
BEATuxedo ®

Using the ATMI /Q
Component

Version 10.0
Document Released: September 28, 2007

Using the ATMI /Q Component iii

Contents

1. BEA Tuxedo /Q Overview
General Description . 1-1

Queuing System Components and Tasks . 1-1

Administrator Tasks . 1-3

Programmer Tasks . 1-5

Transaction Management . 1-6

Handling Reply Messages . 1-7

Error Handling . 1-8

Summary . 1-9

2. BEA Tuxedo /Q Administration
Introduction . 2-1

Available Sample Program Called qsample. 2-2

Configuration . 2-2

Specifying the QM Server Group . 2-2

Specifying the Message Queue Server. 2-3

Operation Timeout . 2-3

Queue Space Names, Queue Names, and Service Names . 2-4

Data-dependent Routing . 2-4

Customized Buffer Types . 2-5

Buffer Subtypes . 2-5

Specifying the Message Forwarding Server . 2-6

iv Using the ATMI /Q Component

Queue Names and Service Names: The -q option . 2-6

Controlling Transaction Timeout: The -t option . 2-6

Controlling Idle Time: The -i option . 2-7

Controlling Server Exit: The -e option . 2-7

Delete Message After Service Failure: The -d option 2-7

Customized Buffer Types. 2-7

Dynamic Configuration. 2-8

Creating Queue Spaces and Queues. 2-8

Working with qmadmin Commands . 2-8

Creating an Entry in the Universal Device List: crdl . 2-8

Creating a Queue Space: qspacecreate . 2-9

Creating a Queue: qcreate . 2-10

Specifying Queue Order . 2-11

Enabling Out-of-Order Enqueuing . 2-11

Specifying Retry Parameters . 2-12

Using Queue Capacity Limits . 2-12

Reply and Failure Queues . 2-13

Error Queues . 2-14

Handling Encrypted Message Buffers . 2-14

Maintenance of the BEA Tuxedo /Q Feature. 2-15

Adding Extents to a Queue Space. 2-15

Backing Up or Moving Queue Space . 2-15

Moving the Queue Space to a Different Type of Machine 2-16

TMQFORWARD and Non-Global Transactions . 2-16

TMQFORWARD and Commit Control . 2-16

Handling Transaction Timeout . 2-16

TMQFORWARD and Retries for an Unavailable Service 2-17

Windows Standard I/O . 2-17

Using the ATMI /Q Component v

3. BEA Tuxedo /Q C Language Programming
Introduction. 3-1

Prerequisite Knowledge . 3-1

Where Requests Can Originate. 3-2

Emphasis on the Default Case . 3-2

Enqueuing Messages. 3-2

tpenqueue(3c) Arguments . 3-3

tpenqueue(): The qspace Argument . 3-3

tpenqueue(): The qname Argument . 3-4

tpenqueue(): The data and len Arguments . 3-4

tpenqueue(): The flags Arguments . 3-4

TPQCTL Structure . 3-5

Overriding the Queue Order. 3-11

Overriding the Queue Priority . 3-11

Setting a Message Availability Time . 3-12

tpenqueue() and Transactions . 3-13

Dequeuing Messages . 3-13

tpdequeue(3c) Arguments . 3-14

tpdequeue(): The qspace Argument . 3-14

tpdequeue(): The qname Argument . 3-14

tpdequeue(): The data and len Arguments . 3-15

tpdequeue(): The flags Arguments . 3-15

TPQCTL Structure . 3-16

Using TPQWAIT . 3-19

Error Handling When Using TMQFORWARD Services 3-20

Procedure for Dequeuing Replies from Services Invoked Through TMQFORWARD
3-22

vi Using the ATMI /Q Component

Sequential Processing of Messages . 3-23

Using Queues for Peer-to-Peer Communication. 3-23

4. BEA Tuxedo /Q COBOL Language Programming
Introduction . 4-1

Prerequisite Knowledge . 4-1

Where Requests Can Originate . 4-2

Emphasis on the Default Case . 4-2

Enqueuing Messages . 4-2

TPENQUEUE() Arguments . 4-3

TPENQUEUE(): The QSPACE-NAME in TPQUEDEF-REC Argument . . . 4-3

TPENQUEUE(): The QNAME in TPQUEDEF-REC Argument 4-4

TPENQUEUE(): The DATA-REC and LEN in TPTYPE-REC Arguments . . 4-4

TPENQUEUE(): The Settings in TPQUEDEF-REC 4-5

TPQUEDEF-REC Structure . 4-6

Overriding the Queue Order . 4-14

Overriding the Queue Priority . 4-14

Setting a Message Availability Time. 4-15

TPENQUEUE() and Transactions . 4-16

Dequeuing Messages . 4-16

TPDEQUEUE() Arguments . 4-17

TPDEQUEUE(): The QSPACE-NAME in TPQUEDEF-REC Argument 4-17

TPDEQUEUE(): The QNAME in TPQUEDEF-REC Argument 4-18

TPDEQUEUE(): The DATA-REC and LEN in TPTYPE-REC Arguments . 4-18

TPDEQUEUE(): The Settings in TPQUEDEF-REC 4-19

TPQUEDEF-REC Structure . 4-20

Using TPQWAIT. 4-24

Error Handling When Using TMQFORWARD Services 4-24

Using the ATMI /Q Component vii

Procedure for Dequeuing Replies from Services Invoked Through TMQFORWARD
4-26

Sequential Processing of Messages . 4-27

Using Queues for Peer-to-Peer Communication . 4-27

A. A Sample Application
Overview. .A-1

Prerequisites .A-1

What Is qsample? .A-2

Building qsample .A-2

Suggestions for Further Exploration. .A-4

setenv: Set the Environment .A-5

makefile: Make Your Application .A-5

ubb.sample: The ASCII Configuration File .A-5

crlog: Create the Transaction Log .A-6

crque: Create the Queue Space and Queues .A-6

Boot, Run, and Shut Down the Application .A-6

Clean Up .A-6

viii Using the ATMI /Q Component

Using the ATMI /Q Component 1-1

C H A P T E R 1

BEA Tuxedo /Q Overview

This topic includes the following sections:

General Description

Queuing System Components and Tasks

Administrator Tasks

Programmer Tasks

General Description
The BEA Tuxedo /Q component allows messages to be queued to persistent storage (disk) or to
non-persistent storage (memory) for later processing or retrieval. The BEA Tuxedo
Application-to-Transaction Monitor Interface (ATMI) provides functions that allow messages to
be added to or read from queues. Reply messages and error messages can be queued for later
return to client programs. An administrative command interpreter is provided for creating, listing,
and modifying the queues. Servers are provided to accept requests to enqueue and dequeue
messages, to forward messages from the queue for processing, and to manage the transactions
that involve the queues.

Queuing System Components and Tasks
The following figure shows the components of the queued message facility.

1-2 Using the ATMI /Q Component

Figure 1-1 Queued Service Invocation

The figure illustrates how each component of the queuing system operates for queued service
invocation. In this discussion, we use the figure to explain how administrators and programmers
work with the BEA Tuxedo /Q component to define it and use it to queue a message for
processing and get back a reply. The queuing service may also be used for simple peer-to-peer
communication by using a subset of the components shown in the figure.

A queue space is a resource. Access to the resource is provided by an X/OPEN XA-compliant
resource manager interface. This interface is necessary so that enqueuing and dequeuing can be
done as part of a two-phase committed transaction in coordination with other XA-compliant
resource managers.

tpenqueue

tpdequeue

local
enqueue

local
dequeue

local
enqueue

tpcall

local
dequeue

SERVICE1
{

tpreturn
}

SERVICE2
{

tpreturn
}

TMS_QM

SERVICE1

SERVICE2

CLIENT_REPLY1

FAILUREQ

qmadmin

1,3

8,10

5

6

2 4

9 7

CLIENT TMQUEUE TMQFORWARD SERVER

SERVER

System/T
Clients

Using /Q

System/T
Servers

QUEUE SERVER
GROUP

APP
Queue
Space

Admin is t ra to r Tasks

Using the ATMI /Q Component 1-3

Administrator Tasks
The BEA Tuxedo administrator is responsible for defining servers and creating queue spaces and
queues like those shown between the vertical dashed lines in the figure “Queued Service
Invocation” on page 1-2.

The administrator must define at least one queue server group with TMS_QM as the transaction
manager server for the group.

Two additional system-provided servers need to be defined in the configuration file. These
servers perform the following functions:

The message queue server, TMQUEUE(5), is used to enqueue and dequeue messages. This
provides a surrogate server for doing message operations for clients and servers, whether
or not they are local to the queue.

The message forwarding server, TMQFORWARD(5), is used to dequeue and forward
messages to application servers. The BEA Tuxedo system provides a main() for servers
that handles server initialization and termination, allocates buffers to receive and dispatch
incoming requests to service routines, and routes replies to the correct destination. All of
this processing is transparent to the application. Existing servers do not dequeue their own
messages or enqueue replies. One goal of BEA Tuxedo /Q is to be able to use existing
servers to service queued messages, without change. The TMQFORWARD server dequeues a
message from one or more queues in the queue space, forwards the message to a server
with a service that is named the same as the queue, waits for the reply, and queues the
success reply or failure reply on the associated reply or failure queues, respectively, as
specified by the originator of the message (if the originator specified a reply or failure
queue).

An administrator also must create a queue space using the queue administration program,
qmadmin(1), or the APPQ_MIB(5) Management Information Base (MIB). The queue space
contains a collection of queues. In the figure “Queued Service Invocation” on page 1-2, for
example, four queues are present within the APP queue space. There is a one-to-one mapping of
queue space to queue server group since each queue space is a resource manager (RM) instance
and only a single RM can exist in a group.

The notion of queue space allows for reducing the administrative overhead associated with a
queue by sharing the overhead among a collection of queues in the following ways:

The queues in a queue space share persistent and non-persistent storage areas for messages.

1-4 Using the ATMI /Q Component

A single message queue server, TMQUEUE in the figure “Queued Service Invocation” on
page 1-2, can be used to enqueue and dequeue messages for multiple queues within a
single queue space.

A single message forwarding server, TMQFORWARD in the figure “Queued Service
Invocation” on page 1-2, can be used to dequeue and forward messages to services from
multiple queues within a single queue space.

Two instances of the transaction manager server, TMS_QM in the figure “Queued Service
Invocation” on page 1-2, can be used to complete transactions for multiple queues within a
single queue space. One instance of the transaction manager server is reserved for
non-blocking transactions so that they will be processed as quickly as possible and not be
held up by blocking transactions. Blocking transactions are handled by the second instance
of the transaction manager server.

The administrator can define a single server group in the application configuration for the queue
space by specifying the group in UBBCONFIG or by using tmconfig(1) (see
tmconfig, wtmconfig(1)) to add the group dynamically.

Finally, when the administrator moves messages between queues within a queue space, the
overhead is less than if the messages were in different stable storage areas, because a
one-phase commit can be done.

Part of the task of defining a queue is specifying the order for messages on the queue. Queue
ordering can be determined by message availability time, expiration time, priority, FIFO, LIFO,
or a combination of these criteria.

The administrator specifies one or more of these sort criteria for the queue, listing the most
significant criteria first. The FIFO and LIFO values must be the least significant sort criteria.
Messages are put on the queue according to the specified sort criteria and dequeued from the top
of the queue. The administrator can configure as many message queuing servers as are needed to
keep up with the requests generated by clients for the stable queues.

Data-dependent routing can be used to route between multiple server groups with servers offering
the same service.

For housekeeping purposes, the administrator can set up a command to be executed when a
threshold is reached for a queue that does not routinely get drained. This can be based on the
bytes, blocks, or percentage of the queue space used by the queue or the number of messages on
the queue. The command might boot a TMQFORWARD server to drain the queue or send mail to the
administrator for manual handling.

The BEA Tuxedo system uses the Queueing Services component of the BEA Tuxedo
infrastructure for some operations. (The BEA Tuxedo infrastructure provides services such as

Programmer Tasks

Using the ATMI /Q Component 1-5

security, scalability, message queuing, and transactions.) For example, administrative operations
for shared memory are provided by the Queuing Services component. Some functions are not
currently applicable to BEA Tuxedo applications; this is noted in descriptions of these functions.

You can also use the queued message facility for peer-to-peer communication between clients,
such that a client communicates with other clients without using any forwarding server. The
peer-to-peer communication model is shown in the following figure.

Figure 1-2 Peer-to-Peer Communication

Programmer Tasks
In steps 1 through 3 of the figure “Queued Service Invocation” on page 1-2, a client enqueues a
message to the SERVICE1 queue in the APP queue space using tpenqueue(3c). Optionally, the
name of a reply queue and a failure queue can be included in the call to tpenqueue(). In the
example they are the queues CLIENT_REPLY1 and FAILURE_Q. The client can specify a
correlation identifier value to accompany the message. This value is persistent across queues so
that any reply or failure message associated with the queued message can be identified when it is
read from the reply or failure queue.

The client can use the default queue ordering (for example, a time after which the message should
be made available for dequeuing), or can specify an override of the default queue ordering
(asking, for example, that this message be put at the top of the queue or ahead of another message
on the queue). tpenqueue() sends the message to the TMQUEUE server, the message is queued,
and an acknowledgment (step 3) is sent to the client; the acknowledgment is not seen directly by
the client but can be assumed when the client gets a successful return. (A failure return includes
information about the nature of the failure.)

A message identifier assigned by the queue manager is returned to the application. The identifier
can be used to dequeue a specific message. It can also be used in another tpenqueue() to

CLIENT

tpenqueue

tpdequeue

tpdequeue

tpenqueue

CLIENT
STORAGE
(persistent or

non-persistent)

1-6 Using the ATMI /Q Component

identify a message already on the queue that the subsequent message should be enqueued ahead
of.

Before an enqueued message is made available for dequeuing, the transaction in which the
message is enqueued must be committed successfully.

When using BEA Tuxedo /Q for queued service invocation, and the message reaches the top of
the queue, the TMQFORWARD server dequeues the message and forwards it, via tpcall(3c), to a
service with the same name as the queue name. In the figure “Queued Service Invocation” on
page 1-2, the queue and the service are named SERVICE1 and steps 4, 5, and 6 in the figure show
this. The client identifier and the application authentication key are set to the client that caused
the message to be enqueued; they accompany the dequeued message as it is sent to the service.

When the service returns a reply, TMQFORWARD enqueues the reply (with an optional user-return
code) to the reply queue (step 7 in the figure “Queued Service Invocation” on page 1-2).

Sometime later (steps 8, 9 and 10 in the figure “Queued Service Invocation” on page 1-2), the
client uses tpdequeue(3c) to read from the reply queue CLIENT_REPLY1 in order to get the
reply message.

You can dequeue messages without removing them from the queue by using the TPQPEEK flag
with tpdequeue(). Messages that have expired or have been deleted by an administrator are
immediately removed from the queue.

Transaction Management
With regard to transaction management, one goal is to ensure reliability by enqueuing and
dequeuing messages within global transactions. However, a conflicting goal is to reduce the
execution overhead by minimizing the number of transactions that are involved.

An option is provided for the caller to enqueue a message outside any transaction in which the
caller is involved (decoupling the queuing from the caller's transaction). However, a timeout in
this situation leaves it unknown as to whether or not the message is enqueued.

A better approach is to enqueue the message within the caller's transaction, as is shown in the
following figure.

Programmer Tasks

Using the ATMI /Q Component 1-7

Figure 1-3 Transaction Demarcation

In the figure, the client starts a transaction, queues the message and commits the transaction. The
message is dequeued within a second transaction started by TMQFORWARD; the service is called
with tpcall(3c), is executed and the reply is enqueued within the same transaction. A third
transaction, started by the client, is used to dequeue the reply (and possibly enqueue another
request message). In ongoing processing, the third and first transactions can meld into one since
enqueuing the next request can be done in the same transaction as dequeuing the response from
the previous request.

Note: The system allows you to dequeue a response from one message and enqueue the next
request within the same transaction, but does not allow you to enqueue a request and
dequeue the response within the same transaction. The transaction in which the request
is enqueued must be successfully committed before the message is available for
dequeuing.

Handling Reply Messages
A reply queue can be either specified or not by the application when calling tpenqueue(). The
effect is as follows:

TRAN1
Put Request Message on QUEUE

TRAN2
Get Request Message and Delete from Queue
Process Message
Put Reply Message on Queue

TRAN3
Get Reply Message and Delete from Queue
Put Next Request Message on Queue

CLIENT
 tpbegin()
 tpenqueue()
 tpcommit()

CLIENT
 tpbegin()
 tpdequeue()
 tpenqueue()
 tpcommit()

TMQFORWARD
 tpbegin()
 tpdequeue()
 tpcall()
 tpenqueue()
 tpcommit()

1-8 Using the ATMI /Q Component

If a reply queue is not specified for a queued message, then no further work is required
beyond processing the message.

If a message is dequeued that does specify a reply queue, then the originator of the
message expects a reply to be enqueued upon successful completion of the execution of the
request.

– In the case where the application explicitly dequeues the message using
tpdequeue(), it is the responsibility of the application to call tpenqueue() to
enqueue the reply. Normally, this would be done in the same transaction in which the
request message is dequeued and executed so the entire operation is handled atomically
(that is, the reply is enqueued only if the transaction succeeds).

– In the case where the message is automatically processed by a service (dequeued and
passed to the application via a tpcall()) by TMQFORWARD, TMQFORWARD enqueues a
reply if the application service returns successfully (that is, the service routine called
tpreturn(3c) with TPSUCCESS and tpcall() did not return 1). If tpcall() receives
data, then the typed buffer used is enqueued to the reply queue. If no data is received in
tpcall(), then a message with no data (that is, a NULL message) is enqueued; the
fact that a message is enqueued (even if NULL) is sufficient to signify that the
operation has been completed.

Error Handling
Handling of errors requires both an understanding of the nature of the errors the application may
encounter and careful planning and coordination between the BEA Tuxedo administrator and the
application program developers. The way BEA Tuxedo /Q works, if a message is dequeued
within a transaction and the transaction is rolled back, then (if the retry parameter is greater than
0) the message ends up back on the queue where it can be dequeued and executed again.

For a transient problem, it may be desirable to delay for a short period before retrying to dequeue
and execute the message, allowing the transient problem to clear. For example, if there is a lot of
activity against the application database, there may be occasions when all you need is a little time
to allow locks in a database to be released by another transaction. Normally, a limit on the number
of retries is also useful to ensure that some application flaw doesn't cause significant waste of
resources. When a queue is configured by the administrator, both a retry count and a delay period
(in seconds) can be specified. A retry count of 0 implies that no retries are done. After the retry
count is reached, the message is moved to an error queue that can be configured by the
administrator for the queue space.

There are cases where the problem is not transient. For example, the queued message may request
operations on an account that does not exist. In this case, it is desirable not to waste any resources

Programmer Tasks

Using the ATMI /Q Component 1-9

by trying again. If the application programmer or administrator determines that failures for a
particular operation are never transient, then it is simply a matter of setting the retry count to zero.
It is more likely the case that for the same service some problems will be transient and some
problems will be permanent; the administrator and application developers need to have more than
a single approach to handle errors.

Other variations come about because the application may either dequeue messages directly or use
the TMQFORWARD server and because an error may cause a transaction to be rolled back and the
message requeued while logic dictates that the transaction should be committed. These variations
and ways to deal with them are discussed in “BEA Tuxedo /Q Administration” on page 2-1,
“BEA Tuxedo /Q C Language Programming” on page 3-1, and “BEA Tuxedo /Q COBOL
Language Programming” on page 4-1.

Summary
To summarize, BEA Tuxedo /Q provides the following features to BEA Tuxedo application
programmers and administrators:

An application programming interface that lets you enqueue a request for subsequent
processing. The system guarantees to execute the request successfully exactly once (by
default, failure causes the message to be put back on the queue). An application
programming interface is also provided to dequeue messages either from the top of a queue
or by message identifier or correlation identifier.

