
BEATuxedo ®

Scaling, Distributing,
and Tuning CORBA
Applications

Version 10.0
Document Released: September 28, 2007

Scaling, Distributing, and Tuning CORBA Applications iii

Contents

1. Scaling BEA Tuxedo CORBA Applications
About Scaling BEA Tuxedo CORBA Applications . 1-2

Application Scalability Requirements . 1-2

BEA Tuxedo Scalability Features . 1-2

Using Object State Management. 1-3

CORBA Object State Models . 1-3

Implementing Stateless and Stateful Objects. 1-4

Parallel Objects . 1-6

Replicating Server Processes and Server Groups . 1-7

About Replicating Server Processes and Server Groups . 1-7

Configuration Options . 1-8

Replicating Server Processes . 1-8

Replicating Server Groups . 1-9

Using Multithreaded Servers. 1-9

About Multithreaded CORBA Servers . 1-10

When to Use Multithreaded CORBA Servers . 1-10

Coding Recommendations . 1-11

Configuring a Multithreaded CORBA Server . 1-11

Using Factory-based Routing (CORBA Servers Only) . 1-11

About Factory-based Routing . 1-12

Characteristics of Factory-based Routing . 1-12

How Factory-based Is Implemented . 1-13

iv Scaling, Distributing, and Tuning CORBA Applications

Configuring Factory-based Routing in the UBBCONFIG File 1-13

Using Parallel Objects . 1-14

About Parallel Objects . 1-14

Configuring Parallel Objects. 1-16

Multiplexing Incoming Client Connections . 1-17

IIOP Listener and Handler . 1-17

Increasing the Number of ISH Processes . 1-18

2. Scaling CORBA Server Applications
About Scaling the Production Sample Application . 2-1

Design Goals . 2-2

How the Application Has Been Scaled . 2-2

Changing the OMG IDL. 2-3

Using a Stateless Object Model . 2-3

Scaling by Replicating Server Processes and Server Groups. 2-4

Replicating Server Processes in the Production Application 2-5

Replicating Server Groups in the Production Application 2-6

Configuring Replicated Server Processes and Groups in the Production Application
2-8

Scaling with Factory-based Routing . 2-10

About Factory-based Routing in the Production Application. 2-10

Configuring Factory-based Routing in the UBBCONFIG File 2-11

Implementing Factory-based Routing in a Factory . 2-14

What Happens at Run Time . 2-15

Additional Design Considerations . 2-16

About the Additional Design Considerations . 2-16

Instantiating the Registrar and Teller Objects . 2-16

Ensuring That Student Registration Occurs in the Correct Server Group 2-18

Scaling, Distributing, and Tuning CORBA Applications v

Ensuring That the Teller Object Is Instantiated in the Correct Server Group 2-19

Scaling the Application Further . 2-21

3. Distributing CORBA Applications
Why Distribute an Application? . 3-2

About Distributing an Application . 3-2

Benefits of a Distributed Application . 3-2

Characteristics of Distributing an Application . 3-3

Using Data-dependent Routing (BEA Tuxedo ATMI Servers Only) 3-3

About Data-dependent Routing . 3-4

Characteristics of Data-dependent Routing . 3-4

Sample Distributed Application . 3-4

Example of UBBCONFIG Sections in a Distributed Application 3-5

Configuring the UBBCONFIG File . 3-6

About the UBBCONFIG File in Distributed Applications 3-6

Modifying the GROUPS Section . 3-7

Modifying the SERVICES Section . 3-9

Modifying the INTERFACES Section . 3-10

Creating the ROUTING Section . 3-12

Configuring the factory_finder.ini (CORBA Applications Only) 3-13

Modifying the Domain Gateway Configuration File to Support Routing 3-13

About the Domain Gateway Configuration File . 3-13

Parameters in the DM_ROUTING Section of the DMCONFIG File (BEA Tuxedo
ATMI Only) . 3-14

4. Tuning CORBA Applications
Maximizing Application Resources . 4-3

When to Use MSSQ Sets (BEA Tuxedo ATMI Servers Only) 4-3

Enabling System-controlled Load Balancing . 4-5

vi Scaling, Distributing, and Tuning CORBA Applications

Configuring Replicated Server Processes and Groups. 4-5

Configuring Multithreaded Servers . 4-6

Setting the OPENINFO Parameter for Database Interoperation. 4-7

Parameters Used to Configure Multithreaded Servers . 4-7

Assigning Priorities to Interfaces . 4-8

Bundling Services into Servers (BEA Tuxedo ATMI Servers Only) 4-9

About Bundling Services . 4-9

When to Bundle Services . 4-9

Performance Options . 4-10

Enhancing Efficiency with Application Parameters . 4-11

MAXDISPATCHTHREADS . 4-11

MINDISPATCHTHREADS . 4-12

Setting the MAXACCESSERS, MAXOBJECTS, MAXSERVERS,
MAXINTERFACES, and MAXSERVICES Parameters 4-13

Setting the MAXGTT, MAXBUFTYPE, and MAXBUFSTYPE Parameters . . . 4-13

Setting the SANITYSCAN, BLOCKTIME, BBLQUERY, and DBBLWAIT
Parameters . 4-14

Setting Application Parameters . 4-14

Determining IPC Requirements . 4-14

Measuring System Traffic . 4-16

About System Traffic and Bottlenecks . 4-17

Example of Detecting a System Bottleneck . 4-17

Detecting Bottlenecks on UNIX . 4-18

Detecting Bottlenecks on Windows . 4-19

Scaling, Distributing, and Tuning CORBA Applications 1-1

C H A P T E R 1

Scaling BEA Tuxedo CORBA
Applications

This topic introduces key concepts and tasks for scaling BEA Tuxedo CORBA applications. This
topic includes the following sections:

About Scaling BEA Tuxedo CORBA Applications

Using Object State Management

Replicating Server Processes and Server Groups

Using Multithreaded Servers

Using Factory-based Routing (CORBA Servers Only)

Multiplexing Incoming Client Connections

For more detailed information and examples for BEA Tuxedo CORBA applications, see
Chapter 2, “Scaling CORBA Server Applications.”

Notes: The BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB were
deprecated in Tuxedo 8.1 and are no longer supported. All BEA Tuxedo CORBA Java
client and BEA Tuxedo CORBA Java client ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. BEA Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

1-2 Scaling, Distributing, and Tuning CORBA Applications

About Scaling BEA Tuxedo CORBA Applications
This topic includes the following sections:

Application Scalability Requirements

BEA Tuxedo Scalability Features

Using Object State Management

Application Scalability Requirements
Many applications perform adequately in an environment where between 1 to 10 server processes
and 10 to 100 client applications are running. However, in an enterprise environment,
applications may need to support hundreds of execution contexts (where the context can be a
thread or a process), tens of thousands of client applications, and millions of objects at
satisfactory performance levels.

Subjecting an application to exponentially increasing demands quickly reveals any resource
shortcomings and performance bottlenecks in the application. Scalability is therefore an essential
characteristic of BEA Tuxedo applications.

You can build highly scalable BEA Tuxedo applications by:

Adding parallel processing capability to enable the BEA Tuxedo domain to process
multiple client requests simultaneously.

Sharing the processing load on the server applications across multiple machines.

BEA Tuxedo Scalability Features
BEA Tuxedo supports large-scale application deployments by:

Optimizing object state management

Load balancing objects and requests across replicated server processes and server groups

Using multithreaded servers, which are appropriate for certain types of applications and
processing environments

For CORBA applications, using factory-based routing

Using data-dependent routing (BEA Tuxedo ATMI only)

Multiplexing incoming client connections

Us ing Objec t S ta te Management

Scaling, Distributing, and Tuning CORBA Applications 1-3

Using Object State Management
This topic includes the following sections:

CORBA Object State Models

Implementing Stateless and Stateful Objects

Parallel Objects

Object state management is a fundamental concern of large-scale client/server systems because
it is critical that such systems achieve optimized throughput and response time. For more detailed
information about using object state management, see “Using a Stateless Object Model” on
page 2-3 and the technical article Process-Entity Design Pattern.

CORBA Object State Models
BEA Tuxedo CORBA supports three object state management models:

Method-bound Objects

Process-bound Objects

Transaction-bound Objects

For more information about these models, see “Server Application Concepts” in Creating
CORBA Server Applications

Method-bound Objects
Method-bound objects are loaded into the machine’s memory only for the duration of the client
invocation. When the invocation is complete, the object is deactivated and any state data for that
object is flushed from memory. In this document, a method-bound object is considered to be a
stateless object.

You can use method-bound objects to create a stateless server model in your application. By
using a stateless server model, you move requests that are already directed to active objects to any
available server, which allows concurrent execution for thousands and even millions of objects.
From the client application view, all the objects are available to service requests. However,
because the server application maps objects into memory only for the duration of client
invocations, few of the objects managed by the server application are in memory at any given
moment.

1-4 Scaling, Distributing, and Tuning CORBA Applications

Process-bound Objects
Process-bound objects remain in memory beginning when they are first invoked until the server
process in which they are running is shut down. A process-bound object can be activated upon a
client invocation or explicitly before any client invocation (a preactivated object). Applications
can control the deactivation of process-bound objects. In this document, a process-bound object
is considered to be a stateful object.

When appropriate, process-bound objects with a large amount of state data can remain in memory
to service multiple client invocations, thereby avoiding reading and writing the object’s state data
on each client invocation.

Transaction-bound Objects
Transaction-bound objects can also be considered stateful because, within the scope of a
transaction, they can remain in memory between invocations. If the object is activated within the
scope of a transaction, the object remains active until the transaction is either committed or rolled
back. If the object is activated outside the scope of a transaction, its behavior is the same as that
of a method-bound object (it is loaded for the duration of the client invocation).

Implementing Stateless and Stateful Objects
In general, application developers need to balance the costs of implementing stateless objects
against the costs of implementing stateful objects.

About Stateless and Stateful Objects
The decision to use stateless or stateful objects depends on various factors. In the case where the
cost to initialize an object with its durable state is expensive—because, for example, the object’s
data takes up a great deal of space, or the durable state is located on a disk very remote from the
servant that activates it—it may make sense to keep the object stateful, even if the object is idle
during a conversation. In the case where the cost to keep an object active is expensive in terms of
machine resource usage, it may make sense to make such an object stateless.

By managing object state in a way that is efficient and appropriate for your application, you can
maximize your application’s ability to support large numbers of simultaneous client applications
that use large numbers of objects. The way that you manage object state depends on the specific
characteristics and requirements of your application. For CORBA applications, you manage
object state by assigning the method activation policy to these objects, which has the effect of
deactivating idle object instances so that machine resources can be allocated to other object
instances.

Us ing Objec t S ta te Management

Scaling, Distributing, and Tuning CORBA Applications 1-5

When to Use Stateless Objects
Stateless objects generally provide good performance and optimal usage of server resources,
because server resources are never used when objects are idle. Using stateless objects is a good
approach to implementing server applications and are particularly appropriate when:

The client application waits for user input between invocations on the object.

The client request contains all the data needed by the server application, and the server can
process the client request using only that data.

The object has high access rates, but low access rates from any one particular client
application.

By making an object stateless, you can generally assure that server application resources are not
being reserved unnecessarily while waiting for input from the client application.

An application that employs a stateless object model has the following characteristics:

Information about and associated with an invocation is not maintained after the server
application has finished executing a client request.

An incoming client request is sent to the first available server process. After the request
has been satisfied, the application state disappears and the server application is available
for another client application request.

Durable state information for the object exists outside the server process. With each
invocation on this object, the durable state is read into memory.

Successive requests on an object from a given client application may be processed by a
different server process.

The overall system performance of a machine that is running stateless objects is usually
enhanced.

When to Use Stateful Objects
A stateful object, once activated, remains in memory until a specific event occurs, such as the
process in which the object exists is shut down, or the transaction in which the object is activated
is completed.

Using stateful objects is recommended when:

An object is used frequently by a large number of client applications, such as long-lived,
well-known objects. When the server application keeps these objects active, the client

1-6 Scaling, Distributing, and Tuning CORBA Applications

application typically experiences minimal response time in accessing them. These active
objects are shared by many client applications, and therefore relatively few objects of this
type exist in memory.

Note: You should carefully consider how objects will potentially be involved in a
transaction. An object can be bound to a particular process temporarily
(transaction-bound) or permanently (process-bound). An object that is involved in a
transaction cannot be invoked by another client application or object (BEA Tuxedo
will likely return an error indicating that the object is busy). Stateful objects that are
intended to be used by a large number of client applications can create bottlenecks if
they are involved in transactions frequently or for long durations.

A client application must invoke successive operations on an object to complete a
transaction, and the client application is not idle while it waits for user input between
invocations. If the object were deactivated between invocations, there would be a
degradation of response time because state would be written and read between each
invocation.

Stateful objects have the following behavior:

State information is maintained between server invocations, and the object typically
remains dedicated to a given client application for a specified duration. Even though data is
sent and received between the client and server applications, the server process maintains
additional context or application state information in memory.

When one or more stateful objects use a lot of machine resources, server performance for
tasks and processes not associated with the stateful object may be lower than with a
stateless server model.

For example, if an object has a lock on a database and is caching large amounts of data in
memory, that database and the memory used by that stateful object are unavailable to other
objects, potentially for the entire duration of a transaction.

Parallel Objects
Parallel objects are, by definition, stateless objects so they can exist concurrently on more than
one server. In release 8.0 of BEA Tuxedo, you can use the Implementation Configuration File
(ICF) to force all objects in a specific implementation to be parallel objects. The effect is to
improve performance. For more information on parallel objects, see “Using Parallel Objects” on
page 1-14.

Repl icat ing Se rve r P rocesses and Serve r Groups

Scaling, Distributing, and Tuning CORBA Applications 1-7

Replicating Server Processes and Server Groups
This topic includes the following sections:

About Replicating Server Processes and Server Groups

Configuration Options

Replicating Server Processes

Replicating Server Groups

For more detailed information about replicating server processes and server groups, see the
following topics:

“Configuring Replicated Server Processes and Groups” on page 4-5.

