
BEATuxedo ®

Getting Started with BEA
Tuxedo CORBA
Applications

Version 10.0
Document Released: September 28, 2007

Getting Started with BEA Tuxedo CORBA Applications iii

Contents

1. Overview of the BEA Tuxedo CORBA Environment
Introduction to the BEA Tuxedo CORBA Environment . 1-1

Features of the BEA Tuxedo CORBA Environment . 1-3

2. The BEA Tuxedo CORBA Programming Environment
Overview of the BEA Tuxedo CORBA Programming Features 2-1

IDL Compilers . 2-2

Development Commands. 2-2

Administration Tools . 2-3

BEA Tuxedo CORBA Object Services. 2-5

BEA Tuxedo CORBA Architectural Components . 2-6

Bootstrapping the BEA Tuxedo Domain . 2-7

IIOP Listener/Handler . 2-9

ORB . 2-10

TP Framework . 2-11

How BEA Tuxedo CORBA Client and Server Applications Interact 2-13

Step 1: The CORBA Server Application Is Initialized . 2-13

Step 2: The CORBA Client Application Is Initialized. 2-14

Step 3: The CORBA Client Application Authenticates Itself to the BEA Tuxedo
Domain . 2-15

Step 4: The CORBA Client Application Obtains a Reference to the CORBA Object
Needed to Execute Its Business Logic . 2-15

iv Getting Started with BEA Tuxedo CORBA Applications

Step 5: The CORBA Client Application Invokes an Operation on the CORBA Object
2-17

3. Developing BEA Tuxedo CORBA Applications
Overview of the Development Process for BEA Tuxedo CORBA Applications 3-2

The Simpapp Sample Application . 3-3

Step 1: Write the OMG IDL Code . 3-4

Step 2: Generate CORBA client Stubs and Skeletons . 3-6

Step 3: Write the CORBA Server Application. 3-7

Writing the Methods That Implement the Operations for Each Interface. 3-7

Creating the CORBA server Object . 3-9

Defining an Object’s Activation Policies . 3-11

Creating and Registering a Factory. 3-12

Releasing the CORBA Server Application . 3-13

Step 4: Write the CORBA Client Application . 3-14

Step 5: Create an XA Resource Manager. 3-16

Step 6: Create a Configuration File . 3-17

Step 7: Create the TUXCONFIG File . 3-20

Step 8: Compile the CORBA Server Application . 3-20

Step 9: Compile the CORBA Client Application. 3-20

Step 10: Start the BEA Tuxedo CORBA Application . 3-21

Additional BEA Tuxedo CORBA Sample Applications . 3-21

4. Using Security
Overview of the Security Service. 4-2

How Security Works . 4-2

The Security Sample Application. 4-4

Development Steps. 4-5

Step 1: Define the Security Level in the Configuration File. 4-6

Getting Started with BEA Tuxedo CORBA Applications v

Step 2: Write the CORBA Client Application. 4-6

5. Using Transactions
Overview of the Transaction Service . 5-2

What Happens During a Transaction . 5-2

Transactions Sample Application . 5-4

Development Steps . 5-6

Step 1: Write the OMG IDL Code . 5-6

Step 2: Define Transaction Policies for the Interfaces . 5-9

Step 3: Write the CORBA Client Application. 5-10

Step 4: Write the CORBA Server Application . 5-11

Step 5: Create a Configuration File . 5-14

Index

vi Getting Started with BEA Tuxedo CORBA Applications

Getting Started with BEA Tuxedo CORBA Applications 1-1

C H A P T E R 1

Overview of the BEA Tuxedo CORBA
Environment

This topic includes the following sections:

Introduction to the BEA Tuxedo CORBA environment

Features of the BEA Tuxedo CORBA Environment

Note: The BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB were
deprecated in Tuxedo 8.1 and are no longer supported. All BEA Tuxedo CORBA Java
client and BEA Tuxedo CORBA Java client ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. BEA Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

Introduction to the BEA Tuxedo CORBA Environment
The CORBA environment in the BEA Tuxedo product is based on the CORBA standard as a
programming model for developing enterprise applications with high performance, scalability,
and reliability. BEA Tuxedo CORBA extends the Object Request Broker (ORB) model with
online transaction processing (OLTP) functions. The BEA Tuxedo CORBA deployment
infrastructure delivers secure, transactional, distributed applications in a managed environment.

CORBA objects built with the BEA Tuxedo product are accessible from Web-based applications
that communicate using the CORBA Object Management Group (OMG) Internet Inter-ORB

1-2 Getting Started with BEA Tuxedo CORBA Applications

Protocol (IIOP). IIOP is the standard protocol for communications running on the Internet or on
an intranet within an enterprise.

BEA Tuxedo CORBA has a native implementation of IIOP, ensuring high-performance,
interoperable, distributed-object applications for the Internet, intranets, and enterprise computing
environments. You can build integrated enterprise applications using multiple programming
models. CORBA and Application-to- Transaction-Monitor-Interface (ATMI) applications can be
developed with fully integrated transaction management, security, administration, and reliability
capabilities.

The interoperability technology incorporated into BEA Tuxedo CORBA provides for scalable
connectivity between the CORBA and WebLogic Server environments. For information on
interoperability see BEA Tuxedo Interoperability in the BEA Tuxedo online documentation.

Figure 1-1 illustrates the BEA Tuxedo CORBA environment.

Figure 1-1 BEA Tuxedo CORBA

Features o f the BEA Tuxedo CORBA Env i ronment

Getting Started with BEA Tuxedo CORBA Applications 1-3

The following sections outline the features of the CORBA environment.

Features of the BEA Tuxedo CORBA Environment
The CORBA environment in the BEA Tuxedo product provides the following set of features:

A C++ server-side ORB

Client application options including:

– CORBA C++ client

– Third-party client ORBs

A proven run-time infrastructure for hosting e-commerce transaction applications,
including client connection concentrators, high-performance message routing and load
balancing, and high-availability features.

A Transaction Processing (TP) Framework for object state and transaction management in
CORBA applications.

A Management Information Base (MIB) that defines the key management attributes of
CORBA applications. In addition, programming interfaces and scripting capabilities are
available to access the MIBs.

An Administration Console graphical user interface (GUI) for the management of CORBA
applications.

The CORBA Transaction Service (OTS) to ensure the integrity of your data even when
transactions span multiple programming models, databases, and applications.

A security service that handles authentication for principals that need to access resources in
a CORBA object in the CORBA environment.

The Secure Sockets Layer (SSL) protocol to encrypt client to server communication on the
wire. SSL support includes IIOP connection pools.

A Security Service Plug-In Interface (SPI) for CORBA that allows integration of
third-party security plug-ins.

A Notification Service that receives event posting messages, filters them, and distributes
the messages to subscribers. The Notification Service provides two sets of interfaces: a
CORBA-based interface and a simplified BEA-proprietary interface.

1-4 Getting Started with BEA Tuxedo CORBA Applications

An implementation of the CosLifeCycle service.

An implementation of CosNaming that allows BEA Tuxedo CORBA server applications to
advertise object references using logical names.

An interface repository that stores meta information about BEA Tuxedo CORBA objects.
Meta information includes information about modules, interfaces, operations, attributes,
and exceptions.

Dynamic Invocation Interface (DII) support. DII allows BEA Tuxedo CORBA client
applications to create requests dynamically for objects that were not defined at compile
time.

The remainder of this manual describes the programming environment for BEA Tuxedo CORBA
and the development process for CORBA applications.

Getting Started with BEA Tuxedo CORBA Applications 2-1

C H A P T E R 2

The BEA Tuxedo CORBA Programming
Environment

This topic includes the following sections:

Overview of the BEA Tuxedo CORBA Programming Features

BEA Tuxedo CORBA Object Services

BEA Tuxedo CORBA Architectural Components

How BEA Tuxedo CORBA Client and Server Applications Interact

Note: The BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB were
deprecated in Tuxedo 8.1 and are no longer supported. All BEA Tuxedo CORBA Java
client and BEA Tuxedo CORBA Java client ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. BEA Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

Overview of the BEA Tuxedo CORBA Programming
Features

BEA Tuxedo offers a robust CORBA programming environment that simplifies the development
and management of distributed objects. The following topics describe the features of the
programming environment:

2-2 Getting Started with BEA Tuxedo CORBA Applications

IDL Compilers

Development Commands

Administration Tools

IDL Compilers
The BEA Tuxedo CORBA programming environment supplies Interface Definition Language
(IDL) compilers to facilitate the development of CORBA objects:

idl—compiles the OMG IDL file and generates client stub and server skeleton files
required for interface definitions being implemented in C++.

For a description of how to use the IDL compiler, see Chapter 3, “Developing BEA Tuxedo
CORBA Applications.” For a description of the idl command, see the BEA Tuxedo Command
Reference in the BEA Tuxedo online documentation.

Development Commands
Table 2-1 lists the commands that the BEA Tuxedo CORBA programming environment provides
for developing CORBA applications and managing the Interface Repository.

Table 2-1 BEA Tuxedo CORBA Development Commands

Development
Command

Description

buildobjclient Constructs a C++ client application.

buildobjserver Constructs a C++ server application.

genicf Generates an Implementation Configuration File (ICF). The ICF file
defines activation and transaction policies for C++ server
applications.

id12ir Creates the Interface Repository and loads interface definitions into
it.

ir2idl Shows the content of the Interface Repository.

irdel Deletes the specified object from the Interface Repository.

Overv iew o f the BEA Tuxedo CORBA Programming Features

Getting Started with BEA Tuxedo CORBA Applications 2-3

For a description of how to use the development commands to develop client and server
applications, see Chapter 3, “Developing BEA Tuxedo CORBA Applications.”

For a description of the development commands, see the BEA Tuxedo Command Reference in the
BEA Tuxedo online documentation.

Administration Tools
The BEA Tuxedo CORBA programming environment provides a complete set of tools for
administering your CORBA applications. You can manage BEA Tuxedo CORBA applications
through commands, through a graphical user interface, or by including administration utilities in
a script.

You can use the commands listed in Table 2-2 to perform administration tasks for your CORBA
application.

The Administration Console is a Java-based applet that you can download into your Internet
browser and use to manage your BEA Tuxedo CORBA applications remotely. The
Administration Console allows you to perform administration tasks, such as monitoring system
events, managing system resources, creating and configuring administration objects, and viewing
system statistics. Figure 2-1 shows the main window of the Administration Console.

Table 2-2 Administration Commands

Administration
Command

Description

tmadmin Displays information about current configuration parameters.

tmboot Activates the BEA Tuxedo CORBA application referenced in
the specified configuration file. Depending on the options used,
the entire application or parts of the application are started.

tmconfig Dynamically updates and retrieves information about the
configuration of a BEA Tuxedo CORBA application.

tmloadcf Parses the configuration file and loads the binary version of the
configuration file.

tmshutdown Shuts down a set of specified server applications, or removes
interfaces from a configuration file.

tmunloadcf Unloads the configuration file.

