Common FUNCHIONScooiiit ettt 2-14
Search for entries based on some Criteriaccoooeeiiiieiiiiiiiiiiiiii 2-14

Search for all pending, completed, or all ticketsccccoeuivvirieiniiiii 2-16
Get information on a particular workflow ticketcccocoeeiiviiiiniiiiccceee 2-19
Resume asynchronous Workflows...........c..cceueriiiiiiniiniicc s 2-19
Subscribe Self t0 GrOUPc.cciuiiiiiiiiiiiiiciic s 2-22
Unsubscribe Self from GTrOUP ... e 2-23
SUDSCIIDE USET t0 GIOUP....cviviiiiiiiiiiiiiiciciciie s 2-23
Unsubscribe user from groupcccccciiiieiiiiiiiiiiiiiiiiceceeeeeeee s 2-24

User Manager FUNCHONS ... 2-25

Functions to Test for Attribute Permissions..........cccccecveeiiieiiiiiiiiiiiiiiii 2-26
Can I view a USer's Profile ... 2-26

Can I view an attribute in a user's profile ..o 2-26

Can I modify an attribute in a user's profilecccooooiiii 2-26
Can I modify an attribute in a user's profile using a workflowcccccccevvvvvnncne. 2-27
Can I create a NEeW USETc.ccviviiiiiiiiiiii s 2-27
Can I delete an exXiStiNg USET.........cccuiiiurueiiiicicie e 2-28
Can this user view another user's profile............ccccccccciiiiiiiiiiccccceeeeees 2-28
Can this user view an attribute in another user's profile.........cccccoceviiiiiiiiinnn 2-28
Can this user modify an attribute in another user's profile using a workflow............... 2-29
Can this USer create @ NEW USET.........ccvreuiiiiiiiieieiie e 2-29
Can this user delete an exiStiNg USET...........cccvrueveiieiiiieiiiicie s 2-30
Can this user modify another user's attributec.c.oooiiii 2-30
Can this user request a change to another user's profile using a workflow 2-30
Functions to Perform User Manager ACHONS..........ccccuevoiiriiiiiiiiciec 2-31
View user attributes..........ccooiiiiiiiiii 2-31
MoOdify USer attriDULESc.cucuiuiiiiiiiciciccccc s 2-32
Request user attribute change through a Workflowcccoooeiiiiiii 2-36
Create User Using @ WOrkflOw ... 2-41
Self-Registration Using a WOrkflow.........ccccccciuiiiiiiiiiiiiiccccceeecceeeeeeeeeees 2-44
Deactivate User Using @ WOrKfIOWcooiiiioiiiiiiiii e 2-46
View Deactivated USeT.........coouiiiiiiiiiiii s 2-47
Search Deactivated USerS.........cocooviiiiiiiiiiiiiiiic s 2-47
Reactivate User Using @ WOIKEIOWcc.cooviiiiiiiiiiiic 2-48
Group Manager FUNCHIONS.............ccoiiiiiii s 2-49
Functions to Test for Attribute Permissions. ..., 2-49
Can I view a group's profile ... 2-49
Can I view an attribute in a group's profile ..., 2-50
Can I modify an attribute in a group's profile..........cccccceeeiiivniinnircrreecrreecne 2-50
Can I request modification through a workflow of an attribute in a group profile....... 2-50
Can I create a NEW GTOUPccciiiiiiiiiiiieic s 2-51
Can I delete an eXiStiNg GTOUPcceeueuriiiiiiiiiiicicicceeee s 2-51
Can I subscribe to @ roupcccvviiiiiiiiiiiiicc 2-52
Can I unsubscribe from @ roup ..o 2-52
Am [a member of @ GIOUPcccceuiuimiuiiiiiiiiciccce s 2-52
Can a user view a group's profile........c.ccoeviiiiiiiiiiniii 2-53
Can a user view an attribute in a group's profile...........ccoooeeieiiini 2-53
Can a user modify an attribute in a group profile using a workflowcccccceeueeeneee. 2-54
Can a uSer Create @ NEW ZIOUPcovereieveriiereieieieieie ettt 2-54
Can a user delete an exXiSting GrOUPcccovvveereieiiiiieiecee s 2-54
Is this person a member Of @ GrOUPccccuiuiuiiiiiiiiciiicccceee e 2-55
Request group attribute change...........c.ccooieiiiiiiii 2-55
Request group attribute change through a workflowccoooiiii 2-56
Functions to Perform Group Manager ACHONSccccccucururririiininrririrrrreceeeeee e 2-56
View group attributes ... 2-56
Modify Group attributes..........ccccccuiuiiiiiiiiiiiiiiiiii s 2-56
CTeate GrOUP ...cceiiiiiciiiicc e 2-57
Delete GIOUP.....oiiiiiieieiiiicieccee s 2-58
Get groups that I am a member, owner, or administrator ofccccoeeveininninnnes 2-58

Get groups that a user is a member, owner, or administrator of..............cccccccevvinnninn 2-59

VIEW ZIOUP MEMDETScviviieiiciieicicie ettt st 2-61
EXPand group ... 2-62
Flush the Group Cache..........ccooiiiiiiiiiii s 2-63
Subscribe @ USer t0 @ GIOUP.......ccocuiiiiicieieieic s 2-63
Organization Manager FUNCLIONS ... 2-64
Functions to Test For Attribute Permissions.............ccceeieiieiiiiiiiiiciiiicees 2-64
Can I view an object's Profileoooruiiiiiiii 2-64
Can I view an attribute in the object's Profilecccocovrvviiiniiiirccccreceeees 2-65
Can I modify an attribute in an object's profileccocovveeiniiniiiii 2-65
Can I request modification through a workflow of an attribute in an object's profile.. 2-65
Can I create a NeW ODJECt......c.ccciiiiiiiiiiiiicccc s 2-66
Can I delete an existing ObJeCtcccoviuiiiieiiiii 2-66
Can this user view an object's profile............cccoooii 2-66
Can this user view an attribute in an object’s profile...........cccccceeeiiiiiiininiirn 2-67
Can a user modify an attribute in an object's profile..........cccccouvvvvniviiiiiniiins 2-67
Can a user create @ NEW ODJECtc.oviiiiiiiii 2-68
Can a user delete an exiSting ODJECt........c.ccccuiiiiiiiiiiiiiiccccccce s 2-68
Can this user request an object attribute modification...........cccceeveiiiiiiiiiiiiennn, 2-68
Functions to Perform Organization Manager Actionscococeieiireieiiceeiccccecce 2-69
View object attribULEScccoiiiiiii s 2-69
Modify object attributesc.oiiiiii 2-69
Request object attribute change through a Workflow...........cccooiii 2-69
Create an ODJECEc.ccuiuiiiiiiiiciciccc et 2-69
Self-regiStrationc.ccueviveiiieicc s 2-69
Delete ODJECt ... 2-70
Code Examples of Deployed IdentityXML Functions ..., 2-70
Java Application EXample.........cccooiiiiiiiiiiiii 2-70
Java Servlet EXample ... 2-73
ODbSSOC00kie EXAMPLEocviiiiiiiiiiiciciciiciccceeieece et 2-79

3 Identity Event Plug-in API

About the Identity Event Plug-in APIL............ccccccoiiiiiiiiices 3-1
Examples of Uses of the Identity Event Plug-in APL..........cc.cccoooiiie, 3-2
Connecting Events t0 ACHONScccooiiiiiiiiic 3-2
TYPES Of EVENES......oiiiiiiciciiccecec e 3-3
Identity System Program Events: Pre and Post............ccoooiiiiiiiie 3-3
ONCRANEGE ... 3-3
WOTKELOW EVENLS....oviiiiiiiiiiiic s 3-4
Password Management EVeNts...........cooouoiiiiiiiiiicic e 3-4

Lost Password Managementccccoccueuiieiriiiiiiiiiniiiiiiieeeceicteieeseneeeseessseseenenne 3-4
Encryption EVENtS ... 3-4

TYPES Of ACHONS ...t 3-5
LIB ACEIONS. ...ttt 3-5
MANAGEDLIB ACHONS.......ocuitiiiieieietiieieeee e 3-6

EXEC ACHONS.....cviiiiiiiiciiciccccc e 3-6
Configuration File (Catalog).......ccccooeiiiiiiiiiiiiiiiiiiiicice e 3-7

vi

Guidelines for Writing an ACtON ..o 3-9

Task overview: Writing an action.........cccoeecueieiiiciciiic e 3-9
Availability—The availability of the datacccocovviiiniir e 3-9
HOW the APITWOTKScoioiiiiieieeeteteetetet ettt ettt e e st e ae st et e s s e b e essesaessessaessesseessesssessesseessensenns 3-9
Actions, as Seen by Identity System Applicationscocooeueiiiiiiiiiiiiii e, 3-9
Identity System Applications, as Seen by AcCtionscccccvvvvueiiiiiiiiiiiiniiicne 3-12
LIB ACHONS c.utteeiieeitieieesteete ettt sttt ettt et e s tte st e e aaessbeesaeessbeesbaessbesnseesasasnsaenssesnsaensaennses 3-13

LIB INEEILACE. ...t icueeteceietieieeieet ettt ettt ettt ettt be s reesae e st e beessesbeessesbeessesseesnensennns 3-13
L0Ad BERAVIOT......cciiiiiiieiceieieteeettetetet ettt ettt et te st e st be b e b e b essessessessesessessessassessens 3-14

LIB EXQMIPLESovviiiiiiiiiiciccicc s 3-14
MANAGEDLIB ACHONScuvitiitietietietietietieteetetet ettt eteeteeteetestessessesessesessessessessesessessessens 3-14
MANAGEDLIB INEEIACE ... c.viveeieeieiieiiriietirisesieeiestesteteeesaeses e ssesbessessessessessessessassesessessens 3-14
Load Behavior for MANAGEDLIBcooooiiiiiieeeeteeeeeeete ettt 3-15
MANAGEDLIB EXaMPILEScvuiiiiiiiiiiiiiiiiicin e 3-15
MANAGEDLIB ACHONS...c.utititieiesieeterieetestetenieeieseeteseeeaesseesaesseesesssessesssessesssessesssessennes 3-16
EXEC ACHONS. ..cuteiietieiieiesteetesteete e eteseestesteessesseessesseessesssessesssessesssessesssessesssessesssessesssensenses 3-16
L0Ad BERAVIOTottt ettt et s re et e s beebe s e e b e ebaenbeeseenseesnenseens 3-17
EXEC EXQAMPLESviiiiiiiiciciicicc ettt 3-17
GlODAl PATammMELErS......ccvecvieeieiieiiiiieieieete e et e steete e et e teestesseeseesaesssessesssessesssesseessensesssensennes 3-17
Working With XML ... 3-18
Event XIML FOTMALccveoiieieiecieeeeeteeeeeet ettt st s en e e e s e eneenneens 3-18
PresentationXIML FOTMAt.....ccccviriiiiiiiieniiiieerteeeestee et sttt eie st saae st e ae s s nns 3-19
Parsing XMLcooii s 3-19
Event Handling in the APL ... 3-20
Event Handler Initialization and Shutdown FUNnctionsccccceeeveveeieniecieneeieseee e 3-20
ODBINIEEVENTAPT () eeveieieieieieieieieieiee e tetet et ste et ete e be e ese e be e ese e seseesasaesassesensesensesensens 3-20
RETUITI VAIUES ..ottt ettt ettt s se et te b e sb e b essessessessesseseesensensessens 3-20
ODTErMEVENTAPT () .etiierieieieieteieet ettt sttt sttt ettt be b b saens 3-21
RELUIN VAIUES ...ttt ettt e sae e e ae e s e beesb e beessenseennenseens 3-21

Pre and POSt EVEINEScc.ccviieieieieieietre ettt ettt et seesaesessesse s ess e s essessessessessessesensensenses 3-21
Catalog NIy ..c.cviee s 3-21
Interaction MEthOdS.ottt ettt b e e v et e ens 3-23
ONChange EVENtS.......c.ccccuiiiiiiiiiiiiciececceeeee et 3-24
Catalog BENIY ..o 3-24
Interaction MEthOdS.ottt ettt eae e be et e v eabe e ens 3-24
REEUITI VALUES ...c.viviieeeeeieetettett ettt ettt ettt se e ese e te s b e sbesbessessessessessessesensensansens 3-25
WOTKEIOW EVENTS....cuviviitiiiiiiiiieieietet ettt sttt ettt eveeteebeete et b e b e b essessessessessesessesaensas 3-26
Catalog ENtIY ..o 3-26
INteraction MEtNOAS.oeuiviiieieicieieete ettt e e st besbe s e s essessessessessesensens 3-27
Tables Of WOrKfIOW AtHIIDULES.c..cviiirieticiiiietecteeietet ettt eesess s ereerseseevens 3-29
REUIT VAIUES ..ottt ettt et ve e sae et s beeaaesbeesaenbeensenseenneseens 3-30
Password Management EVENtScccccccciiiiiiiiiiiiiiiiirccr s 3-31
Catalog BNIY c.c.ovicece s 3-31
Interaction MEthOdS.coi ittt et ettt ereeabe e ens 3-32
RETUITI VALUES ...ttt ettt ettt se et e et se s e sb e b e sessessessessessesensesensens 3-32
Encryption EVENtScooiiii s 3-33
Catalog ENtIY ..o 3-33

vii

Response ValUes...........ccciiiiiiiiiiiiiii s 3-34

TRE AP ..o 3-34
More 0N LIB ACHONSocvoviuiiiiieietcietetce ettt 3-35
More on MANAGEDLIB ACHONScooiiiiiiiicieicte s 3-35
More on EXEC ACHONScoiuiiriiieiciectetctete et 3-36
Returning Error Messages From an EXEC Call ..o, 3-37
Returning Error Messages Using EXEC - WF......c.c.cccooi 3-37
EReturning Error Messages Using EXEC - PRE..........ccccccoooiinninnce, 3-37
Returning Error Messages Using EXEC - POSTcccooooiiiiiiiiiiiicc 3-38
Development ENVIironmentc.coiiiiiiiii 3-43
Library Files for LIB and EXEC ACHONScccceeueiiirirrriririerrercerree s 3-44
Library Files for MANAGEDLIB ACONScovoviiiiieiiieicic s 3-44

LIB Action Example Files..........ccouiiiiiiiie i 3-45
MANAGEDLIB Action Example Files.........cccccccociiiiiiiiiiicceecceceeeeeeees 3-46

EXEC Action Example Files........c.ccccooiviiiiiiiiiiiiiiccs 3-46

Parser Example Files..........coooiii 3-46
Cross-Application SUPPOTL........c..ccoviiriiiiiiiiiceee et 3-47
EXQIMIPLES ..o 3-48
A LIB Action Example—LogActivationc.coiiiiii 3-48

An EXEC Action Example—AfterHOUIScccoeuiiiiiiiniiiiirccceeeeceeeeeeee s 3-50

A MANAGEDLIB Action EXample..........ccooviiiiiiiiiiiicccccs 3-52

4 Building AccessGates with the Access Manager SDK

ADOUt ACCESSGALES..........oiiiiiiii s 4-2
About Prefabricated AccessGates (WeDGAtes)ccouvvevuruerierenieiniiinieinieenecnieesie e 4-2
When to Create a Custom AccessGate..........covviiiiiiiiiiiiiic s 4-2
AccessGate ATChIteCtUIEccuiviiiviiiiiiii s 4-3
AccessGate Variations ... 4-4
How an AccessGate Handles a Resource Requestccccccccuiiiiiiiiiiiicccceeceeeees 4-4

About AccessGate Deployment.............cccccvveiiiiiiiiiiiiiiiiiii 4-5
Supported Versions and Platforms ..., 4-6
Installing the Access Manager SDK...........cccccociiiiiiiiiiiicceeeeeeeeeeeeeeeeeeeeee e 4-7

Obtaining the Access Manager SDKccoooouoiiiiiiiiiiic s 4-7
Installing the SDK on WINAOWScccccciiiiiiiiiiiiiiicce e 4-7
Installing the SDK on UNIXccccccoiiiiiiiicceeceeeeeceeeeeee e 4-9
Configuring an AcCeSSGALecccvevieiiiiiiiiciie 4-10
Setting Environment Variables ... 4-10
Creating an AccessGate Entry on the Access Serverccocooecicenniincnnvenreeene 4-12
Running the configureAccessGate Utilityccocooiiiiiiniiiiiiiciniccc 4-13
Writing AccessGate COAE ..o s 4-14
Cloning a Custom ACCESSGALEc.cueueuiuiuiiiuiiicicicieieieeiete et seeeas 4-14
Protecting RESOUICES.........cciieiiiiiiiciciiicicii s 4-15

About the Access Manager SDKc.ccocoviiiiiiiiiiiii s 4-15
SDK OVEIVIEW ...ttt 4-15
SDK CONEENL .ttt 4-15

BEA WebLogic SUPPOrt Files.........ccccciiiiiiiiiiiiiiiiiiiiiccccces 4-16

viii

Implementations Compared.............coiriiiiicieie e 4-17
About Memory Management............ccoviiiiiiiiiiiiicc s 4-17
Corresponding Classes...........cueurueiiiiiiiicieieiicie et 4-18
About Multi-Language Implementationcooriiiii 4-18

ODMAP .t 4-18
Equivalent Methods..........cccoviiiiiiiii s 4-19

ODMaPIEETALOLttt 4-20
Equivalent Methods.cccciiiiiiiiiccccc s 4-20

ObAuthenticationScheme ... 4-20
Equivalent Methods............coirii s 4-22

ODRESOUICEREQUESL ...ttt ees 4-23
Equivalent Methods...........ccoviiiiiiiic s 4-24

ODUSEISESSION ...ttt 4-24
Equivalent Methods..........ccccciiiiiiiiicce s 4-25

ODBCONFIG ..o s 4-26
Configuration Parameterscccoooiiriiiiicieicce s 4-26
Equivalent Methods..........cccciiiiiiiiccce s 4-28

ODACCESSEXCEOPLION.....ovviiiiiciiccttc s 4-28
Equivalent Methods............coiiii s 4-29

Globalization and the Access Manager SDK, Access Manager APIs, Custom AccessGates. 4-29
About Custom AccessGate Code............cooviiiiiiiiiiiiii s 4-30

Typical AccessGate Exectution FLOWc.c.ooiiiiiiiiiii 4-30

Example of a Simple AccessGate: JACCesSGate javacccceueueueucmcucucieieremeueieiceneeeeeeneneeens 4-31
Annotated Code ... 4-33

Example of a Simple AccessGate Using C Psuedo Classes: access_test_c.cppccceeueucee. 4-36
Annotated Code ... 4-38

Example: Java LOgin Servlet ..o 4-42
Annotated Code ... 4-44

Example Using the C# APIL: access_api_test.CScociuiiimiimiiiiiiiiicceceieeeeeieereneenenenenenens 4-48
Annotated Code ... 4-50

Example Using Additional Methods: access_test_javajavacccocoevuviirneninccnieinccennnn, 4-52
Annotated Code ..o 4-55

Example in C++ that Implements Several Features: access_test_cplus.cpp.......ccocevuvueveueee. 4-60
ANNOLAtEd COAEoniiiiiiiiiict ettt 4-66

Example of Implementing Certificate-Based Authentication..........c.ccccccccueveiciiiinnnncnnnne. 4-76

C++ Implementation Detailscccoeoreiriiniiiiniinincecrceeeeeee e 4-77

ODMAD .o s 4-78
Constructors (ObMap, CH+) ..o 4-78
Methods (ODMap, CH+4) ..o 4-78

ODMaAPIEETALOToiiiiiiiciei s 4-79
Constructors (ObMaplterator, CH++) ..o 4-79
Methods (ObMaplIterator, CH+) ... 4-79

ObAuthenticatioNSCheMIEc.ciciiiiiiiiicc e 4-80
Constructors (ObAuthenticationScheme, CH+)....c.ccvviririinieneneneeieieeeeeeee e aens 4-80
Methods (ObAuthenticationScheme, CH+)coeeeririninenieeeeeeeeeeeeeee e 4-80

ODRESOUICEREQUESL ...ttt 4-81

Constructors (ObResourceRequest, C4+4)......cccoviiiiiiiniiiiiiiiciccccee 4-82

Methods (ObResourceRequest, CH+) ..o 4-82
ODUSETSESSIONvenevenitinieiitetteteteteitete sttt st et e be st e beste bt es et e s et e st se st bes e seneese st ese st beneebeneebeneesenene 4-83
Constructors (ObUSErSeSsSion, CH4)....ccueiriririrerienieieieietetee et sie e st sae st ste et eseeseeaens 4-83
Methods (ObUSErSESSION, C) ..c.cvveuereirieirieirieinicinieentesterestsiesesiesee s s saenesaene 4-84
ODCONLIG ...t 4-87
Methods (ObConfig, C-H+) ..o s 4-87
ODbACCESSEXCEPHON ..ottt 4-88
Constructors (ObAccessEXception, CH+4) ... 4-88
Methods (ObAccessEXCeption, CH+)....ccciiiiiiiiiiiiiiiiicc s 4-88
ODbDIAGNOSHIC (CH) v 4-89
Methods (ObDIagnostic, CH+4) c.c.ccuiuiiiiiiiiieieieicicicieieieieieieeetee e 4-89

C Implementation Details ... 4-90
ODMAP ettt 4-90
Functions (ObMap_t, C)...c.cueuiuiiiiiiiiiiieiceiecieeere et nenens 4-91
ODBMaAPIETatOr_t.....cucviiiiiiiiiiicci s 4-91
Functions (ObMaplIterator_t, C)ccccceiiiiiiiiiiiiiiiiiccc s 4-92
ObAULheNtICAtIONSCREINE . .eeviiieeeieeeeeeeeeee ettt e et e e et e esraeeeeeaeesesateesareeesseesenees 4-92
Functions (ObAuthenticationScheme_t, C).......ccccoeriirieriinieiiiinenenere ettt 4-93
ODbReSOUICEREQUESE_L......cooviiiiiiiiiiiiiiiiicc s 4-94
Functions (ObResourceRequest_t, C).......cccccuiuiiiimiiiiiiiiiiiicccceeceeeeeeeeceeeeeeeeeeeeees 4-95

(@) o] BTSSR =YcT<3 1) s T SR 4-96
Functions (ObUSerSession, C).....c.cocorerreirienneninierinieinresteestsiesteseseeseseese s esaesesaeneseene 4-96
ODCONTIG et 4-100
Functions (ObConfig, C) ... 4-100
ODbACCESSEXCEPLION_t ...oviiiiiiiiiiiiic e 4-101
C-language Error Handlersccociiiiiiiiniinr e 4-101
Functions (ObAccessEXCeption, C).......ccccouviiiiiiiiniiiiiiniiiiiiicciiceeseeeeens 4-101
ODbDIagNOSHIC (C) c..vviiiiiiiiiiiiiiiiicii e 4-102
Methods (ObDIagnostic, C)ccovuiirririririririirriricrrrerr s 4-103

C# Implementation Details ... 4-103
ODDICHONATYviiiiiiiiiiici e 4-104
Constructors (ObDictionary, CH) ... 4-104
Methods (ObDictionary, CH)cceveiiiiiiiiiiiiice s 4-104
ObDictionary ENUMETatorcccoviiiiiiiiiiiiiiiiiiic e 4-105
Constructors (ObDictionaryEnumerator, CH#)..........coviiiiniiiiiiiniiiiicens 4-105
Methods (ObDictionaryEnumerator, CH#).........cccoooviiiiiiiiiiiiic 4-106
ObAuthenticationSchemeMgd...........cccccciiiiiiiiiiiiiiiiii s 4-106
Constructors (ObAuthenticationSchemeMgd, CH#) ..o 4-106
Methods (ObAuthenticationSchemeMgd, CH#)cccoeoiiniiiiniiiiiiiie 4-106
ObResourceRequestMgd.........cccccuiiiiiiiiiiiiiiiiiiiiiin e 4-107
Constructors (ObResourceRequestMgd, CH#) ... 4-108
Methods (ObResourceRequestMgd, CH#)cooviiiiiiiiiiiiiccnines 4-108
ODbUSEISeSSIONMEUooviiiiiiiii e 4-109
Constructors (ObUserSessionMgd, CH)ccoeueurueirirrrniinirrricrrreeeeese s 4-109
Methods (ObUserSessionMgd, CH)ccceeiviriiiininiiiiiiccccecc s 4-110

ODbCONFIGMGU ...t 4-112

Constructors (ObConfigMgd, CH#) ..o 4-112

Methods (ObConfigMgd, CH)c.cuoiiriii s 4-112
ODbACCESSEXCEPHIONMEA ..ottt 4-113
Constructors (obAccessExceptionMgd, CH)......ccoovvveviiiininiiiiiiiinae 4-113
Methods (ObAccessExceptionMgd, CH#)cocuemiiriiiiiiiiecec e 4-114
ODDIAGNOSHIC (CH) ..t 4-114
Methods (ObDiagnostic, CH#) ... 4-115
Java Implementation Detailscccocoviiiiiiiiiii 4-115
INEEITACES ..ttt ettt etttk ettt b e e b e bt e et se e n e e s senes 4-116
ObAuthenticationSchemelnterfacecocoeveriieiniiiineeee e 4-116
ObResourceRequestInterface ... 4-116
ObUSETrSESSIONINEETTACEcueveeieieirieieieteiest ettt st sttt st st eaes 4-117
(java.utilL Hashtable) ... 4-117
Constructors (java.util. Hashtable, Java)cccccceviiinniiiiiiiiii 4-117
Methods (java.util. Hashtable, Java)ccccooiiiiiiiiiiiiicicccccccccceeeeeenenes 4-117
ObAuthenticatioNSChemME ..ot 4-118
Constructors (ObAuthenticationScheme, Java)......c..cccoeceruererernennenninneneeereeeneeeene 4-118
Methods (ObAuthenticationScheme, Java)cceeveveieiniinienieereseeeee e 4-118
ODbRESOUICEREQUESL ..ottt 4-119
Constructors (ObResourceRequest, Java).........cccocvvviviivininiiniiinicns 4-119
Methods (ObResourceRequest, Java)cccccucururueueucieiriniriiirrreicecreeeeeeeeee s 4-120
ODUSEISESSION ...ttt ettt ettt ettt ettt bttt et e bt e bt s bt s bt b e sb e st et et et ebeebeebeebeebebenee 4-121
Java Status and Error Message Fieldscccoooiiiiiii 4-121
Constructors (ObUSerSession, JaVa)......ccceeveevererriererrierieeiesieeseesseeeesseeseessessessesssessessessens 4-122
Methods (ObUSErSeSssion, JAVA)c.ceerererererierienienieteteeee et st st seessesteseeseeseese e ebesse e 4-123
ODCONIG .ttt e 4-125
Constructors (ObConfig, Java)ccccccueueueurieiiuinirieieicereeeeeeeeeereee s 4-125
Methods (ObConfig, Java)cccoeeiiniiiiiiiiiiciic s 4-125
ODbACCESSEXCEPHION ..ottt 4-126
Constructors (ObAccessEXception, Java)cccovviviiiiiiiininiiiiiicceens 4-126
Inherited Methods (ObAccessException, Java)ccccoeieinininiiininiiiiiiccciicees 4-127
ODbDIagnostic (JAVA)ccovuririiiiiiiiiiiiiii e 4-127
Methods (ObDiagnostic, Java)ccccceueeeeririiiririririiiereeceerree s 4-127
C-Family Status and Error Message Strings.............ccooviiiiiiiiiiiniccccccecvennes 4-128
BESt PracCtiCescoouiiiiieieieeiieeee ettt ettt ettt b e e a ettt e a e et e bt te s ae et e bt e beeneenteeneens 4-131
AVOIdING PrODIEMS ...t 4-131
Thread Safe COAeoouiiiiiiiieie ettt sttt ettt 4-131
Identifying and Resolving Problems.............ccccccciiiiiiiiiiiininiiiiiininnncsssseseenes 4-132

Policy Manager API

About the Policy Manager AP ..ottt 5-1
Notes on Managed Code.........coiiiicceeeere e 5-4
Development ENVIrONmMEeNtcooouoiiiiiiiii e 5-4
INStallation LOCATION ..ueccviiviciiiecieetect ettt ettt ettt ettt e re b e re e beeas et e beenteeaeeraenseennas 5-4
INSTAllatioN CONTENT ...veviieeieeieieiieieeeeetee et te et se et seesteeressessessessessesseseeseesaasessessessessaseassnsansensens 5-5
About Building an AccessGate............cocuiiiiiiiiiiiiiiiiiiiiii 5-6
ENnvironment VAriables ...ttt et ettt 5-6

xi

Xii

)01 e B 4 e Tal < F RS 5-6

Configuration Fle ... 5-6
Coding With the Policy Manager APL...............cccocoiiiiiniii s 5-7
APL CONVENEIONS ...ovviiiiiiiiicicc s 5-7
Programmatic and Implementation CONventionsc.coceeiiicieciicceieecceecie 5-7
Naming CONVENIONScccoiiiiiiiiiiiiii s 5-8
Creating NeW ODjJECES......couiiiiiiiieieiicie e 5-8
Copying Existing ObJects ... 5-9
About Cloning Objects EXPLCIELYccoviiiiiiiiiiiiiiccccecccecceeee e 5-9
Deleting ObJECES.......cvvurieiiiicieieictce s 5-10
Managing Data for Single-Valued Object Memberscoooriieiiiiiiiiice, 5-10
Setting Data for Single-Valued Object Members...........cccccceueuvviniiiivnienirrrnrreccnes 5-10
Getting Data for Single-Valued Object Members............cccooooiiiiiiii 5-11
ManNagING ATTAYS ...c.cceueviiiiiiiieieieieieie s 5-12
ADOUL KEYS.....oiiiiiiiiiiii s 5-12
Adding Data to ATTaYS.......cceueiiieeieiiiicicie s 5-12
Modifying Data for Objects in ATTaysccccceieiriiirieiiiiicce s 5-13
Getting a Count of Members in an Array........c.cccccccceeerieennniiereeeeeereseeeses s 5-13
Getting Data for Elements of AIrays..........cccooeiiieiiiiiiieiiciciccce e 5-14
Removing Data from ATTaysc.ooiriiieiiiieiecci s 5-15
USINg SEtIDETOM ..o s 5-15
Using ENUMETAtioNsccoeviiiiiiiiiiiiiiei s 5-15
ODbACCeSSMANAZET ClaSSc.oviuierieiiiiciei et 5-16
Methods to Handle AccessManager ODbJectsccceeueuruvuririeinirnirieeeeeeeeeceeeeeeeeeeeeeens 5-16
Connection Methods ... 5-18

Get MethOds.......couiiiiiiiii s 5-19

2 12 U SO 5-19
e 5-20
Get Method EXampIesc.couiiiiiiiicicice v 5-23

Set MethOd ... 5-23
Test Access Method ... 5-24
Access System Configuration ObJECtSccocurveiiiiiiiiiicce e, 5-25
Policy Manager API Classes.............cccooviiiiiiiiiiiii s 5-26
Class ObAMHOSHIAENHfIETrccciviviiiiiiiiiiii e 5-26
Class ObAMHostIdentifierMgd..........ccooueuriiiiiiiiiiic e, 5-27
Class ODAMRESOUICETYPEcuvuuriiiiiiiiiieicicieieicteetee e 5-27
Class ObAMResourceTypeMgdccocuiiiriiiiiiiiiec 5-27
Class ObAMAuthenticationScheme.............cccccviiiiiiiiiiiiiiiiii s 5-28
Class ObAMAuthenticationSchemeMgdccccceuiuiiiiiiiiniiiiirrereee s 5-29
Class ObAMAuthenticationScheme_ChallengeMethodMgd..........c.ccccovvvviiiiiiniinnnn 5-29
Class ObAMAuthenticationPIUGIN..........cccoiiiiiiiiiiiiiii s 5-30
Class ObAMAuthenticationPIuginMgdccccoeiuiiiiiiiiiiicceeeeeeeeeee s 5-30
Class ObAMAuthorizatioNSCheme ... 5-31
Class ObAMAuthorizationSchemeMgdccccceuiiiiiiiiiiiinininiiiis 5-31
Class ObAMMaster AuditRuleccoooviiiiiiiiiiiiii e, 5-32
Class ObAMMaster AuditRUIEMEd..........ccouiviiiiiiiiiiiiiiiiiic s 5-33
ACCesS POLICY ODJECES.......cuiuiiiiiiiiiiiiiiiciic s 5-33

About String INAMEScccoeviviiiiiiic s 5-34

Class ObAMPOLICYDOMAIN.........coiuiiiiiici e 5-35
Class ObAMPOlicyDomainMgdc.ccccueuiururiririiiiirrieiceerreeeer e 5-38
Class ObPAMAAMINRULEcooviiiiiiiiiiiiiiic s 5-39
Creating an Administrator Rule ... 5-40
Class ObAMAAMINRUIEMEG.......cocuiuiiiiiiiiiiiiiicccceeece s 5-40
Class ODAMPOLCYcuouiieiiiieiiiicie ettt 5-41
Class ODAMPOLCYMEU.......cuiiiiriiiiei b 5-45
Class ObAMAuthenticationRUIecccoovviviiiiiiiiiii e, 5-45
Class ObAMAuthenticationRuleMgd..........ccccueueiiiiiiiiiiicic s 5-48
Class ObAMAuthorizationRUle............cccocoiiiiiiiiiiis 5-48
Class ObAMAuthorizationRUIEMEU.c.ccceiuiiiiiiiiiiiicceeceeee s 5-53
Class ObAMAUhOTIZatioNEXPYcoiviiiiiiiiiiiiiiiiicc s 5-54
Class ObAMAuthorizationEXPrMgd ... 5-59
Class ObAMDuplicate ACtONPOLCYMEd......c.ccimiuimimiiiiiiiiiiiciciciicicceeeeceeeeeeeeee s 5-59
Class ObAMACCESSCONAILIONScceviviviviiiiiiiiiiiiiiicccc s 5-59
Class ObAMA ccessConditionSMgdc.ovieueieiiiiiciiiceec e 5-60
Class ObAMACHONTYPEMEd.......ccuiuimimimiiiiiiiiciccceeeeee e 5-61
Class ObAMODbjectWith ACHONSccouiviiiiiiiiiiiiiciccc s 5-61
Class ObAMTIimingConditions.........coocueurieiiieieiiiiicie e 5-62
Class ObAMTIimingConditioNSMEdc.cccueuiuiiririiiiiiiiiirrccr s 5-64
Class ObAMTimingConditions_RelativeTOMgdccocouoviiiiiiiiiiiiic 5-66
Class ObAMDate_DaysOfWeekMgd...........cccoiiiiiiiiiiiciccc 5-66
Class ODAMACHONcvvieiiiiiiiie s 5-66
Class ObAMACHONMGA ..ottt 5-67
Class ObAMAction_ValueTypeMgdccceuiiiiiiiiiiiic 5-68
Class ObAMAUItRUIEooviiiiiiiiiiiic e 5-68
Class ObAMAUdItRUIEMEdooviiiii 5-68
Class ObAMAuditRule_EventTypeMgd.......cccccovmiiiiiiiiiiiiiicc e 5-69
Class ODAMDALE...........coiimiiiiii e 5-69
Class ObAMDAteMEUcouoiiiiiiiiii s 5-70
Class ObAMDate_MonthSMgd..........ccccccuiiiiiiiiiiiiiiiiiiii s 5-70
Class ObAMDate_DaysOfWeekIMEd...........cccovuvririiiririiiirrcicereeereeeeseeeese s 5-71
Class ODAMIAENTEYcveeiuiieiiiicieiece e 5-71
Class ObAMIentityMgd........ccccceueuiiiiiiiiiiiiiiiiiii s 5-72
Class ODAMPATAMELETcovviuiuiieriiiiiic s 5-72
Class ObAMParameterMgdccooviiiiiiiiiiiiiiiiii s 5-73
Class ODAMRESOUICEcucuiririeueuieiieieieatire ettt ettt st neneas 5-73
Class ObAMRESOUICEMEAc.cuiuuiiiiiiiiiiiicicicieeeccee s 5-73
Class ODAMTIINEccvuiiiiiieiieiccce s 5-74
Class ObDAMTIMEMEA.......ccccoviiiiiiiiiiiiiiii s 5-74
TeSt ODJECES.......cocviiiiiiii s 5-75
Class ODAMACCESSTESL.......ccvuiviiiiiiiiiiiicicicicc s 5-75
Class ObAMACCESSTEStMEdcocueiiiiiiiiiiiiiiii s 5-78
Class ObAMACCESSTEStRESULLSciuiviiiiiiiiiicc e 5-79
Class ObAMAccessTestResultsSMgdccccovvvviiiiiiiiiiiiiiiiicc s 5-79
Class ObAMACCESSTESTRESULL........ccoviiiiiiiiiiccicerccce e 5-80

xiii

Class ObAMAccessTestResultMgdccccocoueviiiiiiiiiiiiiiiiic s 5-80

Class ODAMEXCEPHONcucuiiiiiiciiiice e 5-81
Class ODACCESSEXCEPLIONcuuuuiiiiiiiiiiiieicieicietcieieiee e eeees 5-81
Class ObAccessEXCePiONMEdcuoiiuiiiiiiiicieici e 5-82
SamMPIe PrOGIaI........oooiiiiiiiiiiiiii ettt 5-83

6 Authentication Plug-in API

About the Authentication Plug-in API ..., 6-1
Globalization and Custom C Authentication Plug-ins and Interfacescccccccevurvvrinenence. 6-2
Backward Compatibilityccooiuiiiiiiii 6-2

C API ENVIronment ..o s 6-2
Support Files Location for the C APT ... 6-2

C APIPIUg-in DIT@CTOIY ..ottt 6-3
CAPIDAA ... s 6-3
DEINES (C) vrvievieiiierieieietetettee et ete et e st e b e b et et e stestesesseesessassassessessessessessassaseaseasassessessessessassassesensensens 6-4
HANALES (C) ettt ettt ettt b e bbb b et e st et et et et ebeebeebe e 6-4

C REtUIN VALUES. ... 6-5
ODANACHONTYPE L.t 6-5
ObANPIUGINSTAtUS_t..evviiiiiiiiiiiicicici s 6-5

(@) YN VNS] 7= X n b 1T AR 6-6
CSHUCTUTES ... 6-7
ODBANSEIVETCONIEXL ...t s 6-7
ObANPIUGININFO ... e 6-7
ODANPIUGINTFNS ...t 6-9

C APIFUNCHONS ... 6-9
Functions Provided by the Access Server (C API)ccooouoiiiiiiiiiiicc 6-9
GetDataFn ... 6-10
SetDAtaFN ... 6-10
GetFirstItemPn... ... 6-11
GetINEXEFN ..o 6-11
GetCIedFN ... e 6-12
SEECTEAFI ...ttt et 6-12
GetACHONFN ... 6-13
SELACHONFIN.....oiiiiiiii s 6-14
SEtAULNNUIAFN ... 6-14

C Functions Implemented in the PIug-in..........ccccccoiiiiiiiiicceecceeeeeeees 6-15
ObANPIUGINGEEVEISION.....oviviiiiiciicit s 6-15
ObANPIUGININIE ..o s 6-15
ObANPIUgINTErMINAte.c.c.ccuiiiiiiiiiicicicccccce e 6-16
ObANPIUGINTIN ..o 6-16
ObANPluginDeallocStatusMSgccvuiuiiiiiiiiiiiiiiiiiiciciiccie s 6-17

C Authentication Plug-in Examplecccooiiiiii 6-18
Managed Code API ENVironmentcccccocoviiiiiiiiiniiiiicce s 6-23
Managed Code API Plug-in Directoryccccoeeueiriiiiiiiciiiiiiiciciiciicccceeees 6-24
Managed Code API Data ... 6-24
Defines (Managed Code)ccciiiiiceeeeeeeieieeieee et se e se s seneeees 6-24
Interfaces (Managed COode).........ccccuiiiiiiiiiiiiiiiiiic s 6-25

Xiv

J (@)oY AN g 1T i<y (@0} 0N 1<« SRR 6-25

IODANPIUGININFO ..ottt 6-26
TODANPIUGINSVIDALA ...t eeeeees 6-26
IObANPIUGINMVDATA. ..ottt s 6-27
TIODASPIUGINLASTIEOIM......ocvviiiiiiici e 6-27
Managed Code Return ValUesccccccuiiiiiiiiiiiiciiecceeecee s 6-28
ODANACHONTYPE ..ovtitt s 6-28
ObANPIUGINSTATUS.cvviieecie e 6-28
ODANASSIALUS......o.cvcviiiiiiii s 6-29
Managed Code Functions Implemented in the Plug-incccoooiiiiiiiiii 6-29
ObANPIUGINGETVEISION ..ottt 6-30
ODANPIUGINTINIE ... 6-30
ObANPIUGINTerMINAte. ..ottt 6-31
ODANPIUGINEI ...ttt s 6-31
TroubleShOOting............ccooiiiiiiiiii s 6-32
Standard PIUg-INs...........oooiiiiiiic e 6-32
Credential Mapping PIUZ-INcccovoiiii 6-32
Validate Password PIUG-IN ..o senes 6-34
Certificate Decode PIUg-IN........cccoouiiiiiiiii 6-34
Selection Filter PIUg-INc.ccooiiiii 6-35
NT/Win2000 PIUG-IN ..o 6-35
SeUIID PIUG-IN ..ot 6-35

Authorization Plug-in API

About the Authorization Plug-In API ... 7-1
Support for C and Managed Code...........cooeuriiiiiriiiiiic 7-2
Globalization and Custom C Authorization Plug-in Interfacescccccocoeocecceccccceenns 7-2

Backward Compatibilityccooieiiiiiiic 7-2

APT ENVITONIMENE....cc.uiiiiiiiiiiiiieciieeieecteete et eete e st e etteesteessaesbeessseesseesssessseesseessseesseesssesssaesssessseessseessesans 7-3
C COAE LOCALION ...vevveeieeieiietietietetistetestetest et testsetstessessessessessessessessessasaasessessessassessessessassassassnsensensens 7-3
Managed C++ Code LOCAtioN.. ..ot 7-3
Plug-in LOCAIONoviiiiiiiiiiciciicc s 7-4

C AP DAt ...ecieeieiieiieiee ettt ettt et te et et e be b e b e b e s sessessessesteseessaseaseaseasassessessassessessassassessesensansensans 7-4
C CoNStant DEfINGtiONScvecveriieieriieieriereerieeteieet et eestesseesesseetesseesaesseesaesseessesseessanseessessesssessensees 7-5
CHANALES ...ttt ettt ettt et e e te et e ebeeaeeae et e baenbeebaeateessenbeeteenteeateteeraenreenean 7-5
C RETUIN VAIUES.....eeeeieeieieeitee ettt sttt ettt ae st e s e e ae s e esaessaensenseensensenssensesnsensennees 7-6

ODbAZPIUG-INStATUS_t ...ooviviiiiiii s 7-6
OD A ZASSEATUS_Teeeievieieeiiieeeie ettt ettt e et e eeaae e sttt e s steesseaeeesatessasteessaseeseasessaseeessnsessnnes 7-7
C SEIUCEUTIES ... ettt ettt ete et et et e e st e te st e e s e e st e s e ese et eessesseenseseessessesssenseensenseensensenssensesnsensennen 7-7
OD A ZSEIVETCONTEXL ..eutteitieiieiieeieieeteteeteerteertetesaessesstessesssesesseessesseessesseessesssessesssessesssessensesnes 7-7
ODAZPIUGININTO ... 7-8
ODAZPIUGINFNS ...ttt s 7-10
C APT FUNCHONSc.oiiiiiecieieeieeeteste ettt sttt e e s ta e b e e st ebesseesseesaesseessesseassasssessasssessanseensesseensenses 7-11
C Functions Provided by the Access SEIVET...........cccoeuiveiiiieininicciece e, 7-11
(@74 = -1 23 s SRS 7-11
bo <10 D V- U 2 o WO 7-11
L@ S =] H e 0 01 31 VOSSP 7-12

XV

(@< A=Y LR T=) 55 o TR 7-12

GetINEXtFN ..o 7-13

C Functions Implemented in the PIug-In ..., 7-13
ODbAZPIUGINGEEVEISION ...ttt 7-13
ODAZPIUGINTINIE ... 7-14
ODbAZPIUGINTEIMINALE ...ttt eaeaes 7-14
ODAZPIUGINFN ... 7-15
ObAZzPluginDeallocStatusMSgc.cccueiiiiiicieiiici s 7-16
CEXAMPLE .. 7-17
Managed Code AP INterfaces ... 7-21
DIEfINES ... s 7-21
INEETLACES ..ot 7-22
RetUIN VALUES ...t 7-22
SEALUS .o 7-22
ASSTALUS .o s 7-23
Managed Code INterfacescooeueuiiiiiiiiiii 7-23
TODBAZSEIVErCONIEXLovviiiiiiiiiicic s 7-23
TODAZPIUGININLO ...ttt 7-23
IObAZPIUZINDALA......cviviieiictei s 7-24
IObAzPluginWriteableDatacooiiiiiiii 7-25
TODbASPIUGINLISTIEEIM. ...ttt eenes 7-25
Interfaces to be Implemented in the Plug-In..........c.cccooiiiiiiiii 7-26
ODbAZPIUGINGEEVEISION ..ottt 7-26
ODAZPIUGININIL ... 7-26
ObAZPIUGINTErMINAteoeevivii s 7-27
ODAZPIUGINTFN ... 7-27
TroubleShOOting............ccooiiiiiiiiiiii s 7-28

A XML Background

N o 7o 118 00,017 1 USSR A-1
XIML SCREIMIA.......oiiiiiiciieieeeete ettt ettt et e st e et e ste et e steesaesseesbeesaesseessessaessensaesaessesssesseessesseessesses A-2
XSL ANA XSLT ..ottt ettt ettt ettt ettt e ete e be e s e ebeese e beessesseessebaesbessaesseeseenseeseesseessensensean A-5
GeNETaAl SYMEAX....uiiiiiiiiicicicicc s A-5
EXPIession SYNTAXccuoiiriiiiiiiiieietcie sttt A-6
Client-Side TranSfOIMAtiONcccooieciiiuieieieeiecteeie ettt et et eeesreeeesbeeaesbeesesbeeaseereeasenseenis A-6
XSL Transformation LIMITScccocecieviiirinisieieee et steese ettt ae s seesaesaesessessassessessessanes A-7
RESOUICESveiiiieiieeiteieeeeete ettt ettt et e st e e be e s ab e e aeesat e e beassbesabeessbesssaessseenseesaesnseenseesnseenssennsenns A-8

B Policy Manager API Definitions

Class ODACCESSIMIANAZETc.cuevimimiiimiiiiitiiiicis ettt bttt ettt ettt sttt s st B-1
V@ ettt et ettt a et e a e e b e et e b e bt e bt en b e bt en e e teeatesaeetenneenteenean B-1
OO OO B-2
Managed COode.........oimiiiiiiicic e B-4

Access POLiCYy ODJECEScccooiiiiiiiiiiiiiicc s B-5
2 12 USRS B-5

Class ODAMRESOUICE..........c.ceuiiiieiiiiiiieieieie e B-5
Class ObAMACCESSCONAITIONSueuiiiiiiiiiieieiiirieiectrt ettt B-5

XVi

(@ T @ VY 1= <Y SR B-6

Class ODAMTIINE.coueeieiieeiiteete ettt eteste et e e aeste e b e beesbesseessesseessesseessesseessessesssesseessensenns B-7
Class ObAMTIimingCoONditioNnsccccceucueueieiriiiiiiiiieieiecceeeece e B-7
Class ObAMIAEN Yooueieiiiiciicicie e B-7
Class ObAMODbjectWith ACHONScccceuiviiiiiiiiiiiiiii s B-8
C1ass ODAMACHONccerveieieieeteieteeeteetestese st e e b essesteste e eseesessessessessessessassessessessasansessessenses B-8
Class ObAMAUthenticatioNRULEcccveeiiiiiriieieceeeeeeee et B-8
Class ObAMAULhOTIZAtiONRULE........cc.iiiiiiieieieceeeeeeee ettt eee e B-9
Class ObAMAUthOTiZatioNEXPTc.couiiiiiiiiiiiiiiicccccce s B-9
Class ODAMAUAILRULEcovieiieiieieecee ettt re s eeens B-10
Class ObAMAAMINRULEccviciiiiiieiccee ettt aesreesa e ens B-10
Class ODAMPATAIMELETcvecveieieieietierieesestetetestesbesteteseeseeseesessessessessessessessesseseesensessens B-11
Class ODAMPOLCYcuoviiirieieiiiicie it B-11
Class ObAMPOLICYDOMAIN.ouiiiiiiiieiiicte e B-12
Class ODAMACCESSTESEcuveuieeieieiiriieiiitirtiieieie ettt e e e ste s e s sesbessessessessessesseseesensassensens B-13
Class ObAMACCESSTESTRESULLS........cccveiieieiicieeeeeeeetee et e B-13
Class ObAMACCESSTESERESULE(S) ..cveveuveuereererieiirieinicinci ettt B-13
C ettt ettt ettt ettt ettt ettt et b et ea b e st e st e st e Rt e Rt e Rt e Rt e Rt Rt e Rt R e b e eh e s e b e ses s e st esteseesaeseesees et e beesensenran B-14
Class ODAMRESOUICE........cceeviereerriereeieetesieetesteetesseeseessesssessesseessesssessesssessesssessesssessesssessenses B-14
Class ObAMACCESSCONAILIONSccvveviieieiieiieieeieieeeesteete e steeaesreeresreesae s e esesreessesseens B-14
Class ODAMDALE.cccciviriiieieieieieteetereeeseste e bessesbesseseessesessaesessessessessessessessessassessesessens B-15
ClassS ODAMTIINE.ccveieeieeieeeeie ettt ete et et e tte b e ese e sesseessesseessesssessesssessesssessesssensesssessenses B-15
Class ObAMTIimingConditionscccoceueiiiiicieiniiciceeecc s B-16
Class ODAMIAENTILYc.c.ceuiuimiiiiiiiiiciciiccccee e eaaes B-17
ClassS ODAMACHONccueeieeeietieeerte et ete et ete et e e et e e et et e estessesseessesssessesssessesssessesssensesssensennes B-17
Class ObAMODbjectWith ACHONSc.cuiuriiiiicieicc s B-17
Class ObAMAUthenticatioNRULEc..cveiiiiciiiiiieeeeee e enens B-18
Class ObAMAULhOTIiZAtiONRUIE.........ccoviiieiiieeceeeeeeee e B-18
Class ObAMAUthOriZatioNEXPY ...c.vvieiieiiic s B-20
Class ODAMAUAITRULEc..oveiiieiiciieiieeeeeee ettt et sb et se e sessasseesens B-20
Class ObAMAAMINRULEccoociiiiiieiieeeceeeeeeeee ettt re e esae s e eeens B-21
Class ODAMDPATAINELET..........ccuieueieiietieieeeeeie ettt et et et et e e e eeesteestesreesesbeessesseensesseensenseenns B-22
Class ODAMPOLCYc.cucuiuiiiiiiicieiccieieeee ettt saes B-22
Class ObAMPOLCYDOMAIN.couiiiiiiciiicci s B-23
Class ODAMAGCCESSTESE ...c..ecuvireeiieteeieeteeteete ettt ettt e sae et et e aesbe s e be e s e sreeaseereenns B-24
Class ObAMACCESSTESTRESUILS........c.evviriiiiieieieieieieetete ettt sse e saeseeseeseesessesessens B-25
Class ObAMACCESSTESTRESUIL(S) ...cuveuveuveteieieieieiieiiei ettt sttt ettt B-25
Managed COdE........coviiiiiiiiiiiiiiii s B-25
Class ObAMRESOUICEMEc.ceuvuiiiiiiiiiiiiicicirce s B-25
Class ObAMAccessConditionSMgd.........cccevvveiiiiiiiiiiiiiiiciiii s B-26
Class ObAMDaAtEMEAc.ccceuiiiiiiiiiciiiiii s B-26
Class ObAMDate_MonthSM@dc.ccoeuiiiiiiiiiniriiiiircccr s B-26
Class ObAMDate_DaysOfWeekMgd...........ccccoviiiiiniiiiiiiiiiiiccccccs B-27
Class ObAMTIMEMEAccouviiiiiiiiiiiiiiic s B-27
Class ObAMTimingConditionsSMEdc.ccceuiuiiiuiiririiiriririccerreeeeee s B-27
Class ObAMIentityMgdcovuruiiiiiiiieieiiiiei s B-28
Class ObAMACHONTYPEMEd......c.cciviiiiiiiiiiiiiiiiiiiic s B-28

xvii

xviii

Class ObAMACHONMEGA......c.cuoiiiieiiiicieei s B-28

Class ObAMAction_ValueTypeMgdccooouiiiiiiiiiiii B-29
Class ObAMAuthenticationRUIEMEd..........c.ccceueuiiiiiiiniriiiiirccrcrr s B-29
Class ObAMAuthorizationRuleMgdcooeioiiiiiiiiii B-29
Class ObAMAuthorizationEXPrMgd..........coooiiiiiiiiiicc B-30
Class ObAMAUItRUIEMEA........c.ccuiiiiiiiiiiccccceee s B-30
Class ObAMAAMINRUIEMEd.........cooiiiiiiii s B-31
Class ObAMParameterMgdccouoviririeiiiciice s B-31
Class ODAMPOLCYMEc.cucuimimiiiiiiiiiicieiiiccieieeee e ees B-31
Class ObAMPolicyDomainMgd ..o B-32
Class ObAMACCESSTEStMEGAcooviieiiiiicic s B-33
Class ObAMAccessTestResultsSMEdc.couvuiuiuiiririiiiiiicirccccccce s B-34
Class ObAMAccessTestReSultMgd ... B-34
Access System Configuration Objectscccoceviviiiiiiiiiniiiiiiis B-34
12 U SR B-34
Class ObAMHoOStIAentifier.........cooviviiiiiiiiiiiiiii e B-34
Class ObAMRESOUICETYPE.coiuiiiiicicieic s B-35
Class ObAMAuthenticationScheme. ... B-35
Class ObAMAuthenticationPIUINcouoiiiiriiiiiiic s B-35
Class ObAMAuthorizationScheme ... B-35
Class ObAMMaster AuditRule...........coooeveiiiiiiiniii B-36
s B-36
Class ObAMHoOStIdentifier..........ccccoociiiiiiiiiiiiiiiiii s B-36
Class ODAMRESOUICETYPE.cucuuimimimiiiiiicicicicicicicecete e B-36
Class ObAMAuthenticationScheme.............ccooeeiiiiiiiiiiiiiii s B-37
Class ObAMAuthenticationPIUINccovoiiiriiiiiiiiiicc B-38
Managed COAE......c.cuouiiiiiiiiicireee e B-38
Class ObAMHostIdentifierMgdc.cccoeuiriiiniiiciiciic s B-38
Class ObAMResourceTypeMgd ..ot B-38
Class ObAMAuthenticationSchemeMgdccccccciiiiiiiiiiiicceeceeeeeeeees B-38
Class ObAMAuthenticationPluginMgdcc.covoiiiiioiiiiiii B-39
Class ObAMAuthorizationSchemeMgd..........ccccccceviiiinniniiiniiiiiiiccs B-39
Class ObAMMaster AuditRUIEMEcccceuiiiiiiiiiiiiiiiiccccce s B-39
Class ODAMEXCEPHION ...t s B-39
AV ettt ettt e h et a et e a e ettt e e b e e a b e bt e be b e eb b et e ent e beenteneeeaee B-40
Class ODACCESSEXCEPLIONuuuuiuiiiiiiiiiiciciciccciee et B-40
s B-40
Class ObAccesSEXCeptioNMEd.........cccuiuiiiiiiiiiiiiiiiiiicc s B-41
Managed COAE ..o s B-41

Identity Events

APPLICAtION EVENES ...ttt ettt sttt sttt se e C-1
WOTKELOW EVEIES ...ttt ettt sttt et Cc-2

Installing the Access Manager SDK

About the Access Manager SDK Environment ... D-1
Software Developer Kit Installation Prerequisitesccccoccoeiiiiiiiiiiiiccen, D-1

Installing the Access Manager SDK on WIndows ..o D-2
Installing the Access Manager SDK on UniX ... D-2
Installing the Access Manager SDK on LinuX.........ccccocooiiviiiiiiiiniiens D-3
SOAP and HTTP Client

Managed Helper Classes
Managed Helper Classes for the APISs.............ccccoviiiiiiiiiiii s F-1

Xix

XX

Audience

Preface

This Oracle Access Manager Developer Guide explains how to write custom
applications and plug-ins to perform Identity System functions programmatically, to
create custom AccessGates that protect non-Web-based resources, and to be able to
perform other Access System functions programmatically.

