ORACLE

Oracle® Fusion Middleware
Developer’s Guide for Oracle SOA Suite
11gRelease 1 (11.1.1)

E10224-01

May 2009

Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite, 11g Release 1 (11.1.1)
E10224-01
Copyright © 2005, 2009, Oracle and/or its affiliates. All rights reserved.

Primary Author: Virginia Beecher, Deanna Bradshaw, Tulika Das, Mark Kennedy, Alex Prazma, and Peter
Purich

Contributor: Oracle SOA Suite development, product management, and quality assurance teams

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Contents

PUrOIACE ...t s st xli
NS Lo = VT TSR RSO RRRTRTTN xli
Documentation AcCeSSIDILItYccciiiiiiiiiiiiiiii s xli
Related DOCUITIEIESveevieieeiecieeeeeeeetee ettt et e et e e ete e eaaeeaeesaaeeseesseseseesneseseeesesenseensesensseseeans xlii
CONMVEIIEIONS ..oitvveiiee ettt ettt e e eeett e e e eeate e e e e e eaaeeeesessaaaseeeesaabaeeeeseaaseeeseessaaeseesssnsssaessessssssseessnssaeeeessns xlii

Partl Introduction to Oracle SOA Suite

1 Introduction to SOA Composite Applications

1.1
1.2
1.3
1.3.1
1.3.2
1.3.3
1.3.4
1.3.5
1.4

2 Over

2.1

211
21.2
2.1.3
21.4
2.1.5
2.1.6
21.7
2.1.8
2.2

2.21
222
2.2.3
224
225

Introduction to Oracle SOA SUIte ... 1-1
Introduction to SOA Composite Applicationsc.cceeeurieviiceieieiicciecee e 1-3
Introduction to SCA TeChNOIOGIESc.ccuiuimiiiiiiiiiicciceeeeccre et 1-4
Binding COMPONENLScooviiiiiiiiiic e 1-6
Service INFraStlUCHUTE ..c.evveieiiieiirie ettt 1-7
Service Engines and Service COMPONENLSc.ccueueuiurururuemiirerieiiieieeieeeeeeieeeieeeeeeeeeeenas 1-7
Deployed Service ATChIVESccccouviiiiiiiiiiiiiiiiicii s 1-8
TWITES ..ttt ettt et st b s st b e ettt ebe e naeas 1-8
Learning Oracle SOA SUIE........cccciuiiiiiiiiiiiiiccceccceeeee et 1-8
view of SOA Component Editors
Introduction to the SOA Composite EditOrccoiiiiiiiiiiiiiiiiiccs 2-1
Application Navigatorcoiriiioiiic s 2-2
DESIZNETvviiiiicecic e 2-3
Left Swim Lane (Exposed Services) ... 2-3
Right Swim Lane (External References)cccocovviiviniiiiininiiiiiinns 2-3
Component Palettecccooiiiiiiiniiiii s 2-3
Resource Palette ... 2-3
LOg WINAOW ..ot 2-4
Property INSPECtOrccovvviviiiiiiiciicc e 2-4
Introduction to the Oracle BPEL DeSigner...........cccovoiiiiiiiiiiicieiceces 2-4
Application Navigatorcoiriiioiii e 2-5
Design WINAOW ... 2-6
S0UTCe WINAOW ... 2-7
HiStory WINAOWcuciiiieii e 2-8
Component Paletteccccociiiiiiiiiiiiiii s 2-9

3

2.2.6 Property INSPeCtOTcoovviiiciiec s 2-10

2.2.7 Structure WINAOW ..o 2-10
2.2.8 LG WINAOW ... 2-11
2.3 Introduction to the Oracle Mediator EAitorccccceeiiiiiniiiiiiii 2-11
2.3.1 Application Navigatorcccoirieiiiiiic s 2-12
2.3.2 Mediator EditOr.......cooiviiiiiiiiciccc s 2-13
2.3.3 SOUICE VIEW ..ottt s 2-13
234 History WINAOWccciiiiiiiiiiiiiiii s 2-13
2.3.5 Property INSPeCtOr ..o 2-14
2.3.6 Structure WINAOWcooiiiiiiiiiiiicc s 2-14
2.3.7 LOZ WINAOW ..ottt 2-14
2.4 Introduction to the Human Task Editor........cccccoviiiiiiiiiiiiiicccccc 2-14
241 TaSK THLE o 2-15
242 Parameterscooiiiiiiiiic s 2-15
2.4.3 Assignment and Routing POLICYc.ccccceuiiiiiiiiiiicrrrceccreeeeeeeeeeeas 2-15
24.4 Expiration and Escalation POLCYcccceviieieiiiiiii e 2-16
2.4.5 Notification SettiNgsooeruiiiiiiiicie e 2-16
2.4.6 Advanced SETHINGSc.cceueuiuiuiiiuiiicieceeeeee e 2-17
2.4.7 ANNOTALIONS ..ottt 2-17
2.5 Introduction to the Business Rules Designer ..o 2-18
2.5.1 Application NavIGatorcccccociuiuiiiiiiiiiiieeeeieieerceeeee e 2-18
2.5.2 Rules Designer WINdOW ...t e 2-18
2.5.3 Structure WINAOWcccoiiiiiiiiiiiiiii s 2-19
254 Business Rule Validation Log WINAOWcccccoeiiiiiiiiiiniccrreccceecceeeeees 2-20
2.6 Introduction to Oracle Enterprise Managercoccueirueieiiiicieiiicicie e 2-20

Introduction to the SOA Sample Application

3.1 Introduction to the WebLogic Fusion Order Demo Application..........cccccocveveveviiiiiiinnnnnns 3-1
3.1.1 The Store Front Module............ccoiiiiiiiiiiiicc s 3-1
3.1.2 The WebLogic Fusion Order Demo Moduleccccocoviiiiiiiniininccnrneceene. 3-2
3.2 Setting Up the WebLogic Fusion Order Demo Application..........cccccovueveiiiiiiiiiiiiiiinninnns 3-2
3.3 Taking a Look at the WebLogic Fusion Order Demo Application..........ccccceoevvvcniniecnnnnn. 3-3
3.3.1 Project Applications of the WebLogic Fusion Order Demo Application..................... 3-3
3.3.2 The composite. XML Filecccccooiiiiiiiiiiiiic s 3-4

Introduction to the Functionality of the SOA Composite Editor

4.1 Introduction to the SOA Composite EditOr ... 4-1
4.2 Designing an SOA Composite Application in Oracle JDeveloper...........ccccccocoeuiuiiiiinunnnns 4-1
4.2.1 How to Create an Application and a Project ... 4-2
422 How to Add a Service COMPONENLtcoouivimimiuiiiiiiiiiiiteiiiieee e 4-5
4.2.3 What You May Need to Know About Adding and Deleting a Service Component. 4-7
424 How to Edit a Service COMPONENLcccocuiuiuiuimiuiuiiiiiieeeieeieeieieeeetereene e nenenennas 4-8
425 How t0 Add @ ServiCecoimiiiiimiiiiiiiiiiiicicicittc e 4-9
4.2.6 What You May Need to Know About Adding and Deleting Services 4-14
4.2.7 What You May Need to Know About WSDL References..........ccccccoeueueueirvunvrnnennes 4-14
4.2.8 What You May Need to Know About Invoking the Default Revision of a

COMPOSILE ...ttt 4-15

4.2.9 How to Wire a Service and a Service Componentcccevvevvvniinininnnnninninnns 4-15

4.2.10 What You May Need to Know About Adding and Deleting Wires 4-16
4.2.11 How to Add a Reference...........ccocvuviiiiiniiiiiiciniiicc s 4-17
4.212 What You May Need to Know About Adding and Deleting References................. 4-19
4.213 How to Wire a Service Component and a Referenceccooeeiiinn, 4-19
4.2.14 How to Update Message Schemas of Components (Optional).........cccccccccurucucucnnnne. 4-21
4.2.15 What You May Need to Know About Updating Message Schemas of

COMPONENES....cviiiiiititcietitetete e 4-22
4.2.16 How to Invoke Other COMPOSIESc.cceuiuiuiuiuiiiiiiiiiiiiciccieceeeeeeee s 4-23
4217 How to Deploy the SOA Composite Application..........ccccceeeveiiieeiiiiiniiiiienne, 4-24
4.2.18 How to Manage Deployed COmMPOSItescccceveiiurieieiiiicieiiccieece 4-24
4.2.19 How to Test the SOA Composite Applicationcccccecucuecieeceeeeccccecceneees 4-27

Partll Using the BPEL Process Service Component

5

Getting Started with Oracle BPEL Process Manager

5.1 Introduction to the BPEL Process Service COMPONENLtc.cceucuemeueuimeucmcmeueicreneneneenenenenenas 5-1
5.11 How to Add a BPEL Process Service COmMpPONentccceevevvieievereieiniiieiiieenienns 5-1
5.2 Introduction t0 ACtIVItIEScouvuiuiuiiiiciciic s 5-4
5.3 Introduction to Partner Links..........cccccociiiiiiiiiiicceeeeeceeeeeeeeeeeeeeeeeeeeseseseseeeseseene 5-5
5.4 Creating a Partner LINK ... 5-6
5.4.1 How to Create a Partner Link ... 5-7
54.1.1 Partner Links for an Outbound Adapter ... 5-7
54.1.2 Partner Links for an Inbound Adapter...........cccooeeviiiiiiiiiiiiiiicccens 5-8
5.4.1.3 Partner Links from an Abstract WSDL to Call a Servicecccccevuvivnniiiiiiinience. 5-8
54.1.4 Partner Links from an Abstract WSDL to Implement a Service.........ccccccccceueueeee 5-8
5.4.1.5 Partner Links and Human Tasks or Business Rules............cccccocoeiiniiiininiinns 5-9
54.1.6 Partner Links from an Existing Human Task, Business Rule, or Oracle

IMEAIALOT ...t 5-9
5.5 Introduction to Technology Adapterscccceviieiiiiiiiiii 5-10

Introduction to Interaction Patterns in a BPEL Process

6.1 Introduction to One-Way MeSSages...........ccoeueueieiiurieieiiiinicieiee i 6-1
6.2 Introduction to Synchronous Interactions.............ccooeeveiiiniiiciiniicc e 6-2
6.3 Introduction to Asynchronous INteractions............cccococeiiciiiiciciecceeeeeeeeeenenenes 6-3
6.4 Introduction to Asynchronous Interactions with a Timeout...........ccccooeiviiiiincn 6-4
6.5 Introduction to Asynchronous Interactions with a Notification Timer...........ccccccecvuencnee. 6-5
6.6 Introduction to One Request, Multiple RESPONSESc.ccveuiuiuiuiuiuiiiiuiicciecieeeeeeenenenes 6-6
6.7 Introduction to One Request, One of Two Possible Responses............cccccoevurviiiiiiiiieninnns 6-7
6.8 Introduction to One Request, a Mandatory Response, and an Optional Response.......... 6-8
6.9 Introduction to Partial PrOCESSINGccveuiuiuiiiiiiiiiiiiiicieiccecccecreeeeeeee e 6-9
6.10 Introduction to Multiple Application Interactionscccceeeveeiiieiniiiiiiccceieennas 6-10

Manipulating XML Data in a BPEL Process

7.1 Introduction to Manipulating XML Data in BPEL Processes...........ccccceuvieurieiiiiinicieicne. 7-2
711 XML Data in BPEL.......cccoooioiiiii 7-2

vi

71.2
7.2
7.2.1
7211
7.21.2
7213
7.21.4
7.3
7.3.1
7.3.2
7.4
7.4.1
7.5
7.5.1
7.6
7.6.1
7.7
7.7.1
7.8
7.8.1
7.9
7.91
7.10
7.10.1
7.1
7111
712
7.12.1
7.13
7.13.1
714
7141
7.14.2
7.14.3
7.14.4
7.14.5
7.14.6
7.15
7.15.1
7.16
7.16.1
7.16.2
7.16.3
7.16.3.1
7.16.3.2
7.16.3.3
7.16.3.4

Data Manipulation and XPath Standardscccccceveiiiiiiiiiiiie, 7-2

Delegating XML Data Operations to Data Provider Servicesccccoeviuiiiiiiiinnnnns 7-4
How to Create an Entity Variable ... 7-6
Understanding How SDO Works in the Inbound Direction..........ccccccoveiriinninn. 7-7
Understanding How SDO Works in the Outbound Directionccccccceueunenes 7-7
Creating an Entity Variable and Choosing a Partner Link..........cccccccocevnnnneneace. 7-8
Creating a Binding Keycoooiiiiiiii 7-9

Using Standalone SDO-based Variables.............ocooouiiiiiiiiiiiiicc e 7-11
How to Declare SDO-based Variables...........ccccoviiiiiiiiiiciiiiiiicccnens 7-11
How to Convert from XML t0 SDO ... 7-12
Initializing a Variable with Expression Constants or Literal XML............cccccceceuvinininnnn. 7-13
How To Assign a Literal XML Elementccccccooevviiinnnniiinrncccreeceeeeenes 7-13
Copying Between Variables ..o 7-14
How to Copy Between Variables..........ccooooiiiii 7-14
Accessing Fields Within Element-Based and Message Type-Based Variables............... 7-15
How to Access Fields Within Element-Based and Message Type-Based Variables 7-15
Assigning NUmeric Values..........coooiiiii i 7-16
How to Assign NUmMETic ValUes........ccccceuiiiiiiiiiiiiiicceececceeeee s 7-16
Using Mathematical Calculations with XPath Standards...........ccooeviiiiii 7-16
How To Use Mathematical Calculations with XPath Standards...........c.cccoceeeeece. 7-16
Assigning String Literals.........cccoooiiiiiiiiiiiiiiii 7-17
How to Assign String Literals...........cooooeoiiiiiiiii 7-17
Concatenating Stringsc.ccoiiiiiiiiiiiiii 7-17
How to Concatenate Strings...........cocoeeiiiniiiiiiiiiiiies 7-17
Assigning Boolean Values ..o 7-18
How to Assign Boolean Values ..o 7-18
Assigning a Date or TIMe ..o 7-18
How to Assign a Date or Time..........cccooiiiiiiiiiiniiiiic 7-18
Manipulating Atributes ... 7-19
How to Manipulate Attributescccccccciiiiiiniiiireeccree s 7-19
Manipulating XML Data with bpelx EXtensions..........ccccccoeviiiiiiiiniiiiiinn 7-20
How to Use bpelx:append..........cccccciiiiiiiiiniiiiiiiiiiiiiciincssssseseesese s 7-20
How to Use bpelx:insertBeforeccocoeiiiiiiiiiiiiiiececececceeeeeeeeneenenens 7-21
How to Use bpelx:inSertAfter ... 7-22
How to Use bPelX:TemMOVEccciuiiiiiiiiiiiiiiiiciicicccee s 7-23
How to Use bpelx:rename and XSD Type Casting.........cccccccueueucecuereccreeuercuenenennn 7-24
How to Use bpelx:COPYLIStcouimiiiiiiiiiiiciiciciccccccicccc s 7-26
Validating XML Data with bpelx:validate ..., 7-27
How to Validate XML Data with bpelx:validate...........cccccceeeiinvnniininrnnne 7-28
Manipulating XML Data Sequences That Resemble Arrayscccocoeeveiiiieiiiinicieinnes 7-28
How to Statically Index into an XML Data Sequence That Uses Arrays.................. 7-28
How to Determine Sequence Sizeccoovuiiviniiiniiiininiiiiiicies 7-29
How to Dynamically Index by Applying a Trailing XPath to an Expression.......... 7-29
Applying a Trailing XPath to the Result of getVariableDataccccccocueee. 7-29

Using the bpelx:append Extension to Append New Items to a Sequence........ 7-30
Merging Data SeqUENCEScocueueiiiucieieiiieie 7-31
Generating Functionality Equivalent to an Array of an Empty Element.......... 7-31

7.16.4 What You May Need to Know About SOAP-Encoded Arrayscccoeeiriereicnnee. 7-32

7.16.5 What You May Need to Know About Using the Array Identifier 7-32
7.17 Converting from a String to an XML Element............cccccccocveiiiiiiiiiiceieeeeceeeens 7-33
7171 How To Convert from a String to an XML Element..........cccccccocvviiiiiininnnnnnne, 7-33
7.18 Understanding the Differences Between Document-Style and RPC-Style WSDL Files 7-33
7.18.1 How To Use RPC-Style Files........ccccciiiiiiiiiiiiiiicccecceeeeeeeeeeeeeeeeeeeeeeees 7-34
7.19 Manipulating SOAP Headers in BPELcccccccoviiiiininiiiiiccecs 7-34
7.19.1 How to Receive SOAP Headers in BPELcccociiiiiiiiicccccccccee 7-35
7.19.2 How to Send SOAP Headers in BPELcccccccooiiiiiiiicceeceeccceeeenes 7-36
7.20 Using MIME/DIME SOAP Attachmentsccccocceveiiiiniiiiiiiiciceeeecseeenes 7-36

Invoking a Synchronous Web Service from a BPEL Process

8.1 Introduction to Invoking a Synchronous Web Service............ccccoevviiiiiiiniiniiiine, 8-1
8.2 Invoking a Synchronous Web Service ... 8-2
8.2.1 How to Invoke a Synchronous Web Service..........ccccocoeiiiciiiiicieccccncceeeene 8-2
8.2.2 What Happens When You Invoke a Synchronous Web Servicecccccooiinnnnnes 8-3
8.2.2.1 Partner Link in the BPEL Code........ccccooiiiiiiiiiiiiiiiiiiiiciccccns 8-4
8.2.2.2 Partner Link Type and Port Type in the BPEL Codecccovviniiininnniniiccnee. 8-4
8.2.2.3 Invoke Activity for Performing a Request ..o, 8-5
8.2.2.4 Synchronous Invocation in BPEL Code ... 8-5
8.3 Calling a One-Way Mediator with a Synchronous BPEL Process..........cccccocoveeevrenenenecnce. 8-6

Invoking an Asynchronous Web Service from a BPEL Process

9.1 Introduction to Invoking an Asynchronous Web Service...........cccococciecicicciiccnennns 9-1
9.2 Invoking an Asynchronous Web Service ..ot 9-2
9.2.1 How to Invoke an Asynchronous Web Service............cccoovuvviiiiiiiininiiiiiinciiins 9-2
9.2.1.1 Adding a Partner Link for an Asynchronous Service............cccceceeeeuvvveciernnenne 9-2
9.2.1.2 Adding an InVoke ACHVItYcooieieiiiiiiiiic e 9-3
9.21.3 Adding a Receive ACHVILYcccooiviiiiiiiiiiiicic s 9-4
9.2.1.4 Performing Additional ACtiVItIESs.......ccccceueuiieiiiiiiiiiiicicccccreeee e 9-5
9.2.2 What Happens When You Invoke an Asynchronous Web Serviceccccevuennnne 9-5
9.2.2.1 portType Section of the WSDL File.........cccccooiiiiiiiiiiiiiiiiccccccicens 9-6
9222 partnerLinkType Section of the WSDL File.........cccccooiviiiiiiiiiiiiccccceenne 9-6
9.2.2.3 Partner Links Section in the BPEL Filecccccoooiiiiiiiiiiiiiiccecns 9-7
9.2.2.4 Composite Application Fileccccccoiiiiiiiiiiiiiiiiiiccccceas 9-7
9.2.25 Invoke and Receive AcCtiVities..........cocouiiriiiiiiiiniiii e 9-7
9.2.2.6 createlnstance Attribute for Starting a New Instance ..o, 9-8
9.2.2.7 Dehydration Points for Maintaining Long-Running Asynchronous Processes.. 9-9
9228 Multiple Runtime Endpoint Locations..........cccccoccueuiiiiieiciiiiieieieeeceecceeeenes 9-9
9.3 Using WS-Addressing in an Asynchronous Service...........cooeeveircieiceiceccieieccne 9-9
9.3.1 How to Use WS-Addressing in an Asynchronous Service........cccccooevveiviccnciennnen. 9-11
9.3.1.1 Using TCP Tunneling to See Messages Exchanged Between Programs............ 9-11
9.4 Using Correlation Sets in an Asynchronous Service ... 9-13
9.4.1 How to Use Correlation Sets in an Asynchronous Service...........cccccoevvnvninnennnnes 9-13
9.41.1 Step 1: Creating @ Project ... 9-13
9.41.2 Step 2: Configuring Partner Links and File Adapter Servicescccccccoeurunnee. 9-14

vii

9.4.1.3 Step 3: Creating Three Receive Activities ...,

94.14 Step 4: Creating Correlation Sets..........cooouoiieiiiiiiiie e,
9.415 Step 5: Associating Correlation Sets with Receive Activities...........cccceeueueunnene.
9.4.1.6 Step 6: Creating Property ALases.........ccccevirieiiiiniciciicciec e,
9.41.7 Step 7: Reviewing WSDL File Contentcccccoceuviiininiiiiiiiiiic

10 Using Parallel Flow in a BPEL Process

10.1 Introduction to Parallel Flows in BPEL Processes..........c.c.cccocoviiviiiiiiiiiiiiciecnnens
10.2 Creating a Parallel FIOWccoooiiiiiii s
10.2.1 How to Create a Paralle]l FIOW ...
10.2.2 What Happens When You Create a Parallel FIowcccoouoiiiiiiicniii
10.3 Customizing the Number of Flow Activities with the flowN Activitycccccceeennee.
10.3.1 How to Create a flowN ACVItYoovoiiiiiiii
10.3.2 What Happens When You Create a FIOWN Activity.......ccccoovieiiiiiiiiiiiiicnn

11 Using Conditional Branching in a BPEL Process

11.1 Introduction to Conditional Branching ...
11.2 Creating a Switch Activity to Define Conditional Branchingcccccccccveucccicicrennnnne.
11.2.1 How to Create a Switch ACtiVityoooeieiiiiii
11.2.2 What Happens When You Create a Switch Activitycoooeveiviiiiii
11.3 Creating a While Activity to Define Conditional Branching...........ccccoeoecivcvcicccnnnne.
11.3.1 How To Create a While ACtivitycoooeueiiiiiii
11.3.2 What Happens When You Create a While Activity ..o

12 Using Fault Handling in a BPEL Process

12.1 Introduction to a Fault Handler ..o,
12.2 Introduction to BPEL Standard Faults..........cccccccviiiiiiiiiiicccnes
12.3 Introduction to Categories of BPEL Faults..........cccccoooviiiiiiii
12.3.1 Business Faults ...
12.3.2 RUNtime Faults ..o s
12.3.2.1 bINdingFault ..o
12.3.2.2 FEMOTEFAULL ...
12.3.2.3 rEPlayFault.....c.coviiiiiiiiic s
12.4 Using the Fault Management Framework ...
12.4.1 How to Design a Fault POLICY ..o
12.4.1.1 Understanding How Fault Policy Binding Resolution Works.........c.cccccccco..e...
12.4.1.2 Creating a Fault Policy File for Automated Fault Recoveryccccoceueunnne..
12.41.3 Associating a Fault Policy with Fault Policy Bindingccccooviiiiinnnes
12.4.1.4 Additional Fault Policy and Fault Policy Binding File Samples.......................
12.4.1.5 Designing a Fault Policy with Multiple Rejection Handlers.............................
12.4.2 How to Execute a Fault POLCYccccovuviviiiiiiiiiiiiiiiicccccce
12.4.3 How to Use a Java Action Fault POLCYccccccciiiiiiiiiciccceeeene
12.4.4 What You May Need to Know About Fault Management Behavior When the
Number of Instance Retries is Exceeded ...,
12.4.5 What You May Need to Know About Binding Level Retry Execution Within
Fault Policy Retriesceuiiiiciiiiiic s

viii

13

14

12.5 Catching BPEL Runtime Faultscccoooiiiiii 12-21

12.5.1 How to Catch BPEL Runtime Faults..........ccccccciiiiiiiiiiiicccccicccee 12-21
12.6 Getting Fault Details with the getFaultAsString XPath Extension Function................. 12-21
12.6.1 How to Get Fault Details with the getFaultAsString XPath Extension Function.. 12-21
12.7 Throwing Internal Faultscccooiioiiiii 12-22
12.7.1 How to Create @ Throw ACHVIY ...c.ccoeuiiiiiiririiicirrrcrr e 12-22
12.7.2 What Happens When You Create a Throw Activityccccooviiiiiiiiniiinnen, 12-23
12.8 Returning External Faults ..o 12-23
12.8.1 How to Return a Fault in a Synchronous Interaction...........cccccoevvvivnnnnnnnene. 12-23
12.8.2 How to Return a Fault in an Asynchronous Interaction..........ccccoeeviiiiiiinnnnan. 12-24
12.9 Using a Scope Activity to Manage a Group of Activities..........cccccevioireiniiiicciinnnnn, 12-24
12.9.1 How to Create a Scope ACHVItY ..o 12-24
12.9.2 What Happens After You Create a Scope Activity......ccocovvvviiiiiiiiiiiiiccinen, 12-25
12.9.3 What You May Need to Know About Scopes........cccooirieiiiiiieiicccce 12-27
12.9.4 How to Use a Fault Handler within a SCOpecccccoevvrvinrnvinrrcecreene 12-27
12.9.5 How to Create a Catch ActiVity ..o, 12-28
12.9.6 What Happens When You Create a Catch Branch ... 12-29
12.9.7 How to Create an Empty Activity to Insert No-Op Instructions into a Business

PTOCESS ..ttt 12-30
12.9.8 What Happens When You Create an Empty Activity.......ccoooooiiiin 12-31
12.10 Using Compensation After Undoing a Series of Operationscccceeevevvccecrncnnne 12-31
12.10.1 How to Use Compensation After Undoing a Series of Operations.............cccce...... 12-31
12.10.2 How to Create a Compensate Activity ... 12-32
12.10.3 What Happens When You Create a Compensate Activity.........ccccoeoveeccicccnnee 12-33
12.11 Using the Terminate Activity to Stop a Business Process Instance............c.ccccccovvueneee. 12-33
12,111 How to Create a Terminate AcCtiVity......ccoooeeeiiiiiiiii 12-33
12.11.2 What Happens When You Create a Terminate Activity........cccoooeeiiicnccicccnenne. 12-34

Incorporating Java and Java EE Code in a BPEL Process
13.1 Introduction to Java and Java EE Code in BPEL Processesc..ccecvververierievevecvecnnnnnens 13-1
13.2 Incorporating Java and Java EE Code in BPEL Processes...........c.cccoovviiiiiiiininnnnnnen. 13-1
13.2.1 How to Wrap Java Code as a SOAP Service.........ccoevuviimnieiniceieieiicieecceeenes 13-1
13.2.2 What You May Need to Know About Wrapping Java Code as a SOAP Service.... 13-2
13.2.3 How to Embed Java Code Snippets into a BPEL Process with the bpelx:exec Tag 13-2
13.2.4 How to Use an XML Facade to Simplify DOM Manipulation...........cccccocecevrueinnnen. 13-3
13.2.5 How to Use bpelx:exec Built-in Methods.........c.ccccceiiiiiiiiiiiiiccinrccccrene 13-3
13.2.6 How to Use Java Code Wrapped in a Service Interface..........ccccoevvviinninnnnnn 13-4
13.3 Adding Custom Classes and JAR Files.........ccccocoeiviiiiiiniiniiiiiiicccccccces 13-5
13.3.1 How to Add Custom Classes and JAR Files........ccccceevvirininenienieieeeeeeeese e 13-5
13.4 Using Java Embedding in a BPEL Process in Oracle JDeveloperccccccviiirieinnnnnen. 13-6
13.4.1 How To Use Java Embedding in a BPEL Process in Oracle JDeveloper 13-6
13.5 Embedding Service Data Objects with bpelX:eXecccccoviuiuiiemiiiecceieiiicccciccneene 13-7
Using Events and Timeouts in BPEL Processes

14.1 Introduction to Event and Timeout CONCEPLSccovvieuiuiiuieiicmiiiciceeeeeeeee e 14-1
14.2 Creating a Pick Activity to Select Between Continuing a Process or Waiting................ 14-1

14.2.1 How To Create a Pick ACHVItY ...cocouoiiiiii

14.2.2 What Happens When You Create a Pick ACtivitycccooooveiiiiiiiiiii
14.3 Creating a Wait Activity to Set an Expiration Time..........cccccccvvviiiinnniiinniiiiine,
14.3.1 How To Create a Wait ACtivityc.oooiuiiiiiiic
14.3.2 What Happens When You Create a Wait Activitycocoooviviiiiiiiiiii
14.4 Setting Timeouts for Synchronous Processes ...
14.4.1 How To Set Timeouts for Synchronous Processes...........ccccooovurueiiiiciciciniciccccnen

15 Coordinating Master and Detail Processes

15.1 Introduction to Master and Detail Process Coordinationsc.cocevevveevereesveneevennenns
15.1.1 BPEL File Definition for the Master ProCess.........ccceeveeeeviieeeiieeeenieeeesieeeesieeeesveeenens
15.1.1.1 Correlating a Master Process with Multiple Detail Processescccccccocuue..e.
15.1.2 BPEL File Definition for Detail PrOCESSESccccvevierierieriirieieeeerieeeeie e seeeve e
15.2 Defining Master and Detail Process Coordination in Oracle JDeveloper
15.2.1 How to Create @ Master PrOCESS.......ccecvirieriiriierieiiereste e steeteseeeeseeeteseesaessesssessesnnens
15.2.2 How to Create a Detail PrOCESSccvvvirvieiereeieiieieseeeetee et sae e sae s e sseens
15.2.3 How to Create an Invoke ACtiVItYcoooouiiiiiiiiicc

16 Using the Notification Service

16.1 Introduction to the Notification Serviceccccceviiiiiiiiiiiiiiiniicccc
16.2 Introduction to Notification Channel SEtupc.cccoovvvrrirnnininniniiecccccccccenee
16.3 Selecting Notification Channels During BPEL Process Design..........c.ccooovueieiiiicicinnnne.
16.3.1 How To Configure the Email Notification Channel...............cccocooiin
16.3.1.1 Setting Email Attachments..........cccccoeuiiiiiiiiiiiiicecceeeeceeeeee s
16.3.1.2 Formatting the Body of an Email Message as HTMLcccocooviiiieinnnen,
16.3.2 How to Configure the IM Notification Channelcccoooi
16.3.3 How to Configure the SMS Notification Channelcccooevvvvniinnininnne
16.3.4 How to Configure the Voice Notification Channel ..o
16.3.5 How to Select Email Addresses and Telephone Numbers Dynamically
16.3.6 How to Select Notification Recipients by Browsing the User Directory
16.4 Allowing the End User to Select Notification Channelsc.cccoooiiiiiiriiiinnnnnn,
16.4.1 How to Allow the End User to Select Notification Channelscccccceuvueininencne.
16.4.1.1 How to Create and Send Headers for Notifications............cccooevivriiivinnnnnn.
17 Using Oracle BPEL Process Manager Sensors
17.1 Introduction t0 SENSOTSccoviiviiiiiiiiiic s
17.2 Configuring Sensors and Sensor Actions in Oracle JDevelopercccocevviirieinnnne.
17.2.1 How to Configure SENSOTScccciuiiiiiiiiiiiiiiiiiicicc s
17.2.2 How to Configure SenSor ACONS.......c.cceueueuiuiuiieieicicieieiceieeteeeeeeeeeee s
17.2.3 How to Publish to Remote Topics and Queues............cccccoevvviiniinnninnninin
17.2.4 How to Create a Custom Data Publisher ..o
17.2.5 How to Register the Sensors and Sensor Actions in composite.xml.......................

17.3 Viewing Sensors and Sensor Action Definitions in Oracle Enterprise Manager
Fusion Middleware Control CONnSole...........ccccccuiiiiiiiiiiiiiiiiiiiiiiicciecceieeeeees

Part lll Using the Oracle Mediator Service Component

18

19

Getting Started with Oracle Mediator
18.1 Introduction to Oracle Mediator...........cocoiiiiiiiiiiiiii 18-1
18.2 Overview of Mediator Editor Environment...........c.cccooooevviiinininincccccnens 18-3
18.3 Creating @ Mediator........coouiuiiiiiiiicc e 18-6
18.3.1 Creating a Mediator Without Interface Definitioncccccevvvviniinnininnnnn 18-8
18.3.1.1 How to Create a Mediator with No Interface Definition..........ccccoovviviinnnnee. 18-8
18.3.1.2 How to Define an Interface for a Mediator with no Interface Definition.......... 18-9
18.3.2 Creating a Mediator Based on a WSDL Fileccccooooiiiiiiiiice 18-12
18.3.2.1 How to Create a Mediator Based on a WSDL File..........cccooooviniiiiiiinninnnnns 18-12
18.3.3 Creating a Mediator with One-Way Interface Definition..........c.cccocoooieiiiinnnnn. 18-13
18.3.3.1 How to Create a Mediator with One-Way Interface Definition 18-13
18.3.3.2 What Happens When You Create a Mediator Component with One-Way

Interface Definition.........ccoiiiiiiiiiiiii 18-14
18.3.4 Creating a Mediator with Synchronous Interface Definition............ccccooevieninni. 18-14
18.3.4.1 How to Create a Mediator with Synchronous Interface Definition................. 18-14
18.3.4.2 What Happens When You Create a Mediator Component with

Synchronous Interface Definition ... 18-15
18.3.5 Creating a Mediator with Asynchronous Interface Definitionc.cccccevveenecnce. 18-16
18.3.5.1 How to Create a Mediator with Asynchronous Interface Definition 18-16
18.3.5.2 What Happens When You Create a Mediator Component with

Asynchronous Interface Definition............cocoeceiiiiciiiciiecececcceceeens 18-17
18.3.6 Creating a Mediator Component for Event Subscription..........ccccccoevvinnnnnn 18-17
18.3.6.1 How to Create a Mediator for Event Subscription ..o, 18-17
18.3.6.2 What Happens When You Create a Mediator Component for Event

SUDSCIIPHON. ..ottt 18-20
18.3.7 What You May Need to Know About the Information Available in Mediator

USer INEETfACE ..o 18-21

18.3.7.1 Mediator Definition.........cccocviviviiiiiiiiiiie 18-21
18.3.7.2 ROULING RULE......oiiiiiiiiiiiiiiic e 18-21
18.4 Generating @ WSDL File.........ocoooiiiiiiiiiiiiciccccccccece s 18-23
18.5 Specifying Operation or Event Subscription Propertiescccocooiiiiiiiiinnnnnnn. 18-25
18.6 Modifying a Mediator COMPONENLt ... 18-25
18.6.1 Modifying OPerations.........cccoecueurireeiirirrrrrrrre e 18-25
18.6.2 Modifying Event SUbSCIIptioNScooiueieiiiicicieicc e 18-27
Creating Mediator Routing Rules
19.1 Introduction to Routing RUlescccooiiiiiiiiii 19-1
19.2 Defining Routing RUIES.........cccocoiiiiiiiiiiiiicic s 19-1
19.2.1 Using the Routing Rules Panel ... 19-2
19.2.2 Creating Static Routing Rulesccoeuoiiiiiiiiii 19-3
19.2.2.1 Specifying Mediator Services or Events...........cccccccociivniiiiiinniicicne, 19-4
19.2.2.2 Specifying Sequential or Parallel EXeCUtioncccccocovvverirvnvenrnnnccnne 19-9
19.2.2.3 Handling Response MeSSagesccceueviururieiiiicieieiecieie i 19-11
19.2.2.4 Handling Multiple Callbacks..........ccccoeiviiiiniiiiiiiiiiiicccccccccccenes 19-12
19.2.2.5 Handling Faultsccoooiiiir e 19-12
19.2.2.6 Specifying Expression for Filtering Messages............coocoeuevirurieiiiccicieiinnen, 19-15

xi

20

21

Xii

19.2.2.7 Creating Transformationscococueuiiicicieiiiiiciec e 19-21

19.2.2.8 AsSigNIng Valuesc.ouoiiiiiii 19-22
19.2.2.9 Access Headers for Filters and Assignmentsccccocovieciiiiicnciccceenes 19-25
19.2.2.10 Using Semantic Validation..........ccouoiiiieiiiiieiie e, 19-27
19.2.2.11 Support for Java Callouts ..o 19-29
19.2.3 Creating Dynamic Routing Rules...........cccocoviiiiiiiiiiiiiiiiccccccccccecenenes 19-36
19.3 Creating a Mediator for Routing Messagesccccueuirieieieiiiciciiiccice e 19-39
19.3.1 Step-By-Step Instructions for Creating the CustomerRouter Use Case.................. 19-39
19.3.1.1 Task 1: Creating an Oracle JDeveloper Application and Project...................... 19-40
19.3.1.2 Creating CustomerRouter Mediator Component...........c.ccoooereiiiiiiiiiiininnnnen, 19-40
19.3.1.3 Creating a File Adapter Service.........ocoociiiiiiioiiiiiicccce e 19-40
19.3.1.4 Creating a File adapter referencecccccccevueiiiccnnninnncccreeeeeeece 19-43
19.3.1.5 Specifying Routing RULeScoorueiiiiiiiiii 19-44
19.3.1.6 Creating Oracle Application Server Connectionccceoeerieieiiccicieiececnnnen. 19-51
19.3.1.7 Deploying CustomerRouterProject..........cccoevuvuvivivirerinininirnnenncreeeeeseecne 19-51
19.3.2 Running and Monitoring the CustomerRouterProject Application........................ 19-51
19.4 Creating Asynchronous Request Response Using Mediatorccccoeevirininiinnnnne. 19-52
19.4.1 Step-By-Step Instructions for Creating the AsyncMediator Use Case.................... 19-52
19.4.1.1 Task 1: Creating an Oracle JDeveloper Application and Project...................... 19-53
19.4.1.2 Task 2: Creating a Server BPEL Process.........ccocoeueioirueieiicicieeiccieieccie e 19-53
19.4.1.3 Task 3: Create a Mediator COmpOnent...........ceceuvererereeininirincccciiceccccenenes 19-53
19.4.1.4 Task 4: Creating a Client BPEL Process..........cccccovoeeieiniinieiiiicieecceee, 19-56
19415 Task 5: Creating the Invoke, Receive, and Assignment Activities................... 19-57
19.4.1.6 Task 6: Configuring Oracle Application Server Connection.........c.ccccceuvveeuaeee. 19-61
19.4.1.7 Task 7: Deploying the Composite Applicationccccceevevivviiiniinnnnne 19-61

Using Mediator Error Handling

20.1 Introduction to Oracle Mediator Error Handlingccccooviiieiiinininiiicce 20-1
20.1.1 Fault POLICIES ..o 20-1
20.1.1.1 CONILIONS ..vovveiiiiiirc s 20-2
20.1.1.2 ACHONS. ...ttt 20-4
20.1.2 Fault BINAINGScocvoviiiiiiiiiiiccic s 20-6
20.1.3 Error groups in Mediator...........cccciiiiiiiniiii s 20-6
20.2 Using Error Handling with Mediator ..o 20-7
20.2.1 How to Use Error Handling for a Mediator Componentccccooooveeiiicccneiennnen. 20-7
20.2.2 What Happens at RUNIME ... 20-8
20.3 Fault Recovery Using Enterprise Managerccoooimueieiiiciciiiisieece s 20-8
20.4 Error Handling XML Schema Definition Filescccccoccviinninnnniiiiicin 20-8
20.4.1 Schema Definition File for Fault-policies.xmlcccccooevvniiinnniiirccirrne 20-8
20.4.2 Schema Definition File for Fault-bindings.xmlcccocooiiiiiiiiiie 20-12

Working with Multiple Part Messages in Mediator

21.1 Introduction to Mediator Multipart Message Support Featurecccccovvvviiiiinnnnnn. 21-1
21.1.1 Working with Multipart Request MeSsagesccccoceiiiuiiiiiiiiiniciiicicccceens 21-2
21.1.1.1 Specifying Filter EXPressions........c.ccocccciiciiiicieeieieieeeeeeeeeeneeneeenenenenes 21-2
211.1.2 Adding Validationscoueviiieieiiiiiinice 21-2
21.11.3 Creating Transformations ... 21-3

21114 AsSIgNING ValUescooviiiiii 21-4
211.2 Working with Multipart Reply, Fault, and Callback Source Messages.................... 21-5
21.1.3 Working with Multipart Target Messages..........cccceeuiieemciececeieeeeneneeenenenenes 21-6

22 Understanding Message Exchange Patterns of a Mediator

22.1 Understanding One-way Message Exchange Patterncccccccceeeccicccicninccnnnes 22-2
22.2 Understanding Request-Reply Message Exchange Pattern...........cccooooiiiiiiiniinnn, 22-3
22.3 Understanding Request-Reply-Fault Message Exchange Pattern ..o 22-4
22.4 Understanding Request-Callback Message Exchange Pattern............cccccoceevvvvivinnenne. 22-5
22,5 Understanding Request-Reply-Callback Message Exchange Pattern.............cccccoco.... 22-6
22.6 Understanding Request-Reply-Fault-Callback Message Exchange Pattern 22-8

Part IV Using the Business Rules Service Component

23 Using the Business Rule Service Component

23.1 Introduction to the Business Rule Service Component..........c.ccccoerueieiiireieicicicicicnnnen, 23-1
23.1.1 Integrating BPEL Processes, Business Rules, and Human Tasksccccceeveeenencne. 23-2
23.2 Introduction to Creating and Editing Business Rulesc.c.ccccooniiiiiinnne 23-2
23.2.1 How to Create Business Rules Componentscccoooeerieiiiiciceicicceccceee 23-2
23.2.2 Introduction to Working with Business Rules in Rules Designerccc.cc........ 23-4
23.3 Adding Business Rules to a BPEL Process.........cccccoueiuiurieiiiiciciciiccece s 23-4
23.3.1 How to Add Business Rules to a BPEL Processccccccoevuiiniiiiiiniininiiien 23-4
23.3.2 What Happens When You Add Business Rules to a BPEL Process........................ 23-10
23.3.3 What Happens When You Create a Business Rules Dictionaryc.ccoocvvurunnnnee. 23-11
23.3.4 What You Need to Know About Invoking Business Rules in a BPEL Process...... 23-11
23.35 What You Need to Know About Decision Component Stateful Operation 23-11
23.4 Adding Business Rules to an SOA Composite Application ..o 23-12
23.4.1 How to Add Business Rules to an SOA Composite Applicationc.ccccoceueeee. 23-12
23.4.2 How to Select and Modify a Decision Function in a Business Rule Component.. 23-17
23.5 Running Business Rules in a Composite Application..........cccccovvvvvviivninnnnnnnnnnn 23-19

PartV Using the Human Workflow Service Component

24 Getting Started with Human Workflow

241 Introduction to Human WOTrK IOWccceviiiieiiiieieeeeeee e 24-1
24.2 Introduction to Human Workflow Concepts.........cccccooeiuiiiuiiiiiiiciiiiiiceicceeceneens 24-3
24.21 Introduction to Design and Runtime Conceptsccccccceeueueeuiceeieiecenecnceceeene 24-3
24211 Task Assignment and ROUINGccoeviiiiiiiiiiiiiiiiis 24-3
24.21.2 Static, Dynamic, and Rule-Based Task Assignment.............cccccoevvvivnnnininnennne. 24-6
24213 Task StakeNOIAETS........ccveveieieiiiicietiee ettt ettt seeseeseere e 24-7
24.21.4 TaSK DEAALNESc.vievieeiieeieteeeeeeese ettt e s e esaenseens 24-8
24215 INOHLICATIONS ..ottt ettt ettt ettt ete e sreeaaesbeeasesbsenbeereenns 24-8
24.2.1.6 TASK FOTINIS ..vvivvevieiieeieiteietete ettt ettt ettt et ettt bbb esbe st e st esaesaesessensanes 24-9
24217 Advanced CONCEPLSceuvveviiiiiiiieieieiece s 24-9
24.2.1.8 Reports and Audit Trailscccooviviviiiiiiniicce 24-10

xiii

25

Xiv

24.2.2 Introduction to the Stages of Human Workflow Designccccoeuviiriiiiiinennnn. 24-10

24.3 Introduction to Human Workflow Features............cccccocviiininnnnnninin 24-11
24.31 Human WOorkflow Use Cases.........ccccvueuruririririririreneirnreenireseee e 24-11
24.3.1.1 Task Assignment to a User or Role..........cooviiiiiiiiiiie, 24-11
24.3.1.2 Use of the Various Participant Typescccooeoioiniiiiic, 24-11
24.3.1.3 Escalation, Expiration, and Delegationcooueiiiiiinciiinicnciccceenes 24-12
24.31.4 Automatic Assignment and Delegation.............cooooeeiiiiiiiiiciicce, 24-12
24.31.5 Dynamic Assignment of Users Based on Task Content............cccccooeeuiiinnnnnes 24-13
24.3.2 Designing a Human Task from Start to Finish..........c.cccccoevviiiinnniniinnes 24-13
24.3.21 PrerequiSites ... 24-13
24.3.2.2 How to Create the Vacation Request Process..........cccccoouocriiieiiniciiiiiciciene, 24-14
24.3.3 Additional TUtOTialscccceuiiiiiiiiiiiir e 24-27
24.4 Introduction to Human Workflow Architecture...........cccoooiiiiniiinns 24-27
24.41 Human Workflow Services ... 24-28
2442 Use of HUMAN TaSKccooiiiiiiii e 24-30
24.4.3 5ervice ENGINEScoouiiiiiiiiic s 24-31

Designing Human Tasks

25.1 Introduction to Human Task Design Concepts.........cccooeeieiniicieiiiicicieiccec 25-1
25.2 Introduction to the Modeling Process............cccocoerurieiiicieiiiicicicceec s 25-1
25.2.1 Create a Human Task Definition..........ccoceviiiiiiiiniiiiiccccenes 25-2
25.2.2 Associate the Human Task Definition with a BPEL Process...........ccccocovveiiiiiinnnnnnn. 25-2
25.2.3 Generate the Task Display FOrm ..o 25-3
25.3 Creating the Human Task Definition with the Human Task Editor............ccccceevenunenene. 25-3
25.3.1 How to Create a Human Task Service Component...........cccccoeveveviniininninnnninnnn 25-3
25.3.2 What Happens When You Create a Human Task Service Component 25-5
25.3.3 How to Access the Sections of the Human Task Editor..........ccoeviiiiiiiiininnen 25-6
25.3.4 How to Specify the Title, Description, Outcome, Priority, Category, and Owner.. 25-7
25.3.4.1 Specifying a Task Title ..o 25-8
25.3.4.2 Specifying a Task DeSCIIPHONc.ceueuiueuciiiiiiiiicicicieiccceeeeceeee s 25-8
25.3.4.3 Specifying a Task OUtCcOmMe..........c.ovimiieiiiiiiic 25-8
25.3.4.4 Specifying a Task Categoryccccceuviriiiiiiiiiniiiiiiiiicrsss s 25-10
25.34.5 Specifying a Task PriOTItYccccocvvrrriiniiirrrccc e 25-10
25.3.4.6 Specifying a Task OWNeT ..ot 25-10
25.3.5 How to Specify the Task Payload Data Structure..........ccccooooviiinirinnicine 25-16
25.3.6 How to Assign Task Participants ... 25-18
25.3.6.1 Configuring the Single Participant Typec.cccocooeeieiiiiiiiiiiiece, 25-22
25.3.6.2 Configuring the Parallel Participant Type.........cccccooiiiiiiiiiiiiciccccns 25-30
25.3.6.3 Configuring the Serial Participant TYPecccooiviiiiiiinciiiiicccccccnenes 25-34
25.3.6.4 Configuring the FYI Participant Typec.coooeoiiiiiiie, 25-37
25.3.7 How to Select a Routing POLICYcccovuviviiiiiiiiiiiniiiiiccccccces 25-38
25.3.7.1 Routing Tasks to All Participants in the Specified Order...........ccccoviinunncaes 25-40
25.3.7.2 Specifying Advanced Task Routing Using Business Rules..............ccccccceeueee. 25-43
25.3.7.3 Using External ROUINGcccccoviiiviiiiiiiiiiiiiiiinccccccee 25-49
25.3.7.4 Configuring the Error ASSIZNEecccovuvuviriieviiiiiriniicrreeree e 25-50
25.3.8 How to Escalate, Renew, or End the TasK........cccoeviiiieiiiniiiiiecieceeeeceeeee e 25-52
25.3.8.1 Introduction to Escalation and Expiration Policy.........c.ccceeveviiiiiiiiinnnnes 25-52

25.3.8.2 Specifying a Policy to Never EXPire ... 25-53

25.3.8.3 Specifying a Policy to EXPIre ..o 25-54
25.3.8.4 Extending an Expiration Policy Periodcccccoiiiiiiniiiiciiiciccnes 25-54
25.3.8.5 Escalating a Task POLiCYccoouiuiiiiiiicieicci e 25-55
25.3.8.6 Specifying a Due Date..........cccccouviiiviiiiiiiiiiiiiii 25-55
25.3.9 How to Specify Participant Notification Preferences............ccccocoeiivcicciiccnenes 25-56
25.3.9.1 Notifying Recipients of Changes to Task Status..........ccccceeiiiiiiiciiicinne, 25-57
25.3.9.2 Editing the Notification MeSSagecccceueueirueieiiiiieieieccie e 25-59
25.3.9.3 Setting Up Reminders.........cccccovvviuiiiiniiiiiniiiiiiiccccccnes 25-60
25.3.9.4 Changing the Character Set ENCOding..........cocoevoiimiiiiiiiiiicc, 25-60
25.3.9.5 Securing Notifications to Exclude Details...........ccccooiiiiiiiiiiiiiinn 25-60
25.3.9.6 Making Email Messages Actionable............ccccoovivnnininnnnnnnneeeees 25-61
25.3.9.7 Sending Task Attachments with Email Notificationsc.cccoooeeiiiiiiennne, 25-61
25.3.10 How To Specify Advanced Settings............coooeueiiiiiiiiiiiiic 25-61
25.3.10.1 Specifying Escalation Rules...........cccccccvuiiiiiiniiiniiiicrnececreeeeeeeeeenes 25-62
25.3.10.2 Specifying WordML Style Sheets for Attachmentscccooevviiiieiinininnnn. 25-63
25.3.10.3 Specifying Style Sheets for Attachments............cccooiiiiiiii, 25-63
25.3.10.4 Specifying Multilingual Settings ... 25-63
25.3.10.5 Specifying Callback Classes on Task Statusc.cccocooeiieieiiciciciicice, 25-65
25.3.10.6 Specifying a Workflow Signature POLiCYccccooimiiiiiiiiiiiiicce, 25-68
25.3.10.7 Specifying a Certificate AUhOTItY.........ccoovviiiiiiiiiiiiccccccccccccenes 25-69
25.3.10.8 Specifying Access Policies on Task Content...........cccccoevviviinivviininiinnn, 25-70
25.3.10.9 Specifying Restrictions on Task Assignments...........c.cccoooeeieiiicieiiiiiciceienne, 25-75
25.3.10.10 Allowing Task and Routing Customization in BPEL Callbacks....................... 25-76
25.3.10.11 Showing the Complete Graphical HiStory.........cccocoooeiieiiieiiiiiicce, 25-76
25.3.11 How to Specify ANNOtations.........ccceieiiiieiiiicicce e 25-76
25.3.12 How to Exit the Human Task Editor and Save Your Changes...........cccccceeuvurunenne. 25-76
25.4 Associating the Human Task Service Component with a BPEL Process 25-77
25.41 How to Associate a Human Task with a BPEL Process..........cccocooviiviiiiiiincnnes 25-77
2542 What You May Need to Know About Deleting a Wire Between a Human Task

Service Component and a BPEL Process...........ccocviuiiiiiiniiniieninceeeceeenns 25-78
25.4.3 How to Define the Human Task Activity Title, Initiator, Priority, and

Parameter Variables ... 25-79
25.4.3.1 Specifying the Task Title..........coooiiiiiiiiiii e, 25-79
25.4.3.2 Specifying the Task Initiator and Task Priorityccccooiiiiiiiiiiicnes 25-80
25.4.3.3 Specifying Task Parameterscccoovvviiinrnninnniccccccccccccccennes 25-80
25.4.4 How to Define the Human Task Activity Advanced Featuresc.ccccooeuenaee. 25-82
25.4.41 Specifying a Scope Name and a Global Task Variable Name............ccccccc.cc..... 25-83
25442 Specifying a Task OWNETcocuviiiriininiririricc e 25-83
25.4.4.3 Specifying an Identification Keycccoooiiiiiiiie, 25-83
25.4.4.4 Specifying an Identity ConteXt ..o 25-84
25445 Specifying an Application COnteXtcccceeueuruviiiirirnirirrrecere e 25-84
25.4.4.6 Including the Task History of Other Human Tasks...........cccoooeeiiiiiiiiiiinnnen. 25-84
25.4.5 How to View the Generated Human Task Activityccccoooviieiiiniiiiiiiiee, 25-85
25.45.1 Invoking BPEL Callbackscccovuviviririiiiniiirinir e 25-87
25.4.6 What You May Need to Know About Changing the Generated Human

TaSK ACHVILY...c.oviiiiiiiiiicccc e 25-90

XV

26

27

XVi

25.4.7 What You May Need to Know About Deleting a Partner Link Generated by a

HUman TasKcccooviiiiiiiiiiic s
25.4.8 How to Define Outcome-Based Modeling.........c.ccccceeueuevuvveinnnnnnnnrnerereeenes
25.4.8.1 Specifying Payload Updatescccoeueviiiiiiiiiiiiici e
25.4.8.2 Using Case Statements for Other Task Conclusionsccccevvviininininnnnes

Designing Task Display Forms for Human Tasks

26.1 Introduction to the Task Display FOImccccocooiiiiiiiiiiii
26.2 Associating the Task Flow with the Task Servicecccccocoevvrvivnnnniicnrceereee
26.3 Creating an ADF Task Flow Based on a Human TaskK.........cccccoooiiiiiiiniiiiiici
26.3.1 How To Autogenerate an ADF Task Flow for a Human Taskcccccccoevnnnnn
26.3.2 How To Create an ADF Task Flow Based on a Human Taskccccccceeviiniininnen.
26.3.3 What Happens When You Create an ADF Task Flow Based on a Human Task....
26.4 Creating a Task Display FOImMcccooiiiiiiiiii s
26.4.1 How To Create a Task Display Form Using the Complete Task with Payload

Drop Handler ...
26.4.2 How To Create Task Display Form Regions Using Individual Drop Handlers ...
26.4.3 How To Add the Payload to the Task Display FOrmccccoooeoiiiiiniocccinccnenns
26.4.4 What Happens When You Create a Task Display Form..........cccccooviiniinnnen.
26.5 Refreshing Data Controls When the Task XSD Changes.........c.cccccoeovviriiniiiiccicinicnen.
26.6 Securing the Task FIOW APPLCation ..ot
26.7 Creating an Email NOtificationcccooovieiiiiiiiiieic e
26.7.1 How To Create an Email Notification ..o,
26.7.1.1 Creating a Task Flow with @ ROULET ..o
26.7.1.2 Creating an Email Notification Pagecccoovueiiiicniiiniiccce
26.7.2 What Happens When You Create an Email Notification Page..........c.cccooviiinnannes
26.7.3 What You May Need to Know About Creating an Email Notification Page.........
26.8 Deploying a Composite Application with a Task FIOWcccccoviiniiiiiiiins
26.8.1 Before Deploying the Task Display Form: Port Changes...........cccccoevirriiiiirnnnn.
26.8.2 How To Deploy a Composite Application with a Task Flowccccccevnnneacne.
26.8.3 How To Redeploy the Task Display FOrm..........cccoooeueioiiiiiiiiiiecc,
26.8.4 How To Deploy a Task Flow as a Separate Application..........ccococoeeveiiiiiciennnnnen.
26.8.5 How To Deploy a Task Display Form to a non-SOA Oracle WebLogic Server
26.8.5.1 Deploying oracle.soa.workflow jar to a non-SOA Oracle WebLogic Server ..
26.8.5.2 Defining the Foreign JNDI Provider on a non-SOA Oracle WebLogic

SOIVET ..ottt
26.8.5.3 Defining the Foreign JNDI Provider Links on a non-SOA Oracle WebLogic
SEIVET ..t
26.8.5.4 Including a Grant for bpm-services.jar.........cccoevuvuevvreverrerrnnrrr e
26.8.5.5 Deploying the Application..........cccccceeveviiiiiiiiiiiici
26.8.6 What Happens When You Deploy the Task Display Form.........ccccocovovriiiinnnnnee.
26.9 Displaying a Task Display Form in the Worklist............cccooiiiiiniiiniiiicccenes
26.9.1 How To Display the Task Display Form in the Worklistc.ccccooiiiinin.
26.10 Displaying a Task in an Email Notificationcccocoevviiiinniniiiniiiiicccccnes
Using Oracle BPM Worklist

27.1 Introduction to Oracle BPM WOrkListcccccoiuiiiiiiiiiiiiiiiciccceccecceees

27141 What You May Need To Know About Oracle BPM Worklist..........ccccceviriinnnnnnn. 27-3

27.2 Logging In to Oracle BPM WOrkIistcccoouoiiiiiiiiiic e 27-3
27.21 How To Log In to the WOrKIist........ccoueuiiriviiiiiiiiicrercce e 27-3
27.2.1.1 Enabling the weblogic User for Logging in to the Worklist.............cccccceoeniie. 27-4
27.2.2 What Happens When You Log In to the Worklist..........ccocoooii 27-4
27.3 Customizing the Task List PAZecccccoerririviiiiiircccrecreec s 27-7
27.3.1 HOW To Filter Taskscccoiiiiiiiiiiiiiiiiciiccc s 27-7
27.3.2 How To Create and Customize Worklist Viewsccccccvvvivininnnnnincn 27-14
27.3.3 How To Customize the Task Status Chart ..o, 27-18
27.3.4 How To Create a TODO Taskccccocoviviiiiiiiiiiiiicns 27-19
27.3.5 How To Create a Subtask ..o 27-20
27.4 Acting on Tasks: The Task Details Page..........cccocovviirinnninnnnicccccccccccnes 27-21
27.41 SYSteM ACHONS ...ttt e 27-24
27.4.2 TaSK HISTOTY w.ouruviiici e 27-24
27.4.3 How To Act 0N TaSKS ... 27-27
27.4.4 How To Act on Tasks That Require a Digital Signature...........cccoooevoiiiiiiinnnn. 27-34
27.5 APProving TasKS ..ot s 27-37
27.6 Setting a Vacation Period.........ccccceiiiiiiiiiiiiiicecccrrece s 27-38
27.7 Setting RUIESoouiiii e 27-39
27.71 How To Create User Rules...........ccccocoviiniiiiiiiiiiiiicccns 27-40
27.7.2 How To Create Group Rules..........ccoiiiiiiniiiiiniiiiiices 27-41
27.7.3 Assignment Rules for Tasks with Multiple Assignees............cccccoovviiiiiiniiinnnnes 27-43
27.8 Using the Worklist Administration FUnctionsccccoooiiiiii 27-43
27.8.1 How To Manage Other Users’ or Groups’ Rules (as an Administrator)................ 27-43
27.8.2 How To Set the Worklist Display (Application Preferences)...........cccccocouvvvvninininnes 27-44
27.9 Specifying Notification Settings............ccooeeueioiiiiiiiiiiiiic e 27-46
27.91 Messaging Filter RULESccccciiiiiiiiiiiiicccccceee s 27-46
27.9.1.1 Data TYPES...ccveveiiieieiiei s 27-46
27.9.1.2 ABTIDULES . 27-46
27.9.2 Rule ACHONS.....ccoviviiiiiiicc s 27-47
27.9.3 Managing Messaging Channels............cccooimiiiiiiiiiiiic s 27-47
27.9.3.1 Viewing Your Messaging Channels.............cccccoociiiiiniiiiiiniicicccee 27-48
27.9.3.2 Creating, Editing, and Deleting a Messaging Channel.............ccccccoevvnnnnnne. 27-49
27.9.4 Managing Messaging Filtersc.cccocoooiiiiiiiciiiiiiicc 27-49
27.9.41 Viewing Messaging Filters............cccocoviiiiiiiiiiiiiiiiccccccccces 27-50
27.9.4.2 Creating Messaging Filters.........cccocovviiinnnnnncrn s 27-50
27.9.4.3 Editing a Messaging Filter.........ccooouoiiiiiiiiii e, 27-52
27.9.4.4 Deleting a Messaging Filter...........cccccccviiiiiiiiiiniiiiiiiniinicnicccaes 27-52
2710 UsIing FIEX FIELAScvcuiuiiiiiiiiiiciiicccccc s 27-52
27.10.1 How To Map Flex Fields........c.cccooiiiiniiiiiiiiiiis 27-53
27.11 Creating Worklist REPOILSccoouviiiiiiiiiiiiiiiiiiiic s 27-56
27.11.1 How To Create RePOrts ... 27-57
27.11.2 What Happens When You Create Reportscccoouviviviiiiiiiccccene, 27-58
27.11.2.1 Unattended Tasks RePOTt.........cccviiiviiiiiiiiiiinininiiiiiiccccccccne 27-59
27.11.2.2 Tasks Priority REPOTt ..o 27-60
27.11.2.3 Tasks Cycle Time Report ..o, 27-60
271124 Tasks Productivity Report.........ccccoovvviviiiiiniiiiiiniiiiiiiiiiincnscccaes 27-61

xvii

28

29

xviii

27.12 Accessing Oracle BPM Worklist in Local Languages.........c.ccccoueerueiiiiicicieiiccicne 27-62
27121 How To Change the Language Used in the Worklist............cccoooioiinn, 27-62
27.12.2 How To Change the Time Zone Used in the Worklist.........c.cccccceuvuiirnvnninnnnne. 27-63

Building a Custom Worklist Client

28.1 Introduction to Building Clients for Workflow Servicesccccccccuevvrivvnvvennnencnes 28-1
28.2 Packages and Classes for Building ClLients...........cccoouieiiiiiniiciiicc 28-2
28.3 Workflow Service CHENESccccoeiiiiiiiiiiiiiiciic s 28-3
28.3.1 The IWorkflowServiceClient Interfacecccevvieiiiiiniiiiiniiccecces 28-5
28.4 Class Paths for Clients Using SOAP.........ccccouoiiiieiiiiiciecci i 28-6
28.5 Class Paths for Clients Using Remote E]Bs.........ccccoooiiiiiiiii 28-6
28.6 Class Paths for Clients Using Local EJBSs.......ccccccoviiiiiniinnniiirrnereceeeecenes 28-7
28.7 Enterprise JavaBeans References in Web Applications..........cccoceeiiiieiiiiiniiiinnnennan, 28-7
28.8 Initiating @ TasK.....ccoooiiuiiiii s 28-7
28.8.1 Creating @ TasK.......cccciuiiiiicceece e 28-8
28.8.2 Creating a Payload Element in a TasK.........ccccooiiiriiiiiiiiiiiiiiccce 28-8
28.8.3 Initiating a Task Programmatically...........cccooueoiiiiiiiiiii e 28-9
28.9 Changing Workflow Standard View Definitions..........ccccooeiiiiinciiincicciccccnenes 28-10
28.10 Writing a Worklist Application Using the HelpDeskUI Sample..........ccccoovviiiiinnnne. 28-10