2-4 Getting Started with BEA Tuxedo CORBA Applications

Figure 2-1 Administration Console Main Window

In addition, a set of utilities called the AdminAPI is provided for directly accessing and
manipulating system settings in the Management Information Bases (MIBs) for the BEA Tuxedo
product. The advantage of the AdminAPI is that it can be used to automate administrative tasks,
such as monitoring log files and dynamically reconfiguring an application, thus eliminating the
need for manual intervention.

For information about the Administration commands, see File Formats, Data Descriptions,
MIBs, and System Processes Reference in the BEA Tuxedo online documentation.

For a description of the Administration Console and how it works, see the online help that is
integrated into the Administration Console graphical user interface (GUI).

For information about the AdminAPI, see Setting Up a BEA Tuxedo Application in the BEA
Tuxedo online documentation.

BEA Tuxedo CORBA Ob jec t Se rv ices

Getting Started with BEA Tuxedo CORBA Applications 2-5

BEA Tuxedo CORBA Object Services
The BEA Tuxedo product includes a set of environmental objects that provide object services to
CORBA client applications in a BEA Tuxedo domain. You access the environmental objects
through a bootstrapping process that accesses the services in a particular BEA Tuxedo domain.

BEA Tuxedo CORBA provides the following services:

Object Life Cycle service

The Object Life Cycle service is provided through the FactoryFinder environmental object.
The FactoryFinder object is a CORBA object that can be used to locate a factory, which in
turn can create object references for CORBA objects. Factories and FactoryFinder objects
are implementations of the CORBA Services Life Cycle Service. BEA Tuxedo CORBA
applications use the Object Life Cycle service to find object references.

For information about using the Object Life Cycle Service, see “How BEA Tuxedo
CORBA Client and Server Applications Interact” on page 2-13.

Security service

The Security service is accessed through either the SecurityCurrent environmental object or
the PrincipalAuthenticator object. The SecurityCurrent and PrincipalAuthenticator objects
are used to authenticate a client application into a BEA Tuxedo domain with the proper
security. The BEA Tuxedo software provides an implementation of the CORBA Services
Security Service.

For information about using security, see Using Security in CORBA Applications in the
BEA Tuxedo online documentation.

Transaction service

The Transaction service is accessed through either the TransactionCurrent environmental
object or the TransactionFactory object. The TransactionCurrent and TransactionFactory
objects allow a client application to participate in a transaction. The BEA Tuxedo software
provides an implementation of the CORBA Services Object Transaction Service (OTS).

For information about using transactions, see Using CORBA Transactions in the BEA
Tuxedo online documentation.

Interface Repository service

The Interface Repository service is accessed through the InterfaceRepository object. The
InterfaceRepository object is a CORBA object that contains interface definitions for all the
available CORBA interfaces and the factories used to create object references to the

2-6 Getting Started with BEA Tuxedo CORBA Applications

CORBA interfaces. The InterfaceRepository object is used with client applications that use
DII.

For information about using DII, see Creating CORBA Client Applications.

BEA Tuxedo CORBA provides environmental objects for the following programming
environments:

C++

BEA Tuxedo CORBA also supports the use of the OMG CORBA Interoperable Naming Service
(INS) by third-party clients, to obtain initial object references.

BEA Tuxedo CORBA Architectural Components
This section provides an introduction to the following architectural components of the BEA
Tuxedo CORBA programming environment:

Bootstrapping the BEA Tuxedo Domain

IIOP Listener/Handler

ORB

TP Framework

Figure 2-2 illustrates the components in a BEA Tuxedo CORBA application.

BEA Tuxedo CORBA Arch i tec tu ra l Components

Getting Started with BEA Tuxedo CORBA Applications 2-7

Figure 2-2 Components in a BEA Tuxedo CORBA Application

Bootstrapping the BEA Tuxedo Domain
A domain is a way of grouping objects and services together as a management entity. A BEA
Tuxedo domain has at least one IIOP Listener/Handler and is identified by a name. One client
application can connect to multiple BEA Tuxedo domains using different Bootstrap objects.

Bootstrapping the BEA Tuxedo domain establishes communication between a client application
and the domain. There are two mechanisms available for bootstrapping, the BEA mechanism and
the CORBA Interoperable Naming Service (INS) bootstrapping mechanism specified by the
OMG. Use the BEA mechanism if you are using BEA CORBA client software. Use the CORBA
INS mechanism if you are using a client ORB from another vendor. For more information about

2-8 Getting Started with BEA Tuxedo CORBA Applications

bootstrapping the BEA Tuxedo domain, see the CORBA Programming Reference in the BEA
Tuxedo online documentation.

One of the first things that client applications do after startup is create a Bootstrap object by
supplying the host and port of the IIOP Listener/Handler using one of the following URL address
formats:

//host:port

corbaloc://host:port

corbalocs://host:port

For more information about the Bootstrap URL address formats, see Using Security in CORBA
Applications in the BEA Tuxedo online documentation.

The client application then uses the Bootstrap object or the INS bootstrapping mechanism to
obtain references to the objects in a BEA Tuxedo domain. Once the Bootstrap object is
instantiated, the resolve_initial_references() method is invoked by the client application,
passing in a string id, to obtain a reference to the objects in the BEA Tuxedo domain that
provide CORBA services.

Figure 2-3 illustrates how the Bootstrap object or INS mechanism operates in a BEA Tuxedo
domain.

BEA Tuxedo CORBA Arch i tec tu ra l Components

Getting Started with BEA Tuxedo CORBA Applications 2-9

Figure 2-3 How the Bootstrap Object or INS Operates

IIOP Listener/Handler
The IIOP Listener/Handler is a process that receives the CORBA client request, which is sent
using IIOP, and delivers that request to the appropriate CORBA server application. The IIOP
Listener/Handler serves as a communication concentrator, providing a critical scalability feature.
The IIOP Listener/Handler removes from the CORBA server application the burden of

2-10 Getting Started with BEA Tuxedo CORBA Applications

maintaining client connections. For information about configuring the IIOP Listener/Handler, see
Setting Up a BEA Tuxedo Application and the description of the ISL command in the BEA Tuxedo
Command Reference in the BEA Tuxedo online documentation.

ORB
The ORB serves as an intermediary for requests that CORBA client applications send to CORBA
server applications, so that these applications do not need to contain information about each other.
The ORB is responsible for all the mechanisms required to find the implementation that can
satisfy the request, to prepare an object's implementation to receive the request, and to
communicate the data that makes up the request. The BEA Tuxedo CORBA product includes a
C++ client/server ORB.

Figure 2-4 shows the relationship between an ORB, a CORBA client application, and a CORBA
server application.

Figure 2-4 The ORB in a CORBA Client/Server Environment

When the client application uses IIOP to send a request to the BEA Tuxedo domain, the ORB
performs the following functions:

Validates each request and its arguments to ensure that the client application supplied all
the required arguments.

CORBA Client
Application

CORBA Server
Application

Requests
 Service

Object Request Broker

Directs
Response
to Client

Directs
Request
to Server

Returns
Response

BEA Tuxedo CORBA Arch i tec tu ra l Components

Getting Started with BEA Tuxedo CORBA Applications 2-11

Manages the mechanisms required to find the CORBA object that can satisfy the request
from the CORBA client application. To do this, the ORB interacts with the Portable Object
Adapter (POA). The POA prepares an object's implementation to receive the request and
communicates the data in the request.

Marshals data. The ORB on the client machine writes the data associated with the request
into a standard form. The ORB receives this data and converts it into the format
appropriate for the machine on which the server application is running. When the server
application sends data back to the client application, the ORB marshals the data back into
its standard form and sends it back to the ORB on the client machine.

TP Framework
The TP Framework provides a programming model that achieves high levels of performance
while shielding the application programmer from the complexities of the CORBA interfaces. The
TP Framework supports the rapid construction of CORBA applications, which makes it easier for
application programmers to adhere to design patterns associated with successful TP applications.

The TP Framework interacts with the Portable Object Adapter (POA) and the CORBA
application, thus eliminating the need for direct POA calls in an application. In addition, the TP
Framework integrates transactions and state management into the BEA Tuxedo CORBA
application.

The application programmer uses an application programming interface (API) that automates
many of the functions required in a standard CORBA application. The application programmer
is responsible only for writing the business logic of the CORBA application and overriding
default actions provided by the TP Framework.

The TP Framework API provides routines that perform the following functions required by a
CORBA application:

Initializing the CORBA server application and executing startup and shutdown routines

Creating object references

Registering and unregistering object factories

Managing objects and object state

Tying the CORBA server application to BEA Tuxedo CORBA system resources

Getting and initializing the ORB

Performing object housekeeping

2-12 Getting Started with BEA Tuxedo CORBA Applications

The TP Framework ensures that the execution of a client request takes place in a coordinated,
predictable manner. The TP Framework calls the objects and services available in the BEA
Tuxedo application at the appropriate time, in the correct sequence. In addition, the TP
Framework maximizes the reuse of system resources by objects. Figure 2-5 illustrates the TP
Framework.

Figure 2-5 The TP Framework

The TP Framework is not a single object, but is rather a collection of objects that work together
to manage the CORBA objects that contain and implement the data and business logic in your
CORBA application.

One of the TP Framework objects is the Server object. The Server object is a user-written
programming entity that implements operations that perform tasks such as initializing and

Server Application

Server Machine

TP Framework
Server Object

TP Object

CORBA
Object

Implementations

Factory

Portable Object
Adapter

BEA Tuxedo Domain

How BEA Tuxedo CORBA Cl i ent and Serve r App l i cat ions In te rac t

Getting Started with BEA Tuxedo CORBA Applications 2-13

releasing the server application. For server applications the TP Framework instantiates the
CORBA objects needed to satisfy a client request.

If a client request arrives requiring an object that is not currently active and in memory in the
server application, the TP Framework coordinates all the operations that are required to
instantiate the object. This includes coordinating with the ORB and the POA to get the client
request to the appropriate object implementation code.

How BEA Tuxedo CORBA Client and Server Applications
Interact

The interaction between BEA Tuxedo CORBA client and server applications includes the
following steps:

1. The CORBA server application is initialized.

2. The CORBA client application is initialized.

3. The CORBA client application authenticates itself to the BEA Tuxedo domain.

4. The CORBA client application obtains a reference to the CORBA object needed to execute
its business logic.

5. The CORBA client application invokes an operation on the CORBA object.

The following topics describe what happens during each step.

Step 1: The CORBA Server Application Is Initialized
The system administrator enters the tmboot command on a machine in the BEA Tuxedo domain
to start the BEA Tuxedo CORBA server application. The TP Framework invokes the
initialize() operation in the Server object to initialize the server application.

2-14 Getting Started with BEA Tuxedo CORBA Applications

During the initialization process, the Server object does the following:

1. Uses the Bootstrap object or INS to obtain a reference to the FactoryFinder object.

2. Typically registers any factories with the FactoryFinder object.

3. Optionally gets an object reference to the ORB.

4. Performs any process-wide initialization.

Step 2: The CORBA Client Application Is Initialized
During initialization, the CORBA client application obtains initial references to the objects
available in the BEA Tuxedo domain.

