0?7,

‘ L
2 bea
L/

ay

BEAAqualogic
Data Services
Platform=

Client Application
Developer’s Guide

Note: Product documentation may be revised post-release and
made available from the following BEA e-docs site:

http://e-docs.bea.com/aldsp/docs21/index.html

Version: 2.1
Document Date: June 2005
Revised: March 2006

http://e-docs.bea.com/aldsp/docs21/index.html

Copyright

Copyright © 2006 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA JRockit, BEA Liquid Data for WebLogic, BEA WebLogic Server, Builton BEA, Jolt, JoltBeans, SteelThread,
Top End, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Aqual.ogic, BEA Aqualogic
Data Services Platform, BEA AquaLogic Enterprise Security, BEA AqualLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic
Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic Java Adapter for Mainframe,
BEA WebLogic JDriver, BEA WebLogic JRockit, BEA WebLogic Log Central, BEA WebLogic Personalization Server,
BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server Process Edition, BEA WebLogic WorkGroup
Edition, BEA WebLogic Workshop, and Liquid Computing are trademarks of BEA Systems, Inc. BEA Mission Critical
Support is a service mark of BEA Systems, Inc. All other company and product names may be the subject of intellectual
property rights reserved by third parties.

All other trademarks are the property of their respective companies.

March 16, 2006 1:056 pm

Contents

1. Introducing Data Services Platform for Client Application

Developers

Simplifying Application Data Programming. i, 1-1
What is a Data Services Platform Client?. ... 1-2
Data YoUr WAy . . e 1-3

The Role of WebLogic Server and WebLogic Workshop.coooiii, 14
What isa Data Service?o 1-4

What is a Data Services Platform Client Application? 1-5

Security Considerations in Client Applications.ccoiiiiiiiin, 1-6
Choosing a Data Services Programming Model............... ... i, 1-6
Introducing Service Data Objects (SDO) ..ottt i 1-8
Update Frameworks and the Data Service Mediator 19
Typical Client Application Development Processcoovviiiiiiiniiinnennn 1-10
Development ReSOUICeS. . ..o v v e e 1-11
Runtime Client JARFiles. ..o 1-11

DSP Mediator API Javadocoovvviiiiiiniiiiiiiiiiiii i 1-13
Performance Considerations..............cooviiiiiiiiiiiiiiiiii i, 1-13
Additional Technical and Product Information.................t 1-14

Client Application Developer’s Guide v

2. DSP’s Data Programming Model and Update Framework

Data Services Platform and Service Data Objects (SDOS)covvvvviiiiiinennnnn. 2-2
Static and Dynamic Data APIS. ... e 2-4
Static Data APTo 2-b

XML Schema-to-Java Type Mapping Referencet 2-8

Dynamic Data APL.o e 2-9

Role of the Mediator and SDOS ...t 2-14

The Data Services Platform Update Frameworkt 2-15
How It Works: The Decomposition Process.coooiiiiii ... 2-16
Physical Data Service Update Processcooiviiiiiiiii i, 2-17

Logical Data Service Update Process ..., 2-18
Primary-Foreign Key Relationships Mapped Using a KeyPair 2-20
Managing Key Dependenciescoovuieiiiiiiiiiieiiienineenns 2-22
Transaction Managementc..oouuiiiteiiiteniii ., 2-22

3. Accessing Data Services from Java Clients

Overview of the Data Services Platform Mediator APTt 3-1
Setting the Classpathttt e e e 3-3
Mediator API Summary and Reference............ ..o, 34

Generating a Static Mediator APIJARFile ...t 3-b
Building the Client JARo 3-5
Using the Data Service Mediator API i i, 3-7
Obtaining a WebLogic JNDI Context for Data Services Platform...................... 3-7
Invoking Functions and DSP Procedureso, 3-8
Static and Dynamic Mediator APISottt e 3-9

Using a Static Data Service Mediator APTcccoviiiiiiiiinnn, 3-10
Using a Dynamic Mediator APt 3-12
Static and Dynamic SDO APISttt e 3-14

vi Client Application Developer's Guide

Using the Static SDO APL.ot e e e e 3-14

Using the Dynamic SDO AP o i e 3-17
Bypassing the Cache When Using the Mediator APL. 3-21
Step-by-Step: A Java Client Programming Examplecoiiiiiiiiinnen.... 3-21
Step 1. Instantiating and Populating Data Objects.....................cooviiinn, 3-22
Step 2: Accessing Data Object Properties ..., 3-23
Step 3: Modifying, Adding, and Deleting Data Objects and Properties................ 3-25
Modifying Data Object Properties........... ..o 3-25

Adding New Data Objectsooovviiiiiiiiiiiiiiiii 3-26

Deleting Data Objectscoviiiiiiiiiii i 3-27

Step 4: Submitting Changes to the Data Service.......................oooiiiii, 3-27
Examining a Java Client Application ... 3-28

4. Web Services and DSP-Enabled Applications

Overview of Web Servicesand DSP........... ..o i 4-1
Different Styles of Web Services Integrationfor DSP............................... 4-2
Server-side DSP-Enabled Web Service Developmentcciiviiiian. 4-4
Adding a Data Service Control to a Web Service.................ccoiiiiiiiian, 4-4
Generating a Web Service from a Data Service Control 4-7
Modifying Submit Operations and Generatinga WSDL File 4-9

Testing a Web Service in WebLogic Workshop, 4-9
Client-side DSP-Enabled Web Service Developmentccoviiviiini... 4-11
Client-side Artifact Generation Utilities, 4-12
Generating SDO Client Classes.ouvetent e eanens 4-13
Setting the Environment for the Utilitiest 4-13
Generating SDO Classes Using Ant.ouveevirenii e 4-13
Generating SDO Classes UsingJava. ...t 4-16
Generating SDO-Enabled Web Services Clientsccooivviiiann.. 4-18

Client Application Developer’s Guide vii

Generating SDO Web Services Clients Using Ant.ooviiii... 4-18

Generating SDO Web Services ClientsusingJava 4-20
Using the SDO Web Service Client Gen Utility.................coooiiiiiinin, 4-22
Post-Generation Development Tasks.t 4-23
Sample buildxml File e 4-24

5. Accessing Data Services from WebLogic Workshop

Applications

WebLogic Workshop and Data Services Platform, 5-1
Data Service CONtrolsovvnuini i b-2

Use With Page Flow, Web Services, Portals, Business Processes.................. 5-2

Data Service Control (JCX) Fileovuvnrii i i e e 5-3
DS g VI OW L\ttt e 5-3
SOUTCE VIBW .. oottt b4
Using Data Service Controls for Ad Hoc Queriescooiiiiiieeeeeniinnnn. b-T
Creating Data Service CONtrolSvvttiiii i e et iiiee e 5-8
Step 1: Create a Project in an Application.................cooiiiiiiiiii i, 5-8

Step 2: Start WebLogic Server, If Not Already Running. 5-8

Step 3: Create a Folder ina Project., 5-8

Step 4: Create the Data Service Control................ ..., 5-9

Step 5: Enter Connection Information for WebLogic Server..................... 5-11

Step 6: Select Data Service Functions to Add to Your Control................... 5-12
Modifying Existing Data Service Controls.covviiiiiiiiiiii i, 5-13
Changing a Method Used by a Controlttt 5-13
Adding a New Method toa Controlcoiiutiiiiiiiiiiiiiii i 5-14
Updating an Existing Control When Schemas Change 5-15
Using Data Services Platform with NetUL. i 5-15
Generating a Page Flow From a Control............o, 5-15

viii Client Application Developer's Guide

To Generate a Page Flow From a Data Service Control 5-16

Adding a Data Service Control to an Existing Page Flow........................... 5-17
Adding Service Data Objects (SDO) Variables to the Page Flow..................... 5-18

To Add a VariabletoaPage Flow, 5-20

To Initialize the Variable in the Page Flowo, 5-20

Working with Data Objects ...t e 5-21
Displaying Array Values inaTableor Listo, 5-22
Adding a Repeatertoa JSPFile............ccoiii i 5-22

Adding a Nested Level to an Existing Repeatert 5-24

Adding Code to Handle Null Valuesccoviiiiiiiiiiiiiiieeennns 5-25

Caching Considerations When Using Data Service Controlscovv... 5-26
Bypassing the Cache When Using a Data Service Control 5-26
Cache Bypass Example When Using a Data Service Control 5-26

Security Considerations When Using Data Service Controlsccoovu... 5-27
Security Credentials Used to Create Data Service Controls 5-28
Testing Controls With the Run-As Property inthe JWS File 5-28
Trusted Domains.ovviu i 5-28
Configuring Trusted Domainsttt e 5-29

6. Supporting ADO.NET Clients

Overview of ADO.NET Integration in Data Services Platform 6-2
Understanding ADONETo e e e 6-2
ADO.NET Client Application Development Toolsccovvn.., 6-3
Understanding How DSP Supports ADO.NET Clients.ccoovvvenn.. 6-4
Supporting Java CLentsout e e e 6-6
Enabling DSP Support for ADONET Clients...........ovviiiieiiiiiiii i 6-7
Creating a New Web Service Project.ccoo it 6-7
Creating an ADO.NET-Enabled Data Service Control............................... 6-8

Client Application Developer’s Guide ix

Generating a Web Service for ADO.NET Clients.ccoiiiiiiiiinnn, 6-10

Generating an ADONET-Enabled WSDL i, 6-10
Adapting DSP XML Types (Schemas) for ADONET Clients..................c.covvinn.. 6-11
Approaches to Adapting XML Types for ADO.NET.o, 6-12
XML Type Requirements for Working With ADO.NET DataSets.................. 6-12
References 6-15
Generated Artifacts Reference.ooooii i 6-15
XML Schema Definition for ADO.NET Typed DataSet........................ 6-15
Web Services Description Language (WSDL) File for Microsoft ADO.NET Clients 6-16

/. Using Workflow with DSP-Enabled Applications

Brief Overview of WebLogic Integration JPDst -
How SDO’s Handling of XMLObjects Differsfrom JPDt -
Adding a Data Service Controlto a Processo, -

Creating a Data Service Control.t -

Adding a Data Service Controltoa JPDFile, -

Setting Up the Data Service Control in the Business Process
Submitting Changes from a Business Processccoviviiiina...
Invoking JPDs from Data Services Platform................o i i

Invoking a JPD from an Update Override,

Invoking a JPD by Using the JpdService API in an Update Override. -

Synchronous and Asynchronous Behavioro il

Error Handling. e e

8. Using the Data Services Platform JDBC Driver

About the Data Services Platform JDBCDriver. -
Features of the Data Services Platform JDBCDriverccoviviiii... -

Data Services Platform and JDBC Driver Terminology.................ccovvvvinn... -

X Client Application Developer's Guide

Installing the Data Services Platform JDBC Driver with JDK 1.4x...................0o0s. 8-3

Using the JDBC Drivero e e 8-b
Obtaining a ConMectionvu 'ttt e i e 8-b
Using the preparedStatement Interface it i, 8-6
Getting Data Using JDBC. iiii i i e 8-6

Connecting to the JDBC Driver from a Java Application.....................ccovvvi... 8-7

Connecting to Data Services Platform Client Applications Using the ODBC-JDBC Bridge from
Non-Java AppLicationst 8-12
Using the EasySoft ODBC-JDBC Bridgecoovviiiiiiiiiiiiiiiit, 8-12
Using OpenLink ODBC-JDBC Bridgeccooviviiiiii e 8-16

Using Reporting Tools with the Data Services Platform ODBC-JDBC Driver 8-23
Crystal Reports 10 - ODBC.ttt e e 8-23
Crystal Reports 10 - JDBOo e e e 8-33
Business Objects 6.1-0DBCt e e 8-36
Microsoft Access 2000 - ODBC.o.viniii 8-49

DSP and SQL Type Mappings.o oottt ettt et i e 8-54

SQL-92 SUPDPOT v ettt e 8-
Supported Featurescouiiii i e 8-
LImitationso e 8-58

9. Customizing Data Service Update Behavior

What is an Update Override? e 9-1
An Update Override isa Java Class.vviiiiir i 9-2
How an Update Override Affects Update Processingovv... 9-3

When Are Update Overrides Required? o i, 9-3
When Are Update Overrides Required for Relational Data Sources? 9-4
Developing the UpdateOverride Class ... 9-6
Invoking Data Service Procedures from an UpdateOverride 9-8

Client Application Developer’s Guide Xi

Testing Submit Resultst e e e 9-11

Update Override COntextvuuteeiniiiiiii i i 9-11
Update Overrides and Physical Data Servicesccovvivieeiinnnn, 9-12
Update Override Programming Patterns., 9-14
Overriding the Entire Decomposition and Update Process 9-14
Augmenting Data Object Contentcoiiiiiiiiiiiiiiiiiii i 9-15
Accessing the Data Service Mediator Context................oooiiiiiiiiinn, 9-16
Accessing the Decomposition Map ..ot 9-15
Customizing an Update Plan, 9-17
Executingan Update Plan i 9-19
Retrieving the Container of the Current Data Object................... 9-19
Invoking Other Data Service Functions and Procedures 9-20
Capturing Runtime Data about Overrides in the Server Log 9-20
Default Optimistic Locking Policy: What it Means, How to Change. 9-22

10.Advanced Topics

Using Catalog Services to Obtain Data Services’ Metadata. 10-1
Installing Catalog ServiCesuutert e 10-3
Creating a Query-by-Form (QBF) Application Using Catalog Services 10-5

Filtering, Sorting, and Fine-tuning Query Results................... ..ot 10-5

Using FAlters oot e e 10-6
Specifying Filter Effects 10-8
Ordering and Truncating Data Service Resultscooiiiiin... 10-10
Using Ad Hoc Queries to Fine-tune Results from the Client........................ 10-11

Handling Large Result Sets with Streaming APIst 10-15
Using the Streaming Interface................. o i 10-16
Writing Data Service Function ResultstoaFile 10-19

Providing Role-based Access to DSP Relational Sourcescovvvv... 10-20

Xii Client Application Developer's Guide

CHAPTERo

Introducing Data Services Platform for
Client Application Developers

BEA AquaLogic Data Services Platform (DSP) brings a service-oriented architecture (SOA) approach
to data access. Data Services Platform enables organizations to consolidate, integrate, and transform
as needed disparate data sources scattered throughout their enterprise, making enterprise data
available as an easy-to-access, reusable commodity: a data service.

For client application developers, DSP provides a uniform, consolidated interface for accessing and
updating the heterogeneous back-end data sources that comprise data services. This chapter provides
an overview of Data Services Platform for client application developers. It includes the following
topics:

e Simplifying Application Data Programming

e The Role of WebLogic Server and WebLogic Workshop
e Introducing Service Data Objects (SDO)

e Typical Client Application Development Process

e Additional Technical and Product Information

Note: Data Services Platform was initially named Liquid Data. Some artifacts of the original name
remain in the product, installation path, and components.

Simplifying Application Data Programming

The Data Services Platform (DSP) significantly simplifies how client applications access and use data.
In a typical organization, data comes from a variety of sources, including distributed databases, files,
applications from partners or e-commerce exchange markets. With DSP, client applications can use

Client Application Developer's Guide 1-1

Introducing Data Services Platform for Client Application Developers

1-2

heterogeneous data through a unified service layer without having to contend with the complexity of
working with distributed data sources using various connection mechanisms and data formats.

DSP provides a uniform, consolidated interface for accessing and updating heterogeneous back-end
data. It enables a services-oriented approach to information access using data services.

From the perspective of a client application, a data service typically represents a distinct business
entity, such as a customer or order. Behind the scenes, the data service may aggregate the data that
comprises a single view of the data, for example, from multiple sources and transform it in a number
of ways. A data service may be related to other data services, and it is easy to follow these relationships
in DSP. Data services insulate the client application from the details of the composition of each
business entity. The client application only has to know the public interface of the data service.

This document describes how to create DSP-aware client applications. It explains the various client
access mechanisms that DSP supports and its main client-side data programming model, including
Service Data Objects (SDO). It also describes how to create update-capable data services using the
DSP update framework.

This guide provides information about how to leverage data services in your applications. For
information about creating data services in WebLogic Workshop, see the Data Services Developer’s
Guide.

What is a Data Services Platform Client?

In the typical organization, data flows in a bidirectional manner from a wide variety of sources,
including distributed databases, various files, applications from partners, or e-commerce exchange
markets.

Creating an application that can access and update distributed, disparate data sources can be
complex, challenging, and expensive: you must know how to use a wide variety of connection
mechanisms and data formats, and how to use the variety of APIs required to access and update each
back-end data source, for example.

Using DSP, data architects create data services that:
e Insulates applications from having to access and update multiple disparate data sources.

e Provides the ability to create data services that combine elements of multiple, disparate data
sources into, essentially, virtual databases.

Client Application Developer's Guide

../datasrvc/index.html
../datasrvc/index.html

Data Your Way

Simplifying Application Data Programming

A DSP client is any process that consumes data services. A client application may be, for example, a
Java program, non-Java programs such as .NET applications, BEA WebLogic Workshop applications,

or JDBC/ODBC clients.

For client application developers needing to leverage such data assets, DSP supports multiple access

methods (see Figure 1-1):

e Java clients can use data service functions through the DSP Mediator API.

e Workshop applications (such as portals, business processes, and web applications) can use a

Data Service control.

e Web services enable you to make DSP services available to a wide array of WebLogic and

non-WebLogic applications and integration channels.

e The DSP JDBC driver provides JDBC and ODBC clients, such as reporting tools, with SQL-based
access to DSP information.

Figure 1-1 Accessing DSP Services

client
applications
Mediator Data service Web service IDBC
API control
DSP Services Layer (SDO)
data sources

Whatever the client type, DSP gives application developers a uniform, services-oriented mechanism
for accessing and modifying heterogeneous data from external sources. Developers can focus on the
business logic of the application rather than details of various data source connections and formats.

Client Application Developer's Guide

1-3

Introducing Data Services Platform for Client Application Developers

14

The Role of WebLogic Server and WebLogic Workshop

Data services are created in WebLogic Workshop, BEA’s integrated development environment for
building and deploying many types of applications: portals, Web services, and integration applications,
for example. The Data Services Platform application running under Workshop supports all aspects of
Data Services Platform creation.

What is a Data Service?

From a high-level perspective, a data service defines a distinct business entity such as a report that
describes a customer and customer orders. The data service defines a unified view by aggregating data
from any number of sources — relational database management systems (RDBMS), Web services,
enterprise applications, flat files, and XML files, for example. Data services can also transform data
from the original sources as needed.

In order to use data services, you need know only a few details, such as:
e The name of the data service.

e The functions and procedures exposed by the data service. (See What is a Data Services
Platform Client Application?)

e The data types available.

Data service client applications can use data services in the same way that a Web service’s client
application invokes the operations of a Web service. Rather than invoking operations from a Java
client application, the data service client application invokes a data service routine.

Client Application Developer's Guide

Simplifying Application Data Programming

Figure 1-2 Data Services Layer Exposes Functions and Procedures to Client Application Developers

| [
DSP Functions and Procedures

Data Services Platform Services Layer

Relational Web
Data Services

CreditRating
getCredstRating
String in
customer_jd)

[R

3 | R i
Note: For complete information on creating data services see the DSP Data Services Developer’s
Guide.

What is a Data Services Platform Client Application?

A DSP client application is any application that invokes data service routines. Client applications can
include Java programs, non-Java programs such as Microsoft ADO.NET applications, BEA WebLogic
Workshop applications, or JDBC/ODBC clients:

e Java client applications can use data service functions and procedures through the Data
Services Mediator API (also known simply as the Mediator API).

e WebLogic Workshop applications (such as portals, business processes, and Web applications)
can leverage data services by means of Data Service controls. (Controls are reusable Java
components that can be used in WebLogic Workshop applications.) Data Service controls can be
used as the basis of many DSP-enabled application scenarios. For example:

— Data Service controls can be added to Web services, portal projects, and Web projects.

— Data Service controls can be used to generate Web services that can make DSP services
available to a wide variety of WebLogic and non-WebLogic applications and integration
channels.

— Data Service controls can be used within a JPD (Java process definition, a workflow
component).

Client Application Developer's Guide 1-5

../datasrvc/index.html
../datasrvc/index.html

Introducing Data Services Platform for Client Application Developers

e The DSP JDBC driver provides JDBC and ODBC clients, such as reporting tools, with SQL-based
access to DSP data.

Regardless of the client type, DSP provides a uniform, services-oriented mechanism for accessing and
modifying distributed, heterogeneous data. Developers can focus on business logic, rather than on the
details of various data source connections and formats.

In your client application code, simply invoke the data service routine: the DSP engine:
e Gathers data from the appropriate sources (via XQuery)
o Instantiating results as data objects, and

e Returns to your client application the materialized data objects.

These data objects conform to the Service Data Object (SDO) specification, a Java-based architecture
and API for data programming that is the result of joint effort by BEA and IBM.

Security Considerations in Client Applications

Data Services Platform administrators can control access to deployed DSP resources through
role-based security policies. DSP leverages and extends the security features of the underlying
WebLogic platform. Roles can be set up in the WebLogic Administration Console. (Refer to the DSP
Administration Guide for information about the DSP Console.)

Access policies for DSP resources can be defined at any level — on all data services in a deployment,
individual data services, individual data service functions, or even on individual elements returned by
the functions of a data service.

For complete information on WebLogic security, see:

http://e-docs.bea.com/wls/docs8l/security/index.html

Choosing a Data Services Programming Model

1-6

Application developers can choose from several models for accessing DSP services. The model chosen
will depend on the access mechanism you decide to used. The possible access methods are:

e Data Mediator API
e Data service control
e Web Services

e JDBC/ODBC

Client Application Developer's Guide

../admin/index.html
http://e-docs.bea.com/wls/docs81/security/index.html

Choosing a Data Services Programming Model

Each access method has its own advantages and use. Table 1-3 provides a description of each of these
access methods and summarizes the advantages of the various models for accessing DSP services.

Tahle 1-3 Data Services Platform Access Models

Access Description Advantages/When to use...
mechanism
Data Service A Java interface for using data services. Can be developed with standard Java IDEs such
Mediator API Returns data as data objects, providing as BEA WebLogic Workshop, Eclipse, Intellid,
full support for Service Data Objects JBuilder, and others.
(SDO) programming, Easy-to-use approach to developing Java
For more information, see Chapter 2, programs that use external data.
“DSP’s Data Programming Model and Provides several access modes, including a
Update Framework.” dynamic (untyped) interface through generic
SDO, a static (typed) interface, and an ad hoc
query interface.
Seamless ability to submit data changes.
Data Service A Java control extension (JCX) file for Best suited for BEA WebLogic Workshop
Control accessing DSP resources. applications, including portals, business process

For more information, see Chapter 5,
“Accessing Data Services from WebLogic
Workshop Applications.”

workflows, and pageflows.

Leverages BEA WebLogic Workshop features for
working with controls, such as drag-and-drop
method and variable generation.

Provides an ad hoc query interface for a highly
dynamic approach to querying information.

Seamless ability to submit data changes.

Client Application Developer's Guide 1-1

Introducing Data Services Platform for Client Application Developers

Tahle 1-3 Data Services Platform Access Models

Access Description Advantages/When to use...
mechanism
Web Service A data service can be wrapped as a Web Makes standard Web service features available to
service, providing the data service with data services, such as WS-Security, WSDL
the benefits of web service features. descriptors, and more.
For more information, see Chapter 4, Makes data services usable from .NET
“Web Services and DSP-Enabled applications, or other non-Java programs.
Applications.” Ideal for XML-based SOA architectures
JDBC/ODBC Client applications can use JDBC or Works with applications designed for JDBC

ODBC to access DSP services using SQL
queries. The DSP JDBC driver supports
SQL-92.

For more information, see Chapter 8,
“Using the Data Services Platform JDBC

access, such as Cognos business intelligence
software and Crystal Reports.

Enables users to leverage existing SQL skills and
resources.

Limited to flat views of data.

Driver.”

Introducing Service Data Objects (SD0)

1-8

Service Data Objects (SDO), a specification proposed jointly by BEA and IBM, is a Java-based
architecture and API for data programming. SDO unifies data programming against heterogeneous
data sources. It simplifies data access, giving data consumers a consistent, uniform approach to using
data whether it comes from a database, web service, application, or any other system.

SDO uses the concept of disconnected data graphs. Under this architecture, a client gets a copy of
externally persisted data in a data graph, which is a structure for holding data objects. The client
operates on the data remotely; that is, disconnected from the data source. If data changes need to be
saved to the data source, a connection to the source is re-acquired. Keeping connections active for the
minimum time possible maximizes scalability and performance of applications.

To SDO clients, the data has a uniform appearance no matter where it came from or what its source
format is. Enabling this unified view of data in the SDO model is the Data Service Mediator. The
mediator is the intermediary between data clients and back-end systems. It allows clients to access
data services and invoke their functions to acquire data or submit data changes. DSP serves as such a
SDO mediator.

Client Application Developer's Guide

Introducing Service Data Objects (SDO)

On the client side, information takes the form of data objects. Data objects are the basic unit of
information prescribed by the SDO architecture. SDO has both static (typed) and dynamic (untyped)
interfaces for working with data objects.

Static interfaces provide a programmer-friendly model for getting and setting properties in a data
object. Accessors are generated for each property in the data type of a data service, for example
getCustomerName() and setCustomerName() for a Customer data object. Static interfaces depend
on a schema for type information.

The dynamic interface, on the other hand, is useful when a type is unknown or undefined at runtime.
Dynamic interface calls are in such forms as:

get (“CustomerName”)
set (“CustomerName”, “J. Dough”).

In keeping with the goals of a service-oriented architecture (SOA), data graphs are self-describing,
The metadata API enables applications, tools, and frameworks to inspect information on the data
contained in a data graph. The data is described by an XML schema, which describes the names of
properties, their types, and more.

For details on using SDO, see Chapter 2, “DSP’s Data Programming Model and Update Framework.”

Update Frameworks and the Data Service Mediator

The SDO specification does not specify an update framework, but it does discuss the need for mediator
services, in general, to handle updates to data objects; the SDO specification leaves the details up to
implementors.

The SDO specification allows for many types of mediators, each intended for a particular type of query
language or back-end system. DSP provides a Data Service Mediator, a server-side component of DSP’s
XQuery processing engine that serves as the intermediary between data services and client
applications or processes.

The Data Service Mediator facilitates updates to the various data sources that comprise any data
service. DSP’s Mediator service is the core mechanism for the DSP update framework. The Mediator
handles updates to relational and non-relational data sources as follows:

o Relational data sources. Relational database management systems (RDBMS), such as IBM,
Oracle, Microsoft SQL Server, and any other SQL-92 compliant RDBMS. For relational data
sources, DSP propagates changes to relational data sources automatically. See “The Data
Services Platform Update Framework” on page 2-15 for an overview of default behavior.
(However, note that you can override the default update processing for a relational source if

Client Application Developer's Guide 1-9

Introducing Data Services Platform for Client Application Developers

you like, or when necessary. See “When Are Update Overrides Required for Relational Data
Sources?” on page 9-4 for more information.)

o Non-relational data sources. This included non-relational data sources, such as Web services,

XML files, and flat files. Updates to non-relational data sources always require custom
server-side coding; specifically, an update override class. See “Developing the UpdateOverride
Class” on page 9-6 for information about how to create a Java class to customize server-side
behavior.

Typical Client Application Development Process

Developing client applications that invoke Data Services Platform functions and procedures presumes
that a DSP project has been deployed or is being deployed. See the Data Services Developer's Guide
for detailed information about developing data services.

Developing a DSP-enabled client applications encompasses these steps:

L.

Identify the data services you want to use in your application. The Data Services Platform Console
can be used to find all services available on your WebLogic Server. The DSP Console serves as a
data service registry within the DSP architecture; it shows available data services, including the
specific functions and procedures that each data service provides.

Choose the data access approach that best suits your needs. (Table 1-3, “Data Services Platform
Access Models,” on page 1-7 describes the advantages of the different access mechanisms.) The
approach you choose also depends on precisely how the data service has been deployed.

For example, if the data service is hosted as a Web service, you can develop a Web service client
application using Java in conjunction with the service’s WSDL file.

Similarly, if the data service is incorporated in a portal, business process, or Web application,
your client application development process may take place entirely in the context of the
server, as a set of pageflows or other server-side artifacts.

Obtain the required JAR files (see Table 1-5, “Data Services Platform Java Archive Files,” on
page 1-12). To use the typed data service and SDO interfaces, obtain the DSP application’s
generated Mediator client JAR file from your DSP administrator or data architect. Or generate
the file yourself by following the steps outlined in “Generating a Static Mediator API JAR File”
on page 3-5.

Figure 1-4 provides a conceptual overview of the various approaches, highlighting some of the
relationships among various sub-systems and components.

1-10

Client Application Developer's Guide

../datasrvc/index.html

Typical Client Application Development Process

Figure 1-4 Types of Data Services Platform Client Applications

Client Applications Data Services Layer
Java |
-~ Application
y - Data Service 1
/ Mediator API i
.-'" performChangs() g
i Invekel)
/ InvokeProcedure() i §
/ Browser- Invokejpd() .
L3 based (JSP, ¢——® Web server (]
Partal) . |]
Y DsP
s00 —— XQuery |
Java Web ’ Data Service 2 Engine
services e
client Ta '—|x
Web service _}
e 8
iy * Data Service control
_— soower
- Application .
o~ | —
Eatesat End-user
JOBC/ODEC
uery tool - -
- ot Can be mvoked from JSPs, Portal,
JOBC &— > JPDs numing on WebLogie Server
. \ Used as the basis to generate
“‘5 -ADO NET-enabled web service
-lava-based web serice

Development Resources

Client application developers typically work with a small set of APIs, contained in JAR files. The APIs

are primarily described through Javadocs (see “DSP Mediator API Javadoc” on page 1-13).

Runtime Client JAR Files

Data Services Platform APIs are contained the packages listed in Table 1-5.

Client Application Developer's Guide

1-1

Introducing Data Services Platform for Client Application Developers

1-12

Table 1-5 Data Services Platform Java Archive Files

Name

Description

Location

[App]-1d-client.jar

Contains generated typed
interfaces for data services
and their data types (static
data APIs). The name of the
file is is prefixed by the
name of the DSP application
from which the static
interfaces are generated.