“Scaling by Replicating Server Processes and Server Groups” on page 2-4.

About Replicating Server Processes and Server Groups
The BEA Tuxedo CORBA environment allows CORBA objects to be deployed across multiple
servers to provide additional failover reliability and to split the client’s workload through load
balancing. BEA Tuxedo CORBA load balancing is enabled by default. For more information
about configuring load balancing, see “Enabling System-controlled Load Balancing” on
page 4-5. For more information about distributing the application workload using BEA Tuxedo
CORBA features, see Chapter 3, “Distributing CORBA Applications.”

The BEA Tuxedo architecture provides the following server organization:

Groups—individual servers can be combined to form a group. A group of servers runs on a
single machine. Typically, the servers in a group access common resources (such as a
database).

Domains—machines can be combined to form a domain. A domain is administered
centrally. Multiple domains are administered separately. Domains can also be
interconnected and requests can be transparently routed from one domain to another.
However, each domain is independently administered.

This architecture allows new servers, groups, or machines to be dynamically added or removed,
to adapt the application to high- or low-demand periods, or to accommodate internal changes
required to the application. The BEA Tuxedo run time provides load balancing and failover by
routing requests across available servers.

System administrators can scale a BEA Tuxedo application by:

1-8 Scaling, Distributing, and Tuning CORBA Applications

Replicating Server Processes. Increase the number of server processes to support more
active objects within a group and load balancing among servers.

Replicating Server Groups. Increase the number of server groups so that BEA Tuxedo can
balance the load by distributing processing requests across multiple server machines.

Configuration Options
You can configure server applications as:

A single machine with one or more server processes implementing one or more interfaces.
The servers can be single-threaded or multithreaded.

Multiple machines with multiple server processes and multiple interfaces.

You can add more parallel processing capability to client/server applications by replicating server
processes or add more threads. You can add more server groups to split processing across
resource managers. For CORBA applications, you can implement factory-based routing, as
described in “Using Factory-based Routing (CORBA Servers Only)” on page 1-11.

Replicating Server Processes
System administrators can scale an application by replicating the servers to support more
concurrent active objects, or process more concurrent requests, on the server node. To configure
replicated server processes, see “Configuring Replicated Server Processes and Groups” on
page 4-5.

Note: Release 8.0 of BEA Tuxedo supports the user-controlled concurrency model for active
objects. For a discussion of the concurrency policy feature, see “Parallel Objects” on
page 1-6.

Benefits
The benefits of using replicated server processes include:

Load balancing incoming requests.

Processing client requests on any server within a group. As requests arrive in the BEA
Tuxedo domain for the server group, BEA Tuxedo routes the request to the least busy
server process within that group.

Improving the server application’s performance by using multiple server processes. Instead
of having one server process handling one client request at one time, multiple server
processes are available to handle multiple client requests simultaneously.

Us ing Mu l t i th readed Se rve rs

Scaling, Distributing, and Tuning CORBA Applications 1-9

Providing failover protection in the event that one of the server processes stops.

Guidelines
To achieve the maximum benefit of using replicated server processes, make sure that the CORBA
objects instantiated by your server application have unique object IDs. This allows a client
invocation on an object to cause the object to be instantiated on demand, within the bounds of the
number of server processes that are available, and not queued up for an already active object.

You should also consider the trade-off between providing better application recovery by using
multiple processes versus more efficient performance using threads (for some types of
application patterns and processing environments).

Better failover occurs only when you add processes, not threads. For information about using
single-threaded and multithreaded servers, see “When to Use Multithreaded CORBA Servers” on
page 1-10.

Replicating Server Groups
Server groups are unique to BEA Tuxedo and are key to the scalability features of BEA Tuxedo.
A group contains one or more servers on a single node. System administrators can scale a BEA
Tuxedo application by replicating server groups and configuring load balancing within a domain.

Replicating a server group involves defining another server group with the same type of servers
and resource managers to provide parallel access to a shared resource (such as a database).
CORBA applications, for example, can use factory-based routing to split processing across the
database partitions.

The UBBCONFIG file specifies how server groups are configured and where they run. By using
multiple server groups, BEA Tuxedo can:

Spread the processing load for a given application or set of applications across additional
machines.

For CORBA applications, use factory-based routing to send one set of requests on a given
interface to one group, and another set of requests on the same interface to another group.

To configure replicated server groups, see “Configuring Replicated Server Processes and
Groups” on page 4-5.

Using Multithreaded Servers
This topic includes the following sections:

1-10 Scaling, Distributing, and Tuning CORBA Applications

About Multithreaded CORBA Servers

When to Use Multithreaded CORBA Servers

Coding Recommendations

Configuring a Multithreaded CORBA Server

For instructions on how to configure servers for multithreading, see “Configuring Multithreaded
Servers” on page 4-6.

About Multithreaded CORBA Servers
System administrators can scale a BEA Tuxedo application by enabling multithreading in
CORBA servers, and by tuning configuration parameters (the maximum number of server threads
that can be created) in the application’s UBBCONFIG file.

BEA Tuxedo CORBA supports the ability to configure multithreaded CORBA applications. A
multithreaded CORBA server can service multiple object requests simultaneously, while a
single-threaded CORBA server runs only one request at a time.

Server threads are started and managed by the BEA Tuxedo CORBA software rather than an
application program. Internally, BEA Tuxedo CORBA manages a pool of available server
threads. If a CORBA server is configured to be multithreaded, then when a client request is
received, an available server thread from the thread pool is scheduled to execute the request.
While the object is active, the thread is busy. When the request is complete, the thread is returned
to the pool of available threads.

When to Use Multithreaded CORBA Servers
Designing an application to use multiple, independent threads provides concurrency within an
application and can improve overall throughput. Using multiple threads enables applications to
be structured efficiently with threads servicing several independent tasks in parallel.
Multithreading is particularly useful when:

There is a set of lengthy operations that do not necessarily depend on other processing.

The amount of data to be shared is small and identifiable.

You can break the task into various activities that can be executed in parallel.

There are occasions where objects must be reentrant.

Us ing Facto r y -based Rout ing (CORBA Serve rs On l y)

Scaling, Distributing, and Tuning CORBA Applications 1-11

Some computer operations take a substantial amount of time to complete. A multithreaded
application design can significantly reduce the wait time between the request and completion of
operations. This is true in situations when operations perform a large number of I/O operations
such as when accessing a database, invoking operations on remote objects, or are CPU-bound on
a multiprocessor machine. Implementing multithreading in a server process can increase the
number of requests a server processes in a fixed amount of time.

The primary requirement for multithreaded server applications is the simultaneous handling of
multiple client requests. For more information on the requirements and benefits of using
multithreaded servers, see Creating CORBA Server Applications.

Coding Recommendations
So as to be able to analyze the performance of multithreaded servers, include one of the following
identifiers in each message if your client or server application sends messages to the user log
(ULOG):

– Object ID

– Transaction ID (if the object is transactional)

Configuring a Multithreaded CORBA Server
To configure a multithreaded CORBA server, you change settings in the application’s
UBBCONFIG file. For information about defining the UBBCONFIG parameters to implement a
multithreaded server, see “Configuring Multithreaded Servers” on page 4-6.

Using Factory-based Routing (CORBA Servers Only)
This topic includes the following sections:

About Factory-based Routing

How Factory-based Is Implemented

Configuring Factory-based Routing in the UBBCONFIG File

This topic introduces factory-based routing in BEA Tuxedo CORBA applications. For more
detailed information about using factory-based routing, see “Configuring Factory-based Routing
in the UBBCONFIG File” on page 2-11.

1-12 Scaling, Distributing, and Tuning CORBA Applications

About Factory-based Routing
Factory-based routing enables you to a specify what server group is associated with an object
reference. As a result, you can define the group and machine in which a given object is
instantiated and then distribute the processing load for a given application across multiple
machines.

With factory-based routing, routing is performed when a factory creates an object reference. The
factory specifies field information in its call to the BEA Tuxedo CORBA TP Framework to create
an object reference. The TP Framework executes the routing algorithm based on the routing
criteria that is defined in the ROUTING section of an application’s UBBCONFIG file. The resulting
object reference has, as its target, an appropriate server group for the handling of method
invocations on the object reference. Any server that implements the interface in that server group
is eligible to activate the servant for the object reference.

Thus, the activation of CORBA objects can be distributed by server group based on the defined
criteria and different implementations of CORBA interfaces can be supplied in different groups.
So you can replicate the same CORBA interface across multiple server groups, based on defined,
group-specific differences.

The primary benefit of factory-based routing is that it provides a simple means to scale an
application, and invocations on a given interface in particular, across a growing deployment
environment. Distributing the deployment of an application across additional machines is strictly
an administrative function that does not require you to recode or rebuild the application.

Characteristics of Factory-based Routing
Factory-based routing has the following characteristics:

The factory object implementation can indirectly control the location of the created
CORBA object by supplying application-specific routing information.

An implementation of a particular CORBA interface can exist in more than one server
process, as shown in “Configuring Factory-based Routing in the UBBCONFIG File” on
page 2-11.

Multiple CORBA interfaces can reside in a single server group.

All server processes in a particular server group do not need to use the same CORBA
interfaces.

All object instances that offer a given interface within a group must support the same
version of the implementation.

Us ing Facto r y -based Rout ing (CORBA Serve rs On l y)

Scaling, Distributing, and Tuning CORBA Applications 1-13

Routing uses the bulletin board criteria and occurs in a server call.

How Factory-based Is Implemented
To implement factory-based routing, you must change the way your factories create object
references. First, you must coordinate with the system designer to determine the fields and values
to be used as the basis for routing. Then, for each interface, you must configure factory-based
routing such that the interface definition for the factory specifies the parameter that represents the
routing criteria that is used to determine the group ID.

To configure factory-based routing, define the following information in the UBBCONFIG file:

Routing criteria identifier for a CORBA interface in the INTERFACES section.

As many server groups as are required for distributing the system in the GROUPS section.

Routing criteria in the ROUTING section.

Groups, machines, and databases as required.

Notes: When implementing factory-baed routing, remember that an object with a given interface
and OID can be simultaneously active in two different groups if those two groups both
contain the same object implementation. This can be avoided if your factories generate
unique OIDs. To guarantee that only one object instance of a given interface name and
OID is available at any one time in your domain, you must either:

Use factory-based routing to ensure that objects with a particular OID are always
routed to the same group, or

Configure your domain so that a given object implementation is in only one group.

If multiple clients have an object reference that contains a given interface name and OID,
the reference will always be routed to the same object instance.

Thereafter, the object reference will contain additional information that is used to provide
an indication of where the target server exists. Factory-based routing is performed once
per CORBA object, when the object reference is created.

Configuring Factory-based Routing in the UBBCONFIG File
Routing criteria specify the data values used to route requests to a particular server group. To
configure factory-based routing, you define routing criteria in the ROUTING section of the
UBBCONFIG file (for each interface for which requests are routed). For more detailed information

1-14 Scaling, Distributing, and Tuning CORBA Applications

about configuring factory-based routing, see “Configuring Factory-based Routing in the
UBBCONFIG File” on page 2-11.

To configure factory-based routing across multiple domains, you must also configure the
factory_finder.ini file to identify factory objects that are used in the current (local) domain
but that are resident in a different (remote) domain. For more information, see “Configuring
Multiple Domains for CORBA Applications” in the Using the BEA Tuxedo Domains Component.

Using Parallel Objects
This topic includes the following sections:

About Parallel Objects

Configuring Parallel Objects

About Parallel Objects
Support for parallel objects has been added in release 8.0 of BEA Tuxedo as a performance
enhancement. The parallel objects feature enables you to designate all business objects in
particular application as stateless objects. The effect is that, unlike stateful business objects,
which can only run on one server in a single domain, stateless business objects can run on all
servers in a single domain. Thus, the benefits of parallel objects are as follows:

Note: You enable the parallel objects feature by setting the concurrency policy option to
user_controlled in the ICF file. For more information, see “Configuring Parallel
Objects” on page 1-16.

Parallel objects, which are stateless, can run on multiple servers in the same domain at the
same time. The resulting utilization of all servers to service concurrent multiple requests
improves performance.

When BEA Tuxedo services requests to parallel business objects, it always looks for an
available server to the local machine first. If all servers on the local machine are busy
processing the requested business object, BEA Tuxedo looks for an available server on
other machines in the local domain. Thus, if there are multiple servers on the local
machine, network traffic is reduced and performance is improved.

As illustrated in Figure 1-1, if a stateful business object is active on a server on Machine 2, all
subsequent requests to that business object will be sent to Group 2 on Machine 2. If the active
object on Machine 2 is busy processing another request, the request is queued. Even after the
business object stops processing requests on Machine 2, all subsequent requests on that stateful

Using Para l l e l Ob jec ts

Scaling, Distributing, and Tuning CORBA Applications 1-15

business object will still be sent to Group 2. After the object is deactivated on Machine 2,
subsequent requests will be sent to Group 2 on Machine 2 and can be processed by other servers
in Group 2.

Figure 1-1 Using Stateful Business Objects

As illustrated in Figure 1-2, if a parallel object is running on all the servers in Group 1 on Machine
1 (multiple instances of stateless, user-controlled business objects can run on multiple servers at
the same time), subsequent requests to that business object will be sent to Machine 2 and
distributed to the servers in Group 2 until a server becomes available in Group 1. As long as there
is a server available on the local machine, requests will be distributed to the servers on Machine
1, unless the BEA Tuxedo load-balancing feature determines that, due to loads on the servers, the

1-16 Scaling, Distributing, and Tuning CORBA Applications

request should be serviced by a server in Group 2. To make this determination, the load-balancing
feature uses the LOAD parameter, which is set in the INTERFACES section of the

Figure 1-2 Using Stateless Business Objects

UBBCONFIG file. For information on the LOAD parameter, see “Modifying the INTERFACES
Section” on page 3-10.