CORBA Server Application

TP Framework
Server Object

Initialize server {
 Register factories;
}

CORBA Client Application

 Instantiate the Bootstrap object;
 Resolve initial references;

Bootstrap
Object

How BEA Tuxedo CORBA Cl i ent and Serve r App l i cat ions In te rac t

Getting Started with BEA Tuxedo CORBA Applications 2-15

The Bootstrap object returns references to the FactoryFinder, SecurityCurrent,
TransactionCurrent, NameService, and InterfaceRepository objects in the BEA Tuxedo domain.

Step 3: The CORBA Client Application Authenticates Itself to
the BEA Tuxedo Domain
If the BEA Tuxedo domain has a security model in effect, the CORBA client application needs
to authenticate itself to the BEA Tuxedo domain before it can invoke any operations in the
CORBA server application. To authenticate itself to the BEA Tuxedo domain using
authentication, the CORBA client application completes these steps:

1. Uses the Bootstrap object to obtain a reference to the SecurityCurrent object.

2. Invokes the logon() operation of the PrincipalAuthenticator object, which is retrieved from
the SecurityCurrent object.

Note: For information about using certificate based authentication, see Using Security in
CORBA Applications in the BEA Tuxedo online documentation.

Step 4: The CORBA Client Application Obtains a Reference to
the CORBA Object Needed to Execute Its Business Logic
The CORBA client application needs to perform the following steps:

1. Obtain a reference to the factory for the object it needs.

For example, the client application needs a reference to the SimpleFactory object. The
client application obtains this factory reference from the FactoryFinder object, shown in
the following figure.

2. Invoke the SimpleFactory object to get a reference to the Simple object.

If the SimpleFactory object is not active, the TP Framework instantiates the SimpleFactory
object by invoking the Server::create_servant method on the Server object, shown in
the following figure.

2-16 Getting Started with BEA Tuxedo CORBA Applications

3. The TP Framework invokes the activate_object() and find_simple() operations on the
SimpleFactory object to get a reference to the Simple object, shown in the following figure.

The SimpleFactory object then returns the object reference to the Simple object to the client
application.

How BEA Tuxedo CORBA Cl i ent and Serve r App l i cat ions In te rac t

Getting Started with BEA Tuxedo CORBA Applications 2-17

Note: Because the TP Framework activates objects by default, the Simpapp sample application
does not explicitly use the activate_object() operation for the SimpleFactory object.

Step 5: The CORBA Client Application Invokes an Operation
on the CORBA Object
Using the reference to the CORBA object that the factory has returned to the client application,
the client application invokes an operation on the object. For example, now that the client
application has an object reference to the Simple object, the client application can invoke the
to_upper() operation on it. The instance of the Simple object required for the client request is
created as shown in the following figure.

2-18 Getting Started with BEA Tuxedo CORBA Applications

Getting Started with BEA Tuxedo CORBA Applications 3-1

C H A P T E R 3

Developing BEA Tuxedo CORBA
Applications

This topic includes the following sections:

Overview of the Development Process for BEA Tuxedo CORBA Applications

The Simpapp Sample Application

Step 1: Write the OMG IDL Code

Step 2: Generate CORBA client Stubs and Skeletons

Step 3: Write the CORBA Server Application

Step 4: Write the CORBA Client Application

Step 5: Create an XA Resource Manager

Step 6: Create a Configuration File

Step 7: Create the TUXCONFIG File

Step 8: Compile the CORBA Server Application

Step 9: Compile the CORBA Client Application

Step 10: Start the BEA Tuxedo CORBA Application

Additional BEA Tuxedo CORBA Sample Applications

For an in-depth discussion of creating BEA Tuxedo CORBA client and server applications, see
the following in the BEA Tuxedo online documentation:

3-2 Getting Started with BEA Tuxedo CORBA Applications

Creating CORBA Client Applications

Creating CORBA Server Applications

Note: The BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB were
deprecated in Tuxedo 8.1 and are no longer supported. All BEA Tuxedo CORBA Java
client and BEA Tuxedo CORBA Java client ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. BEA Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

Overview of the Development Process for BEA Tuxedo
CORBA Applications

Table 3-1 outlines the development process for BEA Tuxedo CORBA applications.

Table 3-1 Development Process for BEA Tuxedo CORBA Applications

Step Description

1 Write the Object Management Group (OMG) Interface Definition
Language (IDL) code for each CORBA interface you want to use in
your BEA Tuxedo application.

2 Generate the CORBA client stubs and the skeletons.

3 Write the CORBA server application.

4 Write the CORBA client application.

5 Create an XA resource manager.

6 Create a configuration file.

7 Create a TUXCONFIG file.

8 Compile the CORBA server application.

9 Compile the CORBA client application.

10 Start the BEA Tuxedo CORBA application.

The S impapp Sample App l i cat ion

Getting Started with BEA Tuxedo CORBA Applications 3-3

The steps in the development process are described in the following sections.

Figure 3-1 illustrates the process for developing BEA Tuxedo CORBA applications.

Figure 3-1 Development Process for BEA Tuxedo CORBA Applications

The Simpapp Sample Application
Throughout this topic, the Simpapp sample application is used to demonstrate the development
steps.

The CORBA server application in the Simpapp sample application provides an implementation
of a CORBA object that has the following two methods:

– The upper method accepts a string from the CORBA client application and converts
the string to uppercase letters.

Interface Specifications
in OMG IDL

idl (client/server) or
idltojava (client)

Command

CORBA Client Stubs Skeletons

Write CORBA client
application code

Write method
implementations

CORBA
Client
Stubs

CORBA Client Application

Running
Client
Code

Write CORBA Server
object

Compile CORBA client
application code

Compile CORBA
server

application code

Skeleton Method
Implementations

++

CORBA Server Application

CORBA Server
Description File or

Implementation
Configuration File

UBBCONFIG

3-4 Getting Started with BEA Tuxedo CORBA Applications

– The lower method accepts a string from the CORBA client application and converts
the string to lowercase letters.

Figure 3-2 illustrates how the Simpapp sample application works.

Figure 3-2 Simpapp Sample Application

The source files for the Simpapp sample application are located in the
$TUXDIR\samples\corba\simpapp directory of the BEA Tuxedo software. Instructions for
building and running the Simpapp sample applications are in the Readme.txt file in the same
directory.

Note: The Simpapp sample applications demonstrate building CORBA C++ client and server
applications.

 BEA Tuxedo offers a suite of sample applications that demonstrate and aid in the development
of BEA Tuxedo CORBA applications. For an overview of the available sample applications, see
Samples in the BEA Tuxedo online documentation.

Step 1: Write the OMG IDL Code
The first step in writing a BEA Tuxedo CORBA application is to specify all of the CORBA
interfaces and their methods using the Object Management Group (OMG) Interface Definition

Step 1 : Wr i te the OMG IDL Code

Getting Started with BEA Tuxedo CORBA Applications 3-5

Language (IDL). An interface definition written in OMG IDL completely defines the CORBA
interface and fully specifies each operation’s arguments. OMG IDL is a purely declarative
language. This means that it contains no implementation details. Operations specified in OMG
IDL can be written in and invoked from any language that provides CORBA bindings.

The Simpapp sample application implements the CORBA interfaces listed in Table 3-2.

Listing 3-1 shows the simple.idl file that defines the CORBA interfaces in the Simpapp
sample application.

Listing 3-1 OMG IDL Code for the Simpapp Sample Application

#pragma prefix "beasys.com"

interface Simple

{

 //Convert a string to lower case (return a new string)

 string to_lower(in string val);

 //Convert a string to upper case (in place)

 void to_upper(inout string val);

};

interface SimpleFactory

{

 Simple find_simple();

};

Table 3-2 CORBA Interfaces for the Simpapp Sample Application

Interface Description Operation

SimpleFactory Creates object references to the
Simple object

find_simple()

Simple Converts the case of a string to_upper()

to_lower()

3-6 Getting Started with BEA Tuxedo CORBA Applications

Step 2: Generate CORBA client Stubs and Skeletons
The interface specification defined in OMG IDL is used by the IDL compiler to generate CORBA
client stubs for the CORBA client application, and skeletons for the CORBA server application.
The CORBA client stubs are used by the CORBA client application for all operation invocations.
You use the skeleton, along with the code you write, to create the CORBA server application that
implements the CORBA objects.

During the development process, use one of the following commands to compile the OMG IDL
file and produce CORBA client stubs and skeletons for BEA Tuxedo CORBA client and server
applications:

If you are creating CORBA C++ client and server applications, use the idl command. For
a description of the idl command, see the BEA Tuxedo Command Reference in the BEA
Tuxedo online documentation.

Table 3-3 lists the files that are created by the idl command.

Table 3-3 Files Created by the idl Command

File Default Name Description

CORBA client stub file application_c.cpp Contains generated code for sending a request.

CORBA client stub header
file

application_c.h Contains class definitions for each interface and
type specified in the OMG IDL file.

Skeleton file application_s.cpp Contains skeletons for each interface specified in
the OMG IDL file. During run time, the skeleton
maps CORBA client requests to the appropriate
operation in the CORBA server application.

Skeleton header file application_s.h Contains the skeleton class definitions.

Implementation file application_i.cpp Contains signatures for the methods that
implement the operations on the interfaces
specified in the OMG IDL file.

Implementation header file application_i.h Contains the initial class definitions for each
interface specified in the OMG IDL file.

Step 3 : Wr i te the CORBA Serve r App l i ca t ion

Getting Started with BEA Tuxedo CORBA Applications 3-7

Step 3: Write the CORBA Server Application
The BEA Tuxedo software supports CORBA C++ server applications. The steps for creating
CORBA server applications are:

1. Write the methods that implement the operations for each interface.

2. Create the CORBA server object.

3. Define object activation policies.

4. Create and register a factory.

5. Release the CORBA server application.

Writing the Methods That Implement the Operations for
Each Interface
After you compile the OMG IDL file, you need to write methods that implement the operations
for each interface in the file. An implementation file contains the following:

Method declarations for each operation specified in the OMG IDL file

Your application’s business logic

Constructors for each interface implementation (implementing these is optional)

The activate_object() and deactivate_object() methods (optional)

Within the activate_object() and deactivate_object() methods, you write code that
performs any particular steps related to activating or deactivating the object. For more
information, see Creating CORBA Server Applications in the BEA Tuxedo online
documentation.

You can write the implementation file manually. The idl command provides an option for
generating a template for implementation files.

Listing 3-2 includes the C++ implementation of the Simple and SimpleFactory interfaces in
the Simpapp sample application.