Such an application-specific
JAR file is not required if the
only interface to Data
Services Platform routines is
through an untyped interface
using generic SDO.

(Provided by your Data Services Platform
administrator.)

ld-client.jar

The dynamic, or untyped,
data service APIs, including
generic data service
interfaces and ad hoc query
interfaces.

<bea_home>\weblogic8l\liquiddata\lib\

wlsdo.jar

The interfaces defined in the
SDO specification, including
untyped data interfaces and
data graph interfaces.

<bea_home>\weblogic8l\liquiddata\lib\

weblogic.jar

The common WebLogic APIs.

<bea_home>\weblogic8l\server\1lib\

xbean. jar
xqgrl.jar
wlxbean. jar

XMLBean classes and
interfaces on which the Data
Services Platform SDO
implementation relies. Also
enables XPath expressions in

untyped data accessors. 1

<bea_home>\weblogic8l\server\lib\

1. A “query too complex” exception is raised if the xqrl . jar and wlxbean. jar files are not in
the JVM’s CLASSPATH when an XPath expression is executed. If you encounter this error, make sure
that these two JAR files are in the CLASSPATH.

Client Application Developer's Guide

Typical Client Application Development Process

DSP Mediator API Javadoc

The Data Services Platform Mediator API describes the routines needed by DSP client applications to
invoke various DSP routines.

Client application developers will find Javadoc helpful for creating client applications that invoke
data service routines. Data services developers and architects will find the Javadoc useful for
understanding how to customize update behavior.

You can find javadoc for the Data Services Platform 2.1 Mediator API at:

http://e-docs.bea.com/aldsp/docs21/javadoc/index.html

Client applications built on earlier versions of Data Services Platform can continue to use the 2.0.1
mediator API routines. These are described in a Javadoc named javadoc-dsp201 and is available at:

http://e-docs.bea.com/aldsp/docs21/javadoc-dsp201/index.html
Javadoc is also provided in ZIP file format; it is available for download from the DSP e-docs Web site:

http://e-docs.bea.com/aldsp/docs21l/index.html

Performance Considerations

Data service performance is the result of the end-to-end components that make up the entire system,
including:

e Data service design. The number of data sources, complexity of logical data source
consolidation, and other data service design considerations can affect performance.

e Number of clients accessing the data service. Number of simultaneous clients can affect
performance.

e Performance of the underlying data sources. When data services access underlying data the
availability and availability and performance of those systems can affect performance.

e Network topology. Overall available bandwidth must be measured against the number of
applications running on the WebLogic Server, number of other applications in general
consuming network bandwidth (can affect client response times).

e Hardware resources. The number of CPUs, processing power, memory allocation, and other
factors for each and every platform throughout the system, client and server alike, can affect
performance.

Before creating a client application for a data service, it is recommended that you benchmark
performance of each underlying data source, and then benchmark the performance of the data service

Client Application Developer's Guide 1-13

http://e-docs.bea.com/aldsp/docs21/javadoc/index.html
http://e-docs.bea.com/aldsp/docs21/index.html
http://e-docs.bea.com/aldsp/docs21/javadoc-dsp201/index.html

Introducing Data Services Platform for Client Application Developers

as you develop it. Use load-testing tools to determine the maximum number of clients that your data
service can support.

In addition, you can use DSP’s auditing capabilities to instrument your code, thereby gaining
performance profile information that you can use to identify and resolve performance problems if they
occur. For detailed information on DSP audit capabilities see DSP Administration Guide.

Additional Technical and Product Information

A compendium of technical and product information related to BEA AquaLogic Data Services
Platform can be found in the introductory chapter of the DSP Concepts Guide.

1-14 Client Application Developer's Guide

../admin/index.html
../concepts/index.html

CHAPTERa

DSP’s Data Programming Model and
Update Framework

BEA AquaLogic Data Services Platform (DSP) implements the Service Data Objects (SDOs) as its data
client-application programming model. SDO is an architecture and set of APIs for working with data
objects while disconnected from their source. In DSP, SDOs—whether typed or untyped data
objects—are obtained from data services by using the Mediator APIs, or through Data Service
controls. (See “Introducing Service Data Objects (SDO)” on page 1-8.)

Client applications manipulate the data objects as required for the business process at hand, and then
submit changed objects to the data service, for propagation to the underlying data sources. Although
the SDO specification does not define one, it does discuss the need for mediator services, in general,
that can send and receive SDOs; the specification also discusses the need for handling updates to data
sources, again, without specifying an implementation: The SDO specification leaves the details up to
implementors as to how mediator services are implemented, and how they should handle updates to
data objects.

As discussed in “Update Frameworks and the Data Service Mediator” on page 1-9, DSP’s Mediator is
the process that not only handles the back-and-forth communication between client applications and
data services, it also facilitates updates to the various data sources that comprise any data service.

This chapter includes information about DSP’s implementation of the SDO data programming model,
as well as DSP’s update framework. It includes:

e Data Services Platform and Service Data Objects (SDOs)

e The Data Services Platform Update Framework

Client Application Developer’s Guide 2-1

DSP’s Data Programming Model and Update Framework

Data Services Platform and Service Data Objects (SDO0s)

When you invoke a data service’s read or navigation function (through the Data Service Mediator API
or from a Data Service control), the data service returns a data graph comprising one or more data
objects. Data objects and data graphs are two fundamental artifacts of the SDO data programming
model. As shown in Figure 2-1, a data graph comprises:

— Aroot object that typically corresponds to the root data type of a data service’s return type.
— One or more data objects.
— A change summary.

— Metadata about the data objects; for example, the XML structure of a "CUSTOMER,"
comprising a LAST _NAME and an EMAIL_ADDRESS.

Each of these can be described in more detail, as follows:

e Data Graph. A data graph is a data type, the primary construct for SDO-based data
programming. It is a data structure that serves as something of a container for related data
objects. Data graphs encompass the data objects as instantiated from the data service, and
track all changes made to those data objects.

e Change Summary. An object that tracks changes to data objects. A change summary exists only
in the context of an associated data graph. As changes are made to the data objects that
comprise the data graph—adds, deletes, or changes to the data objects or any of their
properties—the changes are captured in the change summary.

The change summary is used by the Mediator (in conjunction with a logical data service’s
decomposition map) to derive the update plan and ultimately, to update data sources. The
change summary submitted with each changed SDO remains intact, regardless of whether or
not the submit() succeeds, so it can support rollbacks when necessary.

e Data Object. A data object is a structure for containing property values. Properties can be
simple types or complex types.

— Simple types. Simple types comprise primitive data types, such as string or int, and
correspond to leaf nodes in XML document trees.

— Complex types. Complex types correspond to branch nodes in an XML document tree and
may contain other data objects.

2-2 Client Application Developer's Guide

Data Services Platform and Service Data Objects (SDOs)

Figure 2-1 Client Applications and Data Service Mediator Send and Receive Data Graphs

clientApp.java

&

T

Data Service Mediator

CUSTOMERDataGraph

CUSTOMERDOCUment
CUSTOMERID = "CUSTOMERQ' \
LAST_NAME = "smith"”
QRDERS™

[ORDERID = 2251

— ITEMS"

CHANGESUMMARY _

CUSTOMER

—— LAST_MNAME

[EMAIL_ADDRESS

Data Services Layer

Data Sources ‘

Table 2-2 summarizes the various SDO data programming artifacts and lists an example of each (as

shown in Figure 2-1).

Table 2-2 Data Graph Example

Data Graph and Related Artifacts Example

DataGraph CUSTOMERDataGraph
DataObject CUSTOMERO, ORDERS

Root Object CUSTOMERDocument
ChangeSummary CHANGESUMMARY

Property CUSTOMERID, LAST_NAME
Simple Type CUSTOMERID

Client Application Developer's Guide

DSP’s Data Programming Model and Update Framework

24

Data Graph and Related Artifacts Example

Complex Type ORDERS

Metadata <CUSTOMER>
<LAST_NAME></LAST NAME>
<EMAIL_ADDRESS/>
</CUSTOMER>

Static and Dynamic Data APIs

SDO specifies both static (typed) and dynamic (untyped) interfaces for data objects:

e Static. The static data API is an XML-to-Java API binding that contains methods that
correspond to each element of the data object returned by the data service. These generated
interfaces provide both getters and setters; for example, getCustomer(), setCustomer(). For
examples see Table 2-5, “Static (Typed) Data API Getters and Setters,” on page 2-6.

e Dynamic. The dynamic data API provides generic getters and setters for working with data
objects. Elements are passed as arguments to the generic methods. For example,
get("Customer") or set("Customer").

The dynamic data API can be used with data types that have not yet been deployed at development
time.

Table 2-3 summarizes the advantages of each approach.

Table 2-3 Static and Dynamic Data APIs

Data Model Advantages...

Static Data API e Easy-to-implement interface; code is easy to read and maintain.
e Compile-time type checking.
e Enables code-completion in BEA WebLogic Workshop Source View.

Dynamic data API e Dynamic; allows discovery.
e Runtime type checking.

e Allows for a general-purpose coding style.

Client Application Developer's Guide

Data Services Platform and Service Data Objects (SDOs)

Static Data API

SDO’s static data API is a typed Java interface generated from a data service’s XML schema definition.
It is similar to JAXB or XMLBean static interfaces. The interface files, packaged in a JAR, are typically
generated by the DSP data services developer using WebLogic Workshop, or by using one of the
provided tools (see “Generating SDO Client Classes” on page 4-13 for more information).

The generated interfaces extend both the dynamic data API (specifically, the DataObject interface)
and the XmlObject interface. Thus, the generated interfaces provide typed getters and setters for all
properties of the XML datatype.

An interface is also generated for each complex property (such as CREDIT and ORDER shown in
Figure 2-4), with getters and setters for each of the properties that comprise the complex type.

In addition, for properties that may have multiple occurrences, getters and setters are also generated
for manipulating arrays and array elements. A multiple-occurring property is an XML schema element
that has its maxOccurs attribute set to either unbounded or greater than one. In the DSP Console
Metadata Browser, such elements are flagged with an asterisk—for example, ORDER* and POITEM*
(see Figure 2-4) indicate that an array or order data objects (ORDERS[]) will be returned. For results
involving repeating objects, you can cast the root element to an array of returned objects
(datatypename|])

Note: In prior releases of Data Services Platform, an "ArrayOf..." schema element was created to
serve as a container for array types returned as part of a Data Graph. Some references to the
ArrayOf mechanism may remain in code samples and documentation.

As an example of how static data APIs get generated, given the CUSTOMER data type shown in
Figure 2-4, generating typed client interfaces results in:

e CUSTOMER, CUSTOMERDocument, CREDIT, ORDER, and POITEM interfaces, each of which
includes getters, setters, and factory classes (for instantiating typed data objects and their
Properties).

e An interface for the CUSTOMERNAME string attribute.

e Getters and setters for working with members of arrays of CREDIT, ORDER, and POITEM
elements.

Client Application Developer's Guide 2-5

DSP’s Data Programming Model and Update Framework

Figure 2-4 CUSTOMER Return Type Displayed in DSP Console’s Metadata Browser

General | Dependencies | Where Used | Properties | Return Type

This shows the return type of XD3 function

CUSTOMER
@ CUSTOMERID xs:int
@ CUSTOMERNAME xs:string
= CREDIT*
(@ CREDITSCORE xs:int
@ CREDITRATING xs:string
CORDER *
& ORDERID xs:int
@ CUSTOMERID xs:int

@ ORDERID xs:int

@ KEY xsiint

Q ITEMNUMBER ? xs:int
L@ QUANTITY 2 xscint

When you develop Java client applications that use SDO’s static data APIs, you will import these
XMLBeans-generated typed interfaces into your Java client code. For example:

import appDataServices.AddressDocument;

The SDO API interfaces use XMLBeans for object serialization and deserialization. As a client
application developer, you rarely need to know such details. However, developers who are integrating
DSP with WebLogic Integration workflow components (JPDs, or Java process definitions) will need to
modify the default serialization-deserialization in their JPD code that uses data objects. For more
information, see Chapter 7, “Using Workflow with DSP-Enabled Applications.”

Since DSP uses XMLBeans, many features of the underlying XMLBeans technology are available in
SDO as well. For example, DataObjects can be cast to Strings using the XmlObjects toString()
method, for printing to output.

Table 2-5 Static (Typed) Data API Getters and Setters

Static Data API (Generated) Description Examples
Type getPropertyName() Returns the value of the property. A getCUSTOMER () ,
s s getCUSTOMERNAME () ,
static getPropertyName() method is GOLCREDITRATING () |

generated for each attribute or element getcrREDITSCORE ()
that has a single occurrence.

Typel] For multiple occurrence elements, getCREDITArray ()
getPropertyNamehrray () returns all PropertyName elements.

Type get PropertyNameArray (Returns the PropertyName child getCREDITArray (int),
int P tyInd o 1 tCREDITSCORE (int
int Propertylndex) element at the specified index. se (int)

2-6 Client Application Developer's Guide

Data Services Platform and Service Data Objects (SDOs)

Static Data API (Generated)

Description

Examples

void setPropertyName (Type
newValue)

Sets the value of the property to the
newValue. Generated when
PropertyName is an attribute or an
element with single occurrence.

setCUSTOMER (CUSTOMER) ,
setCUSTOMERNAME (String) ,
SetCREDITRATING (String)

void set PropertyNameArray (
Type[] newValue)

Sets all PropertyName elements.

setCREDITArray (CREDITI[])

void setPropertyNameArray (
Type newValue, int
PropertyIndex)

Sets the PropertyName child element
at the specified index.

setCREDITArray (int,
CREDIT)

boolean isSetPropertyName ()

Determines whether the
PropertyName element or attribute
exists in the document. Generated for
optional elements and attributes. (An
optional element has a minOccurs
attribute set to 0; an optional attribute
has a use attribute set to optional.)

isSetCustomerStreetAddre
ss2 ()

void insertPropertyName (int

Inserts the specified PropertyName

insertNewCREDIT (int)

index, PropertyNamelype child element at the specified index.
newValue)
int Returns the current number of property ~ sizeOfCREDITArray ()

sizeOf PropertyNameArray ()

child elements.

void unSetPropertyName ()

Removes the element or attribute of
PropertyName from the document.
Generated for elements and attributes
that are optional. In schema, and
optional element has an minOccurs
attribute set to 0; an optional attribute
has a use attribute set to optional.

unSetCustomerStreetAddre
ss2()

void removePropertyName (int
PropertyIndex)

Removes the PropertyName child
element at the specified index.

removeCREDIT (int)

void addPropertyName (
PropertyNameType newValue)

Adds the specified PropertyName to
the end of the list of PropertyName
child elements.

addNewCREDIT(),
addNewCUSTOMER()

Client Application Developer's Guide 2-1

DSP’s Data Programming Model and Update Framework

Static Data API (Generated)

Description Examples

isSetCustomerArray (3)

boolean Determines whether the
issetPropertyNamehrray (int pyonoriy Name element at the
PropertyIndex)

specified index is null.

void unsetPropertyNameArray (
int PropertyIndex)

unSetCustomerArray (3)

Sets the value of PropertyName
element at the specified index to null.

Note: After you call unset and then
call set, the return value is

false.

XML Schema-to-Java Type Mapping Reference

DSP client application developers can use the Data Services Platform Console to view the XML
schema types associated with data services (see Figure 2-4, “CUSTOMER Return Type Displayed in
DSP Console’s Metadata Browser,” on page 2-6). The Return Type tab indicates the data type of each
element—string, int, or complex type, for example. The XML schema data types are mapped to data
objects in Java using the data type mappings shown in Table 2-6.

Table 2-6 XML Schema to Java Data Type Mapping

XML Schema Type SDO Java Type XML Schema Type SDO Java Type
xs:anyType Sequence xs:integer java.math.BigInteger
xs:anySimpleType String xs:language String
xs:anyURI String xs:long long
xs:base64Binary bytel] xs :Name String
xs:boolean boolean xs : NCName String
xs:byte byte xs:negativelnteger java.math.BigInteger
xs:date java.util.Calendar xS : NMTOKEN String
(Date)
xs:dateTime java.util.Calendar xs : NMTOKENS String
xs:decimal java.math.BigDecim xs:nonNegativeInteger java.math.BigInteger
al
xs:double double xs:nonPositiveInteger java.math.BigInteger
2-8 Client Application Developer's Guide

Data Services Platform and Service Data Objects (SDOs)

XML Schema Type SDO Java Type XML Schema Type SDO Java Type
xs:duration String xs:normalizedString String
xs:ENTITIES String xs :NOTATION String
xs:ENTITY String xs:positiveInteger java.math.BigInteger
xs:float float xs : QName javax.xml.namespace.QName
xs:gDay java.util.Calendar xs:short short
xs:gMonth java.util.Calendar xs:string String
xs :gMonthDay java.util.Calendar xs:time java.util.Calendar
xs:gYear java.util.Calendar xs:token String
xs:gYearMonth java.util.Calendar xs:unsignedByte short
xs:hexBinary bytel] xs:unsignedInt long
xs:ID String xs:unsignedLong java.math.BigInteger
xs: IDREF String xs:unsignedShort Int
xs:IDREFS String xs:keyref String
xs:int int

Dynamic Data API

The dynamic data API has generic property getters and setters, such as set() and get(), as well as
getters and setters for specific Java data types (String, Date, List, BigInteger, and BigDecimal, for
example). Table 2-7 lists representative APIs from SDO’s dynamic data API. The propertyName

argument indicates the name of the property whose value you want to get or set; propertyValue is the
new value. The dynamic data API also includes methods for setting and getting a DataObject’s
property by indexValue. This includes methods for getting and setting properties as primitive types,
which include setInt(), setDate(), getString(), and so on.

Unlike the static data API, which eliminates underscores in method names generated from types that
might include such characters ("LAST_NAME" results in a getLASTNAME() method, for example),
the dynamic data API requires that field names be referenced precisely, as in get("LAST_NAME"). As
an example, assuming that you have a reference to a CUSTOMER data object, you can use the dynamic
data API to get the LAST NAME property as follows:

String lastName = (String) customer.get ("LAST NAME") ;

Client Application Developer's Guide 2-9

DSP’s Data Programming Model and Update Framework

For a complete reference of the dynamic data API, see the DSP Javadoc (“DSP Mediator API Javadoc

on page 1-13). For documentation on the SDO 1.0 API see the DataObject interface in the
commonj.sdo package. It is available at:

http://dev2dev.bea.com/technologies/commonj/sdo/index. jsp

Table 2-7 Dynamic Data API Getters and Setters

Dynamic Data API Description Example
get (int PropertyIndex) Returns the PropertyName get (5)
child element at the
specified index.
set (int PropertyIndex, Sets the value of the set (5, CUSTOMER3)
Object newValue) property to the newValue.
set (String PropertyName, Sets the value of the set ("LAST NAME", "Nimble")
Object newValue) PropertyName to the
newValue.
set (commonj.sdo.Property Sets the value of set (LASTNAME, "Nimble")

PropertyName, Object

newValue)

PropertyName to the
NewValue

getType (String
PropertyName)

Returns the value of the
PropertyName. Type
indicates the specific data
type to obtain.

getBigDecimal ("CreditScore")

unset (int PropertyIndex)

Sets the value of
PropertyName element at
the specified index to null.

unset (5)

unset (commonj.sdo.Propert
v PropertyName)

Sets the value of the
specified PropertyName to
null.

unset (LASTNAME)

unset (String
PropertyName)

Sets the value of the
specified PropertyName to
null.

unset ("LAST_NAME")

createDataObject (commonj .

Returns a new DataObject

createDataObject (LASTNAME)

sdo.Property for the specified
PropertyName) containment property.
2-10 Client Application Developer's Guide

http://dev2dev.bea.com/technologies/commonj/sdo/index.jsp

Data Services Platform and Service Data Objects (SDOs)

Dynamic Data API

Description

Example

createDataObject (String
PropertyName)

Returns a new DataObject
for the specified
containment property.

createDataObject ("LAST_NAME")

createDataObject (int
PropertyIndex)

Returns a new DataObject
for the specified
containment property.

createDataObject (5)

createDataObject (String
PropertyName, String
namespaceURI, String
typeName)

Returns a new DataObject
for the specified
containment property.

createDataObject ("LAST _NAME",
"http://namespaceURI_here",
"String")

delete()

Removes the object from its
container and unsets all
writeable properties.

delete (CUSTOMER)

XPath Support in the Dynamic Data API

One of the benefits of DSP’s use of XMLBeans technology is support for XPath in the dynamic data API.
XPath expressions give you a great deal of flexibility in how you locate data objects and attributes in
the dynamic data API's accessors. For example, you can filter the results of a get() method invocation
based on data elements and values:

company.get ("CUSTOMER[1] /POITEMS/ORDER [ORDERID=3546353]")
The SDO implementation goes beyond basic XPath 1.0 support by adding zero-based array index
notation (".index_from_0") to XPath’s standard bracketed notation ([n]). As an example, Table 2-8

compares the XPath standard and SDO augmented notations to refer to the same element, the first
ORDER child node under CUSTOMER.

Table 2-8 XPath Standard and SDO Augmented Notation

XPath Standard Notation SDO Augmented Notation

get ("CUSTOMER/ORDER[1]") ; get ("CUSTOMER/ORDER. 0") ;

Zero-based indexing is convenient for Java programmers who are accustomed to zero-based counters,
and may want to use counter values as index values without adding 1.

Client Application Developer's Guide 2-11

DSP’s Data Programming Model and Update Framework

2-12

DSP fully supports both the traditional index notation and the augmented notation. However, note
that the SDO pre-processor transparently replaces the zero-based form with one-based forms, to avoid
conflicts with elements whose names include dot numbers, such as <myacct.12>.

Keep in mind these other points regarding DSP’s XPath support:
e Expressions with double adjacent slashes ("//") are not supported. As specified by XPath 1.0,
you can use an empty step in a path to effect a wildcard. For example:
("CUSTOMER/ /POITEM")

In this example, the wildcard matches all purchase order arrays below the CUSTOMER root,
which includes either of the following:

CUSTOMER /ORDERS/POITEM

CUSTOMER /RETURNS / POITEM

Because this notation introduces type ambiguity (types can be either ORDERS or RETURNS), it
is not supported by the DSP SDO implementation.

e Attribute notation ("@") cannot be used to identify elements. According to the SDO
specification, the notation for denoting an attribute "@" can be used anywhere in the path
because attributes and elements are used interchangeably as properties. However, because DSP
implements SDO to XML data binding, the distinction between attributes and elements must be
preserved. Attribute notation can be used to identify only the attributes that are in the DSP
data type. For example, the ID attribute of the following element:

<ORDER ID="3434">
is accessed with the following path:
ORDER/@ID
Note: For more examples of using XPath expressions with SDOs, see “Step 2: Accessing Data Object
Properties” on page 3-23.
Obtaining Type Information about Data Objects

The dynamic data API returns generic data objects. To obtain information about the properties of a
data object, you can use methods available in SDO’s Type interface. The Type interface (located in the
commonj . sdo package) provides several methods for obtaining information, at runtime, about data
objects, including a data object’s type, its properties, and their respective types.

According to the SDO specification, the Type interface (see Table 2-9) and the Property interface (see
Table 2-10) comprise a minimal metadata API that can be used for introspecting the model of data
objects. For example, the following obtains a data object’s type and prints a property’s value:

Client Application Developer's Guide

Data Services Platform and Service Data Objects (SDOs)

DataObject o = ;
Type type = o.getType();
if (type.getName().equals("CUSTOMER") {
System.out.println(o.getString ("CUSTOMERNAME")); }
Once you have an object’s data type, you can obtain all its properties (as a list) and access their values

using the Type interface’s get Properties() method, as shown in Listing 2-1.

Listing 2-1 Using SDO’s Type Interface to Obtain Data Object Properties

public void printDataObject (DataObject dataObject, int indent) {
Type type = dataObject.getType() ;
List properties = type.getProperties();
for (int p=0, size=properties.size(); p < size; p++) {
if (dataObject.isSet(p)) {
Property property = (Property) properties.get(p);
// For many-valued properties, process a list of values
if (property.isMany()) {
List values = dataObject.getList(p);
for (int v=0; count=values.size(); v < count; v++) {
printValue (values.get (v), property, indent) ;
}
else { // Forsingle-valued properties, print out the value
printValue (dataObject.get (p), property, indent);
}

Table 2-9 lists other useful methods in the Type interface.

Table 2-9 Type Interface Methods

Method Description
java.lang.Class getInstanceClass/() Returns the Java class that this type represents.
java.lang.String getName () Returns the name of the type.

Client Application Developer's Guide 2-13

DSP’s Data Programming Model and Update Framework

Method

Description

java.lang.List getProperties

Returns a list of the properties of this type.

Property getProperty (
java.lang.String propertyName)

Returns from among all Property objects of the
specified type the one with the specified name.
For example, dataObject.get("name") or
dataObject.get(dataObject.getType().getProperty
("name"))

java.lang.String getURI ()

Returns the namespace URI of the type.

boolean isInstance(
java.lang.Object object)

Returns True if the specified object is an instance
of this type; otherwise, returns false.

Table 2-10 lists the methods of the Property interface.

Table 2-10 Property Interface Methods

Method

Description

Type getContainingType ()

Returns the containing type of this property.

java.lang.Object getDefault ()

Returns the default value this property will have in
a data object where the property hasn't been set

java.lang.String getName ()

Returns the name of the property.

Type getType ()

Returns the type of the property.

boolean isContainment ()

Returns True if the property represents by-value
composition.

boolean isMany ()

Returns True if the property is many-valued.

Role of the Mediator and SDOs

In DSP, data graphs are passed between data services and client applications: when a client
application invokes a read function on a data service, for example, a data graph is sent to the client
application. The client application modifies the content as appropriate—adds an order to a customer
order, for example—and then submits the changed data graph to the data service. The Data Service

2-14 Client Application Developer's Guide

The Data Services Platform Update Framework

Mediator is the process that receives the updated data objects and propagates changes to the
underlying data sources.

The Data Service Mediator is the linchpin of the update process. It uses information from submitted
SDOs (change summary, for example) in conjunction with other artifacts to derive an update plan for
changing underlying data sources. For relational data sources, updates are automatic. The artifacts
that comprise DSP’s update framework, including the Mediator, and how the default update process
works, are described in more detail below.

The Data Services Platform Update Framework

As mentioned previously, the SDO specification does not define any specific mediators, but allows for
the variety needed to support any type of back-end data sources. DSP’s implementation of an SDO
mediator service is the Data Service Mediator (or DSP Mediator) shown in Figure 2-1. The DSP
Mediator plays an important role in facilitating updates to the various data sources that comprise any
data service. It is the core mechanism for the DSP update framework; the update framework also
encompasses several programming artifacts, as follows:

e Decomposition function. The decomposition function is the first read function contained in a
data service, unless a different function has been specified by the data service architect
through the Property Editor. The decomposition function is used by the Mediator to create a
decomposition map (for logical data services only) that identifies the constituent data services.
From these constituent data services, the Mediator instantiates data objects corresponding to
the changed values in the updated data object.

e Decomposition map. A decomposition map (associated with logical data services only) provides
information about how a data object based on that data service is constructed (from the
underlying data sources or other data services).

e Update plan. The indicates the physical resources that should be modified, and how they
should be modified. An update plan is generated for any changed data objects bound to logical
data services (see Figure 2-11). The update plan does not include unchanged objects, nor does
it have access to any data services that are not included in the update plan: only changed
objects are included in the update plan.

o KeyPair. A keypair is an object used by DSP to keep track of primary-foreign key relationships,
and the relationship of properties of data objects that have been populated from various layers
of a multi-layer data service. (A keypair is sometimes described as a property map.)

Client Application Developer's Guide 2-15

DSP’s Data Programming Model and Update Framework

2-16

Figure 2-11 DSP’s Decomposition Process Populates an Update Plan with Constituent Data Objects

submit document

customersDocument

decomposition process

update plan
CustomerSDO

OrderSDO(0)

From a lower-level perspective, an update plan is a Java object that comprises a tree of
DataServiceToUpdate instances — the names of the data services that comprise the changed data
objects. DataServiceToUpdate, KeyPair, UpdatePlan, and DataServiceMediatorContext have been
implemented as classes in the SDO Mediator APIs, specifically in:

com.bea.ld.dsmediator.update package

See “DSP Mediator API Javadoc” on page 1-13 for information on product Javadocs.

How It Works: The Decomposition Process

An important characteristic of the SDO model is that back-end data sources associated with modified
objects are not changed until the submit() method is called on the data service bound to the objects.

After receiving a data object (the changed SDO) from a calling client application, the Mediator always
looks for an update override class first (regardless of whether the data service is a physical or logical
data service). If an update override class is available, it is instantiated and executed.

Note: Update overrides are covered in detail in Chapter 9, “Customizing Data Service Update
Behavior.” This chapter covers the basics of the default update processing only.

Client Application Developer's Guide

The Data Services Platform Update Framework

The Mediator first determines the data lineage—the origins of the data—by using the data service’s
decomposition function to map each constituent in a data object to its underlying data source or data
service. In addition, any inverse functions specified for the data service are used by the Mediator to
define a complete decomposition map.

Note: The usage of inverse functions is described in "Best Practices and Advanced Topics", Data
Services Developer’s Guide.

As discussed above, for any logical data service, DSP’s Mediator uses the decomposition function to
create a decomposition map that identifies constituent data services and then instantiates data
objects that correspond to the data objects’ changed values. For example, as shown in Figure 2-11, a
customersDocument object that comprises updated customer information (from a Customer data
service) and three updated Orders (from an Orders data service) would be decomposed into four
objects.

An important distinction between logical and physical data service updates is as follows:

e Physical Data Service Update Process. The data source is updated immediately. No
decomposition is required.

e Logical Data Service Update Process. A logical data service must be decomposed into its
constituent data services.

Physical Data Service Update Process

For a physical data service, changes to the data sources are propagated immediately (unless an update
override class is associated with the data service).

Note: Neither a decomposition map nor an update plan is needed for a physical data service.

Upon receiving an SDO (whether from a submit() method invocation, or as a projection from a
higher-level data service), the Mediator first checks for an UpdateOverride class associated with the
data service.

e No update override. If there is no UpdateOverride the Mediator simply propagates the changes
to the underlying data sources.

e With update override. If there is an UpdateOverride the Mediator executes the update override
class.