Configuring Parallel Objects
Support for parallel objects was added to BEA Tuxedo in release 8.0. You use the ICF file to
implement parallel objects for a particular CORBA application. The ICF includes a

Mul t ip lex ing Incoming C l i ent Connect ions

Scaling, Distributing, and Tuning CORBA Applications 1-17

user-controlled concurrency policy option that sets all business objects implemented in the
application, to which the ICF file applies, to stateless objects.

The concurrency policy determines whether the Active Object Map (AOM) is used to guarantee
that an object is active in only one server at any one time. In previous releases, use of the AOM
was mandatory, not optional. Use of the AOM is referred to as system-controlled concurrency.
Unlike the system-controlled concurrency model, the user-controlled model, which does not use
the AOM, allows the same object to be active in more than one server at a time. Thus,
user-controlled concurrency can be used to improve performance and load balancing. For more
information about configuring user-controlled concurrency for parallel objects, see “Parallel
Objects” in the CORBA Programming Reference.

Multiplexing Incoming Client Connections
This topic includes the following sections:

IIOP Listener and Handler

Increasing the Number of ISH Processes

System administrators can scale a BEA Tuxedo application by increasing, in the UBBCONFIG file,
the number of incoming client connections that an application site supports. BEA Tuxedo
provides a multicontexted, multistated gateway of listener/handlers to handle the multiplexing of
all the requests issued by the client.

IIOP Listener and Handler
The IIOP Listener (ISL) enables access to BEA Tuxedo CORBA objects by remote BEA Tuxedo
CORBA clients that use IIOP. The ISL is a process that listens for remote CORBA clients
requesting IIOP connections. The IIOP Handler (ISH) is a multiplexor process that acts as a
surrogate on behalf of the remote CORBA client. Both the ISL and ISH run on the application
site. An application site can have one or more ISL processes and multiple associated ISH
processes. Each ISH is associated with a single ISL.

The client connects to the ISL process using a known network address. The ISL balances the load
among ISH processes by selecting the best available ISH and passing the connection directly to
it. The ISL/ISH manages the context on behalf of the application client. For more information
about ISL and ISH, see the description of ISL in the File Formats, Data Descriptions, MIBs, and
System Processes Reference.

1-18 Scaling, Distributing, and Tuning CORBA Applications

Increasing the Number of ISH Processes
System administrators can scale a BEA Tuxedo CORBA application by increasing the number of
ISH processes on an application site, thereby enabling the ISL to load balance among more ISH
processes. By default, an ISH can handle up to 10 client connections. To increase this number,
pass the optional CLOPT -x mpx-factor parameter to the ISL command, specifying in
mpx-factor the number of ISH client connections each ISH can handle (up to 4096), and
therefore the degree of multiplexing, for the ISH. Increasing the number of ISH processes may
affect application performance as the application site services more concurrent processes.

System administrators can tune other ISH options as well to scale BEA Tuxedo applications. For
more information, see the description of ISL in the File Formats, Data Descriptions, MIBs, and
System Processes Reference.

Scaling, Distributing, and Tuning CORBA Applications 2-1

C H A P T E R 2

Scaling CORBA Server Applications

This topic includes the following sections:

About Scaling the Production Sample Application

Changing the OMG IDL

Using a Stateless Object Model

Scaling by Replicating Server Processes and Server Groups

Scaling with Factory-based Routing

Additional Design Considerations

Scaling the Application Further

Using the Production sample application as an example, this topic demonstrates scaling an
CORBA C++ application to increase its processing capability. Before you begin, be sure to read:

Chapter 1, “Scaling BEA Tuxedo CORBA Applications,” for a comprehensive introduction
to tuning and scaling BEA Tuxedo CORBA applications.

Production Sample Application in the BEA Tuxedo online documentation.

About Scaling the Production Sample Application
The Production sample application provides the same end-user functionality as the Wrapper
sample application. The Production sample application demonstrates how to use features of the
BEA Tuxedo software to scale an existing BEA Tuxedo application.

2-2 Scaling, Distributing, and Tuning CORBA Applications

This section includes the following topics:

Design Goals

How the Application Has Been Scaled

Design Goals
The primary design goal of the Production sample application is to significantly increase the
number of client applications it can accommodate by:

Processing, in parallel and on one machine, client requests on multiple objects that
implement the same interface.

Directing requests on behalf of certain students to one machine, and other students to other
machines.

Adding more machines to share the processing load.

How the Application Has Been Scaled
To accommodate these design goals, the Production sample application has been scaled by:

Implementing a stateless object model to scale up the number of client requests the server
process can manage simultaneously.

Replicating the University, Billing, and BEA Tuxedo Teller Application server processes
within the groups in which they are configured (the ORA_GRP and APP_GRP server groups
defined in the UBBCONFIG file).

Replicating the ORA_GRP and APP_GRP server groups on an additional server machine,
Production Machine 2, and also partitioning the database.

Assigning unique object IDs (OIDs) to the following objects so that they can be
instantiated multiple times simultaneously in their respective groups.
– RegistrarFactory

– Registrar

– TellerFactory

– Teller

This makes these objects available on a per-client application (and not per-process) basis,
thereby accommodating a parallel processing capability.

Changing the OMG IDL

Scaling, Distributing, and Tuning CORBA Applications 2-3

Implementing factory-based routing to direct client requests on behalf of some students to
one machine, and other students to another machine.

Note: To make the Production sample application easy to use, this application is configured on
the BEA Tuxedo software kit to run on one machine, using one database. The examples
shown in this chapter, however, show running this application on two machines using
two databases.

The Production sample application is designed so that it can be configured to run on
several machines and to use multiple databases. Changing the configuration to multiple
machines and databases involves modifying the UBBCONFIG file and partitioning the
databases, which is described in “Scaling the Application Further” on page 2-21.

The sections that follow describe how the Production sample application uses replicated server
processes and server groups, object state management, and factory-based routing to meet its
scalability goals.

Changing the OMG IDL
The only OMG IDL changes for the Production sample application are limited to the
find_registrar() and find_teller() operations on, respectively, the RegistrarFactory
and TellerFactory objects. These two operations need to be modified to require, respectively,
a student ID and account number, which are needed to implement factory-based routing. See
“Scaling with Factory-based Routing” on page 2-10 to read about how the Production sample
application implements and uses factory-based routing.

Using a Stateless Object Model
This section describes how object state management is used with the Registrar and Teller
objects in the Production sample applications to increase the application’s scalability. For an
introduction to object state management, see “Using Object State Management” on page 1-3.

To increase scalability, the Registrar and Teller objects are configured in the Production
server application with the method activation policy. The method activation policy assigned to
these two objects results in the following behavior changes:

Whenever these objects are invoked, they are instantiated by the BEA Tuxedo domain in
the appropriate server group.

After the invocation is complete, the BEA Tuxedo domain deactivates these objects.

2-4 Scaling, Distributing, and Tuning CORBA Applications

With the Basic through the Wrapper sample applications, the Registrar object was
process-bound (process activation policy). All client requests on the Registrar object
invariably went to the same object instance in the memory of the server machine. The Basic
sample application design may be adequate for a small-scale deployment. However, as client
application demands increase, client requests on the Registrar object eventually become
queued, and response time drops.

However, when the Registrar and Teller objects are stateless (method activation policy), and
the server processes that manage these objects are replicated, the Registrar and Teller objects
can process multiple client requests in parallel. The only constraint on the number of
simultaneous client requests that these objects can handle is the number of server processes that
are available that can instantiate the Registrar and Teller objects. These stateless objects,
thereby, make for more efficient use of machine resources and reduced client response time.

Most importantly, so that BEA Tuxedo CORBA can instantiate copies of the Registrar and
Teller objects in each of the replicated server processes, each copy of these objects must be
unique. To make each instance of these objects unique, the factories for those objects must assign
unique object IDs to them.

For the BEA Tuxedo application to instantiate copies of the Registrar and Teller objects in
each of the replicated server application processes, each copy of the Registrar and Teller
objects have an unique object ID (OID). The factories that create these objects are responsible for
assigning them unique OIDs. For information about generating unique object IDs, see Creating
CORBA Server Applications. For more information about other design considerations, see
“Additional Design Considerations” on page 2-16.

Scaling by Replicating Server Processes and Server
Groups

This topic includes the following sections:

Replicating Server Processes in the Production Application

Replicating Server Groups in the Production Application

Configuring Replicated Server Processes and Groups in the Production Application

This topic describes how the Production sample application was scaled by replicating server
processes and server groups. For an introduction to this topic, see “Replicating Server Processes
and Server Groups” on page 1-7.

Sca l ing by Rep l i ca t ing Se rve r P rocesses and Serve r Groups

Scaling, Distributing, and Tuning CORBA Applications 2-5

Replicating Server Processes in the Production Application
This section describes how the Production sample application replicates server applications. For
an introduction to this feature, see “Replicating Server Processes” on page 1-8.

Figure 2-1 shows the replicated ORA_GRP and APP_GRP groups running on a single machine.

The University server application, BEA Tuxedo Teller Application, and Oracle7 TMS
server processes are replicated within the ORA_GRP group.

The Billing server process is replicated within the APP_GRP group.

Figure 2-1 Replicated Server Groups in the Production Sample

University Server

Production Machine
ORA_GRP APP_GRP

Oracle7
Database Server

RegistrarFactory

Registrar

CourseSynopsis
Enumerator

BEA TUXEDO
Teller Application

debit()
credit()
current_balance()

Database

TellerFactory

Teller

Billing ServerUniversity Server

2-6 Scaling, Distributing, and Tuning CORBA Applications

When a request arrives for either of these groups, the BEA Tuxedo domain has several server
processes available that can process the request, and the BEA Tuxedo domain can choose the
server process that is the least busy.

In Figure 2-1, note the following points:

At any time, there may be no more than one instance of the RegistrarFactory,
Registrar, TellerFactory, or Teller objects within a given server process.

There may be any number of CourseSynopsisEnumerator objects in any University
server process.

Replicating Server Groups in the Production Application
This section describes how the Production sample application replicates server groups. For an
introduction to this feature, see “Replicating Server Groups” on page 1-9.

Figure 2-2 shows the Production sample application groups replicated on another machine, as
specified in the application’s UBBCONFIG file, as ORA_GRP2 and APP_GRP2.

Sca l ing by Rep l i ca t ing Se rve r P rocesses and Serve r Groups

Scaling, Distributing, and Tuning CORBA Applications 2-7

Figure 2-2 Replicating Server Groups Across Machines

In Figure 2-2, the only difference between the content of the groups on Production Machines 1
and 2 is the database:

The database on Production Machine 1 contains student and account information for
students with IDs between 100001 and 100005.

The database on Production Machine 2 contains student and account information for
students with IDs between 100006 and 100010.

Note: The course information table in both databases is identical.

Note that the student information in a given database may be completely unrelated to the account
information in the same database.

For more information about how the Production sample application uses factory-based routing to
distribute the application’s processing load across multiple machines, see “Scaling with
Factory-based Routing” on page 2-10.

Production Machine 1

APP_GRP1ORA_GRP1

Production Machine 2

APP_GRP2ORA_GRP2

University
Server Billing Server

University
Server Billing Server

Database 1 Database 2

BEA TUXEDO
Teller

Application

BEA TUXEDO
Teller

Application

Oracle7
Database

Server

Oracle7
Database

Server

2-8 Scaling, Distributing, and Tuning CORBA Applications

Configuring Replicated Server Processes and Groups in the
Production Application
Listing 2-1 shows excerpts from the GROUPS and SERVERS sections of the UBBCONFIG file for the
Production sample application.

Listing 2-1 GROUPS and SERVERS Sections in a UBBCONFIG File

*GROUPS

 APP_GRP1

 LMID = SITE1

 GRPNO = 2

 TMSNAME = TMS

 APP_GRP2

 LMID = SITE1

 GRPNO = 3

 TMSNAME = TMS

 ORA_GRP1

 LMID = SITE1

 GRPNO = 4

 OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/..."

 CLOSEINFO = ""

 TMSNAME = "TMS_ORA"

 ORA_GRP2

 LMID = SITE1

 GRPNO = 5

 OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/..."

 CLOSEINFO = ""

 TMSNAME = "TMS_ORA"

*SERVERS

 # By default, activate 2 instances of each server

 # and allow the administrator to activate up to 5

 # instances of each server

 DEFAULT:

 MIN = 2

 MAX = 5

Sca l ing by Rep l i ca t ing Se rve r P rocesses and Serve r Groups

Scaling, Distributing, and Tuning CORBA Applications 2-9

 tellp_server

 SRVGRP = ORA_GRP1

 SRVID = 10

 RESTART = N

 tellp_server

 SRVGRP = ORA_GRP2

 SRVID = 10

 RESTART = N

 billp_server

 SRVGRP = APP_GRP1

 SRVID = 10

 RESTART = N

 billp_server

 SRVGRP = APP_GRP2

 SRVID = 10

 RESTART = N

 univp_server

 SRVGRP = ORA_GRP1

 SRVID = 20

 RESTART = N

 univp_server

 SRVGRP = ORA_GRP2

 SRVID = 20

 RESTART = N

2-10 Scaling, Distributing, and Tuning CORBA Applications

Scaling with Factory-based Routing
This topic includes the following sections:

About Factory-based Routing in the Production Application

Configuring Factory-based Routing in the UBBCONFIG File

Implementing Factory-based Routing in a Factory

What Happens at Run Time

This topic describes how the Production sample application was scaled using factory-based
routing. For an introduction to factory-based routing, see “Using Factory-based Routing
(CORBA Servers Only)” on page 1-11.