Note: Oracle Access Manager was previously known as Oblix
NetPoint. Many functions and paths described in this document still
reflect the older product names.

This Preface covers the following topics:
= Audience

s Documentation Accessibility

= Related Documents

s Conventions

This guide is intended for intended for Master Administrators assigned during
installation and setup, as well as Master Identity Administrators and Delegated
Identity Administrators. Administrators configure the rights and tasks available to
other administrators and end users.

This guide assumes that you are familiar with your LDAP directory and Web servers,
as well as Oracle Access Manager.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

XXi

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services

Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents

For more information, see the following documents in the Oracle Access Manager
Release 10¢ (10.1.4.0.1) documentation set:

XXii

Oracle Access Manager Introduction—Provides an introduction to Oracle Access
Manager, a road map to the manuals, and a glossary of terms.

Oracle Application Server Release Notes—Read these for the latest Oracle Access
Manager updates. The release notes are available with the platform-specific
documentation. The most current version of the release notes is available on
Oracle Technology Network at:
http://www.oracle.com/technology/documentation.

Oracle Access Manager Patchset Notes Release 10.1.4 Patchset 1 (10.1.4.2.0) For All
Supported Operating Systems. It provides the system requirements and instructions
needed to install or de-install the Patchset itself, a list of known issues related to
the patchset, a list of the platform-specific bugs fixed in this Oracle Access
Manager Patchset.

Oracle Access Manager List of Bugs Fixed Release 10.1.4 Patchset 1 (10.1.4.2.0) . It
supplements the Patchset notes document for this release. It provides a list of all
generic (common to all operating systems) Oracle Access Manager bugs that have
been fixed in this Patchset, sorted by component.

Oracle Access Manager Installation Guide—Describes how to install and set up the
Oracle Access Manager components.

Oracle Access Manager Upgrade Guide—Explains how to upgrade earlier releases to
the latest major Oracle Access Manager release.

Oracle Access Manager Administration Guide—Explains how to configure Identity
System applications to display information about users, groups, and
organizations; how to assign permissions to users to view and modify the data
that is displayed in the Identity System applications; and how to configure
workflows that link together Identity application functions, for example, adding
basic information about a user, providing additional information about the user,
and approving the new user entry, into a chain of automatically performed steps.
This book also describes administration functions that are common to the Identity
and Access Systems, for example, directory profile configuration, password policy
configuration, logging, and auditing.

» Oracle Access Manager Access Administration Guide—Describes how to protect
resources by defining policy domains, authentication schemes, and authorization
schemes; how to allow users to access multiple resources with a single login by
configuring single- and multi-domain single sign-on; and how to design custom
login forms. This book also describes how to set up and administer the Access
System.

» Oracle Access Manager Deployment Guide—Provides information for people who
plan and manage the environment in which Oracle Access Manager runs. This
guide covers capacity planning, system tuning, failover, load balancing, caching,
and migration planning.

» Oracle Access Manager Customization Guide—Explains how to change the
appearance of Oracle Access Manager applications and how to control operation
by making changes to operating systems, Web servers, directory servers, directory
content, or by connecting CGl files or JavaScripts to Oracle Access Manager
screens. This guide also describes the Access Manager API and the authorization
and authentication plug-in APIs.

» Oracle Access Manager Developer Guide—Explains how to access Identity System
functionality programmatically using IdentityXML and WSDL, how to create
custom WebGates (known as AccessGates), and how to develop plug-ins. This
guide also provides information to be aware of when creating CGI files or
JavaScripts for Oracle Access Manager.

» Oracle Access Manager Integration Guide—Explains how to set up Oracle Access
Manager to run with third-party products such as BEA WebLogic, the Plumtree
portal, and IBM Websphere.

» Oracle Access Manager Schema Description—Provides details about the schema.

» Oracle Access Manager Configuration Manager Installation and Administration
Guide—Provides information about pushing configuration data changes from one
Oracle Access Manager 10g (10.1.4.0.1), or Oracle COREid Release 7.0.4,
deployment to another. For example, when pushing changes from a development
deployment to a pre-production deployment. Included are considerations,
prerequisites, and step-by-step instructions to help ensure your success.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xXiii

XXiv

What’s New in Oracle Access Manager?

This section describes certain new features of Oracle Access Manager 10g (10.1.4.0.1)
and provides pointers to additional information in this book. Information from
previous releases is also retained to help those users migrating to the current release.

The following sections describe the new features in Oracle Access Manager that are
reflected in this book:

Product and Component Name Changes
Globalization

WebGate Rewrite

Sample Web Services Code

Updates to IdentityXML

Authorization Plug-in API

Note: For a comprehensive list of new features and functions in
Oracle Access Manager 10g (10.1.4.0.1), and a description of where
each is documented, see the chapter on What’s New in Oracle Access
Manager in the Oracle Access Manager Introduction.

Product and Component Name Changes

The original product name, Oblix NetPoint, has changed to Oracle Access Manager.
Most component names remain the same. However, there are several important
changes that you should know about, as shown in the following table:

Item \Was Is

Product Name Oblix NetPoint Oracle Access Manager
Oracle COREid

IProduct Name Oblix SHAREid Oracle Identity Federation
NetPoint SAML Services

Product Name OctetString Virtual Directory [Oracle Virtual Directory

Engine (VDE)

IProduct Release Oracle COREid 7.0.4 IAlso available as part of

Oracle Application Server 10g
Release 2 (10.1.2).

Directory Name (COREid Data Anywhere Data Anywhere

XXV

Item Was Is
Component Name ICOREid Server Identity Server
Component Name IAccess Manager Policy Manager

Console Name

(COREid System Console

Identity System Console

Identity System Transport
Security Protocol

INetPoint Identity Protocol

Oracle Identity Protocol

IAccess System Transport
Protocol

INetPoint Access Protocol

Oracle Access Protocol

IAdministrator INetPoint Administrator Master Administrator
ICOREid Administrator

Directory Tree Oblix tree Configuration tree

Data Oblix data Configuration data

Software Developer Kit IAccess Server SDK IAccess Manager SDK
IASDK

IAPI IAccess Server API IAccess Manager API
|Access API

IAPT IAccess Management API Policy Manager API
IAccess Manager API

Default Policy Domains INetPoint Identity Domain Identity Domain
ICOREid Identity Domain

Default Policy Domains INetPoint Access Manager IAccess Domain
ICOREid Access Manager

Default Authentication INetPoint None IAnonymous

Schemes IAuthentication

ICOREid None Authentication

Default Authentication

INetPoint Basic Over LDAP

Oracle Access and Identity

Schemes CORFid Basic Over LDAP Basic Over LDAP

Default Authentication INetPoint Basic Over LDAP Oracle Access and Identity

Schemes for AD Forest for AD Forest Basic Over
LDAP

ICOREid Basic Over LDAP for
IAD Forest

IAccess System Service

IAM Service State

Policy Manager API Support
Mode

All legacy references in the product or documentation should be understood to

connote the new names.

Globalization

The support features described in this section reflect the results of the Oracle Access
Manager 10g (10.1.4.0.1) globalization process with emphasis on multibyte support
through the use of Unicode to enable processing of internationalized data and the
impact on older environments that you upgrade.

XXVi

= Multibyte support and XML encoding

Identifies behavior with 10g (10.1.4.0.1) and earlier versions and backward
compatibility with encoding in requests and responses; examples are included.

See Also: "XML Start Tag" on page 1-5, "Types of Identity XML
Functions" on page 1-10, and "Formatting an Identity XML
Response" on page 1-16.

= Multibyte support and IdentityXML Functions and Parameters

Mlustrates UTF-8 encoding for multibyte support in several examples

See Also: "Common Functions" on page 2-14.

= Multibyte support and IdentityXML

Identifies behavior with 10g (10.1.4.0.1) and earlier versions and backward
compatibility with XML pages, SOAP /IdentityXML requests, and Identity Event
Plug-in data sent to executables.

See Also: "About the Identity Event Plug-in API" on page 3-1.

= Multibyte support and the Access Manager SDK, Access Manager APIs, Custom
AccessGates

Identifies behavior with 10g (10.1.4.0.1) and earlier versions and backward
compatibility with the Access Manager SDK, Access Manager APIs, and custom
AccessGates

See Also: "Globalization and the Access Manager SDK, Access
Manager APIs, Custom AccessGates" on page 4-29.

= Multibyte support and Custom C Authorization Plug-in Interfaces identifies
behavior with 10g (10.1.4.0.1) and earlier versions and backward compatibility
with custom C authorization plug-ins and interfaces

See Also: "Globalization and Custom C Authorization Plug-in
Interfaces" on page 7-2.

WebGate Rewrite

The code for WebGates has been rewritten so that WebGates and AccessGates share
the same code base.

= A new lazyload method has been added to the ObUserSession constructor in the
Access Manager API as a result of this rewrite

See Also: "Methods (ObUserSession, C++)" on page 4-84,
"Functions (ObUserSession, C)" on page 4-96, "Methods
(ObUserSessionMgd, C#)" on page 4-110, "Constructors
(ObUserSession, Java)" on page 4-122.

= New diagnostics have been added as a result of this rewrite.
See Also: "Methods (ObDiagnostic, C)" on page 4-103, "Methods

(ObDiagnostic, C#)" on page 4-115, "Methods (ObDiagnostic, Java)"
on page 4-127, "Methods (ObDiagnostic, C++)" on page 4-89.

XXVii

» New status codes have been added as a result of this rewrite.

See Also: "C-Family Status and Error Message Strings" on
page 4-128, "Java Status and Error Message Fields" on page 4-121.

Sample Web Services Code

Information on using Identity XML to create Web services has been updated.

s Code samples has been provided and explained to illustrate how to use
IdentityXML Web services to make calls to a WebPass.

= Two samples have been added, to show how to create a Web service call when a
WebPass is protected by a WebGate and when a WebPass is not protected by a
WebGate.

s Older information on creating a Java proxy object has been removed.

See Also: "Invoking a WSDL-Based Web Service Using Java" on
page 1-26.

Updates to IdentityXML

The chapter on IdentityXML functions and parameters contains new information on
configuring challenge phrases and challenge responses. Other updates have been
made to remove old information and to clarify the remaining information.

s This chapter describes how to configure Add, Delete, Replace, and Replace_All

operations on individual and multiple challenge-and-response pairs.

See Also: "Syntax for Lost Password Management Attribute
Parameters" on page 2-9.

s The information on pre-6.5 IdentityXML syntax has been removed.

= In the same chapter, information has been reorganized. The discussion of attribute
and search parameters now appears before the discussion of functions.

See Also: "Search Parameters" on page 2-3 and "Attribute
Parameters" on page 2-5.

» IdentityXML examples have been updated to reflect the post-6.5,
WSDL-compatible syntax.

See Also: "IdentityXML Functions and Parameters" on page 2-1.

Authorization Plug-in API

XXViii

The chapter on the authorization plug-in API contains information on the ability to
make an external call for data to be used in authorization. Ordinarily, authorization
information flows from the Access Server to the AccessGate. An external call for data
can obtain external authorization information that the AccessGate can send to the
Access Server. This call does not return an error, however, if the returned value is null.

= A note has been added to the section on the C API.

See Also: "C Constant Definitions" on page 7-5.

A cross-reference has also been added to information on GetRequestContext in
the section on managed code.

In the same chapter, information has been reorganized. The discussion of attribute

and search parameters now appears before the discussion of functions.

See Also: "Managed Code Interfaces" on page 7-23.

XXiX

XXX

Part |

Programmatic Interfaces to the Identity
System

Part I of this guide describes IdentityXML, a programmatic interface to the Identity
System applications. It also describes how to implement IdentityXML functions as
Web services, and how to extend the base Identity System functionality using the
Identity Event Plug-in API.

This part contains the following chapters:

n Chapter 1, "IdentityXML and Identity Web Services"
n Chapter 2, "IdentityXML Functions and Parameters"
n Chapter 3, "Identity Event Plug-in API"

1

IdentityXML and Identity Web Services

IdentityXML provides a programmatic interface for carrying out the actions that a user
can perform when accessing an Identity System application from a browser. For
instance, a program can send an Identity XML request to find members of a group
defined in the Group Manager application, or to add a user to the User Manager. This
chapter describes how to create IdentityXML requests and the process for submitting
the requests and handling the responses from the Identity System.

The Web Services Description Language (WSDL) is a schematic description of an XML
request. You can use the Identity System's WSDL files as input for generating
IdentityXML requests. This chapter describes how you can use the Identity System's
WSDL solution as an automated method of generating Identity XML requests.

Universal Description, Discovery, and Integration (UDDI) is a registry (analogous to
the White Pages or Yellow Pages) that enables users to access Web services that are
created using WSDL. The Identity System's UDDI and WSDL features together
constitute the Web Services for Identity Management.

The chapter contains the following sections:

= About IdentityXML

s Formatting an IdentityXML Request

s Locations for Each Application

» Types of Identity XML Functions

s Formatting an IdentityXML Response

» Creating Identity XML Requests Using WSDL

= Making WSDL Functions Available Using UDDI

About IdentityXML

IdentityXML provides a programmatic interface for carrying out the actions that a user
can perform when accessing an Identity System application from a browser. Instead of
interacting with the application through a browser, you can write a program. For
example, if your company moves and you need to change the area code for the phone
number of 100,000 employees, you can use Identity XML to do a bulk update. Or, if you
regularly add employees, instead of doing double entry between your Human
Resources application and the Identity System, you can write a script to call an
IdentityXML function to create new users in the User Manager, taking the data from
the Human Resources application.

Figure 1-1 illustrates how Identity XML works:

IdentityXML and Identity Web Services 1-1

About IdentityXML

Figure 1-1 IdentityXML Overview

Browser [y | WebPass () Identity P | Directory

System

User Identity XML

IdentityXML enables you to process simple actions and multi-step workflows to
change user, group, and organization object profiles.

IdentityXML enables external applications to access these Identity System functions:

= User: Create, delete, and manage user data within or outside of a workflow or an
asynchronous workflow.

= Group: Create, delete, and manage groups and subscriptions.
= Organization: Create, delete, and manage organization object data.

To create an IdentityXML request, you look up the request syntax, function names and
parameters using the information in this chapter and in "Identity XML Functions and
Parameters" on page 1-1. After creating the IdentityXML request, you construct a
SOAP wrapper to send the IdentityXML request to WebPass using HTTP. Figure 1-2
illustrates how IdentityXML requests are processed:

Figure 1-2 IdentityXML Request and Response Flow

HTTP Request
IdentityXML
Soap
> Request
IdentityXML
Request
Web .
Server with lsder;tlty
WebPass ystem
HTTP Response
|| -
: —
IdentityXML
Response

IdentityXML requests only work with LDAP attributes that are used on a panel in the
User, Group, or Organization Manager.

The IdentityXML API uses XML over SOAP. As shown in Figure 1-2, you pass
IdentityXML parameters to the Identity Server using an HTTP request. This HTTP
request contains a SOAP envelope. When WebPass receives the HTTP request, the
SOAP envelope indicates that it is an IdentityXML request rather than the usual
browser request. The request is forwarded to the Identity Server, where the request is
carried out and a response is returned. Alternatively, you can use WSDL to construct
the SOAP request.

Data that is sent in a response to an IdentityXML request is similar to the XML output
that the Identity System combines with a style sheet to create the HTML that is

1-2 Oracle Access Manager Developer Guide

About IdentityXML

returned to a browser. You must parse the XML response to extract and use the
information you requested.

See also: For a listing of IdentityXML functions and parameters, see
"IdentityXML Functions and Parameters" on page 2-1.

Implementing an IdentityXML Request

A number of IdentityXML samples are provided with your Oracle Access Manager
installation. While these samples are not supported, they can provide you with an idea
of how specific functions are specified. For a look at the samples, go to:

IdentityServer_install_dir\identity \oblix\unsupported\integsvcs

Implementing an IdentityXML request requires the procedures identified in the
following task overview.

Task overview: Implementing an IdentityXML Request

1. Decide what Identity System operation you want to perform; see the Oracle Access
Manager Administration Guide for more information.

2. Read "IdentityXML Functions and Parameters" on page 2-1 to find the function
name and parameters that correspond to the operation that you want to perform.

3. Ensure that the IdentityXML request works with LDAP attributes that are
configured on a panel in the User, Group, or Organization Manager.

See the Oracle Access Manager Administration Guide for details.

4. Develop the IdentityXML request and the SOAP envelope for the request, as
described in this chapter.

5. Write a program to send an HTTP/S request to the Identity System.

See sample programs in "Code Examples of Deployed IdentityXML Functions" on
page 2-70 and the "SOAP and HTTP Client" on page E-1 for details.

The program can be written in any language. The HTTP /S request must contain
an XML payload that consists of the IdentityXML request that you created. You
can write a Java program or a Perl script to send the request to a Web server that
understands SOAP requests.

The program or script will do the following:
a. Identify the host that is responsible for sending the request.
b. Read in the file that contains the Identity XML request.

o

Identify the port to send the data to (port 80).

e

Identify the cgi that the Identity XML is being sent to, for example,
userservcenter.cgi for the User Manager.

The cgi files are described in "Locations for Each Application” on page 1-10.

6. Create a program to parse the XML response and perform any additional
processing required.

The Identity System traps the XML request and returns output in the form of an
XML document. You need to parse and process this document.

IdentityXML and Identity Web Services 1-3

Formatting an ldentityXML Request

Note: WSDL provides a method for submitting Identity XML
requests through a Java proxy object. This may be more convenient for
some developers than the method outlined in the previous
paragraphs. See for "Creating Identity XML Requests Using WSDL" on
page 1-20.

Sending Multiple IdentityXML Requests

Note that each Identity XML file contains a single request consisting of a single
operation. In all likelihood, you will want to use IdentityXML to perform repetitive
tasks. For example, suppose that you implement an IdentityXML solution to update an
employee's home address. You may want to re-use this information for subsequent
employee address updates. To do this, you need to update the data in the IdentityXML
file and resend the request.

You can write a shell or Perl script to dynamically update the data in the IdentityXML
request. The script can take information from the original data source and substitute
this data in the IdentityXML file that you have set up. This is how, for instance, you
could ensure that information about new users entered in your Human Resources
database is automatically translated into a Create User operation in the Identity
System.

Formatting an IdentityXML Request

All IdentityXML requests use the syntax shown in the following paragraphs. For more
information on XML see "XML Background" on page A-1. More information on SOAP
is provided in "SOAP and HTTP Client" on page E-1.

The IdentityXML syntax is compatible with WSDL and UDDI. See "Creating
IdentityXML Requests Using WSDL" on page 1-20 for details.

Example 1-1 shows the request format:

Example 1-1 IdentityXML Request Format

<?xml version="1.0"?>
<SOAP-ENV:Envelope
xmlns:oblix="http://www.oblix.com"
xmlns:SOAP-ENV="http://schemas-xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<oblix:authentication type="basic">
<oblix:login>login name</oblix:login>
<oblix:password>login password</oblix:password>
</oblix:authentication>
<oblix:request application="application name"
function="function name" version="NPWSDL1.0">
<oblix:params>
<oblix:paraml>valuel</oblix:paraml>
<oblix:param2>value2</oblix:param2>
<oblix:param3>value3</oblix:param3>
</oblix:params>
</oblix:request>
</SOAP-ENV : Body>
</SOAP-ENV:Envelope>

1-4 Oracle Access Manager Developer Guide

Formatting an IdentityXML Request

XML Start Tag

Soap Tags

Note: This chapter describes the latest syntax for IdentityXML. This
syntax is optimized for use with WSDL and has been in use since
version 6.5. The older syntax is deprecated, however, code that uses
the old syntax will continue to work.

Documentation of the earlier IdentityXML syntax is available on the
Oracle Technology Network at:

http://www.oracle.com/technology/

XML must start with the following string:

<?xml version="1.0"?>
Within this required string you can use a tag to select an encoding specification.
Without the encoding string, the default encoding specification is UTF-8.

10g (10.1.4.0.1) supports two encoding formats for requests: ISO-8859-1 (Latin-1) and
UTEF-8. The encoding of the response is the same as the encoding of the request. For
example, if the request uses the Latin-1 encoding tag (encoding="IS0-8859-1")
the response will also use Latin-1 encoding; if the request uses UTF-8 encoding, the
response will use UTF-8 encoding.

With new 10g (10.1.4.0.1) installations, Oracle recommends that you use the UTF-8
encoding tag (encoding="UTF-8"):

<?xml version="1.0" encoding="UTF-8" ?>
For backward compatability with older plug-ins in an upgraded environment, use the
Latin-1 encoding tag (encoding="I5S0-8859-1"). For example:

<?xml version="1.0" encoding="IS0-8859-1" 2>
If an IdentityXML request uses encoding="1S0-8859-1" and the response to it
contains any characters outside the Latin-1 character set, such characters are garbled.

For example, when ISO-8859-1 is used for the request and the response includes
Japanese or Arabic characters, those characters in the response will be garbled.

The required SOAP tag starts the SOAP root element, the envelope:

<SOAP-ENV:Envelope>
xmlns:oblix="http://www.oblix.com"
xmlns:SOAP-ENV="http://schemas-xmlsoap.org/soap/envelope/">

It is closed by the </SOAP-ENV : Envelope> tag. The namespace attribute
xmlns:oblix enables the use of Identity System-specific tags in the envelope
element.

This tag starts the body of the SOAP envelope:

<SOAP-ENV:Body>

It is closed by the </SOAP-ENV : Body> tag. The body contains two SOAP elements:
authentication information and request information.

IdentityXML and Identity Web Services 1-5

Formatting an ldentityXML Request

Authentication Tags

Request Tag

This required element specifies the authentication type to be used:

<oblix:authentication type="basic">

Currently, basic authentication is the only supported type. This means that the Oracle
Access Manager login ID and password are needed for authentication. The
</oblix:authentication> tag closes this element.

For servers in an Active Directory forest, you need to specify the login domain as well
as the login and password. You do this by specifying a <oblix:domain> element within
the <oblix:authentication> tag.

An example:

<oblix:authentication
xmlns:oblix="http://www.oblix.com" type="basic">
<oblix:login>userlkl</oblix:login>
<oblix:password>abc</oblix:password>
<oblix:domain>

DC=locations, DC=0oblix, DC=com

</oblix:domain>

</oblix:authentication>

The login tag:

<oblix:login>login name</oblix:login>

provides the login ID for an Oracle Access Manager user.
The password tag:

<oblix:password>login password</oblix:password>
provides the actual password of an Oracle Access Manager user.

Authentication and Single Sign-on Considerations

If your HTTP client can receive and resend the Access System single sign-on cookie,
you only need to include the authentication element for the first request in a session.
This can reduce the overhead incurred by multiple logins. For an example, see the
cookie settings in the sample Java code in "ObSSOCookie Example" on page 2-79. If
you submit the single sign-on cookie as part of the HTTP(S) request, change the
IPValidation setting on the WebGate which protects the WebPass that processes the
IdentityXML request. Disable IPValidation for the IP address where the request
originates. This is usually the Web server hosting the application that submits the
IdentityXML request.

There are special considerations if you use both of the following types of request:

s IdentityXML requests that use the SSO cookie on behalf of applications that
perform an action for an SSO-authenticated user.

s IdentityXML requests that use Basic authentication for applications that use
credentials for privileged operations such as Identity Event API Identity XML calls.

If your environment supports both types of request, you may require one or more
dedicated WebGates and WebPasses for the SSO IdentityXML requests and a separate
set of WebGates and WebPasses for the Basic authentication requests.

The request line:

1-6 Oracle Access Manager Developer Guide

Formatting an IdentityXML Request

<oblix:request application="application name" function="function name" mode =
"modename" version="NPWSDL1.0">

tells the Identity System the function to use for the request, for example, search. You
replace function name with the accurately spelled and capitalized name of the function
in double quotation marks. A list of functions starts at "Common Functions" on

page 2-14.

The application name can be one of the following:

= userservcenter: For User Manager functions.

= groupservcenter: For Group Manager functions.

= objservcenter: For Organization Manager functions.
= asynch: For asynchronous workflows.

You specify the application to send the request to by inputting the correct URL. See
"Locations for Each Application" on page 1-10 and the function descriptions starting
with "Common Functions" on page 2-14 for information on the correct application
URL to use with each function.

You can optionally limit the output from this function by providing
mode="modename" in the request tag. Modename takes one of two values.

= silent: Returns status information, but no other output. This is useful for
IdentityXML functions that test access. The returned status is 0 if the function
succeeded, 1 otherwise. To use silent mode, add the following in the line that
begins with <oblix:request>:

mode="silent"

For example:
<oblix:request application="userservcenter" function="view" mode="silent">

= dataonly: Omits display information from the output. The default mode returns
all display-related elements in the XML output, including buttons, forms, and so

on. Dataonly mode eliminates display-related elements to minimize the size of the
output XML.

For example:

<oblix:request application="userservcenter" function="view" mode="dataonly">

Note: For the IdentityXML parameter viewGroupMembers, some
user interface information is included in the output even in data only
mode.

= version: The version tag is required:

version="NPWSDL1.0"

Documentation of the pre-6.5 IdentityXML version tag is available on the Oracle
Technology Network at:

http://www.oracle.com/technology/

Parameter Tags
The following:

IdentityXML and Identity Web Services 1-7

Formatting an ldentityXML Request

<oblix:params>

Delimits a list of parameter name:value pairs. Note the keyword is params, plural. The
tag </oblix:params> closes this element. The params tag may be replaced by other
tags, depending on the parameters being invoked. See "Search Parameters" on page 2-3
and "Attribute Parameters" on page 2-5 for details.

Each occurrence of this element provides a specific parameter name:value pair. You
replace param1 with the parameter name in quotes. Replace valuel with the actual
value. An example:

<oblix:param name="uid">
cn=Marketing Team, ou=Marketing, o=Company, c=US
</oblix:param>

Note that this older syntax is supported if you have legacy Identity XML files
(pre-NetPoint 6.5). Refer to the documentation for the appropriate version of the
product for details.

The method for specifying a parameter is as follows:

<oblix:paraml>valuel</oblix:paraml>

For example:

<oblix:uid>
cn=Marketing Team, ou=Marketing, o=Company, c=US
</oblix:uid>

This method is required for use with the WSDL and UDDI functionality. Parameters
for each function are described starting with "Common Functions" on page 2-14.

You can supply more than one parameter:value pair:

<oblix:param2>value2</oblix:param2>
<oblix:param3>value3</oblix:param3>

Request Examples

Example 1-2 illustrates an IdentityXML function to change a password. Key words of
interest are shown in bold:

Example 1-2 Sample Change Password Request

<?xml version="1.0"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas-xmlsoap.org/soap/envelope/"
xmlns:oblix="http://www.oblix.com">
<SOAP-ENV: Body>
<oblix:authentication xmlns:oblix="http://www.oblix.com" type="basic">
<oblix:login>dadmin</oblix:login>
<oblix:password>password</oblix:password>
</oblix:authentication>
<oblix:request application="userservcenter" function="modifyUser" mode="" version="NPWSDL1.0">
<oblix:attributeParams>
<oblix:uid>uid=jones, ou=People, ou=NA, ou=DEALER, dc=company, dc=com</oblix:uid>
<oblix:PasswordAttribute>
<oblix:attrName>userPassword</oblix:attrName>
<oblix:attrNewValue>password</oblix:attrNewValue>
<oblix:attrConfirmvValue>password</oblix:attrConfirmvalue>
<oblix:attrOldvalue>d</oblix:attrOldvalue>
<oblix:attrOperation>REPLACE</oblix:attrOperation>
<oblix:attrNoOfFields">1</oblix:attrNoOfFields>

1-8 Oracle Access Manager Developer Guide

Formatting an IdentityXML Request

</oblix:PasswordAttribute>
</oblix:attributeParams>
</oblix:request>
</SOAP-ENV:Body>
</SOAP-ENV: Envelope>

In the previous examples:

s modifyUser: This is the name of an IdentityXML function. This function changes a
user attribute in the User Manager.

= oblix:authentication: This is the authentication tag that enables the user to log in.

= oblix:attributeParams: The uid identifies the user whose password is to be
changed.

s attrName: This identifies the names of one or more attributes to be viewed or
changed.

= attrNewValue: This identifies the value that is to be provided for the attribute
identified by the attrName parameter.

Example 1-3 shows an IdentityXML function that performs a query. This query asks if
the logged in user has permission to view a particular group profile. This request
might be sent to the User Manager at the following URL:

http:/ /www.customer.com/identity/oblix/apps/userservcenter/bin/
userservcenter.cgi

Oracle Access Manager first authenticates John Smith as a valid user, and verifies that
the user is authorized to do a password change. The Identity System searches the User
Manager for all entries under the Employees tab that have john as a substring match in
their cn attribute. Because mode="silent" is part of the request, the response only
contains status information.

Example 1-3 illustrates an IdentityXML request.

Example 1-3 Sample IdentityXML Request

<?xml version="1.0"?>
<SOAP-ENV:Envelope

</oblix:authentication>
<oblix:request function="search" mode="silent"
version="NPWSDL1.0">
<oblix:Params>
<oblix:tab_id>Employees</oblix:tab_id>
<oblix:SearchParams>
<oblix:Condition>
<oblix:SearchAttr>cn</oblix:SearchAttr>
<oblix:SearchOperation>0SM</oblix:SearchOperation>
<oblix:SearchString>john</oblix:SearchString>
</oblix:Condition>
</oblix:SearchParams>
</oblix:Params>
</oblix:request>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Note: As shown in Example 1-3, you must set the version string to
NPWSDL1.0. For example, myrequest.setVersion("NPWSDL1.0");.

IdentityXML and Identity Web Services 1-9

Locations for Each Application

Handling Special Characters in Requests

In an XML document, if you want special characters, such as the angle bracket "<" to
be treated as text, they must be encoded. The following table summarizes the handling
of special characters in XML:

Special character Description Encoding
> Begins a tag. >
< Ends a tag. <
Quotation mark. "

Locations for Each Application

The applications that respond to IdentityXML input and the files that they use are as
follows.

URL: to the applications are as follows:
s For the Group Manager:

http://www.domain.com:port/identity/oblix/apps/
groupservcenter/bin/groupservcenter.cgi

n For the Organization Manager:

http://www.domain.com:port/identity/oblix/apps/
objservcenter/bin/objservcenter.cgi

» For the User Manager:

http://www.domain.com:port/identity/oblix/apps/
userservcenter/bin/userservcenter.cgi

s For Asynchronous Workflows:

http://www.domain.com:port/identity/oblix/apps/
asynch/bin/asynch.cgi

The schema files are as follows:

s XML schema documentation files:
WebPass_install dir\oblix\WebServices\XMLSchema* .xsd

s WSDL schema files:
WebPass_install_ dir\oblix\WebServices\WSDL*.wsdl

= UDDI sample Java files:
WebPass_install_dir\oblix\WebServices\samples\UDDI*.*

The style sheets are as follows (see also the Oracle Access Manager Customization Guide):
= Group Manager, Organization Manager, User Manager:

IdentityServer_install_dir\oblix\lang\en-us\style0

= Asynchronous Workflows: none

Types of IdentityXML Functions

There are three types of Identity XML functions:

1-10 Oracle Access Manager Developer Guide

Types of IdentityXML Functions

n Test: These functions test whether the user is allowed to perform a particular
function. Test functions can be used before doing large scale batch operations. Test
functions return a yes or no type of response.

= Get: These functions show current directory content.
= Set: These functions change current directory content.

All functions are listed in "Identity XML Functions and Parameters" on page 2-1. Note
that parameters for these functions can be specified in any order. You do not need to
follow the order provided in the parameter descriptions.

Functions to Test Access to Data

Use IdentityXML test functions to determine if you or another user can perform a
specific function. Functions that begin with Canl are a direct (first-person) test.
Functions that begin with CanUser are an indirect (third-person) test. These functions
ask "may user J. Smith do something." A third person test is also called a proxy test.
You identify the person who is the target of the test using the proxysourceuid
parameter.

Example 14 is an example test request.

Example 1-4 Test Request Example

<?xml version="1.0"?>
<SOAP-ENV:Envelope
xmlns:oblix="http://www.oblix.com"
xmlns:SOAP-ENV="http:
//schemas-xmlsoap.org/soap/envelope/">
<SOAP-ENV: Body>
<oblix:authentication type="basic">
<oblix:login>J.Smith</oblix:login>
<oblix:password>J.Smith</oblix:password>
</oblix:authentication>
<oblix:request function="canIViewGroupProfile"
version="NPWSDL1.0">
<oblix:AttrParams>
<oblix:uid>
cn=Marketing Team, ou=Marketing, o=Company, c=US
</oblix:uid>
</oblix:AttrParams>
</oblix:request>
</SOAP-ENV: Body>
</SOAP-ENV: Envelope>

The result of the request appears as the value in an ObTextMessage element, within
the ObAccessAPIResult element. There are three possible results.

= Allowed: You or the specified user may do the requested activity.
= Denied: You or the specified user may not do the requested activity.

= Not authorized to use service: You lack the rights necessary to make the request,
as described in "Privileges to View and Modify" on page 1-14.

Example 1-5 is an example test response.

IdentityXML and Identity Web Services 1-11

Types of IdentityXML Functions

Note: 10g(10.1.4.0.1) supports two encoding formats: ISO-8859-1 and
UTF-8 for requests. The response uses the same encoding format as
the request. You may continue to send requests as Latin-1 data with
ISO-8859-1 encoding. However, Oracle recommends that you use
UTF-8 encoding with 10g (10.1.4.0.1) requests.

If an IdentityXML request uses encoding="1S0-8859-1" and the response to it
contains any characters outside the Latin-1 character set, such characters are garbled.
For example, when ISO-8859-1 is used for the request and the response includes
Japanese or Arabic characters, such characters in the response are garbled.

Example 1-5 Test Response Example

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
xmlns:oblix="http://www.oblix.com"
xmlns: SOAP-ENV="http://
schemas-xmlsoap.org/soap/envelope/ ">
<SOAP-ENV:Body>
<Oblix>
<ObAccessAPIResult>
<ObRequestInfo>187658080</0bRequestInfo>
<ObTextMessage>Allowed</ObTextMessage>
</ObAccessAPIResult>
</0blix>
</SOAP-ENV: Body>
</SOAP-ENV:Envelope>

Functions to Get Data

Some IdentityXML functions gather and return information from the directory. For
functions that get data for a logged in user, the user must have view privileges for the
target object naming attribute and the specified attribute.

Example 1-6 is an example of a request for workflow ticket information.

Example 1-6 Request for Workflow Ticket Information

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://
schemas-xmlsoap.org/soap/envelope/">
<SOAP-ENV: Body>
<oblix:authentication xmlns:oblix="http://
www.oblix.com" type="basic">
<oblix:login>J.Smith</oblix:login>
<oblix:password>J.Smith</oblix:password>
</oblix:authentication>
<oblix:request function="workflowTicketInfo"
version="NPWSDL1.0">
<oblix:AttrParams>
<oblix:workflowInstanceDn>
obwfinstanceid=20001019T1609090,
obcontainerId=workflowInstances,
0=0blix, o=Company, c=US
</oblix:workflowInstanceDn>
<oblix:workflowStepInstanceId>
2
</oblix:workflowStepInstanceId>
<oblix:AttrParams>

1-12 Oracle Access Manager Developer Guide

Types of IdentityXML Functions

</oblix:request>
</SOAP-ENV: Body>

</SOAP-ENV:Envelope>

Functions to Set Data

These functions change directory content.

For functions that allow a user to set data for themselves:

The user must have view privileges for the target object naming attribute.

For a workflow or a request to set an attribute, the logged in user must have view
privileges for the target object naming attribute and the attribute requested to be
set, and the user must be a participant of the appropriate workflow.

For a workflow or request to delete a user, group, or object, the logged in user
must have view access to the target object naming attribute and be a participant of
the appropriate workflow.

For a workflow or request to create a user, group or object, the searchbase rule
does not apply. If a domain is specified the logged in user must be a participant of
the matching workflows for that target domain. If no domain is specified, the
logged in user must be a participant of any matching workflows.

For functions that allow a logged in user to set data for another user:

All of the privileges that allow a user to set data for themselves must apply to the
proxysourceuid (that is, the user in the "CanUser. . ." call).

The logged in user must have view privileges for the class attribute of the
proxysourceuid and the targetuid if it exists. For example, a CanUserView type of
call has a targetuid but a CanUserCreate call does not.

The logged in user must have grant and read privileges for the class attribute of
the proxysourceuid and the targetuid if one exists.

For common IdentityXML functions and application specific IdentityXML functions:

All the applications should have the same access privileges as the equivalent GUI
function.

Exceptions: the rules that apply to the indirect access functions that allow a logged
in user to set data for another user also apply to the following group functions:
userGroupsProfile, subscribeUserToGroup, unsubscribeUserFromGroup.

Example 1-7 illustrates subscribing to a group.

Example 1-7 Subscription to a Group

<?xml version="1.0"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://

schemas-xmlsoap.org/soap/envelope/">
<SOAP-ENV : Body>
<oblix:authentication xmlns:oblix="http://
www.oblix.com" type="basic">
<oblix:login>J.Smith</oblix:login>
<oblix:password>J.Smith</oblix:password>
</oblix:authentication>
<oblix:request function="subscribeToGroup"
version="NPWSDL1.0">
<oblix:params>
<oblix:uid>
cn=Marketing Team, ou=Marketing,

IdentityXML and Identity Web Services 1-13

Types of IdentityXML Functions

o=Company, c¢=US
</oblix:uid>
</oblix:params>
</oblix:request>
</SOAP-ENV : Body>
</SOAP-ENV: Envelope>

Privileges to View and Modify

You use IdentityXML requests to look at or change data in the directory. The ability to
view or change data is controlled by the view, modify, and grant rights that a
Master Administrator assigns to you. See the Oracle Access Manager Administration
Guide for details.

For most functions, except where noted, the data you are attempting to view or change
must be in the searchbase that the administrator set for you. For example, if your
searchbase is limited to the Sales organization, you cannot view or change data in the
Accounting organization.

Privileges Required for Direct Access APls
Direct functions test your own ability to view or change data.

For functions that test your ability to view a value without using a workflow:
= You must have view privileges for the target object naming attribute
s If an attribute is specified, you must have permission to view the attribute

s T he attribute must be included in a panel configured for an Identity System
application.

For functions that test your ability to modify a value without using a workflow:

= You must have view privileges for the target object naming attribute.

= You must have write privileges for the target attribute to be set.

= T he attribute must be on a panel configured for an Identity System application.
For functions that use a workflow:

s To test for the ability to modify attributes, you must:

- Have view permissions for the target object naming attribute (for example, the
uid or tab_id).

- Have view permissions for the target attribute.

— Bea participant in the workflow that is used to set that attribute.
s To test for the ability to delete, you must:

- Have view permissions for the target object naming attribute.

- Bea participant in the workflow that is used to delete the object.
s To test for the ability to create, you must:

- If a domain is specified: Be a participant in the workflow that is used to create
the data in that domain.

- If a domain is not specified: Be a participant of at least one workflow that
creates that data.

1-14 Oracle Access Manager Developer Guide

Types of IdentityXML Functions

Note: Workflow governs in all three categories. For the create test, if
you are a participant in the workflow, you will be granted access even
if the object is outside of your assigned searchbase. For all of the tests,
if you are not a participant in the workflow, you will get a negative
response even if you have modify rights to the attribute.

Privileges Required for Indirect Access APIs

Indirect functions test the ability of another user, represented by the proxysourceuid
parameter, to view data or make changes. This parameter is required for a number of
IdentityXML functions, as described in "IdentityXML Functions and Parameters" on
page 2-1. Required privileges are as follows:

= All the access privileges described in the previous paragraphs must be satisfied for
the person represented by the proxysourceuid parameter.

= You must have view privileges for the class attribute of the proxysourceuid and
the targetuid (if used).

= The object classes for the proxysourceuid and targetuid must be in your
searchbase.

= You must have the ability to grant the right to read on the class attribute of the
proxysourceuid and the targetuid (if used).

Privileges Required for Application-Specific IdentityXML Requests

Application-specific IdentityXML requests are the get or set functions that view or
change data. Each is equivalent to an operation that can be carried out through the
GUI, and the rights are those that would apply to the GUL

Exceptions are the following three functions. Rights for these must be the same as for
the Indirect Access APlIs.

userGroupsProfile
subscribeUsertoGroup

unsubscribeUserfromGroup

Note: In any IdentityXML request, the LDAP attributes that can be
specified or used are only those that have been configured in the
Identity System and are part of a panel in the profile of the user,
group, or organization. All other attributes are considered invalid.

Privileges Required for DN Operations

Some parameters take values of type DN. Privileges required for DN operations are as
follows:

= View: If you submit a request to view a DN attribute value (for example, by using
the attrName function), only values for which you have view permissions and
localized permissions are returned. That is, you must have read access to the class
attribute of that DN, and the DN value should fall under your searchbases with
respect to the type of its object class.

= Modify: If you submit a request to add, modify, or delete a DN attribute value (for
example, through any modify or workflow function), values are considered valid
only if you have view permissions and localized permissions for them. That is,

IdentityXML and Identity Web Services 1-15

Formatting an ldentityXML Response

you should have read access to the class attribute of that DN, and that DN value
should fall under your searchbases with respect to the type of its object class. If
you specify an invalid DN value, an error message such as "Invalid value for
parameter uniqueMember" is returned.

Some examples of invalid DN values are junk values, deactivated users, or DNs
that do not satisfy your access rights.

Formatting an IdentityXML Response

The chapter on PresentationXML in the Oracle Access Manager Customization Guide
discusses the way the HTML response is built up. See "XML Background" on page A-1
for a discussion of XSD and XML content.

Depending upon the Identity System application being used, you locate the matching
XML registration file (userservcenterreg.xml for example). Within the registration file,
look for the following element:

ObProgram name="xxxxXX"

where xxxxx is the function you are using. In this example, you look for ObProgram
name="search". Within that element is another:

ObSchema name="yyyy"

where yyyy is the name of the XML schema file that defines the expected output. In
this example, that line reads as follows:

ObSchema name="usc_search.xsd"

The XML schema file generally begins with several includes, but the output XML
starts with the first element which contains a reference to ObRequestInfo, and will
contain only the information specified by that element.

For example, within the usc_search.xsd file the element ObSearch contains the
ObRequestInfo element, as shown in Example 1-8, taken from that file.

Example 1-8 Response Format

<xsd:element name="ObSearch">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="ObRequestInfo"/>
<xsd:element ref="ObScripts"/>
<xsd:element ref="ObForm"/>
<xsd:element ref="ObTextMessage"/>
<xsd:element ref="ObColumnInfo"/>
<xsd:element ref="ObEntry" maxOccurs="unbounded"/>
<xsd:element ref="ObButton" maxOccurs="unbounded"/>
<xsd:element
ref="0bViewModeButtonsForSearchResults"/>
<xsd:element ref="ObStatus"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

Detailed search results are returned within ObAttribute elements nested within an
ObEntry element. An ObStatus element returns the status value for the request:

= An ObStatus value of 0 means the request was accepted and processed.

1-16 Oracle Access Manager Developer Guide

Formatting an IdentityXML Response

s A value of 1 means that an error has occurred.

The recommended strategy for working with the response data is to use a tool, such as
the HTTPClient discussed in "XML Background" on page A-1, to get a sample of the
output returned by the Identity System. With the corresponding XML schema as a
guide, you can determine which parts of the data you want your application to use.

Parsing a Response

IdentityXML responses adhere to a particular XML schema. Due to the nature of
attribute mapping in the Identity System, an attribute can be configured as one of
many possible data types, for instance, as a single-valued string, a multi-valued string,
various date formats, integers, selection lists, checkboxes, and so on. As a result,
Oracle does not recommend hard-coding the attribute-to-data-type parsing
dependencies. It is recommended that you implement a parser that can recognize the
data type and extract the relevant data and attribute properties.

The IdentityXML response structure follows the data definition for a particular object
class type. For example, a profile for an object such as user, group, or organization
consists of at least one panel of attributes. An attribute may appear in more than one
panel in the Identity System application. The order of the attributes is determined by
configuration settings. It is a common mistake in Identity XML implementations to
make invalid assumptions such as the number of occurrences of an attribute in an
XML response or that an attribute will always have a value.

Response Example

Example 1-9 is an actual response to the example search request. There would be an
ObEntry element returned for each directory entry satisfying the search.

Example 1-9 Response Example.

<?xml version="1.0" encoding="UTF-8" ?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://
schemas-xmlsoap.org/soap/envelope/">

<SOAP-ENV:Body>

<Oblix>

<ObSearch>

<ObRequestInfo>181481520</0bRequestInfo>

<ObScripts>

</0ObScripts>
<ObForm>
</ObForm>
<ObTextMessage/>
<ObColumnInfo>

</0bColumnInfo>
<ObEntry>
<ObAttribute obattrName="cn">
<ObDisplay obdisplayName="Name" obdisplayType="dn"
obname="cn" obmode="view" obcanRequest="false"
obrequired="false">
<ObDn>
<ObLink obdisplayName="John Fulton"
obhref="userservcenter.cgi
?program=view&tab_id=Employees
&uid=cn%3DJohn%20Fulton%2C

IdentityXML and Identity Web Services 1-17

Formatting an ldentityXML Response

%$200u%3DEngineering
%$2C%200%3DCompany%2C%20c%3DUS"
obmouseOver="View personal information">
cn=John Fulton, ou=Engineering,
o=Company, c¢=US
<ObImage obhref="CIMAGEperson"
obalt="View personal information" />
</ObLink>
</0bDn>
</ObDisplay>
</ObAttribute>
<ObAttribute obattrName="mail">
<ObDisplay obdisplayName="E-Mail Address"
obdisplayType="email" obsemanticType="ObSEmail"
obname="mail" obmode="view" obcanRequest="false"
obrequired="false">
<ObEmail>
<ObValue>J.Fulton@company.com</ObValue>
</ObEmail>
</ObDisplay>
</ObAttribute>

<ObAttribute obattrName="telephonenumber">
<ObDisplay obdisplayName="Phone Number"
obdisplayType="textS”obname="telephonenumber"
obmode="view" obcanRequest="false"
obrequired="false">
<ObTextS>
<ObValue>408-555-1173</0bValue>
</ObTextS>
</0bDisplay>
</ObAttribute>
<ObAttribute obattrName="ou">
<ObDisplay obdisplayName="Organization"
obdisplayType="select" obname="ou"
obmode="view" obcanRequest="false"
obrequired="false">
<ObSelect>
<ObChoice obdisplayName="Engineering"
obselected="true">Engineering
</0ObChoice>
</0bSelect>
</0bDisplay>
</ObAttribute>
</ObEntry>

<ObViewModeButtonsForSearchResults>

</0bViewModeButtonsForSearchResults>
<0bStatus>0</0bStatus>

</0ObSearch>

<ObStatus>0</0bStatus>

</0blix>

</SOAP-ENV : Body>

</SOAP-ENV: Envelope>

Error Responses

If a request contains invalid data, or if you try to access data for which you have no
authorization, you will get an error. The error response shown here is the result of

1-18 Oracle Access Manager Developer Guide

Formatting an IdentityXML Response

using XXX as the value for the SLk1 parameter in the request. It is worth mentioning
that the response includes the element ObError and the element ObStatus with the
value 1, at the same indent level as ObError. Look for both of these parameters to
identify error responses.

Example 1-10 illustrates a response to an error.

Example 1-10 Error Response

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelopexmlns: SOAP-ENV="http://
schemas-xmlsoap.org/soap/envelope/">
<SOAP-ENV : Body>
<0Oblix xmlns:oblix="http://www.oblix.com/"
xmlns="http://www.oblix.com/">
<ObError>
<ObRequestInfo>187658080</0bRequestInfo>
<0ObTextMessage>
The attribute specified for this
search (XXX) is either not searchable
or not a valid attribute.
</0bTextMessage>
<ObStatus>1</0ObStatus>
</ObError>
<ObStatus>1</ObStatus>
</0blix>
</SOAP-ENV : Body>
</SOAP-ENV:Envelope>

The following are some possible errors:
» Invalid parameter value: %]1.

This is returned when an input parameter has an invalid value. This could be
because the parameter is not provided in a DN format, or does not exist in the
schema. %1 is replaced with the name of the parameter that was in error, for
example ObWorkflowName .

» Invalid parameters.

This is returned when the required or optional attributes provided for a workflow
are not valid; for example, if the password is set to a minimum of eight characters
and the input is only three characters.

= You do not have access rights.

You do not have the right to perform the operation.
s There is an XML syntax error.

That is, there is an error in the code, such as a typo.
s There is no profile configured for this kind of user.

This is a generic error generated when the input is invalid and is not caught by
other error catching.

= Avalue is required for %1.

This error indicates that a required parameter is missing, perhaps for a workflow
attribute or as part of a delete request.

s Not authorized to use service.

IdentityXML and Identity Web Services 1-19

Creating IdentityXML Requests Using WSDL

You have not been authenticated, or lack the authorization, to make requests to
particular application.

Creating IdentityXML Requests Using WSDL

A Web Service consists of programmable application logic that is accessed using
standard Internet protocols. XML Web Services expose useful functionality to Web
users through a standard Web protocol. In most cases, the protocol used is SOAP. XML
Web Services provide a way to describe an interface in enough detail to allow a
developer to build a client application to talk to it. The description of the interface is
usually provided in an XML document called a Web Services Description Language
(WSDL) document.

WSDL provides a convenient method for working with Web requests that are created
in XML. A WSDL file is a schematic description of an XML request. The contents of a
WSDL file consists of information about an XML function name, its parameters, and so
on.

The following sections describe using the Identity System's WSDL files and working
with them as an alternative method for generating IdentityXML requests.

Benefits of WSDL

WSDL enables you to create services that can anyone can access on the Web. This
enables others to build new, more powerful applications that use XML Web services as
building blocks. The section "Making WSDL Functions Available Using UDDI" on
page 1-29 describes how to register WSDL functions so that they are available to
anyone who needs to use them.

WSDL also provides an abstraction layer for IdentityXML. If you rely on IdentityXML
for integration with Web application servers or third-party applications, or if you work
with a variety of application frameworks and separate development teams, it is
unlikely that all of the application developers would have expertise in IdentityXML.
WSDL provides tools that allow you to bypass directly coding Identity XML calls.
Developers can use tools to generate proxy code for the IdentityXML function, and use
the proxy code to make the calls. This enables the developer to use WSDL to avoid
hands-on XML programming.

As noted in "About IdentityXML" on page 1-1, you hand-craft an IdentityXML request
document by looking up the request syntax, function names and parameters in this
guide, constructing an XML-based SOAP request, and sending the IdentityXML
request to the WebPass using HTTP. With WSDL, you only work with objects, rather
than hand-crafting the XML request. Using WSDL, the code for sending the request is
generated automatically in the language of your choice, for example, Java. You only
need to set the parameters in the request, rather than constructing the entire request.
For example, the parameters would be function calls on Java objects.

About Identity System WSDL Files

The Identity System provides WSDL files for each of the IdentityXML functions
described in "IdentityXML Functions and Parameters" on page 2-1. The WSDL files are
in the following location:

oblix\WebServices\WSDL*.wsdl
The file names reflect the name of the function, for instance, one WSDL file contains

the name "search" because it corresponds to the IdentityXML search function. Another
WSDL file contains the name workflowTicketSearch, which corresponds to another

1-20 Oracle Access Manager Developer Guide

Creating IdentityXML Requests Using WSDL

IdentityXML function. For a complete list of function names, see "Identity XML
Functions and Parameters" on page 2-1.

WSDL Directory Structure

The directory oblix\WebServices is structured as follows:

= WSDL: Contains WSDL template files, each of which corresponds to an
IdentityXML function.

= XMLSchema: Contains schema required for generating proxy objects.
= Samples: Contains the following:
- WSDL: Contains sample code for invoking Web services using Java and .NET.

- UDDI: Contains sample files for implementing UDDI functions. See "Making
WSDL Functions Available Using UDDI" on page 1-29 for details.

In the directory oblix\ WebServices\WSDL*.wsdl, WSDL files are named as follows:

= common_*.wsdl: Each file contains the information required for generating a
Common IdentityXML request.

= gm_*.wsdl: Each file contains the information required for generating a Group
Manager IdentityXML request.

= um_*.wsdl: Each file contains the information required for generating a User
Manager IdentityXML request.

= om_*.wsdl: Each file contains the information required for generating an
Organization Manager IdentityXML request.

The Oracle implementation of WSDL follows the recommended model for publishing
into UDDI. This model calls for two files to be present for each function:

s There is one file for each IdentityXML function that contains the URL location of
the function. The name of this WSDL file contains the IdentityXML function name,

"non "on

with a prefix of "common_", "gm_", "um_", or "om_". For example, the search
function is a common function, so the corresponding WSDL file is called
common_search.wsdl. The function to view a group profile is called view, so the
corresponding WSDL file is called gm_view.wsdl

» There is a second WSDL file for the function interface. This file always contains the
string "interface" in the file name.