Note: For non-relational data sources, an update override is always required, since there is no
automatic update processing for non-relational data sources.

Client Application Developer's Guide 2-11

../datasrvc/index.html

../datasrvc/index.html

DSP’s Data Programming Model and Update Framework

For relational data sources without an update override, updates are handled automatically. However,
non-relational data sources such as Web services, flat files, XML files, require an update override class
that contains the processing logic necessary to make changes to the data source.

Logical Data Service Update Process

A logical data service can comprise any number of logical or physical data services. When a top-level
data service function executes, the lower-level logical data services that it comprises are "folded in"
so that the function appears to be written directly against physical data services. Only information
that has been projected in the top-level data service is passed to the next lower-level data service.

Figure 2-12 provides an overview of the steps involved in updating a logical data service:

1. The client application invokes the submit() method, passing the changed data object and its
associated data graph to the Mediator. The data graph has a change summary detailing the
changes to the object.

2. The Mediator receives the submitted data object and begins the decomposition process by first
checking for an update override class. The two possible logic branches are described below:

— No update override. The Mediator decomposes the updated object into submit() calls
against the underlying physical data services.

— With update override. The Mediator instantiates mid-level data objects from the top-level
SDO, then calls update override routine. The submit() on the mid-level data service is then
processed as usual.

Note: An update override class can exist at each layer of a multi-layered data service. Thus,
a logical data service comprising several layers of other logical data services checks
for an update override at each constituent layer. If a mid-layer data service has no
update override, the update framework bypasses the instantiation of an SDO object,
instead directly creating the SDO objects for the underlying data service. This is true
in the case of a logical data service with an update override or a physical data service.

The performChange() method can access and modify the update plan and decomposition map,
or perform any other custom processing, including taking over complete processing.

The performChange() method returns a Boolean value that either continues or aborts
processing by the Mediator, as follows:

— True. After control returns from the method, the Mediator resumes its normal course of
processing. A new update plan is automatically generated so that any new changes against
the passed-in SDO made in the update override plan can be accounted for. The new plan
combines the previously indicated changes with any new change.

2-18 Client Application Developer's Guide

The Data Services Platform Update Framework

— False. The Mediator does not attempt to apply the changes. The method would return false,
for example, if all changes have already been made. (If you want to handle an error that
would require the update to be aborted, your method should throw an exception.)

Note: See Chapter 9, “Customizing Data Service Update Behavior,” for complete information
about customizing behavior.

The Mediator determines the origins of the data sources that must be changed and how to
change them. The Mediator calls the decomposition function associated with the data service
and receives a decomposition map for the data service. By default, the Mediator uses the data
service’s first read function to create its decomposition map (if no other decomposition function
is specified).

a. The Mediator uses the information in the change summary and the data service's
decomposition map to derive an update plan. The update plan comprises a tree of data service
objects ("SDO objects to update") for each instance of a changed data source.

b. For any lower-level data service, the Mediator also checks for an update override, and executes
the update override class if one is present.

The Mediator iterates (walks) through the update plan, submitting changes to each of the lower
level data services. The Mediator applies changes based on the order of objects in the tree and
their container-containment relationships, as follows:

a. Objects within the same level (sibling objects) are processed in the order in which they are
encountered in the data object.

b. Container objects are processed before contained objects—unless the container is being
deleted, in which case changes are applied to the contained object before the containing
object.

c. Ifan object has a KeyPair specified, the values are mapped from its container before
submitting the change. (Changes made to an SDO container during its update, such as primary
key computations, are visible in the contained object.)

Client Application Developer's Guide 2-19

DSP’s Data Programming Model and Update Framework

2-20

Figure 2-12 Logical Data Service Update Process

1; Mediator
2.

DSP —(submit ()——»

Client App Eg customer.ds

custUpd.class

ORDERS.DS
4.
@ ITEMS.DS
°
/ »| jtemUpd.class
<
¢ Y
CUST ORDERS

Primary-Foreign Key Relationships Mapped Using a KeyPair

Most RDBMSs can automatically generate primary keys, which means that if you are adding new data
objects to a data service that is backed by a relational database, you may want or need to handle a
primary key as a return value in your code. For example, if a submitted data graph of objects includes
a new data object, such as a new Customer, DSP generates the necessary primary key.

For data inserts of autonumber primary keys, the new primary key value is generated and returned to
the client. Only primary keys of top-level data objects (top-level of a multi-level data service) are
returned; nested data objects that have computed primary keys are not returned.

By returning the top-level primary key of an inserted tuple, DSP allows you to re-fetch tuples based on
their new primary keys, if necessary.

The Mediator saves logical primary-foreign keys as a KeyPair (see the KeyPair class in the Mediator
API). A KeyPair object is a property map that is used to populate foreign-key fields during the process
of creating a new data object:

The value of the property will be propagated from the parent to the child, if the property is an
autonumber primary key in the container, which is a new record in the data source after the
autonumber has been generated.

Client Application Developer's Guide

The Data Services Platform Update Framework

The KeyPair object is used to identify corresponding data elements at adjacent levels of a
decomposition map; it ensures that a generated primary key value for a parent (container) object will
be mapped to the foreign key field of the child (contained) element.

As an example, Figure 2-13 shows property mapping for the decomposition of a Customers data
service.

Figure 2-13 Logical Data Services Use KeyPairs for Property Mapping (Primary-Foreign Key Mapping)

Property Mapping
customer Data Service

~ - o@ customerID

Customers Data Service @ customerName

@ customeriD ®
@ customerName @

orderiD® .
Order Data Service

customerlD
orderlD

POltem @

POltem

DSP manages the primary-foreign key relationships between data services; how the relationship is
managed depends on the layer (of a multi-layered data service), as follows:

e Top-level data service. Inserts generate a new primary key, which is returned to the client.
Adding a data object at the top-level of a data service data objects have been added which have
primary keys that are automatically generated by the RDBMS, the values of the primary keys for

the inserted fuples will be returned as an array of Java properties (XPath name/value pairs)
after a successful update submit:

Properties[] keys = ds.submit (doc);

A tuble is basically a record; in the context of data services, a tuble may comprise data that
spans several layers of data services.

e Nested data objects. Generates and inserts a new primary key, but does not return to the
client.

DSP propagates the effects of changes to a primary or foreign key.

Client Application Developer's Guide 2-21

DSP’s Data Programming Model and Update Framework

2-22

For example, given an array of Customer objects with a primary key field CustID into which two
customers are inserted, the submit would return an array of two properties with the name being
CustID, relative to the Customer type, and the value being the new primary key value for each inserted
Customer.

Managing Key Dependencies

DSP manages primary key dependencies during the update process. It identifies primary keys and can
infer foreign keys in predicate statements. For example, in a query that joins data by comparing
values, as in:

where customer/id = order/id
The Mediator performs various services given the inferred key/foreign key relationship when updating
the data source.

If a predicate dependency exists between two SDOToUpdate instances (data objects in the update
plan) and the container SDOToUpdate instance is being inserted or modified and the contained
SDOToUpdate instance is being inserted or modified, then a key pair list is identified that indicates
which values from the container SDO should be moved to the contained SDO after the container SDO
has been submitted for update.

This Key Pair List is based on the set of fields in the container SDO and the contained SDO that were
required to be equal when the current SDO was constructed, and the key pair list will identify only
those primary key fields from the predicate fields.

The KeyPair maps a container primary key to container field only. If the KeyPair does not container’s
complete primary key is not identified by the map then no properties are specified to be mapped.

A Key Pair List contains one or more items, identifying the node names in the container and contained
objects that are mapped.

Foreign Keys

When computable by SDO submit decomposition, foreign key values are set to match the parent key
values.

Foreign keys are computed when an update plan is produced.

Transaction Management

Each submit() to the Mediator operates as a transaction. Depending upon whether the submit()
succeeds or fails, you should do one of two things:

Client Application Developer's Guide

The Data Services Platform Update Framework

e Submit() succeeds. You can re-query the SDO to be sure it matches the current data because
side effects of the update may have changed the result of the query. (Re-querying the data
service to obtain a new data object also clears the change summary.)

e Submit() fails. You can reinvoke submit() on the data object to execute the same updates
(since the original data objects and change summary still exist).

Nested Transactions

All submits perform immediate updates to data sources. If a data object submit occurs within the
context of a broader transaction, commits or rollbacks of the containing transaction have no effect on
the submitted data object or its change summary, but they will affect any data source updates that
participated in the transaction.

Client Application Developer's Guide 2-23

DSP’s Data Programming Model and Update Framework

2-24 Client Application Developer's Guide

CHAPTERa

Accessing Data Services from Java
Clients

This chapter describes how your Java client applications can access data services. It covers the
following topics:

e Overview of the Data Services Platform Mediator API

e Generating a Static Mediator API JAR File

e Using the Data Service Mediator API

e Obtaining a WebLogic JNDI Context for Data Services Platform
e Using a Static Data Service Mediator API

e Using a Dynamic Mediator API

Overview of the Data Services Platform Mediator API

The BEA AquaLogic Data Services Platform (DSP) Mediator API gives Java client application
developers easy-to-use interfaces for using data service routines. To use the Mediator API, simply
instantiate a remote data service interface and invoke public methods on the interface. Public
methods can include read functions, navigation functions, and procedures.

The return type for the invocations depends on the type of method and whether the static or dynamic
interfaces are used, as follows:

e Read and navigation functions. When a read function or navigation function is invoked
through the Mediator API, the client application gets back information as a data graph that
comprises the data objects constructed by the data service.

Client Application Developer’s Guide 3-1

Accessing Data Services from Java Clients

e Procedures. When a procedure is invoked through the Mediator API, the client application may
or may not get back an SDO, depending on the implementation details of the procedure as
configured for the data service.

The Mediator API provides both static and dynamic interfaces for working with data services.

o Static Mediator APIs. You can use the static mediator APIs to invoke functions on multiple
data services, then cast the acquired objects to the appropriate data types. Static Mediator APIs
are generated from a specific data service.

e Dynamic Mediator APIs. Use the dynamic mediator APIs to instantiate and invoke data service
functions and procedures by name.

The Mediator API also supports several advanced features, including:

o Ability to filter, sort, and truncate return values. Your client applications can organize or
limit returned results in several different ways using the Mediator API's Filter and FilterXQuery
classes. For more information, see “Filtering, Sorting, and Fine-tuning Query Results” on
page 10-5.

o Ability to stream data service function results. The static and dynamic interfaces data
service materialize data service function call results as XML, in memory. However, in-memory
materialization is not always practical. The Mediator API offers several different
stream-oriented interfaces. For more information, see “Handling Large Result Sets with
Streaming APIs” on page 10-15.

e Ad hoc query interface. The Mediator API’s PreparedExpression interface enables client
applications to invoke ad hoc XQuery expressions against data service results. Ad hoc queries
can return anything, including simple data. Simple data is not represented as DataObjects
(XmlObjects); however, in DSP ad hoc queries can return DataObjects if the returned XML is
structured correctly and the appropriate static SDO classes are on the classpath. For more
information, see “Using Ad Hoc Queries to Fine-tune Results from the Client” on page 10-11.

The Mediator APIs are used to instantiate interfaces to data services and invoke data service functions
and procedures. Functions and procedures defined for a data service are available as methods in the
Mediator API.

The dynamic Mediator API classes and interfaces are in the following JAR file:
ld-client.jar
The Data Service Mediator package is named as follows:

com.bea.dsp.dsmediator.client

3-2 Client Application Developer's Guide

Overview of the Data Services Platform Mediator API

The API consists of the classes and interfaces listed in Table 3-1

Table 3-1 Data Services Platform Mediator API

Interface or Class Name Description

DataService Interface for data services that returns data as Data Objects. The
interface includes invoke() method for invoking read and navigation
functions; invokeProcedure() for invoking procedures; and submit()
method for submitting data object changes.

PreparedExpression Interface for preparing and executing ad hoc queries. An ad hoc query
is one that is defined in the client program, not in the data service.

DataServiceFactory Factory class for creating local interfaces to data services. Can be used
for dynamic data service instantiation and ad hoc queries.

StreamingDataService Interface for data services that returns data as a token stream.

StreamingPreparedExpression Interface for preparing and executing ad hoc query functions that
return information as a stream. An ad hoc query is an XQuery that is
passed as a string from within a client program (rather than in the data
service).

The static mediator API interface extends the static Mediator interface, as shown in this example of
a class declaration for a typed data service:

public class dataservices.Customer extends
com.bea.dsp.dsmediator.client.DataService { .. }

The static data service interface is in the SDO Mediator Client JAR files generated from an DSP
project.

The exception class for Mediator errors (SDOMediatorException) is in the following package:
com.bea.ld.dsmediator.client.exception

Exceptions that are generated by the data source (such as SQLException) are wrapped in an SDO
Exception, and can be accessed by calling getCause() on the SDOMediatorException.

Setting the Classpath

To develop Java-based client programs using the Mediator APIs, your development environment’s
CLASSPATH must include the JAR files listed in Table 1-5, “Data Services Platform Java Archive
Files,” on page 1-12.

Client Application Developer's Guide 3-3

Accessing Data Services from Java Clients

34

In addition, to use static data APIs, you must include the <app-name>-1d-client. jar file (obtain
from your data service architect or administrator).

Note: The <app-name>-1d-client. jar file is not needed for generic SDO.

As an example, for a data service named Demo using static APIs, your classpath on a Microsoft
Windows operating system would include:

set CLASSPATH=%CLASSPATH%;Demo-ld-client.jar;
C:\bea\weblogic8l\server\lib\weblogic.jar;
:\bea\weblogic8l\liquiddata\lib\wlsdo.jar;
:\bea\weblogic8l\server\lib\xbean. jar;
:\bea\weblogic8l\server\lib\xgrl.jar;
:\bea\weblogic8l\server\lib\wlxbean.jar;
:\bea\weblogic8l\liquiddata\lib\ld-client.jar;

Q0 00N

This classpath assumes that the first item, Demo-1d-client. jar, is in the current directory and
that the BEA WebLogic home directory is: ¢ : \bea\weblogic81. Modify the path to the locations
appropriate for your system, and change the name of Demo-1d-client.jar to the actual name of
the JAR file generated from your DSP-enabled application.

Mediator APl Summary and Reference

Client application developers can take two alternative approaches to working with SDOs:
e Mediator APIs, which encompass the two Java packages listed in Table 3-2

e Data Service controls, a server-side Java class file that adheres to the Java Control Extension
(JCX) standard.

This chapter discusses the Mediator APIs and how to use in Java client applications.

Client application developers will use some combination of the APIs shown in Table 3-2, depending on
your application design and specific goals. Data service developers will also use the SDO Update API
(specifically, the UpdateOverride interface) to customize data service functionality.

Client Application Developer's Guide

Table 3-2 Data Service Mediator APIs Package Reference

Generating a Static Mediator APl JAR File

SDO Mediator APIs SDO Update APIs
Package com.bea.dsp.dsmediator.client com.bea.ld.dsmediator.update
Description DataServiceFactory and other classes. DataServiceMediatorContext,
DataService, StreamingDataService, and DataServiceToUpdate, KeyPair,
PreparedExpression interfaces. DataServiceMediator, and UpdatePlan
classes. UpdateQOverride interface.
Usage note Instantiate remote interface to a data Submit changed data objects to data service.
service. Override default update processing for a
particular data service.
Location <bea_home>\weblogic81\liquidd Same as for SDO Mediator APIs.
atal\lib\ld-client.jar
Javadoc Data Services API Javadoc. Same as for SDO Mediator APIs.
Javadoc http://e-docs.bea.com/aldsp/d Same as for SDO Mediator APIs.
location ocs21l/Javadoc/index.html

Generating a Static Mediator API JAR File

Client applications can access the classes representing a static data service interface using the JAR
(Java Archive) file generated from the DSP project. Client application developers must obtain this
JAR file (typically, from the data services architect or the Data Services Platform administrator) and
add the JAR file in the classpath of their development environment.

The naming convention for the generated, static Mediator client JAR file is:

<AppName>-1d-client.jar

Building the Client JAR

Once the data service application has been built into an EAR file, the client version of the data service
— the <aAppName>-1d-client. jar file — can be generated from the EAR. The client version
includes wrapper classes that allow the client to call the data service functions through a dynamic

APL

The necessary JAR file can be generated in either of two ways:

Client Application Developer's Guide 3-5

Accessing Data Services from Java Clients

e From WebLogic Workshop, with the top folder of the application selected, right-click and select
Build SDO Mediator Client from the pop-up menu. (This menu option is available from the root
folder of the application only.)

e From the command prompt of the data service development machine by using the Ant script, as
follows:

a. At a command prompt, navigate to the directory.

b. Execute the shell or command file script to set the environment for your machine. For
Windows use setWLSEnv . cmd; for UNIX use setWLSEnv . sh.

These scripts can be found in the following location:

<beahome>/weblogic8l/server/bin

c. Run the Ant script, passing in the name of a temporary directory as one of the parameters as
shown below:

ant -Doutdir=<output-directory> -Darchive=<archive>
-Dtmpdir=\tmp\clientbld -fld_clientapi.xml

Table 3-3 Arguments for Generating a Mediator Static Client JAR from Data Services EAR

Argument Description

<archive> Fully qualified name of the generated EAR file. The generated name is
derived from the name of the application.

<outdir> Directory in which to generate the client JAR file. Optional parameter;

if unspecified, the current directory is used.

<tmpdir> Directory in which to produce the temporary, expanded EAR file

contents. Although this parameter is optional, BEA recommends that

you always create and specify a temporary directory, since all contents
will be deleted at the end of the process. If <tmpdir> is not specified,
the current directory will be used.

For example:

ant -Doutdir="c:\myApp"
=Darchive=C:\bea\user_projects\applications\myApp.ear -Dtmpdir=c:\temp
-fld_clientapi.xml

Executing the command as shown in this example produces the client JAR file, as follows:

C:\myApp-ld-client.jar

3-6 Client Application Developer's Guide

Generating a Static Mediator APl JAR File

Using the Data Service Mediator API

To use the Data Service Mediator API to invoke data service functions and procedures, create a Java
class as follows:

1. Import the com.bea.dsp.dsmediator.client package.

2. Create a JNDI context for the WebLogic Server that hosts the DSP application.

Note: For more information, see “Obtaining a WebLogic JNDI Context for Data Services
Platform” on page 3-7. For complete information about WebLogic Server contexts, see:

http://e-docs.bea.com/wls/docs81l/javadocs/weblogic/jndi/WLInitialContextFactory.html

3. Instantiate remote interfaces for the data service. You can use either a static or dynamic
mediator API interface. The dynamic interface is generic; the data service name is passed as an
argument. For example:

DataService ds = DataServiceFactory.newDataService (
JndiCntxt, "RTLApp", "ld:DataServices/RTLServices/Customer") ;

Here is the same operation using a static interface:

CUSTOMER ds = CUSTOMER.getInstance (JndiCntxt, "RTLApp");
4. Invoke a function or procedure on the data service.

The following is the operation using the dynamic interface to invoke a read function on a data
service:

Object[] params = new Object { "CUSTOMER1" };
DataObject[] myCustomer =
(DataObject[]) ds.invoke ("getCustomerByCustID", params) ;

Here is the same operation using a static interface:
CUSTOMERDocument myCust = ds.getCustomerByCustID("CUSTOMER1") ;

Note:

Obtaining a WebLogic JNDI Context for Data Services Platform

Java client applications use JNDI to access named objects, such as data services, on a WebLogic
Server. A single JNDI call is made to obtain an initial context, which is then passed to the data services
factory class. Once you have the server context, you can invoke functions and acquire information from
data services.

To get the WebLogic Server context, set up the JNDI initial context by specifying the
INITIAL_CONTEXT_FACTORY and PROVIDER_URL environment properties:

Client Application Developer's Guide 3-1

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/jndi/WLInitialContextFactory.html

Accessing Data Services from Java Clients

e The value of INITIAL_CONTEXT FACTORY should be set to:

weblogic.jndi.WLInitialContextFactory

e The value of PROVIDER_URL should reflect the location (URI) of the WebLogic Server hosting
DSP (for example, t3://localhost:7001).

Alocal client (that is, a client that resides on the same computer as the WebLogic Server) may bypass
these steps by using the settings in the default context obtained by invoking the empty initial context
constructor; that is, by calling new InitialContext().

At this stage, the client may also authenticate itself by passing its security context to the
corresponding JNDI environment properties SECURITY_PRINCIPAL and
SECURITY_CREDENTIALS.

The code excerpt below is an example of a remote client obtaining a JNDI initial context using a
hashtable.

Hashtable h = new Hashtable() ;

h.put (Context.INITIAL_CONTEXT_FACTORY,
"weblogic.jndi.WLInitialContextFactory") ;

h.put (Context.PROVIDER_URL, "t3://machinename:7001") ;
h.put (Context .SECURITY_PRINCIPAL, <username>) ;

h.put (Context .SECURITY_CREDENTIALS, <password>) ;
InitialContext jndiCtxt = new InitialContext (h);

Be sure to replace the machine name and username/password with values appropriate for your
environment.

Invoking Functions and DSP Procedures

The Dynamic Mediator API provides two different methods (see Table 3-4) for invoking functions and
procedures, respectively:

o invoke(). Dynamically invokes read and navigate functions on a data service. When a read or
navigate function is invoked (getCustomerByCustID(), for example), the function returns an
array of data objects.

e invokeProcedure(). Use invokeProcedure() to invoke procedures that have been registered
with a data service. You can use the dynamic Mediator API to invoke a DSP procedure as in the
following example, passing in the name of the procedure:

ds.invokeProcedure ("updateCustomerAddress", params) ;

3-8 Client Application Developer's Guide

Generating a Static Mediator APl JAR File

Table 3-4 Data Service Mediator API (Client Mediator API)

Method Signature Description

invoke (String method, Objectl[] args) Method to invoke a data service’s read and
navigate functions. Using invoke() with a DSP
procedure raises an exception.

invokeProcedure (String method, Method to invoke a data service's procedures

Object[] args) (stored procedures, Web services, and Java
code that have side effects). Using
invokeProcedure() with a read or navigation
function raises an exception.

submit (DataObject sdo) Method to submit changes to the Mediator
service. Assumes that a change summary exists
as part of the DataObject.

In your code, you must use the appropriate method call — invoke() or invokeProcedure() — for the
functions and procedures, respectively, to avoid raising exceptions, as noted in Table 3-4.

For more information, see information on Data Services API Javadocs at “DSP Mediator API Javadoc”
on page 1-13.

When using static mediator APIs, the distinction between invoking a DSP function and a DSP
procedure is hidden. Read and navigate functions, as well as procedures, are named based on the
function name, with no indication as to whether or not they are side-effecting procedures.

Static and Dynamic Mediator APIs

Once you have obtained an initial context to the server containing DSP artifacts, you can instantiate
a remote interface for a data service. If you know the data service type at development time, you can
use the static data service interface, which uses static data objects.

Alternatively, the dynamic interface lets you use data services specified at runtime. The static
interface gives you a number of advantages, including type validation and code completion when using
development tools, such as Eclipse or your favorite development tool.

Client Application Developer's Guide 3-9

Accessing Data Services from Java Clients

Using a Static Data Service Mediator API

To use the static data service interface, you must have the SDO Mediator Client JAR file that was
generated from the specific DSP-enabled application. (If you do not have the JAR file, contact your
administrator to acquire it.)

Add the JAR file to your client application’s build path and import the data service package into your
Java class file that will be the basis for your client application.

For example, to use a data service named Customer in a DSP project named customerApp, use the
following import statement:

import customerapp.Customer;

With the imported factory classes and interfaces available in your Java application, you can instantiate
the interface to the specific data service by invoking the getInstance() method with the following
arguments:

e The server context object

e The name of the DSP application that is deployed on the server

Once you have a remote data service instance, you can invoke functions and procedures on the data
service. For example, consider the data service shown in Figure 3-5.

Figure 3-5 Customer Data Service

[/ Customer Data Service
El @ CLSTOMER_PROFILE rebalerType: CLSTOMER_FROFLE_TYFE
45— getCustomer @ CustomerD xsdistring
1® Firsthlame xsdistring
1© Lasthisms xsdistring

L @ Customersince xsd:date

e et ClistomErBy CustID:

© Emailaddress xsdistiing

1@ Telephonshiumber ? xsdstring

@ 5507 xsdistring

@ BirthDay ? xsd:date

© DefauiShippmentMethod xsd:string

@ Emailotification xsd:short

@ OnlineStatement xsd:short

@ LognID xsd:string
£ ADDRESS * retailerType:ADDRESS_TYFE
@ AddressID xsd:string
CustomerID xsdistring
sthame xsd:string
D Lasthame xsd:stiing
@ strestaddress_1 xsdhstiing
D StrestAddress 2?7 xsd:string
@ City xsdistring
State xsd:string
ipCode xsdisteing
Country xsdisting
DayPhone ? xsd:string
EveningPhons ? xsdistring
Alias 7 xsdistring
@ status? xsdistring
@ IsDefault xsdishort

e et CUSEOMErBY D

getApplOrder

getiCase

getCreditCard

getElecOrder

ElecOrder E

3-10 Client Application Developer's Guide

Generating a Static Mediator APl JAR File

Based on the data service shown in Figure 3-5, the generated artifacts for a typed client interface
would include static methods for both dynamic data APIs and the static Mediator APIs (see

Listing 3-1). As shown in Listing 3-1, each read and navigate function from the data service results in
a static data API method, such as getCustomer() and getApplOrder().

Listing 3-1 Generated Dynamic Methods for the Customer DataService Class

getCustomer ()

getCustomerByCustID(String)
getCustomerByCustIDToFile (String, String)
getCustomerByZip (String)
getCustomerByZipToFile(String, String)
getCase (CUSTOMERPROFILEDocument)
getCreditCard (CUSTOMERPROFILEDocument)
getApplOrder (CUSTOMERPROFILEDocument)
getElecOrder (CUSTOMERPROFILEDocument)
getCustomerByLoginID(String)

See “Static Data API” on page 2-5 for more information about generated SDO data API methods, such
as those listed above (getCustomer() and get CustomerByLoginID(), for example).

There are several DataService methods that are part of the dynamic API which are inherited by all
static DataService classes. These include:

e Submit() method. The submit() method takes a DataObject as its parameter. (The static
submit () would take Customer.) In either style, though, a submit() method is used to save
changes to the data objects served by the data service.

e The prepareExpression() method. The prepareExpression() method lets you create ad hoc
queries against the data service.

Listing 3-2 shows a small but complete example of using the static interface.

Listing 3-2 Mediator Client Sample Using the Static Interface to a Data Service

import java.util.Hashtable;

import javax.naming.Context;

import javax.naming.InitialContext;

import dataservices.rtlservices.Customer; //

Client Application Developer's Guide 3-11

Accessing Data Services from Java Clients

import retailerType.CUSTOMERPROFILEDocument ;

public class MyTypedCust

{

public static void main(String[] args) throws Exception {

//Get access to DSP data service

Hashtable h = new Hashtable() ;

h.put (Context.INITIAL_CONTEXT_FACTORY,
"weblogic.jndi.WLInitialContextFactory") ;

h.put (Context.PROVIDER_URL, "t3://localhost:7001") ;

h.put (Context.SECURITY_PRINCIPAL, "weblogic") ;

Context context = new InitialContext (h);

// Use the typed Mediator API

Customer customerDS = Customer.getInstance(context, "RTLApp") ;

CUSTOMERPROFILEDocument [] myCust =
customerDS.getCustomerByCustID ("CUSTOMER2") ;

System.out.println(" CUST" + myCustomer) ;

3-12

Using a Dynamic Mediator API

The dynamic data service interface is useful for programming with data services that are unknown or
do not exist at development time. It is useful, for example, for developing tools and user interfaces that
work across data services.

With the dynamic interface, names of specific data services are passed as parameters in the generic
get() and set() method calls. For example:

DataService ds = DataServiceFactory.newDataService (

context, "RTLApp", "ld:DataServices/RTLServices/Customer") ;
Object[] params = {"CUSTOMER2"};
DataObject myCustomer = (DataObject)ds.invoke ("getCustomerByCustomerID",
params) ;
System.out.println (myCustomer.get ("Customer/LastName")) ;

A data object returned by the dynamic interface can be downcast to a static object, as follows:

DataService ds =
DataServiceFactory.newDataService (
context, "RTLApp", "ld:DataServices/Customer");
Object[] params = {"CUSTOMER2"};
CUSTOMERDocument myCustomer =

Client Application Developer's Guide

Generating a Static Mediator APl JAR File

(CUSTOMERDocument) ds.invoke ("getCustomer", params) ;
System.out.println (myCustomer.getCUSTOMER () .getCUSTOMERNAME ()) ;

Note: This code example only works if the generated static SDO mediator JAR is on the
classpath at compile time and at runtime.

For a dynamic data service, use the newDataService() method of the DataServiceFactory class. In the
method call, pass the following arguments:

e The server context object.
e The name of the DSP application that is deployed on the server.
e The DSP URI pointing to the location of the data service inside the DSP application.

Listing 3-3 shows a full example.

Listing 3-3 Mediator Client Sample Using the Dynamic Mediator APl Data Service Interface

import com.bea.ld.dsmediator.client.DataService;

import com.bea.ld.dsmediator.client.DataServiceFactory;
import commonj.sdo.DataObject;

import java.util.Hashtable;

import javax.naming.Context;

import javax.naming.InitialContext;

public class MyUntypedCust

public static void main(String[] args) throws Exception {

//Get access to Liquid Data

Hashtable h = new Hashtable();

h.put (Context.INITIAL_CONTEXT_ FACTORY,
"weblogic.jndi.WLInitialContextFactory") ;

h.put (Context.PROVIDER_URL, "t3://localhost:7001") ;

h.put (Context.SECURITY_PRINCIPAL, "weblogic") ;

h.put (Context.SECURITY_CREDENTIALS, "weblogic") ;

Context context = new InitialContext (h);

// Use the dynamic (untyped) Mediator API
DataService ds =

DataServiceFactory.newDataService (context, "RTLApp",
"ld:DataServices/RTLServices/Customer") ;
DataObject myCustomer = (DataObject) ds.invoke("getCustomer", null);

System.out.println(" Customer Information: \n" + myCustomer) ;

Client Application Developer's Guide 3-13

Accessing Data Services from Java Clients

Static and Dynamic SDO APls

You can invoke data service functions using either static or dynamic SDO APIs. The dynamic API is
often called generic SDO, since you do not need to materialize the SDO object on the client side
through a JAR file. Instead, you simply invoke the appropriate set() or get() method based on your
knowledge of underlying schema of the data service.