Introduction to Human Workflow Services

29.1 Introduction to Human WOrkflow ServicCes........cccceveeciereeriieieiiinieieeeereseeveseesveseeesens 29-1
29.1.1 Enterprise JavaBeans, SOAP, and Java Support for the Human Workflow
b <) 74 e =t SRR 29-1
29.1.2 Security Model for Services. ..o 29-3
29.1.2.1 Limitation on Propagating Identity to Workflow Services when Using SOAP
TWED SEIVICES......cevieieeieiieiiiiietistitesie et ettt eetesteetessessesbesbessessessesseseessesensansessensas 29-4
29.1.2.2 Creating Human Workflow Context on Behalf of a User.........c.c.cccoooeuenine. 29-4
29.1.3 TASK SEIVICE ...evviuvieeieiieereteeteete ettt ettt te et e s te e s e be e b e te e b e seesbesseessesseessesssessesssessenseans 29-4
29.1.4 Task QUETY SEIVICEc.cceuiuiiiiiiiiiieicie s 29-7
29.1.5 Identity SEIVICE.......oiiuiiiiiiicieie e 29-9
29.1.5.1 Identity Service PrOVIAers ... 29-10
29.1.6 Task Metadata SEIVICEcc.cveieieierieiiiiiiteteiest et ste e eesseae e stestessesessessessesseseessesessenns 29-11
29.1.7 User Metadata SEIVICE........cccveviieieriieierieeiesieetestestesteeeesteestesseesaessesssessesssessesssasseessenns 29-12
29.1.8 Task REPOTt SEIVICE ... 29-14
29.1.9 Runtime Config SEIVICEccvuiuimiuiiriiiicieiriereeerree s 29-14
29.1.9.1 Internationalization of Attribute Labels.........cccccoeveviieiiviieieiieeee e, 29-16
29.1.10 Evidence Store Service and Digital Signatures............ccoooeevviiiiiniiccniiccee 29-17
29.1.10.1 PrerequiSites ... 29-19
29.1.10.2 Interfaces and MethOdSccooieiirieiiiiicicceeeeeeeeee e 29-19
29.1.11 Task INStance AtIIIDULEScovecveeiieieceiceceee ettt a e e ere e 29-21
29.2 Notifications from Human WOTK IOWccevueieiiiiiiniininiseseseseseieseeeeeee e e 29-25
29.2.1 Contents Of NOICATION.cceciieierierierietere ettt ete e saesreeae e essesseessesseensenns 29-26
29.2.2 Error Message SUPPOTt ..o 29-27
29.2.3 Reliability SUPPOTt.....c.ccuiiiiiiiiiiiicicieicicceeee s 29-27
29.24 Management of Oracle Human Workflow Notification Servicec.c.ccccoueeuue. 29-28
29.2.5 How to Configure the Notification Channel Preferences...........cccccoeoiiiiiiinnnes 29-28

30

29.2.6 How to Configure Notification Messages in Different Languages......................... 29-29

29.2.7 How to Send Actionable Messages...........ccooeeueieiiicicieiiiicie e 29-30
29.2.7.1 How to Send Actionable Emails for Human Taskscccccooriiiiiiiiinnnns 29-30
20.2.8 How to Send Inbound and Outbound Attachments............cccccoceevviiiiiiiiiinnnn, 29-31
20.2.9 How to Send Inbound Comments.............ccceviviiiniiiiiiiniiinnes 29-32
29.2.10 How to Send Secure Notifications..........ccoviieiiiiiiiiiiiiicececs 29-32
29.2.11 How to Set Channels Used for Notifications............ccccceeveiiiiiiiiiiinnn 29-32
29.2.12 How to Send Reminders..........cccccovviviiininiiiiiiiiiiiincccns 29-32
29.2.13 How to Set Automatic Replies to Unprocessed Messagesc.ccovevevrererererencnnes 29-33
29.2.14 How to Create Custom Notification Headersc.ccccoveeiniiiiiiiiiiiin, 29-34
29.3 Assignment Service Configurationc.ocooeeieiiicicieiiice 29-34
29.3.1 Dynamic Assignment and Task Escalation FUNctionsccccccocoiicicnciincncnnes 29-34
29.3.1.1 How to Implement a Dynamic Assignment Function...........cccceoeeiiiieinni, 29-35
29.3.1.2 How to Configure Dynamic Assignment Functions...........cccoooeiiiiieiennen. 29-36
29.3.1.3 How to Configure Display Names for Dynamic Assignment Functions........ 29-37
29.3.1.4 How to Implement a Task Escalation Function ..., 29-37
20.3.2 Dynamically Assigning Task Participants with the Assignment Service 29-37
29.3.2.1 How to Implement an Assignment Service...........ccceevvevrvvevverrnnnrrerceeenes 29-38
29.3.2.2 Example of Assignment Service Implementation.............cccocevviviniinnnnne 29-39
29.3.2.3 How to Deploy a Custom Assignment Service..........c.cocoeeuevniireieiiicicieeinnne, 29-41
29.3.3 Custom Escalation FUNCHOMN.........cccooviiiiiiiiicc e 29-41
29.4 Class Loading for Callbacks and Resource Bundles...........ccccoooeriiiiinininiiicine 29-41
29.5 Resource Bundles in Workflow Services...........ccocvvviviviiiniiinnnnniniiinccae 29-42
29.5.1 Task Resource Bundles ... 29-42
29.5.2 Global Resource Bundle — WorkflowLabels.properties...........c.cccccoeviiviiiiinnnnnen. 29-42
29.5.3 Worklist Client Resource Bundles...........cccccoviviiiiiiiiinniniccne 29-44
29.5.4 Task Detail ADF Task Flow Resource Bundles..........cccccovviiiiiiiniicniinnen, 29-44
29.5.5 Case SENSIIVITY ...o.vieiiiicecici s 29-45
29.6 Introduction to Human Workflow Client Integration with Oracle WebLogic Server
SEIVICES ..ttt 29-45
29.6.1 Human Workflow Services CHENtS ..o 29-45
29.6.1.1 Task Query Service Client Code..........ccoviviiiiiiiiniiiiiiiccccces 29-46
29.6.1.2 Configuration OPONc.cueveuriiiriiicieirircerc s 29-49
29.6.1.3 Client LOGZING......cviuiieieiiiicieieiceie i 29-51
29.6.1.4 Configuration Migration Utility..........cccoooiiiiiiiiiiiciccccccccees 29-51
29.6.2 Identity Propagation ... 29-52
29.6.2.1 Enterprise JavaBeans Identity Propagation..........cccccooieeiiiiiciciiiccne, 29-52
29.6.2.2 SAML Token Identity Propagation for SOAP Clientcccccoceuvurivnniniririnnnnes 29-52
29.6.3 CLENE JAR FILES ..ovvevieiieeieieeiteitetetete ettt ettt b b sa e eseeseesessessessessessassesas 29-54
29.7 Database Views for Oracle Workflow...........cccccoviiiniiiiiiiniinn 29-54
29.7.1 Unattended Tasks Report VIEWcccccccuvviviiiiiiiiiininiiiininnssncceaes 29-54
20.7.2 Task Cycle Time Report VIEW........ccccccucuiuiiririiiiiiirieecirereeere s 29-55
29.7.3 Task Productivity Report VIEWccceieiiicieiiiiicc s 29-56
29.7.4 Task Priority Report VIEWccccvviiiiiiiniiiiiiiicciccccccce e 29-56

Integrating Microsoft Excel with a Human Task

30.1 Configuring Your Environment for Invoking a BPEL Process from an Excel

Xix

WWOTKDOOK ...ttt e et e et eeeaaeeseaaaessnaeeseneeesnnaeessnseeean 30-1

30.1.1 How to Create an JDeveloper Project of the Type Web Service Data Control 30-1
30.1.2 How to Create a Dummy JSE Pagecccovuiiiiniiiiiiniicincccc 30-2
30.1.3 How to Add Desktop Integration to Your Oracle JDeveloper Project...................... 30-2
30.1.4 What Happens When You Add Desktop Integration to Your JDeveloper Project. 30-2
30.1.5 How to Deploy the Web Application You Created in Step 1.......cccccevvvvvnrrcncncnee 30-4
30.1.6 How to Install Microsoft EXcel........cccooiiiiiiiiiiiiiiiiccces 30-4
30.1.7 How to Install the Oracle Oracle ADF-Desktop Integration Plug-in...................... 30-4
30.1.8 How to Specify the User Interface Controls and Create the Excel Workbook 30-4
30.2 Attaching Excel Workbooks to Human Task Workflow Email Notifications 30-4
30.2.1 Enabling Attachment of Excel Workbooks to Human Task Workflow Email

INOHfICAtIONS ..ocveviiiii e 30-4
30.2.2 What Happens During Runtime When You Enable Attachment of Excel

Workbooks to Human Task Workflow Email Notifications.........c.c.ccccoeenrcininne 30-5
30.2.3 Example: Attaching an Excel Workbook to Email Notifications............cccccceeueueeeene. 30-5
30.2.3.1 Task 1: Enable the ADF Task Flow Project with Oracle ADF-DI Capabilities. 30-5
30.2.3.2 Task 2: Set up Authentication.............coeoiiiii e, 30-10
30.2.3.3 Task 3: Create a Valid Page Definition File to Be Used in the Excel

WOTKDOOK ..ottt 30-12

30.2.3.4 Task 4: Prepare the Excel Workbook ..o, 30-17
30.2.3.5 Task 5: Deploy the ADF Task FIOWccccccoviiiiiiniiirrccnceeeeeae 30-21
30.2.3.6 Task 6: Test the Deployed Applicationcccccoeveiiiiniiniiiinii 30-23

Part VI Using Oracle Business Activity Monitoring

31

XX

Creating Oracle BAM Data Objects

31.1 Introduction to Creating Data Objects........cccoouviiiiiiiiii 31-1
31.2 Defining Data ObJects........cooiiuiiiiiiieieiii s 31-2
31.2.1 How to Define a Data ODJectcccoccuiiiiiiiiiiiiiccccececceeeee s 31-2
31.2.2 How to Add Columns to a Data Object...........ccccooeiiiiiiiiiiiiiicccce 31-2
31.2.3 How to Add Lookup Columns to a Data Object..........ccccoeeveivirniniicciiccece 31-3
31.24 How to Add Calculated Columns to a Data Object..........cccceeuvurururvereiircrccicreene 31-4
31.2.5 How to Add Time Stamp Columns to a Data Objectcccoceviiiiiiiniiiiinn 31-5
31.2.6 What You May Need to Know About System Data Objects..........cccccovurreiirereinnnnen. 31-5
31.2.7 What You May Need to Know About Oracle Data Integrator Data Objects............ 31-6
31.3 Creating Permissions on Data Objects.........cccouiiiiiiiiioiiiiii 31-6
31.3.1 How to Create Permissions on a Data Object..........cccooeviiiiiiiciiiccee 31-6
31.3.2 How to Add a Group Of USETS.......c.cocuiuimimiuiiiiiiiciciciieicieieeieeeeee e nenenes 31-7
31.3.3 How to Copy Permissions from Other Data Objects..........cccccceveiiniinniinnnnnns 31-7
31.4 Viewing Existing Data ObjJects.........ccccovviviniiiiiiiiiniiiiiicccccccea 31-7
31.41 How to View Data Object General Information...........cccccceueueueiicinniicnnnccnene 31-8
31.4.2 How to View Data Object Layouts.........c.ccouieieieiiiiciiiii e 31-8
31.4.3 How to View Data Object Contents...........cccoeueveiiieieinicceiecceeccceecc s 31-9
31.5 Using Data Object FOLAErScccoiuimimiiiiiiiiiiiiiccicccccee s 31-9
31.5.1 How to Create FOIAers ..o 31-9
31.5.2 How t0 Open FOIders........ccccoiiiiiiiiiiiiiiiiiiiiccicccs s 31-10
31.5.3 How to Set Folder Permissions...........ccccvvuiiiiiiiniiniiiiiiceeccecceenes 31-10

32

33

31.54 HOW 10 MOVE FOLARTS.....eveeiieieeeeeeeeeeee ettt ettt e e eaaeeseaaeeenns 31-11

31.5.5 How to Rename FOLderscciiiiiiiiiiiiiiiiciccccce s 31-11
31.5.6 How to Delete FOLAETScoviiiiiiiiiiiiiccc e 31-12
31.6 Creating Security Filters..........cccoooomoiiiiiiiiii s 31-12
31.6.1 How to Create a Security Filter...........cocoooiiiiii 31-12
31.6.2 How to Copy Security Filters from Other Data Objectscccccevuvueevrvevvrerencnne. 31-13
31.7 Creating DIMeNSIONSccccueviuiuiieiiiicite ettt 31-14
31.7.1 How to Create @ DImension ..o 31-14
31.7.2 How to Create a Time Dimension........cccceeeeieieeinieieeeeecces 31-15
31.8 Renaming and Moving Data Objectscccooeriiiiiiiiiiiiic e 31-16
31.8.1 How to Rename a Data Objectc.cooeeiiiiiiiiicc 31-16
31.8.2 How to Move a Data Object ..o 31-16
31.9 Creating INAeXeSc.coouriiiiiii s 31-16
31.9.1 How to Create an INdeX.........ccccciiiiiiiiiiniiiniiiiiis 31-16
31.10 Clearing Data ODJECtS........cccuiuiiiiiiiiiiccceccc e e 31-17
31.10.1 How to Clear a Data Object.........cccceviiiiiiiiiiiiiiiiiiiiicc s 31-17
31.11 Deleting Data ObjJectsccocueiiiiiiiiiiiccie i 31-17
31.11.1 How to Delete @ Data ODjectcccciuiiiiiiiiiiiiiiiiiccicicceeeeceeeeeeeeeeece s 31-17
Integrating Oracle BAM with SOA Composite Applications
32.1 Introduction to Integrating Oracle BAM with SOA Composite Applications................ 32-1
32.2 Configuring Oracle BAM Adapter ... 32-2
32.3 Creating a Design Time Connection to an Oracle BAM Serverccooevvvinininninnn 32-2
32.3.1 How to Create a Connection to an Oracle BAM Server.........cccooveneieeecriienenennnn, 32-2
32.4 Using Oracle BAM Adapter in an SOA Composite Application........ccccceveiiiiiinnennee. 32-3
32.4.1 How to Use Oracle BAM Adapter in an SOA Composite Application..................... 32-3
32.5 Using Oracle BAM Adapter in a BPEL Process........cccccccevcueueiiemeicieiciccecececeeeneeeeees 32-4
32.5.1 How to Use Oracle BAM Adapter in a BPEL Process..........cccccovvvveiiiniiiicnninniniennnne, 32-4
32.6 Integrating BPEL Sensors with Oracle BAM ..o 32-6
32.6.1 HoW t0 Create @ SENSOT........cvuiueuiveririeiciccectce s 32-6
32.6.2 How to Create an Oracle BAM Sensor AcCtion ... 32-7
32.6.3 How to Disable an Oracle BAM Sensor Action...........cccccceciciiiiiiicciicicnicicenees 32-9
Creating Oracle BAM Enterprise Message Sources
33.1 Introduction to Enterprise Message SOUICEScococruiriiirieiniiiieiniiceeee s 33-1
33.2 Creating Enterprise Message SOUICES..........cccovuiiiiiiiiiiiiniiiiiinc e 33-2
33.2.1 How to Create an Enterprise Message SOUTCe...........ccoeueieiiiiniciiiiiciceece s 33-2
33.2.2 How to Configure DateTime Specification...........cccocovviviivvinnnnnniiiiicne, 33-6
33.2.3 How to Use Advanced XML Formattingcccccoeeecueieeniiinnineerrececeeceeenes 33-8
33.3 Using Foreign JMS Providers..........ccooeuiiiiiioiiiiicieci e 33-9
33.4 Use Case: Creating an EMS Against Oracle Streams AQ JMS Provider.............c....... 33-10
33.4.1 Creating a JMS Topic in AQ-JMS ..o 33-10
33.4.2 Creating a Data Source in Oracle WebLogic Server ..., 33-12
33.4.3 Creating a Foreign JIMS Server ... 33-12
33.4.4 Defining an EMS in Oracle BAM Architectccccoovvivvivnnnninrrceeeeecnes 33-13
33.4.5 Inserting and Updating Records in the SQL Table..........ccccccoooiriiiiiiiiiiiin, 33-14

XXi

34

35

36

37

XXii

Using Oracle Data Integrator With Oracle BAM
34.1 Introduction to Using the Oracle Data Integrator With Oracle Business Activity

IMOTEEOTINIE ..ttt 34-1
34.2 Installing the Oracle Data Integrator Integration Files..........cccccoooiiiiiiiiiicin 34-2
34.2.1 How to Install Integration Files Using the Script.........c.ccooiveiiiiiiiii 34-2
34.2.2 How to Manually Install Integration Files...........cccccocoeiiiiiiiiinnciicrcrrreeene 34-4
34.3 Creating the Oracle BAM Targetcccccoooiiioiiiriiiii s 34-6
34.3.1 How to Create the Oracle BAM Targetcccoouoiiiiiiiiiiinieicec 34-6
34.4 Using Oracle BAM Knowledge Modules............cccccoiiiiiiiiniinnniiccrcccceeeeeens 34-7
34.5 Updating the Oracle Data Integrator External Data Source Definition......................... 34-13
34.5.1 How to Update the Oracle Data Integrator External Data Source Definitions...... 34-13
34.6 Launching Oracle Data Integrator Scenarios From Oracle BAM Alerts...........cccccc....... 34-14

Creating External Data Sources

35.1 Introduction to External Data SOUTCES........c.cceveiririirierierieieieeeeeeeese et ssesessesaesens 35-1
35.2 Creating External Data SOUICESccooueiiiiriiiiiiici e 35-1
35.2.1 How to Create an External Data SOUICE..........cocecueeieiiecieciieieceeeeceeee et 35-2
35.2.2 What You May Need to Know About Oracle Data Integrator External

DAtA SOUTCES ...cvvieeeniieiieieeteieete ettt e ste e e ste st e aeeseebessaesbeeseessessaessesseessesseessesseessensees 35-2
35.2.3 How to Edit an External Data SOUICEcccoeeeveriieieiieiesieeieteeeeere e 35-2
35.2.4 How to Delete an External Data SOUTCEcccvevveieieieieieieieieesesiei et eeeeen s 35-2

Using Oracle BAM Web Services

36.1 Introduction to Oracle BAM Web Servicescccoovviiiiiiiiiiiniiiccenes 36-1
36.2 Using the DataObjectOperations Web Services ... 36-2
36.2.1 How to Use the DataObjectOperations Web Services...........cccooeueiiriiiiniiiicne, 36-2
36.3 Using the DataObjectDefinition Web Service.........ccccooouvviiviinniiinrcccccreceeeenes 36-3
36.3.1 How to Use the DataObjectDefinition Web Service...........cccooevvviiiiicnininnnn 36-3
36.4 Using the ManualRuleFire Web Service..........oooeuiiiiiiiiiciicc 36-4
36.4.1 How to Use the ManualRuleFire Web Service ... 36-4
36.5 Using the ICommand Web Service ...t 36-4
36.5.1 How to Use the ICommand Web Service...........ccccceiiiiiiiiiiiiiiicciiccccccee 36-5

Creating Oracle BAM Alerts

37.1 Introduction to Creating ALErtS........ccccoviviriiiiiiiiiiiniiiiiiic e 37-1
37.2 Creating Alert RULESc.ccouiiiiiiiiiiiiccccccc s 37-2
37.2.1 How to Create an Alert Rule...........cocooiiiiiiiiicccs 37-2
37.2.2 HOW t0 ACHVALE ALETESvviiiiiciciiieiciete ettt 37-3
37.2.3 How to Modify Alert RUIES........ccccoiiiiiiiiiiiccecceeeeeeeeeeee s 37-4
37.2.4 How to Delete an Alert.........coiiiiiiiiiiiiiiiiicce s 37-4
37.3 Creating Alert Rules From Templatescccocovvinivinininniininiiiiiiicccccccccccnas 37-4
37.3.1 How to Create Alert Rules From Templates..........c.cccccoceiiiiciiiiccciecccecnenen 37-4
37.4 Creating Alert Rules With Messagesccccocouieieiiiiiieiiiii e 37-5
37.4.1 How to Create an Alert Rule With a Message.........cccccovuverniniiiieieinicceceee 37-5
37.5 Creating Complex ALETTSccooiiiiiiiiiiiccccee et 37-6
37.5.1 How to Create a Dependent Rule...........c.cccoooiiiiiiiiiiiiis 37-6

38

37.6 Using Alert HiStOIYcooiiiiiiiieic e 37-6

37.6.1 How to View Alert HiStOTyccccoeuiiiiiiiiiiiiiiiiciiicis 37-6
37.6.2 How to Clear Alert HiStOIycccocciiiiiiiiicicccecceccccceceeeeeeeeeeeeeeees 37-6
37.7 Launching Alerts by Invoking Web Services............coooeueioiiiiiiiiiniciiiccec 37-7
Using ICommand
38.1 Introduction to ICOMMANcccoimiiiiiiiiiiiii s 38-1
38.2 Executing ICOMMAN.........ccooiuiiiiiiiic s 38-1
38.3 Specifying the Command and Option SYyntaxccccccvvvverrvnvnrnnrrenrreeeeeereeaes 38-2
38.3.1 How to Specify the Security Credentials...........cccoooeueiiiiiiiiiiiiii e 38-2
38.3.2 How to Specify the Command............ccoouoiiiiiiiiiii 38-3
38.3.3 How to Specify Object Namescccccciieiiiiieiiiiiiceeeccceceeceeeeeee s 38-3
38.3.4 How to Specify Multiple Parameter Targetscccccoooiriiioiiciiiniiccccce 38-4
38.4 Using Command-line-only Parameters.............cocooeeioiiiiiiiiiiciiiicccec 38-5
38.5 Running ICommand ReMOtELYcccocouiuiiiiiiiiiiiiiiiiiiiccccceeece s 38-6

Part VI Using Oracle User Messaging Service

39

40
API

Oracle User Messaging Service
39.1 User Messaging Service OVEIVIEWcccccviviiiiiiiiiiiiiiiiiiniccncnessc s 39-1
39.1.1 COMPONENES.....ooviiiiiiiicieieiece s 39-2
39.1.2 ATChIECTUTE .. 39-2
Sending and Receiving Messages using the User Messaging Service Java
40.1 Overview of UMS Java APL......c.coeoiiiiieiiecerteeietetet ettt re v st sa s s essesassassessesses 40-1
40.1.1 Creating a Java EE Application Module............cccccocovviiniiniii, 40-1
40.2 Creating a UMS Client INStance...........ccooouoiiiieiiicicc e 40-2
40.2.1 Creating a MessagingE]BClient Instance Using a Programmatic or Declarative
Approach 40-2

40.2.2 API Reference for Class MessagingClientFactory...........cooceveicieieiicciciiicce 40-2
40.3 Sending @ MESSAGE......c.ccceuiuiiiuiiiiiiiiiiiii s 40-2
40.3.1 Creating @ MeSSae.........covuiuiiiiiiiiiiiiiic s 40-3
40.3.1.1 Creating a Plaintext MeSSage........ccccoouirieieiiicieieiice e 40-3
40.3.1.2 Creating a Multipart/Alternative Message (with Text/Plain and Text/HTML

o) TS URUPTRR 40-3
40.3.1.3 Creating Delivery Channel-Specific Payloads in a Single Message for

Recipients with Different Delivery TYpes........cccccceueueiriviiiniininniiirniinean, 40-3
40.3.2 API Reference for Class MessageFactoryccccevueeuiucirvviinnnnncrrrrecnereecnes 40-4
40.3.3 API Reference for Interface Messageccoceueviiiciiiiiiicieiicc e 40-4
40.3.4 API Reference for Enum DeliveryType.......cccccccciiiiiiiniiiiiiiiiciiiiccccccceenes 40-4
40.3.5 Addressing @ MESSAGEc.ccueueuiuemriiuriiieieieirieeeieieeerieeeeeese et 40-4
40.3.5.1 Types of AAdAIesses ... 40-5
40.3.5.2 Creating Address ODJects..........ccccceeiriiiiiiiiiiiiiiiiici s 40-5
40.3.5.3 Creating a Recipient with a Failover Address..........cccccccoeeiiiieciiiiiccinnes 40-5
40.3.5.4 API Reference for Class AddressFactoryc.c.ocoeuniriniciniciniccicccce 40-5

xXiii

41

XXiv

40.3.5.5 API Reference for Interface AddrIessc..oooeveiieveeecieeieeeeeeeeeeeeeeeee e 40-5

40.3.6 Retrieving Message Status.........ccccceeeieiiiiiiiiiiiic 40-6
40.3.6.1 Synchronous Retrieval of Message Statuscccccceeuereiecincncccrccceee 40-6
40.3.6.2 Asynchronous Notification of Message Statusccoooeveviiireiiiiicicee, 40-6
40.4 Receiving @ MESSAZE......coovuiuimimiiiiiiiiitiictctcicit ettt 40-6
40.4.1 Registering an Access POINt ..o 40-6
40.4.2 Synchronous ReCEIVING........cc.vieieiiiiiiiec e 40-7
40.4.3 Asynchronous RECEIVING ..ot e 40-7
40.4.4 Message FIIteringccccciiiiiiiiiiriiiiiiecceeeeee e 40-7
40.5 Using the UMS Enterprise JavaBeans Client API to Build a Client Application............ 40-7
40.5.1 Overview of Developmentcoiiiiiiiiiic s 40-8
40.5.2 Configuring the Email DIIVeT ... 40-8
40.5.3 Using JDeveloper 11g to Build the Applicationccccceevvniiiiniiiniii 40-9
40.5.3.1 Opening the Project ... 40-9
40.5.4 Deploying the Applicationc.cccceuiiiieriririiiiirrecrrrerrr s 40-11
40.5.5 Testing the Application..........cccceveviiiiiiiiiiiii 40-12
40.6 Using the UMS Enterprise JavaBeans Client API to Build a Client Echo Application 40-15
40.6.1 Overview Of DeVEIOPIMENLc.ccvvvveviririiiiiecc e 40-15
40.6.2 Configuring the Email DIiver ... 40-16
40.6.3 Using JDeveloper 11g to Build the Application ..o, 40-16
40.6.3.1 Opening the Project ..o s 40-16
40.6.4 Deploying the Application..........cccoeeviiiieiiiiiiiiiiiii 40-20
40.6.5 Testing the APPliCation..........cooiiuiieiiiiiec e 40-20
40.7 Creating a New Application Server CONNECtioN..........ccccecueueueurieuiieieurineieeerreeeeeeeeenes 40-22

Parlay X Web Services Multimedia Messaging API

41.1 Overview of Parlay X Messaging Operations...........cccccceruvereeurrererererenrereeeenieeseeeeeeereeens 41-1
41.2 Send Message INterface..........ccoovoiiiiiiiiiiiiic s 41-2
41.21 sendMessage OPeration............ccoueuiirieieiiccieic e 41-2
41.2.2 getMessageDeliveryStatus Operationc.cccccccveeeicenvnrnrnreereeressee s 41-3
41.3 Receive Message INterfaceccooourioiiiiiiiiiic 41-3
41.3.1 getReceivedMessages Operation..........cc.ooveeueieiiinieiiinicece e 41-4
41.3.2 getMessage Operation...........cccciiiiiiiiiii 41-5
41.3.3 getMessageURISs Operation..........ccoicieiiiciciciiici e 41-5
41.4 Oracle Extension to Parlay X MeSsaging............ccccceeuiuiuimiiiiiiiiimiiiiiiiceeieieceneeieienenenenes 41-6
41.4.1 ReceiveMessageManager INterfaceccccoeeueueiiieieiniiciiniciecceeeeeeeeeeeeeees 41-6
41411 startReceiveMessage Operation ... 41-6
41.41.2 stopReceiveMessage Operation............ccceeiviiiiiiiiininiiiiiniiiceecncenes 41-7
41.5 Parlay X Messaging Client API and Client Proxy Packages.........cccccccoeeucucucucrceucicncncnnee 41-7
41.6 Sample Chat Application with Parlay X APIs......c.ccccccoeiiiiiiiiiicc 41-8
41.6.1 OVEIVIEW ... ittt st st st 41-8
41.6.1.1 Provided Files ... 41-9
41.6.2 Running the Pre-Built Samplecccooiiiiii e 41-9
41.6.3 Testing the Sample.........cccccvviviiiiiiiiii s 41-12
41.6.4 Creating a New Application Server CONNECtioN.........ccccccceueueucucmcueueicieeueeneieeeeeenns 41-16

42 User Messaging Preferences

42,1 INErOAUCHON ...t s
4211 TerMINOLOZY ...t
421.2 Configuration of Notification Delivery Preferences............ccccooevniirniiiiiciiinnnne.
42.1.3 Delivery Preference Rulescccoooiiiiiiii
42.1.3.1 Data TYPES ..coueiiiiiiiiiicictc e
42.1.3.2 System TeIMSouiiiiiiee
42.1.3.3 Business TermS........couvuiiiiiiiiiic e
42.1.4 RUle ACHONS. ...ttt s
422 How to Manage Messaging Channels ..o
42.2.1 Creating a Channel ..o
42.2.2 Editing @ Chanmnelccccooiiiiiiiicceeeeeeee s
42.2.3 Deleting a Channel ...
42.2.4 Setting a Default Channel............ccooo e
42.3 Creating Contact Rules using Filters.........cccccooiirriiiinriiiircccceeeeeeeeeeeees
42.3.1 Creating Filters ... e
42.3.2 Editing @ FAlter ...

42.3.3 Deleting @ FIEETc.ciiiiiiiiiciicee e

42.4 Configuring SettiNgSs........ccoueiiiiiiiiiici e

Part VIl Sharing Functionality Across Oracle SOA Suite Components

43 Deploying SOA Composite Applications

43.1 Creating an Application Server Connectioncccoceeveviiiniiiiiniciicc
43.2 Deploying a Single SOA Composite in Oracle JDeveloperccccoooorrieiiiiccicieienne
43.2.1 How to Deploy a Single SOA Compositeccocoviiiiniiiiiniiiiiiccccccen
43.2.1.1 Optionally Creating a Project Deployment Profile ..o,
43.2.1.2 Deploying the Profile.............cooooiiiiii e,
43.2.2 What You May Need to Know About Oracle JDeveloper Deployment to a

Managed Oracle WebLogic SeIver ..o
43.2.3 What You May Need to Know About Invoking References in One-Way

SSL Environments in Oracle JDevVeloper ...
43.3 Deploying Multiple SOA Composite Applications in Oracle JDeveloper
43.3.1 How to Deploy Multiple SOA Composite Applicationscccceevvicreiiiccereienee.
43.4 Deploying and Using Shared Metadata Across SOA Composite Applications...........
43.4.1 How to Deploy Shared Metadata..........ccccouiieieiiiiiiiiiic
43.4.1.1 Create a JAR Profile and Include the Artifacts to Shareccccoeeveveeeveennennen.
43.41.2 Create a SOA Bundle that Includes the JAR Profile........cccceevecvrevninenenrenrenene.
43.41.3 Deploy the SOA Bundle ...,
43.4.2 How to Use Shared Metadata..........cccccocueuviviiiiiiiiiiniiiiiiiiiicnnncccae
43.4.2.1 Create a SOA-MDS CONNECHONcevevevereieiereiieeie s
43.4.2.2 Create @ BPEL Processcccocovviviviiiniiiiiiiiiicscs s
43.5 Deploying an Existing SOA Archive in Oracle JDeveloper...........ccccccovvnnninininncncnae.
43.5.1 How to Deploy an Existing SOA Archive from Oracle JDeveloper........................
43.6 Managing SOA Composite Applications with Scripts.........ccoovvviiiiins
43.6.1 How to Manage SOA Composite Applications with the WLST Utility

XXV

44

45

XXVi

43.6.2 How to Manage SOA Composite Applications with ant Scripts.........cccccoevnninn 43-22

43.6.2.1 Testing a SOA Composite ApPLicationcccoeeveiemcieiiiiiicicieccc e, 43-23
43.6.2.2 Compiling a SOA Composite Applicationcccceveveveverririncnceinieiccccccenes 43-24
43.6.2.3 Packaging a SOA Composite Application into a Composite SAR file 43-25
43.6.2.4 Deploying SOA Composite Application..........ccoovrueieiiiceiiiiiiice, 43-25
43.6.2.5 Undeploying a SOA Composite Applicationcocccevieiiincciinccccicccnne. 43-26
43.6.2.6 Managing a SOA Composite Applicationcccccovviiviiiiiiiiiiiiccnes 43-27
43.6.2.7 Upgrading a SOA Composite Application ..., 43-29
43.6.2.8 How to Manage SOA Composite Applications with ant Scripts 43-29
43.7 Moving SOA Composite Applications to and from Development, Test, and

Production ENvironments...........cccccocciiiiniiiiininiiiicns 43-30
43.7.1 Introduction to Configuration Plans...........c.cccccccceeeieiiinieierreeereeeeeeeeeeeeeaes 43-30
43.7.2 Introduction to a Configuration Plan File...........c.cccooiiii 43-31
43.7.3 Introduction to Use Cases for a Configuration Plan...........c.ccccooiiinn, 43-32
43.7.4 How to Create a Configuration Plan in Oracle JDeveloper...........cccooieciiiccnnes 43-33
43.7.5 How to Create a Configuration Plan with the WLST Utilitycccooooeiiiiinnnn. 43-36

Using Business Events and the Event Delivery Network

441 Introduction to Business EVENtSs ... 44-1
4411 Local and Remote Events Boundariesc.cccccovviiiiiiiiniininnn 44-3
442 Creating Business Events in Oracle JDevelopercccoccviivvviieiennnnerernceeeeens 44-3
4421 How to Create a Business EVent.........c.ccoviiiiiiiiiiccs 44-4
442.2 How to Subscribe to a Business Event...........cccccocovviinniiiini 44-6
44.2.3 What Happens When You Create and Subscribe to a Business Event...................... 44-8
44.2.4 What You May Need to Know About Subscribing to a Business Event 44-8
44.2.5 How to Publish a Business Event.............cccccccceviiiiiiiiiiicc 44-9
44.2.6 What Happens When You Publish a Business Event............cccccocoeviiiiiiiiicnnne. 44-9
44.2.7 How to Integrate Oracle ADF Business Component Business Events with Oracle
MEIALOT ...t 44-10

Creating Transformations with the XSLT Mapper

45.1 Introduction to the XSLT Mapperccccceviiiiriiiniiiiiiiiniiiiinicineeessseesse s 45-1
45.1.1 Overview of XSLT Creationcccceviiiieiiiiiiiiciiiicc s 45-3
45.1.2 Guidelines for Using the XSLT Mappercccccoovviiieiiiiiiiinicicicineeeeeeeeeee s 45-6
45.2 Creating an XSL Map File ... 45-6
45.2.1 How to Create an XSL Map File in Oracle BPEL Process Managerc.cccc..... 45-6
45.2.2 How to Create an XSL Map File from Imported Source and Target Schema Files

in Oracle BPEL Process Managercccovviirniniiiiinininniniisssscssseseccccssenens 45-8
45.2.3 How to Create an XSL Map File in Oracle Mediator............ccccocevvvrnnnnnrnncnes 45-10
45.2.4 What You May Need to Know About Creating an XSL Map File...........c.c............. 45-13
45.2.5 What Happens at Runtime If You Pass a Payload Through Oracle Mediator

Without Creating an XSL Map File ... 45-14
45.3 Designing Transformation Maps with the XSLT Mappercccccoviiiiiiiiiinninnnes 45-14
45.3.1 How to Add Additional SOUICES........c.ceevueuiuiiririiieiiieiecceece e 45-14
45.3.2 How to Perform a Simple Copy by Linking Nodes.........cccccccevurvvnnnnnnnrnncnnes 45-16
45.3.3 How to Set Constant Values...........ccccovviiiiiiiiiiiiiiccenes 45-16
45.3.4 How t0 Add FUNCHONS.c.ciiiiiiiiiiciciicccteeeeeeec e 45-17

46

45.3.4.1 Editing Function Parameterscccccovviniiiniiiininiiccccccines 45-18

45.3.4.2 Chaining FUNCHONSc.oviiieiiiiciiece 45-19
45.3.4.3 Using Named Templates..........cccoociiiiiiiiciiicceeeeeeeneeneene s 45-19
45.3.4.4 Importing User-Defined FUNCHONS.........cccooviiieiiiii 45-20
45.3.5 How to Edit XPath EXPressions...........cccoeueiiicieieiicicieiiccie e 45-22
45.3.6 How to Add XSLT CONSEIUCEScuvvviririiiiiiiiiieiiiicicic s 45-24
45.3.6.1 Using Conditional Processing with xslif.........ccoooioiiii, 45-25
45.3.6.2 Using Conditional Processing with xsl:chooSecccocoiiiiiiiiiiiiic, 45-26
45.3.6.3 Creating Loops with xsl:for-each ... 45-27
45.3.6.4 Cloning XSL:fOr- ach ..o, 45-28
45.3.6.5 Applying xsl:sort to xsl:for-each ..o, 45-28
45.3.6.6 Copying Nodes with XSLCOPY-Of......cccouviiiiiiiriiiiircre e 45-29
45.3.6.7 Including External Templates with xsl:include ..o, 45-30
45.3.7 How to Automatically Map Nodes.........cccooeriieiiiiciiiiic 45-30
45.3.7 1 Using Auto Mapping with Confirmationceeeeeeiiiiiiiiiicncccccenen 45-32
45.3.8 What You May Need to Know About Automatic Mappingcccccoueerueininnnnen. 45-33
45.3.9 How to View Unmapped Target Nodes ..o, 45-34
45.3.10 How to Generate DictiOnaries...........cocoeveveveiiiiiiininiiiniieceee 45-35
45.3.11 How to Create Map Parameters and Variables...........ccccocovvviiiiinnnnnnnn, 45-36
45.3.111 Creating a Map Parameter ... 45-36
45.3.11.2 Creating a Map Variable..........ccccocoiiiii e 45-37
45.3.12 How to Search Source and Target Nodesc.ccouieueiiiicieiiiicc 45-38
45.3.13 How to Control the Generation of Unmapped Target Elements.............ccccco...... 45-39
45.3.14 How to Ignore Elements in the XSLT Document............ccccoeerrvernrrnncncnincrenecnnns 45-39
45.3.15 How to Replace a Schema in the XSLT Mapper.........cccoovuiiviiiiiiiiciiicenanes 45-39
45.3.16 How to Substitute Elements and Types in the Source and Target Trees................ 45-40
45.4 TeStNG the MaP....cooiiierr s 45-43
45.4.1 How to Test the Transformation Mapping LOgicccccocvviniirniiiciiiciiccie, 45-44
45.4.2 How to Generate RepOrtsccooveieieiiiiciiiii 45-46
45.4.21 Correcting Memory Errors When Generating Reports..........ccccocovvevvnnnnnae. 45-47
45.4.3 How to Customize Sample XML Generationc.cccooeeeviiiniiiiiiinieencnienenenes 45-48
45.5 Demonstrating the New Features of the XSLT Mapper.........ccccooeeevivirnininiicenencnen. 45-48
4551 Opening the APPLiCationccccccurueiiiiiiieiiiciicrreerrrrr s 45-49
45.5.2 Creating a New XSLT Map in the BPEL Processcccocoveieiiimieieiniicicicicce, 45-49
45.5.3 Using Type Substitution to Map the Purchase Order Itemsccccevvvivirininenne. 45-50
45.5.4 Referencing Additional Source Elements...........cccccccucuiiiiiiiiiininnncereeereeeeeenes 45-51
45.5.5 Using Element Substitution to Map the Shipping Addresscccccovvvininininnn 45-53
45.5.6 Mapping the Remaining Fieldscccccooviiiiiniiniiiinncncees 45-54
4557 TeStING the MAPcovoiiii e 45-55
Working with Domain Value Maps

46.1 Introduction to Domain Value Maps ... 46-1
46.1.1 Domain Value Map Features ... 46-2
46.1.1.1 Qualifier SUPPOTt.....cccoiiiiiiiiiccc s 46-2
46.1.1.2 Qualifier Order SUPPOTTc.cccvuciiiiiiciiicccccceeee s 46-3
46.1.1.3 One-to-Many Mapping SUPPOTITcccuiiiiiiiiiiiiiiicicice s 46-4
46.2 Creating Domain Value Maps........ccccccociiiiiiiiiiiiiiiiiccce s 46-4

XXVii

47

XXViii

46.2.1 How to Create Domain Value Maps........c.cccoceuviiieiiiiiininiiiicccs 46-4

46.2.2 What Happens When You Create a Domain Value Mapccccooevviiiiiiiinicinne. 46-5
46.3 Editing a Domain Value Map........cccccceeiiiiiiiiicceceeceeeeeeecee e 46-7
46.3.1 Adding Columns to a Domain Value Map ... 46-7
46.3.2 Adding Rows to a Domain Value Map ..o 46-8
46.4 Using Domain Value Map FUNCHONS.......c.ccccciiiiiiiiiiiiiccccccceeeeceeeeeeeeees 46-8
46.4.1 Understanding Domain Value Map Functions.............ccooceviiiieiiccice 46-8
46.4.1.1 dvm:lookupValue ... 46-8
46.4.1.2 Avm:looKUPValUelMc.ccoiiiiiiiiiiiicccc s 46-9
46.4.2 Using Domain Value Map Functions in Transformationccccoeeeieiiiinicinne. 46-9
46.4.3 Using Domain Value Map Functions in XPath Expressions...........ccccevviinininnnes 46-11
46.4.4 What Happens at RUNEME ..o 46-12
46.5 Creating a Domain Value Map Use Case for Hierarchical Lookupccccceovvvnvninnnn. 46-12
46.5.1 Creating the HierarchicalValue Use Case.........ccccooooriiininiicieiiiiiiiccce, 46-13
46.5.1.1 Task 1: Creating an Oracle JDeveloper Application and Project...................... 46-13
46.5.1.2 Task 2: Creating a Domain Value Mapccccoooiiiiiiiiiiiiiccce, 46-14
46.5.1.3 Task 3: Creating a File Adapter Servicecocooooioiioiiciiiicee, 46-15
46.5.1.4 Task 4: Creating ProcessOrders Mediator Componentc.cccoeevevrerrccnce. 46-16
46.5.1.5 Task 5: Creating a File Adapter Reference............ccooovvriniiiicncnicn, 46-17
46.5.1.6 Task 6: Specifying Routing Rules...........ccccooiiiiiiiiiiiiice, 46-18
46.5.1.7 Task 7: Configuring Oracle Application Server Connection...........ccccecevevuncee. 46-21
46.5.1.8 Task 8: Deploying the Composite Applicationcccccevvvvviviiinninnnnne 46-21
46.5.2 Running and Monitoring the HierarchicalValue Application...........ccccooerueiennne. 46-21
46.6 Creating a Domain Value Map Use Case For Multiple Values...........cccccooviiiiinnnne. 46-22
46.6.1 Creating the Multivalue Use Case..........ccccoeuviirieiiiicicecce 46-22
46.6.1.1 Task 1: Creating an Oracle JDeveloper Application and Project...................... 46-22
46.6.1.2 Task 2: Creating a Domain Value Mapccccocovvvrnnnnnnnniicccccccnes 46-23
46.6.1.3 Task 3: Creating a File Adapter Servicecoocovieiiiicciiicccce, 46-24
46.6.1.4 Task 4: Creating LookupMultiplevaluesMediator Mediator Component...... 46-25
46.6.1.5 Task 5: Creating a File Adapter Reference..........ccccccevuveviivivninnnnnnnrrcecne 46-26
46.6.1.6 Task 6: Specifying Routing Rules...........ccooevieiiiniiniiciccccc 46-27
46.6.1.7 Task 7: Configuring Oracle Application Server Connection...........c.ccecevevuacee 46-30
46.6.1.8 Task 8: Deploying the Composite Applicationcccccevevevvvverernnennrcnceccnes 46-30
46.6.2 Running and Monitoring the Multivalue Application............cccooooeveiiiiiiiiiinnnnan, 46-30

Working with Cross References

471 Introduction to Cross References...........cccoviiiiiiiiniiiiiiiniiiiiiiiccs 47-1
47.2 Creating and Modifying Cross Reference Tables............cccccccovvvvninnnnnnnnniinnn 47-3
47.21 Creating a Cross Reference Table...........ccccccoiiiiiiiiiiiiiiecceeeceeeeeceenenens 47-4
47211 What Happens When You Create a Cross Reference...........ccccoeeeiniiiiinnncnnnn 47-5
47.2.2 Adding an End System to a Cross Reference Table............ccccccoceiiiniiiiininiinnnne 47-6
47.3 Populating Cross Reference Tablesccccccciiiiiiiiiiiiiiiccccceeeeeceeeeeeeeees 47-6
47.3.1 About xref:populateXRefRow FUNCHON.......cccovvviiiiiiiiiiiiiiiic 47-7
47.3.2 About xref:populateXRefROW1IM FUnctionccccovvvieivivininininiiiiicccne 47-9
47.3.3 How to Populate a Column of a Cross Reference Table..........ccccccevuvirvvnnnnncnne. 47-10
47.4 Looking Up Cross Reference Tablescccoooeeiiiiiiriiiiiiiiic 47-12
47.4.1 About xref:lookupXRef FUNCHONc.coovviviiiiiiiiiiiiiccccces 47-12

48

47.4.2 About xref:lookupXRef1IM FUNCHONc.covvviiiiiiiiiiiiice 47-13

47.4.3 About xref:lookupPopulatedColumns FUnction ... 47-14
47.4.4 How to Look Up a Cross Reference Table for a Value.........cccccoevuvevievrvnnnncncnne. 47-14
47.5 Deleting a Cross Reference Table Value...........cccoooiiiiiiie 47-16
47.5.1 How to Delete a Cross Reference Table Value............cccccovvivinininnnnnnnnnnn, 47-17
47.6 Creating and Running Cross Reference Use Casecccccoecucurvucuiinvniicvnsnnnrereenes 47-18
47.6.1 Step-By-Step Instructions for Creating the Use Casec.cccoovreieiiiiciciciicnne, 47-19
47.6.1.1 Task 1: Configuring Oracle Database and Database Adapter 47-19
47.6.1.2 Task 2: Creating an Oracle JDeveloper Application and Project...................... 47-20
47.6.1.3 Task 3: Creating a Cross Referenceooooouevoiiiiiiiiiiiiiicce, 47-21
47.6.1.4 Task 4: Creating a Database Adapter Service.........cccoooooiiiiiiiiiciiiiicicee, 47-22
47.6.1.5 Task 5: Creating EBS and SBL External References..........cccccoovevniieininincnccaceee 47-24
47.6.1.6 Task 6: Creating Logger External Reference..........cccccooiiiiiiiiciiiiicicene, 47-26
47.6.1.7 Task 7: Creating Mediator COMpPONeNtscocreueieiicieieiiiccieecce e 47-28
47.6.1.8 Task 8: Specifying Routing Rules for Mediator Componentccccceuevueeeee. 47-28
47.6.1.9 Task 9: Specifying Routing Rules for Common Mediator............cccooeuerenneen. 47-38
47.6.1.10 Task 10: Configuring Oracle Application Server Connection.............ccccccoeeuce. 47-49
47.6.1.11 Task 11: Deploying the Composite Applicationcccccevevvvverrrvcncrnerencenes 47-49
47.6.2 Running and Monitoring the XrefCustApp Application..........cccecevviiviiirininniinnen. 47-49
47.7 Creating and Running Cross Reference for IM Functionsc.cccooevviviiiiiiincnnes 47-50
47.7.1 Step-By-Step Instructions for Creating the Use Casecccccovuveveveverernvcncnrencncncnes 47-50
47.7.1.1 Task 1: Configuring Oracle Database and Database Adapterccceceue 47-51
47.71.2 Task 2: Creating an Oracle JDeveloper Application and Project...................... 47-52
47.71.3 Task 3: Creating a Cross Reference............ccooevvvvvnnnninnnnnnnrcccecees 47-52
47.71.4 Task 4: Creating a Database Adapter Service.........ccccoooiiiiiiiiiciiiiicicene, 47-53
47.7.1.5 Task 5: Creating EBS External Referenceooooeeiiiiiini, 47-55
47.7.1.6 Task 6: Creating Logger External Reference...........ccccocevuvuvvrinnnnnnnnncncnes 47-57
47.71.7 Task 7: Creating Mediator COmMpONentscoceueueieiinieiiiinceecce e 47-58
47.7.1.8 Task 8: Specifying Routing Rules for Mediator Componentccccccoeece. 47-59
47.7.1.9 Task 9: Specifying Routing Rules for Common Mediator............ccccocoeviccnnes 47-63
47.7.1.10 Task 10: Configuring Oracle Application Server Connection............cccevveneees 47-68
47.71.11 Task 11: Deploying the Composite Applicationcccccevuvvvivirinninininencnnes 47-68
Using Two-Layer Business Process Management (BPM)

48.1 Introduction to Two-Layer Business Process Managementc.ccccocoveieinenniniecnnnnn. 48-1
48.2 Phase ACHVILIEScooiiiiiiiiiiiic s 48-3
48.2.1 Creating a Phase Activity ..o 48-3
48.2.2 How to Create a Phase ACtiVITYccccooiiiiiiiiiiiiiccccceees 48-3
48.2.3 What Happens When You Create a Phase Activity.........ccococeiiccccccccncccnnnnes 48-4
48.2.4 What Happens at Runtime When You Create a Phase Activity........ccoocevvinnnnnnn 48-5
48.2.5 What You May Need to Know About Creating a Phase Activityc.ccccocoeeueennen. 48-5
48.3 The Dynamic Routing Decision Table ... 48-5
48.3.1 How to Create the Routing Decision Tablecccoouoviiiiiiiiie 48-6
48.3.2 What Happens When You Create the Routing Decision Tableccccccceueunnnne 48-7
48.4 Use Case: Two-Layer BPM ... 48-7
48.4.1 Designing the SOA COmMPOSItec.cviiueiiiiiiieicic e 48-7
48.4.2 Creating a Phase ACHVItY ... 48-9

XXiX

49

50

51

XXX

48.4.3 Creating and Editing the Dynamic Routing Decision Table..............cccccceevninininns 48-10

48.4.4 Adding Assign Activities to the BPEL Process Model..........cccoooiriiniiriinnne. 48-11
48.4.5 Deploying the Sample with JDevVeloperccccocvvvvvirrvninrrrrrreeereeeeaes 48-12
48.4.51 Creating an Application Deployment Profile..........ccccooiiiiiiiiiinn 48-12
48.4.5.2 Creating an Application Server Connection..........ccccoeuevieieiiioiccieiiicccicee, 48-13
48.45.3 Deploying the AppLication.........ccccoicciiiiiiiiiecccccceeeeeeeeeeeeeeeeenes 48-13

Testing SOA Composite Applications

49.1 Introduction to the Composite Test Frameworkcccccocoeieiiiiiicicciccccccenen 49-1
49.1.1 Test Cases OVEIVIEW ...t s 49-1
49.1.2 Test SUitesS OVEIVIEWccciiiiiiiiiiiiiiiiic e 49-1
49.1.3 Emulations OVeIrVIEW ..o s 49-2
49.1.4 ASSEItioNS OVEIVIEWcvviiiiiiiiiiiieiiicieiee s 49-2
49.2 Introduction to the Components of a Test Suite.........ccoooueviriiiiiiii 49-2
49.2.1 Process INItiation........ccciuiuiuieiiiciccccce s 49-3
49.2.2 EMUIAtIONS ..oviiiiiiii s 49-3
49.2.3 ASSETHIONS ..ottt 49-4
49.2.4 MESSAZE FILES ... s 49-5
49.3 Creating Test Suites and Test Cases..........cccocueviiririeiiiiicc 49-5
49.3.1 How to Create Test Suites and Test Cases..........ccccevviiiiviiiiininniiiii 49-5
49.4 Creating the Contents of Test Cases.........cccocwuiiiiiieiiiiciiieeeeeeee e 49-8
49.41 How to Initiate Inbound MeSSagescouoeurueiiiciciciiiieie e 49-8
49.4.2 How to Emulate Outbound Messages...........ccccueuircieiiiicicieiiccee 49-10
49.43 How to Emulate Callback MeSSages.........ccccccucueueueieiiiiicicininieieirieerceceeeseeeeeeeseseenes 49-13
49.4.4 How to Emulate Fault Messagescccceuiirieiiiinicieiicc 49-15
49.4.5 How to Create ASSertionsS..........cccvvveieieiiiiiiiicicececc e 49-16
49.4.51 Creating Assertions on a Part Section, Nonleaf Element, or Entire XML

DOCUMENL ..ottt e 49-17
49.45.2 Creating Assertions on a Leaf Elementccoooiii, 49-20
49.4.6 What You May Need to Know About Assertions...........cccccceeeceuecrceeueinucucennnenns 49-22
49.5 Deploying and Running a Test SUitecccoeeiiiiiiiiiiiiiic e 49-23

Managing Policies

50.1 Introduction t0 POLICIESooviuimimiiiiiiiiiiiiiiiccc s 50-1
50.2 Attaching Policies to Binding Components and Service Components.............ccccceevuee. 50-2
50.2.1 How to Attach Policies to Binding Components and Service Components............ 50-2

Defining Composite Sensors

51.1 Introduction to COMPOSItE SENSOTScovvvvvriririririiriirreer s 51-1
51.1.1 Restrictions on Use of COMPOSite SENSOLS.........cvuvviviviviiiiiiiieiiieiciceieeees 51-1
51.2 Adding COmMpPOSIte SENSOTScciuimimimiiiiiiiiiiiiiciicci s 51-2
51.2.1 How to Add COmpoSite SENSOTSc.ccumemiuimimimiieieiemiieieieieeieieieeieieneieeeiee e nenenens 51-2
51.2.2 Adding a Variable...........coii s 51-5
51.2.3 Adding an EXPression.........cccccciiiiiiiiiiiiiiiiiiieci s 51-5
51.2.4 AddIng @ PrOPertyc.ccociiiiiiicccceccceeeee e 51-6
51.3 Monitoring Composite Sensor Data During Runtime............ccccoooiriniiinn 51-6

52 Using Service Data Objects and Enterprise JavaBeans

52.1 Introduction to SDO and Enterprise JavaBeans Bindingccccocooiriininnna 52-1
52.2 Designing an Enterprise JavaBeans Application...........cococeevernerincnininincncncciicccccenenes 52-2
52.2.1 How to Create SDO Objects Using the SDO Compiler...........ccccvreniiiiininininnennn, 52-2
52.2.2 How to Create a Session Bean and Import the SDO Objects...........coceruiriiirneinnnne. 52-3
52.2.3 How to Create a Profile and an EAR File........cccccccooviiniiiniiiccc 52-3
52.2.4 How to Define the SDO Types with an Enterprise JavaBeans Bean 52-3
52.2.5 How to Use Web Service ANNOtationsccceiiiiiiiiiiiiiiiiiiiiiicieceeens 52-5
52.2.6 How to Deploy the Enterprise JavaBeans EAR File ... 52-6
52.3 Creating an Enterprise JavaBeans Adapter Service in Oracle JDeveloper 52-6
52.3.1 Invoking SDO-based Enterprise JavaBeans from SOA Composite Applications... 52-6
52.3.1.1 How to Invoke SDO-based Enterprise JavaBeans from SOA Composite
APPLCALIONS .ottt s 52-6
52.3.2 Invoking SOA Composite Applications from Enterprise JavaBeans using SDO
Parametersooeieieieiiieieeee s 52-8
52.3.2.1 How to Invoke SOA Composite Applications from Enterprise JavaBeans
using SDO Parameters..........cooeeeieiieiiiiiiiic 52-8
52.4 Designing an Enterprise JavaBeans Client to Invoke Oracle SOA Suitec.c....... 52-9
52.5 Specifying Enterprise JavaBeans Roles............cccoooiiiiiiiiiiiiie 52-10
52.6 Configuring JNDI ACCESS.......coeiiiirurieiiiicieieicsie ettt 52-10
52.6.1 How to Create a Foreign JNDI..........ccccccviiiiiiniiiicces 52-10
52.6.2 How to Create a Custom CSF Map for JNDI LoOKUPccoviviimiiviiiiiiiiiiiine, 52-11

53 Processing Large Documents

53.1 Introduction to Processing Large DoCUmMEeNtscccceurveriiiiiiieiniiiiniieiciecccees 53-1
53.2 Best Practices for Handling Large Documents............cccccovvvivininniiinninnnii 53-1
53.2.1 Setting Audit Levels from Oracle Enterprise Manager for Large Payload

PIrOCESSING ..vvvviiitiiiiieiiettt s 53-2
53.2.2 Using the Assign Activity in BPEL/Mediator.........cccoovoiiiieiiiiiiecccce 53-2
53.2.3 Using XSLT Transformations for Repeating Structures...........cccccceeueeevrvnvnnenenes 53-2
53.2.4 Using Adapter Support for Streaming Large Payloads..........cccoooevevviiiiiiiiincne. 53-2
53.2.5 Using Correct Settings for Large Payload Scenarios...........ccccevvvvvininnnniienenennnes 53-3
53.2.6 Processing Large Documents in Oracle B2B...........cccccoiviiinvninnnicinrcene 53-3
53.2.6.1 MDSInstance Cache Size ... 53-3
53.2.6.2 Protocol Message SizZe.........ccccucuiiiiiiiiiiiiiiiiiiiiiicci s 53-3
53.2.6.3 NUmMDbeT Of TRIEAdScvveveiiiiiciicicccc s 53-4
53.2.6.4 StuckThread Max Time.........cccovvieieiiiiiiiiiiiii s 53-4
53.2.6.5 TablESPACE......c.cviiiiiiiiici s 53-4
53.2.7 Setting the Default JTA Timeout in for Large Documentsc.ccccccceeericcnnnnne. 53-5
53.2.8 Using Large Number of Activities in BPEL Processes (Without FlowN)................. 53-5
53.2.9 Using Large Number of Activities in BPEL Processes (With FlowN) 53-5
53.2.10 Using a Flow With Multiple SEQUENCEScccciiimiiiiiiiiiiiicceccceeeeeeeeaes 53-5
53.2.11 Using a Flow with One Sequence...........c.ccceeeeiiiiiiiniiiiiniiicccceecs 53-5
53.2.12 Using Flow with NO Sequence...........ccccceuiiiiiiiiiiiiiiiiiciiiccres 53-6
53.2.13 Large Numbers of Mediators in COMPOSIESccouvuvvreririreriririrrrricrrreeeeeeenes 53-6
53.2.14 Using XSLT Transformations on Large Payloads (For BPEL and Mediator) 53-6

XXXi

53.3 Limitations on Concurrent Processing of Large Documents.............cccccoevivviiviiniiniinennnn 53-6

53.3.1 Opaque Schema for Processing Large Payloadsccccccoevviiiinniiinniicnn 53-6
53.3.2 Streaming MTOM Attachmentscccccccueuiieiriiiiiiereeeeeeeeeeeeeeeeee s 53-6
53.3.3 Importing Large Data Sets in Oracle B2B.........c.cccccoiiiiiiiiiiicce 53-6

Part IX Appendices

A

XXXii

BPEL Process Activities and Services

A Introduction to Activities and COmMPONENtscccoeeveveiieiiiiiiiii A-1
A2 Introduction to BPEL ACHVITIEScccucuiiiiiiiiiiiciciccccce e A-2
A2A1 Tabs Common to Many ActiVities.........cccoviiiiiniiiiiniiies A-2
A22 ASSIZN ACHVIEY .ottt A-3
A23 Bind Entity ACHVItYcoooiiiiiiiiicccc s A-4
A24 Compensate ACtiVIty ... A-5
A25 Create BNtyoovo s A-6
A26 Email ACVIEY ..oucviiiceei s A-6
A27 EMPty ACHVILY oo A-7
A28 FIOW ACHVILY oottt A-8
A29 FIOWN ACHVIEY c..vviiiiiiiiicii s A-9
A.2.10 IM ACHVIEY (oot s A-10
A2.11 INVOKE ACHVILY oottt e A-11
A212 Java Embedding ACtiVIty.....c.cooooiiiiiiiiiic e, A-12
A213 Phase ACIVIEY ...c.cociuiiiiiiciccccccce et A-12
A2.14 PicK ACHVIEY v s A-13
A2.15 ReCeiVe ACHVILY ceoovveiieiiiicecc s A-14
A2.16 Receive Signal ACHVILYooociiiiiiiiiccicccccecee e A-15
A2.17 Remove Entity ACVIEY....cocoooiiiiiiiiiiiii A-16
A2.18 ReEPLY ACHVIEY ..oviiiiiiiiiiiiciie s A-16
A2.19 5COPE ACHIVILY ...ocviiiiiiiiicc s A-17
A.2.20 Sequence ACHVItY ..o e A-18
A2.21 SIgNAL ACHVITY c..eviiiiiiiiiicc s A-19
A2.22 SMS ACHVILY vovevvriiiicicic s A-19
A.2.23 SWILCh ACHVIEY (oo A-20
A2.24 Terminate ACtiVIty ..o A-21
A225 TRIOW ACHVITY ..t A-21
A.2.26 Transform ACHVILYcoiii e A-22
A2.27 User NOtHICATION......cueuiiirieieicirieecerre et A-23
A.2.28 Vi€ ACHIVILY ..o A-24
A.2.29 Wait ACHVILY oo s A-24
A.2.30 WHhIle ACHVITY c.ooieieiiiiii s A-25
A3 Introduction to BPEL SEIVICESccccovviiuiiiiiiiiiiciiiicic s A-26
A.3.1 AQ AdAPLET ... A-27
A3.2 Oracle B2B.....oo ittt A-27
A3.3 Oracle BAM Adapter.......ccciiiiiiiccceeeeee e A-27
A3.4 Database Adapter ... A-27
A35 File AdQpPter......ccoiiiiiiiiiiiiiiiiicicc s A-27
A3.6 FTP Ad@PLET ..ot A-27