The application program and/or the administrator can control the ordering of messages on
the queue. Control is via the sort criteria, which may be based on message availability
time, expiration time, priority, LIFO, FIFO, or a combination of these criteria. The
application can override the ordering to place the message at the queue top or ahead of a
specific message that is already queued.

A BEA Tuxedo server is provided to enqueue and dequeue messages on behalf of, possibly
remote, clients and servers. The administrator decides how many copies of the server
should be configured.

A BEA Tuxedo server is provided to dequeue queued messages and forward them to
services for execution. This server allows for existing servers to handle queued requests
without modification. Each forwarding server can be configured to handle one or more
queues. Transactions are used to guarantee exactly-once processing. The administrator
controls how many forwarding servers are configured.

1-10 Using the ATMI /Q Component

The administrator can control messages stored on the queues for processing. This includes
the number of times requests are retried on failure and how much time elapses between
retries, reordering messages on queues, managing queue capacity and so on.

There are many application paradigms in which queued messages can be used. This feature can
be used to queue requests when a machine, server, or resource is unavailable or unreliable (for
example, in the case of a wide area or wireless networks). This feature can also be used for work
flow provisioning where each step generates a queued request to do the next step in the process.
Yet another use is for batch processing of potentially long running transactions, such that the
initiator does not have to wait for completion but is assured that the message will eventually be
processed. This facility may also be used to provide a data pipe between two otherwise unrelated
applications in a peer-to-peer relationship.

Using the ATMI /Q Component 2-1

C H A P T E R 2

BEA Tuxedo /Q Administration

This topic includes the following sections:

Introduction

Configuration

Creating Queue Spaces and Queues

Handling Encrypted Message Buffers

Maintenance of the BEA Tuxedo /Q Feature

Windows Standard I/O

Introduction
The BEA Tuxedo /Q administrator has three primary areas of responsibility, which are:

Configuration of resources

Creation of the queue space and queues

Monitoring and maintenance of the facility

Close cooperation with the application developers and programmers is a must; the configuration
and the queue attributes must reflect the requirements of the application.

2-2 Using the ATMI /Q Component

Available Sample Program Called qsample
A brief example of the use of the queued message facility is distributed with the software and is
described in “A Sample Application” on page A-1.

Configuration
Three servers are provided with the BEA Tuxedo /Q component. One is the Transaction Manager
Server (TMS), TMS_QM, for the BEA Tuxedo /Q resource manager. That is, it manages global
transactions for the queued message facility. It must be defined in the GROUPS section of the
configuration file.

The other two, TMQUEUE(5) and TMQFORWARD(5), provide services to users. They must be
defined in the SERVERS section of the configuration file.

The application can also create its own queue servers, if the functionality of TMQFORWARD does
not fully meet the needs of the application. For example, the administrator might want to have a
special server to dequeue messages moved to the error queue.

The application can also choose peer-to-peer communication. In this case, the application
communicates with other applications, or a client communicates with other clients, by not using
any forwarding server.

Specifying the QM Server Group
In addition to the standard requirements of a group name tag and a value for GRPNO (see
UBBCONFIG(5) for details), there must be a server group defined for each queue space the
application will use. The TMSNAME and OPENINFO parameters need to be set. Here are examples:

TMSNAME=TMS_QM

and

OPENINFO="TUXEDO/QM:<device_name:<queue_space_name>"

TMS_QM is the name for the transaction manager server for BEA Tuxedo /Q. In the OPENINFO
parameter, TUXEDO/QM is the literal name for the resource manager as it appears in
$TUXDIR/udataobj/RM. The values for <device_name> and <queue_space_name> are
instance-specific and must be set to the pathname for the universal device list and the name
associated with the queue space, respectively. These values are specified by the BEA Tuxedo
administrator using qmadmin(1).

Conf igurat ion

Using the ATMI /Q Component 2-3

Note: The chronological order of these specifications is not critical. The configuration file can
be created either before or after the queue space is defined. The important thing is that
the configuration must be defined and queue space and queues created before the facility
can be used.

There can be only one queue space per GROUPS section entry. The CLOSEINFO parameter is not
used.

The following example is taken from the reference page for TMQUEUE(5).

*GROUPS

TMQUEUEGRP1 GRPNO=1 TMSNAME=TMS_QM

 OPENINFO="TUXEDO/QM:/dev/device1:myqueuespace"

TMQUEUEGRP2 GRPNO=2 TMSNAME=TMS_QM

 OPENINFO="TUXEDO/QM:/dev/device2:myqueuespace"

Specifying the Message Queue Server
The TMQUEUE(5) reference page gives a full description of the SERVERS section of the
configuration file, but there are some points worth additional emphasis here.

Operation Timeout
TMQUEUE recognizes a -t timeout option when specified after the double dash (- -) in the CLOPT
parameter. This timeout value affects only operations begun within the server if it finds that a
transaction is not in effect, in other words, either the client called tpenqueue(3c) or
tpdequeue(3c) without first calling tpbegin(3c) or it began a transaction and called
tpenqueue() or tpdequeue() with the TPNOTRAN flag set to exclude the queue request from the
client's transaction. The default for timeout is 30 seconds. If a tpdequeue request is received
with the flags set to TPQWAIT, a TPETIME error will be returned if the wait exceeds -t timeout
seconds.

Note: ctl is a structure of type TPQCTL used by tpenqueue(3c) and tpdequeue(3c) to pass
parameters between the calling process and the system. TPQWAIT is a flag setting
available in tpdequeue to indicate that the process wishes to wait for a reply message.
The structure is explained in detail in “TPQCTL Structure” on page 3-5 and
“TPQUEDEF-REC Structure” on page 4-6. The COBOL equivalent is the
TPQUEDEF-REC record.

2-4 Using the ATMI /Q Component

Queue Space Names, Queue Names, and Service Names
There is potential confusion among queue space names, queue names, and service names. The
first place you are apt to encounter the confusion is in the specification of the message queue
server: TMQUEUE. When specifying this server in the configuration file you can use the -s flag of
the CLOPT parameter to name the queue space served by a given instance of the server, which is
the same as saying it is a service advertised by the function: TMQUEUE. In an application that uses
only one queue space, it is not necessary to specify the CLOPT -s option; it will default to -s
TMQUEUE:TMQUEUE. If the application requires more than a single queue space, the names of the
queue spaces are included as arguments to the -s option in the SERVERS section entry for the
queued message server.

An alternative way of making this specification is to rebuild the message queue server, using
buildserver(1), and name the queue spaces with the similar sounding -s option. This has the
result of fixing, or hardcoding, the service names in the server executable.

The following two specifications are equivalent:

*SERVERS

TMQUEUE SRVGRP="TMQUEUEGRP1" SRVID=1000 RESTART=Y GRACE=0 \

 CLOPT="-s myqueuespace:TMQUEUE"

and

buildserver -o TMQUEUE -s myqueuespace:TMQUEUE -r TUXEDO/QM \

 -f ${TUXDIR}/lib/TMQUEUE.o

followed by

 ..

 ..

 ..

TMQUEUE SRVGRP="TMQUEUEGRP1" SRVID=1000 RESTART=Y GRACE=0 \

 CLOPT="-A"

Data-dependent Routing
The preceding discussion described the specification of services (that is, queue space names) in
the message queue server. This capability can be used to bring about data-dependent routing of
queued messages such that the message is queued for processing by a service within a specific
group depending on a value in a field of the message buffer. To do this the same queue space
name is specified in two different groups and a routing specification is made part of the

Conf igurat ion

Using the ATMI /Q Component 2-5

configuration file to govern the group where the message is queued. The following example is
taken from the TMQUEUE(5) reference page (the queue space name has been changed).

*GROUPS

TMQUEUEGRP1 GRPNO=1 TMSNAME=TMS_QM

 OPENINFO="TUXEDO/QM:/dev/device1:myqueuespace"

TMQUEUEGRP2 GRPNO=2 TMSNAME=TMS_QM

 OPENINFO="TUXEDO/QM:/dev/device2:myqueuespace"

*SERVERS

TMQUEUE SRVGRP="TMQUEUEGRP1" SRVID=1000 RESTART=Y GRACE=0 \

 CLOPT="-s ACCOUNTING:TMQUEUE"

TMQUEUE SRVGRP="TMQUEUEGRP2" SRVID=1000 RESTART=Y GRACE=0 \

 CLOPT="-s ACCOUNTING:TMQUEUE"

*SERVICES

ACCOUNTING ROUTING="MYROUTING"

*ROUTING

MYROUTING FIELD=ACCOUNT BUFTYPE="FML" \

 RANGES="MIN-60000:TMQUEUEGRP1,60001-MAX:TMQUEUEGRP2"

Customized Buffer Types
TMQUEUE supports all of the standard ATMI buffer types. If your application needs to add other
types, it can be done by copying $TUXDIR/tuxedo/tuxlib/types/tmsypesw.c, adding an
entry for your special buffer types, making sure to leave the final line null, and using the revised
file as input to a buildserver(1) command. An example of the buildserver command is
shown on the TMQUEUE(5) reference page.

You can also use the -s option of the buildserver command to associate additional service
names with TMQUEUE as an alternative to specifying them in the server CLOPT parameter (see
above).

Buffer Subtypes
You can assign a subtype to a buffer using the tpalloc(3c) subtype parameter and later extract
the subtype using the tptypes(3c) function. This gives you the ability to assign a type to data
without having to create an entirely new user-defined ATMI buffer type. This is especially useful
for buffers containing character arrays (CARRAY) or strings (STRING).

2-6 Using the ATMI /Q Component

Specifying the Message Forwarding Server
The third system-supplied server included with the BEA Tuxedo /Q component is
TMQFORWARD(5). This is the server that takes messages from specified queues, passes them along
to BEA Tuxedo servers via tpcall(3c), and handles associated reply messages. The full
description of how the server is defined in the configuration file can be found on the
TMQFORWARD(5) reference page, but the topics that follow bring out some points that are worth
additional emphasis.

TMQFORWARD is referred to as a server and each instance used by an application must be defined
in the SERVERS section of the configuration file, but it has characteristics that set it apart from
ordinary servers. For example:

It is incorrect to specify services for TMQFORWARD.

A client process cannot post a message for TMQFORWARD as you would expect in a normal
request/response relationship.

TMQFORWARD should not be defined as a member of an MSSQ set.

TMQFORWARD should never have a reply queue.

An instance of TMQFORWARD is tied to a queue space through the server group with which it is
associated, specifically through the third field in the OPENINFO statement for the group. In the
topics that follow we will examine other key parameters, especially CLOPT parameters that come
after the double dash.

Queue Names and Service Names: The -q option
A required parameter is -q queuename,queuename. . . This parameter specifies the queue(s) to
be checked by this instance of the server. queuename is a NULL-terminated string of up to 15
characters; it is the same as the name of the application service that will process the message once
it has been taken off the queue by TMQFORWARD. It is also the name that a programmer specifies
as the second argument of tpenqueue(3c) or tpdequeue(3c) when preparing to call the
message queue server, TMQUEUE.

Controlling Transaction Timeout: The -t option
TMQFORWARD does its work within a transaction that it begins and ends. The -t trantime option
is available to specify the length of time in seconds before the transaction is timed out. The
transaction is begun when TMQFORWARD finds a message on the queue it is checking; it is
committed after a reply has been enqueued either to the reply queue or the failure queue, so the

Conf igurat ion

Using the ATMI /Q Component 2-7

transaction encompasses calling the service that processes the message and receiving a reply. The
default is 60 seconds.

Controlling Idle Time: The -i option
Once TMQFORWARD is booted it periodically checks the queue to which it is assigned. If it finds
the queue empty, it pauses for -i idletime seconds before checking again. If a value is not
specified, the default is 30 seconds; a value of 0 says to keep checking the queue constantly,
which can be wasteful of CPU resources if the queue is frequently empty.

Controlling Server Exit: The -e option
If the -e option is specified, the server will shut itself down gracefully (and will create a user log
message) when it finds the queue empty. This behavior may be used to your advantage in
connection with the threshold command that you can specify for a queue. There is a more
complete discussion about the -e option and the threshold command in “Creating Queue Spaces
and Queues” on page 2-8.

Delete Message After Service Failure: The -d option
When a service request fails after being called by TMQFORWARD, the transaction is rolled back, and
the message is put back on the queue for a later retry (up to a limit of retries specified for the
queue). The -d option adds the following refinement: if the failed service returns a non-NULL
reply, the reply (and its associated tpurcode) are put on a failure queue (if one is associated with
the message and the queue exists) and the original request message is deleted. Also with the -d
option, if the original request message is to be deleted at the same time as the retry limit
configured for the queue is reached, the original request message is put into the error queue.

The rationale behind this option is that rather than blindly retrying, the originating client can be
coded to examine the failure message and determine whether further attempts are reasonable. It
provides a way of handling a failure that is due to some inherently reasonable condition (for
example, a record is not found because the account does not exist).

Customized Buffer Types
Customized application buffer types can be added to the type switch and incorporated into
TMQFORWARD with the buildserver(1) command. It should be noted, however, that when you
customize TMQFORWARD it is an error to specify service names with a -s option.

2-8 Using the ATMI /Q Component

Dynamic Configuration
We have described configuration parameters in terms of UBBCONFIG parameters. However, it
should be noted that the specifications in the GROUPS and SERVERS sections can also be added to
the TUXCONFIG file of a running application by using tmconfig(1) (see
tmconfig, wtmconfig(1)). Of course, the group and the servers will have to be booted once
they have been defined.

Creating Queue Spaces and Queues
This topic covers three of the qmadmin(1) commands that are used to establish the resources of
the BEA Tuxedo /Q component. The APPQ_MIB Management Information Base provides an
alternative method of administering BEA Tuxedo /Q programmatically. See the APPQ_MIB(5)
reference page for more information on the MIB.

Working with qmadmin Commands
Most of the key commands of qmadmin have positional parameters. If the positional parameters
(those not specified with a dash (-) preceding the option) are not specified on the command line
when the command is invoked, qmadmin prompts you for the required information.

Creating an Entry in the Universal Device List: crdl
The universal device list (UDL) is a VTOC file under the control of the BEA Tuxedo system. It
maps the physical storage space on a machine where the BEA Tuxedo system is run. An entry in
the UDL points to the disk space where the queues and messages of a queue space are stored; the
BEA Tuxedo system manages the input and output for that space. If the queued message facility
is installed as part of a new BEA Tuxedo installation, the UDL is created by tmloadcf(1) when
the configuration file is first loaded.

Before you create a queue space, you must create an entry for it in the UDL. The following is an
example of the commands:

First invoke the /Q administrative interface, qmadmin

The QMCONFIG variable points to an existing device where the UDL

either resides or will reside.

QMCONFIG=/dev/rawfs qmadmin

Next create the device list entry

crdl /dev/rawfs 50 500

Creat ing Queue Spaces and Queues

Using the ATMI /Q Component 2-9

The above command sets aside 500 physical pages beginning at block # 50

If the UDL has no previous entries, offset (block number) 0 must # be used

If you are going to add an entry to an existing BEA Tuxedo UDL, the value for the QMCONFIG
variable must be the same pathname specified in TUXCONFIG. Once you have invoked qmadmin,
it is recommend that you run a lidl command to see where space is available before creating
your new entry.

Creating a Queue Space: qspacecreate
A queue space makes use of IPC resources; when you define a queue space you are allocating a
shared memory segment and a semaphore. As noted above, the easiest way to use the command
is to let it prompt you. (You can also use the T_APPQSPACE class of the APPQ_MIB(5) to create
a queue space.) The sequence looks like this:

> qspacecreate

Queue space name: myqueuespace

IPC Key for queue space: 230458

Size of queue space in disk pages: 200

Number of queues in queue space: 3

Number of concurrent transactions in queue space: 3

Number of concurrent processes in queue space: 3

Number of messages in queue space: 12

Error queue name: errq

Initialize extents (y, n [default=n]):

Blocking factor [default=16]: 16

The program insists that you provide values for all prompts except the final three. As you can see,
there are defaults for the last two; while you will almost certainly want to name an error queue,
you are not required to. If you provide a name here, you must create the error queue with the
qcreate command. If you choose not to name an error queue, bear in mind that messages that
normally would be moved to the error queue (for example, when a retry limit is reached), are
permanently lost.

The program does not prompt you to specify the size of the area to reserve in shared memory for
storing non-persistent messages for all queues in the queue space. When you require
non-persistent (memory-based) messages, you must specify the size of the memory area on the
qspacecreate command line with the -n option.

The value for the IPC key should be picked so as not to conflict with your other requirements for
IPC resources. It should be a value greater than 32,768 and less than 262,143.

2-10 Using the ATMI /Q Component

The size of the queue space, the number of queues, and the number of messages that can be
queued at one time all depend on the needs of your application. Of course, you cannot specify a
size greater than the number of pages specified in your UDL entry. In connection with these
parameters, you also need to look ahead to the queue capacity parameters for an individual queue
within the queue space. Those parameters allow you to (a) set a limit on the number of messages
that can be put on a queue, and (b) name a command to be executed when the number of enqueued
messages on the queue reaches the threshold. If you specify a low number of concurrent messages
for the queue space, you may create a situation where your threshold on a queue will never be
reached.

To calculate the number of concurrent transactions, count each of the following as one
transaction:

Each TMS_QM server in the group that uses this queue space

Each TMQUEUE or TMQFORWARD server in the group that uses this queue space

qmadmin

If your client programs begin transactions before they call tpenqueue, increase the count by the
number of clients that might access the queue space concurrently. The worst case is that all clients
access the queue space at the same time.

For the number of concurrent processes count one for each TMS_QM, TMQUEUE or TMQFORWARD
server in the group that uses this queue space and one for a fudge factor.

You can choose to initialize the queue space as you use the qspacecreate command, or you can
let it be done by the qopen command when you first open the queue space.

Creating a Queue: qcreate
Each queue that you intend to use must be created with the qmadmin qcreate command. You
first have to open the queue space with the qopen command. If you do not provide a queue space
name, qopen will prompt for it. (You can also use the T_APPQ class of the APPQ_MIB(5) to create
a queue.)

The prompt sequence for qcreate looks like the following:

> qcreate

Queue name: service1

Queue order (priority, time, fifo, lifo): fifo

Out-of-ordering enqueuing (top, msgid, [default=none]): none

Retries [default=0]: 2

Creat ing Queue Spaces and Queues

Using the ATMI /Q Component 2-11

Retry delay in seconds [default=0]: 30

High limit for queue capacity warning (b for bytes used, B for blocks used,

% for percent used, m for messages [default=100%]): 80%

Reset (low) limit for queue capacity warning [default=0%]: 0%

Queue capacity command:

No default queue capacity command

Queue 'service1' created

You can skip all of these prompts (except the prompt for the queue name); if you do not provide
a name for the queue, the program displays a warning message and prompts again. For the other
parameters, the program provides a default and displays a message that specifies the default.

The program does not prompt you for a default delivery policy and memory threshold options.
The default delivery policy option allows you to specify whether messages with no specified
delivery mode are delivered to persistent (disk-based) or non-persistent (memory-based) storage.
The memory threshold option allows you to specify values used to trigger command execution
when a non-persistent memory threshold is reached. To use these options, you must specify them
on the qcreate command line with -d and -n, respectively.

Specifying Queue Order
Messages are put into the queue based on the order specified by this parameter and dequeued
from the top of the queue unless selection criteria are applied to the dequeuing operation. If
priority, expiration, and/or time are chosen as queue order criteria, then messages are
inserted into the queue according to values in the TPQCTL structure. A combination of sort criteria
may be specified with the most significant criteria specified first. Separate multiple criteria with
commas (,). If fifo or lifo (which are mutually exclusive) are specified, they must be the last
value specified. The sequence in which parameters are specified determines the sort criteria for
the queue. In other words, a specification of priority, fifo would say that the queue should
be arranged by message priority and that within messages of equal priority they should be
dequeued on a first in, first out basis.