Each approach has its advantages and disadvantages, as described in the next table:

Table 3-6 Static vs. Dynamic Mediator APIs

Method Advantages Disadvantages
Static (typed) e Runtime type validation e Requires generation of

¢ Code completion in most IDEs [App]-1d-client JAR file
Dynamic (untyped), e Easily adapt to schema e No runtime type checking
using generic SDO changes

e Unnecessary to compile Java
classes from their schema

e Less overhead

The static and dynamic SDO API options are described in detail in:
Using a Static Data Service Mediator API
Using a Dynamic Mediator API

Using the Static SDO API

Once you have obtained an initial context to the server containing DSP artifacts, you can instantiate
aremote interface for a data service. If you know the data service type at development time, you can
use the static data service interface, which uses static data objects. (Alternatively, the generic SDO
dynamic interface lets you use data services specified at runtime. It is described under the topic
“Using a Dynamic Mediator API” on page 3-12.)

3-14 Client Application Developer's Guide

Generating a Static Mediator APl JAR File

A static interface gives you a number of advantages, including type validation and code completion
when using development tools, such as Eclipse or your favorite development tool.

To use the static data service interface, you must have the SDO Mediator Client JAR file that was
generated from the specific DSP-enabled application that contains the query functions you want to
use with your client application. (If you do not have the JAR file, contact your administrator to acquire
it.)

Add the JAR file to your client application’s build path and import the data service package into your
Java class file that will be the basis for your client application.

For example, to use a data service named Customer in a DSP project named customerApp, use the
following import statement:

import customerapp.Customer;

With the imported factory classes and interfaces available in your Java application, you can instantiate
the interface to the specific data service by invoking the getInstance() method with the following
arguments:

e The server context object

e The name of the DSP application that is deployed on the server

Once you have a remote data service instance, you can invoke functions and procedures on the data
service. For example, consider the data service shown in Figure 3-5.

Client Application Developer's Guide 3-15

Accessing Data Services from Java Clients

3-16

Figure 3-7 Sample Customer Data Service

|{fi " Customer Data Service

g et CLISEOMELY

Bl @ CUSTOMER_PROFILE retalierType:CUSTOMER_PROFILE_TYFE
@ CustomerID xsdistring
@ Firsthame xsd:string
@ Lasthame xsdistiing
@ Customersince xsd:date

e et ClistomErBy CustID:

g et CListOMErByL0InID N
@ Emsiliaddress xsdistring

@ Telephonehumber ? xsd:string
@ 55N 7 wsdrstring
@ EirthDay xsd:date
@ DefaulshipprentMethiod xsd:string
@ EmailNatfication xsd:short
@ OrnlineStatement xsd:short
@ LognID xsd:string
Bl ADDRESS * retailerType:ADDRESS_TYPE
@ AddvessID xsdistring
getApplOrder @ CustomerlD xsdistring
@ FirstMame: xsd:string
D Lasthame xsdistring
@ Stresthddress_1 xsdistring
D Strestiddress_2 7 xsdistring
@ City xsdistring
@ State xsdistring
@ ZipCode xsdhstring
getCreditCard @ Country xsdhstring
@ DayPhane ? xsd:string
@ EveringPhene ? xsdisting
@ Alias? xsdhstring
getElecOrder @ Status? wsd:string
@ IsDefault xsd:short

e et CUSEOMErBY D

111

2
I
&
i

ElecOrder E

The generated artifacts for a static client interface would include typed methods for both dynamic
data APIs and the static Mediator APIs. As shown in Listing 3-1, each read and navigate function from
the data service results in a static data API method, such as getCustomer() and getApplOrder().

Listing 3-4 Generated Dynamic Methods for the Customer DataService Class

getCustomer ()

getCustomerByCustID(String)
getCustomerByCustIDToFile (String, String)
getCustomerByZip (String)
getCustomerByZipToFile (String, String)
getCase (CUSTOMERPROFILEDocument)
getCreditCard (CUSTOMERPROFILEDocument)
getApplOrder (CUSTOMERPROFILEDocument)
getElecOrder (CUSTOMERPROFILEDocument)
getCustomerByLoginID(String)

See “Static Data API” on page 2-5 for more information about generated SDO data API methods, such
as those listed above.

Client Application Developer's Guide

Generating a Static Mediator APl JAR File

There are several DataService methods that are part of the dynamic API which are inherited by all
static DataService classes including the following methods:

e Submit(). The submit() method takes a DataObject as its parameter. (The static submit()

would take Customer.) In either style, though, a submit() method is used to save changes to the
data objects served by the data service.

e prepareExpression(). The prepareExpression() method lets you create ad hoc queries

against the data service.

Listing 3-2 shows a small but complete example using a static interface.

Listing 3-5 Mediator Client Sample Using a Static Interface to a Data Service

import
import
import
import
import

public
{

java.util.Hashtable;
javax.naming.Context;
javax.naming.InitialContext;
dataservices.rtlservices.Customer; //
retailerType.CUSTOMERPROFILEDocument ;

class MyTypedCust

public static void main(String[] args) throws Exception {
//Get access to DSP data service
Hashtable h = new Hashtable() ;
h.put (Context.INITIAL_CONTEXT_FACTORY,

"weblogic.jndi.WLInitialContextFactory") ;

h.put (Context.PROVIDER_URL, "t3://localhost:7001") ;
h.put (Context.SECURITY_PRINCIPAL, "weblogic") ;
Context context = new InitialContext (h);

// Use the typed Mediator API
Customer customerDS = Customer.getInstance(context, "RTLApp") ;
CUSTOMERPROFILEDocument [] myCust =

customerDS.getCustomerByCustID ("CUSTOMER2") ;

System.out.println(" CUST" + myCustomer) ;

Using the Dynamic SDO API

The dynamic data service interface — or generic SDO — is ideal for programming with data services
that are unknown or do not exist at development time.

Client Application Developer's Guide 3-17

Accessing Data Services from Java Clients

With generic SDO, DataObjects depend on the XML schema to determine:
e Data types
e Default values

e Data structure of input XML data
The generic SDO correctly supports SDO APIs through get() and setType() on DataObject.
Such a SDO definition consists of a single generic DataGraph and a number of DataObject classes.
Generic SDOs are created using a createRootDataObject() method:

DataObject /* root SDO document */ createRootDataObject ()

The code fragment in Listing 3-6 illustrates these familiar operations using generic SDO:
o (reating the root data object
e Using navigation functions
e Updating data on the back end
e Submitting a changed SDO to the server
e Deleting a data object

e (reating a data object on the client side

Listing 3-6 Common Generic SDO Operations

DataService custDS =
DataServiceFactory.newDataService (context, "RTLApp", "1ld:DataServices/CustomerDB
/CUSTOMER") ;

DataObject root =(DataObject)custDS.invoke ("getCustomerByCustID", new

Object[] {"CUSTOMER1"}) [0];

DataObject myCustomer = root.getDataObject(0);

String name = myCustomer.getString("name") ;

//use navigation function
DataObject order = (DataObject)custDS.invoke ("getApplOrder", new
Object[]{root})[0];

// update

myCustomer.setString ("Street", "Lake Drive");

((DataObject)myCustomer.getList ("ADDRESS") .get (0)) .setString("City",
"Hayward") ;

3-18 Client Application Developer's Guide

Generating a Static Mediator APl JAR File

// submit the changed SDO to server
custDS.submit (root);

// Delete a DataObject
((DataObject)myCustomer.getList ("ADDRESS") .get (0)) .delete () ;
custDS.submit (root);

// create new SDO object on client side

DataService custDS =
DataServiceFactory.newDataService (context, "RTLApp", "1d:DataServices/CustomerDB
/CUSTOMER") ;

DataObject root = custDS.createRootDataObject ();
root.createDataObject ("CUSTOMER_PROFILE") .setString ("FirstName", "helloW") ;
custDS.submit (root);

How XML Schemas Are Made Available to Generic SDO Operations

XML schemas are not available at client side, the dynamic mediator must download schemas from the
server. The internal mean of downloading schemas varies depending on whether you have an EJB
client or a Web service client.

e Downloading schemas through an EJB metadata API. As in the first code fragment in
Listing 3-6, the client-side query contains a Qname and arity as an identifier for the function. A
generic SDO-capable mediator uses the identifier to locate the primary schema from the
metadata EJB, then recursively resolves its dependent schemas, loading them from server to
client upon request. Once all schemas are prepared on the client side, the schemas are
processed (compiled) and made available to the calling routine.

e Downloading schemas through a Web service client. A WSDL file generated from WebLogic
Workshop contains all the schema definitions in the specified data service. In this case they are
simply processed and made available to provide typing services to the calling routine.

Schema Type Caching

Generating the SchemaTypeSystem can be a costly operation. For this reason schema caching
functionality is provided that allows for schema reuse and lifecycle management through flush and
clear APIs.

If no cache is passed in to get a data service instance on the client side, then an internal cache is
created. The default lifetime of the internal schema cache is the same as the lifetime of the data
service instance.

Client Application Developer's Guide 3-19

Accessing Data Services from Java Clients

You can create a cache object per data service or for multiple data services. All caches are thread-safe.
(As there is no differentiator across multiple DSP applications, caches should not be shared across
multiple applications.)

The following schema caching APIs are available:

e SchemaTypeObject cache. The SchemaTypeObject is composed of a key:value pair.

key: Qname composed of root element name and target namespace
value: compiled schema type object

e Cache debugging APIs. The following APIs are more fully described in Javadoc:

SchemaTypeCache.dump (String dsName) //dump contents for specified DS
SchemaTypeCache.dump () ; //dump entire contents

e Flush schema cache APIs. The following APIs are more fully described in Javadoc:

public void flush()
public void clear(String dsName)

Schema Cache Management Scenarios

The following represents several schema cache management scenarios:

e Using multiple caches. In this case each data service has its own schema type.

// Note: each DS will have its own schema type cache.

SchemaTypeCache custSchemaTypes = new SchemaTypeCache() ;
SchemaTypeCache addrSchemaTypes = new SchemaTypeCache() ;
DataService custDS = DataServiceFactory.newDataService(context,
"RTLAPP",

"ld:DataServices/Customer",

custSchemaTypes) ;

DataService addrDS =DataServiceFactory.newDataService (context,

"RTLApPDP",
"ld:DataServices/Address",
addrSchemaTypes) ;

e Using a single cache for multiple data services. In this case a single cache is used across
multiple data services.

// Note: User manages cache across multiple DS's.

SchemaTypeCache schemaTypes = new SchemaTypeCache() ;
DataServicecustDS=DataServiceFactory.newDataService (context,
"RTLApPD",
"ld:DataServices/Customer",
schemaTypes) ;

3-20 Client Application Developer's Guide

Step-by-Step: A Java Client Programming Example

DataServiceaddrDS=DataServiceFactory.newDataService (context,
"RTLApPD",

"ld:DataServices/Address",

schemaTypes) ;

e No schema cache specified. In such a case a cache is created implicitly and stored on the data
service object automatically. There is no API available to inspect, flush, or edit cache entries.

DataService custDS = DataServiceFactory.newDataService(context, "RTLApp",
"l1d:DataServices/Customer");
DataService addrDS = DataServiceFactory.newDataService(context, "RTLApp",
"ld:DataServices/Address");

Bypassing the Cache When Using the Mediator API

Data retrieved by data service functions can be cached for quick access. (See "Configuring the Query
Results Cache", in the DSP Administration Guide for details.) Assuming the data changes
infrequently, it’s likely that you'll want to use the cache capability. However, you can bypass the cache
and obtain data directly from the data sources by passing the GET _CURRENT_DATA attribute within
a function call, as shown in Listing 3-7. As a by-product, the cache is also refreshed.

Listing 3-7 Cache Bypass Example When Using Mediator API

DataService ds = DataServiceFactory.newDataService (

import com.bea.dsp.RequestConfig;

getInitialContext (), // Initial Context
"Evaluation", // Application Name
"ld:DataServices/CustomerManagement /CustomerProfile" // Data Service URI
)i

Object[] params = {“CUSTOMER3”};

RequestConfig config = new RequestConfig();

attr.enableFeature (RequestConfig.GET_CURRENT_DATA) ;

CustomerProfileDocument doc = (CustomerProfileDocument)
ds.invoke ("getCustomerProfile",params.config) ;

Step-hy-Step: A Java Client Programming Example

This section describes common Java client application programming tasks:

e Step 1. Instantiating and Populating Data Objects

Client Application Developer's Guide 3-21

../admin/cache.html
../admin/cache.html

Accessing Data Services from Java Clients

3-22

e Step 2: Accessing Data Object Properties
e Step 3: Modifying, Adding, and Deleting Data Objects and Properties

e Step 4: Submitting Changes to the Data Service

Client application development encompasses the SDO data APIs; client Mediator APIs (which are
used to instantiate a local proxy to the remote server); and possibly the Update SDO API (to submit
changed data objects to the data service). Thus, the steps in this section include calls using the
Mediator APIs—getInstance() and submit(), for example, as well as SDOs.

Step 1. Instantiating and Populating Data Objects

Working with SDO data objects from a client application starts by obtaining an interface (either static
or dynamic) to the data service. Depending upon the approach you take, you must import the
generated static data type interfaces or dynamic data interfaces, as well as the data service interfaces.

o Static data service imports. To instantiate a data object using a static data service instance,
you must import the packages that contain the generated typed interfaces. These are contained
in the <appname>-1d-client. jar file generated from WebLogic Workshop (or by using
DSP’s Ant or Java generation tools). Using the static SDO API is a two-step process:

— Place the JAR file (<appname>-1d-client.jar) in the classpath of your development
environment.

— Import the data types that you will be using in your code into your Java class file. For
example:

import dataservices.myservice.MyCustomer;

Note: Static data services packages are always lowercase.

e Dynamic data service imports. To instantiate a data object using a dynamic API, you must import the
DataServiceFactory class and invoke the newDataService method (see Table 3-8).

import com.bea.dsp.dsmediator.client.DataServiceFactory;

Client Application Developer's Guide

Step-by-Step: A Java Client Programming Example

Table 3-8 Static and Dynamic Mediator API Interfaces

Static Mediator API Dynamic Mediator API

Customer cust = DataService ds =
Customer.getInstance (
context, "MyApp"); DataServiceFactory.newDataService (
context, "MyApp",
"ld:DataServices/CustomerDB/CUST
OMER") ;

Instantiating a local interface for an static mediator API is done by passing the context, the
application name, and the data service name to the DataServiceFactory class. For the static mediator
API, the local interface is instantiated using the getInstance() method (after establishing a JNDI
context).

Once the local interface is constructed, you can invoke data service functions to obtain a data object.

As discussed in “Data Services Platform and Service Data Objects (SDOs)” on page 2-2, the returned
data object is associated with a data graph. The data graph also provides a handle to the root data
object of the data graph.

Table 3-9 shows both a static and dynamic approach to populating data objects. The static data API
example shows how to instantiate the root node of the data graph, in this case, using the data that
comprises a logical data service function (getCustomerView()). The example is selecting information
about Customer3.

In the dynamic example, the root node of a data graph is being populated with an array of all
customers available through the data service.

Table 3-9 Static and Dynamic Mediator APIs to Instantiate Data Objects (SDOs)

Static Mediator API Dynamic Mediator API
CUSTOMERDocument [] custDoc = CUSTOMERDocument [] custDoc =
ds.getCustomerView ("CUSTOMER3") ; (CUSTOMERDocument [1)

ds.invoke ("CUSTOMER", null);

Step 2: Accessing Data Object Properties

After obtaining a data object, you can access its properties using either its generated static data API
or the dynamic data API. Table 3-10 shows side-by-side comparisons of using the static and dynamic

Client Application Developer's Guide 3-23

Accessing Data Services from Java Clients

3-24

methods to access properties. The static interface returns a single CUSTOMER object, while the
dynamic interface returns a generic data object.

Table 3-10 Static and Dynamic Mediator API Property Acquisition Examples

Static Mediator API Dynamic Mediator API
CUSTOMERDocument . CUSTOMER cust = CUSTOMERDocument . CUSTOMER cust =
custDoc[0] .getCUSTOMER () ; (CUSTOMERDocument . CUSTOMER) cust -
String lastName = Doc[0] .get ("CUSTOMER") ;
cust.getLASTNAME () ; String lastName = (String)

cust.get ("LAST_NAME") ;

With the static interface, the type name (as a string) is passed as a parameter to the dynamic get()
method. The returned object can be then cast to the necessary type.

If the return type is unbounded, you need to cast the returned object to a List. To traverse all objects
in an unbounded type you must use an iterator, as shown in Listing 3-8.

Listing 3-8 Using an Iterator to Traverse a List of Returned Data Objects

List addressList = (List) cust.get ("ADDRESS");
Iterator iterator = addressList.iterator();
while (iterator.hasNext()){
CUSTOMERDocument . CUSTOMER . ADDRESS address =
(CUSTOMERDOcument . CUSTOMER . ADDRESS) iterator.next () ;

You can identify properties in SDO accessor arguments by element name. Accessor methods can take
property identifiers specified as XPath expressions, as follows:

customer.get ("CUSTOMER_PROFILE[1] /ADDRESS[AddressID="ADDR_10_1"]1")

The example gets the ADDRESS at the specified path with the specified addressID. If element
identifiers have identical values, all elements are returned.

Client Application Developer's Guide

Step-by-Step: A Java Client Programming Example

For example, the ADDRESS also has a CustomerID (a customer can have more than one address), so
all addresses would be returned. (Note that the get() method returns a DataObject, so you will need
to cast the returned object to the appropriate type. For unbounded objects, you must use a List.)

Note: For specifying index position, note that SDO supports regular XPath notation (one-based)
and Java-style (zero-based). See “XPath Support in the Dynamic Data API” on page 2-11 for
more information.

You can get a data object’s containing parent data object by using the get() method with XPath
notation:

myCustomer.get ("..")
You can get the root containing the data object by using the get() method with XPath notation:
myCustomer.get ("/")

This is similar to executing myCustomer.getDataGraph().getRootObject().

Step 3: Modifying, Adding, and Deleting Data Objects and
Properties

By default, change tracking on the data graph is enabled so that any changes made to object values
are recorded in the change summary.

Modifying Data Object Properties

You can modify data object property values using either dynamic or static set() methods.

Table 3-11 Examples of Static and Dynamic Mediator API Setting of Properties

Static Mediator API Dynamic Mediator API

cust.setLASTNAME ("Smith") ; cust.set ("LAST_NAME", "Smith");

Both approaches take string arguments for the new property values; both approaches result in
changing the customer object’s last name to Smith. The static mediator API example assumes that you
have instantiated the static interface on the data service.

Client Application Developer's Guide 3-25

Accessing Data Services from Java Clients

3-26

Adding New Data Objects

You can create new a data object by using an addNew() method (a static data API). A new data object
can be added to a root data object or, more commonly, as a new element in a data object array. (New
arrays can also be added to data objects.) When adding an object to an array, you must be sure to set
any and all required fields for the new object, as specified by its XML schema, before calling submit().

Listing 3-9 shows how to add a data object to an array of objects.

Listing 3-9 Adding a New Data Object to an Array

CUSTOMERDocument . CUSTOMER newCust = custDoc[0] .addNewCUSTOMER () ;

int idNo
newCust.
newCust.
newCust.
newCust.
newCust.
newCust.
newCust.

newCust.

= custDoc.length;

setCUSTOMERID ("CUSTOMER" + String.valueOf (idNo)) ;
setFIRSTNAME ("Clark") ;

setLASTNAME ("Kent") ;

setCUSTOMERSINCE (java.util.Calendar.getInstance()) ;
setEMAILADDRESS ("kent@dailyplanet.com") ;
setTELEPHONENUMBER ("555-555-5555") ;
setSSN("509-00-3683") ;

setDEFAULTSHIPMETHOD ("Air") ;

If the data source associated with the object being added is an RDBMS, note these additional

considerations:

e Foreign key fields in the data object are automatically populated by DSP, based on the value of
the corresponding foreign key in the container object.

e In a database schema, tables often use auto-generated values as their primary key. When adding
an object to such a database, the primary key is generated and returned to the client through
the submit() call.

If added objects correspond to relational records in back-end data sources, and if the records
have auto-generated primary key fields, the fields are generated in the database source and
returned to the client in a property array. The properties include name-value items
corresponding to the column name and new auto-generated key value.

See “Primary-Foreign Key Relationships Mapped Using a KeyPair” on page 2-20 for more
information.

Client Application Developer's Guide

Step-by-Step: A Java Client Programming Example

Deleting Data Objects

To delete a data object, you must delete it from the data graph that contains it. For example,
Listing 3-10 searches a CUSTOMER array for a specific customer’s name and deletes that customer.

Listing 3-10 Deleting a Data Object

CUSTOMERDocument . CUSTOMER[] custs =
custDoc[0] .getCUSTOMERArray () ;
for (int 1=0; 1 < custs.length; i++){
if (custs[i].getFIRSTNAME () .equals("Clark") &&
custs[i] .getLASTNAME () .equals ("Kent"))

custs[i] .delete();

custDS.submit (custDoc) ;

When you remove an object from its container, only the reference to the object is deleted, not the
values; values are deleted later, during Java garbage collection.

The data object interface (DataObject in the commonj . sdo package) provides the delete() method
for deleting objects.

Deleting an object is a cascade-style operation; that is, children of the deleted object are deleted as
well. However, note that the deleted object only—not its children—is tracked in the change summary
as having been deleted.

Step 4: Submitting Changes to the Data Service

To submit data changes, call the submit() method on the data service bound to an object, passing the
root changed object as in:

custDS. submit (myCustomer) ;

A basic example of a submit operation is shown in Listing 3-11.

Client Application Developer's Guide 3-21

Accessing Data Services from Java Clients

Listing 3-11 Static Interface

CUSTOMER custDS = CUSTOMER.getInstance(ctx, "RTLApp");
CUSTOMERDocument [] custDoc = (

CUSTOMERDocument []) custDS.CUSTOMER () ;
custDoc[0] .getCUSTOMER () . setLASTNAME ("Nimble") ;

custDS.submit (CustDoc) ;

Listing 3-12 demonstrates making changes to a data object using the dynamic interface.

Listing 3-12 Dynamic Interface

DataService ds = DataServiceFactory.newDataService(new InitialContext(),

"RTLApPP") ;
DataObject[] custDoc = (DataObject[])custDS.invoke ("CUSTOMER", null) ;
custDoc[0] .getCustomer () .set ("LastName", "Nimble");

custDS.submit (myCust, "ld:DataServices/CustomerDB/CUSTOMER") ;

Examining a Java Client Application

Listing 3-13 shows a complete example that recaps many of the steps described above. The example
SDO client application shows how the static mediator API is used to create a handle to the CUSTOMER
data service.

The client application extracts information about a customer, modifies the information, and then
submits the changes. In addition to demonstrating some of the basics of SDO client programming,
Listing 3-13 also shows how the Mediator API is used to obtain a handle to the data service, and how
the Update Mediator API is used to submit the changes to the data service.

Listing 3-13 Sample Client Application

import java.util.Hashtable;
import javax.naming.InitialContext;
import dataservices.customerdb.CUSTOMER;

3-28 Client Application Developer's Guide

Examining a Java Client Application

public class ClientApp {
public static void main(String[] args) throws Exception {

Hashtable h = new Hashtable() ;

h.put (Context.INITIAL_CONTEXT_FACTORY,
"weblogic.jndi.WLInitialContextFactory") ;

h.put (Context .PROVIDER_URL, "t3://localhost:7001") ;

h.put (Context .SECURITY_PRINCIPAL, "weblogic") ;

h.put (Context .SECURITY_CREDENTIALS, "weblogic") ;

Context context = new InitialContext (h);

// create a handle to the Customer data service
CUSTOMER custDS = CUSTOMER.getInstance (context, "RTLApp") ;
// use dynamic data API to instantiate an SDO (shaped as a "Customer")
CUSTOMERDocument [] myCustomer =
(CUSTOMERDocument[]) custDS.invoke ("CUSTOMER", null);

// get and show customer name
String existingFName =
myCustomer [0] .getCUSTOMER () .getFIRSTNAME () ;
String existingLName =
myCustomer [0] .getCUSTOMER () . getLASTNAME () ;

System.out.println(" \n----———————————- \n Before Change: \n");
System.out.println(existingFName + existingLName) ;

// change the customer name

myCustomer [0] .getCUSTOMER () .setFIRSTNAME ("J.B.") ;

myCustomer [0] .getCUSTOMER () . setLASTNAME ("Kwik") ;

custDS.submit (myCustomer, "1d:DataServices/CustomerDB/CUSTOMER") ;

// re-query and print new name

myCustomer = (CUSTOMERDocument[]) custDS.invoke ("CUSTOMER",null) ;
String newFName =
myCustomer [0] .getCUSTOMER () .getFIRSTNAME () ;
String newLName =
myCustomer [0] .getCUSTOMER () . getLASTNAME () ;

System.out.println(" \n----———————————-— \n After Change: \n");
System.out.println (newFName + newLName) ; }

Listing 3-13 highlights how to use the SDO data APIs and the Mediator API, as follows:

1. The application instantiates the remote interface to the Customer data service, passing a JNDI
context that identifies the WebLogic Server where DSP is deployed. The static Mediator API is

Client Application Developer's Guide 3-29

Accessing Data Services from Java Clients

3-30

used in this call to instantiate the actual Customer data service interface (rather than the generic
DataService interface):

CUSTOMER custDS = CUSTOMER.getInstance(context, "RTLApp") ;

The custDS serves as a handle for the CUSTOMER data service that is executing on the RTLApp
WebLogic Server application.

The program uses the Mediator API to invoke a read function on the Customer data service,
pouring the results into an array of CUSTOMERDocument objects:

CustomerDocument [] myCustomer =
(CustomerDocument[]) ds.invoke ("CUSTOMER", null);

Once the data object is created, its properties can be accessed using SDO’s static data API (the
static interface), which returns the actual type of that node:

myCustomer [0] .getCUSTOMER () .getFIRSTNAME () ;

New values for the FIRSTNAME and LASTNAME property of the CUSTOMER are set using the
static data API:

myCustomer[0] .getCUSTOMER () .setFIRSTNAME ("J.B.") ;
myCustomer [0] .getCUSTOMER () .setLASTNAME ("Kwik") ;

The change is submitted to the data service (by using the Client Mediator API’s submit()
method) for propagation to the back-end data sources:

custDS. submit (myCustomer) ;

The Mediator API’s invoke() method is executed once more, and the results (now showing the
changed data) are printed to output.

Note: The invoke() method is for read and navigation functions only. For data service procedures,

use the invokeProcedure() method available in the DataService interface. For details on the
Mediator API see DSP Javadoc, described under “DSP Mediator API Javadoc” on page 1-13.

See “Invoking Functions and DSP Procedures” on page 3-8 for more information about
procedures.

Although code for handling exceptions is not shown in the example, an SDO runtime error throws an
SDOMediatorException. The sSboMediatorException class is also used to wrap data source
exceptions.

Client Application Developer's Guide

CHAPTERo

Web Services and DSP-Enabled
Applications

Web services provide an industry-standard way to develop SOA (service-oriented architecture)
applications—loosely coupled, distributed units of programming logic that can be re-configured easily
to deliver new application functionality, both intra- and extra-enterprise. By wrapping your data
services as Web services, you enhance the Web services model with a data services layer that can
abstract a wide variety of data sources, including relational database management systems, workflow
applications, portals, and other Web services.

In short, using Web services and BEA AquaLogic Data Services Platform (DSP) together lets you
leverage all your data assets. This chapter shows you how to expose data services as standard Web
services, and how to create client applications that can obtain the benefits of both Web services and
SDOs. It covers these topics:

e Overview of Web Services and DSP
e Server-side DSP-Enabled Web Service Development
e (lient-side DSP-Enabled Web Service Development

Overview of Web Services and DSP

Exposing data services as Web services makes your information assets accessible to a wide variety of
client types, including other Java Web service clients, Microsoft ADO.NET and other non-Java
applications, and other Web services (see Figure 4-1).

Client Application Developer’s Guide 4-1

Web Services and DSP-Enabled Applications

42

Figure 4-1 Web Services Enables Access to DSP-Enabled Applications from a Variety of Clients

Services Client
Applications

Java Web
Services Client
Applications

G @@

Microsoft NET Web

Data Service Platform
WebLogic Server

“Customer” Data Service

= Read functions
= Navigate functions

= Procedures

Web
service

Other)
) Remote Client ...+ ’
‘Applications

Other
Web Services
Applications

Figure 4-1 illustrates the various approaches that client application developers can take to integrating
data services and Web services.

JOoO®EmQ

Qi

;

W =17\

Note: This chapter focuses on leveraging DSP-enabled applications as Web services, and on
accessing such DSP-enabled Web services from Java client applications. For information
about ADO.NET-enabled Web services and client applications, see “Supporting ADO.NET

Clients” on page 6-1.

Different Styles of Web Services Integration for DSP

DSP-enabled applications can be integrated with Web services in one of two general ways:

e As a standard Web service. A standard Web service can be invoked from other Web services, or
by .NET clients or any other type of client, Java and non-Java alike. On the server side, at
runtime, the Web service simply passes the results obtained from the data service function back

Client Application Developer's Guide

Overview of Web Services and DSP

to the client as a standard SOAP message. This approach is best for simple query only
applications that do not need to modify or add data to back-end data sources behind the Web
service facade.

e As an SDO-Enabled Web service. An SDO-enabled Web service can support updates to
back-end data sources. You can use either static SDOs client-side proxy code (as detailed
“Generating SDO-Enabled Web Services Clients” on page 4-18), or use dynamic SDOs (also
known as generic SDO), which are automatically downloaded to the client at runtime.

Note: For details on working with static and dynamic SDO see “Static and Dynamic SDO APIs”
on page 3-14.
This chapter covers SDO-enabled Web service client applications, starting with the server-side
development tasks required to expose DSP-enabled applications as Web services. Figure 4-2 shows the
end-to-end process—both the server-side and client-side tasks—that expose a DSP-enabled
application as a Web service and implement a client application that invokes operations on that
service.