A3.7 JMS AdAPLer ..o A-27

A.3.8 MQ AdAPLET ..o e A-28
A3.9 Oracle APPLICAtIONSc.c.cucuiuiuiieiiicieicicicicicieee et eees A-28
A.3.10 Partner Link (Web Service/Adapter) ..o A-28
A.3.11 Socket AdaPter ... s A-29
A4 Publishing and Browsing the Oracle Service Registrycccccoeeueeciiieccccciccennnes A-29
A4 How to Publish a BUSINess Serviceccooveviiiiiiiiiiiiiiniiiiciciciccceceeceees A-29
A42 How to Add a Binding Templatecccoooiiiiiiiiiiiiiccec A-30
A4.3 How to Create a Connection to the Registry ... A-30
A4.4 How to Configure a SOA project to Invoke a Service from the Registry A-30
A.45 How To Configure the Inquiry URL for Runtime ... A-31
A5 Validating When Loading a Process Diagram............cccccocccciiiiciiiiinccieeeieeeeeees A-32

B XPath Extension Functions

B.1 SOA XPath EXtension FUNCHONS.ccccueiriiiinierieieieieteeeeeeieesre st essesteseessessesaesassessessenss B-1
B.1.1 Database FUNCHONS.........ccoeiieierieteceeiese ettt sae e sesaesbesssesseessessessnenseenes B-1
B.1.1.1 LooKUP-table.......c.ccciiiiiiiiiiiiiii B-1
B.1.1.2 QUETY-Aatabase........c.ceueuiiiiiiiiiiiccc s B-2
B.1.1.3 SeqUENCE-NEXt-Val ...coiviiiiiiiiiiiiiiiii s B-2
B.1.2 Date FUNCHONS.ueieiieiiecieeitece ettt ettt bee s te e e e sst e e aeessseesbeessbassseesssassseenseens B-3
B.1.2.1 add-dayTimeDuration-to-dateTimecccccoovrriiirinnnnrirreceeeeeeeeaes B-3
B.1.2.2 CUITENE-AALE ..ottt ettt et e e s e se e st e sseesaesseessesseessassanssansenns B-3
B.1.2.3 CUITENE-AAtETIIMNE ..cevievieieiece ettt e a e saeeae e e b e s baesaesaeens B-4
B.1.2.4 CUITEINEEIINIC ..ottt ettt st et e e e et et esse e st e sseeseesaeensesneensesseensensnens B-4
B.1.25 day-from-dateTimeccooeuiiieiii B-4
B.1.2.6 FOrmMAat-dateTimmMEcceevieieiececeeeece ettt st a e sreebe e b e e baesaesanens B-5
B.1.2.7 hours-from-dateTime.......c.cceiririiiirieieie ettt ese s seesenses B-5
B.1.2.8 IMPLCIt-HMEZONE.......cviviiciiiiiicc s B-5
B.1.2.9 MiNutes-from-dateTime.cc.coveiiiieiiiceeceeeeee e eens B-6
B.1.2.10 MONTh-fTOM-AAtETIIME ...c.veveeeieeieiieieie ettt se e re s ereas B-6
B.1.2.11 $ecoNdS-from-dateTimeccoceeiiiieriieieeeet et ere b sbe e B-6
B.1.2.12 subtract-dayTimeDuration-from-dateTime..........cccccccoeiiiiiiiiiiiiiiiine, B-6
B.1.2.13 timezone-from-dateTime.ccceviririiriiriie et ere s B-7
B.1.2.14 year-from-dateTimeccooooviiiiiiiii s B-7
B.1.3 Mathematical FUNCHONS.coiiiiiiiiiciicecteeeeeetet ettt ettt et ve v ne e B-7
B.1.3.1 ADS ittt ettt ettt sttt e b e s b e b e besbesbesteneesteseeseeseesensentens B-8
B.14 SING FUNCHONS ..ottt B-8
B.1.4.1 COMMPATE......vvieiriitisit et cs ettt sttt s s s st eae st s s e b st s s b b n s as s enenis B-8
B.1.4.2 COMPATE-IGNOTE-CASEcuvuvvrininiiiniiiite et B-9
B.1.4.3 create-delimited-String..........ccoovveiiiiiiiii B-9
B.1.4.4 ENAS-WITIL 1.ttt et b et ens B-9
B.1.4.5 £OrMAt-SEIINE w..cvviiiciicicccc s B-10
B.1.4.6 get-content-as-String ... B-10
B.1.4.7 get-content-from-file-functioncccccoeviiiiiiiii B-10
B.1.4.8 get-localized-Stringcccociiiiiiiiiicc s B-11
B.1.4.9 INAeX-Within-StriNg.......c.coiieii B-11
B.1.4.10 last-index-Within-String ... B-12

XXXxiii

XXXiV

B.1.4.11 LEft-ETIIN oo B-12
B.1.4.12 LOWET-CASE ...ttt B-13
B.1.4.13 MNALCRES. ... B-13
B.1.4.14 PG B-13
B.1.4.15 UPPOI=CASE.....vvrttete ittt ettt ettt bbbt bbbttt bbb B-14
B.2 BPEL XPath Extension FUNCHONScccovviiiiiiiiiiiiiicc B-14
B.2.1 AAAQUOLES ... ettt et ae st et et e e e e e s e seesbesseessesseessesseessesseensenseans B-14
B.2.2 APPENATOLISt ..o s B-14
B.2.3 COPYLIS ot B-15
B.2.4 COUNEINOAES ...t s B-16
B.2.5 QOC s B-16
B.2.6 doStreamingTranslatecccocceiiiiiiiicceeeee s B-16
B.2.7 doTranslateFromNatiVe.........cccoveviiiiiiiiiiicii s B-17
B.2.8 doTranslateTONGALIVE........cccccoeuiiiiiiiiiiiiii s B-17
B.2.9 AOXSLTTANSTOIM......cuiiiiiiiiic s B-18
B.2.10 doXSLTransformEOrDOC. ... B-18
B.2.11 fOormatDAtecciviiiiiiiii s B-18
B.2.12 geNerateGUID ..o B-19
B.2.13 GetAPPlicatiONNAIMEcvoviiiiiii s B-19
B.2.14 getAttachmentContent.........c..o.ooii B-19
B.2.15 getComponeNntNAMEcciiiiii s B-20
B.2.16 getComponentInstancelD...........coooiiiii B-20
B.2.17 getCompoSsitelNAMEe.......coviiiiiiii e B-20
B.2.18 getCompositeInstancelD ... B-20
B.2.19 getComPOSItEURLcoiiiei e B-21
B.2.20 getConteNtASSIIINGcvoviiiiiiiii B-21
B.2.21 getConversationld ... B-21
B.2.22 GEECTEALOT ..o e B-21
B.2.23 getCurrentDate. B-22
B.2.24 getCurrentDateTime ... B-22
B.2.25 etCUITeNtTImMe. ... e B-22
B.2.26 etDOMAINId ... B-22
B.2.27 GEtECID ..o s B-23
B.2.28 GetEIOMENt ..o e B-23
B.2.29 GEtFAUIEASSEIINGviiiiiiiiic s B-23
B.2.30 GELFAUIENAINE ... B-24
B.2.31 getGroupldsFromGroupALas ... B-24
B.2.32 getINStanCeldc.couiiiiiiiiiiii s B-24
B.2.33 GENOAEVAlUE. ... B-24
B.2.34 GEENOAES ... e B-25
B.2.35 getOwnerDocument ..o B-25
B.2.36 getParentComponentInstancelD ... B-25
B.2.37 GEtPTEfOIONCE ... B-25
B.2.38 GEtPTOCESSIA ... B-26
B.2.39 getProcessOWNETId ... B-26
B.2.40 GetPTrOCeSSURLocooviiiiiii s B-26
B.2.41 GetPrOCESSVErSIONcviiiiiiiiic s B-26

B.2.42 getUserAliasld.........couiviiii s B-27
B.2.43 getUserldsFromGroupALas. ..ot B-27
B.2.44 setCompositeInstanceTitle ... B-27
B.2.45 INStANCEOS ... B-28
B.2.46 IEOZOT coviiieetete s B-28
B.2.47 PparseEscaped XMLc.cccciiiiiiiiiiiccc s B-28
B.2.48 PATSEXML ..o s B-28
B.2.49 PTOCESSXQUETY ..ottt B-29
B.2.50 PTOCESSXSLT ...t B-29
B.2.51 processXSLTAttachment ... B-29
B.2.52 PTOCeSSXSQL ..o e B-30
B.2.53 readBinaryFromFile.........c.ccocoiiiiiiii s B-30
B.2.54 reAdFlE ..o B-30
B.2.55 WriteBinaryTOFile ..o B-31
B.2.56 BPEL Extension FUNCHONS.........ccoeeiiiiieieieiiciccceeee e B-31
B.2.56.1 GEtLANKSTAtUS ...t B-31
B.2.56.2 getVariableData ..o, B-32
B.2.56.3 getVariableProperty ..o B-32
B.2.57 Utility FUNCHONS ...t B-33
B.2.57.1 batchProCeSSACHIVE.cviiiiii s B-33
B.2.57.2 batchProcessCompletedcoovviviiiiivniiiniccrree e B-33
B.2.57.3 FOTMAL .o B-33
B.2.57.4 geNEMPYELem, B-34
B.2.57.5 etChildEIEmMEntc.c.couiiiiiiiiiiiic s B-34
B.2.57.6 GEEMESSAZE ..ttt B-34
B.2.57.7 max-value-among-nodeset..........coooiiiiii e, B-35
B.2.57.8 min-value-among-nodesetccccccuiiiiiiiiiiieeeee s B-35
B.2.57.9 SQUATE-TOOL c..eeevietctiiiieteteee ettt ettt B-36
B.2.57.10 translateFromNative ... B-36
B.2.57.11 translateTONGALIVEc.cvoviiviiii e, B-36
B.2.57.12 translateFromNativeAttachmentcccocoeviiiiiiiii B-36
B.2.57.13 translateToNative Attachmentcooceieiviieiinniciiccreecee e B-37
B.3 Mediator XPath Extension FUNCHONS..........ccocoviviiiiiiniiii B-37
B.3.1 getComponentInstancelD...........coooviiiiiii e B-37
B.3.2 getComponentNAMEcouiiiiiii s B-37
B.3.3 getCompositeINstancelD ... B-38
B.3.4 getComPOSIteNAME.........oiiieiic e B-38
B.3.5 GEtHEAET ... B-38
B.3.6 GEtECID ..ot B-39
B.3.7 getParentComponentInstancelD ... B-39
B.3.8 setCompositeInstanceTitle ... B-39
B.4 Advanced FUNCHONS.........ccoviiiiiic e B-40
B.4.1 create-nodeset-from-delimited-String.........c.coooiiiiiiiii B-40
B.4.2 generate-gUid........ccccoiiiiiiiiiiiiiiii s B-40
B.4.3 lookupPopulatedCOIUMNSc.ceuiiiiiiiiiiiccccccee s B-40
B.4.4 LOOKUPVALUE ...t s B-41
B.4.5 LooKUPVAlUETM......cooiiiiiiiiiiiiic s B-41

XXXV

XXXVi

B.4.6 LOOKUPXRES ...t B-42
B.4.7 LOOKUPXREFIM ..ottt B-42
B.4.8 LOOKUP-XIML. ...ttt B-43
B.4.9 MArKFOTDelete........c.oiviiiiiiiiiii s B-43
B.4.10 populateXRefROW ..o B-44
B.4.11 populateXREefROWIM ..o B-44
B.5 Workflow Service FUNCHONScoiviiiiiiiiiiiiiiiciicti s B-44
B.5.1 ClearTaskASSIGNEES..........ccocurueiiiiciei i B-45
B.5.2 createWordMLDOCUMENTciviiiiiiiiici s B-45
B.5.3 getNOtificatioNPIOPertyo.cuovieiiiic B-45
B.5.4 getNumberOfTask ApProvals ..o B-46
B.5.5 getPrevIOUSTASKAPPTOVET ..ot B-46
B.5.6 getTaskAttachmentByIndeX..........ccooiiiiiiii B-46
B.5.7 getTaskAttachmentByNamecooooii B-47
B.5.8 getTaskAttachmentContents..........cccoccuiiiiiiiiiiiiecceeee s B-47
B.5.9 getTaskAttachmentsSCOoUNt ..o B-47
B.5.10 getTaskResourceBundleString ... B-47
B.5.11 WEDYNamMicGroUPASSIZIL......ccuiuiuimiiiiiiiiiciiceieeeeeree et B-48
B.5.12 WEDYNamicUSeTrASSIZN.......coviiiiiie e B-49
B.5.13 Identity Service FUNCHONScooouiiiiiiiiicc s B-49
B.5.13.1 getDefaultRealmINameccocoueuiiiiiiiiiiiiiccc s B-49
B.5.13.2 GEtGIOUPPIOPEITY coevviieii B-50
B.5.13.3 GetMANAZET ..ottt B-50
B.5.13.4 ELREPOTTEES ..o B-50
B.5.13.5 getSupportedRealmNamMesccoevvviviiiiiiiiiii s B-51
B.5.13.6 etUSEIPTOPEItY ..ottt B-51
B.5.13.7 GELUSETROLES. ... B-52
B.5.13.8 getUSErSINGIOUPoucvviiiiiei e B-52
B.5.13.9 ISUSEIINROIE ..ot B-53
B.5.13.10 LOOKUPGIOUP ...ttt B-53
B.5.13.11 LOOKUPUSET ...ttt s B-53
B.6 Using the XPath Building Assistant.............ccccccceiiiiiiiiiiiiiiicccccces B-54
B.6.1 XPath Building Assistant Description ... B-54
B.6.2 Starting the XPath Building Assistant ..o B-54
B.6.3 Using the XPath Building Assistant in Oracle JDeveloper: Step-By-Step Example B-55
B.6.4 Using the XPath Building Assistant in the XSLT Mapper-.........ccccccoeeeervnvcnennne. B-56
B.6.5 Function Parameter Tool Tips.........cccuiiiiiiniiiiiiiiiiiiccs B-58
B.6.6 Syntactic and Semantic Validation............cccccceeviviiininininiiniiiiices B-58
B.6.7 Creating Expressions with Free Form Text and XPath Expressions..............ccc........ B-58
B.7 Creating User-Defined XPath Extension FUNCtions.........c.coovreiiiinieiniiiciicc B-59
B.7.1 How to Implement User-Defined XPath Extension Functions............ccccccceeeiennnnnn B-62
B.7.1.1 How to Implement Functions for the XSLT Mappercccccccceeececrccucrcncnennns B-62
B.7.1.2 How to Implement Functions for All Other Componentscccccccevvevrvnuennnn. B-62
B.7.2 How to Configure User-Defined XPath Extension Functions............cccccccoeeiiennnee. B-63
B.7.3 How to Deploy User-Defined Functions to Runtime............cccocoevvinnnnnnnncncnes B-65

C Deployment Descriptor Properties

CA1 Introduction to Deployment Descriptor Properties..........c.ccoovrueieiiiiiniiniiiccce,
C.11 How to Define Deployment Descriptor Propertiesc.cccoeevcucvcerccnveeeeecnnene
c.1.2 How to Get the Value of a Preference within a BPEL Process...........cccccoceviiviiivinnnnn
C.2 Deprecated 10.1.3 PrOPerti€s......cc.cooeuiuriiiuniiiieiicieiiiieiece et

D Understanding Sensor Public Views and the Sensor Actions XSD

D.1 Introduction to Sensor Public Views and the Sensor Actions XSD File..........cccccceeveuenn.
D.2 SENSOT PUDIIC VIEWS....oiciiiieieeieiieiietieie ettt ste sttt ettt e e seetestesbesbesesbessessessessassesansessessensas
D.2.1 53 5\ IS Tal 4 T=) o - TR SR
D.211 BPEL_PROCESS_INSTANCES........coooitiieteeeeeteeteeteetee ettt es e evs e e eve v saens
D.2.1.2 BPEL_ACTIVITY_SENSOR_VALUEScocoteteteieinieisesteieeteee s e sre e saens
D.2.1.3 BPEL_FAULT_SENSOR_VALUES......ccceotiteietieteiestet et eve e sve v snens
D.214 BPEL_VARIABLE_SENSOR_VALUES.......cccooiiiiiiiitieteceeteeeetee e
D.3 SeNSOT ACHONS XSD FAlE....ccuiiiiiiiiieieieieietee ettt ettt b e st sb e saesaessesassessanss

E Oracle BAM Web Services Operations

E.1 DataObjectOperations10131cccoiiiiiiiiiiiiiiiii e
E.11 BatCh oo
E.1.1.1 Request MeSSage.........cccoueueieiiiiiiiii s
E.1.2 DIELEte ...t s
E.1.2.1 Request MeSSage.........ccceuiiieiiiiiiiiii s
E.1.3 INSEIt vt
E.1.3.1 Request MeSSage..........coovviiiiiiiiiiiiii s
E.14 UPAALE .o s
E.1.41 Request MeSSage.........ccoeueiiiiiiiiiiiici s
E.1.5 UPSETt i
E.1.51 Request MeSSage.........cccouiiieiiiiiiiiiiii s
E.2 DataObjectOperationsByIName.............couoiriiiiiiiiice e
E.2.1 DIELOte ... s
E.2.1.1 Request MeSSAge.........ccceuiiiieiiiiiiiiii s
E.2.2 G et
E.2.2.1 Request MeSSage..........ccvuiiiiiiiiiiii s
E.2.3 INSEIt et
E.2.3.1 Request MeSSage..........ccvviiiiiiiiiiiiiicc s
E2.4 UPAALE -ttt
E.2.41 Request MeSSage.........ccceuiiieiiiiiiiiiii s
E.2.5 UPSEIt e
E.2.5.1 Request MeSSage..........cocviviiiiiiiniiiiii s
E.3 DataObjectOperationsByID ..o
E.3.1 BaCR oot
E.3.1.1 Request MeSSage..........cooiiiiiiiiiiiiiiii s
E.3.2 DlElete ...
E.3.2.1 Request MeSSage..........covviiiiiiiiiiiiiiiccc s
E.3.3 INSEIT ..o s
E.3.3.1 Request MeSSage.........ccceueiiiiiiiiiiic s

XXXVii

E.3.4
E.3.4.1
E.3.5
E.3.5.1
E.4
E.41
E.4.1.1
E.41.2
E.4.2
E.4.21
E.422
E.4.3
E.4.3.1
E.4.3.2
E.4.4
E.4.41
E.44.2
E.5
E.5.1
E.5.1.1
E.5.1.2

UPAAte ..o E-8
Request MeSSage..........cccoueueieiiiieieiiiic E-8
UPSETt oo E-9
Request MeSSage.........ccoeueieieiiiiiiiiici E-9
DataObjectDefinition Operations.............coceueieiiiieiiiiiiicice e E-9
CLALE....eeteet e E-9
Request MeSSage.........ccceueieieiiiiiiiiiii s E-9
Response MeSSagecoceueueuiieiiieieiiieiicieii s E-12
DL ...t s E-12
Request MeSSage.........ccoeveieieiiiiiiieiiii s E-12
Response MeSSagecccueuieieieieieieieiicei s E-12

Gt o E-12
Request MeSSage.........cceveviieiiiiiiiiieii s E-12
Response MeSSagecoceueueuiiiiiieieiiiiiicieii s E-12
UPAALE .. s E-13
Request MeSSage.........ccceveieieiiiiieiiieiii s E-13
Response MeSSagecceueuuiiiieieieiiicicicici s E-13
ManualRuleFire Operations..........c.cccocceeeiiciiiiciiiciecceeieeeeee e senenens E-13
FireRuleByName...........c.oviiiiiiiii e E-13
Request MeSSage..........coueieieieiiiiiiiic s E-14
ReSPONSE MESSAZE ...t E-14

F Oracle BAM Alert Rule Options

XXXViii

F.1
F.1.1
F.1.2
F.1.3
F.1.4
F.1.5
F.1.6
Fi1.7
F.1.8
F.1.9
F.1.10
F.2
F.2.1
F.2.2
F.2.3
F.3
F.3.1
F.3.2
F.3.3

F.3.4
F.3.5
F.3.6
F.3.7

BVENES ..ottt s F-1
In a specific amount of tMe ... F-1
At a specific time today......ooeuoviiuiiii e F-1
On a certain day at a Specific time...........cccociiiiiiiiiiicccecceeeee s F-1
Every interval between two times.........c..cooiiieiiiiii F-2
Every date interval starting on certain date at a specific timeccccccevviinnnnnn F-2
When a 1epOrt CHANGEScccociuiuiiiiiiiccicceeee et eeas F-2
When a data field changes in data object ... F-2
When a data field in a report meets specified conditions............ccccoeeveieirniniircnennnee. F-3
When a data field in a data object meets specified conditions..........c.ccceeeevircnnnee. F-4
When this rule is launched ... F-5

CONAITIONS .ttt ettt et sttt F-5
If it is between tWo tIMEScoviviiiiiiiiiiiccc s F-5
If It is between tWo daysc.coceirueiiieicieicec e F-5
If it is a particular day of the Week..........cccccoviiiiiiiiiiiiie F-5

ACHONS ..ottt s F-5
Send a report via emailcccoeeiiiiiiiiii F-5
Send a message via emailccccceiiiiiiiiiiii F-6
Send a report via email and escalate to another user after a specific amount of
FIINIE 1ottt F-6
Send a parameterized MESSAGE..........ccceueuiuiiiiiiiiiiiiiiiii s F-6
Launch @ TULe ..o s F-10
Launch rule if an action fails........ccccoviiiiniiiie F-10
Delete rows from a Data Object...........ccoeuiiiiiiniiiiiiiicec e F-10

F.3.8 Call @ WED SeIVICEvvviiiiiiiiiictccttc s F-11
F.3.9 Run an Oracle Data Integrator SCenario............cococeueveieicieinicicicieccecc e F-11
F.4 Frequency Constraint ..o F-12

Oracle BAM ICommand Operations and File Formats

G.1 Summary of Individual Operationsc.cccccceeeieeiiiiieieiceeeeeeeeeeeeeeeeee s G-1
G.2 Detailed Operation DesCriptionscoceuieiiiiiiiiiiiiiiiiiiciee s G-3
G.2.1 CLEAT ...ttt s G-3
G.2.2 DIELOte ... s G-3
G.2.3 EXPOIt ot s G-4
G.24 IMPOT e G-10
G.2.5 RENAINE ...ttt s G-14
G.3 Format of Command File..........ccooiiiiiiiiic s G-15
G.3.1 INlNe CONENL.....cviviiiiiiiciiii s G-15
G.3.2 CommANA IDS ... s G-16
G.3.3 Continue ON EITOT ..o G-17
G.4 Format of Log File.....coooiiiiiiiiii s G-17
G.5 Sample EXPOrt FIle......c.coiiiiiiiicccccece s G-18
G.6 Regular EXPressions ...t s G-18

H Normalized Message Properties

H.1 Oracle BPEL Process Manager Properties..........ccccooiieueioiicicieiiccicceecc i H-1
H.2 Oracle Web Services Addressing Properties...........cccoocrioiiiciniiicciciicceeccee, H-2

Oracle User Messaging Service Applications

1.1 Send Message to User Specified Channelcccoooi e -1
1.1.1 OVEIVIEW ..ttt s -1
1.1.1.1 Provided Files ... -2
1.2 Installing and Configuring SOA and User Messaging Service..........c.cccococueieieiruenennnes I-2
1.1.2.1 Updating Addresses in Your LDAP User Profile...........cccooiniinininnnciiiinee. -2
1.1.3 Building the Sample ... -3
1.4 Creating a New Application Server CONNECtioN...........ccoeueuiuemiucuiiieiiieiecireeieeieennens I-11
1.1.5 Deploying the Project ... s I-13
1.1.6 Configuring User Messaging Preferences.............ccocooeiieioiniiciiiiiiccce I-14
1.7 Testing the Sample.........ccccoviiiiiiiiiiiii s I-15
1.11.7.1 Verifying the Execution of Sending the Emailccccocooiiiiiinnnnnine I-16
1.2 Send Email with Attachments............cccoooiiiiiiii I-16
[.2.1 OVEIVIEW ..ttt I-16
1.2.1.1 Provided Files ... -17
2.2 Installing and Configuring SOA and User Messaging Service...........ccoceuvirereinnnnee. 1-17
l.2.2.1 Updating Addresses in Your LDAP User Profile..........cccccccoceiiiininiiinnicnnn -17
1.2.3 Running the Pre-Built Sample ... [-18
1.2.4 Testing the Sample..........cooiioiiiiii s [-20
1.2.4.1 Verifying the EXeCUtion ... [-20
1.2.5 Building the Samplecccciiiiiiiiiccee s [-20

XXXiX

1.2.6

Index

xl

Creating a New Application Server Connection

Part

Audience

Preface

This manual describes how to use Oracle SOA Suite.
This preface contains the following topics:

= Audience

= Documentation Accessibility

= Related Documents

s Conventions

This manual is intended for anyone who is interested in developing applications with
Oracle SOA Suite.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Deaf/Hard of Hearing Access to Oracle Support Services

To reach Oracle Support Services, use a telecommunications relay service (TRS) to call
Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle
technical issues and provide customer support according to the Oracle service request
process. Information about TRS is available at
http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone
numbers is available at http: //www. fcc.gov/cgb/dro/trsphonebk.html.

Related Documents
For more information, see the following Oracle resources:
» Oracle Fusion Middleware Administrator’s Guide for Oracle SOA Suite
Printed documentation is available for sale in the Oracle Store at
http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, visit the Oracle Technology Network (OTN). You must register online before
using OTN; registration is free and can be done at

http://www.oracle.com/technology/membership/

To download Oracle BPEL Process Manager documentation, technical notes, or other
collateral, visit the Oracle BPEL Process Manager site at Oracle Technology Network
(OTN):

http://www.oracle.com/technology/bpel/

If you have a username and password for OTN, then you can go directly to the
documentation section of the OTN web site at

http://www.oracle.com/technology/documentation/

See the Business Process Execution Language for Web Services Specification, available at the
following URL:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/dnbizspec/html/bpell-1.asp

See the XML Path Language (XPath) Specification, available at the following URL:
http://www.w3.0rg/TR/1999/REC-xpath-19991116

See the Web Services Description Language (WSDL) 1.1 Specification, available at the
following URL:

http://www.w3.org/TR/wsdl

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

Convention Meaning

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Part |

Introduction to Oracle SOA Suite

This part provides an introduction to Oracle SOA Suite and developing SOA
composite applications.

This part contains the following chapters:

s Chapter 1, "Introduction to SOA Composite Applications"

» Chapter 2, "Overview of SOA Component Editors"

» Chapter 3, "Introduction to the SOA Sample Application”

» Chapter 4, "Introduction to the Functionality of the SOA Composite Editor"

1

Introduction to SOA Composite Applications

An SOA composite application is an assembly of services, service components,
references, and wires designed and deployed together to meet a business need. This
chapter provides a high-level introduction to the various components that together
form an SOA composite application.

This chapter includes the following sections:

s Section 1.1, "Introduction to Oracle SOA Suite"

= Section 1.2, "Introduction to SOA Composite Applications"
= Section 1.3, "Introduction to SCA Technologies"

» Section 1.4, "Learning Oracle SOA Suite"

1.1 Introduction to Oracle SOA Suite

Changing markets, increasing competitive pressures and evolving customer needs are
placing greater pressure on IT to deliver greater flexibility and speed. Today every
organization is faced with the must predict change in a global business environment,
to rapidly respond to competitors, and to best exploit organizational assets for growth.
In response to these challenges, leading companies are adopting SOA to deliver on
these requirements by overcoming the complexity of their application and IT
environments.

SOA provides an enterprise architecture that supports building connected enterprise
applications. SOA facilitates the development of enterprise applications as modular
business web services that can be easily integrated and reused, creating a truly flexible,
adaptable IT infrastructure.

Oracle SOA Suite provides a complete set of service infrastructure components for
designing, deploying, and managing composite applications. Oracle SOA Suite
enables services to be created, managed, and orchestrated into composite applications
and business processes. Composites enable you to easily assemble multiple technology
components into one SOA composite application. Oracle SOA Suite plugs into
heterogeneous IT infrastructures and enables enterprises to incrementally adopt SOA.

The components of the suite benefit from common capabilities including a single
deployment and management model and tooling, end-to-end security, and unified
metadata management. Oracle SOA Suite is unique in that it provides the following
set of integrated capabilities:

s Messaging
= Service discovery

s Orchestration

Introduction to SOA Composite Applications 1-1

Introduction to Oracle SOA Suite

Activity monitoring
Web services management and security
Business rules

Events framework

Oracle SOA Suite puts a strong emphasis on standards and interoperability. Among
the standards it leverages are:

Service Component Architecture (SCA) assembly model

Provides the service details and their interdependencies to form composite
applications. SCA enables you to represent business logic as reusable service
components that can be easily integrated into any SCA-compliant application. The
resulting application is known as an SOA composite application. The specification
for the SCA standard is maintained by the Organization for the Advancement of
Structured Information Standards (OASIS) through the Open Composite Services
Architecture (CSA) Member Section:

http://www.oasis-opencsa.org
Service Data Objects (SDO)

Specifies a standard data method and can modify business data regardless of how
it is physically accessed. Knowledge is not required about how to access a
particular back-end data source to use SDO in an SOA composite application.
Consequently, you can use static or dynamic programming styles and obtain
connected and disconnected access.

Business Process Execution Language (BPEL)

Provides enterprises with an industry standard for business process orchestration
and execution. Using BPEL, you design a business process that integrates a series
of discrete services into an end-to-end process flow. This integration reduces
process cost and complexity.

XSL Transformations (XSLT)

Processes XML documents and transforms document data from one XML schema
to another.

Java Connector Architecture (JCA)

Provides a Java technology solution to the problem of connectivity between the
many application servers in Enterprise Information Systems (EIS).

Java Messaging Service (JMS)

Provides a messaging standard that allows application components based on the
Java 2 Platform, Enterprise Edition (Java EE) to access business logic distributed
among heterogeneous systems.

Web Services Description Language (WSDL) file

Provides the entry points into an SOA composite application. The WSDL file
provides a standard contract language and is central for understanding the
capabilities of a service.

Simple Object Access Protocol (SOAP)

Provides the default network protocol for message delivery.

For more information about standards, see the following:

Section 1.3, "Introduction to SCA Technologies"

1-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Introduction to SOA Composite Applications

= Section 2.1, "Introduction to the SOA Composite Editor" for additional details
about these key building blocks

s The following URL for SCA and SDO specifications and related material:

http://www.osoa.org

1.2 Introduction to SOA Composite Applications

A composite is an assembly of services, service components, wires, and references
designed and deployed together in a single application. The composite processes the
information described in the messages.

Figure 1-1 describes the operability of an SOA composite application using SCA
technology. In this example, an external application (NET payment calculator)
initiates contact with the SOA composite application.

For more information about descriptions of the tasks that services, references, service
components, and wires perform in an application, see Section 1.3, "Introduction to
SCA Technologies."

Figure 1-1 Introduction to an SOA Composite Application

Service Archive: Composite (deployment unit)

Loan APR Manager EBS
Process Rule Review Customer
Task View
m N
BPEL . . .
Process Business Oracle Human — Service Engines
Manager Rules Mediator Task (Containers that host the
- | component business logic)
W —X’—EEEED— — Service Infrastructure
(Picks up SOAP message

C D | from binding component

and determines the
intended component
target)

L]
HTTP JCA -
B2B ADF BC Binding Components
SOAP Adapters (Connect SOA applications
to the outside world)

NET T Sends a SOAP message
Paiyment to the SOA application

Calculator

The .NET payment calculator is an external application that sends a SOAP message to
the SOA application to initiate contact. The Service Infrastructure picks up the SOAP
message from the binding component and determines the intended component target.
The BPEL service engine receives the message from the Service Infrastructure for
processing by the BPEL Loan Process application and posts the message back to the
Service Infrastructure after completing the processing.

Table 1-1 describes the operability of the SOA composite application shown in
Figure 1-1.

Introduction to SOA Composite Applications 1-3

Introduction to SCA Technologies

1.3 Introduction to SCA Technologies

SCA is the executable model for the assembly of service components into composite
applications. SCA provides a programming model for the following:

s Creating service components written with a wide range of technologies, including
programming languages such as Java, BPEL, C++, and declarative languages such
as XSLT. The use of specific programming languages and technologies (including
web services) is not required with SCA.

= Assembling the service components into an SOA composite application. In the
SCA environment, service components are the building blocks of applications.

SCA lets you describe the details of a service and how services and service
components interact by providing a model for assembling distributed groups of
service components into an application. Composites are used to group service
components and wires are used to connect service components. SCA aims to remove
middleware concerns from the programming code by applying infrastructure concerns
declaratively to compositions, including security and transactions.

The key benefits of SCA include the following;:
= Loose coupling

Service components integrate with other service components without needing to
know how other service components are implemented.

» Flexibility
Service components can easily be replaced by other service components.
= Services invocation
Services can be invoked either synchronously or asynchronously.
= Productivity
Service components are easily integrated to form an SOA composite application.
= Easy Maintenance and Debugging

Service components can be easily maintained and debugged when encountered an
issue.

Figure 1-2 provides an example of a composite that includes an inbound service
binding component, a BPEL process service component (named Account), a business
rules service component (named AccountRule), and two outbound reference binding
components. The details of this composite are stored in the composite.xml file.

1-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Introduction to SCA Technologies

Figure 1-2 Composite

Composite
Service
Component
Wire
. Composite BigBank
Wire
- Reference
Service Component
Account
Service, binding.ws
WebApp 2>
binding.ws binding.rmi
BPEL
Service Component
AccountRule Service
Component
—) Business
Rules

Table 1-1 describes the operability of the SOA composite application shown in
Figure 1-1. References are made to sections that provide additional details.

Introduction to SOA Composite Applications 1-5

Introduction to SCA Technologies

Table 1-1 Introduction to an SOA Composite Application Using SCA Technologies

Part Description Example of Use in Figure 1-1 See Section
Binding Establishes the connectivity =~ The SOAP binding component service: Section 1.3.1,
Components between a SOA composite » Advertises its capabilities in the WSDL Binding "
and the external world. There file Components
are two types: ’
o = Receives the SOAP message from the
= Service binding L
. .NET application.
components provide an
entry point to the SOA = Sends the message through the policy
composite application. infrastructure for security checking.
= Reference binding = Translates the message to a normalized
components enable message (an internal representation of the
messages to be sent from service’s WSDL contract in XML format).
the SOA composite = Posts the message to the Service
application to external Inf
. nfrastructure.
services.
An example of a binding component reference
in Figure 1-1 is the Loan Process application.
Service Provides internal message The Service Infrastructure: Section 1.3.2,
Infrastructure transport = Receives the message from the SOAP Service "
Infrastructure

binding component service.

= Posts the message for processing to the
BPEL process service engine first and the
human task service engine second.

Service Engines

Host the business logic or

The BPEL service engine:

Section 1.3.3,

(containers processing rules of the . . "Service Engines
hosti . . = Receives the message from the Service :
osting service service components. Each . and Service
. . Infrastructure for processing by the BPEL "
components) service component has its T Components
. . Loan Process application.
own service engine.
= Posts the message to the Service
Infrastructure after completing the
processing.
UDDI and MDS The MDS (Metadata Service) The SOAP service used in this composite Oracle Fusion
repository stores descriptions application is stored in the MDS and can also ~ Middleware
of available services. The be published to UDDI. Getting Started for
UDDI advertises these Oracle SOA Suite
services, and enables
discovery as well as dynamic
binding at runtime.
SOA Archive: The deployment unit that The SOA archive (SAR) of the composite Section 1.3.4,
Composite describes the composite application is deployed to the Service "Deployed
application. Infrastructure. Service
(deployment o
: Archives
unit)

1.3.1 Binding Components

Binding components establish the connection between a SOA composite and the

external world. There are two types of binding components:

s Services

Provide the outside world with an entry point to the SOA composite application.
The WSDL file of the service advertises its capabilities to external applications.
These capabilities are used for contacting the SOA composite application
components. The binding connectivity of the service describes the protocols that
can communicate with the service, for example, SOAP/HTTP or a JCA adapter.

» References

1-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Introduction to SCA Technologies

Enable messages to be sent from the SOA composite application to external
services in the outside world.

Table 1-2 lists and describes the web services provided by Oracle SOA Suite.

Table 1-2 Web Services Provided by Oracle SOA Suite

Web Services Description

SOAP over HTTP For connecting to standards-based services using SOAP over
HTTP.

JCA Adapters For integrating services and references with technologies (for

example, databases, file systems, FTP servers, messaging: JMS,
IBM WebSphere MQ, and so on) and applications (Oracle
E-Business Suite, PeopleSoft, and so on). This includes AQ
Adapter, Database Adapter, File Adapter, FTP Adapter, JMS
Adapter, MQ Adapter, and Socket Adapter.

B2B binding component For browsing B2B metadata in the MDS repository and selecting
document definitions.

ADF-BC Service For connecting Oracle Application Development Framework
(ADF) applications using SDO with the SOA platform.

Oracle Applications For integrating Oracle Application Adapter with Oracle
Applications.

BAM Adapter For integrating Java EE applications with Oracle BAM Server to

send data and also used as a reference binding component in an
SOA composite application.

EJB Service For integrating SDO parameters with Enterprise JavaBeans.

Note: Business events provide an alternative to using the direct
service invocation of the WSDL file contract. Business events are
messages sent as the result of an occurrence or situation. When a
business event is published, other applications can subscribe to it.

1.3.2 Service Infrastructure

The Service Infrastructure provides the internal message routing infrastructure
capabilities for connecting components and enabling data flow:

= Receives messages from the service providers or external partners through SOAP
services or adapters

= Sends the message to the appropriate service engine

= Receives the message back from the service engine and sends it to any additional
service engines in the composite or to a reference binding component based on the
wiring

1.3.3 Service Engines and Service Components

Service components are the building blocks that you use to construct an SOA
composite application. Service engines are containers that host the business logic or
processing rules of these service components. Service engines process the message
information received from the Service Infrastructure.

The following service components are available. There is a corresponding service
engine of the same name for each service component. All service engines can interact
together in a single composite.

Introduction to SOA Composite Applications 1-7

Learning Oracle SOA Suite

BPEL process

For process orchestration and storage of synchronous or asynchronous process.
You design a business process that integrates a series of business activities and
services into an end-to-end process flow.

Business rules
For designing a business decision based on rules.
Human task

For modeling a workflow that describes the tasks for users or groups to perform as
part of an end-to-end business process flow.

Mediator

For routing events (messages) between different components.

1.3.4 Deployed Service Archives

The SAR is a SOA archive deployment unit. The SAR file is deployed to the Service
Infrastructure. The SAR packages service components such as BPEL processes,
business rules, human tasks, and mediator routing services into a single application.
The SAR file is analogous to the BPEL suitcase archive of previous releases, but at the
higher composite level and with any additional service components that your
application includes (for example, human tasks, business rules, and mediator routing
services).

1.3.5 Wires

Wires enable you to graphically connect the following components in a single SOA
composite application for message communication:

Services to service components
Service components to other service components

Service components to references

1.4 Learning Oracle SOA Suite

In addition to this developers guide, Oracle also offers the following resources to help
you learn how you can best use Oracle SOA Suite in your applications:

Getting Started and Tutorials: The Oracle Fusion Middleware Getting Started with
Oracle SOA Suite guide introduces you to Oracle SOA Suite, its components, and
provides you with a high-level understanding of what you can accomplish with
the suite. The Oracle Fusion Middleware Tutorial for Running and Building an
Application with Oracle SOA Suite tutorial describe the step-by-step instructions
for running an application developed with Oracle SOA Suite and how to build the
SOA elements of the Fusion Order Demo application respectively. Also, you could
refer to the Oracle SOA Suite section of the Oracle Fusion Middleware 11g Release
1 documentation library for additional documentation.

Cue Cards in Oracle JDeveloper: Oracle JDeveloper cue cards provide step-by-step
support for the application development process using Oracle SOA Suite. They are
designed to be used either with the included examples and a sample schema, or
with your own data. Cue cards also include topics that provide more detailed
background information, viewlets that demonstrate how to complete the steps in
the card. Cue cards provide a fast, easy way to become familiar with the basic

1-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Learning Oracle SOA Suite

features of Oracle SOA Suite, and to work through a simple end-to-end task. In
Oracle JDeveloper, click Help, Cue Cards to access the cue cards.

http://www.oracle.com/technology/sample_code/products/soa: The
SOA OTN provides access to various use case samples for Oracle SOA Suite and
its components.

Introduction to SOA Composite Applications 1-9

Learning Oracle SOA Suite

1-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

2

Overview of SOA Component Editors

This chapter provides an overview of all the component editors and designers, which
are used to develop an SOA composite application.

This chapter includes the following sections:

Section 2.1, "Introduction to the SOA Composite Editor"
Section 2.2, "Introduction to the Oracle BPEL Designer"
Section 2.3, "Introduction to the Oracle Mediator Editor"
Section 2.4, "Introduction to the Human Task Editor"
Section 2.5, "Introduction to the Business Rules Designer"

Section 2.6, "Introduction to Oracle Enterprise Manager"

2.1 Introduction to the SOA Composite Editor

The SOA Composite Editor enables you to create, edit, and deploy services, and also to
assemble them in a composite application, all from a single location. These
components are integrated together into one application and communicate with the
outside world through binding components such as web services and JCA adapters.

The SOA Composite Editor enables you to use either of two approaches for designing
SOA composite applications:

The top-down approach of building a composite application puts interfaces first
and implementation next. For example, you first add BPEL processes, human
tasks, business rules, and mediator routing services components to an application,
and later define the specific content of these service components.

The bottom-up approach takes existing implementations of service components
and wraps them with web service interfaces for assembly into a composite
application. For example, you first create and define the specific content of BPEL
processes, human tasks, business rules, and mediator routing services
components, and later create an SOA composite application to which you add
these service components.

The SOA Composite Editor appears as shown in Figure 2-1.

Overview of SOA Component Editors 2-1

Introduction to the SOA Composite Editor

Figure 2-1 SOA Composite Editor

Application Left Swim i Right Swim Component Resource
Navigator Lane Designer Lane Palette Palette
File Edit yiew Agp
Eoag 9
& foplication Havigator
& Mysorapplcation .
aFricts @@= Comgonents A
=[] mysoaprogect
= [504 Conbent.
@ {3 classes
w0 testouites
{0 wed
R]
- [Business Rules 5
o BPELProcess1 bpsl =X
|- BPFL Process1 companentType =
off2 composite_xml
b Appkcation Resouress
b Data Controls
b Recently Opened Fies
Y= composite. xnl - Structure =
@ L. i P
| o MySDAProject Jetn s
[BPEL Processes [E]BPEL - Log =]
-3 Test Sukes
& BPELPTOCess1 . bpel =
WPath Type # of Errars ‘
Errors: 0 Warrangs: 0 Last Vabdated On: 30 Mar 2009 09:28:39 GMT
| valdation Errors ||L0g . Search Resuks
Source | Design Messages BFEL | Exfnsins | Feedback M
2 DevedopermyworkiMy SOAAppication|My S0AProject|composite, xml Dasign Editing & Heap : 148M of 157M, Perm Gen | 122M of 2560
Log Window

The main sections of the SOA Composite Editor are described in the following list:

2.1.1 Application Navigator

Displays the key files for the specific service components included in your SOA
project:
s A composite.xml file that is automatically created when you create a SOA

project. This file describes the entire composite assembly of services, service
components, references, and wires.

» The business rules service component file (rules_name.decs). Additional
business rules files display under the Oracle > rules subfolder (rules_
name.rules).

s The mediator service component file (nediator_namemplan).

» The BPEL process service component files (process_namebpel and process_
name.wsdl).

s The human task service component files (task_name.task).

s The componentType file that describes the services and references for each
service component. This file ensures that the wiring you create between
components works.

» Additional subfolders for class files, XSDs (schemas), and XSLs (transformations).

You can drag and drop components and service adapters from the Components Palette
window to the Designer window. When you drop a service component into the
Designer window, it starts a property editor for configuring that service component.
For example, when you drop a Mediator component into the Designer window, this
also opens the Mediator editor window that enables configure the Mediator.

2-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Introduction to the SOA Composite Editor

To edit the configuration of an existing component in the Designer window,
double-click the component to re-open the editor.

2.1.2 Designer

You drag service components, services, and references into the composite in the
designer. When you drag and drop a service component into the Designer window, a
corresponding property editor is invoked for performing configuration tasks related to
that service component. For example, when you drag and drop the Mediator
component into Designer, then the Mediator Editor window is displayed that enables
you to configure the Mediator component.

For all subsequent editing sessions, you double-click these service components to
invoke their editors.

2.1.3 Left Swim Lane (Exposed Services)

The left swim lane is for services providing an entry point to the SOA composite
application, such as a web service or JCA adapters.

2.1.4 Right Swim Lane (External References)

The right swim lane is for references that send messages to external services in the
outside world, such as web services and JCA adapters.

2.1.5 Component Palette

Contains the various resources that you can use in a SOA composite. It contains the
following service components and adapters:

= Service components

Displays the BPEL Process, business rule, human task, and mediator service that
can be dragged and dropped into the designer.

= Service adapters

Displays the JCA adapter (AQ, file, FTP, Database, JMS, MQ, Oracle Applications,
Oracle BAM, and E]B Service), B2B binding component, SDO binding component,
and web service binding component that can be dragged into the left or right
swim lanes.

If the Resource Catalog does not display, select Component Palette from the View
main menu.

2.1.6 Resource Palette

Provides a single dialog from which you can browse both local and remote resources.
For example, you can access.

s Shared local application metadata such as schemas, WSDLs, event definitions,
business rules, and so on.

= WHSIL browser functionality that uses remote resources that can be accessed
through an HTTP connection, file URL or Application Server connection.

= Remote resources that are registered in a UDDI (Universal Description, Discover
and Integration) registry.

Overview of SOA Component Editors 2-3

Introduction to the Oracle BPEL Designer

If the Resource Catalog does not display, then select Resource Palette from the View
main menu.

You select these resources for the SOA composite application through the SOA
Resource Browser dialog. This dialog is accessible through a variety of methods. For
example, when you select the WSDL file to use with a service binding component or a
mediator service component or select the schema file to use in a BPEL process, the
SOA Resource Browser dialog appears. Click Resource Palette at the top of this dialog
to access available resources.

2.1.7 Log Window

Displays messages about application compilation, validation, and deployment.

2.1.8 Property Inspector

Displays properties for the selected service component, service, or reference.

If the Property Inspector does not display, select Property Inspector from the View
main menu.

For more information about the SOA Composite Editor, see Chapter 4, "Introduction to
the Functionality of the SOA Composite Editor" and Oracle Fusion Middleware Getting
Started with Oracle SOA Suite.

2.2 Introduction to the Oracle BPEL Designer

You can create a BPEL process service component in the SOA composite application of
Oracle JDeveloper and then design it by using the BPEL Designer, which is displayed,
when you double-click a BPEL process in the SOA Composite Editor. Figure 2-2 shows
the BPEL Designer along with Application Navigator, Structure, Component Palette,
and Messages windows.

2-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Introduction to the Oracle BPEL Designer

Figure 2-2 Oracle BPEL Designer

Application Navigator

2 appbcation Navigator 5]
[mysoasppication v [< o~ gl A~ @ &~
Projects (&) @ V- & | - o
=[] MySORProject SrieZd -)
£ [50 Content =,
B D0 testsuites
o] Fleist el
W (s
w3l
+) J desgner
-] sca-INF
offf composke.arl
g SayHelo.bpel
» Apphcation Resources
i+ Data Controk
i Recently Opened Files

&

chent

SayHello.b... 2]

et Links
ity Structure:
rties

rty Alases
br Actions
pes

led hode Information

Property
Window

Structure
Window

Design Window

F)start Page | Entys0napphcation. ws |ifScomposte. | &y o bpel o

Zoom: | 100[3] -

Component Palette

Hcomposie.a (1) i compone.

References

Last \'&dete‘don'. 17 Oct 2007 21:00:04 GMT

@

BPEL

BFEL Activities and Compo...
Activities and Components ~

o BPEL Process
28| business Rule
\-‘-Ij Hurnan Task
< Mediator
BPEL Activities
2| hssign
& | BrdErtity
1] compersate
=2
Erpty
i rax
25 Flow
4 Flowhi
*,} ™
& rvore

BPEL Services

@ o
;

&)

Each section of this view enables you to perform specific design and deployment
tasks. The main sections of the BPEL Designer are described in the following list:

2.2.1 Application Navigator

The Application Navigator displays the process files. Figure 2-3 shows the files that
appear under the SOA Content folder when you first create a SOA project in Oracle
JDeveloper (in this example, named MySOAProject inside an application named
MySOAApplication, SayHello is the name of the BPEL process). An application can
contain one or more projects. Each project can only contain one composite. But each
composite can have multiple components of either the same type or different types
(BPEL process, Oracle Mediator, human workflow, and business rules).

Figure 2-3 Application Navigator

Application MNavigator
MySOAApplication
~ Projects
E1-[5] MysoaPraject
=~ 50 Cantent
[]---D .designer
-] classes
-] SCA-INF
-] testsuites
[]...D wed
[wsl

Table 2-1 describes these initial process files.

Overview of SOA Component Editors 2-5

Introduction to the Oracle BPEL Designer

Table 2—-1 Initial Process Files

File Description

composite.xml The file that describes the entire SOA composite.

For more information about this file, see Section 2.1, "Introduction to
the SOA Composite Editor”

SayHello.bpel The source file, which, depending upon the process type you selected,
initially contains a minimal set of activities (if you selected to create an
asynchronous process, then receive and invoke activities appear). You
add syntax to this file when you drag activities, create variables, create
partner links, and so on.

SayHello.component The file that describes the services and references for each service
Type component.

SayHello.wsdl The Web Services Description Language (WSDL) client interface, which
defines the input and output messages for this BPEL process flow, the
supported client interface and operations, and other features. This
functionality enables the BPEL process flow to be called as a service.

As you design the BPEL process service component, additional files, folders, and
elements can appear in the Application Navigator.

Note: If you want to learn more about the Application Navigator,
place the cursor in this section and press F1 to display online Help.

2.2.2 Design Window

The Design window provides a visual view of the BPEL process service component
that you design. This view displays when you perform one of the following actions:

= Double-click the .bpel file name in the Application Navigator.
= Double-click the BPEL process component in the SOA Composite Editor.
» Click the Design tab at the bottom of the window with the .bpel file selected.

Figure 2—4 shows the activities automatically created with an asynchronous BPEL
process service component. You add to the BPEL process service component by
dragging and dropping activities, creating variables, creating partner links, and so on.

2-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Introduction to the Oracle BPEL Designer

Figure 2-4 Design (After Creation of an Asynchronous BPEL Process Service
Component)

Services

|
= References

e

client

.

callbackClient

o)

2.2.3 Source Window

Click Source at the bottom to view the syntax inside the BPEL process service
component files. As you drag activities and partner links, and perform other tasks, the

Source view and Design view stay synchronized. Changes in one are reflected in the
other immediately.

For example, Figure 2-5 shows the property sheet as it is being edited.

Figure 2-5 WriteFile Partner Link Icon and Property Sheet

Services = References @
O |- BPEL Activities and Com
" BPEL Services
= % Edit Partner Link X]
(General rImage r Property |
MName: |WriteFiIe |
receivelnpul
%-‘ B Process: |SavHeIIo |
client WSDL Settings
Oa R @
: WSDL File: |File:,I'C:,I'JDeueloper,l'myworHMySOAnpplication,l'MySOJ|
replyOutpu Partrer Link Type: |5~ write_plt -|
Partrer Role: |‘~3 Write_rale - |
My Role: [%8, - Mot Specified ---—- ~|
Jrocess/partnerlinks/partnerlink[2] | Help | | Apply | | oK | | Cancel |
esign | Source | Hiskory

Click Source at the bottom of the window. Figure 2-6 shows part of the Source of a
.bpel file. Details about the WriteFile partner link you created appear in the file.

Overview of SOA Component Editors 2-7

Introduction to the Oracle BPEL Designer

Figure 2-6 Source View of a .bpel File

<=
FEEREEEES R RSP i d T i i i i dd i i i d i d i i dddd dd i i i s d idiiisiidis
PARTNERLINES
List of services participating in this BPEL process
FAFERFIFEEFTEEFIFEEGFEEEITIEIIFEIFFFaTFIFITI 01 FIF0 1000 F8707070070787 4
-
<partnerLinks-
2l
The 'client' role represents the recuester of this serwice. It is
uzed for callback. The location and correlation information associat
with the client role are automatically set using Wi-dddressing.
-
<partnerLink name="client”™ partnerLinkType="client:3ayHello™ myFole="%
<partnerLink name="WriteFile" partnerFole="Write_ role™
partnerlinkType="nal:Mrite_plt" >

< /partnerLinks-

For more information about the types of syntax that appear in BPEL process service
component files, see Section II, "Using the BPEL Process Service Component."

2.2.4 History Window

Click History at the bottom to perform such tasks as viewing the revision history of a
file and viewing read-only and editable versions of a file side-by-side. Figure 2-7
shows the History view for a BPEL file.

Figure 2-7 History View

Revision Filter: |P.II7'| ? @ 6 {} 4} Q E @ f:}
Date Revision Descripkion
M |m Local Load External State
SayHello.bpel (Yiew-Only) 4 Editor Buffey - SavpHelle. bpel
<7xml wersion = "1.0" encodis <7xml wersion = "1.0" encodi
<" <"
SALFS ST RFFI T AR I 7 AFF 1 SAEFS ST PRSI RI P AFRI L
Oracle JDewveloper BPEL Des Oracle Jheveloper BPEL Des
- Created: Sat Apr 21 12:32: Created: Sat Apr 21 12:32:
duthor: nlkenned duthor: nlkenned
Purpose: Synchronous BEPEL Purpose: Synchronous BEPEL
FAEFEST TP ST i i i idy FAEEEST TP ST Ed i i iy
- - -
Design Sourcé Histary

2-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Introduction to the Oracle BPEL Designer

Note: If you want to learn more about the History view, place the
cursor in this section and press F1 to display online Help.

2.2.5 Component Palette

Activities are the building blocks of the BPEL process service component. The BPEL
Activities selection of the Component Palette displays a set of activities that you drag
into the Design window of the BPEL process service component. The Component
Palette is context-aware and only displays those pages relevant to the state of the
Design window. BPEL Activities or BPEL Services are nearly always visible.
However, if you are designing a transformation in a transform activity, the
Component Palette only displays selections relevant to that activity, such as String
Functions, Mathematical Functions, and Node-set Functions.

Figure 2-8 shows the BPEL Activities selection of the Component Palette. This list
enables you to select activities to drag into your BPEL process service component.

Figure 2-8 Component Palette - BPEL Activities

|BrPEL ~|

& @

“ BPEL Activities and Comp. ..

— Activities and Components -
ﬁga EPEL Process

<3| Business Rule

@ Hurnan Task

<2 Mediator

— BPEL Activities

S| Assign

5| Bind Entity

| Compensate

Ernail

Ernpky

@ Fax

0 Flow

¢$m Flowal
Em
Irwvoke

T

Figure 2-9 shows the BPEL Services selection of the Component Palette. This list

enables you to drag adapters, partner links, or decision services into your BPEL
process service component.

Overview of SOA Component Editors 2-9

Introduction to the Oracle BPEL Designer

Figure 2-9 Component Palette - Services

|BrPEL ~|

&8 (%]
|+ BPEL Activities and Comp...

* BPEL Services

{é‘ﬁ A Adapter

g B8

4% BAM Adapter

{‘E Database Adapter

{% File Adapter

{ij FTP Adapter

48, M5 Adapter

% M0 Adapter

{% Cracle Applications

jl{ Partner Link (Web Service/adap

Note: If you want to learn more about the Component Palette, place
the cursor in this section and press F1 to display online Help.

2.2.6 Property Inspector

The Property Inspector enables you to view details about an activity. Single-click an
activity in the Design window. For example, single-clicking the replyOutput receive
activity displays the information shown in Figure 2-10.

Figure 2-10 Property Inspector

‘= |BFEL Messages - Log @replyOutput - Property Inspectar

&, E(8) /7@
joinCondition: | il
namne; | replyOutput
operation: | process
partnerLink: | client
wariable: | oukputY ariable

2.2.7 Structure Window

The Structure window offers a structural view of the data in the BPEL process service
component currently selected in the Design window. You can perform a variety of
tasks from this section, including:

» Importing schemas
= Defining message types

» Managing (creating, editing, and deleting) elements such as variables, aliases,
correlation sets, partner links, and sensors

» Creating activities in the BPEL process flow sequence using the Structure window

Figure 2-11 shows the Structure window.

2-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Introduction to the Oracle Mediator Editor

Figure 2-11 Structure Window (Expanded)

=creditRating.bpel - Structure X =)
5
T @ & /R

% CreditRating.bpel

(-] variables

D Message Types

[Correlation Sets

-] Schemas

=] /b Servi

E}D Activity Structure

. gk Process - CreditRating
[Properties

71 Property Aliases

-] Sensaors

Notes:

= If you want to learn more about the Structure window, place the
cursor in this section and press F1 to display online Help.

= Do not import two schema files with the same name into a BPEL
process service component. Ensure that the files have unique
names.

2.2.8 Log Window
The Log window displays messages about the status of validation and compilation. If
deployment is unsuccessful, messages appear that describe the type and location of
the error.

Note: If you want to learn more about the Log window, place the
cursor in this section and press F1 to display online Help.

For more information about BPEL, refer to Part II, "Using the BPEL Process Service
Component".

2.3 Introduction to the Oracle Mediator Editor

You can create a Mediator in the SOA composite application of Oracle JDeveloper and
then design it by using the Mediator Editor, which is displayed when you double-click
a Mediator in SOA Composite Editor.

Figure 2-12 shows the Mediator Editor along with Application Navigator, Structure,
and Messages windows.

Overview of SOA Component Editors 2-11

Introduction to the Oracle Mediator Editor

Figure 2-12 Mediator Editor Window

Application Navigator

% Oracle JDeveloper 1 g Technalogy Preview - CustomerApplication.jws : CustInfoComposite.jpr
Flle Edit Yiew Se

Foaag 9¢

rch Mavigate Run Debug Refactor WVersioning Tools Window

XER O O H- ¥ da-

Help

Mediator Editor

Pr-rS-dEi@ PR RFhe

SEIE:

@ appication Navigator 2 offcomposkesml | @ CustomerDataRouter mplan =
=] Customerapplication v & - @
= Frojects T~
e tojec Q@Y= <% Mediator
= [3] CustinfoComposte
- {1 50A Content Naria: CustomerDataRouter
WSDL File: ReadFie.wsdl ()
Part Type: ReadFile_ptt
B[] sl Callback Port Type:
o|fg composite.xmi
480 CustomerDatsRouter componentType
<& CustomerDataRouter.mplan = &g Routing Rules
[#3] ReadFile_file.jca "
@] readrie.wsdl AW Cparotions LR
i [ea] wirkeFie_fie.jca
—
wrikeFie, wsd| -0 ReadFile Priority |4 (5| [yalidate Schema o+ b 3¢
b Applcation Resources
» Data Controls
b Recently Opened Files
e
x @ Design | Source | Histor
-] Warnings (1) -
() Generated by Orade 50... [Ems 4 og B composite.xmi - Property Inspector o
[ER Btediator
Source | Design Messdoes || Extensio b=
pened nodes (16); Saved nodes(1) | Sele cted: Mediator
Log
Structure Window History Property
Window Window Inspector
Source
Window

Each section in the Mediator Editor window enables you to perform specific design
and deployment tasks. The main sections of the Mediator Editor are described in the

following list:

2.3.1 Application Navigator

The Application Navigator shown in the upper left part of Figure 2-12 displays the
Mediator files. Figure 2-13 shows the files that appear under the SOA Content folder

when you create a Mediator in a SOA Composite application.

Figure 2-13 Mediator Files in Application Navigator
=

l
-
Bl V-~

Application MNavigator

! CustApplication

 Projects

E|--- CustomerProject
=-{_7] 504 Content

H1-[7 SCA-IMF

[testsuites

{ﬁ, CuskomerDataRouker . componentType
a@ CustomerDataRouter mplan
CuskomerDataRouter wsdl

2-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Introduction to the Oracle Mediator Editor

As shown in Figure 2-13, a SOA Composite application consists of the following
Mediator files:

m Composite.xml: The file that describes the entire SOA composite application.

s .componentType: The.componentType file describes the services and
references for a service component.

s .mplan: The.mplan file contains Mediator metadata.

s .wsdl: A Web Service Description File (WSDL) file specifies how other services call
a Mediator. A WSDL file defines the input and output messages and operations of
a Mediator.

2.3.2 Mediator Editor

The Mediator Editor provides a visual view of the Mediator that you have created.
This view is displayed when you perform one of the following actions:

= Double-click a Mediator in the SOA Composite Editor.

= Double-click the.mplan file name in the Application Navigator.

2.3.3 Source View

The Source View enables you to view the source code of a Mediator. Click Source at
the bottom of the Design window, to view to source code. The code in the source view
is immediately updated to reflect the changes in a Mediator.

The following example shows a sample Mediator source code:

<?xml version = '1.0' encoding = 'UTF-8'?>

<!--Generated by Oracle SCA Modeler version 1.0 at [4/16/07 10:05 PM].-->
<Mediator name="CustomerDataRouter"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://xmlns.oracle.com/sca/l.0/mediator"/>

2.3.4 History Window

The History window enables you to perform tasks as viewing the revision history of a
file and viewing read-only and editable versions of a file side-by-side. Click History at
the bottom of the Design window, to open the History window. Figure 2-14 shows the
History view for a Mediator file.

Overview of SOA Component Editors 2-13

Introduction to the Human Task Editor

Figure 2-14 History Window

Rewvision Filker: |.°.II v| TR +48¢ H % £

Drate Revision Description

1 Tm Local Load Exkernal Skate

CustomerDataRouter . mplan {View-0nly) I3 File on Disk - CustomerDataRouter, mplan (Editable)
xml wersion = 'l.0' encoding = 'UT ¥ml wersion = 'l.0' encoding = 'UT
-—Generated by Oracle 5C4 Modeler —-Generated by Oracle 3C&4 Modeler

Elediat,or name="Custonerbatakouter”™ E||3|iiat,|:n:‘ name="Custonerbatakouter”
<operation name="execute” deliver <operation name="execute” deliver
Hediator- Hediator-

Design | Source | Hiskary

2.3.5 Property Inspector

The Property Inspector enables you to view details about Mediator properties.