WSDL Documents

A WSDL document has two main sections. The first section consists of abstract
definitions. These are provided in the Identity System-supplied WSDL documents:

s Types: Machine- and language-independent type definitions.
» Messages: These contain function parameters.

s PortTypes: These contain descriptions of function components (operation name,
input parameters, and output parameters).

The second section consists of concrete definitions. This information is specific to your
environment:

= Bindings: The binding(s) of each operation in the PortTypes section.

= Services: The port address(es) for each binding.

IdentityXML and Identity Web Services 1-21

Creating IdentityXML Requests Using WSDL

Each WSDL file imports another WSDL file of the same name plus a suffix of

"

_interface." For example, gm_view.wsdl file imports a file called

gm_view_interface.wsdl. The interface WSDL file contains the attribute types, function

name, binding and so on. This file is the abstract representation.

The file that corresponds to the name of the IdentityXML function contains the
implementation definition. It contains the URL where this Web service can be invoked.
This is the URL to the Identity System installation. This file imports the file with the
name that is a concatenation of the name of this file and "_interface", for example

gm_view_interface.wsdl.

Providing two WSDL files for each IdentityXML function is helpful if

you need

multiple implementations of the same interface. You can expose the interface files once
through UDDI, and the multiple implementation files can also be published through

UDDL

Sample WSDL Files

The following are examples of an actual Identity System WSDL document and a
second WSDL file that is included in the first file. Note that the function name is

shown in bold.

Example 1-11 shows the WSDL document that corresponds to the IdentityXML search

function:

Example 1-11 Common_search.wsdl file

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:oblix="http:www.oblix.com"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:tns="http://www.oblix.com/wsdl/common search"
targetNamespace="http://www.oblix.com/wsdl/common_ search">

<import namespace="http://www.oblix.com/"
location="common_search_interface.wsdl"/>

<service name="OblixIDXML_common_search_Service">

<port name="OblixIDXML_common_search_Port"
binding="tns:0blixIDXML_common_search_Binding">

<soap:address location ="http://echo.oblix.com:5555/identity/oblix/apps/

userservcenter/bin/userservcenter.cgi"/>
</port>

</service>

</definitions>

Example 1-12 shows the interface file that provides many of the definitions used in the

common_search.wsdl file in the previous example:

Example 1-12 Common_search_interface.wsdl

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:oblix="http://www.oblix.com/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:tns="http://www.oblix.com/wsdl/common_search"
targetNamespace="http://www.oblix.com/wsdl/common_search">
<import namespace="http://www.oblix.com/" location="../XMLSchema/ common_parameters

1-22 Oracle Access Manager Developer Guide

.xsd" />

Creating IdentityXML Requests Using WSDL

<import namespace="http://www.oblix.com/" location="../XMLSchema/ common_authentication.xsd"/>
<import namespace="http://www.oblix.com/" location="../XMLSchema/ common_component_search.xsd"/>
<types>

<xsd:schema targetNamespace="http://www.oblix.com/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="request">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="params">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="oblix:tab_id" minOccurs="0"/>
<xsd:element ref="oblix:startFrom" minOccurs="0"/>
<xsd:element ref="oblix:noOfRecords" minOccurs="0"/>
<xsd:element ref="oblix:noOfFields" minOccurs="0"/>
<xsd:element ref="oblix:showAllResults" minOccurs="0"/>
<xsd:element ref="oblix:sortBy" minOccurs="0"/>
<xsd:element ref="oblix:sortOrder" minOccurs="0"/>
<xsd:element ref="oblix:attrName" minOccurs="0"
maxOccurs="unbounded" />

<!--Al1 of these functions can be invoked for any Identity System application -->

<!--User Manager, Group Manager, or Organization Manager to get the -->
<!--right search results. They are described in this one WSDL file. -->
<xsd:pattern value="userservcenter\groupservcenter\objservcenter"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name="function" type="xsd:string" use="required"/>
<xsd:attribute name="mode" type="xsd:string" use="optional"/>
</xsd:complexType>
</xsd:element>
</xsd:schema>
</types>
<message name="0libxIDXMLInput">
<part name="authentication" element="oblix:authentication"/>
<part name="request" element="oblix:request"/>
</message>
<message name="OblixIDXMLOutput">
<part name="body" element="oblix:0blix"/>
</message>
<portType name="OblixIDXMLPortType">
<operation name="OblixIDXML_common_search">
<input message="tns:0blixIDXMLInput"/>
<output message="tns:0blixIDXMLOutput"/>
</operation>
<portType>
<binding name="OblixIDXML_common_search Binding" type="tns:0blixIDXMLPortType">
<soap:binding style="document"
transport="http://schemas:xmlsoap.org/soap/http"/>
<operation name="OblixIDXML_common_ search">
<soap:operation soapAction="http://www.oblix.com/"/>

</definitions>

About Working With WSDL Files

As illustrated in Figure 1-3, IdentityXML calls can substitute for user interaction with

the Identity System:

IdentityXML and Identity Web Services 1-23

Creating IdentityXML Requests Using WSDL

Figure 1-3 IdentityXML can Substitute for User Interaction

Browser | WebPass f——pp| Identity L__g, [pirectory

System

User Identity XML

You can either construct IdentityXML requests and SOAP envelopes manually, or you
can use WSDL to automatically generate a client object. You then only need to edit the
client object to set the appropriate parameters.

Task overview: Working with the Identity System WSDL files
1. Edit the appropriate WSDL files.

2. Generate a Java or .NET proxy object.
3. Develop a Java or .NET client.

The following sections provide details on how to develop a Java or NET WSDL
solution.

If you are familiar with Java programming, the Identity System's Web Services for
Identity Management enables you to use WSDL instead of working directly with
IdentityXML. The Identity System provides two WSDL files for each IdentityXML
function. You use these files to generate a Java proxy object for your IdentityXML
requests.

Task overview: Using WSDL to generate Java IdentityXML requests
1. Identify the IdentityXML request you want to generate.

2. Look up the function that you wish to use in "IdentityXML Functions and
Parameters" on page 2-1.

Optionally, you can locate the corresponding WSDL file in a UDDI registry. The
Identity System provides WSDL files in a local installation directory. However, if
you have access to a UDDI registry containing the WSDL function, this can be a
convenient method of locating the function. See "Making WSDL Functions
Available Using UDDI" on page 1-29 for details.

3. Edit the host name and port number in the soap:address statement in a
corresponding WSDL document.

For example, for Common_Search.wsdl, to run a search for user entries you would
enter a line similar to the following:

<soap:address location ="http://echo.oblix.com:5555/identity/oblix/apps/
userservcenter/bin/userservcenter.cgi"/>

To search for group entries, the URL would be similar to the following:

<soap:address location ="http://example.com:1234/identity/oblix/apps/
groupservcenter/bin/groupservcenter.cgi"/>

To search for organizations and generic entries, the URL would be similar to the
following:

<soap:address location ="http://example.com:1234/identity/oblix/apps/
objservcenter/bin/objservcenter.cgi"/>

1-24 Oracle Access Manager Developer Guide

Creating IdentityXML Requests Using WSDL

For a Java client, you develop a proxy object and a Java client that submits the
request.

You use a WSDL-to-Java conversion tool to process the Identity WSDL file and
automatically generate a Java proxy object for the IdentityXML request.

An example of a WSDL-to-Java tool is the Apache Axis package.

If you are familar with .NET, you use the following process:

.NET Implementation of WSDL

In a .NET environment, you submit the correct WSDL common files to Visual Studio,
which creates a.NET client. You edit the parameters in the generated client code, build
the code, and use it as you would any other Web service.

Oracle provides samples for invoking Web services using C#.

Prerequisites for creating a .NET WSDL client:

1.

Be sure your Web services directory is exposed through your Web server so that
you can add Web references using Visual Studio.

Install .NET Studio 2003 with .NET Framework 1.1.
Install two Microsoft hot fixes:

» The first fix to apply is for XML messaging with the .Net Framework, Hot Fix
Rollup at http://support.microsoft.com?id=822411.

= You also need to apply the fix for NET Framework 1.1 WSDL with Visual
Studio .NET 2003 Hot Fix Rollup at
http://support.microsoft.com/?1d=823639.

Task overview: Using WSDL to generate .NET IdentityXML requests

1.

Look up the function that you wish to use in Chapter 2, "Identity XML Functions
and Parameters" on page 2-1.

Edit the location information in the soap:address statement in a corresponding
WSDL document.

For example, for Common_Search.wsdl, you would edit the following line:

<soap:address location ="http://echo.oblix.com:5555/identity/oblix/apps/
userservcenter/bin/userservcenter.cgi"/>

Create .NET code that submits the request.

To generate a .NET WSDL client

1.
2.

Launch Visual Studio.

From the Visual C# Projects folder, select Console Application Template and click
OK.

Click Project, then click Add Web Reference.

In the Add Web Reference dialog, select the location where you have the Web
services directory.

The Web services directory is the location of your Oracle Access Manager WSDL
input files.

For example, this could be your local machine or your UDDI server.

IdentityXML and Identity Web Services 1-25

Creating IdentityXML Requests Using WSDL

The WSDL files from the selected location are displayed.
Select the file containing the WSDL service that is relevant to your application.

These are the files with names that contain the function that you want to work
with and do not contain "_interface" in the file name. For example, for a search
function, you would edit common_search.wsdl, not
common_search_interface.wsdl.

Example: common_search.wsdl.

The service is displayed.

Note: Be sure that the URL location in the WSDL file points to the
URL of your installed Identity System.

The displayed window will show an error, "No ports or methods were found on
this page." You can ignore this error. What is important is shown in the right-hand
pane on this page.

Click the Add Reference button in the pane on the right.

A project window will appear that shows that the link to the Web reference has
been added. Visual Studio creates the proxy object code, and puts all elements of
the object in one file called reference.cs.

In the main window, add the proxy object code.

Specify the application, version, function parameters, and any other information
required to complete the client code.

A sample .NET client is provided in the directory oblix\ WebServices\samples.
To compile the .NET proxy object code, click Build, then click Build solution.

Once the solution is compiled, you should be able to run it like any other
executable, from within Visual Studio or another location.

Invoking a WSDL-Based Web Service Using Java

Oracle Access Manager ships with three sample client code files that demonstrate how
to invoke and consume a Web service using Java. These files are located in
WebPass_install_dir\identity \oblix\WebServices\samples\WSDL\java_axis:

testwsdl_gm_view.java: shows an example of invoking the Web service when
WebPass is protected by a WebGate.

To use this sample code, a WebPass must be installed and protected by a WebGate
that uses an Oracle Access and Identity authentication scheme. See the Oracle
Access Manager Access Administration Guide for details.

testwsdl_search_deactivated_users.java: shows an example of making a search
request, for deactivated users.

testwsdl_viewgroupmembers.java: shows an example of making a request to view
the members of a group.

testwsdl_reactivate_user.java: shows how to reactivate a user.

There is also a help file named WSDL _java_axis_README.html in the directory
WebPass_install_dir\identity \oblix\lang\ <language>\html.

1-26 Oracle Access Manager Developer Guide

Creating IdentityXML Requests Using WSDL

If you want to test additional WSDL functions, for example, adding a group to the
group manager, you can add the appropriate WSDL functions to the sample files.

The following sections describe how to compile and run the code. If no exception is
thrown when you run the code, the Web service invocation worked. If there are errors,
the errors will be printed in the response.

Required Software for Using the Sample Code

The sample client code requires the following software to run. The following versions
are required, lower versions do not work with the sample code:

= Java 1.4 or higher (JDK 2, version 1.4), obtainable from
http://java.sun.com/j2se/1.4.1/download.html.

= Apache Axis 1.3 or higher, obtainable from http://ws.apache.org/axis/

» Javax mail and Javax activation jars, available from:
http://java.sun.com/products/javamail/downloads/index.html and
http:/ /java.sun.com/products/javabeans/glasgow /jaf.html

Setting Up the Access Manager SDK

The following task overview summarizes Access Manager SDK setup. This task is only
required if your WebPass is protected by a WebGate.

Task overview: Setting up the Access Manager SDK:

1. Install the Access Manager SDK on the local machine where you plan to make the
Web service calls.

2. Configure a new AccessGate in the Access System Console.

See the Oracle Access Manager Access Administration Guide for details. Provide a
unique ID for the AccessGate and the host name of the local machine where the
Web service calls will be made.

3. On the local machine, run the configureAccessGate command to configure an
AccessGate on this machine.

See the Oracle Access Manager Access Administration Guide for details.

4. From the Access System Console, turn off IP Validation for the AccessGate and for
the WebGate that will receive the Web service calls.

Compiling and Running the Sample Code
The following procedure describes the commands required to run the sample code.

To set the CLASSPATH, and compile and run the sample code:

1. Set the path to the java and javac compilers from your installed directory. For
example, if your installation directory is c¢:/j2sdk1.14.1\bin, you would set the
path as follows:

set java_home=c:\j2sdkl.4.2_05

Where java_home is the path for the installation directory.
2. Set the path to your Access Manager SDK installation, as follows:

set PATH=AccessServerSDK_install_dir\oblix\1lib;F:\j2sdkl.4.2_05\bin;%PATH%

IdentityXML and Identity Web Services 1-27

Creating IdentityXML Requests Using WSDL

Where Access_Server_install_dir is the directory where the Access Server was
installed.

3. Set the CLASSPATH variable to contain the following jar files:
= Thejobaccess.jar from the Access Manager SDK
s The javx mail jar
s The activation jar files.

You must include these jar files before any others that are already in the
CLASSPATH, for example:

set CLASSPATH=F:\axis\axis-1_3\lib\axis.jar;F:\axis\axis-1_3\1ib\jaxrpc.jar;
:\axis\axis-1_3\1lib\commons-discovery-0.2.jar;
:\axis\axis-1_3\1lib\commons-logging-1.0.4.jar;
:\axis\axis-1_3\1lib\saaj.jar;F:\xerces\xerces-1_4_4\xerces.jar;
:\axis\axis-1_3\1lib\wsdl4j-1.5.1.jar;.;
:\TEMP\AcessServerSDK\oblix\1lib\jobaccess.jar;
:\javax\javamail-1.3.3_01\mail.jar;F:\javax\jaf-1.0.2\activation.jar;
%CLASSPATHS

e e B I e B |

4. If your WebPass is protected by a WebGate, set the PATH to contain the Access
Manager SDK, for example:

set PATH=AccessServerSDK_install_dir\oblix\1lib;F:\j2sdkl.4.2_05\bin;%$PATH%

Where AccessServerSDK_install_dir is the location where the Access Manager SDK
is installed.

5. Run the following commands to compile the sample:

java org.apache.axis.wsdl.WSDL2Java -o f:\temp\mywsdl -p com.oblix.www
d:\oblix\WebServices\WSDL\gm_view.wsdl

A directory named com\oblix\www is created and is populated with java code.
6. Go to the directory that was created by running the previous command:

cd com\oblix\www

7. Copy the file that Oracle provides to perform a simple view operation when a
WebPass is not protected by a WebGate.

This file is named testwsdl_viewgroupmembers.java and resides in the following
location:

WebPass_install_dir\identity\oblix\WebServices\samples\WSDL\java\

Copy this file to the com\oblix\www directory.

This file contains code to view members of a group. You can run this file
unchanged, or you can use it as the basis for testing another operation, for
example, modifying a user or group.

8. Alternatively, you can copy the file that Oracle provides to perform a view
operation when WebPass is protected by a WebGate.

This file contains code for setting the obSSOCookie. It is named
testwsdl_gm_view and it resides in the following location:

WebPass_install_dir\identity\oblix\WebServices\samples\WSDL\java_axis\

You will need to edit the sample code in this file as follows:

1-28 Oracle Access Manager Developer Guide

Making WSDL Functions Available Using UDDI

= Edit the static string accessSDKinstalldir, substituting the location of your
Access Manager SDK.

= Change the host name and port to reflect your environment.

s Change the values for userName and password to those for an actual
administrator in your Identity System.

= Once you have obtained the ObSSOCookie (as shown in the code sample), you
can make multiple Web service calls without the need to provide the user
name and password each time. Instead, you can use the ObSSOCookie.

9. Enter the following command from the com\oblix\www directory:

javac *.java

10. Go up three levels from the com\oblix\www directory:

cd ..\

11. Run the Web service, as follows:

java com.oblix.www.testwsdl_gm_view

The status of the request is output to the command window. A status of 0 indicates
success.

12. You can parse the response object to get other information.

For example, you can extract the search results. An example of this is shown in the
file testwsdl_search_deactivated_users.java in the same directory as the other
sample files:

WebPass_install_dir\identity\oblix\WebServices\samples\WSDL\java_axis\

The sample code prints the name of the first deactivated user.

Making WSDL Functions Available Using UDDI

The Universal Description, Discovery, and Integration (UDDI) registry is a database
for people who require WSDL functions. UDDI provides a way to publish and
categorize Web services created using WSDL. UDDI is analogous to the White Pages or
Yellow pages, in that you can browse the UDDI registry for functions that you need,
and you can add new functions to the registry. Global UDDI registries that can be
accessed by anyone from any organization are provided by companies such as IBM
and Microsoft. Instructions for creating and using a registry account is provided at
these UDDI sites. Other organizations have their own internal UDDI registries.

As an illustration of how people make use of UDDI, suppose a car dealer needs to
interact with remote dealers. This dealer can use their organization's UDDI registry as
a type of Yellow Pages where they can find Web-based services for locating other
dealers. To continue the illustration, suppose the UDDI registry contains the directory
software_publishers/identity management/Oracle. The hypothetical car dealer might
retrieve an entry in this directory for a Web service that enables users to find remote
dealers. The entry would consist of a URL that points to a WSDL file that is capable of
generating the desired search request.

In general, UDDI registries contain the following information for each Web service:
s The business name, for instance, Oracle

s The service (sometimes called an interface in UDDI parlance), which is the XML
function, for example, view, plus the input and output parameters in XSD format.

IdentityXML and Identity Web Services 1-29

Making WSDL Functions Available Using UDDI

s The implementation, which is the URL that points to the corresponding WSDL.

Follow the conventions used in your organization for locating the appropriate UDDI
registries.

When you work with the Identity System's Web services functionality, you can register
your own functions in UDDL If you want to build an interface to interact with the
IdentityXML system, you can use UDDI to find the appropriate WSDL definitions and
use these definitions to develop the Java client that interacts with the Identity XML
service.

Sample UDDI registration programs in .NET and Java format are provided in the
following location:

webpass_install_dir\oblix\WebServices\samples\UDDI\dotnet

and

webpass_install_dir\oblix\WebServices\samples\UDDI\java

There are readme files in both directories.These directories also contain a sample file
for testing the function after it is registered.

1-30 Oracle Access Manager Developer Guide

2

IdentityXML Functions and Parameters

IdentityXML functions allow you to programmatically perform operations in the
Identity System applications. For example, using IdentityXML, you can perform
functions such as the following:

» Finding users and adding users in the User Manager.
= Modifying user profiles.

» Creating a group and subscribing a user to a group.

s Determining if a user has the right to perform an operation.
This chapter discusses the following topics:

= About IdentityXML

» Search Parameters

= Attribute Parameters

= Exceptions to Attribute Values

s Common Functions

s User Manager Functions

s Group Manager Functions

= Organization Manager Functions

s Code Examples of Deployed IdentityXML Functions

About IdentityXML

IdentityXML enables you to write programs to perform various actions in the Identity
System applications:

User Manager: The User Manager enables users and administrators to add, modify,
and delete information about user identities. The User Manager enables end users to
view other users and to modify their own identity information. The users that a person
can view and the identity information that someone can modify depends on the
privileges granted by a Master administrator.

Group Manager: If you are an administrator, the Group Manager enables you to create
or delete groups. This application enables users to view groups and to subscribe or
unsubscribe from groups. A user's ability to create and delete groups and to subscribe
to various groups depends on the privileges granted by an Master administrator.

Organization Manager: If you are an administrator, the Organization Manager enables
you to create and delete organizations and other objects (such as floor plans and

IdentityXML Functions and Parameters 2-1

About IdentityXML

assets) that do not belong in the User Manager or Group Manager. A user's ability to
view objects, add them, and modify them depends on the privileges granted by a
Master Administrator.

You can create programs with IdentityXML that perform actions such as adding a user
to the User Manager or changing the attribute values of an entry in the Organization
Manager.

You can also create programs that use the workflow capability of the Identity System.
An Identity workflow enables you to link actions into an automated chain of events
that are presented in the Identity System as a series of steps. When you create a
workflow definition, you specify who is to perform each action, possibly calling out to
external applications at one or more points in the process.

IdentityXML Overview

A process overview of planning an IdentityXML deployment is described elsewhere in
this guide. See "IdentityXML and Identity Web Services" on page 1-1 for details.
Line-by-line descriptions of IdentityXML request and response format are also
provided in that chapter. See "Formatting an Identity XML Request" on page 1-4 and
"Formatting an IdentityXML Response" on page 1-16 for details.

A number of IdentityXML samples are provided with your Oracle Access Manager
installation. While these samples are not supported, they can provide you with an idea
of how specific functions are specified. For a look at the samples, go to:

IdentityServer_install_dir\identity \oblix \unsupported \integsvcs

About IdentityXML Functions and Parameters

An IdentityXML function is a piece of code that serves the same purpose as an
operation that can be performed manually in the GUIL. A parameter is a component in
the definition of a function. As described in the sections on IdentityXML functions,
starting with "Common Functions" on page 2-14, each IdentityXML function contains
one or more parameters. For example, the IdentityXML function named
workflowTicketSearch takes parameters such as targetapplication and tickettype. In
this document, required parameters must be used in the IdentityXML statement. You
can omit optional parameter names and values, in which case a default may apply. If
no default value appears in the description, there is no default for the parameter.

Entering an optional parameter's name but not its value causes an error.

Function Types
The following are basic types of IdentityXML functions:

= Common functions: these are functions that are applicable to every Identity
System application.

See "Common Functions" on page 2-14 for details.

= User Manager functions: These functions perform actions in the User Manager
application.

See "User Manager Functions" on page 2-25 for details.

= Group Manager functions: These functions perform actions in the Group
Manager application.

See "Group Manager Functions" on page 2-49 for details.

2-2 Oracle Access Manager Developer Guide

Search Parameters

= Org. Manager functions: These functions perform actions in the Org. Manager
application.

See "Organization Manager Functions" on page 2-64 for details.
Each function performs one of two basic activities:
s Testing to see if a particular person has the right to perform a specific operation

s Actually performing the operation (for instance, finding a user)

Finding the Right Parameter Values for a Function

The values for many parameters are the DN values as they appear in the directory,
rather than the display values. To find the DN values, you can use a tool that enables
you to browse the directory and display DN entries. An example of such a tool is
ldp.exe provided with Windows systems.

The values for many parameters that operate on attributes are the LDAP schema
names of the attributes, rather than the display names. The following procedure
provides the User Manager as an example of finding the schema name for an attribute.

To find schema names for an attribute
1. Navigate to the Identity System Console.

2. Click User Manager Configuration.
3. Click Tabs.

4. Click the link for the tab.

5. Click Modify Attributes.

An applet appears. The Attribute field in the top left corner shows a list of schema
names for the attribute. The top right corner shows the Display Names field. This
field shows the name of the attribute as it appears in the GUIL

Search Parameters

One basic component of many IdentityXML functions is the search operation. The
following are search parameters that you can configure in IdentityXML functions that
conduct searches.

Search parameters are expressed using a Condition tag to delimit a tuple. The
following is an example:

<oblix:tab_id>Employees</oblix:tab_id>
<oblix:SearchParams>

<oblix:noOfFields>2</oblix:noOfFields>

<oblix:Condition>
<oblix:SearchAttr>cn</oblix:SearchAttr>
<oblix:SearchOperation>0SM</oblix:SearchOperation>
<oblix:SearchString>john</oblix:SearchString>

</oblix:Condition>

<oblix:Condition>
<oblix:SearchAttr>cn</oblix:SearchAttr>
<oblix:SearchOperation>0SM</oblix:SearchOperation>
<oblix:SearchString>mary</oblix:SearchString>

</oblix:Condition>

</oblix:SearchParams>

IdentityXML Functions and Parameters 2-3

Search Parameters

The search parameters are as follows:

Parameter

searchAttr

Description:

An attribute whose string values are to be searched. Attributes
are associated, by application, with one or more tabs. The
attribute must have been marked as searchable for the tab
name provided by the tab_id parameter. If it is not, an error is
returned.

An administrator must have set the searchable flag for the
attribute.

Rules:

Required. Multivalued, 1 to n. For an explanation of n, see the
noOfFields parameter.

Parameter

searchOperation

Description:

The way string data is to be selected. Legal entries all begin
with the letter O, and the next two letters are an abbreviation
of the search type.

Possible values are:

OSM: Substring match. Search results include entries whose
value contains the data entered for this parameter.

OGE: Greater than or equal to. Search results include entries
whose string value is greater than or equal to the data entered
for this parameter.

OLE: Less than or equal to. Search results include entries
whose string value is greater than or equal to the data entered
for this parameter.

OBW: Begins with. Search results include entries whose string
value begins with the data entered for this parameter.

OEW: Ends with. Search results include entries whose string
value ends with the data entered for this parameter.

OSL: Sounds like. Attempts a phonic match on the entered
data.

OEM: Exact match. Search results include entries whose string
value is the same as the data entered for this parameter.

OOS: Oracle-specific substring match. Differs from OSM.
Multiple search strings can be entered, delimited by spaces.
Results include entries that match both of the two strings.

Any other value than the ones specified in this list returns an
error (Invalid parameters).

Rules:

Required. Single value.

Default:

None. If an invalid value or no value is provided, an error is
returned.

Parameter

searchString

Description:

Use this parameter to search for items that match a text string.

Rules:

Required. Single value.

Default:

If no value is specified, then the default is to do a blank search
on the class attribute. This means, return everything that has
any value (but not a NULL value) for the selected searchAttr
attribute.

2-4 Oracle Access Manager Developer Guide

Attribute Parameters

Parameter noOfFields

Description: When used in a search, this represents the number of attributes
whose values are to be searched. Depending on the value of
this parameter, you must provide the same number of
conditions of SearchAttribute, SearchOperation and
SearchString parameters. For example, if the noOfFields is 2,
you would need to supply two conditions in the SearchParams
element, and specify a set of search parameters within each
condition.

The result of the search is an AND that satisfies all of the
parameter sets.

The entered or default value for noOfFields must be greater
than or equal to the number of sets. If it is greater, no error is
reported, and the behavior is as if you had entered the correct

value for n.
Rules: Optional. Single value, an integer value >=1.
Default: 1

Attribute Parameters

Many IdentityXML functions can add, modify, and remove attributes. For example, a
function can add new attributes and replace old attribute values in a user profile. The
following sections describe parameters that find, add, and replace attribute values, the
syntax for these parameters, and how to specify multiple values for an attribute.

Syntax for Most Attribute Parameters
Attribute parameters are expressed as follows:

<oblix:AttributeParams>
<oblix:GenericAttribute>
<!--Generic string type attribute-->
<oblix:AttrName>genphonenumber</oblix:AttrName>
<oblix:AttrOperation>REPLACE</oblix:AttrOperation>
<oblix:AttrOldvalue>408</oblix:AttrOldvalue>
<oblix:AttrNewValue>650</0oblix:AttrNewValue>
</oblix:GenericAttribute>
</oblix:AttributeParams>

There are templates for specifying attribute values for the following display types:
generic, password, Date, DateISO8601, and postal address. Examples:

<oblix:noOfFields>5</0oblix:no0fFields>
<oblix:AttributeParams>

<oblix:GenericAttribute>

<!--Generic string type attribute-->
<oblix:noOfFields>1</0oblix:no0fFields>
<oblix:AttrName>cn</oblix:AttrName>
<oblix:AttrOperation>REPLACE</oblix:AttrOperation>
<oblix:AttrOldvalue>jim</oblix:AttrOldvalue>
<oblix:AttrNewValue>james</oblix:AttrNewValue>

</oblix:GenericAttribute>

<oblix:PasswordAttribute>

<!--Password type attribute-->
<oblix:AttrName>pwd</oblix:AttrName>
<oblix:AttrOperation>REPLACE</oblix:AttrOperation>
<oblix:AttrOldvValue>mypassword</oblix:AttrOldvalue>

IdentityXML Functions and Parameters 2-5

Attribute Parameters

<oblix:AttrNewValue>mynewpassword</oblix:AttrNewValue>
</oblix:PasswordAttribute>

<oblix:DateAttribute>
<!--Generic datetype attribute-->
<oblix:AttrName>date</oblix:AttrName>
<oblix:AttrOperation>REPLACE</oblix:AttrOperation>
<oblix:AttrOldvalue>
<oblix:day>21</oblix:day>
<oblix:month>7</oblix:month>
<oblix:year>2003</oblix:year>
<oblix:hours>22</oblix:hours>
<oblix:minutes>33</oblix:minutes>
<oblix:seconds>11</oblix:seconds>
</oblix:AttrOldvalue>
<oblix:AttrNewValue>
<oblix:day>2</oblix:day>
<oblix:month>10</oblix:month>
<oblix:years>2004</oblix:year>
<oblix:hours>15</oblix:hours>
<oblix:minutes>10</oblix:minutes>
<oblix:seconds>3</oblix:seconds>
</oblix:AttrNewValue>
</oblix:DateAttribute>

<oblix:DateAttributeIS08601>
<!1--I508601 date type attribute-->
<oblix:AttrName>date</oblix:AttrName>
<oblix:AttrOperation>REPLACE</oblix:AttrOperation>
<oblix:AttrOldvalue>
<oblix:bahead_utc>2100</oblix:bahead_utc>
<oblix:tz_hours>22</oblix:tz_hours>
<oblix:tz_minutes>33</oblix:tz_minutes>
</oblix:AttrOldvalue>
<oblix:AttrNewValue>
<oblix:bahead_utc>400</oblix:bahead_utc>
<oblix:tz_hours>10</0oblix:tz_hours>
<oblix:tz_minutes>8</oblix:tz_minutes>
</oblix:AttrNewValue>
</oblix:DateAttributeIS08601>

<oblix:PostalAddressAttribute>
<!--Postal address type attribute-->
<oblix:AttrName>addr</oblix:AttrName>
<oblix:AttrOperation>REPLACE</oblix:AttrOperation>
<oblix:AttrOldvalue>
<oblix:field>123 Main St.</oblix:field>
<oblix:field>San Jose</oblix:field>
</oblix:AttrOldvalue>
<oblix:AttrNewValue>
<oblix:noOfFields>2</oblix:noOfFields>
<oblix:field>100 Forge Dr.</oblix:field>
<oblix:field>Cupertino</oblix:field>
</oblix:AttrNewValue>
</oblix:PostalAddressAttribute>
</oblix:AttributeParams>

The noOfFields parameter is specified outside of the <oblix:AttributeParams> tag. The
noOfFields parameter refers to the total number of attributes being specified. Each

2-6 Oracle Access Manager Developer Guide

Attribute Parameters

attribute must be enclosed in the appropriate tag element delimiters (for
PostalAddress, GenericAttribute, and so on). An example:

<oblix:no0

<

fFields>3</oblix:noOfFields>
<oblix:AttributeParams>
<oblix:GenericAttribute>
<oblix:AttrName>cn</oblix:AttrName>
<oblix:AttrOperation>REPLACE</oblix:AttrOperation>
<oblix:AttrOldvalue>jim</oblix:AttrOldvalue>
<oblix:AttrNewValue>james</oblix:AttrNewValue>
</oblix:GenericAttribute>
<oblix:GenericAttribute>
<oblix:AttrName>title</oblix:AttrName>
<oblix:AttrOperation>REPLACE</oblix:AttrOperation>
<oblix:AttrOldvValue>development</oblix:AttrOldvalue>
<oblix:AttrNewValue>sales</oblix:AttrNewValue>
</oblix:GenericAttribute>
<oblix:PostalAddressAttribute>
<oblix:AttrName>addr</oblix:AttrName>
<oblix:AttrOperation>REPLACE</oblix:AttrOperation>
<oblix:AttrOldvalue>
<oblix:field>123 Main St.</oblix:field>
<oblix:field>San Jose</oblix:field>
</oblix:AttrOldvalue>
<oblix:AttrNewValue>
<oblix:field>100 Forge Dr.</oblix:field>
<oblix:field>Cupertino</oblix:field>
</oblix:AttrNewValue>
</oblix:PostalAddressAttribute>
/oblix:AttributeParams>

Parameter

attrName

Description:

The names of one or more attributes to be viewed or changed.
Use the schema names from the directory, not the display
names. The attribute must be configured in the Identity
System and should be included in a panel configured for a
user, group, or object profile.

A given attrName combination can appear only once. If it
appears more than once, every operation except the first on
that attribute name is ignored. Invalid attribute names or
attribute names that are not associated with a panel for the
associated function are ignored.

Optional for functions such as view or myGroupsProfile.

Rules:

Required or Optional. Single value string, 1 to .

Default:

If no names are provided, only the attributes that the user is
allowed to view are considered, depending upon the function.

Parameter

attrOldValue

Description:

This parameter is used when changing an attribute value. Use
it to specify the old value for the attribute named by attrName.

Rules:

Required if the attrOperation is a replace, otherwise ignored.
Single value string. Multiple instances of attrOld Value can be
replaced by the value supplied in attrNew Value.

IdentityXML Functions and Parameters 2-7

Attribute Parameters

Parameter

attrOperation

Description:

The type of operation to perform on the attribute. Legal values
are:

ADD: Add the attribute name and value to the existing
attributes. You receive an error if the combination exists
already. Valid for LDAP attributes only.

DELETE: Delete the attribute and value from the existing
attributes. You receive an error if the combination does not
exist.

REPLACE: Delete the old attribute name and value

combination and replace it with the new attribute name and
value combination. If you use REPLACE, you must also use
the attrOldValue parameter. Valid for LDAP attributes only.

REPLACE_ALL: Delete the old attribute and name
combinations and replace them with new attribute name and
value combinations. Use this if you do not care what the old
values were, and just want to replace all of them. In this case,
attrOldValue is not used. Any other value returns an error
message such as "Invalid value for attribute". Can be specified
for LDAP attributes and template attributes.

Operations on attributes of display type “location”, for
example obparent locationdn, are not supported through
IdentityXML.

Rules:

Required. Single value string.

Parameter

attrNewValue

Description:

The value that you want to add, delete, or replace for the
attribute specified with attrName. Some attributes can have
more than one value. To provide these, use attrNewValue
again.

Dates contain at least three fields which must be specified, the
day, month and year. Content must match the syntax defined
for DATETYPE in oblixbaseparams.xml.

DateAttributeISO8601 takes at least one additional field,
bahead_utc, to allow for a time zone offset. If the content of
this suffix is Z, there is no offset and no additional suffixes. If
the content is + or - then the offset must be supplied in hours
and minutes, using the tz_hours and tz-minutes, respectively.

Passwords contain three fields which must be specified: the
new value, confirmation value, and old value.

For an add or modify operation: you must specify the new
password as well as the confirmation. If you modify your own
password, you need to also provide the old value of the
password.

The attrOperation in this case can be any of the values ADD,
REPLACE, or REPLACE_ALL.

If you need to delete the password-type attribute, specify the
attrOperation as DELETE. You do not need to provide the old
value or new value parameters.

Postal addresses allow for six fields.

Legal values for attributes generally match what is shown in
the GUI that corresponds to the function to be executed. Some
exceptions exist, however, and are described at "Exceptions to
Attribute Values" on page 2-13.

2-8 Oracle Access Manager Developer Guide

Attribute Parameters

Parameter attrNewValue

Rules: Required. Single value

Parameter NoOfFields (when used with workflow and modify
Description: When used with workflow and modify attributes, this is the

number of attributes to be modified.

Rules: Required. Single value, integer.

Syntax for Lost Password Management Attribute Parameters

As described in the section on lost password management in the Oracle Access Manager
Administration Guide, you can configure multiple challenge phrases and responses. You
can add, modify, and delete challenge phrases and responses when performing a
modify profile operation, or when performing Create, Self-Registration, and Change
Attribute workflow operations.

The challenge phrase and response attribute values are stored as a single value in the
directory.

The following sections describe the IdentityXML syntax for challenge phrases and
responses in detail.

Add Operation

The following are required when adding challenge phrases and responses:

s The number of ChallengeValue and ResponseValue elements must not exceed the
minimum number of challenges to be configured in the user entry.

For example, if the administrator configured the minimum number of challenges
as 3, and 2 challenges exist in the user entry, the Add operation can only add 1
more challenge.

= Do not include attrOldValue elements when adding a challenge phrase or
response.

= In each challenge response, provide an AttrConfirmValue element for every
AttrNew Value element.

The values of these two elements must be an exact match, including leading and
trailing spaces and case.

The following is an example of IdentityXML for adding a challenge phrase:

<oblix:ChallengeAttribute>
<oblix:AttrName>genChallengePhrase</oblix:AttrName>
<oblix:AttrOperation>ADD</oblix:AttrOperation>
<oblix:ChallengeValue>
<oblix:AttrNewValue>phrasel</oblix:AttrNewValue>
</oblix:ChallengeValue>
<oblix:ChallengeValue>
<oblix:AttrNewValue>phrase2</oblix:AttrNewValue>
</oblix:ChallengeValue>
<oblix:ChallengeValue>
<oblix:AttrNewValue>phrase3</oblix:AttrNewValue>
</oblix:ChallengeValue>
</oblix:ChallengeAttribute>

The following is an example of IdentityXML for adding a challenge response:

IdentityXML Functions and Parameters 2-9

Attribute Parameters

<oblix:ResponseAttribute>
<oblix:AttrName>genChallengePhraseResponse</oblix:AttrName>
<oblix:AttrOperation>ADD</oblix:AttrOperation>
<oblix:ResponseValue>
<oblix:AttrNewValue>responsel</oblix:AttrNewValue>
<oblix:AttrConfirmValue>responsel</oblix:AttrConfirmvalue>
</oblix:ResponseValue>
<oblix:ResponseValue>
<oblix:AttrNewValue>response2</oblix:AttrNewValue>
<oblix:AttrConfirmvalue>response2</oblix:AttrConfirmvalue>
</oblix:ResponseValue>
<oblix:ResponseValue>
<oblix:AttrNewValue>response3</oblix:AttrNewValue>
<oblix:AttrConfirmvValue>response3</oblix:AttrConfirmvalue>
</oblix:ResponseValue>
</oblix:ResponseAttribute>

Delete Operation
The following are requirements for deleting challenge phrases and responses:

= Ensure that no lost password management policy is in effect for this user.

= Only one ChallengeValue element is permitted for the challenge phrase.

= Do not include attrOld Value elements when deleting a challenge phrase.

= No ResponseValue element is permitted when deleting a challenge response.

As a result, you also do not include attrOld Value, AttrNew Value, or
AttrConfirmValue elements.

The following is an example of deleting the challenge phrase and response:

<oblix:ChallengeAttribute>
<oblix:AttrName>genChallengePhrase</oblix:AttrName>
<oblix:AttrOperation>DELETE</oblix:AttrOperation>
<oblix:ChallengeValue>
<oblix:AttrNewValue>phrasel</oblix:AttrNewValue>
</oblix:ChallengeValue>
</oblix:ChallengeAttribute>
<oblix:ResponseAttribute>
<oblix:AttrName>genChallengePhraseResponse</oblix:AttrName>
<oblix:AttrOperation>DELETE</oblix:AttrOperation>
</oblix:ResponseAttribute>

Replace Operations

Replace operations can only be used if the values to be replaced exist in the user entry
in the directory. A Replace is permitted for intermediate values.

The following are required when you replace challenge phrases and responses:

s The number of ChallengeValue and ResponseValue elements cannot exceed the
minimum number of challenges if a lost password management policy exists.

If no lost password management policy is in effect for the user, a Replace
operation for only one challenge and one response is permitted.

s Challenge phrases must have an attrOld Value element for every attrNew Value
element.

» Challenge responses must have an AttrOldValue element and an
AttrConfirmValue element for every AttrNew Value element.

2-10 Oracle Access Manager Developer Guide

Attribute Parameters

The values of the AttrNewValue element and the AttrConfirmValue element must
be an exact match, including leading and trailing spaces and case.

s The value of the AttrOldValue element must match the value for the user entry in
the directory.

The following is an example of replacing the challenge phrase and response:

<oblix:ChallengeAttribute>
<oblix:AttrName>genChallengePhrase</oblix:AttrName>
<oblix:AttrOperation>REPLACE</oblix:AttrOperation>
<oblix:ChallengeValue>
<oblix:AttrOldvValue>phrase2</oblix:AttrOldvalue>
<oblix:AttrNewValue>phrase2_ new</oblix:AttrNewValue>
</oblix:ChallengeValue>
<oblix:ChallengeValue>
<oblix:AttrOldvValue>phrase3</oblix:AttrOldvalue>
<oblix:AttrNewValue>phrase3_new</oblix:AttrNewValue>
</oblix:ChallengeValue>
</oblix:ChallengeAttribute>

<oblix:ResponseAttribute>
<oblix:AttrName>genChallengePhraseResponse</oblix:AttrName>
<oblix:AttrOperation>REPLACE</oblix:AttrOperation>
<oblix:ResponseValue>
<oblix:AttrOldvValue>response2</oblix:AttrOldvalue>
<oblix:AttrNewValue>response2_new</oblix:AttrNewValue>
<oblix:AttrConfirmValue>response2_new</oblix:AttrConfirmvalue>
</oblix:ResponseValue>
<oblix:ResponseValue>
<oblix:AttrOldvalue>response3</oblix:AttrOldvalue>
<oblix:AttrNewValue>response3_new</oblix:AttrNewValue>
<oblix:AttrConfirmvValue>response3_new</oblix:AttrConfirmvValue>
</oblix:ResponseValue>
</oblix:ResponseAttribute>

If a lost password policy is in effect and Allow Duplicate Responses is enabled, there
are times when an index attribute is required in a ResponseValue element. When two
responses have the same value, and you want to change only one of them, you must
specify the index in the ResponseValue element. When two responses have same value
and no index is specified in the request, both occurrences are modified with the new
value.

For example, if challenge phrases A and B have the same response C, the Replace
operation could be configured with an index to differentiate the two challenge phrase
and response pairs (A-C and B-C).

The following is an example of a modifyUser function that updates two different
challenge phrases that have identical response phrases:

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:oblix="http://www.oblix.com"
xmlns:soapenv="http://schemas-xmlsoap.org/soap/envelope/">

<soapenv:Body>
<oblix:authentication>
<oblix:login>admin</oblix:login>
<oblix:password>oblix</oblix:password>
</oblix:authentication>

<oblix:request application="userservcenter" function="modifyUser"
version="NPWSDL1.0">

IdentityXML Functions and Parameters 2-11

Attribute Parameters

<oblix:params>
<oblix:uid>cn=userl,ou=Policy2, o=company, c=us</oblix:uid>
<oblix:noOfFields>2</0oblix:no0fFields>
<oblix:AttributeParams>
<oblix:ChallengeAttribute>
<oblix:AttrName>genChallengePhrase</oblix:AttrName>
<oblix:AttrOperation>REPLACE</oblix:AttrOperation>
<oblix:ChallengeValue>
<oblix:AttrOldvalue>phrasel</oblix:AttrOldvalue>
<oblix:AttrNewValue>phrasel_new</oblix:AttrNewValue>
</oblix:ChallengeValue>
<oblix:ChallengeValue>
<oblix:AttrOldvalue>A</oblix:AttrOldvalue>
<oblix:AttrNewValue>A_new</oblix:AttrNewValue>
</oblix:ChallengeValue>
<oblix:ChallengeValue>
<oblix:AttrOldvalue>B</oblix:AttrOldvalue>
<oblix:AttrNewValue>B_new</oblix:AttrNewValue>
</oblix:ChallengevValue>
</oblix:ChallengeAttribute>

<oblix:ResponseAttribute>
<oblix:AttrName>genChallengePhraseResponse</oblix:AttrName>
<oblix:AttrOperation>REPLACE</oblix:AttrOperation>
<oblix:ResponseValue>
<oblix:AttrOldvalue>responsel</oblix:AttrOldvalue>
<oblix:AttrNewValue>responsel new</oblix:AttrNewValue>
<oblix:AttrConfirmvalue>responsel_new</oblix:AttrConfirmvValue>
</oblix:ResponseValue>
<oblix:ResponseValue index="1">
<oblix:AttrOldvalue>C</oblix:AttrOldvalue>
<oblix:AttrNewValue>C_newl</oblix:AttrNewValue>
<oblix:AttrConfirmvValue>C_newl</oblix:AttrConfirmvalue>
</oblix:ResponseValue>
<oblix:ResponseValue index="2">
<oblix:AttrOldvalue>C</oblix:AttrOldvalue>
<oblix:AttrNewValue>C_new2</oblix:AttrNewValue>
<oblix:AttrConfirmvValue>C_new2</oblix:AttrConfirmvalue>
</oblix:ResponseValue>
</oblix:ResponseAttribute>

</oblix:AttributeParams>
</oblix:params>
</oblix:request>
</soapenv:Body>
</soapenv:Envelope>

Replace_All Operations
The Replace_All operation replaces all challenges or responses.

The following are required when you replace all challenge phrases and responses:

s The number of ChallengeValue and ResponseValue elements must be exactly same
as the minimum number of challenges to be configured if a lost password policy
exists for the user.

If no lost password management policy is in effect for the user, you can only
replace one value.

2-12 Oracle Access Manager Developer Guide

Exceptions to Attribute Values

s For challenge phrases, do not include AttrOldValue elements in the
ChallengeValue element.

s For challenge phrases, an AttrNew Value element is required.

s For challenge responses, if a user is replacing their own response, the
AttrOldValue element must match the value of the user entry in the directory.

If any other user is performing the Replace_All operation, the AttrOldValue
elements are not required in the request.

= Replace_All can be used even if there is no challenge phrase or response in the
user entry in the directory.

= Challenge responses must have an AttrConfirm element for every AttrNew Value
element.

The values of the AttrNewValue element and the AttrConfirmValue element must
be an exact match, including leading and trailing spaces and case.

The following is an example of a Replace_All operation:

<oblix:ChallengeAttribute>
<oblix:AttrName>genChallengePhrase</oblix:AttrName>
<oblix:AttrOperation>REPLACE_ALL</oblix:AttrOperation>
<oblix:ChallengeValue>
<oblix:AttrNewValue>phrasel new</oblix:AttrNewValue>
</oblix:ChallengeValue>
<oblix:ChallengeValue>
<oblix:AttrNewValue>phrase2_new</oblix:AttrNewValue>
</oblix:ChallengeValue>
<oblix:ChallengeValue>
<oblix:AttrNewValue>phrase3_new</oblix:AttrNewValue>
</oblix:ChallengeValue>
</oblix:ChallengeAttribute>

<oblix:ResponseAttribute>
<oblix:AttrName>genChallengePhraseResponse</oblix:AttrName>
<oblix:AttrOperation>REPLACE_ALL</oblix:AttrOperation>
<oblix:ResponseValue>
<oblix:AttrNewValue>responsel_new</oblix:AttrNewValue>
<oblix:AttrConfirmValue>responsel_new</oblix:AttrConfirmvalue>
</oblix:ResponseValue>
<oblix:ResponseValue>
<oblix:AttrNewValue>response2_new</oblix:AttrNewValue>
<oblix:AttrConfirmvValue>response2_new</oblix:AttrConfirmvalue>
</oblix:ResponseValue>
<oblix:ResponseValue>
<oblix:AttrNewValue>response3_new</oblix:AttrNewValue>
<oblix:AttrConfirmvValue>response3_new</oblix:AttrConfirmvalue>
</oblix:ResponseValue>
</oblix:ResponseAttribute>

Exceptions to Attribute Values

In general, legal values for attributes used in the functions match those that are used in
the GUIL. However, exceptions exist. Table 2-1 lists attributes with values that differ
from those shown in the GUI for the function.

IdentityXML Functions and Parameters 2-13

Common Functions

Table 2-1 Attribute Value Exceptions

Attribute Name Description Values
obgroupsubscribe If this attribute is set, NotifyUponSubscription: If the user is to be
notification the affected UID will notified when subscribed to a group (matches

be notified when the subscribe for the GUI).
UID is subscribed or

NotifyUponUnsubscription: If the user is to

unsubscribed from a be notified when unsubscribed from a group

group- (matches unsubscribe for the GUI).
obgroup This attribute is set to SubscriptionPolicyOpen: Matches Open for
subscriptiontype define the limits the GUL

under which users
can be subscribed to
the group.

SubscriptionPolicyOpenFilter: Matches Open
with Filter for the GUL

SubscriptionPolicyControlled Workflow:
Matches Controlled through Workflow for the
GUL

SubscriptionPolicyClosed: Matches Closed for
the GUL

Common Functions

The following are functions used throughout the Identity System applications. Note
that all functions follow a similar syntax:

<oblix:request application="userservcenter | groupservcenter | objservcenter"
function="function name" version="version">

For example:

<oblix:request application="userservcenter" function="search" version="NPWSDL1.0">

Note: The version tag is required if you are using IdentityXML with
Oracle Access Manager 6.5 and higher versions.

For documentation of the pre-6.5 Identity XML version tag, see the
following:

http://www.oracle.com/technology/

Search for entries based on some criteria

Function hame search

Request example: <oblix:request application="userservcenter"
function="search" version="NPWSDL1.0">

Description: Search for an entry or entries. The entries must be in a searchbase
accessible to the user.

Works with: Group, Organization, and User Manager.

Results: The output is defined by the schema file
oblix\ WebServices\XMLSchema\component_search.xsd

Output schema: oblix\ WebServices\XMLSchema \searchResults.xsd

WSDL file: WebPass_install_dir\ oblix\ WebServices\WSDL\ common_search.wsdl

Parameters

2-14 Oracle Access Manager Developer Guide

Common Functions

Function name

search

SearchAttr

Required. See "Search Parameters" on page 2-3 for details.

SearchOperation

Required. See "Search Parameters" on page 2-3 for details.

SearchString

Required. See "Search Parameters" on page 2-3 for details.

attrname

Optional. If no value is given, the default table view attributes are
used. See "Attribute Parameters" on page 2-5 for details.

noOfFields

Optional. See "Attribute Parameters" on page 2-5 for details.

noOfRecords

The maximum number of entries to return in the search results.
Overridden by the showAlIResults parameter.

Rules: Optional. Single value, an integer value >=1.

Default: A value obtained from the defaultDisplayResultVal parameter
in the oblixbaseparams.xml catalog. Otherwise, this value is obtained
from the custom cookie.

showAllResults

Specifies that all results of the search be returned. If the value is true, it
overrides the value of the noOfRecords parameter.

Rules: Optional. True or false.

Default: false, meaning return results up to the limit imposed by the
noOfRecords parameter.

sortBy

What attribute to use to sort the results.
Rules: Optional. Single value.

Default: if no value is specified, the class attribute for the structural
object class of the tab specified by tab_id is used.

sortOrder

The sort order, ascending or descending.
Rules: Optional. Single value, ascending or descending

Default: ascending

startFrom

Use this parameter for a long list of search results, to skip over a
selected number of items and start the list with a specified item. For
example, if 100 entries were found by the search, entering a value of 80
for this parameter gives a response showing only items 80 through 100.

Rules: Optional. Single value, integer.

Default: 1, to start displaying from the beginning of the search results
list.

tab_id

The name of the tab that describes the information category you want
to search within. For User Manager and Group Manager only one tab
is allowed. For Organization Manager, multiple tabs are allowed.

If omitted, the Identity System uses a default value for tab_id of the
leftmost tab. Oracle recommends that you always provide a value for
tab_id. Organization Manager enables you to change the order in
which tabs are displayed. If you rely on the default tab_id, your portal
functions would be affected.

The tab_id is a number. To get the number, go to the configuration
menu for the application. Choose configure tab. Position the cursor on
the tab whose tab_id you want, and right click, then click the tab name
whose tab_id you want. Select Open in new window. In the URL
displayed at the top of the page, you find the value for tab_id.

Rules: Optional. Single value

Default: For User Manager and Group Manager, which have only a
single tab, that tab is assumed.

For Organization Manager, which has multiple tabs, the leftmost tab is
assumed.

IdentityXML Functions and Parameters 2-15

Common Functions

Example 2-1 illustrates a search function.

Example 2-1 Example of a Search in the User Manager for the Name "John"

<?xml version="1.0"?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas-xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>

<oblix:authentication xmlns:oblix="http://www.oblix.com" type="basic">
<oblix:login>J.Smith</oblix:login>
<oblix:password>J.Smith</oblix:password>
</oblix:authentication>

<oblix:request application="userservcenter" function ="search"
version="NPWSDL1.0">

<oblix:params>

<oblix:SearchParams>

<oblix:Condition>

<oblix:SearchAttr>cn</oblix:SearchAttr>
<oblix:SearchOperation>0SM</oblix:SearchOperation>
<oblix:SearchString>john</oblix:SearchString>
</oblix:Condition>

</oblix:SearchParams>

</oblix:params>

</oblix:request>

</SOAP-ENV : Body>

</SOAP-ENV:Envelope>

Search for all pending, completed, or all tickets

Function name workflowTicketSearch

Request example: <oblix:request application="userservcenter"
function="workflowTicketSearch" version="NPWSDL1.0">

Description: Search for pending, or completed, or all workflow requests.

Works with: Group Manager, Organization Manager, User Manager

Results: The output is defined by the schema file
oblix\WebServices\XMLSchema\component_search.xsd.

Output schema: oblix\WebServices\XMLSchemasearch\Results.xsd

WSDL file: WebPass_install_dir\ oblix\ WebServices\WSDL\
common_workflowTicketSearch.wsdl

Parameters

requestType The request queue type to search

incomingRequests: Requests you need to process.
outgoingRequests: Requests you have originated.

Rules: Required. Single value.

targetApplication The application to search for tickets. To search all applications, use
the value allApplications. To search a specific application, enter the
application name:

groupservcenter: For Group Manager.
objservcenter: For Organization Manager.
userservcenter: For User Manager.

Rules: Required. Single value.