About Factory-based Routing in the Production Application
This section describes how the Production sample application uses a factory-based routing. For
an introduction to this feature, see “Using Factory-based Routing (CORBA Servers Only)” on
page 1-11.

You can use factory-based routing to expand the load-balancing and scalability features of BEA
Tuxedo CORBA. In the Production sample application, you can use factory-based routing to send
requests to register one subset of students to one machine, and requests for another subset of
students to another machine. As you increase your application’s processing capability, you can
easily modify the factory-based routing in your application to add more machines.

The primary design consideration regarding implementing factory-based routing in the
Production sample application is in choosing the value on which routing is based. The Production
sample application uses factory-based routing in the following ways:

Requests from client applications to the Registrar object are routed based on the student
ID. Requests from student ID 100001 to 100005 go to Production Machine 1. Requests
from student ID 100006 to 100010 go to Production Machine 2.

Requests from the Registrar object to the Teller object are routed based on account
number. Billing requests for account 200010 to 200014 go to Production Machine 1.
Billing requests for account 200015 to 200019 go to Production Machine 2.

Scal ing wi th Facto ry-based Rout ing

Scaling, Distributing, and Tuning CORBA Applications 2-11

Configuring Factory-based Routing in the UBBCONFIG File
The University Production sample application demonstrates how to implement factory-based
routing. The INTERFACES, ROUTING, and GROUPS sections from the ubb_b.nt configuration file
show how you can implement factory-based routing in a BEA Tuxedo CORBA application. You
can find the ubb_p.nt or ubb_p.mk UBBCONFIG files for this sample in the directory where the
BEA Tuxedo software is installed (see the \samples\corba\university\production
subdirectory).

The UBBCONFIG file must specify the following data in the INTERFACES and ROUTING sections,
as well as how groups and machines are identified.

1. The INTERFACES section lists the names of the interfaces for which you want to enable
factory-based routing. For each interface, this section specifies the kinds of criteria on which
the interface routes. This section specifies the routing criteria via an identifier,
FACTORYROUTING, as shown in Listing 2-2.

Listing 2-2 INTERFACES Section of a UBBCONFIG File

INTERFACES
 "IDL:beasys.com/UniversityP/Registrar:1.0"
 FACTORYROUTING = STU_ID
 "IDL:beasys.com/BillingP/Teller:1.0"
 FACTORYROUTING = ACT_NUM

Listing 2-2 shows the fully qualified interface names for the two interfaces in the
Production sample in which factory-based routing is used. The FACTORYROUTING identifier
specifies the names of the routing values, which are STU_ID and ACT_NUM, respectively.

2. The ROUTING section specifies the parameters in Table 2-1 for each routing value.

2-12 Scaling, Distributing, and Tuning CORBA Applications

Listing 2-3 shows the ROUTING section of the UBBCONFIG file used in the Production
sample application.

Listing 2-3 ROUTING Section of the UBBCONFIG File

ROUTING

 STU_ID

 FIELD = "student_id"

 TYPE = FACTORY

 FIELDTYPE = LONG

 RANGES = "100001-100005:ORA_GRP1,100006-100010:ORA_GRP2"

 ACT_NUM

 FIELD = "account_number"

 TYPE = FACTORY

 FIELDTYPE = LONG

 RANGES = "200010-200014:APP_GRP1,200015-200019:APP_GRP2"

Listing 2-3 shows that Registrar object references for students with IDs in one range are
routed to one server group, and Registrar object references for students with IDs in
another range are routed to another group. Likewise, Teller object references for accounts

Table 2-1 Parameters Specified in the ROUTING Section

Parameter Description

TYPE Specifies the type of routing. In the Production sample, the type of
routing is factory-based routing. Therefore, this parameter is defined as
FACTORY.

FIELD Specifies the variable name that the factory inserts in the routing value.
In the Production sample, the field parameters are student_id and
account_number, respectively.

FIELDTYPE Specifies the data type of the routing value. In the Production sample,
the field types for student_id and account_number are long.

RANGES Specifies the values that are routed to each group.

Scal ing wi th Facto ry-based Rout ing

Scaling, Distributing, and Tuning CORBA Applications 2-13

in one range are routed to one server group, and Teller object references for accounts in
another range are routed to another group.

3. The groups specified by the RANGES identifier in the ROUTING section of the UBBCONFIG file
need to be identified and configured. For example, the Production sample specifies four
groups: APP_GRP1, APP_GRP2, ORA_GRP1, and ORA_GRP2. These groups need to be
configured, and the machines on which they run need to be identified.

Listing 2-4 shows the GROUPS section of the Production sample UBBCONFIG file, in which
the ORA_GRP1 and ORA_GRP2 groups are configured. Notice how the names in the GROUPS
section match the group names specified in the RANGES parameter in the ROUTING section.
This is critical for factory-based routing to work correctly. Furthermore, any change in the
way groups are configured in an application must be reflected in the ROUTING section.
(Note that the Production sample packaged with the BEA Tuxedo software is configured to
run entirely on one machine. However, you can easily configure this application to run on
multiple machines.)

Listing 2-4 GROUPS Section of a UBBCONFIG File

*GROUPS
 APP_GRP1
 LMID = SITE1
 GRPNO = 2
 TMSNAME = TMS
 APP_GRP2
 LMID = SITE1
 GRPNO = 3
 TMSNAME = TMS
 ORA_GRP1
 LMID = SITE1
 GRPNO = 4
 OPENINFO =
"ORACLE_XA:Oracle_XA+Acc=P/scott/tiger+SesTm=100+LogDir=.+MaxCur=5"
 CLOSEINFO = ""
 TMSNAME = "TMS_ORA"
 ORA_GRP2
 LMID = SITE1
 GRPNO = 5
OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/tiger+SesTm=100+LogDir=.+MaxCur=5"
 CLOSEINFO = ""
 TMSNAME = "TMS_ORA"

2-14 Scaling, Distributing, and Tuning CORBA Applications

Implementing Factory-based Routing in a Factory
Factories implement factory-based routing in the way the invocation to the
TP::create_object_reference() operation is implemented. This operation has the C++
binding in Listing 2-5.

Listing 2-5 C++ Binding for create_object_reference

CORBA::Object_ptr TP::create_object_reference (

 const char* interfaceName,

 const PortableServer::oid &stroid,

 CORBA::NVlist_ptr criteria);

The third parameter to this operation, criteria, specifies a list of named values to be used for
factory-based routing. To implement factory-based routing in a factory, you need to build the
NVlist. The use of factory-based routing is optional and is dependent on this argument. Instead
of using factory-based routing, you can pass a value of 0 (zero) for this argument.

As stated previously, the RegistrarFactory object in the Production sample application
specifies the value STU_ID. This value must exactly match the following information in the
UBBCONFIG file:

The routing name, type, and allowable values specified by the FACTORYROUTING identifier
in the INTERFACES section.

The routing criteria name, field, and field type specified in the ROUTING section.

The RegistrarFactory object inserts the student ID into the NVlist using the code shown in
Listing 2-6.

Listing 2-6 NVlist in the RegistrarFactory Object

// put the student id (which is the routing criteria)

// into a CORBA NVList:

CORBA::NVList_var v_criteria;

TP::orb()->create_list(1, v_criteria.out());

CORBA::Any any;

Scal ing wi th Facto ry-based Rout ing

Scaling, Distributing, and Tuning CORBA Applications 2-15

any <<= (CORBA::Long)student;

v_criteria->add_value("student_id", any, 0);

The RegistrarFactory object has the invocation to the TP::create_object_reference()
operation, shown in Listing 2-7, passing the NVlist created in Listing 2-6.

Listing 2-7 Invoking create_object_reference in the RegistrarFactory Object

// create the registrar object reference using

// the routing criteria :

CORBA::Object_var v_reg_oref =

 TP::create_object_reference(

 UniversityP::_tc_Registrar->id(),

 object_id,

 v_criteria.in()

);

The Production sample application also uses factory-based routing in the TellerFactory object
to determine the group in which Teller objects should be instantiated based on an account
number.

What Happens at Run Time
When you implement factory-based routing in a factory, BEA Tuxedo CORBA generates an
object reference. The following example shows how the client application gets an object
reference to a Registrar object when factory-based routing is implemented.

1. The client application invokes the RegistrarFactory object, requesting a reference to a
Registrar object. The request includes a student ID.

2. The RegistrarFactory inserts the student ID into an NVlist, which is used as the routing
criteria.

3. The RegistrarFactory invokes the TP::create_object_reference() operation,
passing the Registrar interface name, a unique OID, and the NVlist.

2-16 Scaling, Distributing, and Tuning CORBA Applications

4. BEA Tuxedo CORBA compares the contents of the routing tables with the value in the
NVlist to determine a group ID.

5. BEA Tuxedo CORBA inserts information about the group into the object reference.

When the client application subsequently invokes an object using the object reference, BEA
Tuxedo CORBA routes the request to the group specified in the object reference.

Note: If you use the process-entity design pattern, you should use caution in how you
implement factory-based routing. The object can service only those entities that are
contained in the group’s database.

Additional Design Considerations
This topic includes the following sections:

About the Additional Design Considerations

Instantiating the Registrar and Teller Objects

Ensuring That Student Registration Occurs in the Correct Server Group

Ensuring That the Teller Object Is Instantiated in the Correct Server Group

About the Additional Design Considerations
When designing the Registrar and Teller objects, you should ensure that:

The Registrar and Teller objects work properly for the Production deployment
environment; namely, across multiple replicated server processes and multiple groups.
Given that the University and Billing server processes are replicated, the design must
consider how these two objects should be instantiated.

Client requests for registration and billing operations for a given student go to the correct
server group, given that the two server groups in the Production BEA Tuxedo domain each
deal with different databases.

These objects must have unique object IDs (OIDs) and must be method-bound (that is, they must
have the method activation policy assigned to them).

Instantiating the Registrar and Teller Objects
In the University server applications that are less sophisticated than the Production sample
application, the run-time behavior of the Registrar and Teller objects was simpler:

Addi t i ona l Des ign Cons iderat ions

Scaling, Distributing, and Tuning CORBA Applications 2-17

Each object was process-bound, meaning that each was activated the first time it was
invoked, and it stayed in memory until the server process in which it ran was shut down.

Since there was only one server group running in the BEA Tuxedo domain, and only one
University and Billing server process in the group, all client requests were directed to the
same objects. As multiple client requests arrived in the BEA Tuxedo domain, these objects
each processed one client request at one time.

Because there was only one instance of each object in the server processes in which they
ran, neither object needed a unique OID. The OID for each object specified only the
Interface Repository ID.

However, because the University and Billing server processes are now replicated, BEA Tuxedo
CORBA must be able to differentiate among multiple instances of the Registrar and Teller
objects. For example, if there are two University server processes running in a group, BEA
Tuxedo CORBA must have a means to distinguish between the Registrar object running in the
first University server process and the Registrar object running in the second University server
process. To distinguish multiple instances of these objects, each object instance must be unique.

To make each Registrar and Teller object unique, the factories for those objects must change
the way in which they make object references to them. For example, when the
RegistrarFactory object in the Basic sample application created an object reference to the
Registrar object, the TP::create_object_reference() operation specified an OID that
consisted only of the string registrar. However, in the Production sample application, the same
TP::create_object_reference() operation uses a generated unique OID instead.

As a result of giving each Registrar and Teller object a unique OID, multiple instances of
these objects may be running simultaneously in the BEA Tuxedo domain. This characteristic is
typical of the stateless object model, and is an example of how the BEA Tuxedo domain can be
highly scalable while it offers high performance.

Finally, because unique Registrar and Teller objects need to be brought into memory for each
client request on them, it is critical that these objects be deactivated when the invocations on them
are completed so that any object state associated with them does not remain idle in memory. The
Production server application addresses this issue by assigning the method activation policy to
these two objects in the Implementation Configuration File (ICF).

2-18 Scaling, Distributing, and Tuning CORBA Applications

Ensuring That Student Registration Occurs in the Correct
Server Group
The primary scalability advantage of using replicated server groups is being able to distribute
processing across multiple machines. However, if your application interacts with a database,
which is the case with the University sample applications, it is critical that you consider the
impact of these multiple server groups on the database interactions.

In many cases, you may have one database associated with each machine in your deployment. If
your server application is distributed across multiple machines, you must consider how you set
up your databases.

The Production sample application, as described in this chapter, uses two databases. However,
this application can easily be configured to accommodate more. The system administrator can
decide on how many databases to use.

In the Production sample application, the student and account information is partitioned across
the two databases, but course information is identical. Having identical course information in
both databases is not a problem because the course information is read-only for the purposes of
course registration. However, the student and account information is read-write. If multiple
databases were also to contain identical data for students and accounts (that is, the database is not
partitioned), the application would need to deal with the overhead of synchronizing the updates
to student and account information across all the databases each time any student or account
information were to change.

The Production sample application uses factory-based routing to send one set of requests to one
machine, and another set to the other machine. How factory-based routing is implemented in the
RegistrarFactory object depends on the way in which references to Registrar objects are
created.

For example, when the client application sends a request to the RegistrarFactory object to get
an object reference to a Registrar object, the client application includes a student ID in that
request. The client application must use the object reference that the RegistrarFactory object
returns to make all subsequent invocations on a Registrar object on a particular student’s
behalf, because the object reference returned by the factory is group-specific. Therefore, for
example, when the client application subsequently invokes the get_student_details()
operation on the Registrar object, the client application can be assured that the Registrar
object is active in the server group associated with the database containing data for that student.

To show how this works, consider the following execution scenario, which is implemented in the
Production sample application:

Addi t i ona l Des ign Cons iderat ions

Scaling, Distributing, and Tuning CORBA Applications 2-19

1. The client application invokes the find_registrar() operation on the RegistrarFactory
object. Included in this invocation is the student ID 1000003.