2.3.6 Structure Window

The Structure Window provides a structural view of the data of a Mediator.

2.3.7 Log Window
The Log Window displays messages about the status of validation and compilation.

For more information about Mediator, refer to Part III, "Using the Oracle Mediator
Service Component".

2.4 Introduction to the Human Task Editor

You can create a human task service component in the SOA composite application of
Oracle JDeveloper and then design it by using the Human Task Editor, which is
displayed when you double-click a human task in the SOA Composite Editor.

The Human Task Editor consists of the following main sections shown in Figure 2-15.
These sections enable you to design the metadata of a human task.

2-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Introduction to the Human Task Editor

Figure 2-15 Human Task Editor

Task Title ===t J3 Human Task

Tith: Text and XPath + | .ﬁDNOvaI Required for Order 1d: <% /task:taskftask:payloaditaskorderldsh > | (4]

Description:

Outcoenes: | APPROVE,REJECT @, Category: By Expression = A

Priceity: 3 { Mormal) - Cwner: | User - Skatic w | G}

Parameters Section === 5 Parameters +/ %
Mariig Elestar of Type Editabis
crderld | 4ntpe v w300 2001 (XML Sehema} string
b 24 - -

Assignment and Routing Policy Section == [§F Assignment and Routing Policy il it Aw - S R

Expiration and Escalation Policy Section s ‘G* Expiration and Escalation Policy
Notification Settings Section == [Notification Settings +* %
Advanced Settings Section s W Advanced Settings

Annotations Section s [Annotations

The main sections of the Human Task Editor are described in the following list:

2.4.1 Task Title
This section enables you to specify details such as the task title, description, task
outcomes, task category, task priority, and task owner.

2.4.2 Parameters

This section enables you to define the structure (message elements) of the task payload
(the data in the task) defined in the XSD file. Figure 2-16 describes the Parameters
section of the Human Task Editor.

Figure 2-16 Human Task Editor — Parameters Section

(=1 @ Parameters Eﬂ' / ®
Mame Element or Type Editable
orderld _] Jhtkp: S, w3, orgf 2001 EMLSchemalstring

2.4.3 Assignment and Routing Policy

This section enables you to assign participants to the task and create a policy for
routing the task through the workflow.

Figure 2-17 shows the Assignment and Routing Policy section of the Human Task
Editor.

Overview of SOA Component Editors 2-15

Introduction to the Human Task Editor

Figure 2-17 Human Task Editor — Assignment and Routing Policy Section

s+

—}H
Bal
o

T A @ G X

E:

= :‘F Assignment and Routing Policy

Task will go From starting ko final participant /

+ +

ggg Approver 3 default. Participant1
|

2.4.4 Expiration and Escalation Policy

This section enables you to specify the expiration duration of a task.

Figure 2-18 shows the Expiration and Escalation Policy section of the Human Task
Editor.

Figure 2-18 Human Task Editor — Expiration and Escalation Policy Section

= @ Expiration and Escalation Policy

Escalate after + I

(%) Fixed Duration Day “E”%I Hour “E”}I Minutes “E”}I Maximumn Escalation Levels D
7 —, Highest Approver Title: -]
(_) By Expression | | M ls) PP |_|

Use Due Date

ooy [o 14 o [5 s [o

By Duraktion +

2.4.5 Notification Settings

This section enables you to create and send notifications when a user is assigned a task
or informed that the status of the task has changed.

Figure 2-19 shows the Notification Settings section of the Human Task Editor (when
fully expanded).

2-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Introduction to the Human Task Editor

Figure 2-19 Human Task Editor — Notification Settings Section

= 'y Naotification Settings %+ %
Task Status Recipient Motification Header
Assign Assignees /
Complete Initiator /
Errar Qwner Va
|Nn reminders hd |
Encading: |UTF-8 vl

[Make netifications secure {excude detalls)
[] Make notification actionable

[] 5end task attachments with email notifications
= Notification header attributes

Marme: Value 4 ¥

2.4.6 Advanced Settings

This section enables you to specify advanced design features for the Human Task
Editor.

Figure 2-20 shows the advanced settings section of the Human Task Editor.

Figure 2-20 Human Task Editor — Advanced Settings Section

- % Advanced Settings

Specify Escalation Rule, | |

Specify WordhL stylesheet For attachments., | | Q,
Specify stylesheet for aktachments., | | Q
Specify multiingual settings. | Configure Resource. ., |
Specify callback class on kask status, | Configure CallBacks. .. |
Specify workflow signature policy, | Configure Policy... |
Cverride default access to task content and actions | Configure Yisibility. .. |
Specify Festricked Assignment | Configure Restricted Assignments. .. |

[Allow task and routing customization in BPEL callbacks

[] Show Complete Graphical Histary

2.4.7 Annotations

This section enables you to label different attributes of the task definition. Annotations
are used with Oracle Business Process Analysis. Annotations are used to label different
attributes of the task definition.

For more information on using the main sections of the Human Task Editor to create
workflow tasks, see Chapter 25, "Designing Human Tasks."

Overview of SOA Component Editors 2-17

Introduction to the Business Rules Designer

2.5 Introduction to the Business Rules Designer

You can create a business rules service component in the SOA composite application of
Oracle JDeveloper and then design it by using the Business Rules Designer, which is
displayed when you double-click a business rule in the SOA Composite Editor.

The Business Rules Designer consists of the following main sections shown in
Figure 2-21. These sections enable you to work with business rules in Oracle
JDeveloper.

Figure 2-21 Rules Designer in Oracle JDeveloper

Application Navigator Rules Designer Window
(& Applcation Navigator (=] oficomposite.xml | {@rCradeRules].res =
[Testz ~EH- @v % e EO 4 @
Froj... &) B8 V- &~ 3 Fact
=- (] Frofect: b # Ruleset_1 % [|Elter On Yiew: | IFTHENR...» e ~ 3¢ T2 0 55 60 & w0
=20 50w Content: Jic Functions
() classes () Glebale
[testsutes = To create a Rule or Decision Table, please click the plus sign above.
- s {2 Bucketsets
®-(0 D ks
|7 Business Rules

ofE compesite. ol 2 Bt
G OratleRulest compo Rulesets b 3¢
[e2] Oradenudes! decs

& Ruleset_1
Apphication Resouncas
Data Controls
Recently Opened Fies
= —— &
Window —rcrssssst e LG oo
o+ 3 [E]Business Rule -Log § | 8]
] + /% || (D victienary - OraceRuiest nues 7] isplay New Warnings First
| I Dictionary - Orackefules] ruled Message Dictionary Object Froperty
| |62 Facts
| [0 Functions
] Globals
| Bucketsets
) Links
[Descision Functions
|) Rulessts
S0 Warnings: 0 Last Validation Time; 7:35:17 &M FOT
| | Mescages Business Rubs Yabdation Feadback 4=

Log Window

The main sections of the Business Rules Designer are described in the following list:

2.5.1 Application Navigator

The Application Navigator displays the files in the project. Each project can only
contain one composite. But each composite can have multiple components of either the
same type or different types (Business Rules, BPEL process, Oracle Medjiator, and
human workflow).

As you design business rules, additional files, folders, and elements can appear in the
Application Navigator.

2.5.2 Rules Designer Window

The Rules Designer window provides a visual view of the selected dictionary
component. You use the Rules Designer navigation tabs to select different parts of the
dictionary that you want to work with. The rules designer window displays when you
perform one of the following actions:

= Inacomposite, double-click a Business Rule component.
= Double-click the Business Rule component in the SOA Composite Editor.

= Ina BPEL process, double click a business rule.

2-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Introduction to the Business Rules Designer

s In the application navigator, double-click a business rules dictionary file (a file
with the .rules extension)

s Click the Design tab with a .rules file selected.
Table 2-2 describes where you can find information about working with a dictionary

with Rules Designer.

Table 2-2 Rules Designer Navigation Areas Descriptions

Rules Designer

Navigation Tab Description
Facts Facts are the objects that rules reason on.
Functions A function, in Oracle Business Rules, refers to the standard

mathematical functions.

Globals A global, in Oracle Business Rules, is similar to a public static
variable in Java.

Bucketsets Bucketsets define the data types of fact properties.

Links Links are used to link to a dictionary in the same application or in

another application.

Decision Functions A Decision Function is a function that is configured declaratively,
without using RL Language programming.

Rulesets with Rules and A ruleset provides a unit of execution for rules and for Decision
Decision Tables Tables. A Decision Table provides a mechanism for describing data
processing tasks.

For more information about the Rules Designer navigation areas and its descriptions,
see Oracle Fusion Middleware User's Guide for Oracle Business Rules.

2.5.3 Structure Window

The Structure window offers a structural view of the data in the Business Rule
dictionary currently selected in the Rules Designer window. You can perform a
variety of tasks from this section, by selecting an element and right-clicking on the
element, including:

= Managing (creating, editing, refreshing, and deleting) elements such as facts,
functions, globals, bucketsets, dictionary links, and decision functions

= Accessing rulesets, rules, and Decision Tables

Figure 2-22 shows the Structure window.

Figure 2-22 Structure Window with Rules Designer Dictionary

.= DOracleRules1.rules - Structure =]
g

@ +/ %
5] Dictionary - OracleRulest rules

(- [Facts

----- D Functions

[Glohals

[Bucketsets

-7 Links

~[] Decision Functions

B3 Rulesets

Overview of SOA Component Editors 2-19

Introduction to Oracle Enterprise Manager

2.5.4 Business Rule Validation Log Window

Rules Designer displays the status of dictionary validation in the business rule
validation log, as shown in Figure 2-23.

When a dictionary is invalid, Rules Designer produces a list of warning messages and
lists the associated dictionary objects that you can use to locate the dictionary object
and to correct the problem. You can safely ignore the validation warnings that you see
when you create rules using Rules Designer. The validation warnings are removed as
you create the rules, but are shown during the intermediate steps. To test or deploy
rules, the associated dictionary must not display warnings.

For more information on business rules validation, see Oracle Fusion Middleware User's
Guide for Oracle Business Rules.

Figure 2-23 Rules Designer Business Rule Validation Log

Business Rule ¥alidation - Log I E]
[55]) Dictionary - QracleRules], rules [+7] Display News Warnings First
Message Dictionary Object Property
SDK Warnings: 0 Last Yalidation Time: 7:35:17 AM PDT
Messages Business Rule Yalidation Feedback. [)=]

2.6 Introduction to Oracle Enterprise Manager

You can configure, monitor, and manage your SOA composite application during
runtime from Oracle Enterprise Manager Fusion Middleware Control Console.

Figure 2-24 shows the Oracle Enterprise Manager Fusion Middleware Control Console
with the Deployed Composites tab displayed.
Figure 2-24 Oracle Enterprise Manager Fusion Middleware Control Console

ﬁ soa-infra @ Logged in as weblogic |Host sta00573,us,oracle.com
%E S04 Infrastructure « Page Refreshed Feb 19, 2009 12:23:42 PM PST ($]

Dashboard D Instances | Faulks and Rejected Messages

The Following SOA composite revisions are currently deploved, To deploy a new composite revision, click Deploy, To perform additional tasks, select a composite .’é)
and click the appropriate button, =

ESearch
Composite

Search || Reset

Shaw anly active composites [[]

Wiew w Stark Up... | Activate ... | Set As Defadlt ... Deploy... | Undeploy... | Redeploy...

Composite Status Mode Instances Faults Last Modified Date
@ Hellowworld [1.0] ﬁ Active o 0 Feb 19, 2009 2:30:39 AM
@ FODOrderProcessingComposite [1.0] ﬁ Active 2 4 Feb 18, 2009 2:16:46 AM
@ AutoloanComposite [1.0] ﬁ Active 1 0 Feb 17, 2009 12:26:40 AM
@ FaultFlow [1.0] ﬁ Ackive 200 199 Feb 16, 2009 10:37:12 PM
@ RecoveryUnitTest [1.0] ﬁ Active 1 0 Feb 16, 2009 3:34:55 AM
@ CompositeTest [1.0] ﬁ Active a1 1 Feb 16, 2009 3:31:09 AM
@ EventMediatorDema [1.0] ﬁ Active 17 36 Feb 15, 2009 10:48:23 PM
@ FabricTestSimple [1.0] ﬁ Active 27 0 Feb 15, 2009 10:40:53 PM
@ TestResubmit [2.0] ﬁ Active 26 50 Feb 15, 2009 9:51:33 PM

2-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Introduction to Oracle Enterprise Manager

For more information about Oracle Enterprise Manager, see Oracle Fusion Middleware
Administrator’s Guide for Oracle SOA Suite.

Overview of SOA Component Editors 2-21

Introduction to Oracle Enterprise Manager

2-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

3

Introduction to the SOA Sample Application

The WebLogic Fusion Order Demo module of the Fusion Order Demo application
demonstrates various capabilities of Oracle SOA Suite and is used as an example
throughout this guide.

The role of this module is to process the orders of a hypothetical web shopping
storefront.

This chapter includes the following sections:

» Section 3.1, "Introduction to the WebLogic Fusion Order Demo Application"
» Section 3.2, "Setting Up the WebLogic Fusion Order Demo Application”

» Section 3.3, "Taking a Look at the WebLogic Fusion Order Demo Application”

3.1 Introduction to the WebLogic Fusion Order Demo Application

The WebLogic Fusion Order Demo application is part of a larger sample application
called the Fusion Order Demo application. In this larger sample application, Global
Company sells electronic devices through many channels, including a web-based
client application. Electronic devices are sold through a storefront-type web
application. Customers can visit the web site, register, and place orders for the
products.

There are two parts to the Fusion Order Demo: the Store Front module and the
WebLogic Fusion Order Demo module.

3.1.1 The Store Front Module

The Store Front module provides a rich Ul built with Oracle Application Development
Framework to show how to combine an easily built AJAX user interface with a
sophisticated SOA composite application. It is based on Oracle ADF business
components, ADF model data bindings, and ADF faces.

The Store Front module uses a scenario in which customers can visit a web site to
register and place orders for products.

Figure 3-1 shows the Home page of the Store Front module user interface. It shows the
featured products that the site wishes to promote and gives access to the full catalog of
items. Products are presented as images along with the name of the product. Page
regions divide the product catalog area from other features that the site offers.

Introduction to the SOA Sample Application 3-1

Setting Up the WebLogic Fusion Order Demo Application

Figure 3—-1 Home Page of the Store Front Module User Interface

shopping Cart Summary

Four Cartis Emply

For more information about the Store Front module, see Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework.

3.1.2 The WebLogic Fusion Order Demo Module

This sample application shows how to use the SOA paradigm and Oracle SOA Suite to
integrate a number of applications into one cohesive ordering system. The integrated
applications can be both internal and external to an enterprise.

Oracle SOA Suite components used by the WebLogic Fusion Order Demo are:
s Oracle Mediator

s Oracle BPEL Process

s Human Task

= Oracle Business Rules

s Oracle User Messaging Service

Samples demonstrating the use of these components can be found at:
http://www.oracle.com/technology/sample_code/products/soa

Once an order has been placed by using the Store Front module, the WebLogic Fusion
Order Demo application processes the order. When processing an order, it uses various
internal and external applications, including a customer service application, a credit
validation system, and both an internal vendor and external vendor. For example, the
internal vendor (Warehouse) and external vendor (PartnerSupplier), are sent
information for every order. As part of the order process, they each return a price for
which they would supply the items in the order. A condition in the process determines
which supplier will be assigned the order.

As it is being processed by the WebLogic Fusion Order Demo module, the order can be
monitored by using the Fusion Middleware Control Console.

For information about SOA composite applications, see Chapter 1, "Introduction to
SOA Composite Applications".

3.2 Setting Up the WebLogic Fusion Order Demo Application

To set up the WebLogic Fusion Order Demo, you need to download the application
resources, then install and run the WebLogic Fusion Order Demo module. For specific
instructions on setting up your development environment and running the WebLogic

3-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Taking a Look at the WebLogic Fusion Order Demo Application

Fusion Order Demo application, see Oracle Fusion Middleware Tutorial for Running and
Building an Application with Oracle SOA Suite.

Note: You download the application resources to a directory that is
referred to in this document as DEMO_DOWNLOAD_HOME. When you
create the WebLogicFusionOrderDemo application, you will create the
application in a working application directory, such as C: \fod. You
will copy needed files from the DEMO_DOWNLOAD_HOME directory to
the working application directory.

3.3 Taking a Look at the WebLogic Fusion Order Demo Application
After you have set up the WebLogic Fusion Order Demo application, spend time
viewing its artifacts in JDeveloper.

To open the WebLogic Fusion Order Demo in JDeveloper:
1. From the JDeveloper main menu, choose File > Open.

2. In the Open dialog, browse to DEMO_DOWNLOAD_HOME/CompositeServices
and select WebLogic Fusion Order Demo.jws. Click Open.

Figure 3-2 shows the Application Navigator after you open the file for the

application workspace. It displays the project applications of the WebLogic Fusion
Order Demo.

Figure 3—2 Projects of WebLogic Fusion Order Demo Application

Application Mavigator X Q
‘weblLogicFusionOrderDemo - -

Projects &l W E
BamOrderBookingComposite

bin
CreditCardauthorization
COrderdpprovalHumanTask
CrderBookingComposite
OrdersDOCompaosite
PartnersupplierComposite

3.3.1 Project Applications of the WebLogic Fusion Order Demo Application

Table 3-1 lists and describes the projects in the WebLogicFusionOrderDemo
application workspace.

Table 3-1 Projects in the WebLogic Fusion Order Demo Application

Application Description

BamOrderBookingComposite Contains the OrderBookingComposite composite with
Oracle BAM additions. Specifically, it uses the Oracle BAM
adapter and Oracle BAM sensors to send active data into

Oracle BAM dashboard.
bin Contains a build script for deploying all the SOA projects.
CreditCardAuthorization Provides the service needed by

OrderBookingComposite project to verify the credit
card information of a customer.

OrderApprovalHumanTask Provides a task form for approving orders.

Introduction to the SOA Sample Application 3-3

Taking a Look at the WebLogic Fusion Order Demo Application

Table 3-1 (Cont.) Projects in the WebLogic Fusion Order Demo Application

Application Description

OrderBookingComposite The main project of the WebLogic Fusion Order Demo
application described in this guide. It processes an order
submitted in the StoreFront service Ul of Fusion Order
Demo.

OrderSDOComposite Simulates the StoreFrontService service of the StoreFront
application for testing purposes.

PartnerSupplierComposite Contains a composite containing a BPEL process for
obtaining a quote from a partner warehouse. It is
referenced as a service from the composite for the
OrderBookingComposite project.

3.3.2 The composite.xml File

To understand how a composite is put together, take a look at the main project,
namely, OrderBookingComposite, in Oracle JDeveloper. To do this, in Application
Navigator, expand OrderBookingComposite > SOA Content and select
composite.xml. The composite then appears in the SOA Composite Editor in Oracle
JDeveloper, as shown in Figure 3-3.

Figure 3-3 SOA Composite Editor

Boagd 9o XER O -0 % hide- b & A4 (pomdh
dElapplication Navigator 2 [offcomposite.xml & & &
[&] webLogicFusioncrdsrDema B FHREX@ Composite: OrderBooki ite | 504 -
Projects B8 FrE- & Q
-] OrderBockingComposite
-3 Application Sources @) < %) @ | - servee Components
-3 S04 Content ,@ ParnaEEEEy] 4 BPEL Process
-3 bin e [} () ypdateOrder... &2 Business Rule
E g oracle UpdateOrderst... & cep
[services
Operations
B3 testsuites xecite Published: & Human Task
-0 xsd = OrderUpdate Eve <¢ Mediator
] D_ xsl - @ — Service Adapters —
it ApprovalHumanTask. componentType

ADF-BC Service

5 ApprovalHumanTask.task g AQ Adapter

..... o2 composite.xml

:
OrderUpdate...

reditCardAuthorizationService wsdl EEEU o

waluatsPreferredSupplisrRuls_OraclsRulesi_Del ey 4 BAM Adapter

valuatePreferredSupplierRule. component Type OrderUpdateEve: £ Database Adapter

valuatePreferredSupplierRule. decs = {4 File Adapter

e ammin. > @i
) orderProce... 2 £ M5 Adapter

48b Fulflorder.component Type

e FUFlOrder.mplan Subscribed. (> 4? M Adapter
Ulflorder.wsdl OrdlerEvent) {4 Orade Applications
FulFllcrderRef. wsd) b Socket Adapter
InternalwarehouseService. bpel (3) @ 1| 8 websorvee
j InternalarehouseServics componentType (3 !
InternalwarehouseService wsdl T
OrderEventsDefinition.sdl () (% o
. InternalWare...
{ff OrderPendingEvent.componentType (3 |
----- =% OrderPendingEvent.mplan
&, OrderProcessor.bpel e [} () i c
orderprocesso... D
Operations >
process

T =
@

Application Resources

For details about building and running the WebLogic Fusion Order Demo, see Oracle
Fusion Middleware Tutorial for Running and Building an Application with Oracle SOA Suite.

3-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

4

Introduction to the Functionality of the SOA
Composite Editor

This chapter describes the functionality of the SOA Composite Editor by guiding you
through the creation of service components, binding components, and wires in an SOA
composite application. This chapter also describes key issues to be aware of when
designing your application.

This chapter includes the following sections:
= Section 4.1, "Introduction to the SOA Composite Editor"

m Section 4.2, "Designing an SOA Composite Application in Oracle JDeveloper"

4.1 Introduction to the SOA Composite Editor

SOA composite applications consist of the following parts:
= Service binding components

s Composites

= Service components

= Reference binding components

s Wires

For more information about these parts, see Chapter 1, "Introduction to SOA
Composite Applications."

4.2 Designing an SOA Composite Application in Oracle JDeveloper

This section provides an overview of how to create and design an SOA composite
application in Oracle JDeveloper. This overview is intended to guide you through the
basic steps of component creation, along with describing key issues to be aware of
when designing a composite application.

The SOA Composite Editor enables you to use either of two approaches for designing
SOA composite applications.

s The top-down approach
s The bottom-up approach

For more information about both approaches, see Section 1.1, "Introduction to Oracle
SOA Suite." The example is this section describes the top-down approach.

Introduction to the Functionality of the SOA Composite Editor 4-1

Designing an SOA Composite Application in Oracle JDeveloper

For information about designing an end-to-end SOA composite application, see Oracle
Fusion Middleware Tutorial for Running and Building an Application with Oracle SOA Suite.

WARNING: Always save your changes by selecting Save All from
the tool bar menu.

4.2.1 How to Create an Application and a Project
You first create an application for the SOA project.

Note: Oracle SOA Suite is not automatically installed with Oracle
JDeveloper. Before you can create an SOA application and project, you
must download the SOA Suite extension for Oracle JDeveloper (file
name soa-jdev-extension. zip) from the Oracle Technology
Network and import it into Oracle JDeveloper. For instructions on
downloading and installing the SOA Suite extension for Oracle
JDeveloper, see Oracle Fusion Middleware Installation Guide for Oracle
JDeveloper.

To create an application:
1. Start Oracle JDeveloper Studio Edition Version 11.1.1.0.0.

2. If Oracle JDeveloper is running for the first time, specify the location for the Java
JDK.

Figure 4-1 shows how Oracle JDeveloper appears the first time you access it.

4-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Designing an SOA Composite Application in Oracle JDeveloper

Figure 4-1 Oracle JDeveloper

[& Uracle JUeveloper T1g Development Build : Start Page

File Edit ¥iew Application Refactor Search MNavigate Build Run ¥Yersioning Tools Window Help
Gog 90 XEE O-©- 5- hilda- > -&- 14
.C\ppliu:atinn Mawigakar __|Application Server [D ®5tart Page

% Mew Application...

%l Open Application...

Oracle JDeveloper 11¢

Model Application:

Design Databases
= Start Page - Structure =)

Build Applications

Integrate Applications

3. Create a new SOA composite application, as described in Table 4-1.

Table 4-1 SOA Composite Application Creation

If Oracle JDeveloper... Then...

Has no applications In the Application Navigator in the upper left, click New

For example, you are Application > SOA Application.

opening Oracle JDeveloper
for the first time.

Has existing applications From the File main menu:
1. Select New > Applications > SOA Application.
2. Click OK.
From the Application menu:
1. Select New > Applications > SOA Application.
2. Click OK.

This starts the Create SOA Application wizard.

4. Enter the values shown in Table 4-2:

Table 4-2 SOA Composite Application Creation Values
Field Value

Application Name Enter an application name (for this example,
MySOAApplication is entered).

Directory Name Accept the default value or enter a different directory path.

Introduction to the Functionality of the SOA Composite Editor 4-3

Designing an SOA Composite Application in Oracle JDeveloper

Notes:

= Ona UNIX operating system, it is highly recommended that you
enable Unicode support by setting the LANG and LC_All
environment variables to a locale with the UTF-8 character set.
This action enables the operating system to process any character
in Unicode. SOA technologies are based on Unicode. If the
operating system is configured to use non-UTF-8 encoding, SOA
components may function in an unexpected way. For example, a
non-ASClII file name can make the file inaccessible and cause an
error. Oracle does not support problems caused by operating
system constraints.

In a design-time environment, if you are using Oracle JDeveloper,
select Tools > Preferences > Environment > Encoding > UTF-8 to
enable Unicode support. This is also applicable for runtime
environments.

= Do not create applications and projects in directory paths that
have spaces (for example, c: \Program Files).

5. Accept the default values for all remaining settings, and click Next.
The Project Name page of the Create SOA Application wizard appears.

6. Enter a name for the project (for this example, MySOAProject), and click Next.
Note that SOA is automatically selected as the project technology to use.

Note: Composite and component names cannot exceed 500
characters.

A project deployed to the same infrastructure must have a unique name across
SOA composite applications. This is because the uniqueness of a composite is
determined by its project name. For example, do not perform the actions described
in Table 4-3. During deployment, the second deployed project (composite)
overwrites the first deployed project (composite).

Table 4-3 Restrictions on Naming an SOA Project

Create an Application Named... With an SOA Project Named...
Applicationl Projectl
Application2 Projectl

The Project SOA Settings page of the Create SOA Application wizard appears.
7. Select Empty Composite, and click Finish.

The SOA Composite Editor shown in Figure 4-2 appears. The composite.xml file
displays in the Application Navigator. This file is automatically created when you
create a project. This file describes the entire composite assembly of services,
service components, and references. There is one composite.xml file per SOA
project.

4-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Designing an SOA Composite Application in Oracle JDeveloper

Figure 4-2 SOA Composite Editor

Application Mavigator X E] & MySoaapplication, jws D{Ecomposite.xml Iﬁcomposite.xml |”'|tgtomposite.xml Mtgtompl G]E]E] E;C--- sz
_ MyS0aapplication '_ MIEE AN LT @ ‘ 759 HEED Composite: MySOAProject |SOA
~ Projects &Y E- @
E|--- MySOABroject Exposed Services Components External Reference:
ElD S04 Content — Service Compaonents
t.-[7] classes ﬁga BPEL Process
D testsuites 0 Business Rule
&5 Human Task
Mediator
{7 Business Rules < _
______ of2 composite.xnl — Service Adapters —
To begin creating a SOA composite application, @ ADF-BC Service
drag-and-drop a Service Component or an Adapter {ﬁﬁ AQ Adapter
I+ Application Resources from the Component Palette B B2B
| Data Controls <fi BAM Adapter
[+ Recently Opened Files éﬁg Database Adapter
fE composite, xml - Struckure E] @Composite. “
ED{E MySOAProject General
[T Test Suites C— E
Design | Source | Hiskory Rerision: |:
Label: i
[E]BPEL - Log 0 abel |:
Home:
% BPELProcess1.bpel ™ |:
Mode: :
¥Path Type # of Errors ode E
| Iprocess/sequencefinvoke Invoke o State: E

For more information about the sections of the SOA Composite Editor, see
Section 2.1, "Introduction to the SOA Composite Editor."

8. Select Save All from the File main menu.

4.2.2 How to Add a Service Component

You create service components that implement the business logic or processing rules of

your application.

You drag service components into the designer to invoke the initial property editor.
This action enables you to define the service interface (and, for asynchronous BPEL
processes, an optional callback interface).

Table 4-4 describes the available service components.

Table 4-4 Starting Service Component Editors

Dragging This Service
Component...

Invokes The...

BPEL Process

Create BPEL Process dialog: Enables you to create a BPEL process
that integrates a series of business activities and services into an
end-to-end process flow.

Business Rule

Create Business Rules dialog: Enables you to create a business
decision based on rules.

Human Task

Create Human Task dialog: Enables you to create a workflow that
describes the tasks for users or groups to perform as part of an
end-to-end business process flow.

Mediator

Create Mediator dialog: Enables you to define services that
perform message and event routing, filtering, and
transformations.

Introduction to the Functionality of the SOA Composite Editor 4-5

Walidate Schema: |1

Designing an SOA Composite Application in Oracle JDeveloper

The following example describes the procedures to perform when a BPEL process is

dragged into the designer.

To add a service component:
1. From the Component Palette, select SOA.

2. From the Service Components list, drag a BPEL Process into the designer.

The Create BPEL Process dialog appears.
3. Enter the details shown in Table 4-5.

Table 4-5 Create BPEL Process Dialog Fields and Values

Field Value

Name Enter a name (for this example, SayHello is entered).
Namespace Accept the default value.

Template Select Synchronous BPEL Process.

For more information about available templates, see the online

help.

Expose as a SOAP Service Deselect this checkbox. This creates a standalone BPEL process.
If you select this checkbox, a BPEL process and inbound web
service binding component are each created and connected.

When complete, the Create BPEL Process dialog appears as shown in Figure 4-3.

Figure 4-3 Create BPEL Process Dialog

= Create BPEL Pro

BPEL Process =
A BPEL process is a service orchestration, used to describefexecute a business process (or large grained ﬁva
service), which is implemented as a stateful service.
Name: | SavHella |
MNamespace: |http:,l',l'xmlns.oracle.com,l'.ﬂ.pplication1,|'Pr0ject1,|'SaYHello |
Template: |<;‘==.° Synchronous BPEL Process - | a9
Service Mame: |sayhe||0_client |
Expose as a SOAP service
Input: |{http:,l',l'xmlns.oracle.com,l'npplication1,I'Projectl,I'SayHeIIo}process | Q&
Qutput: |-{http:,l',l'xrnlns.oracle.com,l'.ﬂ.pplication1,|'Pr0ject1,I'SayHello}processResponse | Q§

4. Note that the Input and Output fields also appear in the Create BPEL Process
dialog. These fields enable you to select or import specific input and output
schemas from the Type Chooser dialog or SOA Resource Browser dialog,
respectively. For this example, the default schemas are used, which consist of
string input and output values. This schema defines the structure of the message

to submit.

4-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

| Help | | oK | Cancel |

Designing an SOA Composite Application in Oracle JDeveloper

The SOA Resource Browser dialog also provides access to the Resource Palette,
which provides a single dialog from which to share and access schemas in
multiple applications.

Accept the default values for all remaining settings.
Click OK.

The BPEL process displays in the designer shown in Figure 4—4. The single arrow
in a circle indicates that this is a synchronous, one-way BPEL process service
component. An asynchronous process is indicated by two arrows in a circle, with
each pointing in the opposite direction. The two arrows represent an interface and
callback interface.

Figure 4-4 BPEL Process

7.

@ F B X® | BB @O Composite: MySOAProject

Exposed Services Components External References

e

You can more fully define the content of your BPEL process now or at a later time.
For this top-down example, the content is defined now.

Select Save All from the File main menu.

4.2.3 What You May Need to Know About Adding and Deleting a Service Component

Note the following details about adding service components:

A service component can be created from either the SOA Composite Editor or the
designer of another component. For example, you can create a human task
component from the SOA Composite Editor or the Oracle BPEL Designer.

The Resource Palette can be used to browse for service components defined in the
SOA Composite Editor, and those deployed. A reference and wire are created
when a service component from the SOA Composite Editor or from the deployed
list is used.

Note the following details about deleting service components:

You can delete a service component by right-clicking it and selecting Delete from
the context menu.

Introduction to the Functionality of the SOA Composite Editor 4-7

Designing an SOA Composite Application in Oracle JDeveloper

s When a service component is deleted, all references pointing to it are invalidated
and all wires are removed. The service component is also removed from the
Application Navigator.

= A service component created from within another service component can be
deleted. For example, a human task created within the BPEL process service
component of Oracle JDeveloper can be deleted from the SOA Composite Editor.
In addition, the partner link to the task can be deleted. Deleting the partner link
removes the reference interface from its . componentType file and removes the
wire to the task.

4.2.4 How to Edit a Service Component

To define specific details about the service component, you double-click the service
component to display the appropriate editor, as described in Table 4-6.

Table 4-6 Starting SOA Service Component Wizards and Dialogs

Double-Clicking This

Service Component... Displays The...

BPEL Process Oracle BPEL Designer for further designing.
Business Rule Business Rules Designer for further designing.
Human Task Human Task Editor for further designing.
Mediator Oracle Medjiator Editor for further designing.

To edit a service component:
1. Double-click the SayHello BPEL process.

This opens the BPEL process in editing.

To return to the SOA Composite Editor from within any service component, click
Go to Composite Editor on the tool bar. You can also double-click composite.xml
in the Application Navigator or single-click composite.xml above the designer.

2. Go to the Component Palette in the upper right, as shown in Figure 4-5.

Figure 4-5 Component Palette

ﬁ(:omponent Palette lgPesource P, =]

|BREL v|

& ©
BPEL Activities and Components

| Assign

5| Bind Entity

<1 Compensate
|| Ernail

Ernphy

3. Drag an Assign activity into the designer beneath the receiveInput receive
activity.

4. Double-click the Assign activity.

5. Click the Copy Operation tab.

6. From the dropdown list shown in Figure 4-6, select Copy Operation.

4-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Designing an SOA Composite Application in Oracle JDeveloper

Figure 4-6 Copy Operation Selection

Assign ®

'\ Errors: 1 %

r General r Copy Operation r SEnsors r Annotations |

€|/ %t

Copy Operation, .
@ Append Operation, ..
(@) Insert-After Operation. ..
3 Insert-Before Operation. ..
@ CopyList Operation...
@ Remove Cperation. ..
‘ Rename Operation. ..

From To

7. Enter appropriate details. For this example, the details shown in Table 4-7 are
entered.

Table 4-7 Copy Operation Dialog Fields and Values

Field Value

From

. Type Expression

ms Variables concat('Hello

' bpws:getVariableData('inputVariable','payload’,'/client:SayHe
lloProcessRequest/client:input'))

Note: Press Ctrl+Space to access the XPath Expression Builder.
Scroll through the list of values that appears and double-click
the value you want. As you enter information, a red underscore
can appear. This indicates that you are being prompted for
additional information. Either enter additional information, or
press the Esc key and delete the trailing slash to complete the
input of information.

To
= Type Variable
s Variables Expand and select Variables > Process > Variables >

outputVariable > payload > client:SayHelloProcessResponse >
client:result

8. Click OK to close the Create Copy Operation dialog and the Assign dialog.

9. In the Application Navigator, double-click composite.xml in or single-click
composite.xml above the designer.

This returns you to the SOA Composite Editor.

10. Select Save All from the File main menu.

4.2.5 How to Add a Service

You add a service binding component to act as the entry point to the SOA composite
application from the outside world.

You drag services into the left swim lane to invoke an initial property editor. This
action enables you to define the service interface.

Table 4-8 describes the available services.

Introduction to the Functionality of the SOA Composite Editor 4-9

Designing an SOA Composite Application in Oracle JDeveloper

Table 4-8 Service Editors

Dragging This Service...

Invokes The...

Web service

Create Web Service dialog: Creates a web invocation service.

Adapters

Adapter Configuration Wizard: Guides you through integration of
the service with database tables, database queues, file systems, FTP
servers, Java Message Services (JMS), IBM WebSphere MQ, BAM
servers, sockets, or Oracle E-Business Suite applications.

ADF-BC Service

Create ADF-BC Service dialog: Creates a service data object (SDO)
invocation service.

B2B B2B Wizard: Guides you through selection of a document
definition.
EJB Service Create EJB Service: Creates an Enterprise JavaBeans service for

using SDO parameters with Enterprise JavaBeans.

The following example describes the procedures to perform when a web service is
dragged into the designer.

Notes:

» This section describes how to manually create a service binding
component. You can also automatically create a service binding
component by selecting Expose as a SOAP Service when you
create a service component. This selection creates an inbound web
service binding component that is automatically connected to
your BPEL process, human task service, or Oracle Mediator

component.

= You cannot invoke a representational state transfer (REST) service
from the SOA Composite Editor.

To add a service:

1. In the Component Palette, select SOA.

2. Draga Web Service to the left swim lane.

This invokes the Create Web Service dialog shown in Figure 4-7.

4-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Designing an SOA Composite Application in Oracle JDeveloper

Figure 4-7 Create Web Service Dialog

Web Service %
Create a weh service For services external to the S04 composite,

Mame! | Servicel |

Type: | Service -

WSDL LIRL: | | o]

Port Type: | - |

Callback Port Tvpe: | ~ |

| Help | Cancel

3. Enter the details shown in Table 4-9:

Table 4-9 Create Web Service Dialog Fields and Values

Field Value

Name Enter a name for the service (for this example, Servicel is
entered).

Type Select the type (message direction) for the web service. Since you

dragged the web service to the left swim lane, the Service type is
the correct selection, and displays by default:

= Service (default)

Creates a web service to provide an entry point to the SOA
composite application

s Reference

Creates a web service to provide access to an external
service in the outside world

Since this example describes how to create an entry point to the
SOA composite application, Service is selected.

4. Select the WSDL file for the service. There are three methods for selection:

a. To the right of the WSDL URL field, click the first icon and select an existing
WSDL file from the local file system (for this example, SayHello.wsdl is
selected). Note that File System in the list at the top of the dialog is
automatically selected. Figure 4-8 provides details.

Introduction to the Functionality of the SOA Composite Editor 4-11

Designing an SOA Composite Application in Oracle JDeveloper

Figure 4-8 WSDL File Selection

& SOA Resource Browser [X

["E File: System -]

Location: [D MySOaProject '] @

C3 .designer

(3 classes

(3 SCA-INF

O3 kestsuites

3 xsd

(C3 sl

[E] Mediatort.wsd
[E] Mediator1Ref wsdl
[E] savHelo,wsdl

[E] writeFile. wsdl

File Mame: :..-':.- ello.ws;

File Tvpe: [WSDL Files (* wsdl) v]

b. To the right of the WSDL URL field, click the first icon and select Resource
Palette from the list at the top of the dialog, as shown in Figure 4-9. This
action enables you to use existing WSDL files from other applications.

Figure 4-9 Use of Existing WSDL files from Other Applications

& SOA Resource Browser lz|

[@ Resource Palette -]

E}a Application Server
- @& MyConnection
- 504
E}D{E Project1 [1.0] (soa_serverl)
- bpelprocess1_client_ep
E}D{E Project1 [2.0] (soa_serverl)
----- bpelprocess1_client_ep

------ bpelprocessz_client_ep

|

c. To the right of the WSDL URL field, click the second icon to automatically

generate a WSDL file from a schema. Figure 4-10 shows the Create WSDL
dialog.

4-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Designing an SOA Composite Application in Oracle JDeveloper

Figure 4-10 Automatic Generation of WSDL File

& Create WSDL %]

Specify WSDL message schemars),

rRequest rReply |/Fau|t rCaIIhack |

Define Schema For Mative Format |

URL | wsdfSayHello,xsd | 0

Schema Element | SayHelloProcessRequest - |

Operation Mame: | execute |

Port Type Mame: |executeJ:tt |

Namespace: |http:,l',l'oracle.com,l'sca,l'soapservice,l'MySO.ﬂnppIication,l'MySOAProject,l'Ser\-'ice1 |

File: Marne: |Seruicel wsdl |

| Help | | O J | Cancel |

5. Click OK to return to the Create Web Service dialog.
6. Note the additional details described in Table 4-10:

Table 4-10 Create Web Service Dialog Fields and Values

Field Value
Port Type Displays the port type.
Callback Port Type Disabled, since this WSDL file is for a synchronous service. This

field is enabled for asynchronous services.

7. Click OK.

The SOA composite application now looks as shown in Figure 4-11. The service
deploys in the left swimlane.

Figure 4-11 SOA Composite Application

@ ; N % % ® @ | a ﬁ £y Q R Composite: MySOAPToject

Exposed Services Components External References

&= @ &
Semvicel a

Operations: N SayHello
process

-— 4

Introduction to the Functionality of the SOA Composite Editor 4-13

Designing an SOA Composite Application in Oracle JDeveloper

8. From the File main menu, select Save All.

Note: WSDL namespaces must be unique. Do not just copy and
rename a WSDL. Ensure that you also change the namespaces.

After initially creating a service, you can edit its contents at a later time.
Double-click the component icon to display its appropriate editor or wizard.
Table 4-11 provides an overview.

Table 4-11

Double-Click This Service... To...

Web service Display the Update Service dialog.
Adapters Reenter the Adapter Configuration Wizard.
ADF-BC Service Display the Update Service dialog.

B2B Reenter the B2B wizard.

EJB Service Display the Update Service dialog.

4.2.6 What You May Need to Know About Adding and Deleting Services

Note the following detail about adding services:

= When a new service is added for a service component, the service component is
notified so that it can make appropriate metadata changes. For example, when a
new service is added to a BPEL service component, the BPEL service component is
notified to create a partner link that can be connected to a receive or an
on-message activity.

Note the following detail about deleting services:

= When a service provided by a service component is deleted, all references to that
service component are invalidated and the wires removed.

4.2.7 What You May Need to Know About WSDL References

A WSDL file is added to the SOA composite application whenever you create a new
component that has a WSDL (for example, a service binding component, service
component (for example, Oracle Mediator, BPEL process, and so on), or reference
binding component. When you delete a component, any WSDL imports used by that
component are removed only if not used by another component. The WSDL import is
always removed when the last component that uses it is deleted.

When a service or reference binding component is updated to use a new WSDL, it is
handled as if the interface was deleted and a new one was added. Therefore, the old
WSDL import is only removed if it is not used by another component.

If a service or reference binding component is updated to use the same WSDL
(porttype gname), but from a new location, the WSDL import and any other WSDL
reference (for example, the BPEL process WSDL that imports an external reference
WSDL) are automatically updated to reference the new location.

Simply changing the WSDL location on the source view of the composite.xml file’s
import is not sufficient. Other WSDL references in the metadata are required by the
user interface (see the ui:wsdlLocation attribute on composite and componentType
services and references). There can also be other WSDL references required by runtime
(for example, a WSDL that imports another WSDL, such as the BPEL process WSDL).

4-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Designing an SOA Composite Application in Oracle JDeveloper

Always modify the WSDL location though the dialogs of the SOA Composite Editor in
which a WSDL location is specified (for example, a web service, BPEL partner link,
and so on). Changing the URL’s host address is the exact case in which the SOA
Composite Editor automatically updates all WSDL references.

4.2.8 What You May Need to Know About Invoking the Default Revision of a Composite

A WSDL URL that does not contain a revision number is processed by the default
composite application. This action enables you to always call the default revision of
the called service without having to make other changes in the calling composite.

If you want your WSDL to be processed by the default composite application, but the
WSDL URL includes a revision number, you can manually remove it.

Not doing so results in the hard-coded references of the revision number of the service
being called in the calling composite. This binds it to always call that particular
revision even if the default revision of the called service changes after deployment.

1. In the SOA Composite Editor, double-click the reference binding component that
contains the WSDL revision number to remove.

The Update Reference dialog appears.
2. Click the icon to the right of the WSDL URL field.
The SOA Resource Browser dialog appears.
3. Select Resource Palette from the list at the top of the dialog.

4. Expand the nodes under the appropriate application server connection to list all
deployed composites and revisions.

5. Select the appropriate endpoint and click OK.
Your selection displays in the WSDL URL field.

6. Remove everything between the ! and / symbols. For example, assume the
revision number is 3 . 0. Change:

http://pdentl2.us.oracle.com:8001/soa-infra/services/default/
VersionedComposite!3.0*e295c89a-b198-4835-abl6-a3a250d3bd6c/
Mediatorl_ep?WSDL

to:

http://pdentl2.us.oracle.com:8001/soainfra/services/default/
VersionedComposite/Mediatorl_ep?WSDL

The WSDL reloads.
7. Select port types appropriate to your environment.
8. Click OK.

This action enables your WSDL file to be processed by the default composite
application.

4.2.9 How to Wire a Service and a Service Component

You wire (connect) the web service and BPEL process service component. Note the
following:

Introduction to the Functionality of the SOA Composite Editor 4-15

Designing an SOA Composite Application in Oracle JDeveloper

= Since the web service is an inbound service, a reference handle displays on the
right side. Web services that are outbound references do not have a reference
handle on the right side.

= You can drag a defined interface to an undefined interface in either direction
(reference to service or service to reference). The undefined interface then inherits
the defined interface. There are several exceptions to this rule:

- A component has the right to reject a new interface. For example, a mediator
can only have one inbound service. Therefore, it rejects attempts to create a
second service.

- You cannot drag an outbound service (external reference) to a business rule
because business rules do not support references. When dragging a wire, the
user interface highlights the interfaces that are valid targets.

= You cannot wire services and composites that have different interfaces. For
example, you cannot connect a web service configured with a synchronous WSDL
file to an asynchronous BPEL process. Figure 4-12 provides details.

Figure 4-12 Limitations on Wiring Services and Composites with Different Interfaces

Ditferent interfaces
Senvice1

O perations:
proce ss

BPELProces...
LD

e O |

The service and reference must match, meaning the interface and the callback
must be the same. If you have two services that have different interfaces, you can
place a mediator between the two services and perform a transformation between
the interfaces.

To wire a service and a service component:
1. From the Servicel reference handle, drag a wire to the SayHello BPEL process

interface, as shown in Figure 4-13.

Figure 4-13 Wire Connection

CYRC

Senvice1 \‘ ljgh
Operations: h SayHello A

process [e D

2. Create additional service components and wire them, as needed.

For more information about composite.xml file contents, see Section 4.2.11,
"How to Add a Reference."

3. Select Save All from the File main menu.

4.2.10 What You May Need to Know About Adding and Deleting Wires

Note the following details about adding wires:

4-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Designing an SOA Composite Application in Oracle JDeveloper

= A service component can be wired to another service component if its reference
matches the service of the target service component. Note that the match implies
the same interface and callback interface.

= Adding the following wiring between two mediator service components causes an
infinite loop:

— Create a business event.

— Create a mediator service component and subscribe to the event.

— Create a second mediator service component to publish the same event.
— Wire the first mediator to the second mediator component service.

If you remove the wire between the two mediators, then for every message, the
second mediator can publish the event once and the first mediator can subscribe to
it.

Note the following details about deleting wires:

s When a wire is deleted, the component's outbound reference is automatically
deleted and the component is notified so that it can clean up (delete the partner
link, clear routing rules, and so on). However, the component's interface is never
deleted. All Oracle SOA Suite services are defined by their WSDL interface. When
a component's interface is defined, there is no automatic deletion of the service
interface in the SOA Composite Editor.

If you want to change the service WSDL interface, there are several workarounds:

— In most cases, you just want to change the schema instead of the inbound
service definition. In the SOA Composite Editor, click any interface icon that
uses the WSDL. For example, you can click the web service interface icon or
the Oracle Mediator service icon. This invokes the Update Interface dialog,
which enables you to change the schema for any WSDL message.

- If you are using an Oracle Mediator service component, the Refresh
operations from WSDL icon of the Oracle Mediator Editor enables you to
refresh (after adding new operations) or replace the Oracle Mediator WSDL.
However, you are warned if the current operations are to be deleted. If you
change the WSDL to the new inbound service WSDL using this icon, the wire
typically breaks because the interface has changed. You can then wire Oracle
Mediator to the new service.

- Inmany cases, a new service requires a completely new Oracle Mediator.
Delete the old Oracle Mediator, create a new one, and wire it to the new
service.

- If you are using a BPEL process service component, select a new WSDL
through the Edit Partner Link dialog.

See Section 4.2.14, "How to Update Message Schemas of Components (Optional)"
for details about the Update Interface dialog.

4.2.11 How to Add a Reference

You can add reference binding components that enable the SOA composite application
to send messages to external services in the outside world.

You drag references into the right swim lane to invoke the initial property editor. This
action enables you to define the service interface.

Table 4-12 describes the available references.

Introduction to the Functionality of the SOA Composite Editor 4-17

Designing an SOA Composite Application in Oracle JDeveloper

Table 4-12 Reference Editors

Dragging This Service...

Invokes The...

Web Service

Create Web Service dialog: Creates a web invocation service.

Adapters

Adapter Configuration Wizard: Guides you through integration
of the service with database tables, database queues, file
systems, FIP servers, Java Message Services (JMS), IBM
WebSphere MQ, BAM servers, sockets, or Oracle E-Business
Suite applications.

ADF-BC Service

Create ADF-BC Service dialog: Creates a service data object
(SDO) invocation service.

B2B B2B Wizard: Guides you through selection of a document
definition.
EJB Service Create EJB Service dialog: Creates an Enterprise JavaBeans

service for using SDO parameters with Enterprise JavaBeans.

The following example describes the procedures to perform when a file adapter is

dragged into the designer.

To add a reference:

1. In the Component Palette, select SOA.

2. Drag a File Adapter to the right swim lane.

This launches the Adapter Configuration wizard.

3. Provide appropriate responses to the dialogs that appear. For example, to
configure the file adapter to write to a file in a directory, you are prompted to:

m Select to write to a file.

= Specify the directory in which to write the outgoing file.

= Specify the schema file location.

When complete, the designer looks as shown in Figure 4-14:

Figure 4-14 Design Completion of SOA Composite Application

Exposed Services

R @
Service1
Operations:

process

Components External References

@c

ﬁgﬁ WriteFile {%
O O perationS:
Wiite

4-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Designing an SOA Composite Application in Oracle JDeveloper

For more information about how creating partner links within a BPEL process
service component impacts how partner links display in the SOA Composite
Editor, see Section 5.4, "Creating a Partner Link."

Double-click the SayHello BPEL process.

Complete the remaining portions of the BPEL process design:
s Create an invoke activity to invoke the partner link

» Create a variable

= Assign a return value to the variable

Select Save All from the File main menu.

After initially creating a reference, you can edit its contents at a later time.
Double-click the component icon to display its appropriate editor or wizard. See
Table 4-11 for an overview.

4.2.12 What You May Need to Know About Adding and Deleting References

Note the following detail about adding references:

The only way to add a new reference in the SOA Composite Editor is by wiring
the service component to the necessary target service component. When a new
reference is added, the service component is notified so it can make appropriate
changes to its metadata. For example, when a reference is added to a BPEL service
component, the BPEL service component is notified to add a partner link that can
then be used in an invoke activity.

Note the following details about deleting references:

When a reference for a service component is deleted, the associated wire is also
deleted and the service component is notified so it can update its metadata. For
example, when a reference is deleted from a BPEL service component, the service
component is notified to delete the partner link in its BPEL metadata.

Deleting a reference connected to a wire clears the reference and the wire.

4.2.13 How to Wire a Service Component and a Reference

You now wire (connect) the BPEL process and the file adapter reference.

To wire a service component and a reference:

1.

2.

In the Application Navigator, double-click composite.xml or single-click
composite.xml above the designer.

From the SayHello BPEL process, drag a wire to the WriteFile reference, as shown
in Figure 4-15.

Introduction to the Functionality of the SOA Composite Editor 4-19

Designing an SOA Composite Application in Oracle JDeveloper

Figure 4-15 Wiring of a Service Component and Reference

Exposed Services Components External References

Service1 iteFi

Operations: Operations:

process Write

3. Double-click the SayHello BPEL process and note that the WriteFile reference
displays as a partner link in the right swim lane, as shown in Figure 4-16.

Figure 4-16 Display of the Reference as a Partner Link in the BPEL Process

receivelnput

(3

Assign_1

client

» %Q"

WriteFile

Invoke_1

replyCutput

O

4, Select Save All from the File main menu.
5. In the Application Navigator, select the composite.xml file.
6. Click the Source tab to review what you have created.

The Servicel service shown in Example 4-1 provides the entry point to the
composite.

4-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Designing an SOA Composite Application in Oracle JDeveloper

Example 4-1 Service

<composite name="MySOAProject">

<service name="Servicel" ui:wsdlLocation="SayHello.wsdl">
<interface.wsdl interface="http://xmlns.oracle.com/MySOAApplication/
MySOAProject/ SayHello#wsdl.interface(SayHello)"/>
<binding.ws port="http://xmlns.oracle.com/MySOAApplication/MySOAProject/
SayHello#wsdl.endpoint
(sayhello_client_ep/SayHello_pt)"/>
</service>

The sayHello BPEL process service component is shown in Example 4-2:

Example 4-2 Service Component
<component name="SayHello">

<implementation.bpel src="SayHello.bpel"/>
</component>

A reference binding component named WriteFile is shown in Example 4-3. This
reference type is a JCA file adapter. The reference provides access to the external
service in the outside world.

Example 4-3 Reference

<reference name="WriteFile" ui:wsdlLocation="WriteFile.wsdl">
<interface.wsdl interface="http://xmlns.oracle.com/pcbpel/adapter/
file/MySOAApplication/MySOAProject/WriteFile%2F#wsdl.interface (Write_ptt)"/>
<binding.jca config="WriteFile_file.jca"/>
</reference>

In Example 44, the communication (or wiring) between service components is
described:

s The source Servicel web service is wired to the target SayHello BPEL
process service component. Wiring enables web service message
communication with this specific BPEL process.

s The source SayHello BPEL process is wired to the target WriteFile
reference binding component. This is the reference to the external service in
the outside world.

Example 4-4 Wires
<wire>
<source.uri>Servicel</source.uri>
<target.uri>SayHello/sayhello_client</target.uri>
</wire>

<wire>
<source.uri>SayHello/WriteFile</source.uri>
<target.uri>WriteFile</target.uri>

</wire>

4.2.14 How to Update Message Schemas of Components (Optional)

You can update the message schemas used by service components or binding
components.

Introduction to the Functionality of the SOA Composite Editor 4-21

Designing an SOA Composite Application in Oracle JDeveloper

To update message schemas of components:

1. Double-click an interface handle of a component, as shown in Figure 4-17. For this
example, the inbound interface handle of the SayHello BPEL process service
component is selected.

Figure 4-17 Selection of Inbound Interface Handle

Service1 WriteFile

Operations: 3 Service: dlient
process Interface:
http: f fxmins, oracle . comMyS0aApplicationMySOAPraje
ctiSavHello#wsdl interfaceiSayHela)

&= ® if% Saa??zllu %} OFE

The Update Interface dialog shown in Figure 4-18 appears. This dialog shows all
schemas used by the interface’s WSDL and enables you to choose a new schema
for a selected message part.

Figure 4-18 Update Interface Dialog

-3 Update Interface

X

Component: SayHello
Service: client:
W3DL File: SayHello,wsd|

Port Type: SayHello /

Operation Type Message Part Type QMame Schema Location
process input SayHelloRequestMessage payload element SayHelloProcessRequest SayHello,wsd|
process oukput SayHelloResponseMess,.. payload element SayHelloProcessResponse SayHello,wsd|

[] shaw Details

Create Composite Service with SOAP bindings

| Help | | Cancel

2. Use one of the following methods to select the message schema to update:

= Double-click the message schema row.

= Select a row and click the Update icon in the upper right corner above the
table.

The Type Chooser dialog appears.
3. Select a new schema element, and click OK.

4. In the Update Interface dialog, click OK. This updates the interface WSDL to use
the new schemas.

4.2.15 What You May Need to Know About Updating Message Schemas of Components

Note the following details about updating message schemas of components:

4-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Designing an SOA Composite Application in Oracle JDeveloper

s Itis possible that several operations (or an input and an output) can use the same
WSDL message. In this case, the same message is seen in multiple rows of the
table. If you update the schema in one row, the change appears in the other rows.

= When the schema used by an interface is changed, it may invalidate previously
configured features within a component that depend on the schema. For example,
a transformation step in a BPEL process or mediator service component may be
invalid because it is using a transformation map created for the old schema.

» If the interface does not have a callback (as is the case for the BPEL process in this
example), the Update Interface dialog does show a Callback Port Type table.

= Since multiple interfaces can be defined by the same WSDL, the modification to
one interaction (WSDL) also modifies the other interfaces.

= When you select Show Details, the table shows fully qualified names and
complete file paths.

= When the interface belongs to a service component (and not a service binding
component or reference), the Create Composite Service with SOAP bindings
checkbox appears. This checkbox provides the same functionality as the Expose as
a SOAP Service checkbox on the BPEL process and human task creation dialogs. If
you check this box and click OK, a service and wire are automatically generated. If
it is checked (service exists) and you deselect it and click OK, the service and wire
are deleted.

4.2.16 How to Invoke Other Composites

You can invoke other SOA composite applications from your SOA composite
application. The other applications must be deployed.

To invoke other composites:
1. Create a web service or partner link through one of the following methods.

a. Inthe SOA Composite Editor, drag a Web Service from the Component
Palette to the External References swim lane.

b. In Oracle BPEL Designer, drag a Partner Link from the Component Palette to
the right swim lane.

2. Access the SOA Resource Browser dialog based on the type of service you created.
a. For the Create Web Service dialog, click the Find existing WSDLs icon.
b. For the Edit Partner Link dialog, click the SOA Resource Browser icon.

3. From the list at the top, select Resource Palette.

4. Expand the tree to display the application server connection to the Oracle
WebLogic Administration Server on which the SOA composite application is
deployed. For this example, MyConnection).

5. Expand the application server connection.

6. Expand the SOA composite applications. Figure 4-19 provides details.

Introduction to the Functionality of the SOA Composite Editor 4-23

Designing an SOA Composite Application in Oracle JDeveloper

Figure 4-19 Browse for an SOA Composite Application

|-§ Resource Palette -

E}a Application Server
E}a My Connection
B[508
E}Dﬂg Project1 [1.0] (soa_serverl)

I bpelprocess1_client_ep
=0 Project1 [2.0] {soa_serverl)

----- bpelpracess1_client_ep

------ bpelprocessz_client_ep

| Help | | Cancel

7. Select the composite service, as shown in Figure 4-20.

Figure 4-20 Selection of Client

B[Application Servers
=24 MyConnection
G- deplayments
-0 508
=l-oflg Praject1 [1.0] (soa_server1)
. -{& bpelprocess1_client_ep

8. Click OK.

4.2.17 How to Deploy the SOA Composite Application

Deploying the SOA composite application involves creating and deploying an archive
of the SOA composite application. For more information, see Chapter 43, "Deploying
SOA Composite Applications."

4.2.18 How to Manage Deployed Composites

You can manage deployed SOA composite applications from the Application Server
Navigator in Oracle JDeveloper. Management tasks consist of deploying, undeploying,
activating, retiring, turning on, and turning off SOA composite application revisions.

Note: These instructions assume you have created an application
server connection to an Oracle WebLogic Administration Server on
which the SOA Infrastructure is deployed. Creating a connection to an
Oracle WebLogic Administration Server enables you to browse for
managed Oracle WebLogic Servers or clustered Oracle WebLogic
Servers in the same domain. From the File main menu, select New >
Connections > Application Server Connection to create a connection.

4-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Designing an SOA Composite Application in Oracle JDeveloper

1. From the View main menu, select Application Server Navigator.
2. Expand your connection name (for this example, named myConnection).

The deployments and SOA folders appear, as shown in Figure 4-21. The SOA
folder displays all deployed SOA composite application revisions and services.
You can browse all applications deployed on all Oracle WebLogic Administration
Servers, managed Oracle WebLogic Servers, and clustered Oracle WebLogic
Servers in the same domain. Figure 4-21 provides details.

Figure 4-21 Application Server Navigator

K

(= pplication Servers
E‘l_—l] myConnection
-0 deployments
R te

3. Expand the SOA folder.

Deployed SOA composite applications and services appear, as shown in
Figure 4-22.

Figure 4-22 Deployed SOA Composite Applications

=[] Application Servers
EIDJ myConnection

(-7 deplayments

B3 504
ol CustomerScoreService [1.0]
-0l DeployCampasite [1,0]
D{fﬂ EventMediatorDemo [1.0]
-0l Hellowarld [1.0]
G- LoanFlow [1.0]
D{E SecureHelloWorldCampasite [1,0]
D{fﬂ SimpletworkflowComposite [1.0]
-0t TimeoutLaan [1,0]
- UnitedLoan [1.0]
#-off2 wisRulesPraject [1.0]

4. Right-click a deployed SOA composite application.

5. Select an option to perform. The options that display for selection are based upon
the current state of the application. Table 4-13 provides details.

Table 4-13 SOA Composite Application Options

Option Description

Turned Off Shuts down a running SOA composite application revision. Any request
(initiating or a callback) to the composite is rejected if the composite is shut
down.

Note: The behavior differs based on which binding component is used. For
example, if it is a web service request, it is rejected back to the caller. A JCA
adapter binding component may do something else in this case (for example, put
the request in a rejected table).

This option displays when the composite application has been started.

Turned On Restarts a composite application revision that was shut down. This action enables
new requests to be processed (and not be rejected). No recovery of messages
occurs.

This option displays when the composite application has been stopped.

Introduction to the Functionality of the SOA Composite Editor 4-25

Designing an SOA Composite Application in Oracle JDeveloper

Table 4-13 (Cont.) SOA Composite Application Options

Option

Description

Retire

Retires the selected composite revision. If the process life cycle is retired, you
cannot create a new instance. Existing instances are allowed to complete
normally.

An initiating request to the composite application is rejected back to the client.
The behavior of different binding components during rejection is equal to that
described above for the shut down option.

A callback to an initiated composite application instance is delivered properly.

This option displays when the composite application is active.

Activate

Activates the retired composite application revision. Note the following behavior
with this option:

= All composite applications are automatically active when deployed.

= Other revisions of a newly deployed composite application remain active
(that is, they are not automatically retired). If you want, you must explicitly
retire them.

This option displays when the application is retired.

Undeploy Undeploys the selected composite application revision. The consequences of this

action are as follows:

= You can no longer configure and monitor this revision of the composite
application.