2-16 Oracle Access Manager Developer Guide

Common Functions

Function name

workflowTicketSearch

ticketType The status type for the requests to be searched. There are three
possible entries:
WEAllTickets: Search for all requests, regardless of status.
WECompletedTickets: Search for requests that have been
completely processed.
WEPendingTickets: Search for requests that are pending, waiting
to be processed.
Rules: Required. Single value.
days Look for requests issued in the past n days. The Identity System
considers a day to be the 24-hour period from when the ticket was
created, not a calendar day.
Rules: Optional. Single value, an integer >=1.
Default: 0, meaning look as far back as the oldest request.
noOfRecords A maximum number of entries to be returned in the search
results.This is overridden by the showAllResults parameter.
Rules: Optional. Single value, an integer value >=1.
Default: A value obtained from the defaultDisplayResultVal
parameter in the oblixbaseparams.xml catalog. Otherwise this value
is obtained from the custom cookie.
sortBy What attribute to use to sort the results.
Rules: Optional. Single value.
Default: if no value is specified, the class attribute of the structural
object class of the tab specified by tab_id is used. For workflow
tickets, the class sorting attribute can have only one of the following
values:
obticketid: For Ticket Number
obapp: For Application Name
obactionname: For Action
obwfstatus: For Status
obwftypename: For Request Type
obtargetdn: For Requested For
obcurrentdn: For Requested by
obactordn: For Action Taker
obdateprocessed: For Date Processed
oblockedby: For Locked By
obsubflow: For Subflow Number
If the attribute is invalid, an error is returned, such as "Invalid value
for parameter sortBy." If no attribute is specified, the default is the
first attribute (most likely obticketid) in the administrator-configured
workflow ticket search table. You can see this table by looking at the
Identity System Console, Common Configuration, Workflow Panels,
Ticket Search Table.
sortOrder The sort order, ascending or descending. An invalid order gives an

error message.
Rules: Optional. Single value, ascending or descending.

Default: ascending

IdentityXML Functions and Parameters 2-17

Common Functions

Function name workflowTicketSearch

startFrom Use this parameter for a long list of search results, to skip a number
of items and start the list with a specified item. For example, if 100
entries were found by the search, entering a value of 80 for this
parameter gives a response showing only items 80 through 100.

Rules: Optional. Single value, integer.

Default: 1, to start from the beginning of the search results list.

workflowTicketSearch Notes
If the mode is dataonly, the possible values for obwfstatus are integers, as follows:

Unknown -1

Success 0

Failed =1
PendingUser = 2
PendingSubflow = 3
PendingPreAction = 4
PendingPostAction = 5
PendingUserInPre = 6
PendingUserInPost = 7
LastStepDone = 8
Asynch = 9
PendingExecution = 10

Cancelled = 11

PendingPreNotify = 12
PendingPreSubflow = 13
PendingPostNotify = 14

TriggerSubflows = 15
ForceCommit = 16
Retry = 17
PendingRetry = 18

For the output [integer/string], the "store-as" is an integer. The string is the value
displayed in the user interface.

Example 2-2 illustrates a search function for incoming tickets.

Example 2-2 Example of Searching for Your Incoming Tickets in the User Manager

<?xml version="1.0"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas-xmlsoap.org/soap/envelope/">

<SOAP-ENV: Body>

<oblix:authentication xmlns:oblix="http://www.oblix.com" type="basic">
<oblix:login>J.Smith</oblix:login>
<oblix:password>J.Smith</oblix:password>

</oblix:authentication>

2-18 Oracle Access Manager Developer Guide

Common Functions

<oblix:request application="userservcenter" function="workflowTicketSearch"
version="NPWSDL1.0">

<oblix:params>

<oblix:tab_id>Employees</oblix:tab_id>
<oblix:requestType>incomingRequests</oblix:requestType>
<oblix:ticketType>allTickets</oblix:ticketType>
</oblix:params>

</oblix:request>

</SOAP-ENV: Body>

</SOAP-ENV:Envelope>

Get information on a particular workflow ticket

Function name workflowTicketinfo

Request example: <oblix:request application="userservcenter"
function="workflowTicketInfo"
version="NPWSDL1.0">

Description: Get information about a specific request.
Works with: Group Manager, Organization Manager, User Manager.
Results: The output is defined by the schema file

oblix\WebServices \ XMLSchema \wfTicketInfo.xsd

Output schema: If the operation is successful, it returns the profile of the
group, according to the following XML Schema:
oblix\ WebServices \ XMLSchema\wfTicketInfo.xsd

WSDL file: WebPass_install_dir\oblix\ WebServices\WSDL\
common_workflowTicketInfo.wsdl

Parameters

workflowInstanceDn The DN of the workflow for which information is required.
The DN for the workflow is shown in the workflow definition
view. See the Oracle Access Manager Administration Guide.

Rules: Required. Single DN value.

workflowStepInstanceId A step in the workflow specified by workflowInstanceDn for
which information is required.

Rules: Required. Single integer value.

Resume asynchronous workflows

Function nhame asynchResumeWorkflowProcess

Request example: <oblix:request application="asynch"
function="asynchResumeWorkflowProcess"
version="NPWSDL1.0">

IdentityXML Functions and Parameters 2-19

Common Functions

Function name asynchResumeWorkflowProcess

Description: This function enables the continuation of a workflow in
which an Identity Event API call returned a status of
STATUS_PPP_WF_ASYNC. The
asyncResumeWorkflowProcess function takes a workflow
instance DN and a step ID as input.

asynch_retcode =0 to resume the workfkow
asynch_retcode =1 to abort the workflow default value =0

See Chapter 3, "Identity Event Plug-in API" on page 3-1 for
details.

One or more of the parameters described as optional in the
"Parameters” section of this table must be provided,
depending on the requirements of the particular workflow.

Works with: Asynchronous workflows.
Output schema: Currently there is a bug which always produces the output in
html format like this:

<html>The action completed successfully. Please refer to the
workflow page. </html>

WSDL file: WebPass_install_dir\ oblix\WebServices\WSDL\
common_asynchResumeWorkflowProcess.wsdl

Parameters

workflowInstanceDn The DN of the workflow for which information is required.
The DN for the workflow is shown in the workflow definition
view. See the Oracle Access Manager Administration Guide.

Rules: Required. Single DN value.

workflowStepInstanceId A step in the workflow specified by workflowInstanceDn for
which information is required.

Rules: Required. Single integer value.

attrName Optional. See "Attribute Parameters" on page 2-5 for details.
attroldvalue Optional. See "Attribute Parameters" on page 2-5 for details.
attrOperation Optional. See "Attribute Parameters" on page 2-5 for details.
attrNewValue Optional. See "Attribute Parameters" on page 2-5 for details.
NoOfFields Optional. See "Attribute Parameters" on page 2-5 for details.

Example 2-3 and Example 2—4 illustrate resuming an asynchronous workflow

Example 2-3 Resuming an Asychronous Workflow (1 of 2)

<?xml version="1.0"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas-xmlsoap.org/soap/envelope/">

<SOAP-ENV: Body>
<oblix:authentication xmlns:oblix="http://www.oblix.com" type="basic">
<oblix:login>authenticationAttribute</oblix:login>
<oblix:password>authenticationPassword</oblix:password>
</oblix:authentication>

<oblix:request function="asynchResumeWorkflowProcess">

<oblix:params>

<oblix:param name="workflowInstanceDn">obwfinstanceid=wfinstanceid,
obcontainerId=workflowInstances, 0=0blix,ou=Apps, o=mycompany</oblix:param>

2-20 Oracle Access Manager Developer Guide

Common Functions

<oblix:param name="workflowStepInstanceId">1</oblix:param>
<!-- See Return codes at the bottom of this file -->
<oblix:param name="asynch_retcode">0</oblix:param>

<!-- Add the attributes required by the workflow in the order the -->

<!-- workflow expects them. Include even the optional and hidden fields. -->
<!-- Start with n=1 -->

<oblix:param name="attrName_n">attr. name</oblix:param>

<oblix:param name="attrValue_n">attr. value</oblix:param>

<!-- ... all other workflow expected attributes -->

<!-- The operation depends on what you want to do with the attributes. -->

<!-- In this case I know the attribute does not currently exist in the user -->
<!-- entry so I want to add them. However, you might want to replace the -->
<!-- values of the attributes, and so on. -->

<oblix:param name="attrOperation">ADD</oblix:param>
</oblix:params>
</oblix:request>

</SOAP-ENV : Body>
</SOAP-ENV: Envelope>

<!-- The values for the return code, async_retcode, is as follows: -->
<!-- 0 - Success -->

<!-- 1 - Action Failed -->

<l-- -11 - Pre-Action Failed -->

<!-- -12 - Post-Action Failed -->

<!-- -13 - External-Action Failed -->

Example 2-4 Resuming an Asychronous Workflow (2 of 2)

<?xml version="1.0"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas-xmlsoap.org/soap/envelope/">

<SOAP-ENV: Body>

<oblix:authentication xmlns:oblix="http://www.oblix.com" type="basic">
<oblix:login>authenticationAttribute</oblix:login>
<oblix:password>authenticationPassword</oblix:password>
</oblix:authentication>

<oblix:request function="asynchResumeWorkflowProcess" version="NPWSDL1.0">
<oblix:params>
<oblix:workflowInstanceDn>obwfinstanceid=wfinstanceid, obcontainerId=workflowInstan
ces,0=0blix, ou=Apps, o=mycompany</oblix:workflowInstanceDn>
<oblix:workflowStepInstanceId>1</oblix:workflowStepInstanceId>
<!-- See Return codes at the bottom of this file -->
<oblix:asynch_retcode>0</oblix:asynch_retcode>
<!-- Add the attributes required by the workflow in the order the -->
<!-- workflow expects them. Include even the optional and hidden fields. -->
<oblix:attributeParams>
<oblix:genericAttribute>
<oblix:attrName> name of attr </oblix:attrName>
<oblix:attrNewValue> value of attr </oblix:attrNewValue>
<oblix:attrOperation> operation like ADD or DELETE or REPLACE or
REPLACE_ALL</oblix:attrOperation>
</oblix:genericAttribute>
<!-- any more attributes -->

<!-- ... all other workflow expected attributes -->
</oblix:attributeParams>

</oblix:params>

IdentityXML Functions and Parameters 2-21

Common Functions

</oblix:request>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

<!-- The values for the return code, async_retcode, is as follows: -->
<!-- 0 - Success -->

<!-- 1 - Action Failed -->

<!-- -11 - Pre-Action Failed -->

<!-- -12 - Post-Action Failed -->

<!-- -13 - External-Action Failed -->

Subscribe self to group

Function name

subscribe

Request example:

<oblix:request application="groupservcenter"
function="subscribe" version="NPWSDL1.0">

Description: Add (subscribe) yourself to a group. The response returns the
profile for the group.

Works with: Group Manager.

Results: The output is the profile of the group, defined by the schema

file oblix\WebServices\XMLSchema\gsc_groupprofile.xsd.

Output schema:

If operation is successful, it returns the profile of the group,
according to the following XML Schema.

oblix\WebServices\XMLSchema\gsc_groupprofile.xsd
If operation fails, you will get an error message like:

<SOAP-ENV:Envelope>

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet href="0" type="text/xsl"?>
<Oblix>

<ObError>

<ObRequestInfo> 161660048 </ObRequestInfo>
<ObTextMessage> You do not have access rights.
</0bTextMessage>

</ObError>

</0blix>

</SOAP-ENV:Envelop>

WSDL file: WebPass_install_dir\oblix\ WebServices\WSDL\
gm_subscribe.wsdl

Parameters

uid In this case, uid means the DN of the group being subscribed

to.

Rules: Required. Single value, a DN.

Note: Subscription policies are not required for adding users to
groups. For example, if you have pre-existing groups and want to add
users to these groups, you can set the relevant access control policies
on the uniquemember attribute and use the Selector to add members.
However, if you want users to subscribe themselves to groups, you
implement this using a subscription functionality.

2-22 Oracle Access Manager Developer Guide

Common Functions

Unsubscribe self from group

Function name

unsubscribe

Request example:

<oblix:request application="groupservcenter"
function="unsubscribe" version="NPWSDL1l.0">

Description: Remove (unsubscribe) yourself from a group.
Works with: Group Manager.
Results: The response returns the profile of the group, defined by the schema

file: oblix\ WebServices\XMLSchema\gsc_groupprofile.xsd.

Output schema:

If operation is successful, it returns the profile of the group, according
to the following XML Schema:
oblix\ WebServices\ XMLSchema\gsc_groupprofile.xsd

If operation fails, you will get an error message like:

<SOAP-ENV:Envelope>

<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet href="0" type="text/xsl"?> <Oblix>
<ObError>

<ObRequestInfo> 161660048 </ObRequestInfo> <ObTextMessage>
You do not have access rights. </ObTextMessage>

</ObError>

</0Oblix>

</SOAP-ENV:Envelop>

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\ gm_unsubscribe.wsd]l
Parameters
uid The DN of the group being unsubscribed from.

Rules: Required. Single value, a DN.

Subscribe user to group

Function name

subscribeUserToGroup

Request example:

<oblix:request application="groupservcenter"
function="subscribeUserToGroup" version="NPWSDL1l.0">

Description: Subscribe a user other than yourself to a group. The other user does
not need to be logged in.

Works with: Group Manager.

Results: The output is the profile of the group, defined by the schema file
oblix\ WebServices\XMLSchema\gsc_groupprofile.xsd

WSDL file: WebPass_install_dir\ oblix\WebServices\WSDL\
gm_subscribeUserToGroup.wsdl

Parameters

uid The DN of the group entry.

proxysourceuid The DN for a non-logged-in user (proxy user) who is being subscribed.

Rules: Required. Single value, a DN.

Example 2-5 illustrates subscribing a user to a group.

IdentityXML Functions and Parameters 2-23

Common Functions

Example 2-5 Subscribing Robert Fulton to a Group

<?xml version="1.0"?> <SOAP-ENV:Envelope

xmlns: SOAP-ENV="http://schemas-xmlsoap.org/soap/envelope/"> <SOAP-ENV:Body>
<oblix:authentication xmlns:oblix="http://www.oblix.com" type="basic">
<oblix:login>J.Smith</oblix:login> <oblix:password>J.Smith</oblix:password>
</oblix:authentication>

<oblix:request application="groupservcenter" function="subscribeUserToGroup"
version="NPWSDL1.0">

<oblix:params>

<oblix:proxysourceuid>

cn=Robert Fulton, ou=Corporate, o=Company, c=US

</oblix:proxysourceuid>

<oblix:uid>

cn=Marketing Team, ou=Marketing, o=Company, c=US

</oblix:uid>

</oblix:params>

</oblix:request>

</SOAP-ENV: Body>

</SOAP-ENV: Envelope>

Note: Subscription policies are not required for adding users to
groups. For example, if you have pre-existing groups and want to add
users to these groups, you can set the relevant access control policies
on the uniquemember attribute and use the Selector to add members.
However, if you want users to subscribe themselves to groups, you
implement this using a subscription functionality.

Unsubscribe user from group

Function name unsubscribeUserFromGroup

Request example: <oblix:request application="groupservcenter"
function="unsubscribeUserFromGroup"
version="NPWSDL1.0">

Description: Unsubscribe a user other than yourself from a group. The other user
does not need to be logged in.

Works with: Group Manager.

Results: The response returns the profile of the group, defined by the schema

file: oblix\ WebServices\XMLSchema\ gsc_groupprofile.xsd.

Output schema: If operation is successful, it returns the profile of the group, according
to the following XML Schema.

oblix\WebServices\XMLSchema\gsc_groupprofile.xsd
If operation fails, you will get an error message like:

<SOAP-ENV:Envelope>

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet href="0" type="text/xsl"?>
<Oblix>

<ObError>

<ObRequestInfo> 161660048 </ObRequestInfo>
<ObTextMessage> You do not have access rights.
</0bTextMessage>

</ObError>

</0blix>

</SOAP-ENV:Envelop>

2-24 Oracle Access Manager Developer Guide

User Manager Functions

Function name unsubscribeUserFromGroup

WSDL file: WebPass_install_dir\oblix\ WebServices\WSDL\
gm_unsubscribeUserFromGroup.wsdl

Parameters

uid The DN of the group being unsubscribed from.

Rules: Required. Single value, a DN.

proxysourceuid The DN for a non-logged-in user (proxy user) who is being
unsubscribed.

Rules: Required. Single value, a DN.

Example 2-6 illustrates unsubscribing from a group.

Example 2-6 Unsubscribing Robert Fulton From a Group

<?xml version="1.0"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas-xmlsoap.org/soap/envelope/">
<SOAP-ENV: Body>
<oblix:authentication xmlns:oblix="http://www.oblix.com” type="basic">
<oblix:login>J.Smith</oblix:login>
<oblix:password>J.Smith</oblix:password>
</oblix:authentication>
<oblix:request application="groupservcenter"
function="unsubscribeUserFromGroup" version="NPWSDL1.0">
<oblix:params>
<oblix:proxysourceuid=cn=Robert Fulton, ou=Corporate, o=Company,
c=US</oblix:proxysourceuid>
<oblix:uid>cn=Marketing Team, ou=Marketing, o=Company,c=US</oblix:uid>
</oblix:params>
</oblix:request>
</SOAP-ENV : Body>
</SOAP-ENV: Envelope>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas-xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>

User Manager Functions

If you are an administrator, the User Manager enables you to add, modify, and delete
user identities. The User Manager typically enables end users to view other users and
to modify their own identity information. The users that a person can view and the
identity information that someone can modify depends on the privileges granted by a
Master Administrator.

The following IdentityXML functions allow you to programmatically access the User
Manager application. Note that all functions follow a similar syntax:

<oblix:request application="userservcenter" function="name" version="version">
For example:

<oblix:request application="userservcenter" function="canIViewUserProfile"
version="NPWSDL1.0">

IdentityXML Functions and Parameters 2-25

User Manager Functions

Note: The version tag is required if you are using IdentityXML with
Oracle Access Manager 6.5 and higher versions.

For documentation of the pre-6.5 IdentityXML version tag, see the
following:

http://www.oracle.com/technology/

Functions to Test for Attribute Permissions

The following functions provide a yes or no response as to whether you or another
user has read, write, delegate, and notify permissions set for a particular attribute.

Can | view a user's profile

Function name canlViewUserProfile

Request example: <oblix:request application="userservcenter"
function="canIViewUserProfile" version="NPWSDL1.0">

Description: Verifies that you can view a user's profile.

WSDL file: WebPass_install_dir\ oblix\ WebServices\ WSDL\
um_CanlViewUserProfile.wsdl

Parameters

uid The DN of the user whose profile you want to view.

Rules: Required. Single value, a DN.

Can | view an attribute in a user's profile

Function name canlViewUserProfileAttr

Request example: <oblix:request application="userservcenter"
function="canIViewUserProfileAttr"
version="NPWSDL1.0">

Description: Verifies that you can view a particular attribute in a user’s profile.

WSDL file: WebPass_install_dir\oblix\ WebServices\WSDL\
um_CanlViewUserProfileAttr.wsdl

Parameters

uid The DN of the user whose attribute you want to view.

Rules: Required. Single value, a DN.

targetAttribute The schema name (not the display name) for the desired attribute.

Rules: Required. Single value, a string

Can | modify an attribute in a user's profile

Function name canlModifyUserProfileAttr

Request example: <oblix:request application="userservcenter"
function="canIModifyUserProfileAttr"
version="NPWSDL1.0">

2-26 Oracle Access Manager Developer Guide

User Manager Functions

Function name canlModifyUserProfileAttr

Description: Verifies that you can change a particular attribute in a user’s
profile.

WSDL file: WebPass_install_dir\oblix\ WebServices\WSDL\
um_canIModifyUserProfileAttr.wsdl

Parameters

uid The DN of the user whose attribute you want to change.

Rules: Required. Single value, a DN.

targetAttribute The schema name (not the display name) for the desired attribute.

Rules: Required. Single value, a string.

Can | modify an attribute in a user's profile using a workflow

Function name canlRequestUserAttrModification

Request example: <oblix:request application="userservcenter"
function="canIRequestUserAttrModification"
version="NPWSDL1.0">

Description: Verifies that you can change a particular attribute in a user’s
profile, using a workflow.

WSDL file: WebPass_install_dir\oblix\ WebServices\WSDL\
um_CanlIRequestUserAttrModification.wsdl

Parameters

uid The DN of the user whose attribute you want to change.

Rules: Required. Single value, a DN.

targetAttribute The schema name (not the display name) for the desired attribute.

Rules: Required. Single value, a string.

Can | create a new user

Function name canlCreateUser

Request example: <oblix:request application="userservcenter"
function="canICreateUser" version="NPWSDL1.0">

Description: Verifies that you can create a new user.

WSDL file: WebPass_install_dir\ oblix\ WebServices\WSDL\
um_CanlCreateUser.wsdl

Parameters

ObDomainName A subtree within which a test is being requested.

Rules: Optional. Single value, a DN.

Default: if no value is provided, the Identity System checks to see
if you have the tested rights in any domain.

IdentityXML Functions and Parameters 2-27

User Manager Functions

Can | delete an existing user

Function name

canlDeleteUser

Request example:

<oblix:request application="userservcenter"
function="canIDeleteUser" version="NPWSDL1.0">

Description:

Verifies that you can delete an existing user.

WSDL file:

WebPass_install_dir\ oblix\ WebServices\WSDL\
um_CanlDeleteUser.wsdl

Parameters

uid

The DN of an entry you want to modify.
Rules: Required. Single value, a DN.

an this user view another user's profile
Can th th : fil

Function name

canlUserViewUserProfile

Request example:

<oblix:request application="userservcenter"
function="canUserViewUserProfile"
version="NPWSDL1.0">

Description:

Verifies that a non-logged in user can view another user’s profile.

WSDL file:

WebPass_install_dir\oblix\ WebServices\WSDL\
um_CanUserViewUserProfile.wsdl

Parameters

uid

The DN of the user whose profile is to be viewed.

Rules: Required. Single value, a DN.

proxysourceuid

The DN of a non-logged-in user (proxy user) whose access rights
are being tested.

Rules: Required. Single value, a DN.

Can this user view an attribute in another user's profile

Function name

canUserViewUserProfileAttr

Request example:

<oblix:request application="userservcenter"
function="canUserViewUserProfileAttr"
version="NPWSDL1.0">

Description:

Verifies that a non-logged in user can view a particular attribute
in another user’s profile.

WSDL file:

WebPass_install_dir\ oblix\ WebServices\WSDL\
um_CanUserViewUserProfileAttr.wsdl

Parameters

uid

The DN for the user whose profile is to be viewed.

Rules: Required. Single value, a DN.

proxysourceuid

The DN for a non-logged-in user (proxy user) whose access
rights are being tested.

Rules: Required. Single value, a DN.

2-28 Oracle Access Manager Developer Guide

User Manager Functions

Function name canUserViewUserProfileAttr

targetAttribute The schema name (not the display name) for the desired
attribute.

Rules: Required. Single value, a string.

Can this user modify an attribute in another user's profile using a workflow

Function name canUserRequestUserAttrModification

Request example: <oblix:request application="userservcenter"
function="canUserRequestUserAttrModification"
version="NPWSDL1.0">

Description: Verifies that a user can request a change of an attribute.

WSDL file: WebPass_install_dir\oblix\ WebServices\WSDL\
um_CanUserRequestUserAttrModification.wsdl

Parameters

uid The DN of an entry you want to modify.

Rules: Required. Single value, a DN.

proxysourceuid The DN for a non-logged-in user (proxy user) whose access
rights are being tested.

Rules: Required. Single value, a DN.

targetattribute The schema name (not the display name) for the desired
attribute.

Rules: Required. Single value, a string.

Can this user create a new user

Function name canUserCreateUser

Request example: <oblix:request application="userservcenter"
function="canUserCreateUser"
version="NPWSDL1.0">

Description: Verifies that a non-logged in user can create a new user.

WSDL file: WebPass_install_dir\ oblix\ WebServices\WSDL\
um_CanUserCreateUser.wsdl

Parameters

proxysourceuid The DN for a non-logged-in user (proxy user) whose access rights
are being tested.

Rules: Required. Single value, a DN.

ObDomainName A subtree within which a test is being requested.
Rules: Optional. Single value, a DN.

Default: if no value is provided, the Identity System checks to see
if you have the tested rights in any domain.

IdentityXML Functions and Parameters 2-29

User Manager Functions

Can this user delete an existing user

Function name

canUserDeleteUser

Request example:

<oblix:request application="userservcenter"
function="canUserDeleteUser"
version="NPWSDL1.0">

Description: Verifies that a non-logged in user can delete an existing user.

WSDL file: WebPass_install_dir\oblix\ WebServices\WSDL\
um_CanUserDeleteUser.wsdl

Parameters

proxysourceuid The DN for a non-logged-in user (proxy user) whose access rights
are being tested.
Though it is outside the intent of functions using this parameter,
DNis other than those of users can be used.
Rules: Required. Single value, a DN.

uid The DN of an entry you want to modify.

Rules: Required. Single value, a DN.

Can this user modify another user's attribute

Function name

canUserModifyUserProfileAttr

Request example:

<oblix:request application="userservcenter"
function="canUserModifyUserProfileAttr"
version="NPWSDL1.0">

Description: Verifies that a non-logged in user can change a particular attribute
in another user’s profile.

WSDL file: WebPass_install_dir\oblix\ WebServices\WSDL\
um_CanUserModifyUserProfileAttr.wsdl

Parameters

uid The DN of the user whose attribute you want to modify.
Rules: Required. Single value, a DN.

proxysourceuid The DN for a non-logged-in user (proxy user) whose access rights
are being tested.
Rules: Required. Single value, a DN.

targetAttribute The schema name (not the display name) for the desired attribute.

Rules: Required. Single value, a string.

Can this user request a change to another user's profile using a workflow

Function name

canUserRequestUserAttrModification

Request example:

<oblix:request application="userservcenter"
function="canUserRequestUserAttrModification"
version="NPWSDL1.0">

Description: Verifies that a non-logged in user can request a change to a
particular attribute in another user’s profile, using a workflow.
WSDL file: WebPass_install_dir\ oblix\ WebServices\WSDL\

um_CanUserRequestUserAttrModification.wsdl

2-30 Oracle Access Manager Developer Guide

User Manager Functions

Function name canUserRequestUserAttrModification
Parameters
uid The DN of the user whose attribute you want to change.

Rules: Required. Single value, a DN.

proxysourceuid The DN for a non-logged-in user (proxy user) whose access
rights are being tested.

Though it is outside the intent of functions using this parameter,
DNis other than those of users can be used.

Rules: Required. Single value, a DN.

targetAttribute The schema name (not the display name) for the desired
attribute.

Rules: Required. Single value, a string.

Functions to Perform User Manager Actions

These functions enable you or another user to perform a particular Identity System
action, such as creating a user. These are get and set functions.

View user attributes

Function name view

Request example: <oblix:request application="userservcenter"
function="view" version="NPWSDL1.0">

Description Use this function to view attributes.

WSDL file: WebPass_install_dir\oblix\ WebServices\WSDL\ um_view.wsdl
Parameters

uid The DN of the user, in the case of the User Manager. If no uid is

specified, the profile of the logged in user will be shown.
Rules: Optional for the User Manager only. Single value, a DN.

Notes: This parameter also applies to the DN of the group or
organization whose attributes are to be viewed, depending upon
if this function is being used in the Group Manager or
Organization Manager.

attrName Optional. See "Attribute Parameters" on page 2-5 for details.

If no attrNames are specified, then all of the attributes of the
entry that the logged-in user has access to view are returned.
Those attributes must be configured in the Identity System and
added to a panel in the User, Group, or Organization Manager.

Note: This function shows deactivated users if the requester is a
Master Administrator, or if the administrator has the delegated
administration rights of Grant and Workflow Monitoring.

Example 2-7 illustrates the view function.
Example 2-7 View Example
<SOAP-ENV:Envelope xmlns:oblix=http://www.oblix.com"

xmlns: SOAP-ENV="http://schemas-xmlsoap.org/soap/envelope/">

IdentityXML Functions and Parameters 2-31

User Manager Functions

<SOAP-ENV:Body>
<oblix:authentication xmlns:oblix="http://www.oblix.com" type="basic"?
<oblix:login>admin</oblix:login>
<oblix:password>oblix></oblix:password>
</oblix:authentication>
<oblix:request application="userservcenter" function="view"
version="NPWSDL1.0">
<oblix:params>
<oblix:uid>
cn=testl, o=Company, c=US
</oblix:uid>
<oblix:attrName>
genuserid
</oblix:attrname>
<oblix:attrName>
mail
</oblix:attrName>
</oblix:params>
</oblix:request>
</SOAP-ENV : Body>
</SOAP-ENV: Envelope>

Modify user attributes

Function name modifyUser

Request example: <oblix:request application="userservcenter"
function="modifyUser" version="NPWSDL1.0">

Description: Change the attribute values for a specified user.

WSDL file: WebPass_install_dir\oblix\ WebServices\WSDL\
um_modifyUser.wsdl

Parameters

uid The DN of the user whose attributes are to be changed.
Rules: Required. Single value, a DN.

attrName Optional. See "Attribute Parameters" on page 2-5 for details.

Without the _n, to return data for only the named attributes.
Though optional for this function, it is best to always provide
this parameter. The trade-off is that if you omit it, you get back
data for all the names that appear in the panel. Use this
parameter to limit output to just the data you want to see. You
use this parameter in addition to the attrName_n parameter.

attrOperation_n Required. See "Attribute Parameters" on page 2-5 for details.

attrOperation Required. See "Attribute Parameters" on page 2-5 for details.
attrNewValue Required. See "Attribute Parameters" on page 2-5 for details.
NoOfFields Required. See "Attribute Parameters" on page 2-5 for details.
attrOoldvalue Optional/Required. Required only if the attrOperation is a

REPLACE. See "Attribute Parameters" on page 2-5 for details.

Example 2-8 illustrates a modify operation.
Example 2-8 Modify User Operation That Adds Challenge Phrases and Responses

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:oblix="http://www.oblix.com"

2-32 Oracle Access Manager Developer Guide

User Manager Functions

xmlns:soapenv="http://schemas-xmlsoap.org/soap/envelope/">

<soapenv:Body>
<oblix:authentication>
<oblix:login>admin</oblix:login>
<oblix:password>oblix</oblix:password>
</oblix:authentication>

<oblix:request application="userservcenter" function="modifyUser"
version="NPWSDL1.0">
<oblix:params>
<oblix:uid>cn=userl, ou=Policy2, o=company, c=us</oblix:uid>
<oblix:noOfFields>2</oblix:noOfFields>
<oblix:AttributeParams>
<oblix:ChallengeAttribute>
<oblix:AttrName>genChallengePhrase</oblix:AttrName>
<oblix:AttrOperation>ADD</oblix:AttrOperation>
<oblix:ChallengeValue>
<oblix:AttrNewValue>phrasel</oblix:AttrNewValue>
</oblix:ChallengeValue>
<oblix:ChallengeValue>
<oblix:AttrNewValue>phrase2</oblix:AttrNewValue>
</oblix:ChallengeValue>
<oblix:ChallengeValue>
<oblix:AttrNewValue>phrase3</oblix:AttrNewValue>
</oblix:ChallengeValue>
</oblix:ChallengeAttribute>

<oblix:ResponseAttribute>
<oblix:AttrName>genChallengePhraseResponse</oblix:AttrName>
<oblix:AttrOperation>ADD</oblix:AttrOperation>
<oblix:ResponseValue>
<oblix:AttrNewValue>responsel</oblix:AttrNewValue>
<oblix:AttrConfirmvValue>responsel</oblix:AttrConfirmvalue>
</oblix:ResponseValue>
<oblix:ResponseValue>
<oblix:AttrNewValue>response2</oblix:AttrNewValue>
<oblix:AttrConfirmvValue>response2</oblix:AttrConfirmvalue>
</oblix:ResponseValue>
<oblix:ResponseValue>
<oblix:AttrNewValue>response3</oblix:AttrNewValue>
<oblix:AttrConfirmvValue>response3</oblix:AttrConfirmvalue>
</oblix:ResponseValue>
</oblix:ResponseAttribute>

</oblix:AttributeParams>
</oblix:params>
</oblix:request>
</soapenv:Body>
</soapenv:Envelope>

Example 2-9 illustrates a modify user operation that deletes challenges phrases and
responses.

Example 2-9 Modify User Operation That Deletes Challenge Phrases and Responses

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:oblix="http://www.oblix.com"
xmlns:soapenv="http://schemas-xmlsoap.org/soap/envelope/">

IdentityXML Functions and Parameters 2-33

User Manager Functions

<soapenv:Body>

<oblix:authentication>
<oblix:login>admin</oblix:login>
<oblix:password>oblix</oblix:password>

</oblix:authentication>

<oblix:request application="userservcenter" function="modifyUser"
version="NPWSDL1.0">
<oblix:params>
<oblix:uid>cn=userl,ou=Policy2, o=company, c=us</oblix:uid>
<oblix:noOfFields>2</0oblix:no0fFields>
<oblix:AttributeParams>

<oblix:ChallengeAttribute>
<oblix:AttrName>genChallengePhrase</oblix:AttrName>
<oblix:AttrOperation>DELETE</oblix:AttrOperation>
<oblix:ChallengeValue>
<oblix:AttrNewValue>phrasel</oblix:AttrNewValue>
</oblix:ChallengeValue>
</oblix:ChallengeAttribute>

<oblix:ResponseAttribute>
<oblix:AttrName>genChallengePhraseResponse</oblix:AttrName>
<oblix:AttrOperation>DELETE</oblix:AttrOperation>
</oblix:ResponseAttribute>

</oblix:AttributeParams>
</oblix:params>
</oblix:request>
</soapenv:Body>
</soapenv:Envelope>

Example 2-10 illustrates replacing challenge phrases and responses.

Example 2-10 Modify User Operation That Replaces Challenges and Responses

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:oblix="http://www.oblix.com"
xmlns:soapenv="http://schemas-xmlsoap.org/soap/envelope/">

<soapenv:Body>
<oblix:authentication>
<oblix:login>admin</oblix:login>
<oblix:password>oblix</oblix:password>
</oblix:authentication>
<oblix:request application="userservcenter" function="modifyUser"
version="NPWSDL1.0">

<oblix:params>
<oblix:uid>cn=userl, ou=Policy2, o=company, c=us</oblix:uid>
<oblix:noOfFields>2</0oblix:no0fFields>
<oblix:AttributeParams>

<oblix:ChallengeAttribute>
<oblix:AttrName>genChallengePhrase</oblix:AttrName>
<oblix:AttrOperation>REPLACE</oblix:AttrOperation>
<oblix:ChallengeValue>
<oblix:AttrOldvValue>phrase2</oblix:AttrOldvalue>
<oblix:AttrNewValue>phrase2_new</oblix:AttrNewValue>
</oblix:ChallengeValue>

2-34 Oracle Access Manager Developer Guide

User Manager Functions

<oblix:ChallengeValue>
<oblix:AttrOldValue>phrase3</oblix:AttrOldvalue>
<oblix:AttrNewValue>phrase3_new</oblix:AttrNewValue>
</oblix:ChallengeValue>
</oblix:ChallengeAttribute>

<oblix:ResponseAttribute>
<oblix:AttrName>genChallengePhraseResponse</oblix:AttrName>
<oblix:AttrOperation>REPLACE</oblix:AttrOperation>
<oblix:ResponseValue>
<oblix:AttrOldvalue>response2</oblix:AttrOldvalue>
<oblix:AttrNewValue>response2_new</oblix:AttrNewValue>
<oblix:AttrConfirmvValue>response2_new</oblix:AttrConfirmValue>
</oblix:ResponseValue>
<oblix:ResponseValue>
<oblix:AttrOldValue>response3</oblix:AttrOldvalue>
<oblix:AttrNewValue>response3_new</oblix:AttrNewValue>
<oblix:AttrConfirmvValue>response3_new</oblix:AttrConfirmvalue>
</oblix:ResponseValue>
</oblix:ResponseAttribute>

</oblix:AttributeParams>
</oblix:params>
</oblix:request>
</soapenv:Body>
</soapenv:Envelope>

Example 2-11 illustrates replacing all challenges and responses.

Example 2-11 Modify User Operation With a Replace_All for Challenges and Responses

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:oblix="http://www.oblix.com"
xmlns:soapenv="http://schemas-xmlsoap.org/soap/envelope/">

<soapenv:Body>
<oblix:authentication>
<oblix:login>admin</oblix:login>
<oblix:password>oblix</oblix:password>
</oblix:authentication>
<oblix:request application="userservcenter" function="modifyUser"
version="NPWSDL1.0">
<oblix:params>
<oblix:uid>cn=userl, ou=Policy2, o=company, c=us</oblix:uid>
<oblix:noOfFields>2</0oblix:no0fFields>
<oblix:AttributeParams>

<oblix:ChallengeAttribute>
<oblix:AttrName>genChallengePhrase</oblix:AttrName>
<oblix:AttrOperation>REPLACE_ALL</oblix:AttrOperation>
<oblix:ChallengeValue>
<oblix:AttrNewValue>phrasel new</oblix:AttrNewValue>
</oblix:ChallengeValue>
<oblix:ChallengeValue>
<oblix:AttrNewValue>phrase2_new</oblix:AttrNewValue>
</oblix:ChallengeValue>
<oblix:ChallengeValue>
<oblix:AttrNewValue>phrase3_new</oblix:AttrNewValue>
</oblix:ChallengeValue>
</oblix:ChallengeAttribute>

IdentityXML Functions and Parameters 2-35

User Manager Functions

<oblix:ResponseAttribute>
<oblix:AttrName>genChallengePhraseResponse</oblix:AttrName>
<oblix:AttrOperation>REPLACE_ALL</oblix:AttrOperation>
<oblix:ResponseValue>
<oblix:AttrNewValue>responsel_new</oblix:AttrNewValue>
<oblix:AttrConfirmvalue>responsel_new</oblix:AttrConfirmvValue>
</oblix:ResponseValue>
<oblix:ResponseValue>
<oblix:AttrNewValue>response2_new</oblix:AttrNewValue>
<oblix:AttrConfirmvValue>response2_new</oblix:AttrConfirmvalue>
</oblix:ResponseValue>
<oblix:ResponseValue>
<oblix:AttrNewValue>response3_new</oblix:AttrNewValue>
<oblix:AttrConfirmvalue>response3_new</oblix:AttrConfirmvalue>
</oblix:ResponseValue>
</oblix:ResponseAttribute>

</oblix:AttributeParams>
</oblix:params>
</oblix:request>
</soapenv:Body>
</soapenv:Envelope>

Request user attribute change through a workflow

Function name workflowSaveChangeAttributeRequest

Request example: <oblix:request application="userservcenter"
function="workflowSaveChangeAttributeRequest"
version="NPWSDL1.0">

Description: Use this function to request a group, organization, or user
attribute change using a workflow. The parameters starting
with OBAuxClasses apply only to groups.

WSDL file: WebPass_install_dir\oblix\ WebServices\WSDL\
um_workflowSaveChangeAttributeRequest.wsdl

Parameters
uid The DN of the user, group or organization whose attribute is to
be changed.
Rules: Required. Single value, a DN.
attrName Required. Required here means attributes that are specific to
each workflow. If an attribute supplied here is not required by
the workflow, it is ignored, and no error is generated. See
"Attribute Parameters" on page 2-5 for details.
attrOperation Required. See "Attribute Parameters" on page 2-5 for details.
attrNewValue Required. See "Attribute Parameters" on page 2-5 for details.
changeRequestAttr Use this parameter to name the attribute whose value you
want to change. This is the LDAP schema name of the
attribute, not the display name.
Rules: Required. Single-valued, a string.
changeRequestType Specifies whether this request is a provisioning or

deprovisioning request.

Rules: Required. Single value. It can be one of two values:
remove (for deprovisioning) newval (for provisioning).

2-36 Oracle Access Manager Developer Guide

User Manager Functions

Function name workflowSaveChangeAttributeRequest
NoOfFields Required. See "Attribute Parameters" on page 2-5 for details.
ObWorkflowName The name of the workflow that you want to use to create or

change the value(s) for an attribute.

Find the full DN for ObWorkflowName under the view menu
for workflow definition under the particular application.

Rules: Required. Single value, a DN.

attrOldvalue Optional/Required. Required only if the attrOperation is a
REPLACE. See "Attribute Parameters” on page 2-5 for details.

ObAuxClassesOldValues The old values of the auxiliary class names that you want to
replace. This is used only to change the name information for
auxiliary classes associated with groups. Use this parameter
once for each auxiliary class name to be removed.

If you attempt to specify a value for which you do not have
access, you will get an error message "Invalid value for
attributeObAuxClasses."

You find the values for these using the Identity System
Console, Group Manager Configuration, Group Types,
Configure Group Type Panels. Select the group, and find the
Associated ObjectClass name displayed.

Rules: Required only if the attribute is for an auxiliary class
and the ObAuxClassesOperation is a REPLACE, otherwise
ignored. Multivalued.

ObAuxClassesOperation The type of operation to perform on the attribute. This is used
only to change the name information for auxiliary classes.

Legal values are:
ADD: Add the auxiliary class name to the existing attributes.

DELETE: Delete the auxiliary class name from the existing
attributes.

REPLACE: Delete the old auxiliary class name and replace it
with the new auxiliary class name.

If you specify any other value or no value, you will get an error
message "Invalid value for attribute ObAuxClasses."

Rules: Required only if the attribute is for an auxiliary class.
Single value.

ObAuxClassesValues The name of the auxiliary class that you want to add, delete, or
replace. This is used only to change the name information for
auxiliary classes.

Use this parameter once for each auxiliary class name to be
added or removed.If you attempt to specify a value for which
you do not have access, you will get an error message "Invalid
value for attributeObAuxClasses".

To find the values for these, use the Identity System Console,
Group Manager Configuration, Group Types, Configure Group
Type Panels. Select the group, and find the Associated
ObjectClass name.

Rules: Required if the attribute is for an auxiliary class.
Multivalued. Valid values are the string names of the
configured auxiliary classes available. (Auxiliary classes are
configured through the System Console, Configure Object
Class function, see the Oracle Access Manager Administration
Guide.)

IdentityXML Functions and Parameters 2-37

User Manager Functions

Function name workflowSaveChangeAttributeRequest
ObWfComment Use this parameter to provide a comment for a step in a
workflow.

Rules: Optional. Single value, string.

Example 2-12 illustrates adding a challenge and response using a workflow.

Example 2-12 Change Attribute Workflow that Adds a Challenge Phrase and Response

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:oblix="http://www.oblix.com"
xmlns:soapenv="http://schemas-xmlsoap.org/soap/envelope/">

<soapenv:Body>

<oblix:authentication>
<oblix:login>admin</oblix:login>
<oblix:password>oblix</oblix:password>

</oblix:authentication>

<oblix:request application="userservcenter"
function="workflowSaveChangeAttributeRequest" version="NPWSDL1.0">
<oblix:params>
<oblix:uid>cn=userl, ou=Policy2, o=company, c=us</oblix:uid>
<oblix:ObWorkflowName>obworkflowid=94400828cd0b4cb494e04a8eab0ald2f, obcontainerId=
workflowDefinitions, 0=0blix, o=company, c=us</oblix:0bWorkflowName>
<oblix:changeRequestAttr>genChallengePhrase</oblix:changeRequestAttr>
<oblix:changeRequestType>newval</oblix:changeRequestType>
<oblix:noOfFields>2</oblix:noOfFields>
<oblix:AttributeParams>

<oblix:ChallengeAttribute>
<oblix:AttrName>genChallengePhrase</oblix:AttrName>
<oblix:AttrOperation>ADD</oblix:AttrOperation>
<oblix:ChallengeValue>
<oblix:AttrNewValue>phrasel</oblix:AttrNewValue>
</oblix:ChallengeValue>
<oblix:ChallengeValue>
<oblix:AttrNewValue>phrase2</oblix:AttrNewValue>
</oblix:ChallengeValue>
<oblix:ChallengeValue>
<oblix:AttrNewValue>phrase3</oblix:AttrNewValue>
</oblix:ChallengeValue>
</oblix:ChallengeAttribute>

<oblix:ResponseAttribute>
<oblix:AttrName>genChallengePhraseResponse</oblix:AttrName>
<oblix:AttrOperation>ADD</oblix:AttrOperation>
<oblix:ResponseValue>
<oblix:AttrNewValue>responsel</oblix:AttrNewValue>
<oblix:AttrConfirmvalue>responsel</oblix:AttrConfirmvalue>
</oblix:ResponseValue>
<oblix:ResponseValue>
<oblix:AttrNewValue>response2</oblix:AttrNewValue>
<oblix:AttrConfirmvalue>response2</oblix:AttrConfirmvalue>
</oblix:ResponseValue>
<oblix:ResponseValue>
<oblix:AttrNewValue>response3</oblix:AttrNewValue>
<oblix:AttrConfirmValue>response3</oblix:AttrConfirmvalue>

2-38 Oracle Access Manager Developer Guide

User Manager Functions

</oblix:ResponseValue>
</oblix:ResponseAttribute>

</oblix:AttributeParams>
</oblix:params>
</oblix:request>
</soapenv:Body>
</soapenv:Envelope>

Example 2-13 illustrates replacing a challenge phrase and response using a workflow.

Example 2-13 Workflow that Replaces Challenge Phrases and Responses

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:oblix="http://www.oblix.com"
xmlns:soapenv="http://schemas-xmlsoap.org/soap/envelope/">

<soapenv:Body>
<oblix:authentication>
<oblix:login>admin</oblix:login>
<oblix:password>oblix</oblix:password>
</oblix:authentication>
<oblix:request application="userservcenter"
function="workflowSaveChangeAttributeRequest" version="NPWSDL1.0">
<oblix:params>
<oblix:uid>cn=userl, ou=Policy2, o=company, c=us</oblix:uid>

<oblix:ObWorkflowName>obworkflowid=94400828cd0bdcb494e04a8eab0ald2f, obcontainerId=
workflowDefinitions, 0=0blix, o=company, c=us</oblix:0bWorkflowName>
<oblix:changeRequestAttr>genChallengePhrase</oblix:changeRequestAttr>
<oblix:changeRequestType>newval</oblix:changeRequestType>
<oblix:noOfFields>2</oblix:no0OfFields>

<oblix:AttributeParams>
<oblix:ChallengeAttribute>
<oblix:AttrName>genChallengePhrase</oblix:AttrName>
<oblix:AttrOperation>REPLACE</oblix:AttrOperation>
<oblix:ChallengeValue>
<oblix:AttrOldvValue>phrase2</oblix:AttrOldvalue>
<oblix:AttrNewValue>phrase2_new</oblix:AttrNewValue>
</oblix:ChallengeValue>
<oblix:ChallengevValue>
<oblix:AttrOldvValue>phrase3</oblix:AttrOldvalue>
<oblix:AttrNewValue>phrase3_new</oblix:AttrNewValue>
</oblix:ChallengeValue>
</oblix:ChallengeAttribute>

<oblix:ResponseAttribute>
<oblix:AttrName>genChallengePhraseResponse</oblix:AttrName>
<oblix:AttrOperation>REPLACE</oblix:AttrOperation>
<oblix:ResponseValue>
<oblix:AttrOldvalue>response2</oblix:AttrOldvalue>
<oblix:AttrNewValue>response2_new</oblix:AttrNewValue>
<oblix:AttrConfirmvValue>response2_new</oblix:AttrConfirmValue>
</oblix:ResponseValue>
<oblix:ResponseValue>
<oblix:AttrOldvValue>response3</oblix:AttrOldvalue>
<oblix:AttrNewValue>response3_new</oblix:AttrNewValue>
<oblix:AttrConfirmvValue>response3_new</oblix:AttrConfirmvalue>
</oblix:ResponseValue>

IdentityXML Functions and Parameters 2-39

User Manager Functions

</oblix:ResponseAttribute>

</oblix:AttributeParams>
</oblix:params>
</oblix:request>
</soapenv:Body>
</soapenv:Envelope>

Example 2-14 illustrates replacing all challenge phrases and responses using a
workflow.

Example 2-14 Workflow That Replaces All Challenge Phrases and Responses

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:oblix="http://www.oblix.com"
xmlns:soapenv="http://schemas-xmlsoap.org/soap/envelope/">

<soapenv:Body>
<oblix:authentication>
<oblix:login>admin</oblix:login>
<oblix:password>oblix</oblix:password>
</oblix:authentication>
<oblix:request application="userservcenter"
function="workflowSaveChangeAttributeRequest" version="NPWSDL1.0">
<oblix:params>
<oblix:uid>cn=userl, ou=Policy2, o=company, c=us</oblix:uid>
<oblix:ObWorkflowName>obworkflowid=94400828cd0b4cb494e04a8eab0ald2f, obcontainerId=
workflowDefinitions, 0=0blix, o=company, c=us</oblix:0bWorkflowName>

<oblix:changeRequestAttr>genChallengePhrase</oblix:changeRequestAttr>
<oblix:changeRequestType>newval</oblix:changeRequestType>
<oblix:noOfFields>2</oblix:noOfFields>

<oblix:AttributeParams>

<oblix:ChallengeAttribute>
<oblix:AttrName>genChallengePhrase</oblix:AttrName>
<oblix:AttrOperation>REPLACE_ALL</oblix:AttrOperation>
<oblix:ChallengeValue>
<oblix:AttrNewValue>phrasel new</oblix:AttrNewValue>
</oblix:ChallengeValue>
<oblix:ChallengeValue>
<oblix:AttrNewValue>phrase2_new</oblix:AttrNewValue>
</oblix:ChallengeValue>
<oblix:ChallengeValue>
<oblix:AttrNewValue>phrase3_new</oblix:AttrNewValue>
</oblix:ChallengeValue>
</oblix:ChallengeAttribute>

<oblix:ResponseAttribute>
<oblix:AttrName>genChallengePhraseResponse</oblix:AttrName>
<oblix:AttrOperation>REPLACE_ALL</oblix:AttrOperation>
<oblix:ResponseValue>
<oblix:AttrNewValue>responsel new</oblix:AttrNewValue>
<oblix:AttrConfirmvalue>responsel_new</oblix:AttrConfirmvalue>
</oblix:ResponseValue>
<oblix:ResponseValue>
<oblix:AttrNewValue>response2_new</oblix:AttrNewValue>
<oblix:AttrConfirmvValue>response2_new</oblix:AttrConfirmvalue>
</oblix:ResponseValue>
<oblix:ResponseValue>

2-40 Oracle Access Manager Developer Guide

User Manager Functions

<oblix:AttrNewValue>response3_new</oblix:AttrNewValue>
<oblix:AttrConfirmvValue>response3_new</oblix:AttrConfirmvValue>
</oblix:ResponseValue>
</oblix:ResponseAttribute>

</oblix:AttributeParams>
</oblix:params>
</oblix:request>
</soapenv:Body>
</soapenv:Envelope>

Create User Using a Workflow

Function name

workflowSaveCreateProfile

Request example:

<oblix:request application="userservcenter"
function="workflowSaveCreateProfile"
version="NPWSDL1.0">

Description:

Use this function to create a new user, group, or organization
using a workflow.The parameters starting with
OBAuxClasses apply only to groups.

WSDL file:

WebPass_install_dir\oblix \ WebServices\WSDL\
um_workflowSaveCreateProfile.wsdl

Parameters

ObDomainName

The name of the domain where you want to create a new
entry.

Rules: Required. Single value, a DN. The domain name must
be defined under the workflow referred to by the
ObWorkflowName parameter.

ObWorkflowName

The name of the workflow that you want to use to create or
change the value(s) for an attribute.

Find the full DN for ObWorkflowName under the view menu
for workflow definition under the particular application.

Rules: Required. Single value, a DN.

NoOfFields

Required. See "Attribute Parameters" on page 2-5 for details.

attrName

Required. Required here means attributes that are specific to
each workflow. If an attribute supplied here is not required
by the workflow, it is ignored, and no error is generated. See
"Attribute Parameters" on page 2-5 for details.

attrOperation

Required. See "Attribute Parameters" on page 2-5 for details.

attrNewValue

Required. See "Attribute Parameters" on page 2-5 for details.

attrOldvalue

Optional/Required. Required only if the attrOperation is a
REPLACE.

IdentityXML Functions and Parameters 2-41

User Manager Functions

Function name workflowSaveCreateProfile

ObAuxClassesOldvValues The old values of the auxiliary class names that you want to
replace. This is used only to change the name information for
auxiliary classes associated with groups. Use this parameter
once for each auxiliary class name to be removed.

If you attempt to specify a value for which you do not have
access, you will get an error message "Invalid value for
attributeObAuxClasses."

You find the values for these using the Identity System
Console, Group Manager Configuration, Group Types,
Configure Group Type Panels. Select the group, and find the
Associated ObjectClass name displayed.

Rules: Required only if the attribute is for an auxiliary class
and the ObAuxClassesOperation is a REPLACE, otherwise
ignored. Multivalued.

ObAuxClassesOperation The type of operation to perform on the attribute. This is used
only to change the name information for auxiliary classes.

Legal values are:
ADD: Add the auxiliary class name to the existing attributes.

DELETE: Delete the auxiliary class name from the existing
attributes.

REPLACE: Delete the old auxiliary class name and replace it
with the new auxiliary class name.

If you specify any other value or no value, you will get an
error message "Invalid value for attribute ObAuxClasses."

Rules: Required if the attribute is for an auxiliary class. Single
value.

ObAuxClassesValues The name of the auxiliary class to add, delete, or replace. This
is used only to change the name information for auxiliary
classes.

Use this parameter once for each auxiliary class name to be
added or removed.If you attempt to specify a value for which
you do not have access, you get an error message "Invalid
value for attributeObAuxClasses."

To find the values, use the Identity System Console, Group
Manager Configuration, Group Types, Configure Group Type
Panels. Select the group, and find the Associated ObjectClass
name.

Rules: Required if the attribute is for an auxiliary class.
Multivalued. Valid values are the string names of the
configured auxiliary classes available. Auxiliary classes are
configured through the Administration Console's configure
object classes function. See the Oracle Access Manager
Administration Guide for details.

ObWfComment Provides a comment for a step in a workflow.

Rules: Optional. Single value, string.

Example 2-15 illustrates adding challenges and responses using a workflow.