2. BEA Tuxedo CORBA routes the client request to any RegistrarFactory object.

3. The RegistrarFactory object uses the student ID to create an object reference to a
Registrar object in ORA_GRP1, based on the routing information in the UBBCONFIG file, and
returns that object reference to the client application.

4. The client application invokes the register_for_courses() operation on the Registrar
object.

5. BEA Tuxedo CORBA receives the client request and routes it to the server group specified in
the object reference. In this case, the client request goes to the University server process in
ORA_GRP1, which is on Production Machine 1.

6. The University server process instantiates a Registrar object and sends the client invocation
to it.

The RegistrarFactory object from the preceding scenario returns to the client application a
unique reference to a Registrar object that can be instantiated only in ORA_GRP1, which runs
on Production Machine 1 and has a database containing student data for students with IDs in the
range 100001 to 100005. Therefore, when the client application sends subsequent requests to this
Registrar object on behalf of a given student, the Registrar object interacts with the correct
database.

Ensuring That the Teller Object Is Instantiated in the
Correct Server Group
When the Registrar object needs a Teller object, the Registrar object invokes the
TellerFactory object, using the TellerFactory object reference cached in the University
Server object.

However, because factory-based routing is used in the TellerFactory object, the Registrar
object passes the student’s account number when the Registrar object requests a reference to a
Teller object. This way, the TellerFactory object creates a reference to a Teller object in
the group that has the correct database.

Note: For the Production sample application to work properly, it is essential that the system
administrator configures the server groups and the databases properly. In particular, the
system administrator must make sure that a match exists between the routing criteria
specified in the routing tables and the databases to which requests using those criteria are
routed. Using the Production sample as an example, the database in a given group must

2-20 Scaling, Distributing, and Tuning CORBA Applications

contain the correct student and account information for the requests that are routed to that
group.

Scal ing the Appl ica t i on Fur ther

Scaling, Distributing, and Tuning CORBA Applications 2-21

Scaling the Application Further
In the future, the system administrator of the Production sample application may want to add
capacity to the BEA Tuxedo domain. For example, the University may eventually experience a
large increase in the student population, or the Production application may be scaled up to
accommodate the course registration process for an entire state university system, encompassing
several campuses. This can be done without modifying or rebuilding the application.

The system administrator can continually add capacity by:

Replicating the server groups in the Production sample application across additional
machines.

The system administrator must modify the UBBCONFIG file to specify the additional server
groups, the server processes that run in those groups, and the machines on which the server
groups run.

Changing the factory-based routing tables.

For example, instead of routing to the two existing groups in the Production sample
application, the system administrator can modify the routing rules in the UBBCONFIG file to
partition the application further among additional server groups added to the BEA Tuxedo
domain. Any modification to the routing tables must match the information for the
configured server groups and machines in the UBBCONFIG file.

Note: If you add capacity to an existing BEA Tuxedo CORBA application that uses a database,
you must also consider the impact on how the database is set up, particularly when you
are using factory-based routing. For example, if the Production sample application is
distributed across six machines, the database on each machine must be set up
appropriately and in accordance with the routing tables in the UBBCONFIG file.

2-22 Scaling, Distributing, and Tuning CORBA Applications

Scaling, Distributing, and Tuning CORBA Applications 3-1

C H A P T E R 3

Distributing CORBA Applications

This topic includes the following sections:

Why Distribute an Application?

Using Data-dependent Routing (BEA Tuxedo ATMI Servers Only)

Configuring the UBBCONFIG File

Configuring the factory_finder.ini (CORBA Applications Only)

Modifying the Domain Gateway Configuration File to Support Routing

This topic describes how to distribute applications in the BEA Tuxedo CORBA environment,
using a CORBA application as an example.

Notes: The BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB were
deprecated in Tuxedo 8.1 and are no longer supported. All BEA Tuxedo CORBA Java
client and BEA Tuxedo CORBA Java client ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. BEA Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

3-2 Scaling, Distributing, and Tuning CORBA Applications

Why Distribute an Application?
This topic includes the following sections:

About Distributing an Application

Benefits of a Distributed Application

Characteristics of Distributing an Application

About Distributing an Application
Distributing an application enables you to select which parts of an application should be grouped
together logically and where these groups should run. You distribute an application by creating
more than one entry in the GROUPS section of the UBBCONFIG file, and by dividing application
resources or tasks among the groups. Creating groups of servers enables you to partition a very
large application into its component business applications, and to assure that each of these into
logical components is of a manageable size and in an optimal location.

Benefits of a Distributed Application
The benefits of a distributed application include:

Scalability—to increase the load that an application can sustain:

– Place extra server processes in a group.

– Add machines to the application and redistribute the groups across the machines.

– Replicate a group onto other machines within the application and use load balancing.

– Segment a database and use data-dependent routing to reach the groups dealing with
these separate database segments (the BEA Tuxedo ATMI system).

With the BEA Tuxedo CORBA system, you can use factory-based routing to distribute the
processing of a particular CORBA interface across multiple server groups and, if desired,
across multiple machines. This feature allows you to distribute the processing load, which
can prevent the processing bottlenecks that occur when concurrent, resource-intensive
applications compete for the available CPU, memory, disk I/O, and network resources. For
an example of using factory-based routing, see “Scaling with Factory-based Routing” on
page 2-10.

For more information about BEA Tuxedo CORBA scalability features, see Chapter 1,
“Scaling BEA Tuxedo CORBA Applications.”

Using Data-dependent Rout ing (BEA Tuxedo ATMI Se rve rs On l y)

Scaling, Distributing, and Tuning CORBA Applications 3-3

Ease of Development and Maintenance—the separation of the business application logic
into services or components that communicate through well-defined messages or interfaces
allows both development and maintenance to be similarly separated and thereby simplified.

Reliability—when multiple machines are in use and one fails, the remainder can continue
operation. Similarly, when multiple server processes are within a group and one fails, the
others are available to perform work. Finally, if a machine should fail, but there are
multiple machines within the application, these other machines can be used to handle the
load.

Coordination of Autonomous Actions—if you have separate applications, you can
coordinate autonomous actions, as a single logical unit of work, among applications.
Autonomous actions are actions that involve multiple server groups and multiple resource
manager interfaces.

Characteristics of Distributing an Application
A distributed application:

Enlarges the client and/or server model.

Establishes multiple server groups.

Enables transparent access to BEA Tuxedo services or BEA Tuxedo CORBA interfaces.

In BEA Tuxedo, allows data-dependent partitioning of data.

In BEA Tuxedo CORBA, allows partitioning of CORBA objects in multiple groups across
multiple machines, or distributing application factory interfaces and application interfaces.

Enables management of multiple resources.

Supports a networked model.

Using Data-dependent Routing (BEA Tuxedo ATMI Servers
Only)

This topic includes the following sections:

About Data-dependent Routing

Characteristics of Data-dependent Routing

Sample Distributed Application

3-4 Scaling, Distributing, and Tuning CORBA Applications

Example of UBBCONFIG Sections in a Distributed Application

Note: This topic applies to BEA Tuxedo servers only.

About Data-dependent Routing
Data-dependent routing is a mechanism whereby a service request is routed by a client (or a
server acting as a client) to a server within a specific group based on a data value contained within
the buffer that is sent. Within the internal code of a service call, BEA Tuxedo chooses a
destination server by comparing a data field with the routing criteria it finds in the bulletin board
shared memory.

For any given service, a routing criteria identifier can be specified in the SERVICES section of the
UBBCONFIG file. The routing criteria identifier (in particular, the mapping of data ranges to server
groups) is specified in the ROUTING section.

Characteristics of Data-dependent Routing
Data-dependent routing has the following characteristics:

The service request assigned to a server in the group is based on a data value.

Routing uses the bulletin board criteria and occurs in a server call.

The routing criteria identifier for a service is specified in the SERVICES section of the
UBBCONFIG file.

The routing criteria identifier is defined in the ROUTING section of the UBBCONFIG file.

Sample Distributed Application
Table 3-1 illustrates how client requests are routed to servers. In this example, a banking
application called bankapp uses data-dependent routing. For bankapp, there are three groups
(BANKB1, BANKB2, and BANKB3), and two routing criteria (Account_ID and Branch_ID). The
services WITHDRAW, DEPOSIT, and INQUIRY are routed using the Account_ID field. The services
OPEN and CLOSE are routed using the Branch_ID field.

Using Data-dependent Rout ing (BEA Tuxedo ATMI Se rve rs On l y)

Scaling, Distributing, and Tuning CORBA Applications 3-5

Example of UBBCONFIG Sections in a Distributed
Application
Listing 3-1 shows a sample UBBCONFIG file that contains the GROUPS, SERVICES, and ROUTING
sections of a configuration file to accomplish data-dependent routing in the BEA Tuxedo system.

Listing 3-1 Sample UBBCONFIG File

*GROUPS

BANKB1 GRPNO=1

BANKB2 GRPNO=2

BANKB3 GRPNO=3

#

*SERVICES

WITHDRAW ROUTING=ACCOUNT_ID

DEPOSIT ROUTING=ACCOUNT_ID

INQUIRY ROUTING=ACCOUNT_ID

OPEN_ACCT ROUTING=BRANCH_ID

CLOSE_ACCT ROUTING=BRANCH_ID

#

Table 3-1 Data-dependent Routing Criteria for Sample Distributed Application

Server Group Routing Criteria Services

BANKB1 Account_ID: 10000 - 49999 WITHDRAW, DEPOSIT, and
INQUIRY

Branch_ID: 1 - 4 OPEN and CLOSE

BANKB2 Account_ID: 50000 - 79999 WITHDRAW, DEPOSIT, and
INQUIRY

Branch_ID: 5 - 7 OPEN and CLOSE

BANKB3 Account_ID: 80000 -
109999

WITHDRAW, DEPOSIT, and
INQUIRY

Branch_ID: 8 - 10 OPEN and CLOSE

3-6 Scaling, Distributing, and Tuning CORBA Applications

*ROUTING

ACCOUNT_ID FIELD=ACCOUNT_ID BUFTYPE=”FML”

 RANGES=”MIN - 9999:*,

 10000-49999:BANKB1,

 50000-79999:BANKB2,

 80000-109999:BANKB3,

 :”

BRANCH_ID FIELD=BRANCH_ID BUFTYPE=”FML”

 RANGES=”MIN - 0:*,

 1-4:BANKB1,

 5-7:BANKB2,

 8-10:BANKB3,

 :”

Configuring the UBBCONFIG File
This topic includes the following sections:

About the UBBCONFIG File in Distributed Applications

Modifying the GROUPS Section

Modifying the SERVICES Section

Modifying the INTERFACES Section

Creating the ROUTING Section

For more information about the UBBCONFIG file, see “Creating a Configuration File” in Setting
Up a BEA Tuxedo Application.

About the UBBCONFIG File in Distributed Applications
The UBBCONFIG file contains a description of either data-dependent routing (BEA Tuxedo) or
factory-based routing (BEA Tuxedo CORBA), as follows:

The GROUPS section is populated with as many server groups as are required for
distributing the system. This allows the system to route a request to a server in a specific
group. These groups can all reside on the same site (SHM mode) or, if there is networking,
the groups can reside on different sites (MP mode).

Conf igur ing the UBBCONF IG F i l e

Scaling, Distributing, and Tuning CORBA Applications 3-7

For data-dependent routing in BEA Tuxedo, the SERVICES section must list the routing
criteria for each service that uses the ROUTING parameter.

Note: If a service has multiple entries, each with a different SRVGRP parameter, all such
entries must set ROUTING the same way to ensure consistency for that service. A
service can route only on one field, which must be the same for all the same services.

For factory-based routing in BEA Tuxedo CORBA, the INTERFACES section must list the
name of the routing criteria for each CORBA interface that uses the FACTORYROUTING
parameter. This parameter is set to the name of a routing criteria defined in the ROUTING
section.

Add a ROUTING section to the configuration file to show mappings between data ranges
and groups so that the system can send the request to a server in a specific group. Each
ROUTING section item contains an identifier that is used in the INTERFACES section (for
BEA Tuxedo ATMI) or in the SERVICES section (for BEA Tuxedo).

Modifying the GROUPS Section
The parameters in the GROUPS section implement two important aspects of distributed transaction
processing:

They associate a group of servers with a particular LMID and a particular instance of a
resource manager.

By allowing a second LMID to be associated with the server group, they name an alternate
machine to which a group of servers can be migrated if the MIGRATE option is specified.

Table 3-2 describes the parameters in the GROUPS section.

3-8 Scaling, Distributing, and Tuning CORBA Applications

Table 3-2 Parameters Specified in the GROUPS Section

Parameter Meaning

LMID LMID must be assigned in the MACHINES section to indicate that
this server group runs on this particular machine. A second LMID
value can be specified (separated from the first by a comma) to
name an alternate machine to which this server group can be
migrated if the MIGRATE option has been specified. Servers in the
group must specify RESTART=Y to migrate.

GRPNO Associates a numeric group number with this server group. The
number must be greater than zero (0) and less than 30000. It must
be unique among entries in the GROUPS section in this
configuration file. (Required)

TMSNAME Specifies which transaction management server (TMS) should be
associated with this server group.

TMSCOUNT Specifies how many copies of TMSNAME should be started for this
server group. The minimum value is 2. If not specified, the
default is 3. All TMSNAME servers started for a server group are
automatically set up in an MSSQ set. (Optional)

Conf igur ing the UBBCONF IG F i l e

Scaling, Distributing, and Tuning CORBA Applications 3-9

Modifying the SERVICES Section
The SERVICES section contains parameters that control the way application services are handled.
An entry line in this section is associated with a service by its identifier name. Because the same
service can be link edited with more than one server, the SRVGRP parameter is provided to tie the
parameters for an instance of a service to a particular group of servers.

Parameters to Modify
Two parameters in the SERVICES section are particularly related to distributed transaction
processing (DTP) for BEA Tuxedo CORBA applications that use BEA Tuxedo ATMI services:
AUTOTRAN, and TRANTIME.