= You can no longer process instances of this revision of the composite
application.

= You cannot view previously completed processes.

» The state of currently running instances is changed to stale and no new
messages sent to this composite are processed.

= If you undeploy the default revision of the composite application (for
example, 2.0), the next available revision of the composite application
becomes the default (for example, 1.0).

SetDefault Sets the selected composite application revision to be the default.
Revision

6. If you want to deploy a prebuilt SOA composite application archive that includes a
deployment profile, right-click the SOA folder and select Deploy SOA Archive.
The archive consists of a JAR file of a single application or an SOA bundle ZIP file
containing multiple applications.

You are prompted to select the following:

The target SOA servers to which you want to deploy the SOA composite
application archive.

The archive to deploy.

The configuration plan to attach to the application. As you move projects from
one environment to another (for example, from testing to production), you
typically must modify several environment-specific values, such as JDBC
connection strings, hostnames of various servers, and so on. Configuration
plans enable you to modify these values using a single text (XML) file called a
configuration plan. The configuration plan is created in either Oracle
JDeveloper or from the command line. During process deployment, the
configuration plan is used to search the SOA project for values that must be
replaced to adapt the project to the next target environment. This is an
optional selection.

4-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Designing an SOA Composite Application in Oracle JDeveloper

= Whether you want to overwrite an existing composite of the same revision ID.
This action enables you to redeploy an application revision.

For more information, see the following documentation:

s Chapter 43, "Deploying SOA Composite Applications" for details about creating a
deployment profile and a configuration plan and deploying an existing SOA
archive

» Oracle Fusion Middleware Administrator’s Guide for Oracle SOA Suite for details
about managing deployed SOA composite applications from Oracle Enterprise
Manager Fusion Middleware Control Console

4.2.19 How to Test the SOA Composite Application

You can run and test instances of deployed SOA composite applications from Oracle
Enterprise Manager Grid Control Console. For more information about testing an SOA
composite application, see Oracle Fusion Middleware Administrator’s Guide for Oracle
SOA Suite.

Introduction to the Functionality of the SOA Composite Editor 4-27

Designing an SOA Composite Application in Oracle JDeveloper

4-28 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Part li

Using the BPEL Process Service
Component

This part describes the BPEL process service component.

This part contains the following chapters:

Chapter 5, "Getting Started with Oracle BPEL Process Manager"
Chapter 6, "Introduction to Interaction Patterns in a BPEL Process"
Chapter 7, "Manipulating XML Data in a BPEL Process"

Chapter 8, "Invoking a Synchronous Web Service from a BPEL Process"
Chapter 9, "Invoking an Asynchronous Web Service from a BPEL Process”
Chapter 10, "Using Parallel Flow in a BPEL Process"

Chapter 11, "Using Conditional Branching in a BPEL Process"

Chapter 12, "Using Fault Handling in a BPEL Process"

Chapter 13, "Incorporating Java and Java EE Code in a BPEL Process"
Chapter 14, "Using Events and Timeouts in BPEL Processes"

Chapter 15, "Coordinating Master and Detail Processes"

Chapter 16, "Using the Notification Service"

Chapter 17, "Using Oracle BPEL Process Manager Sensors"

O

Getting Started with Oracle BPEL Process
Manager

This chapter describes how to get started with Oracle BPEL Process Manager. Key
BPEL design features such as activities, partner links, and adapters are also described.

This chapter includes the following sections:

m Section 5.1, "Introduction to the BPEL Process Service Component"
s Section 5.2, "Introduction to Activities"

s Section 5.3, "Introduction to Partner Links"

= Section 5.4, "Creating a Partner Link"

= Section 5.5, "Introduction to Technology Adapters"

5.1 Introduction to the BPEL Process Service Component

This section provides an introduction to the BPEL process service component in the
design environment.

5.1.1 How to Add a BPEL Process Service Component
You add BPEL process service components in the SOA Composite Editor.

To create a BPEL process service component:
1. Follow the instructions in Table 5-1 to start Oracle JDeveloper.

Table 5-1 Starting Oracle JDeveloper
To Start... On Windows... On UNIX...

Oracle JDeveloper Click JDev_Oracle_ $SORACLE_HOME/jdev/bin/jdev
Home\ jdeveloper\JdDev\bin\jdev.
exe or create a shortcut

2. Add a BPEL process service component through one of the following methods:
As a service component in an existing SOA composite application:

a. From the Component Palette, drag a BPEL Process service component into the
SOA Composite Editor.

In a new application:

Getting Started with Oracle BPEL Process Manager 5-1

Introduction to the BPEL Process Service Component

g.
h.

From the Application Navigator, select File > New > Applications > SOA
Application.

This starts the Create SOA Application wizard.

In the Application Name dialog, enter an application name in the Application
Name field.

In the Directory field, enter a directory path in which to create the SOA
composite application and project.

Click Next.

In the Project Name dialog, enter a name in the Project Name field.
Click Next.

In the Project SOA Settings dialog, select Composite with BPEL.
Click Finish.

Each method causes the Create BPEL Process dialog shown in Figure 5-1 to
appear.

Figure 5-1 Create BPEL Process Dialog

BP Proce

BPEL Process

A BPEL process is a service orchestration, used to describefexecute a business process (or large grained ﬁva
service), which is implemented as a stateful service.

Mame:

MNamespace: |http:,l',l'xrnlns.c-racle.-:om,l'npplicationl,l'Projectl,l'SavHello |
Template:

Service Name: | savhelo_client |

| e |

| SayHello |

|<;‘==.° Synchronous BPEL Process - | .@

Expose as a SOAP service

Input: |-{http:,l',l'xmlns.oracle.com,l'.ﬂ.pplication1,I'Projectl,I'SayHeIIo}process |Ck

Qubput: |-{http:,l',l'xrnlns.oracle.com,l'P.ppIication1,|'Pr0ject1,I'SayHello}processResponse | Q

| oK | Cancel |

3. Provide the required details (including BPEL process name). Click Help for details
about the types of BPEL processes you can create.

Always use completely unique names when creating BPEL processes. Do not
create:

A process name that begins with a number (for example, 1SayHello)
A process name that includes a dash (for example, Say-Hello)

Two processes with the same name, but with different capitalization (for
example, SayHello and sayhello)

A process name that exceeds 500 characters.

A non-ASCII process name such as that shown in Figure 5-2. The BPEL
process name is used in directory and file names of the SOA project, which can
cause problems.

5-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Introduction to the BPEL Process Service Component

Figure 5-2 Non-ASCIl BPEL Process Name

EPELProce==100&aT1

4. C(lick OK.

Oracle BPEL Designer displays the sections shown in Figure 5-3.

Figure 5-3 Oracle JDeveloper Sections

. Application12

~ Projects

E|--- Project1
=7 504 Content

[classes
D testsuites

BIW®Y-E-

"E- e A @ S-@

=
[&

} & BPEL~ @ |BPEL

Partner Links

uew @M

e o

2@ LakkEED

F| o

|+ BPA Blue Prints

|» BPEL Activities and Components
* BPEL Services

{E‘n AC) Adapter

Partner Links

D wsd
-0 sl (&l B2B
B-{_7] Business Rules > #fih BAM Adapter
I§ compasite. i) {4 Database Adapter
i MyBPELProcess. bpel recehvalnput {% File Adapter
{ﬁ‘n MyBPELProcess, cormponentType d
MyBPELProcess. wedl my bpelproces: o0 {'a FTFP Adapter
. 8 M5 Adapter
W
4 {é} {ﬁzn M3 Adapter
e P— P
callbackClient
b Application Resources @recelvelnput - Property Ins...
| Data Contrals w oA et
[Recently Opened Files
+ = MyBPELProc... =+ Thumbnail = receivelnput - [processisequence/receive Zoom: E &{;
&
r Design | Source | Hiskory
T@aW + 7/ R |ElereL-Log (]
I ﬁga MyBPELProcess, bpel LS ’%j
¥Path Type # of Errors
} Iprocessfsequencefinvoke Invoke 1]

Errors: O \Warnings: 1

Last Yalidated On: 29 Mar 2009 20:38:53 GMT

L ‘alidation Errors L Log Messages L Search Resulks |

Each section of Oracle BPEL Designer enables you to perform specific design and

deployment tasks.

= Application Navigator
s Design window

= Source window

= History window

s Component Palette

s Property Inspector

= Structure window

= Log window

For a descriptions of these sections, see Section 2.1, "Introduction to the SOA

Composite Editor."

Note: To learn more about these

sections, you can also place the

cursor in the appropriate section and press F1 to display online Help.

Getting

Started with Oracle BPEL Process Manager 5-3

Introduction to Activities

5.2 Introduction to Activities

Activities are the building blocks of a BPEL process service component. Oracle BPEL
Designer includes a set of activities that you drag into a BPEL process service
component. You then double-click an activity to define its attributes (property values).
Activities enable you to perform specific tasks within a BPEL process service
component. For example, here are several key activities:

= An assign activity enables you to manipulate data, such as copying the contents of
one variable to another. Figure 5-4 shows an assign activity.

Figure 5—-4 Assign Activity
(5]
= Aninvoke activity enables you to invoke a service (identified by its partner link)

and specify an operation for this service to perform. Figure 5-5 shows an invoke
activity.

Figure 5-5 Invoke Activity

= A receive activity waits for an asynchronous callback response message from a
service. Figure 5-6 shows a receive activity.

Figure 5-6 Receive Activity

®

Figure 5-7 shows an example of a property window (for this example, an invoke
activity). In this example, you invoke a partner link named StoreFrontService and
define its attributes.

5-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Introduction to Partner Links

Figure 5-7 Invoke Activity Example

Invoke b S

| General rCUrrelations rSensors rProperties r.ﬂ.nnotations |

Tame: | InvokeFindiCustomer |

— Inkeraction Type: ~..§ Partner Link |

Partner Role \Web Service Interface

Partner Link: | StoreFrontService | \%

Operation: | Ty findCustomerInfoC 1 CustamerInfoy,.. - |

Wariables
Input: |IFindCustomerInFo_Input'v'ariable | EF \%
Outpuk: |gCust0merInf0'\u‘ariabIe | l+ \%

| Help | | Apply || [0]'4 || Cancel |

The invoke activity enables you to specify an operation you want to invoke for the
service (identified by its partner link). The operation can be one-way or
request-response on a port provided by the service. You can also automatically create
variables in an invoke activity. An invoke activity invokes a synchronous service or
initiates an asynchronous web service.

The invoke activity opens a port in the process to send and receive data. It uses this
port to submit required data and receive a response. For synchronous callbacks, only
one port is needed for both the send and the receive functions.

For more information about activities, see Chapter A, "BPEL Process Activities and
Services" and Oracle Fusion Middleware Tutorial for Running and Building an Application
with Oracle SOA Suite.

5.3 Introduction to Partner Links

A partner link enables you to define the external services with which the BPEL process
service component is to interact. You can define partner links as services or references
(for example, through a JCA adapter) in the SOA Composite Editor or within a BPEL
process service component in Oracle BPEL Designer. Figure 5-8 shows the partner link
icon (in this example, named WriteRecord).

Figure 5-8 PartnerLink Icon

@
WriteRecord

A partner link type characterizes the conversational relationship between two services
by defining the roles played by each service in the conversation and specifying the
port type provided by each service to receive messages within the conversation.

Figure 5-9 shows an example of the attributes of a partner link for a service.

Getting Started with Oracle BPEL Process Manager 5-5

Creating a Partner Link

Figure 5-9 Partner Link Dialog

i@ a

rGeneraI |/Image rProperty

Mame: | CreditCardAutharizationService |

Process: | OrderProcessaor |

WSDL Settings

QAR @
WSDL LURL: | CreditCardauthorizationService, wsd| |
Partrer Link Type: |$“ CreditCardauthorizationService - |
Partrer Rols: |8, CreditauthatizationPart -|
by Role: |8, - Mt Specified -~ |

Table 5-2 describes the fields of this dialog.

Table 5-2 Create Partner Link Dialog Fields

Field Description

Name A unique and recognizable name you provide for the partner link.
Process Displays the BPEL process service component name.

WSDL URL The name and location of the Web Services Description Language

(WSDL) file that you select for the partner link. Click the SOA Service
Explorer icon (second icon from the left above the WSDL URL field) to
access a window for selecting the WSDL file to use.

Partner Link Type The partner link defined in the WSDL file.

Partner Role The role performed by the partner link.

My Role The role performed by the BPEL process service component. In this
case, the BPEL process service component does not have a role because
it is a synchronous process.

Note: The Partner Link Type, Partner Role, and My Role fields in
the Create Partner Link dialog are defined and required by the BPEL
standard.

5.4 Creating a Partner Link

The method by which you create partner links within the BPEL process in Oracle BPEL
Designer impacts how the partner link displays above in the SOA Composite Editor.
This section describes this impact. The WSDL file can be on the local operating system
or hosted remotely (in which case you need a URL for the WSDL).

Likewise, creating and wiring a service or reference binding component to a BPEL
process service component in the SOA Composite Editor causes a partner link to
display in Oracle BPEL Designer.

5-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Creating a Partner Link

5.4.1 How to Create a Partner Link

To create a partner link:
1. In the SOA Composite Editor, double-click the BPEL process service component.

Oracle BPEL Designer is displayed.
2. In the Component Palette, expand BPEL Services.

3. Drag a Partner Link into the appropriate Partner Links swim lane, as shown in
Figure 5-10.

Figure 5-10 Partner Link Creation in Oracle BPEL Designer

| o{f8 compasite i ZuBPELProcessi.bpel | ofZcompositecml |02 compasite sl | o2 compasite.x (410

o - []- @ S el -i':ﬂv :‘_. & BPELT
Partner Links - Partner Links
(x) O
3E
& @
&
ﬂ 1
«
receivelnput
L] { ®
ﬁ bpelprocess1_client

2

callbackClient

@
M

Partrer Link (\Web 5

The Create Partner Link dialog appears.
4. Complete the fields for this dialog, as described in Table 5-2.

For more information about creating a partner link in the SOA Composite Editor, see
Chapter 4, "Introduction to the Functionality of the SOA Composite Editor."

The following sections describe the impact of partner link creation on the SOA
Composite Editor.

5.4.1.1 Partner Links for an Outbound Adapter
Table 5-3 describes the impact on the SOA Composite Editor.

Table 5-3 Impact of Partner Link Creation on the SOA Composite Editor

Creating the Following for a BPEL Process in
Oracle BPEL Designer... Displays the Following in the SOA Composite Editor...

A partner link for an outbound adapter = Areference handle for the BPEL service component

= Areference representing the outbound adapter in the
composite

= A wire connecting the BPEL service component to the
adapter reference

Getting Started with Oracle BPEL Process Manager 5-7

Creating a Partner Link

Figure 5-11 shows how this method of creation appears in the SOA Composite Editor.

Figure 5-11 SOA Composite Editor Impact

Bnnﬁ%rder OFE By
Order
O perations:

Write

5.4.1.2 Partner Links for an Inbound Adapter
Table 54 describes the impact on the SOA Composite Editor.

Table 5-4 Impact of Partner Link Creation on the SOA Composite Editor

Creating the Following for a BPEL Process in
Oracle BPEL Designer... Displays the Following in the SOA Composite Editor...

A partner link for an inbound adapter = A service for the BPEL service component

= A service representing the inbound adapter in the
composite

= A wire connecting the inbound adapter service to the
BPEL service component

Figure 5-12 shows how this method of creation appears in the SOA Composite Editor.

Figure 5-12 SOA Composite Editor Impact

BookOrder

e ()
Order
O perations:

Read

5.4.1.3 Partner Links from an Abstract WSDL to Call a Service
Table 5-5 describes the impact on the SOA Composite Editor.

Table 5-5 Impact of Partner Link Creation on the SOA Composite Editor

Creating the Following for a BPEL Process in

Oracle BPEL Designer... Displays the Following in the SOA Composite Editor...
A partner link from an abstract WSDL to call a A reference handle with an interface and callback interface
service defined for the BPEL service component

5.4.1.4 Partner Links from an Abstract WSDL to Implement a Service
Table 5-6 describes the impact on the SOA Composite Editor.

5-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Creating a Partner Link

Table 5-6 Impact of Partner Link Creation on the SOA Composite Editor

Creating the Following for a BPEL Process in
Oracle BPEL Designer...

Displays the Following in the SOA Composite Editor...

A partner link is created from an abstract WSDL to
implement a service

A service with an interface and callback interface for the
BPEL service component is created.

Note: If an external Simple Object Access Protocol (SOAP)
reference with the specified interface and callback interface
exists in the SOA Composite Editor, you can either create a
new external SOAP reference and wire to it or wire to the
existing external SOAP reference.

Figure 5-13 shows how this method of creation appears in the SOA Composite Editor.

Figure 5-13 SOA Composite Editor Impact

i); OrderApproval l

(4) b

5.4.1.5 Partner Links and Human Tasks or Business Rules
Table 5-7 describes the impact on the SOA Composite Editor.

Table 5-7 Impact of Partner Link Creation on the SOA Composite Editor

Creating the Following for a BPEL Process in
Oracle BPEL Designer...

Displays the Following in the SOA Composite Editor...

A human task or business rule is created

= A human task or business rule in the composite
= A reference for the BPEL service component

= A wire connecting the BPEL service component to the
new human task or decision service

Figure 5-14 shows how this method of creation appears in the SOA Composite Editor.

Figure 5-14 SOA Composite Editor Impact

% Buuﬁk%rder (%) énppr%ﬁt}rderl

5.4.1.6 Partner Links from an Existing Human Task, Business Rule, or Oracle

Mediator

Table 5-8 describes the impact on the SOA Composite Editor.

Getting Started with Oracle BPEL Process Manager 5-9

Introduction to Technology Adapters

Table 5-8

Impact of Partner Link Creation on the SOA Composite Editor

Creating the Following for a BPEL Process in

Oracle BPEL Designer... Displays the Following in the SOA Composite Editor...

A partner link by dragging an existing human task, | = A reference for the BPEL service component

business rule, or mediator service component from
the Resource Palette to the BPEL process

= A wire connecting the BPEL service component to the
existing human task, business rule, or mediator

Figure 5-15 shows how this method of creation appears in the SOA Composite Editor.

Figure 5-15 SOA Composite Editor Impact

=

5.5 Introduction to Technology Adapters

The Partner Link dialog shown in Figure 5-9 also enables you to take advantage of
another key feature that Oracle BPEL Process Manager and Oracle JDeveloper provide.
Click the Define Service icon shown in Figure 5-16 to access the Adapter
Configuration wizard.

Figure 5-16 Defining an Adapter

WSDL Settings
Q@ F @

WSOL LURL: m::,I'JDeveloper,l'mywork‘l'RulesRUs,l'Credq Define Service

Adapters enable you to integrate the BPEL process service component (and, therefore,
the SOA composite application as a whole) with access to file systems, FIP servers,
database tables, database queues, sockets, Java Message Services (JMS), MQ, and
Oracle E-Business Suite. This wizard enables you to configure the types of adapters
shown in Figure 5-17 for use with the BPEL process service component:

Figure 5-17 Adapter Types

= Loniigure Service or Adapie

% BAM Adapter
{ﬁ Database Adapter

T . .
i Oracle Application
£ Lt fidantar

| Help | | OF || Cancel

The following adapter types are available:

5-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Introduction to Technology Adapters

s Advanced Queuing (AQ)

For interaction with a queue. AQ provides a flexible mechanism for bidirectional,
asynchronous communication between participating applications.

s Oracle Business Activity Monitoring (BAM)
For publishing data to data objects in an Oracle BAM Server.
= Database

For interaction with Oracle and non-Oracle databases through JDBC and Oracle
Business Intelligence (which is a special data source type).

s FIP and File

For file exchange (read and write) on local file systems and remote file systems
(through use of the file transfer protocol (FIP)).

Note: When calling the file adapter, Oracle BPEL Process Manager
may process the same file twice when run against Oracle Real
Application Clusters planned outages. This is because a file adapter is
a non-XA compliant adapter. Therefore, when it participates in a
global transaction, it may not follow the XA interface specification of
processing each file once and only once.

= Java Messaging Service (JMS)

For interaction with JMS. The JMS architecture uses a one client interface to many
messaging servers architecture.

= Message Queue (MQ)

For message exchange with WebSphere MQ queuing systems.
» Oracle Applications

For interaction with Oracle Application’s set of integrated business applications.
= Oracle B2B

= For browsing B2B metadata in the metadata service (MDS) repository and
selecting document definitions.

» Sockets

For modeling standard or nonstandard protocols for communication over TCP/IP
sockets.

When you select an adapter type, the Service Name window shown in Figure 5-18
prompts you to enter a name. For this example, File Adapter was selected in

Figure 5-17. When the wizard completes, a WSDL file by this service name appears in
the Application Navigator for the BPEL process service component (for this example,
named ReadFile.wsdl). The service name must be unique within the project. This file
includes the adapter configuration settings you specify with this wizard. Other
configuration files (such as header files and files specific to the adapter) are also
created and display in the Application Navigator.

Getting Started with Oracle BPEL Process Manager 5-11

Introduction to Technology Adapters

Figure 5-18 Adapter Service Name

-3 Adapter Configuration Wizard - Step 2 of 4

Service Name

Enter a Service Name,

Service Type: File Adapker

Service Name: |ReadFiIe|

Help | < Back | Mext = J Cancel |

The Adapter Configuration wizard windows that appear after the Service Name
window are based on the adapter type you selected.

You can also add adapters to your SOA composite application as services or references
in the SOA Composite Editor.

For more information about adding adapters to SOA composite applications, see
Chapter 4, "Introduction to the Functionality of the SOA Composite Editor."

For more information about technology adapters, see Oracle Fusion Middleware User’s
Guide for Technology Adapters.

5-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

6

Introduction to Interaction Patterns in a
BPEL Process

This chapter describes common interaction patterns between a BPEL process service
component and an external service, and shows the best use practices for each.

This chapter includes the following sections:

m Section 6.1, "Introduction to One-Way Messages"

m Section 6.2, "Introduction to Synchronous Interactions"

= Section 6.3, "Introduction to Asynchronous Interactions"

= Section 6.4, "Introduction to Asynchronous Interactions with a Timeout"

= Section 6.5, "Introduction to Asynchronous Interactions with a Notification Timer"
= Section 6.6, "Introduction to One Request, Multiple Responses"

= Section 6.7, "Introduction to One Request, One of Two Possible Responses”

= Section 6.8, "Introduction to One Request, a Mandatory Response, and an Optional
Response"

= Section 6.9, "Introduction to Partial Processing"

= Section 6.10, "Introduction to Multiple Application Interactions"

6.1 Introduction to One-Way Messages

In a one-way message, or fire and forget, the client sends a message to the service (d1
in Figure 6-1), and the service does not need to reply. The client sending the message
does not wait for a response, but continues executing immediately. Example 6-1 shows
the portType and operation part of the BPEL process WSDL file for this
environment.

Example 6—-1 One-Way WSDL File

<wsdl :portType name="BPELProcessl">
<wsdl:operation name="process">
<wsdl:input message="client:BPELProcesslRequestMessage" />
</wsdl:operation>
</wsdl:portType>

Figure 6-1 provides an overview.

Introduction to Interaction Patterns in a BPEL Process 6-1

Introduction to Synchronous Interactions

Figure 6—1 One-Way Message

Client BPEL Process Service BPEL Process
WSDL

PartnerLink
<invoke> — <receive>

BPEL Process Service Component as the Client

As the client, the BPEL process service component needs a valid partner link and an
invoke activity with the target service and the message. As with all partner activities,
the Web Services Description Language (WSDL) file defines the interaction.

BPEL Process Service Component as the Service

To accept a message from the client, the BPEL process service component needs a
receive activity.

6.2 Introduction to Synchronous Interactions

In a synchronous interaction, a client sends a request to a service (d1 in Figure 6-2),
and receives an immediate reply (d2 in Figure 6-2). A BPEL process service
component can be at either end of this interaction, and must be coded based on its role
as either the client or the service. For example, a user requests a subscription to an
online newspaper and immediately receives email confirmation that their request has
been accepted. Example 6-2 shows the portType and operation part of the BPEL
process WSDL file for this environment.

Example 6-2 Synchronous WSDL File

<wsdl:portType name="BPELProcessl">
<wsdl:operation name="process">
<wsdl:input message="client:BPELProcesslRequestMessage" />
<wsdl:output message="client:BPELProcesslResponseMessage"/>
</wsdl:operation>
</wsdl:portType>

Figure 6-2 provides an overview.

6-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Introduction to Asynchronous Interactions

Figure 6—2 Synchronous Interaction

BPEL Process BPEL Process
WSDL
Client
Call PartnerLink .
service —l <receive>
<invoke>
OR
< -II f1 -II ! <reply>

BPEL Process Service Component as the Client

When the BPEL process service component is on the client side of a synchronous
transaction, it needs an invoke activity. The port on the client side both sends the
request and receives the reply. As with all partner activities, the WSDL file defines the
interaction.

BPEL Process Service Component as the Service

When the BPEL process service component is on the service side of a synchronous
transaction, it needs a receive activity to accept the incoming request, and a reply
activity to return either the requested information or an error message (a fault; f1 in
Figure 6-2) defined in the WSDL.

For more information about synchronous interactions, see Chapter 8, "Invoking a
Synchronous Web Service from a BPEL Process."

6.3 Introduction to Asynchronous Interactions

In an asynchronous interaction, a client sends a request to a service and waits until the
service replies. Example 6-3 shows the portType and operation part of the BPEL
process WSDL file for this environment.

Example 6-3 Asynchronous WSDL File

<wsdl:portType name="BPELProcessl">
<wsdl:operation name="process">
<wsdl:input message="client:BPELProcesslRequestMessage"/>
</wsdl:operation>
</wsdl:portType>

<wsdl:portType name="BPELProcesslCallback">
<wsdl:operation name="processResponse">
<wsdl:input message="client:BPELProcesslResponseMessage" />
</wsdl:operation>
</wsdl:portType>

Introduction to Interaction Patterns in a BPEL Process 6-3

Introduction to Asynchronous Interactions with a Timeout

Figure 6-3 provides an overview.

Figure 6-3 Asynchronous Interaction

Client BPEL Process Service BPEL Process
WSDL
PartnerLink
Call .
service —l <receive>
<invoke>
Get .
response o — <invoke>
<receive>

BPEL Process Service Component as the Client

When the BPEL process service component is on the client side of an asynchronous
transaction, it needs an invoke activity to send the request and a receive activity to
receive the reply. As with all partner activities, the WSDL file defines the interaction.

BPEL Process Service Component as the Service

As with a synchronous transaction, when the BPEL process service component is on
the service side of an asynchronous transaction, it needs a receive activity to accept the
incoming request and an invoke activity to return either the requested information or a
fault. Note the difference between this and responding from a synchronous BPEL
process: a synchronous BPEL process uses a reply activity to respond to the client and
an asynchronous service uses an invoke activity.

For more information about asynchronous interactions, see Chapter 9, "Invoking an
Asynchronous Web Service from a BPEL Process."

6.4 Introduction to Asynchronous Interactions with a Timeout

In an asynchronous interaction with a timeout (which you perform in BPEL with a
pick activity), a client sends a request to a service and waits until it receives a reply, or
until a certain time limit is reached, whichever comes first. For example, a client
requests a loan offer. If the client does not receive a loan offer reply within a specified
amount of time, the request is canceled. Figure 64 provides an overview.

6-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Introduction to Asynchronous Interactions with a Notification Timer

Figure 6—4 Asynchronous Interaction with Timeout

Client BPEL Process Service BPEL Process
l WSDL
PartnerLink
Call
service — <receive>
<invoke>

'

<pick>
| | <4+ <invoke>
Wait for Time out
callback in 1M
<onMessage> <onAlarm>
-L-_'--| FTo T T
| ogic | Logic
| Post : | Post i
| Callback_l | Timeout_l

BPEL Process Service Component as the Client

When the BPEL process service component is on the client side of an asynchronous
transaction with a timeout, it needs an invoke activity to send the request and a pick
activity with two branches: an onMessage branch and an onAlarm branch. If the reply
comes after the time limit has expired, the message goes to the dead letter queue. As
with all partner activities, the WSDL file defines the interaction.

For more information about asynchronous interactions with a timeout, see
Section 14.2, "Creating a Pick Activity to Select Between Continuing a Process or
Waiting."

BPEL Process Service Component as the Service

The behavior of the BPEL process service component as a service is equal to the
behavior with the asynchronous interaction with the BPEL process service component
as the service.

6.5 Introduction to Asynchronous Interactions with a Notification Timer

In an asynchronous interaction with a notification time, a client sends a request to a
service and waits for a reply, although a notification is sent after a timer expires. The
client continues to wait for the reply from the service even after the timer has expired.
Figure 6-5 provides an overview.

Introduction to Interaction Patterns in a BPEL Process 6-5

Introduction to One Request, Multiple Responses

Figure 6-5 Asynchronous Interaction with a Notification Time

BPEL Process

Service BPEL Process

<scope>

WSDL
PartnerLink

Call — <receive>

service
<invoke>

Wait for .
Caellllback <+ <invoke>

<receive>

<onAlarm>

Notify
Someone

BPEL Process Service Component as the Client

When the BPEL process service component is on the client side of this transaction, it
needs a scope activity containing an invoke activity to send the request, and a receive
activity to accept the reply. The onAlarm handler of the scope activity has a time limit
and instructions on what to do when the timer expires. For example, wait 30 minutes,
then send a warning indicating that the process is taking longer than expected. As
with all partner activities, the WSDL file defines the interaction.

BPEL Process Service Component as the Service

The behavior for the BPEL process service component as the service is equal to the
behavior with the asynchronous interaction with the BPEL process service component
as the service.

6.6 Introduction to One Request, Multiple Responses

In this interaction type, the client sends a single request to a service and receives
multiple responses in return. For example, the request can be to order a product
online, and the first response can be the estimated delivery time, the second response a
payment confirmation, and the third response a notification that the product has
shipped. In this example, the number and types of responses are expected. Figure 6-6
provides an overview.

6-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Introduction to One Request, One of Two Possible Responses

Figure 6—-6 One Request, Multiple Responses

Client BPEL Process vglse[r)llt- Service BPEL Process
i
Call PartnerLink _
service — <receive>
<invoke>
<sequence> <sequence>
<receive> <4 <invoke>
<receive> <4 <invoke>
<receive> <4 <invoke>
</sequence> </sequence>

BPEL Process Service Component as the Client

When the BPEL process service component is on the client side of this transaction, it
needs an invoke activity to send the request, and a sequence activity with three receive
activities, one for each reply. As with all partner activities, the WSDL file defines the
interaction.

BPEL Process Service Component as the Service

The BPEL service needs a receive activity to accept the message from the client, and a
sequence attribute with three invoke activities, one for each reply.

6.7 Introduction to One Request, One of Two Possible Responses

In an interaction using one request and one of two possible responses, the client sends
a single request to a service and receives one of two possible responses. For example,
the request can be to order a product online, and the first response can be either an
in-stock message, or an out-of-stock message. Figure 67 provides an overview.

Introduction to Interaction Patterns in a BPEL Process 6-7

Introduction to One Request, a Mandatory Response, and an Optional Response

Figure 6-7 One Request, One of Two Possible Responses

Client BPEL Process

|

Service BPEL Process

!

WSDL
PartnerLink
Call
service —p <receive>
<invoke>
<pick> l <switch> l
| | I |
<onMessage A> <onMessage B> Item in stock? <otherwise>
.'"{"- .'"{"- g A .'"{"- .'"{"-
. . sg invok invok
| | <invoke> | <invoke> |
: Logic A l : Logic B l Mor 5 — : MsgA | | MsgB |
_____ 4 L ___14 s9 L ___4 L ___1
v v

BPEL Process Service Component as the Client

When the BPEL process service component is on the client side of this transaction, it
needs the following:

= Aninvoke activity to send the request

= A pick activity with two branches: one onMessage for the in-stock response and
instructions on what to do if an in-stock message is received

= A second onMessage for the out-of-stock response and instructions on what to do
if an out-of-stock message is received

As with all partner activities, the WSDL file defines the interaction.

For more information about interactions using one request and one of two possible
responses, see Section 14.2, "Creating a Pick Activity to Select Between Continuing a
Process or Waiting."

BPEL Process Service Component as the Service

The BPEL service needs a receive activity to accept the message from the client, and a
switch activity with two branches, one with an invoke activity sending the in-stock
message if the item is available, and a second branch with an invoke activity sending
the out-of-stock message if the item is not available.

6.8 Introduction to One Request, a Mandatory Response, and an Optional

Response

In this type of interaction, the client sends a single request to a service and receives one
or two responses. Here, the request is to order a product online. If the product is
delayed, the service sends a message letting the customer know. In any case, the
service always sends a notification when the item ships. Figure 6-8 provides an
overview.

6-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Introduction to Partial Processing

Figure 6—-8 One Request, a Mandatory Response, and an Optional Response

Client BPEL Process Service BPEL Process

<scope>

WSDL l
PartnerLink

Call — <receive>

service
<invoke>
Wait for <switch> l
Callback (acbe) +— | |
<receive Msg B>
Delay? <otherwise>
<onMessage A> * *
. ress== | ress== |
Notify User I cinvokes] | i
of Delay | Msg A | | i
L ___4J L ___4J
-_yY__
I When
| product
| ships |

¢ <ir|'\|nvs<;kgs>

BPEL Process Service Component as the Client

When the BPEL process service component is on the client side of this transaction, it
needs a scope activity containing the invoke activity to send the request, and a receive
activity to accept the mandatory reply. The onMessage handler of the scope activity is
set to accept the optional message and instructions on what to do if the optional
message is received (for example, notify you that the product has been delayed). The
client BPEL process service component waits to receive the mandatory reply. If the
mandatory reply is received first, the BPEL process service component continues
without waiting for the optional reply. As with all partner activities, the WSDL file
defines the interaction.

BPEL Process Service Component as the Service

The BPEL service needs a scope activity containing the receive activity and an invoke
activity to send the mandatory shipping message, and the scope’s onAlarm handler to
send the optional delayed message if a timer expires (for example, send the delayed
message if the item is not shipped in 24 hours).

6.9 Introduction to Partial Processing

In partial processing, the client sends a request to a service and receives an immediate
response, but processing continues on the service side. For example, the client sends a
request to purchase a vacation package, and the service sends an immediate reply

confirming the purchase, then continues on to book the hotel, the flight, the rental car,

Introduction to Interaction Patterns in a BPEL Process 6-9

Introduction to Multiple Application Interactions

and so on. This pattern can also include multiple shot callbacks, followed by
longer-term processing. Figure 6-9 provides an overview.

Figure 6—-9 Partial Processing

Client BPEL Process Service BPEL Process
WSDL
PartnerLink
Call

service — <receive>

<invoke>
<receive> — <receive>
<invoke> = —r <invoke>
<receive> — <receive>

<receive> g
BPEL Process Service Component as the Client

In this case, the BPEL client is simple; it needs an invoke activity for each request and a
receive activity for each reply for asynchronous transactions, or just an invoke activity
for each synchronous transaction. Once those transactions are complete, the remaining
work is handled by the service. As with all partner activities, the WSDL file defines the
interaction.

BPEL Process Service Component as the Service

The BPEL service needs a receive activity for each request from the client, and an
invoke activity for each response. Once the responses are finished, the BPEL process
service component as the service can continue with its processing, using the
information gathered in the interaction to perform the necessary tasks without any
further input from the client.

6.10 Introduction to Multiple Application Interactions

In some cases, there are more than two applications involved in a transaction, for
example, a buyer, seller, and shipper. In this case, the buyer sends a request to the
seller, the seller sends a request to the shipper, and the shipper sends a notification to
the buyer. This A-to-B-to-C-to-A transaction pattern can handle many transactions at
the same time. Therefore, a mechanism is required for keeping track of which message
goes where. Figure 6-10 provides an overview.

As with all partner activities, the WSDL file defines the interaction.

6-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Introduction to Multiple Application Interactions

Figure 6—10 Multiple Party Interactions

BPEL Process A BPEL Process B
Buyer WSDL Seller
PartnerLink
<invoke> <receive>
5 — A
<receive> <invoke>
c <+ c

WSDL WSDL
PartnerLink PartnerLink

BPEL Process C
Shipper

<receive>

v <«

<invoke>
A

This kind of coordination can be managed using WS-Addressing or correlation sets.
For more information about both, see Chapter 9, "Invoking an Asynchronous Web
Service from a BPEL Process."

Introduction to Interaction Patterns in a BPEL Process 6-11

Introduction to Multiple Application Interactions

6-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

7

Manipulating XML Data in a BPEL Process

This chapter describes how to manipulate XML data in a BPEL process service
component. This chapter provides a variety of examples. Topics include how to work
with variables, sequences, and arrays, how to use XPath expressions, and how to
perform tasks such as mathematical calculations. The explanations are largely by
example, and provide an introduction to the supported specifications.

This chapter includes the following sections:

» Section 7.1, "Introduction to Manipulating XML Data in BPEL Processes"

= Section 7.2, "Delegating XML Data Operations to Data Provider Services"

= Section 7.3, "Using Standalone SDO-based Variables"

= Section 7.4, "Initializing a Variable with Expression Constants or Literal XML"
= Section 7.5, "Copying Between Variables"

m Section 7.6, "Accessing Fields Within Element-Based and Message Type-Based
Variables"

= Section 7.7, "Assigning Numeric Values"

= Section 7.8, "Using Mathematical Calculations with XPath Standards"
= Section 7.9, "Assigning String Literals"

= Section 7.10, "Concatenating Strings"

= Section 7.11, "Assigning Boolean Values"

» Section 7.12, "Assigning a Date or Time"

= Section 7.13, "Manipulating Attributes"

= Section 7.14, "Manipulating XML Data with bpelx Extensions"

= Section 7.15, "Validating XML Data with bpelx:validate"

= Section 7.16, "Manipulating XML Data Sequences That Resemble Arrays"
= Section 7.17, "Converting from a String to an XML Element"

= Section 7.18, "Understanding the Differences Between Document-Style and
RPC-Style WSDL Files"

= Section 7.19, "Manipulating SOAP Headers in BPEL"
» Section 7.20, "Using MIME/DIME SOAP Attachments"

Manipulating XML Data in a BPEL Process 7-1

Introduction to Manipulating XML Data in BPEL Processes

Note: Most of the examples in this chapter assume that the WSDL
file defining the associated message types is document-literal style
rather than the RPC style. There is a difference in how XPath query
strings are formed for RPC-style WSDL definitions. If you are working
with a type defined in an RPC WSDL file, see Section 7.18,
"Understanding the Differences Between Document-Style and
RPC-Style WSDL Files."

7.1 Introduction to Manipulating XML Data in BPEL Processes

This section provides an introduction to using XML data in BPEL processes.

7.1.1 XML Data in BPEL

In a BPEL process service component, most pieces of data are in XML format. This
includes the messages passed to and from the BPEL process service component, the
messages exchanged with external services, and local variables used by the process.
You define the types for these messages and variables with the XML schema, usually
in the Web Services Description Language (WSDL) file for the flow, the WSDL files for
the services it invokes, or the XSD file referenced by those WSDL files. Therefore, most
variables in BPEL are XML data, and any BPEL process service component uses much
of its code to manipulate these XML variables. This typically includes performing data
transformation between representations required for different services, and local
manipulation of data (for example, to combine the results from several service
invocations).

BPEL also supports service data object (SDO) variables, which are not in an XML
format, but rather in a memory structure format.

7.1.2 Data Manipulation and XPath Standards

The starting point for data manipulation in BPEL is the assign activity, which builds on
the XPath standard. XPath queries, expressions, and functions play a large part in this
type of manipulation. In addition, more advanced methods are available that involve
using XQuery, XSLT, or Java, usually to do more complex data transformation or
manipulation.

This section provides a general overview of how to manipulate XML data in BPEL. It
summarizes the key building blocks used in various combinations and provides
examples. The remaining sections in this chapter discuss and illustrate how to apply
these building blocks to perform specific tasks.

You use the assign activity to copy data from one XML variable to another, or to
calculate the value of an expression and store it in a variable. A copy element within
the activity specifies the source and target of the assignment (what to copy from and
to), which must be of compatible types. Example 7-1 shows the formal syntax, as
described in the Business Process Execution Language for Web Services Specification:

Example 7-1 Assign Activity

<assign standard-attributes>
standard-elements
<copy>
from-spec
to-spec
</copy>

7-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Introduction to Manipulating XML Data in BPEL Processes

</assign>

This syntax is described in detail in that specification. The £rom-spec and to-spec
typically specify a variable or variable part, as shown in Example 7-2:

Example 7-2 from-spec and to-spec Attributes
<assign>
<copy>
<from variable="cl" part="address"/>
<to variable="c3"/>
</copy>
</assign>

When you use Oracle JDeveloper, you supply assign activity details in a Copy
Operation dialog that includes a From section and a To section. This reflects the
preceding BPEL source code syntax.

XPath standards play a key role in the assign activity. Brief examples are shown here
as an introduction; examples with more context and explanation are provided in the
sections that follow.

» XPath queries

An XPath query selects a field within a source or target variable part. The from or
to clause can include a query attribute whose value is an XPath query string.
Example 7-3 provides an example:

Example 7-3 query Attribute

<from variable="input" part="payload"
query="/p:CreditFlowRequest/p:ssn"/>

The value of the query attribute must be a location path that selects exactly one
node. You can find further details about the query attribute and XPath standards
syntax in the Business Process Execution Language for Web Services Specification
(section 14.3) and the XML Path Language (XPath) Specification, respectively.

= XPath expressions

You use an XPath expression (specified in an expression attribute in the £rom
clause) to indicate a value to be stored in a variable. For example:

<from expression="100"/>

The expression can be any general expression (that is, an XPath expression that
evaluates to any XPath value type). Similarly, the value of an expression attribute
must return exactly one node or one object only when it is used in the £rom clause

within a copy operation. For more information about XPath expressions, see
section 9.1.4 of the XML Path Language (XPath) Specification.

Within XPath expressions, you can call the following types of functions:
s Core XPath functions

XPath supports a large number of built-in functions, including functions for string
manipulation (such as concat), numeric functions (like sum), and others.

<from expression="concat ('string one', 'string two')"/>

For a complete list of the functions built into XPath standards, see section 4 of the
XML Path Language (XPath) Specification.

Manipulating XML Data in a BPEL Process 7-3

Delegating XML Data Operations to Data Provider Services

s BPEL XPath extension functions

BPEL adds several extension functions to the core XPath core functions, enabling
XPath expressions to access information from a process. The extensions are
defined in the standard BPEL namespace
http://schemas.xmlsoap.org/ws/2003/03/business-process/ and
indicated by the prefix bpws:

<from expression= "bpws:getVariableData('input', 'payload',6 '/p:value') + 1"/>

For more information, see sections 9.1 and 14.1 of the Business Process Execution
Language for Web Services Specification.

s Oracle BPEL XPath extension functions

Oracle provides some additional XPath functions that use the capabilities built
into BPEL and XPath standards for adding new functions.

These functions are defined in the namespace
http://schemas.oracle.com/xpath/extension and indicated by the
prefix ora:.

s Custom functions

Oracle BPEL Process Manager functions are defined in the
bpel-xpath-functions-config.xml and placed inside the orabpel.jar
file. For more information, see Section B.7, "Creating User-Defined XPath
Extension Functions" and Oracle Fusion Middleware Administrator’s Guide for Oracle
SOA Suite.

Sophisticated data manipulation can be difficult to perform with the BPEL assign
activity and the core XPath functions. However, you can perform complex data
manipulation and transformation by using XSLT, Java, or a bpelx operation under an
assign activity (See Section 7.14, "Manipulating XML Data with bpelx Extensions"), or
as a web service. For XSLT, Oracle BPEL Process Manager includes XPath functions
that execute these transformations.

For more information about XPath and XQuery transformation code examples, see
Chapter 45, "Creating Transformations with the XSLT Mapper."

Note: Passing large schemas through an assign activity can cause
Oracle JDeveloper to freeze up and run low on memory if you
right-click the payload in the From or To section of the Copy
Operation dialog and select Expand All. As a workaround, manually
expand the payload elements.

7.2 Delegating XML Data Operations to Data Provider Services

You can specify BPEL data operations to be performed by an underlying data provider
service through use of the entity variable. The data provider service performs the data
operations in a data store behind the scenes and without use of other data store-related
features provided by Oracle SOA Suite (for example, the database adapter). This action
enhances Oracle SOA Suite runtime performance and incorporates native features of
the underlying data provider service during compilation and runtime.

For this release, the entity variable can be used with an Oracle Application
Development Framework (ADF) Business Component data provider service using
SDO-based data.

7-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Delegating XML Data Operations to Data Provider Services

In previous releases, variables and messages exchanged within a BPEL business
process were disconnected payload (a snapshot of data returned by a web service)
placed into an XML structure. In some cases, the user required this type of fit. In other
cases, this fit presented challenges.

The entity variable addresses the following challenges of previous releases:
= Extensive data conversion

If the underlying data was not in XML form, data conversion (for example,
translating delimited text to XML) was required. If the underlying size of the data
was large, the processing potentially impacted performance.

= Stale snapshot data

Variables (including WSDL messages) in BPEL processes were disconnected
payload. In some cases, this was required. In other cases, you wanted a variable to
represent the most recent data being modified by other applications outside Oracle
BPEL Process Manager. This meant the disconnected data model provided a stale
data set that did not fit all needs. The snapshot also duplicated data, which
impacted performance when the data size was large.

s Loss of native data behavior

Some data conversion implementation required data structure enforcement or
business data logic beyond the XML schema. For example, the start date needed to
be smaller than the end date. When the variable was a disconnected payload,
validation occurred only during related web service invocation. The need to
optionally perform the extra business data logic after certain operations, but before
web service invocation, was sometimes preferred.

To address these challenges with this release, you create an entity variable during
variable declaration. An entity variable acts as a data handle to access and plug in
different data provider service technologies behind the scenes. During compilation
and runtime, Oracle BPEL Process Manager delegates data operations to the
underlying data provider service.

Table 7-1 provides an example of how data conversion was performed in previous
releases (using the database adapter as an example) and in release 11g with the entity
variable.

Table 7-1 Data Manipulation Capabilities in Previous and Current Releases

10.1.x Releases 11g Release When Using the Entity Variable

Data operations such as explicitly loading and Data operations such as loading and saving
saving data were performed by the database = data are performed automatically by the data
adapter in Oracle BPEL Process Manager. All provider service (the Oracle ADF Business
data (for example, of a purchase order) was Component application), without asking you
saved in the database dehydration store. to code any service invocation.

Oracle BPEL Process Manager stores a key (for
example, purchase order ID (POID)) that
points to this data. Oracle BPEL Process
Manager fetches the key when access to data
is requested (the bind entity activity does this).
You must explicitly request the data to be
bound using the key. Any data changes are
persisted by the data provider service in a
database that can be different from the
dehydration store database. This prevents data
duplication.

Manipulating XML Data in a BPEL Process 7-5

Delegating XML Data Operations to Data Provider Services

Table 7-1 (Cont.) Data Manipulation Capabilities in Previous and Current Releases

10.1.x Releases 11g Release When Using the Entity Variable
Data in variables was in document object Data in variables is in SDO form, which
model (DOM) form provides for a simpler conversion process than

DOM, especially when the data provider
service understands SDO forms.

Note: Only BPEL process service components currently allow the
use of SDO-formed variables. If your composite application has an
Oracle Mediator service component wired with an SDO-based Java
binding component reference, the data form of the variable defaults to
DOM. In addition, the features described for 10.1.x releases in

Table 7-1 are still supported in release 11g.

The following documentation describes use of the entity variable:
m bpel-203-EntityVariableToADFBC:

This sample uses an entity variable bound to an Oracle ADF BC service using an
SDO interface. This provides the BPEL process with a variable that behaves like a
standard BPEL variable. However, the data is maintained outside the BPEL
process (in this case, in an Oracle ADF BC component). Rather than passing
around a large payload of data, it resides in one place. A reference key is passed
around to read and update the data.

s bpel-204-EntityVariableToBPELBackedSDO:

This sample shows how you can use the Oracle ADF BC SDO interface, but with a
back-end implementation other than an Oracle ADF BC application. In this case,
the back end is implemented using a BPEL process.

Visit the following URL for details about these samples:

http://www.oracle.com/technology/sample_code/products/bpel

» Oracle Fusion Middleware Tutorial for Running and Building an Application with Oracle
SOA Suite describes how to create an entity variable

7.2.1 How to Create an Entity Variable

This section describes how to create an entity variable and a binding key in Oracle
JDeveloper.

In previous releases of Oracle BPEL Process Manager, all variable data was in DOM
form. With release 11g, variable data in SDO form is also supported. DOM and SDO
variables in BPEL process service components are implicitly converted to the required
forms. For example, an Oracle BPEL process service component using DOM-based
variables can automatically convert these variables as required to SDO-based variables
in an assign activity, and vice versa. Both form types are defined in the XSD schema
file. No user intervention is required.

Entity variables also support SDO-formed data. However, unlike the DOM and SDO
variables, the entity variable with SDO-based data enables you to bind a unique key
value to data (for example, a purchase order). Only the key is stored in the
dehydration store; the data requiring conversion is stored with the service of the
Oracle ADF Business Component application. The key points to the data stored in the
service. When the data is required, it is fetched from the data provider service and

7-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Delegating XML Data Operations to Data Provider Services

placed into memory. The process occurs in two places: the bind entity activity and the
dehydration store. For example, when Oracle BPEL Process Manager rehydrates, it
stores only the key for the entity variable; when it wakes up, it does an implicit bind to
get the current data.

7.2.1.1 Understanding How SDO Works in the Inbound Direction

The SDO binding component service provides the outside world with an entry point
to the composite application, as shown in Figure 7-1.

Figure 7-1 Inbound Direction

SOA Composite Application

BPEL
Process Service
Component
ADF BC Application SDO
Using Binding
SDO-Formed > Component
Data Service

You use the SOA Composite Editor and Oracle BPEL Designer to perform the
following tasks:

= Define an SDO binding component service and a BPEL process service component
in the composite application.

s Connect (wire) the SDO service and BPEL process service component.
» Define the details of the BPEL process service component.

For more information about using the SOA Composite Editor, see Chapter 4,
"Introduction to the Functionality of the SOA Composite Editor."

7.2.1.2 Understanding How SDO Works in the Outbound Direction

The SDO binding component reference enables messages to be sent from the
composite application to Oracle ADF Business Component application external
partners in the outside world, as shown in Figure 7-2.

Manipulating XML Data in a BPEL Process 7-7

Delegating XML Data Operations to Data Provider Services

Figure 7-2 Outbound Direction

SOA Composite Application

BPEL
Process Service
Component
(using entity
variable)

[SDO Binding = | ADF BC Application
F._ 7\ Wire Component Using
e Reference SDO-Formed
| .
> Data

| L

Pass key to

fetch data

When the Oracle ADF Business Component application is the external partner link to
the outside world, there is no SDO binding component reference in the SOA
Composite Editor that you drag into the composite application to create outbound
communication. Instead, communication between the composite application and the
Oracle ADF Business Component application occurs as follows:

» The Oracle ADF Business Component application is deployed and automatically
registered as an SDO service in the Service Infrastructure

s Oracle JDeveloper is used to browse for and discover this application as an
ADE-BC service and create a partner link connection.

s The composite.xml file is automatically updated with reference details (the
binding.adf property) when the Oracle ADF Business Component application
service is discovered.

7.2.1.3 Creating an Entity Variable and Choosing a Partner Link

You now create an entity variable and select a partner link for the Oracle ADF Business
Component application. The following example describes how the OrderProcessor
BPEL process service component receives an ID for an order by using a bind entity
activity to point to order data in an Oracle ADF Business Component data provider
service in the WebLogic Fusion Order Demo application.

For more information, see Oracle Fusion Middleware Tutorial for Running and Building an
Application with Oracle SOA Suite.

To create an entity variable and choose a partner link:

1. Go to the Structure window of the BPEL process service component in Oracle
JDeveloper.

2. Right-click the Variables folder and select Expand All Child Nodes.

3. Inthe second Variables folder, right-click and select Create Variable.
The Create Variable dialog appears.

4. In the Name field, enter a name.

5. Click the Entity Variable checkbox and select the Search icon to the right of the
Partner Link field.

The Partner Link Chooser dialog appears with a list of available services,
including the SDO service called ADF-BC Service.

7-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Delegating XML Data Operations to Data Provider Services

6. Browse for and select the service for the Oracle ADF Business Component
application.

7. Click OK to close the Partner Link Chooser and Create Variable dialogs.

The Create Variable dialog looks as shown in Figure 7-3.

Figure 7-3 Create Variable Dialog

General | Sensors

Mame: |gOrderInFOVariable

Type
=1 O simple Type

=1 () Message Type

=y (%) Element |{,I'oracle,ffodemo,l'storeFront,l'store,l'queries| %

StoreFrontService | Q,

’7 Entity Variable

| Help | | Apply || Ok || Cancel

7.2.1.4 Creating a Binding Key

You now create a key to point to the order data in the Oracle ADF Business
Component data provider service.

To create a binding key:
1. Drag a Bind Entity activity into your BPEL process service component.

The Bind Entity dialog appears.

2. In the Name field, enter a name.

3. To the right of the Entity Variable field, click the Search icon.
The Variable Chooser dialog appears.

4. Select the entity variable created in Section 7.2.1.3, "Creating an Entity Variable
and Choosing a Partner Link" and click OK.

5. Inthe Unique Keys section, click the Add icon.

The Specify Key dialog appears. You use this dialog to create a key for retrieving
the order ID from the Oracle ADF Business Component data provider service.

6. Enter the details described in Table 7-2 to define the binding key:

Table 7-2 Specify Key Dialog Fields and Values

Field Value
Key Local Part Enter the local part of the key.
Key Namespace URI Enter the namespace URI for the key.

Manipulating XML Data in a BPEL Process 7-9

Delegating XML Data Operations to Data Provider Services

Table 7-2 (Cont.) Specify Key Dialog Fields and Values

Field

Value

Key Value

Enter the key value expression. This expression must match the
type of a key. The following examples show expression value
keys for a POID key:

. SinputMsg.payload/tns:poid
s bpws:getVariableData (’inputmsg’, 'payload’, 'tns:
poid’)

The POID key for an entity variable typically comes from
another message. If the type of POID key is an integer and the
expression result is a string of ABC, the string-to-integer fails and
the bind entity activity also fails at runtime.

Figure 7—4 shows the Specify Key dialog after completion.

Figure 7-4 Specify Key Dialog

S pecify Key

Key OName
Key Local Part:

| Orderld | (x)

Key Mamespace URI: |,l'oracle,l'F0demo,l'storeFront,l’store,l’queries,l'common,l' |

Key Yalue: |bpws:getVariabIeData('input\-‘ariable','payload',',l'client:process,l’client:orderld') | i

| teb |

| a4 || Cancel |

7. Click OK to close the Specify Key dialog.

A name-pair value appears in the Unique Keys table, as shown in Figure 7-5.
Design is now complete.

Figure 7-5 Bind Entity Dialog

Bind Entity b4
| General | Sensors
[ame: | findCrderById |
Entity Yariable: |gOrderInFOVariabIe | Q@
Unique Keys: * / x
Key CQMarme ‘alue Expression
{loracle/fodemofstar,.. bpws:get¥ariableDatalinputvariable','payload','f..
| Help | | Apply || Ok || Cancel |

8. Click OK to close the Bind Entity dialog.

7-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using Standalone SDO-based Variables

After the Bind Entity activity is executed at runtime, the entity variable is ready to
be used.

For more information about using SDOs, see Oracle Fusion Middleware Fusion
Developer’s Guide for Oracle Application Development Framework. This guide describes
how to expose application modules as web services and publish rows of view data
objects as SDOs. The application module is the ADF framework component that
encapsulates business logic as a set of related business functions.

7.3 Using Standalone SDO-based Variables

Standalone SDO-based variables are similar to ordinary BPEL XML-DOM-based
variables. The major difference is that the underlying data form is SDO-based, instead
of DOM-based. Therefore, SDO-based variables can use some SDO features such as
Java API access, an easier-to-use update API, and the change summary. However, SDO
usage is also subject to some restrictions that do not exist with XML-DOM-based
variables. The most noticeable restriction is that SDO only supports a small subset of
XPath expressions.

7.3.1 How to Declare SDO-based Variables

The syntax for declaring an SDO-based variable is similar to that for declaring BPEL
variables. Example 7—4 provides details.

Example 7-4 SDO-based Variable Declaration

<variable name="deptVar_s" element="hrtypes:dept" />
<variable name="deptVar_v" element="hrtypes:dept" bpelx:sdoCapable="false" />

If you want to override the automatic detection, use the
bpelx:sdoCapable="true|false" switch. For example, variable deptvar_v
described in Example 7—4 is a regular DOM-based variable. Example 7-4 provides an
example of the schema.

Example 7-5 XSD Sample

<xsd:element name="dept" type="Dept"/>
<xsd:complexType name="Dept"
sdoJava:instanceClass="sdo.sample.service. types.Dept">
<xsd:annotation>
<xsd:appinfo source="Key"
xmlns="http://xmlns.oracle.com/bcd]j/service/metadata/">
<key>
<attribute>Deptno</attribute>
</key>
<fetchMode>minimal</fetchMode>
</xsd:appinfo>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="Deptno" type="xsd:integer" minOccurs="0"/>
<xsd:element name="Dname" type="xsd:string" minOccurs="0"
nillable="true"/>
<xsd:element name="Loc" type="xsd:string" minOccurs="0" nillable="true"/>
<xsd:element name="Emp" type="Emp" minOccurs="0" maxOccurs="unbounded"
nillable="true"/>
</xsd:sequence>
</xsd:complexType>

Manipulating XML Data in a BPEL Process 7-11

Using Standalone SDO-based Variables

7.3.2 How to Convert from XML to SDO

Oracle BPEL Process Manager supports dual data forms: DOM and SDO. You can
interchange the usage of DOM-based and SDO-based variables within the same
business process, even within the same expression. The Oracle BPEL Process Manager
data framework automatically converts back and forth between DOM and SDO forms.

By using the entity variable XPath rewrite capabilities, Oracle BPEL Process Manager
enables some XPath features (for example, variable reference and function calls) that
the basic SDO specification does not support. However, there are other limitations on
the XPath used with SDO-based variables (for example, there is no support for and,
or, and not).

Example 7-6 provides a simple example of converting from XML to SDO.

Example 7-6 XML-to-SDO Conversion

<assign>
<copy>
<from>
<ns0:dept xmlns:nsO0="http://sdo.sample.service/types/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<ns0:Deptno>10</ns0:Deptno>
<ns0:Dname>ACCOUNTING</ns0 : Dname>
<ns0:Loc>NEW YORK</ns0:Loc>
<ns0: Emp>
<ns0:Empno>7782</ns0: Empno>
<ns0:Ename>CLARK</ns0: Ename>
<ns0:Job>MANAGER</ns0: Job>
<ns0:Mgr>7839</ns0:Mgr>
<ns0:Hiredate>1981-06-09</ns0:Hiredate>
<ns0:5al1>2450</ns0:Sal>
<ns0:Deptno>10</ns0:Deptno>
</ns0:Emp>
<ns0:Emp>
<ns0:Empno>7839</ns0 : Empno>
<ns0:Ename>KING</ns0: Ename>
<ns0:Job>PRESIDENT</ns0:Job>
<ns0:Hiredate>1981-11-17</ns0:Hiredate>
<ns0:5al1>5000</ns0:Sal>
<ns0:Deptno>10</ns0:Deptno>
</ns0:Emp>
<ns0: Emp>
<ns0:Empno>7934</ns0: Empno>
<ns0:Ename>MILLER</ns0: Ename>
<ns0:Job>CLERK</ns0:Job>
<ns0:Mgr>7782</ns0:Mgr>
<ns0:Hiredate>1982-01-23</ns0:Hiredate>
<ns0:5a1>1300</ns0:Sal>
<ns0:Deptno>10</ns0:Deptno>
</ns0:Emp>
</ns0:dept>
</from>
<to variable="deptVar_s" />
</copy>
</assign>

Example 7-7 provides an example of copying from an XPath expression of an SDO
variable to a DOM variable.

7-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Initializing a Variable with Expression Constants or Literal XML

Example 7-7 Copy from an XPath Expression of an SDO Variable to a DOM Variable

<assign>
<!-- copy from an XPath expression of an SDO variable to DOM variable -->
<copy>
<from expression="S$deptVar_s/hrtypes:Emp[2]" />
<to variable="empVar_v" />
</copy>
<!-- copy from an XPath expression of an DOM variable to SDO variable -->
<copy>
<from expression="S$deptVar_v/hrtypes:Emp[2]" />
<to variable="empVar_s" />
</copy>
<!-- insert a DOM based data into an SDO variable -->

<bpelx:insertAfter>
<bpelx:from variable="empVar_v" />
<bpelx:to variable="deptVar_s" query="hrtypes:Emp" />
</bpelx:insertAfter>
<!-- insert a SDO based data into an SDO variable at particular location,
no XML conversion is needed -->
<bpelx:insertBefore>
<bpelx:from expression="$deptVar_s/hrtypes:Emp[hrtypes:Sal = 1300]" />
<bpelx:to variable="deptVar_s" query="hrtypes:Emp[6]" />
</bpelx:insertBefore>
</assign>

Example 7-8 provides an example of removing a portion of SDO data.

Example 7-8

<assign>
<bpelx:remove>
<bpelx:target variable="deptVar_s" query="hrtypes:Emp[2]" />
</bpelx:remove>
</assign>

Note: The bpelx:append operation is not supported for
SDO-based variables for the following reasons:

s The <copy> operation on an SDO-based variable has smart
update capabilities (for example, you do not need to perform a
<bpelx:append> before the <copy> operation).

s The SDO data object is metadata driven and does not generally
support adding a new property arbitrarily.

7.4 Initializing a Variable with Expression Constants or Literal XML

It is often useful to assign literal XML to a variable in BPEL, for example, to initialize a
variable before copying dynamic data into a specific field within the XML data content
for the variable. This is also useful for testing purposes when you want to hard code
XML data values into the process.