Enabling Out-of-Order Enqueuing
If the administrator enables out-of-order enqueues; that is, if top and/or msgid are specified at
the prompt, programmers can specify (via values in the TPQCTL structure of a tpenqueue call)
that a message is to be put at the top of the queue or ahead of the message identified by msgid.
Give this option some thought; once the choice is made you have to destroy and recreate the
queue to change it.

2-12 Using the ATMI /Q Component

Specifying Retry Parameters
Normal behavior for a queued message facility is to put a message back on the queue if the
transaction that dequeues it is rolled back. It will be dequeued again when it reaches the top of
the queue. You can specify the number of retries that should be attempted and also a time delay
between retries. Note that when a dequeued message is put back on the queue for retry, queue
order specifications are, in effect, suspended for Retry delay seconds. During this time, the
message is unavailable for any dequeuing operation.

The default for the number of retries is 0, which means that no retries are attempted. When the
retry limit is reached, the system moves the message to the error queue for the queue space,
assuming an error queue has been named and created. If the error queue does not exist the
message is discarded.

The delay time is expressed in seconds. When message queues are lightly populated so that a
message restored to the queue reaches the top almost immediately, you can save CPU cycles by
building in a delay factor. Your general policy on retries should be based on the experience of
your particular application. If you have a fair amount of contention for the service associated with
a given queue, you may get a lot of transient problems. One way to deal with them is to specify
a large number of retries. (The number is strictly subjective, as is the time between retries.) If the
nature of your application is such that any rolled back transaction signals a failure that is never
going to go away, you might want to specify 0 retries and move the message immediately to the
error queue. (This is very much like what happens when you specify the -d option for
TMQFORWARD; the only difference is that a non-zero length failure message must be received for
TMQFORWARD automatically to drop the message from the queue.)

Using Queue Capacity Limits
There are three parameters of the qcreate command that can be used to partially automate the
management of a queue. The parameters set a high and low threshold figure (it can be expressed
as bytes, blocks, messages or percent of queue capacity) and allow you to specify a command that
is executed when the high threshold is reached. (Actually, the command is executed once when
the high threshold is reached, but not again until the low threshold is reached first prior to the high
threshold.)

The following are two examples of ways the parameters can be used:

High limit for queue capacity warning (b for bytes used, B for blocks used,

% for percent used, m for messages [default=100%]): 80%

Reset (low) limit for queue capacity warning [default=0%]: 10%

Queue capacity command: /usr/app/bin/mailme myqueuespace service1

Creat ing Queue Spaces and Queues

Using the ATMI /Q Component 2-13

This sequence sets the upper threshold at 80% of disk-based queue capacity and specifies a
command to be executed when the queue is 80% full. The command is a script you have created
that sends you a mail message when the threshold is reached. (myqueuespace and service1 are
hypothetical arguments to your command.) Presumably, once you have been informed that the
queue is filling up you can take action to ease the situation. You do not get the warning message
again unless the queue load drops to 10% of capacity or below, and then rises again to 80%. You
can also set thresholds and specify commands for the management of non-persistent
(memory-based) queue capacity using the -n option of the qcreate command.

Note: If you are working on a Windows machine, see “Windows Standard I/O” on page 2-17
for additional information about configuring commands within a qmadmin() session.

The second example is somewhat more automated and takes advantage of the -e option of the
TMQFORWARD server.

High limit for queue capacity warning (b for bytes used, B for blocks used,

% for percent used, m for messages [default=100%]): 90%

Reset (low) limit for queue capacity warning [default=0%]: 0%

Queue capacity command: tmboot -i 1002

This sequence assumes that you have configured a reserve TMQFORWARD server for the queue in
question with SRVID=1002 and have included the -e option in its CLOPT parameter. (It also
assumes that the server is not booted or, if booted, has shut itself down as a result of finding the
queue empty.) When the queue reaches 90% capacity, the tmboot command is executed to boot
the reserve server. The -e option causes the server to shut itself down when the queue is empty.
You have set the low threshold to 0% so as not to kick off unnecessary tmboot commands for a
server that is already booted.

The default values for the three options are 100%, 0%, and no command.

Reply and Failure Queues
The discussion above about creating a queue and providing parameters for its operation was
written from the viewpoint of creating a queue for messages to be processed by a service of the
same name. A queue may also be used for other purposes as well, such as peer-to-peer
communication. The parameters for creating a queue are the same regardless of its use. The
TPQCTL structure used when a message is enqueued to a service queue includes fields to specify
a reply queue and a failure queue. TMQFORWARD detects the success or failure of the tpacall(3c)
it makes to the requested service and, if these queues have been created by the administrator,
enqueues the reply accordingly. If no reply or failure queue exists, the success or failure response
message from the service is dropped leaving the originating client with no information about the

2-14 Using the ATMI /Q Component

outcome of the queued request. Even if there is no reply message from the service, if a reply
queue exists, a zero-length message is enqueued there by TMQFORWARD to inform the originating
client of the outcome.

When creating a reply or a failure queue, bear in mind that in most cases messages are dequeued
from these queues by a client process looking for information about an earlier enqueued request.
Since the most common way of dequeuing such messages is by the msgid (message identifier) or
corrid (correlation identifier) associated with the message—as opposed to taking a message off
the top of the queue—the queue ordering criteria are less significant. In this case, fifo is
probably sufficient. The retries and retry delay parameters have no significance for reply
queues; just take the defaults. The queue capacity thresholds and commands are likely to be
useful on reply queues, and the recommended usage is to alert the administrator so that he or she
can intervene.

Error Queues
An error queue is a system queue. One of the qspacecreate prompts asks for the name of the
error queue for the queue space. When you have actually created an error queue of the name
specified, the system uses it as a place to move messages from the service queue that have reached
their retry limit. The management of the error queue is up to the administrator who can either
handle the messages manually through commands of qmadmin or can set up an automated way
of handling them through the APPQ_MIB MIB. The queue capacity parameters can be used, but
all of the other qcreate parameters, with the exception of qname, are not useful for the error
queue.

Note: We recommend against using the same queue as both an error queue and a service failure
queue; doing so makes it more difficult to cleanly manage the application and could lead
to clients trying to access the administrator's area.

Handling Encrypted Message Buffers
In general, TMQUEUE and TMQFORWARD handle encrypted message buffers without decrypting
them. However, there are situations where the /Q component needs to decrypt enqueued message
buffers, as described in “Compatibility/Interaction with /Q” in Using Security in ATMI
Applications.

As mentioned in the “Compatibility/Interaction with /Q” discussion, a non-transactional
tpdequeue() operation has the side effect of destroying an encrypted queued message if the
invoking process does not hold a valid decryption key. Thus, application programmers need to

Maintenance o f the BEA Tuxedo /Q Feature

Using the ATMI /Q Component 2-15

open a decryption key for a process before the process calls tpdequeue() to retrieve an
encrypted message; otherwise, the message will be lost.

For information on opening a decryption key, see “Initializing Decryption Keys Through the
Plug-ins” and “Writing Code to Receive Encrypted Messages” in Using Security in ATMI
Applications.

Maintenance of the BEA Tuxedo /Q Feature
This topic covers some things the queue administrator may have to do from time to time to keep
a queue space operating efficiently.

Adding Extents to a Queue Space
If you find you need more disk storage for a queue space, you can add it with the qaddext
command of qmadmin(1). (You can also use the TA_MAXPAGES attribute of the T_APPQSPACE
class of APPQ_MIB(5) to add extents.) The qmadmin command takes the queue space name and
a number of pages as arguments. The pages come from extents defined in the UDL for the device
in your QMCONFIG variable. The queue space must be inactive; you can use the exclamation point
to execute a command outside of qmadmin to shut down the associated server group. For
example:

> !tmshutdown -g TMQUEUEGRP1

followed by

> qclose

> qaddext myqueue 100

The queue space must be closed; qmadmin closes it for you if you try to add extents to it while it
is open. All non-persistent messages currently in the queue space are lost when the qaddext
command is issued and completes successfully.

Backing Up or Moving Queue Space
A convenient command to use to back up a queue space is the UNIX command dd. Shut down
the associated server group first. The command lines should look like this:

tmshutdown -g TMQUEUEGRP1

dd if=<qspace_device_file> of=<output_device_filename>

For other options, see dd(1) in a UNIX system reference manual.

2-16 Using the ATMI /Q Component

This same command can be used to migrate the queue space to a machine of the same
architecture, although you may need to start the command sequence with a qmadmin chdl
command to provide a new device name if the present name does not exist on the target machine.

Similar archival techniques are available on server platforms that do not have the dd command.
First, shut down the group containing the queue space you want to back up or migrate. Then, use
an archival tool to save the queue space device to a file or other medium that may then be used
as a backup or used to move the queue space to another server.

Moving the Queue Space to a Different Type of Machine
If you need to move a queue space to a machine with a different architecture (primarily byte
order), the procedure is more complex. Create and run an application program to dequeue all
messages from all queues in the queue space and write them out in machine-independent format.
Then enqueue the messages in the new queue space.

TMQFORWARD and Non-Global Transactions
Messages dequeued and forwarded using TMQFORWARD are executed within a global transaction
because the operation crosses group boundaries. If the messages are executed by servers that are
not associated with an RM or that do not run within a global transaction, they should have a server
group with TMSNAME=TMS (for the NULL XA interface).

TMQFORWARD and Commit Control
The global transaction begun by TMQFORWARD when it dequeues a message for execution is
terminated by a tpcommit(). The administrator can set the CMTRET parameter in the configuration
file to control whether the transaction commits when it is logged or when it is complete. (See the
discussion of CMTRET in the RESOURCES section of the UBBCONFIG(5) reference page.)

Handling Transaction Timeout
Handling transaction timeout requires cooperation between the queue administrator and the
programmer developing client programs that dequeue messages. When tpdequeue(3c) is called
with the flags argument set to include TPQWAIT, the TMQUEUE server will wait for a message to
arrive on a queue before returning to the caller. The number of seconds before it times out is based
on the following:

The timeout specified in the tpbegin call (if the transaction is started in the client)

Windows Standard I /O

Using the ATMI /Q Component 2-17

The -t timeout flag of the TMQUEUE server (if the client has not started the transaction)

If a message is not immediately available when using TPQWAIT, TMQUEUE requires an action
resource so that TMQUEUE may service other requests. You may want to increase the number of
actions the queue space may handle concurrently. Use the -A actions option to the
qspacecreate or qspacechange commands. This option specifies the number of additional
actions that can be handled concurrently. When a waiting operation is encountered and additional
actions are available, the blocking operation is set aside until it can be satisfied. If no actions are
available, the call to tpdequeue fails.

TMQFORWARD and Retries for an Unavailable Service
When a TMQFORWARD server attempts to forward messages to a service that is not available, the
situation can develop where the retry limit for the queue may be reached. The message is then
moved to the error queue (if one exists). To avoid this situation the administrator should either
shut the TMQFORWARD server down or set the retry count higher.

When a message is moved to the error queue it is no longer associated with the original queue. If
errors are going to be handled by the administrator moving the message back to the service queue
when the service is known to be available, then the queue name may be stored as part of the
corrid in the TPQCTL structure so the queue name is associated with the message.

Windows Standard I/O
In order to carry out a command that you have configured within a qmadmin() session, such as
the qchange ... Queue capacity command described in “Using Queue Capacity Limits” on
page 2-12, the Windows CreateProcess() function spawns a child process as a DETACHED
PROCESS. This type of process does not have an associated console for standard input/output.
Therefore, for instance, if you use standard DOS syntax to set the qchange ... Queue
capacity command to run a built-in DOS command (such as dir or date) and then pipe or
redirect the standard output to a file, the file will be empty when the command completes.

As an example of resolving this problem, suppose that for the qchange ... Queue capacity
command you want to capture date information in a file using command date /t > x.out. To
accomplish this task interactively, you would proceed as follows:

qmadmin

> qopen yourQspace

> qchange yourQname

> go through all the setups... the threshold queue capacity warning,

2-18 Using the ATMI /Q Component

and so on

> "Queue capacity command: " cmd /c date /t > x.out

To accomplish this task from a command file, say yourFile.cmd, you would add the command
date /t > x.out to yourFile.cmd and then proceed as follows:

qmadmin

> qopen yourQspace

> qchange yourQname

> go through all the setups... the threshold queue capacity warning,

and so on

> "Queue capacity command: " yourFile.cmd

Using the ATMI /Q Component 3-1

C H A P T E R 3

BEA Tuxedo /Q C Language
Programming

This topic includes the following sections:

Introduction

Prerequisite Knowledge

Where Requests Can Originate

Emphasis on the Default Case

Enqueuing Messages

Dequeuing Messages

Sequential Processing of Messages

Introduction
This topic deals with the use of the ATMI C language functions for enqueuing and dequeuing
messages: tpenqueue(3c) and tpdequeue(3c), plus some ancillary functions.

Prerequisite Knowledge
The BEA Tuxedo programmer coding client or server programs for the queued message facility
should be familiar with the C language binding to the BEA Tuxedo ATMI. General guidance on
BEA Tuxedo programming is available in Programming BEA Tuxedo ATMI Applications Using
C. Detailed pages on all the ATMI functions are in the BEA Tuxedo ATMI C Function Reference.

3-2 Using the ATMI /Q Component

Where Requests Can Originate
The calls used to place a message on a BEA Tuxedo /Q queue can originate from any client or
server process associated with the application. The list includes:

Clients or servers on the same machine as the queue space or on another machine on the
network.

Conversational programs, although you cannot have a conversational connection with a
queue (or with the TMQUEUE(5) server).

Workstation clients via a surrogate process on the server side; the administrative interface
is also entirely on the server side.

Emphasis on the Default Case
The coverage of BEA Tuxedo /Q programming in this topic primarily reflects the left-hand
portion of the figure “Queued Service Invocation” on page 1-2. In the figure, a client (or a process
acting in the role of a client) queues a message by calling tpenqueue(3c) and specifying a queue
space made available through a TMQUEUE(5) server. The client later retrieves a reply via a
tpdequeue(3c) call to TMQUEUE.

The figure “Queued Service Invocation” on page 1-2 shows the queued message being dequeued
by the server TMQFORWARD(5) and sent to an application server for processing (via tpcall(3c)).
When a reply to the tpcall() is received, TMQFORWARD enqueues the reply message. Because a
major goal of TMQFORWARD is to provide an interface between the queue space and existing
application services, it does not require further application coding. For that reason, this topic
concentrates on the client-to-queue space side.

A brief example of the use of the queued message facility is distributed with the software and is
described in “A Sample Application” on page A-1.

Enqueuing Messages
The syntax for tpenqueue() is as follows:

#include <atmi.h>

int tpenqueue(char *qspace, char *qname, TPQCTL *ctl,

 char *data, long len, long flags)

When a tpenqueue() call is issued, it tells the system to store a message on the queue identified
in qname in the space identified in qspace. The message is in the buffer pointed to by data and

Enqueu ing Messages

Using the ATMI /Q Component 3-3

has a length of len. By the use of bit settings in flags, the system is informed how the call to
tpenqueue() is to be handled. Further information about the handling of the enqueued message
and replies is provided in the TMQCTL structure pointed to by ctl.

tpenqueue(3c) Arguments
There are some important arguments to control the operation of tpenqueue(3c). Let’s look at
some of them.

tpenqueue(): The qspace Argument
qspace identifies a queue space previously created by the administrator. When a server is defined
in the SERVERS section of the configuration file, the service names it offers are aliases for the
actual queue space name (which is specified as part of the OPENINFO parameter in the GROUPS
section). For example, when your application uses the server TMQUEUE, the value pointed at by
the qspace argument is the name of a service advertised by TMQUEUE. If no service aliases are
defined, the default service is the same as the server name, TMQUEUE. In this case the
configuration file might include:

TMQUEUE

 SRVGRP = QUE1 SRVID = 1

 GRACE = 0 RESTART = Y CONV = N

 CLOPT = "-A"

or

CLOPT = "-s TMQUEUE"

The entry for server group QUE1 has an OPENINFO parameter that specifies the resource manager,
the pathname of the device and the queue space name. The qspace argument in a client program
then looks like this:

if (tpenqueue("TMQUEUE", "STRING", (TPQCTL *)&qctl,

 (char *)reqstr, 0,0) == -1) {

 Error checking

}

The example shown on the TMQUEUE(5) reference page shows how alias service names can be
included when the server is built and specified in the configuration file. The sample program in
“A Sample Application” on page A-1, also specifies an alias service name.

3-4 Using the ATMI /Q Component

tpenqueue(): The qname Argument
Within a queue space, when queues are being used to invoke services, message queues are named
according to the application services available to process requests. qname is a pointer to such an
application service. Otherwise, qname is simply the name of the location where the message is to
be stored until it is dequeued by an application (either the same application that enqueued it or
another one).

tpenqueue(): The data and len Arguments
data points to a buffer that contains the message to be processed. The buffer must be one that
was allocated with a call to tpalloc(3c). len gives the length of the message. Some BEA
Tuxedo buffer types (such as FML) do not require that the length of the message be specified; in
such cases, the len argument is ignored. data can be NULL; when it is, len is ignored and the
message is enqueued with no data portion.

tpenqueue(): The flags Arguments
flags values are used to tell the BEA Tuxedo system how the tpenqueue() call is handled; the
following are valid flags:

TPNOTRAN
If the caller is in transaction mode and this flag is set, the message is not queued within
the caller’s transaction. A caller in transaction mode that sets this flag is still subject to the
transaction timeout (and no other) when queuing the message. If message queuing fails,
the caller’s transaction is not affected.

TPNOBLOCK
The message is not enqueued if a blocking condition exists. If this flag is set and a
blocking condition exists such as the internal buffers into which the message is transferred
are full, the call fails and tperrno(5) is set to TPEBLOCK. If this flag is set and a blocking
condition exists because the target queue is opened exclusively by another application, the
call fails, tperrno() is set to TPEDIAGNOSTIC, and the diagnostic field of the TPQCTL
structure is set to QMESHARE. In the latter case, the other application, which is based on a
BEA product other than the BEA Tuxedo system, opened the queue for exclusive read
and/or write using the Queuing Services API (QSAPI).

When TPNOBLOCK is not set and a blocking condition exists, the caller blocks until the
condition subsides or a timeout occurs (either transaction or blocking timeout). If a
timeout occurs, the call fails and tperrno() is set to TPETIME.

Enqueu ing Messages

Using the ATMI /Q Component 3-5

TPNOTIME
Setting this flag signifies that the caller is willing to block indefinitely and wants to be
immune to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT
Setting this flag indicates that any underlying system calls that are interrupted by a signal
should be reissued. When this flag is not set and a signal interrupts a system call, the call
fails and sets tperrno(5) to TPGOTSIG.

TPQCTL Structure
The third argument to tpenqueue() is a pointer to a structure of type TPQCTL. The TPQCTL
structure has members that are used by the application and by the BEA Tuxedo system to pass
parameters in both directions between application programs and the queued message facility. The
client that calls tpenqueue() sets flags to mark fields the application wants the system to fill in.
The structure is also used by tpdequeue(); some of the fields do not come into play until the
application calls that function. The complete structure is shown in the following listing.