Example 2-15 Create User Workflow That Adds Challenge Phrases and Responses

<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope xmlns:oblix="http://www.oblix.com"
xmlns:soapenv="http://schemas-xmlsoap.org/soap/envelope/">
<soapenv:Body>

2-42 Oracle Access Manager Developer Guide

User Manager Functions

<oblix:authentication>
<oblix:login>admin</oblix:login>
<oblix:password>oblix</oblix:password>
</oblix:authentication>
<oblix:request application="userservcenter" function="workflowSaveCreateProfile"
version="NPWSDL1.0">
<oblix:params>

<oblix:ObWorkflowName>obworkflowid=5c9ad30117f44a3e960dad321a84b139, obcontainerId=

workflowDefinitions, 0=0blix, o=company, c=us</oblix:0bWorkflowName>
<oblix:ObDomainName>ou=Policy2, o=company, c=us</oblix:0ObDomainName>
<oblix:noOfFields>6</oblix:noOfFields>

<oblix:AttributeParams>

<oblix:GenericAttribute>

<oblix:AttrName>cn</oblix:AttrName>

<oblix:AttrOperation>ADD</oblix:AttrOperation>
<oblix:AttrNewValue>userl0l</oblix:AttrNewValue>

</oblix:GenericAttribute>

<oblix:GenericAttribute>

<oblix:AttrName>sn</oblix:AttrName>

<oblix:AttrOperation>ADD</oblix:AttrOperation>
<oblix:AttrNewValue>userl01lL</oblix:AttrNewValue>

</oblix:GenericAttribute>

<oblix:GenericAttribute>

<oblix:AttrName>uid</oblix:AttrName>

<oblix:AttrOperation>ADD</oblix:AttrOperation>
<oblix:AttrNewValue>userl0l</oblix:AttrNewValue>

</oblix:GenericAttribute>

<oblix:PasswordAttribute>
<oblix:AttrName>userPassword</oblix:AttrName>
<oblix:AttrOperation>ADD</oblix:AttrOperation>
<oblix:AttrNewValue>oblix</oblix:AttrNewValue>
<oblix:AttrConfirmvalue>oblix</oblix:AttrConfirmvalue>
</oblix:PasswordAttribute>

<oblix:ChallengeAttribute>
<oblix:AttrName>genChallengePhrase</oblix:AttrName>
<oblix:AttrOperation>ADD</oblix:AttrOperation>
<oblix:ChallengeValue>
<oblix:AttrNewValue>phrasel</oblix:AttrNewValue>
</oblix:ChallengeValue>
<oblix:ChallengeValue>
<oblix:AttrNewValue>phrase2</oblix:AttrNewValue>
</oblix:ChallengeValue>
<oblix:ChallengeValue>
<oblix:AttrNewValue>phrase3</oblix:AttrNewValue>
</oblix:ChallengeValue>
</oblix:ChallengeAttribute>

<oblix:ResponseAttribute>
<oblix:AttrName>genChallengePhraseResponse</oblix:AttrName>
<oblix:AttrOperation>ADD</oblix:AttrOperation>
<oblix:ResponseValue>
<oblix:AttrNewValue>responsel</oblix:AttrNewValue>
<oblix:AttrConfirmvValue>responsel</oblix:AttrConfirmvValue>
</oblix:ResponseValue>
<oblix:ResponseValue>
<oblix:AttrNewValue>response2</oblix:AttrNewValue>

IdentityXML Functions and Parameters 2-43

User Manager Functions

<oblix:AttrConfirmValue>response2</oblix:AttrConfirmvalue>
</oblix:ResponseValue>
<oblix:ResponseValue>
<oblix:AttrNewValue>response3</oblix:AttrNewValue>
<oblix:AttrConfirmvalue>response3</oblix:AttrConfirmvalue>
</oblix:ResponseValue>
</oblix:ResponseAttribute>

</oblix:AttributeParams>
</oblix:params>
</oblix:request>
</soapenv:Body>
</soapenv:Envelope>

Self-Registration Using a Workflow

Function nhame workflowSelfRegistrationSave

Request example: <oblix:request application="userservcenter"
function="workflowSelfRegistrationSave"
version="NPWSDL1.0">

Description: Adds yourself to an organization or as a user.

WSDL file: WebPass_install_dir\oblix\ WebServices\WSDL\
um_workflowSelfRegistrationSave.wsdl

Parameters

ObDomainName The name of the domain in which you want to create a new entry.

The domain name must be defined under the workflow referred to
by the ObWorkflowName parameter.

Rules: Required. Single value, a DN.

ObWorkflowName The name of the workflow that you want to use to create or change
the value(s) for an attribute.

Find the full DN for ObWorkflowName under the view menu for
workflow definition under the particular application.

Rules: Required. Single value, a DN.

attrName Required. Required here means attributes that are specific to each
workflow. If an attribute supplied here is not required by the
workflow, it is ignored, and no error is generated. See "Attribute
Parameters" on page 2-5 for details.

attrOperation Required. See "Attribute Parameters" on page 2-5 for details.

attrNewValue Required. See "Attribute Parameters" on page 2-5 for details.

NoOfFields Required. See "Attribute Parameters" on page 2-5 for details.

attrOldvalue Optional/Required. Required only if the attrOperation is a
REPLACE.

ObWfComment Provides a comment for a step in a workflow.

Rules: Optional. Single value, string.

Example 2-16 illustrates adding challenges and responses using a self-registration
workflow.

Example 2-16 Self-Registration Workflow That Adds Challenge Phrases and Responses

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:oblix="http://www.oblix.com"

2-44 Oracle Access Manager Developer Guide

User Manager Functions

xmlns:soapenv="http://schemas-xmlsoap.org/soap/envelope/">

<soapenv:Body>
<oblix:authentication>
<oblix:login>admin</oblix:login>
<oblix:password>oblix</oblix:password>
</oblix:authentication>
<oblix:request application="userservcenter"
function="workflowSelfRegistrationSave" version="NPWSDL1.0">
<oblix:params>

<oblix:ObWorkflowName>obworkflowid=3a94939d048£42f0b039¢c3d978c10a2f, obcontainerId=
workflowDefinitions, 0=0blix, o=company, c=us</oblix:0bWorkflowName>
<oblix:ObDomainName>ou=Policy2, o=company, c=us</oblix:0bDomainName>
<oblix:noOfFields>6</oblix:no0OfFields>

<oblix:AttributeParams>

<oblix:GenericAttribute>
<oblix:AttrName>cn</oblix:AttrName>
<oblix:AttrOperation>ADD</oblix:AttrOperation>
<oblix:AttrNewValue>user102</oblix:AttrNewValue>
</oblix:GenericAttribute>
<oblix:GenericAttribute>
<oblix:AttrName>sn</oblix:AttrName>
<oblix:AttrOperation>ADD</oblix:AttrOperation>
<oblix:AttrNewValue>user102L</oblix:AttrNewValue>
</oblix:GenericAttribute>
<oblix:GenericAttribute>
<oblix:AttrName>uid</oblix:AttrName>
<oblix:AttrOperation>ADD</oblix:AttrOperation>
<oblix:AttrNewValue>userl102</oblix:AttrNewValue>
</oblix:GenericAttribute>

<oblix:PasswordAttribute>
<oblix:AttrName>userPassword</oblix:AttrName>
<oblix:AttrOperation>ADD</oblix:AttrOperation>
<oblix:AttrNewValue>oblix</oblix:AttrNewValue>
<oblix:AttrConfirmvalue>oblix</oblix:AttrConfirmvalue>
</oblix:PasswordAttribute>

<oblix:ChallengeAttribute>
<oblix:AttrName>genChallengePhrase</oblix:AttrName>
<oblix:AttrOperation>ADD</oblix:AttrOperation>
<oblix:ChallengeValue>
<oblix:AttrNewValue>phrasel</oblix:AttrNewValue>
</oblix:ChallengeValue>
<oblix:ChallengeValue>
<oblix:AttrNewValue>phrase2</oblix:AttrNewValue>
</oblix:ChallengeValue>
<oblix:ChallengeValue>
<oblix:AttrNewValue>phrase3</oblix:AttrNewValue>
</oblix:ChallengeValue>
</oblix:ChallengeAttribute>

<oblix:ResponseAttribute>
<oblix:AttrName>genChallengePhraseResponse</oblix:AttrName>
<oblix:AttrOperation>ADD</oblix:AttrOperation>
<oblix:ResponseValue>
<oblix:AttrNewValue>responsel</oblix:AttrNewValue>
<oblix:AttrConfirmvalue>responsel</oblix:AttrConfirmvalue>

IdentityXML Functions and Parameters 2-45

User Manager Functions

</oblix:ResponseValue>

<oblix:ResponseValue>
<oblix:AttrNewValue>response2</oblix:AttrNewValue>
<oblix:AttrConfirmvalue>response2</oblix:AttrConfirmvalue>

</oblix:ResponseValue>

<oblix:ResponseValue>
<oblix:AttrNewValue>response3</oblix:AttrNewValue>
<oblix:AttrConfirmvalue>response3</oblix:AttrConfirmvalue>

</oblix:ResponseValue>

</oblix:ResponseAttribute>

</oblix:AttributeParams>
</oblix:params>
</oblix:request>
</soapenv:Body>
</soapenv:Envelope>

Deactivate User Using a Workflow

Function name workflowDeactivateUserSave

Request example: <oblix:request application="userservcenter"
function="workflowDeactivateUserSave"
version="NPWSDL1.0">

Description: Deactivates a user using a workflow. Information for deactivated
users is kept in the directory but not shown in search results.

WSDL file: WebPass_install_dir\ oblix\ WebServices\WSDL\
um_workflowDeactivateUserSave.wsdl

Parameters

uid The DN of the user to be deactivated.
Rules: Required. Single value, a DN.

ObDomainName The name of the domain in which you want to create a new entry.

The domain name must be defined under the workflow referred to
by the ObWorkflowName parameter.

Rules: Required. Single value, a DN.

ObWorkflowName The name of the workflow that you want to use to create or change
the value(s) for an attribute.

Find the full DN for ObWorkflowName under the view menu for
workflow definition under the particular application.

Rules: Required. Single value, a DN.

attrName Required. Here, required means attributes that are specific to each
workflow. If an attribute supplied here is not required by the
workflow, it is ignored, and no error is generated. See "Attribute
Parameters" on page 2-5 for details.

attrOperation Required. See "Attribute Parameters" on page 2-5 for details.

attrNewValue Required. See "Attribute Parameters" on page 2-5 for details.

NoOfFields Required. See "Attribute Parameters" on page 2-5 for details.

attroldvalue Optional/Required. Required only if the attrOperation is a
REPLACE.

ObWfComment Provides a comment for a step in a workflow.

Rules: Optional. Single value, string.

2-46 Oracle Access Manager Developer Guide

User Manager Functions

View Deactivated User

To be able to view a deactivated user, you need to be either the Master Administrator
or have delegated administration rights for grant and workflow monitoring of the
domain where the target user exists. That is, you should be able to monitor workflow
requests in the target user domain. Then you can view a deactivated user in that
domain using the view function. See "View user attributes" on page 2-31 for details.

Search Deactivated Users

Function name

searchDeactivatedUsers

Request example:

<oblix:request application="userservcenter"
function="searchDeactivatedUsers"
version="NPWSDL1.0">

Description:

Search for deactivated users, based on certain criteria. Only one
search condition is accepted. You can search for deactivated users
based on one condition only.

To be able to search for deactivated users, you need to be either the
Master Administrator or have delegated administration rights to
GRANT+WORKFLOW MONITORING to the domain where the
target users exist. That is, you should be able to monitor workflow
requests in the target users' domain. Then you can search for
deactivated users in that domain using the searchDeactivatedUsers
function. One difference is that the result attributes are those
specified in the search results table so you cannot specify the result
attributes through attrName as you can do in a normal search.

WSDL file:

WebPass_install_dir\ oblix\ WebServices\WSDL\
um_searchDeactivatedUsers.wsdl

Parameters

SearchAttr

Required. See "Search Parameters" on page 2-3 for details.

SearchOperation

Required. See "Search Parameters" on page 2-3 for details.

SearchString

Required. See "Search Parameters" on page 2-3 for details.

attrname

Optional. If no value is given, the default table view attributes are
used See "Attribute Parameters" on page 2-5 for details.

noOfFields

Optional. See "Attribute Parameters" on page 2-5 for details.

noOfRecords

Optional. A maximum number of entries to be returned in the search
results.This, and its default value, is overridden by the
showAllResults parameter.

Rules: Optional. Single value, an integer value >=1.

Default: A value obtained from the defaultDisplayResultVal
parameter in the oblixbaseparams.xml catalog. Otherwise this value
is obtained from the custom cookie.

showAllResults

Returns all results of the search to the user. If the parameter value is
true, it overrides the value of the noOfRecords parameter.

Rules: Optional. Single value, Boolean, valued true or false.

Default: False, meaning return results up to the limit imposed by the
noOfRecords parameter.

SortBy

What attribute to use to sort the results.
Rules: Optional. Single value.

Default: if no value is specified, the class attribute of the structural
objectclass of the tab specified by tab_id is used.

IdentityXML Functions and Parameters 2-47

User Manager Functions

Function name

searchDeactivatedUsers

sortOrder The sort order, ascending or descending. There are two possible
values: ascending, descending.
Rules: Optional. Single value.
Default: ascending

startFrom Use this parameter for a long list of search results, to skip over a

selected number of items and start the list with a specified item. For
example, if 100 entries were found by the search, entering a value of
80 for this parameter gives a response showing only items 80 through
100.

Rules: Optional. Single value, integer.

Default: 1, meaning to start displaying from the beginning of the
search results list.

Reactivate User Using a Workflow

Function name

workflowReactivateUserSave

Request example:

<oblix:request application="userservcenter"
function="workflowReactivateUserSave"
version="NPWSDL1.0">

Description: Reactivates a user using a workflow. Information for reactivated
users is kept in the directory but not shown in search results.

WSDL file: WebPass_install_dir\oblix \ WebServices\WSDL\
um_workflowReactivateUserSave.wsdl

Parameters

uid The DN of the user to be reactivated.

Rules: Required. Single value, a DN.

ObDomainName The name of the domain in which you want to create a new entry.
The domain name must be defined under the workflow referred to
by the ObWorkflowName parameter.

Rules: Required. Single value, a DN.

ObWorkflowName The name of the workflow that you want to use to create or change
the value(s) for an attribute.

Find the full DN for ObWorkflowName under the view menu for
workflow definition under the particular application.
Rules: Required. Single value, a DN.

attrName Required. Here, required means attributes that are specific to each
workflow. If an attribute supplied here is not required by the
workflow, it is ignored, and no error is generated. See "Attribute
Parameters" on page 2-5 for details.

attrOperation Required. See "Attribute Parameters" on page 2-5 for details.

attrNewValue Required. See "Attribute Parameters" on page 2-5 for details.

NoOfFields Required. See "Attribute Parameters" on page 2-5 for details.

attrOldvalue Optional/Required. Required only if the attrOperation is a
REPLACE.

ObWfComment Provides a comment for a step in a workflow.

Rules: Optional. Single value, string.

2-48 Oracle Access Manager Developer Guide

Group Manager Functions

Group Manager Functions

If you are an administrator, the Group Manager enables you to create or delete groups,
and enables users to subscribe or unsubscribe from groups. The Group Manager
typically enables end users to view groups and to subscribe to membership in a group.
The groups that a person can view and subscription rights are granted by a Master
administrator.

The following functions allow you to programmatically access the Group Manager
application. Note that all functions follow a similar syntax:

<oblix:request application="groupservcenter" function="name" version="version">
For example:

<oblix:request application="groupservcenter" function="canIViewGroupProfile"
version="NPWSDL1.0">

Note: The version tag is required if you are using IdentityXML with
Oracle Access Manager 6.5 and higher versions.

For documentation of the pre-6.5 Identity XML version tag, see the
following:

http://www.oracle.com/technology/

Functions to Test for Attribute Permissions

The following functions provide a yes or no response as to whether you or another
user have read, write, delegate, and notify permissions set for a particular attribute.

Can | view a group's profile

Function nhame canlViewGroupProfile

Request example: <oblix:request application="groupservcenter"
function="canIViewGroupProfile"
version="NPWSDL1.0">

Description: Verifies that you can view a group’s profile.

WSDL file: WebPass_install_dir\ oblix\ WebServices\WSDL\
gm_canIViewGroupProfile.wsdl

Parameters

uid The DN of the group whose profile you want to view.

Rules: Required. Single value, a DN.

Example 2-17 illustrates testing the view group profile function.

Example 2-17 Example of Testing the Ability to View a Group Profile

<?xml version="1.0"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas-xmlsoap.org/soap/envelope/">

<SOAP-ENV:Body>
<oblix:request application="groupservcenter"

function="canIViewGroupProfile" version="NPWSDL1.0">

<oblix:params>

IdentityXML Functions and Parameters 2-49

Group Manager Functions

<oblix:uid>cn=Marketing Team, ou=Marketing, o=Company, c=US
</oblix:uid>

</oblix:params>

</oblix:request>

</SOAP-ENV : Body>
</SOAP-ENV: Envelope>

Can | view an attribute in a group's profile

Function hame canlViewGroupProfileAttr

Request example: <oblix:request application="groupservcenter"
function="canIViewGroupProfileAttr"
version="NPWSDL1.0">

Description: Verifies that you can view a particular attribute in a group’s
profile.

WSDL file: WebPass_install_dir\oblix \WebServices\WSDL\
gm_canIViewGroupProfileAttr.wsdl

Parameters

uid The DN of the group whose attribute you want to view.

Rules: Required. Single value, a DN.

targetAttribute The schema name (not the display name) for the desired
attribute.

Rules: Required. Single value, a string.

Can | modify an attribute in a group's profile

Function name canlModifyGroupProfileAttr

Request example: <oblix:request application="groupservcenter"
function="canIModifyGroupProfileAttr"
version="NPWSDL1.0">

Description: Verifies that you can change a particular attribute in a group’s
profile.

WSDL file: WebPass_install_dir\oblix\ WebServices\WSDL\
gm_canIModifyGroupProfileAttr.wsdl

Parameters

uid The DN of the group whose attribute you want to change.

Rules: Required. Single value, a DN.

targetAttribute The schema name (not the display name) for the desired
attribute.

Rules: Required. Single value, a string.

Can | request modification through a workflow of an attribute in a group profile

Function nhame canlRequestGroupAttrModification

Request example: <oblix:request application="groupservcenter"
function="canIRequestGroupAttrModification"
version="NPWSDL1.0">

2-50 Oracle Access Manager Developer Guide

Group Manager Functions

Function name canlRequestGroupAttrModification

Description: Verifies that you can change a particular attribute in a group’s
profile, using a workflow.

WSDL file: WebPass_install_dir\oblix\ WebServices\WSDL\
gm_canIRequestGroupAttrModification.wsdl

Parameters

uid The DN of the group whose attribute you want to change.

Rules: Required. Single value, a DN.

targetAttribute The schema name (not the display name) for the desired
attribute.

Rules: Required. Single value, a string.

Can | create a new group

Function name canlCreateGroup

Request example: <oblix:request application="groupservcenter"
function="canICreateGroup" version="NPWSDL1.0">

Description: Verifies that you can create a new group.

WSDL file: WebPass_install_dir\oblix\ WebServices\WSDL\
gm_canICreateGroup.wsdl

Parameters

ObDomainName A subtree within which a test is being requested.
Rules: Optional. Single value, a DN.
Default: If no value is provided, the Identity System checks to
see if you have the tested rights in any domain.

Objectclass The auxiliary object class(es), if any, within which the group is to

be created. This applies only to Group Manager, where the
auxiliary object classes correspond to the group types.

You find the values for these using Identity System Console,
Group Manager Configuration, Group Types, Configure Group
Type Panels. Select the group, and find the Associated
ObjectClass name displayed.

Rules: Optional. Multivalued.

Can | delete an existing group

Function name canlDeleteGroup

Request example: <oblix:request application="groupservcenter"
function="canIDeleteGroup" version="NPWSDL1.0">

Description: Verifies that you can delete an existing group.

WSDL file: WebPass_install_dir\oblix\ WebServices\WSDL\
gm_canIDeleteGroup.wsdl

Parameters

uid The DN of an entry you want to modify.

Rules: Required. Single value, a DN.

IdentityXML Functions and Parameters 2-51

Group Manager Functions

Can | subscribe to a group

Function name canlSubscribeToGroup

Request example: <oblix:request application="groupservcenter"
function="canISubscribetoGroup"
version="NPWSDL1.0">

Description: Verifies that you can subscribe to a specific group.

WSDL file: WebPass_install_dir\ oblix\ WebServices\WSDL\
gm_canISubscribeToGroup.wsdl

Parameters

uid The DN of the group to which you want to subscribe.

Rules: Required. Single value, a DN.

Can | unsubscribe from a group

Function name canlUnsubscribeFromGroup

Request example: <oblix:request application="groupservcenter"
function="canIUnSubscribeFromGroup"
version="NPWSDL1.0">

Description: Verifies that you can unsubscribe from a specific group.

WSDL file: WebPass_install_dir\oblix\ WebServices\WSDL\
gm_canIUnSubscribeFromGroup.wsdl

Parameters

uid The DN of the group from which you want to unsubscribe.

Rules: Required. Single value, a DN.

Am | a member of a group

Function name amlAMember

Request example: <oblix:request application="groupservcenter"
function="amIAMember" version="NPWSDL1.0">

Description: Use this function to determine if the logged in user is a member
of any group. It checks for static membership by default. If you
also want to test the nested or dynamic membership, you need to
use the optional flags as described in the "Parameters" section of
this table. Use the function memberOfAGroup to determine
third-person group membership.

WSDL file: WebPass_install_dir\ oblix\ WebServices\WSDL\
gm_amIAMember.wsdl

Parameters
uid The DN of the entry you want to query.
Rules: Required. Single value, a DN.
checkNested Set this parameter to true to check nested groups for membership.

Rules: Optional. Single-valued, a flag.
Default: false.

2-52 Oracle Access Manager Developer Guide

Group Manager Functions

Function name amlAMember
checkDynamic Set this parameter to true to check dynamic groups for
membership.

Rules: Optional. Single-valued, a flag.
Default: false.

Can a user view a group's profile

Function name canUserViewGroupProfile

Request example: <oblix:request application="groupservcenter"
function="canUserViewGroupProfile"
version="NPWSDL1.0">

Description: Verifies that a non-logged in user can view a group’s profile.

WSDL file: WebPass_install_dir\oblix\ WebServices\WSDL\
gm_canUserViewGroupProfile.wsdl

Parameters

uid The DN of the group whose profile you want to view.

Rules: Required. Single value, a DN.

proxysourceuid The DN for a non-logged-in user (proxy user) whose access rights
are being tested.

Though it is outside the intent of functions using this parameter,
DNs other than those of users can be used.

Rules: Required. Single value, a DN.

Can a user view an attribute in a group's profile

Function name canUserViewGroupProfileAttr

Request example: <oblix:request application="groupservcenter"
function="canUserViewGroupProfileAttr"
version="NPWSDL1.0">

Description: Verifies that a non-logged in user can view a particular attribute
in a group’s profile.

WSDL file: WebPass_install_dir\oblix\ WebServices\WSDL\
gm_canUserViewGroupProfileAttr.wsdl

Parameters

uid The DN of the group whose attribute you want to view.

Rules: Required. Single value, a DN.

proxysourceuid The DN for a non-logged-in user (proxy user) whose access rights
are being tested.

Though it is outside the intent of functions using this parameter,
DNs other than those of users can be used.

Rules: Required. Single value, a DN.

targetAttribute The schema name (not the display name) for the desired attribute.

Rules: Required. Single value, a string.

IdentityXML Functions and Parameters 2-53

Group Manager Functions

Can a user modify an attribute in a group profile using a workflow

Function name

canUserRequestGroupAttrModification

Request example:

<oblix:request application="groupservcenter"
function="canUserRequestGroupAttrModification"
version="NPWSDL1.0">

Description: Verifies that a non-logged in user can request a change to a
particular attribute in a group’s profile, using a workflow.

WSDL file: WebPass_install_dir\oblix\ WebServices\WSDL\
gm_canUserRequestGroupAttrModification.wsdl

Parameters

uid The DN of the group whose attribute you want to modify.
Rules: Required. Single value, a DN.

proxysourceuid The DN for a user (proxy user) whose access rights are being
tested.
Rules: Required. Single value, a DN.

targetAttribute The schema name (not the display name) for the desired attribute.

Rules: Required. Single value, a string.

Can a user create a new group

Function name

canUserCreateGroup

Request example:

<oblix:request application="groupservcenter"
function="canUserCreateGroup"
version="NPWSDL1.0">

Description: Verifies that a non-logged in user can create a new group.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
gm_canUserCreateGroup.wsdl

Parameters

proxysourceuid The DN for a user (proxy user) whose rights are being tested.
Rules: Required. Single value, a DN.

ObDomainName A subtree within which a test is being requested.

Rules: Optional. Single value, a DN.

Default: if no value is provided, the Identity System checks to see
if you have the tested rights in any domain.

Can a user delete an existing group

Function name

canUserDeleteGroup

Request example:

<oblix:request application="groupservcenter"
function="canUserDeleteGroup"
version="NPWSDL1.0">

Description: Verifies that a non-logged in user can delete an existing group.

WSDL file: WebPass_install_dir\oblix\ WebServices\WSDL\
gm_canUserDeleteGroup.wsdl

Parameters

2-54 Oracle Access Manager Developer Guide

Group Manager Functions

Function name canUserDeleteGroup

proxysourceuid The DN for a non-logged-in user (proxy user) whose access rights
are being tested.

Rules: Required. Single value, a DN.

uid The DN of the entry.
Rules: Optional. Single value, a DN.

Is this person a member of a group

Function name memberOfAGroup

Request example: <oblix:request application="groupservcenter"
function="memberOfAGroup" version="NPWSDL1.0">

Description: Third-person IdentityXML request to check a person's
membership to a particular group. It checks for static
membership by default. If you also want to test the nested or
dynamic membership, you need to use the optional flags as
described in the "Parameters" section of this table. You will need
to have view access for the dynamic filter attribute.

WSDL file: WebPass_install_dir\ oblix\ WebServices\WSDL\
gm_memberOfAGroup.wsdl

Parameters

proxysourceuid The DN for a non-logged-in user (proxy user) whose access rights
are being tested.

Rules: Required. Single value, a DN.

uid The DN of the entry.
Rules: Required. Single value, a DN.

checkNested Set this parameter to true to check nested groups for
membership.

Rules: Optional. Single-valued, a flag.
Default: false

checkDynamic Set this parameter to true to check dynamic groups for
membership.

Rules: Optional. Single-valued, a flag.
Default: false.

Request group attribute change

Function name canUserModifyGroupProfileAttr

Request example: <oblix:request application="groupservcenter"
function="canUserModifyGroupProfileAttr"
version="NPWSDL1.0">

Description: Verifies that a non-logged in user can change a particular attribute
in a group’s profile.
WSDL file: WebPass_install_dir\oblix\ WebServices\WSDL\

gm_canUserModifyGroupProfileAttr.wsdl

Parameters

IdentityXML Functions and Parameters 2-55

Group Manager Functions

Function name canUserModifyGroupProfileAttr

uid The DN of the group whose attribute you want to modify.
Rules: Required. Single value, a DN.

proxysourceuid The DN for a non-logged-in user (proxy user) whose access rights
are being tested.

Rules: Required. Single value, a DN.

targetAttribute The schema name (not the display name) for the desired attribute.

Rules: Required. Single value, a string.

Request group attribute change through a workflow

See "Request user attribute change through a workflow" on page 2-36. Note that the
application name is groupservcenter.

Functions to Perform Group Manager Actions

The following IdentityXML functions allow you to perform the following actions.
These are get and set functions.

View group attributes
See "View user attributes" on page 2-31. Note that the application name is

groupservcenter.

Modify Group attributes

Function name modifyGroup

Request example: <oblix:request
application="groupservcenter"
function="modifyGroup" version="NPWSDL1.0">

Description: Use this function to change group attributes.

WSDL file: WebPass_install_dir\oblix\ WebServices\WSDL\
gm_modifyGroup.wsdl

Parameters

uid The DN of the group whose attributes are to be changed.
Rules: Required. Single value, a DN.

attrName Required. See "Attribute Parameters" on page 2-5 for
details.

attrOperation Required. See "Attribute Parameters" on page 2-5 for
details.

attrNewValue Required. See "Attribute Parameters" on page 2-5 for
details.

noOfFields Required. See "Attribute Parameters" on page 2-5 for
details.

2-56 Oracle Access Manager Developer Guide

Group Manager Functions

Function name

modifyGroup

ObAuxClassesOldvValues

The old values of the auxiliary class names that you want
to replace. This is used only to change the name
information for auxiliary classes associated with groups.
Use this parameter once for each auxiliary class name to
be removed.

If you attempt to specify a value for which you do not
have access, you will get an error message "Invalid value
for attributeObAuxClasses."

You find the values for these using the Identity System
Console, Group Manager Configuration, Group Types,
Configure Group Type Panels. Select the group, and find
the Associated ObjectClass name displayed.

Rules: Required only if the attribute is for an auxiliary
class and the ObAuxClassesOperation is a REPLACE,
otherwise ignored. Multivalued.

ObAuxClassesOperation

The type of operation to perform on the attribute. This is
used only to change the name information for auxiliary
classes.

Legal values are:

ADD: Add the auxiliary class name to the existing
attributes.

DELETE: Delete the auxiliary class name from the existing
attributes.

REPLACE: Delete the old auxiliary class name and replace
it with the new auxiliary class name.

If you specify any other value or no value, you will get an
error message "Invalid value for attribute ObAuxClasses."

Rules: Required only if the attribute is for an auxiliary
class. Single value.

ObAuxClassesValues

The name of the auxiliary class that you want to add,
delete, or replace. This is used only to change the name
information for auxiliary classes.

Use this parameter once for each auxiliary class name to
be added or removed.If you attempt to specify a value for
which you do not have access, you will get an error
message "Invalid value for attributeObAuxClasses".

To find the values for these, use the Identity System
Console, Group Manager Configuration, Group Types,
Configure Group Type Panels. Select the group, and find
the Associated ObjectClass name.

Rules: Required if the attribute is for an auxiliary class.
Multivalued. Valid values are the string names of the
configured auxiliary classes available. (Auxiliary classes
are configured through the System Console Configure
Object Class function, see the Oracle Access Manager
Administration Guide.)

attrOldvalue

Optional/Required. Required only if the attrOperation is a
REPLACE. This needs to be an exact match. If not, no
change takes place.

See "Attribute Parameters" on page 2-5 for details.

Create group

See "Create User Using a Workflow" on page 2-41. Note that the application name is

groupservcenter.

IdentityXML Functions and Parameters 2-57

Group Manager Functions

Delete Group

Function name

delete (group)

Request example:

<oblix:request application="groupservcenter"
function="delete" version="NPWSDL1.0">

Description:

Use this function to delete a group. You have very little control
over this function, beyond specifying the name of the group.
Determination of the workflow to be used is made by the
application. The workflow selected satisfies all of the following: 1)
the target domain contains the group entry; 2) you are a
participant in the initiate step of the workflow, and 3) the group
types of the group to be deleted are a subset of the group types in
the workflow definition.

WSDL file:

WebPass_install_dir\oblix\WebServices\WSDL\ gm_delete. wsdl

Parameters

uid

Rules: Required. Single value, a DN.

Get groups that | am a member, owner, or administrator of

Function name

myGroupsProfile

Request example:

<oblix:request
application="groupservcenter"
function="myGroupsProfile"
version="NPWSDL1.0">

Description:

Use this function to get the profiles for groups you are a
member, owner or an administrator of. Parameters used
here override the configured Group Manager Options.

WSDL file:

WebPass_install_dir\oblix\ WebServices\WSDL\
gm_myGroupsProfile.wsdl

Parameters

attrName

Optional. See "Attribute Parameters" on page 2-5 for
details.

showAdministratorOfGroups

Use this parameter to ask for groups you, or another user,
are an administrator of to be included in the response.

Rules: Optional. At least one of the parameters in the
showxxx list must be used. Single value, Boolean, true or
false.

Default: false

showDynamicGroups

Use this parameter to ask for groups you, or another user,
are a dynamic member of to be included in the response.

showMemberOfGroups must also be used, set to true.
Rules: Optional. Single value, Boolean, true or false.
Default: false.

showMemberOfGroups Use this parameter to ask for groups that you, or another

user, are a member of to be included in the response.
Rules: Optional. Single value, Boolean, true or false.
Default: false—Optional.

2-58 Oracle Access Manager Developer Guide

Group Manager Functions

Function name

myGroupsProfile

showNestedGroups

Use this parameter to ask for nested groups you, or
another user, are a member of to be included in the
response. showMemberOfGroups must also be used, set to
true. And one or both of showStaticGroups and
showDynamicGroups must also be used, set to true.

Rules: Optional. Single value, Boolean, true or false.
Default: false

showOwnerOfGroups

Use this parameter to ask for groups you, or another user,
are an owner of to be included in the output.

Rules: Optional. Single value, Boolean, true or false.

Default: false

showStaticGroups

Use this parameter to ask for groups you, or another user,
are a static member of to be included in the response.

showMemberOfGroups must also be used, set to true.
Rules: Optional. Single value, Boolean, true or false.

Default: false

Note: The show... options do not all have the same precedence. The
parameters showOwnerOfGroups and showAdministratorOfGroups
will always be applied if entered.

The parameter showMemberOfGroups must be set to true to use
showStaticGroups, showDynamicGroups, and showNestedGroups.
The showNestedGroups parameter can only be set to true if either or
both of the nested group categories showStaticGroups and
showDynamicGroups is set to true.The IdentityXML request uses
these options instead of the configured Group Manager options that
may have been set using the System Console.

Get groups that a user is a member, owner, or administrator of

Function name

userGroupsProfile

Request example:

<oblix:request
application="groupservcenter"
function="userGroupsProfile"
version="NPWSDL1.0">

Description: Use this function to get the profiles for groups that another
user is a member, owner or an administrator of.

Rights: The logged-in user must be able to grant read capability
on the proxysourceuid classname attribute.

WSDL file: WebPass_install_dir\ oblix \WebServices\WSDL\
gm_userGroupsProfile.wsdl

Parameters

proxysourceuid The DN for a non-logged-in user (proxy user) whose
group profile you want.
Rules: Required. Single value, a DN.

attrName Optional. See "Attribute Parameters" on page 2-5 for

details.

IdentityXML Functions and Parameters 2-59

Group Manager Functions

Function name userGroupsProfile

showAdministratorOfGroups Use this parameter to ask for groups you, or another user,
are an administrator of to be included in the response.

Rules: Optional. At least one of the parameters in the
showxxx list must be used. Single value, Boolean, true or
false.

Default: false

showDynamicGroups Use this parameter to ask for groups you, or another user,
are a dynamic member of to be included in the response.

showMemberOfGroups must also be used, set to true.
Rules: Optional. Single value, Boolean, true or false.

Default: false.

showMemberOfGroups Use this parameter to ask for groups that you, or another
user, are a member of to be included in the response.

Rules: Optional. Single value, Boolean, true or false.

Default: false—Optional.

showNestedGroups Use this parameter to ask for nested groups you, or
another user, are a member of to be included in the
response. showMemberOfGroups must also be used, set to
true. And one or both of showStaticGroups and
showDynamicGroups must also be used, set to true.

Rules: Optional. Single value, Boolean, true or false.

Default: false

showOwnerOfGroups Use this parameter to ask for groups you, or another user,
are an owner of to be included in the output.

Rules: Optional. Single value, Boolean, true or false.
Default: false

showStaticGroups Use this parameter to ask for groups you, or another user,
are a static member of to be included in the response.

showMemberOfGroups must also be used, set to true.
Rules: Optional. Single value, Boolean, true or false.
Default: false

Example 2-17 illustrates getting the groups that a user is a member, owner, or
administrator of.

Example 2-18 Example of Getting the Groups that a User is a Member, Owner, or
Administrator Of

<?xml version="1.0"?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas-xmlsoap.org/soap/envelope/"
xmlns:oblix="http://www.oblix.com">

<SOAP-ENV :Body>

<oblix:request function="userGroupsProfile" mode="dataonly">

<oblix:params>

<oblix:param name="proxysourceuid">cn=dummyuser, o=Person, c=ES</oblix:param>

<oblix:param name="showMemberOfGroups">true</oblix:param>

<oblix:param name="showNestedGroups">true</oblix:param>

</oblix:params>

</oblix:request>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

2-60 Oracle Access Manager Developer Guide

Group Manager Functions

View group members

Function name

viewGroupMembers

Request example:

<oblix:request
application="groupservcenter"
function="viewGroupMembers"
version="NPWSDL1.0">

Description:

View all or selected members of a group. To get selected
members of the group, you use the SearchAttr,
SearchOperation, or SearchString parameters. You may
use only one set. The length of the string value provided
for SStn or SearchString must be at greater than or equal to
the value for the
groupMemberSearchStringMiminumLength parameter in
the groupservcenterparams.xml file. If you set this value
to zero, you do not need to use the SLkn, SStn, and STyn
parameters or the SearchAttr, SearchOperation, and
SearchString parameters, and all members of the group are
returned in the search.

This function gets all or some members of the specified
group. The search is allowed only on one field. You can
only have only one triplet of STy1, SLk1 and SSt1 or
SearchString, SearchOperation, and SearchAttr. If you
don’t specify any search parameters, this function returns
all members of the group if the administrator has set the
minimum search length to be 0 through the
groupMemberSearchStringMiminumLength parameter in
the Identity

Server / oblix/apps/groupservcenter/bin/groupservcenter
params.xml file. If this is set to 0, then the search returns
all the members of the group. If this is not 0, then the
search triplet must be specified, plus the string to search
for (as specified through SSt1) should have at least the
same number of characters as specified by the
groupMemberSearchStringMiminumLength parameter.

In order to view group members, the access control
requirements are the following;:

1. To view any members (Static, Dynamic, Nested), you
need to have View right on the Member attribute.

2. To view Dynamic members, you also need to have View
right on the "Dynamic Filter" attribute.

Rights:

To view any members (Static, Dynamic, Nested), you need
to have the View right on the Member attribute. To view.
Dynamic members, you must additionally have the View
right on the Dynamic Filter attribute.

WSDL file:

WebPass_install_dir\ oblix\ WebServices\WSDL\
gm_viewGroupMembers.wsdl

Parameters

uid

The DN of the group whose members are to be listed.
Rules: Required. Single value, a DN.

attrName

Optional. Use one or more instances of this to specify the
attributes that you want to see for each group member.
Use the LDAP name of each attribute, not its display
name. If you do not specify particular attributes the
default is to show the class attribute of the person object
class. See "Attribute Parameters" on page 2-5 for details.

IdentityXML Functions and Parameters 2-61

Group Manager Functions

Function name

viewGroupMembers

memberIDsOnly

Optional. Values are true or false. If you set this flag, only
the class attribute is returned even if other attributes are
requested. This limitation exists because The Identity
System reads the data from the cache rather than the
directory. This feature only takes affect after the first
request, after all caches are initialized. The advantage of
this flag is that directory hits are minimized.

When this flag is set to true, attributes requested with the
attrName parameter are ignored, with the exception of the
class attribute and attributes matching any search criteria.

Rules: Optional. Boolean, true or false.
Default: false.

showDynamicUserMembers Specifies whether dynamic members of a group are to be

included in the response.

Rules: Optional. At least one of the show parameters in the
list must be used and be set to true. Single value, Boolean,
true or false.

Default: false.

showNestedUserMembers Specifies whether nested members of a group are to be

included in the response.
Rules: Optional. Single value, Boolean, true or false.

Default: false

showStaticUserMembers Optional.

SearchAttr

Required. See "Search Parameters" on page 2-3 for details.

SearchOperation

Required. See "Search Parameters" on page 2-3 for details.

SearchString

Required. See "Search Parameters" on page 2-3 for details.

groupMemberType

Specifies the type of members that you want to view, for
example "user" or "group". The value is the LDAP name of
the object class that contains the type of objects you want
to view. This is a single-valued attribute. You can only
retrieve one type of group member at a time. Nested and
dynamic evaluation is performed only for members who
are users. Nested and dynamic evaluation is not
performed for members that are groups or generic objects.

Rules: Required.

Expand group

Function name

expandGroup

Request example:

<oblix:request application="groupservcenter"
function="expandGroup" version="NPWSDL1.0">

Description:

Expands a dynamic group into its current static members.

Rights:

To expand a group, the user must have the view rights for the
group name and for the attributes Group Dynamic Filter and
Group Expansion, and modify rights for the Member
attribute. Group Dynamic Filter is the attribute that is of
semantic type, dynamic filter. The Group Expansion attribute
is the attribute of type, obgroupexpandeddynamic in the
oblixadvancedgroup auxiliary objectclass. Member is the
attribute that is of semantic type, Static Member.

2-62 Oracle Access Manager Developer Guide

Group Manager Functions

Function name expandGroup

WSDL file: WebPass_install_dir\ oblix\ WebServices\WSDL\
gm_expandGroup.wsdl

Parameters

groupsToExpand A target group you want to expand. One or the other of these
must be provided.

Rules: Optional. Multivalued, a DN.

expandAllGroups Expands all groups that you have rights to expand. If set to
true, then all such groups are expanded. If set to false, then
only the groups specified with the groupsToExpand
parameter are expanded.

Rules: Optional. Single value, Boolean, true or false.

Default: false

Flush the Group Cache
Function name flushGroupCache
Request example: <oblix:request application="groupservcenter"

function="flushGroupCache"
version="NPWSDL1.0">

Description: Use this function to remove groups from the group cache. One
of the two parameters shown in the "Parameters" section of
this table must be provided.

Rights: To flush the group cache, the user must be a Master
Administrator.

WSDL file: WebPass_install_dir\ oblix\ WebServices\WSDL\
gm_flushGroupCache.wsdl

Parameters

flushGroup Optional. Removes from the group cache those groups whose
dn is specified as a value.

flushGroupAll Optional.Removes all groups from the group cache if value =

true.

Subscribe a user to a group

Function name subscribeUserToGroup

Request example: <oblix:request application="groupservcenter"
function="subscribeUserToGroup"
version="NPWSDL1.0">

Description: Add (subscribe) a user other than yourself to a group. The
other user does not need to be logged in. The response returns
the profile for the group.

Results: The output is the profile of the group, defined by the schema
file oblix\ WebServices\XMLSchema\gsc_groupprofile.xsd.
WSDL file: WebPass_install_dir\ oblix\ WebServices\WSDL\

gm_subscribeUserToGroup.wsdl

Parameters

IdentityXML Functions and Parameters 2-63

Organization Manager Functions

Function name subscribeUserToGroup

uid The DN of the group being subscribed to. This DN must fall
under the searchbases of the logged-in user.

Rules: Required. Single value, a DN.

proxysourceuid The DN for a non-logged-in user who is subscribing to the
group. This DN must fall under the searchbases of the
logged-in user

Rules: Required. Single value, a DN.

Organization Manager Functions

If you are an administrator, the Organization Manager enables you to create and delete
organizations and other objects (such as floor plans and assets) that do not belong in
the User Manager or Group Manager. The Organization Manager enables end users to
view organizational entities such as floor plans. The organizational entities that a
person can view depend upon the rights granted by a Master Administrator.

The following IdentityXML functions allow you to programmatically access the
Organization Manager. Note that all functions follow a similar syntax:

<oblix:request application="objservcenter" function="name" version="version">

For example:

<oblix:request application="objservcenter" function="canIViewObjectProfile"
version="NPWSDL1.0">

Note: The version tag is required if you are using IdentityXML with
Oracle Access Manager 6.5 and higher versions.

For documentation of the pre-6.5 Identity XML version tag, see the
following:

http://www.oracle.com/technology/

Functions to Test For Attribute Permissions

The following functions provide a yes or no response as to whether you or another
user have read, write, delegate, and notify permissions set for a particular attribute.

Can | view an object's profile

Function name canlViewObjectProfile

Request example: <oblix:request application="objservcenter"
function="canIViewObjectProfile"
version="NPWSDL1.0">

Description: Verifies that you can view an organization’s profile.

WSDL file: WebPass_install_dir\oblix\ WebServices\WSDL\
om_canIViewObjectProfile.wsdl

Parameters

uid The DN of the organization whose profile you want to

view.

Rules: Required. Single value, a DN.

2-64 Oracle Access Manager Developer Guide

Organization Manager Functions

Can | view an attribute in the object's profile

Function name

canlViewObjectProfileAttr

Request example:

<oblix:request application="objservcenter"
function="canIViewObjectProfileAttr"
version="NPWSDL1.0">

Description: Verifies that you can view a particular attribute in an
organization’s profile.

WSDL file: WebPass_install_dir\ oblix\ WebServices\WSDL\
om_canlViewObjectProfileAttr.wsdl

Parameters

uid The DN of the organization whose attribute you want to
view.
Rules: Required. Single value, a DN.

targetAttribute The schema name (not the display name) for the desired

attribute.

Rules: Required. Single value, a string.

Can | modify an attribute in an object's profile

Function name

canlModifyObjectProfileAttr

Request example:

<oblix:request application="objservcenter"
function="canIModifyObjectProfile"
version="NPWSDL1.0">

Description: Verifies that you can change a particular attribute in an
organization’s profile.

WSDL file: WebPass_install_dir\oblix\WebServices\WSDL\
om_canIModifyObjectProfileAttr.wsdl

Parameters

uid The DN of the organization whose attribute you want to
change.
Rules: Required. Single value, a DN.

targetAttribute The schema name (not the display name) for the desired

attribute.

Rules: Required. Single value, a string.

Can | request modification through a workflow of an attribute in an object's profile

Function name

canlRequestObjectAttrModification

Request example:

<oblix:request application="objservcenter"
function="canIRequestObjectAttrModification"
version="NPWSDL1.0">

Description: Verifies that you can change a particular attribute in an
organization’s profile, using a workflow.

WSDL file: WebPass_install_dir\oblix\ WebServices\WSDL\
om_canlRequestObjectAttrModification.wsdl

Parameters

IdentityXML Functions and Parameters 2-65

Organization Manager Functions

Function name

canlRequestObjectAttrModification

uid The DN of the organization whose attribute you want to
change.
Rules: Required. Single value, a DN.
targetAttribute The schema name (not the display name) for the desired

attribute.

Rules: Required. Single value, a string.

Can | create a new object

Function name

canlCreateObject

Request example:

<oblix:request application="objservcenter"
function="canICreateObject"
version="NPWSDL1.0">

Description: Verifies that you can create a new organization.

WSDL file: WebPass_install_dir\oblix\ WebServices\WSDL\
om_canICreateObject.wsdl

Parameters

ObDomainName A subtree within which a test is being requested.

Rules: Optional. Single value, a DN.

Default: If no value is provided, the Identity System checks
to see if you have the tested rights in any domain.

Can | delete an existing object

Function name

canlDeleteObject

Request example:

<oblix:request application="objservcenter"
function="canIDeleteObject"
version="NPWSDL1.0">

Description: Verifies that you can delete an existing object.

WSDL file: WebPass_install_dir\oblix\ WebServices\WSDL\
om_canIDeleteObject.wsdl

Parameters

uid Rules: Required. Single value, a DN.

Can this user view an object's profile

Function name

canUserViewObjectProfile

Request example:

<oblix:request application="objservcenter"
function="canUserViewObjectProfile"
version="NPWSDL1.0">

Description: Verifies that a non-logged in user can view an organization’s
profile.

WSDL file: WebPass_install_dir\ oblix\WebServices\WSDL\
om_canUserViewObjectProfile.wsdl

Parameters

2-66 Oracle Access Manager Developer Guide

Organization Manager Functions

Function name canUserViewObijectProfile

uid The DN of the organization whose profile you want to view.

Rules: Required. Single value, a DN.

proxysourceuid The DN for a non-logged-in user (proxy user) whose access
rights are being tested.

Rules: Required. Single value, a DN.

Can this user view an attribute in an object's profile

Function nhame canUserViewObjectProfileAttr

Request example: <oblix:request application="objservcenter"
function="canUserViewObjectProfileAttr"
version="NPWSDL1.0">

Description: Verifies that a non-logged in user can view a particular
attribute in an organization’s profile.

WSDL file: WebPass_install_dir\ oblix\ WebServices\WSDL\
om_canUserViewObjectProfileAttr.wsdl

Parameters

uid The DN of the organization whose attribute you want to

view.

Rules: Required. Single value, a DN.

proxysourceuid The DN for a non-logged-in user (proxy user) whose access
rights are being tested.

Rules: Required. Single value, a DN.

targetAttribute The schema name (not the display name) for the attribute.

Rules: Required. Single value, a string.

Can a user modify an attribute in an object's profile

Function name canUserModifyObjectProfileAttr

Request example: <oblix:request application="objservcenter"
function="canUserModifyObjectProfileAttr"
version="NPWSDL1.0">

Description: Verifies that a non-logged in user can change a particular
attribute in an organization’s profile.

WSDL file: WebPass_install_dir\oblix\ WebServices\WSDL\
om_canUserModifyObjectProfileAttr.wsdl

Parameters

uid The DN of the object whose attribute you want to modify.

Rules: Required. Single value, a DN.

proxysourceuid The DN for a non-logged-in user (proxy user) whose access
rights are being tested.

Rules: Required. Single value, a DN.

targetAttribute The schema name (not the display name) for the desired
attribute.

Rules: Required. Single value, a string.

IdentityXML Functions and Parameters 2-67

Organization Manager Functions

Can a user create a new object

Function name

canUserCreateObject

Request example:

<oblix:request application="objservcenter"
function="canUserCreateObject"
version="NPWSDL1.0">

Description:

Verifies that a non-logged in user can create a new object.

WSDL file:

WebPass_install_dir\oblix\ WebServices\WSDL\om_canUse
rCreateObject.wsdl

Parameters

proxysourceuid

The DN for a non-logged-in user (proxy user) whose access
rights are being tested.

Rules: Required. Single value, a DN.

ObDomainName

A subtree within which a test is being requested.
Rules: Optional. Single value, a DN.

Default: if no value is provided, the Identity System checks
to see if you have the tested rights in any domain.

Can a user delete an existing object

Function name

canUserDeleteObject

Request example:

<oblix:request application="objservcenter"
function="canUserDeleteObject"
version="NPWSDL1.0">

Description:

Verifies that a non-logged in user can delete
an existing organization.

WSDL file:

WebPass_install_dir\oblix\ WebServices\WSDL\
om_canUserDeleteObject.wsdl

Parameters

proxysourceuid

The DN for a non-logged-in user (proxy user) whose access
rights are being tested.

Rules: Required. Single value, a DN.

uid

Rules: Required. Single value, a DN.

Can this user request an object attribute modification

Function name

canUserViewObjectAttrModification

Request example:

<oblix:request application="objservcenter"
function="canUserRequestObjectAttrModification"
version="NPWSDL1.0">

Description:

Verifies that a non-logged in user can request a change to a
particular attribute in an object profile using a workflow.

WSDL file:

WebPass_install_dir\ oblix \WebServices\WSDL\
om_canUserRequestObjectAttrModification.wsdl

Parameters

uid

The DN of the object whose attribute you want to modify.
Rules: Required. Single value, a DN.

2-68 Oracle Access Manager Developer Guide

Organization Manager Functions

Function name

canUserViewObjectAttrModification

proxysourceuid The DN for a non-logged-in user (proxy user) whose access
rights are being tested.
Rules: Required. Single value, a DN.

targetAttribute The schema name (not the display name) for the desired

attribute.

Rules: Required. Single value, a string.

Functions to Perform Organization Manager Actions

The following functions allow you to perform actions in the Organization Manager.
These are get and set functions.

View object attributes
See "View user attributes" on page 2-31 for details.

Modify object attributes

Function name

modifyObject

Request example:

<oblix:request application="objservcenter"
function="modifyObject" version="NPWSDL1l.0">

Description: Use this function to modify object attributes.

WSDL file: WebPass_install_dir\ oblix\WebServices\WSDL\
om_modifyObject.wsdl

Parameters

uid The DN of the object whose attributes are to be changed.
Rules: Required. Single value, a DN.

attrName Optional. If no attrNames are specified, all the attributes of
the entry that the caller has access to view are returned. This
parameter is useful when you want to modify a few attributes
and only want those attributes back in the result of a modify
call. This can save on performance when the profile contains a
large number of attributes. See "Attribute Parameters" on
page 2-5 for details.

attrOperation Required. See "Search Parameters" on page 2-3 for details.

attrNewValue Required. See "Attribute Parameters” on page 2-5 for details.

NoOfFields Required. See "Attribute Parameters” on page 2-5 for details.

attrOldvalue Required /Optional. Required only if the attrOperation is a

REPLACE.

Request object attribute change through a workflow
See "Request user attribute change through a workflow" on page 2-36.

Create an object

See "Create User Using a Workflow" on page 2-41 for details.

Self-registration

See "Self-Registration Using a Workflow" on page 2-44 for details.

IdentityXML Functions and Parameters

2-69

Code Examples of Deployed IdentityXML Functions

Delete object

Function name

delete (organization)

Request example:

<oblix:request application="objservcenter"
function="delete" version="NPWSDL1.0">

Description: Use this function to delete an organization.

WSDL file: WebPass_install_dir\ oblix\ WebServices\WSDL\
om_delete.wsdl

Parameters

uid The DN of the group or whose attributes are to be changed.
Rules: Required. Single value, a DN.

ObWorkflowName The name of the workflow that you want to use to create or
change the value(s) for an attribute.
Find the full DN for ObWorkflowName under the view
menu for workflow definition under the particular
application.
Rules: Required. Single value, a DN.

ObWfComment Provides a comment for a step in a workflow.
Rules: Optional. Single value, string.

NoOfFields Optional. Required. See "Attribute Parameters" on page 2-5
for details.

attrName Optional. The attribute specified should be an attribute
configured in the Identity System console, and it should be
part of one of the panels configured for the View Profile of
the user, group, or organization. Otherwise, it is considered
invalid. See "Attribute Parameters" on page 2-5 for details.

attrvValue See "Attribute Parameters" on page 2-5 for details.

attrNewValue Required. See "Attribute Parameters" on page 2-5 for details.

attrOldvalue Optional/Required. Required only if the attrOperation is a

REPLACE.

Code Examples of Deployed IdentityXML Functions

The following sections provide examples of how IdentityXML can be packaged and
deployed.

Java Application Example

Example 2-19 sends a SOAP message contained in a file to a Identity System
application using HTTP.

The code for this example is located in:
Component_install_dir\identity \oblix\unsupported\integsvs\

Example 2-19 illustrates the basics of IdentityXML programming. For instance, the
Identity System can be scripted using techniques like this. You can write small
programs that do one thing, such as transmit a pre-composed message, and glue them
together in Perl or shell scripts to perform more complex tasks with the Identity
System. The intelligence concerning the message contents need not be part of the
IdentityXML client.

2-70 Oracle Access Manager Developer Guide

Code Examples of Deployed IdentityXML Functions

Example 2-19 Java Example to Query the Identity System using SOAP

/ * %
* This is a very simple SOAP example of how to invoke Oracle Access Manager
* through SOAP.

* This program will make a soap request (send the request in soap.xml)
* to the argument hostname:port/oblix/apps/corpdir/bin/corpdir.cgi

* Requirements:
* *%%* ObSoapClient, a complete http client library from innovation, is

* required to run this test. The software is free, and licensed under the
* GNU Lesser General Public License.