7.4.1 How To Assign a Literal XML Element

Example 7-9 assigns a literal result element to the payload part of the output
variable:

Manipulating XML Data in a BPEL Process 7-13

Copying Between Variables

Example 7-9 Literal Element Assignment

<assign>
<!-- copy from literal xml to the variable -->
<copy>
<from>
<result xmlns="http://samples.otn.com">
<name/>
<symbol/>
<price>12.3</price>
<quantity>0</quantity>
<approved/>
<message/>
</result>
</from>
<to variable="output" part="payload"/>
</copy>
</assign>

7.5 Copying Between Variables

When you copy between variables, you copy directly from one variable (or part) to
another variable of a compatible type, without needing to specify a particular field
within either variable. In other words, there is no need to specify an XPath query.

7.5.1 How to Copy Between Variables

Example 7-10 shows two assignments being performed, first copying between two
variables of the same type and then copying a variable part to another variable with
the same type as that part.

Example 7-10 Copying Between Variables

<assign>
<copy>
<from variable="cl"/>
<to variable="c2"/>
</copy>
<copy>
<from variable="cl" part = "address"/>
<to variable="c3"/>
</copy>
</assign>

The BPEL file defines the variables shown in Example 7-11:

Example 7-11 Variable Definition

<variable name="cl" messageType="x:person"/>
<variable name="c2" messageType="x:person"/>
<variable name="c3" element="y:address"/>

The WSDL file defines the person message type shown in Example 7-12:

Example 7-12 Message Type Definition

<message name="person" xmlns:x="http://tempuri.org/bpws/example">
<part name="full-name" type="xsd:string"/>
<part name="address" element="x:address"/>

</message>

7-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Accessing Fields Within Element-Based and Message Type-Based Variables

For more information about this code example, see Section 9.3.2 of the Business Process
Execution Language for Web Services Specification.

7.6 Accessing Fields Within Element-Based and Message Type-Based

Variables

Given the types of definitions present in most WSDL and XSD files, you must go down
to the level of copying from or to a field within part of a variable based on the element
and message type. This in turn uses XML schema complex types. To perform this
action, you specify an XPath query in the from or to clause of the assign activity.

7.6.1 How to Access Fields Within Element-Based and Message Type-Based Variables

In Example 7-13, the ssn field is copied from the CreditFlow process’s input
message into the ssn field of the credit rating service’s input message.

Example 7-13 Field Copying Levels

<assign>
<copy>
<from variable="input" part="payload"
query="/tns:CreditFlowRequest/tns:ssn"/>
<to variable="crInput" part="payload" query="/tns:ssn"/>
</copy>
</assign>

Example 7-14 shows how the BPEL file defines message type-based variables involved
in this assignment:

Example 7-14 BPEL File Definition - Message Type-Based Variables
<variable name="input" messageType="tns:CreditFlowRequestMessage" />

<variable name="crInput"
messageType="services:CreditRatingServiceRequestMessage" />

The crInput variable is used as an input message to a credit rating service. Its
message type, CreditFlowRequestMessage, is defined in the
CreditFlowService.wsdl file, as shown in Example 7-15:

Example 7-15 CreditFlowRequestMessage Definition

<message name="CreditFlowRequestMessage">
<part name="payload" element="tns:CreditFlowRequest"/>
</message>

CreditFlowRequest is defined with a field named ssn. The message type
CreditRatingServiceRequestMessage is defined in the
CreditRatingService.wsdl file, as shown in Example 7-16:

Example 7-16 CreditRatingServiceRequestMessage Definition

<message name="CreditRatingServiceRequestMessage">
<part name="payload" element="tns:ssn"/>
</message>

Manipulating XML Data in a BPEL Process 7-15

Assigning Numeric Values

A BPEL process can also use element-based variables. In Example 7-17, the autoloan
field is copied from the loan application process’s input message into the customer
field of a web service’s input message.

Example 7-17 Field Copying Levels
<assign>
<copy>
<from variable="input" part="payload"
query="/tns:invalidLoanApplication/autoloan:
application/autoloan:customer" />
<to variable="customer"/>
</copy>
</assign>

Example 7-18 shows how the BPEL file defines element-based variables involved in an
assignment:

Example 7-18 BPEL File Definition - Element-Based Variables

<variable name="customer" element="tns:customerProfile"/>

7.7 Assigning Numeric Values

You can assign numeric values in XPath expressions.

7.7.1 How to Assign Numeric Values

Example 7-19 shows how to assign an XPath expression with the integer value of 100.

Example 7-19 XPath Expression Assignment
<assign>
<!-- copy from integer expression to the variable -->
<copy>
<from expression="100"/>
<to variable="output" part="payload" query="/p:result/p:quantity"/>
</copy>
</assign>

7.8 Using Mathematical Calculations with XPath Standards

You can use simple mathematical expressions like the one in Section 7.8.1, "How To
Use Mathematical Calculations with XPath Standards,” which increment a numeric
value.

7.8.1 How To Use Mathematical Calculations with XPath Standards

In Example 7-20, the BPEL XPath function getVariableData retrieves the value
being incremented. The arguments to getVariableData are equivalent to the
variable, part, and query attributes of the from clause (including the last two
arguments, which are optional).

Example 7-20 XPath Function getVariableData Retrieval of a Value

<assign>
<copy>
<from expression="bpws:getVariableData('input', 'payload',

7-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Concatenating Strings

'/p:value') + 1"/>
<to variable="output" part="payload" query="/p:result"/>
</copy>
</assign>

You can also use $variable syntax, as shown in Example 7-21:

Example 7-21 $variable Syntax Use

<assign>
<copy>
<from expression="S$input.payload + 1"/>
<to variable="output" part="payload" query="/p:result"/>
</copy>
</assign>

7.9 Assigning String Literals

You can assign string literals to a variable in BPEL.

7.9.1 How to Assign String Literals

The code in Example 7-22 copies an expression evaluating from the string literal ' GE"
to the symbol field within the indicated variable part. (Note the use of the double and
single quotes.)

Example 7-22 Expression Copy

<assign>
<!-- copy from string expression to the variable -->
<copy>
<from expression="'GE'"/>
<to variable="output" part="payload" query="/p:result/p:symbol"/>
</copy>
</assign>

7.10 Concatenating Strings

Rather than copying the value of one string variable (or variable part or field) to
another, you can first perform string manipulation, such as concatenating several
strings.

7.10.1 How to Concatenate Strings

The concatenation is accomplished with the core XPath function named concat;in
addition, the variable value involved in the concatenation is retrieved with the BPEL
XPath function getVariableData. In Example 7-23, getVariableData fetches the
value of the name field from the input variable’s payload part. The string literal
'Hello ' is then concatenated to the beginning of this value.

Example 7-23 XPath Function getVariableData Fetch of Data

<assign>
<!-- copy from XPath expression to the variable -->
<copy>
<from expression="concat('Hello ',
bpws:getVariableData('input', 'payload', '/p:name'))"/>
<to variable="output" part="payload" query="/p:result/p:message"/>

Manipulating XML Data in a BPEL Process 7-17

Assigning Boolean Values

</copy>
</assign>

Other string manipulation functions available in XPath are listed in section 4.2 of the
XML Path Language (XPath) Specification.

7.11 Assigning Boolean Values

You can assign boolean values with the XPath boolean function.

7.11.1 How to Assign Boolean Values

Example 7-24 provides an example of assigning boolean values. The XPath expression
in the from clause is a call to XPath’s boolean function true, and the specified
approved field is set to true. The function false is also available.

Example 7-24 Boolean Value Assignment

<assign>
<!-- copy from boolean expression function to the variable -->
<copy>
<from expression="true()"/>
<to variable="output" part="payload" query="/result/approved"/>
</copy>
</assign>

The XPath specification recommends that you use the "true () " and "false() "
functions as a method for returning boolean constant values.

If you instead use "boolean (true) " or "boolean (false) ", the true or false
inside the boolean function is interpreted as a relative element step, and not as any
true or false constant. It attempts to select a child node named true under the
current XPath context node. In most cases, the true node does not exist. Therefore, an
empty result node set is returned and the boolean () function in XPath 1.0 converts
an empty node set into a false result. This result can be potentially confusing.

7.12 Assigning a Date or Time

You can assign the current value of a date or time field by using the Oracle BPEL
XPath function getCurrentDate, getCurrentTime, or getCurrentDateTime,
respectively. In addition, if you have a date-time value in the standard XSD format,
you can convert it to characters more suitable for output by calling the Oracle BPEL
XPath function formatDate.

For related information, see section 9.1.2 of the Business Process Execution Language for
Web Services Specification.

7.12.1 How to Assign a Date or Time

Example 7-25 shows an example that uses the function getCurrentDate.

Example 7-25 Date or Time Assignment

<!-- execute the XPath extension function getCurrentDate() -->
<assign>
<copy>

<from expression="xpath20:getCurrentDate()"/>
<to variable="output" part="payload"

7-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Manipulating Attributes

query="/invoice/invoiceDate" />
</copy>
</assign>

In Example 7-26, the formatDate function converts the date-time value provided in
XSD format to the string 'Jun 10, 2005' (and assigns it to the string field
formattedDate).

Example 7-26 formatDate Function

<!-- execute the XPath extension function formatDate() -->
<assign>
<copy>

<from expression="ora:formatDate('2005-06-10T15:56:00",
‘MMM dd, yyyy')"/>
<to variable="output" part="payload"
query="/invoice/formattedDate" />
</copy>
</assign>

7.13 Manipulating Attributes

You can copy to or from something defined as an XML attribute. An at sign (@) in
XPath query syntax refers to an attribute instead of a child element.

7.13.1 How to Manipulate Attributes

The code in Example 7-27 fetches and copies the custId attribute from this XML
data:

Example 7-27 custld Attribute Fetch and Copy Operations

<invalidLoanApplication xmlns="http://samples.otn.com">
<application xmlns = "http://samples.otn.com/XPath/autoloan">
<customer custId = "111" >
<name>
Mike Olive
</name>

</customer>

</application>
</invalidLoanApplication>

The code in Example 7-28 selects the custId attribute of the customer field and
assigns it to the variable custId:

Example 7-28 custld Attribute Select and Assign Operations

<assign>
<!-- get the custId attribute and assign to variable custId -->
<copy>
<from variable="input" part="payload"
query="/tns:invalidLoanApplication/autoloan:application
/autoloan:customer/@custId"/>
<to variable="custId"/>
</copy>
</assign>

Manipulating XML Data in a BPEL Process 7-19

Manipulating XML Data with bpelx Extensions

The namespace prefixes in this example are not integral to the example.

The WSDL file defines a customer to have a type in which custIdis defined as an
attribute, as shown in Example 7-29:

Example 7-29 custld Attribute Definition

<complexType name="CustomerProfileType">
<sequence>
<element name="name" type="string"/>

</sequence>

<attribute name="custId" type="string"/>
</complexType>

7.14 Manipulating XML Data with bpelx Extensions

You can perform various operations on XML data in assign activities. The bpelx
extension types described in this section provide this functionality.

7.14.1 How to Use bpelx:append

Note: The bpelx:append extension is not supported with SDO
variables and causes an error.

The bpelx: append extension in an assign activity enables a BPEL process service
component to append the contents of one variable, expression, or XML fragment to
another variable’s contents. Example 7-30 provides an example.

Example 7-30 bpelx:append Extension

<bpel:assign>
<bpelx:append>
<bpelx:from ... />
<bpelx:to ... />
</bpelx:append>
</bpel:assign>

The from-spec query within bpelx:append yields zero or more nodes. The node
list is appended as child nodes to the target node specified by the to-spec query.

The to-spec query must yield one single L-Value element node. Otherwise, a
bpel:selectionFailure faultis generated. The to-spec query cannot refer to a
partner link.

Example 7-31 consolidates multiple bills of material into one single bill of material
(BOM) by appending multiple b : parts for one BOM to b:parts of the consolidated
BOM.

Example 7-31 Consolidation of Multiple Bills of Material

<bpel:assign>
<bpelx:append>
<from variable="billOfMaterialVar"
query="/b:bom/b:parts/b:part" />
<to variable="consolidatedBillOfMaterialVar"
query="/b:bom/b:parts" />

7-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Manipulating XML Data with bpelx Extensions

</bpelx:append>
</bpel:assign>

7.14.2 How to Use bpelx:insertBefore

Note: The bpelx:insertBefore extension works with SDO
variables, but the target must be the variable attribute into which the
copied data must go.

The bpelx:insertBefore extension in an assign activity enables a BPEL process
service component to insert the contents of one variable, expression, or XML fragment
before another variable’s contents. Example 7-32 provides an example.

Example 7-32 bpelx:insertBefore Extension
<bpel:assign>
<bpelx:insertBefore>
<bpelx:from ... />
<bpelx:to ... />
</bpelx:insertBefore>
</bpel:assign>

The from-spec query within bpelx: insertBefore yields zero or more nodes. The
node list is appended as child nodes to the target node specified by the to-spec
query.

The to-spec query of the insertBefore operation points to one or more single
L-Value nodes. If multiple nodes are returned, the first node is used as the reference
node. The reference node must be an element node. The parent of the reference node
must also be an element node. Otherwise, a bpel : selectionFailure faultis
generated. The node list generated by the from-spec query selection is inserted
before the reference node. The to-spec query cannot refer to a partner link.

Example 7-33 shows the syntax before the execution of <insertBefore>. The value
of addrVar is:

Example 7-33 Presyntax Execution

<a:usAddress>
<a:state>CA</a:state>
<a:zipcode>94065</a:zipcode>
</a:usAddress>

Example 7-34 shows the syntax after the execution:

Example 7-34 Postsyntax Execution

<bpel:assign>
<bpelx:insertBefore>
<bpelx:from>
<a:city>Redwood Shore></a:city>
</bpelx: from>
<bpelx:to "addrVar" query="/a:usAddress/a:state" />
</bpelx:insertBefore>
</bpel:assign>

Example 7-35 shows the value of addrVvar:

Manipulating XML Data in a BPEL Process 7-21

Manipulating XML Data with bpelx Extensions

Example 7-35 addrVar Value

<a:usAddress>
<a:city>Redwood Shore</a:city>
<a:state>CA</a:state>
<a:zipcode>94065</a:zipcode>
</a:usAddress>

7.14.3 How to Use bpelx:insertAfter

Note: The bpelx:insertAfter extension works with SDO
variables, but the target must be the variable attribute into which the
copied data must go.

The bpelx:insertAfter extension in an assign activity enables a BPEL process
service component to insert the contents of one variable, expression, or XML fragment
after another variable’s contents. Example 7-36 provides an example.

Example 7-36 bpelx:insertAfter Extension
<bpel:assign>
<bpelx:insertAfter>
<bpelx:from ... />
<bpelx:to ... />
</bpelx:insertAfter>
</bpel:assign>

This operation is similar to the functionality described for Section 7.14.2, "How to Use
bpelx:insertBefore," except for the following:

s If multiple L-Value nodes are returned by the to-spec query, the last node is
used as the reference node.

= Instead of inserting nodes before the reference node, the source nodes are inserted
after the reference node.

This operation can also be considered a macro of conditional-switch + (append
or insertBefore).

Example 7-37 shows the syntax before the execution of <insertAfter>. The value of
addrvar is:

Example 7-37 Presyntax Execution

<a:usAddress>
<a:addressLine>500 Oracle Parkway</a:addressLine>
<a:state>CA</a:state>
<a:zipcode>94065</a: zipcode>

</a:usAddress>

Example 7-38 shows the syntax after the execution:

Example 7-38 Postsyntax Execution

<bpel:assign>
<bpelx:insertAfter>
<bpelx:from>
<a:addressLine>Mailstop lopb6</a:addressLine>
</bpelx: from>

7-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Manipulating XML Data with bpelx Extensions

<bpelx:to "addrVar" query="/a:usAddress/a:addressLine[1l]" />
</bpelx:insertAfter>
</bpel:assign>

Example 7-39 shows the value of addrVvar:

Example 7-39 addrVar Value

<a:usAddress>
<a:addressLine>500 Oracle Parkway</a:addressLine>
<a:addressLine>Mailstop lop6</a:addressLine>
<a:state>CA</a:state>
<a:zipcode>94065</a:zipcode>

</a:usAddress>

The from-spec query within bpelx:insertAfter yields zero or more nodes. The
node list is appended as child nodes to the target node specified by the to-spec

query.

7.14.4 How to Use bpelx:remove

The bpelx:remove extension in an assign activity enables a BPEL process service
component to remove a variable. Example 7—40 provides an example.

Example 7-40 bpelx:remove Extension
<bpel:assign>
<bpelx:remove>
<bpelx:target variable="ncname" part="ncname"? query="xpath_str" />
</bpelx:append>
</bpel:assign>

Node removal specified by the XPath expression is supported. Nodes specified by the
XPath expression can be multiple, but must be L-Values. Nodes being removed from
this parent can be text nodes, attribute nodes, and element nodes.

The XPath expression can return one or more nodes. If the XPath expression returns
zero nodes, then a bpel:selectionFailure fault is generated.

The syntax of bpelx: target is similar to and a subset of to-spec for the copy
operation.

Example 7-41 shows addrVar with the following value:

Example 7-41 addrVar

<a:usAddress>
<a:addressLine>500 Oracle Parkway</a:addressLine>
<a:addressLine>Mailstop lopé6</a:addressLine>
<a:state>CA</a:state>
<a:zipcode>94065</a:zipcode>

</a:usAddress>

After executing the syntax shown in Example 7-42 in the BPEL process service
component file, the second address line of Mailstop is removed:

Example 7-42 Removal of Second Address Line

<bpel:assign>
<bpelx:remove>
<target variable="addrVar"

Manipulating XML Data in a BPEL Process 7-23

Manipulating XML Data with bpelx Extensions

query="/a:usAddress/a:addressLine[2]" />
</bpelx:remove>
</bpel:assign>

After executing the syntax shown in Example 7-43 in the BPEL process service
component file, both address lines are removed:

Example 7-43 Removal of Both Address Lines

<bpel:assign>
<bpelx:remove>
<target variable="addrVar"
query="/a:usAddress/a:addressLine" />
</bpelx:remove>
</bpel:assign>

7.14.5 How to Use bpelx:rename and XSD Type Casting

The bpelx: rename extension in an assign activity enables a BPEL process service
component to rename an element through use of XSD type casting. Example 7-44
provides an example.

Example 7-44 bpelx:rename Extension

<bpel:assign>
<bpelx:rename elementTo="QNamel"? typeCastTo="QName2"?>
<bpelx:target variable="ncname" part="ncname"? query="xpath_str" />
</bpelx:rename>
</bpel:assign>

The syntax of bpelx: target is similar to and a subset of to-spec for the copy
operation. The target must return a list of one more element nodes. Otherwise, a
bpel:selectionFailure fault is generated. The element nodes specified in the
from-spec are renamed to the QName specified by the elementTo attribute. The
xsi: type attribute is added to those element nodes to cast those elements to the
QOName type specified by the typeCastTo attribute.

Assume you have the employee list shown in Example 7-45:

Example 7-45 xsi:type Attribute

<e:empList>
<e:emp>
<e:firstName>John</e:firstName><e:lastName>Dole</e:lastName>
<e:emp>
<e:emp Xsi:type="e:ManagerType">
<e:firstName>Jane</e:firstName><e:lastName>Dole</e:lastName>
<e:approvallLimit>3000</e:approvallimit>
<e:managing />
<e:emp>
<e:emp>
<e:firstName>Peter</e:firstName><e:lastName>Smith</e:lastName>
<e:emp>
<e:emp>
<e:firstName>Mary</e:firstName><e:lastName>Smith</e:lastName>
<e:emp>
</e:empList>

Promotion changes are now applied to Peter Smith in the employee list in
Example 7-46:

7-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Manipulating XML Data with bpelx Extensions

Example 7-46 Application of Promotion Changes

<bpel:assign>
<bpelx:rename typeCastTo="e:ManagerType">
<bpelx:target variable="empListVar"
query="/e:emplList/e:emp[./e:firstName="'Peter' and
./e:lastName='Smith'" />
</bpelx:rename>
</bpel:assign>

After executing the above casting (renaming), the data looks as shown in
Example 7-47 with xsi: type info added to Peter Smith:

Example 7-47 Data Output

<e:empList>
<e:emp>
<e:firstName>John</e: firstName><e:lastName>Dole</e:lastName>
<e:emp>
<e:emp xXsi:type="e:ManagerType">
<e:firstName>Jane</e:firstName><e:lastName>Dole</e:lastName>
<e:approvallLimit>3000</e:approvallimit>
<e:managing />
<e:emp>
<e:emp xsi:type="e:ManagerType">
<e:firstName>Peter</e:firstName><e:lastName>Smith</e:lastName>
<e:emp>
<e:emp>
<e:firstName>Mary</e:firstName><e:lastName>Smith</e:lastName>
<e:emp>
</e:empList>

The employee data of Peter Smith is now invalid, because <approvalLimit> and
<managing> are missing. Therefore, <append> is used to add that information.
Example 7-48 provides an example.

Example 7-48 Use of append Extension to Add Information

<bpel:assign>
<bpelx:rename typeCastTo="e:ManagerType">
<bpelx:target variable="empListVar"
query="/e:empList/e:emp[./e:firstName="'Peter' and
./e:lastName='Smith'" />
</bpelx:rename>
<bpelx:append>
<bpelx:from>
<e:approvalLimit>2500</e:approvallimit>
<e:managing />
</bpelx: from>
<bpelx:to variable="empListVar"
query="/e:emplList/e:emp[./e:firstName="'Peter' and
./e:lastName='Smith'" />
</bpelx:append>
</bpel:assign>

With the execution of both rename and append, the corresponding data looks as
shown in Example 7-49:

Example 7-49 rename and append Execution

<e:emp xsi:type="e:ManagerType">

Manipulating XML Data in a BPEL Process 7-25

Manipulating XML Data with bpelx Extensions

<e:firstName>Peter</e: firstName><e:lastName>Smith</e:lastName>
<e:approvalLimit>2500</e:approvalLimit>
<e:managing />

<e:emp>

7.14.6 How to Use bpelx:copyList

The bpelx:copyList extension in an assign activity enables a BPEL process service
component to perform a copyList operation of the contents of one variable,
expression, or XML fragment to another variable. Example 7-50 provides an example.

Example 7-50 bpelx:copyList Extension
<bpel:assign>
<bpelx:copyList>
<bpelx:from ... />
<bpelx:to ... />
</bpelx:copyList>
</bpel:assign>

The from-spec query can yield a list of either all attribute nodes or all element nodes.
The to-spec query can yield a list of L-value nodes: either all attribute nodes or all
element nodes.

All the element nodes returned by the to-spec query must have the same parent
element. If the to-spec query returns a list of element nodes, all element nodes must
be contiguous.

If the from-spec query returns attribute nodes, then the to-spec query must return
attribute nodes. Likewise, if the from-spec query returns element nodes, then the
to-spec query must return element nodes. Otherwise, a

bpws :mismatchedAssignmentFailure faultis thrown.

The from-spec query can return zero nodes, while the to-spec query must return
at least one node. If the from-spec query returns zero nodes, the effect of the
copyList operation is similar to the remove operation.

The copylist operation provides the following features:
= Removes all the nodes pointed to by the to-spec query.

= If the to-spec query returns a list of element nodes and there are leftover child
nodes after removal of those nodes, the nodes returned by the from-spec query
are inserted before the next sibling of the last element specified by the to-spec
query. If there are no leftover child nodes, an append operation is performed.

» If the to-spec query returns a list of attribute nodes, those attributes are removed
from the parent element. The attributes returned by the from-spec query are
then appended to the parent element.

For example, assume a schema is defined as shown in Example 7-51.

Example 7-51 Schema

<schema attributeFormDefault="unqualified"
elementFormDefault="qualified"
targetNamespace="http://xmlns.oracle.com/Event_jws/Event/EventTest"
xmlns="http://www.w3.0rg/2001/XMLSchema">
<element name="process">
<complexType>
<sequence>
<element name="payload" type="string"

7-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Validating XML Data with bpelx:validate

7.15

maxOccurs="unbounded" />

</sequence>
</complexType>
</element>
<element name="processResponse">
<complexType>
<sequence>
<element name="payload" type="string"
maxOccurs="unbounded" />
</sequence>
</complexType>
</element>
</schema>

The from variable contains the content shown in Example 7-52.

Example 7-52 Variable Content

<nsl:process xmlns:nsl="http://xmlns.oracle.com/Event_jws/Event/EventTest">
<nsl: payload >»a</nsl: payload >
<nsl: payload >b</nsl: payload >

</nsl:process>

The to variable contains the content shown in Example 7-53.

Example 7-53 Variable Content

<nsl:processResponse xmlns:nsl="http://xmlns.oracle.com/Event_
jws/Event/EventTest">
<nsl: payload >c</nsl: payload >
</nsl:process>

The bpelx:copyList operation looks as shown in Example 7-54.

Example 7-54 bpelx:copyList

<assign>
<bpelx:copyList>
<bpelx:from variable="inputVariable" part="payload"
query="/client:process/client:payload"/>
<bpelx:to variable="outputVariable" part="payload"
query="/client:processResponse/client:payload" />
</bpelx:copyList>
</assign>

This makes the to variable as shown in Example 7-55.

Example 7-55 Variable Content

<nsl:processResponse xmlns:nsl="http://xmlns.oracle.com/Event_
jws/Event/EventTest">
<nsl: payload >»a</nsl: payload >
<nsl: payload >b</nsl: payload >
</nsl:process>

Validating XML Data with bpelx:validate

The bpelx:validate function enables you to verify code and identify invalid XML
data.

Manipulating XML Data in a BPEL Process 7-27

Manipulating XML Data Sequences That Resemble Arrays

7.15.1 How to Validate XML Data with bpelx:validate

Use this extension as follows:
= With the validate attribute in an assign activity:

<assign bpelx:validate="yes|no">
</assign>

s In<bpelx:validate> as a standalone, extended activity that can be used
without an assign activity:

<bpelx:validate variables="NCNAMES" />

For example:

<bpelx:validate variables="myMsgVariable myPOElemVar" />

7.16 Manipulating XML Data Sequences That Resemble Arrays

Data sequences are one of the most basic data models used in XML. However,
manipulating them can be nontrivial. One of the most common data sequence patterns
used in BPEL process service components are arrays. Based on the XML schema, the
way you can identify a data sequence definition is by its attribute maxOccurs being
set to a value greater than one or marked as unbounded. See the XML Schema
Specification at http: / /www.w3 . org/TR for more information.

The examples in this section illustrate several basic ways of manipulating data
sequences in BPEL. However, there are other associated requirements, such as
performing looping or dynamic referencing of endpoints. For additional code samples
and further information regarding real-world use cases for data sequence
manipulation in BPEL, see http://www.oracle.com/technology/sample_
code/products/bpel.

The following sections describe a particular requirement for data sequence
manipulation.

7.16.1 How to Statically Index into an XML Data Sequence That Uses Arrays

The following two examples illustrate how to use XPath functionality to select a data
sequence element when the index of the element you want is known at design time. In
these cases, it is the first element.

In Example 7-56, addresses [1] selects the first element of the addresses data
sequence:

Example 7-56 Data Sequence Element Selection

<assign>
<!-- get the first address and assign to variable address -->
<copy>
<from variable="input" part="payload"
query="/tns:invalidLoanApplication/autoloan:application
/autoloan:customer/autoloan:addresses[1]"/>
<to variable="address"/>
</copy>
</assign>

In this query, addresses[1] is equivalent to addresses [position()=1], where
position is one of the core XPath functions (see sections 2.4 and 4.1 of the XML Path

7-28 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Manipulating XML Data Sequences That Resemble Arrays

Language (XPath) Specification). The query in Example 7-57 calls the position
function explicitly to select the first element of the addresses data sequence. It then
selects that address’s street element (which the activity assigns to the variable
streetl).

Example 7-57 position Function Use

<assign>
<!-- get the first address's street and assign to streetl -->
<copy>
<from variable="input" part="payload"
query="/tns:invalidLoanApplication/autoloan:application
/autoloan:customer/autoloan:addresses|[position()=1]
/autoloan:street"/>
<to variable="streetl"/>
</copy>
</assign>

If you review the definition of the input variable and its payload part in the WSDL file,
you go several levels down before coming to the definition of the addresses field.
There you see the maxOccurs="unbounded" attribute. The two XPath indexing
methods are functionally identical; you can use whichever method you prefer.

7.16.2 How to Determine Sequence Size

If you must know the runtime size of a data sequence (that is, the number of nodes or
data items in the sequence), you can get it by using the combination of the XPath
built-in count () function and the BPEL built-in getVariableData () function.

The code in Example 7-58 calculates the number of elements in the item sequence and
assigns it to the integer variable 1ineItemSize.

Example 7-58 Sequence Size Determination
<assign>
<copy>
<from expression="count (bpws:getVariableData (’outpoint’, ’'payload’,
'/p:invoice/p:lineltems/p:item')"/>
<to variable="lineItemSize"/>
</copy>
</assign>

7.16.3 How to Dynamically Index by Applying a Trailing XPath to an Expression

Often a dynamic value is needed to index into a data sequence; that is, you must get
the nthnode out of a sequence, where the value of n is defined at runtime. This
section covers the methods for dynamically indexing by applying a trailing XPath into
expressions.

7.16.3.1 Applying a Trailing XPath to the Result of getVariableData

The dynamic indexing method shown in Example 7-59 applies a trailing XPath to the
result of bwps : getVariableData (), instead of using an XPath as the last argument
of bpws :getVariableData (). The trailing XPath references to an integer-based
index variable within the position predicate (thatis, [...]).

Example 7-59 Dynamic Indexing

<variable name="idx" type="xsd:integer"/>

Manipulating XML Data in a BPEL Process 7-29

Manipulating XML Data Sequences That Resemble Arrays

<assign>
<copy>
<from expression="bpws:getVariableData ('input', 'payload’
) /p:line-item[bpws:getVariableData('idx')]/p:line-total" />
<to variable="lineTotalVar" />
</copy>
</assign>

Assume at runtime that the 1dx integer variable holds 2 as its value. The preceding
expression within the from is equivalent to:

<from expression="bpws:getVariableData('input', 'payload’
)/p:line-item[2]/p:1line-total" />

There are some subtle XPath usage differences, when an XPath used trailing behind
the bwps :getVariableData () function is compared with the one used inside the
function.

Using the same example (where payload is the message part of element
"p:invoice™"), if the XPath is used within the getvVariableData () function, the
root element name (" /p:invoice") must be specified at the beginning of the XPath.

For example:

bpws:getVariableData('input', 'payload',
'/p:invoice/p:line-item[2]/p:line-total')

If the XPath is used trailing behind the bwps : getVariableData () function, the root
element name does not need to be specified in the XPath.

For example:

bpws:getVariableData('input', 'payload')/p:line-item[2]/p:line-total

This is because the node returned by the getvariableData () function is the root
element. Specifying the root element name again in the XPath is redundant and is
incorrect according to standard XPath semantics.

7.16.3.2 Using the bpelx:append Extension to Append New Items to a Sequence

The bpelx:append extension in an assign activity enables BPEL process service
components to append new elements to an existing parent element. Example 7-60
provides an example.

Example 7-60 bpelx:append Extension

<assign name="assign-3">
<copy>
<from expression="bpws:getVariableData ('idx')+1" />
<to variable="idx"/>
</copy>
<bpelx:append>
<bpelx:from variable="partInfoResultVar" part="payload" />
<bpelx:to variable="output" part="payload" />
</bpelx:append>

</assign>

The bpelx:append logic in this example appends the payload element of the
partInfoResultVar variable as a child to the payload element of the output

7-30 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Manipulating XML Data Sequences That Resemble Arrays

variable. In other words, the payload element of output variable is used as the parent
element.

7.16.3.3 Merging Data Sequences

You can merge two sequences into a single data sequence. This pattern is common
when the data sequences are in an array (that is, the sequence of data items of
compatible types).

The two append operations shown in Example 7-61 under assign demonstrate how
to merge data sequences:

Example 7-61 Data Sequences Merges with append Operations

<assign>
<!-- initialize "mergedLineItems" variable
to an empty element -->
<copy>

<from> <p:lineltems /> </from>
<to variable="mergedLinelItems" />
</copy>
<bpelx:append>
<bpelx:from variable="input" part="payload"
query="/p:invoice/p:lineltems/p:lineitem" />
<bpelx:to variable="mergedLineltems" />
</bpelx:append>
<bpelx:append>
<bpelx:from variable="literalLineItems"
query="/p:lineltems/p:lineitem" />
<bpelx:to variable="mergedLineItems" />
</bpelx:append>
</assign>

7.16.3.4 Generating Functionality Equivalent to an Array of an Empty Element

The genEmptyElem function generates functionality equivalent to an array of an
empty element to an XML structure. This function takes the following arguments:

genEmptyElem('ElemQName', int?, 'TypeQName'?, boolean?)

Note the following issues:
s The first argument specifies the QName of the empty elements.

= The optional second integer argument specifies the number of empty elements. If
missing, the default size is 1.

s The third optional argument specifies the OQName, which is the xsi : type of the
generated empty name. This xsi : type pattern matches the SOAPENC : Array. If
it is missing or is an empty string, the xsi : type attribute is not generated.

s The fourth optional boolean argument specifies whether the generated empty
elements are XSI - nil, provided the element is XSD-nillable. The default value
is false. If missing or false, xsi:nil is not generated.

Example 7-62 shows an append statement initializing a purchase order (PO)
document with 10 empty <lineItem> elements under po:

Example 7-62 append Statement

<bpelx:assign>
<bpelx:append>

Manipulating XML Data in a BPEL Process 7-31

Manipulating XML Data Sequences That Resemble Arrays

<bpelx:from expression="ora:genEmptyElem('p:lineItem',10)" />
<bpelx:to variable="poVar" query="/p:po" />
</bpelx:append>
</bpelx:assign>

The genEmptyElem function in this example can be replaced with an embedded
XQuery expression:

ora:genEmptyElem('p:lineItem',10)
== for $i in (1 to 10) return <p:lineltem />

The empty elements generated by this function are typically invalid XML data. You
perform further data initialization after the empty elements are created. Using the
same example above, you can perform the following:

= Add attribute and child elements to those empty 1ineItem elements.

» Perform copy operations to replace the empty elements. For example, copy from a
web service result to an individual entry in this equivalent array under a flowN
activity.

7.16.4 What You May Need to Know About SOAP-Encoded Arrays

Oracle BPEL Process Manager provides limited support for Simple Object Access
Protocol (SOAP)-encoded arrays (soapenc:arrayType).

Consider one of the following methodologies to deal with SOAP arrays:

= Place a wrapper around the service so that the BPEL process service component
talks to the document literal wrapper service, which in turn calls the underlying
service with soapenc:arrayType.

s Call a service with soapenc:arrayType from BPEL, but construct the XML
message more manually in the BPEL code. This action enables you to avoid
changing or wrapping the service. However, each time you want to call that
service from BPEL, you must take extra steps.

7.16.5 What You May Need to Know About Using the Array Identifier

For processing in Native Format Builder array identifier environments, information is
required about the parent node of a node. Because the report SAXEvents APl is
used, this information is typically not available for outbound message scenarios.
Setting nxsd:useArrayIdentifiers to true in the native schema enables
DOM-parsing to be used for outbound message scenarios. Use this setting cautiously,
as it can lead to slower performance for very large payloads.

<?xml version="1.0" ?>

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:nxsd="http://xmlns.oracle.com/pcbpel /nxsd"
targetNamespace="http://xmlns.oracle.com/pcbpel/demoSchema/csv"
xmlns:tns="http://xmlns.oracle.com/pcbpel/demoSchema/csv"
elementFormDefault="qualified"
attributeFormDefault="unqualified" nxsd:encoding="US-ASCII"
nxsd:stream="chars" nxsd:version="NXSD" nxsd:useArrayIdentifiers="true">
<xsd:element name="Root-Element">

</xsd:element>
</xsd:schema>

7-32 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Understanding the Differences Between Document-Style and RPC-Style WSDL Files

7.17 Converting from a String to an XML Element

Sometimes a service is defined to return a string, but the content of the string is
actually XML data. The problem is that, although BPEL provides support for
manipulating XML data (using XPath queries, expressions, and so on), this
functionality is not available if the variable or field is of type string. With Java, you use
DOM functions to convert the string to a structured XML object type. You can use the
BPEL XPath function parseEscapedXML to do the same thing.

7.17.1 How To Convert from a String to an XML Element

The parseEscapedXML function takes XML data, parses it through DOM, and
returns structured XML data that can be assigned to a typed BPEL variable.
Example 7-63 provides an example:

Example 7-63 String to XML Element Conversion

<!-- execute the XPath extension function
parseEscapedXML ('&1lt;item> ') and assign to a variable
-=>
<assign>

<copy>

<from expression="ora:parseEscapedXML (
'&1t;item xmlns="http://samples.otn.com"
sku=" 006" > ;
&1t;description>sun ultra sparc VI server
&1t; /description>
<price>1000
&1lt; /price>
<quantity>?2
&1t; /quantity>
&1t;lineTotal>2000
&1t;/lineTotal>
</item> ') "/>
<to variable="escapedLinelItem"/>
</copy>
</assign>

7.18 Understanding the Differences Between Document-Style and
RPC-Style WSDL Files

The examples shown up to this point have been for document-style WSDL files in
which a message is defined with an XML schema element, as shown in
Example 7-64:

Example 7-64 XML Schema element Definition

<message name="LoanFlowRequestMessage">
<part name="payload" element="sl:loanApplication"/>
</message>

This is in contrast to RPC-style WSDL files, in which the message is defined with an
XML schema type, as shown in Example 7-65:

Example 7-65 RPC-Style type Definition

<message name="LoanFlowRequestMessage">
<part name="payload" type="sl:LoanApplicationType"/>

Manipulating XML Data in a BPEL Process 7-33

Manipulating SOAP Headers in BPEL

</message>

7.18.1 How To Use RPC-Style Files

This impacts the material in this chapter because there is a difference in how XPath
queries are constructed for the two WSDL message styles. For an RPC-style message,
the top-level element (and therefore the first node in an XPath query string) is the part
name (payload in Example 7-65). In document-style, the top-level node is the
element name (for example, loanApplication).

Example 7-66 and Example 7-67 show what an XPath query string looks like if an
application named LoanServices were in RPC style.

Example 7-66 RPC-Style WSDL File

<message name="LoanServiceResultMessage">
<part name="payload" type="sl:LoanOfferType"/>
</message>

<complexType name="LoanOfferType">
<sequence>
<element name="providerName" type="string"/>
<element name="selected" type="boolean"/>
<element name="approved" type="boolean"/>
<element name="APR" type="double"/>
</sequence>
</complexType>

Example 7-67 RPC-Style BPEL File

<variable name="output"
messageType="tns:LoanServiceResultMessage" />

<assign>
<copy>
<from expression="9.9"/>
<to variable="output" part="payload" query="/payload/APR"/>
</copy>
</assign>

7.19 Manipulating SOAP Headers in BPEL

BPEL's communication activities (invoke, receive, reply, and onMessage) receive and
send messages through specified message variables. These default activities permit
one variable to operate in each direction. For example, the invoke activity has
inputVariable and outputVariable attributes. You can specify one variable for
each of the two attributes. This is enough if the particular operation involved uses only
one payload message in each direction.

However, WSDL supports multiple messages in an operation. In the case of SOAP,
multiple messages can be sent along the main payload message as SOAP headers.
However, BPEL's default communication activities cannot accommodate the
additional header messages.

Oracle BPEL Process Manager solves this problem by extending the default BPEL
communication activities with the bpelx:headerVariable extension. The extension
syntax is as shown in Example 7-68:

7-34 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Manipulating SOAP Headers in BPEL

Example 7-68 bpelx:headerVariable Extension

<invoke bpelx:inputHeaderVariable="inHeaderl inHeader2 ..."
bpelx:outputHeaderVariable="outHeaderl outHeader2 ..."
/>

<receive bpelx:headerVariable="inHeaderl inHeader2 ..." .../>
<onMessage bpelx:headerVariable="inHeaderl inHeader2 ..." .../>
<reply bpelx:headerVariable="inHeaderl inHeader2 ..." .../>

7.19.1 How to Receive SOAP Headers in BPEL

This section provides an example of how to create BPEL and WSDL files to receive
SOAP headers.

To receive SOAP headers in BPEL:

1. Create a WSDL file that declares header messages and the SOAP binding that
binds them to the SOAP request. Example 7-69 provides an example.

Example 7-69 WSDL File Contents

<!-- custom header -->
<message name="CustomHeaderMessage">
<part name="headerl" element="tns:headerl"/>
<part name="header2" element="tns:header2"/>
</message>

<binding name="HeaderServiceBinding" type="tns:HeaderService">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="initiate">
<soap:operation style="document" soapAction="initiate"/>
<input>
<soap:header message="tns:CustomHeaderMessage"
part="headerl" use="literal"/>
<soap:header message="tns:CustomHeaderMessage"
part="header2" use="literal"/>
<soap:body use="literal"/>
</input>
</operation>
</binding>

2. Create a BPEL source file that declares the header message variables and uses
bpelx:headerVariable to receive the headers, as shown in Example 7-70.

Example 7-70 bpelx:headerVariable Use

<variables> <variable name="input"
messageType="tns:HeaderServiceRequestMessage" />
<variable name="event"
messageType="tns:HeaderServiceEventMessage" />
<variable name="output"
messageType="tns:HeaderServiceResul tMessage" />
<variable name="customHeader"
messageType="tns:CustomHeaderMessage"/>
</variables>

<sequence>

<!-- receive input from requestor -->
<receive name="receivelInput" partnerLink="client"

Manipulating XML Data in a BPEL Process 7-35

Using MIME/DIME SOAP Attachments

portType="tns:HeaderService" operation="initiate"

variable="input"

bpelx:headerVariable="customHeader"
createlnstance="yes"/>

7.19.2 How to Send SOAP Headers in BPEL

This section provides an example of how to send SOAP headers.

To send SOAP headers in BPEL:
1. Define an SCA reference in the composite.xml to refer to the HeaderService.

2. Define the custom header variable, manipulate it, and send it using
bpelx:inputHeaderVariable, as shown in Example 7-71.

Example 7-71 bpelx:inputHeaderVariable Use

<variables>
<variable name="input" messageType="tns:HeaderTestRequestMessage" />
<variable name="output" messageType="tns:HeaderTestResultMessage" />
<variable name="request" messageType="services:HeaderServiceRequestMessage"/>
<variable name="response" messageType="services:HeaderServiceResultMessage"/>
<variable name="customHeader"messageType="services:CustomHeaderMessage"/>
</variables>

<!-- initiate the remote process -->
<invoke name="invokeAsyncService"
partnerLink="HeaderService"
portType="services:HeaderService"
bpelx:inputHeaderVariable="customHeader"
operation="initiate"
inputVariable="request"/>

7.20 Using MIME/DIME SOAP Attachments

A BPEL process service component can receive SOAP attachments in an optimized
Message Transmission Optimization Mechanism (MTOM) format. However, the BPEL
process cannot internally process the attachments. Instead, the attachments are added
to the DOM as part of the XML file. Oracle recommends that you avoid using MTOM
attachments and instead use Multipurpose Internet Mail Extensions (MIME) and
Direct Internet Message Encapsulation (DIME) SOAP attachments.

7-36 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

8

Invoking a Synchronous Web Service from a
BPEL Process

This chapter describes how to invoke a synchronous web service from a BPEL process.
This chapter demonstrates how to set up the components necessary to perform a
synchronous invocation. This chapter also examines how these components are coded.

This chapter includes the following sections:

= Section 8.1, "Introduction to Invoking a Synchronous Web Service"

= Section 8.2, "Invoking a Synchronous Web Service"

= Section 8.3, "Calling a One-Way Mediator with a Synchronous BPEL Process"

For a simple Hello World sample (bpel-101-HelloWor1d) that takes an input
string, adds a prefix of "Hello " to the string, and returns it, visit the following URL:

http://www.oracle.com/technology/sample_code/products/bpel

8.1 Introduction to Invoking a Synchronous Web Service

Synchronous web services provide an immediate response to an invocation. BPEL can
connect to synchronous web services through a partner link, send data, and then
receive the reply in the same synchronous invocation.

A synchronous invocation requires the following components:
» Partner link

Defines the location and the role of the web services with which the BPEL process
service component connects to perform tasks, and the variables used to carry
information between the web service and the BPEL process service component. A
partner link is required for each web service that the BPEL process service
component calls. You can create partner links in either of two ways:

— In the SOA Composite Editor, when you drag a Web Service from the
Component Palette into the Exposed Services or External References
swimlane.

— In the Oracle BPEL Designer, when you drag a Partner Link (Web
Service/Adapter) from the Component Palette into the Partner Links
swimlane. This method is described in this chapter.

= Invoke activity

Opens a port in the BPEL process service component to send and receive data. It
uses this port to retrieve information verifying that the customer has acceptable

Invoking a Synchronous Web Service from a BPEL Process 8-1

Invoking a Synchronous Web Service

credit using the CreditCard AuthorizationService. For synchronous callbacks,
only one port is needed for both the send and receive functions

Note: You can specify timeout values with the attribute
syncMaxWaitTime in the Middleware Home/domains/domain_
name/config/soca-infra/configuration/bpel-config.xml
file or with the System MBean Browser setting of
oracle.as.soainfra.config:type=BPELConfig, name=bpel
in Oracle Enterprise Manager Fusion Middleware Control Console. If
the BPEL process service component does not receive a reply within
the specified time, then the activity fails.

8.2 Invoking a Synchronous Web Service

This section examines a synchronous invocation operation using the
OrderProcessor.bpel file in the WebLogic Fusion Order Demo application as an
example. For a more step-by-step approach, see Oracle Fusion Middleware Tutorial for
Running and Building an Application with Oracle SOA Suite.

8.2.1 How to Invoke a Synchronous Web Service

To invoke a synchronous web service:

1. In the Component Palette in Oracle BPEL Designer, drag the necessary partner
link, invoke activity, and assign activities into the designer.

2. Edit their dialogs. Procedures are described in Oracle Fusion Middleware Tutorial for
Running and Building an Application with Oracle SOA Suite.

Figure 8-1 shows the diagram for the Scope_AuthorizeCreditCard scope activity of
the OrderProcessor.bpel file, which defines a simple set of actions.

Figure 8-1 Diagram of OrderProcessor.bpel

(1

Assign_CreditCheckInput

P %
CreditCardauthori...

InvokeCheckCreditCard

R
Switch_EvaluateCCResult

The following actions take place:

1. The Assign_CreditCheckInput assign activity packages the data from the client.
The assign activity provides a method for copying the contents of one variable to
another. In this case, it takes the credit card type, credit card number, and purchase
amount and assigns them to the input variable for the
CreditAuthorizationService service.

8-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Invoking a Synchronous Web Service

2. The InvokeCheckCreditCard activity calls the CreditCard Authorization service.
Figure 8-2 shows the CreditCardAuthorizationService web service, which is
defined as a partner link.

Figure 8-2 CreditCardAuthorizationService Partner Link

® Edit Partner Link 3
fGeneraI rImage rProperty |
Mame: |CreditCardnuthorizationService |
Process: |OrderPr0cessor |
WSDL Settings
Q&R W@

WSDL URL: | CreditCardAutharizationService, wsdl |
Partner Link Type: |$" CreditCardauthorizationService - |
Partner Role: |‘-a CreditAuthorizationPort - |
My Role: 8, - ot Specified ——- v|

| Help | | Apply || oK || Cancel |

Figure 8-3 shows the InvokeCheckCreditCard invoke activity.

Figure 8-3 InvokeCheckCreditCard Invoke Activity

Irnvoke

| Sensors rProperties rAdapters rnnnotations |
General

Correlations |

Marne: | InvokeCheckCreditCard |

— Interaction Type: |'e.g_!- Partner Link + |

Partner Role Web Service Interface

Partner Link: |CreditCardnuthorizationService | Ck

Operation: | Ty AuthorizeCredit b |

Variables

Input: | ICreditCardInput | o Q,

Oubput: | liZreditCardCutput | l* q

| Help | | Apply || [o]'8 _“ Cancel |

3. The Switch_EvaluateCCResult switch activity checks the results of the credit card

validation. For information about switch activities, see Section 11.2, "Creating a
Switch Activity to Define Conditional Branching."

8.2.2 What Happens When You Invoke a Synchronous Web Service

When you create a partner link and invoke activity, the necessary BPEL code for

invoking a synchronous web service is added to the appropriate BPEL and Web
Services Description Language (WSDL) files.

Invoking a Synchronous Web Service from a BPEL Process 8-3

Invoking a Synchronous Web Service

8.2.2.1 Partner Link in the BPEL Code

In the OrderProcessor.bpel code, the partner link defines the link name and type,
and the role of the BPEL process service component in interacting with the partner
service.

From the BPEL source code, the CreditCardAuthorizationService partner link
definition is shown in Example 8-1:

Example 8—-1 Partner Link Definition

<partnerLink name="CreditCardAuthorizationService"
partnerRole="CreditAuthorizationPort"
partnerLinkType="ns2:CreditCardAuthorizationService"/>

Variable definitions that are accessible locally in the Scope_AuthorizeCreditCard
scope are shown in Example 8-2. The types for these variables are defined in the
WSDL for the process itself.

Example 8-2 Variable Definition

<variable name="1CreditCardInput"
messageType="ns2:CreditAuthorizationRequestMessage" />

<variable name="1CreditCardOutput"
messageType="ns2:CreditAuthorizationResponseMessage" />

The WSDL file defines the interface to your BPEL process service component: the
messages that it accepts and returns, the operations that are supported, and other
parameters.

8.2.2.2 Partner Link Type and Port Type in the BPEL Code

The web service’s CreditCardAuthorizationService.wsdl file contains two
sections that enable the web service to work with BPEL process service components:

s partnerLinkType:

Defines the following characteristics of the conversion between a BPEL process
service component and the credit card authorization web service:

— The role (operation) played by each

— The portType provided by each for receiving messages within the
conversation

m portType:

A collection of related operations implemented by a participant in a conversation.
A port type defines which information is passed back and forth, the form of that
information, and so on. A synchronous invocation requires only one port type that
both initiates the synchronous process and calls back the client with the response.
An asynchronous callback (one in which the reply is not immediate) requires two
port types, one to send the request, and another to receive the reply when it
arrives.

In this example, the portType CreditAuthorizationPort receives the credit
card type, credit card number, and purchase amount, and returns the status
results.

Example 8-3 provides an example of partnerLinkType and portType.

8-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Invoking a Synchronous Web Service

Example 8-3 partnerLinkType and portType Definitions

<plnk:partnerLinkType name="CreditCardAuthorizationService">
<plnk:role name="CreditAuthorizationPort">
<plnk:portType name="tns:CreditAuthorizationPort"/>
</plnk:role>
</plnk:partnerLinkType>

8.2.2.3 Invoke Activity for Performing a Request

The invoke activity includes the 1CreditCardInput local input variable. The credit
card authorization web service uses the 1CreditCardInput input variable. This
variable contains the customer’s credit card type, credit card number, and purchase
amount. The 1CreditCardoOutput variable returns status results from the
CreditAuthorizationService service. Example 8—4 provides an example.

Example 8-4 Invoke Activity

<invoke name="InvokeCheckCreditCard"
inputVariable="1CreditCardInput"
outputVariable="1CreditCardOutput"
partnerLink="CreditCardAuthorizationService"
portType="ns2:CreditAuthorizationPort"
operation="AuthorizeCredit"/>

8.2.2.4 Synchronous Invocation in BPEL Code
The BPEL code shown in Example 8-5 performs the synchronous invocation:

Example 8-5 Synchronous Invocation

<assign name="Assign_CreditCheckInput">
<copy>
<from variable="gOrderInfoVariable"
query="/nsd:orderInfovOSDO/ns4:0rderTotal" />
<to variable="1CreditCardInput" part="Authorization"
query="/ns8:AuthInformation/ns8:PurchaseAmount" />
</copy>
<copy>
<from variable="gOrderInfoVariable"
query="/nsd:orderInfovOSDO/ns4:CardTypeCode" />
<to variable="1CreditCardInput" part="Authorization"
query="/ns8:AuthInformation/ns8:CCType" />
</copy>
<copy>
<from variable="gOrderInfoVariable"
query="/nsd:orderInfov0OSDO/ns4 : AccountNumber" />
<to variable="1CreditCardInput" part="Authorization"
query="/ns8:AuthInformation/ns8:CCNumber" />
</copy>
</assign>
<invoke name="InvokeCheckCreditCard"
inputVariable="1CreditCardInput"
outputVariable="1CreditCardOutput"
partnerLink="CreditCardAuthorizationService"
portType="ns2:CreditAuthorizationPort"
operation="AuthorizeCredit"/>

Invoking a Synchronous Web Service from a BPEL Process 8-5

Calling a One-Way Mediator with a Synchronous BPEL Process

8.3 Calling a One-Way Mediator with a Synchronous BPEL Process

You can expose a synchronous interface in the front end while using an asynchronous
callback in the back end to simulate a synchronous reply. This is the default behavior

in BPEL processes with the automatic setting of the configuration. transaction
property to requiresNew in the composite.xml file. Example 8—6 provides details.

Example 8-6 configuration.transaction Property

<component name="BPELProcessl">

@ <implementation.bpel src="BPELProcessl.bpel"/>

@ <property name="configuration.transaction" type="xs:string"
@ many="false">requiresNew</property>

@ </component>

RequiresNew is the recommended value. If you want to participate in the client's

transaction, you must set the configuration. transaction property to
Required.

8-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

9

Invoking an Asynchronous Web Service
from a BPEL Process

This chapter describes how to call an asynchronous web service. Asynchronous
messaging styles are useful for environments in which a service, such as a loan
processor, can take a long time to process a client request. Asynchronous services also
provide a more reliable fault-tolerant and scalable architecture than synchronous
services.

This chapter includes the following sections:

= Section 9.1, "Introduction to Invoking an Asynchronous Web Service"
= Section 9.2, "Invoking an Asynchronous Web Service"

= Section 9.3, "Using WS-Addressing in an Asynchronous Service"

= Section 9.4, "Using Correlation Sets in an Asynchronous Service"

9.1 Introduction to Invoking an Asynchronous Web Service

This section introduces asynchronous web service invocation with a company called
United Loan. United Loan publishes an asynchronous web service that processes a
client’s loan application request and then returns a loan offer. This use case discusses
how to integrate a BPEL process service component with this asynchronous loan
application approver web service.

This use case illustrates the key design concepts for requesting information from an
asynchronous service, and then receiving the response. The asynchronous United Loan
service in this example is another BPEL process service component. However, the
same BPEL call can interact with any properly designed web service. The target web
service WSDL file contains the information necessary to request and receive the
necessary information.

For the asynchronous web service, the following actions take place (in order of
priority):
1. An assign activity prepares the loan application.

2. Aninvoke activity initiates the loan request. The contents of this request are put
into a request variable. This request variable is sent to the asynchronous loan
processor web service.

When the loan request is initiated, a correlation ID unique to the client and partner
link initiating the request is also sent to the loan processor web service. The
correlation ID ensures that the correct loan offer response is returned to the
corresponding loan application requester.

Invoking an Asynchronous Web Service from a BPEL Process 9-1

Invoking an Asynchronous Web Service

3.

4.

The loan processor web service then sends the correct response to the receive
activity, which has been tracked by the correlation ID.

An assign activity reads the loan application offer.

The remaining sections in this chapter provide specific details about the asynchronous
functionality.

9.2 Invoking an Asynchronous Web Service

This section provides an overview of the tasks for adding asynchronous functionality
to a BPEL process service component.

9.2.1 How to Invoke an Asynchronous Web Service

You perform the following steps to asynchronously invoke a web service:

Add a partner link
Add an invoke activity
Add a receive activity

Create assign activities

9.2.1.1 Adding a Partner Link for an Asynchronous Service

These instructions describe how to create a partner link in a BPEL process (for this
example, named LoanService) for the loan application approver web service.

To add a partner link for an asynchronous service:

1.

In the SOA Composite Editor, drag a BPEL process from the Service Components
section of the Component Palette into the designer.

The Create BPEL Process dialog appears.
Follow the instructions in the dialog to create a BPEL process service component.
Click OK when complete.

In the SOA composite application in the SOA Composite Editor, double-click the
BPEL process service component (for this example, the component is named
LoanBroker).

The Oracle BPEL Designer appears.
In the Component Palette, expand BPEL Services.

Drag a Partner Link (Web Service/Adapter) into the right Partner Links swim
lane.

The Create Partner Link dialog appears.

Enter the following details to create a partner link and select the loan application
approver web service:

= Name
Enter a name for the partner link (for this example, LoanService is entered).
s Process

Displays the BPEL process service component name (for this example,
LoanBroker appears).

9-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Invoking an Asynchronous Web Service

= WSDL URL

Enter the name of the Web Services Description Language (WSDL) file to use.
Click the SOA Resource Lookup icon above this field to locate the correct
WSDL.

s Partner Link Type

Refers to the external service with which the BPEL process service component
is to interface. Select from the list (for this example, LoanService is selected).

s Partner Role

Refers to the role of the external source, for example, provider. Select from the
list (for this example, LoanServiceProvider is selected).

= My Role

Refers to the role of the BPEL process service component in this interaction.
Select from the list (for this example, LoanServiceRequester is selected).

8. Click OK.

A new partner link for the loan application approver web service (United Loan)
appears in the swim lane of the designer.

9.2.1.2 Adding an Invoke Activity

Follow these instructions to create an invoke activity and a global input variable
named request. This activity initiates the asynchronous BPEL process service
component activity with the loan application approver web service (United Loan). The
loan application approver web service uses the request input variable to receive the
loan request from the client.

To add an invoke activity:
1. In the Component Palette, expand BPEL Activities and Components.

2. From the Component Palette, drag an invoke activity to beneath the receive
activity.

3. Go to the Structure window. Note that while this example describes variable
creation from the Structure window, you can also create variables by clicking the
Add icons to the right of the Input and Output fields of the Invoke dialog.

4. Right-click Variables and select Expand All Child Nodes.

5. In the second Variables folder in the tree, right-click and select Create Variable.
The Create Variable dialog box appears.

6. Enter the variable name and select Message Type from the options provided:
= Simple Type

This option lets you select an XML schema simple type (for example, string,
boolean, and so on).

m Message Type

This option enables you to select a WSDL message file definition of a partner
link or of the project WSDL file of the current BPEL process service component
(for example, a response message or a request message). You can specify
variables associated with message types as input or output variables for
invoke, receive, or reply activities.

Invoking an Asynchronous Web Service from a BPEL Process 9-3

Invoking an Asynchronous Web Service

To display the message type, select the Message Type option, and then select
its Browse icon to display the Type Chooser dialog. From here, expand the
Message Types tree to make your selection. For this example, Message Types
> Partner Links > Loan Service > LoanService.wsdl > Message Types >
LoanServiceRequestMessage is selected.

s Element

This option lets you select an XML schema element of the project schema file
or project WSDL file of the current BPEL process service component, or of a
partner link.

Figure 9-1 shows the Create Variable dialog.

Figure 9-1 Create Variable Dialog

Marne: | request

General | Sensars |

Type

=) Simple Typs

__._J (3) Message Type oanservicelloanserviceRequestMassage | O

&y () Element

& Entity Variable

(|

10.

11.

Help | Apply || Ok || Cancel

Click OK.
Double-click the invoke activity to display the Invoke dialog.

In the Invoke dialog, select the partner link from the Partner Link list (for this
example, LoanService is selected) and initiate from the Operation list.

To the right of the Input Variable field, click the second icon and select the input
variable you created in Step 6.

The Variable Chooser dialog appears, where you can select the variable.

There is no output variable specified because the output variable is returned in the
receive operation. The invoke activity is created.

For more information about the invoke activity, see Section 9.2.2.5, "Invoke and
Receive Activities."

Click OK.

9.2.1.3 Adding a Receive Activity

Follow these steps to create a receive activity and a global output variable named
response. This activity waits for the loan application approver web service’s callback
operation. The loan application approver web service uses this output variable to send
the loan offer result to the client.

9-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Invoking an Asynchronous Web Service

To add a receive activity:

1. From the Component Palette, drag a receive activity to the location right after the
invoke activity you created in Section 9.2.1.2, "Adding an Invoke Activity."

2. Create a variable to hold the receive information by invoking the Create Variable
dialog, as you did in Step 3 through Step 7, starting on page 9-3.

Figure 9-2 shows the Create Variable dialog.

Figure 9-2 Create Variable Dialog

General | Sensars |

Type
=) Simple Typs
=] (3) Message Type |{http:,l',l'xmlns.oracle.-:n:-m,l'LoanService}Loe O
&» () Element
’*D Entity Variable
| Help | | Apply || [a]'4 || Cancel |

3. Double-click the receive activity and change its name to receive_invoke.

4. From the Partner Link list, select the partner link (for this example, LoanService is
selected).

5. From the Operation list, select onResult. Do not select the Create Instance
checkbox.

6. Select the variable you created in Step 3 through Step 7, starting on page 9-3.
7. Click OK.

The receive activity and the output variable are created. Because the initial receive
activity in the BPEL file (for this example, LoanBroker.bpel) created the initial
BPEL process service component instance, a second instance does not need to be
created.

9.2.1.4 Performing Additional Activities
In addition to the asynchronous-specific tasks, you must perform the following tasks.

s Create an initial assign activity for data manipulation in front of the invoke
activity that copies the client’s input variable loan application request document
payload into the loan application approver web service’s request variable
payload.

s Create a second assign activity for data manipulation after the receive activity that
copies the loan application approver web service’s response variable loan
application results payload into the output variable for the client to receive.

9.2.2 What Happens When You Invoke an Asynchronous Web Service

This section describes what happens when you invoke an asynchronous web service.

Invoking an Asynchronous Web Service from a BPEL Process 9-5

Invoking an Asynchronous Web Service

9.2.2.1 portType Section of the WSDL File

The portType section of the WSDL file (in this example, for LoanService) defines
the ports to be used for the asynchronous service.

Asynchronous services have two port types. Each port type performs a one-way
operation. In this example, one port type responds to the asynchronous process and
the other calls back the client with the asynchronous response. In the example shown
in Example 9-1, the portType LoanServiceCallback receives the client’s loan
application request and the portType LoanService asynchronously calls back the
client with the loan offer response.

Example 9—1 portType Definition

<!-- portType implemented by the LoanService BPEL process -->
<portType name="LoanService">
<operation name="initiate">
<input message="tns:LoanServiceRequestMessage"/>
</operation>
</portType>
<!-- portType implemented by the requester of LoanService BPEL process
for asynchronous callback purposes
-—>
<portType name="LoanServiceCallback">
<operation name="onResult">
<input message="tns:LoanServiceResultMessage"/>
</operation>
</portType>

9.2.2.2 partnerLinkType Section of the WSDL File

The partnerLinkType section of the WSDL file (in this example, for LoanService)
defines the following characteristics of the BPEL process service component:

s The role (operation) played
s The portType provided for receiving messages within the conversation

Partner link types in asynchronous services have two roles: one for the web service
provider and one for the client requester.