Listing 3-1 The tpqctl_t Structure

#define TMQNAMELEN 15
#define TMMSGIDLEN 32
#define TMCORRIDLEN 32

struct tpqctl_t { /* control parameters to queue primitives */
 long flags; /* indicates which of the values are set */
 long deq_time; /* absolute/relative time for dequeuing */
 long priority; /* enqueue priority */
 long diagnostic; /* indicates reason for failure */
 char msgid[TMMSGIDLEN]; /* ID of message before which to queue */
 char corrid[TMCORRIDLEN]; /* correlation ID used to identify message */
 char replyqueue[TMQNAMELEN+1]; /* queue name for reply message */
 char failurequeue[TMQNAMELEN+1]; /* queue name for failure message */
 CLIENTID cltid; /* client identifier for originating client */
 long urcode; /* application user-return code */
 long appkey; /* application authentication client key */
 long delivery_qos; /* delivery quality of service */
 long reply_qos; /* reply message quality of service */
 long exp_time; /* expiration time */
};
typedef struct tpqctl_t TPQCTL;

3-6 Using the ATMI /Q Component

The following is a list of valid bits for the flags parameter controlling input information for
tpenqueue().

TPNOFLAGS
No flags or values are set. No information is taken from the control structure. Leaving
fields of the structure not set is equivalent to a setting of TPNOFLAGS.

TPQTOP
Setting this flag indicates that the queue ordering be overridden and the message placed
at the top of the queue. This request may not be granted depending on whether or not the
queue was configured to allow overriding the queue ordering to put a message at the top
of the queue. TPQTOP and TPQBEFOREMSGID are mutually exclusive flags

TPQBEFOREMSGID
Setting this flag indicates that the queue ordering be overridden and the message placed
in the queue before the message identified by ctl->msgid. This request may not be
granted depending on whether or not the queue was configured to allow overriding the
queue ordering. TPQTOP and TPQBEFOREMSGID are mutually exclusive flags. Note that the
entire 32 bytes of the message identifier value are significant, so the value identified by
ctl->msgid must be completely initialized (for example, padded with NULL characters).

TPQTIME_ABS
If this flag is set, the message is made available after the time specified by
ctl->deq_time. The deq_time is an absolute time value as generated by time(2) or
mktime(3C), if they are available to your application, or gp_mktime(3c), provided with
the BEA Tuxedo system. The value set in ctl->deq_time is the number of seconds since
00:00:00 Universal Coordinated Time—UTC, January 1,1970. The absolute time is set
based on the clock on the machine where the queue manager process resides.
TPQTIME_ABS and TPQTIME_REL are mutually exclusive flags.

TPQTIME_REL
If this flag is set, the message is made available after a time relative to the completion of
the enqueuing operation. ctl->deq_time specifies the number of seconds to delay after
the enqueuing completes before the submitted message should be available.
TPQTIME_ABS and TPQTIME_REL are mutually exclusive flags.

TPQPRIORITY
If this flag is set, the priority at which the request should be enqueued is stored in
ctl->priority. The priority must be in the range 1 to 100, inclusive. The higher the
number, the higher the priority, that is, a message with a higher number is dequeued before
a message with a lower number from queues ordered by priority. For queues not ordered
by priority, the value is informational.

Enqueu ing Messages

Using the ATMI /Q Component 3-7

If this flag is not set, the priority for the message is 50 by default.

TPQCORRID
If this flag is set, the correlation identifier value specified in ctl->corrid is available
when a request is dequeued with tpdequeue(3c). This identifier accompanies any reply
or failure message that is queued so an application can correlate a reply with a particular
request. Note that the entire 32 bytes of the correlation identifier value are significant, so
the value specified in ctl->corrid must be completely initialized (for example, padded
with NULL characters).

TPQREPLYQ
If this flag is set, a reply queue named in ctl->replyqueue is associated with the queued
message. Any reply to the message is queued to the named queue within the same queue
space as the request message. This string must be NULL-terminated (maximum 15
characters in length). If a reply is generated for the service and a reply queue is not
specified or the reply queue does not exist, the reply is dropped.

TPQFAILUREQ
If this flag is set, a failure queue named in the ctl->failurequeue is associated with the
queued message. If (1) the enqueued message is processed by TMQFORWARD(), (2)
TMQFORWARD was started with the -d option, and (3) the service fails and returns a
non-NULL reply, a failure message consisting of the reply and its associated tpurcode is
enqueued to the named queue within the same queue space as the original request
message. This string must be NULL-terminated (maximum 15 characters in length).

TPQDELIVERYQOS, TPQREPLYQOS
If the TPQDELIVERYQOS flag is set, the flags specified by ctl->delivery_qos control
the quality of service for delivery of the message. In this case, one of three mutually
exclusive flags— TPQQOSDEFAULTPERSIST, TPQQOSPERSISTENT, or
TPQQOSNONPERSISTENT—must be set in ctl->delivery_qos. If TPQDELIVERYQOS is
not set, the default delivery policy of the target queue dictates the delivery quality of
service for the message.

If the TPQREPLYQOS flag is set, the flags specified by ctl->reply_qos control the quality
of service for any reply to the message. In this case, one of three mutually exclusive
flags—TPQQOSDEFAULTPERSIST, TPQQOSPERSISTENT, or TPQQOSNONPERSISTENT—
must be set in ctl->reply_qos. The TPQREPLYQOS flag is used when a reply is returned
from messages processed by TMQFORWARD. Applications not using TMQFORWARD to invoke
services may use the TPQREPLYQOS flag as a hint for their own reply mechanism.

If TPQREPLYQOS is not set, the default delivery policy of the ctl->replyqueue queue
dictates the delivery quality of service for any reply. Note that the default delivery policy
is determined when the reply to a message is enqueued. That is, if the default delivery

3-8 Using the ATMI /Q Component

policy of the reply queue is modified between the time that the original message is
enqueued and the reply to the message is enqueued, the policy used is the one in effect
when the reply is finally enqueued.

The following is the list of valid flags for ctl->delivery_qos and ctl->reply_qos:

TPQQOSDEFAULTPERSIST
This flag specifies that the message is to be delivered using the default delivery
policy specified on the target queue.

TPQQOSPERSISTENT
This flag specifies that the message is to be delivered in a persistent manner using
the disk-based delivery method. When specified, this flag overrides the default
delivery policy specified on the target queue.

TPQQOSNONPERSISTENT
This flag specifies that the message is to be delivered in a non-persistent manner
using the memory-based delivery method. Specifically, the message is queued in
memory until it is dequeued. When specified, this flag overrides the default
delivery policy specified on the target queue. If the caller is transactional,
non-persistent messages are enqueued within the caller’s transaction, however,
non-persistent messages are lost if the system is shut down, crashes, or the IPC
shared memory for the queue space is removed.

TPQEXPTIME_ABS
If this flag is set, the message has an absolute expiration time, which is the absolute time
when the message will be removed from the queue.
The absolute expiration time is determined by the clock on the machine where the queue
manager process resides.

The absolute expiration time is indicated by the value stored in ctl->exp_time. The
value of ctl->exp_time must be set to an absolute time value generated by time(2),
mktime(3C), or gp_mktime(3c) (the number of seconds since 00:00:00 Universal
Coordinated Time—UTC, January 1, 1970).

If an absolute time is specified that is earlier than the time of the enqueue operation, the
operation succeeds, but the message is not counted for the purpose of calculating
thresholds. If the expiration time is before the message availability time, the message is
not available for dequeuing unless either the availability or expiration time is changed so
that the availability time is before the expiration time. In addition, these messages are
removed from the queue at expiration time even if they were never available for
dequeuing. If a message expires while it is within a transaction, the expiration does not
cause the transaction to fail. Messages that expire while being enqueued or dequeued

Enqueu ing Messages

Using the ATMI /Q Component 3-9

within a transaction are removed from the queue when the transaction ends. There is no
notification that the message has expired.

TPQEXPTIME_ABS, TPQEXPTIME_REL, and TPQEXPTIME_NONE are mutually exclusive
flags. If none of these flags is set, the default expiration time associated with the target
queue is applied to the message.

TPQEXPTIME_REL
If this flag is set, the message has a relative expiration time, which is the number of
seconds after the message arrives at the queue that the message is removed from the
queue. The relative expiration time is indicated by the value stored in ctl->exp_time.

If the expiration time is before the message availability time, the message is not available
for dequeuing unless either the availability or expiration time is changed so that the
availability time is before the expiration time. In addition, these messages are removed
from the queue at expiration time even if they were never available for dequeuing. The
expiration of a message during a transaction, does not cause the transaction to fail.
Messages that expire while being enqueued or dequeued within a transaction are removed
from the queue when the transaction ends. There is no acknowledgment that the message
has expired.

TPQEXPTIME_ABS, TPQEXPTIME_REL, and TPQEXPTIME_NONE are mutually exclusive
flags. If none of these flags is set, the default expiration time associated with the target
queue is applied to the message.

TPQEXPTIME_NONE
Setting this flag indicates that the message should not expire, even if the default policy of
the queue includes an expiration time.

TPQEXPTIME_ABS, TPQEXPTIME_REL, and TPQEXPTIME_NONE are mutually exclusive
flags. If none of these flags is set, the default expiration time associated with the target
queue is applied to the message.

Additionally, the urcode field of TPQCTL can be set with a user-return code. This value will be
returned to the application that calls tpdequeue(3c) to dequeue the message.

On output from tpenqueue(), the following fields may be set in the TPQCTL structure:

long flags; /* indicates which of the values are set */

char msgid[32]; /* ID of enqueued message */

long diagnostic; /* indicates reason for failure */

The following is a valid bit for the flags parameter controlling output information from
tpenqueue(). If this flag is turned on when tpenqueue() is called, the /Q server TMQUEUE(5)
populates the associated element in the structure with a message identifier. If this flag is turned

3-10 Using the ATMI /Q Component

off when tpenqueue() is called, TMQUEUE() does not populate the associated element in the
structure with a message identifier.

TPQMSGID
If this flag is set and the call to tpenqueue() is successful, the message identifier is stored
in ctl->msgid. The entire 32 bytes of the message identifier value are significant, so the
value stored in ctl->msgid is completely initialized (for example, padded with null
characters). The actual padding character used for initialization varies between releases of
the BEA Tuxedo /Q component.

The remaining members of the control structure are not used on input to tpenqueue().

If the call to tpenqueue() fails and tperrno(5) is set to TPEDIAGNOSTIC, a value indicating
the reason for failure is returned in ctl->diagnostic. The possible values are:

[QMEINVAL]
An invalid flag value was specified.

[QMEBADRMID]
An invalid resource manager identifier was specified.

[QMENOTOPEN]
The resource manager is not currently open.

[QMETRAN]
The call was made in transaction mode or was made with the TPNOTRAN flag set and an
error occurred trying to start a transaction in which to enqueue the message. This
diagnostic is not returned by queue managers from BEA Tuxedo release 7.1 or later.

[QMEBADMSGID]
An invalid message identifier was specified.

[QMESYSTEM]
A system error occurred. The exact nature of the error is written to a log file.

[QMEOS]
An operating system error occurred.

[QMEABORTED]
The operation was aborted. If the aborted operation was being executed within a global
transaction, the global transaction is marked rollback-only. Otherwise, the queue manager
aborts the operation.

[QMEPROTO]
An enqueue was done when the transaction state was not active.

Enqueu ing Messages

Using the ATMI /Q Component 3-11

[QMEBADQUEUE]
An invalid or deleted queue name was specified.

[QMENOSPACE]
Due to an insufficient resource, such as no space on the queue, the message with its
required quality of service (persistent or non-persistent storage) was not enqueued.
QMENOSPACE is returned when any of the following configured resources is exceeded: (1)
the amount of disk (persistent) space allotted to the queue space, (2) the amount of
memory (non-persistent) space allotted to the queue space, (3) the maximum number of
simultaneously active transactions allowed for the queue space, (4) the maximum number
of messages that the queue space can contain at any one time, (5) the maximum number
of concurrent actions that the Queuing Services component can handle, or (6) the
maximum number of authenticated users that may concurrently use the Queuing Services
component.

[QMERELEASE]
An attempt was made to enqueue a message to a queue manager that is from a version of
the BEA Tuxedo system that does not support a newer feature.

[QMESHARE]
When enqueuing a message from a specified queue, the specified queue is opened
exclusively by another application. The other application is one based on a BEA product
other than the BEA Tuxedo system that opened the queue for exclusive read and/or write
using the Queuing Services API (QSAPI).

Overriding the Queue Order
If the administrator, in creating a queue, allows tpenqueue() calls to override the order of
messages on the queue, you have two mutually exclusive ways to use that capability. You can
specify that the message is to be placed at the top of the queue by setting flags to include TPQTOP
or you can specify that it be placed ahead of a specific message by setting flags to include
TPQBEFOREMSGID and setting ctl->msgid to the ID of the message you wish to precede. This
assumes that you saved the message-ID from a previous call in order to be able to use it here.
Your administrator must tell you what the queue supports; it can be created to allow either or both
of these overrides, or to allow neither.

Overriding the Queue Priority
You can set a value in ctl->priority to specify the priority of the message. The value must be
in the range 1 to 100; the higher the number the higher the priority. If priority was not one of
the queue ordering parameters, setting a priority here has no effect on the dequeuing order,

3-12 Using the ATMI /Q Component

however the priority value is retained so that the value can be inspected when the message is
dequeued.

Setting a Message Availability Time
You can specify in deq_time either an absolute time or a time relative to the completion of the
enqueuing operation for the message to be made available. You set flags to include either
TPQTIME_ABS or TPQTIME_REL to indicate how the value should be treated. A queue may be
created with time as a queue ordering criterion, in which case the messages are ordered by the
message availability time.

BEA Tuxedo /Q provides a function, gp_mktime(3c), that is used to convert a date and time
provided in a tm structure to the number of seconds since January 1, 1970. The time(2) and
mktime(3C) functions may also be used instead of gp_mktime(3c). The value is returned in
time_t, a typedef'd long. To set an absolute time for the message to be dequeued (we are using
12:00 noon, December 9, 2001), do the following.

1. Place the values for the date you want to use in the tm structure.

#include <stdio.h>
#include <time.h>
static char *const wday[] = {
 "Sunday", "Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday", "Saturday", "-unknown-"
};
struct tm time_str;
/*...*/
time_str.tm_year = 2001 - 1900;
time_str.tm_mon = 12 - 1;
time_str.tm_mday = 9;
time_str.tm_hour = 12;
time_str.tm_min = 0;
time_str.tm_sec = 1;
time_str.tm_isdst = -1;

2. Call gp_mktime to produce a value for deq_time and set the flags to indicate that an
absolute time is being provided.

#include <atmi.h>
TPQCTL qctl;
if ((qctl->deq_time = (long)gp_mktime(&time_str)) == -1) {
 /* check for errors */
}
qctl->flags = TPQTIME_ABS

3. Call tpenqueue().

Dequeu ing Messages

Using the ATMI /Q Component 3-13

if (tpenqueue(qspace, qname, qctl, *data,*len,*flags) == -1) {
 /* check for errors */
}

If you want to specify a relative time for dequeuing, for example, nnn seconds after the
completion of the enqueuing operation, place the number of seconds in deq_time and set flags
to include TPQTIME_REL.

tpenqueue() and Transactions
If a caller of tpenqueue() is in transaction mode and TPNOTRAN is not set, then the enqueuing is
done within the caller's transaction. The caller knows for certain from the success or failure of
tpenqueue() whether the message was enqueued or not. If the call succeeds, the message is
guaranteed to be on the queue. If the call fails, the transaction is rolled back, including the part
where the message was placed on the queue.

If a caller of tpenqueue() is not in transaction mode or if TPNOTRAN is set, the message is
enqueued outside of the caller’s transaction. If the call to tpenqueue() returns success, the
message is guaranteed to be on the queue. If the call to tpenqueue() fails with a communication
error or with a timeout, the caller is left in doubt about whether the failure occurred before or after
the message was enqueued.

Note that specifying TPNOTRAN while the caller is not in transaction mode has no meaning.

Dequeuing Messages
The syntax for tpdequeue() is as follows:

#include <atmi.h>

int tpdequeue(char *qspace, char *qname, TPQCTL *ctl, \

 char **data, long *len, long flags)

When this call is issued it tells the system to dequeue a message from the qname queue in the
queue space named qspace. The message is placed in a buffer (originally allocated by
tpalloc(3c)) at the address pointed to by *data. len points to the length of the data. If len is
0 on return from tpdequeue(), the message had no data portion. By the use of bit settings in
flags, the system is informed how the call to tpdequeue() is to be handled. The TPQCTL
structure pointed to by ctl carries further information about how the call should be handled.

3-14 Using the ATMI /Q Component

tpdequeue(3c) Arguments
There are some important arguments to control the operation of tpdequeue(3c). Let's look at
some of them.

tpdequeue(): The qspace Argument
qspace identifies a queue space previously created by the administrator. When the TMQUEUE
server is defined in the SERVERS section of the configuration file, the service names it offers are
aliases for the actual queue space name (which is specified as part of the OPENINFO parameter in
the GROUPS section). For example, when your application uses the server TMQUEUE, the value
pointed at by the qspace argument is the name of a service advertised by TMQUEUE. If no service
aliases are defined, the default service is the same as the server name, TMQUEUE. In this case the
configuration file may include:

TMQUEUE

 SRVGRP = QUE1 SRVID = 1

 GRACE = 0 RESTART = Y CONV = N

 CLOPT = "-A"

or

 CLOPT = "-s TMQUEUE"

The entry for server group QUE1 has an OPENINFO parameter that specifies the resource manager,
the pathname of the device and the queue space name. The qspace argument in a client program
then looks like this:

if (tpdequeue("TMQUEUE", "REPLYQ", (TPQCTL *)&qctl,

 (char **)&reqstr, &len,TPNOTIME) == -1) {

 Error checking

}

The example shown on the TMQUEUE(5) reference page shows how alias service names can be
included when the server is built and specified in the configuration file. The sample program in
“A Sample Application” on page A-1, also specifies an alias service/queue space name.

tpdequeue(): The qname Argument
Queue names in a queue space must be agreed upon by the applications that will access the queue
space. This is especially important for reply queues. If qname refers to a reply queue, the
administrator creates it (and often an error queue) in the same manner that he or she creates any
other queue. qname is a pointer to the name of the queue from which to retrieve the message or
reply.

Dequeu ing Messages

Using the ATMI /Q Component 3-15

tpdequeue(): The data and len Arguments
These arguments have slightly different meanings than their counterparts in tpenqueue().
*data points to the address of a buffer where the system is to place the message being dequeued.
When tpdequeue() is called, it is an error for its value to be NULL.

When tpdequeue() returns, len points to a value of type long that carries information about
the length of the data retrieved. If it is 0, it means that the reply had no data portion. This can be
a legitimate and successful reply in some applications; receiving even a 0 length reply can be used
to show successful processing of the enqueued request. If you wish to know whether the buffer
has changed from before the call to tpdequeue(), save the length prior to the call to
tpdequeue() and compare it to len after the call completes.

tpdequeue(): The flags Arguments
flags values are used to tell the BEA Tuxedo system how the tpdequeue() call is handled; the
following are valid flags:

TPNOTRAN
If the caller is in transaction mode and this flag is set, the message is not dequeued within
the caller’s transaction. A caller in transaction mode that sets this flag is still subject to the
transaction timeout (and no other) when dequeuing the message. If message dequeuing
fails, the caller’s transaction is not affected.

TPNOBLOCK
The message is not dequeued if a blocking condition exists. If this flag is set and a
blocking condition exists such as the internal buffers into which the message is transferred
are full, the call fails and tperrno(5) is set to TPEBLOCK. If this flag is set and a blocking
condition exists because the target queue is opened exclusively by another application, the
call fails, tperrno() is set to TPEDIAGNOSTIC, and the diagnostic field of the TPQCTL
structure is set to QMESHARE. In the latter case, the other application, which is based on a
BEA product other than the BEA Tuxedo system, opened the queue for exclusive read
and/or write using the Queuing Services API (QSAPI).

When TPNOBLOCK is not set and a blocking condition exists, the caller blocks until the
condition subsides or a timeout occurs (either transaction or blocking timeout). This
blocking condition does not include blocking on the queue itself if the TPQWAIT option in
flags (of the TPQCTL structure) is specified.