3-8 Getting Started with BEA Tuxedo CORBA Applications

Listing 3-2 C++ Implementation of the Simple and SimpleFactory Interfaces

// Implementation of the Simple_i::to_lower method which converts

// a string to lower case.

char* Simple_i::to_lower(const char* value)

{

 CORBA::String_var var_lower = CORBA::string_dup(value);

 for (char* ptr = var_lower; ptr && *ptr; ptr++) {

 *ptr = tolower(*ptr);

 }

 return var_lower._retn();

}

// Implementation of the Simple_i::to_upper method which converts

// a string to upper case.

void Simple_i::to_upper(char*& valuel)

{

 CORBA::String_var var_upper = value1;

 var_upper = CORBA::string_dup(var_upper.in());

 for (char* ptr = var_upper; ptr && *ptr; ptr++) {

 *ptr = toupper(*ptr);

 }

 value = var_upper._retn();

}

// Implementation of the SimpleFactory_i::find_simple method which

// creates an object reference to a Simple object.

Simple_ptr SimpleFactory_i::find_simple()

{

 CORBA::Object_var var_simple_oref =

 TP::create_object_reference(

 _tc_Simple->id(),

 "simple",

 CORBA::NVList::_nil()

);

 }

Step 3 : Wr i te the CORBA Serve r App l i ca t ion

Getting Started with BEA Tuxedo CORBA Applications 3-9

Creating the CORBA server Object
The Server object performs the following tasks:

Initializes the CORBA server application, including registering factories, allocating
resources needed by the CORBA server application, and, if necessary, opening an XA
resource manager.

Performs CORBA server application shutdown and cleanup procedures.

Instantiates CORBA objects needed to satisfy CORBA client requests.

In CORBA server applications, the Server object is already instantiated and a header file for the
Server object is available. You implement methods that initialize and release the server
application, and, if desired, create servant objects.

Listing 3-3 includes the C++ code from the Simpapp sample application for the Server object.

Listing 3-3 CORBA C++ Server Object

static CORBA::Object_var static_var_factory_reference;

// Method to start up the server

CORBA::Boolean Server::initialize(int argc, char* argv[])

{

// Create the Factory Object Reference

static_var_factory_reference =

 TP::create_object_reference(

_tc_SimpleFactory->id(),

"simple_factory",

CORBA::NVList::_nil()

);

// Register the factory reference with the FactoryFinder

TP::register_factory(

 static_var_factory_reference.in(),

3-10 Getting Started with BEA Tuxedo CORBA Applications

 _tc_SimpleFactory->id()

);

return CORBA_TRUE;

}

// Method to shutdown the server

void Server::release()

{

// Unregister the factory.

 try {

TP::unregister_factory(

 static_var_factory_reference.in(),

 _tc_SimpleFactory->id()

);

 }

 catch (...) {

TP::userlog("Couldn't unregister the SimpleFactory");

 }

}

// Method to create servants

Tobj_Servant Server::create_servant(const char*

 interface_repository_id)

{

if (!strcmp(interface_repository_id,

_tc_SimpleFactory->id())) {

return new SimpleFactory_i();

}

if (!strcmp(interface_repository_id,

_tc_Simple->id())) {

return new Simple_i();

}

return 0;

}

Step 3 : Wr i te the CORBA Serve r App l i ca t ion

Getting Started with BEA Tuxedo CORBA Applications 3-11

Defining an Object’s Activation Policies
As part of CORBA server development, you determine what events cause an object to be
activated and deactivated by assigning object activation policies.

For CORBA server applications, specify object activation policies in the Implementation
Configuration File (ICF). A template ICF file is created by the genicf command.

Note: You also define transaction policies in the ICF file. For information about using
transactions in your BEA Tuxedo CORBA application, see Using CORBA Transactions
in the BEA Tuxedo online documentation.

The BEA Tuxedo software supports the activation policies listed in Table 3-4.

The Simple interface in the Simpapp sample application is assigned the default activation policy
of method. For more information about managing object state and defining object activation
policies, see Creating CORBA Server Applications in the BEA Tuxedo online documentation.

Table 3-4 Activation Policies

Activation Policy Description

method Causes the object to be active only for the duration of the
invocation on one of the object’s operations. This is the default
activation policy.

transaction Causes the object to be activated when an operation is invoked
on it. If the object is activated within the scope of a transaction,
the object remains active until the transaction is either
committed or rolled back.

process Causes the object to be activated when an operation is invoked
on it, and to be deactivated only when one of the following
occurs:
• The process in which the server application exists is shut

down.
• The method TP::deactivateEnable() (C++) has

been invoked on the object.

3-12 Getting Started with BEA Tuxedo CORBA Applications

Creating and Registering a Factory
If your CORBA server application manages a factory that you want CORBA client applications
to be able to locate easily, you need to write the code that registers that factory with the
FactoryFinder object.

To write the code that registers a factory managed by your CORBA server application, you do
the following:

1. Create an object reference to the factory.

You include an invocation to the create_object_reference() method, specifying the
Interface Repository ID of the factory’s OMG IDL interface or the object ID (OID) in
string format. In addition, you can specify routing criteria.

2. Register the factory with the BEA Tuxedo domain.

Use the register_factory() method to register the factory with the FactoryFinder
object in the BEA Tuxedo domain. The register_factory() method requires the object
reference for the factory and a string identifier.

Listing 3-4 includes the code from the Simpapp sample application that creates and registers a
factory.

Listing 3-4 Example of Creating and Registering a Factory

...

CORBA::Object_var v_reg_oref =

TP:create_object_reference(

_tc.SimpleFactory->id(), //Factory Interface ID

“simplefactory”, //Object ID

CORBA::NVList::_nil() //Routing Criteria

);

TP::register_factory(

CORBA::Object_var v_reg_oref.in(),

_tc_SimpleFactory->id(),

);

...

Step 3 : Wr i te the CORBA Serve r App l i ca t ion

Getting Started with BEA Tuxedo CORBA Applications 3-13

In Listing 3-4, notice the following:

tc.SimpleFactory->id() specifies the SimpleFactory object's Interface Repository ID
by extracting it from its typecode.

CORBA::NVList::_nil() specifies that no routing criteria are used, with the result that
an object reference created for the Simple object is routed to the same group as the
SimpleFactory object that created the object reference.

Releasing the CORBA Server Application
You need to include code in your CORBA server application to perform a graceful shutdown of
the CORBA server application. The release()method is provided for that purpose. Within the
release() method, you may perform any application-specific cleanup tasks that are specific to
the CORBA server application, such as:

Unregistering object factories managed by the CORBA server application

Deallocating resources

Closing any databases

Closing an XA resource manager

Once a CORBA server application receives a request to shut down, the CORBA server
application can no longer receive requests from other remote objects. This has implications on
the order in which CORBA server applications should be shut down, which is an administrative
task. For example, do not shut down one server process if a second server process contains an
invocation in its release() method to the first server process.

During server shutdown, you may want to unregister each of the server application's factories.
The invocation of the unregister_factory() method should be one of the first actions in the
release() implementation. The unregister_factory() method unregisters the server
application's factories. This operation requires the following input arguments:

The object reference for the factory

A string identifier, based on the factory object's interface typecode, used to identify the
Interface Repository ID of the object's OMG IDL interface

Listing 3-5 includes C++ code that releases a server application and unregisters the factories in
the CORBA server application.

3-14 Getting Started with BEA Tuxedo CORBA Applications

Listing 3-5 Example of Releasing a BEA Tuxedo CORBA server Application

...

public void release()

{

TP::unregister_factory(

factory_reference.in(),

SimpleFactoryHelper->id

);

}

...

Step 4: Write the CORBA Client Application
The BEA Tuxedo software supports the following types of CORBA client applications:

CORBA C++

The steps for creating CORBA client applications are as follows:

1. Initialize the ORB.

2. Use the Bootstrap object or the CORBA INS bootstrapping mechanism to establish
communication with the BEA Tuxedo domain.

3. Resolve initial references to the FactoryFinder environmental object.

4. Use a factory to get an object reference for the desired CORBA object.

5. Invoke methods on the CORBA object.

The CORBA client development steps are illustrated in Listing 3-6 which include code from the
Simpapp sample application. In the Simpapp sample application, the CORBA client application
uses a factory to get an object reference to the Simple object and then invokes the to_upper()
and to_lower() methods on the Simple object.

Step 4 : Wr i te the CORBA C l i en t App l i cat ion

Getting Started with BEA Tuxedo CORBA Applications 3-15

Listing 3-6 CORBA Client Application from the Simpapp Sample Application

int main(int argc, char* argv[])

{

 try {

// Initialize the ORB

CORBA::ORB_var var_orb = CORBA::ORB_init(argc, argv, "");

// Create the Bootstrap object

Tobj_Bootstrap bootstrap(var_orb.in(), "");

// Use the Bootstrap object to find the FactoryFinder

CORBA::Object_var var_factory_finder_oref =

 bootstrap.resolve_initial_references("FactoryFinder");

// Narrow the FactoryFinder

Tobj::FactoryFinder_var var_factory_finder_reference =

 Tobj::FactoryFinder::_narrow

 (var_factory_finder_oref.in());

// Use the factory finder to find the Simple factory

CORBA::Object_var var_simple_factory_oref =

var_factory_finder_reference->find_one_factory_by_id(

_tc_SimpleFactory->id()

);

// Narrow the Simple factory

SimpleFactory_var var_simple_factory_reference =

 SimpleFactory::_narrow(

 var_simple_factory_oref.in());

// Find the Simple object

Simple_var var_simple =

 var_simple_factory_reference->find_simple();

// Get a string from the user

cout << "String?";

char mixed[256];

3-16 Getting Started with BEA Tuxedo CORBA Applications

cin >> mixed;

// Convert the string to upper case :

CORBA::String_var var_upper = CORBA::string_dup(mixed);

var_simple->to_upper(var_upper.inout());

cout << var_upper.in() << endl;

// Convert the string to lower case

CORBA::String_var var_lower = var_simple->to_lower(mixed);

cout << var_lower.in() << endl;

return 0;

}

}

Step 5: Create an XA Resource Manager
When using transactions in a BEA Tuxedo CORBA application, you need to create a CORBA
server process for the resource manager that interacts with a database on behalf of the BEA
Tuxedo CORBA application. The resource manager you use must conform to the X/OPEN XA
specification and you need the following information about the resource manager:

The name of the structure of type xa_switch_t that contains the name of the XA resource
manager.

Flags indicating the capabilities of the XA resource manager and function pointers for the
actual XA functions.

The name of the object files that provide the services of the XA interface.

The commands needed to open and close the XA resource manager. This information is
specified in the OPENINFO and CLOSEINFO parameters in the UBBCONFIG configuration file.

When integrating a new XA resource manager into the BEA Tuxedo system, the file
$TUXDIR/udataobj/RM must be updated to include information about the XA resource manager.
The information is used to include the correct libraries for the XA resource manager and to set up
the interface between the transaction manager and the XA resource manager automatically and
correctly. The format of this file is as follows:

Step 6 : Create a Conf igu rat ion F i l e

Getting Started with BEA Tuxedo CORBA Applications 3-17

rm_name:rm_structure_name:library_names

where rm_name is the name of the XA resource manager, rm_structure_name is the name of
the xa_switch_t structure that defines the name of the XA resource manager, and
library_names is the list of the object files for the XA resource manager. White space (tabs
and/or spaces) is allowed before and after each of the values and may be embedded within the
library_names. The colon (:) character may not be embedded within any of the values. Lines
beginning with a pound sign (#) are treated as comments and are ignored.