Client Application Developer's Guide 4-3

Web Services and DSP-Enabled Applications

Figure 4-2 Java Clients Supported via Web Services

Data Service Platform
WebLogic Server

Java Web services client application

1. Create data service control

5. Generate SDO types using either
WSDL or XML Schema (XSD) files.

“Customer” Data Service

Web service .- + Data service control

i
instantiates

2. Generate Web service file (JWS) :
from data service control :

3. Generate WSDL from
data service control

G ELRG)

"":‘ T 4, Use WSDL to generate client proxy
""" "(stub) code and include stub in client
application development
import . <xs:schema
public class xxxx T® xmIns:mstns="http:
1/
temp.openuri.org/

schemas/
Customer.xsd"

Server-side DSP-Enabled Web Service Development

There are two ways to easily integrate data services with Web services:
e Adding a Data Service Control to a Web Service

e Generating a Web Service from a Data Service Control

Both approaches, covered in the next two sections, rely on Data Service controls as the
component-based integration mechanism.

Adding a Data Service Control to a Web Service

You can easily add one or more Data Service controls to a Web service using WebLogic Workshop. You
must first create a folder for the controls inside the Web service’s project folder, and then create the

4-4 Client Application Developer's Guide

Server-side DSP-Enabled Web Service Development

Data Service controls. The controls must be placed inside the controls folder so they will be available
to add to the Web service, as instructed in this section.

Note: You can also create controls during the process of adding them to the Web service, but for
simplicity’s sake, the instructions in this section assume that you have created the Data
Service controls in advance. (See “Creating Data Service Controls” on page 5-8 for more
information about creating Data Service controls.)

a. InWebLogic Workshop, open the existing Web service file (JWS) by double-clicking on its name in
the Application pane.

b. Click the Design View tab on the Web service to open the graphical representation of the Web
service (as shown in Figure 4-3).

Figure 4-3 Adding a Data Service Control to a Web Service

CustomaraS e - {CustomarwebiGanatel|

5 Custommerws web Sean
;|

= T —
) Tundo
EL, trtmmp stion Controk
27 Msirfrime Intsoration
T Bue Tean
B Confuent Iratrumentation Contral
$8 Docummriun Busienss Obincts
7| Robesute Contrel
E. Local Cantrols »

Design View [Spurce Vew

c. Right-click and select Add Control — Data Service from the popup menu. The Insert Control —
Data Service wizard launches, showing the multi-step dialog page shown in Figure 4-4.

d. Inthe STEP 1 field of the dialog, enter a meaningful variable name for the Data Service control
that is unique in the context of the Web service.

Client Application Developer's Guide 4-5

Web Services and DSP-Enabled Applications

46

Figure 4-4 Insert Control — Data Services Wizard

e.

Insert Control - Data Service (x|

STEP 1 yariahle name for this contral: | creditDsvar |

STEP 2 T would fike to :

(® Use a Data Service control already defined by a JCX file

I file: controls/CreditDS4Ws. jox | [Browse...

() Create a new Data Service control ko use,

[Make this a contral Factary that can create multiple instances at runtime

In the STEP 2 field, click Browse... to navigate to the controls folder, then select the Data
Service control you want to add to the Web service. (Alternatively, click Create a New Data
Service Control button to launch the Data Service control wizard to create and configure a new
control.)

Leave the Make This a Control Factory checkbox de-selected: This checkbox will cause the Data
Service control to be instantiated at runtime using the factory pattern, rather than as a
singleton. To use the control in a Web service, it must be a singleton.

In the STEP 3 section of the dialog (which will be active only if your Data Service control is
associated with a remote DSP instance, that is, a DSP instance running on a separate domain
from WebLogic Workshop), provide the user name, password, server URL, and domain
information associated with the remote Data Service control to complete the link between the
Web service and the control.

Click the Create button on the Insert Control — Data Service dialog. The
LiquidbDataControl.jar file is copied into the Libraries directory of the application, and the
variable you created in STEP 1 of the dialog displays as a node in the Data Palette, with its
functions and procedures listed under the node. It is these functions and procedures that you
can now expose to client applications, by adding them to the Web service’s callable interface
(shown as the left-hand portion of the Web service’s Design View in WebLogic Workshop — see
Figure 4-5), as described in the next step.

Client Application Developer's Guide

Server-side DSP-Enabled Web Service Development

Figure 4-5 Adding Functions from a Data Service Control to a Web Service

CustomerWws.jws* - {CustomerWebService}, X

(g . Customerws web Seruice |
CREDIT_CARD <o, creditDsvar

CUSTOMER CREDIT_CAR[) s——

CREDIT_CARDWithFiltey se—

<c>\‘J custDS¥ar

ADDRESS
N ADDRESSWIHHFiker
Dt Poletts %
Controls dd CUSTOMER
1< cradiDsvar CUSTOMERWithFiter
) CREDIT_CARD T
) CREDIT_CARDWIRFitsr
40> ustDstar QeEADDRESSWIERFiker
) ADDRESS getCLSTOMER
P ADDRESSWithFier getCLISTOMERWithFilter
] CUSTOMER:
] CUSTOMERWIHFitsr

=+ 0etADDRESS

=+| getADDRESSWithFilker
=+ getCLSTOMER

== getCLISTOMERWithFilker

[

| Cesian view [Source View |

h. Select the function or procedure from under the variable name listed in the Data Palette by
clicking on the node, and then drag and drop the function onto the left side of the Web service in
Design View.

When you are finished, you can test the Web service as described in “Testing a Web Service in
WebLogic Workshop” on page 4-9. After testing, you can deploy to your production WebLogic Server
and use it as you would any other Web service. For more information about Web services, see:

http://e-docs.bea.com/wls/docs81/webservices.html

For information about developing Java-based Web service clients, see “Client-side DSP-Enabled Web
Service Development” on page 4-11.

Generating a Web Service from a Data Service Control

Using WebLogic Workshop you can generate stateful or stateless (conversational) Web services from
Data Service controls. The generated Web services include method calls (referred to as operations)
for each of the functions and procedures that the Data Service control comprises, as well as two
operations specifically for testing the Web service.

Client Application Developer's Guide 4-1

http://e-docs.bea.com/wls/docs81/webservices.html

Web Services and DSP-Enabled Applications

4-8

Follow the instructions in this section to generate and test a stateless Web service. The instructions
assume that you have already created the Data Service control and that WebLogic Workshop is open.

Figure 4-6 Stateless Web Services Are Generated from Data Service Controls

Data service control

public interface CustDSCtrl extends LDControl,
com.bea.control.ControlExtension {
CustomerDS.cust.CustomerDocument]]
getCustomer(myCustomerDS.cust.CustomerDocument p0);

“Customer” Data Service

Read and navigate functions:
xquery version “1.0" encoding...
...(::;pragma xsd...)

declare function getCustomer as schema-
element (Customer)* 0

declare function getCustomerOrder as W
element(Customer) as element (Order)*

for $pk in Customer()

where $pk/Cust_ID eq $fk/Cust_ID
return $pk

%

Web service
Procedures: public class CustomerWS implements com.bea.jws.WebService
updateCustomerAddress(custAdd in) {

Cust.customer.CustomerDocument[]
getCustomer(myCustomer.customer.CustomerDocument p0)

return customerDSCtrl.getCustomer(p0);
}

1. From WebLogic Workshop’s Application pane, select the Data Service control that you want to use
as the basis for your Web service by clicking on its name. While the control is selected,
right-mouse-click to display the pop-up menu; select Generate Test JWS File (Stateless) from the
menu. WebLogic Workshop generates the JWS Java Web service file for your Data Service control.

Note: Note that although WebLogic Workshop by default generates Web services that have the word
"Test" embedded in the file names, these are deployable Web services. You can rename the
generated Web service to eliminate the word "Test" from its name.

2. Click on your Web service project to select it, right-click, and select Build Project. WebLogic
Workshop builds a Web service project.

3. When the build process completes, double-click on the . jws file to open it. Click the Design
View tab if necessary to display the generated Web service in the Design View.

You will see methods (operations) for each of the functions and procedures contained in the
Data Service control, as well as two additional operations, startTestDrive() and
finishTestDrive(). You can use these two operations to quickly test the Web service (using

Client Application Developer's Guide

Server-side DSP-Enabled Web Service Development

WebLogic Workshop’s runtime server), as described in Testing a Web Service in WebLogic
Workshop. Before testing, however, you should modify any submit() operations in your
generated Java Web service, as described in the next section.

Modifying Submit Operations and Generating a WSDL File

If the Web service must support submits from Java Web service clients, you must modify the JWS file
before generating the WSDL, as follows:

1. Modify submit operations in your Java Web service (JWS) implementation control file to accept a
DatagraphDocument object as a parameter. The signature for the submit() method should be
similar to:

java.util.Properties[] submitCustomerProfile (DatagraphDocument
rootDataObject)

2. Modify the body of the submit operation to instantiate and initialize the document from a
DatagraphDocument object being passed as a parameter; for example:

CustomerProfileDocument doc = (CustomerProfileDocument) new
DataGraphImpl (rootDataObject) .getRootObject () ;
return customerData.submitCustomerProfile (doc) ;

The following code shows the context of a method declaration.

public java.util.Properties[] submitCustomerProfile (DatagraphDocument

rootDataObject) throws Exception {

CustomerProfileDocument doc = (CustomerProfileDocument) new DataGraphImpl (
rootDataObject) .getRootObject () ;

return customerData.submitCustomerProfile (doc) ;

}

3. Generate a Web Service Definition Language (WSDL) file from the JWS file by right-clicking on
on the file name and selecting the Generate WSDL file option.

After you have created the WSDL file, provide it to client application developers, so they can generate
the Web services client interfaces and proxy code necessary (as discussed in “Client-side DSP-Enabled
Web Service Development” on page 4-11).

Testing a Web Service in WebLogic Workshop

By default, WebLogic Workshop creates two operations in its generated Web services that can be used
for testing purposes.

Client Application Developer's Guide 4-9

Web Services and DSP-Enabled Applications

4-10

1. Click the Start icon (or select Debug — Start from the WebLogic Workshop menu) to deploy and

run the Web service using the local runtime. An informational message briefly appears, notifying
you that the Web service is running. Shortly, the WebLogic Workshop Test Browser launches,
displaying the Test Form, as shown in Figure 4-7.

Figure 4-7 WebLogic Workshop Test Browser

* Workshop Test Browser S [=] 3
- = @ < || hitp:fflacalhost: 7001 fCustomerwebService/controls/CreditDS4W S Test jws? EXPLORE= TEST| | ;:'I;;’.-
N

CreditDS4WSTest.jws Web Service

Overview | [Consale | [Test Farm | [Test XML | http://localhost: 7001/CustomeriebService/controls (CreditDS4WS Test. jws
Start operations

startTestDrive

Log is empt: -)
starts a conversation

=

Click the startTestDrive button to start the conversation for the Web service.

Click the Continue this Conversation link (in the left corner of the test page). The available
operations display as buttons on the page, along with informational messages.

Enter values for any query parameters (if the query has parameters) and click the button with
the name corresponding to the query you want to execute. The Web service executes the query
and returns results to the test browser.

. To run the query again or run other queries in the Web service, click Continue this Conversation,

enter any needed parameters and click the button with the name corresponding to the query you
want to execute.

. To end the Web service conversation, click the Continue this Conversation link (to redisplay the

Test Form page) and then click the finishTestDrive button.

Continue developing the functionality of the Web service as required, testing as you go along. Once the
Web service is complete, you can create the artifacts necessary for client application development, as
described in the next section, “Client-side DSP-Enabled Web Service Development.”

Client Application Developer's Guide

Client-side DSP-Enabled Web Service Development

Note: For more information about Web service client applications and WebLogic Server in general,
see "Invoking Web Services" in Programming WebLogic Web Services in the WebLogic Server

documentation.

Client-side DSP-Enabled Web Service Development

There are many different approaches to developing Web service client applications, but the choices in
any given instance are limited by the type of Web service itself. For example, if the Web service is an
ADO.NET-Enabled Web service hosting data service functions, the assumption is that a Microsoft
ADOQ.NET client Web service application will be using the Web service—not a Java client.

Another consideration is whether the client application will use the static or dynamic approach to

Web services, as follows:

o Static Web service client. Uses typed client classes (derived from Stub base class) to invoke
Web service operations on local proxy. DSP includes utilities (Java classes and Ant tasks) to
generate the following code:

— SDO client classes (for typed clients)

— Web service client proxy (stub) that can instantiate and manipulate SDOs

e Dynamic Web service client. Uses Call interface from a client to dynamically invoke Web
service operations. In this context dyrnamic means late-binding.
Either approach can be used with DSP-enabled Web service applications. Listing 4-1 shows an
example of a Java Web service client application that invokes several operations on a DSP-enabled
Web service. The example implements the static Web service client model, and demonstrates how to
marshal data from Java for a SOAP request, by serializing an SDO DataGraph:

wssoap.submitCustomer (((DataGraphImpl)doc.getDataGraph()) .getSerializedDocumen
t());

At runtime, DSP uses a codec (DataGraphCodec, an encoder-decoder class that extends
AbstractCodec) behind the scenes to:

e serialize SDO DataGraphs when marshalling data for SOAP requests (Java-to-SOAP)

e de-serialize SDO DataGraphs when SOAP messages are un-marshaled (SOAP-to-Java)

Listing 4-1 Sample Java Client

public class ClientTest {

Client Application Developer's Guide 4-1

http://edocs.bea.com/wls/docs81/webserv/client.html

Web Services and DSP-Enabled Applications

public static void main(String[] args) throws Exception ({
SimpleCtrlTest wstest = new SimpleCtrlTest_Impl () ;
SimpleCtrlTestSoap wssoap = wstest.getSimpleCtrlTestSoap();

CUSTOMERDocument doc = wssoap.getCustomer (987654) ;

doc.getCUSTOMER () . setCUSTOMERNAME ("323777") ;
String result = doc.getDataGraph() .toString() ;
System.out.println(result) ;

wssoap . submitCustomer (((DataGraphImpl)doc.getDataGraph()) .ge

tSerializedDocument ()) ;

}

Data Services Platform automatically downloads the typed client-side artifacts upon first invocation
of a Web service operation, as required.

Client-side Artifact Generation Utilities

Data Services Platform provides both Ant tasks and Java classes for generating the various artifacts
required for DSP-enabled Web service client development (see Table 4-8). The Ant tasks can be
thought of as wrappers around the Java classes to which they refer, and provide a simple way to
incorporate the Java classes into an Ant build script.

Tahle 4-8 DSP’s Weh Service Client Utilities Summary

Utility Description Classname

sdogen Ant task that compiles client SDO com.bea.sdo.impl.SDOGenTask
classes! from XSD or WSDL files.

sdoclientgen Ant task that generates Web com.bea.sdo.impl.WSClientGenTask
service-specific client proxy (stub
classes) from a DSP-enabled Web
service’s WSDL.

4-12 Client Application Developer's Guide

Client-side DSP-Enabled Web Service Development

Utility Description Classname

SDOGen Java class that generates typed com.bea.sdo.impl.SDOGen
client SDO classes.

WSClientGen Java class that generates typed com.bea.sdo.impl.WSClientGen
Web service client proxy (stub
classes).

1. <appname>-1d-client.jar

Generating SDO Client Classes

Developing a Web services client application that can access and update SDOs hosted on a Web service
requires one of the following:

e Access to the Web service (through its URL, over the network; through UDDI, if the Web service
is registered in a public or private UDDI registry; or by access to the physical WSDL file, located
locally on the development machine.)

e Access to the XML schema definition (XSD) files that comprise the data type definitions for the
data service.

DSP provides an Ant task and a Java application, each of which can use either the WSDL or XSD to
generate the client side artifacts.

Setting the Environment for the Utilities

1. Atacommand prompt, navigate to the directory where the build script and Ant configuration file
are located:

<bea_home>\weblogic8l\samples\domains\ldplatform

2. Execute the shell or command file script to set the environment for your machine (Windows or
Unix):

setDomainEnv.cmd

setDomainEnv.sh

Generating SDO Classes Using Ant

The SDOGen Ant task creates an SDO client JAR file that contains the typed classes for working with
SDOs. It can use either the XSDs from the data service or the WSDL (assuming the DSP-enabled

Client Application Developer's Guide 4-13

Web Services and DSP-Enabled Applications

4-14

application has been exposed as a Web service) to generate the SDO classes and compile them into
the client JAR file.

The SDOGen Ant task lets you build the necessary SDO client JAR which you can then use in your
client application code. You can also run the SDOGen task so that it generates the Java and XML
(XMLBeans) source code that comprises the SDO type system specified by the schema files.

Environmental Settings
To generate the classes, make sure your classpath includes:

® wlsdo.jar

® xbean.jar

Syntax

To create a JAR comprising the client classes, execute sdogen at the command prompt as follows:

1. Add the sdogen taskdef to the build script. For example:

<taskdef name="sdogen" classname="com.bea.sdo.impl.SDOGenTask"

classpath="path/to/wlsdo.jar:path/to/xbean.jar" />

This task implicitly defines an Ant FileSet, and supports all FileSet attributes (for example, dir
becomes basedir) as well as the nested attributes and elements.

Table 4-9 summarizes the attributes used by the sdogen Ant task.

Table 4-9 Attributes Available for DSP’s SD0O Generation (sdogen) Ant Task

Attribute Description Required? Default Value

schema A file that points to either an individual Yes None
schema file or a directory of files. Not a
path reference. If multiple schema files
need to be built together, use a nested
fileset instead of setting schema.

destfile Creates a non-default name for the JAR No xmltypes.jar
file. For instance, myXMLBean jar will
output the results of this task into a JAR
named myXMLBean.

classgendir Directory in which to generate .class No Current directory
files.

Client Application Developer's Guide

Client-side DSP-Enabled Web Service Development

Attribute Description Required? Default Value
classpath Specify the classpath if Java files are in No
the schema fileset, or if the fileset
imports include compiled XMLBeans
JAR files. Also supports a nested
classpath.
classpathref Adds a classpath, given as reference to No
a path defined elsewhere.
debug Indicates whether source should be No False (off)
compiled with debug information. If set
to false (off), -g:none will be passed on
the command line for compilers that
support it (for other compilers, no
command line argument will be used).
If set to true, the value of the
debuglevel attribute determines the
command line argument.
fork Flag that indicates whether the JDK No Yes
compiler (javac) should be executed
externally.
memoryInitialSize The initial size of the memory for the No Configured VM
underlying VM, if javac is run memory setting
externally; ignored otherwise. Defaults for the machine.
to the standard VM memory setting. For example:
83886080, 81920k,
or 80m.
memoryMaximumSize The maximum size of the memory for No Configured VM
the underlying VM, if javac is run memory setting
externally; ignored otherwise. Defaults for the machine.
to the standard VM memory setting. For example:
83886080, 81920k,
or 80m.
verbose Controls the amount of build message No True

output.

To build all XML schema definition (XSD) files in the schemas directory and create a JAR named
Schemas . jar, your Ant script would include the following:

Client Application Developer's Guide 4-15

Web Services and DSP-Enabled Applications

4-16

<sdogen schema="MyTestWS.WSDL" destfile="Schemas.jar"
classpath="path/to/wlsdo.jar:path/to/xbean.jar"/>

Generating SDO Classes Using Java

Rather than using the SDOGen Ant task, you can use the SDOGen Java class at the command-line to
generate SDO client classes.

from XML schema definition (XSD) files or WSDL files based on data services.
SDOGen is a Java class that extends the XMLBean schema compiler class.

Optionally, by using the -srconly parameter, the utility can provide you with generated Java source
files that define the classes, prior to compiling. Using the -srconly parameter, for example, you can
generate the sources and then from the sources, generate Javadoc. In this way you can examine the
class hierarchy and methods of the XML data type handlers.

See Table 4-12 for other command-line options for the SDOGen utility.

Table 4-10 Command-line Options for the Java SDO Class Generation Utility

Option Description Default Value
-cp [a;b;c] Classpath
-d [dir] Target directory for binary .class and
. xsb files.
-src [dir] Target directory for generated Java source
files.
-srconly Flag to prevent compiling Java source files

and archiving into JAR file.

-out [result.jar]

Name of the output JAR file.

xmltype.jar

-dl Enables network downloads for imports and Off (not enabled).
includes.

-noupa Do not enforce the unique particle
attribution rule.

-nopvr Do not enforce the particle valid
(restriction) rule

-compiler Path to external Java compiler.

Client Application Developer's Guide

Client-side DSP-Enabled Web Service Development

Option Description Default Value

-jar Path to JAR (Java Archive) utility

-ms Initial memory for external Java compiler 8 Megabyte

-mx Maximum memory for external Java 256 Megabyte
compiler

-debug Compile with debug symbols.

-quiet Print minimal informational messages to

Java console.

-verbose Print maximum amount of informational
messages to Java console.

-license Prints license information.
-allowmdef "[ns] Ignores multiple defs in given namespaces.
[ns] [ns]"

Environmental Settings
To execute the utility, make sure your classpath includes:

® wlsdo.jar

® xbean.jar

Syntax

To create a JAR comprising the client classes, execute SDOGen at the command prompt as follows:

java com.bea.sdo.impl.SDOGen [options] xmlschema

XMLSchema can be:
e the URL of a WSDL
e an XSD or WSDL file

e a directory containing numerous XSD or WSDL files

Client Application Developer's Guide 4-17

Web Services and DSP-Enabled Applications

4-18

Usage Examples

The following are examples of using SDOGen with various options (see Table 4-10) to obtain different
results:

e To create a file named xmltype.jar (the default) based on the WSDL associated with Web
service named MyApp running locally:

java com.bea.sdo.impl.SDOGen
http://localhost:7001/WebApp/DSCtrls/MyApp.jws?WSDL

e To create a file named xmltype.jar (the default) based on the WSDL associated with a publicly
available Web service. (The -dl option permits downloading.):

java com.bea.sdo.impl.SDOGen -dl
http://198.68.125.17:7001/WebApp/DSCtrls/MyApp.Jjws?WSDL

e To create a file named xmltype.jar using XML schema definition (XSD files) located in the
\myApps \xsd_dir directory on the local machine:

java com.bea.sdo.impl.SDOGen C:\myApps\xsd_dir
e To create the MySDOClasses.jar file in the c: \test\xsd_dir directory:

java com.bea.sdo.impl.SDOGen -out MySDOClasses.jar C:\test\xsd_dir

Generating SDO-Enabled Web Services Clients

SDO Web service client generation can be done using the Ant task (SDO Web Service Client Gen) or
the Java class (WSClientGen).

Generating SDO Web Services Clients Using Ant

The SDO Web Service Client Gen utility is an Ant task generates an SDO-enabled Web services client
JAR file that client applications can use to consume JWS generated from a Data Service control. The
generated client JAR file includes:

e (Client interface and stub files (conforming to the JAX-RPC specification) used to invoke a Web
service in static mode.

e Optional serialization class for converting SDO classes between its XML and Java
representation.

e Optional client-side copy of the Web service WSDL file.

Client Application Developer's Guide

Client-side DSP-Enabled Web Service Development

Although you could use the SDO Ant task to generate a client JAR file from the WSDL file of any
existing Web service (not necessarily running on WebLogic Server), the SDO Client Gen utility
typically is used to generate the JAR file from an existing WSDL file of an SDO-enabled JWS.

The WebLogic Server distribution includes a client runtime JAR file (webserviceclient.jar) that
contains the client side classes needed to support the WebLogic Web services runtime component.

Environmental Settings
Environmental settings must include the following JAR files from weblogic/server/1lib:

® xbean.jar

® wlxbean.jar

® xgrl.jar

® webservices.jar

You also must include wlsdo. jar from the 1iquiddata/1ib folder.

Syntax
Define your Ant task for SDOClientGen as follows:

<taskdef name="sdoclientgen" classname="com.bea.sdo.impl.WSClientGenTask"
classpath="path/to/SDOclasses:path/to/wlsdo.jar:path/to/xbean.jar:path/to/
wlxbean.jar:path/to/xgrl.jar:path/to/webservices.jar"/>

Usage Examples

<sdoclientgen wsdl="http://example.com/myapp/myservice.wsdl"
packageName="sdoclient" clientJar="myapps/mySDO_WSclient.jar"
classpathref="all the JAR files listed in the task"/>

Table 4-11 Attributes Available for DSP’s Web-Services Client Proxy Code Generation Ant Task

Attribute Description Required?

packageName Package name for the generated JAX-RPC client interfaces Yes
and stub files.

wsdl Full path name or URL of the WSDL that describes a Web Yes
service (either WebLogic or non-WebLogic) for which a
client JAR file should be generated. The generated stub
factory classes in the client JAR file use the value of this
attribute in the default constructor.

Client Application Developer's Guide 4-19

Web Services and DSP-Enabled Applications

4-20

Attribute Description Required?

clientJar Name of a JAR file or exploded directory into which the No

clientgen task puts the generated client interface classes,

stub classes, optional serialization class, and so on. To create

or update a JAR file, speechify the fullname, including the

JAR extension (myclient . jar);otherwise, the clientgen

task interprets the name as a directory. If the specified JAR

or directory does not exist, the clientgen task creates a new

JAR file or directory.

classpath Must include the path to the SDO classes generated from the No
XSD or WSDL by the SDOGen Ant task.

classpathref Adds a classpath, given as reference to a path defined No
elsewhere.

Generating SDO Web Services Clients using Java

The Web Services Client Generation utility is a Java class (WSClientGen) that developers can use to
generate Web services client interfaces and stub classes from a WSDL that uses typed SDO classes for
argument and return types. Use this utility to create the artifacts necessary for a client application to
invoke DSP functions or submit SDOs.

Environmental Settings
Environmental settings must include the following JAR files from weblogic/server/1lib:

® xbean.jar

® wlxbean. jar

® xgrl.jar

® webservices.jar

You also must include wlsdo. jar from the 1iquiddata/1ib folder.

Syntax
Define your Ant task for SDOClientGen as follows:

<taskdef name="sdoclientgen" classname="com.bea.sdo.impl.WSClientGenTask"
classpath="path/to/SDOclasses:path/to/wlsdo.jar:path/to/xbean.jar:path/to/

wlxbean.jar:path/to/xgrl.jar:path/to/webservices.jar"/>

The following should also be kept in mind:

Client Application Developer's Guide

Client-side DSP-Enabled Web Service Development

e Make sure the Web service is running if you want to obtain the WSDL by using the Web service’s

URL.

e Use the SDOGen utility to first generate the JAR file (of typed SDO classes) from the
DSP-enabled Web service’s WSDL.

e Execute the Java utility as follows:

java com.bea.sdo.impl.WSClientGen [options] wsdl

The WSDL can be the URL of the WSDL (available over the network), or the actual, physical
WSDL file located on your machine. Command-line options that you can pass to the utility are

shown in Table 4-12.

Usage Examples

Here are some examples of using the utility:

e To generate an SDO client JAR file from a publicly available WSDL, pass the URL to the Web
service as an argument on the command line:

java com.bea.sdo.impl.WSClientGen
http://localhost:7001/WebApp/DSCtrls/MyApp.jws?WSDL

e To create a JAR named MyClient.jar (rather than the default), pass the filename with the
-clientJar parameter at the command line:

java com.bea.sdo.impl.WSClientGen -clientJar MyClient.jar
http://localhost:7001/WebApp/DSCtrls/MyApp . jws?WSDL

Table 4-12 WSClientGen Utility Options

Option Description Default Value
-version Print version information to the Java console.
-verbose Print the maximum amount of informational

messages to the Java console.
-clientJar Specify the name for the generated JAR file. SDOClient.jar
-packageName Package name of the generated JAX-RPC sdoclient

client interfaces and stub.

Client Application Developer's Guide 401

Web Services and DSP-Enabled Applications

Option Description Default Value

-overwrite Boolean that specifies if existing files should True
be overwritten by newly generated code.

-keepGenerated Boolean that specifies if generated Java source False
code should be deleted (False) or kept (True).

Using the SDO Web Service Client Gen Utility

The SDO Web Service Client Gen utility is an Ant build script that you can invoked from a command
line to build SDO objects for the client. The script (including its pathname) is:

<bea_home>\weblogic8l\liquiddata\bin\sdo_wsclientgen.xml

The WSDL file you created in the procedure described in “Modifying Submit Operations and
Generating a WSDL File” on page 4-9 is passed to the utility as a parameter, and the SDO objects
generated by sdo_wsclientgen.xml are based on that file.

The configuration parameters for the Ant build script sdo_wsclientgen.xml are:
e clientJar . The name of the JAR file that will be created.
e wsdl. The full path to the WSDL file needed to create the SDO objects.

e classgendir. The path to location of the generated JAR file.

Before using the Ant script to build SDO classes, make sure you set your environment by calling the
setWLSEnv.cmd in the command prompt window. This command file is located in the directory
$bea_home\weblogic81\server\bin.

You must include the following packages in your client's CLASSPATH to work with SDO objects:
® wlsdo.jar
® webserviceclient.jar
® xbean.jar
® wlxbean. jar
® xgrl.jar

e Generated SDO WS client JAR file. The generated SDO WS client JAR file is the file you
produced in step 3 of the procedure described in “Modifying Submit Operations and Generating
a WSDL File.

The specific steps you need to perform with the Ant utility in order to build SDO classes are:

4-22 Client Application Developer's Guide

Client-side DSP-Enabled Web Service Development

1. Set the domain environment. For example:
\bea\weblogic8l\samples\domains\ldplatform\setDomainEnv.cmd

2. Set the WebLogic environment. For example:
\bea\weblogic8l\server\bin\setWLSEnv.cmd

3. Add the sdotemp directory to the classpath:
set CLASSPATH=%CLASSPATH%; sdotemp

4, (Call Ant from the command line:

ant -buildfile ./sdo_wsclientgen.xml

After using the Ant utility (that is by issuing the command, ant sdo_wsclientget.xml),aJAR file
is created; among other generated artifacts, the JAR file contains the typed SDO classes. You can
distribute the JAR files to all clients that will consume operations from this Web service.