TPNOTIME
Setting this flag signifies that the caller is willing to block indefinitely and wants to be
immune to blocking timeouts. Transaction timeouts may still occur.

3-16 Using the ATMI /Q Component

TPNOCHANGE
When this flag is set, the type of the buffer pointed to by *data is not allowed to change.
By default, if a buffer is received that differs in type from the buffer pointed to by *data,
then *data's buffer type changes to the received buffer's type so long as the receiver
recognizes the incoming buffer type. That is, the type and subtype of the received buffer
must match the type and subtype of the buffer pointed to by *data.

TPSIGRSTRT
Setting this flag indicates that any underlying system calls that are interrupted by a signal
should be reissued. When this flag is not set and a signal interrupts a system call, the call
fails and sets tperrno(5) to TPGOTSIG.

TPQCTL Structure
The third argument to tpdequeue() is a pointer to a structure of type TPQCTL. The TPQCTL
structure has members that are used by the application and by the BEA Tuxedo system to pass
parameters in both directions between application programs and the queued message facility. The
client that calls tpdequeue() sets flags to mark fields for which the system should supply values.
As described earlier, the structure is also used by tpenqueue(); some of the members apply only
to that function. The entire structure is shown in “The tpqctl_t Structure” on page 3-5.

As input to tpdequeue(), the following fields may be set in the TPQCTL structure:

long flags; /* indicates which of the values are set */

char msgid[32]; /* id of message to dequeue */

char corrid[32]; /* correlation identifier of message to dequeue */

The following are valid flags on input to tpdequeue():

TPNOFLAGS
No flags are set. No information is taken from the control structure.

TPQGETBYMSGID
Setting this flag requests that the message with the message identifier specified by
ctl->msgid be dequeued. The message identifier is determined through a prior call to
tpenqueue(). Note that the message identifier changes if the message is moved from one
queue to another. Note also that the entire 32 bytes of the message identifier value are
significant, so the value specified by ctl->msgid must be completely initialized (for
example, padded with null characters).

TPQGETBYCORRID
Setting this flag requests that the message with the correlation identifier specified by
ctl->corrid be dequeued. The correlation identifier is specified by the application when

Dequeu ing Messages

Using the ATMI /Q Component 3-17

enqueuing the message with tpenqueue(). Note that the entire 32 bytes of the correlation
identifier value are significant, so the value specified by ctl->corrid must be
completely initialized (for example, padded with null characters).

TPQWAIT
Setting this flag indicates that an error should not be returned if the queue is empty.
Instead, the process should wait until a message is available. If TPQWAIT is set in
conjunction with TPQGETBYMSGID or TPQGETBYCORRID, it indicates that an error should
not be returned if no message with the specified message identifier or correlation identifier
is present in the queue. Instead, the process should wait until a message meeting the
criteria is available. The process is still subject to the caller’s transaction timeout, or, when
not in transaction mode, the process is still subject to the timeout specified for the
TMQUEUE process by the -t option.

If a message matching the desired criteria is not immediately available and the configured
action resources are exhausted, tpdequeue() returns -1, tperrno() is set to
TPEDIAGNOSTIC, and the diagnostic field of the TPQCTL structure is set to QMESYSTEM.

Note that each tpdequeue() request specifying the TPQWAIT control parameter requires
that a queue manager (TMQUEUE) action object be available if a message satisfying the
condition is not immediately available. If an action object is not available, the
tpdequeue() request fails. The number of available queue manager actions are specified
when a queue space is created or modified. When a waiting dequeue request completes,
the associated action object associated is made available for another request.

TPQPEEK
If this flag is set, the specified message is read but is not removed from the queue. The
TPNOTRAN flag must also be set.

When a thread is non-destructively dequeuing a message using TPQPEEK, the message
may not be seen by other non-blocking dequeuers for the brief time the system is
processing the non-destructive dequeue request. This includes dequeuers using specific
selection criteria (such as message identifier and correlation identifier) that are looking for
the message currently being non-destructively dequeued.

The following is a list of valid bits for the flags parameter controlling output information from
tpdequeue(). For any of these bits, if the flag bit is turned on when tpdequeue() is called, the
associated field in the structure (see “The tpqctl_t Structure” on page 3-5) is populated with the
value provided when the message was queued, and the bit remains set. If a value is not available
(that is, no value was provided when the message was queued) or the bit is not set when
tpdequeue() is called, tpdequeue() completes with the flag turned off.

3-18 Using the ATMI /Q Component

TPQPRIORITY
If this flag is set, the call to tpdequeue() is successful, and the message was queued with
an explicit priority, then the priority is stored in ctl->priority. The priority is in the
range 1 to 100, inclusive, and the higher the number, the higher the priority (that is, a
message with a higher number is dequeued before a message with a lower number). For
queues not ordered by priority, the value is informational.

If no priority was explicitly specified when the message was queued and the call to
tpdequeue() is successful, the priority for the message is 50.

TPQMSGID
If this flag is set and the call to tpdequeue() is successful, the message identifier is stored
in ctl->msgid. The entire 32 bytes of the message identifier value are significant.

TPQCORRID
If this flag is set, the call to tpdequeue() is successful, and the message was queued with
a correlation identifier, then the correlation identifier is stored in ctl->corrid. The
entire 32 bytes of the correlation identifier value are significant. Any BEA Tuxedo /Q
provided reply to a message has the correlation identifier of the original request message.

TPQDELIVERYQOS
If this flag is set, the call to tpdequeue() is successful, and the message was queued with
a delivery quality of service, then the flag—TPQQOSDEFAULTPERSIST,
TPQQOSPERSISTENT, or TPQQOSNONPERSISTENT—is stored in ctl->delivery_qos. If
no delivery quality of service was explicitly specified when the message was queued, the
default delivery policy of the target queue dictates the delivery quality of service for the
message.

TPQREPLYQOS
If this flag is set, the call to tpdequeue() is successful, and the message was queued with
a reply quality of service, then the flag—TPQQOSDEFAULTPERSIST, TPQQOSPERSISTENT,
or TPQQOSNONPERSISTENT—is stored in ctl->reply_qos. If no reply quality of service
was explicitly specified when the message was queued, the default delivery policy of the
ctl->replyqueue queue dictates the delivery quality of service for any reply.

Note that the default delivery policy is determined when the reply to a message is
enqueued. That is, if the default delivery policy of the reply queue is modified between
the time that the original message is enqueued and the reply to the message is enqueued,
the policy used is the one in effect when the reply is finally enqueued.

TPQREPLYQ
If this flag is set, the call to tpdequeue() is successful, and the message was queued with
a reply queue, then the name of the reply queue is stored in ctl->replyqueue. Any reply

Dequeu ing Messages

Using the ATMI /Q Component 3-19

to the message should go to the named reply queue within the same queue space as the
request message.

TPQFAILUREQ
If this flag is set, the call to tpdequeue() is successful, and the message was queued with
a failure queue, then the name of the failure queue is stored in ctl->failurequeue. Any
failure message should go to the named failure queue within the same queue space as the
request message.

The following remaining bits for the flags parameter are cleared (set to zero) when
tpdequeue() is called: TPQTOP, TPQBEFOREMSGID, TPQTIME_ABS, TPQTIME_REL,
TPQEXPTIME_ABS, TPQEXPTIME_REL, and TPQEXPTIME_NONE. These bits are valid bits for the
flags parameter controlling input information for tpenqueue().

If the call to tpdequeue() failed and tperrno(5) is set to TPEDIAGNOSTIC, a value indicating
the reason for failure is returned in ctl->diagnostic. The valid codes for ctl->diagnostic
include those for tpenqueue() described in “TPQCTL Structure” on page 3-5 (except for
QMENOSPACE and QMERELEASE) and the following additional codes.

[QMENOMSG]
No message was available for dequeuing. Note that it is possible that the message exists
on the queue and another application process has read the message from the queue. In this
case, the message may be put back on the queue if that other process rolls back the
transaction.

[QMEINUSE]
When dequeuing a message by message identifier or correlation identifier, the specified
message is in use by another transaction. Otherwise, all messages currently on the queue
are in use by other transactions. This diagnostic is not returned by queue managers from
BEA Tuxedo release 7.1 or later.

Using TPQWAIT
When tpdequeue() is called with flags (of the TPQCTL structure) set to include TPQWAIT, if a
message is not immediately available, the TMQUEUE server waits for the arrival, on the queue, of
a message that matches the tpdequeue() request before tpdequeue() returns control to the
caller. The TMQUEUE process sets the waiting request aside and processes requests from other
processes while waiting to satisfy the first request. If TPQGETBYMSGID and/or TPQGETBYCORRID
are also specified, the server waits until a message with the indicated message identifier and/or
correlation identifier becomes available on the queue. If neither of these flags is set, the server
waits until any message is put onto the queue. The amount of time it waits is controlled by the

3-20 Using the ATMI /Q Component

caller’s transaction timeout, if the call is in transaction mode, or by the -t option in the CLOPT
parameter of the TMQUEUE server, if the call is not in transaction mode.

The TMQUEUE server can handle a number of waiting tpdequeue() requests at the same time, as
long as action resources are available to handle the request. If there are not enough action
resources configured for the queue space, tpdequeue() fails. If this happens on your system,
increase the number of action resources for the queue space.

Error Handling When Using TMQFORWARD Services
In considering how best to handle errors when dequeuing it is helpful to differentiate between two
types of errors:

Errors encountered by TMQFORWARD(5) as it attempts to dequeue a message to forward to
the requested service

Errors that occur in the service that processes the request

By default, if a message is dequeued within a transaction and the transaction is rolled back, then
(if the retry parameter is greater than 0) the message ends up back on the queue and can be
dequeued and executed again. It may be desirable to delay for a short period before retrying to
dequeue and execute the message, allowing the transient problem to clear (for example, allowing
for locks in a database to be released by another transaction). Normally, a limit on the number of
retries is also useful to ensure that an application flaw doesn't cause significant waste of
resources. When a queue is configured by the administrator, both a retry count and a delay period
(in seconds) can be specified. A retry count of 0 implies that no retries are done. After the retry
count is reached, the message is moved to an error queue that is configured by the administrator
for the queue space. If the error queue is not configured, then messages that have reached the retry
count are simply deleted. Messages on the error queue must be handled by the administrator who
must work out a way of notifying the originator that meets the requirements of the application.
The message handling method chosen should be mostly transparent to the originating program
that put the message on the queue. There is a virtual guarantee that once a message is successfully
enqueued it will be processed according to the parameters of tpenqueue() and the attributes of
the queue. Notification that a message has been moved to the error queue should be a rare
occurrence in a system that has properly tuned its queue parameters.

A failure queue (normally, different from the queue space error queue) may be associated with
each queued message. This queue is specified on the enqueuing call as the place to put any failure
messages. The failure message for a particular request can be identified by an
application-generated correlation identifier that is associated with the message when it is
enqueued.

Dequeu ing Messages

Using the ATMI /Q Component 3-21

The default behavior of retrying until success (or a predefined limit) is quite appropriate when the
failure is caused by a transient problem that is later resolved, allowing the message to be handled
appropriately.

There are cases where the problem is not transient. For example, the queued message may request
operating on an account that does not exist (and the application is such that it won't come into
existence within a reasonable time period if at all). In this case, it is desirable not to waste any
resources by trying again. If the application programmer or administrator determines that failures
for a particular operation are never transient, then it is simply a matter of setting the retry count
to zero, although this will require a mechanism to constantly clear the queue space error queue of
these messages (for example, a background client that reads the queue periodically). More likely,
it is the case that some problems will be transient (for example, database lock contention) and
some problems will be permanent (for example, the account doesn't exist) for the same service.

In the case that the message is processed (dequeued and passed to the application via a tpcall())
by TMQFORWARD, there is no mechanism in the information returned by tpcall() to indicate
whether a TPESVCFAIL error is caused by a transient or permanent problem.

As in the case where the application is handling the dequeuing, a simple solution is to return
success for the service, that is, tpreturn with TPSUCCESS, even though the operation failed. This
allows the transaction to be committed and the message removed from the queue. If reply
messages are being used, the information in the buffer returned from the service can indicate that
the operation failed and the message will be enqueued on the reply queue. The rcode argument
of tpreturn can also be used to return application specific information.

In the case where the service fails and the transaction must be rolled back, it is not clear whether
or not TMQFORWARD should execute a second transaction to remove the message from the queue
without further processing. By default, TMQFORWARD will not delete a message for a service that
fails. TMQFORWARD's transaction is rolled back and the message is restored to the queue. A
command-line option may be specified for TMQFORWARD that indicates that a message should be
deleted from the queue if the service fails and a reply message is sent back with length greater
than 0. The message is deleted in a second transaction. The queue must be configured with a delay
time and retry count for this to work. If the message is associated with a failure queue, the reply
data will be enqueued to the failure queue in the same transaction as the one in which the message
is deleted from the queue.

3-22 Using the ATMI /Q Component

Procedure for Dequeuing Replies from Services Invoked
Through TMQFORWARD
If your application expects to receive replies to queued messages, the following is a procedure
you may want to follow:

1. As a preliminary step, the queue space must include a reply queue and a failure queue. The
application must also agree on the content of the correlation identifier. The service should be
coded to return TPSUCCESS on a logical failure and return an explanatory code in the rcode
argument of tpreturn.

2. When you call tpenqueue() to put the message on the queue, set flags to turn on the bits
for the following flags:

TPQCORRID TPQREPLYQ
TPQFAILUREQ TPQMSGID

Fill in the values for corrid, replyqueue and failurequeue before issuing the call. On
return from the call, save corrid.

3. When you call tpdequeue() to check for a reply, specify the reply queue in the qname
argument and set flags to turn on the bits for the following flags:

TPQCORRID TPQREPLYQ
TPQFAILUREQ TPQMSGID
TPQGETCORRID

Use the saved correlation identifier to populate corrid before issuing the call. If the call to
tpdequeue() fails and sets tperrno(5) to TPEDIAGNOSTIC, then further information is
available in diagnostic. If you receive the error code QMENOMSG, it means that no
message was available for dequeuing.

4. Set up another call to tpdequeue(). This time have qname point to the name of the failure
queue and set flags to turn on the bits for the following flags:

TPQCORRID TPQREPLYQ
TPQFAILUREQ TPQMSGID
TPQGETBYCORRID

Populate corrid with the correlation identifier. When the call returns, check len to see if
data has been received and check urcode to see if the service has returned a user return
code.

Sequent ia l P rocess ing o f Messages

Using the ATMI /Q Component 3-23

Sequential Processing of Messages
Sequential processing of messages can be achieved by having one service enqueue a message for
the next service in the chain before its transaction is committed. The originating process can track
the progress of the sequence with a series of tpdequeue() calls to the reply_queue, if each
member uses the same correlation-ID and returns a 0 length reply.

Alternatively, word of the successful completion of the entire sequence can be returned to the
originator by using unsolicited notification. To make sure that the last transaction in the sequence
ended with a tpcommit, a job step can be added that calls tpnotify using the client identifier
that is carried in the TPQCTL structure returned from tpdequeue() or in the TPSVCINFO structure
passed to the service. The originating client must have called tpsetunsol to name the
unsolicited message handler being used.

Using Queues for Peer-to-Peer Communication
In all of the foregoing discussion of enqueuing and dequeuing messages there has been an
implicit assumption that queues were being used as an alternative form of request/response
processing. A message does not have to be a service request. The queued message facility can
transfer data from one process to another as effectively as a service request. This style of
communication between applications or clients is called peer-to-peer communication.

If it suits your application to use BEA Tuxedo /Q for this purpose, have the administrator create
a separate queue and code your own receiving program for dequeuing messages from that queue.

3-24 Using the ATMI /Q Component

Using the ATMI /Q Component 4-1

C H A P T E R 4

BEA Tuxedo /Q COBOL Language
Programming

This topic includes the following sections:

Introduction

Prerequisite Knowledge

Where Requests Can Originate

Emphasis on the Default Case

Enqueuing Messages

Dequeuing Messages

Sequential Processing of Messages

Introduction
This topic provides information about using the ATMI COBOL language functions for
enqueuing and dequeuing messages: TPENQUEUE(3cbl) and TPDEQUEUE(3cbl), plus some
ancillary functions.

Prerequisite Knowledge
The BEA Tuxedo programmer coding client or server programs for the queued message facility
should be familiar with the COBOL language binding to the BEA Tuxedo ATMI. General
guidance on BEA Tuxedo programming is available in Programming BEA Tuxedo ATMI

4-2 Using the ATMI /Q Component

Applications Using COBOL. Detailed pages on all the ATMI functions are in the BEA Tuxedo
ATMI COBOL Function Reference.

Where Requests Can Originate
The calls used to place a message on a BEA Tuxedo /Q queue can originate from any client or
server process associated with the application. The list includes:

Clients or servers on the same machine as the queue space or on another machine on the
network

Conversational programs, although you cannot have a conversational connection with a
queue (or with the TMQUEUE(5) server)

Workstation clients via a surrogate process on the native side; the administrative interface
is also entirely on the native side

Emphasis on the Default Case
The discussion of BEA Tuxedo /Q programming in this topic primarily reflects the client-side
portion of the figure “Queued Service Invocation” on page 1-2. The figure shows how a client (or
a process acting in the role of a client) queues a message by calling TPENQUEUE(3cbl) and
specifying a queue space made available through a TMQUEUE(5) server. The client later retrieves
a reply via a TPDEQUEUE(3cbl) call to TMQUEUE.

The figure shows the queued message being dequeued by the server TMQFORWARD(5) and sent to
an application server for processing (via TPCALL(3cbl)). When a reply to TPCALL is received,
TMQFORWARD enqueues the reply message. Because TMQFORWARD provides an interface between
the queue space and existing application services, further application coding is not required. For
that reason, this topic concentrates on the client-to-queue space side.

Some examples of customization are given after the discussion of the basic model.

Enqueuing Messages
The syntax for TPENQUEUE() is as follows:

01 TPQUEDEF-REC.
 COPY TPQUEDEF.
01 TPTYPE-REC.
 COPY TPTYPE.
01 DATA-REC.

Enqueu ing Messages

Using the ATMI /Q Component 4-3

 COPY User Data.
01 TPSTATUS-REC.
 COPY TPSTATUS.
CALL "TPENQUEUE" USING TPQUEDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

When a TPENQUEUE() call is issued it tells the system to store a message on the queue identified
in QNAME in TPQUEDEF-REC in the space identified in QSPACE-NAME in TPQUEDEF-REC. The
message is in DATA-REC, and LEN in TPTYPE-REC has the length of the message. By the use of
settings in TPQUEDEF-REC, the system is informed how the call to TPENQUEUE() is to be handled.
Further information about the handling of the enqueued message and replies is provided in the
TPQUEDEF-REC structure.

TPENQUEUE() Arguments
There are some important arguments to control the operation of TPENQUEUE(3cbl). Lets look at
some of them.

TPENQUEUE(): The QSPACE-NAME in TPQUEDEF-REC Argument
QSPACE-NAME identifies a queue space previously created by the administrator. When a server is
defined in the SERVERS section of the configuration file, the service names it offers are aliases for
the actual queue space name (which is specified as part of the OPENINFO parameter in the GROUPS
section). For example, when your application uses the server TMQUEUE, the value pointed at by
QSPACE-NAME is the name of a service advertised by TMQUEUE. If no service aliases are defined,
the name of the default service is the same as the server name, TMQUEUE. In this case the
configuration file might include the following:

TMQUEUE

 SRVGRP = QUE1 SRVID = 1

 GRACE = 0 RESTART = Y CONV = N

 CLOPT = "-A"

or

 CLOPT = "-s TMQUEUE"

The entry for server group QUE1 has an OPENINFO parameter that specifies the resource manager,
the pathname of the device and the queue space name. The QSPACE-NAME argument in a client
program then looks like this:

 01 TPQUEDEF-REC.

 COPY TPQUEDEF.