Use the buildtms command to build a server process for the XA resource manager. The files that
result from the buildtms command need to be installed in the $TUXDIR/bin directory.

For more information about the buildtms command, see the BEA Tuxedo Command Reference
in the BEA Tuxedo online documentation.

Step 6: Create a Configuration File
Because the BEA Tuxedo software offers great flexibility and many options to application
designers and programmers, no two CORBA applications are alike. An application, for example,
may be small and simple (a single client and server running on one machine) or complex enough
to handle transactions among thousands of client and server applications. For this reason, for
every BEA Tuxedo CORBA application being managed, the system administrator must provide
a configuration file that defines and manages the components (for example, domains, server
applications, client applications, and interfaces) of that application.

When system administrators create a configuration file, they are describing the BEA Tuxedo
CORBA application using a set of parameters that the BEA Tuxedo software interprets to create
a runnable version of the application. During the setup phase of administration, the system
administrator’s job is to create a configuration file. The configuration file contains the sections
listed in Table 3-5.

Table 3-5 Sections in the Configuration File for BEA Tuxedo CORBA Applications

Sections in the
Configuration File

Description

RESOURCES Defines defaults (for example, user access and the main
administration machine) for the BEA Tuxedo CORBA
application.

MACHINES Defines hardware-specific information about each machine
running in the BEA Tuxedo CORBA application.

3-18 Getting Started with BEA Tuxedo CORBA Applications

Listing 3-7 shows the configuration file for the Simpapp sample application.

Listing 3-7 Configuration File for Simpapp Sample Application

*RESOURCES

IPCKEY 55432

DOMAINID simpapp

MASTER SITE1

MODEL SHM

LDBAL N

*MACHINES

"PCWIZ"

LMID = SITE1

APPDIR = "C:\TUXDIR\MY_SIM~1"

TUXCONFIG = "C:\TUXDIR\MY_SIM~1\results\tuxconfig"

TUXDIR = "C:\TUXDIR"

MAXWSCLIENTS = 10

*GROUPS

SYS_GRP

GROUPS Defines logical groupings of server applications or CORBA
interfaces.

SERVERS Defines the server application processes (for example, the
Transaction Manager) used in the BEA Tuxedo CORBA
application.

SERVICES Defines parameters for services provided by the BEA Tuxedo
application.

INTERFACES Defines information about the CORBA interfaces in the BEA
Tuxedo CORBA application.

ROUTING Defines routing criteria for the BEA Tuxedo CORBA
application.

Table 3-5 Sections in the Configuration File for BEA Tuxedo CORBA Applications (Continued)

Sections in the
Configuration File

Description

Step 6 : Create a Conf igu rat ion F i l e

Getting Started with BEA Tuxedo CORBA Applications 3-19

LMID = SITE1

GRPNO = 1

APP_GRP

LMID = SITE1

GRPNO = 2

*SERVERS

DEFAULT:

 RESTART = Y

 MAXGEN = 5

TMSYSEVT

 SRVGRP = SYS_GRP

 SRVID = 1

TMFFNAME

 SRVGRP = SYS_GRP

 SRVID = 2

 CLOPT = "-A -- -N -M"

TMFFNAME

 SRVGRP = SYS_GRP

 SRVID = 3

 CLOPT = "-A -- -N"

TMFFNAME

 SRVGRP = SYS_GRP

 SRVID = 4

 CLOPT = "-A -- -F"

simple_server

 SRVGRP = APP_GRP

 SRVID = 1

 RESTART = N

ISL

 SRVGRP = SYS_GRP

 SRVID = 5

 CLOPT = "-A -- -n //PCWIZ:2468"

*SERVICES

3-20 Getting Started with BEA Tuxedo CORBA Applications

Step 7: Create the TUXCONFIG File
There are two forms of the configuration file:

An ASCII version of the file, created and modified with any editor. Throughout the BEA
Tuxedo documentation, the ASCII version of the configuration file is referred to as the
UBBCONFIG file. You can choose any name for the configuration file.

The TUXCONFIG file, a binary version of the UBBCONFIG file created using the tmloadcf
command. When the tmloadcf command is executed, the environment variable
TUXCONFIG must be set to the name and directory location of the TUXCONFIG file. The
tmloadcf command converts the configuration file to binary form and writes it to the
location specified in the command.

For more information about the tmloadcf command, see the BEA Tuxedo Command Reference
in the BEA Tuxedo online documentation.

Step 8: Compile the CORBA Server Application
You use the buildobjserver command to compile and link C++ server applications. The
buildobjserver command has the following format:

buildobjserver [-o servername] [options]

In the buildobjserver command syntax:

-o servername represents the name of the server application to be generated by this
command.

options represents the command-line options to the buildobjserver command.

When you create a server application to support multithreading, you must specify the -t option
on the buildobjserver command when you build the application. For complete information on
creating a server application to support multithreading, see Creating CORBA Server
Applications.

Step 9: Compile the CORBA Client Application
The final step in the development of the CORBA client application is to produce the executable
client application. To do this, you need to compile the code and then link against the client stub.

When creating CORBA C++ client applications, use the buildobjclient command to
construct a BEA Tuxedo CORBA client application executable. The command combines the

Step 10 : S ta r t the BEA Tuxedo CORBA App l i cat ion

Getting Started with BEA Tuxedo CORBA Applications 3-21

CORBA client stubs for interfaces that use static invocation, and the associated header files, with
the standard BEA Tuxedo libraries to form a CORBA client executable. For the syntax of the
buildobjclient command, see the BEA Tuxedo Command Reference in the BEA Tuxedo
online documentation.

Step 10: Start the BEA Tuxedo CORBA Application
Use the tmboot command to start the server processes in your BEA Tuxedo CORBA
application. The CORBA application is usually booted from the machine designated as the
MASTER in the RESOURCES section of the UBBCONFIG file.

For the tmboot command to find executables, the BEA Tuxedo system processes must be located
in the $TUXDIR/bin directory. Server applications should be in APPDIR, as specified in the
configuration file.

When booting server applications, the tmboot command uses the CLOPT, SEQUENCE, SRVGRP,
SRVID, and MIN parameters from the configuration file. Server applications are booted in the
order in which they appear in the configuration file.

For more information about using the tmboot command, see File Formats, Data Descriptions,
MIBs, and System Processes Reference in the BEA Tuxedo online documentation.

Additional BEA Tuxedo CORBA Sample Applications
Sample applications demonstrate the tasks involved in developing a BEA Tuxedo CORBA
application, and provide sample code that can be used by CORBA client and server programmers
to build their own BEA Tuxedo CORBA application. Code from the sample applications are used
throughout the information topics in the BEA Tuxedo product to illustrate the development and
administrative steps.

Table 3-6 describes the additional BEA Tuxedo CORBA sample applications.

3-22 Getting Started with BEA Tuxedo CORBA Applications

Table 3-6 The BEA Tuxedo CORBA Sample Applications

BEA Tuxedo CORBA
Sample Application

Description

Simpapp Provides a CORBA C++ client application and a C++
server application. The C++ server application contains
two operations that manipulate strings received from the
C++ client application.

Basic Describes how to develop BEA Tuxedo CORBA client
and server applications and configure the BEA Tuxedo
application. Building C++ server applications and
CORBA C++ applications, CORBA client applications
are demonstrated.

Security Demonstrates adding BEA Tuxedo authentication to a
BEA Tuxedo CORBA application. For information about
building and running the Security sample application, see
Using Security in CORBA Applications in the BEA
Tuxedo online documentation.

Transactions Adds transactional objects to the CORBA C++ server
application and CORBA client applications in the Basic
sample application. The Transactions sample application
demonstrates how to use the Implementation
Configuration File (ICF) to define transaction policies for
CORBA objects. For information about building and
running the Transactions sample application, see Using
CORBA Transactions in the BEA Tuxedo online
documentation.

Wrapper Demonstrates how to wrap an existing BEA Tuxedo
ATMI application as a CORBA object.

Production Demonstrates replicating server applications, creating
stateless objects, and implementing factory-based routing
in server applications.

Add i t i ona l BEA Tuxedo CORBA Sample App l i cat i ons

Getting Started with BEA Tuxedo CORBA Applications 3-23

Secure Simpapp Implements the necessary development and
administrative changes to the Simpapp sample application
to support certificate authentication. For information
about building and running the Secure Simpapp sample
application, see Using Security in CORBA Applications in
the BEA Tuxedo online documentation.

Introductory Events Demonstrates how to use joint CORBA client/server
applications and callback objects to implement events in a
BEA Tuxedo CORBA application. The C++ version uses
the BEA Simple Events API. For information about
building and running the Introductory Events sample
application, see Using the CORBA Notification Service in
the BEA Tuxedo online documentation.

Advanced Events Provides a more complex implementation of events in a
BEA Tuxedo CORBA application with transient and
persistent subscriptions and data filtering. The C++
version uses the Advanced CosNotification API. For
information about building and running the Advanced
Events sample application, see Using the CORBA
Notification Service in the BEA Tuxedo online
documentation.

Table 3-6 The BEA Tuxedo CORBA Sample Applications (Continued)

BEA Tuxedo CORBA
Sample Application

Description

3-24 Getting Started with BEA Tuxedo CORBA Applications

Getting Started with BEA Tuxedo CORBA Applications 4-1

C H A P T E R 4

Using Security

This topic includes the following sections:

Overview of the Security Service

How Security Works

The Security Sample Application

Development Steps

Notes: This chapter describes how to use authentication. For a complete description of all the
security features available in the CORBA security environment and instructions for
implementing the features, see Using Security in CORBA Applications in the BEA
Tuxedo online documentation.

The BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB were
deprecated in Tuxedo 8.1 and are no longer supported. All BEA Tuxedo CORBA Java
client and BEA Tuxedo CORBA Java client ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. BEA Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

4-2 Getting Started with BEA Tuxedo CORBA Applications

Overview of the Security Service
The CORBA environment in the BEA Tuxedo product offers a security model based on the
CORBA Services Security Service. The BEA Tuxedo CORBA security model implements the
authentication portion of the CORBA Services Security Service.

In the CORBA environment security information is defined on a domain basis. The security level
for the domain is defined in the configuration file. Client applications use the SecurityCurrent
object to provide the necessary authentication information to log on to the BEA Tuxedo domain.

The following levels of authentication are provided:

TOBJ_NOAUTH

No authentication is needed; however, the client application may still authenticate itself,
and may specify a username and a client application name, but no password.

TOBJ_SYSAUTH

The client application must authenticate itself to the BEA Tuxedo domain and must specify
a username, client application name, and application password.