* HTTPClient is available at http://www.innovation.ch/java/HTTPClient

* This program has been tested with HTTPClient Version 0.3-2

*

* To run:

* *** java ObSoapClient [-h hostname] [-p port] [-f inputfile] [-u oblixurl]

*

*/

import java.net.URL;

import java.io.IOException;

import java.io.FileReader;

import java.io.BufferedReader;
import HTTPClient.CookieModule;
import HTTPClient.HTTPConnection;
import HTTPClient.HTTPResponse;
import HTTPClient.ModuleException;
import HTTPClient.NVPair;

public class ObSoapClient

{

static String hostname = "sunlight.oracle.com";

static String filename = "soap.xml";

static int port = 80;

static String oburl =
"/identity/oblix/apps/userservcenter/bin/userservcenter.cgi";

public static void collectArgs(String args[])

{

for (int 1 = 0; i < args.length; i++) {

if (args[i].equals("-h") && args.length >= i+1)
hostname = args[i+l];

else if (args[i].equals("-f") && args.length >= i+l)
filename = args[i+l];

else if (args[i].equals("-p") && args.length >= i+1)
port = Integer.parselnt(args[i+l]);

else if (args[i].equals("-u") && args.length >= i+1)
oburl = args[i+1];

else if (args[i].equals("-h") || args[i].equals("-help")) {
System.out.println("Usage: java ObSoapClient [-h hostname] [-p port] [-f filename]
[-u oblixurl] \n");

}

}

}

/**

* Read from soap.xml in current directory and return as string.
*/
public static String getRequestFromFile()

IdentityXML Functions and Parameters 2-71

Code Examples of Deployed IdentityXML Functions

{

StringBuffer data = new StringBuffer();

try {

BufferedReader reader = new BufferedReader (new FileReader (filename));

for (String line = reader.readLine(); line != null;
line = reader.readLine()) {

data.append(line);

data.append("\r\n");

}

} catch (Exception e) ({
System.out.println(e.toString());

}

return data.toString();

}

public static void main(String args[]) throws Exception
{

try {

CookieModule.setCookiePolicyHandler (null) ;

// initiate connection
collectArgs (args) ;
HTTPConnection con = new HTTPConnection (hostname, port);

// collect response

NVPair header[] = new NVPair[1l];

header[0] = new NVPair ("Content-Type", "text/xml");
HTTPResponse rsp =

con.Post (oburl,

getRequestFromFile(),

header) ;

// get status and act accordingly

if (rsp.getStatusCode() >= 300) {
System.err.println("Received Error: "+rsp.getReasonLine());
System.err.println(new String(rsp.getData()));

} else

System.out.println(new String(rsp.getData()));

} catch (IOException ioe) {
System.err.println(ioe.toString());

} catch (ModuleException me) {

System.err.println("Error handling request: " + me.getMessage());
} catch (Exception e) {

System.out.println(e.toString());

}

}

/*
NVPair form_datal[] = new NVPair[2];

form_data[0] = new NVPair("login", "J.Smith");
1]

form_datal = new NVPair ("password", "J.Smith");
//form_datal[2] = new NVPair ("uid",

//"cn=John Smith, ou=Corporate, o=Company,c=US") ;
//form_data[3] = new NVPair ("program", "personPage");

//form_data[4] = new NVPair ("tab_id", "Employees");

2-72 Oracle Access Manager Developer Guide

Code Examples of Deployed IdentityXML Functions

/ /HTTPResponse rsp = con.Post("/oblix/apps/corpdir/bin/corpdir.cgi", form_data);

*/

You should inspect the files, copy the one you wish to send into the current directory
of the application, and modify the request parameters within the XML file to specify
parameters that make sense for your directory (such as valid uid for a view request).
Make sure you have that HTTPClient package from Innovation in your CLASSPATH.
Then send the request with the following command:

java Lookup -f inputfile [-h hostname] [-p port][-u oblixurl]

Java Servlet Example

This example builds on the previous one. This example is a Java Servlet that runs
within a Web or application server. Since simply printing out the result is not useful
for a servlet, this one shows a simple example of using an Identity System attribute
value to dynamically generate an HTML page. The servlet assumes your SOAP
message invokes the User Manager view program, and gets user profile data as a
response. It then uses the JAXP XML parser to parse the SOAP message containing the
user profile, and extracts the email address attribute for the user being viewed.

If you log into User Manager before running this servlet, and edit the email attribute
for the user you are going to look up so that it reads red or green, you will see that the
value is used by the servlet in generating the resulting HTML page. It uses this value
for the BGCOLOR attribute of the BODY element on the page, as well as printing it
out. If you specify a valid color or #RRGGBB value, the page is displayed in that color.

The servlet assumes the following request to view a user profile from User Manager.
This request, and many other examples, are installed in:

unsupported/integsvcs/um_view.xml

You should copy and modify the request file to specify a valid user uid for your
directory. Make sure to put it in the current working directory for the servlet, or
specify the full path when reading the file.

Example 2-20 is an example request file.

Example 2-20 Request File Example

<?xml version="1.0" ?>

<SOAP-ENV:Envelope

xmlns: SOAP-ENV="http://schemas-xmlsoap.org/soap/envelope/"
xmlns:oblix="http://www.oblix.com">

<SOAP-ENV:Body>

<oblix:authentication xmlns:oblix="http://www.oblix.com" type="basic">
<oblix:login>userlkl</oblix:login>
<oblix:password>oblix</oblix:password>

</oblix:authentication>

<oblix:request function="view" version="NPWSDL1.0">

<oblix:params>

<oblix:uid>cn=Rohit Valiveti,ou=Sales, ou=Dealerlkl,ou=Latin America,
ou=Ford, o=Company, c=US</oblix:uid>
<oblix:attrName>mail</oblix:attrName>

</oblix:params>

</oblix:request>

</SOAP-ENV: Body>
</SOAP-ENV: Envelope>

IdentityXML Functions and Parameters 2-73

Code Examples of Deployed IdentityXML Functions

This request could easily have been constructed in code, but it is stored as a file for the
purposes of this example. Note the general structure of the SOAP message, and the
parameter elements being requested.

Example 2-21 is the code for MyobServelet, which sends this request, parses the result,
and generates an HTML page dynamically as the result of the request. MyobServelet is
derived from HttpServlet. It uses JAXP, a SAX parser for XML freely available from
Sun Microsystems, and HTTPClient, a freely available HTTP client package available
from Innovation. You may choose to use such packages, or integrate with your own as
needed.

Example 2-21 MyobServelet.java

/ * %

* This example illustrates how to use the

* Identity System via the IdentityXML interface from a Java servlet.
* The example uses two freely available third-party Java packages:

* 1. HTTPClient, from Innovation

* (http://www.innovation.ch/java/HTTPClient)
* 2. JAXP, from Sun Microsystems
* (http://java.sun.com/xml/xml_jaxp.html)

* HTTPClient encapsulates the client side of the HTTP protocol.
* JAXP provides APIs for XML parsing and XSL processing.

* What This Servlet Does:

* This servlet reads a SOAP request from a text file /tmp/um_view.xml.
* Tt could quite easily have hard-coded the request, or built it

* from parameters, or fetched it from a database. Reading it from
* a file just provides some simple flexibility and allows the code
* to be uncluttered with that detail. The servlet uses HTTPClient
* to connect to the web server hosting the Identity System,

* sends the SOAP message to the User Manager application's URL

* (hard-coded in this example), and receives the response. It then
* creates an XML parser, and uses a custom document handler,

* MyObReader, to handle only those elements of interest during the
* parse. In this case, MyObReader only cares about the ObEmail

* element. When it finds the element, it stores the value, which

* is then available to this servlet via the MyObReader.getEmail ()

* method after parsing.

* As an HTTPServlet, a natural response for this servlet is an

* HTML page. To illustrate use of Identity data in building the

* page returned, this servlet does something a little unusual: it

* uses the value of the user's email address as a color, and uses

* it to set BGCOLOR attribute of the BODY element in the output HTML.

* To demonstrate the example, you should edit the SOAP message to
* gpecify the DN of the user profile in your Identity System that
* you want to use. Then, logged in as an NP admin, change the

* user's email address to a valid HTML color value. like "green"
* or an RGB value, like "#ffddff". Then run the servlet (i.e.

* install in your WS and fetch .../servlets/EmailColor). The

* page built by the servlet should appear, with its background

* rendered in the color you saved as the email address.

* The helper class, MyObReader, extends the DefaultHandler content
* handler of JAXP by adding handler methods for the ObEmail element
* and its nested ObValue element containing the email address,

* which is what this example is looking up. After the parse,

2-74 Oracle Access Manager Developer Guide

Code Examples of Deployed IdentityXML Functions

* the helper class is queried for the email address, and this

* is added to the HTTPSerlvlet output stream (a simple HTML page)
* which is sent back to the browser.

* To run:

*
*
*

*

*

*

*/

Edit the SOAP message file, and make sure the hard-coded

path in this class points to where you saved the SOAP message.
Build the MyObServlet class and the MyObReader helper class.
Put the class files and JAR files for these two classes, plus
the HTTPClient package and JAXP in your web server's classpath
for servlets. For iPlanet Web Server, you can find this

in the console under

Servlets/Configure JVM Attributes/Classpath.

Restart your web server if necessary.

Point your browser at <yourServletRoot>/ObSoapClient

import java.io.*;

import java.net.*;

import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;
import HTTPClient.*;

//

JAXP packages

import javax.xml.parsers.*;

import org.xml.sax.*;

import org.xml.sax.helpers.*;

public class MyObServlet extends HttpServlet({

// Host and port of the web server for the Identity System

static String hostname = "localhost";

static String filename = "c:/temp/um view.xml"; // NT PATH !
static int port = 80;

// URL for User Manager
static String oburl =
"/identity/oblix/apps/userservcenter/bin/
userservcenter.cgi";

public static String getRequestFromFile (HttpServlet s){
StringBuffer data = new StringBuffer();
try {
BufferedReader reader = new BufferedReader
(new FileReader (filename));

for (String line = reader.readLine(); line != null;
line = reader.readLine()) {
data.append(line);
}
} catch (Exception e) {
s.getServletContext ().log(e.toString());
}
return data.toString();

}

public void doGet (HttpServletRequest req,

HttpServletResponse res)
throws ServletException, IOException ({
try {
CookieModule.setCookiePolicyHandler (null) ;
// Initiate new HTTP connection to WebPass server
HTTPConnection con = new HTTPConnection (hostname, port);
// Send SOAP message, collect response
NVPair header[] = new NVPair[1l];

IdentityXML Functions and Parameters 2-75

Code Examples of Deployed IdentityXML Functions

header[0] = new NVPair ("Content-Type", "text/xml");
String rgString = getRequestFromFile(this);
getServletContext ().log("request is: " + rgString);
HTTPResponse rsp = con.Post(oburl, rgString, header);

// Check HTTP status and act accordingly
if (rsp.getStatusCode() >= 300) {

getServletContext () .log("Received Error:
"+rsp.getReasonLine()) ;
getServletContext () .log(new String(rsp.getDatal()));

} else {
// HTTP success

getServletContext () .log
("got SOAP result. next is parsing.");

// Create a JAXP SAXParserFactory and configure it
SAXParserFactory spf =
SAXParserFactory.newInstance() ;
spf.setValidating(false);

XMLReader xmlReader = null;
try {
// Create a JAXP SAXParser
SAXParser saxParser = spf.newSAXParser();

// Get the encapsulated SAX XMLReader
xmlReader = saxParser.getXMLReader () ;

} catch (Exception ex) {
getServletContext().log(ex, ex.toString());
System.exit (1);

}

// Set the ContentHandler of the XMLReader

// Keep our content handler around to query later
MyObReader myHandler = new MyObReader () ;
xmlReader.setContentHandler (myHandler) ;
// Set an ErrorHandler before parsing
xmlReader.setErrorHandler
(new MyErrorHandler (System.err));

try {
// parse the XML document

xmlReader.parse

(new InputSource(rsp.getInputStream()));
res.setContentType ("text/html") ;
PrintWriter out = res.getWriter();

out.println("<HTML>") ;
out.println("<HEAD>");
out.println("<TITLE>");
out.println("Identity System via Servlet");
out.println("</TITLE>");
out.println("</HEAD>");

// the example assumes an admin has set
// the email address to a color value instead
String emailAddress = myHandler.getEmail();
String bgColorAttr = "bgcolor=\"" +
emailAddress.trim() + "\"";
out.println("<BODY " + bgColorAttr + ">");

2-76 Oracle Access Manager Developer Guide

Code Examples of Deployed IdentityXML Functions

out.println("<H1>");
out.println("Identity System via Servlet");
out.println("</H1>");
out.println("<P>");
out.println("The e mail address is: "

+ emailAddress) ;
out.println("</P>");
out.println("</BODY>");
ut.println("</HTML>") ;

} catch (SAXException se) {
getServletContext () .log(se, se.getMessagel());
System.exit (1) ;

} catch (IOException ioe) {
getServletContext () .log(ioe, ioe.getMessage());
System.exit (1) ;

} }

} catch (IOException ioe) {
getServletContext () .log(ioe, ioe.getMessage());
} catch (ModuleException me) {
getServletContext().log(me, "Error handling request: "
+ me.getMessage()) ;
} catch (Exception e) {
getServletContext().log(e, e.toString()); } }
// Error handler to report errors and warnings
private static class MyErrorHandler implements ErrorHandler {
/** Error handler output goes here */
private PrintStream out;

MyErrorHandler (PrintStream out) {
this.out = out;

}

/*'k
* Returns a string describing parse exception details
*/
private String getParseExceptionInfo (SAXParseException spe) {
String systemId = spe.getSystemId();
if (systemId == null) {
systemId = "null";
}
String info = "URI=" + systemId +
" Line=" + spe.getLineNumber () +
": " + gpe.getMessage();
return info;

// The following methods are standard SAX ErrorHandler methods.
// See SAX documentation for more info.

public void warning (SAXParseException spe)
throws SAXException {
out.println("Warning: " + getParseExceptionInfo(spe));

public void error (SAXParseException spe)
throws SAXException {
String message = "Error: " + getParseExceptionInfo(spe);
throw new SAXException (message);

IdentityXML Functions and Parameters 2-77

Code Examples of Deployed IdentityXML Functions

public void fatalError (SAXParseException spe)
throws SAXException {
String message = "Fatal Error: "
+ getParseExceptionInfo (spe);
throw new SAXException (message);

Example 2-22 shows the code for MyObReader.

Example 2-22 MyobServelet.java

/*

*

*

*

*

*/

A simple SAX content handler that locates

an email address in the Identity System

SOAP response for a User Manager ‘view’ operation.

This class extends DefaultHandler provided by JAXP package

by adding start/end element and character handler methods to
help in locating the data we are after, and an accessor method
for our client to extract the data.

Note:
This helper class makes assumptions, including
its intimate knowledge of the structure of its input.
If more than one email address is found, that information
is lost. This class is to illustrate the technique.
Requirements:
JAXP

// APache XML packages

import org.xml.sax.*;

import org.xml.sax.helpers.*;

import java.util.*;

import java.io.*;

public class MyObReader extends DefaultHandler {

private boolean inEmail = false;
private boolean inEmailValue = false;
private String theEmail = "no.email.address.found";
// HANDLERS ///////11171177771777117771777717771171771177717
// parser calls this for each element in a document
public void startElement (String namespaceURI, String localName,
String rawName, Attributes atts)
throws SAXExceptionf{
if (localName.equals("ObEmail")) {
inEmail = true;
}
if (inEmail && localName.equals ("ObValue")) {
inEmailvValue = true; }
}
// parser calls this for each element in a document
public void endElement (String namespaceURI, String localName,
String rawName)
throws SAXExceptionf{
// Are we closing an ObEmail?
if (inEmail && localName.equals("ObEmail")) {
inEmail = false;
}
// Are we closing an ObEmail/ObValue?
if (inEmailValue && localName.equals("ObValue")) {

2-78 Oracle Access Manager Developer Guide

Code Examples of Deployed IdentityXML Functions

inEmailvalue = false; } }
// parser calls this for character content found inside
// elements.
// captures characters while inside an ObEmail/ObValue
public void characters(char[] ch, int start, int length)
throws SAXException({
if (!inEmailValue) return;
theEmail = new String(String.copyValueOf (ch, start, length));
}

// ACCESSORS /////////71171711777117771177117771177711171171771
public String getEmail() {
return new String(theEmail);
}
}

The servlet begins by establishing a connection to the Identity System (using a
WebPass on a specified Webserver) using an HTTPConnection object. It then reads in
the SOAP message that contains the request shown in the previous example from a
file, and uses an HTTPClient object to POST the SOAP message to the server.

WebPass recognizes the request as SOAP message, and passes it on to the Identity
System's Identity XML processing logic interpretation. If the message is validated, the
enclosed IdentityXML request is processed. The data resulting from the request and
the response code are packaged and transmitted back to the servlet as a SOAP
response. After verifying that the request generated a successful response code, the
servlet creates and configures a JAXP SAX parser, passing in a custom content handler,
MyODbReader, which scans the data for the email address attribute.

If the document is successfully parsed, the MyObReader object provides the email
address attribute value through its getEmail() method. In this example, it is assumed
that the administrator has entered some text like green in the email address field.

The example servlet looks up this information, and uses it in generating the result
HTML page. The value is inserted as the BGCOLOR attribute of the BODY tag in the
HTML document. The page is returned showing the value in text, and the page
background is green.

ObSSOCookie Example

The following example shows how to use Java to post a SOAP request (or make
IDXML calls) to the Identity Server when it is protected using the Access System. This
example makes use of the obSSOCookie.

Note: The Access Manager SDK must be installed to create this type
of request. See "Installing the Access Manager SDK" on page D-1 for
details

Example 2-23 illustrates a SOAP request that uses the obSSOCookie.

Example 2-23 SOAP Request Using the obSSOCookie
/ * %

* This is a very simple SOAP example of how to invoke Oracle Access Manager
through SOAP.

This program will make a soap request (send the request in soap.xml)

*
*
*
* to the argument hostname:port/oblix/apps/corpdir/bin/corpdir.cgi

IdentityXML Functions and Parameters 2-79

Code Examples of Deployed IdentityXML Functions

* In this particular example the Identity server is protected using Basic over
LDAP and the

* QObUserSession class is used to retrieve the token which is used to set the
ObSSOCookie.

* You might also need to pass the IP adress to the ObUserSession or turnoff
IPValidation for the

* Webgate in Netpoint\WebGate\access\oblix\apps\webgate\WebGateStatic.lst.

*
*

* Requirements:
* *x% HTTPClient, a complete http client library from innovation, is

* required to run this test. The software is free, and licensed under the

* GNU Lesser General Public License.

* HTTPClient is available at http://www.innovation.ch/java/HTTPClient

* This program has been tested with HTTPClient Version 0.3-2

* ObSoapClientWebGate is written as an AccessGate using the Access Server API's
so

* you will need to install the Access SDK and do the required configurations
to run

* this class as an Access Gate.

*

* To run:

* ***% jgva ObSoapClientWebGate [-h hostname] [-p port] [-1 <Access SDK install
dir>] [-1 loginName] [-w password] [-f inputfile] [-u oblixurl]

*

*/

import java.net.*;

import java.io.IOException;
import java.io.FileReader;

import java.io.BufferedReader;
import java.util.*;

import java.io.*;

import java.text.*;

import HTTPClient.*;

import HTTPClient.CookieModule;
import HTTPClient.HTTPConnection;
import HTTPClient.HTTPResponse;
import HTTPClient.ModuleException;
import HTTPClient.NVPair;

import HTTPClient.Cookie;

import com.oblix.access.*;

public class ObSoapClientWebGate
{

static String hostname = "host.company.com";

static String filename = "soap.xml";

static String accessSDKinstalldir = "";

static int port = 80;

static String userName = "";

static String password = "";

static String res = "/identity/oblix";

static String oburl =
"/identity/oblix/apps/userservcenter/bin/userservcenter.cgi";

public static void collectArgs(String argsl[])
{

for (int i = 0; i < args.length; i++) {

2-80 Oracle Access Manager Developer Guide

Code Examples of Deployed IdentityXML Functions

if (args[i].equals("-h") && args.length >= i+1)
hostname = args[i+l];
else if (args[i].equals("-f") && args.length >= i+1)
filename = args[i+l];
else if (args[i].equals("-p") && args.length >= i+1)
port = Integer.parselnt(args[i+l]);
else if (args[i].equals("-u") && args.length >= i+1)
oburl = args[i+1];
else if (args[i].equals("-i") && args.length >= i+1)
accessSDKinstalldir = args[i+1];
else if (args[i].equals("-1") && args.length >= i+1)
userName = args[i+l];
else if (args[i].equals("-w") && args.length >= i+1)
password = args[i+l];
else if (args[i].equals("-help")) {
System.out.println("Usage: java
ObSoapClientWebGate [-h hostname] [-p port] [-f filename] [-i <Access SDK install
dir>] [-1 loginName] [-w password] [-u oblixurl] \n");
System.exit (1) ;

/**
* Read from soap.xml in current directory and return as string.
*/
public static String getRequestFromFile()
{
StringBuffer data = new StringBuffer();
try {
BufferedReader reader = new BufferedReader (new
FileReader (filename)) ;

for (String line = reader.readLine(); line != null;
line = reader.readLine()) {
data.append(line);
}
} catch (Exception e) {
System.out.println(e.toString());
}
System.out.println(data.toString());
return data.toString();

public static void main(String args[]) throws Exception
{
try {
CookieModule.setCookiePolicyHandler (null);
AuthorizationInfo.setAuthHandler (null) ;
// initiate connection
collectArgs (args) ;
HTTPConnection con = new HTTPConnection (hostname, port);
// Check if user is authenticated, if yes pass the cookie
while posting.
String token = null;
token = authenticate(userName, password, res);
if (token == null) {
System.out.println("Authentication failed for User
" + userName + " Exiting program");
System.exit (1) ;

IdentityXML Functions and Parameters 2-81

Code Examples of Deployed IdentityXML Functions

}
System.out.println("TOKEN: " + token);

Cookie SSOCookie = new Cookie("ObSSOCookie",
URLEncoder.encode (token), ".oracle.com", "/", null, false);
CookieModule.addCookie (SSOCookie) ;
System.out.println();

// collect response

NVPair header[] = new NVPair[1l];

header[0] = new NVPair ("Content-Type", "text/xml");
HTTPResponse rsp = con.Post (oburl,getRequestFromFile (), header) ;

// get status and act accordingly
if (rsp.getStatusCode() >= 300) {
System.err.println("Received Error:
"+rsp.getReasonlLine());
System.err.println(new String(rsp.getData()));
} elsef{
System.out.println();
System.out.println();
System.out.println();
System.out.println(new String(rsp.getData()));

} catch (IOException ioe) {
System.err.println(ioe.toString());
} catch (ModuleException me) {
System.err.println("Error handling request: " +
me.getMessage()) ;
} catch (Exception e) {
System.out.println(e.toString());

public static String authenticate(String userName, String password, String res)
{

String token = null;

ObResourceRequest resReqg = null;

ObUserSession user = null;

Hashtable cred = new Hashtable();

cred.put ("userid", userName);

cred.put ("password", password);

System.out.println("Authenticating user " + userName + " password " + password + "
for res " + res);

try

{

ObConfig.initialize(accessSDKinstalldir);
//"D:\\oblix\\install\\panacea\\ois\\identity\\AccessServerSDK"); // put the
correct path to your AccessSDK installation here

resReq = new ObResourceRequest ("HTTP", res, "GET");

// check if it is protected, if yes, create a user session

if (resReq.isProtected())

{

System.out.println("is protected");

user = new ObUserSession(resReq, cred, "192.168.1.126");

2-82 Oracle Access Manager Developer Guide

Code Examples of Deployed IdentityXML Functions

if (user.getStatus() == ObUserSession.LOGGEDIN)

{

System.out.println("user status is LOGGEDIN " + user.getStatus());
if (user.isAuthorized (resReq))

{

System.out.println("Permission GRANTED");

}

token = user.getSessionToken();
}

}

ObConfig.shutdown () ;

}

catch (ObAccessException oe)

{

ObConfig.shutdown () ;
oe.printStackTrace();
}

return token;

}

IdentityXML Functions and Parameters 2-83

Code Examples of Deployed IdentityXML Functions

2-84 Oracle Access Manager Developer Guide

3

Identity Event Plug-in API

The Identity Event Plug-in API enables you to extend the base Identity System
functionality. This API provides a channel for Identity System data to flow between
Identity System applications and external software components. Applications for this
API can be as simple as basic logging of Identity System usage, or as sophisticated as
data-filtering pipelines or seamless bridges to Enterprise Resource Planning systems.

The Identity Event Plug-in APl is a standard installed component of the Identity
System product.

This chapter discusses the following;:

The concept of events in the Identity System data flow that can automatically
invoke user-defined actions to change the outcome of user requests. Actions are
associated with events by the content of a catalog file.

The interface between Identity System application events and actions.
The API event types and the functions you can build into each event type.

The way in which actions load and execute, locates the library and header files
that you use to create your own actions, and provides example files.

A way the API can be used to pass information from one Identity System
application to another, for example to create a new user in the User Manager and
add that new user to a Group.

Examples of source code to implement and configure two different types of action.

This chapter contains the following sections:

About the Identity Event Plug-in API
Connecting Events to Actions

How the API Works

Event Handling in the API

The API

Cross-Application Support

Examples

About the Identity Event Plug-in API

Just as a Web server can be configured to execute CGI programs and server-side scripts
during the life cycle of an HTTP request, the Identity Event Plug-in API gives
developers the ability to extend the Identity System by providing their own small

Identity Event Plug-in APl 3-1

Connecting Events to Actions

applications, called actions or event handlers, to perform custom business logic and
integrate with external systems. You connect event handlers to the events using a
special configuration file named oblixpppcatalog.lst. The Identity System makes
certain data available to the actions, which are then allowed to modify the data and
influence the outcome of the event.

To support multibyte characters for globalization and localization in 10g Release 3
(10.1.3), UTF-8 encoding is used for XML pages, for SOAP/IdentityXML requests, and
for Identity Event Plug-in data sent to executables. Earlier releases used ISO-8859-1
encoding (also known as Latin-1).

To provide backward compatibility with earlier releases that used Latin-1 encoding,
10g (10.1.4.0.1) supports Identity XML requests in both ISO-8859-1 encoding (Latin-1)
and UTF-8. For XML documents written to disk, both ISO-8859-1 and UTF-8 encoding
are supported. IdentityXML responses are emitted in the same encoding format as the
request. Therefore, when a request uses Latin-1 encoding (encoding="IS0-8859-1"
the response uses Latin-1 encoding; when a request uses UTF-8 encoding, the
corresponding response uses UTF-8 encoding.

Note: Oracle recommends that you use encoding="UTF-8" in new
10g (10.1.4.0.1) installations. In upgraded environments, Oracle
recommends that you use encoding="IS0-8859-1" for backward
compatibility.

If an IdentityXML request uses encoding="IS0-8859-1" and the response to it
contains any characters outside the Latin-1 character set, the response containing such
characters is garbled. For example, when encoding="IS0-8859-1" is used for the
request and the response includes Japanese or Arabic characters, those characters in
the response will be garbled. For more information, see the Oracle Access Manager
Upgrade Guide.

Examples of Uses of the Identity Event Plug-in API

Common uses of this API are for password validation, integration, and provisioning.

For example, in a password validation application, suppose a security architect
recommends the use of 8-character passwords with 2-4 digits and 1-3 special
characters. You can develop an event handler for Password Management events that
use the Identity Event API and add this event handler to an Identity System password

policy.
As another example, suppose that new hires need to be recorded in a RDBMS to
ensure that they receive a "Welcome to the company" packet. You could develop an

event handler for the Enable step of each registration workflow instance to update the
remote database using the RDBMS vendor's APL

Finally, suppose that new users require a randomly generated unique ID to act as their
login ID. You could develop an event handler for the Enable step of each registration
workflow instance to generate a unique string in the required format and pass it back
to the Identity System to use as the uid attribute value.

Connecting Events to Actions

This section describes actions and events in more detail, and explains how to connect
them to each other using the Configuration File.

3-2 Oracle Access Manager Developer Guide

Connecting Events to Actions

Types of Events

An event is a state change within the Identity system. Examples of events:

= Arequest was received and is about to be passed to the User Manager view
program.

= Results have been generated by the Group Manager search program.
= A user has entered a challenge response while attempting a password reset.
= An attribute on a profile page for an Organization Manager tab has been modified.

s A workflow ticket awaiting approval by the corporate IT group has been
approved.

= A user has entered a new password, and the password policy in force requires
external validation.

The Identity System provides functionality specific to five different types of events,
summarized here. More detail for each type of event appears in the section on "How
the API Works" on page 3-9.

Identity System Program Events: Pre and Post

These are the most frequently used type of event. Each Identity System application
(User Manager, Group Manager, Organization Manager) contains a number of
programs (view, search, and so on) that generate the displayed HTML for each page
within the application. When any program runs, a pair of events is generated. Each of
the programs recognizes this pair of events.

One event (Pre) is generated before the program begins to create the page. The Pre
event enables an event handler to work with a request before it reaches a program. The
other event (Post) is generated after the program has created the page, but before
responding to the user with an HTML page. The Post event enables an event handler
to work with the results of processing a request.

These two events are referred to as the pre-processing event and the post-processing event
for that program, as shown in the following diagram.

Identity Server

oblixpppcatalog.Ist

Actions Identity
Programs
Pre »| Pre-Event >

[ros] 4

> Post-Event

OnChange

OnChange event interaction is provided as part of the set of Identity System
applications (User Manager, Group Manager, and Organization Manager). Specifically,
the OnChange event applies to the Profile page within each of these applications.
When a change is made to any of the data in these pages, an OnChange event is
generated. These events are triggered only after the changes are successfully
committed to the directory.

Identity Event Plug-in APl 3-3

Connecting Events to Actions

Workflow Events

Workflows are definitions for a repeatable set of steps used to create or modify data.
Workflow definitions are created and stored within the Identity System. The user can
then reference the workflow by name, and instruct the workflow engine to process it
when needed. Workflow steps each generate a pair of events (pre and post). The pre
event enables an event handler to inspect and modify workflow data before the step is
executed. The post event enables an event handler to inspect and modify workflow
data after the step is executed. Workflow steps also generate an external action event.

The Pre, Post, and external action events in a workflow can process both LDAP data
and template object data. This is a departure from the Identity System applications,
which only process LDAP data. The Identity System stores template attributes in fully
qualified form on a workflow step, as follows:

attribute.class.domain

See the chapter on configuring template objects in the Oracle Access Manager
Administration Guide for details.

Password Management Events

Password Management events are generated when an attempt is made to set the
password of a user in a branch of the directory tree that is covered by a password
policy whose external validation flag is enabled. Actions associated with Password
Management events are used to check password quality against custom business rules.

As part of creating a password policy, you may enable the option “Externally specified
validation rules.” Oracle Access Manager applies the password policy for the
requester. If the requester is covered by the policy, then Oracle Access Manager
checks to see if this flag is set. If it is, then Oracle Access Manager executes the
password validation event which in turn carries out the action defined by the user.
Oracle Access Manager also supports the Identity Event plug-in for the Identity
System Lost Password Management application. When you configure the
oblixpppcatalog.lst file, the application name is lost_pwd_mgmt.

Lost Password Management

The event related to lost password management functionality is setChangedPassword,
and the application name for this is lost_pwd_mgmt. The sample application name,
event name, and action is lost_pwd_mgmt_setChangedPassword_pre.

Encryption Events

The Identity System applies a proprietary encryption method to several pieces of
information. One is cookie information, such as the login cookie for a authenticated
session. An encrypted version of this cookie is kept by the user's browser while a
session is in effect. A second is the response half of the challenge/response pair used
for Lost Password Management. The response phrase, to be given by the user in
response to the challenge phrase, is stored encrypted in the directory. Password
information is encrypted when included in a workflow. Encryption events are used to
invoke user-defined encryption algorithms (implemented by actions) when the
Identity System needs to encrypt a piece of data.

You can replace Oracle Access Manager's encryption technique with one of your own
by adding actions to the Catalog to replace either or both of these default encryption
methods. For example, you can replace the default encryption scheme for cookies,
challenge responses, and password fields in workflows using this method.

3-4 Oracle Access Manager Developer Guide

Connecting Events to Actions

Types of Actions

An action is an event handler. More specifically it is a unit of external logic written by
a developer and then configured by a Master Administrator to execute in response to a
particular event.

Actions have three formats: LIB, MANAGEDLIB, and EXEC.

Actions may perform their tasks without accessing external components, or they may
use any available mechanism to access third-party applications and resources such as
web services, RDBMS services, and ERP applications.

At startup time, the Identity Server reads its configuration catalog, which tells it what
events have actions. When an event occurs, the server executes the associated action.

LIB Actions

A LIB action is a function within a shared library that the Identity Server calls. LIB
actions reside in shared libraries on Unix or DLLs on Windows. Once dynamically
loaded, the action function executes in the same process space as the Identity Server
and has direct access through API functions to data objects held by the server.

For a LIB action, the Identity Server dynamically opens the shared library or DLL,
locates the function that implements the action, and calls the function.

LIB actions have advantages. These are:

Fast loading—LIB actions are compiled binary objects that reside in shared libraries.
They have relatively low startup overhead.

Reusable at runtime—LIB actions need only be loaded once. They then remain in
virtual memory, ready for subsequent calls.

High performance—LIB actions execute quickly because they are binary code
modules compiled from C or C++ source code. Of course, whether they are received as
fast depends on the function they perform.

Identity data on demand—LIB actions have access to a great deal of data about the
current request, the authenticated user, and other services from the Identity System
using simple GET/SET API calls.

Scalable—LIB actions provide good scalability, even in high traffic applications,
because they are simply functions that can be called repeatedly as requests are
processed, with low overhead.

Disadvantages of LIB actions:

Limited support from third-party components—LIB actions, because they are written
in C or C++ have relatively few freely available third-party APIs to call upon for
external services such as RDBMS access, XML parsing and formatting, network
services, cryptography services, LDAP services, and so on. These services are more
widely available to the Java and PERL developer community.

Specialist expertise required—LIB actions require more specialized skills to
implement. This can increase the cost. For instance, even to deploy the same action on
a Windows and Solaris environment simultaneously would require C/C++
development expertise in both platforms and development environments.

Platform-dependent source code—The steps necessary to author and build a shared
library on Solaris are different from building a DLL for Windows on NT. Either
defensive coding practices are required to ensure cross-platform source code, or
multiple source trees must be maintained for a multi-platform deployment.

Identity Event Plug-in APl 3-5

Connecting Events to Actions

Potential to cause Identity Server failure—Any uncaught exceptions caused by errors
in LIB actions will cause the Identity Server to fail. This is because the action is
running in the Identity System Identity address space, and if it accidentally causes a
memory leak or memory trash, the server cannot detect and recover from this. These
problems to not exist in EXEC actions because each EXEC action runs in its own
address space and can only damage itself. The server can detect this because the child
process exits without returning a success status.

MANAGEDLIB Actions

A MANAGEDLIB actions only run on Windows. A MANAGEDLIB action can be
written in any .NET language. A .NET language is any source language for which a
Microsoft Intermediate Language (MIL) compiler exists. MIL instructions are executed
by the Microsoft NET Common Language Runtime (CLR), which uses a just-in-time
(JIT) compiler. The JIT compiler compiles the MIL instructions into native machine
instructions. MIL instructions are compiled once and stored in dynamic memory.
There is a modest performance hit the first time that managed code is executed.

Compiler for C++, Common Language
managed extensions Runtime (CLR), a
for C++, C#, and Microsoft Just-In-Time (JIT)
SO on Intermediate | compiler Native CPU
Source > Language »| Instructions
(L)

MANAGEDLIB actions are similar to LIB actions. As with LIB actions, a
MANAGEDLIB action is loaded into memory. MANAGEDLIB actions also share most
of the benefits of LIB actions.

In addition, MANAGEDLIB actions offer the benefits of managed code, including:

= Language Choice—You can write your plug-ins in VisualBasic, C#, Managed C++
(MC++), Java, or PERL.

» Language Integration—You can combine MIL modules compiled from different
source languages into one assembly or plug-in. This provides the plug-in writer
with a wider range of language choices for plug-in development.

= Support for Memory Management—The CLR provides garbage collection,
freeing the plug-in writer from most memory management. The garbage collector
will return memory to the heap when that memory is no longer referenced.
However, the plug-in writer should ensure that there are no dangling references to
objects. If there are dangling references, garbage collection will not occur for the
unused memory.

= .NET framework support—The .NET framework SDK contains a wide range of
functionality. This may reduce the need for third-party support in plug-in code.

EXEC Actions

An EXEC action is a standalone executable program that the Identity Server executes.
EXEC actions reside in separate executables and run in their own process space. To
process an EXEC action, the Identity Server starts a new child process and loads the
executable passing its parameters. Input is streamed to the action on STDIN and
output is received on STDOUT and the process's exit status.

Characteristics of EXEC actions:

» Communication with the Identity Server is limited to startup parameters and an
XML stream for input, and an XML stream plus an exit status code for output. Any

3-6 Oracle Access Manager Developer Guide

Connecting Events to Actions

further access to the Identity System data must be done like any other Identity
System client, using IdentityXML.

= Actions can also use any other APIs, such as an LDAP Identity Event Plug-in API
to access directory information directly.

n For scripted EXEC actions, the action would be the interpreter, such as
/usr/local/bin/perl, and the script itself would be passed as a command-line
parameter.

Advantages of EXEC actions:

Choice of Development Languages—EXEC action developers can write the code in C,
C++, Java, PERL, or any language that supports C-style command line processing and
stdio.h compatible standard I/O processing.

Rapid prototyping—EXEC actions can be rapidly prototyped or developed using
scripting languages such as PERL.

Platform-Independent Code—EXEC action source code can be platform independent
because of the language neutrality. The same code written in PERL and Java will
execute on Windows and Unix.

Java-Compatible—EXEC actions can be implemented in Java, giving them access to
third-party services that only provide Java APlIs.

Extensive Third-Party Support—EXEC actions cannot bring down the Identity Server.
If they fail, the end user will see an error report and the Identity Server will continue
to serve other requests.

Disadvantages include:

Poor Scalability—EXEC actions do not scale as well for high-traffic applications
because a new child process is required for each request.

Limited Access to Identity System Data—EXEC actions get their input from
command line parameters and from the (static) XML stream available on STDIN when
they execute. There is no API to provide direct access to further Identity System
information. To do this, the action would have to implement an IdentityXML client
and communicate with Identity Server over a separate connection.

XML Parser Required—EXEC actions need to parse XML for all but the simplest tasks
in order to access their input. This means that they must have an embedded parser
that understands the XML schema of any input they may receive. This adds to the
startup time, the memory footprint, and the complexity of the action, and may be too
heavyweight for many tasks.

Configuration File (Catalog)

The Identity System uses a configuration file, oblixpppcatalog.lst, to provide the link
between Identity events to be responded to and custom actions to be taken. This file is
called the Catalog. For LIB, MANAGEDLIB, and EXEC actions, this file is installed and
must stay in the following directory:

Identity _install_dir/identity/oblix/apps/common/bin

Note: When you installed the Identity System, an installation
directory was specified and created, for example:
/usr/coreid/identity. As a convenient shorthand, this directory is
called Identity_install_Dir.

Identity Event Plug-in APl 3-7

Connecting Events to Actions

Each entry in oblixpppcatalog.lst is a single line linking an Identity System event to an
action. Each line in the Catalog must contain at least five fields (six if you need to use
the apiVersion field), delimited by semicolons. Each line must end with a semicolon.
Lists of data items within each field are delimited by commas. Fields may be empty,
indicated by the semicolons being next to each other. The precise content of each field
varies with the action type and the kind of event to which it is responding.

The general form for a LIB or MANAGEDLIB entry is:

actionName;actiontype; ;path; funcname;apiVersion;

With LIB and MANAGEDLIB actions, the path can be relative or a full path.
The general form for an EXEC entry is:

actionName;actiontype;identityparaml, ... ;path;execparaml, ...;apiVersion;
Fields within the entries are delimited by semicolons (;). Each entry must have at least
five fields, and end with a semicolon, followed by a new line (carriage return and line

feed).

Note: The special character # is used in this file to indicate lines that
are comments. Do not use this character as part of a LIB or EXEC
entry. It would be a mistake, for example, to call a LIB funcname
getbuilding# since, for that entry, everything past the # would be
ignored.

Explanation of each field is given in the following table. Read down each column to
understand the content for each of the action types.

Field Name LIB and MANAGEDLIB Actions EXEC Actions
actionName Field 1. The action name. The name contains Field 1. Same description as for LIB
. information that tells the Identity System which ~ and MANAGEDLIB Actions.

(required) . -

event type the action responds to and in some

cases whether it should be performed before, as

part of, or after the event.
actiontype Field 2. managedlib (This exact text) or lib (this Field 2. exec (This exact text).
(required) exact text), depending on what type of action you

are using.

identityparam1, Field 3. This field is always empty. Field 3. Used by EXEC actions only.
The names of global parameters,

delimited by commas. A table of these

(optional) arameters is provided on "Global
P p %
Parameters" on page 3-17.
path Field 4. The location and name of the LIB or Field 4. The location and name of the
(required) MANAGEDLIB file that implements the action. EXEC file that implements the action.
funcname Field 5. The name of one function to call from N/A
(required) within the shared library, for the LIB or
9 MANAGEDLIB action.
execparam N/A Field 5. One or more input parameters
(optional) to the EXEC action, delimited by
P commas.
apiVersion Field 6. Leave this field empty. Reserved for Field 6. Same description as for
(optional) earlier versions of the product. MANAGEDLIB Actions.

3-8 Oracle Access Manager Developer Guide

How the APl Works

Guidelines for Writing an Action

The procedure for creating an action is as follows.

Task overview: Writing an action

1. Identify Requirements—Investigate whether you need to validate or modify the
inputs, results, or side effects of an Identity System request or workflow in order
to achieve results that the Identity System cannot deliver.

2. Select the Event—This depends on the following:

Availability—The availability of the data

1. Timing—whether the system is in the desired state for the action when the event
occurs

2. Performance—To maximize performance, identify the least frequently used event
that will yield the desired result.

3. Execution—Determine if this action should run before (pre-event) or after
(post-event) the request is processed by the Identity System application.

4. Write—Write the action.

5. Configure the Action—A Master Administrator must edit the Identity Event
plug-in API configuration catalog in

Identity_install_dir//identity/oblix/apps/common/bin/oblixpppcat
alog.lst

The administrator enters an entry in the catalog to register the action and its
parameters against a particular request. The administrator then restarts the Identity
Server(s) or uses a portal insert to refresh the catalog of a running Identity Server.

How the APl Works

The next section describes how actions are found and executed, from the Identity
System application's point of view. The following section, "Identity System
Applications, as Seen by Actions" on page 3-12 describes what happens and what data
can be accessed, from an action's perspective.

Actions, as Seen by Identity System Applications

The Catalog is loaded once, when the Identity System starts up. File content can be
changed while the Identity System is running, but the changes take effect only if the
file is reloaded. You can force changes to take effect by restarting the Identity System
or by linking from any browser to the following URL:

http://hostname:port/identity/oblix/apps/admin/bin/genconfig.cgi
?program=flushCache&cacheType=ppp

For LIB and EXEC Actions—If you flush the Identity Event Plug-in (PPP) information
from the Identity System, it forgets all it knew about DSOs and executables that
contain actions. The Identity System reads the Catalog again when it next generates an
event, and starts loading DSOs on demand, depending on what actions are configured
and what events occur.

For MANAGEDLIB Actions—The DSO (in managed code terminology, this is the
assembly or DLL) is loaded once into the default application domain. If a plug-in

Identity Event Plug-in APl 3-9

How the APl Works

writer rebuilds the assembly, they will need to restart the Identity Server to ensure that
the new assembly is loaded the first time an action from that assembly is invoked.

Multiple actions can be defined for a single event. If multiple actions are defined, all of
the actions are performed, in the order that they appear in the Catalog. This approach
enables you to build action pipelines, where the output of one action can become the
input of the next.

Keep in mind, however, that for a typical event, the event that invoked the action was
caused by user activity. While your code is processing the data, and passing its output
down the chain, the end user may be waiting for a result. You should include the
impact of user-perceived responsiveness in the design and testing of all actions,
especially if multiple actions are expected for a single event. Note also that if any of
the multiple actions returns an error, additional actions in the pipeline for that event
instance will not be performed.

The following diagram shows how three possible events can be configured with
actions for the User Manager application.

Assume that the workflowActivate event is associated in the Catalog with three
custom actions to be performed during post-processing:

= Invoke an action to extract information about the newly activated user, and add
the user to default company email distribution lists.

= Send a pre-written email message template to relevant lists and individuals
(possibly based on Identity System data) welcoming the new user to the
organization.

= Trigger an external business process that updates each of various external
company databases with appropriate information about the user. This can be as
simple as an application that pushes the new user's information to a table where
external programs can pick it up.

Identity System Application (User Manager)

Workflow > Workflow > Workflow
Activate Deactivate Reactivate
updateDistLists sendWelcomeBackMsg
sendWelcomeMsg
updateRDBMS

In this example, when a user request generates the workflowActivate event, User
Manager consults the Catalog, determines that this event has no configured
pre-processing actions, and proceeds to generate the page in XML. It then checks for
post-processing actions and finds three: updateDistLists, sendWelcomeMsg and
updateRDBMS. User Manager checks the Catalog to see whether the first action,
updateDistLists, is a LIB or EXEC action. How processing proceeds depends on the
result of this test:

= For a LIB Action—User Manager dynamically loads the DSO containing the
function (if it is not already loaded) and obtains a pointer to the function within
the action. It then calls the function, passing the name of the event for which it is

3-10 Oracle Access Manager Developer Guide

How the APl Works

being invoked and a pointer to an ObPPPData object through which the action can
interact with User Manager. The action performs its tasks, querying User Manager
as needed through calls to ObPPPData methods. When its task is complete, the
action function returns status information that the event uses to decide its next
behavior.

For a MANAGEDLIB Action—User Manager dynamically loads the DSO
containing the function if it is not already loaded and obtains a pointer to an object
that implements the IPPPData interface. The Identity System will reference an
EventAPI object and invoke the "action"” method on that object, passing a reference
to IPPPData as a parameter of the "action" method. The EventAPI object is a
singleton, meaning that the first request will instantiate the object and subsequent
requests will use this object. The action performs its tasks, querying User Manager
as needed through calls to IPPPData methods. When its task is complete, the
action function returns status information that the event uses to decide its next
behavior.

Note: In managed code terminology, DSO is referred to as an
assembly or a dll.

For an EXEC Action—User Manager starts up the executable in a new process,
making connections to its STDIN and STDOUT streams. The argv([] array of
command line arguments is built as well. The first argument is the total count of
arguments. The last is always the data for the set of Identity System parameters
specified in the catalog (if any), provided in a specific XML format, called
EventXML. The arguments in between match the values given for EXEC
parameters in the catalog file (if any). User Manager always sends the XML data
representing the current state of the request, in EventXML format, to the action on
its STDIN. The action interprets its arguments, if any, reads its STDIN and
performs its task, which may or may not involve XML parsing to extract and
replace (or extract and replace) information received from User Manager. When
complete, the action optionally writes the XML data out on its STDOUT. The
action is not required to return the XML data, because the Identity System keeps
the original version as the default, in parsed form. (If the data is large, avoiding an
extra parsing operation can be worthwhile).

Note: If any action modifies the XML data, it is the action's
responsibility to make sure the output XML conforms to the
appropriate XML Schema. How to find the correct schema file for the
event you are handling is described in "Connecting Events to Actions"
on page 3-2.

When User Manager receives the result status code, either from the return value of a
LIB action function or from the exit status of a terminating child process that was
running an EXEC action, it proceeds as follows:

STATUS_PPP_OK—User Manager looks for the next post-processing action in the
Catalog that is configured for workflow Activate. If there is one, User Manager
goes through the preceding procedure again for that action, passing in the possibly
modified XML data received from the earlier actions.

STATUS_PPP_ABORT—The action has signalled an error. In this case, User
Manager does not even check for subsequent actions for the event. It translates
any information transmitted by the action through the API into an error, and

Identity Event Plug-in APl 3-11

How the APl Works

handles the error. This result generally results in an error message being displayed
to the user, who can then report the problem.

s STATUS_PPP_WEF_ASYNC—For use with workflows, this result tells the event to
wait for an asynchronous, probably manual, action to be completed. For example,
this might ensure that a currently unavailable database is updated before the
workflow continues. See "Workflow Events" on page 3-26 for more details.

s STATUS_PPP_WEF_RETRY—For use with workflows, this response tells the event
that the workflow step did not complete, probably because of invalid data, that
therefore needs to be reentered. The event increments its retrycount, and starts
again.

In the example, workflowActivate has three post-processing actions. You can view this
as a pipeline, because the data flows from one action to the next. In practice, each
action returns to User Manager before the next is called. If all of the actions return
STATUS_PPP_OK, User Manager completes its processing for the request, applying
the XSL stylesheet for the page and returning the resulting HTML page to the browser.

No actions are configured for the workflowDeactivate pre- or post-processing events,
so User Manager builds the result page without calling any actions.

The workflowReactivate post-processing event is configured to call the
sendWelcomeBackMsg action. User Manager calls this single action and applies XSL
processing to its output before returning the result page to the user.

Note: The action has direct access only to data known to the current
event. For example, in order to access full user information from the
directory, the action might have to communicate with the Identity
System using a different method, such as the IdentityXML interface,
before it has sufficient information to accomplish a given task.

The preceding illustration uses User Manager as an example; the other Identity System
applications that generate events behave in exactly the same way with respect to the
Identity Event Plug-in APIL.

For detailed examples of LIB, MANAGEDLIB, and EXEC actions, including sample
code and Catalog entries for configuration, see "Examples" on page 3-48.

Identity System Applications, as Seen by Actions

The following topics provide details about Identity System applications and actions:
s LIB Actions

= LIB Interface

= Load Behavior

= LIB Examples

= MANAGEDLIB Actions

= MANAGEDLIB Interface

= Load Behavior for MANAGEDLIB
= MANAGEDLIB Examples

= MANAGEDLIB Actions

s EXEC Actions

3-12 Oracle Access Manager Developer Guide

How the APl Works

Load Behavior
EXEC Examples

Global Parameters

LIB Actions

LIB actions are only available in C or C++. However, if you want to write these actions
in Java, you can write a JNI to wrap C++ functions with the Java APL

LIB Interface

The LIB action interface to the Identity System is defined by the ObPPPData class
provided in the obpppdata.h. file. See "Development Environment" on page 3-43 for
the location of this file. ObPPPData defines five methods that a LIB action may use to
access Identity System data. These methods are:

Get —Use this method to get the value or values (attributes may be multi-valued)
for a specified parameter from the Identity System application that triggered the
event. The method returns a pointer to an array of values matching a key. The key
is any attribute that is known to the application handling the event. The key may
also be one of the Global parameters; see "Global Parameters” on page 3-17. The
last member of the array is a NULL.

virtual const char * const *Get(const char *key) const;

Responsibility for allocating and freeing memory for the return value lies with the
Identity System. If you request a value for a parameter that is not valid for the
event triggering the action, only the NULL value is returned.

Set—Use this method to set the value(s) for a given parameter to be sent to the
Identity System application. You should set values only for those parameters that
are valid for the event.

virtual int Set (const char *key,
const char * const *value) = 0;

Key represents the parameter to be set; value is an array of values to be used. The
last member of the array must contain a NULL.

Responsibility for allocating and freeing memory for the input parameter content
lies with the API developer.

The Identity System returns 1 if the set is successful, 0 if not.

Receive —Use this method to request and receive event data from the Identity
System application as an XML string. You will need to understand the structure of
this XML string in order to locate data within it. See "Working with XML" on

page 3-18 and the chapter on PresentationXML in the Oracle Access Manager
Customization Guide.

virtual const char *Receive() const = 0;

Send—Use this method to send replacement content for the event page to the
Identity System application as an XML string. Generally, this will be EventXML,
from which the Identity System application extracts the information it needs. In
the case of post actions, however, this is expected to be PresentationXML. This
PresentationXML string completely replaces the output that the Identity System
application would otherwise have used to generate an HTML page for the user or
would have passed to the next action if this action is part of a pipeline. Your new

Identity Event Plug-in APl 3-13

How the APl Works

content may differ in a minor way, such as the addition of a copyright or other text
message, or it may contain significantly different data.

virtual void Send(const char *data) = 0;
The XML data string being sent must match the schema expected by the

application receiving it. Best practice is to verify the XML data against the schema
with an XML editor, before using the action in a live environment.

= SetResultString—Use this method to set the content of a result string to be

displayed to the user by the Identity System application. The exact manner in
which the text is then shown varies with the event to which the action is
responding.

virtual void SetResultString(const char *str) = 0;

str contains the text to be displayed.

Note: This method cannot be used for post events, because the data
returned by them is in PresentationXML format. If an error is to be
displayed, the developer is responsible for building it into the
PresentationXML.

Load Behavior

The Dynamically Shared Object (DSO) for a LIB action is loaded into the Identity
System's address space when it is first needed and remains there. A new version of the
DSO can be generated and installed while the Identity System is running, but any
revised actions contained in the DSO will not be loaded unless the Identity System is
stopped or started, or the loaded Catalog is flushed using the URL described in
"Configuration File (Catalog)" on page 3-7. If the file is flushed, then the action is
reloaded the next time its corresponding event occurs.

Functions for LIB actions are loaded as needed into Identity System applications, and
executed directly by them. For this reason, you will need to link with the
Oracle-provided interface library on Windows platforms or with the runtime shared
library itself for UNIX. See "Development Environment" on page 3-43 for the location
of the Windows library.

LIB Examples

LIB Code examples can be found installed under the following directory:
Identity install_dir/oblix/usupported/ppp/ppp_dll

They are provided under "Examples" on page 3-48.

MANAGEDLIB Actions

MANAGEDLIB actions can be written in any language supported by the Microsoft
NET framework for managed code, including Visual Basic, C# and C++.

MANAGEDLIB Interface

The MANAGEDLIB action interface to the Identity System is defined by the IPPPData
interface. See "Development Environment" on page 3-43 for the location of the header
file. The header was written in MC++. The IPPPData interface will be syntactically
different in other .NET languages, but will work the same way, that is, the semantics
will be identical.

3-14 Oracle Access Manager Developer Guide

How the APl Works

IPPPData defines five methods that a MANAGEDLIB action may use to access
Identity System data. The definitions for these methods are similar to those for LIB
actions:

s Get —Gets value or values for a specified parameter (argument key) from the
Identity System application that triggered the event.

String * Get(String * key) __gcll;

= Set—Set the value(s) for a given parameter (argument key) to be sent to the
Identity System application. You should set values only for those parameters that
are valid for the event.

int Set(String * key , String * value _ gcl[]);

= Receive —Use this method to request and receive event data from the Identity
System application as an XML string. You will need to understand the structure of
this XML string in order to locate data within it. See "Working with XML" on
page 3-18. See also the chapter on PresentationXML in the Oracle Access Manager
Customization Guide.

String * Receive();
= Send—Use this method to send replacement content for the event page to the
Identity System application as an XML string.
void Send(String * data);
The XML data string being sent must match the schema expected by the

application receiving it. Best practice is to verify the XML data against the schema
with an XML editor, before using the action in a live environment.