 01 TPTYPE-REC.

 COPY TPTYPE.

4-4 Using the ATMI /Q Component

 01 TPSTATUS-REC.

 COPY TPSTATUS.

 01 USER-DATA-REC PIC X(100).

*

*

*

 MOVE LOW-VALUES TO TPQUEDEF-REC.

 MOVE "TMQUEUE" TO QSPACE-NAME IN TPQUEDEF-REC.

 MOVE "STRING" TO QNAME IN TPQUEDEF-REC.

 SET TPTRAN IN TPQUEDEF-REC TO TRUE.

 SET TPBLOCK IN TPQUEDEF-REC TO TRUE.

 SET TPTIME IN TPQUEDEF-REC TO TRUE.

 SET TPSIGRSTRT IN TPQUEDEF-REC TO TRUE.

 MOVE LOW-VALUES TO TPTYPE-REC.

 MOVE "STRING" TO REC-TYPE IN TPTYPE-REC.

 MOVE LENGTH OF USER-DATA-REC TO LEN IN TPTYPE-REC.

 CALL "TPENQUEUE" USING

 TPQUEDEF-REC

 TPTYPE-REC

 USER-DATA-REC

 TPSTATUS-REC.

The example shown on the TMQUEUE(5) reference page shows how alias service names can be
included when the server is built and specified in the configuration file. The sample program in
“A Sample Application” on page A-1, also specifies an alias service name.

TPENQUEUE(): The QNAME in TPQUEDEF-REC Argument
When message queues are being used within a queue space to invoke services, they are named
according to application services that process the requests. QNAME contains such a value; an
exception in which QNAME is not an application service is described in “Procedure for Dequeuing
Replies from Services Invoked Through TMQFORWARD” on page 4-26.

TPENQUEUE(): The DATA-REC and LEN in TPTYPE-REC Arguments
DATA-REC contains the message to be processed. LEN in TPTYPE-REC gives the length of the
message. Some BEA Tuxedo record types (VIEW, for example) do not require LEN to be specified;
in such cases, the argument is ignored. If RECTYPE in TPTYPE-REC is SPACES, DATA-REC and LEN
are ignored and the message is enqueued with no data portion.

Enqueu ing Messages

Using the ATMI /Q Component 4-5

TPENQUEUE(): The Settings in TPQUEDEF-REC
Settings in TPQUEDEF-REC are used to tell the BEA Tuxedo system how the TPENQUEUE() call
is handled; the following are valid settings:

TPNOTRAN
If the caller is in transaction mode and this setting is used, the message is not enqueued
within the caller’s transaction. A caller in transaction mode that sets this to true is still
subject to the transaction timeout (and no other). If message enqueuing fails that was
invoked with this setting, the caller’s transaction is not affected. Either TPNOTRAN or
TPTRAN must be set.

TPTRAN
If the caller is in transaction mode, this setting specifies that the enqueuing of the message
is to be done within the same transaction. Either TPNOTRAN or TPTRAN must be set.

TPNOBLOCK
The message is not enqueued if a blocking condition exists. If TPNOBLOCK is set and a
blocking condition exists such as the internal buffers into which the message is transferred
are full, the call fails and tperrno(5) is set to TPEBLOCK. If TPNOBLOCK is set and a
blocking condition exists because the target queue is opened exclusively by another
application, the call fails, tperrno() is set to TPEDIAGNOSTIC, and the diagnostic field
of the TPQCTL structure is set to QMESHARE. In the latter case, the other application, which
is based on a BEA product other than the BEA Tuxedo system, opened the queue for
exclusive read and/or write using the Queuing Services API (QSAPI). Either TPNOBLOCK
or TPBLOCK must be set.

TPBLOCK
When TPBLOCK is set and a blocking condition exists, the caller blocks until the condition
subsides or a timeout occurs (either transaction or blocking timeout). Either TPNOBLOCK
or TPBLOCK must be set.

TPNOTIME
This setting asks that the call be immune to blocking timeouts; transaction timeouts may
still occur. Either TPNOTIME or TPTIME must be set.

TPTIME
This setting asks that the call will receive blocking timeouts. Either TPNOTIME or TPTIME
must be set.

TPSIGRSTRT
This setting says that any underlying system calls that are interrupted by a signal should
be reissued. Either TPSIGRSTRT or TPNOSIGRSTRT must be set.

4-6 Using the ATMI /Q Component

TPNOSIGRSTRT
This setting says that any underlying system calls that are interrupted by a signal should
not be reissued. The call fails and sets TP-STATUS to TPEGOTSIG. Either TPSIGRSTRT or
TPNOSIGRSTRT must be set.

TPQUEDEF-REC Structure
The TPQUEDEF-REC structure has members that are used by the application and by the BEA
Tuxedo system to pass parameters in both directions between application programs and the
queued message facility. It is defined in the COBOL COPY file. The client that calls
TPQUEDEF-REC uses settings to mark members the application wants the system to fill in. The
structure is also used by TPDEQUEUE(); some of the members do not come into play until the
application calls that function. The complete structure is shown in the following listing.

Listing 4-1 The TPQUEDEF-REC Structure

 05 TPBLOCK-FLAG PIC S9(9) COMP-5.

 88 TPBLOCK VALUE 0.

 88 TPNOBLOCK VALUE 1.

 05 TPTRAN-FLAG PIC S9(9) COMP-5.

 88 TPTRAN VALUE 0.

 88 TPNOTRAN VALUE 1.

 05 TPTIME-FLAG PIC S9(9) COMP-5.

 88 TPTIME VALUE 0.

 88 TPNOTIME VALUE 1.

 05 TPSIGRSTRT-FLAG PIC S9(9) COMP-5.

 88 TPNOSIGRSTRT VALUE 0.

 88 TPSIGRSTRT VALUE 1.

 05 TPNOCHANGE-FLAG PIC S9(9) COMP-5.

 88 TPCHANGE VALUE 0.

 88 TPNOCHANGE VALUE 1.

 05 TPQUE-ORDER-FLAG PIC S9(9) COMP-5.

 88 TPQDEFAULT VALUE 0.

 88 TPQTOP VALUE 1.

 88 TPQBEFOREMSGID VALUE 2.

 05 TPQUE-TIME-FLAG PIC S9(9) COMP-5.

 88 TPQNOTIME VALUE 0.

 88 TPQTIME-ABS VALUE 1.

Enqueu ing Messages

Using the ATMI /Q Component 4-7

 88 TPQTIME-REL VALUE 2.

 05 TPQUE-PRIORITY-FLAG PIC S9(9) COMP-5.

 88 TPQNOPRIORITY VALUE 0.

 88 TPQPRIORITY VALUE 1.

 05 TPQUE-CORRID-FLAG PIC S9(9) COMP-5.

 88 TPQNOCORRID VALUE 0.

 88 TPQCORRID VALUE 1.

 05 TPQUE-REPLYQ-FLAG PIC S9(9) COMP-5.

 88 TPQNOREPLYQ VALUE 0.

 88 TPQREPLYQ VALUE 1.

 05 TPQUE-FAILQ-FLAG PIC S9(9) COMP-5.

 88 TPQNOFAILUREQ VALUE 0.

 88 TPQFAILUREQ VALUE 1.

 05 TPQUE-MSGID-FLAG PIC S9(9) COMP-5.

 88 TPQNOMSGID VALUE 0.

 88 TPQMSGID VALUE 1.

 05 TPQUE-GETBY-FLAG PIC S9(9) COMP-5.

 88 TPQGETNEXT VALUE 0.

 88 TPQGETBYMSGIDOLD VALUE 1.

 88 TPQGETBYCORRIDOLD VALUE 2.

 88 TPQGETBYMSGID VALUE 3.

 88 TPQGETBYCORRID VALUE 4.

 05 TPQUE-WAIT-FLAG PIC S9(9) COMP-5.

 88 TPQNOWAIT VALUE 0.

 88 TPQWAIT VALUE 1.

 05 TPQUE-DELIVERY-FLAG PIC S9(9) COMP-5.

 88 TPQNODELIVERYQOS VALUE 0.

 88 TPQDELIVERYQOS VALUE 1.

 05 TPQUEQOS-DELIVERY-FLAG PIC S9(9) COMP-5.

 88 TPQQOSDELIVERYDEFAULTPERSIST VALUE 0.

 88 TPQQOSDELIVERYPERSISTENT VALUE 1.

 88 TPQQOSDELIVERYNONPERSISTENT VALUE 2.

 05 TPQUE-REPLY-FLAG PIC S9(9) COMP-5.

 88 TPQNOREPLYQOS VALUE 0.

 88 TPQREPLYQOS VALUE 1.

 05 TPQUEQOS-REPLY-FLAG PIC S9(9) COMP-5.

 88 TPQQOSREPLYDEFAULTPERSIST VALUE 0.

 88 TPQQOSREPLYPERSISTENT VALUE 1.

4-8 Using the ATMI /Q Component

 88 TPQQOSREPLYNONPERSISTENT VALUE 2.

 05 TPQUE-EXPTIME-FLAG PIC S9(9) COMP-5.

 88 TPQNOEXPTIME VALUE 0.

 88 TPQEXPTIME-ABS VALUE 1.

 88 TPQEXPTIME-REL VALUE 2.

 88 TPQEXPTIME-NONE VALUE 3.

 05 TPQUE-PEEK-FLAG PIC S9(9) COMP-5.

 88 TPQNOPEEK VALUE 0.

 88 TPQPEEK VALUE 1.

 05 DIAGNOSTIC PIC S9(9) COMP-5.

 88 QMEINVAL VALUE -1.

 88 QMEBADRMID VALUE -2.

 88 QMENOTOPEN VALUE -3.

 88 QMETRAN VALUE -4.

 88 QMEBADMSGID VALUE -5.

 88 QMESYSTEM VALUE -6.

 88 QMEOS VALUE -7.

 88 QMEABORTED VALUE -8.

 88 QMEPROTO VALUE -9.

 88 QMEBADQUEUE VALUE -10.

 88 QMENOMSG VALUE -11.

 88 QMEINUSE VALUE -12.

 88 QMENOSPACE VALUE -13.

 88 QMERELEASE VALUE -14.

 88 QMEINVHANDLE VALUE -15.

 88 QMESHARE VALUE -16.

 05 DEQ-TIME PIC 9(9) COMP-5.

 05 EXP-TIME PIC 9(9) COMP-5.

 05 PRIORITY PIC S9(9) COMP-5.

 05 MSGID PIC X(32).

 05 CORRID PIC X(32).

 05 QNAME PIC X(15).

 05 QSPACE-NAME PIC X(15).

 05 REPLYQUEUE PIC X(15).

 05 FAILUREQUEUE PIC X(15).

 05 CLIENTID OCCURS 4 TIMES PIC S9(9) COMP-5.

 05 APPL-RETURN-CODE PIC S9(9) COMP-5.

 05 APPKEY PIC S9(9) COMP-5.

Enqueu ing Messages

Using the ATMI /Q Component 4-9

The following is a list of valid settings for the parameters controlling input information for
TPENQUEUE.

TPQTOP
Setting this value indicates that the queue ordering be overridden and the message placed
at the top of the queue. This request may not be granted depending on whether or not the
queue was configured to allow overriding the queue ordering. Set TPQDEFAULT to use
default queue ordering. TPQTOP, TPQBEFOREMSGID, or TPQDEFAULT must be set.

TPQBEFOREMSGID
Setting this value indicates that the queue ordering be overridden and the message placed
in the queue before the message identified by MSGID. This request may not be granted
depending on whether or not the queue was configured to allow overriding the queue
ordering. Set TPQDEFAULT to use default queue ordering. TPQTOP, TPQBEFOREMSGID, or
TPQDEFAULT must be set.

Note that the entire 32 bytes of the message identifier value are significant, so the value
identified by MSGID must be completely initialized (for example, padded with spaces).

TPQTIME-ABS
If this value is set, the message is made available after the time specified by DEQ-TIME.
DEQ-TIME is an absolute time value as generated by time(2) or mktime(3C) (the number
of seconds since 00:00:00 Universal Coordinated Time—UTC, January 1, 1970). Set
TPQNOTIME if neither an absolute or relative time value is set. TPQTIME-ABS,
TPQTIME-REL, or TPQNOTIME must be set. The absolute time is determined by the clock
on the machine where the queue manager process resides.

TPQTIME-REL
If this value is set, the message is made available after a time relative to the completion of
the enqueuing operation. DEQ-TIME specifies the number of seconds to delay after the
enqueuing completes before the submitted message should be available. Set TPQNOTIME
if neither an absolute or relative time value is set. TPQTIME-ABS, TPQTIME-REL, or
TPQNOTIME must be set.

TPQPRIORITY
If this value is set, the priority at which the message should be enqueued is stored in
PRIORITY. The priority must be in the range 1 to 100, inclusive. The higher the number,
the higher the priority (that is, a message with a higher number is dequeued before a
message with a lower number). For queues not ordered by priority, this value is
informational. If TPQNOPRIORITY is set, the priority for the message is 50 by default.

4-10 Using the ATMI /Q Component

TPQCORRID
If this value is set, the correlation identifier value specified in CORRID is available when a
message is dequeued with TPDEQUEUE(). This identifier accompanies any reply or failure
message that is queued so that an application can correlate a reply with a particular
request. Set TPQNOCORRID if a correlation identifier is not available.

Note that the entire 32 bytes of the correlation identifier value are significant, so the value
specified in CORRID must be completely initialized (for example, padded with spaces).

TPQREPLYQ
If this value is set, a reply queue named in REPLYQUEUE is associated with the queued
message. Any reply to the message is queued to the named queue within the same queue
space as the request message. Set TPQNOREPLYQ if a reply queue name is not available.

TPQFAILUREQ
If this value is set, a failure queue named in FAILUREQUEUE is associated with the queued
message. If (1) the enqueued message is processed by TMQFORWARD(), (2) TMQFORWARD
was started with the -d option, and (3) the service fails and returns a non-NULL reply, a
failure message consisting of the reply and its associated tpurcode is enqueued to the
named queue within the same queue space as the original request message. Set
TPQNOFAILUREQ if a failure queue name is not available.

TPQDELIVERYQOS
TPQREPLYQOS

If TPQDELIVERYQOS is set, the flags specified by TPQUEQOS-DELIVERY-FLAG control the
quality of service for message delivery. One of the following mutually exclusive flags
must be set: TPQQOSDELIVERYDEFAULTPERSIST, TPQQOSDELIVERYPERSISTENT, or
TPQQOSDELIVERYNONPERSISTENT. If TPQDELIVERYQOS is not set, TPQNODELIVERYQOS
must be set. When TPQNODELIVERYQOS is set, the default delivery policy of the target
queue dictates the delivery quality of service for the message.

If TPQREPLYQOS is set, the flags specified by TPQUEQOS-REPLY-FLAG control the quality
of service for reply message delivery for any reply. One of the following mutually
exclusive flags must be set: TPQQOSREPLYDEFAULTPERSIST, TPQQOSREPLYPERSISTENT,
or TPQQOSREPLYNONPERSISTENT. The TPQREPLYQOS flag is used when a reply is
returned from messages processed by TMQFORWARD. Applications not using TMQFORWARD
to invoke services may use the TPQREPLYQOS flag as a hint for their own reply mechanism.

If TPQREPLYQOS is not set, TPQNOREPLYQOS must be set. When TPQNOREPLYQOS is set,
the default delivery policy of the REPLYQUEUE queue dictates the delivery quality of
service for any reply. Note that the default delivery policy is determined when the reply
to a message is enqueued. That is, if the default delivery policy of the reply queue is
modified between the time that the original message is enqueued and the reply to the

Enqueu ing Messages

Using the ATMI /Q Component 4-11

message is enqueued, the policy used is the one in effect when the reply is finally
enqueued.

The valid TPQUEQOS-DELIVERY-FLAG and TPQUEQOS-REPLY-FLAG flags are:

TPQQOSDELIVERYDEFAULTPERSIST
TPQQOSREPLYDEFAULTPERSIST

These flags specify that the message is to be delivered using the default delivery
policy specified on the target or reply queue.

TPQQOSDELIVERYPERSISTENT
TPQQOSREPLYPERSISTENT

These flags specify that the message is to be delivered in a persistent manner using
the disk-based delivery method. When specified, these flags override the default
delivery policy specified on the target or reply queue.

TPQQOSDELIVERYNONPERSISTENT
TPQQOSREPLYNONPERSISTENT

These flags specify that the message is to be delivered in a non-persistent manner
using the memory-based delivery method; the message is queued in memory until
it is dequeued. When specified, these flags override the default delivery policy
specified on the target or reply queue.
If the caller is transactional, non-persistent messages are enqueued within the
caller’s transaction, however, non-persistent messages are lost if the system is shut
down or crashes or the IPC shared memory for the queue space is removed.

TPQEXPTIME-ABS
If this value is set, the message has an absolute expiration time, which is the absolute time
when the message will be removed from the queue.
The absolute expiration time is determined by the clock on the machine where the queue
manager process resides.

The absolute expiration time is specified by the value stored in EXP-TIME. EXP-TIME
must be set to an absolute time generated by time(2) or mktime(3C) (the number of
seconds since 00:00:00 Universal Coordinated Time—UTC, January 1, 1970).

If an absolute time is specified that is earlier than the time of the enqueue operation, the
operation succeeds, but the message is not counted for the purpose of calculating
thresholds. If the expiration time is before the message availability time, the message is
not available for dequeuing unless either the availability or expiration time is changed so
that the availability time is before the expiration time. In addition, these messages are
removed from the queue at expiration time even if they were never available for
dequeuing. If a message expires during a transaction, the expiration does not cause the

4-12 Using the ATMI /Q Component

transaction to fail. Messages that expire while being enqueued or dequeued within a
transaction are removed from the queue when the transaction ends. There is no
acknowledgment that the message has expired.

One of the following must be set: TPQEXPTIME-ABS, TPQEXPTIME-REL,
TPQEXPTIME-NONE, or TPQNOEXPTIME.

TPQEXPTIME-REL
If this value is set, the message has a relative expiration time, which is the number of
seconds after the message arrives at the queue that the message is removed from the
queue. The relative expiration time is specified by the value stored in EXP-TIME.

If the expiration time is before the message availability time, the message is not available
for dequeuing unless either the availability or expiration time is changed so that the
availability time is before the expiration time. In addition, these messages are removed
from the queue at expiration time even if they were never available for dequeuing. The
expiration of a message during a transaction does cause the transaction to fail. Messages
that expire while being enqueued or dequeued within a transaction are removed from the
queue when the transaction ends. There is no acknowledgment that the message has
expired.

One of the following must be set: TPQEXPTIME-ABS, TPQEXPTIME-REL,
TPQEXPTIME-NONE, or TPQNOEXPTIME.

TPQEXPTIME-NONE
Setting this value indicates that the message should not expire. This flag overrides any
default expiration policy associated with the target queue. You can remove a message by
dequeuing it or by deleting it via an administrative interface. One of the following must
be set: TPQEXPTIME-ABS, TPQEXPTIME-REL, TPQEXPTIME-NONE, or TPQNOEXPTIME.

TPQNOEXPTIME
Setting this value specifies that the default expiration time associated with the target queue
applies to the message. One of the following must be set: TPQEXPTIME-ABS,
TPQEXPTIME-REL, TPQEXPTIME-NONE, or TPQNOEXPTIME.

Additionally, the APPL-RETURN-CODE member of TPQUEDEF-REC can be set with a user-return
code. This value is returned to the application that calls TPDEQUEUE() to dequeue the message.