TOBJ_APPAUTH

In addition to the TOBJ_SYSAUTH information, the client application must provide
application-specific information. If the default BEA Tuxedo CORBA authentication service
is used in the application configuration, the client application must provide a user
password; otherwise, the client application provides authentication data that is interpreted
by the custom authentication service in the application.

Note: If a client application is not authenticated and the security level is TOBJ_NOAUTH, the
IIOP Listener/Handler of the BEA Tuxedo domain registers the client application with
the username and client application name sent to the IIOP Listener/Handler.

In the BEA Tuxedo CORBA security environment, only the PrincipalAuthenticator and
Credentials properties on the SecurityCurrent object are supported. For a description of the
SecurityLevel1::Current and SecurityLevel2::Current interfaces, see the CORBA
Programming Reference in the BEA Tuxedo online documentation.

How Security Works
Figure 4-1 illustrates how CORBA security works in a BEA Tuxedo domain.

How Secur i t y Works

Getting Started with BEA Tuxedo CORBA Applications 4-3

Figure 4-1 How CORBA Security Works on BEA Tuxedo Domain

The steps are as follows:

1. The client application uses the Bootstrap object to return an object reference to the
SecurityCurrent object for the BEA Tuxedo domain.

2. The client application obtains the PrincipalAuthenticator.

3. The client application uses the Tobj::PrincipalAuthenticator::get_auth_type()
method to get the authentication level for the BEA Tuxedo domain.

4. The proper authentication level is returned to the client application.

5. The client application uses the Tobj::PrincipalAuthenticator::logon() method to log
on to the BEA Tuxedo domain with the proper authentication information.

Note: BEA Tuxedo CORBA also supports the use of the CORBA Interoperable Naming
Service (INS) to obtain an initial object reference for the Security Service. For
information on the INS bootstrapping mechanism, see the CORBA Programming
Reference.

CORBA Client Application BEA Tuxedo Domain

Bootstrap Object
Tobj_Bootstrap
 (orb,//sling.com, 2143)

or
Tobj_Bootstrap
 (orb,corblocs://sling.com, 2143)

logon(username,
 application_name,
 password);

SecurityCurrent Object
PrincipalAuthenticator

get_auth_type();

Object Reference for
SecurityCurrent

Object

Authentication Level
for BEA Tuxedo

Domain

IIOP
Listener/
Handler

4-4 Getting Started with BEA Tuxedo CORBA Applications

The Security Sample Application
The Security sample application demonstrates how to use password authentication. The Security
sample application requires that each student using the application has an ID and a password. The
Security sample application works in the following manner:

The client application has a logon() operation. This operation invokes operations on the
PrincipalAuthenticator object, which is obtained as part of the process of logging on to
access the domain.

The server application implements a get_student_details() operation on the
Registrar object to return information about a student. After the user is authenticated,
logon is complete and the get_student_details() operation accesses the student
information in the database to obtain the student information needed by the client logon
operation.

The database in the Security sample application contains course and student information.

Note: Certificate authentication is illustrated in the Secure Simpapp sample application.

Figure 4-2 illustrates the Security sample application.

Deve lopment S teps

Getting Started with BEA Tuxedo CORBA Applications 4-5

Figure 4-2 Security Sample Application

The source files for the Security sample application are located in the
\samples\corba\university directory in the BEA Tuxedo software. For information about
building and running the Security sample application, see Using Security in CORBA Applications
in the BEA Tuxedo online documentation.

Development Steps
Table 4-1 lists the development steps for writing a BEA Tuxedo CORBA application that
employs authentication security.

CORBA C++ Client
Application

Database

logon()

Security Required

CORBA Server
Application

Registrar Object

get_student_details()

browse_courses()

get_course_details()

CORBA

Table 4-1 Development Steps for BEA Tuxedo CORBA Applications That Have Security

Step Description

1 Define the security level in the configuration file.

2 Write the CORBA client application.

4-6 Getting Started with BEA Tuxedo CORBA Applications

Step 1: Define the Security Level in the Configuration File
The security level for a BEA Tuxedo domain is defined by setting the SECURITY parameter in the
RESOURCES section of the configuration file to the desired security level. Table 4-2 lists the
options for the SECURITY parameter.

In the Security sample application, the SECURITY parameter is set to APP_PW for application-level
security. For information about adding security to a BEA Tuxedo CORBA application, see Using
Security in CORBA Applications in the BEA Tuxedo online documentation.

Step 2: Write the CORBA Client Application
Write client application code that does the following:

1. Uses the Bootstrap object to obtain a reference to the SecurityCurrent object for the specific
BEA Tuxedo domain.

2. Gets the PrincipalAuthenticator object from the SecurityCurrent object.

3. Uses the get_auth_type() operation of the PrincipalAuthenticator object to return the type
of authentication expected by the BEA Tuxedo domain.

Listing 4-1 include the portions of the CORBA C++ client applications in the Security sample
application that illustrate the development steps for security.

Table 4-2 Options for the SECURITY Parameter

Option Definition

NONE No security is implemented in the domain. This option is the
default. This option maps to the TOBJ_NOAUTH level of
authentication.

APP_PW Requires that client applications provide an application
password during initialization. The tmloadcf command
prompts for an application password. This option maps to the
TOBJ_SYSAUTH level of authentication.

USER_AUTH Requires an application password and performs a per-user
authentication during the initialization of the client application.
This option maps to the TOBJ_APPAUTH level of
authentication.

Deve lopment S teps

Getting Started with BEA Tuxedo CORBA Applications 4-7

Listing 4-1 Example of Security in a CORBA C++ Client Application

CORBA::Object_var var_security_current_oref =
 bootstrap.resolve_initial_references(“SecurityCurrent”);
SecurityLevel2::Current_var var_security_current_ref =
 SecurityLevel2::Current::_narrow(var_security_current_oref.in());

//Get the PrincipalAuthenticator
SecurityLevel2::PrincipalAuthenticator_var var_principal_authenticator_oref =
 var_security_current_ref->principal_authenticator();
//Narrow the PrincipalAuthenticator
Tobj::PrincipalAuthenticator_var var_bea_principal_authenticator =
 Tobj::PrincipalAuthenticator::_narrow (
 var_principal_authenticator_oref.in());

//Determine the security level
Tobj::AuthType auth_type = var_bea_principal_authenticator->get_auth_type();
Security::AuthenticationStatus status = var_bea_principalauthenticator->logon(
 user_name,
 client_name,
 system_password,
 user_password,
 0);

4-8 Getting Started with BEA Tuxedo CORBA Applications

Getting Started with BEA Tuxedo CORBA Applications 5-1

C H A P T E R 5

Using Transactions

This topic includes the following sections:

Overview of the Transaction Service

What Happens During a Transaction

Transactions Sample Application

Development Steps

Note: This topic describes using the C++ interface to the CORBA Services Object Transaction
service. For a complete description of all the transaction features available in the CORBA
environment of the BEA Tuxedo product and instructions for implementing the
transaction features, see Using CORBA Transactions in the BEA Tuxedo online
documentation.

The BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB were
deprecated in Tuxedo 8.1 and are no longer supported. All BEA Tuxedo CORBA Java
client and BEA Tuxedo CORBA Java client ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. BEA Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

5-2 Getting Started with BEA Tuxedo CORBA Applications

Overview of the Transaction Service
One of the most fundamental features of the BEA Tuxedo product is transaction management.
Transactions are a means to guarantee that database transactions are completed accurately and
that they take on all the ACID properties (atomicity, consistency, isolation, and durability) of a
high-performance transaction. The BEA Tuxedo system protects the integrity of your
transactions by providing a complete infrastructure for ensuring that database updates are done
accurately, even across a variety of resource managers.

The BEA Tuxedo system uses the following:

The CORBA Services Object Transaction Service (OTS)

The CORBA environment in the BEA Tuxedo product provides a C++ interface to the Object
Transaction Service. The OTS is accessed through the TransactionCurrent environmental object.
For information about using the TransactionCurrent environmental object, see Creating CORBA
Client Applications in the BEA Tuxedo online documentation.

OTS provides the following support for your business transactions:

Creates a global transaction identifier when a client application initiates a transaction.

Works with the TP Framework to track objects that are involved in a transaction and,
therefore, need to be coordinated when the transaction is ready to commit.

Notifies the resource managers—which are, most often, databases—when they are
accessed on behalf of a transaction. Resource managers then lock the accessed records
until the end of the transaction.

Orchestrates the two-phase commit when the transaction completes, which ensures that all
the participants in the transaction commit their updates simultaneously. It coordinates the
commit with any databases that are being updated using the Open Group XA protocol.
Almost all relational databases support this standard.

Executes the rollback procedure when the transaction must be stopped.

Executes a recovery procedure when failures occur. It determines which transactions were
active in the machine at the time of the crash, and then determines whether the transaction
should be rolled back or committed.

What Happens During a Transaction
Figure 5-1 illustrates how transactions work in a BEA Tuxedo CORBA application.

What Happens Dur ing a T ransact ion

Getting Started with BEA Tuxedo CORBA Applications 5-3

Figure 5-1 How Transactions Work in a BEA Tuxedo CORBA Application

A basic transaction works in the following way:

1. The client application uses the Bootstrap object to return an object reference to the
TransactionCurrent object for the BEA Tuxedo domain.

2. A client application begins a transaction using the Tobj::TransactionCurrent::begin()
method, and issues a request to the CORBA interface through the TP Framework. All
operations on the CORBA interface execute within the scope of a transaction.

– If a call to any of these operations raises an exception (either explicitly or as a result of
a communication failure), the exception can be caught and the transaction can be rolled
back.

– If no exceptions occur, the client application commits the current transaction using the
Tobj::TransactionCurrent::commit() method. This method ends the transaction
and starts the processing of the operation. The transaction is committed only if all of
the participants in the transaction agree to commit.

5-4 Getting Started with BEA Tuxedo CORBA Applications

3. The Tobj::TransactionCurrent:commit() method causes the TP Framework to call the
Transaction Manager to complete the transaction.

4. The Transaction Manager updates the database.

Note: BEA Tuxedo CORBA also supports the use of the CORBA Interoperable Naming
Service (INS) to obtain an initial object reference for the Security Service. For
information on the INS bootstrapping mechanism, see the CORBA Programming
Reference.

Transactions Sample Application
In the Transactions sample application, the operation of registering for courses is executed within
the scope of a transaction. The transaction model used in the Transactions sample application is
a combination of the conversational model and the model in which a single client invocation
invokes multiple individual operations on a database.

The Transactions sample application works in the following way:

1. Students submit a list of courses for which they want to be registered.

2. For each course in the list, the CORBA server application checks whether:

– The course is in the database.

– The student is already registered for a course.

– The student exceeds the maximum number of credits the student can take.

3. One of the following occurs:

– If the course meets all the criteria, the CORBA server application registers the student
for the course.

– If the course is not in the database or if the student is already registered for the course,
the CORBA server application adds the course to a list of courses for which the student
could not be registered. After processing all the registration requests, the CORBA
server application returns the list of courses for which registration failed. The CORBA
client application can then choose to either commit the transaction (thereby registering
the student for the courses for which registration request succeeded) or to roll back the
transaction (thus, not registering the student for any of the courses).