Table 3-4 describes the parameters in the SERVICES section.

OPENINFO Specifies information needed to open a particular instance of a
particular resource manager, or it indicates that such information
is not required for this server group. When a resource manager is
named in the OPENINFO parameter, information such as the
name of the database and the access mode is included. The entire
value string must be enclosed in double quotes and must not be
more than 256 characters. The format of the OPENINFO string is
dependent on the requirements of the vendor providing the
underlying resource manager. The string required by the vendor
must be prefixed with rm_name:, which is the published name of
the vendor's transaction (XA) interface followed immediately by
a colon (:).

The OPENINFO parameter is ignored if TMSNAME is not set or is
set to TMS. If TMSNAME is set but the OPENINFO string is set to
the null string ("") or if this parameter does not appear on the
entry, it means that a resource manager exists for the group but
does not require any information for executing an open operation.

CLOSEINFO Specifies information the resource manager needs when closing a
database. The parameter can be omitted or the null string can be
specified. The default is the null string.

Table 3-2 Parameters Specified in the GROUPS Section (Continued)

Parameter Meaning

3-10 Scaling, Distributing, and Tuning CORBA Applications

Sample SERVICES Section
Listing 3-2 shows a sample SERVICES section.

Listing 3-2 Production Sample SERVICES Section

*SERVICES

 # Publish Tuxedo Teller application services

 #

 DEBIT

 AUTOTRAN=Y

 CREDIT

 AUTOTRAN=Y

 CURRBALANCE

 AUTOTRAN=Y

Modifying the INTERFACES Section
The INTERFACES section contains parameters that control the way application interfaces are
handled. An entry line in this section is associated with an interface by its identifier name.
Because the same interface can be link edited with more than one server, the SRVGRP parameter
is provided to tie the parameters for an instance of a interface to a particular group of servers.

Table 3-3 Parameters Specified in the SERVICES Section

Parameter Meaning

AUTOTRAN Determines whether a transaction should be started automatically
if a message received by this service is not already in transaction
mode.The default is N. Use of the parameter should be
coordinated with the programmers that code the services for your
application.

TRANTIME Specifies a timeout value, in seconds, for transactions
automatically started in this service. The default is 30 seconds.
Required only if AUTOTRAN=Y and another timeout value is
needed.

Conf igur ing the UBBCONF IG F i l e

Scaling, Distributing, and Tuning CORBA Applications 3-11

Parameters to Modify
Three parameters in the INTERFACES section are particularly related to distributed transaction
processing (DTP): FACTORYROUTING, AUTOTRAN, and TRANTIME.

Table 3-4 describes the parameters in the INTERFACES section.

Sample INTERFACES Section
Listing 3-2 shows a sample INTERFACES section.

Listing 3-3 Sample INTERFACES Section

*INTERFACES

Table 3-4 Parameters Specified in the INTERFACES Section

Parameter Meaning

FACTORYROUTING =
criterion-name

Specifies the name of the routing criteria to be used for
factory-based routing for this BEA Tuxedo CORBA interface.
You must specify a FACTORYROUTING parameter for interfaces
requesting factory-based routing.

AUTOTRAN Determines whether a transaction should be started automatically
if a message received by this interface is not already in transaction
mode.The default is N. Use of this parameter should be
coordinated with the programmers that code the interface for your
application so that it matches the setting of the transaction
policy option in the application’s ICF file.

TRANTIME Specifies a timeout value, in seconds, for transactions
automatically started in this interface. The default is 30 seconds.
Required only if AUTOTRAN=Y and a timeout value other than the
default is needed.

LOAD = number Specifies an arbitrary number between 1 and 100 that represents
the relative load that the CORBA interface is expected to impose
on the system. The numbering scheme is relative to the LOAD
numbers assigned to other CORBA interfaces used by this
application. The default is 50. This number is used by the BEA
Tuxedo system to select the best server to which to route the
request

3-12 Scaling, Distributing, and Tuning CORBA Applications

 "IDL:beasys.com/UniversityP/Registrar:1.0"

 FACTORYROUTING = STU_ID

 AUTOTRAN=Y

 TRANTIME=50

 "IDL:beasys.com/BillingP/Teller:1.0"

 FACTORYROUTING = ACT_NUM

 AUTOTRAN=Y

Creating the ROUTING Section
For information about ROUTING parameters that support BEA Tuxedo data-dependent routing or
BEA Tuxedo CORBA factory-based routing, see “Creating a Configuration File” in Setting Up
a BEA Tuxedo Application.

Listing 3-4 shows the ROUTING section of the UBBCONFIG file used in the Production sample
application for factory-based routing.

Listing 3-4 Production Sample ROUTING Section

*ROUTING

 STU_ID

 FIELD = "student_id"

 TYPE = FACTORY

 FIELDTYPE = LONG

 RANGES = "100001-100005:ORA_GRP1,100006-100010:ORA_GRP2"

 ACT_NUM

 FIELD = "account_number"

 TYPE = FACTORY

 FIELDTYPE = LONG

 RANGES = "200010-200014:APP_GRP1,200015-200019:APP_GRP2"

Conf igur ing the fac to ry_f inder . in i (CORBA App l i ca t i ons On l y)

Scaling, Distributing, and Tuning CORBA Applications 3-13

Configuring the factory_finder.ini (CORBA Applications
Only)

For CORBA applications, to configure factory-based routing across multiple domains, you must
configure the factory_finder.ini file to identify factory objects that are used in the current
(local) domain but that are resident in a different (remote) domain. For more information, see
“Configuring Multiple Domains Multiple Domains for CORBA Applications in Using the BEA
Tuxedo Domains Component.

Modifying the Domain Gateway Configuration File to
Support Routing

This topic includes the following sections:

About the Domain Gateway Configuration File

Parameters in the DM_ROUTING Section of the DMCONFIG File (BEA Tuxedo ATMI
Only)

This section is specific to BEA Tuxedo and explains how and why you need to modify the domain
gateway configuration to support routing. For more information about the domain gateway
configuration file, see “Configuring Multiple Domains Multiple Domains for CORBA
Applications in Using the BEA Tuxedo Domains Component.

About the Domain Gateway Configuration File
The Domain gateway configuration information is stored in a binary file called BDMCONFIG. The
DMCONFIG file (ASCII) is created and edited with any text editor. The compiled BDMCONFIG file
can be updated while the system is running by using the dmadmin(1) command.

You must have one BDMCONFIG file for each BEA Tuxedo application that requires the Domains
functionality. System access to the BDMCONFIG file is provided through the Domains
administrative server, DMADM(5). When a gateway group is booted, the gateway administrative
server, GWADM(5), requests from the DMADM server a copy of the configuration required by that
group. The GWADM server and the DMADM server also ensure that run-time changes to the
configuration are reflected in the corresponding Domain gateway groups.

Note: For more information about modifying the DMCONFIG file, see “Configuring Multiple
Domains Multiple Domains for CORBA Applications” in Using the BEA Tuxedo
Domains Component.

3-14 Scaling, Distributing, and Tuning CORBA Applications

Parameters in the DM_ROUTING Section of the DMCONFIG
File (BEA Tuxedo ATMI Only)
The DM_ROUTING section provides information for data-dependent routing of service requests
using FML, VIEW, X_C_TYPE, and X_COMMON typed buffers. Lines within the DM_ROUTING section
have the form CRITERION_NAME, where CRITERION_NAME is the (identifier) name of the routing
entry specified in the SERVICES section. The CRITERION_NAME entry may contain no more than
15 characters.

Parameters to Specify
Table 3-5 describes the parameters in the DM_ROUTING section.

Table 3-5 Parameters Specified in the DM_ROUTING Section

Parameter Description

FIELD = identifier Specifies the name of the routing field. It must contain 30 characters or
fewer. This field is assumed to be a field name identified in an FML field
table (for FML buffers) or an FML VIEW table (for VIEW, X_C_TYPE, or
X_COMMON buffers). The FLDTBLDIR and FIELDTBLS environment
variables are used to locate FML field tables; the VIEWDIR and
VIEWFILES environment variables are used to locate FML VIEW tables.
If a field in an FML32 buffer is used for routing, it must have a field
number less than or equal to 8191.

Modi f y ing the Domain Gateway Conf igurat ion F i l e t o Suppor t Rout ing

Scaling, Distributing, and Tuning CORBA Applications 3-15

BUFTYPE =
"type1[:subtype1[,su
btype2 . . .
]][;type2[:subtype3[
, . . .]]] . . ."

Specifies list of types and subtypes of data buffers for which this routing
entry is valid. The types are restricted to FML, VIEW, X_C_TYPE, and
X_COMMON.

No subtype can be specified for type FML, and subtypes are required for
the other types (* is not allowed).

Duplicate type/subtype pairs cannot be specified for the same routing
criteria name; more than one routing entry can have the same criteria
name as long as the type/subtype pairs are unique. This parameter is
required.

If multiple buffer types are specified for a single routing entry, the data
types of the routing field for each buffer type must be the same. (If the
field value is not set (for FML buffers), or does not match any specific
range, and a wildcard range has not been specified, then an error is
returned to the application process that requested the execution of the
remote service.) No routing is allowed on CORBA and EJB (TGIOP is
not a valid buffer type).

Table 3-5 Parameters Specified in the DM_ROUTING Section (Continued)

Parameter Description

3-16 Scaling, Distributing, and Tuning CORBA Applications

Routing Field Description
The routing field can be of any data type supported in FML or VIEW. A numeric routing field must
have numeric range values, and a string routing field must have string range values.

String range values for string, carray, and character field types must be placed inside a pair of
single quotation marks and cannot be preceded by a sign. Short and long integer values are a
string of digits, optionally preceded by a plus (+) or minus (-) sign. Floating point numbers are
of the form accepted by the C compiler or atof(): an optional sign, followed by a string of digits
optionally containing a decimal point, and an optional e or E followed by an optional sign or
space, and an integer.

RANGES
="range1:rdom1[,rang
e2:rdom2 ...]"

Specifies the ranges and associated remote domain names (RDOM) for the
routing field. The string must be enclosed in double quotes, with the
format of a comma-separated ordered list of range/RDOM pairs.

A range is either a single value (signed numeric value or character string
in single quotes), or a range of the form lower - upper (where lower and
upper are both signed numeric values or character strings in single
quotes). The value of lower must be less than or equal to upper. A single
quote embedded in a character string value (such as “O'Brien”), must
be preceded by two backslashes (“O\\'Brien”).
• Use MIN to indicate the minimum value for the data type of the

associated FIELD. For strings and carrays, it is the null string; for
character fields, it is 0; for numeric values, it is the minimum
numeric value that can be stored in the field.

• Use MAX to indicate the maximum value for the data type of the
associated FIELD. For strings and carrays, it is effectively an
unlimited string of octal-255 characters; for a character field, it is a
single octal-255 character; for numeric values, it is the maximum
numeric value that can be stored in the field.

Thus, MIN - -5 is all numbers less than or equal to -5, and 6 - MAX
is all numbers greater than or equal to 6.

The metacharacter * (wildcard) in the position of a range indicates any
values not covered by the other ranges previously seen in the entry. Only
one wildcard range is allowed per entry and it should be last (ranges
following it are ignored).

Table 3-5 Parameters Specified in the DM_ROUTING Section (Continued)

Parameter Description

Modi f y ing the Domain Gateway Conf igurat ion F i l e t o Suppor t Rout ing

Scaling, Distributing, and Tuning CORBA Applications 3-17

When a field value matches a range, the associated RDOM value specifies the remote domain to
which the request should be routed. An RDOM value of * indicates that the request can go to any
remote domain known by the gateway group. Within a range/RDOM pair, the range is separated
from the RDOM by a colon (:).

Example of a Five-Site Domain Configuration Using Routing
Listing 3-5 shows a configuration file that defines a five-site domain configuration. It has four
bank branch domains communicating with a Central Bank Branch. Three of the bank branches
run within other BEA Tuxedo system domains. The fourth branch runs under the control of
another TP domain, and OSI-TP is used in the communication with that domain. The example
shows the BEA Tuxedo Domain gateway configuration file from the Central Bank point of view.
In the DM_TDOMAIN section, this example shows a mirrored gateway for b01.