As output from TPENQUEUE(), the following may be set in the TPQUEDEF-REC structure:

05 DIAGNOSTIC PIC S9(9) COMP-5.

05 MSGID PIC X(32).

The following is a valid setting in TPQUEDEF-REC controlling output information from
TPENQUEUE(). If this setting is true when TPENQUEUE() is called, the BEA Tuxedo /Q server

Enqueu ing Messages

Using the ATMI /Q Component 4-13

TMQUEUE(5) populates the associated element in the record with a message identifier. If this
setting is not true when TPENQUEUE() is called, TMQUEUE() does not populate the associated
element in the record with a message identifier.

TPQMSGID
If this value is set and the call to TPENQUEUE() is successful, the message identifier is
stored in MSGID. The entire 32 bytes of the message identifier value are significant, so the
value stored in MSGID is completely initialized (for example, padded with null characters).
The actual padding character used for initialization varies between releases of the BEA
Tuxedo /Q component. If TPQNOMSGID is set, the message identifier is not available.

The remaining members of the control structure are not used on input to TPENQUEUE().

If the call to TPENQUEUE() fails and TP-STATUS is set to TPEDIAGNOSTIC, a value indicating the
reason for failure is returned in DIAGNOSTIC. The following are the possible values:

[QMEINVAL]
An invalid setting value was specified.

[QMEBADRMID]
An invalid resource manager identifier was specified.

[QMENOTOPEN]
The resource manager is not currently open.

[QMETRAN]
The call was not in transaction mode or was made with the TPNOTRAN setting and an error
occurred trying to start a transaction in which to enqueue the message. This diagnostic is
not returned by a queue manager from BEA Tuxedo release 7.1 or later.

[QMEBADMSGID]
An invalid message identifier was specified.

[QMESYSTEM]
A system error has occurred. The exact nature of the error is written to a log file.

[QMEOS]
An operating system error has occurred.

[QMEABORTED]
The operation was aborted. If the aborted operation was being executed within a global
transaction, the global transaction is marked rollback-only. Otherwise, the queue manager
aborts the operation.

4-14 Using the ATMI /Q Component

[QMEPROTO]
An enqueue was done when the transaction state was not active.

[QMEBADQUEUE]
An invalid or deleted queue name was specified.

[QMENOSPACE]
Due to an insufficient resource, such as no space on the queue, the message with its
required quality of service (persistent or non-persistent storage) was not enqueued.
QMENOSPACE is returned when any of the following configured resources is exceeded: (1)
the amount of disk (persistent) space allotted to the queue space, (2) the amount of
memory (non-persistent) space allotted to the queue space, (3) the maximum number of
simultaneously active transactions allowed for the queue space, (4) the maximum number
of messages that the queue space can contain at any one time, (5) the maximum number
of concurrent actions that the Queuing Services component can handle, or (6) the
maximum number of authenticated users that may concurrently use the Queuing Services
component.

[QMERELEASE]
An attempt was made to enqueue a message to a queue manager that is from a version of
the BEA Tuxedo system that does not support a newer feature.

[QMESHARE]
When enqueuing a message from a specified queue, the specified queue is opened
exclusively by another application. The other application is one based on a BEA product
other than the BEA Tuxedo system that opened the queue for exclusive read and/or write
using the Queuing Services API (QSAPI).

Overriding the Queue Order
If the administrator, in creating a queue, allows TPENQUEUE() calls to override the order of
messages on the queue, you have two mutually exclusive ways to use the override capability. You
can specify that the message is to be placed at the top of the queue by setting TPQTOP or you can
specify that it be placed ahead of a specific message by setting TPQBEFOREMSGID and setting
MSGID to the ID of the message you wish to precede. This assumes that you saved the message-ID
from a previous call in order to be able to use it here. Your administrator must tell you what the
queue supports; it can be created to allow either or both of these overrides, or to allow neither.

Overriding the Queue Priority
You can set a value in PRIORITY to specify the priority for the message. The value must be in the
range 1 to 100; the higher the number, the higher the priority, unlike values specified with the

Enqueu ing Messages

Using the ATMI /Q Component 4-15

UNIX nice command. If PRIORITY was not one of the queue ordering parameters, setting a
priority here has no effect on the dequeuing order. The priority value is retained however, so that
it can be inspected when the message is dequeued.

Setting a Message Availability Time
You can specify in DEQ-TIME either an absolute time or a time relative to the completion of the
enqueuing operation at which the message is made available. You set either TPQTIME-ABS or
TPQTIME-REL to indicate how the value should be treated. A queue may be created with time as
a queue-ordering criterion, in which case messages are ordered by the message availability time.

The following example shows how to enqueue a message with a relative time. The sample
message will become available sixty seconds in the future.

 01 TPQUEDEF-REC.

 COPY TPQUEDEF.

 01 TPTYPE-REC.

 COPY TPTYPE.

 01 TPSTATUS-REC.

 COPY TPSTATUS.

 01 USER-DATA-REC PIC X(100).

*

*

*

 MOVE LOW-VALUES TO TPQUEDEF-REC.

 MOVE "QSPACE1" TO QSPACE-NAME IN TPQUEDEF-REC.

 MOVE "Q1" TO QNAME IN TPQUEDEF-REC.

 SET TPTRAN IN TPQUEDEF-REC TO TRUE.

 SET TPBLOCK IN TPQUEDEF-REC TO TRUE.

 SET TPTIME IN TPQUEDEF-REC TO TRUE.

 SET TPSIGRSTRT IN TPQUEDEF-REC TO TRUE.

 SET TPQDEFAULT IN TPQUEDEF-REC TO TRUE.

 SET TPQTIME-REL IN TPQUEDEF-REC TO TRUE.

 MOVE 60 TO DEQ-TIME IN TPQUEDEF-REC.

 SET TPQNOPRIORITY IN TPQUEDEF-REC TO TRUE.

 SET TPQNOCORRID IN TPQUEDEF-REC TO TRUE.

 SET TPQNOREPLYQ IN TPQUEDEF-REC TO TRUE.

 SET TPQNOFAILUREQ IN TPQUEDEF-REC TO TRUE.

 SET TPQMSGID IN TPQUEDEF-REC TO TRUE.

4-16 Using the ATMI /Q Component

 MOVE LOW-VALUES TO TPTYPE-REC.

 MOVE "STRING" TO REC-TYPE IN TPTYPE-REC.

 MOVE LENGTH OF USER-DATA-REC TO LEN IN TPTYPE-REC.

 CALL "TPENQUEUE" USING

 TPQUEDEF-REC

 TPTYPE-REC

 USER-DATA-REC

 TPSTATUS-REC.

TPENQUEUE() and Transactions
If the caller of TPENQUEUE() is in transaction mode and TPTRAN is set, then the enqueuing is done
within the caller's transaction. The caller knows for certain from the success or failure of
TPENQUEUE() whether the message was enqueued or not. If the call succeeds, the message is
guaranteed to be on the queue. If the call fails, the transaction is rolled back, including the part
where the message was placed on the queue.

If the caller of TPENQUEUE() is not in transaction mode or if TPNOTRAN is set, the message is
enqueued outside of the caller’s transaction. If the call to TPENQUEUE() returns success, the
message is guaranteed to be on the queue. If the call to TPENQUEUE() fails with a communication
error or with a timeout, the caller is left in doubt about whether the failure occurred before or after
the message was enqueued.

Note that specifying TPNOTRAN while the caller is not in transaction mode has no meaning.

Dequeuing Messages
The syntax for TPDEQUEUE() is as follows:

01 TPQUEDEF-REC.
 COPY TPQUEDEF.
01 TPTYPE-REC.
 COPY TPTYPE.
01 DATA-REC.
 COPY User Data.
01 TPSTATUS-REC.
 COPY TPSTATUS.
CALL "TPDEQUEUE" USING TPQUEDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

When this call is issued it tells the system to dequeue a message from the QNAME in
TPQUEDEF-REC queue, in the queue space named QSPACE-NAME in TPQUEDEF-REC. The message
is placed in DATA-REC. LEN in TPTYPE-REC is set to the length of the data. If LEN is 0 on return

Dequeu ing Messages

Using the ATMI /Q Component 4-17

from TPDEQUEUE(), the message had no data portion. By the use of settings in TPQUEDEF-REC
the system is informed how the call to TPDEQUEUE() is to be handled.

TPDEQUEUE() Arguments
There are some important arguments to control the operation of TPDEQUEUE(3cbl). Let's look at
some of them.

TPDEQUEUE(): The QSPACE-NAME in TPQUEDEF-REC
Argument
QSPACE-NAME identifies a queue space previously created by the administrator. When the
TMQUEUE server is defined in the SERVERS section of the configuration file, the service names it
offers are aliases for the actual queue space name (which is specified as part of the OPENINFO
parameter in the GROUPS section). For example, when your application uses the server TMQUEUE,
the value pointed at by QSPACE-NAME is the name of a service advertised by TMQUEUE. If no
service aliases are defined, the name of the default service is the same as that of the server,
TMQUEUE. In this case the configuration file may include the following:

TMQUEUE

 SRVGRP = QUE1 SRVID = 1

 GRACE = 0 RESTART = Y CONV = N

 CLOPT = "-A"

or

 CLOPT = "-s TMQUEUE"

The entry for server group QUE1 has an OPENINFO parameter that specifies the resource manager,
the pathname of the device, and the queue space name. The QSPACE-NAME argument in a client
program then looks like the following:

 01 TPQUEDEF-REC.

 COPY TPQUEDEF.

 01 TPTYPE-REC.

 COPY TPTYPE.

 01 TPSTATUS-REC.

 COPY TPSTATUS.

 01 USER-DATA-REC PIC X(100).

*

*

*

4-18 Using the ATMI /Q Component

 MOVE LOW-VALUES TO TPQUEDEF-REC.

 MOVE "TMQUEUE" TO QSPACE-NAME IN TPQUEDEF-REC.

 MOVE "REPLYQ" TO QNAME IN TPQUEDEF-REC.

 SET TPTRAN IN TPQUEDEF-REC TO TRUE.

 SET TPBLOCK IN TPQUEDEF-REC TO TRUE.

 SET TPTIME IN TPQUEDEF-REC TO TRUE.

 SET TPSIGRSTRT IN TPQUEDEF-REC TO TRUE.

 MOVE LOW-VALUES TO TPTYPE-REC.

 MOVE "STRING" TO REC-TYPE IN TPTYPE-REC.

 MOVE LENGTH OF USER-DATA-REC TO LEN IN TPTYPE-REC.

 CALL "TPDEQUEUE" USING

 TPQUEDEF-REC

 TPTYPE-REC

 USER-DATA-REC

 TPSTATUS-REC.

The example shown on the TMQUEUE(5) reference page shows how alias service names can be
included when the server is built and specified in the configuration file. The sample program in
“A Sample Application” on page A-1, also specifies an alias service name.

TPDEQUEUE(): The QNAME in TPQUEDEF-REC Argument
Queue names in a queue space must be agreed upon by the applications that will access the queue
space. This requirement is especially important for reply queues. If QNAME refers to a reply queue,
the administrator creates it (and often an error queue) in the same manner that he or she creates
any other queue. QNAME contains the name of the queue from which to retrieve a message or reply.

TPDEQUEUE(): The DATA-REC and LEN in TPTYPE-REC Arguments
These arguments have a different flavor than they do on TPENQUEUE(). DATA-REC is where the
system is to place the message being dequeued.

It is an error for LEN to be 0 on input. When TPDEQUEUE() returns, LEN contains the length of the
data retrieved. If it is 0, it means that the reply had no data portion. This can be a legitimate and
successful reply in some applications; receiving even a 0 length reply can be used to show
successful processing of the enqueued request. If you wish to know whether the record has
changed from before the call to TPDEQUEUE(), save the length prior to the call to TPDEQUEUE()
and compare it to LEN after the call completes. If the reply is larger than LEN, then DATA-REC will
contain only as many bytes as will fit. The remainder are discarded and TPDEQUEUE() fails with
TPTRUNCATE.

Dequeu ing Messages

Using the ATMI /Q Component 4-19

TPDEQUEUE(): The Settings in TPQUEDEF-REC
Settings in TPQUEDEF-REC are used to tell the BEA Tuxedo system how the TPDEQUEUE() call
is handled; the following are valid settings:

TPNOTRAN
If the caller is in transaction mode, this setting specifies that the message is to be dequeued
outside of the caller’s transaction. Either TPNOTRAN or TPTRAN must be set.

TPTRAN
If the caller is in transaction mode, this setting specifies that the message is to be dequeued
within the same transaction. Either TPNOTRAN or TPTRAN must be set.

TPNOBLOCK
The message is not dequeued if a blocking condition exists. If TPNOBLOCK is set and a
blocking condition exists such as the internal buffers into which the message is transferred
are full, the call fails and tperrno(5) is set to TPEBLOCK. If TPNOBLOCK is set and a
blocking condition exists because the target queue is opened exclusively by another
application, the call fails, tperrno() is set to TPEDIAGNOSTIC, and the diagnostic field
of the TPQCTL structure is set to QMESHARE. In the latter case, the other application, which
is based on a BEA product other than the BEA Tuxedo system, opened the queue for
exclusive read and/or write using the Queuing Services API (QSAPI). Either TPNOBLOCK
or TPBLOCK must be set.

TPBLOCK
When TPBLOCK is set and a blocking condition exists, the caller blocks until the condition
subsides or a timeout occurs (either transaction or blocking timeout). This blocking
condition does not include blocking on the queue itself if the TPQWAIT setting is specified.
Either TPNOBLOCK or TPBLOCK must be set.

TPNOTIME
Setting this value asks that the call be immune to blocking timeouts; transaction timeouts
may still occur. Either TPNOTIME or TPTIME must be set.

TPTIME
Setting this value asks that the call receive blocking timeouts. Either TPNOTIME or TPTIME
must be set.

TPNOCHANGE
If this value is set, the record type of DATA-REC is not allowed to change. That is, the type
and subtype of the received record must match the type and subtype of the record
DATA-REC. Either TPNOCHANGE or TPCHANGE must be set.

4-20 Using the ATMI /Q Component

TPCHANGE
By default, if a record is received that differs in type from the record DATA-REC,
DATA-REC's record type changes to the received record's type so long as the receiver
recognizes the incoming record type. That is, the type and sub-type of the received record
must match the type and sub-type of the record DATA-REC. Either TPNOCHANGE or
TPCHANGE must be set.

TPSIGRSTRT
Setting this value says that any underlying system calls that are interrupted by a signal
should be reissued. Either TPSIGRSTRT or TPNOSIGRSTRT must be set.

TPNOSIGRSTRT
If this value is set and a signal is received, the call fails and sets TP-STATUS to TPEGOTSIG.
Either TPSIGRSTRT or TPNOSIGRSTRT must be set.

TPQUEDEF-REC Structure
The first argument to TPDEQUEUE() is the structure TPQUEDEF-REC. The TPQUEDEF-REC
structure has members that are used by the application and by the BEA Tuxedo system to pass
parameters in both directions between application programs and the queued message facility. The
client that calls TPDEQUEUE() uses settings to mark members the application wants the system to
fill in. As described earlier, the structure is also used by TPENQUEUE(); some of the members only
apply to that function. The entire structure is shown in “The TPQUEDEF-REC Structure” on
page 4-6.

As input to TPDEQUEUE(), the following elements may be set in the TPQUEDEF structure:

05 MSGID PIC X(32).

05 CORRID PIC X(32).

The following is a list of valid settings in TPQUEDEF-REC that control input for TPDEQUEUE():

TPQGETNEXT
Setting this value requests that the next message on the queue be dequeued, using the
default queue order. One of the following must be set: TPQGETNEXT, TPQGETBYMSGID, or
TPQGETBYCORRID.

TPQGETBYMSGID
Setting this value requests that the message identified by MSGID be dequeued. The
message identifier is returned by a prior call to TPENQUEUE(). Note that the message
identifier is not valid if the message has moved from one queue to another. Note also that
the entire 32 bytes of the message identifier value are significant, so the value identified
by MSGID must be completely initialized (for example, padded with spaces).

Dequeu ing Messages

Using the ATMI /Q Component 4-21

One of the following must be set: TPQGETNEXT, TPQGETBYMSGID, or TPQGETBYCORRID.

TPQGETBYCORRID
Setting this value requests that the message identified by CORRID be dequeued. The
correlation identifier is specified by the application when enqueuing the message with
TPENQUEUE(). Note that the entire 32 bytes of the correlation identifier value are
significant, so the value identified by CORRID must be completely initialized (for example,
padded with spaces).

One of the following must be set: TPQGETNEXT, TPQGETBYMSGID, or TPQGETBYCORRID.

TPQWAIT
Setting this value indicates that an error should not be returned if the queue is empty.
Instead, the process should wait until a message is available. Set TPQNOWAIT to not wait
until a message is available. If TPQWAIT is set in conjunction with TPQGETBYMSGID or
TPQGETBYCORRID, it indicates that an error should not be returned if no message with the
specified message identifier or correlation identifier is present in the queue. Instead, the
process should wait until a message meeting the criteria is available. The process is still
subject to the caller’s transaction timeout, or, when not in transaction mode, the process
is still subject to the timeout specified on the TMQUEUE process by the -t option.

If a message matching the desired criteria is not immediately available and the configured
action resources are exhausted, TPDEQUEUE fails, TP-STATUS is set to TPEDIAGNOSTIC,
and DIAGNOSTIC is set to QMESYSTEM.

Note that each TPDEQUEUE() request specifying the TPQWAIT control parameter requires
that a queue manager (TMQUEUE) action object be available if a message satisfying the
condition is not immediately available. If one is not available, the TPDEQUEUE() request
fails. The number of available queue manager actions are specified when a queue space is
created or modified. When a waiting dequeue request completes, the associated action
object associated is made available for another request.

TPQPEEK
If TPQPEEK is set, the specified message is read but not removed from the queue. The
TPNOTRAN flag must be set. It is not possible to read messages enqueued or dequeued
within a transaction before the transaction completes.

When a thread is non-destructively dequeuing a message using TPQPEEK, the message
may not be seen by other non-blocking dequeuers for the brief time the system is
processing the non-destructive dequeue request. This includes dequeuers using specific
selection criteria (such as message identifier and correlation identifier) that are looking for
the message currently being non-destructively dequeued.

On output from TPDEQUEUE(), the following elements may be set in TPQUEDEF-REC:

4-22 Using the ATMI /Q Component

05 PRIORITY PIC S9(9) COMP-5.

05 MSGID PIC X(32).

05 CORRID PIC X(32).

05 TPQUEQOS-DELIVERY-FLAG PIC S9(9) COMP-5.

05 TPQUEQOS-REPLY-FLAG PIC S9(9) COMP-5.

05 REPLYQUEUE PIC X(15).

05 FAILUREQUEUE PIC X(15).

05 DIAGNOSTIC PIC S9(9) COMP-5.

05 CLIENTID OCCURS 4 TIMES PIC S9(9) COMP-5

05 APPL-RETURN-CODE PIC S9(9) COMP-5.

05 APPKEY PIC S9(9) COMP-5.

The following is a list of valid settings in TPQUEDEF-REC controlling output information from
TPDEQUEUE(). For any of these settings, if the setting is true when TPDEQUEUE() is called, the
associated element in the record is populated with the value provided when the message was
queued, and the setting remains true. If the value is not available (that is, no value was provided
when the message was queued) or the setting is not true when TPDEQUEUE() is called,
TPDEQUEUE() completes with the setting not true.

TPQPRIORITY
If this value is set, the call to TPDEQUEUE() is successful, and the message was queued
with an explicit priority, then the priority is stored in PRIORITY. The priority is in the
range 1 to 100, inclusive, and the higher the number, the higher the priority (that is, a
message with a higher number is dequeued before a message with a lower number). If
TPQNOPRIORITY is set, the priority is not available.

Note that if no priority was explicitly specified when the message was queued, the priority
for the message is 50.

TPQMSGID
If this value is set and the call to TPDEQUEUE() is successful, the message identifier is
stored in MSGID. The entire 32 bytes of the message identifier value are significant. If
TPQNOMSGID is set, the message identifier is not available.