= SetResultString—Use this method to set the content of a result string to be
displayed to the user by the Identity System application. The exact manner in
which the text is then shown varies with the event to which the action is
responding.

void SetResultString(String * str);

str contains the text to be displayed.

Note: This method cannot be used for post events, because the data
returned by them is in PresentationXML format. If an error is to be
displayed, the developer is responsible for building it into the
PresentationXML.

Load Behavior for MANAGEDLIB

The DSO (managed assembly or dll) is loaded once into the default application
domain, which is part of the Identity System process. If a plug-in writer rebuilds the
assembly, they will need to restart the Identity Server to ensure that the new assembly
is loaded the first time an action from that assembly is invoked.

MANAGEDLIB Examples
MANAGEDLIB code examples can be found installed under

Identity_install_dir\oblix\unsupported\ppp\dotnet\managedcplusplus
and are provided under "Examples" on page 3-48.

Identity Event Plug-in APl 3-15

How the APl Works

MANAGEDLIB Actions

Using Windows-based Managed Code, you can write MANAGEDLIB actions in Visual
Basic, C#, C++, and any other language that uses Managed Code. Managed Code is
only appropriate for MANAGEDLIB actions, not for EXECs. This is because
MANAGEDLIB actions are loaded into memory.

EXEC Actions

Exec Interface—Executables run as distinct processes and do not share an address
space with the Identity System.

The Identity System determines the data to be sent and received between itself and the
executable, based on the Identity System and Executable parameters specified in the
Catalog entry. The action then receives a set of command line arguments and XML
data representing the event on STDIN. The EXEC action returns a status and,
optionally, XML data on STDOUT. The possibilities are shown in the following

diagram:
arg[n]
STDIN(XML)
Identity
System EXEC
—
STDOUT(XML)
status value

The set of command line arguments has a fixed logical structure. Consider, for
example, the argv[] array of command line parameters. The first member of this array
is the total count of arguments. The last array member is always the data for the set of
Identity System parameters (if any) specified in the catalog entry for the event, always
provided in EventXML format. (These are the same set of parameters available to LIB
actions; see the full list at "Global Parameters" on page 3-17.) The arguments in
between are the values given for EXEC parameters (if any) in the catalog entry for the
event. The exec parameters are user-defined instructions to the EXEC action that
control its operation.

The format of the XML data sent to the action and returned by it varies with the type
of event. In most cases, both the STDIN and STDOUT data will be in EventXML
format. Post processing events are an exception; they always return PresentationXML,
as discussed in greater detail in "Pre and Post Events" on page 3-21.

EXEC actions are able to get and return the same data as LIBs, but do it in a more
complex way, generally requiring parsing of the XML data. Here are the equivalences:

s Equivalence to Get —The desired value must be obtained by first locating the
attribute name in the EventXML or PresentationXML string, then extracting the
value.

Values for global parameters are provided, in EventXML format, as the last command
line argument.

= Equivalence to Set —The user must start with the full EventXML or
PresentationXML string, then locate the attribute name in the XML and insert the
value.

= Equivalence to Receive —This is the EventXML or PresentationXML string for the
event, which is always provided to the EXEC using its STDIN.

3-16 Oracle Access Manager Developer Guide

How the APl Works

s Equivalence to Send —This is the EventXML or PresentationML which the action
optionally returns on its STDOUT.

s Equivalence to SetResultString —Use ObResultString to name the ObParam and
provide the message string as its value.

Load Behavior

Unlike LIB actions (which are cached) EXEC actions are executed afresh from the file
system each time they are used. This means that they can be replaced at any time with
a new version. The new version is executed the next time the corresponding event is

triggered.

EXEC Examples

EXEC Code examples can be found installed under

Identity_install_dir/oblix/unsupported/ppp/ppp_exec

Global Parameters

A special set of global parameters can be retrieved. Lib actions get values for these
parameters interactively, using the Get method. Exec actions get values by providing
one or more of the parameter names in the parameter list. Either way the developer
specifies a predefined fixed value parameter name, also called a key, as listed in the
following table. Use the full uppercase parameter name shown in the table, preceded
by either ObRequest or ObEnv, as shown.

User Identity Key Name

Description of Data

ObRequest.
REMOTE_ADDR

Client IP address, for example, 666.777.888.999. This is the IP
address of the user making the request.

ObRequest. Client's DNS address (for example, www.foo.com).
REMOTE_HOST

ObRequest. The port number at which the client host is listening.
REMOTE_PORT

ObRequest. Name of the HTTP authenticated user.

REMOTE_USER

ObRequest. Name of the client's browser (for example, Mozilla/4.07).
HTTP_USER_AGENT

ObRequest. The Oracle Access Manager authenticated user.
OBLIX_AUTH_USER

ObRequest. UID for the target entry.

TARGET_UID

ObRequest. A requestInfo parameter is any of the values that appear in the

<any requestinfo parameter>

URL for a displayed page, following the delimiters $ or &.

ObEnv.
INSTALL_DIR

Installation Directory for the Identity Server.

For example, to get the name of the user making the request from within a LIB or
MANAGEDLIB Faction, the content could be:

Identity Event Plug-in APl 3-17

How the APl Works

currentuser = Get ("ObRequest.OBLIX_AUTH_USER")

The catalog entry for the equivalent EXEC request might look like this:

userservcenter_view_pre;exec; ObRequest.OBLIX_AUTH USER;
./../../unsupported/ppp/ppp_exec/pppexectest; someinstruction;

Working with XML

The following topics are discussed in this section:
s Event XML Format
» PresentationXML Format

s Parsing XML

Event XML Format

EventXML provides a standard, predictable format for use by LIB, MANAGEDLIB,
and EXEC actions. The schema for EventXML looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.oblix.com/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" xmlns="http://www.oblix.com/"
elementFormDefault="qualified">
<xs:element name="ObEventParams">
<xs:complexType>
<xs:choice minOccurs="0"
maxOccurs="unbounded">
<xs:element name="ObParamList"
minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<XS:sequence>
<xs:element ref="ObParam"
maxOccurs="unbounded" />
</Xs:sequence>
<xs:attribute name="name"
type="xs:string" use="required"/>
</xs:complexType>
</xs:element>
<xs:element ref="ObParam" minOccurs="0"
maxOccurs="unbounded" />
</xs:choice>
</xs:complexType>
</xs:element>

<xs:element name="ObParam">
<xs:complexType>
<Xs:sequence>
<xs:element name="ObValue" type="xs:string"
minOccurs="0" maxOccurs="unbounded"/>
</XS:sequence>
<xs:attribute name="name" type="xs:string"
use="required"/>
</xs:complexType>
</xs:element>
</xs:schema>

Consider an example. Suppose the Catalog entry for an EXEC action is as follows:

userservcenter_view_pre;exec;

3-18 Oracle Access Manager Developer Guide

How the APl Works

ObRequest.cn,ObRequest.sn; ../../../unsupported/ppp/ppp_exec/pppexectest;
execparam;

This example specifies that the EXEC action pppexectest is to be invoked before (pre)
the Identity System begins to build the person profile page (view) in User Manager
(userservcenter). Information is requested for the cn parameter and sn parameters. The
executable parameter execparam is to be included as the first command line argument
to the executable.

The last argument of the command-line information passed to the EXEC action,
containing the EventXML, will be as shown in the following listing. Note there are as
many instances of ObParam as there are requested parameters.

<?xml version="1.0" encoding="UTF-8"?>
<ObEventParams
xmlns="http://www.oblix.com/">
<ObParamlList name="ObRequest">
<ObParam name="cn">
<ObValue>John Smith</ObValue>
</ObParam>

<ObParam name="sn">
<ObValue>Smith</ObValue>
</ObParam>

</ObParamList>
</0ObEventParams>

PresentationXML Format

The content of PresentationXML is highly variable, because the Identity System
enables the user to modify the appearance and content of screens to satisfy
site-dependent requirements. An explanation of the XML content and structure is
provided in the chapter on PresentationXML in the Oracle Access Manager
Customization Guide.

Parsing XML

In order to work with either EventXML or PresentationXML, the developer will need
to be able to parse the XML data stream, to locate the points in the stream where data
is provided (to in effect Get data) or must be inserted (to in effect Set data).

We do not attempt here to tell developers how to program such a parser. However, a
set of examples is provided at:

Identity_install_dir/oblix/unsupported/ppp/parser_test

See "Parser Example Files" on page 3-46 for a list of these files.

The files assume the developer is using the free Apache XML parser, XERCES, source
code for which can be obtained from:

http://xml.apache.org/

The content of the EventXML and PresentationXML strings technically is predictable,
but depends in very complex ways upon which event is occurring and in which
application. The recommended approach is to set up an action that returns the XML
stream for the desired application and event combination, and capture the stream in a
file. Then, code the action to work with that information. This approach is particularly
appropriate for actions to be written for post-processing events, when the stream
consists of highly variable PresentationXML information.

Identity Event Plug-in APl 3-19

Event Handling in the API

Event Handling in the API

For each of the five event types, this section describes:
= The syntax required in order to link that event type to an action in the Catalog.
= The functions required for initialization and shutdown of the event handler.

= The valid interface methods for the event type, and the content of the interface
data.

= The set of status responses, one of which the action must return to the application.
The following topics are discussed in this section:

= Event Handler Initialization and Shutdown Functions

= Pre and Post Events

= OnChange Events

= Workflow Events

= Password Management Events

= Encryption Events

Note: Events are described in greater detail at "Types of Events" on
page 3-3. All event types support LIB, MANAGEDLIB, and EXEC
actions.

Event Handler Initialization and Shutdown Functions

For LIB and MANAGEDLIB actions, Pre and Post Processing (PPP) provides functions
for initialization and shutdown for the event handler. These initialization and
termination functions are called each time when the PPP library is loaded or unloaded.

For MANAGEDLIB actions, you must define a singleton object of class EventAPI. The
constructor will be invoked upon loading the DSO, while the destructor will be called
when the default application domain is unloaded from the Identity System process
during shutdown. The initialization code must be placed in the constructor for this
class, and the shutdown code must be placed in the destructor. These replace the Init
and Term functions provided for LIB and MANAGEDLIB actions.

Global initialization and cleanup should be done only within the following functions.

OblnitEventAPI ()

For LIB, actions, the ObInitEventAPI () function is called when the DSO is loaded. This
function, shown as follows, provides all global initialization such as reading of
configuration files and creation of log files.

unsigned int OBLIX_DLLEXPORT ObInitEventAPI (void)

This function is guaranteed to be called in a thread-safe manner.

If this function is present in the plug-in, the Identity System calls it after the plug-in
has been loaded.

Return Values

The function can return either of the following two response values, which are defined
in the obppp.h. file:

3-20 Oracle Access Manager Developer Guide

Event Handling in the API

s STATUS_PPP_OK—This is the result the function should return if it succeeds. This
function result tells the application that the function has completed execution
without error.

s STATUS_PPP_ABORT— This is the result the function should return if it fails. This
function result tells the application that the function failed to complete execution
because of an error. Subsequent calls to the plug-in will not be made.

ObTermEventAPI ()

For LIB actions, the function ObTermEventAPI () is called when the DSO is unloaded.
This function, shown as follows, performs clean-up activity such as releasing any
allocated memory and closing any opened files.

unsigned int OBLIX_DLLEXPORT ObTermEventAPI (void)

This function is guaranteed to be called in a thread-safe manner.

If this function is present in the plug-in, the Identity System calls it when the server is
being shut down.

Return Values
The action returns the following value which are defined in the pppdlltest.cpp file:

STATUS_PPP_OK—The function returns this result to tell the application that it has
completed the action without error.

STATUS_PPP_ABORT—The function returns this result to tell the application that it
has encountered an error.

Pre and Post Events

The following topics are discussed in this section:
= Catalog Entry
= Interaction Methods

s Return Values

Catalog Entry

For this event type the format for the entry in the Catalog for a LIB action or a
MANAGEDLIB action is:

actionName;lib;;libname;libfuncname;apiVersion;

For EXEC actions the format for the entry is:

actionName;exec;NPparaml, .. .;execname;execparaml, ...;apiVersion;

Note the punctuation within each entry. Fields are separated by semicolons; lists of
items within fields are separated by commas. The entry is terminated with a
semicolon. Fields may be empty. The following table describes each field in detail.

Identity Event Plug-in APl 3-21

Event Handling in the API

Field Name Description

actionName (for events Required. Provide this information in the form

in Group Manager, APPNAME_EVENTNAME_PPPTYPE. Note the underscores used to
Organization Manager, separate the three parts.

and User Manager)

APPNAME is the Identity System application name. Valid application
names are:

groupservcenter—or Group Manager

objservcenter—for Organization Manager

userservcenter—for User Manager

EVENTNAME is one of the possible events for the APPNAME
application, as described in Chapter C, "Identity Events" on page C-1.

PPPTYPE is one of two values:

pre—means the action is a preprocessing action, to take place before the
event

post—means a post-processing action, to occur after the event.

(other fields) See the descriptions in "Configuration File (Catalog)" on page 3-7.

The following are some LIB action Catalog entry examples. For the examples shown
here and in following sections, file entries are shown with line breaks at the semicolon
delimiters, to allow printing in this Guide. In the actual file, the content must be
entered all on one line. Also, source for many of the example actions is provided as
part of the Identity System installation. See "Development Environment” on page 3-43.

userservcenter_view_pre;lib;;
../../../unsupported/ppp/ppp_dll/libppp_dll.dll;
PreProcessingTest; ;

For a MANAGEDLIB action Catalog, the entry would be as follows:

userservcenter_view_pre;managedlib; ;
c:\unsupported\ppp\ppp_dl1\libppp_dl1l.d1l1l; PreProcessingTest;;

This example calls for the PreProcessingTest action function in the ppp_dll.dll library
to be performed before (pre) the person profile page (event = view) is built by the User
Manager (application = userservcenter). Because the file type is lib, this is a LIB action
implemented by a function, meaning that the DSO must be loaded and the function
located within the DSO before the action can be performed.

This example action that is provided in the unsupported directory changes the
requested uid value to the following DN:

cn=Pick Carli,ou=Customerl0K1l, ou=Customers, o=Company, c=US
Mr. Smith's profile is always displayed when the user requests a profile page in the
User Manager, regardless of the uid for which the request was made.

userservcenter_view_post;lib;; ../../../unsupported/ppp/ppp_dll/ppp_dll.dll;
PostProcessingTest; ;

This example configures the PostProcessingTest action function in ppp_dIL.dll to be
invoked after (post) the building of User Manager's person profile (view) page. This
example action, which is provided in the unsupported directory, forces a message to be
displayed instead of the profile page.

Further examples of Catalog entries can be found in the default Catalog file located at:

Identity_install_dir/oblix/apps/common/bin/oblixpppcatalog.lst

3-22 Oracle Access Manager Developer Guide

Event Handling in the API

Interaction Methods

Get
User Identity Key
Operation Name Description of Data
GET <attribute name> For a LIB action, returns a
NULL-terminated array holding each
of the values provided for the named
attribute within the XML data used
to create the display. For managed
code, returns an object of base type
System.Array whose contents can be
enumerated.
Set
User Identity Key
Operation Name Description of Data
SET <attribute name> Sets values for the named attribute
within the XML data used to create
the display.
SET ObRequest. Sets the single value for any of the
<any requestnfo RequestInfo parameters that appear
umym p tqe -~ in the URL for a displayed page,
p following $ or &.
Receive

XML data received in response to this request can be of two different formats,
depending upon whether the action is pre or post. Pre actions receive data in the
EventXML format, as described at "Working with XML" on page 3-18. Post-processing
actions receive data in the PresentationXML format, as described in the chapter on
PresentationXML in the Oracle Access Manager Customization Guide.

Note: In the case of pre actions, the EventXML will contain values
only if the event being monitored is one that enables a change of
attributes.

Send

XML data sent back to the application must be the same type as was received. The
data sent to the application must conform to the formal schema for each type of data
or else it will be rejected. The section "Parser Example Files" on page 3-46 lists some
files provided with the Identity System installation, which can be used to verify the
data using an XML editor.

SetResultString

A string returned with this method will be displayed by the Identity System
application.

Return Values

The action should return one two response values, which are defined in the Obppp.h
file:

Identity Event Plug-in APl 3-23

Event Handling in the API

s STATUS_PPP_OK—This is the success response. The action sends this value to tell
the application that the action has completed without an error. Value = 0x00h.

s STATUS_PPP_ABORT—This value returned means an error has occurred. Value =
0x01h.

Failure to formally return a response value will cause unpredictable behavior in the
application, depending upon the default return value that the operating system will
supply instead.

OnChange Events

The following topics are discussed in this section:
s Catalog Entry
s Interaction Methods

s Return Values

Catalog Entry

Entries to the Catalog for this action type are the same as for pre- and post-processing
events, except for the action name.

Field Name Description
actionName (for Required. Provide this information in the form
OnChange) APPNAME_STRUCTURALCLASSNAME_onchange.

APPNAME is the Identity System application name.

STRUCTURALCLASSNAME is the name of the structural class that
contains the attribute whose change in value is to be monitored. If the
attribute belongs to an auxiliary class then the name of the structural
class it is attached to.

onchange precisely identifies the type of action.

(other fields) See the descriptions in "Configuration File (Catalog)" on page 3-7.

This event gets triggered only after the changes are successfully committed to the
directory.

Here is an example:

userservcenter_inetOrgPerson_onchange;1lib;;
..\..\..\unsupported\ppp\ppp_dll\ppp_dll.d1l;
uscOnChange; ;

This example calls for the action uscOnChange to monitor any changes that the event
makes to attributes belonging to the inetOrgPerson class, or to any of its attached
auxiliary classes.

Interaction Methods

Get
User Identity Key
Operation Name Description of Data
GET <attribute The old value for the attribute.

name>.0ObOldValue

3-24 Oracle Access Manager Developer Guide

Event Handling in the API

User Identity Key

Operation Name Description of Data
GET <attribute The new value for the attribute.
name>.ObNew Value
GET <attribute The type of change that was made.
name>.ObChangeType . .
Possible values:

OB_ADD—A new value was added.

OB_MODIFY—An existing value was
changed.

OB_DELETE—An existing value was
deleted.

OB_NOCHANGE—The value was not
changed.

Set
This method is not supported for the OnChange event.

Receive

Receive() is used to get data from the Identity System. XML can be received just as for
pre- and post-processing events, but only in EventXML format.

Send

The Send() method is used to send data to the Identity System. The onChange event
handler is called in response to completion of an operation that changed data in the
Profile page of an Identity System application. For the onChange event handler, you
use the Send() method to set a message to be displayed on the screen after the
modification operation completes execution. A call to the Send() method must be sent
in EVENTXML format.

Send() method is for sending data back to the Identity System. For the onChange
event, Send() can only be used to set a message to be shown after the operation is
completed. The same result can be implemented using the SetResultString() call

SetResultString

A string returned with this method will be displayed by the Identity System
application.

Return Values

The action must return one of two response values, which are defined in the Obppp.h

file:

» STATUS_PPP_OK—This is the success response. The action sends this value to tell
the application that the action has completed without an error. Value = 0x00h.

s STATUS_PPP_ABORT—This value returned means an error has occurred. Value =
0x01h.

Failure to formally return a response value will cause unpredictable behavior in the
application, depending upon the default return value that the operating system will
supply instead.

Identity Event Plug-in APl 3-25

Event Handling in the API

Workflow Events
The following topics are discussed in this section:
s Catalog Entry
s Interaction Methods
» Tables of Workflow Attributes

s Return Values

Catalog Entry

Workflow entries to the Catalog use the same format as for pre- and post-processing
events. Also, except for the actionName field, the table describing the fields within
entries is identical. For a description of the format and requirements for the fields of
the workflow entry that are common to all entries, see "Configuration File (Catalog)"
on page 3-7.

Field Name Description

actionName (for For events triggered by workflows, use the form

workflows) WORKFLOW-DEFINITION-ID_STEP-DEFINITION-NUMBER_PPP
TYPE. Note the underscores used to separate the three parts.

WORKFLOW-DEFINITION-ID is the unique identifier used to label
the workflow. The DN for the workflow is shown in the workflow
definition view. See the Oracle Access Manager Administration Guide
for details.

STEP-DEFINITION-NUMBER is the number of the step within the
workflow.

PPPTYPE is one of three values:

preaction—The action is a preprocessing action, to take place before
the workflow step.

externalaction—Means the action occurs as part of the workflow
step. The workflow waits for this action to complete before
continuing.

postaction—Means a post-processing action, to occur after the
workflow step.

(other fields) See the descriptions in "Configuration File (Catalog)" on page 3-7.

Here is an example of a workflow event entry in the oblixpppcatalog.lst Catalog file:

63£004504£83455b924133acdlef2e87_3_externalaction;
lib;;../../../unsupported/ppp/ppp_dll/libppp_dll.so;
WorkflowExtActionTest; ;

This example calls WorkflowExtActionTest as an externalaction during step three of
the workflow whose ID is 63f004504f83455b924133acdOef2e87.

Example: Calling Logger as a Post-Processing Action After a Workflow
Step

Here is another example of an entry in the Catalog. This example calls the Logger
action after Step 1 of the workflow completes execution. The workflow ID
number—2e22c064723e4030a05b437e059fe4d6—is used to identify the workflow that
contains the step. The full entry for both MS Windows and Unix platforms is shown in
the following paragraphs.

3-26 Oracle Access Manager Developer Guide

Event Handling in the API

For Windows
Here is the oblixpppcatalog.Ist entry for MS Windows:

2e22c064723e4030a05b437e059fedd6_1_postaction;
exec;uid;c:\j2sdkl.4.1_01l\bin\java.exe; —classpath C:\ana\samples\bin Logger;;

= actionName—2e22c064723e4030a05b437e059fe4d6_1_postaction
Here are the parts of the actionName for this example:
- WORKFLOW-DEFINITION_ID
- 2e22c064723e4030a05b437e059fe4d6
- STEP-DEFINITION_NUMBER
1
- PPPTYPE
postaction
= actionType—exec
s identityparaml—uid
s path—/usr/local/bin/java

functionname— -classpath C:\ana\samples\bin Logger

Note: The same syntax applies for an entry pertaining to a
pre-processing action. The single difference is that the PPPTYPE is
preaction.

For Unix
Here is the oblixpppcatalog.lst entry for Unix

2e22c064723e4030a05b437e3059fe4d6_1_postaction;exec;uid; /usr/local/bin/java;
-LD_LIBRARY_PATH/opt/ana/sample/bin Logger;;

actionName—2e22c064723e4030a05b437e3059fe4d6_1_postaction
actionType—exec

identityparaml—uid

path—/usr/local /bin/java

functionname— -LD_LIBRARY_PATH/opt/ana/sample/bin Logger

Interaction Methods

Get
User Identity Key
Operation Name Description of Data
GET WfHandler This is the callback URL expected by the

asynchResumeWorkflowProcess function in
IdentityXML. This URL will be of the form:

http:/ /www.domain.com/identity / oblix/
apps/asynch/bin/asynch.cgi

Identity Event Plug-in APl 3-27

Event Handling in the API

User Identity Key
Operation Name Description of Data

GET WfSubflow A list of one or more of the subflows belonging
to the current workflow.

GET Wflnstance. A list of one or more values for the named

<attribute name> attribute belonging to the current workflow.

For example Wflnstance.obtargetdn refers to the
value for the target DN, as stored in the
obtargetdn attribute. See the full list of
WifInstance attributes in the following table.

GET WfStepInstance. A list of one or more values for the named
<attribute name> attribute belonging to the current step of the
current workflow.

For example WfStepInstance.obactordn refers to
the value for the uid of the person processing
the current step, as stored in the obactordn
attribute.

GET WfAttribute. A list of one or more values for the named
Workflow attribute. Refers to the configured

<attribute name> workflow attribute for the step.

GET WfSubflow. A list of one or more values for the named
attribute under the named subflow ID for the
current Workflow, where attribute name is any
<attribute name> of the WfInstance attributes pertaining to the
subflowid. For example,
Wi{Subflow.63f004504£83455b924133acd0ef87.

obtargetdn refers to the target DN of the
subflow whose ID is
63f004504£83455b924133acd0ef87 and which is
triggered from the current workflow instance.

<subflowid>.

Set
User Identity Key
Operation Name Description of Data
SET WrAttribute. Any of the configured workflow attributes for
<attribute name> the step.
SET Wflnstance. Obwf Set the approval status for all subflows. Applies
supplementaloal only to steps that have multiple workflows.
PP Possible values to be set are:
rejected
approved
Receive
XML can be received just as for pre- and post-processing events, but only in the
EventXML format.
Send
XML can be sent just as for pre- and post-processing events, but only in the EventXML
format.

3-28 Oracle Access Manager Developer Guide

Event Handling in the API

SetResultString

A string returned with this method will be displayed by the Identity System

application.

Tables of Workflow Attributes

The following table summarizes Wflnstance attributes:

Attribute Name Meaning
obactionindicator For internal use.
obactorcomment Comments entered during workflow processing.
obapp Application to which the workflow belongs (for example
userservcenter for User Manager).
obattr For internal use.
obcertid Certificate id (used by certificate workflows).
obclass Object classes of the target entry.
obcurrentdn The dn of the user who initiated the workflow.
obcurrentstep The dn of the current step being processed.
obdatecreated Integer date when the workflow instance was created.
obdateprocessed Integer date when the workflow instance was last processed.
obhostname Hostname of the machine from where the workflow was initiated.
obkey For internal use.
oblockedby The dn of the user who locked the workflow ticket.
obparentstep Applicable to subflows. dn of the parent workflow step instance that
triggered the subflow.
obparentworkflow Applicable to subflows. The dn of the parent workflow instance.
obport Port number of the machine from which the workflow was initiated.
obtargetdn The dn of the target user entry.
obtriggeredworkflow For internal use. Maintains number of unfinished triggered subflows.
obver Identity System version.
obwfinstanceid Instance identifier.
obwfstatus Status of workflow.
obwfsupplementalval ~ This indicates a single approval status of all triggered subflows. Valid
values:
= approved
= rejected
Example:
data->Get("WflInstance.obwfsupplementalval");
obwftypename Display name of type of workflow.
obworkflowdn The dn of the workflow definition.
obworkflowname Name of workflow definition.
obworkflowtype Type of workflow, such as create user, change attribute, and so on.

Identity Event Plug-in APl 3-29

Event Handling in the API

The following table summarizes WfStepInstance attributes:

Attribute Name Meaning

obactionname Step action (for example initiate, request, and so on.)

obactionreturncode For internal use.

obactorcomment Status message of step processing.

obactordn The dn of the user processing the current step.

obapp Application to which the workflow belongs (for example
userservcenter for User Manager).

obdatecreated Integer date when the workflow step instance was created.

obdateprocessed Integer date when the workflow step instance was last processed.

obentrycondition Not used.

obexitcondition Not used.

oblockedby The dn of the user who locked the workflow ticket.

oboptionalattribute List of optional attributes configured for the step. The attribute list is
comma delimited.

obparticipant Not used.

obprovisionedattribute

List of attributes for which subflows are configured in the step. The
attribute list is comma delimited.

obrequiredattribute

List of required attributes configured for the step. The attribute list is
delimited with comma.

obretrycount Number of times the step has been retried. Applicable only if retry
status is returned from workflow event handler.

obretrydone Boolean value that indicates if the retry is completed or not.

obtriggeredworkflow Not used.

obver Identity System version.

obwfstatus Status of step instance processing.

obwfstepinstid Step instance identifier.

obworkflowstepdn The dn of the workflow step definition.

obattr Attribute name.

obattrtype Attribute type.

obattrvals Attribute values.

obver Identity System version.

obwfattrdefval Not used.

obwfattrflags Not used.

Return Values

The action must return one of four response values to the workflow engine:

» STATUS_PPP_OK—This value tells the workflow engine that the action has
completed, and it may continue to the next step.

s STATUS_PPP_ABORT—This value tells the workflow engine an error has
occurred. The workflow engine tells workflow participants for the current step in
the workflow that it has failed, and uses its internal logic to handle the error.

3-30 Oracle Access Manager Developer Guide

Event Handling in the API

s STATUS_PPP_WF_ASYNC—This value tells the workflow engine to put itself into
a pending state, waiting for some external action to complete. Recover from this
state by sending an asynchResumeWorkflowProcess command. The URL to which
the command should be sent is requested using the parameter name wfhandler.
This command and the process for using it, are described in the Chapter 2,
"Identity XML Functions and Parameters" on page 2-1.

s STATUS_PPP_WEF_RETRY—This value tells the workflow engine that the step did
not complete, most likely due to entry of invalid data. The user will need to try the
step again, providing correct data. The current retry count is maintained in the
directory entry for the workflow step instance. You can request the current retry
count using the attribute name obretrycount.

Failure to formally return a response value may cause unpredictable behavior in the
application, depending upon the default return value that the server operating system
will supply instead.

Password Management Events

As part of creating a password policy, you may set a flag allowing "Externally
specified validation rules." If this flag is set on, then the Identity System checks the
Catalog for actions to be used in place of its standard Password Management.

The event related to lost password management functionality is setChangedPassword
and the application name is lost_pwd_mgmt. The sample application name, event
name, and action is lost_pwd_mgmt_setChangedPassword_pre. Note that this is not
the standard UserServCenter application naming convention.

The following topics are discussed in this section:
s Catalog Entry
s Interaction Methods

s Return Values

Catalog Entry

Under Password Management, only one event is possible, Password Validation. The
action name therefore has the fixed value PWMGMT_PasswordValidation. Also,
because no pre- or post-processing is supported, the name does not include the pre or
post indicator that other actions use.

Field Name Description

actionName (for Password Required. Provide this information in the form

Management) PWMGMT_Password Validation.

(other fields) See the descriptions in "Configuration File (Catalog)" on
page 3-7.

Here is an example of a password validation event entry in the Catalog:
PWMGMT_PasswordValidation;exec;;..\..\..\unsupported\ppp\ppp_exec\ppp_exec.exe; ;
This example calls ppp_exec.exe as an EXEC function to do password validation. This
registers the standalone program ppp_exec.exe to perform password validation when

a user attempts to change their password. The following must be true for the action to
be invoked:

s The action must be configured in the catalog and deployed on the Identity System.

Identity Event Plug-in APl 3-31

Event Handling in the API

= A Master Identity Administrator must configure a password policy whose
External Validation flag is turned on.

s The password policy must be enabled.

The domain of the password policy must contain the user's identity.

Interaction Methods

Get
User Identity Key
Operation Name Description of Data
GET Password This is the password value entered by
the user, to be validated. Itis a
two-member array, NULL terminated.
GET PasswordPolicy The domain defined for the Oracle
Domai Access Manager password policy that
omain ;
applies to the user.
GET PasswordPolicy The filter defined for the Oracle Access
. Manager password policy that applies
Filter
to the user.
Set

This method is not supported for the Password Management event.

Receive

XML can be received just as for pre- and post-processing events, but only in the
EventXML format.

Send

XML can be sent just as for pre- and post-processing events, but only in the EventXML
format.

SetResultString

A string returned with this method will be displayed by the Identity System
application.

Return Values
The action must return one of two values:

s STATUS_PPP_OK—Indicates that the password conforms to the rules and can be
changed to the indicated value.

s STATUS_PPP_ABORT—Indicates that it does not. The change can not be made.

Failure to formally return a response value will cause unpredictable behavior in the
application, depending upon the default return value that the server operating system
will supply instead.

3-32 Oracle Access Manager Developer Guide

Event Handling in the API

Encryption Events

Whenever an encryption event occurs, the Identity System checks the Catalog for an
encryption action. If one is present, then the process defined within it is used instead
of the Identity System's default method.

If you make this change, the Identity System assigns all responsibility for the
encryption to your action. Be sure that the encrypt and decrypt methods you use are
the inverse of each other.

The following topics are discussed in this section:
s Catalog Entry
s Interaction Methods

= Response Values

Catalog Entry

Catalog entries for encryption use the same format as pre- and post-processing events,
with one difference, the actionName. Under Encryption, only two events are possible.
Also, because no pre- or post-processing is supported, the name does not include the
pre or post indicator that other actions use.

In table format:

Field Name Description

actionName (for Required. Provide this information in the form

Encryption) APPNAME_EVENTNAME. Note this has only two parts, separated by
underscores.

APPNAME is the Identity System application name, in this case
Encryption, entered as ENCRYPTION.

Under encryption, there are only two valid events, actually the type of
information to be encrypted. These are the Cookie Encryption Key or
the Challenge Response Encryption Key. Acceptable values for
EVENTNAME are therefore cookieEncryptionKey or
CPResponseEncryptionKey respectively.

(other fields) See the descriptions in "Configuration File (Catalog)" on page 3-7.

Here is an example of an Encryption event entry in the Catalog.

ENCRYPTION_CPResponseEncryptionKey;1lib;;
../../../unsupported/ppp/ppp_dll/ppp_dll.dll;
ProcessCPResponseEncryption; ;

This example calls the ProcessCPResponseEncryption function in ppp_dll.dll to
encrypt the challenge response key.

Identity Event Plug-in APl 3-33

The API

The API

Interaction Methods

Get
User Identity Key
Operation Name Description of Data
GET OPERATION This operation returns one of two values.
ENCRYPT—Encrypt the data.
DECRYPT—Decrypt the data.
GET INPUTSTR Returns user entered information in a
two-member array, NULL terminated.
Set
User Identity Key
Operation Name Description of Data
SET OUTPUTSTR The information to be returned to the Identity
System. You must provide a NULL termination.
Receive

XML can be received just as for pre- and post-processing events, but only in the
EventXML format.

Send

XML can be sent just as for pre- and post-processing events, but only in the EventXML
format.

SetResultString

A string returned with this method will be displayed by the Identity System
application.

Response Values
The event must return one of two values:

s STATUS_PPP_OK—The event sends this value to indicate that encryption has
completed satisfactorily.

s STATUS_PPP_ABORT—The event sends this value to indicate that encryption did
not complete satisfactorily.

= Because encryption is essential to the Identity System’s operation, any response
other than STATUS_PPP_OK will cause the Identity System instance to stop, and
generate a bug report.

This section provides additional information for the developer on how to use the APIL
The following topics are discussed:

s More on LIB Actions

s More on MANAGEDLIB Actions

3-34 Oracle Access Manager Developer Guide

The API

= More on EXEC Actions
s Returning Error Messages From an EXEC Call

s Development Environment

Note: Do not use blank spaces in the names of any file in an Identity
Event API project.

More on LIB Actions

You implement a LIB action as a callable function (with C language calling
conventions), that resides within a dynamic shared object (DSO) library. The DSO
must be native to the platform on which the Identity System is running. For example
on NT, it must be a .dll; on Solaris UNIX it is must be an .so.

Note: When developing a LIB plug-in, global data must be
implemented in a thread-safe manner.

LIB actions are executed in the address space of the Identity System server process. It
is critical that LIB actions be thoroughly tested before being deployed, as there is a
class of programming errors (such as divide-by-zero errors) that cannot be caught by
the Identity System and can cause the server to fail, or to exhibit other unstable
behavior.

LIB actions communicate with the Identity System application by calling API functions
directly, passing the appropriate parameters, as described in "Connecting Events to
Actions" on page 3-2.

More on MANAGEDLIB Actions

MANAGEDLIB actions are methods on a class. You implement a MANAGEDLIB
action as a method on the EventAPI class, which is defined in the plug-in. The DSO is
an assembly or a dll.

Note: When developing a MANAGEDLIB plug-in, member
variables of class EventAPI must be accessed in a thread-safe manner.

MANAGEDLIB actions are executed in the address space of the Identity server
process. It is critical that MANAGEDLIB actions be thoroughly tested before being
deployed. However, any exception generated by the managed plug-in will be caught
by the Identity Server, logged, and a bug report page will be generated.

MANAGEDLIB actions communicate with the Identity System application by calling
API functions directly, passing the appropriate parameters, as described in
"Connecting Events to Actions" on page 3-2.

When compiling an EventAPI PPP Plug-In in VB.NET, ensure that:
= Your VB Class is named "EventAPI".
= You are not using namespaces in your code.

= You blank out the "Root Namespace" in the properties settings of your project in
Visual Studio.NET with your VB project open:

Identity Event Plug-in APl 3-35

The API

Go to the Project, then to Properties, then to the Common Properties / General
page, then to the Root Namespace, remove the value, and click OK.

The Identity Server will not load your dll if you fail to perform any of the items in the
previous list.

Note: Any managed library to be used for PPP events must have the
EventAPI class declared at the global namespace level. That is, it must
be declared within no namespace. For a C# library, this means simply
removing the “namespace' directive from the source code. For a
VB.Net library, remove the “Default Namespace' option from the
project.

More on EXEC Actions

You implement an EXEC action as a standalone executable. The action receives two
kinds of input: command-line parameters that you specify in the catalog and XML
data from the Identity program whose event is causing the action to run. The
parameters are received in the ARGV][] array passed into the main() function
(assuming a C/C++ programming environment). The XML data is available as a
stream on the executable's standard input stream, STDIN.

Content of the XML data depends on whether the event is a pre-processing or
post-processing event. For a pre-processing event, the data describes the request and is
given in EventXML format. For a post-processing event, the data represents the result
of processing the request and is given in PresentationXML format. (PresentationXML
is the XML that would normally be combined with an XSL stylesheet and transformed
into the HTML ultimately seen by the user's browser.) The action is expected to
perform its task and optionally write modified XML, in the same format as was
received, back to the executable's standard output STDOUT. If information is returned
on STDOUT, the Identity System receives it and generates the HTML based on the new
data.

Note: A complete discussion of the process that the Identity System
follows to logically combine XML data and XSL style sheets to create
its HTML presentation is outside the scope of this manual. See the
chapter on PresentationXML in the Oracle Access Manager
Customization Guide.

Use of STDIN and STDOUT gives developers the ability to code their EXEC actions in
any language that supports these data streams. This includes Java, C, C++, PERL,
Python, UNIX shells, and .NET languages such as C#, MC++, and VisualBasic. If it
needs to access the data to perform its task, an EXEC action may invoke any XML
parser to interpret the XML. The Identity System does not provide a built-in parser.
The EXEC action must maintain the validity of the XML. Otherwise the
Oracle-provided or custom XSL stylesheets that may be applied further downstream
before presentation to the user may not produce the expected results. Within this
constraint, the EXEC action may perform any processing needed:

= It might parse the Identity System data and take action based on the result.

» It might filter the Identity System data by replacing some or all of it in the output
stream with different data, taking care to maintain compliance with the Identity
System data's XML schema.

3-36 Oracle Access Manager Developer Guide

The API

= It might allow the Identity System data to pass through untouched, but kick off
another business process somewhere else on the network. For example, an action
handling the workflowActivateSave event in User Manager can maintain a count
of users that have been activated. When the count reaches a certain threshold, the
action can trigger a backup or replication procedure to limit the risk of data loss.
Or it can send email to an IT manager, who might want to investigate why so
many users have suddenly been activated.

Returning Error Messages From an EXEC Call

There are three interfaces you can use to return error messages from an EXEC call. The
three common interfaces are:

= EXEC-WF
» EXEC-PRE
s EXEC-POST

Returning Error Messages Using EXEC - WF

To send error message back to the Identity System, specify the 'ObResultString' in the
XML along with the message to be displayed. The message is displayed in the
confirmation page after the user processes a ticket.

The XML MUST be constructed as follows:

<ObEventParams>

<ObParam name="ObResultString">

<ObValue>The value of the result string goes here...</ObValue>

</ObParam>

<ObParamList name="WfAttribute">

<ObParam name="cn">

<ObValue>New value(s) go here...</ObValue>

</ObParam>

<ObParam name="sn">

<0ObValue>New value(s) go here...</ObValue>

<ObValue>New value(s) go here...</ObValue>

</ObParam>

</ObParamList>

<ObParamList name="WfInstance">

<I--

NOTE: This is the only parameter that can be changed. The parameter is used to set
the outcome of a sub-flow. It will be displayed as the 'Outcome' value in the
'Subflow Approval' step. By default, the Identity System sets this parameter to
'approved' or 'rejected' in an 'Approval' step.

-—>

<ObParam name="obwfsupplementalval">

<0ObValue> New value(s) go here...</ObValue>

</ObParam>

</ObParamList>

</ObEventParams>

EReturning Error Messages Using EXEC - PRE

For a PRE event, the XML is constructed in much the same way as in a WF event. The
DOM is the same. The difference is in the parameter names. The parameters usually
begin with ObRequest, followed by the parameter you wish to change. To set the result
string for a PRE event, the executable must return 'STATUS_PPP_ABORT".

Identity Event Plug-in APl 3-37

The API

<ObEventParams>

<ObParam name="ObRequest.uid">

<0ObValue>cn=Thomas Remahl, o=Company, c=US</ObValue>

</ObParam>

<ObParam name="ObResultString">

<ObValue>Always viewing: cn=Thomas Remahl, o=Company, c=US</ObValue>
</ObParam>

</ObEventParams

Returning Error Messages Using EXEC - POST

In the case of a POST event, the XML must conform to the event that is associated with
the plug-in. To set the result string for a POST event, you usually embed an
<ObTextMessage> element in the XML returned to the Identity System. Whether the
returned string is shown or not depends on the associated stylesheet.

For example, the output of the view event in the following example shows the
returned string "Hello, World!". As already noted, the stylesheet determines if the
element is applied. In the following example, the element is 'usc_profile.xsl'.

<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet href="../../../lang/en-us/styleO/usc_profile.xsl"
type="text/xsl"?>

<0Oblix xmlns:oblix="http://www.oblix.com/" xmlns="http://www.oblix.com/"
oblang="en-us">

<ObProfile>

<0bTextMessage>

Hello, World!

</0ObTextMessage>

<ObPanel obname="defaultPanel" obpanelId="20040401T22135679142"
obpanelClass="gensiteorgperson">

<ObAttribute obattrName="genUserID">

<ObDisplay obdisplayName="UID" obdisplayType="textS" obsemanticType="ObSLogin"
obname="genUserID" obmode="view" obcanRequest="false" obrequired="false">
<ObTextS>

<ObValue>Admin</ObValue>

</0bTextS>

</0ObDisplay>

</ObAttribute>

<ObAttribute obattrName="sn">

<ObDisplay obdisplayName="Last Name:" obdisplayType="textS" obname="sn"
obmode="view" obcanRequest="false" obrequired="false">

<ObTextS>

<ObValue>dmOn</ObvValue>

</0bTextS>

</ObDisplay>

</ObAttribute>

<ObAttribute obattrName="cn">

<ObDisplay obdisplayName="Name" obdisplayType="textS" obname="cn" obmode="view"
obcanRequest="false" obrequired="false">

<ObTextS>

<Obvalue>Master dmOn</ObValue>

</0bTextS>

</ObDisplay>

</ObAttribute>

</ObPanel>

<ObPanel obname="miisPanel" obpanelId="20040406T10492776123"
obpanelClass="gensiteorgperson">

<ObAttribute obattrName="cn.person.miis">

<ObDisplay obdisplayName="MIIS Name" obdisplayType="textS" obname="cn.person.miis"

3-38 Oracle Access Manager Developer Guide

The API

obmode="view" obcanRequest="false" obrequired="false">

<0bTextS></0bTextS>

</ObDisplay>

</ObAttribute>

<ObAttribute obattrName="userSMIMECertificate.person.miis">

<ObDisplay obdisplayName="MIIS Password" obdisplayType="password"
obsemanticType="0bSPassword" obname="userSMIMECertificate.person.miis"
obmode="view" obcanRequest="false" obrequired="false">

<ObPassword oboldpsw="false"></ObPassword>

</ObDisplay>

</ObAttribute>

</0ObPanel>

<ObHeaderPanel >

<ObAttribute obattrName="cn">

<ObDisplay obdisplayName="Name" obdisplayType="textS" obname="cn" obmode="view"
obcanRequest="false" obrequired="false">

<0bTextS>

<ObvValue>Master dmOn</ObValue>

</0bTextS>

</0bDisplay>

</ObAttribute>

</ObHeaderPanel>

<ObRequestInfo>210498888</0bRequestInfo>

<ObScripts>
<ObScript obname="..
<0bScript obname="..
<0ObScript obname="..
<ObScript obname="..
<ObScript obname="..
<ObScript obname="..
<ObScript obname="..
</0bScripts>
<ObForm obname="profileForm" obmethod="post"
obaction="userservcenter.cgi?tab_id=Employees&uid=cn%$3DMaster$20%C5dm¥EFn%2Co%
3DCompany%2Cc%3DUS">

<ObInput obtype="hidden" obname="program" obvalue="view"></ObInput>

<ObInput obtype="hidden" obname="visiblePanel"></ObInput>

</0ObForm>

<ObDisplay obdisplayName="ObTextMessage" obdisplayType="textS"
obname="0bTextMessage" obmode="view" obcanRequest="false" obrequired="false">
<0bTextS>

<ObTextMessage></0bTextMessage>

</0bTextS>

</0ObDisplay>

<ObTextMessage></0bTextMessage>

<ObSelectorInfoForm>

<ObForm obname=""></0bForm>

</0ObSelectorInfoForm>

<ObButton obaction="initiateDeactivateUser"></ObButton>

<ObButton obaction="userreactivate"></0bButton>

<ObButton obaction="wfTicketDelete"></0bButton>

<ObButton obaction="userModify" obimageUrl="NAVmodify" obmouseOver="Modify this
profile."
obhref="../../userservcenter/bin/userservcenter.cgi?program=modify& tab_id=Empl
oyees&uid=cn%3DMaster$20%C5dm¥EFN%2Co%3DCompany%2Cc%$3DUS"></0bButton>
<ObStatus>0</0ObStatus>

</ObProfile>

<ObNavbar obbgcolor="#669966">

<ObMisc>

<ObButton obaction="Tlhelp" obimageUrl="Tlhelp" obmouseOver="View Online Help"

../lang/en-us/msgctlg.js"></0bScript>
./lang/shared/il8n.js"></0bScript>
./lang/shared/nsiesetup.js"></0bScript>
./lang/shared/misc.js"></0ObScript>
./lang/shared/miscsc.js"></0bScript>
./lang/shared/horizontalprofile.js"></ObScript>
./lang/shared/userservcenter.js"></0bScript>

N N T
N N N

Identity Event Plug-in APl 3-39

The API

obhref="javascript:0bHelp('../../help/bin/help.cgi?program=helpProgram& helpApp
Context=userservcenter& helpEventContext=view& helpTOCContext=application');
"></0bButton>

<ObButton obaction="Tlabout" obimageUrl="Tlabout" obmouseOver="Product Information
and Feedback"

obhref="userservcenter.cgi?program=aboutOblix& tab_id=Employees"></0bButton>
<ObButton obaction="Tllogout" obimageUrl="Tllogout" obmouseOver="Logout"
obhref="userservcenter.cgi?program=commonLogout& sessionUid=20040407T1438028574
5"></0bButton>

</ObMisc>

<ObApps>

<ObApplication>

<ObButton obaction="userservcenter_application_info" obimageUrl="T1TABusermanager"
obmouseOver="User Manager" obhref="../../userservcenter/bin/userservcenter.cgi"
obanchorText="User Manager"></ObButton>

<ObTitle>

<ObButton obaction="T1TABusermanager"></ObButton>

</0bTitle>

<ObFunctions>

<ObButton obaction="MyProfile" obimageUrl="FTABmyidentity2" obmouseOver="View my
profile."

obhref="userservcenter.cgi?program=view&uid=cn%3DMaster%20%C5dm3EFNn%2Co%3DComp
any%2Cc%3DUS& tab_id=Employees"></0bButton>

<ObButton obaction="Report" obimageUrl="FTABreports" obmouseOver="Report
Functions"

obhref="userservcenter.cgi?program=mainReports& appName=userservcenter& tab_
id=Employees"></ObButton>

<ObReportFunctions>

<ObButton obaction="generateReport" obimageUrl="2FTABgeneratereport"
obmouseOver="Generate a report"
obhref="javascript:QueryBuilder('../../querybuilder/bin/querybuilder.cgi?program=m
odifyFilter& tab_id=Employees& appName=userservcenter&uid=cn%'+'3DMaster
%$'+'20%'+'C5dm% '+ 'EFn%'+'2C0% '+ '3DCompany% ' +'2Cc% '+ '3DUS& ; advModeDisable=true&a
mp; slapTab=true','','..%'+'2F..%'+'2Fuserservcenter$'+'2Fbin%'+'2Fuserservcenter.c
gi%'+'3Fprogram%'+'3DshowReportsResults%'+'26appName?'+'3Duserservcenter%'+'26tab_
id%'+'3DEmployees%'+'26fromQB%'+'3Dtrue', '") "></0bButton>

<ObButton obaction="viewPredefinedReports" obimageUrl="2FTABviewpredefinedreports"
obmouseOver="View predefined reports"
obhref="userservcenter.cgi?program=predefinedReports& appName=userservcenter&am
p; tab_id=Employees"></0ObButton>

</ObReportFunctions>

<ObButton obaction="wfCreateProfile" obimageUrl="FTABcreateuseridentity"
obmouseOver="Create New User"
obhref="userservcenter.cgi?program=workflowCreateProfile& tab_id=Employees"></0
bButton>

<ObButton obaction="wfDeactivateProfile" obimageUrl="FTABdeactivateuseridentity"
obmouseOver="Search on Deactivated Persons."
obhref="userservcenter.cgi?program=workflowDeactivatedUserSearchResults&tab_id
=Employees"></0ObButton>

<ObButton obaction="adminProxy" obimageUrl="FTABsubstituterights"
obmouseOver="Configure Proxy Administration"
obhref="userservcenter.cgi?program=proxyAdmin& tab_id=Employees"></ObButton>
<ObButton obaction="Workflow" obimageUrl="FTABrequests" obmouseOver="Workflow
Functions"

obhref="userservcenter.cgi?program=workflowMain& tab_id=Employees"></0bButton>
<ObWorkflowFunctions>

<ObButton obaction="wfIncomingRequest" obimageUrl="2FTABincomingrequests"
obmouseOver="Incoming Request"
obhref="../../userservcenter/bin/userservcenter.cgi?program=workflowTicketSearchFo
rm& tab_id=Employees& requestType=incomingRequests"></0bButton>

3-40 Oracle Access Manager Developer Guide

The API

<ObButton obaction="wfOutgoingRequest" obimageUrl="2FTABoutgoingrequests"
obmouseOver="0utgoing Request"
obhref="../../userservcenter/bin/userservcenter.cgi?program=workflowTicketSearchFo
rm& tab_id=Employees& requestType=outgoingRequests"></0bButton>

<ObButton obaction="wfMonitor" obimageUrl="2FTABmonitorrequests"
obmouseOver="Requests Monitor"
obhref="../../userservcenter/bin/userservcenter.cgi?program=workflowMonitorSearchF
orm& tab_id=Employees"></ObButton>

</ObWorkflowFunctions>

<ObButton obaction="Admin" obimageUrl="FTABconfiguration"
obmouseOver="Administrative Functions"
obhref="userservcenter.cgi?program=administrationMain& tab_id=Employees"></0bBu
tton>

<ObAdminFunctions>

<ObButton obaction="adminAccessControl" obimageUrl="2FTABattraccesscontrol"
obmouseOver="Configure Attribute Access Control"
obhref="javascript:DetectPluginForApplets('../../userservcenter/bin/userservcenter
.cgi?program=mainAccessAdmin& tab_id=Employees') "></0ObButton>

<ObButton obaction="adminDelegate" obimageUrl="2FTABdelegateadmin"
obmouseOver="Configure Delegated Administration"
obhref="javascript:DetectPluginForApplets('../../userservcenter/bin/userservcenter
.cgi?program=mainDelegateAdmin& tab_id=Employees') "></ObButton>

<ObButton obaction="adminWorkflowDef" obimageUrl="2FTABworkflowdefinition"
obmouseOver="Configure Workflow Definition"
obhref="javascript:DetectPluginForApplets('../../userservcenter/bin/userservcenter
.cgi?program=mainWorkflowAdmin& tab_id=Employees')"></ObButton>

<ObButton obaction="adminSetSearchbase" obimageUrl="2FTABsetsearchbase"
obmouseOver="Configure Localized Access"
obhref="javascript:DetectPluginForApplets('../../userservcenter/bin/userservcenter
.cgi?program=mainSetSearchbase& tab_id=Employees')"></ObButton>
</0ObAdminFunctions>

</ObFunctions>

</ObApplication>

<ObApplication>

<ObButton obaction="groupservcenter_application_info"
obimageUrl="T1TABgroupmanager" obmouseOver="Group Manager"
obhref="../../groupservcenter/bin/groupservcenter.cgi" obanchorText="Group
Manager"></0bButton>

<ObTitle></ObTitle>

<ObFunctions></0ObFunctions>

</ObApplication>

<ObApplication>

<ObButton obaction="objservcenter_ application_info" obimageUrl="T1TABorgmanager"
obmouseOver="0rg. Manager" obhref="../../objservcenter/bin/objservcenter.cgi"
obanchorText="0rg. Manager"></ObButton>

<ObTitle></ObTitle>

<0bTabs></0bTabs>

<ObFunctions></0ObFunctions>

</ObApplication>

<ObApplication>

<ObButton obaction="corpdir_application_info"></ObButton>

<ObTitle></ObTitle>

<0bTabs></0bTabs>

<ObFunctions></ObFunctions>

</ObApplication>

<ObApplication>

<ObButton obaction="dashline" obmouseOver="----————————— oo "
obhref="userservcenter.cgi?"></0ObButton>

</ObApplication>

<ObApplication>

Identity Event Plug-in APl 3-41

The API

<ObButton obaction="front_page_admin_application_info"
obimageUrl="T1TABidentityadmin" obmouseOver="Identity System Console"
obhref="../../admin/bin/front_page_admin.cgi" obanchorText="Identity System
Console"></0bButton>
</ObApplication>
</ObApps>
<ObScripts>
<ObScript obname="..
<ObScript obname="..

/ ./lang/en-us/msgctlg.js"></0bScript>

/
<ObScript obname="../..