After running the Ant utility, you can call the modified submit operation that you created in step 2 of
the procedure described in “Modifying Submit Operations and Generating a WSDL File” on page 4-9.
For example, your client code would be as follows, based on the submitCustomerProfile() method
shown in step 2:

Listing 4-2 Example of Invoking the Submit Method

CustomerDataTestSoap wssoap = new
CustomerDataTest_Impl () .getCustomerDataTestSoap () ;
CustomerProfileDocument doc = wssoap.getCustomerProfile (customer_id) ;
doc.getCustomerProfile() .getCustomerArray (0) .setLastName ("Test") ;
DataGraphImpl dg = (DataGraphImpl) doc.getDataGraph() ;

wssoap.submitCustomerProfile(dg.getSerializedDocument()) ;

Post-Generation Development Tasks

BEA AquaLogic Data Services Platform includes a sample Web service project — SampleWS — which
is used in this section to demonstrate how to update a data service that has been wrapped as a Web

service. The assumption is that the client-side programming will use the Web service’s WSDL. Using

the SampleWS as a starting point, you can

The procedure below adds:

Client Application Developer's Guide 4-23

Web Services and DSP-Enabled Applications

4-24

e An SDO client JAR file to the library of the project

e An additional Java file that demonstrates the implementation of a modified submit method as

described in “How to Update a Data Service Exposed as a Web Service.”

To work with SampleWS and run the example code, do the following:

L.

Import the project files for SampleWS into WebLogic Workshop by right-clicking on your
Evaluation application and importing SampleWS as a Web service project. SampleWS is located in
the directory:

Sbea_home\weblogic8l\samples\LigquidData\EvalGuide

Build your SampleWS project.

Right click on your application library folder and select Add Library....

Navigate to the following directory:
$bea_home\weblogic8l\samples\LiquidData\EvalGuidedirectory

Select the spoclient. jar file to be added. Click the Open button.

Verify that spoclient.jar is imported into your library folder.

Right-click on your application and import ConsumeWS as a Java project. ConsumeWS is located
in the directory:

Sbea_home\weblogic8l\samples\LiquidData\EvalGuide

Open the consumews . java file located in the ConsumeWS project and execute it. After
executing ConsumeWs. java, you should see results similar to the following,

Sample build.xml File

Listing 4-3 shows a complete example of using the Ant tasks as part of a build process.

Listing 4-3 Sample build.xml File for the SD0Gen and WSClientGen Ant Tasks

- <project name="samplesdogen" default="build" basedir=".">

<property name="output.jar" value="MyTestClient.jar" />

<property name="wsdl.file" value="../SimpleCtrlTest.wsdl" />
<property name="local.build.dir" value="build" />

<property name="external.resource.dir" value="../DSP/external" />
<mkdir dir="${local.build.dir}" />

Client Application Developer's Guide

Client-side DSP-Enabled Web Service Development

- <path id="compile.classpath">
<pathelement path="${java.class.path}" />
<pathelement path="${local.build.dir}" />
<pathelement location="${external.resource.dir}/weblogic.jar" />
<pathelement location="${external.resource.dir}/xbean.jar" />
<pathelement location="${external.resource.dir}/wlxbean.jar" />
<pathelement location="${external.resource.dir}/xqgrl.jar" />
<pathelement location="${external.resource.dir}/webservices.jar" />
<pathelement location="${external.resource.dir}
/../src/ld-core/sdoUpdate/dist/wlsdo.jar" />
</path>
<taskdef name="sdogen" classname="com.bea.sdo.impl.SDOGenTask"
classpathref="compile.classpath" />
<taskdef name="sdoclientgen" classname="com.bea.sdo.impl.WSClientGenTask"
classpathref="compile.classpath" />

- <target name="sdo" depends="clean">

<sdogen classgendir="${local.build.dir}" schema="S${wsdl.file}"
classpath="${external.resource.dir}/../src/ld-core/sdoUpdate/dist/wlsdo.ja
r:${external.resource.dir}/xbean.jar" memoryInitialSize="8m"
memoryMaximumSize="256m" fork="true" failonerror="true" />
</target>
- <target name="build" depends="sdo">
<sdoclientgen wsdl="${wsdl.file}" packageName="sdoclient"
clientJar="${local.build.dir}/${output.jar}"
classpathref="compile.classpath" />
- <jar jarfile="${local.build.dir}/${output.jar}" update="yes">
- <fileset dir="${local.build.dir}">
<exclude name="${output.jar}" />
</fileset>
</jar>
</target>
- <target name="clean">
<delete dir="${local.build.dir}" />
<mkdir dir="${local.build.dir}" />
</target>

</project>

Client Application Developer's Guide 4-25

Web Services and DSP-Enabled Applications

4-26 Client Application Developer's Guide

CHAPTERa

Accessing Data Services from
WebLogic Workshop Applications

BEA AquaLogic Data Services Platform

This chapter describes how you can use Data Service controls in WebLogic Workshop to develop client
applications for Data Services Platform. The following topics are included:

e WebLogic Workshop and Data Services Platform
e Data Service Control (JCX) File

e Creating Data Service Controls

Modifying Existing Data Service Controls

Using Data Services Platform with NetUI

Caching Considerations When Using Data Service Controls

Security Considerations When Using Data Service Controls

WebLogic Workshop and Data Services Platform

Data Service controls provide WebLogic Workshop applications an easy way to use data services. When
you use a Data Service control to invoke data services, you get information back as a data object. A
data object is a unit of information as defined by the Service Data Objects (SDO) specification. For
more information on SDO, see Chapter 2, “DSP’s Data Programming Model and Update Framework.”

Client Application Developer’s Guide 5-1

Accessing Data Services from WebLogic Workshop Applications

5-2

In addition to the functionality discussed in this chapter, Data Service controls also provide many of
the same features available through the Mediator API, including:

e Function result filtering
e Ad hoc XQueries

e Result ordering, sorting, and truncating APIs

For more information on these features, see Chapter 10, “Advanced Topics.”

Data Service Controls

A Data Service control is a wizard-generated Java file that can be used to add data service functions
and procedures to WebLogic Workshop applications. Functions and procedures can be added to Data
Service controls from data services deployed on any accessible WebLogic Server, both local or remote.
The Data Service control wizard retrieves all available data service functions and procedures on the
server that you specify. It then lets you choose the ones to include in your control.

If accessing data services on a remote server, metadata describing information that the service
functions return (in the form of XML schema files) is first downloaded from the remote server into the
current application. These schema files are placed in a schema project named after the remote
application. The directory structure within the project mirrors the directory structure of the remote
server. DSP generates interface files for the target schemas associated with the queries and the Data
Service control (. jcx) file.

Use With Page Flow, Web Services, Portals, Business Processes

Like other Java controls available in WebLogic Workshop applications, you can use a Data Service
control in applications such as Web services, page flows, and WebLogic integration business
processes. After applying the control to a client application, you can use the data returned from
queries in the control in your application.

This chapter describes in detail how to use a Data Service control in a page flow-based web
application. The steps for using it in Portals and other WebLogic Workshop Projects are similar.

Client Application Developer's Guide

Data Service Control (JCX) File

Data Service Control (JCX) File

When you create a Data Service control, WebLogic Workshop generates a Java Control Extension
(. jcx) file that contains methods based on the data service’s functions, and a commented method
that can be uncommented and used to pass any XQuery statements (called ad koc queries) to the
server. This section describes the Data Service control in detail and includes the following sections:

e Design View
e Source View

e Using Data Service Controls for Ad Hoc Queries

Design View

The Design View tab of a Data Service control shows a graphical view of the data service methods that
were selected for inclusion in the control.

Figure 5-1 Design View of a JCX File

RTLControl.jcx - §RTLSelFService} Contrals),

Yy

g <o . RTLControl

¥ CUSTOMER

¥ CUSTOMERMWIthFilker

¥ executeQuery
¥ getApparelProduct. .,

¥ getdpparelProduct..

¥ getApplOrderDetail. .

¥ getapplorderDetail. .

¥ getApplProducts

¥ getApplProductsivi...
¥ gebCaseli =]

(4] | [

|| Design View [Source View |

Client Application Developer's Guide 5-3

Accessing Data Services from WebLogic Workshop Applications

Using the right-click menu, you can add or modify a control method (for example, by changing the data
service function or procedure associated with the method). The right-click menu is context
sensitive—it displays different items if the mouse cursor is over a method or elsewhere in the control
portion of the design pane.

Source View

The Source View tab shows the source code of the Data Service control (a Java Control Extension, or
JCX file. It includes annotations defining the data service function names associated with each
method. For update functions, the data service bound to the update is the data service specified by
the locator attribute. For example:

locator="c:/DSP/DataServices/RTLServices/ApplOrderDetailView.ds"

The signature for the method shows its return type. The return type for a read method is an SDO object
corresponding to the schema type of the data service that contains the referenced function. The SDO
classes corresponding to the data services used in a Data Service control reside in the Libraries folder
of the project. An interface is generated for each data service. The folder also contains a copy of the

schema files associated with the functions in the JCX file.

The Java Control Extension instance is a generated file. The only time you should need to edit the
source code is if you want to add a method to run an ad hoc query, as described in “Using Data Service
Controls for Ad Hoc Queries” on page 5-7.

Listing 5-1 shows a generated Data Service control (. jcx) file. It shows the package declaration,
import statements, and data service URI used with the queries.

Listing 5-1 Java Control Extension Sample

package Controls;

import
import
import
import

/**

weblogic.jws.control.*;
com.bea.ld.control.LDControl;
com.bea.ld.filter.FilterXQuery;
com.bea.ld.QueryAttributes;

* @jc:LiquidbData application="RTLApp"
urlKey="RTLApp.RTLSelfService.Controls.RTLControl"

*/
public
{

5-4

interface RTLControl extends LDControl, com.bea.control.ControlExtension

Client Application Developer's Guide

Data Service Control (JCX) File

/* Generated methods corresponding to stored queries. */
/**

*

* @jc:XDS locator="ld:DataServices/RTLServices/ApplOrderDetailView.ds"
functionName="gsubmitApplOrderDetailView"
x/
java.util.Properties]|]
submitApplOrderDetailView(retailer..ORDERDETAILDocument rootDataObject)
throws Exception;

/**
*
* @jc:XDS locator="ld:DataServices/RTLServices/ProfileView.ds"
functionName="submitArrayOfProfilevView"
x/
java.util.Properties]|]
submitArrayOfProfileView(retailer.ArrayOfPROFILEDocument rootDataObject) throws
Exception;

/**
*
locator="1d:DataServices/RTLServices/ElecOrderDetailView.ds"
functionName="submitElecOrderDetailView"
x/
java.util.Properties]|]
submitElecOrderDetailView (retailer.ORDERDETAILDocument rootDataObject) throws
Exception;

/**

*

* @jc:XDS functionURI="ld:DataServices/CustomerDB/CUSTOMER"
functionName="CUSTOMER" schemaURI="1d:DataServices/CustomerDB/CUSTOMER"
schemaRootElement="ArrayOfCUSTOMER"

x/

dataServices.customerDB.customer.ArrayOfCUSTOMERDocument CUSTOMER () ;

/**

*

* @jc:XDS functionURI="ld:DataServices/CustomerDB/CUSTOMER"
functionName="CUSTOMER" schemaURI="1ld:DataServices/CustomerDB/CUSTOMER"
schemaRootElement="ArrayOfCUSTOMER"

x/

dataServices.customerDB.customer.ArrayOfCUSTOMERDocument
CUSTOMERWithFilter (FilterXQuery filter);

/**
*

* @jc:XDS functionURI="1ld:DataServices/RTLServices/ApplOrderDetailView"

Client Application Developer's Guide 5-5

Accessing Data Services from WebLogic Workshop Applications

functionName="getApplOrderDetailView"
x/
retailer.ORDERDETAILDocument getApplOrderDetailView(java.lang.String p0) ;

/;*

*

* @jc:XDS functionURI="ld:DataServices/RTLServices/ProfileView"
functionName="getProfileView" schemaURI="urn:retailer"
schemaRootElement="ArrayOfPROFILE"

*/

retailer.ArrayOfPROFILEDocument getProfileViewWithFilter (java.lang.String
p0, FilterXQuery filter);

*

Default method to execute an ad hoc query.
This method can be customized to have a differnt method name (e.g.
runMyQuery), or to return an SDO generated class (e.g. Customer),
or to return the DataObject class, or to have one or both of the following
two extra parameters: com.bea.ld.ExternalVariables and
com.bea.ld.QueryAttributes
e.g. commonj.sdo.DataObject executeQuery (String xquery,
ExternalVariables params) ;
e.g. commonj.sdo.DataObject executeQuery (String xquery,
QueryAttributes attrs);
e.g. commonj.sdo.DataObject executeQuery (String xquery,
ExternalVariables params, QueryAttributes attrs);

* % ok ok kX ok * ok * ok X ok F

~

com.bea.xml.XmlObject executeQuery (String query) ;

5-6 Client Application Developer's Guide

Data Service Control (JCX) File

Using Data Service Controls for Ad Hoc Queries

Client applications can issue ad hoc queries against data service functions. You can use ad hoc queries
when you need to change the way a data service function returns data. Ad hoc queries are most often
used to process data returned by data services deployed on a WebLogic Server. Ad hoc queries are
especially useful when it is not convenient or feasible to add functions to an existing data service.

A Data Service control generated from a wizard has a commented ad hoc query method that can serve
as a starting point for generating an ad hoc query. To generate the ad hoc query, follow these steps:

1. Ifyou do not already have a Data Service control (JCX) file, generate one using the Data Service
control wizard.

2. Add the following lines of code in the JCX file:
com.bea.xml.XmlObject executeQuery (String query) ;

(Replace the function name with one that is meaningful for your application. Be default, the ad
hoc query returns an XMLObject, but you can return a typed SDO or typed XMLBean class that
matches the return type XML for the ad hoc query. You can also optionally supply
ExternalVariables or QueryAttributes (or both) to an ad hoc query.)

When invoking this ad hoc query function from a Data Service control, the caller needs to pass
the query string (and the optional ExternalVariables binding and QueryAttributes if desired).
For example, a ad hoc query signature in a Data Service control will look like the following:

public interface MyLDControl extends LDControl,
com.bea.control.ControlExtension
{
ldcProduucerDataServices.address.ArrayOfADDRESSDocument
adHocAddressQuery (String xquery) ;

}
The code to call this Data Service control (from a WebService JWS file, for example) would be:

/** @common:control */
public ldcontrol.MyLDControl myldcontrol;

/** @common:operation */
public ldcProduucerDataServices.address.ArrayOfADDRESSDocument
adHocAddressQuery ()
{
String adhocQuery =
"declare namespace fl = \"1ld:1ldc_produucerDataServices/ADDRESS\";\n" +
"declare namespace ns0=\"1d:1ldc_produucerDataServices/ADDRESS\";\n"+
"<ns0:ArrayOfADDRESS>\n"+"{for $i in f1l:ADDRESS()\n" +
"where $i/STATE = \"TX\"\n"+" return $i}\n" +
"</ns0:ArrayOfADDRESS>\n";

Client Application Developer's Guide 5-1

Accessing Data Services from WebLogic Workshop Applications

return myldcontrol.adHocAddressQuery (adhocQuery) ;

}

Creating Data Service Controls

5-8

This section describes the steps for creating a Data Service control and using it in a web project. The
general steps to create a Data Service control are:

Step 1: Create a Project in an Application

Step 2: Start WebLogic Server, If Not Already Running

Step 3: Create a Folder in a Project

Step 4: Create the Data Service Control

Step 5: Enter Connection Information for WebLogic Server
Step 6: Select Data Service Functions to Add to Your Control

The following sections describe each of these steps in detail.

Step 1: Create a Project in an Application

Before you can create a Data Service control in WebLogic Workshop, you must create an application
and a project in the application. You can create a Data Service control in most types of WebLogic
Workshop projects; most commonly, you will create them in:

e Web Projects
e Web Service Projects
e Portal Web Projects

e Process Web Projects

Step 2: Start WebLogic Server, If Not Already Running

Make sure that the WebLogic Server that hosts the DSP-enabled application is running. WebLogic
Server can be running locally (on the same domain as WebLogic Workshop) or remotely (on a different
domain from WebLogic Workshop).

Step 3: Create a Folder in a Project

Create a folder in the project to hold the Data Service control by selecting a folder and right-clicking
on that folder. You can also create other controls (database controls, for example) in the same folder

Client Application Developer's Guide

Creating Data Service Controls

as needed. WebLogic Workshop controls cannot be created at the top level of a project directory
structure. Instead, they must be created in a folder. When you create the folder, enter a name that
makes sense for your application.

Step 4: Create the Data Service Control

To create a Data Service control, start the Java Control Wizard by right-clicking on the new folder in
your project and choosing New — Java Control as shown in Figure 5-2. (You can also create a control
using the File —New — Java Control menu item.)

Figure 5-2 Create a New Data Service Control

£33 RTLS=IFServic [l Bic:XDE funct
5 2y Controls | 2 Find in Files...
4 5 1 Tr
=AW New ¥ | 5] 5P File
Qe Install > "L.% Weh Service
= : Page Fl
(5] Page Flow
] Build RTLSelfService
(] =] Portlet
= Clean RTLSelfService =
4ArTLC Parkal
=<2 crystalrep Import... A Java Cantrol
2 Active Delete =] Java Class
£ % :
= Remove from Application ?ﬁ Process File
{2 hitenl = S
e R Renarmne © 5 Transformation File
L Other File T
| Properties S Al s
Palette
J ’| (1 Folder...
Ooperations |

Next, select Data Services Platform from the New Java Control dialog as shown in Figure 5-3. Enter a
filename for the control (. jcx) file and click Next.

Client Application Developer's Guide 5-9

Accessing Data Services from WebLogic Workshop Applications

5-10

Figure 5-3 New Java Control Dialog

Hew Java Control

Select & contral to extend of select Cuskom ko create a new cuskom contral:

@ Cuskaom

B Database
Webh Service
EJB Contral
R M3

<= Daka Jervice
Tuxedo

) applicationYiew

[

File name:

Tnticled

{myDSPControlnewControly

Browse. ..

|| Cancel |

I Mexk * |

Client Application Developer's Guide

Creating Data Service Controls

Step 5: Enter Connection Information for WebLogic Server

The New Java Control - DSP dialog (Figure 5-4) allows you to enter connection information for the
WebLogic Server that hosts your Data Services Platform application or project. If the server is local, a
Data Service control uses the connection information stored in the application properties. (To view
these settings, access the Tools — Application Properties menu item in WebLogic Workshop.)

If the server is remote, choose the Remote option and fill in the appropriate server URL, user name,
and password.

Note: You can specify a different username and password with which to connect to a local machine
in the Data Service control Wizard as well. To do this, click the Remote button and enter the
connection information (with a different username and password) for your local machine.
The security credentials specified through the Application Properties or through the Data
Service control wizard are used for creating the JCX file only, not for testing queries through
the control. For more details, see “Security Considerations When Using Data Service
Controls” on page 5-27.

When the information is correct, click Create to go to the next step.

Figure 5-4 Data Service Control Wizard: Connection Information

Hew Java Control - Data Service

STEP 1

SLELL Data Services Application (@) Current () Other

[Ee=]

Previous | er:te | Cancel

Client Application Developer's Guide 5-11

Accessing Data Services from WebLogic Workshop Applications

5-12

Step 6: Select Data Service Functions to Add to Your Control

In the Select Data Service functions... page, select the data service functions you want to use in your
application from the left pane and click Add. When done, click Finish. At that point, the Data Service
control JCX file is generated, with a call for each selected function.

Figure 5-5 Control Wizard: Select Data Service Functions Dialog Box

b

Select one or more functions to add to the contral,

I_) DataServices

[C] ApparelDE

27 BilingDE

=2 CustomerDE
() ADDRESS.ds
= C] CUSTOMER.ds

£ cusToMER()
&) getADDRESS)
[] submitarrayofcUSTOMER)
L Dema
[C] Electronics'w's Remove Al

[RTLServices
[Z) ServiceDE

The LiquidbpataControl. jar file is copied into the Libraries directory of your application when
you create your Data Service control.

The control appears with the functions you chose. Also, WithFilter functions are added for each
function, such as getCustomerWithFilter(). A filter function lets you further filter the results normally
returned by a function. For more information, see “Filtering, Sorting, and Fine-tuning Query Results”
in Chapter 10, “Advanced Topics.”

After you have added all the queries you need in the wizard, click Finish. WebLogic Workshop
generates the JCX file for your Data Services Platform control. Each method in the file returns an SDO
type corresponding to the appropriate (or corresponding) data service schema. The SDO classes are
stored in the Libraries directory of the WebLogic Workshop Application.

Client Application Developer's Guide

Modifying Existing Data Service Controls

Note: If you get a timeout error when attempting to create a Data Service control, you may see a
message related to the compiler being unable to find the XMLBean class for a particular
schema element.

You can change the timeout value—by default that value is set at 5000 (5 seconds)—by
adding a directive in the WebLogic Workshop configuration file:

<beahome>/weblogic81/workshop/workshop.cfg
For example to change the setting to 10000 add the following directive to the file:

-Dcom.bea.ld.control.notification.timeout=10000

Modifying Existing Data Service Controls

This section describes the ways you can modify an existing Data Service control. When you edit a
control, the SDO classes that are available to the control are recompiled, which means that any
changes to data service are incorporated to the controls at that point as well.

This section contains the following procedures:
e Changing a Method Used by a Control
e Adding a New Method to a Control

e Updating an Existing Control When Schemas Change

Changing a Method Used by a Control

To change a data service function in a Data Service control, perform the following steps:
1. In WebLogic Workshop, open the Design View for a Data Service control (. jcx) file.

2. Select the method you want to change, right-click, and select Edit in source view to bring up the
source editor. (See Figure 5-6.)

Client Application Developer's Guide 5-13

Accessing Data Services from WebLogic Workshop Applications

Figure 5-6 Changing a Function in a Data Service Control

RTLControl.jcx - {RTLSelfService i Contrals)
= | <o RTLControl

¥ CUSTOMER

¥ CUSTOMERMWithFilker

¥ executeQuery
—— QetApparelProductView

Edit in source view

Rename

Delete ter

3. In the source view, change the comment for the function. Change the functionName value to the
new function you want to use. If necessary, change the functionURI value as well. This should be
the path to the data service that contains the function.

4, Change the return type, parameters, and name of the function.

When you save your changes, the SDO classes based on the control are automatically recompiled.

Adding a New Method to a Control

To add a new method to an existing Data Service control, perform the following steps:
1. In WebLogic Workshop, open an existing control in Design View.

2. In the control Design View, move your mouse inside the box showing the control methods,
right-click, then select Add Method as shown in Figure 5-7.

Figure 5-7 Adding a Method to a Control

RTLCankrol, jox - §RTLSelFService HiCantrolsh

[NG [¢e5 . RTLControl |

——— ("] |5 TCMER,
. || IS TOMERMYiERFilker

e execubeQuEry ‘ Edit in source view ‘

3. Enter a name for the new method.

4, Right-click the new method, and select Edit in Source View to bring up the source editor.

5-14 Client Application Developer's Guide

Using Data Services Platform with NetUI

5. In the Source View, add a comment for the function. Change the functionName value to the new
function you want to use. If necessary, change the functionURI value as well. This should be the
path to the data service that contains the function.

6. Change the return type, parameters, and name of the function.

Updating an Existing Control When Schemas Change

If any of the schemas corresponding to any methods in a Data Service control change, you must clean
and re-build the DSP data service folders to regenerate the SDO classes for the changed schemas. If
the changes result in a different return type for any of the functions, you must also modify the function
in the control.

Note: If you developed a client application using a static client API and you modify any schemas,
you must also recompile and redeploy the application to your user community, using the
re-generated classes.

When you edit the control, its SDO classes are automatically regenerated.
Note: For details on working with static and dynamic SDO see “Static and Dynamic SDO APIs” on
page 3-14.

Using Data Services Platform with NetUI

The WebLogic NetUI tag library allows you to rapidly assemble JSP-based applications that display
data returned by Data Services Platform. The following sections list the basic steps for using NetUI to
display results from a Data Service control:

e Generating a Page Flow From a Control
e Adding a Data Service Control to an Existing Page Flow
e Adding Service Data Objects (SDO) Variables to the Page Flow

e Displaying Array Values in a Table or List

Generating a Page Flow From a Control

When you use WebLogic Workshop to generate a page flow, WebLogic Workshop creates the page flow,
a start page (index. jsp), and a JSP file and action for each method you specify in the Page Flow
wizard.

Client Application Developer's Guide 5-15

Accessing Data Services from WebLogic Workshop Applications

To Generate a Page Flow From a Data Service Control

Perform the following steps to generate a page flow from a Data Services Platform control.

1. Select a Data Services Platform control JCX file from the application file browser, right-click, and
select Generate Page Flow.

2. Inthe Page Flow Wizard (see Figure 5-8), enter a name for your Page Flow and click Next.

Figure 5-8 Enter a Name for the Page Flow

Page Flow Wizard - Page Flow Mame E il

Mame And Location

Page Flow Mare: | mvPageFlow |

Location: {myTestweb}/myPageFlow]

Controller Mame: | myPageFlowController, jpf |

Page Flow Nesting

Mested page Flows are used to gather and return information
to a caling page flaw,

[Make this a nested page Flow

| Mesck | | || Cancel |

3. On the Page Flow Wizard - Select Actions dialog, check the methods for which you want a new
page created. The wizard has a check box for each method in the control. (See Figure 5-9.)

5-16 Client Application Developer's Guide

Using Data Services Platform with NetUI

Figure 5-9 Choose Data Services Platform Methods for the Page Flow

Page Flow Wizard - Select Actions x|

Patential Actions:

Return Type Method Mame
retailer .OrderDetailviewDocument ApplCrderDetailview(java.lang.. ..
[retailer CustomeryiewDocurment Customerview(java.lang.String ...
[retailer CrderDetailviewDocument ElecOrderDetailview(java.lang,...
retailer .OrderSummaryViewDoc, .. OrderSummaryWiew(java.sql. Ti...
[retailer .rderSummaryViewDoc. .. OrderSummaryiew'withPaginat. ..
[retailer ProfileviewDoorment Profileview(java.lang.String cus. ..

| Select al | | Deselect &l |

Previous Create Cancel

4. Click Create.

WebLogic Workshop generates the Java Page Flow (JPF file), a start page (index.jsp), and a
JSP file for each method you specify in the Page Flow wizard.

5. Add and initialize variables to the JPF file based on the SDO classes. For details, see “Adding
Service Data Objects (SDO) Variables to the Page Flow” on page 5-18.

6. Drag and drop the SDO variables to your JSPs to bind the data from Data Services Platform to
your page layout. For details, see “Displaying Array Values in a Table or List” on page 5-22.

7. Build and test the application in WebLogic Workshop.

Adding a Data Service Control to an Existing Page Flow

You can add a Data Service control to an existing Page Flow JPF file. The procedure is the same as
adding a Data Service control to a Web service as described in the section “Adding a Data Service
Control to a Web Service” in Chapter 4, “Web Services and DSP-Enabled Applications.” However,
instead of opening the Web service in Design View as described in that chapter, you open the Page
Flow JPF file in Action View.

Client Application Developer's Guide 5-11

Accessing Data Services from WebLogic Workshop Applications

5-18

You can also add a control to an existing page flow from the Page Flow Data Palette (available in Flow
View and Action View of a Page Flow) as shown in Figure 5-10.

Figure 5-10 Adding a Control to a Page Flow from the Data Palette

|| Data Palette b
Controls Add »
= {_E ryZonkrol [:] Database
| getCustomer '% Web Service
=+ gQetPaymentList EIE Contral
=+ submitCustomer e
Form Beans o T
[GetCustomerFarm £17 Timer
D ItemForm ‘L-c'?
[E] submitCustamerForm — I~
Tuzedo “g
m Integration Contrals »

Adding Service Data Objects (SDO) Variables to the Page Flow

To use the NetUI features to drag and drop data into a JSP, you must first create one or more variables
in the page flow JPF file. The variables must be of the data object type corresponding to the schema
associated with the query.

Note: A data object is the fundamental component of the SDO architecture. For more information,
see Chapter 2, “DSP’s Data Programming Model and Update Framework.”

Defining a variable in the page flow JPF file of the top-level class of the SDO function return type
provides you access to all the data from the query through the NetUI repeater wizard. The top-level
class, which corresponds to the global element of the data service type, has “Document” appended to
its name, such as CUSTOMERDocument.

When you create a Data Service control and the SDO variables are generated, an array is created for
each element in the schema that is repeatable. You may want to add other variables corresponding to
other arrays in the classes to make it more convenient to drag and drop data onto a JSP, but it is not
required. For example. when an array of CUSTOMER objects can contain an array of ORDER objects,
you can define two variables: one for the CUSTOMER array and one for the ORDER array. You can then
drag the variables to different JSP pages.

Define each variable with a type corresponding to an SDO object. Define the variables in the source
view of the page flow controller class. The variables should be declared public. In the following
example, the bold-typed variable declarations show an example of user variable declarations:

Client Application Developer's Guide

Using Data Services Platform with NetUI

public class CustomerPFController extends PageFlowController

{

/**

* This is the control used to generate this pageflow

* @common:control
x/

private DanubeCtrl myControl;

public CUSTOMERDocument var;

public POITEM currentItem;

public PAYMENTListDocument payments;

Once defined in the page flow controller, the variables appear on the Data Palette tab. From there,
you can drag-and-drop them onto JSP files. When you drag-and-drop an array onto a JSP file, the NetUI

Repeater Wizard appears and guides you through selecting the data you want to display. (See

Figure 5-11.)

Figure 5-11 Page Flow Variables for XMLBean Objects

variables added
to the Page Flow

H

| Property Editor | Dacument Structure

submitCustomer

Description

submnitCustomer
|| Data Palette

Page Flow
Properties

ﬂ currentItem
—

| HE =

ﬂ pavments
ﬂ var
ﬂ customerLink

Public Controls
Actions

applyItem
& back
£ beqin

To populate the variable with data, initialize the variable in the page flow method corresponding to
the page flow action that calls the query. For details, see “To Initialize the Variable in the Page Flow”

on page 5-20.

Client Application Developer's Guide

5-19

Accessing Data Services from WebLogic Workshop Applications

5-20

To Add a Variable to a Page Flow

Perform the following steps to add a variable to the page flow:
1. Open your Page Flow JPF file in WebLogic Workshop.
2. Open the Source View tab.