TPQCORRID
If this value is set, the call to TPDEQUEUE() is successful, and the message was queued
with a correlation identifier, then the correlation identifier is stored in CORRID. The entire
32 bytes of the correlation identifier value are significant. Any BEA Tuxedo /Q provided
reply to a message has the correlation identifier of the original message. If TPQNOCORRID
is set, the correlation identifier is not available.

Dequeu ing Messages

Using the ATMI /Q Component 4-23

TPQDELIVERYQOS
If this value is set, the call to TPDEQUEUE() is successful, and the message was queued
with a delivery quality of service, then the flag—TPQQOSDELIVERYDEFAULTPERSIST,
TPQQOSDELIVERYPERSISTENT, or TPQQOSDELIVERYNONPERSISTENT—specified by
TPQUEQOS-DELIVERY-FLAG indicates the delivery quality of service. If
TPQNODELIVERYQOS is set, the delivery quality of service is not available.

Note that if no delivery quality of service was explicitly specified when the message was
queued, the default delivery policy of the target queue dictates the delivery quality of
service for the message.

TPQREPLYQOS
If this value is set, the call to TPDEQUEUE() is successful, and the message was queued
with a reply quality of service, then the flag—TPQQOSREPLYDEFAULTPERSIST,
TPQQOSREPLYPERSISTENT, or TPQQOSREPLYNONPERSISTENT—specified by
TPQUEQOS-REPLY-FLAG indicates the reply quality of service. If TPQNOREPLYQOS is set,
the reply quality of service is not available.

Note that if no reply quality of service was explicitly specified when the message was
queued, the default delivery policy of the REPLYQUEUE queue dictates the delivery quality
of service for any reply. The default delivery policy is determined when the reply to a
message is enqueued. That is, if the default delivery policy of the reply queue is modified
between the time that the original message is enqueued and the reply to the message is
enqueued, the policy used is the one in effect when the reply is finally enqueued.

TPQREPLYQ
If this value is set, the call to TPDEQUEUE() is successful, and the message was queued
with a reply queue, then the name of the reply queue is stored in REPLYQUEUE. Any reply
to the message should go to the named reply queue within the same queue space as the
request message. If TPQNOREPLYQ is set, the reply queue is not available.

TPQFAILUREQ
If this value is set, the call to TPDEQUEUE() is successful, and the message was queued
with a failure queue, then the name of the failure queue is stored in FAILUREQUEUE. Any
failure message should go to the named failure queue within the same queue space as the
request message. If TPQNOFAILUREQ is set, the failure queue is not available.

The remaining settings in TPQUEDEF-REC are set to the following values when TPDEQUEUE() is
called: TPQNOTOP, TPQNOBEFOREMSGID, TPQNOTIME_ABS, TPQNOTIME_REL,
TPQNOEXPTIME_ABS, TPQNOEXPTIME_REL, and TPQNOEXPTIME_NONE.

If the call to TPDEQUEUE() fails and TP-STATUS is set to TPEDIAGNOSTIC, a value indicating the
reason for failure is returned in DIAGNOSTIC. The valid settings for DIAGNOSTIC include those

4-24 Using the ATMI /Q Component

for TPENQUEUE() described in “TPQUEDEF-REC Structure” on page 4-6 (except for
QMENOSPACE and QMERELEASE) and the following additional codes.

[QMENOMSG]
No message was available for dequeuing. Note that it is possible that the message exists
on the queue and another application process has read the message from the queue. In this
case, the message may be put back on the queue if that other process rolls back the
transaction.

[QMEINUSE]
When dequeuing a message by message identifier or correlation identifier, the specified
message is in use by another transaction. Otherwise all messages currently on the queue
are in use by other transactions. This diagnostic is not returned by a queue manager from
BEA Tuxedo release 7.1 or later.

Using TPQWAIT
When TPDEQUEUE() is called with flags set to include TPQWAIT, if a message is not immediately
available, the TMQUEUE server waits for the arrival, on the queue, of a message that matches the
TPDEQUEUE() request before TPDEQUEUE() returns control to the caller. The TMQUEUE process
sets the waiting request aside and processes requests from other processes while waiting to satisfy
the first request. If TPQGETBYMSGID and/or TPQGETBYCORRID are also specified, the server waits
until a message with the indicated message identifier and/or correlation identifier becomes
available on the queue. If neither of these flags is set, the server waits until any message is put
onto the queue. The amount of time it waits is controlled by the caller’s transaction timeout, if the
call is in transaction mode, or by the -t option in the CLOPT parameter of the TMQUEUE server, if
the call is not in transaction mode.

The TMQUEUE server can handle a number of waiting TPDEQUEUE() requests at the same time, as
long as action resources are available to handle the request. If there are not enough action
resources configured for the queue space, TPDEQUEUE() fails. If this happens on your system,
increase the number of action resources for the queue space.

Error Handling When Using TMQFORWARD Services
In considering how best to handle errors when dequeuing it is helpful to differentiate between two
types of errors:

Errors encountered by TMQFORWARD(5) as it attempts to dequeue a message to forward to
the requested service

Dequeu ing Messages

Using the ATMI /Q Component 4-25

Errors that occur in the service that processes the request

By default, if a message is dequeued within a transaction and the transaction is rolled back, then
the message ends up back on the queue and can be dequeued and executed again. It may be
desirable to delay for a short period before retrying to dequeue and execute the message, allowing
the transient problem to clear (for example, allowing for locks in a database to be released by
another transaction). Normally, a limit on the number of retries is also useful to ensure that an
application flaw doesn't cause significant waste of resources. When a queue is configured by the
administrator, both a retry count and a delay period (in seconds) can be specified. A retry count
of 0 implies that no retries are done. After the retry count is reached, the message is moved to an
error queue that is configured by the administrator for the queue space. If the error queue is not
configured, then messages that have reached the retry count are simply deleted. Messages on the
error queue must be handled by the administrator who must work out a way of notifying the
originator that meets the requirements of the application. The message handling method chosen
should be mostly transparent to the originating program that put the message on the queue. There
is a virtual guarantee that once a message is successfully enqueued it will be processed according
to the parameters of TPENQUEUE() and the attributes of the queue. Notification that a message
has been moved to the error queue should be a rare occurrence in a system that has properly tuned
its queue parameters.

A failure queue (normally, different from the queue space error queue) may be associated with
each queued message. This queue is specified on the enqueuing call as the place to put any failure
messages. The failure message for a particular request can be identified by an
application-generated correlation identifier that is associated with the message when it is
enqueued.

The default behavior of retrying until success (or a predefined limit) is quite appropriate when the
failure is caused by a transient problem that is later resolved, allowing the message to be handled
appropriately.

There are cases where the problem is not transient. For example, the queued message may request
operating on an account that does not exist (and the application is such that it won't come into
existence within a reasonable time period if at all). In this case, it is desirable not to waste any
resources by trying again. If the application programmer or administrator determines that failures
for a particular operation are never transient, then it is simply a matter of setting the retry count
to zero, although this will require a mechanism to constantly clear the queue space error queue of
these messages (for example, a background client that reads the queue periodically). More likely,
it is the case that some problems will be transient (for example, database lock contention) and
some problems will be permanent (for example, the account doesn't exist) for the same service.

4-26 Using the ATMI /Q Component

In the case that the message is processed (dequeued and passed to the application via a TPCALL)
by TMQFORWARD, there is no mechanism in the information returned by TPCALL to indicate
whether a TPESVCFAIL error is caused by a transient or permanent problem.

As in the case where the application is handling the dequeuing, a simple solution is to return
success for the service, that is, TPRETURN with TPSUCCESS, even though the operation failed. This
allows the transaction to be committed and the message removed from the queue. If reply
messages are being used, the information in the buffer returned from the service can indicate that
the operation failed and the message will be enqueued on the reply queue. The APPL-CODE in the
TPSVCRET-REC argument of TPRETURN can also be used to return application specific
information.

In the case where the service fails and the transaction must be rolled back, it is not clear whether
or not TMQFORWARD should execute a second transaction to remove the message from the queue
without further processing. By default, TMQFORWARD will not delete a message for a service that
fails. TMQFORWARD's transaction is rolled back and the message is restored to the queue. A
command-line option may be specified for TMQFORWARD that indicates that a message should be
deleted from the queue if the service fails and a reply message is sent back with length greater
than 0. The message is deleted in a second transaction. The queue must be configured with a delay
time and retry count for this to work. If the message is associated with a failure queue, the reply
data is enqueued to the failure queue in the same transaction as the one in which the message is
deleted from the queue.

Procedure for Dequeuing Replies from Services Invoked
Through TMQFORWARD
If your application expects to receive replies to queued messages, the following is a procedure
you may want to follow:

1. As a preliminary step, the queue space must include a reply queue and a failure queue. The
application must also agree on the content of the correlation identifier. The service should be
coded to return TPSUCCESS on a logical failure and return an explanatory code in the
APPL-CODE in the TPSVCRET-REC argument of TPRETURN.

2. When you call TPENQUEUE() to put the message on the queue, set the following:

TPQCORRID TPQREPLYQ
TPQFAILUREQ TPQMSGID

(Fill in the values for CORRID, REPLYQUEUE and FAILUREQUEUE before issuing the call. On
return from the call, save CORRID.)

Sequent ia l P rocess ing o f Messages

Using the ATMI /Q Component 4-27

3. When you call TPDEQUEUE() to check for a reply, specify the reply queue in QNAME and set
the following:

TPQCORRID TPQREPLYQ
TPQFAILUREQ TPQMSGID
TPQGETBYCORRID

(Use the saved correlation identifier to populate CORRID before issuing the call. If the call
to TPDEQUEUE() fails and sets TP-STATUS to TPEDIAGNOSTIC, then further information is
available in the DIAGNOSTIC settings. If you receive the error code QMENOMSG, it means
that no message was available for dequeuing.)

4. Set up another call to TPDEQUEUE(). This time have QNAME point to the name of the failure
queue and set the following:

TPQCORRID TPQREPLYQ
TPQFAILUREQ TPQMSGID
TPQGETBYCORRID

Populate TPQCORRID with the correlation identifier. When the call returns, check LEN to
see if data has been received and check APPL-RETURN-CODE to see if the service has
returned a user return code.

Sequential Processing of Messages
Sequential processing of messages can be achieved by having one service enqueue a message for
the next service in the chain before its transaction is committed. The originating process can track
the progress of the sequence with a series of TPDEQUEUE() calls to the reply_queue, if each
member uses the same correlation-ID and returns a 0 length reply.

Alternatively, word of the successful completion of the entire sequence can be returned to the
originator by using unsolicited notification. To make sure that the last transaction in the sequence
ended with a TPCOMMIT, a job step can be added that calls TPNOTIFY using the client identifier
that is carried in the TPQUEDEF-REC structure. The originating client must have called
TPSETUNSOL to name the unsolicited message handler being used.

Using Queues for Peer-to-Peer Communication
In all of the foregoing discussion of enqueuing and dequeuing messages there has been an
implicit assumption that queues were being used as an alternative form of request/response
processing. A message does not have to be a service request. The queued message facility can
transfer data from one process to another as effectively as a service request. This style of
communication between applications or clients is called peer-to-peer communication.

4-28 Using the ATMI /Q Component

If it suits your application to use BEA Tuxedo /Q for this purpose, have the administrator create
a separate queue and code your own receiving program for dequeuing messages from that queue.

Using the ATMI /Q Component A-1

A P P E N D I X A

A Sample Application

This topic includes the following sections:

Overview

Prerequisites

What Is qsample?

Building qsample

Suggestions for Further Exploration

Overview
The sample application in this topic contains a description of a one-client, one-server application
using BEA Tuxedo /Q called qsample. An interactive form of this software is distributed with
the BEA Tuxedo software.

Prerequisites
Before you can run the sample application, the BEA Tuxedo software must be installed and built
so that the files and commands referred to in this topic are available. If you are personally
responsible for installing the BEA Tuxedo software, consult the Installing the BEA Tuxedo
System for information about how to install the BEA Tuxedo system.

If the installation has already been done by someone else, you need to know the pathname of the
root directory of the installed software. You also need to have read and execute permissions on

A-2 Using the ATMI /Q Component

the directories and files in the BEA Tuxedo directory structure so you can copy qsample files
and execute BEA Tuxedo commands.

What Is qsample?
qsample is a very basic BEA Tuxedo application that uses BEA Tuxedo /Q. It has one
application client and server, and uses two system servers. TMQUEUE(5) and TMQFORWARD(5).
The client calls TMQUEUE to enqueue a message in a queue space created for qsample. The
message is dequeued by TMQFORWARD and passed to the application server. The server converts a
string from lower case to upper case and returns to TMQFORWARD. TMQFORWARD enqueues the reply
message. The client meanwhile has called TMQUEUE to dequeue the reply. When the reply is
received, the client displays it on the user's screen.

Building qsample
The following procedure provides instructions on building and running the qsample application.

1. Make a directory for qsample and cd to it:

mkdir qsampdir
cd qsampdir

This is suggested so you will be able to see clearly the qsample files you have at the start
and the additional files you create along the way. Use the standard shell (/bin/sh) or the
Korn shell; not the C shell (/bin/csh).

2. Copy the qsample files.

cp $TUXDIR/apps/qsample/* .

You will be editing some of the files and making them executable, so it is best to begin
with a copy of the files rather than the originals delivered with the software.

3. List the files.

$ ls
README
client.c
crlog
crque
makefile
rmipc
runsample
server.c
setenv

Bui ld ing qsample

Using the ATMI /Q Component A-3

ubb.sample
$

The files that make up the application are:

README
A file that describes the application and how to configure and run it.

setenv
A script that sets environment variables.

crlog
A script that creates a TLOG file.

crque
A script that defines the queue space and queues for the application.

makefile
A makefile that creates the executables for the application.

client.c
The source code for the client program.

server.c
The source code for the server program.

ubb.sample
The ASCII form of the configuration file for the application.

runsample
A script that calls all the necessary commands to build and run the sample
application.

rmipc
A script that removes the IPC resources for the queue space.

4. Edit the setenv file.

Open the setenv file and modify the TUXDIR value to the absolute path of the root
directory of the BEA Tuxedo system installation. Remove the angle bracket characters (<
and >) when editing this value.

5. Run runsample.

The runsample script contains several commands; each command is preceded by a
comment line that describes the purpose of the command.

#set the environment
. ./setenv
chmod +w ubb.sample

A-4 Using the ATMI /Q Component

uname="`uname -n`"
ed ubb.sample<<!
g;<uname -n>;s;;${uname};
g;<full path of Tuxedo software>;s;;${TUXDIR};
g;<full path of APPDIR>;s;;${APPDIR};
w
q
!
#build the client and server
make client server
#create the tuxconfig file
tmloadcf -y ubb.sample
#create the TLOG
./crlog
#create the QUE
./crque
#boot the application
tmboot -y
#run the client
client
#shutdown the application
tmshutdown -y
#remove the client and server
make clean
#remove the QUE ipc resources
./rmipc
#remove all files created
rm tuxconfig QUE stdout stderr TLOG ULOG*

When you run this script you will see a series of messages on your screen that are
generated by the various commands. Included among them are the following lines:

before: this is a q example
after: THIS IS A Q EXAMPLE

The before: line is a copy of the string that client enqueues for processing by server.
The after: line is what server sends back. These two lines prove that the program
worked successfully.

Suggestions for Further Exploration
While it might prove interesting to build and run the sample application using runserver, you
will probably find it more instructive to examine the individual pieces of the application. In this
topic, we suggest some things that we recommend you look at and try; you will undoubtedly be
able to think of others as you explore the application more closely.

Suggest ions fo r Fu r the r Exp lo rat i on

Using the ATMI /Q Component A-5

setenv: Set the Environment
The script setenv is an example of a file often used in BEA Tuxedo development. Three of the
variables that are set (TUXDIR, APPDIR, and PATH) are needed whenever you are working with the
BEA Tuxedo system. Notice that if you are running on a Sun machine, there is another bin you
must have at the beginning of your PATH variable. LD_LIBRARY_PATH, SHLIB_PATH, or LIBPATH
are important if you are building the system with shared libraries. The correct variable to use
depends on your operating system. TUXCONFIG must be set before you can boot the system.
QMADMIN can be set in a variable or provided on the qmadmin(1) command line.

Points to consider: should you plan to have such a file where you will be doing your BEA Tuxedo
/Q work? Should you have a command in your .profile so that you set your environment as
you log in?

makefile: Make Your Application
Notice that the makefile uses buildserver(1) and buildclient(1) to build the server and
client, respectively. You can, of course, execute these commands individually or use the
capability of make to keep the application current.

While we are on the subject of the makefile, this might be a good time to look through the .c
files for the client and server programs. Of particular interest in connection with BEA Tuxedo /Q
are the tpenqueue and tpdequeue calls. Notice particularly the values for the qspace and the
qname arguments. When we look at the configuration file, we will see where those values come
from.

ubb.sample: The ASCII Configuration File
The three most pertinent entries in the configuration file are the CLOPT parameters for the
TMQUEUE and TMQFORWARD servers and the OPENINFO parameter in the *GROUPS entry. We will
extract those items to call them to your attention here:

First the CLOPT parameter from TMQUEUE:

 CLOPT = "-s QSPACENAME:TMQUEUE -- "

Then the CLOPT parameter from TMQFORWARD:

 CLOPT="-- -i 2 -q STRING"

Finally, the OPENINFO parameter from the QUE1 group:

 OPENINFO = "TUXEDO/QM:<APPDIR pathname>/QUE:QSPACE"

The CLOPT parameter from TMQUEUE specifies a service alias of QSPACENAME. Look back again
at client.c and check the qspace argument of tpenqueue and tpdequeue. The CLOPT

A-6 Using the ATMI /Q Component

parameter for TMQFORWARD specifies a service STRING by means of the -q option. This is also the
name given to the queue where messages are enqueued for that service and is specified as the
qname argument of tpenqueue in client.c.

The tmloadcf(1) command is used to compile the ASCII configuration file into a TUXCONFIG
file.

crlog: Create the Transaction Log
The script in crlog invokes tmadmin(1) to create a device list entry for the TLOG and then create
the log for the site specified in our configuration. Because all messages for the queued message
facility are enqueued and dequeued within transactions, you must have a log in which to keep
track of transactions managed by the TMS_QM server.

crque: Create the Queue Space and Queues
The script in crque invokes qmadmin(1) to create the queue space and queues for the sample
application. Notice that the queue space is named QSPACE (that is also the name specified as the
last argument of the OPENINFO parameter in the configuration file). Queues named STRING and
RPLYQ are created. In the qspacecreate portion of the script an error queue is named, but the
script does not include any qcreate command to create that queue. That is a modification you
might want to make later.

Boot, Run, and Shut Down the Application
After making the application programs, loading TUXCONFIG, and creating the queue space and
queues, the next step is to boot the application and run it. The command to boot is:

tmboot -y

The -y option keeps tmboot from prompting for an okay before booting.

The sample application is run simply by entering the command:

client

The tmshutdown command is used to bring the application down.

Clean Up
The runsample script includes three commands that restore the environment to the state it was
in before the script was run. The make clean command uses make to remove the object and
executable files for the client and server.

Suggest ions fo r Fu r the r Exp lo rat i on

Using the ATMI /Q Component A-7

The rmipc command is included because the IPC resources for the queue space are not
automatically removed by tmshutdown (which does remove the BEA Tuxedo IPC resources
used by the application). If you look at rmipc, you will find that it invokes qmadmin and uses its
version of the ipcrm command naming QSPACE to identify resources to be removed.

The final command in the script is the rm command, which removes a number of files that are
generated by the application. There is no harm in leaving these files; in fact, as you work more
with the sample application you will probably want to keep tuxconfig, QUE, and TLOG to save
having to recreate them.

A-8 Using the ATMI /Q Component