In the conversation shown in Example 9-2, the LoanServiceProvider role and
LoanService portType are used for client request messages and the
LoanServiceRequester role and LoanServiceCallback portType are used for
asynchronously returning (calling back) response messages to the client.

Example 9-2 partnerLinkType Definition

<plnk:partnerLinkType name="LoanService">
<plnk:role name="LoanServiceProvider">
<plnk:portType name="client:LoanService"/>
</plnk:role>
<plnk:role name="LoanServiceRequester">
<plnk:portType name="client:LoanServiceCallback"/>
</plnk:role>
</plnk:partnerLinkType>

Two port types are combined into this single asynchronous BPEL process service
component: portType="services:LoanService" of the invoke activity and
portType="services:LoanServiceCallback" of the receive activity. Port
types are essentially a collection of operations to be performed. For this BPEL process

9-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Invoking an Asynchronous Web Service

service component, there are two operations to perform: initiate in the invoke
activity and onResult in the receive activity.

9.2.2.3 Partner Links Section in the BPEL File

To call the service from BPEL, you use the BPEL file to define how the process
interfaces with the web service. View the partnerLinks section. The services with
which a process interacts are designed as partner links. Each partner link is
characterized by a partnerLinkType.

Each partner link is named. This name is used for all service interactions through that
partner link. This is critical in correlating responses to different partner links for
simultaneous requests of the same type.

Asynchronous processes use a second partner link for the callback to the client. In this
example, the second partner link, LoanService, is used by the loan application
approver web service. Example 9-3 provides an example.

Example 9-3 partnerLink Definition

<!-- This process invokes the asynchronous LoanService. -->

<partnerLink name="LoanService"
partnerLinkType="services:LoanService"
myRole="LoanServiceRequester"
partnerRole="LoanServiceProvider"/>
</partnerLinks>

The attribute myRole indicates the role of the client. The attribute partnerRole role
indicates the role of the partner in this conversation. Each partnerLinkType has a
myRole and partnerRole attribute in asynchronous processes.

9.2.2.4 Composite Application File

In the composite.xml file, the loan application approver web service appears, as
shown in Example 9—-4.

Example 9-4 Loan Application Approver Web Service

<component name="LoanBroker">
<implementation.bpel process="LoanBroker.bpel"/>
</component>

For more information, see Section 9.2.1.1, "Adding a Partner Link for an Asynchronous
Service" for instructions on creating a partner link.

9.2.2.5 Invoke and Receive Activities

View the variables and sequence sections. Two areas of particular interest concern
the invoke and receive activities:

= An invoke activity invokes a synchronous web service (as discussed in Chapter 8,
"Invoking a Synchronous Web Service from a BPEL Process") or initiates an
asynchronous service.

The invoke activity includes the request global input variable defined in the
variables section. The request global input variable is used by the loan
application approver web service. This variable contains the contents of the initial
loan application request document.

Invoking an Asynchronous Web Service from a BPEL Process 9-7

Invoking an Asynchronous Web Service

= A receive activity that waits for the asynchronous callback from the loan
application approver web service. The receive activity includes the response
global output variable defined in the variables section. This variable contains
the loan offer response. The receive activity asynchronously waits for a callback
message from a service. While the BPEL process service component is waiting, it is
dehydrated, or compressed and stored, until the callback message arrives.

Example 9-5 provides an example.

Example 9-5 Invoke and Receive Activities

<variables>

<variable name="request"
messageType="services:LoanServiceRequestMessage" />

<variable name="response"
messageType="services:LoanServiceResultMessage" />

</variables>
<sequence>
<!-- initialize the input of LoanService -->
<assign>
<!-- initiate the remote process -->

<invoke name="invoke" partnerLink="LoanService"
portType="services:LoanService"
operation="initiate" inputVariable="request"/>

<!-- receive the result of the remote process -->

<receive name="receive_invoke" partnerLink="LoanService"
portType="services:LoanServiceCallback"
operation="onResult" variable="response"/>

When an asynchronous service is initiated with the invoke activity, a correlation ID
unique to the client request is also sent, using Web Services Addressing
(WS-Addressing) (described in Section 9.3, "Using WS-Addressing in an
Asynchronous Service"). Because multiple processes may be waiting for service
callbacks, the server must know which BPEL process service component instance is
waiting for a callback message from the loan application approver web service. The
correlation ID enables the server to correlate the response with the appropriate
requesting instance.

9.2.2.6 createlnstance Attribute for Starting a New Instance

You may notice a createInstance attribute in the initial receive activity. In this
initial receive activity, the createInstance element is set to yes. This starts a new
instance of the BPEL process service component. At least one instance startup is
required for a conversation. For this reason, you set the createInstance variable to
no in the second receive activity.

Example 9-6 shows the source code for the createInstance attribute:

Example 9-6 createlnstance Attribute

<!-- receive input from requestor -->

<receive name="receiveInput" partnerLink="client"
portType="tns:LoanBroker"
operation="initiate" variable="input"
createInstance="yes"/>

9-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using WS-Addressing in an Asynchronous Service

9.2.2.7 Dehydration Points for Maintaining Long-Running Asynchronous
Processes

To automatically maintain long-running asynchronous processes and their current
state information in a database while they wait for asynchronous callbacks, you use a
database as a dehydration store. Storing the process in a database preserves the
process and prevents any loss of state or reliability if a system shuts down or a
network problem occurs. This feature increases both BPEL process service component
reliability and scalability. You can also use it to support clustering and failover.

You insert this point between the invoke activity and receive activity.

9.2.2.8 Multiple Runtime Endpoint Locations

Oracle SOA Suite provides support for specifying multiple partner link endpoint
locations. This capability is useful for failover purposes if the first endpoint is down.
To provide an alternate partner link endpoint location, add the 1ocation attribute to
the composite.xml file. Example 9-7 provides an example.

Example 9—-7 Alternate Runtime Endpoint Location

<reference name="HeaderService ...>
<binding.ws port="http://services.otn.com/HelloWorldApp#wsdl.endpoint (client/
HelloWorldService_pt)"

location="http://server:port/soa-infra/services/default/
HelloWorldService!l.0/client?WSDL">

<property name="endpointURI">http://jsmith.us.oracle.com:80/a.jsp
@http://myhost.us.oracle.com:8888/soa-infra/services/HelloWorldApp/HelloWorld!
1.0*%2007-10-22_14-33-04_195/client

</property>

</binding.ws>

</reference>

9.3 Using WS-Addressing in an Asynchronous Service

Because there can be many active instances at any time, the server must be able to
direct web service responses to the correct BPEL process service component instance.
You can use WS-Addressing to identify asynchronous messages to ensure that
asynchronous callbacks locate the appropriate client.

Figure 9-3 provides an overview of WS-Addressing. WS-Addressing uses Simple
Object Access Protocol (SOAP) headers for asynchronous message correlation.
Messages are independent of the transport or application used.

Invoking an Asynchronous Web Service from a BPEL Process 9-9

Using WS-Addressing in an Asynchronous Service

Figure 9-3 Callback with WS-Addressing Headers

WS-Addressing Header:

BPEL Process - callback location
HelloWorld.bpel - correlation id (relatesTo)
WSDL .
LoanService [2.05] receive
loanApp PartnerLink [2.06] process
<variable> [2.22] callback
Initiate h I_Il Initiate Port |
service —) !
<invoke> E
Async
loanOffer Loan
<variable> Processor
Wait T = Service
ait for
callback <gallback Port ||
<receive>
l WS-Addressing Header:

- correlation id (relatesTo)

Note 1: the correlation id allows
the BPEL server to know which
instance of the process is
waiting for this callback
messages.

Note 2: The alternative
approach is to use
content-based correlation
using <correlationSet>

Figure 9-3 shows how messages are passed along with WS headers so that the
response can be sent to the correct destination.

The example in this chapter uses WS-Addressing for correlation. To view the
messages, you can use TCP tunneling, which is described in Section 9.3.1.1, "Using
TCP Tunneling to See Messages Exchanged Between Programs."

WS-Addressing defines the following information typically provided by transport
protocols and messaging systems. This information is processed independently of the
transport or application:

= Endpoint location (reply-to address)

The reply-to address specifies the location at which a BPEL client is listening for a
callback message.

s Conversation ID

Use TCP tunneling to view SOAP messages exchanged between the BPEL process
service component flow and the web service (including those containing the
correlation ID). You can see the exact SOAP messages that are sent to, or received
from, services with which a BPEL process service component flow communicates.

You insert a software listener between your BPEL process service component flow
and the web service. Your BPEL process service component flow communicates
with the listener (called a TCP tunnel). The listener forwards your messages to the
web service, and also displays them. Responses from the web service are returned
to the tunnel, which displays and forwards them back to the BPEL process service
component.

9-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using WS-Addressing in an Asynchronous Service

9.3.1 How to Use WS-Addressing in an Asynchronous Service

WS-Addressing is a public specification and is the default correlation method
supported by Oracle BPEL Process Manager. You do not need to edit the . bpel and
.wsdl files to use WS-Addressing.

9.3.1.1 Using TCP Tunneling to See Messages Exchanged Between Programs

The messages that are exchanged between programs and services can be seen through
TCP tunneling. This is particularly useful when you want to see the exact SOAP
messages exchanged between the BPEL process service component flow and web
services.

To monitor the SOAP messages, insert a software listener between your flow and the
service. Your flow communicates with the listener (called a TCP tunnel) and the
listener forwards your messages to the service, and displays them. Likewise, responses
from the service are returned to the tunnel, which displays them and then forwards
them back to the flow.

To see all the messages exchanged between the server and a web service, you need
only a single TCP tunnel for synchronous services because all the pertinent messages
are communicated in a single request and reply interaction with the service. For
asynchronous services, you must set up two tunnels, one for the invocation of the
service and another for the callback port of the flow.

9.3.1.1.1 Setting up a TCP Listener for Synchronous Services Follow these steps to set up a
TCP listener for synchronous services initiated by an Oracle BPEL Process Manager
process:

1. Visit the following URL for instructions on how to download and install Axis TCP
Monitor (tcpmon)

http://ws.apache.org/commons/tcpmon/

2. Visit the following URL for instructions on how to use tcpmon:

http://ws.apache.org/axis/java/user-guide.html

3. Place axis. jar in your class path.
4. Start tcpmon:

C:\...\> java org.apache.axis.utils.tcpmon localport remoteHost
port_on_which _remote server_1is_running

5. Inthe composite.xml file, add the endpointURI property under binding.ws
for your flow to override the endpoint of the service.

6. From the operating system command prompt, compile and deploy the process
with ant.

Note that the same technique can be used to see the SOAP messages passed to
invoke a BPEL process service component as a web service from another tool kit
such as Axis or .NET.

9.3.1.1.2 Setting up a TCP Listener for Asynchronous Services Follow these steps to set up a
TCP listener to display the SOAP messages for callbacks from asynchronous services:

1. Start a TCP listener to listen on a port and to send on the Oracle BPEL Process
Manager port.

a. Open Oracle Enterprise Manager Fusion Middleware Control Console.

Invoking an Asynchronous Web Service from a BPEL Process 9-11

Using WS-Addressing in an Asynchronous Service

b. From the SOA Infrastructure menu, select SOA Administration > Common
Properties.

c. Specify the value for Callback Server URL. This URL is sent by the server as
part of the asynchronous callback address to the invoker.

2. From the SOA Infrastructure menu, select Administration > System MBean
Browser.

3. Expand Application Defined MBeans > oracle.soa.config > Server : soa_server >
SCAComposite.

where soa_server is the specific server instance name (for example, AdminServer).
All the SOA composite applications deployed on the server appear.

4. Follow these steps to set this property on a composite application. This action
enables it to apply to all bindings in the composite application.

a. Click your composite.
b. Ensure the Attributes tab is selected.
c. Inthe Name column, click Properties.

Click the Add icon.

e

e. Expand the newly added Element_number (appears at the end of the list).

where number is the next sequential number beyond the last property. For
example, if the property list contains twelve elements, adding a new property
causes Element_13 to be displayed.

f. In the name field, enter oracle.webservices.local.optimization.
g. Inthe value field, enter false.
h. In the many field, enter false.

Click Apply, and then click Return.
j. Inthe Name column on the Operations tab, click save.
k. Click Invoke to execute the operation.

I. Click Return or click a node in the System MBean Browser pane.

Note: After adding, deleting, or updating a property, you can click
the Refresh cached tree data icon in the upper right corner of the
System MBean Browser page to see the new data.

5. Follow these steps to set this property on a specific binding.

a. Expand your composite application. and drill down to the specific
SCAComposite.SCAReference.SCABinding folder.

b. Click WSBinding.
c. Perform steps 4b through 41.

6. Initiate any flow that invokes asynchronous web services. You can combine this
with the synchronous TCP tunneling configuration to send a service initiation
request through your first TCP tunnel.

The callbacks from the asynchronous services are shown in the TCP listener.

9-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using Correlation Sets in an Asynchronous Service

If you are an Oracle JDeveloper user, you can also use the built-in Packet Monitor to
see SOAP messages for both synchronous and asynchronous services.

9.4 Using Correlation Sets in an Asynchronous Service

Correlation sets provide another method for directing web service responses to the
correct BPEL process service component instance. You can use correlation sets to
identify asynchronous messages to ensure that asynchronous callbacks locate the
appropriate client.

Correlation sets are a BPEL mechanism that provides for the correlation of
asynchronous messages based on message body contents. To use this method, define
the correlation sets in your .bpel file. This method is designed for services that do not
support WS-Addressing or for certain sophisticated conversation patterns, for
example, when the conversation is in the form A > B > ¢ > Ainsteadofa > B >
A.

This section describes how to use correlation sets in an asynchronous service with
Oracle JDeveloper. Correlation sets enable you to correlate asynchronous messages
based on message body contents. You define correlation sets when interactions are not
simple invoke-receive activities. This example illustrates how to use correlation sets
for a process having three receive activities with no associated invoke activities.

For a sample (bpel-202-CorrelatedEvents) that shows how a BPEL process can
use correlations for two-way communication using events, visit the following URL:

http://www.oracle.com/technology/sample_code/products/bpel

9.4.1 How to Use Correlation Sets in an Asynchronous Service

This section describes the steps to perform to use correlation sets in an asynchronous
service.

9.4.1.1 Step 1: Creating a Project

To create a project:
1. Start Oracle JDeveloper.

2. From the File main menu, select New > Applications.

3. Select SOA Application, and click OK.

The Create SOA Application Wizard appears.

In the Application Name field, enter MyCorrelationSetApp.
Accept the default values for all remaining settings, and click Next.
In the Project Name field, enter MyCorrelationSetComposite.

Accept the default values for all remaining settings, and click Next.

® N o o &

In the Composite Template section, select Composite With BPEL, and click
Finish.

The Create BPEL Process dialog appears.

9. Enter the following values:

Invoking an Asynchronous Web Service from a BPEL Process 9-13

Using Correlation Sets in an Asynchronous Service

Table 9-1 Create BPEL Process Dialog Fields and Values

Field Value
Name Enter MyCorrelationSet.
Template Select Asynchronous BPEL Process.

Expose as a SOAP Service Select the checkbox. After process creation, note the SOAP

service that appears in the Exposed Services swimlane. This
service provides the entry point to the composite application
from the outside world.

10.

Accept the default values for all remaining settings, and click Finish.

9.4.1.2 Step 2: Configuring Partner Links and File Adapter Services

You now create three partner links that use the SOAP service.

This section contains these topics:

You create an initial partner link with an adapter service for reading a loan
application.

You create a second partner link with an adapter service for reading an application
response.

You create a third partner link with an adapter service for reading a customer
response.

9.4.1.2.1 Creating an Initial Partner Link and File Adapter Service

To create an initial partner link and file adapter service:

1.
2
3.
4.

Double-click the MyCorrelationSet BPEL process.
In the Component Palette, expand BPEL Services.
Drag an initial Partner Link activity into the right swim lane of the designer.

Click the third icon at the top (the Define Service icon). This starts the Adapter
Configuration Wizard, as shown in Figure 9-4.

Figure 9-4 Adapter Configuration Wizard Startup

WSDL Settings

Q@ W
WSOL LURL: M:,I'JDeveloperImyworHRulesRUsICredi1 Define Service

5. In the Configure Service or Adapter dialog, select File Adapter and click Next.

6. In the Welcome dialog, click Next.

7. Inthe Service Name field of the Service Name dialog, enter FirstReceive and
click Next.

8. In the Operation dialog, select Read File as the Operation Type and click Next.
The Operation Name field is automatically filled in with Read.

9. Select Directory Names are Specified as Physical Path.

10. Above the Directory for Incoming Files (physical path) field, click Browse.

11. Select a directory from which to read files (for this example,

C:\files\receiveprocess\FirstInputDir is selected).

9-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using Correlation Sets in an Asynchronous Service

12.
13.
14.
15.
16.
17.
18.

19.

20.

21.
22,

Click Select.

Click Next.

In the File Filtering dialog, enter appropriate file filtering parameters.
Click Next.

In the File Polling dialog, enter appropriate file polling parameters.
Click Next.

In the Messages dialog, click Browse next to the Schema Location field to display
the Type Chooser dialog.

Select an appropriate XSD schema file. For this example, Book1_4.xsd is the
schema and LoanAppl is the schema element selected.

Click OK.

The Schema Location field (Book1_4.xsd for this example) and the Schema
Element field (LoanAppl for this example) are filled in.

Click Next.
Click Finish.

You are returned to the Partner Link dialog. All other fields are automatically
completed. The dialog looks as shown in Table 9-2:

Table 9-2 Partner Link Dialog Fields and Values

Field Value
Name FirstReceive
WSDL URL file:/C:/JDeveloper/mywork/Application_Name/SOA_Project_

Namel/FirstReceive.wsdl

where C:/JDeveloper represents the Oracle JDeveloper home
directory for this example.

Partner Link Type Read_plt

Partner Role Leave unspecified.
My Role Read_role

23. Click OK.

9.4.1.2.2 Creating a Second Partner Link and File Adapter Service

To create a second partner link and file adapter service:

1.

a & 0N

Drag a second PartnerLink activity beneath the FirstReceivePL partner link
activity.

At the top, click the third icon (the Define Service icon).
In the Welcome dialog, click Next.
In the Adapter Type dialog, select File Adapter and click Next.

In the Service Name field of the Service Name dialog, enter SecondFileRead
and click Next. This name must be unique from the one you entered in Step 7 on
page 9-14.

In the Operation dialog, select Read File as the Operation Type.

Invoking an Asynchronous Web Service from a BPEL Process 9-15

Using Correlation Sets in an Asynchronous Service

7. Inthe Operation Name field, change the name to Read1.

8. Click Next.

9. Select Directory Names are Specified as Physical Path.

10. Above the Directory for Incoming Files (physical path) field, click Browse.

11. Select a directory from which to read files (for this example,
C:\files\receiveprocess\SecondInputDir is entered).

12. Click Select.

13. Click Next.

14. Enter appropriate file filtering parameters in the File Filtering dialog.
15. Click Next.

16. Enter appropriate file polling parameters in the File Polling dialog.
17. Click Next.

18. Next to the Schema Location field in the Messages dialog, click Browse to display
the Type Chooser dialog.

19. Select an appropriate XSD schema file. For this example, Book1_5.xsd is the
schema and LoanAppResponse is the schema element selected.

20. Click OK.

The Schema Location field (Book1_5.xsd for this example) and the Schema
Element field (LoanAppResponse for this example) are filled in.

21. Click Next.
22. Click Finish.
You are returned to the Partner Link dialog. All other fields are automatically

completed. The dialog looks as shown in Table 9-3:

Table 9-3 Partner Link Dialog Fields and Values

Field Value
Name SecondReceive
WSDL URL file:/C:/JDeveloper/mywork/Application_Name/SOA_Project_

Namel/SecondFileRead.wsdl

where C:/JDeveloper represents the Oracle JDeveloper home
directory for this example.

Partner Link Type Read1_plt
Partner Role Leave unspecified.
My Role Readl_role

23. Click OK.

9.4.1.2.3 Creating a Third Partner Link and File Adapter Service

To create a third partner link and file adapter service:

1. Drag a third PartnerLink activity beneath the SecondReceivePL partner link
activity.

2. At the top, click the third icon (the Define Service icon).

9-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using Correlation Sets in an Asynchronous Service

10.
11.

12.
13.
14.
15.
16.
17.
18.

19.

20.

21.
22,

In the Welcome dialog, click Next.
In the Adapter Type dialog, select File Adapter and click Next.

In the Service Name field of the Service Name dialog, enter ThirdFileRead and
click Next. This name must be unique from the one you entered in Step 7 on
page 9-14 and Step 5 on page 9-15.

In the Operation dialog, select Read File as the Operation Type.

In the Operation Name field, change the name to Read2. This name must be
unique.

Click Next.
Select Directory Names are Specified as Physical Path.
Above the Directory for Incoming Files (physical path) field, click Browse.

Select a directory from which to read files (for this example,
C:\files\receiveprocess\ThirdInputDir is entered).

Click Select.

Click Next.

Enter appropriate file filtering parameters in the File Filtering dialog.
Click Next.

Enter appropriate file polling parameters in the File Polling dialog.
Click Next.

Next to the Schema Location field in the Messages dialog, click Browse to display
the Type Chooser dialog.

Select an appropriate XSD schema file. For this example, Book1_6.xsd is the
schema and CustResponse is the schema element selected.

Click OK.

The Schema Location field (Book1_6.xsd for this example) and the Schema
Element field (CustResponse for this example) are filled in.

Click Next.
Click Finish.

You are returned to the Partner Link dialog. All other fields are automatically
completed. The dialog looks as shown in Table 9—4:

Table 9-4 Partner Link Dialog Fields and Values

Field Value
Name ThirdReceive
WSDL URL file:/C:/JDeveloper/mywork/Application_Name/SOA_Project_

Name/ThirdFileRead.wsdl

where C:/JDeveloper represents the Oracle JDeveloper home
directory for this example.

Partner Link Type Read2_plt
Partner Role Leave unspecified.
My Role Read2_role

Invoking an Asynchronous Web Service from a BPEL Process 9-17

Using Correlation Sets in an Asynchronous Service

23. Click OK.

When complete, the designer looks as shown in Figure 9-5:

Figure 9-5 BPEL Process Design

i)

]
FirstReceivePL

srd
SecondReceivePL

ThirdReceivePL

9.4.1.3 Step 3: Creating Three Receive Activities

You now create three receive activities; one for each partner link. The receive activities
specify the partner link from which to receive information.

9.4.1.3.1 Creating an Initial Receive Activity

To create an initial receive activity:
1. Expand BPEL Activities in the Component Palette.

2. From the BPEL Activities and Components list of the Component Palette section,
drag a Receive activity beneath the receivelnput receive activity in the designer.

3. Double-click the receive icon to display the Receive dialog.
4. Enter the details described in Table 9-5 to associate the first partner link

(FirstReceive) with the first receive activity:

Table 9-5 Receive Dialog Fields and Values

Field Value

Name receiveFirst
Partner Link FirstReceive

Create Instance Select this checkbox.

The Operation (Read) field is automatically filled in.

5. To the right of the Variable field, click the first icon. This is the automatic variable
creation icon.

6. In the Create Variable dialog, click OK.

A variable named receiveFirst_Read_InputVariable is automatically created in
the Variable field.

7. Ensure that you selected the Create Instance checkbox, as mentioned in Step 4.

8. Click OK.

9-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using Correlation Sets in an Asynchronous Service

9.4.1.3.2 Creating a Second Receive Activity

To create a second receive activity:

1. From the Component Palette, drag a second Receive activity beneath the
receiveFirst receive activity.

2. Double-click the receive icon to display the Receive dialog.
3. Enter the details described in Table 9-6 to associate the second partner link

(SecondReceivePL) with the second receive activity:

Table 9-6 Receive Dialog Fields and Values

Field Value

Name receiveSecond

Partner Link SecondFileRead

Create Instance Do not select this checkbox.

The Operation (Read1) field is automatically filled in.
4. To the right of the Variable field, click the first icon.
5. In the Create Variable dialog, click OK.

A variable named receiveSecond_Read1_InputVariable is automatically created
in the Variable field.

6. Click OK.

9.4.1.3.3 Creating a Third Receive Activity

To create a third receive activity:

1. From the Component Palette, drag a third Receive activity beneath the
receiveSecond receive activity.

2. Double-click the receive icon to display the Receive dialog.
3. Enter the details described in Table 9-7 to associate the third partner link
(ThirdReceivePL) with the third receive activity:

Table 9-7 Receive Dialog Fields and Values

Field Value

Name receiveThird

Partner Link ThirdFileRead

Create Instance Do not select this checkbox.

The Operation (Read2) field is automatically filled in.
4. To the right of the Variable field, click the first icon.
5. In the Create Variable dialog, click OK.

A variable named receiveThird_Read2_InputVariable is automatically created in
the Variable field.

6. Click OK.

Each receive activity is now associated with a specific partner link.

Invoking an Asynchronous Web Service from a BPEL Process 9-19

Using Correlation Sets in an Asynchronous Service

9.4.1.4 Step 4: Creating Correlation Sets

You now create correlation sets. A set of correlation tokens is a set of properties shared
by all messages in the correlated group.

9.4.1.4.1 Creating an Initial Correlation Set

To create an initial correlation set:

1.

© ®» N o

In the Structure window of Oracle JDeveloper, right-click Correlation Sets and
select Expand All Child Nodes.

In the second Correlation Sets folder, right-click and select Create Correlation Set.
In the Name field of the Create Correlation Set dialog, enter CorrelationSetl.

In the Properties section, click the Add icon to display the Property Chooser
dialog.

Select Properties, then click the Add icon (first icon at the top) to display the
Create Correlation Set Property dialog.

In the Name field, enter NameCorr.
To the right of the Type field, click the Browse icon.
In the Type Chooser dialog, select string and click OK.

Click OK to close the Create Correlation Set Property dialog, the Property Chooser
dialog, and the Create Correlation Set dialog.

9.4.1.4.2 Creating a Second Correlation Set

To create a second correlation set:

1.

© ®» N o

Return to the Correlation Sets section in the Structure window of Oracle
JDeveloper.

Right-click the Correlation Sets folder and select Create Correlation Set.
In the Name field of the Create Correlation Set dialog, enter CorrelationSet2.

In the Properties section, click the Add icon to display the Property Chooser
dialog.

Select Properties, then click the Add icon to display the Create Correlation Set
Property dialog.

In the Name field, enter IDCorr.
To the right of the Type field, click the Browse icon.
In the Type Chooser dialog, select double and click OK.

Click OK to close the Create Correlation Set Property dialog, the Property Chooser
dialog, and the Create Correlation Set dialog.

9.4.1.5 Step 5: Associating Correlation Sets with Receive Activities

You now associate the correlation sets with the receive activities. You perform the
following correlation set tasks:

For the first correlated group, the first and second receive activities are correlated
with the CorrelationSet1 correlation set.

For the second correlated group, the second and third receive activities are
correlated with the CorrelationSet2 correlation set.

9-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using Correlation Sets in an Asynchronous Service

9.4.1.5.1 Associating the First Correlation Set with a Receive Activity

To associate the first correlation set with a receive activity:
1. Double-click the receiveFirst receive activity to display the Receive dialog.

2. Click the Correlations tab.

3. Click the second Add icon to display the Correlation Set Chooser dialog.
4. Select CorrelationSetl, then click OK.
5

Set the Initiate column to yes. When set to yes, the set is initiated with the values
of the properties occurring in the message being exchanged.

6. Click OK.

9.4.1.5.2 Associating the Second Correlation Set with a Receive Activity

To associate the second correlation set with a receive activity:
1. Double-click the receiveSecond receive activity to display the Receive dialog.

Click the Correlations tab.

Click the second Add icon to display the Correlation Set Chooser dialog.
Select CorrelationSet2, then click OK.

Set the Initiate column to yes.

Click Add and select CorrelationSet1.

Click OK.

Set the Initiate column to no for CorrelationSet1.

Click OK.

© ® N o o a2 w0 N

This groups the first and second receive activities into a correlated group.

9.4.1.5.3 Associating the Third Correlation Set with a Receive Activity

To associate the third correlation set with a receive activity:
1. Double-click the receiveThird receive activity to display the Receive dialog.

2. Click the Correlations tab.

3. (Click the second Add icon to display the Correlation Set Chooser dialog.
4. Select CorrelationSet2, then click OK.

5. Set the Initiate column to no for CorrelationSet2.

6. Click OK.

This groups the second and third receive activities into a second correlated group.

9.4.1.6 Step 6: Creating Property Aliases

Property aliases enable you to map a global property to a field in a specific message
part. This action enables the property name to become an alias for the message part
and location. The alias can be used in XPath expressions.

9.4.1.6.1 Creating Property Aliases for NameCorr You create the following two property
aliases for the NameCorr correlation set:

Invoking an Asynchronous Web Service from a BPEL Process 9-21

Using Correlation Sets in an Asynchronous Service

Map NameCorr to the LoanAppl message type part of the receiveFirst receive
activity. This receive activity is associated with the FirstReceivePL partner link
(defined by the FirstReceive.wsdl file).

Map NameCorr to the incoming LoanAppResponse message type part of the
receiveSecond receive activity. This receive activity is associated with the
SecondReceivePL partner link (defined by the SecondFileRead.wsdl file).

To create property aliases for NameCorr:

1.
2
3.

In the Structure window of Oracle JDeveloper, right-click Property Aliases.
Select Create Property Alias.
From the Property list, select NameCorr.

Expand and select Message Types > Web Services > FirstReceivePL >
FirstReceive.wsdl > Message Types > LoanAppl_msg > Part - LoanAppl.

In the Query field, press Ctrl+Space to define the following XPath expression:

/ns2:LoanAppl/ns2:Name

Click OK.
Repeat Step 1 through Step 3 to create a second property alias for NameCorr.

Expand and select Message Types > Project WSDL Files > SecondFileRead.wsdl
> Message Types > LoanAppResponse_msg > Part - LoanAppResponse.

In the Query field, press Ctrl+Space to define the following XPath expression:

/ns4 :LoanAppResponse/ns4d : APR

9.4.1.6.2 Creating Property Aliases for IDCorr

You create the following two property aliases for the IDCorr correlation set:

Map IDCorr to the LoanAppResponse message type part of the receiveSecond
receive activity. This receive activity is associated with the SecondReceivePL
partner link (defined by the SecondFileRead.wsdl file).

Map IDCorr to the CustResponse message type part of the receiveThird receive
activity. This receive activity is associated with the ThirdReceivePL partner link
(defined by the ThirdFileRead.wsdl file).

To create property aliases for IDCorr:

1.
2.
3.

In the Structure window, right-click Property Aliases.
Select Create Property Alias.
In the Property list, select IDCorr.

Expand and select Message Types > Project WSDL Files > SecondFileRead.wsdl
> Message Types > LoanAppResponse_msg > Part - LoanAppResponse.

In the Query field, press Ctrl+Space to define the following XPath expression:

/nsd :LoanAppResponse/ns4 : APR

Click OK.
Repeat Step 1 through Step 3 to create a second property alias for IDCorr.

Expand and select Message Types > Project WSDL Files > ThirdFileRead.wsdl >
Message Types > CustResponse_msg > Part - CustResponse.

9-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using Correlation Sets in an Asynchronous Service

9. In the Query field, press Ctrl+Space to define the following XPath expression:

/ns6:CustResponse/ns6: APR

Design is now complete.

9.4.1.7 Step 7: Reviewing WSDL File Content

To review WSDL file content:
1. Refresh the Application Navigator.

The NameCorr and IDCorr correlation set properties are defined in the
MyCorrelationSet_Properties.wsdl file in the Application Navigator of
Oracle JDeveloper. Example 9-8 provides an example.

Example 9-8 Correlation Set Properties

<definitions

name="properties"

targetNamespace="http://xmlns.oracle.com/MyCorrelationSet/correlationset"

xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"

xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"

xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<bpws :property name="NameCorr" type="xsd:string"/>

<bpws : property name="IDCorr" type="xsd:double"/>
</definitions>

The property aliases are defined in the MyCorrelationSet.wsdl file, as shown
in Example 9-9:

Example 9-9 Property Aliases

<bpws :propertyAlias propertyName="nsl:NameCorr"
messageType="ns3:LoanAppl_msg"
part="LoanAppl" query="/ns2:LoanAppl/ns2:Name" />

<bpws:propertyAlias propertyName="nsl:NameCorr"
messageType="ns5 : LoanAppResponse_msg"
part="LoanAppResponse" query="/ns4:LoanAppResponse/ns4:APR" />

<bpws :propertyAlias propertyName="nsl:IDCorr"
messageType="ns5:LoanAppResponse_msg"
part="LoanAppResponse" query="/nsd:LoanAppResponse/nsd:APR"/>

<bpws :propertyAlias propertyName="nsl:IDCorr"
messageType="ns7:CustResponse_msg"
part="CustResponse" query="/ns6:CustResponse/ns6:APR"/>

Because the BPEL process service component is not created as a web services
provider in this example, the MyCorrelationSet .wsdl file is not referenced in
the BPEL process service component. Therefore, you must import the
MyCorrelationSet.wsdl file inside the FirstReceive.wsdl file to reference
the correlation sets defined in the former WSDL. Example 9-10 provides an
example.

Example 9-10 WSDL File Import

<import namespace="http://xmlns.oracle.com/MyCorrelationSet"

Invoking an Asynchronous Web Service from a BPEL Process 9-23

Using Correlation Sets in an Asynchronous Service

location="MyCorrelationSet.wsdl"/>

9-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

10

Using Parallel Flow in a BPEL Process

This chapter describes how to use parallel flow in a BPEL process service component.
Parallel flows enable a BPEL process service component to perform multiple tasks at
the same time. Parallel flow is especially useful when you must perform several
time-consuming and independent tasks.

This chapter includes the following sections:
s Section 10.1, "Introduction to Parallel Flows in BPEL Processes"
= Section 10.2, "Creating a Parallel Flow"

= Section 10.3, "Customizing the Number of Flow Activities with the flowN
Activity"

For additional information on creating parallel flows in a SOA composite application,
see Oracle Fusion Middleware Tutorial for Running and Building an Application with Oracle
SOA Suite.

10.1 Introduction to Parallel Flows in BPEL Processes

A BPEL process service component must sometimes gather information from multiple
asynchronous sources. Because each callback can take an undefined amount of time
(hours or days), it may take too long to call each service one at a time. By breaking the
calls into a parallel flow, a BPEL process service component can invoke multiple web
services at the same time, and receive the responses as they come in. This method is
much more time efficient.

Figure 10-1 shows the Retrieve_QuotesFromSuppliers flow activity of the WebLogic
Fusion Order Demo application. The Retrieve_QuotesFromSuppliers flow activity
sends order information to two suppliers in parallel: an internal warehouse
(InternalWarehouseService) and an external partner warehouse
(PartnerSupplierMediator). The two warehouses return their bids for the order to the
flow activity. Here, two asynchronous callbacks execute in parallel. One callback does
not have to wait for the other to complete first. Each response is stored in a different
global variable.

Using Parallel Flow in a BPEL Process 10-1

Creating a Parallel Flow

Figure 10-1 Parallel Flow Invocation

BPEL
Process

<flow>

WSDL

<sequence>

WSDL

<sequence>

Initiate

<invoke>

service

<invoke> | . >

1
Initiate :
1

1
1
1
| service
1
1
1
1

PartnerSupplierMediator

InternalWarehouseService

=—P-r| Wait for
1| callback
1| <receive>

1
1
Wait for | *
callback :
1

<receive>

10.2 Creating a Parallel Flow

You can create a parallel flow in a BPEL process service component with the flow
activity. The flow activity enables you to specify one or more activities to be performed
concurrently. The flow activity also provides synchronization. The flow activity
completes when all activities in the flow have finished processing. Completion of this
activity includes the possibility that it can be skipped if its enabling condition is false.

10.2.1 How to Create a Parallel Flow

To create a parallel flow:

1. From the Component Palette, drag a Flow activity into the designer.

2. Click the + sign to expand the flow activity, as shown in Figure 10-2.

Figure 10-2 Flow Activity

=94

The flow activity includes two branches, each with a box for functional elements.
Populate these boxes as you do a scope activity, either by building a function or
dragging activities into the boxes.

3. Drag and define additional activities onto each side of the flow to invoke multiple

services at the same time.

10-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Creating a Parallel Flow

Figure 10-3 Expanded Flow Activity

RLE:

Invoke_1

When complete, flow activity design can look as shown in Figure 10-4. This
example shows the Retrieve_QuotesFromSuppliers flow activity of the
WebLogicFusionOrderDemo application. Two branches are defined for receiving
bids, one for InternalWarehouseService and the other for
PartnerSupplierMediator.

Figure 10-4 Flow Activity After Design Completion

S ..

(] (]

Assign_InternalarehouseRequest Assign_PartnerRequest

3
3

Invoke_InternalWwarehouse Invoke_Partnersupplier

Receive_InternalWarehouse Receive_PartnerResponse
(i) 3kl
Assign_Inker'WHResponse Assign_ParknerWHResponse

10.2.2 What Happens When You Create a Parallel Flow

A flow activity typically contains many sequence activities. Each sequence is
performed in parallel. Example 10-1 shows the syntax for two sequences of the
Retrieve_QuotesFromSuppliers flow activity in the OrderProcessor.bpel
file after design completion. However, a flow activity can have many sequences. A
flow activity can also contain other activities. In Example 10-1, each sequence in the
flow contains assign, invoke, and receive activities.

Using Parallel Flow in a BPEL Process 10-3

Creating a Parallel Flow

Example 10-1 Flow Activity

<flow name="Retrieve_ QuotesFromSuppliers">
<sequence name="Sequence_4">
<assign name="Assign InternalWarehouseRequest">
<copy>
<from variable="gOrderInfoVariable"
query="/ns4:orderInfov0SDO/ns4:0rderId" />
<to variable="lInternalWarehouseInputVariable"
part="payload"
query="/nsl:WarehouseRequest/nsl:orderIid" />
</copy>
</assign>
<invoke name="Invoke InternalWarehouse"
inputVariable="1lInternalWarehouseInputVariable"
partnerLink="InternalWarehouseService"
portType="nsl:InternalWarehouseService"
operation="process"/>
<receive name="Receive_InternalWarehouse"
createInstance="no"
variable="lInternalWarehouseResponseVariable"
partnerLink="InternalWarehouseService"
portType="nsl:InternalWarehouseServiceCallback"
operation="processResponse" />
<assign name="Assign_InterWHResponse">
<bpelx:append>
<bpelx:from variable="lInternalWarehouseResponseVariable"
part="payload"
query="/nsl:WarehouseResponse" />
<bpelx:to variable="gWarehouseQuotes"
query="/nsl:WarehouseList"/>
</bpelx:append>
</assign>
</sequence>
<sequence name="Sequence_4">
<assign name="Assign_PartnerRequest">
<copy>
<from variable="gOrderInfoVariable"
query="/ns4:orderInfov0oSDO" />
<to variable="lPartnerSupplierInputVariable"
part="request" query="/ns4:orderInfovOSDO"/>
</copy>
</assign>
<invoke name="Invoke_PartnerSupplier"
partnerLink="PartnerSupplierMediator"
portType="nsl5:execute_ptt" operation="execute"
inputVariable="1PartnerSupplierInputVariable"/>
<receive name="Receive_PartnerResponse"
createInstance="no"
variable="1PartnerResponseVariable"
partnerLink="PartnerSupplierMediator"
portType="nsl5:callback_ptt" operation="callback"/>
<assign name="Assign_PartnerWHResponse">
<bpelx:append>
<bpelx:from variable="1PartnerResponseVariable"
part="callback"
query="/nsl:WarehouseResponse" />
<bpelx:to variable="gWarehouseQuotes"
query="/nsl:WarehouseList"/>
</bpelx:append>
</assign>

10-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Customizing the Number of Flow Activities with the flowN Activity

</sequence>
</flow>

10.3 Customizing the Number of Flow Activities with the flowN Activity

In the flow activity, the BPEL code determines the number of parallel branches.
However, often the number of branches required is different depending on the
available information. The flowN activity creates multiple flows equal to the value of
N, which is defined at runtime based on the data available and logic within the
process. An index variable increments each time a new branch is created, until the
index variable reaches the value of N.

The flowN activity performs activities on an arbitrary number of data elements. As the
number of elements changes, the BPEL process service component adjusts accordingly.

The branches created by flowN perform the same activities, but use different data.
Each branch uses the index variable to look up input variables. The index variable can
be used in the XPath expression to acquire the data specific for that branch.

For example, suppose there is an array of data. The BPEL process service component
uses a count function to determine the number of elements in the array. Then the
process sets N to be the number of elements. The index variable starts at a preset value
(zero is the default), and flowN creates branches to retrieve each element of the array
and perform activities using data contained in that element. These branches are
generated and performed in parallel, using all the values between the initial index
value and N. flowN terminates when the index variable reaches the value of N. For
example, if the array contains 3 elements, N is set to 3. Assuming the index variable
begins at 1, the flowN activity creates three parallel branches with indexes 1, 2, and 3.

The flowN activity can use data from other sources as well, including data obtained
from web services.

Figure 10-5 shows the runtime flow of a flowNN activity in Oracle Enterprise Manager
Fusion Middleware Control Console that looks up three hotels. This is different from
the view because instead of showing the BPEL process service component, it shows
how the process has actually executed. In this case, there are three hotels, but the
number of branches changes to match the number of hotels available.

Using Parallel Flow in a BPEL Process 10-5

Customizing the Number of Flow Activities with the flowN Activity

Figure 10-5 Oracle Enterprise Manager Fusion Middleware Control Console View of the
Execution of a flowN activity

receivelnput

(e
|
1 R

Lassign |

getHotelsh
| i i
= Index=1 = Index=2 = Index=3
) =) (e)
"1, | 'L, |
L .E>"!-U|\) L .!.‘$>I|’__':II] _.-.Ia'a:gl'l
setHotel1d setHotel1d setHotelld

k05 L
linvoke)
InvokeHotelDe. ..

A]

callbackClient

10.3.1 How to Create a flowN Activity

To create a flowN activity:
1. From the Component Palette, drag a FlowN activity into the designer.

2. Click the + sign to expand the FlowN activity.
3. Double-click the FlowN activity.
Figure 10-6 shows the flowN dialog.

10-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Customizing the Number of Flow Activities with the flowN Activity

Figure 10-6 FlowN Dialog

FlowN xR
A\ Errors: 1 %
| General r Sensars r Annotations
Mame: | Flowh_1 |
v &
Index Yariable: |3 | g Q
| Help | | Apply | | QK J | Cancel

The flowN dialog enables you to:
= Name the activity

= Enter a value or an expression for calculating the value of N (the number of
branches to create)

m Define the index variable (the time to wait in each branch)
4. Drag and define additional activities in the flowN activity.

Figure 10-7 shows how a FlowN activity appears with additional activities.

Figure 10-7 FlowN Activity with Additional Activities

receivelnput

xM
Flawi_1

l

Assignld

|

Assignioutput

bzs [

1~ =au=n

Using Parallel Flow in a BPEL Process 10-7

Customizing the Number of Flow Activities with the flowN Activity

10.3.2 What Happens When You Create a FlowN Activity

The following code shows the .bpel file that uses the flowN activity to look up
information on an arbitrary number of hotels. The following actions take place.

Example 10-2 shows the sequence name.

Example 10-2 Sequence Name

<sequence name="main">

<!-- Received input from requestor.
Note: This maps to operation defined in NflowHotels.wsdl
The requestor send a set of hotels names wrapped into the "inputVariable"
-=>

A receive activity calls the client partner link to get the information that the £1owN
activity must define N times and look up hotel information. Example 10-3 provides an
example.

Example 10-3 Receive Activity

<receive name="receiveInput" partnerLink="client"
portType="client:NflowHotels" operation="initiate" variable="inputVariable"
createInstance="yes"/>
<!l--
The 'count()' Xpath function is used to get the number of hotelName
noded passed in.
An intermediate variable called "NbParallelFlow" is
used to store the number of N flows being executed
-=>
<assign name="getHotelsN">
<copy>
<from
expression="count (bpws:getVariableData ('inputVariable', 'payload','/client:Nflow
HotelsProcessRequest/client:ListOfHotels/client:HotelName'));"/>
<to variable="NbParallelFlow"/>
</copy>
</assign>
<!-- Initiating the FlowN activity
The N value is initialized with the value stored in the
"NbParallelFlow" variable
The variable call "Index" is defined as the index variable
NOTE: Both "NbParallelFlow" and "Index" variables have to be declared
-—>

The £1owN activity begins next. After defining a name for the activity of £1owN, N is
defined as a value from the inputVariable, which is the number of hotel entries.
The activity also assigns index as the index variable. Example 104 provides an
example.

Example 10-4 FlowN Activity

<bpelx:flowN name="FlowN" N="bpws:getVariableData ('NbParallelFlow')
indexVariable="Index'>
<sequence name="Sequence_1">
<!-- Fetching each hotelName by indexing the "inputVariable" with the
"Index" variable.
Note the usage of the "concat()" Xpath function to create the
expression accessing the array element.
-—>

10-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Customizing the Number of Flow Activities with the flowN Activity

The copy rule shown in Example 10-5 then uses the index variable to concatenate the
hotel entries into a list:

Example 10-5 Assign Activity

<assign name="setHotelId">
<copy>
<from expression=
"bpws:getVariableData('inputVariable', 'payload', concat('/client:Nflo
wHotelsProcessRequest/client:ListOfHotels/client:HotelNamel',
bpws:getVariableData('Index'),']"'))"/>
<to variable="InvokeHotelDetailInputVariable" part="payload"
query="/ns2:hotelInfoRequest/ns2:1d" />
</copy>
</assign>

Using the hotel information, an invoke activity looks up detailed information for
each hotel through a web service. Example 10-6 provides an example.

Example 10-6 Invoke Activity

<!-- For each hotel, invoke the web service giving detailed information
on the hotel -->
<invoke name="InvokeHotelDetail" partnerLink="getHotelDetail"
portType="ns2:getHotelDetail" operation="process"
inputVariable="InvokeHotelDetailInputVariable"
outputVariable="InvokeHotelDetailOutputVariable"/>
<!-- This procees does not do anything with the retrieved information.
In real life, it could then be used to continue the process.
Note: Meanwhile an indexing variable is used. Unlike a while loop, the
activities are executed in parallel, not sequentially.
-—>
</sequence>
</bpelx:flowN>

Finally, the BPEL process sends detailed information on each hotel to the client partner
link. Example 10-7 provides an example.

Example 10-7 Invoke Activity

<invoke name="callbackClient" partnerLink="client"
portType="client:NflowHotelsCallback" operation="onResult"
inputVariable="outputVariable"/>
</sequence>
</sequence>

Using Parallel Flow in a BPEL Process 10-9

Customizing the Number of Flow Activities with the flowN Activity

10-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

11

Using Conditional Branching in a BPEL
Process

This chapter describes how to use conditional branching in a BPEL process service
component. Conditional branching introduces decision points to control the flow of
execution of a BPEL process service component.

This chapter includes the following sections:

= Section 11.1, "Introduction to Conditional Branching"

= Section 11.2, "Creating a Switch Activity to Define Conditional Branching"
= Section 11.3, "Creating a While Activity to Define Conditional Branching"

For additional information on creating conditional branching in a SOA composite
application, see Oracle Fusion Middleware Tutorial for Running and Building an
Application with Oracle SOA Suite.

11.1 Introduction to Conditional Branching

BPEL applies logic to make choices through conditional branching. You can use either
of the following activities to design your code to select different actions based on
conditional branching:

= Switch activity

Enables you to set up two or more branches, with each branch in the form of an
XPath expression. If the expression is true, then the branch is executed. If the
expression is false, then the BPEL process service component moves to the next
branch condition, until it either finds a valid branch condition, encounters an
otherwise branch, or runs out of branches. If multiple branch conditions are true,
then BPEL executes the first true branch. Section 11.2, "Creating a Switch Activity
to Define Conditional Branching" explains how to create switch activities.

= While activity

Enables you to create a while loop to select between two actions. Section 11.3,
"Creating a While Activity to Define Conditional Branching" describes while
activities.

Many branches are set up, and each branch has a condition in the form of an XPath
expression.

You can program a conditional branch to have a timeout. That is, if a response cannot
be generated in a specified period, the BPEL flow can stop waiting and resume its
activities. Chapter 14, "Using Events and Timeouts in BPEL Processes" explains this
feature in detail.

Using Conditional Branching in a BPEL Process 11-1

Creating a Switch Activity to Define Conditional Branching

Note: You can also define conditional branching logic with business
rules. See Oracle Fusion Middleware User’s Guide for Oracle Business
Rules and Oracle Fusion Middleware Tutorial for Running and Building an
Application with Oracle SOA Suite for details.

11.2 Creating a Switch Activity to Define Conditional Branching

Assume you designed a flow activity in the BPEL process service component that
gathered loan offers from two companies at the same time, but did not compare either
of the offers. Each offer was stored in its own global variable. To compare the two bids
and make decisions based on that comparison, you can use a switch activity.

Figure 11-1 provides an overview of a BPEL conditional branching process that has
been defined in a switch activity.

Figure 11-1 Conditional Branching

condition 1 Boolean XPATH Expression

BPEL

Process

<switch> O
1=-=-=-=-=--- [it
| <case 1 <otherwise> |
| conditon 1> I.)
1 11 1
1 Select 1 Select \
1| unitedLoan | |, starLoan |
1| <assign> 1 <assign> | |
1 11 1
1 11 1

11.2.1 How to Create a Switch Activity

To create a switch activity:
1. From the Component Palette, drag a Switch activity into the designer.

2. Click the + sign to expand the switch activity, as shown in Figure 11-2.

The Switch activity has two switch case branches by default, each with a box for
functional elements. If you want to add more branches, select the entire switch
activity, right-click, and select Add Switch Case from the menu.

Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Creating a Switch Activity to Define Conditional Branching

Figure 11-2 Switch Activity

=P 3 2

<cases [2 | =ctherwizes =

3. In the first branch, right-click and select Edit from the menu.
The Switch Case dialog appears.

4. In the Expression field, enter an XPath boolean expression by pressing Ctrl+Space
to start the XPath Building Assistant. Example 11-1 provides details.

Example 11-1 XPath Expression

bpws:getVariableDate(’loanOfferl’, 'payload’,’/loanOffer/APR’') >
bpws:getVariableData(’loanOffer2’, 'payload’, ’'/loanOffer/APR’)

5. Enter this expression on one line. To use the XPath Expression Builder, click the
XPath Expression Builder icon above the Expression field.

In this example, two loan offers from completing loan companies are stored in the
global variables 1oanOfferl and loanOffer2. Each loan offer variable contains
the loan offer’s APR. The BPEL flow must choose the loan with the lower APR.
One of the following switch activities takes place:

s If loanOfferl has the higher APR, then the first branch selects loanOffer2
by assigning the 1oanOffer2 payload to the selectedLoanOffer payload.

s If loanOfferl does not have the lower APR than 1oanOffer2, the
otherwise case assigns the 1oanOfferl payload to the
selectedLoanOffer payload.

11.2.2 What Happens When You Create a Switch Activity

A switch activity, like a flow activity, has multiple branches. In Example 11-2, there are
only two branches shown in the .bpel file after design completion. The first branch,
which selects a loan offer from a company named United Loan, is executed if a case
condition containing an XPath boolean expression is met. Otherwise, the second
branch, which selects the offer from a company named Star Loan, is executed. By
default, the switch activity provides two switch cases, but you can add more if you
want.

Example 11-2 Switch Activity

<switch name="switch-1">
<case condition="bpws:getVariableData ('loanOfferl', 'payload',
'/autoloan:loanOffer/autoloan:APR') <
bpws:getVariableData ('loanOffer2', 'payload', '/autoloan:loanOffer/autoloan:APR
|)||>
<assign name="selectUnitedLoan">

Using Conditional Branching in a BPEL Process 11-3

Creating a While Activity to Define Conditional Branching

<copy>
<from variable="loanOfferl" part="payload">
</from>
<to variable="selectedLoanOffer" part="payload"/>
</copy>
</assign>
</case>
<otherwise>
<assign name="selectStarLoan">
<copy>
<from variable="loanOffer2" part="payload">
</from>
<to variable="selectedLoanOffer" part="payload"/>
</copy>
</assign>
</otherwise>
</switch>

11.3 Creating a While Activity to Define Conditional Branching

Another way to design your BPEL code to select between multiple actions is to use a
while activity to create a while loop. The while loop repeats an activity until a
specified success criteria is met. For example, if a critical web service is returning a
service busy message in response to requests, you can use the while activity to keep
polling the service until it becomes available. The condition for the while activity is
that the latest message received from the service is busy, and the operation within the
while activity is to check the service again. Once the web service returns a message
other than service busy, the while activity terminates and the BPEL process service
component continues, ideally with a valid response from the web service.

11.3.1 How To Create a While Activity

To create a while activity:
1. From the Component Palette, drag a While activity into the designer.

2. (Click the + sign to expand the while activity.

The while activity has icons to allow you to build condition expressions and to
validate the while definition. It also provides an area for you to drag an activity to
define the while loop. Figure 11-3 provides an example.

Figure 11-3 While Activity

u’l@

3. Drag and define additional activities for using the while condition into the Drop
Activity Here area of the While activity (for example, a Scope activity).

The activities can be existing or new activities.

11-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Creating a While Activity to Define Conditional Branching

4. Press Ctrl+Space to invoke the XPath Building Assistant or click the XPath
Expression Builder icon to open the Expression Builder dialog.

5. Enter an expression to perform repeatedly, as shown in Figure 11-4. This action is
performed until the given boolean while condition is no longer true. In this
example, this activity is set to loop while less than 5.

Figure 11-4 While Activity with an Expression

While ®

| General rSensors rnnnotations |

Expressian: iy

bpws:getVariableData('dbstatus') < 5

| Help | | Apply || [o]'8 || Cancel

6. Click OK when complete.

11.3.2 What Happens When You Create a While Activity

Example 11-3 provides an example of the . bpel file after design completion. The
while activity includes a scope activity. The scope activity includes invoke, assign, and
wait activities. Database exception handling tasks are performed by creating a local
variable and placing the invoke activity inside the scope activity. The local variable is
set to false (represented by 0). You attempt to call the external partner service in the
while loop activity until the local variable is satisfied (set to 1). The while activity is set
to loop a maximum of five times. In the case of an exception, you reset the flag to false

0).

Example 11-3 While Activity

<while name="While_1" condition="bpws:getVariableData ('dbStatus') > 5">
<scope name="Scope_1">
<faultHandlers>
<catchAll>
<sequence name="Sequence_2">
<assign name="assign DB_retry">
<copy>
<from expression="bpws:getVariableData('dbStatus') + 1"/>
<to variable="dbStatus"/>
</copy>
</assign>
<wait name="Wait_30_sec" for="'PT31S'"/>
</sequence>
</catchAll>
</faultHandlers>

Using Conditional Branching in a BPEL Process 11-5

Creating a While Activity to Define Conditional Branching

<sequence name="Sequence_1">
<invoke name="Write_DBWrite" partnerLink="WriteDBRecord"
portType="ns2:WriteDBRecord_ptt" operation="insert"
inputVariable="Invoke_DBWrite_merge_InputVariable"/>
<assign name="Assign_dbComplete">
<copy>
<from expression="'10"'"/>
<to variable="dbStatus"/>
</copy>
</assign>
</sequence>
</scope>
</while>

11-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

12

Using Fault Handling in a BPEL Process

This chapter describes how to use fault handling in a BPEL process. Fault handling
allows a BPEL process service component to handle error messages or other exceptions
returned by outside web services, and to generate error messages in response to
business or runtime faults. You can also define a fault management framework to
catch faults and perform user-specified actions defined in a fault policy file.

This chapter includes the following sections:

s Section 12.1, "Introduction to a Fault Handler"

s Section 12.2, "Introduction to BPEL Standard Faults"

» Section 12.3, "Introduction to Categories of BPEL Faults"
= Section 12.4, "Using the Fault Management Framework"
» Section 12.5, "Catching BPEL Runtime Faults"

= Section 12.6, "Getting Fault Details with the getFaultAsString XPath Extension
Function”

= Section 12.7, "Throwing Internal Faults"

= Section 12.8, "Returning External Faults"

= Section 12.9, "Using a Scope Activity to Manage a Group of Activities"

= Section 12.10, "Using Compensation After Undoing a Series of Operations"

» Section 12.11, "Using the Terminate Activity to Stop a Business Process Instance"

For additional information on creating fault handling in a SOA composite application,
see Oracle Fusion Middleware Tutorial for Running and Building an Application with Oracle
SOA Suite.

12.1 Introduction to a Fault Handler

Fault handlers define how the BPEL process service component responds when the
web services return data other than what is normally expected (for example, returning
an error message instead of a number). An example of a fault handler is where the web
service normally returns a credit rating number, but instead returns a negative credit
message.

Figure 12-1 provides an example of how a fault handler sets a credit rating variable to
-1000.

Using Fault Handling in a BPEL Process 12-1

Introduction to a Fault Handler

Figure 12-1 Fault Handling

WSDL BPEL
Process

— <receive>
D

l WSDL

<scope> Negative
Credit

prepare |

crin
<assign> I I Credit
Rating

Service
call

service
<invoke>

Read
crOut
<assign>

<scope>

credit to
-1000 | <¢
<assign>

|

<reply>

The code segment in Example 12-1 defines the fault handler for this operation in the
BPEL file:

Example 12-1 Fault Handler Definition

<faultHandlers>
<catch faultName="services:NegativeCredit" faultVariable="crError">
<assign name="crin">
<copy>
<from expression="-1000">
</ from>
<to variable="input" part="payload"
query="/autoloan:loanApplication/autoloan:creditRating"/>
</copy>
</assign>
</catch>
</faultHandlers>

The faultHandlers tag contains the fault handling code. Within the fault handler is
a catch activity, which defines the fault name and variable, and the copy instruction
that sets the creditRating variable to -1000.

When you select web services for the BPEL process service component, determine the
possible faults that may be returned and set up a fault handler for each one.

12-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Introduction to Categories of BPEL Faults

12.2 Introduction to BPEL Standard Faults

The Business Process Execution Language for Web Services Specification defines the
following standard faults in the namespace of
http://schemas.xmlsoap.org/ws/2003/03/business-process/:

bindingFault
conflictingReceive
conflictingRequest
correlationViolation
forcedTermination
invalidReply
joinFailure
mismatchedAssignmentFailure
remoteFault
repeatedCompensation
selectionFailure

uninitializedvVariable

Standard faults are defined as follows:

Typeless, meaning they do not have associated messageTypes

Not associated with any Web Services Description Language (WSDL) message

Caught without a fault variable:

<catch faultName="bpws:selectionFailure">

12.3 Introduction to Categories of BPEL Faults

A BPEL fault has a fault name called a Qname (name qualified with a namespace) and
a possible messageType. There are two categories of BPEL faults:

Business faults

Runtime faults

12.3.1 Business Faults

Business faults are application-specific faults that are generated when there is a
problem with the information being processed (for example, when a social security
number is not found in the database). A business fault occurs when an application
executes a throw activity or when an invoke activity receives a fault as a response. The
fault name of a business fault is specified by the BPEL process service component. The
messageType, if applicable, is defined in the WSDL. A business fault can be caught
with a faultHandler using the faultName and a faultVariable.

<catch faultName="nsl:faultName"

12.3.2 Runtime Faults

Runtime faults are the result of problems within the running of the BPEL process
service component or web service (for example, data cannot be copied properly

faultVariable="varName">

Using Fault Handling in a BPEL Process 12-3

Using the Fault Management Framework

because the variable name is incorrect). These faults are not user-defined, and are
thrown by the system. They are generated if the process tries to use a value incorrectly,
a logic error occurs (such as an endless loop), a Simple Object Access Protocol (SOAP)
fault occurs in a SOAP call, an exception is thrown by the server, and so on.

Several runtime faults are automatically provided. These faults are included in the
http://schemas.oracle.com/bpel/extension namespace. These faults are
associated with the messageType RuntimeFaultMessage. The WSDL file shown in
Example 12-2 defines the messageType:

Example 12-2 messageType Definition

<?xml version="1.0" encoding="UTF-8" ?>

<definitions name="RuntimeFault"
targetNamespace="http://schemas.oracle.com/bpel/extension"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<message name="RuntimeFaultMessage">
<part name="code" type="xsd:string" />
<part name="summary" type="xsd:string" />
<part name="detail" type="xsd:string" />
</message>
</definitions>

Ifa faultVariable (of messageType RuntimeFaultMessage) is used when
catching the fault, the fault code can be queried from the faultvariable, along with
the fault summary and detail.

12.3.2.1 bindingFault

A bindingFault is thrown inside an activity if the preparation of the invocation
fails. For example, the WSDL of the process fails to load. A bindingFault is not
retryable. This type of fault usually must be fixed by human intervention.

12.3.2.2 remoteFault

A remoteFault is also thrown inside an activity. It is thrown because the invocation
fails. For example, a SOAP fault is returned by the remote service.

12.3.2.3 replayFault

A replayFault replays the activity inside a scope. At any point inside a scope, this
fault is migrated up to the scope. The server then re-executes the scope from the
beginning.

12.4 Using the Fault Management Framework

Oracle SOA Suite provides a generic fault management framework for handling faults
in BPEL processes. If a fault occurs during runtime in an invoke activity in a process,
the framework catches the fault and performs a user-specified action defined in a fault
policy file associated with the activity. If a fault results in a condition in which human
intervention is the prescribed action, you perform recovery actions from Oracle
Enterprise Manager Fusion Middleware Control Console. The fault management
framework provides an alternative to designing a BPEL process with catch activities in
scope activities.

This section provides an overview of the components that comprise the fault
management framework.

12-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using the Fault Management Framework

s The fault management framework catches all faults (business and runtime) for an
invoke activity.

= A fault policy file defines fault conditions and their corresponding fault recovery
actions. Each fault condition specifies a particular fault or group of faults, which it
attempts to handle, and the corresponding action for it. A set of actions is
identified by an ID in the fault policy file.

= A set of conditions invokes an action (known as fault policy).