– If the student exceeds the maximum number of credits the student can take, the
CORBA server application returns a TooManyCredits user exception to the CORBA
client application. The CORBA client application provides a brief message explaining

Transact ions Sample App l i cat ion

Getting Started with BEA Tuxedo CORBA Applications 5-5

that the request was rejected. The CORBA client application then rolls back the
transaction.

Figure 5-2 illustrates how the Transactions sample application works.

Figure 5-2 Transactions Sample Application

The Transactions sample application shows two ways in which a transaction can be rolled back:

Nonfatal. If the registration for a course fails because the course is not in the database, or
because the student is already registered for the course, the CORBA server application
returns the numbers of those courses to the CORBA client application. The decision to roll
back the transaction lies with the user of the CORBA client application.

Fatal. If the registration for a course fails because the student exceeds the maximum
number of credits he or she can take, the CORBA server application generates a CORBA
exception and returns it to the CORBA client application. The decision to roll back the
transaction also lies with the CORBA client application.

5-6 Getting Started with BEA Tuxedo CORBA Applications

Development Steps
This topic describes the development steps for writing a BEA Tuxedo CORBA application that
includes transactions. Table 5-1 lists the development steps.

The Transactions sample application is used to demonstrate these development steps. The source
files for the Transactions sample application are located in the \samples\corba\university
directory of the BEA Tuxedo software. For information about building and running the
Transactions sample application, see Guide to the CORBA University Sample Application in the
BEA Tuxedo online documentation.

Step 1: Write the OMG IDL Code
You need to specify interfaces involved in transactions in Object Management Group (OMG)
Interface Definition Language (IDL) just as you would any other CORBA interface. You must
also specify any user exceptions that may occur from using the interface.

For the Transactions sample application, you would define in OMG IDL the Registrar interface
and the register_for_courses() operation. The register_for_courses() operation has a
parameter, NotRegisteredList, which returns to the CORBA client application the list of
courses for which registration failed. If the value of NotRegisteredList is empty, the CORBA
client application commits the transaction. You also need to define the TooManyCredits user
exception.

Listing 5-1 includes the OMG IDL code for the Transactions sample application.

Table 5-1 Development Steps for BEA Tuxedo CORBA Applications That Have Transactions

Step Description

1 Write the OMG IDL code for the transactional CORBA
interface.

2 Define the transaction policies for the CORBA interface in the
Implementation Configuration file (ICF).

3 Write the CORBA client application.

4 Write the CORBA server application.

5 Create a configuration file.

Step 1 : Wr i te the OMG IDL Code

Getting Started with BEA Tuxedo CORBA Applications 5-7

Listing 5-1 OMG IDL Code for the Transactions Sample Application

#pragma prefix "beasys.com"

module UniversityT

{

typedef unsigned long CourseNumber;

typedef sequence<CourseNumber> CourseNumberList;

struct CourseSynopsis

{

CourseNumber course_number;

string title;

};

typedef sequence<CourseSynopsis> CourseSynopsisList;

interface CourseSynopsisEnumerator

{

//Returns a list of length 0 if there are no more entries

CourseSynopsisList get_next_n(

in unsigned long number_to_get, // 0 = return all

out unsigned long number_remaining

);

void destroy();

};

typedef unsigned short Days;

const Days MONDAY = 1;

const Days TUESDAY = 2;

const Days WEDNESDAY = 4;

const Days THURSDAY = 8;

const Days FRIDAY = 16;

//Classes restricted to same time block on all scheduled days,

//starting on the hour

struct ClassSchedule

{

Days class_days; // bitmask of days

5-8 Getting Started with BEA Tuxedo CORBA Applications

unsigned short start_hour; // whole hours in military time

unsigned short duration; // minutes

};

struct CourseDetails

{

CourseNumber course_number;

double cost;

unsigned short number_of_credits;

ClassSchedule class_schedule;

unsigned short number_of_seats;

string title;

string professor;

string description;

};

typedef sequence<CourseDetails> CourseDetailsList;

typedef unsigned long StudentId;

struct StudentDetails

{

StudentId student_id;

string name;

CourseDetailsList registered_courses;

};

enum NotRegisteredReason

{

AlreadyRegistered,

NoSuchCourse

};

struct NotRegistered

{

CourseNumber course_number;

NotRegisteredReason not_registered_reason;

};

typedef sequence<NotRegistered> NotRegisteredList;

exception TooManyCredits

{

Step 1 : Wr i te the OMG IDL Code

Getting Started with BEA Tuxedo CORBA Applications 5-9

unsigned short maximum_credits;

};

//The Registrar interface is the main interface that allows

//students to access the database.

interface Registrar

{

CourseSynopsisList

get_courses_synopsis(

in string search_criteria,

 in unsigned long number_to_get,

 out unsigned long number_remaining,

out CourseSynopsisEnumerator rest);

 CourseDetailsList get_courses_details(in CourseNumberList

 courses);

StudentDetails get_student_details(in StudentId student);

NotRegisteredList register_for_courses(

in StudentId student,

in CourseNumberList courses

) raises (

TooManyCredits

);

};

// The RegistrarFactory interface finds Registrar interfaces.

interface RegistrarFactory

{

Registrar find_registrar(

);

};

Step 2: Define Transaction Policies for the Interfaces
Transaction policies are used on a per-interface basis. During design, it is decided which
interfaces within a BEA Tuxedo CORBA application will handle transactions. The transaction
policies are listed in the following table.

5-10 Getting Started with BEA Tuxedo CORBA Applications

During development, you decide which interfaces will execute in a transaction by assigning
transaction policies.

For CORBA server applications, you specify transaction policies in the Implementation
Configuration File (ICF). A template ICF file is created when you run the genicf command.

In the Transactions sample application, the transaction policy of the Registrar interface is set
to always.

Step 3: Write the CORBA Client Application
The CORBA client application needs code that performs the following tasks:

1. Obtains a reference to the TransactionCurrent or TransactionFactory object from the
Bootstrap object.

2. Begins a transaction by invoking the Tobj::TransactionCurrent::begin() operation on
the TransactionCurrent object.

Transaction Policy Description

always The interface must always be part of a transaction. If the
interface is not part of a transaction, a transaction will be
automatically started by the TP Framework.

ignore The interface is not transactional; however, requests made to
this interface within a scope of a transaction are allowed. The
AUTOTRAN parameter, specified in the UBBCONFIG file for this
interface, is ignored.

never The interface is not transactional. Objects created for this
interface can never be involved in a transaction. The BEA
Tuxedo system generates the INVALID_TRANSACTION
exception if an interface with this policy is involved in a
transaction.

optional The interface might be transactional. Objects can be involved in
a transaction if the request is transactional. This transaction
policy is the default.

Note: To define transactional properties for a request you can
also use the autotran parameter.

Step 1 : Wr i te the OMG IDL Code

Getting Started with BEA Tuxedo CORBA Applications 5-11

3. Invokes operations on the object. In the Transactions sample application, the CORBA client
application invokes the register_for_courses() operation on the Registrar object,
passing a list of courses.

Listing 5-2 illustrates the portion of the CORBA C++ client application in the Transactions
sample application that illustrates the development steps for transactions.

Listing 5-2 Transactions Code for CORBA C++ Client Applications

CORBA::Object_var var_transaction_current_oref =
 Bootstrap.resolve_initial_references("TransactionCurrent");
CosTransactions::Current_var var_transaction_current_ref=
 CosTransactions::Current::_narrow(var_transaction_current_oref.in());
//Begin the transaction
var_transaction_current_ref->begin();
try {

 // Perform the operation inside the transaction
 pointer_Registar_ref->register_for_courses(student_id, course_number_list);
 // ...
 // If operation executes with no errors, commit the transaction:
 CORBA::Boolean report_heuristics = CORBA_TRUE;
 var_transaction_current_ref->commit(report_heuristics);
}
catch (...) {
 // If the operation has problems executing, rollback the
 // transaction. Then throw the original exception again.
 // If the rollback fails, ignore the exception and throw the
 // original exception again.
 try {
 var_transaction_current_ref->rollback();
 }
 catch (...) {
 TP::userlog("rollback failed");
 }
 throw;
}

Step 4: Write the CORBA Server Application
When using transactions in CORBA server applications, you need to write methods that
implement the interface’s operations. In the Transactions sample application, you would write a
method implementation for the register_for_courses() operation.

5-12 Getting Started with BEA Tuxedo CORBA Applications

If your BEA Tuxedo CORBA application uses a database, you need to include code in the
CORBA server application that opens and closes an XA resource manager. These operations are
included in the Server::initialize() and Server::release() operations of the Server
object.

Listing 5-3 shows the portion of the code for the Server object in the Transactions sample
application that opens and closes the XA resource manager.

Note: For a complete example of a C++ server application that implements transactions, see the
Transactions sample application in Using CORBA Transactions in the BEA Tuxedo
online documentation.

Listing 5-3 C++ Server Object in Transactions Sample Application

CORBA::Boolean Server::initialize(int argc, char* argv[])

{

TRACE_METHOD("Server::initialize");

try {

open_database();

begin_transactional();

register_fact();

return CORBA_TRUE;

}

catch (CORBA::Exception& e) {

LOG("CORBA exception : " <<e);

}

catch (SamplesDBException& e) {

LOG("Can’t connect to database");

}

catch (...) {

LOG("Unexpected exception");

}

cleanup();

return CORBA_FALSE;

}

void Server::release()

{

Step 1 : Wr i te the OMG IDL Code

Getting Started with BEA Tuxedo CORBA Applications 5-13

TRACE_METHOD("Server::release");

cleanup();

}

static void cleanup()

{

unregister_factory();

end_transactional();

close_database();

}

// Utilities to manage transaction resource manager

CORBA::Boolean s_became_transactional = CORBA_FALSE;

static void begin_transactional()

{

TP::open_xa_rm();

s_became_transactional = CORBA_TRUE;

}

static void end_transactional()

{

if(!s_became_transactional){

 // cleanup not necessary

 return;

}

try {

 TP::close_xa_rm ();

}

catch (CORBA::Exception& e) {

 LOG("CORBA Exception : " << e);

}

catch (...) {

 LOG("unexpected exception");

 }

s_became_transactional = CORBA_FALSE;

}

5-14 Getting Started with BEA Tuxedo CORBA Applications

Step 5: Create a Configuration File
You need to add the following information to the configuration file for a transactional BEA
Tuxedo CORBA application.

In the SERVERS section specify the transactional group for the CORBA server application
and for the application that manages the database.

In the GROUPS section define the server group. In the OPENINFO and CLOSEINFO
parameters of the GROUPS section, include information to open and close the XA resource
manager for the database. You obtain this information from the product documentation for
your database. Note that the default version of the
com.beasys.Tobj.Server.initialize() operation automatically opens the resource
manager.