/

/

./lang/shared/i18n.js"></0ObScript>
./lang/shared/misc.js"></0ObScript>
./lang/shared/helpcommon. js"></0ObScript>
./lang/shared/wf_gs.js"></0ObScript>

<ObScript obname="..
<ObScript obname="..
</0ObScripts>
<ObStatus>0</0ObStatus>

<ObUserName>Master dmdn</ObUserName>

</0ObNavbar>

<0ObSearchForm>

<ObSearchRow>

<ObDisplay obdisplayName="" obdisplayType="select" obname="STyl" obmode="modify"
obrequired="true" obcardinality="singleValued" obcanRequest="false">

<ObSelect obmultiple="false">

<ObChoice obdisplayName="Last Name:" obselected="false">sn</0ObChoice>

<ObChoice obdisplayName="MIIS Name" obselected="false">cn.person.miis</ObChoice>
<ObChoice obdisplayName="Name" obselected="true">cn</ObChoice>

<ObChoice obdisplayName="UID" obselected="false">genUserID</ObChoice>
</0ObSelect>

</0ObDisplay>

<ObDisplay obdisplayName="" obdisplayType="select" obname="SLkl" obmode="modify"
obrequired="false" obcardinality="singleValued" obcanRequest="false">

<ObSelect obmultiple="false">

<ObChoice obdisplayName="That Contains" obselected="false">00S</0bChoice>
<ObChoice obdisplayName="Contains In Order" obselected="false">0SM</ObChoice>
<ObChoice obdisplayName="=" obselected="false">0EM</ObChoice>

<ObChoice obdisplayName="<=" obselected="false">0LE</ObChoice>

<ObChoice obdisplayName=">=" obselected="false">0GE</ObChoice>

<ObChoice obdisplayName="That Begins With" obselected="false">0BW</0ObChoice>
<ObChoice obdisplayName="That Ends With" obselected="false">0EW</ObChoice>
<ObChoice obdisplayName="That Sounds Like" obselected="false">0SL</ObChoice>
<ObChoice obdisplayName="!=" obselected="false">ONE</ObChoice>

</0bSelect>

</ObDisplay>

<ObDisplay obdisplayName="" obdisplayType="textS" obname="SStl" obmode="modify"
obrequired="false" obcardinality="singleValued" obcanRequest="false">
<ObDisplayProperties>

<ObDisplayProperty obname="onKeyDown"
obvalue="javascript:checkSearchKey (event, this) "></0ObDisplayProperty>
</ObDisplayProperties>

<0bTextS oblength="19"></0bTextS>

</ObDisplay>

</0bSearchRow>

<ObAdvancedSearch obadvancedSearchOn="false">

<ObDisplay obdisplayName="" obdisplayType="radio" obname="showAllResults"
obmode="modify" obrequired="true" obcardinality="singleValued"
obcanRequest="false">

<ObRadio>

<ObChoice obdisplayName="All" obselected="false">true</ObChoice>

<ObChoice obdisplayName="" obselected="true">false</ObChoice>

</ObRadio>

</ObDisplay>

<ObDisplay obdisplayName="" obdisplayType="textS" obname="noOfRecords"

~ O~ N~

3-42 Oracle Access Manager Developer Guide

The API

obmode="modify" obrequired="true" obcardinality="singleValued"
obcanRequest="false">

<ObTextS oblength="2">

<ObValue>8</0ObValue>

</0bTextS>

</ObDisplay>

</0ObAdvancedSearch>

<ObRequestInfo>210498888</0ObRequestInfo>

<ObScripts>

<ObScript obname="../../../lang/en-us/msgctlg.js"></0bScript>

<ObScript obname="../../../lang/shared/il8n.js"></ObScript>

<ObScript obname="../../../lang/shared/misc.js"></ObScript>

</0bScripts>

<ObForm obname="searchForm" obmethod="post" obaction="userservcenter.cgi?">
<ObInput obtype="hidden" obname="program" obvalue="search"></ObInput>

<ObInput obtype="hidden" obname="tab_id" obvalue="Employees"></ObInput>
<ObInput obtype="hidden" obname="startFrom" obvalue="0"></ObInput>

<ObInput obtype="hidden" obname="getPrevRecords" obvalue="false"></ObInput>
<ObInput obtype="hidden" obname="noOfFields" obvalue="1"></ObInput>

<ObInput obtype="hidden" obname="displayFormat" obvalue="2"></ObInput>
<ObInput obtype="hidden" obname="advSearch" obvalue="false"></ObInput>
<ObInput obtype="hidden" obname="searchStringMinimumLength" obvalue="3"></ObInput>
<ObInput obtype="hidden" obname="searchSameAttrAsOr" obvalue="false"></ObInput>
</ObForm>

<ObDisplay obdisplayName="ObTextMessage" obdisplayType="textS"
obname="0bTextMessage" obmode="modify" obrequired="false"
obcardinality="singleValued" obcanRequest="false">

<ObTextS>

<ObTextMessage></0bTextMessage>

</0bTextS>

</ObDisplay>

<ObSelectorInfoForm>

<ObForm obname=""></ObForm>

</0bSelectorInfoForm>

<ObButton obaction="searchGo" obimageUrl="SEARCHgo" obmouseOver="Start search."
obhref="javascript:validateSearchAndSubmit ('search')"></0bButton>

<ObButton obaction="searchAdvance" obimageUrl="SEARCHadvanced"
obmouseOver="Advanced search."
obhref="javascript:validateSearchAndSubmit ('moreFields') "></0ObButton>
<ObButton obaction="searchLess"></ObButton>

<ObButton obaction="searchMore" obimageUrl="SEARCHmore" obmouseOver="Get more
fields." obhref="javascript:validateSearchAndSubmit ('moreFields') "></0ObButton>
<ObButton obaction="searchAll" obimageUrl="SEARCHall" obmouseOver="All fields."
obhref="javascript:validateSearchAndSubmit ('allFields"') "></0ObButton>
<ObStatus>0</0ObStatus>

</0bSearchForm>

<ObStatus>0</0ObStatus>

</0blix>

Development Environment

The Identity Event Plug-in API consists of a set of header files that you can use to
build your LIB actions, source code examples for working with LIB, MANAGEDLIB,
and EXEC actions, source code examples for creating an XML parser, and a default
obpppcatalog.lst file with extensive examples of action configuration entries. On
Windows platforms, an import library is also provided, which you will need to build
your LIB actions. All of these files are bundled in the standard Identity System
installation; there is nothing else to install in order to develop actions.

Identity Event Plug-in APl 3-43

The API

For managed code, plug-in writers need to compile and link with pppInterface.dll,
which contains the IPPPData interface. This assembly is located at

install_dir / oblix/include/managed / pppinterface.dll

This path will need to be referenced as a "Resolve #using Reference" in Visual Studio,
or through the /Al compiler option when compiling and linking the plug-in. At
runtime, both the Identity Server and the plug-in will need to locate pppInterface.dll.
For this reason, pppInterface.dll is installed in the Global Assembly Cache (GAC)
during installation of the Identity Server. Alternatively, if plug-in writers wish to test
their plug-in on a machine where the Identity System has not been installed,
ppplInterface.dll can be privately deployed. This means placing the assembly in the
plug-in's bin directory. It is important to compile and link with the same version of
pppInterface.dll that will be used at runtime (either through the GAC or through
private deployment). Otherwise, an exception may be thrown by the Common
Language Runtime (CLR).

The files you need to be familiar with in order to develop custom actions are described
in the following tables:

Library Files for LIB and EXEC Actions

Directory:

$Identity_install_Dir/oblix/lib

File Name Description

ppp.lib (Windows platforms only.) An export library you need to link your LIB
action DLL to in order to resolve references to Identity
System-provided symbols.

Directory:

SIdentity_install_Dir/oblix/include/ppp

File Name Description

obppp.h Defines the basic success/failure status return codes used by the API
functions. Declares the ObActionFunc function signature that you must
use to declare your LIB action functions.

obpppdata.h Defines the ObPPPData C++ class that you must use to transmit data
between the Identity System and your LIB action.

obpppwf.h Defines constants used for developing actions that work with the
Identity System's workflow functionality.

Library Files for MANAGEDLIB Actions
The ppplnterface.dll is located as follows:

$Identity_install_dir\identity\oblix\include\managed\

This is the dll with which plug-ins compile and link.

File Name Description

pppInterface.dll (Windows platforms only.) The DSO for MANAGEDLIB actions.

3-44 Oracle Access Manager Developer Guide

The API

LIB Action Example Files

These are examples only, not part of the product. See the \unsupported branch of the
Identity System directory tree. Directory:

Identity install_dir/oblix/unsupported/ppp/pprp_dll

File Name

Description

libppp_dll.so

Solaris UNIX platforms only. This is a dynamic shared object (DSO)
that is pre-built from source files present in this example directory. You
provide a path to this DSO as part of the entry for a lib action in the
oblixpppcatalog.lst file, specifying the name of one of the action
functions within the DLL, as defined in pppdlltest.cpp.

You must also include the path to the libppp_dll.so DSO in the shared
library search path. The preferred method for doing this is to use the -L
option of the Id command. Another way is to use the
LD_LIBRARY_PATH environment variable, which can be set to give
the run-time shared library loader (Id) an extra set of directories to look
for when it searches for DSOs.

ppp_dil.dll

Windows platforms only. This is a dynamic link library (DLL) pre-built
from source files in this example directory. You provide a path to this
DLL as part of the entry for a lib action in the oblixpppcatalog.lst file,
specifying the name of one of the action functions within the DLL, as
defined in pppdlltest.cpp.

ppp_dll.sin

Windows platforms only. A Microsoft Visual C++ project file you can
use to build ppp_dIl.dll yourself.

pppdlltest.cpp

The C++ source file for the Oracle-provided LIB action examples.

ppputil.cpp

Provides:

A C++ class that illustrates how to access the Identity System data
available to actions through the API. The example simply writes the
data out to the file system.

A C function, MakePayload, that illustrates how to compose an XML
SOAP message to request a group subscription for a user.

ppputil.h

Class and function declarations for ppputil.cpp.

nis_client.cpp

Provides a C++ class that implements an HTTP client capable of
sending messages to the Identity System using WebPass. By combining
this with the MakePayload function mentioned under ppputil.cpp,
your action can use the IdentityXML or AccessXML interfaces to make
requests of the Identity System. This example may be particularly
useful for Cross Application Support. See "Cross-Application Support"
on page 3-47.

nis_client.h

Class and function declarations for nisclient.cpp.

Tip: If you are using the ConfigurationStructure class provided in
nis_client.h, it does not get called when either nis_client.h has the
declaration of a class ConfigurationStructure or the same class has been
used in some other functionality.

When the Identity server starts, the ConfigurationStructure class is
loaded before the ConfigurationStructure class that is present in the
PPP plug-in. Solaris always calls the constructor of the
ConfigurationStructure class, while the constructor of the
ConfigurationStructure class in the PPP plug-in's nis_client.cpp file
never gets called.Suggestion: Build libppp_dll.so using -W1,-B,symbolic
option so that Solarisv will bind symbols at compile time only.

makefile

Solaris, UNIX platforms only. This is the UNIX make file used to create
libppp_dlls.

Identity Event Plug-in APl 3-45

The API

MANAGEDLIB Action Example Files

Directory:
Identity_install_dir\unsupported\ppp\dotnet\managedcplusplus\Rel
ease

File Name Description

managedcplusplus.cpp (Windows platforms only.) The MC++ source file for the

Oracle-provided MANAGEDLIB action examples.

managedcplusplus.h

(Windows platforms only.) The header file for managedcplusplus.cpp.
It defines a singleton class that contains methods specified as Identity
Event API actions.

managedcplusplus.sin

(Windows platforms only.) A Microsoft Visual C++ managed code
project file that you can use to build managedcplusplus.dll.

managedcplusplus.vcpr

(Windows platforms only.) A Microsoft Visual C++ managed code

0j project file that contains the necessary configuration to build the
project.

managedcplusplus.dll ~ The sample plug-in.

pppfilewriter.cpp (Windows platforms only.) A utility class that receives Identity System
data and writes the data to a file.

pppfilewriter.h (Windows platforms only.) The header file for pppfilewriter.cpp.

EXEC Action Example Files

Directory:

Identity_install_dir/oblix/unsupported/ppp/ppp_exec

File Name

Description

ppp_exec_test.
java

This is the source for a JAVA version of an Oracle-provided EXEC
action example for post-processing. You can refer to this program as an
EXEC action in the oblixpppcatalog.Ist file.

pPpp_exec.exe

(Windows platforms only.) This is an NT executable, pre-built from the
file pppexectest.cpp to make that example available to you. You can
refer to this program as an EXEC action in the oblixpppcatalog.Ist file.

ppp_exec.sln

(Windows platforms only.) A Microsoft Visual C++ project file you can
use to build ppp_exec.exe yourself.

pppexectest.cpp

The C++ source file for an Oracle-provided EXEC action example.

ppp_perl.pl

This is the source for a PERL version of an Oracle-provided EXEC
action example for post-processing. You can refer to this program as an
EXEC action in the oblixpppcatalog.Ist file.

ppp_string.cpp

A C++ class representing strings used by pppexectest.cpp.

ppp_string.h

Class declaration for ppp_string.cpp.

corpdir_view_pre
.xml

A pre-formatted XML message for the example to send to the Identity
System when invoked as a preprocessing step. See the pppexectest.cpp
example.

Parser Example Files

Directory:

Identity_install_dir/oblix/unsupported/ppp/parser_test

3-46 Oracle Access Manager Developer Guide

Cross-Application Support

File Name Description

MyPPPActions.cpp The C++ source file that builds a function called

SAXParserPostActionTest, to be loaded as part of a DSO called
MYPPPActions.dll. The file also provides Windows and UNIX
examples of the Catalog entry that connects the action to the view
post-processing event in the Profile page of the User Manager. The
function replaces the phone numbers of corporate users with the
pattern XXX-XXX-XXXX.

MyPPPActions.dll Thisis the dynamic link library (DLL) pre-built from source files in this

example directory.

MyPPPAction.sln (Windows platforms only.) A Microsoft Visual C++ project file you can

use to build MyPPPActions.

MySAXhandler.cpp The C++ source file that builds the SAXhandler class of methods that

does the actual interpretation of the XML. SAX stands for Simple API
for XML.

MySAXhandlerhpp The header file defining the methods belonging to the SAXhandler

class.

Note: The examples are provided for illustrative purposes only. To
emphasize that they are not part of the formal product, they are
installed in the unsupported branch of the Oracle Access Manager
directory tree.

Cross-Application Support

Standard workflows exist within specific applications, such as the User Manager and
Group Manager, and their direct effects are limited to the application in which they
exist. Situations may arise in which you want a workflow to make changes that affect
more than one Manager application. An example is the need to create a new user and
also subscribe that user to a Group.

This is accomplished by including an event in the workflow, which triggers an action
that gets information from the workflow, and uses IdentityXML syntax to send a
request to the other application to accomplish the task. The flow might be something
like this:

The event is invoked in the usual way as part of the workflow. The Identity
System provides parameters, such as the user DN and group(s) to be subscribed
to, to the corresponding action.

The action combines this information into a subscribeUserToGroup Identity XML
request. The IdentityXML request requires a login id, password, and URL for the
Group Manager. None of this will have been known to the creator of the workflow.
The action will need to get it somehow. It could be coded into the action, extracted
from a database, or provided by a file. For our example, we use a file named
conf.txt.

The information from the Identity System is combined with the information from
the file to build the IdentityXML request, and the request is sent to the Group
Manager URL. There, it is accepted and carried out, or denied.

The status returned by IdentityXML is received by the action, interpreted and
returned to the Identity System application as either STATUS_PPP_OK or
STATUS_PPP_ABORT.

Identity Event Plug-in APl 3-47

Examples

The event entry in the Catalog to implement this might be the following:

63£004504£83455b924133acdlef2e87_3_postaction;
1lib;;../../../unsupported/ppp/ppp_dll/ppp_dll.dll;
NISClient;

It takes the same form as any other Workflow event. The behavior difference lies in the
NISClient function, which performs all the duties described in the previous list. You
will find the example code for the NISClient function in the file pppdlltest.cpp, with
supporting methods in nis_client.cpp, both in the directory

Identity_install_dir/oblix/unsupported/ppp/ppp_dll
The example conf. txt file is located in:
Identity install_dir/oblix/unsupported/ppp/ppp_dll

If you use it, you will need to change the content to match your situation, and move it
to where the dll expects to find it:

Identity_install_dir/oblix/apps/common/bin

Note: There may be timing delays involved when you use a Cross
Application plug-in. For example, if you are using replicated
directories it will take time for information written to a first directory
to be duplicated to a second. Your plug-in should allow for this time
difference before trying to use data from the second directory.

Examples
The following are examples of the Identity Event Plug-in API in use:
s A LIB Action Example—LogActivation
= An EXEC Action Example—AfterHours
= A MANAGEDLIB Action Example

A LIB Action Example—LogActivation

In this example, we will examine a C function that implements logging for both
activation and deactivation of users in the Identity System. Notice that the same action
function is registered in the Catalog for two different events. The event name is passed
to the action, so it can differentiate between events that are handled in similar ways.

In the example, the log is written to the file system. A more sophisticated
implementation might connect directly to a relational database to collect statistics like
this for later processing by external enterprise applications. You should resist the urge
to do too much in an action, however. Time spent in an action is time added to the of
the HTTP request latency perceived by the user, in this case a Delegated Identity
Administrator.

The following code implements this feature, packaged as a LIB action:

#include <ppp/obppp.h>
#include <ppp/obpppwf.h>
#include <ppp/obpppdata.h>

extern "C" {

/**

3-48 Oracle Access Manager Developer Guide

Examples

* LogActivation

* This action logs user activation and deactivation
* events.

* @param eventName The name of the event that
* triggered this action.

* This example processes both activation and
* deactivation, and uses this parameter to

* tell the difference.

* @param data the data for this event.

* (re: include/ppp/obpppdata.h)

* @return STATUS_PPP_OK or STATUS_PPP_ABORT

**/

unsigned int

LogActivation(const char *eventName, ObPPPData *data)
{

// Event names (must match those used in catalog)
const char *ACTIVATE_EVENT =
"userservcenter_workflowActivateSave_pre";

const char *DEACTIVATE_EVENT =
"userservcenter_workflowDeactivateUserSave_pre";
// open our file

FILE *file = fopen("activation_log.txt", "a");

// Determine whether action is being called to log
// an activate or deactivate user event.

bool activate;

if (0 == strcmp(eventName, ACTIVATE_EVENT)) {
activate = true;

} else if (0 == strcmp(eventName, DEACTIVATE_EVENT)) {
activate = false;

} else {

// error - can't process other events
data->SetResultString ("PPP action misconfigured");
fclose(file);

return STATUS_PPP_ABORT;

}

const char **uid = (const char **)data->Get("uid");
if (NULL == *uid) {

data->SetResultString ("PPP action error");
fclose(file);

return STATUS_PPP_ABORT;

data->SetResultString ("PPP action error");
fclose(file);

return STATUS_PPP_ABORT;

}

// Write the log entry

fprintf(file, "%s: %s\n",

activate ? "activated" : "deactivated",

*uid) ;

fclose(file);

return STATUS_PPP_OK;

}

For reference in the following description, here is how this action can be configured in
oblixpppcatalog.lst on a UNIX system:

userservcenter_workflowActivateSave_pre;lib;;/var/opt/netpoint/plug-ins/liblogacti
ons.so;LogActivation;

userservcenter_workflowDeactivateUserSave_pre;lib;; /var/opt/netpoint/plug-ins/1libl
ogactions.so;LogActivation;

Identity Event Plug-in APl 3-49

Examples

The LogActivation LIB action begins by including the Identity Event Plug-in API
header files, as all LIB actions must do in order to have access to Identity System data.

Notice that the LogActivation is declared within an extern C block to tell the C++
compiler that it is code written in C with external C linkage.

Next is the function signature for the action:

unsigned int
LogActivation(const char *eventName, ObPPPData *data)

This code declares LogActivation as a function with the same return type and
parameter list as an ObActionFunc, as described in obppp.h. The Identity System
requires that all LIB actions conform to this type.

LogActivation then declares constants for ACTIVATE_EVENT and
DEACTIVATE_EVENT. The values of these constants reflect the events that this action
will respond to, and must match the stylized event names used in the Catalog, as
shown in the preceding code listing.

Next, a file is opened for append using fopen(). This is the log file for the example. It
resides in the current working directory of the Identity System, which is the
identity/oblix/apps/common/bin directory. In this example, there are just two
possible types of entry in the log file:

m activated: <user dn>
m deactivated: <user dn>

LogActivation next inspects the name of the event for which it is being invoked, and
sets an activate/deactivate flag. Then it looks up the DN of the user using the Get
method of ObPPPData, to fetch the value of the uid parameter. The value of this
parameter for this event is the directory DN of the user who is being activated or
deactivated.

Note: Notice that the action demonstrates communicating an error to
User Manager by setting the return status to STATUS_PPP_ABORT if
it is called for an unexpected event, or if it fails to find the expected
data in the ObPPPData object.

The action completes its task by writing its log message, closing the log file and
returning the success status, STATUS_PPP_OK to User Manager.

An EXEC Action Example—AfterHours

This example implements an after-hours lockout function using a post-processing
EXEC action. The intent is that a site may have a policy of disallowing certain types of
activity during certain hours of the day, to allow a safe environment for backups and
other system maintenance. This action might be one tool in the administrator's toolbox
for enforcing such a policy.

Here is the source code for the AfterHours action:

#include <time.h>
#include <stdio.h>
#include <string.h>
#include <iostream.h>
#include <stdlib.h>
#include <ppp/obppp.h>

3-50 Oracle Access Manager Developer Guide

Examples

int main(int argc, char* argvl[])

{

// XML template for text message

static const char *messageTemplate =

"<?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n \
<?xml-stylesheet href=\"../../common/ui/style0/ppp.xsl\"
type=\"text/xsl\"?>\n \

<0Oblix xmlns=\"http://www.oblix.com/\">\n \
<ObTextMessage>\n \

gs\n \

</0ObTextMessage>\n \

</0Oblix>\n";

static const char *message;

if (argc > 1 && argv([l] != 0 && stricmp(argv[l], "pre")
== 0) {

// PRE-processing requests are not supported
return (STATUS_PPP_ABORT) ;

} else {

// POST-processing

// Examine command-line for any EXEC arguments
if (argc > 1 && argv([1l] !'= 0) {

const long now = time(0);

struct tm* tmNow = localtime (&now) ;

int hrsNow = tmNow->tm_hour;

int minNow = tmNow->tm_min;

int hrsOff = atoi(argv[2]);

int minOff = atoi(argv[3]);

int hrsOn = atoi(argv[4]);

int minOn = atoi(argv[5]);

int timeOff = (60 * hrsOff) + minOff;

int timeOn = (60 * hrsOn) + minOn;

int timeNow = (60 * hrsNow) + minNow;

if (timeOn < timeOff) timeOn += (60%*24);

if (timeOn != timeOff && timeNow >= timeOff &&
timeNow < timeOn) {

// Disallow the event; send ObTextMessage using
// text in catalog

message = argv[l];

} else {

// Allow the event. As a convenience, Identity
// applications assume actions haven't modified
// the data if they don't write to stdout. So
// all you need to do here is return status.
return STATUS_PPP_OK;

}

} else {

// No arguments. Output a default disablement message.

message = "This operation is disabled by the POST-processing action.";
}

// If we get here, we're replacing the data with

// the ObTextMessage.

fprintf (stdout, messageTemplate, message);

fflush(stdout) ;

return (STATUS_PPP_OK) ;

}

}

Here is a sample Catalog entry to configure the AfterHours action on a Windows
server.

Identity Event Plug-in APl 3-51

Examples

userservcenter_view_post;exec;;C:\NetPoint\Identity\Actions\AfterHours.exe; "This
Operation is unavailable outside business hours. Please contact your Identity
administrator for details." 21 30 06 00;

The first field associates the action with the User Manager view post-processing event.
The second field is empty (no Identity System parameters). The third field indicates
that this is an EXEC action. The fourth field is the path to the executable that
implements the AfterHours action. The remaining fields are EXEC action parameters,
and they are supplied to the action as argv[1] through argv[5]. Notice that the text
message parameter must be quoted because it contains spaces. The last four
parameters indicate that the OFF hours are 21:30 (9.30pm) till 06:00 (6.00am).

Note: This illustrates the use of action parameters. Parameters are
only available to EXEC actions, not LIB actions. A LIB action that
implemented the after-hours lockout feature would have to look up its
OFF and ON hours, and the text message to be displayed from an
external source. Doing so would provide the opportunity for greater
sophistication: just like a home-security time switch, an administrator
may want more than one OFF period a day, or may want a different
schedule on weekends. Knowing the requirements will help you to
design your action interface, and help you decide whether a LIB or
EXEC action is called for.

The AfterHours action begins by declaring a string containing the XML document that
is used to return a text message to the browser if the event is currently disabled. Notice
the %s embedded in the string. The string is used as a template to fprintf; the %s is a
printf directive and is replaced by the actual message.

Next, the action rejects attempts to call it from a pre-processing event. It does not
support pre-processing because it cannot usefully replace the XML result of the
request until it has been generated, which is not until after pre-processing.

AfterHours then performs some time calculations. To do this, it checks the system time
and extracts the current hour and minute, then converts it to minutes alone. It then
examines its command-line arguments, and extracts the Catalog-supplied message, the
OFF hours and minutes, and the ON hours and minutes, as argv[1] through argv[5], in
that order.

Again, times are converted to minutes. If the ON time is earlier than the OFF time, the
ON time falls within the next day, so 24 hours (24 * 60 minutes) are added to the ON
time. If ON and OFF times are the same, AfterHours enables the request. If the time
now falls between the OFF and ON times, AfterHours selects argv[1] for output in the
message template. If the time now falls outside that period, AfterHours simply returns
STATUS_PPP_OK to indicate that the event may proceed.

If the event is to be disallowed, this is achieved by combining the message template
with the selected message in a call to fprintf, sending output to STDOUT. The action
returns STATUS_PPP_OK to allow the event to proceed. User Manager applies the
stylesheet ppp.xsl, which is part of the Identity System, and the resulting page
containing the text message is returned to the browser.

A MANAGEDLIB Action Example
The following is a sample header file that declares class EventAPI.

// managed_ppp.h

3-52 Oracle Access Manager Developer Guide

Examples

#ifndef _ managed_ppp_
#define _ managed_ppp_

#using <mscorlib.dll>
#using <pppinterface.dll>
#using <System.dll>

#using <System.Xml.dll>

using namespace System;
using namespace System:
using namespace System:
using namespace System:
using namespace System:
using namespace System:
using namespace Oblix::

:Text;
:Collections;
:Xml;

:Net;

:I0;

Identity: :CorelD;

/* Singleton class that contains methods specified as Identity Event API actions.
The Identity System will instantiate one EventAPI object, which will be shared
among threads.
Class members must be accessed in a thread-safe manner. Modification of data
members must be synchronized.

The class must be named EventAPI and must define a constructor and destructor

*/

public _ gc class EventAPI ({

public:
/* ctor,
EventAPT (
/* dtor,

initialize class members here */

)i

virtual ~EventAPI();

/* action methods */

IPPPData:
IPPPData:
IPPPData:
data);
IPPPData:
IPPPData:
)i
IPPPData:
data);
IPPPData:
IPPPData
IPPPData:
)i
IPPPData:
data);
IPPPData:
IPPPData:
IPPPData:
IPPPData:
data);
IPPPData:
IPPPData:

private:

: STATUS_PPP_M
: STATUS_PPP_M
: STATUS_PPP_M

: STATUS_PPP_M
: STATUS_PPP_M

: STATUS_PPP_M

:STATUS_PPP_M
* data);
:STATUS_PPP_M

: STATUS_PPP_M

: STATUS_PPP_M
: STATUS_PPP_M
: STATUS_PPP_M
: STATUS_PPP_M

: STATUS_PPP_M
: STATUS_PPP_M

release resources here */

PreProcessingTest (String * eventName, IPPPData * data);
PostProcessingTest (String * eventName , IPPPData * data);
PostProcessingTest_Phone(String * eventName, IPPPData *

SavePreProcessing(String * eventName, IPPPData * data);
WorkflowPreActionTest (String * eventName, IPPPData * data

WorkflowPostActionTest(String * eventName , IPPPData *
WorkflowPostActionPasswordTest (String * eventName,
WorkflowExtActionTest(String * eventName, IPPPData * data
WorkflowSubflowActionTest (String * eventName, IPPPData *
PasswordTest (String * eventName, IPPPData * data);
WorkflowRetryTest(String * eventName, IPPPData * data);
NISClient(String * eventName, IPPPData * data);

ProcessCPResponseEncryption(String * eventName, IPPPData *

USCOnChange (String * eventName, IPPPData * data);
NavigationTest(String * eventName, IPPPData * data);

String * MakePayload(IPPPData * data, String * login, String * password, String *
group , String * user);

Identity Event Plug-in APl 3-53

Examples

public _ _gc class XMLUtil {

public:

static String * XMLUtil::knewline = S"\n";

static String * XMLUtil::kSpace = S" ";

static String * XMLUtil::kCloseAngle = S">";

static String * XMLUtil::kProcessingInst = S"<?xml version=\"1.0\"?>";
static String * XMLUtil::kSoapEnvEnvelopeStart = S"<SOAP-ENV:Envelope";
static String * XMLUtil::kSoapEnvEnvelopeEnd = S"</SOAP-ENV:Envelope>";
static String * XMLUtil::kxmlns = S"xmlns:oblix=\"http://www.oblix.com\"
xmlns: SOAP-ENV=\"http://schemas-xmlsoap.org/soap/envelope/\"";

static String * XMLUtil::kSoapEnvBodyStart = S"<SOAP-ENV:Body>";

static String * XMLUtil::kSoapEnvBodyEnd = S"</SOAP-ENV:Body>";

static String * XMLUtil::kOblixAuthStart = S"<oblix:authentication ";
static String * XMLUtil::kOblixAuthEnd = S"</oblix:authentication>";
static String * XMLUtil::kTypeBasic = S"type=\"basic\"";

static String * XMLUtil::kObLoginStart = S"<oblix:login>";

static String * XMLUtil::kObLoginEnd = S"</oblix:login>";

static String * XMLUtil::kObPasswordStart = S"<oblix:password>";

static String * XMLUtil::kObPasswordEnd = S"</oblix:password>";

static String * XMLUtil::kObRegStart = S"<oblix:request";

static String * XMLUtil::kObRegEnd = S"</oblix:request>";

static String * XMLUtil::kApp = S"application=\"groupservcenter\"";
static String * XMLUtil::kfuncname = S"function=\"subscribeUserToGroup\"";
static String * XMLUtil::kObParamsStart = S"<oblix:params>";

static String * XMLUtil::kObParamsEnd = S"</oblix:params>";

static String * XMLUtil::kObParamStart = S"<oblix:param";

static String * XMLUtil::kObParamkEnd = S"</oblix:param>";

static String * XMLUtil::kNameEgproxysourceuid = S"name=\"proxysourceuid\"";
static String * XMLUtil::kNameEquid = S"name=\"uid\"";

}i
#endif

There are several "action" methods in the class. The directive

#using <pppinterface.dll>

indicates that the plug-in will be using date types from ppplnterface.dll, namely the
IPPPDate interface as well as the status codes. Initialization code should be placed in
the constructor, EventAPI(), and clean-up code should be placed in the destructor
~EventAPI().

The sample plug-in also uses data types from the System.Xml library, as indicated by
the directive

#using<System.Xml.dll>

The method EventAPI:NISClient is an example of how to send a SOAP request using
classes from System.Xml, which is part of the .NET framework SDK. The method
subscribes the target user to a group. The target user is obtained through
IPPPDate::Get, while other parameters, including the group to which to subscribe the
user, are obtained from a configuration file, params.xml.

The method uses these parameters to construct the SOAP request with the method
EventAPI::MakePayLoad (not listed here, but it is in the sample code). It then creates
an http request with the URI parameter using HttpWebRequest. It then gets a stream

3-54 Oracle Access Manager Developer Guide

Examples

from that request and writes the SOAP request (IdentityXML/subscribeUserToGroup)
to the stream. Afterwards, the method gets a response from the request.

IPPPData: : STATUS_PPP_M

EventAPI::NISClient(String * eventName, IPPPData * data)

{

IPPPData: :STATUS_PPP M retStatus = IPPPData::STATUS_PPP_M: :STATUS_PPP_OK;

try {

String * sUidParamName = S"proxysourceuid";

String * sGroupDNParamName = S"uid";

String * uri, * login, * password, * group, * user;
String * errMsg = S"Missing Parameter";

String * targets[] = data->Get(S"WfInstance.obtargetdn");
user = targets([0];

XmlDocument& doc = *new XmlDocument;

doc.Load(S"params.xml");

XmlNode * root = doc.FirstChild;

XmlElement * elem;

elem = root->get_Item(S"uri");

if(elem != NULL) { uri = elem->InnerText; } else { throw new Exception(errMsg
)i}

elem = root->get_Item(S"login");

if(elem != NULL) { login = elem->InnerText; } else { throw new Exception(errMsg
)i}

elem = root->get_Item(S"password");

if(elem != NULL) { password = elem->InnerText; } else { throw new Exception (
errMsg); }

elem = root->get_Item(S"group");

if(elem != NULL) { group = elem->InnerText; } else { throw new Exception(errMsg
)i}

String * sPayLoad = MakePayload(data, login , password , group , user);
XmlDocument& soapReq = *new XmlDocument;
soapReq.LoadXml (sPayLoad) ;

HttpWebRequest * req = static_cast<HttpWebRequest*>(WebRequest::Create(uri));
reg->ContentType = "text/xml;charset=\"utf-8\"";

reqg->Accept = "text/xml";

reg->Method = "POST";

Stream * stm = reg->GetRequestStream();
soapReq.Save(stm);
stm->Close();

WebResponse * resp = reg->GetResponse();

}

catch(Exception * e) {

data->SetResultString(e->ToString());

retStatus = IPPPData::STATUS_PPP M::STATUS_PPP_ABORT;
}

return retStatus;

}
Parameter File:

params.xml
<Root>

Identity Event Plug-in APl 3-55

Examples

<uri>http://sdelaney/identity/oblix/apps/groupservcenter/bin/groupservcenter.cgi</
uri>

<login>admin</login>

<password>oblix</password>

<group>cn=Group of EmployeeslOkl with 1000 members, ou=Corporate,

o=Company, c=US</group>

</Root>

3-56 Oracle Access Manager Developer Guide

Part Il

Programatic Interfaces to the Access

System

Part II discusses how to use the Access Manager SDK to create custom AccessGates,
and how to use the Policy Manager API for programmatic access to most of the
functions in the Policy Manager. It also explains creating custom authentication and
authorization plug-ins.

This part contains the following chapters:

Chapter 4, "Building AccessGates with the Access Manager SDK"
Chapter 5, "Policy Manager API"

Chapter 6, "Authentication Plug-in API"

Chapter 7, "Authorization Plug-in API"

4

Building AccessGates with the Access

Manager SDK

This chapter describes the Access Manager SDK and how you use it to create custom
AccessGates. It discusses the following topics:

AccessGates, their role in the Access System, and AccessGate architecture.
The tasks you must complete to create and enable an AccessGate.
The directory structure and content of the installed SDK.

Selecting an AccessGate development platform by comparing the development
language-specific implementations of each class in the Access Manager APL

Behavior with 10g (10.1.4.0.1) and earlier versions and backward compatibility.
How to write each functional section of code that goes into a typical AccessGate.

Reference details for the C++, C, C#, and Java implementation of the Access
Manager API.

Reference details for the C# implementation of the Access Manager APL

Suggestions on how to avoid problems with your AccessGate. It also presents tips
for identifying and resolving the most common AccessGate problems.

This chapter contains the following sections:

About AccessGates

About AccessGate Deployment

About the Access Manager SDK
About the Access Manager API

Globalization and the Access Manager SDK, Access Manager APIs, Custom
AccessGates

About Custom AccessGate Code

C++ Implementation Details

C Implementation Details

C# Implementation Details

Java Implementation Details

C-Family Status and Error Message Strings

Best Practices

Building AccessGates with the Access Manager SDK 4-1

About AccessGates

About AccessGates

AccessGates are Access Server clients or agents. They process user requests for access
to resources within the LDAP domain protected by your Access System.

Typically, you embed custom AccessGate code in a servlet (plug-in) or standalone
application that receives resource requests. This code uses Access Manager API
libraries to perform authentication and authorization services on the Access Server.

If a resource is not protected, the AccessGate grants the user free access to the
requested resource. If the resource is protected and the user is authorized to provide
certain credentials to gain access, the AccessGate attempts to retrieve those user
credentials so that the Access Server can validate them. If authentication of the user
and authorization for the resource succeed, the AccessGate makes the resource
available to the user.

Note: For the purposes of this document, "Access Manager API"
refers narrowly to the set of programming calls that enable developers
to access the authentication, authorization, and other services of an
Access Server. By contrast, "Access Manager SDK" refers to all the files
installed by the Access Server SDK installation package.

About Prefabricated AccessGates (WebGates)

Oracle Access Manager ships with several prefabricated AccessGates known as
WebGates. Each of these out-of-the box WebGates has been set up to protect HTTP
resources on a specific web server such as:

= Microsoft Internet Information Server
= iPlanet/SunONE Web Server

= Apache Web Server

s Lotus Domino

= IBM HTTP Server (IHS)

Some WebGates can protect Embedded Java Bean (E]JB) resources (which are
non-HTTP resources) on application servers such as BEA WebLogic and IBM
WebSphere. For a matrix listing the WebGate implementations available for various
combinations of host server software and host machine operating system, see the
Oracle Access Manager Installation Guide.

When to Create a Custom AccessGate

Typically, you deploy a custom AccessGate instead of a standard WebGate when you
need to control access to a resource for which Oracle Access Manager does not already
supply an out-of-the-box solution. This might include:

s Protection for non-HTTP resources

= Protection for a custom web server developed to implement a special feature (such
as reverse proxy, for example)

= Implementation of single sign-on (S50) to protect a combination of HTTP and
non-HTTP resources

For example, you can create an AccessGate that facilitates SSO within an
enterprise environment that includes a WebLogic cluster as well as non-WebLogic
resources.

4-2 Oracle Access Manager Developer Guide

About AccessGates

AccessGate Architecture

Each AccessGate is built from three types of resources:

Custom AccessGate code, which you build into a servlet or standalone application
running on the machine where the rest of the AccessGate resides. You can write
AccessGate code using any of four development language platforms:

C++
C (pseudo object-oriented classes)
C# (NET framework managed code)

Java

These platforms, which support equivalent functionality implemented in
language-specific ways, serve as interfaces to the underlying Access System code,
which is written in C++.

Configuration information, which consists of the following;:

Environment variables, which you set on the server where the AccessGate is
installed. These variables differ, depending on whether your server runs UNIX
or Windows.

An ObAccessClient.xml file, which is stored on the server where the
AccessGate is installed. This file contains configuration information entered
through the "configureAccessGate" command-line application.

AccessGate connection settings that you enter, view, and edit by navigating to
Access System Console, then to AccessGate Configuration. These settings are
stored in your Oracle configuration directory.

The various implementations of the Access Manager AP]I libraries, which facilitate
AccessGate interaction with the Access Server. These include:

Header files for either Java or the "C-family" languages (C\C++\C#)
The JNI library (for Java only, packaged in jobaccess.jar)

The ObAccess library (specific to the operating system platform used by the
machine hosting the AccessGate)

Figure 4-1 shows AccessGate components installed on a host server:

Figure 4-1 Architectural Detail of an AccessGate

Host Server

Servlet or Stand-Alone
Application Receiving
Resource Requests

AccessGate
Embedded Access Server API Configuration Info
Accggzgate [header files | || obAccessClient.lst
environment variables

[UNI library (Java only) |

| obAccess library |

Building AccessGates with the Access Manager SDK 4-3

About AccessGates

AccessGate Variations

AccessGates can differ according to a variety of factors:

s The operating system of the host machine on which they are installed (Each OS
platform requires a different Access Manager SDK installation package.)

= Whether they run as standalone applications or server plug-ins

s The development language in which they are written (These development
languages provide a choice of interfaces to the underlying functionality of the API)

= The type of server for which they are written (You can protect web servers or
application servers)

s The type of resources they protect (You can protect both HTTP and non-HTTP
resources)

s The ways in which they retrieve user credentials (You can enable HTTP
FORM-based input, the use of session tokens, and command-line input, among
other methods)

How an AccessGate Handles a Resource Request

Regardless of the variability introduced by the preceding factors, most AccessGates
follow the same basic steps to process user requests.

When a user or application submits a resource request to a servlet or application
running on the server where the AccessGate is installed, the AccessGate code
embedded in that servlet or application initiates the basic process shown in the
following diagram.

Figure 4-2 illustrates the process of handling a resource request:

Figure 4-2 Process Overview: Handling a Resource Request

% | Embedded Code

Access Server API F

Unprotected Resources

User Server Access Server
or
Aoplleation o serve DP| o
Applci’éation 9_ auhhoriéation
and auditin
e T 9)
AccessGate| vy, 6_

0% % ¢

Protected Resources

Process Overview: Handling a resource request

1. The application or servlet containing the AccessGate code receives a user request
for a resource.

2. The AccessGate constructs a ObResourceRequest structure, which the AccessGate
code uses when it asks the Access Server whether the requested resource is
protected.

3. The Access Server responds.

4. If the resource is not protected,

4-4 Oracle Access Manager Developer Guide

About AccessGate Deployment

10.

11.

a. The AccessGate grants the user access to the resource. Otherwise...

b. The AccessGate constructs an ObAuthenticationScheme structure, which it
uses to ask the Access Server what credentials the user needs to supply. (This
step is only necessary if the AccessGate supports the use of different
authentication schemes for different resources).

The Access Server responds.

The application uses a form or some other means to ask the user for her
credentials. In some cases, the user credentials may already have been submitted
as part of:

= A valid session token
= Input from a web browser

= Arguments to the command-line script or keyboard input that launched the
AccessGate application

The user responds to the application.

The AccessGate constructs an ObUserSession structure, which presents the user
credentials to the Access Server, which maps them to a user profile in the Oracle
Access Manager user directory.

If the credentials prove valid, the AccessGate creates a session token for the user,
then it sends a request for authorization to the Access Server. This request contains
the user identity, the name of the target resource, and the requested operation.

The AccessGate grants the user access to the resource, providing, of course, that
the user is authorized for the requested operation on the particular resource.

(Not pictured). A well-behaved AccessGate deallocates the memory used by the
objects it has created, then shuts down the Access Manager API.

The preceding steps represent only the main path of the authorization process.
Typically, additional code sections within the servlet or application handle branch
situations where:

The requested resource is not protected

The authentication challenge method associated with the protected resource is not
supported by the application

The user has a valid single sign-on cookie (ObSSOCookie), which enables the user
to access to the resource without re-presenting her credentials for as long as the
session token embedded in the cookie remains valid. For details about
ObSSOCookies and single sign-on, see the Oracle Access Manager Access
Administration Guide.

The user fails to supply valid credentials under the specified conditions
Some other error condition arises

The developer has built additional custom code into the AccessGate to handle
special situations or functionality

About AccessGate Deployment

AccessGates are typically deployed by teams, with each team member covering a
specific area of expertise. For instance, a network administrator can install software
and set the requisite environment variables, a developer can write the custom
AccessGate code, and an Access Administrator can create policy domains to protect

Building AccessGates with the Access Manager SDK 4-5

About AccessGate Deployment

specific resources. Together, the developer and the Access Administrator can configure
the Access Server to work with the new AccessGate.

Although the tasks handled by each individual can vary, the team responsible for the
Access System must complete the following tasks.

Task overview: AccessGate deployment

1. Install the Access Manager SDK on the machine that will host the AccessGate, as
described in "Installing the Access Manager SDK" on page 4-7.

2. Write custom AccessGate code and build it into a servlet or application that
receives resource requests, as described in "Writing AccessGate Code" on
page 4-14.

3. Configure the AccessGate, as described in "Configuring an AccessGate" on
page 4-10 and includes the following;:

— Set environment variables on the host server where the AccessGate will be
installed.

— Create an AccessGate entry on the Access System console (typically, the
Access Administrator and the AccessGate developer work together to create
this entry).

— Create an ObAccessClient.xml file, which the AccessGate developer
accomplishes by running the interactive, non-GUI configureAccessGate
application on the machine that will host the AccessGate.

4. Protect enterprise resources by creating policy domains, as described in the Oracle
Access Manager Access Administration Guide.

This includes definition of the resource and the designation of operations
permitted against that resource. Generally, an Access Administrator performs this
task through the Access System console.

Note: The Access Administrator and the developer must work
closely to ensure that the resource types and challenge methods the
AccessGate is programmed to handle match exactly the resource types
and challenge methods assigned to the policy domains that the
AccessGate will protect. For details about protecting resources with
policy domains, see the Oracle Access Manager Access Administration
Guide.

Supported Versions and Platforms

Any references to specific versions and platforms in this chapter are made for
demonstration purposes.

You can find support and certification information at the following URL:
http://www.oracle.com/technology/documentation/

You must register with OTN to view this information.

Also, you can see the supported versions and platforms for this integration on

Metalink, as follows.

To view information on Metalink
1. In your browser, enter the following URL:

4-6 Oracle Access Manager Developer Guide

About AccessGate Deployment

https://metalink.oracle.com

Log in to MetaLink.

Click the Certify tab.

Click View Certifications by Product.

Select the Application Server option and click Submit.
Choose Oracle Identity Management and click Submit.

N o a Db

Click Oracle Identity Management Certification Information 10g (10.1.4.0.1)
(html) to display the Oracle Identity Management page.

8. Click the link for Section 6, Oracle Access Manager Certification to display the
certification matrix.

Installing the Access Manager SDK

If your Access System uses WebGates exclusively, you do not need to install the Access
Manager SDK, because each self-contained WebGate installation package already
contains all the specific resources it needs.

If you use one or more custom AccessGates, you must install an instance of the Access
Manager SDK on each server that hosts an AccessGate. You may install both
UNIX-based and Windows-based AccessGates within the same deployment as long as
each instance of the Access Manager SDK matches the type of server on which it is
installed.

Note that the Access Manager SDK is not part of the Access Server installation
package. The self-contained SDK ships in its own setup package which is labelled:

COREid#_# Platform AccessServerSDK|[.ext]

where #_# is the installed version of Oracle Access Manager, platform is the operating
system of the host server where you install the SDK, and ext is the file name extension
".exe," which appears only on Windows installation packages.

Thus, "COREid_10_1_4_sparc-s2_AccessServerSDK" contains the version of the Access

Manager SDK appropriate for installation on servers running the Solaris operating
system.

A convenient installation location for your Access Manager SDK on a typical Windows
system might be:

C:\Program Files\Oblix\AccessServerSDK

In any case, make note of the SDK installation path, as you will need it later, whenever
you see the string SDK_install_dir in the rest of this chapter.

Obtaining the Access Manager SDK

You can download the Access Manager SDK from the Oracle Technology Network at
the following URL:

http://www.oracle.com/technology
Installing the SDK on Windows

After downloading the SDK, you can install it. The following procedure describes how
to install the SDK on Windows.

Building AccessGates with the Access Manager SDK 4-7

About AccessGate Deployment

To Install the SDK on a Windows Machine

1. On the machine where you plan to install your AccessGate, navigate to the
directory where your Access Manager SDK installation package is stored. The path
to this package resembles the following;:

Device\...\AccessSystem\Platform
where Device is the CD or hard drive holding your installation image, and

Platform is the operating system of the host server on which you are installing the
AccessGate.

2. Double-click the following executable:
COREid#_#_Platform_AccessServerSDK
where #_# is the version you are running, and Platform is the operating system of
the machine on which you are installing the AccessGate.
For example:

COREid_10_1_4 Win32_AccessServerSDK.exe

3. When the Welcome screen appears, click Next.

4. When the license agreement appears, decide whether to proceed by checking the
box "I accept the terms of the license agreement."

5. The next screen emphasizes that you must have administrator privileges on the
host machine where you are installing the SDK.

If your current account has administrator rights, click Next.

If you are not currently logged onto an account with such privileges, complete the
following sub-task:

a. Click Cancel to close the installation wizard
b. Log off the system
c. Log back on using an administrator account
d. Restart the Access Manager SDK installation wizard
6. Select an install directory using any of the following methods:
s Click Browse and navigate to the directory you prefer

= Place your cursor in the "Destination Name" entry field and type the path to
the directory you prefer

= Simply accept the default installation directory as it appears in the
"Destination Name" entry field.

For Windows, the default is C:\Program Files\NetPoint. The sub-directory
\AccessServerSDK is appended to the default base path during installation.

In any case, when the directory you want appears in the "Destination Name" entry
field, click Next to continue.

7. When a screen appears to announce the target installation directory, check to make
sure that it shows the exact location you want. Make a note of this path, because
you will need it every time SDK_install_dir appears in the rest of this chapter.

8. Click next to commence file installation.

9. Respond to the on-screen prompts, as necessary.

4-8 Oracle Access Manager Developer Guide

About AccessGate Deployment

10. When installation completes, a screen appears to report that the process has
succeeded.

Installing the SDK on UNIX

To install the SDK on a UNIX machine

1. On the machine where you plan to install your AccessGate, navigate to the
directory where your Access Manager SDK installation package is stored.

The path to this package resembles the following;:
Device\...\AccessSystem\Platform
where Device is the CD or hard drive holding your installation image, and

Platform is the operating system of the machine on which you are installing the
AccessGate.

2. Locate the following executable:
COREid#_#_Platform AccessServerSDK
where #_# is the version you are running, and Platform is the operating system of
the machine on which you are installing the AccessGate.
For example:

COREid_10_1_4_sparc-s2_AccessServerSDK

3. At the UNIX prompt, enter the name of the appropriate Access Manager SDK
installation package to commence GUI-mode installation.

Note: This procedure assumes that your UNIX machine supports
GUI-mode. You can also run the installation package in interactive
command-line mode by entering the following:

run ./installationPackage

where installationPackage is the name of the Access Manager SDK
installation package appropriate for your machine.

4. When the Welcome screen appears, click next.

5. When the license agreement appears, decide whether to proceed by checking the
box "I accept the terms of the license agreement."

6. When the installer asks for a user and group to set as the owner of the installed
files, you may find it convenient to specify the same user and group that "own" the
server application your AccessGate will protect. In any case, you must be logged
on as the user you specify, or as "root," in order to continue installation.

7. Accept the default install directory by hitting Return, or type your preference, then
hit return.

Note: You cannot install Oracle Access Manager components in any
directory that contains special characters in its path. The proscribed
characters are: blank spaces, new lines, *, [], {}, and so on.

Building AccessGates with the Access Manager SDK 4-9

About AccessGate Deployment

8. When a screen appears to announce the target installation directory, check to make
sure that it shows the exact location you want. If the directory does not exist, the
installer creates it. Make a note of this path, because you will need it every time
SDK _install_dir appears in the rest of this chapter.

9. Click next to commence file installation.
10. Respond to the on-screen prompts, as necessary.

11. When installation completes, a screen appears to report that the process has
succeeded.

Configuring an AccessGate

AccessGate configuration, which is not to be confused with AccessGate creation or
SDK installation, consists of the following sub-tasks.

Task overview: Configuring an AccessGate
1. Setting environment variables on the host server where the AccessGate will reside,
as described in "Setting Environment Variables" on page 4-10.

2. Creating an AccessGate entry on the Access Server, as described in "Creating an
AccessGate Entry on the Access Server" on page 4-12.

3. Creating the ObAccessClient.xml file within the Access Manager SDK installation,
as described in "Running the configureAccessGate Utility" on page 4-13.

4. For each AccessGate, you must run the configureAccessGate utility, as described
in "Running the configureAccessGate Utility" on page 4-13.

You can perform any of the AccessGate configuration either before or after you
create custom code for your AccessGate.

Note: Creating the ObAccessClient.xml file within the Access
Manager SDK installation, as described in "Running the
configureAccessGate Utility" on page 4-13.

Setting Environment Variables

Requisite environment variables differ according to the operating system on the host
server where your AccessGate resides. Complete the procedure that is appropriate to
your environment:

s Windows host
s UNIX host

To set environment variables on a Windows machine

1. Navigate to the Start Menu, then to Control Panel, then to System, then to
Advanced, then to Environment Variables.

2. Examine the contents of the System Variables box.

3. If you see the Variable Name for the Variable Value you want to add, click that
Variable Name, click Edit, then proceed to Step 6 (otherwise, click New and
proceed to the next step).

4. Type Variable Name and Variable Value in the appropriate fields of the New
System Variable entry box.

5. Click OK to commit the variable, then proceed to Step 7.

4-10 Oracle Access Manager Developer Guide

About AccessGate Deployment

6. When the Edit System Variable entry box appears, click the Variable Value field,
move the cursor to the end of the string, type "; value" (semi-colon followed by the
blank space character followed by the new value), then click OK to commit the
variable.

7. Repeat Steps 3-6 until you have added all the variables listed in the following
table.

Note: For Windows 2003, these variables take effect immediately and
do not require a system restart.For Windows 2000, you should restart
your machine after you have entered the variables. This ensures that
all the variables will take effect.

Table 4-1 Windows Environment Variables

Variable Name = existing

path; Value to Add Description

PATH = existing path; Points to obaccess.dll and other library files.
SDK_install_dir\oblix\lib

CLASSPATH = existing Points to the name and location of the Java class archive for the
path; Access Manager API. (Required only if you use the Java

SDK _install_dir\oblix\lib\jo implementation of the Access Manager API to write custom
baccess.jar AccessGate code).

OBACCESS_INSTALL_DIR Points to the Access Manager SDK install root. (This is necessary
= SDK_install_dir only if your AccessGate does not specify SDK_install_dir as part
of the ObConfig.initialize method).

To set environment variables on a UNIX machine
1. Use a text editor to open the file (or files) containing the variables on your UNIX
system.

2. For all the variables in Table 4-2, append the values listed, or, if the variable name
does not exist, add the variable name along with its associated value to the file.

Note: To ensure that the new variables take effect, take whatever
measures (such as system restart) are appropriate for your specific
UNIX environment.

Table 4-2 UNIX Environment Variables

Variable Name = existing path; Value to Add Description

LD_LIBRARY_PATH = existing path; Points to libobaccess.so and other library files
SDK _install_dir /oblix/lib (for Solaris only) on Solaris systems.

CLASSPATH = existing path; Points to the name and location of the Java
SDK_install_dir/ oblix/lib /jobaccess jar class archive for the Access Manager API.

Required only if you use the Java
implementation of the Access Manager API to
write custom AccessGate code.

POST_CLASSPATH = existing path;
SDK _install_dir / oblix/lib/jobaccess.jar

OBACCESS_INSTALL_DIR = existing path; Points to the Access Manager SDK install root.
SDK _install_dir

Building AccessGates with the Access Manager SDK 4-11

About AccessGate Deployment

Creating an AccessGate Entry on the Access Server

Complete the following task to enable your Access Server to connect to your custom
AccessGate. (You can complete this task before your create your AccessGate, as long as
the information you enter matches the particulars of the AccessGate and the
ObAccessClient.xml file).

To create an AccessGate entry on the Access Server

1. Navigate to the Access System Console, then to Access System Configuration, then
to Add New AccessGate.

2. Type a convenient name in the AccessGate Name field.

Note: Choose a name that distinguishes this particular AccessGate
from all the others in your system. For instance, "CustCare5_6006"
might help you identify an AccessGate installed on web server
"Customer Care 5," which listens on port 6006.

3. In the HostName field, type the DNS name of the machine hosting the server
instance on which the AccessGate resides.

For example:
CustomerCare5.oblix.com
4. Complet