3. In the variable declarations section of your Page Flow class, enter a variable with the SDO type
corresponding to the schema elements you want to display. Depending on your schema, what you
want to display, and how many queries you are using, you might need to add several variables.

4, To determine the SDO type for the variables, examine the method signature for each method
that corresponds to a query in the Data Service control. The return type is the root level of the
SDO class. Create a variable of that type. For example, if the signature for a control method is:

org.openuri.temp.schemas.customer.CUSTOMERDocument getCustomer (int pl) ;
Create a variable as follows:

public org.openuri.temp.schemas.customer.CUSTOMERDocument var;

5. After you create the variables, initialize them as described in the following section.

To Initialize the Variable in the Page Flow

You can initialize the variable by calling a function in a Data Service control, which will populate the
variable with the returned data. Initializing the variables ensures that the data bindings to the
variables work correctly and that there are no tag exceptions when the JSP displays the results the
first time.

Perform the following steps to initialize the variables in Page Flow:
1. Open your Page Flow JPF file in WebLogic Workshop.
2. Open the Source View.

3. In the page flow action that corresponds to the Data Services Platform query for which you are
going to display the data, add the code to initialize the variable.

The following example shows how to initialize an object on the Page Flow. The code (and comments)
in bold has been added. The rest of the code was generated when the Page Flow was created from the
Data Service control (see “Generating a Page Flow From a Control” on page 5-15).

Client Application Developer's Guide

Using Data Services Platform with NetUI

public class CustomerPFController extends PageFlowController
{

/**
* This is the control used to generate this pageflow
* @common:control
*/

private DanubeCtrl myControl;

public CUSTOMERDocument var;

/**
* Action encapsulating the control method :getCustomer
* @jpf:action
* @jpf:forward name="success" path="viewCustomer.jsp"
* @jpf:catch method="exceptionHandler" type="Exception"
*/

public Forward getCustomer (GetCustomerForm aForm)

throws Exception
var = myControl.getCustomer (aForm.pl);

return new Forward("success");

Working with Data Objects

After creating and initializing a data objects as a public variable in the Page Flow, you can drag and
drop elements of the object onto your application pages (such as JSPs) from the Data Palette.

The elements appear in dot-delimited chain format, such as:

pageFlow.var.CUSTOMER.CUSTOMERNAME

Notice that the function that actually returns the element value is get CUSTOMERNAME (), which
returns a java.lang.String value, the name of a customer.

As you edit code in the source view, WebLogic Workshop offers code completion for method and
member names as you type. A selection box of available elements appears in the data object variable
as shown in Figure 5-12.

Client Application Developer's Guide 5-21

Accessing Data Services from WebLogic Workshop Applications

Figure 5-12 DataObject Method Name Completion

editCustomer jsp* - {DanubewWeb}CustomerPFY

<%@ taglib uri="netui-tags-htnl,tld” prefix="netui™%>
<%[taglib uri="necui-tags-tenplate. tld” prefix="netui-tenplace” s
<netui-template: template templatePage="/resources/]sp/tenplate.]sp™>
<netui-template:setdttribute wvalue="subnitCustoner” name="title" />
<netui-template:section name="hodySection™s <hr/=
<netui:form action="submitCustoner>
<table class="tablebody
<tr class="tablehead">
<td align="left"” colspan="2"%
Results Area <hr/>
CUSTID: <netui:label walue="{pageFlow.var. USTOMER. CUSTOMERID | =< /metuis labelk< /bl

mx

<br /=<h-NAME: <netui: textBox dataSource="{pageFlow.wvar.CUITOMER. }"></netui: textBox>
<hr /=<h>=CREDIT SCORE: <netui:textBox datafource="{pageFlow.var.|container
<netui:button type="subnit” walue="Jubmit All Changes” action="|containwentProperty
</hx CREDITArray
<netui-data:repeater datajources="{pageFlow.var.CUTSTOMER. 0RDERArray|CUSTOMERID
<netui-data:repeaterHeaders CUSTOMERNAME
<table class="tablebody” border="1"> dataGraph
<tr class="tabhlehead” waligm="top"> immutable
< th=0RDERID: /thi nil Z|
£l SR ORDERATray
t¥pe =

Design View | Source Yiew | |

Note: For more information on programming with DSP data objects, see Chapter 2, “DSP’s Data

Programming Model and Update Framework.”

Displaying Array Values in a Table or List

DSP maps to an array any data element specified to have unbounded maximum cardinality in its XML

schema definition. Unbounded cardinality means that there can be zero to many (unlimited)
occurrences of the element (indicated by an asterisk in the return type view of the DSP Console).

When you drag and drop an array value onto a JSP File, BEA WebLogic Workshop displays the
Repeater wizard to guide you through the process of selecting the data you want to display. The
Repeater wizard provides choices for displaying the results in an HTML table or in a list.

Adding a Repeater to a JSP File

To add a NetUI repeater tag (used to display the data from a Data Services Platform query) to a JSP

file, perform the following steps:

1. Open a JSP file in your Page Flow project where you want to display data. This should be the page

corresponding to the action in which the variable is initialized.

2. Inthe Data Palette — Page Flow Properties, locate the variable containing the data you want

to display.

5-22 Client Application Developer's Guide

Using Data Services Platform with NetUI

3. Expand the nodes of the variable to expose the node that contains the data you want to display.
If the variable does not traverse deep enough into your schema, you will have to create another
variable to expose the part of your schema you require. For details, see “To Initialize the
Variable in the Page Flow” on page 5-20.

4. Select the node you want, then drag and drop it onto the location of the JSP file in which you
want to display the data. You can do this either in Design View or Source View. WebLogic
Workshop displays the repeater wizard as shown in Figure 5-13.

Figure 5-13 Repeater Wizard

Repeater Wizard - Select Properties 5[

If the data source, or amy of its properties, stores a generic bvpe it will
appear as a link, Click the link to specify the strong type,

Select Properties

= dataServices.schemas.pa\,-'mentList.PA‘."MENTListDocumentE
[#] & COMMENT {java.lang. String} i
[#] & cusTID fint} —
&= container {commonj.sdo,DataObject} H|
E%H container {commonj.sdo,DataObject}
= containmentProperty {oommoni,sdo.Property}
= containingType {commani,sda, Typet
ﬁ%ﬂ instanceClass {java.lang. Class}
ﬁéﬂ narne {java.lang.Skring}
&éﬂ properties {java.util. List} <77 = B
,@H W] URI {java.lang.String}

[« | []

| Mest | I Create || Cancel |

5. In the repeater wizard, navigate to the data you want to display and uncheck any fields that you
do not want to display. There might be multiple levels in the repeater tag, depending on your
schema.

6. Click Next. The Select Format screen appears as shown in Figure 5-14.

Client Application Developer's Guide 5-23

Accessing Data Services from WebLogic Workshop Applications

5-24

Figure 5-14 Repeater Wizard Select Format Screen

7.
8.

Repeater Wizard - Select Format) x|

Data Format

®] Table
O [E5] st
O [E] Text

Example:

[Field1 | Field2 | Fietd3 || Fieldd |

Waluel Yaluel Yaluel Yaluel

Yalue2 || WalueZ || Walue2 || Yalus2
Yalued || Walue3 || Walue3 || Yalued

Title Field {Dptional)

Title Field does not apply to the Table data Format

Previous Create Cancel

Choose the display format for your data and click Create.

Right-click on the JSP page and choose Run Page to see the results.

Adding a Nested Level to an Existing Repeater

You can create repeater tags inside other repeater tags. You can display nested repeaters on the same
page (in nested tables, for example) or you can set up Page Flow actions to display the nested level on
another page (with a link, for example).

To create a nested repeater tag, perform the following steps:

L
2.

Add a repeater tag as described in “Adding a Repeater to a JSP File” on page 5-22.
Add a column to the table where you want to add the nested level.

Drag and drop the array from your variable corresponding to your nested level into the data cell
you created in the table.

In the repeater wizard, select the items you want to display.
Click the Create button in the repeater wizard to create the repeater tags.

Right-click on the JSP page and choose Run Page to see the results.

Client Application Developer's Guide

Using Data Services Platform with NetUI

Adding Code to Handle Null Values

It is a common JSP design pattern to add conditional code to handle null checks. If you do not check
for null values returned by function invocations, your page will display tag errors if it is rendered
before the functions on it are executed.

To add code to handle null values, perform the following steps:

1. Add a repeater tag as described in “Adding a Repeater to a JSP File” on page 5-22.
2. Open the JSP file in source view.

3. Find the netui-data:repeater tag in the JSP file.

4, If the dataSource attribute of the netui-data:repeater tag directly accesses an array variable
from the page flow, then you can set the defaultText attribute of the netui-data:repeater tag. For
example:

<netui-data:repeater dataSource="{pageFlow.promo}" defaultText="no data">

If the dataSource attribute of the netui-data:repeater tag accesses a child of the variable from
the page flow, you must add if/else logic in the JSP file as described below.

5. If the defaultText attribute can have a null value for your netui-data:repeater tag, add code
before and after the tag to test for null values. The following is sample code. The code in bold is
added, the rest is generated by the repeater wizard. This code uses the profile variable
initialized in “To Initialize the Variable in the Page Flow” on page 5-20.

<%

PageFlowController pageFlow = PageFlowUtils.getCurrentPageFlow(request);

if (((pF2Controller)pageFlow) .profile == null

[
((pF2Controller)pageFlow) .profile.getPROFILEVIEW() .get CUSTOMERPROFILEArray
() == null

[
((pF2Controller)pageFlow) .profile.getPROFILEVIEW() .getCUSTOMERPROFILEArray
() .1length == 0){

%>

<p>No data</p>

<% } else {%>
<netui-data:repeater dataSource=

"{pageFlow.profile.PROFILEVIEW.CUSTOMERPROFILEArray}">

<netui-data:repeaterHeader>

Client Application Developer's Guide 5-25

Accessing Data Services from WebLogic Workshop Applications

<table cellpadding="2" border="1" class="tablebody" >
<tr>
<!- the rest of the table and NetUI code goes here -->
<td><netui:label value
="{container.item.PROFILE.DEFAULTSHIPMETHOD} "></netui:label></td>
</tr>
</netui-data:repeaterItem>
<netui-data:repeaterFooter></table></netui-data:repeaterFooter>
</netui-data:repeater>

<% }%>

6. Test the application.

Caching Considerations When Using Data Service Controls

The following scenario is very common: most of the time you can use cached data because it changes
infrequently; however, on occasion, your application must fetch data directly the data source. At the
same time, you want to update your cache with the most up-to-date information. A typical example
would be to refresh the cache at the beginning of every week or month.

You can accomplish this by passing the attribute GET _CURRENT_DATA with your function call.

Bypassing the Cache When Using a Data Service Control

To bypass the data in a cached query function result, your application will need to signal Liquid Data
to retrieve results directly from the data source, rather than from its cache. The steps required to
accomplish this include:

e Adding an additional function to the set already defined in your Data Service control (. jcx)
file. This function will take a QueryAttribute object as a parameter.

e Instantiate a QueryAttribute object in your application and call the enableFeature() method,
passing the GET_CURRENT_DATA attribute.

e (all the function you defined in your Data Service control, passing the QueryAttribute object.

Cache Bypass Example When Using a Data Service Control

Listing 5-2 shows example Java Page Flow (JPF) code that tests whether the user has requested a
bypass of any cached data. If refreshCache is set to false then cached data (if any is available) is used.

5-26 Client Application Developer's Guide

Security Considerations When Using Data Service Controls

Otherwise the function will be invoked with the GET _CURRENT _DATA attribute and data will be
retrieved from the data source. As a by-product, any cache is automatically refreshed.

Listing 5-2 Cache Bypass Example When Using Data Services Platform Control

if (refreshCache == false) {

customerDocument = LDControl.getCustomerProfile(CustomerID) ;
} else {

QueryAttributes attr = new QueryAttributes();

attr.enableFeature (QueryAttributes.GET_CURRENT_DATA) ;
customerDocument =

LDControl.getCustomerProfileWithAttr (CustomerID, attr);

As mentioned above, an additional function is also needed in the your Liquid Data control (. j cx) file.
For the code shown in Listing 5-2, you would add the following definition to your Liquid Data control:
/ * %

*

@jc:XDS functionURI="1ld:DataServices/CustomerProfile"
functionName="getCustomerProfile"

x/

CUSTOMERPROFILEDocument getCustomerProfileWithAttr
QueryAttributes attr);

(java.lang.String pO,

Security Considerations When Using Data Service Controls

This section describes security considerations for applications using a Data Service control. The
following sections are included:

e Security Credentials Used to Create Data Service Controls
e Testing Controls With the Run-As Property in the JWS File

e Trusted Domains

Client Application Developer's Guide 5-21

Accessing Data Services from WebLogic Workshop Applications

5-28

Security Credentials Used to Create Data Service Controls

The WebLogic Workshop Application Properties (Tools — Application Properties) allow you to set
the connection information to connect to the domain in which you are running. You can either use the
connection information specified in the domain boot . properties file or override that information
with a specified username and password.

When you create a Data Services Platform control JCX file and are connecting to a local Data Services
Platform server (Data Services Platform on the same domain as WebLogic Workshop), the user
specified in the Application Properties is used to connect to the Data Services Platform server. When
you create a Data Service control and are connecting to a remote Data Services Platform server (a
WebLogic Server on a different domain from WebLogic Workshop), you specify the connection
information in the Data Service control wizard connection information dialog (see Figure 5-4).

When you create a Data Service control, the Control Wizard displays all queries to which the specified
user has access privileges. The access privileges are defined by security policies set on the queries,
either directly or indirectly.

Note: The security credentials specified through the Application Properties or through the Data
Service control wizard are only used for creating the Data Service control JCX file, not for
testing queries through the control. To test a query through the control, you must get the user
credentials either through the application (from a login page, for example) or by using the
run-as property in the Web service file.

Testing Controls With the Run-As Property in the JWS File

You can use the run-as property to test a control running as a specified user. To set the run-as property
in a Web service, open the Web service and enter a user for the run-as property in the WebLogic
Workshop property editor.

When a query is run from an application, the application must have a mechanism for getting the
security credential. The credential can come from a login screen, it can be hard-coded in the
application, or it can be imbedded in a J2EE component (for example, using the run-as property in a
JWS Web service file).

Trusted Domains

If the WebLogic Server that hosts the DSP project is on a different domain than WebLogic Workshop,
then both domains must be set up as trusted domains.

Client Application Developer's Guide

Security Considerations When Using Data Service Controls

Domains are considered trusted domains if they share the same security credentials. With trusted
domains, a user known to one domain need not be authenticated on another domain, if the user is
already known on that domain.

Note: After configuring domains as trusted, you must restart the domains before the trusted
configuration takes effect.

Configuring Trusted Domains

To configure domains as a trusted user, perform the following steps:
1. Log into the WebLogic Administration Console as an administrator.
2. In the left-frame navigation tree, click the node corresponding to your domain.

3. At the bottom of the General tab for the domain configuration, click the link labeled View
Domain-wide Security Settings Links.

4. Click the Advanced tab. (See Figure 5-15.)

Figure 5-15 Setting up Trusted Domains

(| Compatibility

General || Advanced [| Filter || Embedded LDAP

This page allows you to define the advanced security settings for this WeblLogic Server dormain.
& 7 Enable Generated Credential

Specifies whether a credential (usually a password) should be generated for this WebLogic Serer domain. (This
credential is used to enable a trust relationship between two domains. For the two domains to establish trust, they
must have the same credential.)

Credential: r“”““w“*

Confirm
Credential:

The credential for this WeblLogic Server domain.

Apply

5. Uncheck the Enable Generated Credential box, enter and confirm a credential (usually a
password), and click Apply.

6. Repeat this procedure for all of the domains you want to set up as trusted. The credential must
be the same on each domain.

Client Application Developer's Guide 5-29

Accessing Data Services from WebLogic Workshop Applications

For more details on WebLogic security, see:

e “Configuring Security for a WebLogic Domain” in the WebLogic Server documentation.

For information on Data Services Platform security, see:

e "Securing DSP Resources" in the DSP Administration Guide.

5-30 Client Application Developer's Guide

http://e-docs.bea.com/wls/docs81/secmanage/domain.html
http://e-docs.bea.com/liquiddata/docs85/admin/security.html

Supporting ADO.NET Clients

This chapter describes how to enable interoperability between BEA AquaLogic Data Services Platform
(DSP) data services and ADO.NET client applications. With support for ADO.NET client applications,
Microsoft Visual Basic and C# developers who are familiar with Microsoft’s disconnected data model
can leverage DSP data services as if they were ADO.NET Web services.

From the Microsoft ADO.NET developers’ perspective, support is transparent: you need do nothing
extraordinary to invoke functions on a DSP data service—all the work is done on the server-side.
ADO.NET-client-application developers need only incorporate the DSP-generated WSDL into their
programming environments, as you would when creating any Web service client application.

General information about how DSP achieves ADO.NET integration is provided in this chapter, as are
the server-side operations required to enable it. The chapter includes the following sections:

e Overview of ADO.NET Integration in Data Services Platform
e Enabling DSP Support for ADO.NET Clients
e Adapting DSP XML Types (Schemas) for ADO.NET Clients

o Generated Artifacts Reference

Note: The details of ADO.NET development are described on Microsoft’s MSDN Web site
(http://msdn.microsoft.com). See that site for information about developing
ADO.NET-enabled applications.

Client Application Developer’s Guide 6-1

Supporting ADO.NET Clients

Overview of ADO.NET Integration in Data Services Platform

6-2

Functionally similar to service data objects (SDO), ADO.NET is data object technology for Microsoft
ADO.NET client applications. ADO.NET provides a robust, hierarchical, data access component that
enables client applications to work with data while disconnected from the data source. Developers
creating data-centric client applications use C#, Visual Basic.NET, or other Microsoft .NET
programming languages to instantiate local objects based on schema definitions.

These local objects, called DataSets, are used by the client application to add, change, or delete data
before submitting to the server. Thus, ADO.NET client applications sort, search, filter, store pending
changes, and navigate through hierarchical data using DataSets, in much the same way that SDOs are
used by DSP client applications.

See “Role of the Mediator and SDOs” on page 2-14 for more information about working with SDOs in
a Java client application. Developing client applications to use ADO.NET DataSets is roughly
analogous to the process of working with SDOs.

Although functionally similar on the surface, as you might expect with two dissimilar platforms (Java
and .NET), the ADO.NET and SDO data models are not inherently interoperable. To meet this need,
Data Services Platform provides ADO.NET-compliant DataSets so that ADO.NET client developers can
leverage data services provided by Data Services Platform, just as they would any ADO.NET-specific
data sources.

Enabling a Data Services Platform data service to support ADO.NET involves three key steps:

e (Creating an ADO.NET-Enabled Data Service Control (Note that ADO.NET-Enabled Data Service
controls are intended exclusively to provide support to ADO.NET clients via a Web service
interface, as described in this chapter: such controls cannot be used in Page Flows, Portals, or
other development scenarios.)

e Generating a Web Service for ADO.NET Clients

e Generating an ADO.NET-Enabled WSDL
These steps are described in “Enabling DSP Support for ADO.NET Clients” on page 6-7.

Understanding ADO.NET

ADO.NET is a set of libraries included in the Microsoft .NET Framework that help developers
communicate from ADO.NET client applications to various data stores. The Microsoft ADO.NET
libraries include classes for connecting to a data source, submitting queries, and processing results.
The DataSet also includes several features that bridge the gap between traditional data access and

Client Application Developer's Guide

Overview of ADO.NET Integration in Data Services Platform

XML development. Developers can work with XML data through traditional data access interfaces,
and vice-versa.

Note: See Microsoft’s MSDN site (http: //msdn.microsoft.com/) for more information about
ADO.NET and client application development.

Although ADO.NET supports both connected (direct) and disconnected models, in Data Services
Platform only the disconnected model is supported.

ADO.NET Client Application Development Tools

ADO.NET client applications are typically created using Microsoft Windows Forms, Web Forms, C#, or
Visual Basic. Microsoft Windows Forms is a collection of classes used by client application developers
to create graphical user interfaces for the Windows .NET managed environment. Web Forms provides
similar client application infrastructure for creating Web based client applications. Any of these client
tools can be used by developers to create applications that leverage ADO.NET for data sources.

Figure 6-1 ADO.NET Clients Supported via Web Services

Data Service Platform
WebLogic Server

ADO.NET client application

1. Create ADO.NET-Enabled
5. Incorporate WSDL in ADO.NET client Data Service Control
application development environment

“Customer” Data Service

| » Web service a4 ADO.NET-Enabled <
insjantiates g Data Service control

2. Generate Stateless JWS

3. Generate ADO.NET-

DataSet Enabled WSDL
DataSet
DataSet .

\{

Joem O

<xs:schema
4. Use WSDL to generate client proxy xmlns:mstns="http:
« (stub) code and include stub in client” """~ y //
application development temp.openuri.org/
schemas/
Customer.xsd"

<xs:element
msdata:IsDataSet="
true”
name="CustomerData
Set'>

Client Application Developer's Guide 6-3

Supporting ADO.NET Clients

6-4

Support for ADO.NET clients is provided via Web services, so before you can use your Microsoft tools
of choice, you must perform the two basic tasks required for web-service client development, just as
you normally would for any Microsoft Web services client application (see Figure 6-1):

e Obtain the WSDL for the DSP Web service application.

e Generate the client side artifacts from the WSDL as required for the client application
development tool you are using.

Once the client-side artifacts have been incorporated into your development environment, you can
invoke functions on the data service and manipulate the DataSet objects in your code as you normally
would.

Note: The process of generating the WSDL and server-side artifacts is described in “Generating a
Web Service for ADO.NET Clients” on page 6-10.

Understanding How DSP Supports ADO.NET Clients

BEA AquaLogic Data Services Platform supports ADO.NET at the data object level. That is, Data
Services Platform maps inbound ADO.NET DataSet objects to SDO DataObjects, and maps outhbound
SDOs to DataSets. The mapping is performed transparently on the server, and is bidirectional.

Table 6-2 ADO.NET and SDO Data Objects Compared
ADO.NET SDO Description

DataSet DataObject Disconnected data models. Queries return
results conforming to this data model.

DiffGram ChangeSummary Mechanisms for tracking changes made to
data objects by a client application.

As shown in Figure 6-3, the ADO.NET typed DataSet is submitted to and returned by DSP. At runtime,
when a Microsoft-.NET client application makes a SOAP invocation to the ADO.NET-enabled Web
service, the Web service intercepts the object and passes it to the Data Service control.

The ADO.NET-enabled Data Service control is the linchpin of the interoperability between the two
platforms. It comprises several wrapper classes—one for each typed DataSet—that are used to
provide bidirectional mapping.

Client Application Developer's Guide

Overview of ADO.NET Integration in Data Services Platform

Figure 6-3 Data Services Platform and .NET Integration

—_ . (Javaweb |
(pataset Jo————————— pponer | “Genice

-,
Strongly Typed I (Dmsm)
DataSet (1 —
ADO.NET- - 4 E.'
Enabled Data =7 El:
Service Control - 2l
; {\/snc:)
C#, VB, or other —
= Web Form
CLR Client (' , I
e Wi F
(fappication } ndows Form } Data Scrwcc

Data Services Platform
Engme ‘

WeblLogic Platform

.NET Client

/ { N

o — HEF
0 [Ele

Web Services Database Other Data Sources

The required wrapper classes are created automatically, during the process of creating the
ADO.NET-enabled Data Service control, as described later in this chapter. The wrapper classes are
based on the XML schema file that gets generated during Data Service control creation.

At runtime, the ADO.NET-enabled Data Service control uses the wrapper classes to provide the
ADO.NET client with the appropriate objects. The specifics vary, depending on the type of function or
procedure:

o Functions. The Data Service control wraps a query result using the typed DataSet schema, adds
the DataSet schema type to the result, and returns to the client.

e Procedures. A DSP procedure can return an SDO; another data type; or nothing (void). The
Data Service control uses the wrapper classes as required, but only if required.

e Submitting changes. The Data Service control transforms an ADO.NET DataSet DiffGram to an
SDO ChangeSummary, and then submits it to SDO Mediator. All submit methods take the
corresponding wrapper classes as arguments.

Client Application Developer's Guide 6-5

Supporting ADO.NET Clients

As mentioned previously, mapping, transformation, and packaging processes are transparent to client
application developers and data services developers. Only the items listed in Table 6-4 are exposed to

data service developers.

Tahle 6-4 Data Services Platform—lJava and ADO.NET-Enabled Artifacts

Name Example Description

Data Service Customer.ds An XQuery file that instantiates read
functions, navigation functions, procedures,
and update functionality at runtime.

Data Service Schema Customer.xsd The schema associated with the return type
of the original data service.

DataSet Schema CustomerDataSet.xsd The typed DataSet schema that conforms to
Microsoft requirements for ADO.NET data
objects.

Data Service Control Customer . jcx An ADO.NET-enabled data service control.

Web Service Source Customer. jws A Java Web service that can intercept

ADO.NET data objects and pass them to an
ADO.NET-enabled Data Service control.

<DSControlName>_schema Customer_schema

An automatically created folder for
containing generated typed DataSet XSDs.

Web Service Definition CustomerNET.wsdl

Generated WSDL that conforms to the
ADO.NET typed DataSet schema.

Supporting Java Clients

The WSDL generated by the WebLogic Server from an ADO.NET-enabled Data Service control is
specific for use by Microsoft ADO.NET clients. Exposing data services as Web services that are usable
by Java clients is generally the same, although the actual steps (and the generated artifacts) are

specific to Java. The steps are summarized in Table 6-5.

6-6 Client Application Developer's Guide

Enabling DSP Support for ADO.NET Clients

Table 6-5 Summary of Steps for Supporting Regular Clients

Task For more information...

Generate Data Service Control (regular, not “Creating Data Service Controls” on page 5-8

ADO.NET-enabled)

Generate Web service file (JWS) “Server-side DSP-Enabled Web Service
Development” on page 4-4

Generate WSDL “Server-side DSP-Enabled Web Service

Development” on page 4-4

Enabling DSP Support for ADO.NET Clients

The process of providing ADO.NET clients with access to data services is a server-side operation that
takes place in the context of an application and WebLogic Workshop.

The instructions in this section assume that you have created a data service application and that you
want to provide access to the functions of the service to ADO.NET client applications. (For
information about designing and developing data services, see the Data Services Developer’s Guide.)

Enabling a DSP application to support ADO.NET clients is generally a three-step process:
e (Creating an ADO.NET-Enabled Data Service Control
e Generating a Web Service for ADO.NET Clients
e Generating an ADO.NET-Enabled WSDL

The tasks described in the remaining sections assume that a data services application is open in
WebLogic Workshop.

Creating a New Web Service Project

Since the ADO.NET support is accomplished through the use of Data Service controls, and since the
Data Service controls require being exposed as Web services in order to make them network
accessible, the first step is to create a Web service project and the folder structure necessary to hold
generated components.

In the data service application that you want to ADO.NET-enable, create a new Web service project
specifically for the ADO.NET-enabling components of the application (see Figure 6-6).

Client Application Developer's Guide 6-7

Supporting ADO.NET Clients

6-8

Note: Be sure to give the Web service project a meaningful name; the name will be used during the
generation of several artifacts, including the name of the Data Service control.

Figure 6-6 Folder Structure for ADO.NET-Enabled Project Components

23 RTLSelfService
=23 Controls
[}-Z9 SelfServeCustomer_schema
|<—j CUSTOMER _PROFILEDataSet, xsd
Q SelfServeCustomer.jcx
¢1§ SelfServeCustomer.jws
E SelfServeCustomerNET wsdl

Creating an ADO.NET—EnabIed Data Service Control

Data Service controls can be ADO.NET-enabled simply by selecting the appropriate checkbox during
the creation process. The ADO.NET-Enabled Data Service controls created (as described in this
section) are designed exclusively to support ADO.NET clients through a Web services interface: such
controls cannot be used in Page Flows, Portals, or other development scenarios.

Starting from the Web service project folder, here are the general steps:

1. Create afolder in your project for the Data Service control by selecting a folder and right-clicking
on that folder. (Java controls must be contained inside a folder within a project—they cannot
reside at the top level of the project.)

2. Right-click on the folder in the project to display the popup menu, and then select New —Java
Control. The New Java Control dialog displays.

3. Select Data Services Platform from the New Java Control dialog. Enter a filename for the control
(JCX) file and click Next. The New Java Control - Data Service dialog displays.

4. Enter the connection information for the WebLogic Server that hosts the Data Services Platform
application.

— For a local server, the Data Service control uses the connection information stored in the
application properties.

— For a remote server, you must select Remote and then provide the server URL, user name,
and password.

5. (Click Create to continue. The Select Data Service Functions dialog displays. Note the
ADO.NET-Enable checkbox in the upper-left-hand corner of the dialog, shown in Figure 6-7.

Client Application Developer's Guide

Enabling DSP Support for ADO.NET Clients

Figure 6-7 Select Data Service Functions Dialog

¥ Select Data Service Functions %]

.Met Enabled

Select one or more functions to add ta the contral,
[ApplPraduct.ds =] getCustomer
) Case.ds

[T Caseview.ds
(C) CreditCard.ds
(C Customer ds

[Z1) Customerview.ds
=) ElecCrder.ds

J—a getCustomeri) -
R
-B getElecOrderByOrdID)
] getElecordersByCustID() _
emave Al
J submitArrayOFElecOrderd) -
[C) ElecCrderDetailview.ds
[C) ElecProduct.ds

[C1) ©rderDetailview.ds
[C1) ©rderSummaryview.ds =

[| b

6. Click the ADO.NET-enabled box and then select one or more functions or procedures to use in
the ADO.NET-enabled data service control.

Note: Due to a Microsoft limitation, the functions and procedures that you add to your Data
Service control must belong to the same namespace.

7. Click Next to continue. A Control generation detailed configuration page displays, showing the
functions select on the previous page. On this page, you can select the functions (if any) that
should include a filter or an attribute.

— Add a filter to the JCX method (For more information about filters, see “Filtering, Sorting,
and Fine-tuning Query Results” on page 10-5.)

— Add an attribute to the method.