= A fault policy bindings file associates the policies defined in the fault policy file
with the following:

- SOA composite applications
- BPEL process and Oracle Mediator service components

— Reference binding components for BPEL process and Oracle Mediator service
components

The framework looks for fault policy bindings in the same directory as the
composite.xml file of the SOA composite application or in a remote location
identified by two properties that you set.

Note: A fault policy configured with the fault management
framework overrides any fault handling defined in catch activities of
scope activities in the BPEL process. The fault management
framework can be configured to rethrow the fault handling back to the
catch activities.

» The fault policy file (fault-policies.xml) and fault policy bindings file
(fault-bindings.xml) are placed in either of the following locations:

— In the same directory as the composite.xml file of the SOA composite
application.

- In a different location that is specified with two properties that you add to the
composite.xml file. This option is useful if a fault policy must be used by
multiple SOA composite applications. This option overrides any fault policy
files that are included in the same directory as the composite.xml file.
Example 12-3 provides details about these two properties. In this example, the
fault policy files are placed into the SOA Metadata Service (MDS) shared area.

Example 12-3 Fault Policies used by Multiple SOA Composite Applications

<property
name="oracle.composite.faultPolicyFile">oramds://apps/faultpolicyfiles/
fault-policies.xml

</property>

<property
name="oracle.composite.faultBindingFile">oramds://apps/faultpolicyfiles/
fault-bindings.xml

</property>

See Chapter 20, "Using Mediator Error Handling" for details about Oracle Mediator
fault handling capabilities.

12.4.1 How to Design a Fault Policy

This section describes how to design a fault policy.

Using Fault Handling in a BPEL Process 12-5

Using the Fault Management Framework

Note: The Facades API enables you to programmatically perform the
abort, retry (with a success action), continue, rethrow, and replay
recovery options.

12.4.1.1 Understanding How Fault Policy Binding Resolution Works

A fault policy bindings file associates the policies defined in a fault policy file with the
SOA composite application or the component (service component or reference binding
component). The framework attempts to identify a fault policy binding in the
following order:

= Reference binding component defined in the composite.xml file.

= BPEL process or Oracle Mediator service component defined in the
composite.xml file.

s SOA composite application defined in the composite.xml file.

During the resolution process, if no action is found that matches the condition, the
framework assumes that resolution failed and moves to the next resolution level.

For example, assume an invoke activity faults with faultname="abc". Thereis a
policy binding specified in the fault-binding.xml file:

s SOA composite application binds to policy-id-1

= BPEL process or Oracle Mediator service component or reference binding
component binds to policy-id-2

In the fault-bindings.xml file, the following bindings are also specified:

s SOA composite application binds to policy-id-3

= Reference binding component or service component binds to policy-id-4
The fault management framework behaves as follows:

» First match the resolve binding (in this case, policy-1id-2).

» If the fault resolution fails, go to the next possible match (policy-id-4).

» If the fault resolution fails, go to the next possible match (policy-id-3).

» If the fault resolution fails, go to the next possible match (in this case,
policy-id-1).

» If the fault resolution still fails, the fault is sent to the BPEL fault catch activity.

12.4.1.2 Creating a Fault Policy File for Automated Fault Recovery

1. Create a fault policy file (for example, named fault-policies.xml). This file
includes condition and action sections for performing specific tasks.

2. Place the file in the same directory as the composite.xml file or place it in a
different location and define the oracle.composite.faultPolicyFile
property. Example 12—4 provides details.

Example 12-4 Defining Properties

<property
name="oracle.composite.faultPolicyFile">oramds://apps/faultpolicyfiles/
fault-policies.xml

</property>

<property

12-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using the Fault Management Framework

name="oracle.composite.faultBindingFile">oramds://apps/faultpolicyfiles/
fault-bindings.xml
</property>

3. Define the condition section of the fault policy file.
= Note the following details about the condition section:
— This section provides a condition based on faultName.
— Multiple conditions may be configured for a faul tName.

— Each condition has one test section (an XPath expression) and one
action section.

— The test section (XPath expression) is evaluated for the fault variable
available in the fault.

— The action section has a reference to the action defined in the same file.
- You can only query the fault variable available in the fault.

— The order of condition evaluation is determined by the sequential order in
the document.

Table 12-1 provides examples of condition section use in the fault policy
file. All actions defined in the condition section must be associated with an
action in the action section.

Table 12-1 Use of the condition Section in the Fault Policy File

Condition Example Fault Policy File Syntax

This condition is checking a fault <condition>

variable for code = <test>$fault.code="WSDLReading Error"
"WSDLFailure" </test>

An action of ora-terminate is <action ref="ora-terminate"/>
specified. </condition>

No test condition is provided. This <condition>

is a catch all condition for a given <action ref="ora-rethrow"/>
faultName. </condition>

If the faul tName name attribute is <faultName > . . . </faultName>

missing, this indicates a catch all
activity for faults that have any
QName.

4. Define the action section of the fault policy file. Note that validation of fault
policy files is done during deployment. If you change the fault policy, you must
redeploy the SOA composite application that includes the fault policy.

Table 12-2 provides several examples of action section use in the fault policy file.
You can provide automated recovery actions for some faults. In all recovery
actions except retry and human intervention, the framework performs the actions
synchronously.

Using Fault Handling in a BPEL Process 12-7

Using the Fault Management Framework

Table 12-2 Use of action Section in the Fault Policy File

Recovery Actions Fault Policy File Syntax
Retry: Provides the following actions <Action id="ora-retry">
for retrying the activity. <Retry>
= Retry a specified number of <retryCount>3</retryCount>
times. <retryInterval>2</retryInterval>

<exponentialBackoff/>
<retryFailureAction ref="ora-java"/>
<retrySuccessAction ref="ora-java"/>
= Increase the interval with an </Retry>

exponential back off.

= Provide a delay between retries
(in seconds).

</Action>
s Chain to a retry failure action if
retry N times fails. Note the following details:
= Chain toaretry success actionif , The framework chains to the retry success action if the retry attempt is
a retry is successful. successful.

Note: Exponential back off indicates ¢ 5] retry attempts fail, the framework chains to the retry failure
the next retry attempt is scheduled at action.

2 x the delay, where delay is the
current retry interval. For example, if
the current retry interval is 2
seconds, the next retry attempt is
scheduled at 4, the next at 8, and the
next at 16 seconds until the
retryCount value is reached.

Human Intervention: Causes the <Action id="ora-human-intervention">
current activity to stop processing. <humanIntervention/></Action>

You can now go to Oracle Enterprise

Manager Fusion Middleware Control

Console and perform manual

recovery actions on this instance.

Terminate Process: Terminates the <Action id="ora-terminate"><abort/></Action>
process

Java Code: Enables you to execute an <Action id="ora-java">
external Java class. <!-- this is user provided custom java

returnvalue: The implemented class-->

Java class must implement a method <javaAction className="mypackage.myClass"

that returns a string. The policy can defaultAction="ora-terminate">
chain to a new action based on the <returnValue value="REPLAY"
returned string. ref="ora-terminate"/>

For additional information, see <returnValue value="RETRHOW"
Section 12.4.3, "How to Use a Java ref="ora-rethrow-fault"/>
Action Fault Policy" <returnValue value="ABORT"

ref="ora-terminate"/>
<returnValue value="RETRY" ref="ora-retry"/>
<returnValue value="MANUAL"
ref="ora-human-intervention"/>
</javaAction>
</Action>

Rethrow Fault: The framework sends <Action id="ora-rethrow-fault"><rethrowFault/></Action>
the fault to the BPEL fault handlers

(catch activities in scope activities). If

none are available, the fault is sent

up.

Replay Scope: Raises a replay fault. <Action id="ora-replay-scope"><replayScope/></Action>

12-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using the Fault Management Framework

Note: The preseeded recovery action tag names (ora-retry,
ora-human-intervention, ora-terminate, and so on) are only
samples. You can substitute these names with ones appropriate to
your environment.

Example 12-5 shows a fault policy file with fully-defined condition and action
sections.

Notes:

s Fault policy file names are not restricted to one specific name.
However, they must conform to the fault-policy.xsd schema
file.

= Example 12-5 provides an example of catching faults based on
fault names. You can also catch faults based on message types, or
on both:

<fault name="myfault" type="fault:faultType">

Example 12-5 Fault Policy File

<?xml version="1.0" encoding="UTF-8"?>
<faultPolicies xmlns="http://schemas.oracle.com/bpel/faultpolicy"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<faultPolicy version="0.0.1" id="FusionMidFaults"
xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://schemas.oracle.com/bpel/faultpolicy"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<Conditions>
<faultName xmlns:medns="http://schemas.oracle.com/mediator/faults"
name="medns:mediatorFault">
<condition>
<action ref="MediatorJavaAction"/>
</condition>
</faultName>
<faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
name="bpelx:remoteFault">
<condition>
<action ref="BPELJavaAction"/>
</condition>
</faultName>
<faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
name="bpelx:bindingFault">
<condition>
<action ref="BPELJavaAction"/>
</condition>
</faultName>
<faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
name="bpelx:runtimeFault">
<condition>
<action ref="BPELJavaAction"/>
</condition>
</faultName>
</Conditions>
<Actions>
<!-- Generics -->

Using Fault Handling in a BPEL Process 12-9

Using the Fault Management Framework

<Action id="default-terminate">

<abort/>

</Action>

<Action id="default-replay-scope">
<replayScope/>

</Action>

<Action id="default-rethrow-fault">
<rethrowFault/>

</Action>

<Action id="default-human-intervention">
<humanIntervention/>

</Action>
<Action id="MediatorJavaAction">
<!-- this is user provided class-->

<javaAction className="MediatorJavaAction.myClass"
defaultAction="default-terminate">
<returnValue value="MANUAL" ref="default-human-intervention"/>
</javaAction>
</Action>
<Action id="BPELJavaAction">
<!-- this is user provided class-->
<javaAction className="BPELJavaAction.myAnotherClass"
defaultAction="default-terminate">
<returnValue value="MANUAL" ref="default-human-intervention"/>
</javaAction>
</Action>
</Actions>
</faultPolicy>
</faultPolicies>

12.4.1.3 Associating a Fault Policy with Fault Policy Binding

Note: The fault policy file binding file must be named
fault-bindings.xml. This conforms to the
fault-bindings.xsd schema file.

1. Create a fault policy binding file (fault-bindings.xml) that associates the
policies defined in the fault policy file with the level of fault policy binding you
are using (either a SOA composite application or a component (reference binding
component or BPEL process or Oracle Mediator service component).

2. Place the file in the same directory as the composite.xml file or place itina
remote location and define the oracle.composite.faultBindingFile
property as shown in Step 2 on page 12-6.

Example 12-6 shows a fault policy bindings file that associates the fault policies
defined in the fault-policies.xml file with the FusionMidFaults SOA
composite application.

Example 12-6 fault-buildings.xml File

<?xml version="1.0" encoding="UTF-8" ?>

<faultPolicyBindings version="0.0.1"

xmlns="http://schemas.oracle.com/bpel/faultpolicy"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<composite faultPolicy="FusionMidFaults"/>
<!--<composite faultPolicy="ServiceExceptionFaults"/>-->
<!--<composite faultPolicy="GenericSystemFaults"/>-->

12-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using the Fault Management Framework

</faultPolicyBindings>

12.4.1.4 Additional Fault Policy and Fault Policy Binding File Samples

This section provides additional samples of fault policy and fault policy binding files.
Example 12-7 shows the fault-policies.xml file contents.

Example 12-7 fault-policies.xml File

<?xml version="1.0" encoding="UTF-8"?>
<faultPolicies xmlns="http://schemas.oracle.com/bpel/faultpolicy">
<faultPolicy version="2.0.1"
id="CRM_ServiceFaults"
xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://schemas.oracle.com/bpel/faultpolicy"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<Conditions>
<!-- Fault if wsdlRuntimeLocation is not reachable -->
<faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
name="bpelx:remoteFault">
<condition>
<test>$fault.code="WSDLReadingError"</test>
<action ref="ora-terminate"/>
</condition>
<condition>
<action ref="ora-java"/>
</condition>
</faultName>
<!-- Fault if location port is not reachable-->
<faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
name="bpelx:bindingFault">
<!1--0ORA-00001: unique constraint violated on insert-->
<condition>
<test>$fault.code="1"</test>
<action ref="ora-java"/>
</condition>
<!1--ORA-01400: cannot insert NULL -->
<condition>
<test xmlns:test="http://test">$fault.code="1400"</test>
<action ref="ora-terminate"/>
</condition>
<1--0ORA-03220: required parameter is NULL or missing -->
<condition>
<test>$fault.code="3220"</test>
<action ref="ora-terminate"/>
</condition>
<condition>
<action ref="ora-retry-crm-endpoint"/>
</condition>
</faultName>
<!-- Business faults -->
<!-- Fault comes with a payload of error, make sure the name space is
provided here or at root level -->
<faultName xmlns:credit="http://services.otn.com"
name="credit:NegativeCredit">
<!-- we get this fault when SSN starts with 0-->
<condition>
<test>$fault.payload="Bankruptcy Report"</test>

Using Fault Handling in a BPEL Process 12-11

Using the Fault Management Framework

<action ref="ora-human-intervention"/>
<!--action ref="ora-retry"/-->
</condition>
<!-- we get this fault when SSN starts with 1-->
<condition>
<test>S$fault.payload="Bankruptcy Report-abort"</test>
<action ref="ora-terminate"/>
</condition>
<!-- we get this fault when SSN starts with 2-->
<condition>
<test>S$fault.payload="Bankruptcy Report-rethrow"</test>
<action ref="ora-rethrow-fault"/>
</condition>
<!-- we get this fault when SSN starts with 3-->
<condition>
<test>$fault.payload="Bankruptcy Report-replay"</test>
<action ref="ora-replay-scope"/>
</condition>
<!-- we get this fault when SSN starts with 4-->
<condition>
<test
xmlns:myError="http://services.otn.com">$fault.payload="Bankruptcy
Report-human"</test>
<action ref="ora-human-intervention"/>
</condition>
<!-- we get this fault when SSN starts with 5-->
<condition>
<test>$fault.payload="Bankruptcy Report-java'"</test>
<action ref="ora-java"/>

</condition>
</faultName>
</Conditions>
<Actions>
<Action id="ora-retry">
<retry>

<retryCount>3</retryCount>
<retryInterval>2</retryInterval>
<exponentialBackoff/>
<retryFailureAction ref="ora-java"/>
<retrySuccessAction ref="ora-java"/>
</retry>
</Action>
<Action id="ora-retry-crm-endpoint">
<retry>
<retryCount>5</retryCount>
<retryFailureAction ref="ora-java"/>
<retryInterval>5</retryInterval>
<retrySuccessAction ref="ora-java"/>

</retry>

</Action>

<Action id="ora-replay-scope">
<replayScope/>

</Action>

<Action id="ora-rethrow-fault">
<rethrowFault/>

</Action>

<Action id="ora-human-intervention">
<humanIntervention/>
</Action>

12-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using the Fault Management Framework

<Action id="ora-terminate">

<abort/>

</Action>

<Action id="ora-java">
<!-- this is user provided class-->
<javaAction

className="com.oracle.bpel.client.config.faultpolicy.TestJavaAction"
defaultAction="ora-terminate" propertySet="prop-for-billing">
<returnValue value="REPLAY" ref="ora-terminate"/>
<returnValue value="RETRHOW" ref="ora-rethrow-fault"/>
<returnValue value="ABORT" ref="ora-terminate"/>
<returnValue value="RETRY" ref="ora-retry"/>
<returnValue value="MANUAL" ref="ora-human-intervention"/>

</javaAction>
</Action>
</Actions>
<Properties>

<propertySet name="prop-for-billing">
<property name="user_email_recipient">bpeladmin</property>
<property name="email_recipient">joe@abc.com</property>
<property name="email_recipient">mike@xyz.com</property>
<property name="email_threshold">10</property>
<property name="sms_recipient">+429876547</property>
<property name="sms_recipient">+4212345</property>
<property name="sms_threshold">20</property>
<property name="user_email_recipient">john</property>
</propertySet>
<propertySet name="prop-for-order">
<property name="email_recipient">john@abc.com</property>
<property name="email_recipient">jill@xyz.com</property>
<property name="email_ threshold">10</property>
<property name="sms_recipient">+42222</property>
<property name="sms_recipient">+423335</property>
<property name="sms_threshold">20</property>
</propertySet>

</Properties>

</faultPolicy>

<faultPolicy version="2.0.1"
id="Billing_ServiceFaults"
xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"

xmlns="http://schemas.oracle.com/bpel/faultpolicy"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<Conditions>
<faultName>
<condition>
<action ref="ora-manual"/>
</condition>
</faultName>
</Conditions>
<Actions>
<Action id="ora-manual">
<humanIntervention/>
</Action>
</Actions>
</faultPolicy>
</faultPolicies>

Using Fault Handling in a BPEL Process 12-13

Using the Fault Management Framework

Example 12-8 shows the fault-buildings.xml file that associates the fault policies
defined in fault-policies.xml.

Example 12-8 Fault Policy Bindings File

<?xml version="1.0" encoding="UTF-8"?>
<faultPolicyBindings version="2.0.1"
xmlns="http://schemas.oracle.com/bpel/faultpolicy"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<composite faultPolicy="ConnectionFaults"/>
<component faultPolicy="ServiceFaults">
<name>Componentl</name>
<name>Component2</name>
</component>
<!-- Below listed component names use polic CRM_SeriveFaults -->
<component faultPolicy="CRM_ServiceFaults">
<name>HelloWorld</name>
<name>ShippingComponent</name>
<name>AnotherComponent "</name>
</component>
<!-- Below listed reference names and port types use polic CRM_ServiceFaults
-=>
<reference faultPolicy="CRM_ServiceFaults">
<name>creditRatingService</name>
<name>anotherReference</name>
<portType
xmlns:credit="http://services.otn.com">credit:CreditRatingService</portType>
<portType
xmlns:db="http://xmlns.oracle.com/pcbpel /adapter/db/insert/">db:insert_
plt</portType>
</reference>
<reference faultPolicy="testl">
<name>CreditRating3</name>
</reference>
</faultPolicyBindings>

12.4.1.5 Designing a Fault Policy with Multiple Rejection Handlers

If you design a fault policy that uses the action handler for rejected messages, note that
only one write action can be performed. Multiple write actions cannot be performed,
even if you define multiple rejection handlers, as shown in Example 12-9. In this case,
only the first rejection handler defined (for this example, ora-queue) is executed.

Example 12-9 Fault Policy with Multiple Rejection Handlers

<faultName xmlns:rjm="http://schemas.oracle.com/sca/rejectedmessages"
name="rjm:FileIn">
<condition>
<action ref="ora-queue"/>

</condition>
</faultName>
<faultName xmlns:rjm="http://schemas.oracle.com/sca/rejectedmessages"”
name="rjm:FileIn">
<condition>
<action ref="ora-file"/>

</condition>
</faultName>

12-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using the Fault Management Framework

12.4.2 How to Execute a Fault Policy

You deploy a fault policy as part of a SOA composite application. After deployment,
you can perform the following fault recovery actions from Oracle Enterprise Manager
Fusion Middleware Control Console:

= Retry the activity

= Modify a variable (available to the faulted activity)

= Continue the instance (mark the activity as a success)
s Rethrow the exception

= Abort the instance

= Throw a replay scope exception

For additional information, see Oracle Fusion Middleware Administrator’s Guide for
Oracle SOA Suite for the following;:

= Instructions on executing a fault policy in Oracle Enterprise Manager Fusion
Middleware Control Console

= Use cases in which you define a fault policy that uses human intervention

12.4.3 How to Use a Java Action Fault Policy

Note the following details when using the Java action fault policy:

s The Java class provided follows a specific interface. This interface returns a string.
Multiple values can be provided for output and fault policy to take after execution.

» Additional fault policy can be executed by providing a mapping from the output
value (return value) of implemented methods to a fault policy.

s Ifno Returnvalue is specified, the default fault policy is executed, as shown in
Example 12-10.

Example 12-10 Java Action Fault Policy

<Action id="ora-java">
<JavaAction ClassName="mypackage.myclass"
defaultAction="ora-human-intervention" propertySet="prop-for-billing">
<!--defaultAction is a required attribute, but propertySet is optional-->
<!-- attribute-->
<ReturnValue value="RETRY" ref="ora-retry"/>
<!--value is not nilable attribute & cannot be empty-->
<ReturnValue value="RETRHOW" ref="ora-rethrow-fault"/>
</JavaAction>
</Action>

Table 12-3 provides an example of Returnvalue use.

Table 12-3 System Interpretation of Java Action Fault Policy

Code Description

<ReturnvValue value="RETRY" Execute the ora-retry action if the method
ref="ora-retry"/> returns a string of RETRY.

<ReturnvValue value="" Fails in validation.

ref="ora-rethrow” />

Using Fault Handling in a BPEL Process 12-15

Using the Fault Management Framework

Table 12-3 (Cont.) System Interpretation of Java Action Fault Policy

Code Description

<JavaAction Execute ora-human-intervention after Java
ClassName="mypackage.myclass" code execution. This attribute is used if the return

from the method does not match any provided

defaultAction="ora-human-intervention Returnvalue.

.

<ReturnValue value="RETRY" Fails in validation.

ref="ora-retry"/>

<ReturnValue value="" ref=""/>

<JavaAction Fails in validation.
ClassName="mypackage.myclass"

defaultAction="

ora-human-intervention">
<ReturnValue></ReturnValue>

To invoke a Java class, you can provide a class that implements the
IFaultRecoveryJavaClass interface. This interface has two methods, as shown in
Example 12-11.

Example 12-11 implementation of IFaultRecoveryJavaClass

public interface IFaultRecoveryJavaClass

{

public void handleRetrySuccess(IFaultRecoveryContext ctx);
public String handleFault(IFaultRecoveryContext ctx);

}

Note the following details:

» handleRetrySuccess is invoked upon a successful retry attempt. The retry
policy chains to a Java action on retrySuccessAction.

= handleFault is invoked to execute a policy of type javaAction.

Example 12-12 shows the data available with IFaultRecoveryContext:

Example 12-12 Data Available with IFaultRecoveryContext

public interface IFaultRecoveryContext {

/**
* Gets implementation type of the fault.
* @return
*/
public String getType();
/**
* @return Get property set of the fault policy action being executed.
*/
public Map getProperties();
/**
* @return Get fault policy id of the fault policy being executed.
*/
public String getPolicyId();

/‘k*

12-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using the Fault Management Framework

* @return Name of the faulted partner link.
*/
public String getReferenceName() ;

/**
* @return Port type of the faulted reference .
*/

public QName getPortType() ;

}

The service engine implementation of this interface provides more information (for
example, Oracle BPEL Process Manager). Example 12-13 provides details.

Example 12-13 Service Engine Implementation of IFaultRecoveryContext

public class BPELFaultRecoveryContextImpl extends BPELXExecLetUtil implements
IBPELFaultRecoveryContext, IFaultRecoveryContext{

Oracle BPEL Process Manager-specific data is available with
IBPELFaultRecoveryContext, as shown in Example 12-14.

Example 12-14 Oracle BPEL Process Manager-Specific Data

public interface IBPELFaultRecoveryContext {
public void addAuditTrailEntry(String message) ;

public void addAuditTrailEntry(String message, Object detail);

public void addAuditTrailEntry (Throwable t);

/*'k
* @return Get action id of the fault policy action being executed.
*/

public String getActionId();

/**
* @return Type of the faulted activity.
*/

public String getActivityId();

/**
* @return Name of the faulted activity.
*/

public String getActivityName() ;

/**
* @return Type of the faulted activity.
*/

public String getActivityType();

/**
* @return Correleation id of the faulted activity.
*/

public String getCorrelationId();

/**
* @return BPEL fault that caused the invoke to fault.
*/

public BPELFault getFault();

Using Fault Handling in a BPEL Process 12-17

Using the Fault Management Framework

/*'k
* @return Get index value of the instance
*/

public String getIndex(int 1i);

/**
* @return get Instance Id of the current process instance of the faulted
* activity.
*/

public long getInstanceId();

/**
* @return Get priority of the current process instance of the faulted
* activity.
*/

public int getPriority();

/**
* @return Process DN.
*/
public ComponentDN getProcessDN();

/**
* @return Get status of the current process instance of the faulted
* activity.
*/

public String getStatus();

/**
* @return Get title of the current process instance of the faulted
* activity.
*/

public String getTitle();

public Object getVariableData(String name) throws BPELFault;

public Object getVariableData(String name, String partOrQuery)
throws BPELFault;

public Object getVariableData(String name, String part, String query)
throws BPELFault;

/*'k

* @param priority

* Set priority of the current process instance of the faulted
* activity.

* @return

*/

public void setPriority(int priority);

/**

* @param status

* Set status of the current process instance of the faulted
* activity.
*/

public void setStatus(String status);

/**

* @param title

12-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using the Fault Management Framework

* Set title of the current process instance of the faulted
* activity.

* @return

*/

public String setTitle(String title);
public void setVariableData (String name, Object value) throws BPELFault;

public void setVariableData (String name, String partOrQuery, Object value)
throws BPELFault;

public void setVariableData (String name, String part, String query,
Object value) throws BPELFault;
}

Example 12-15 provides an example of javaAction implementation.

Example 12-15 Implementation of a javaAction

public class TestJavaAction implements IFaultRecoveryJavaClass {
public void handleRetrySuccess (IFaultRecoveryContext ctx) {
System.out.println("This is for retry success");

handleFault (ctx);

}

public String handleFault (IFaultRecoveryContext ctx) {
System.out.println("----- Inside handleFault----- \n" + ctx.toString());

dumpProperties (ctx.getProperties());
/* Get BPEL specific context here */
BPELFaultRecoveryContextImpl bpelCtx = (BPELFaultRecoveryContextImpl) ctx;
bpelCtx.addAuditTrailEntry ("hi there");
System.out.println("Policy Id" + ctx.getPolicyId());

12.4.4 What You May Need to Know About Fault Management Behavior When the
Number of Instance Retries is Exceeded

When you configure a fault policy to recover instances with the ora-retry action
and the number of specified instance retries is exceeded, the instance is marked as
open. faulted (in-flight state). The instance remains active.

Marking instances as open . faulted ensures that no instances are lost. You can then
configure another fault handling action following the ora-retry action in the fault
policy file, such as the following:

s Configure an ora-human-intervention action to manually perform instance
recovery from Oracle Enterprise Manager Fusion Middleware Control Console.

s Configure an ora-terminate action to close the instance (mark it as
closed. faulted) and never retry again.

However, if you do not set an action to be performed after an ora-retry action in the
fault policy file and the number of instance retries is exceeded, the instance remains
marked as open. faulted, and recovery attempts to handle the instance.

For example, if no action is defined in the following fault policy file after ora-retry:

<Action id="ora-retry">
<retry>
<retryCount>2</retryCount>

Using Fault Handling in a BPEL Process 12-19

Using the Fault Management Framework

<retryInterval>2</retryInterval>
<exponentialBackoff/>
</retry>
</Action>

The following actions are performed:

» The invoke activity is attempted (using the above-mentioned fault policy code to
handle the fault).

s Two retries are attempted at increasing intervals (after two seconds, then after four
seconds).

s If all retry attempts fail, the following actions are performed:
— A detailed fault error message is logged in the audit trail
— The instance is marked as open. faulted (in-flight state)
— The instance is picked up and the invoke activity is re-attempted

= Recovery may also fail. In that case, the invoke activity is re-executed. Additional
audit messages are logged.

12.4.5 What You May Need to Know About Binding Level Retry Execution Within Fault

Policy Retries

If you are testing retry actions on adapters with both JCA-level retries for the
outbound direction and a retry action in the fault policy file for outbound failures, the
JCA-level (or binding level) retries are executed within the fault policy retries. For
example, assume you have designed the application shown in Figure 12-2:

Figure 12-2 SOA Composite Application

o @ P |
Mediator_FP_ep EQ
(Opermtions: | [(Operations:)

You specify the following retry parameters in the composite.xml file:

<property name="jca.retry.count" type="xs:int" many="false"
override="may">2</property>

<property name="jca.retry.interval" type="xs:int" many="false"
override="may">2</property>

<property name="jca.retry.backoff" type="xs:int" many="false"
override="may">2</property>

In the fault policy file for the EQ reference binding component for the outbound
direction, you specify the following actions:

<retryCount>3</retryCount>
<retrylInterval>3</retryInterval>

If an outbound failure occurs, the expected behavior is for the JCA retries to occur
within the fault policy retries. When the first retry of the fault policy is executed, the

12-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Getting Fault Details with the getFaultAsString XPath Extension Function

JCA retry is called. In this example, a JCA retry of 2 with an interval of 2 seconds and
exponential back off of 2 is executed for every retry of the fault policy:

Fault policy retry 1:
— JCAretry 1 (with 2 seconds interval)
— JCA retry 2 (with 4 seconds interval)
Fault policy retry 2:
— JCAretry 1 (with 2 seconds interval)
— JCA retry 2 (with 4 seconds interval)
Fault policy retry 3:
— JCAretry 1 (with 2 seconds interval)
— JCA retry 2 (with 4 seconds interval)

12.5 Catching BPEL Runtime Faults

BPEL runtime faults can be caught as a named BPEL fault. The bindingFault and
remoteFault can be associated with a message. This action enables the
faultHandler to get details about the faults.

12.5.1 How to Catch BPEL Runtime Faults

The following procedure shows how to use the provided examples to generate a fault
and define a fault handler to catch it. In this case, you modify a WSDL file to generate
a fault, and create a catch attribute to catch it.

To catch BPEL runtime faults:

1.

Import RuntimeFault .wsdl into your process WSDL. RuntimeFault.wsdl is
seeded into the MDS from soa.mar inside soa-infra-wls.ear during its
deployment.

You may see a copy of soa.mar in the deployed SOA Infrastructure in the Oracle
WebLogic Server domain, which is a JAR/ZIP file containing
RuntimeFault.wsdl.

Declare a variable with messageType bpelx:RuntimeFaultMessage.
Catch it using the following syntax:

<catch faultName="bpelx:remoteFault" \ "bpelx:bindingFault"
faultName="varName">

12.6 Getting Fault Details with the getFaultAsString XPath Extension

Function

The catchAll activity is provided to catch possible faults. However, BPEL does not
provide a method for obtaining additional information about the captured fault. Use
the getFaultAsString () XPath extension function to obtain additional
information.

12.6.1 How to Get Fault Details with the getFaultAsString XPath Extension Function

Example 12-16 shows how to use this function.

Using Fault Handling in a BPEL Process 12-21

Throwing Internal Faults

Example 12-16 getFaultAsString() XPath Extension Function

<catchAll>
<sequence>
<assign>
<from expression="bpelx:getFaultAsString()"/>
<to variable="faultVar" part="message"/>
</assign>
<reply faultName="nsl:myFault" variable="faultVar" .../>
</sequence>
</catchAll>

12.7 Throwing Internal Faults

A BPEL application can generate and receive fault messages. The throw activity has
three elements: its name, the name of the fault, and the fault variable. If you add a
throw activity to your BPEL process service component, it automatically includes a
copy rule that copies the fault name and type into the output payload. The fault
thrown by a throw activity is internal to BPEL. You cannot use a throw activity on an
asynchronous process to communicate with a client.

12.7.1 How to Create a Throw Activity

To create a throw activity:
1. From the Component Palette, drag a Throw activity into the designer.

2. Double-click and define the Throw activity.
3. Optionally enter a name or accept the default value.

4. To the right of the Namespace URI field, click the Search icon to select the fault to
monitor.

5. Select the fault in the Fault Chooser dialog, and click OK.

The namespace URI for the selected fault displays in the Namespace URI field.
Your fault selection also automatically displays in the Local Part field.

Figure 12-3 provides an example of a completed Throw dialog. This example
shows the Throw_Fault_CC_Denied throw activity of the Scope_
AuthorizeCreditCard scope activity in the WebLogic Fusion Order Demo
application. This activity throws a fault for orders that are not approved.

12-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Returning External Faults

Figure 12-3 Throw Dialog

Throw %

| General rSensors rnnnotations |

Mame: | Throw_Fault_CZ_Denied |

Fault QName
Q,
Mamespace LURI: | .globalcompany.example.com,l'ns,l'OrderBookingService|
Local Part: |OrderPr0cessorFault |
Fault Yariable: | | c[',:v \%
| Help | Apply || [o]'4 || Cancel
6. Click OK.

12.7.2 What Happens When You Create a Throw Activity

Example 12-17 shows the throw activity in the . bpel file after design completion. The
OrderProcessor process terminates after executing this throw activity.

Example 12-17 Throw Activity

<throw name="Throw_Fault_CC_Denied"
faultName="client:OrderProcessorFault"/>

12.8 Returning External Faults

A BPEL process service component can send a fault to another application to indicate a
problem, as opposed to throwing an internal fault. In a synchronous operation, the
reply activity can return the fault. In an asynchronous operation, the invoke activity
performs this function.

12.8.1 How to Return a Fault in a Synchronous Interaction

The syntax of a reply activity that returns a fault in a synchronous interaction is shown
in Example 12-18:

Example 12-18 Reply Activity

<reply partnerlinke="partner-link-name"
portType="port-type-name"
operation="operation-name"
variable="variable-name" (optional)
faultName="fault-name">

</reply>

Always returning a fault in response to a synchronous request is not very useful. It is
better to make the activity part of a conditional branch, in which the first branch is
executed if the data requested is available. If the requested data is not available, then
the BPEL process service component returns a fault with this information.

Using Fault Handling in a BPEL Process 12-23

Using a Scope Activity to Manage a Group of Activities

For more information, see the following chapters:

s Chapter 11, "Using Conditional Branching in a BPEL Process" for setting up the
conditional structure

s Chapter 8, "Invoking a Synchronous Web Service from a BPEL Process" for
synchronous interactions

12.8.2 How to Return a Fault in an Asynchronous Interaction

In an asynchronous interaction, the client does not wait for a reply. The reply activity is
not used to return a fault. Instead, the BPEL process service component returns a fault
using a callback operation on the same port type that normally receives the requested
information, with an invoke activity.

For more information about asynchronous interactions, see Chapter 9, "Invoking an
Asynchronous Web Service from a BPEL Process."

12.9 Using a Scope Activity to Manage a Group of Activities

A scope activity provides a container and a context for other activities. A scope
provides handlers for faults, events, compensation, data variables, and correlation sets.
Using a scope activity simplifies a BPEL flow by grouping functional structures. This
grouping allows you to collapse them into what appears to be a single element in
Oracle BPEL Designer.

Example 12-19 shows a scope named Scope_FulfillOrder from the WebLogic
Fusion Order Demo application. This scope invokes the FulfillOrder mediator
component, which determines the shipping method for the order.

Example 12-19 Scope Activity

<scope name="Scope_FulfillOrder">
<variables>
<variable name="1FulfillOrder_InputVariable"
messageType="nsl7:requestMessage" />
</variables>
<sequence>
<assign name="Assign_OrderData">
<copy>
<from variable="gOrderInfoVariable"
query="/ns4:orderInfovosSDO" />
<to variable="1FulfillOrder_InputVariable"
part="request" query="/ns4:orderInfov0OSDO"/>
</copy>
</assign>
<invoke name="Invoke_ FulfillOrder"
inputVariable="1FulfillOrder_InputVariable"
partnerLink="FulfillOrder.FulfillOrder"
portType="nsl7:execute_ptt" operation="execute"/>
</sequence>
</scope>

12.9.1 How to Create a Scope Activity

To create a scope activity:
1. From the Component Palette, drag a Scope activity into the designer.

12-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using a Scope Activity to Manage a Group of Activities

2. Open the scope activity by double-clicking it or by single-clicking the Expand
icon.

3. From the Component Palette, drag and define activities to build the functionality
within the scope.

Figure 12-4 Expanded Scope Activity

4. Click OK.

When complete, scope activity design can look as shown in Figure 12-5. This
example shows the Scope_AuthorizeCreditCard scope activity of the WebLogic
Fusion Order Demo application.

Figure 12-5 Scope Activity After Design Completion

=g «

(1 '
+ +
Assign_CreditCheckInput
bpws selectionFailure nsz: InvalidCredit

InvokeCheckCreditCard

=29 8 2

=case status == approveds Ef“_ =

Throw_Fault_CC_Denied

12.9.2 What Happens After You Create a Scope Activity

Example 12-20 shows the throw activity in the . bpel file after design completion. The
Scope_AuthorizeCreditCard scope activity consists of activities that perform the
following actions:

= A catch activity for catching faulted orders in which the credit card number is not
provided or the credit type is not valid.

Using Fault Handling in a BPEL Process 12-25

Using a Scope Activity to Manage a Group of Activities

= A throw activity that throws a fault for orders that are not approved.

= Anassign activity that takes the credit card type, credit card number, and purchase
amount, and assigns it to the input variable for the
CreditCardAuthorizationService service.

= Aninvoke activity that calls a CreditCardAuthorizationService service to
retrieve customer information.

= A switch activity that checks the results of the credit card validation.

Example 12-20 Scope Activity

<scope name="Scope_AuthorizeCreditCard">
<variables>
<variable name="1CreditCardInput"
messageType="ns2:CreditAuthorizationRequestMessage" />
<variable name="1lCreditCardOutput"
messageType="ns2:CreditAuthorizationResponseMessage" />
</variables>
<faultHandlers>
<catch faultName="bpws:selectionFailure">
<sequence>
<assign name="Assign_noCCNumber">
<copy>
<from expression="string('CreditCardCheck - NO
CreditCard')"/>
<to variable="gOrderProcessorFaultVariable"
part="code"/>
</copy>
</assign>
<throw name ="Throw_NoCreditCard"
faultVariable="gOrderProcessorFaultVariable"
faultName="ns9:0rderProcessingFault" />
</sequence>
</catch>
<catch faultName="ns2:InvalidCredit">
<sequence>
<assign name="Assign_ InvalidCreditFault">
<copy>
<from expression="concat (bpws:getVariableData
('gOrderInfovVariable', '/ns4:orderInfovOSDO/
nsd:CardTypeCode'), ' is not a valid
creditcard type')"/>
<to variable="gOrderProcessorFaultVariable"
part="summary"/>
</copy>
<copy>
<from expression="string('CreditCardCheck - NOT VALID')"/>
<to variable="gOrderProcessorFaultVariable"
part="code"/>
</copy>
</assign>
<throw name="Throw_OrderProcessingFault"
faultName="ns9:0rderProcessingFault"
faultVariable="gOrderProcessorFaultVariable"/>
</sequence>
</catch>
</faultHandlers>
<sequence>
<assign name="Assign_CreditCheckInput">

12-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using a Scope Activity to Manage a Group of Activities

<copy>
<from variable="gOrderInfoVariable"
query="/ns4:orderInfovOSDO/ns4:0rderTotal" />
<to variable="1lCreditCardInput" part="Authorization"
query="/ns8:AuthInformation/ns8:PurchaseAmount"/>
</copy>
<copy>
<from variable="gOrderInfoVariable"
query="/ns4:orderInfovOSDO/ns4:CardTypeCode" />
<to variable="1lCreditCardInput" part="Authorization"
query="/ns8:AuthInformation/ns8:CCType" />
</copy>
<copy>
<from variable="gOrderInfoVariable"
query="/ns4:orderInfovOSDO/ns4 : AccountNumber" />
<to variable="1lCreditCardInput" part="Authorization"
query="/ns8:AuthInformation/ns8:CCNumber" />
</copy>
</assign>
<invoke name="InvokeCheckCreditCard"
inputVariable="1CreditCardInput"
outputVariable="1CreditCardOutput"
partnerLink="CreditCardAuthorizationService"
portType="ns2:CreditAuthorizationPort"
operation="AuthorizeCredit"/>
<switch name="Switch_EvaluateCCResult">
<case condition="bpws:getVariableData ('lCreditCardOutput', 'status',"
/ns8:status') != '"APPROVED'">
<bpelx:annotation>
<bpelx:pattern>status <> approved</bpelx:pattern>
</bpelx:annotation>
<throw name="Throw_Fault_CC_Denied"
faultName="client:0rderProcessorFault"/>
</case>
/switch>
</sequence>
</scope>

12.9.3 What You May Need to Know About Scopes

Scopes can use a significant amount of CPU and memory and should not be overused.
Sequence activities use less CPU and memory and can be used to make large BPEL
flows more readable.

12.9.4 How to Use a Fault Handler within a Scope

If a fault is not handled, it creates a faulted state that migrates up through the
application and can throw the entire process into a faulted state. To prevent this,
contain the parts of the process that have the potential to receive faults within a scope.
The scope activity includes the following fault handling capabilities:

s The catch activity works within a scope to catch faults and exceptions before they
can throw the entire process into a faulted state. You can use specific fault names
in the catch activity to respond in a specific way to an individual fault.

» The catchAll activity catches any faults that are not handled by name-specific
catch activities.

Example 12-21 shows the syntax for catch and catch all activities. Assume that a fault
named x: foo is thrown. The first catch is selected if the fault carries no fault data. If

Using Fault Handling in a BPEL Process 12-27

Using a Scope Activity to Manage a Group of Activities

there is fault data associated with the fault, the third catch is selected if the type of
the fault's data matches the type of variable bar. Otherwise, the default catchall
handler is selected. Finally, a fault with a fault variable whose type matches the type of
bar and whose name is not x: foo is processed by the second catch. All other faults
are processed by the default catchAll handler.

Example 12-21 Catch and Catch All Activities

<faulthandlers>

<catch faultName="x:foo">
<empty/>
</catch>
<catch faultvVariable="bar">
<empty/>
</catch>
<catch faultName="x:foo" faultVariable="bar">
<empty/>
</catch>
<catchAll>
<empty/>
</catchAll>

</faulthandlers>

12.9.5 How to Create a Catch Activity

To create a catch activity:

1.

In the expanded Scope activity, click Add Catch Branch.

Figure 12-6 Add Catch Branch

a & 0N

+

.-ﬁ’
Add Catch Eranch

This creates a catch activity in the right side of the scope activity.

Double-click the Catch activity.

Optionally enter a name.

To the right of the Namespace URI field, click the Search icon to select the fault.
Select the fault in the Fault Chooser dialog, and click OK.

The namespace URI for the selected fault displays in the Namespace URI field.
Your fault selection also automatically displays in the Local Part field.

Figure 12-7 provides an example of a Catch dialog. This example shows the
selectionFailure catch activity of the Scope_AuthorizeCreditCard scope activity
in the WebLogic Fusion Order Demo application. This catch activity catches orders
in which the credit card number is not provided.

12-28 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using a Scope Activity to Manage a Group of Activities

Figure 12-7 Catch Dialog

Catch b4
| General | Annotations
Fault GName
Q,
Mamespace URI: |f,l'schemas.xmlsoap.org,l'ws,1'2DDS,I'DS,I'husiness—process,l'|
Local Part: |selecti0nFaiIure |
Fault Variable: | | & Q
| Help | | Apply || QK || Cancel |

6. Design additional fault handling functionality.
7. Click OK.

Figure 12-8 provides an example of two catch activities for the Scope_
AuthorizeCreditCard scope activity. The second catch activity catches credit types
that are not valid.

Figure 12-8 Catch Activities in the Designer

o o

bpws :selectionFailure nsz InvalidCredit

12.9.6 What Happens When You Create a Catch Branch

Figure 12-22 shows the catch activity in the . bpel file after design completion. The
selectionFailure catch activity catches orders in which the credit card number is
not provided and the InvalidCredit catch activity catches credit types that are not
valid.

Example 12-22 Catch Branch

<faultHandlers>
<catch faultName="bpws:selectionFailure">
<sequence>

Using Fault Handling in a BPEL Process 12-29

Using a Scope Activity to Manage a Group of Activities

<assign name="Assign_noCCNumber">
<copy>
<from expression="string('CreditCardCheck - NO CreditCard')"/>
<to variable="gOrderProcessorFaultVariable"
part="code"/>
</copy>
</assign>
<throw name ="Throw_NoCreditCard"
faultVariable="gOrderProcessorFaultVariable"
faultName="ns9:0rderProcessingFault"/>

</sequence>
</catch>
<catch faultName="ns2:InvalidCredit">
<sequence>
<assign name="Assign_InvalidCreditFault">
<copy>

<from expression="concat (bpws:getVariableData
('gOrderInfovariable', '/ns4:orderInfov0SDO/ns4:CardTypeCode'), '
is not a valid creditcard type')"/>
<to variable="gOrderProcessorFaultVariable"
part="summary"/>
</copy>
<copy>
<from expression="string('CreditCardCheck - NOT VALID')"/>
<to variable="gOrderProcessorFaultVariable"
part="code"/>
</copy>
</assign>
<throw name="Throw_OrderProcessingFault"
faultName="ns9:0rderProcessingFault"
faultVariable="gOrderProcessorFaultVariable" />
</sequence>
</catch>
</faultHandlers>

12.9.7 How to Create an Empty Activity to Insert No-Op Instructions into a Business
Process

There is often a need to use an activity that does nothing. An example is when a fault
must be caught and suppressed. In this case, you can use the empty activity to insert a
no-op instruction into a business process.

To create an empty activity:
1. From the Component Palette, drag an Empty activity into the designer.

2. Double-click the Empty activity.
The Empty dialog appears, as shown in Figure 12-9.

12-30 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using Compensation After Undoing a Series of Operations

Figure 12-9 Empty Activity

Empty %
| General r Sensors r Annotations

Marne: |Empty_1| |
| Help | | Apply | | Ok | | Cancel

3. Optionally enter a name.

4. C(lick OK.

12.9.8 What Happens When You Create an Empty Activity

The syntax for an empty activity is shown in Example 12-23.

Example 12-23 Empty Activity
<empty standard-attributes>

standard-elements
</empty>

If no catch or catchAll is selected, the fault is not caught by the current scope and
is rethrown to the immediately enclosing scope. If the fault occurs in (or is rethrown
to) the global process scope, and there is no matching fault handler for the fault at the
global level, the process terminates abnormally. This is as though a terminate activity
(described in Section 12.11, "Using the Terminate Activity to Stop a Business Process
Instance") had been performed.

12.10 Using Compensation After Undoing a Series of Operations

Compensation occurs when the BPEL process service component cannot complete a
series of operations after some have completed, and the BPEL process service
component must backtrack and undo the previously completed transactions. For
example, if a BPEL process service component is designed to book a rental car, a hotel,
and a flight, it may book the car and the hotel and then be unable to book a flight for
the right day. In this case, the BPEL flow performs compensation by going back and
unbooking the car and the hotel.

12.10.1 How to Use Compensation After Undoing a Series of Operations

You can invoke a compensation handler by using the compensate activity, which
names the scope for which the compensation is to be performed (that is, the scope
whose compensation handler is to be invoked). A compensation handler for a scope is
available for invocation only when the scope completes normally. Invoking a

Using Fault Handling in a BPEL Process 12-31

Using Compensation After Undoing a Series of Operations

compensation handler that has not been installed is equivalent to using the empty
activity (it is a no-op). This ensures that fault handlers do not have to rely on state to
determine which nested scopes have completed successfully. The semantics of a
process in which an installed compensation handler is invoked multiple times are
undefined.

The ability to explicitly invoke the compensate activity is the underpinning of the
application-controlled error-handling framework of Business Process Execution
Language for Web Services Specification. You can use this activity only in the following
parts of a business process:

= Inafault handler of the scope that immediately encloses the scope for which
compensation is to be performed.

= In the compensation handler of the scope that immediately encloses the scope for
which compensation is to be performed.

For example:

<compensate scope="RecordPayment"/>

If a scope being compensated by name was nested in a loop, the BPEL process service
component invokes the instances of the compensation handlers in the successive
iterations in reverse order.

If the compensation handler for a scope is absent, the default compensation handler
invokes the compensation handlers for the immediately enclosed scopes in the reverse
order of the completion of those scopes.

The compensate form, in which the scope name is omitted in a compensate activity,
explicitly invokes this default behavior. This is useful when an enclosing fault or
compensation handler must perform additional work, such as updating variables or
sending external notifications, in addition to performing default compensation for
inner scopes. The compensate activity in a fault or compensation handler attached to
the outer scope invokes the default order of compensation handlers for completed
scopes directly nested within the outer scope. You can mix this activity with any other
user-specified behavior except for the explicit invocation of the nested scope within
the outer scope. Explicitly invoking a compensation for such a scope nested within the
outer scope disables the availability of default-order compensation.

12.10.2 How to Create a Compensate Activity

To create a compensate activity:
1. From the Component Palette, drag an Compensate activity into the designer.

2. Double-click the Compensate activity.

3. Select a scope activity in which to invoke the compensation handler.

12-32 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using the Terminate Activity to Stop a Business Process Instance

Figure 12-10 Compensate Activity

Compensate ®

| General rSensors r.ﬂ.nnotations |

Mane: | CompensateRecorcﬂ |

Scope: | RecordPayment | _g

| Help | Apply || Ok || Cancel

4. Click OK.

12.10.3 What Happens When You Create a Compensate Activity

If an invoke activity has a compensation handler defined inline, then the name of the
activity is the name of the scope to be used in the compensate activity. The syntax is
shown in Example 12-24:

Example 12-24 Compensation Handler

<compensate scope="ncname"? standard-attributes>
standard-elements
</compensate>

12.11 Using the Terminate Activity to Stop a Business Process Instance

The terminate activity immediately terminates the behavior of a business process
instance within which the terminate activity is performed. All currently running
activities must be terminated as soon as possible without any fault handling or
compensation behavior. The terminate activity does not send any notifications of the
status of a BPEL process service component. If you are going to use the terminate
activity, first program notifications to the interested parties.

12.11.1 How to Create a Terminate Activity

To create a terminate activity:

1. From the Component Palette in Oracle JDeveloper, drag a Terminate activity into
the designer. Figure 12-11 provides an example.

Using Fault Handling in a BPEL Process 12-33

Using the Terminate Activity to Stop a Business Process Instance

Figure 12-11 Terminate Activity

Terminake_2

2. Double-click the terminate activity.
3. Optionally enter a name.

4. Click OK.

12.11.2 What Happens When You Create a Terminate Activity

The syntax for the terminate activity is shown in Example 12-25. This stops the
business process instance.

Example 12-25 Terminate Activity

<terminate standard-attributes>
standard-elements
</terminate>

12-34 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

13

Incorporating Java and Java EE Code in a

BPEL Process

This chapter describes how to incorporate sections of Java code into BPEL process
service components in SOA composite applications.

This chapter includes the following sections:

Section 13.1, "Introduction to Java and Java EE Code in BPEL Processes"
Section 13.2, "Incorporating Java and Java EE Code in BPEL Processes"
Section 13.3, "Adding Custom Classes and JAR Files"

Section 13.4, "Using Java Embedding in a BPEL Process in Oracle JDeveloper”
Section 13.5, "Embedding Service Data Objects with bpelx:exec"

13.1 Introduction to Java and Java EE Code in BPEL Processes

This chapter explains how to incorporate sections of Java code into a BPEL process.
This is particularly useful when there is Enterprise JavaBeans Java code that can
perform the necessary function, and you want to use the existing code rather than start
over with BPEL.

13.2 Incorporating Java and Java EE Code in BPEL Processes

There are several methods for incorporating Java and Java EE code in BPEL processes:

Wrap as a Simple Object Access Protocol (SOAP) service

Embed Java code snippets into a BPEL process with the bpelx:exec tag
Use an XML facade to simplify DOM manipulation

Use bpelx: exec built-in methods

Use Java code wrapped in a service interface

13.2.1 How to Wrap Java Code as a SOAP Service

You can wrap the Java code as a Simple Object Access Protocol (SOAP) service. This
method requires that the Java application have a BPEL-compatible interface. A Java
application wrapped as a SOAP service appears as any other web service, which can
be used by many different kinds of applications. There are also tools available for
writing SOAP wrappers.

Incorporating Java and Java EE Code in a BPEL Process 13-1

Incorporating Java and Java EE Code in BPEL Processes

13.2.2 What You May Need to Know About Wrapping Java Code as a SOAP Service

A Java application wrapped as a SOAP service has the following drawbacks:

s There may be reduced performance due to the nature of converting between Java
and SOAP, and back and forth.

= Since SOAP inherently has no support for transactions, this method loses atomic
transactionality, that is, the ability to perform several operations in an all-or-none
mode (such as debiting one bank account while crediting another, where either
both transactions must be completed, or neither of them).

13.2.3 How to Embed Java Code Snippets into a BPEL Process with the bpelx:exec Tag

You can embed Java code snippets directly into the BPEL process using the Java BPEL
exec extension bpelx: exec. The benefits of this approach are speed and
transactionality. It is recommended that you incorporate only small segments of code.
BPEL is about separation of business logic from implementation. If you remove a lot of
Java code in your process, you lose that separation. Java embedding is recommended
for short utility-like operations, rather than business code. Place the business logic
elsewhere and call it from BPEL.

The server executes any snippet of Java code contained within a bpelx: exec activity,
within its Java Transaction API (JTA) transaction context.

The BPEL tag bpelx: exec converts Java exceptions into BPEL faults and then adds
them into the BPEL process.

The Java snippet can propagate its JTA transaction to session and entity beans that it
calls.

For example, a SessionBeanSample.bpel file uses the bpelx:exec tag shown in
Example 13-1 to embed the invokeSessionBean Java bean:

Example 13—-1 bpelx:exec Tag

<bpelx:exec name="invokeSessionBean" language="java" version="1.5">
<! [CDATA[
try {
Object homeObj = lookup("ejb/session/CreditRating");
Class cls = Class.forName (
"com.otn.samples.sessionbean.CreditRatingServiceHome") ;

CreditRatingServiceHome ratingHome = (CreditRatingServiceHome)
PortableRemoteObject.narrow (homeObj, cls) ;
if (ratingHome == null) {
addAuditTrailEntry("Failed to lookup 'ejb.session.CreditRating'"
+ ". Ensure that the bean has been"

+ " successfully deployed");
return;
}

CreditRatingService ratingService = ratingHome.create();
// Retrieve ssn from scope
Element ssn =

(Element)getVariableData ("input", "payload", "/ssn");

int rating = ratingService.getRating(ssn.getNodeValue());
addAuditTrailEntry("Rating is: " + rating);

setVariableData ("output", "payload",
"/tns:rating", new Integer(rating));

13-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Incorporating Java and Java EE Code in BPEL Processes

11>

}

catch (NamingException ne) {
addAuditTrailEntry (ne);

catch (ClassNotFoundException cnfe) {
addAuditTrailEntry (cnfe) ;

catch (CreateException ce) {
addAuditTrailEntry(ce);

catch (RemoteException re) ({
addAuditTrailEntry (re);

</bpelx:exec>

13.2.4 How to Use an XML Facade to Simplify DOM Manipulation

You can use an XML facade to simplify DOM manipulation. Oracle BPEL Process
Manager provides a lightweight Java Architecture for XML Binding (JAXB)-like Java
object model on top of XML (called a facade). An XML facade provides a Java
bean-like front end for an XML document or element that has a schema. Facade classes
can provide easy manipulation of the XML document and element in Java programs.

You add the XML facade by using a createFacade method within the bpelx: exec
statement in the . bpel file. Example 13-2 provides an example:

Example 13-2 Addition of XML facade

<bpelx:exec name= ...
<! [CDATA

Element element = ...

(Element)getVariableData ("input", "payload", "/loanApplication/"):

//Create an XMLFacade for the Loan Application Document
LoanApplication xmlLoanApp=

LoanApplicationFactory.createFacade (element) ;

13.2.5 How to Use bpelx:exec Built-in Methods

Table 13-1 lists a set of bpelx: exec built-in methods that you can use to read and
update scope variables, instance metadata, and audit trails.

Table 13—-1 Built in Methods for bpelx:exec
Method Name Description
Object lookup(String name) JNDI access

Locator getLocator()

Oracle BPEL Process Manager locator

long getInstanceId()

Unique ID associated with each instance

String

setTitle(

String title) / Title of this instance

String getTitle()

String
String

setStatus (
getStatus ()

String status) /

Status of this instance

void
setCompositeInstanceTitle(String
title)

Set the composite instance title

void setIndex(int i, String value)
/ String getIndex(int i)

Six indexes can be used for search

Incorporating Java and Java EE Code in a BPEL Process 13-3

Incorporating Java and Java EE Code in BPEL Processes

Table 13-1 (Cont.) Built in Methods for bpelx:exec

Method Name Description

void setPriority(int priority) / Priority
int getPriority()

void setCreator(String creator) / Who initiated this instance
String getCreator ()

void setCustomKey(String customKey Second primary key

)

/ String getCustomKey ()

void setMetadata(String metadata) Metadata for generating lists
/ String getMetadata ()

String getPreference(String key) Access preference

void addAuditTrailEntry (String Add an entry to the audit trail

message, Object detail)

void addAuditTrailEntry (Throwable t) Access file stored in the suitcase

Object getVariableData (String name) Access and update variables stored in the
throws BPELFault scope

Object getVariableData (String name, Accessand update variables.
String partOrQuery) throws BPELFault

Object getVariableData (String name, Access and update variables.
String part, String query)

void setVariableData (String name, Set variable data.
Object value)

void setVariableData (String name, Set variable data.
String part, Object value)

void setVariableData (String name, Set variable data.
String part, String query, Object
value)

13.2.6 How to Use Java Code Wrapped in a Service Interface

Not all applications expose a service interface. You may have a scenario in which a
business process must use custom Java code. For this scenario, you can:

Write custom Java code.

Create a service interface in which to embed the code.

Invoke the Java code as a web service over SOAP.

For example, assume you create a BPEL process service component in a SOA
composite application that invokes a service interface through a SOAP reference
binding component. For this example, the service interface used is an Oracle
Application Development Framework (ADF) Business Component.

The high-level instructions for this scenario are as follows.

To use Java code wrapped in a service interface:

1.

Create an Oracle ADF Business Component service in Oracle JDeveloper.
This action generates a WSDL file and XSD file for the service.

Create a SOA application that includes a BPEL process service component. Ensure
that the BPEL process service component is exposed as a composite service. This

13-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Adding Custom Classes and JAR Files

automatically connects the BPEL process to an inbound SOAP service binding
component.

3. Import the Oracle ADF Business Component service WSDL into the SOA
composite application.

4. Create a web service binding to the Oracle ADF Business Component service
interface.

5. Design a BPEL process in which you perform the following tasks:

a. Create a partner link for the Oracle ADF Business Component service
portType.

b. Create an assign activity. For this example, this step copies data (for example, a
static XML fragment) into a variable that is passed to the Oracle ADF Business
Component service.

c. Create an invoke activity and connect to the partner link you created in Step
5a.

6. Connect (wire) the partner link reference to the composite reference binding
component. This reference uses a web service binding to enable the Oracle ADF
Business Component service to be remotely deployed.

7. Deploy the SOA application.

8. Invoke the SOA application from the Test Web Service page in Oracle Enterprise
Manager Fusion Middleware Control Console.

For more information on creating Oracle ADF Business Components, see Oracle Fusion
Middleware Fusion Developer’s Guide for Oracle Application Development Framework.

For more information on invoking a SOA composite application, see Oracle Fusion
Middleware Administrator’s Guide for Oracle SOA Suite.

13.3 Adding Custom Classes and JAR Files

You can add custom classes and JAR files to an SOA composite application. A SOA
extension library for adding extension classes and JARs to an SOA composite
application is available in the SORACLE_HOME/soa/modules/oracle.soa.ext_
11.1.1 directory. For Oracle JDeveloper, custom classes and JARs are added to the
application_name/project/sca-inf/1ib directory.

13.3.1 How to Add Custom Classes and JAR Files

If the classes are used in bpelx:exec, you must also add the JARs in
bpelcClasspathin bpel-config.xml. In addition, ensure that the JARs are
loaded by SOA composite application.

To add custom classes:
1. Copy the classes to the classes directory.

2. Restart Oracle WebLogic Server.

To add custom JARs:
1. Copy the JAR files to this directory or its subdirectory.

2. Run ant.

3. Restart Oracle WebLogic Server.

Incorporating Java and Java EE Code in a BPEL Process 13-5

Using Java Embedding in a BPEL Process in Oracle JDeveloper

13.4 Using Java Embedding in a BPEL Process in Oracle JDeveloper

In Oracle JDeveloper, you can add the bpelx:exec activity and copy the code
snippet into a dialog box.

Note: For custom classes, you must include any JAR files required
for embedded Java code in the bpelcClasspath variable in the
ORACLE_HOME/domains/user_domain_
name/config/soa-infra/configuration/bpel-config.xml
file. The JAR files are then added to the class path of the BPEL loader.
If multiple JAR files are included, they must be separated by a colon
(:) on UNIX and a semicolon (;) on Windows.

13.4.1 How To Use Java Embedding in a BPEL Process in Oracle JDeveloper

To use Java embedding in a BPEL process in Oracle JDeveloper:
1. From the Component Palette, drag the Java Embedding activity into the designer.

2. Double-click the Java Embedding activity to display the Java Embedding dialog.
3. In the Name field, enter a name.

4. In the Code Snippet field, enter (or cut and paste) the Java code.

Figure 13-1 bpel:exec Code Example

rGeneraI rSensors rAnnotations |

Mame: hnvokeSesﬁonBean| |
Java Yersion: (15 -|
Code Snippet: try {

Object homelb] = lookup(“ejb/session/CreditRating™);
Class cls = Class.forName|
"Comw. oth. Sanples. sessionbean. CreditRatingServiceHone™) ;
CreditRatingServiceHome ratingHome = (CreditRatingServiceHome)
PortableRenmoteObject.narrow(honelb],cls) ;
if (ratingHome == null) {
addinditTrailEntry("Failed to lookup 'ejb.session.CreditRating'™
+ ". Please make sure that the bean has been”
+ " successfully deployed™):
return;
'

CreditRatingService ratingService = ratingHome.create();

/¢ Betriewve ssn from scope
Element ssn =
[Element)getVariableData(" input”, "payload”,”/ssn") ;

int rating = rating3ervice.getRating(ssn.getNodeValue()):
addinditTrailEntry ("Rating is: " + rating):

setVariableData("output”, "payload”,
Titns:rating”, new Integer(rating)):
1 _pcatch (MamincFxcention net !

| Help | Apply || OF || Cancel

Note: As an alternative to writing Java code in the Java Embedding
activity, you can place your Java code in a JAR file, put it in the class
path, and call your methods from within the Java Embedding activity.

13-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Embedding Service Data Objects with bpelx:exec

13.5 Embedding Service Data Objects with bpelx:exec

You can embed service data object