Listing 3-5 DMCONFIG File for a Five-Site Domains Configuration

BEA TUXEDO DOMAIN CONFIGURATION FILE FOR THE CENTRAL BANK
#
#
*DM_LOCAL_DOMAINS
<local domain name> <Gateway Group name> <domain type> <domain id> <log device>
[<audit log>] [<blocktime>]
[<log name>] [<log offset>] [<log size>]
[<maxrdom>] [<maxrdtran>] [<maxtran>]
[<maxdatalen>] [<security>]
[<tuxconfig>] [<tuxoffset>]

#
#
DEFAULT: SECURITY = NONE
c01 GWGRP = bankg1
 TYPE = TDOMAIN
 DOMAINID = "BA.CENTRAL01"
 DMTLOGDEV = "/usr/apps/bank/DMTLOG"
 DMTLOGNAME = "DMTLG_C01"
c02 GWGRP = bankg2
 TYPE = OSITP
 DOMAINID = "BA.CENTRAL01"
 DMTLOGDEV = "/usr/apps/bank/DMTLOG"
 DMTLOGNAME = "DMTLG_C02"
 NWDEVICE = "OSITP"
 URCH = "ABCD"
#
*DM_REMOTE_DOMAINS

3-18 Scaling, Distributing, and Tuning CORBA Applications

#<remote domain name> <domain type> <domain id>
#
b01 TYPE = TDOMAIN
 DOMAINID = "BA.BANK01"
b02 TYPE = TDOMAIN
 DOMAINID = "BA.BANK02"
b03 TYPE = TDOMAIN
 DOMAINID = "BA.BANK03"
b04 TYPE = OSITP
 DOMAINID = "BA.BANK04"
 URCH = "ABCD"
#
*DM_TDOMAIN
#
<local or remote domainname> <network address> [nwdevice]
#
Local network addresses
c01 NWADDR = "//newyork.acme.com:65432" NWDEVICE ="/dev/tcp"
c02 NWADDR = "//192.76.7.47:65433" NWDEVICE ="/dev/tcp"
Remote network addresses: second b01 specifies a mirrored gateway
b01 NWADDR = "//192.11.109.5:1025" NWDEVICE = "/dev/tcp"
b01 NWADDR = "//194.12.110.5:1025" NWDEVICE = "/dev/tcp"
b02 NWADDR = "//dallas.acme.com:65432" NWDEVICE = "/dev/tcp"
b03 NWADDR = "//192.11.109.156:4244" NWDEVICE = "/dev/tcp"
#
*DM_OSITP
#
#<local or remote domain name> <apt> <aeq>
[<aet>] [<acn>] [<apid>] [<aeid>]
[<profile>]
#
c02 APT = "BA.CENTRAL01"
 AEQ = "TUXEDO.R.4.2.1"
 AET = "{1.3.15.0.3},{1}"
 ACN = "XATMI"
b04 APT = "BA.BANK04"
 AEQ = "TUXEDO.R.4.2.1"
 AET = "{1.3.15.0.4},{1}"
 ACN = "XATMI"
*DM_LOCAL_SERVICES
#<service_name> [<Local Domain name>] [<access control>] [<exported svcname>]
[<inbuftype>] [<outbuftype>]
#
open_act ACL = branch
close_act ACL = branch
credit
debit
balance
loan LDOM = c02 ACL = loans

Modi f y ing the Domain Gateway Conf igurat ion F i l e t o Suppor t Rout ing

Scaling, Distributing, and Tuning CORBA Applications 3-19

*DM_REMOTE_SERVICES
#<service_name> [<Remote domain name>] [<local domain name>]
[<remote svcname>] [<routing>] [<conv>]
[<trantime>] [<inbuftype>] [<outbuftype>]
#
tlr_add LDOM = c01 ROUTING = ACCOUNT
tlr_bal LDOM = c01 ROUTING = ACCOUNT
tlr_add RDOM = b04 LDOM = c02 RNAME ="TPSU002"
tlr_bal RDOM = b04 LDOM = c02 RNAME ="TPSU003"
*DM_ROUTING
<routing criteria> <field> <typed buffer> <ranges>
#
ACCOUNT FIELD = branchid BUFTYPE ="VIEW:account"
 RANGES ="MIN - 1000:b01, 1001-3000:b02, *:b03"
*DM_ACCESS_CONTROL
#<acl name> <Remote domain list>
#
branch ACLIST = b01, b02, b03
loans ACLIST = b04

3-20 Scaling, Distributing, and Tuning CORBA Applications

Scaling, Distributing, and Tuning CORBA Applications 4-1

C H A P T E R 4

Tuning CORBA Applications

This topic includes the following sections:

Maximizing Application Resources

When to Use MSSQ Sets (BEA Tuxedo ATMI Servers Only)

Enabling System-controlled Load Balancing

Configuring Replicated Server Processes and Groups

Configuring Multithreaded Servers

Bundling Services into Servers (BEA Tuxedo ATMI Servers Only)

Performance Options

Enhancing Efficiency with Application Parameters

Setting Application Parameters

Determining IPC Requirements

Measuring System Traffic

For more information about monitoring BEA Tuxedo applications, see “Monitoring a Running
System” in the Administering a BEA Tuxedo Application at Run Time.

Notes: The BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB were
deprecated in Tuxedo 8.1 and are no longer supported. All BEA Tuxedo CORBA Java
client and BEA Tuxedo CORBA Java client ORB text references, associated code

4-2 Scaling, Distributing, and Tuning CORBA Applications

samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. BEA Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

Maximiz ing Appl i cat ion Resources

Scaling, Distributing, and Tuning CORBA Applications 4-3

Maximizing Application Resources
Making correct decisions in the following areas can improve the functioning of your BEA
Tuxedo applications:

When to Use MSSQ Sets (BEA Tuxedo ATMI Servers Only).

How to assign load factors.

How to package interfaces and/or services into servers.

How to set application parameters.

How to tune operating system IPC parameters.

How to detect and eliminate bottlenecks.

When to Use MSSQ Sets (BEA Tuxedo ATMI Servers Only)
Note: Multiple Servers, Single Queue (MSSQ) sets are not supported in BEA Tuxedo CORBA

servers.

Table 4-1 describes when to use MSSQ sets with BEA Tuxedo servers.

Table 4-1 When and When Not to Use MSSQ Sets

Use MSSQ Sets When Do Not Use MSSQ Sets When

There are several, but not too many servers. There is a large number of servers.
(A compromise is to use many MSSQ sets.)

Buffer sizes are not too large. Buffer sizes are large enough to exhaust one
queue.

The servers offer identical sets of services. Services are different for each server.

The messages involved are reasonably
sized.

Long messages are being passed to the
services causing the queue to be exhausted.
This causes nonblocking sends to fail, or
blocking sends to block.

Optimization and consistency of service
turnaround time is paramount.

Optimization and consistency of service
turnaround time is not critical.

4-4 Scaling, Distributing, and Tuning CORBA Applications

The following two analogies help to show why using MSSQ sets is sometimes, but not always,
beneficial:

An application in which MSSQ sets are used appropriately is similar to a bank, where all
the tellers offer the same services and customers wait in line for the first available teller.
This efficient arrangement ensures the best use of available services.

An application in which it is better to avoid using MSSQ sets is similar to a supermarket,
where each cashier offers a different set of services: some accept cash only, some accept
credit cards, and still others serve only customers buying fewer than ten items.

Enab l ing System-cont ro l l ed Load Ba lanc ing

Scaling, Distributing, and Tuning CORBA Applications 4-5

Enabling System-controlled Load Balancing
You can control whether a load-balancing algorithm is used on the BEA Tuxedo system as a
whole. When load balancing is used, a load factor is applied to each service within the system,
allowing you to track the total load on every server. Every service request is sent to the qualified
server that is least loaded.

Note: On BEA Tuxedo CORBA systems, system-controlled load balancing is enabled
automatically. You cannot disable load balancing by specifying LDBAL=N.

To determine how to assign load factors (located in the SERVICES section), run an application
continually and calculate the average time it takes for each service to be performed. Assign a
LOAD value of 50 (LOAD=50) to any service that requires the average amount of time that you
calculated. Any service taking longer to execute than the calculated average should have a
LOAD>50. Any service taking less to execute than the calculated average should have a LOAD<50.

A LOAD factor is assigned to each service performed, which keeps track of the total load of
services that each server has performed. Each service request is routed to the server with the
smallest total load. The routing of that request causes the server's total to be increased by the LOAD
factor of the service requested.

You can also apply LOAD factors to interfaces. For more information about LOAD factors, see
“Creating a Configuration File” in the Administering a BEA Tuxedo Application at Run Time.

Configuring Replicated Server Processes and Groups
To configure replicated server processes and groups in the BEA Tuxedo domain, complete the
following steps:

1. Edit the application’s UBBCONFIG file using a text editor.

2. In the GROUPS section, specify the names of the groups you want to configure.

3. In the SERVERS section, specify the parameters in Table 4-2 for the server process you want
to replicate.

4-6 Scaling, Distributing, and Tuning CORBA Applications

The MIN and MAX parameters determine the degree to which a given server application can
process requests on a given interface in parallel. During run time, the system administrator
can examine resource bottlenecks and start additional server processes, if necessary,
thereby scaling the application. For more information, see “Monitoring a Running
Application” in the Administering a BEA Tuxedo Application at Run Time.

Note: The MAX parameter controls the maximum number of instances. However, BEA
Tuxedo does not spawn instances automatically. The system will automatically start
up to the specified MIN number of instances. Between MIN and MAX, the system
administrator will need to spawn new instances manually. Once MAX is reached, an
error will be returned by tmboot, tmadmin, or the TMIB API.

Configuring Multithreaded Servers
This topic includes the following sections:

Setting the OPENINFO Parameter for Database Interoperation

Parameters Used to Configure Multithreaded Servers

Assigning Priorities to Interfaces

Table 4-2 Parameters Specified in the SERVERS Section

Parameter Description

Server
application name

Specifies the name of the executable file that contains the application
server.

GROUP Specifies the name of the group to which the server process belongs. If
you are replicating a server process across multiple groups, specify the
server process once for each group.

SRVID Specifies a numeric identifier, giving the server process a unique
identity.

MIN Specifies the number of instances of the server process to start when you
start the application.

MAX Specifies the maximum number of server processes that can be running
at any one time.

Conf igur ing Mu l t i th readed Se rve rs

Scaling, Distributing, and Tuning CORBA Applications 4-7

For more information about multithreaded servers, see “Using Multithreaded Servers” on
page 1-9.

Setting the OPENINFO Parameter for Database
Interoperation
To enable the use of threads by a multithreaded server when interoperating with the Oracle XA
database software, you must add Threads=true to the OPENINFO parameter in the GROUPS
section of the UBBCONFIG file, as shown in Listing 4-1. For more information, see the Oracle XA
online documentation.

Listing 4-1 Adding Threads=true to the OPENINFO Parameter

OPENINFO="ORACLE_XA:Oracle_XA+Acc=P/scott/tiger+SesTm=100+LogDir=.+MaxCur=

5+Threads=true"

Parameters Used to Configure Multithreaded Servers
The following parameters are used configure multithreaded CORBA servers. These parameters
are set in UBBCONFIG file:

MAXOBJECTS

Note: While the MAXOBJECTS parameter does not specifically apply to threads, you may
want to increase this parameter because multithreaded applications have the potential
to activate more objects at any point in time than single-threaded applications.

MAXACCESSERS

MAXDISPATCHTHREADS

MINDISPATCHTHREADS

THREADSTACKSIZE

CONCURR_STRATEGY

For a description how to set these parameters, see the following topics:

4-8 Scaling, Distributing, and Tuning CORBA Applications

“Creating the Configuration File” and “How to Configure the BEA Tuxedo System to Take
Advantage of Threads” in Setting Up a BEA Tuxedo Application.

“Setting the MAXACCESSERS, MAXSERVERS, MAXINTERFACES, and
MAXSERVICES Parameters” in Administering a BEA Tuxedo Application at Run Time.

Assigning Priorities to Interfaces
This topic includes the following sections:

About Priorities to Interfaces

Characteristics of the PRIO Parameter

About Priorities to Interfaces
You can exert significant control over the flow of data in an application by assigning priorities to
BEA Tuxedo Interfaces using the PRIO parameter. For a CORBA application running on a BEA
Tuxedo system, you can specify the PRIO parameter for each interface named in the INTERFACES
section of the application’s UBBCONFIG file.

For example, Server 1 offers Interfaces A, B, and C. Interfaces A and B have a priority of 50 and
Interface C has a priority of 70. An interface requested for C is always dequeued before a request
for A or B. Requests for A and B are dequeued equally with respect to one another. The system
dequeues every tenth request in first in first out (FIFO) order to prevent a message from waiting
indefinitely on the queue.

You can also dynamically change a priority with the tpsprio() call. Only preferred clients
should be able to increase the interface priority. In a system on which servers perform interface
request, the server can call tpsprio() to increase the priority of its interface so the user does not
wait in line for every interface request that is required.

Characteristics of the PRIO Parameter
The PRIO parameter should be used carefully. Depending on the order of messages on the queue
(for example, A, B, and C), some (such as A and B) will be dequeued only one in ten times. This
means reduced performance and potential slow turnaround time on the service.

The characteristics of the PRIO parameter are as follows:

It determines the priority of an interface on the server’s queue.

The highest assigned priority gets first preference. This interface should occur less
frequently.

Bundl ing Serv ices in to Servers (BEA Tuxedo ATMI Se rve rs On l y)

Scaling, Distributing, and Tuning CORBA Applications 4-9

A lower priority message does not remain forever enqueued, because every tenth message
is retrieved on a FIFO basis. Response time should not be a concern of the lower priority
interface.

Assigning priorities enables you to provide more efficient service to the most important requests
and slower service to the less important requests. You can also give priority to specific users or
in specific circumstances.

Bundling Services into Servers (BEA Tuxedo ATMI Servers
Only)

This topic includes the following sections:

About Bundling Services

When to Bundle Services

About Bundling Services
The easiest way to package services into server executables is to not package them at all.
Unfortunately, if you do not package services, the number of server executables, and also
message queues and semaphores, rises beyond an acceptable level. There is a trade-off between
not bundling services and bundling services too much.

When to Bundle Services
You should bundle services for the following reasons:

Functional similarity—if some services are similar in their role in the application, you can
bundle them in the same server. The application can offer all or none of them at a given
time. An example is the bankapp application, in which the WITHDRAW, DEPOSIT, and
INQUIRY services are all teller operations. Administration of services becomes simpler.

Similar libraries—for example, if you have three services that use the same 100K library
and three services that use different 100K libraries, bundling the first three services saves
200K. Often, functionally equivalent services have similar libraries.

Filling the queue—bundle only as many services into a server as the queue can handle.
Each service added to an unfilled MSSQ set may add relatively little to the size of an
executable, and nothing to the number of queues in the system. Once the queue is filled,
however, the system performance degrades and you must create more executables to
compensate.

4-10 Scaling, Distributing, and Tuning CORBA Applications

Placement of call-dependent services—avoid placing, in the same server, two (or more)
services that call each other. If you do so, the server will issue a call to itself, causing a
deadlock.

Performance Options
Performance options were added to BEA Tuxedo in release 8.0. These options enable you to turn
off specific features in the BEA Tuxedo infrastructure. You should turn off these features only if
they are not required by your CORBA or ATMI applications. Table 4-3 describes these options.

Table 4-3 Performance Options

Option Description How to set . . .