Include the pathname to the transaction log (TLOG) in the TLOGDEVICE parameter. For more
information about the transaction log, see Administering a BEA Tuxedo Application at Run
Time in the BEA Tuxedo online documentation.

Listing 5-4 includes the portions of the configuration file that define this information for the
Transactions sample application.

Listing 5-4 Configuration File for Transactions Sample Application

*RESOURCES

IPCKEY 55432

DOMAINID university

MASTER SITE1

MODEL SHM

LDBAL N

SECURITY APP_PW

*MACHINES

BLOTTO

LMID = SITE1

APPDIR = C:\TRANSACTION_SAMPLE

TUXCONFIG=C:\TRANSACTION_SAMPLE\tuxconfig

TLOGDEVICE=C:\APP_DIR\TLOG

TLOGNAME=TLOG

TUXDIR="C:\tuxdir"

MAXWSCLIENTS=10

Step 1 : Wr i te the OMG IDL Code

Getting Started with BEA Tuxedo CORBA Applications 5-15

*GROUPS

SYS_GRP

 LMID = SITE1

 GRPNO = 1

ORA_GRP

 LMID = SITE1

 GRPNO = 2

OPENINFO = "ORACLE_XA:Oracle_XA+SqlNet=ORCL+Acc=P

/scott/tiger+SesTm=100+LogDir=.+MaxCur=5"

OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/tiger

+SesTm=100+LogDir=.+MaxCur=5"

CLOSEINFO = ""

TMSNAME = "TMS_ORA"

*SERVERS

DEFAULT:

RESTART = Y

MAXGEN = 5

TMSYSEVT

 SRVGRP = SYS_GRP

 SRVID = 1

TMFFNAME

 SRVGRP = SYS_GRP

 SRVID = 2

 CLOPT = "-A -- -N -M"

TMFFNAME

 SRVGRP = SYS_GRP

 SRVID = 3

 CLOPT = "-A -- -N"

TMFFNAME

 SRVGRP = SYS_GRP

 SRVID = 4

 CLOPT = "-A -- -F"

TMIFRSVR

 SRVGRP = SYS_GRP

5-16 Getting Started with BEA Tuxedo CORBA Applications

 SRVID = 5

UNIVT_SERVER

 SRVGRP = ORA_GRP

 SRVID = 1

 RESTART = N

 ISL

 SRVGRP = SYS_GRP

 SRVID = 6

 CLOPT = -A -- -n //MACHINENAME:2500

*SERVICES

For information about the transaction log and defining parameters in the Configuration file, see
Setting Up a BEA Tuxedo Application in the BEA Tuxedo online documentation.

Getting Started with BEA Tuxedo CORBA Applications Index-1

Index

A
activation policies

defining in Implementation Configuration
file 3-11

defining in Server Description file 3-11
Simpapp sample application 3-11
Simple interface 3-11
supported 3-11

AdminAPI
description 2-4

administration commands
tmadmin command 2-3
tmboot command 2-3
tmconfig command 2-3
tmloadcf command 2-3
tmshutdown command 2-3
tmunloadcf command 2-3

Administration console
description 2-3

administration tools
AdminAPI 2-4
administration commands 2-3
Administration console 2-3

Authenticates 2-15
authentication

client application 2-15
levels 4-2

B
BEA Tuxedo

administration tools 2-3
development commands 2-2

how CORBA client and server applications
work 2-13

IDL compilers 2-2
object services 2-5

BEA Tuxedo CORBA
description of components 2-6
features 1-3
illustrated 2-7
managing

tmconfig command 2-3
tmunloadcf command 2-3

BEA Tuxedo CORBA applications
defining security levels 4-6
how they work 2-13
managing

tmadmin command 2-3
tmboot command 2-3
tmloadcf command 2-3
tmshutdown command 2-3

using CORBAservices Object Transaction
Service 5-2

using Java Transaction Service 5-2
BEA Tuxedo CORBA components

ORB 2-10
TP Framework 2-11

BEA Tuxedo domain
adding security to 4-4

Bootstrap object
illustrated 2-8
Simpapp sample application 3-14

building
C++ client applications 3-20

buildobjclient command 2-2

Index-2 Getting Started with BEA Tuxedo CORBA Applications

C++ server applications
buildobjserver command 2-2
genicf command 2-2

Java client applications 3-20
buildobjclient command

building C++ client applications 2-2
description 2-2
format 3-21
in the Simpapp sample application 3-20

buildobjserver command
building C++ server applications 2-2
description 2-2
format 3-20
in the Simpapp sample application 3-20

C
client applications

authenticating into the BEA Tuxedo domain
2-15

initialization process 2-14
invoking objects 2-17
using transactions 5-3
writing

Security sample application 5-10
Simpapp sample application 3-14
Transactions sample application 5-10

client stubs
generating 3-6
in Simpapp sample application 3-6

code example
C++ client application for Simpapp sample

application 3-15
C++ implementation of the Simple interface

3-8
C++ Server object 3-9
C++ server object that supports transactions

5-12
configuration file for Simpapp sample

application 3-18

OMG IDL for Transactions sample
application 5-7

security in C++ client applications 4-7
transactions in C++ client application 5-11
UBBCONFIG file for Transactions sample

application 5-14
compiling

C++ client applications 3-20
C++ server applications 3-20
Java client applications 3-20

CORBAservices Object Transaction Service
using in BEA Tuxedo CORBA applications

5-2
create_servant method 2-15

D
development commands

buildobjclient command 2-2
buildobjserver command 2-2
genicf command 2-2
idl2ir command 2-2
ir2idl command 2-2
irdel command 2-2

development process
activation policies 3-11
BEA Tuxedo CORBA applications 3-2
client applications

Security sample application 4-6
Simpapp sample application 3-14
Transactions sample application 5-10

defining object activation policies 3-11
illustrated 3-3
Implementation Configuration file 3-11
OMG IDL

Simpapp sample application 3-4
Transactions sample application 5-6

Security sample application 4-5
server applications

Simpapp sample application 3-7
Transactions sample application 5-11

Getting Started with BEA Tuxedo CORBA Applications Index-3

Server Description file 3-11
Simpapp sample application 3-3
steps for creating BEA Tuxedo CORBA

applications 3-2
Transactions sample application 5-6
writing a configuration file 3-17
writing server application code 3-7
writing the client application code 3-14
writing the OMG IDL 3-4

E
environmental objects

and client initialization 2-14
description 2-5

F
factories

finding 2-15
registering 2-15

FactoryFinder object
description 2-5
example use of 2-15

G
genicf command

creating an ICF file 2-2
description 2-2

I
idl command 2-2

description 2-2
files created by 3-6
generating client stubs 3-6
generating skeletons 3-6

IDL compiler
idl command 2-2
supported 2-2

idl2ir command

description 2-2
Implementation Configuration file

defining activation policies 3-11
defining transaction policies 5-9

initialize method
summary 2-13

INS
See Interoperable Naming Service 2-7

Interface Definition Language 2-2
Interface Repository

creating 2-2
deleting objects from 2-2
idl2ir command 2-2
ir2idl command 2-2
irdel command 2-2
loading interface definitions into 2-2

InterfaceRepository object
description 2-5

interfaces
writing methods to implement operations

3-7
Interoperable Naming Service 2-7
ir2idl command

description 2-2
irdel command

description 2-2

J
Java Transaction Service

using in BEA Tuxedo CORBA applications
5-2

M
m3idltojava command

deprecated 2-2
Management Information Base

see MIB 1-3
managing

BEA Tuxedo CORBA applications
tmadmin command 2-3

Index-4 Getting Started with BEA Tuxedo CORBA Applications

tmboot command 2-3
tmconfig command 2-3
tmloadcf command 2-3
tmshutdown command 2-3
tmunloadcf command 2-3

method implementations
C++ 3-7
writing 3-7

MIB
for BEA Tuxedo CORBA applications 1-3

O
Object Life Cycle service

description 2-5
object request broker

see ORB 2-10
object services

Interface Repository 2-5
Object Life Cycle service 2-5
Security service 2-5
Transaction service 2-5

objects
invoking 2-17

OMG IDL
compiling 3-6
generating client stubs 3-6
generating skeletons 3-6
Simple interface 3-5
SimpleFactory interface 3-5
Transactions sample application 5-6

ORB
description 2-10
illustrated 2-10

P
POA

description 2-11
interaction with TP Framework 2-11

Portable Object Adapter
see POA 2-11

PrincipalAuthenticator object
using in client applications 4-4

programming tools 2-2

R
register_factory method

example of 2-15
resolve_initial_references method 2-14

S
Security sample application

defining security level 4-6
description 4-4
development process 4-5
illustrated 4-4
location of files 4-5
PrincipalAuthenticator object 4-4
SecurityCurrent object 4-4
using the PrincipalAuthenticator object 4-6
using the SecurityCurrent object 4-6
writing the client application 4-6

Security service
description 2-5
functional description 4-2

SecurityCurrent object
description 2-5
using in client applications 4-4

server applications
defining object activation policies 3-11
Implementation Configuration file 3-11
Server Description file 3-11
writing

Simpapp sample application 3-7
Transactions sample application 5-11

writing method implementations 3-7
writing the Server object 3-9

Server Description file
defining activation policies 3-11

Server object 5-12
description 2-12

Getting Started with BEA Tuxedo CORBA Applications Index-5

Transactions sample application 5-12
writing 3-9

Simpapp sample application
compiling

C++ client application 3-20
C++ server application 3-20
Java client application 3-20

configuration file 3-17
description 3-3
file location 3-4
illustrated 3-4
interfaces defined for 3-5
OMG IDL 3-5
using the Bootstrap object 3-14
using the buildobjserver command 3-20
writing the client application code 3-14

Simple interface
activation policy 3-11
OMG IDL 3-5

SimpleFactory interface
OMG IDL 3-5

skeletons
generating 3-6
in Simpapp sample application 3-6

supporting databases 5-12

T
TLOGDEVICE parameter 5-14
tmadmin command

description 2-3
tmboot command

description 2-3
tmconfig command

description 2-3
tmloadcf command

creating a configuration file 3-20
description 2-3

tmshutdown command
description 2-3

tmunloadcf command

description 2-3
Tobj_Bootstrap 2-14
TP Framework

description 2-11
illustrated 2-12

transaction policies
defined 5-9

Transaction server application
writing the server application 5-11

Transaction service
description 2-5, 5-2
features 5-2

TransactionCurrent object
description 2-5

transactions
functional overview 5-2
illustrated 5-3
in client applications 5-3

Transactions sample application
description 5-4
file location 5-6
illustrated 5-5
OMG IDL 5-6
starting server application 5-11
transaction policies 5-10
UBBCONFIG file 5-14
writing client applications 5-10
writing server applications 5-11

Transactions sample application development
process 5-6
TUXCONFIG file

description 3-20

U
UBBCONFIG file

adding transactions 5-14
description 3-20
sections in 3-17
setting the security level 4-6

user exceptions

Index-6 Getting Started with BEA Tuxedo CORBA Applications

Transactions sample application 5-4
UserTransaction object

description 2-5