Service and Interface Caching
options
(SICACHEENTRIESMAX and
TMSICACHEENTRIESMAX)

This option enables you to cache
service and interface entries, and to
use the cached copies of the service
or interface without locking the
bulletin board.

For more information about these options,
see Administering a BEA Tuxedo
Application at Run Time and
UBBCONFIG(5) and TM_MIB(5), and
tuxenv(5) in the File Formats, Data
Descriptions, MIBs, and System Processes
Reference.

Turning off threads
(TMNOTHREADS)

Set this option to yes to turn off
multithreaded processing. For
applications that do not use
threads, turning them off should
significantly improve
performance.

You use the tuxenv(5) to set this option.
For more information, see Administering a
BEA Tuxedo Application at Run Time and
tuxenv(5) in the File Formats, Data
Descriptions, MIBs, and System Processes
Reference.

Enhanc ing E f f i c i ency w i th App l i ca t i on Paramete rs

Scaling, Distributing, and Tuning CORBA Applications 4-11

Enhancing Efficiency with Application Parameters
This topic includes the following sections:

Determining IPC Requirements

MINDISPATCHTHREADS

MAXDISPATCHTHREADS

Setting the MAXGTT, MAXBUFTYPE, and MAXBUFSTYPE Parameters

Setting the SANITYSCAN, BLOCKTIME, BBLQUERY, and DBBLWAIT Parameters

You can set these application parameters to enhance the efficiency of your system.

MAXDISPATCHTHREADS
The MAXDISPATCHTHREADS parameter determines the maximum number of concurrently
dispatched threads that each server process can spawn. When specifying this parameter, consider
the following:

The value for MAXDISPATCHTHREADS determines the maximum size that the thread pool
can grow to be, as it increases in size to accommodate incoming requests.

Turning off auditing and
authorization (Options
{[NO_AA]})

Setting this option disables the
auditing and authorization
functions on a per application
basis.

You set this option in the RESOURCES
section of the UBBCONFIG file. For more
information, see Administering a BEA
Tuxedo Application at Run Time and
OPTION in the RESOURCES section of
UBBCONFIG(5) in the File Formats,
Data Descriptions, MIBs, and System
Processes Reference.

Turning off XA Transactions
(NO_XA)

Setting this option turns Off XA
Transactions.

For more information about the NO_XA
option, see Administering a BEA Tuxedo
Application at Run Time and
UBBCONFIG(5) and TM_MIB(5) in the
File Formats, Data Descriptions, MIBs,
and System Processes Reference.

Table 4-3 Performance Options (Continued)

Option Description How to set . . .

4-12 Scaling, Distributing, and Tuning CORBA Applications

The default value for MAXDISPATCHTHREADS is 1. If you specify a value greater than 1, the
system creates and uses a special dispatcher thread. This dispatcher thread is not included
in the number of threads determining the maximum size of the thread pool.

Specifying a value of 1 for the MAXDISPATCHTHREADS parameter indicates that the server
application should be configured as a single-threaded server. A value greater than 1
indicates that the server application should be configured as a multithreaded server.

The value you specify for the MAXDISPATCHTHREADS parameter must not be less than the
value you specify for the MINDISPATCHTHREADS parameter.

The operating system resources limit the maximum number of threads that can be created
in a process. MAXDISPATCHTHREADS should be less than that limit, minus the number of
application managed threads that your application requires.

The value of the MAXDISPATCHTHREADS parameter affects other parameters. For example, the
MAXACCESSORS parameter controls the number of simultaneous accesses to the BEA Tuxedo
system, and each thread counts as one accessor. For a multithreaded server application, you must
account for the number of system-managed threads that each server is configured to run. A
system-managed thread is a thread that is started and managed by the BEA Tuxedo software, as
opposed to threads started and managed by an application. Internally, BEA Tuxedo manages a
pool of available system-managed threads. When a client request is received, an available
system-managed thread from the thread pool is scheduled to execute the request. When the
request is completed, the system-managed thread is returned to the pool of available threads.

For example, if that you have 4 multithreaded servers in your system and each server is
configured to run 50 system-managed threads, the accessor requirement for these servers is the
sum total of the accessors, calculated as follows:

50 + 50 + 50 + 50 = 200 accessors

MINDISPATCHTHREADS
Use the MINDISPATCHTHREADS parameter to specify the number of server dispatch threads
that are started when the server is initially booted. When you specify this parameter,
consider the following:

– The value for MINDISPATCHTHREADS determines the initial allocation of threads in the
thread pool.

– The separate dispatcher thread that is created when MAXDISPATCHTHREADS is greater
than 1 is not counted as part of the MINDISPATCHTHREADS limit.

Enhanc ing E f f i c i ency w i th App l i ca t i on Paramete rs

Scaling, Distributing, and Tuning CORBA Applications 4-13

– The value you specify for MINDISPATCHTHREADS must not be greater than the value
you specify for MAXDISPATCHTHREADS.

– The default value for MINDISPATCHTHREADS is 0.

Setting the MAXACCESSERS, MAXOBJECTS, MAXSERVERS,
MAXINTERFACES, and MAXSERVICES Parameters
The MAXACCESSERS, MAXOBJECTS, MAXSERVERS, MAXINTERFACES, and MAXSERVICES
parameters increase semaphore and shared memory costs, so you should choose the minimum
value that satisfies the needs of the system. You should also allow for the variation in the number
of clients accessing the system at the same time. Defaults may be appropriate for a generous
allocation of IPC resources. However, it is prudent to set these parameters to the lowest
appropriate values for the application.

For multithreaded servers, you must account for the number of threads that each server is
configured to run. The MAXACCESSERS parameter sets the maximum number of concurrent
accessors of a BEA Tuxedo system. Accessors include native and remote clients, servers, and
administration processes. For more information on setting the MAXACCESSERS parameter, see
“MAXDISPATCHTHREADS” on page 4-11.

Setting the MAXGTT, MAXBUFTYPE, and MAXBUFSTYPE
Parameters
You should increase the value of the MAXGTT parameter if the product of multiplying the number
of clients in the system times the percentage of time they are committing a transaction is close to
100. This may require a great number of clients, depending on the speed of commit. If you
increase MAXGTT, you should also increase TLOGSIZE accordingly for every machine. You should
set MAXGTT to 0 for applications that do not use distributed transactions.

You can limit the number of buffer types and subtypes allowed in the application with the
MAXBUFTYPE and MAXBUFSTYPE parameters, respectively. The current default for MAXBUFTYPE is
16. Unless you are creating many user-defined buffer types, you can omit MAXBUFTYPE.
However, if you intend to use many different VIEW subtypes, you may want to set MAXBUFSTYPE
to exceed its current default of 32.

4-14 Scaling, Distributing, and Tuning CORBA Applications

Setting the SANITYSCAN, BLOCKTIME, BBLQUERY, and
DBBLWAIT Parameters
If a system is running on slower processors (for example, due to heavy usage), you can increase
the timing parameters: SANITYCAN, BLOCKTIME, and individual transaction timeouts. If
networking is slow, you can increase the value of the BLOCKTIME, BBLQUERY, and DBBLWAIT
parameters.

Setting Application Parameters
Table 4-4 describes the system parameters available for tuning an application.

Determining IPC Requirements
The values of different system parameters determine IPC requirements. You can use the tmboot
-c command to test a configuration’s IPC needs. The values of the following parameters affect
the IPC needs of an application:

Table 4-4 System Parameters for Application Tuning

Parameters Action

MAXACCESSERS, MAXOBJECTS,
MAXSERVERS, MAXINTERFACES, and
MAXSERVICES

Set the smallest satisfactory value because of
IPC cost.

Allow for extra clients.

MAXGTT, MAXBUFTYPE, and
MAXBUFSTYPE

Increase MAXGTT for many clients; set
MAXGTT to 0 for nontransactional
applications.

Use MAXBUFTYPE only if you create eight or
more user-defined buffer types.

If you use many different VIEW subtypes,
increase the value of MAXBUFSTYPE.

BLOCKTIME, TRANTIME, and
SANITYSCAN

Increase the value for a slow system.

BLOCKTIME, TRANTIME, BBLQUERY, and
DBBLWAIT

Increase values for slow networking.

Dete rmin ing IPC Requ i rements

Scaling, Distributing, and Tuning CORBA Applications 4-15

MAXACCESSERS

REPLYQ

RQADDR (that allows MSSQ sets to be formed)

MAXSERVERS

MAXSERVICES

MAXGTT

Table 4-5 describes the system parameters that affect the IPC needs of an application.

Table 4-5 Tuning IPC Parameters

Parameter(s) Action

MAXACCESSERS Equals the number of semaphores.

Number of message queues is almost equal to MAXACCESSERS + the
number of servers with reply queues (the number of servers in MSSQ
set + the number of MSSQ sets).

4-16 Scaling, Distributing, and Tuning CORBA Applications

Measuring System Traffic
This topic includes the following sections:

About System Traffic and Bottlenecks

Example of Detecting a System Bottleneck

Detecting Bottlenecks on UNIX

Detecting Bottlenecks on Windows

MAXSERVERS,
MAXSERVICES,
and MAXGTT

While MAXSERVERS, MAXSERVICES, MAXGTT, and the overall size
of the ROUTING, GROUP, and NETWORK sections affect the size of
shared memory, an attempt to devise formulas that correlate these
parameters can become complex. Instead, simply run tmboot -c or
tmloadcf -c to calculate the minimum IPC resource requirements
for your application.

Queue-related
kernel parameters

Need to be tuned to manage the flow of buffer traffic between clients
and servers. The maximum total size of a queue in bytes must be large
enough to handle the largest message in the application, and to
typically be 75 to 85 percent full. A smaller percentage is wasteful.
A larger percentage causes message sends to block too frequently.

Set the maximum size for a message to handle the largest buffer that
the application sends.

Maximum queue length (the largest number of messages that are
allowed to sit on a queue at once) must be adequate for the
application’s operations.

Simulate or run the application to measure the average fullness of a
queue or its average length. This may be a trial and error process in
which tunables are estimated before the application is run and are
adjusted after running under performance analysis.

For a large system, analyze the effect of parameter settings on the size
of the operating system kernel. If unacceptable, reduce the number of
application processes or distribute the application to more machines to
reduce MAXACCESSERS.

Table 4-5 Tuning IPC Parameters (Continued)

Parameter(s) Action

Measur ing Sys tem T raf f i c

Scaling, Distributing, and Tuning CORBA Applications 4-17

For more information about monitoring BEA Tuxedo applications and measuring traffic, see
“Monitoring a Running System” in the Administering a BEA Tuxedo Application at Run Time.

About System Traffic and Bottlenecks
Bottlenecks can occur in your system when traffic volume nears resource capacity. You can
measure service traffic using a global counter in your implementation code.

For example, in Tuxedo applications, when tpsvrinit() is invoked at boot time, you can
initialize a global counter and record a starting time. Subsequently, each time a particular service
is called, the counter is incremented. When the server is shut down by invoking the tpsvrdone()
function, the final count and the ending time are recorded. This mechanism allows you to
determine how busy a particular service is over a specified period of time.

Note: For CORBA C++ applications, use the Server::initialize() and
Server::release() operations.

In BEA Tuxedo, bottlenecks can originate from data flow patterns. The quickest way to detect
bottlenecks is to begin with the client and measure the amount of time required by relevant
services.

Example of Detecting a System Bottleneck
Suppose Client 1 requires 4 seconds to print to the screen. Calls to time(2) determine that the
tpcall to service A is the culprit with a 3.7 second delay. Service A is monitored at the top and
bottom and takes 0.5 seconds. This implies that a queue may be clogged, which was determined
by using the pq command.

On the other hand, suppose service A takes 3.2 seconds. The individual parts of Service A can be
bracketed and measured. Perhaps Service A issues a tpcall to Service B, which requires 2.8
seconds. It should then be possible to isolate queue time or message send blocking time. Once the
relevant amount of time has been identified, the application can be retuned to handle the traffic.

Using time(2), you can measure the duration of the following:

The entire client program.

A client service request only.

The entire service function.

The service function making a service request (if any).

4-18 Scaling, Distributing, and Tuning CORBA Applications

Detecting Bottlenecks on UNIX
On UNIX systems, the sar(1) command provides valuable performance information that can be
used to find system bottlenecks. You can use the sar(1) command to:

Sample cumulative activity counters in the operating system at predetermined intervals.

Extract data from a system file.

Table 4-6 describes the sar(1) command options.

Table 4-6 sar(1) Command Options

Option Description

-u Gathers CPU utilization numbers, including the portion
of the time running in user mode, running in system
mode, idle with some process waiting for block I/O,
and otherwise idle.

-b Reports buffer activity, including transfers per second
of data between system buffers and disk, or other block
devices.

-c Reports system call activity. This includes system calls
of all types, as well as specific system calls such as
fork(2) and exec(2).

-w Monitors system swapping activity. This includes the
number of transfers for swap-ins and swap-outs.

-q Reports average queue lengths while occupied and the
percent of time occupied.

-m Reports message and system semaphore activities,
including the number of primitives per second.

-p Reports paging activity, including the address
translation page faults, page faults and protection
errors, and the valid pages reclaimed for free lists.

-r Reports unused memory pages and disk blocks,
including the average number of pages available to user
processes and the disk blocks available for process
swapping.

Measur ing Sys tem T raf f i c

Scaling, Distributing, and Tuning CORBA Applications 4-19

Note: Some UNIX platforms do not provide the sar(1) command, but offer equivalent
commands instead. BSD, for example, offers the iostat(1) command. Sun
Microsystems, Inc. offers perfmeter(1).

Detecting Bottlenecks on Windows
On Windows, use the Performance Monitor to collect system information and detect bottlenecks.
Click the Start button and select Programs, then Administration Tools, and then click
Performance Monitor.

4-20 Scaling, Distributing, and Tuning CORBA Applications