8. Click Finish to complete the process.

As the ADO.NET-enabled Data Service control file is being generated, a folder is also created inside
the controls folder, and a Microsoft-style XML schema definition file (XSD) is generated and placed
inside the folder. The generated folder follows this simple naming convention:

<Data Service control name>_schema

The schema file created in the <Data Service control name>_schema folder is a combination of the
Data Service control name and "DataSet;" for example, CustomerDataSet.xsd. (See Table 6-4 for other

Client Application Developer's Guide 6-9

Supporting ADO.NET Clients

6-10

relevant naming conventions.) The XML schema file contains method calls for all selected functions
and procedures.

As the XSD is created, you may see a Message box display briefly in WebLogic Workshop, notifying you
that you have added one or more XSD files to a non-Schema project. Such a message can be
disregarded,; it is raised because the Microsoft ADO.NET style XSD is not the same as other data
service XSD files.

Note: For more information about Data Service controls, see “Creating Data Service Controls” on
page 5-8.

Java controls are not network-addressable unless wrapped as Web services. Invoking a Java Control
of any kind, including a Data Service control from outside the application, requires that it be exposed
as a Web service or as another Web-based application, such as a JSP (JavaServer Page).

Generating a Web Service for ADO.NET Clients

After the ADO.NET-enabled Data Service control has been generated, it is used as the basis for
generating a Java Web service file (JWS), as follows:

1. Right-click on the Data Service control.

2. Select Generate Test JWS File (Stateless) from the pop-up menu. (ADO.NET client support is
limited to stateless Web services.)

Shortly, the JWS is generated; you will see it displayed as a node under the Data Service control. From
this JWS you can now generate the companion WSDL (Web Services Description Language) file that
will be used by Web service client-application developers.

Note: After the Java Web service (JWS) file has been generated, it can be deployed in the usual
manner. See the Web services page on BEA’s documentation site for more information:

http://e-docs.bea.com/wls/docs8l/webservices.html

Generating an ADO.NET-Enabled WSDL

To generate the companion WSDL (Web Services Description Language) file from the JWS that can
be used by Web service clients to invoke operations on the ADO.NET-enabled Web service:

1. Right-click on the JWS file created in “Generating a Web Service for ADO.NET Clients.”
2. Select Generate ADO.NET Enabled WSDL File from the pop-up menu.

In a moment, the WSDL is generated; you will see it displayed as a node under the JWS file.

Client Application Developer's Guide

Adapting DSP XML Types (Schemas) for ADO.NET Clients

Figure 6-8 Generated WSDL in WebLogic Workshop

SelfServeCustomerhET . wsd - {RTLSslfServiceHControls)

*

<7xml version="1.0" encoding="UTF-8"7>
P

<types:
<g:3chena elenentFormDefault="rqual

<91 complexTypes
<5izequence
< /3 couplexTypes
</sielenents

<91 complexTypes
<5izequence
< /3 couplexTypes
</sielenents

<91 complexTypes
<5izequence
< /3 couplexTypes
</sielenents

<g:complexTyper
<5:3equence/>
</g:complexTypes
</g:element>
<g:element nane="getCustomer’s
<g:complexType>
<5:3equence/>
</g:complexTypes
</g:element>
<g:element nane="getCustomerRe
<g:complexType>
<9:3equence>

< /31 sequence’
< /3 couplexTypes
</sielenents

<5:3equence>
<g:any namespace="urn:
</g:3equencer
</g: complexTypes
</3:achema>
<g:schena elenentFormDefault="rqual
<g:element name="StartHeader”

Y

<definitions targetNamespace="http://wwy.openuri.org/” fulns="http://schenas.xulsoap. org/wsdl/" xnlns: conv="hty
<import nemespace="urn:retailerType” location="SelfServeCustomer schema/CUSTONER PROFILEDataSet.xsd”/»

<g:element name="startTestDrive™:

<g:element name="startTestDriveResponse™>

<s:element name="finishTestDrive™>

<s:element name="finishTestDriveResponse™>

<g:element name="getCustomerResult” type="ope: CUSTOMER PROFILEDataSetUrapper” minOccurs

<g:element name="CUSTOMER_PROFILEDataSetWrapper” nillable="true” type="ope:CUSTOMER PROFILEDataSetl
<g:conplexType nawes="CUSTOMER,]

[

-

ified” targetNamespace="http://uww.openuri.org/"™ xmlns:s="hitp:// wwi.

sponse’s

PROFILEDataSetirapper™s

retailerType" />

ified” targetNamespace="http://www.openuri.org/2002/04/soap /conversat
type="conv: StartHeader” />

e See “Web Services Description Language (WSDL) File for Microsoft ADO.NET Clients” on
page 6-16 for information about the format of the WSDL.

The WSDL should be made available to ADO.NET developers directly (for example, by sending the
physical file to them). Developers can also obtain the WSDL from the Web service, from BEA WebLogic

Server’s home page.

Adapting DSP XML Types (Schemas) for ADO.NET Clients

Fundamentally, Microsoft’s ADO.NET DataSet is designed to provide data access to a data source that
is — or appears very much like — a database table (columns and rows). Although, later adapted for
consumption of Web services, ADO.NET imposes many design restrictions on the Web service data

source schemas.

Due to these restrictions, Data Services Platform XML types (also called schemas or XSD files) that
work fine with data services may not be acceptable to ADO.NET's DataSet.

This section explains how you can prepare XML types for consumption by ADO.NET clients. It covers
both read and update from the ADO.NET client side to the DSP server, specifically explaining how to:

Client Application Developer's Guide 6-11

Supporting ADO.NET Clients

e Read a DSP query result as a ADO.NET DataSet via SDO (since query results are presented as
SDO DataObjects within DSP).

e Update DSP data sources using an ADO.NET DataSet's diffgram that is mapped to a SDO
ChangeSummary.

Note: See the Data Services Developer’s Guide for detailed information related to creating and
working with XML types.

Approaches to Adapting XML Types for ADO.NET

There are several approaches to adapting XML types for use with an ADO.NET DataSet:

e Develop ADO.NET-compatible data services above the physical data service layer. You can
develop data services on top of physical data sources that are specifically intended to be
consumed by ADO.NET clients. (Details are described in “XML Type Requirements for Working
With ADO.NET DataSets.”)

Note: Any ADO.NET-compatible data service XML types can be consumed by non-ADO.NET
clients.

e Develop ADO.NET-compatible data services above a logical data service layer. If existing
logical data services that are not ADO.NET-compatible must be reused, you can build an
additional layer of ADO.NET-compatible data services on top of the logical data services.

Note: This approach may increase the likelihood of having to work with inverse functions and
custom updates. (The usage of inverse functions is described in "Best Practices and
Advanced Topics", Data Services Developer’s Guide.)

XML Type Requirements for Working With ADO.NET DataSets

The following guidelines are provided to help you develop ADO.NET DataSet-compatible XML types
(schemas) by providing pattern requirements for various data service artifacts.

Requirements for Complex Types
Requirements for supporting a complex type in an ADO.NET DataSet include:

e Defining the entire XML type in a single schema definition file. This means not using include,
import, or redefine statements.

e Define one global element in the XML type and all other complex types as anonymous complex
types within that element. Define one global element in the schema and define all other
complex types as anonymous complex types within the element. Do not define any of the
following:

6-12 Client Application Developer's Guide

../datasrvc/index.html

../datasrvc/index.html

Adapting DSP XML Types (Schemas) for ADO.NET Clients

— global attribute
— global attributeGroup
— global simple type

o Be sure that the name of an element in the anonymous complex type is unique within the
entire schema definition.

Note: The name of an element of simple type need not be unique, unless the occurrence of the
element is unbounded.

Requirements for Recurring References

Since ADO.NET does not support true recurring references among complex types, the requirements
noted in Requirements for Complex Types should be followed when simulating schema definitions
utilizing such constructs as:

e Nested complex types
e Recurring references among complex types

e Multiple references from different complex type to a single complex type

As an example, if an address complex type has been referenced by both Company and Department,
there should be two element definitions, CompanyAddress and DepartmentAddress, each with an
anonymous complex type. The following code illustrates this:

<xsd:schema targetNamespace="urn:company.xsd"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" >

<xsd:element name="Company">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Name" type="xsd:string"/>
<xsd:element name="CompanyAddress">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="City" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="Department">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Name" type="xsd:string"/>
<xsd:element name="DepartmentAddress">
<xsd:complexType>

Client Application Developer's Guide 6-13

Supporting ADO.NET Clients

<xsd:sequence>
<xsd:element name="City" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Requirements for Simple Types
Requirements for supporting simple types in an ADO.NET DataSet include:

o Use xs:dateTime type in the XML type rather than xs:date, or xs:time, or any gXXX type, such as
gMonth, etc. (If a physical date source uses gXXX type, you should rely on the use of an inverse
function to handle the type for update. For gXXX types, you should rely on the use of a DSP
update override function to handle the update.)

Note: The usage of inverse functions is described in "Best Practices and Advanced Topics", Data
Services Developer’s Guide.

e Base64Binary type should be used, rather than hexBinary type.

e Avoid using List or Union type.

e Avoid using xs:token type.

e Avoid defining default values in your XML type.

e The length constraining facet for 'String' should not be used.
Requirements for Target Namespace and Namespace Qualification
Requirements for using target namespaces and namespace qualification include:

e Your XML type must have a target namespace defined. Everything in the type should be under a
single namespace.

e Set the elementFormDefault and attributeFormDefault to unqualified for the entire XML type.
(As these are the default setting of a schema document, you can generally leave these two
attributes of xs:schema unspecified.)

6-14 Client Application Developer's Guide

../datasrvc/index.html

../datasrvc/index.html

Generated Artifacts Reference

References
Further information regarding XML schemas can be found at:

http://www.w3.0rg/TR/xmlschema-0

Generated Artifacts Reference

The process of creating a ADO.NET-enabled Data Service control and Web service generates two
ADO.NET-specific artifacts:

o XML Schema Definition for ADO.NET Typed DataSet
e Web Services Description Language (WSDL) File for Microsoft ADO.NET Clients

Technical specifications for these artifacts are included in this section.

XML Schema Definition for ADO.NET Typed DataSet

During the process of creating a ADO.NET-enabled data service control, WebLogic Workshop
generates a special schema file that conforms to Microsoft’s specifications for typed DataSet objects.
A schema is generated for each data service query that has been selected for inclusion in the
ADO.NET-enabled data service control. These schema files take the name of the source schema’s root
element.

In the generated schema, the root element has the IsDataSet attribute (qualified with the Microsoft
namespace alias, msdata) set to True, as in:
msdata:IsDataSet="true"

In keeping with Microsoft’s requirements for ADO.NET artifacts, the generated target schema of the
data service and all schemas on which it depends are contained in the same file as the schema of the
typed DataSet. As you select functions to add to the control, WebLogic Workshop obtains the
associated schemas and copies the content into the schema file.

In addition, the generated schema includes:

o A reference to the Microsoft-specific namespace definition, as follows:
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"

e Namespace declaration for the original target schema (the schema associated with the DSP
data service)

Listing 6-1 shows an excerpt of a schema—customerDs . xsd—for a typed DataSet generated from
a DSP Customer schema.

Client Application Developer's Guide 6-15

http://www.w3.org/TR/xmlschema-0

Supporting ADO.NET Clients

6-16

Listing 6-1 Example of a Typed DataSet (ADO.NET) Schema

<xs:schema xmlns:mstns="http://temp.openuri.org/schemas/Customer.xsd"
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"
xmlns="http://temp.openuri.org/schemas/Customer.xsd"
targetNamespace="http://temp.openuri.org/schemas/Customer.xsd"
id="CustomerDS" xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<xs:element msdata:IsDataSet="true" name="CustomerDS">
<xs:complexType>
<xs:choice maxOccurs="unbounded">
<xs:element ref="CUSTOMER"/>
</xs:choice>
</xs:complexType>
</xs:element>

<xs:element name="CUSTOMER">

</xs:element>

</xs:schema>

Web Services Description Language (WSDL) File for Microsoft
ADO.NET Clients

The process of generating the Java Web service produces a WSDL for the client-side application
development. The WSDL file contains import statements that correspond to each typed DataSet. Each
of the import statements is qualified with the namespace of its associated DataSet schema, as in this
example:

<import namespace="http://temp.openuri.org/schemas/Customer.xsd"
location="LDTestl1NET/CustomerDataSet.xsd"/>

In addition, the WSDL includes the ADO.NET compliant wrapper type definitions. The wrappers’ type
definitions comprise complex types that contain sequences of any type element from the same
namespace as the typed DataSet, as in:

Client Application Developer's Guide

Generated Artifacts Reference

<s:complexType name="CustomerDataSetWrapper">
<s:sequence>
<s:any namespace="http://temp.openuri.org/schemas/Customer.xsd"/>
</s:sequence>

</s:complexType>

Client Application Developer's Guide 6-17

Supporting ADO.NET Clients

6-18 Client Application Developer's Guide

CHAPTERa

Using Workflow with DSP-Enabled
Applications

BEA’s WebLogic Integration server provides WebLogic Platform components with business-process
management (BPM) capabilities. A business process coordinates interaction among various resources
to perform a complete set of specific tasks. WebLogic Integration business processes are designed
using visual components available, such as Process controls, in WebLogic Workshop.

By bringing WebLogic Integration and BEA AquaLogic Data Services Platform together, developers
can achieve sophisticated programming scenarios that might otherwise be difficult, at best.

For example, a WebLogic Integration process (JPD) can be defined that encompasses multiple DSP
data services, and that uses the JPD to enforce distributed transactional semantics without using XA
and to reduce the number of locks held on disparate data sources (such as Web services or other
non-XA-compliant data sources) that might not otherwise be able to participate in the same
transaction. In other words JPD is used to achieve atomicity over disparate data sources (see

Figure 7-1).

This chapter provides information about such topics as these, and includes information about how to
develop server-side workflow-and-DSP-enabled applications. It includes these topics:

e Adding a Data Service Control to a Process

e Invoking JPDs from Data Services Platform

Brief Overview of WebLogic Integration JPDs

Much of the underlying Java code for the Process (defined in a Java class, as a Java Process Definition,
or JPD) is generated or created automatically. Processes coordinate interactions among resources by
means of Java controls (Java Control Extensions, or JCX) that are specific to these process definitions.

Client Application Developer’s Guide 1-1

Using Workflow with DSP-Enabled Applications

1-2

Using WebLogic Workshop, developers can add various components, including Data Service controls,
and customize behavior in the business process, as needed, to accomplish the specifics of the
workflow.

Figure 7-1 Using WLI JPD with DSP to Provide Distributed, Two-Phase Commit Capability to Data Service

updateCustomer

Address.jpd

{ .
Modify customer Modify customer
address in address in CREDIT
CUSTOM_ER data CARD data service
service

CREDIT
CARD Data
Service

CUSTOMER
Data Service

submit() myCustomProcessinglLogic
implements UpdateOverride {

public void
performChange(DataGragh dg) {
Relational do stuff
Data submit()

}

CUSTOMER
CreditRating
NAME DATATYPE NULLABLE? updateAddress(
CUSTOMER_ID | VARCHAR NO int in cust_id)
FIRST_NAME VARCHAR NO
LAST_NAME VARCHAR [
BIRTH DAY TIMESTAMP NO
ADDRESS VARCHAR (5]
ADDRESS2 VARCHAR YES
STATE VARCHAR NO
ZIP_GODE INTEGER NO

WebLogic Workshop leverages the Java Extension Control (or simply, controls) mechanism to simplify
working with J2EE resources.

A Java Control is an abstraction layer that simplifies working with J2EE resources in WebLogic
Workshop.

Controls provide a runtime behavior for accessing functionality and resources using Java classes.
WebLogic Workshop provides Controls for numerous WebLogic and AquaLogic components, including
Data Service controls for DSP and Process controls for WebLogic Integration.

WLI Process controls enable Web services, business processes, or pageflows to send requests to, and
receive callbacks from, a business process (JPD).

Client Application Developer's Guide

How SDO’s Handling of XMLObjects Differs from JPD

See “Accessing Data Services from WebLogic Workshop Applications” on page 5-1 for more
information about Data Service controls.

For more information about WebLogic Integration, process controls, and business-process
management in general, see the WebLogic Integration documentation page at:

http://e-docs.bea.com/wli/docs85/index.html

DSP and JPD can be integrated in two different ways:

e By adding Data Service controls to JPD projects you can leverage DSP-enabled application
information as part of a workflow.

e By invoking JPDs from DSP-enabled applications. (See “Invoking JPDs from Data Services
Platform” on page 7-7.)

Once the JPD is created, it can be called from a data service instance using the JpdService API, a
server-side Mediator API that can be invoked in an update override. See “Invoking JPDs from Data
Services Platform” on page 7-7 for details.

How SDO’s Handling of XMLObjects Differs from JPD

By default, a JPD converts XML objects to an XML proxy class; the class implements the ProcessXML
interface. The ProcessXML interface does not know how to handle SDO objects, such as change
summaries.

You must override the default behavior in the JPD by editing the source code.

Adding a Data Service Control to a Process

You can use Data Services Platform in WebLogic Integration (WLI) business process applications
through a Data Service control. For example, you might add DSP-based information to
decision-making logic in the business process.

There are three basic steps to adding Data Services Platform queries to WebLogic Integration
business processes:

e (Creating a Data Service Control
e Adding a Data Service Control to a JPD File

e Setting Up the Data Service Control in the Business Process

Client Application Developer's Guide 1-3

http://e-docs.bea.com/wli/docs85/index.html

Using Workflow with DSP-Enabled Applications

7-4

Creating a Data Service Control

Before you can execute a Data Services Platform query from a WLI business process, you must create
a Data Service control that accesses the query or queries you want to run in your business process.

See “Accessing Data Services from WebLogic Workshop Applications” on page 5-1 for more
information about creating Data Service controls.

In WebLogic Workshop:
1. Create a Process application.

2. Create a Data Services project in the Process application. In the Data Services project, import
the existing Data Service projects that you want to incorporate into the JPD.

3. Create a Data Service control, adding the functions you want to use from the data services to the
control.

4, When the process is defined, you can then generate a Process control from the JPD, from within
WebLogic Workshop (right-mouse click on the Design view of the JPD and select Generate
Process control from the popup menu).

5. The control is generated.

For complete details, see “Data Service Controls” on page 5-2.

Adding a Data Service Control to a JPD File

Once you have created a Data Service control, you can add it to a business process the same way you
add any other control to a business process. For example, you can drag and drop the control into the
WebLogic Integration business process in the place where you want to run your Data Services Platform
query or you can add the Data Service control to the WebLogic Workshop Data Palette.

The Data Service controls must be created in the same project as the JPD.

Client Application Developer's Guide

Adding a Data Service Control to a Process

Figure 7-2 Creating a Data Service Control

Ingert Control - Data Service %]

STEP 1 Yariable name For this contral: | custAddressDb |

STEP 2 Iwould ke to

(#) Use a Data Service control already defined by a 13 file

I file: dscontrolsfCustomerDemographicsDSCEl, jox | | Browse, ..

() Create a new Data Service control to use,

[] Make this a contral Factary that can create multiple instances at runtime

Setting Up the Data Service Control in the Business Process

Once the Data Service control has been added to the business process, its functions are available. As
shown in Figure 7-3, you must select the query in the General Settings section of the Data Service
control portion of the business process, specify input parameters for the query in the Send Data
section, and specify the output of the query in the Receive Data section.

Client Application Developer's Guide 1-5

Using Workflow with DSP-Enabled Applications

Figure 7-3 Specifying in the Business Process Input and Output Parameters for a Data Service Control

f (.2 =

Select a control instance and a target method,

changeaddress
_TeTe) Contral: | o ystaddressws | - |

(4 General Settings pzthod; 2 ChangeaddressResponseDocument changedddress(Ch

Send Data 2 ChangeaddressResponseDocument changedddressiwit

Receive Data

Ty
Help

Yiew Code [«] lI‘

p. .y

Figure 7-4 shows tl\e WebLogic Workshop rendering of a business process accessiilg a Data Service
Control.

Figure 7-4 WebLogic Integration Business Process Accessing a Data Service Control

®F

Transy_UpdateCustaddress

Hw®

Client Request

=

CUSTOMER_DEMOGRAPHICS

=

changeAddress

Finish

Submitting Changes from a Business Process

By default, a business process (Java process definition, or JPD) converts XML objects to an XML proxy
class by implementing the ProcessXML interface. However, ProcessXML is not completely compatible

1-6 Client Application Developer's Guide

Invoking JPDs from Data Services Platform

with SDO. In particular, it does not accommodate SDO specific features such as change summaries.
As a result, the default XML processing performed in a business process must be overridden.

You can override the business process by performing the following steps in the workflow:

1. Inthe JPD you need to turn off default ProcessXML deserialization and enable XMLBean
serialization on the XML object factory by calling the XmlObjectVariableFactory.setXBean().

2. Inthe JPD you need to disable the XMLBean serialization and turn on the default ProcessXML
deserialization on the XML object by calling XmlObjectVariableFactory.unset().

3. Invoke the Data Service control.

Invoking JPDs from Data Services Platform

Data architects writing Java custom update classes can create a JPD workflow to handle the updates
to different data services. Data Services Platform developers can then write server-side Java code that
initiates synchronous or asynchronous JPDs using the JpdService interface.

As with other types of DSP server-side custom functionality, the update override interface facilitates
the implementation.

Update overrides are user-defined Java classes that implement DSP’s UpdateOverride interface (from
the sdoupdate package). Update overrides are registered in DSP and invoked by the Update Data
Mediator when an SDO is submitted for an update. As its name implies, an update override
implements custom processing on the server, for data updates. Update overrides are required to
update non-relational data sources. See Chapter 9, “Customizing Data Service Update Behavior,” for
more information.

The JPD and the data service containing the Java update override can be running in the same
WebLogic Server domain or in different WebLogic Server domains.

Invoking a JPD from an Update Override

An update override can use a JPD to process requests. The JpdService is invoked with the name of the
JPD, the start method of the JPD, the service URI, and the server location and credentials for the JPD,
as shown in this example:

JpdService jpd = JpdService.getInstance("CustOrdervli",

"clientRequestwithReturn", env);

JPD provides a public interface (as a JAR file containing the compiled class file for the JPD public
contract or interface). Transparently to developers, the JpdService object uses the standard Java
reflection API to find the JPD class that implements the JPD public contract.

Client Application Developer's Guide 1-1

Using Workflow with DSP-Enabled Applications

1-8

The server-side update overrides Java code and then passes the DataGraph as an argument to the
invoke method:
Object jpd.invoke(DataGraph sdoDataGraph) ;

The returned object is dependent on the JPD being invoked and may be null. Typically, if any top level
SDO is being inserted and its primary key is autogenerated, then this should be returned from the JPD
(see Listing 7-1).

Any keys for the top-level DataObject in the serialized UpdatePlan are returned to the calling function
as a Properties object (comprising a byte array). Thus, the return value from the workflow must be a
serialized byte array, as in:

Properties [] jpd.invoke(byte[] serializedUpdatePlan);

The array returned is a Properties object array representing any keys for the top-level DataObject in
the UpdatePlan that was serialized and sent to the workflow.

Invoking a JPD by Using the JpdService APl in an Update Override

Support for JPDs from DSP is provided through two server-side APIs that can be invoked from within
an UpdateOverride implementation (see Table 7-5).

Table 7-5 JpdService API)

Data Type Signature

JpdService JpdServicegetInstance (String jpdClass, String
jpdStartMethod, Environment context)

JpdService.getInstance (String jpdClass, String
jpdStartMethod, String serviceUri, Environment
context) ;

Listing 7-1 shows how to invoke a JPD from an UpdateOverride. The code sample assumes that a JPD
exists comprising a series of data services configured as part of a workflow.

Listing 7-1 Sample Code Listing—Invoking a JPD from a DSP UpdateOverride

public boolean performChange(DataGraph) {
ChangeSummary changeSum = dataGraph.getChangeSummary () ;

//Size of 0 means no changes so there’s nothing to do

Client Application Developer's Guide

Invoking JPDs from Data Services Platform

if (changeSum.getChangedDataObjects () .size()==0) {
return true;
}
Environment env = new Environment () ;
env.setProviderUrl("t3://localhost:7001");
env.setSecurityPrincipal ("weblogic");
env.setSecurityCredentials("weblogic");
try {
JpdService jpd = JpdService.getInstance (
"CustOrdervli",
"clientRequestwithReturn",
env) ;
UpdatePlan updatePlan = DataServiceMediatorContext.
currentContext () .getCurrentUpdatePlan (dataGraph) ;
byte[] bytePlan = UpdatePlan.getSerializedBytes(updatePlan);
Properties (Properties) returnProps = jpd.invoke(bytePlan);
}
catch(Exception e)
{
e.printStackTrace() ;
throw e;
}

return false;

Synchronous and Asynchronous Behavior

Data Services Platform supports JPD invocations both synchronously and asynchronously; both styles
of invocation are handled the same way in the DSP update override code. Invoke the JPD and get the
response back as a byte array, as shown in Listing 7-1 above.

Error Handling
You must write your own error-handling code with the JPD. Calling a non-existent JPD raises the
standard Java "ClassNotFoundException."

Client Application Developer's Guide 1-9

Using Workflow with DSP-Enabled Applications

Using callbacks in your JPD is not supported. Business processes that include client callbacks will fail
at runtime since the callback is sent to the JPD Proxy rather than the originating client that started
the JPD.

1-10 Client Application Developer's Guide

GHAPTERa

Using the Data Services Platform JDBC
Driver

The BEA AquaLogic Data Services Platform (DSP) JDBC driver gives client applications a means to
obtain JDBC access to the information made available by data services. The driver implements the
java.sql.* interface in JDK 1.4x to provide access to an DSP server through the JDBC interface. You
can use the JDBC driver to execute SQL92 SELECT queries, or stored procedures over DSP
applications. This chapter explains how to install and use the Data Services Platform JDBC driver. It
covers the following topics:

e About the Data Services Platform JDBC Driver

e Installing the Data Services Platform JDBC Driver with JDK 1.4x
e Using the JDBC Driver

e Connecting to the JDBC Driver from a Java Application

e Connecting to Data Services Platform Client Applications Using the ODBC-JDBC Bridge from
Non-Java Applications

e Using Reporting Tools with the Data Services Platform ODBC-JDBC Driver
e DSP and SQL Type Mappings
e SQL-92 Support

Note: For data source and configuration pool information, refer to the WebLogic Administration
Guide. Your configuration settings may affect performance.

Client Application Developer’s Guide 8-1

../admin/index.html
../admin/index.html

Using the Data Services Platform JDBC Driver

About the Data Services Platform JDBC Driver

8-2

The JDBC driver is intended to enable SQL access to data services. The Data Services Platform JDBC
driver enables JDBC and ODBC clients to access information available from data services. The JDBC
driver increases the flexibility of the DSP integration layer by enabling access from database
visualization and reporting tools, such as Crystal Reports. From the point of view of the client, the DSP
integration layer appears as a relational database, with each data service function comprising a table.
Internally, DSP translates SQL queries into XQuery.

There are several constraints associated with the Data Services Platform JDBC driver. Because SQL
provides a traditional, two-dimensional approach to data access (as opposed to the multiple level,
hierarchical approach defined by XML), the Data Services Platform JDBC driver can only be used to
access data through data services that have a flat data shape; that is, the data service type cannot have
nesting.

Also, SQL tables do not have parameters; therefore, the Data Services Platform JDBC driver only
exposes non-parameterized flat data service functions as tables. (Parameterized flat data services are
exposed as SQL stored procedures.)

To expose non-flat data services, you can create flat views to be used from the JDBC driver.

Features of the Data Services Platform JDBC Driver
The Data Services Platform JDBC driver has the following features:

e Supports SQL-92 SELECT statements

e Implements JDBC 3.0 API

e Supports Data Services Platform with JDK 1.4

e Usable from both Java and ODBC clients
Notes:

e The Data Services Platform JDBC driver contains the following third party libraries: Xxerces
Java - 2.6.2 : xercesImpl.jar, xmlParserAPIs.jar,and ANTLR 2.7.4 :
antlr.jar.

e The driver also contains the following DSP product libraries: wiclient. jar,
ld-client.jar, Schemas_UNIFIED_Annotation.jar, jsrl73_api.jar, and
xbean. jar.

Client Application Developer's Guide

Installing the Data Services Platform JDBC Driver with JDK 1.4x

Data Services Platform and JDBC Driver Terminology

DSP views data retrieved from a database as comprised of data sources and functions. This means that
Data Services Platform terminology and the terminology used when accessing data through the Data
Services Platform JDBC driver, which provides access to a database, is different. The following table
shows the equivalent terminology between the two.

Table 8-1 Data Services Platform and JDBC Driver Terminology

Data Services Platform Terminology JDBC Driver Terminology

DSP Application Name Database Catalog Name

Path from the DSP project folder up to the folder ~ Database Schema Name
name of the data source separated by a ~ (tilde)

Function with parameters Stored procedure

Function without parameters Table

Function without parameters return type schema's Table's Columns
elements

Function with parameters return type schema's Stored Procedure's Columns
elements

For example, if you have an application Test with a project TestDataServices, and CUSTOMERS.ds
with a function getCustomers() under a folder MyFolder, the table getCustomers can be describes as:

Test.TestDataServices~MyFolder.getCustomer

where Test is the catalog and TestDataServices~MyFolder is the schema.

Installing the Data Services Platform JDBC Driver with JDK 1.4x

The Data Services Platform JDBC driver is located in an archive file named 1djdbc. jar. In a DSP
installation, the archive is in the following directory:

<WebLogicHome>/liquiddata/lib/

To use the driver on a client computer, perform the following steps:

1. Copy the 1djdbc. jar to the client computer.

Client Application Developer's Guide 8-3

Using the Data Services Platform JDBC Driver

8-4

2. Add 1djdbc.jar to the computer’s classpath.
3. Set the appropriate supporting path by adding $Java_HOME%\jre\bin to your path.

4. To configure the JDBC driver:

a. Set the driver class name to:

com.bea.ld.jdbc.LiquidDataJDBCDriver.

b. Set the driver URL to:
jdbc:1d@<LDServerName>: <LDServerPortNumber>[:<LDCatalogAlias>]

For example, jdbc:1d@localhost:7001 Or
jdbc:1d@localhost:7001:1dCatalogName.

If you want to enable logging for debugging use, you can append the following to the driver
URL

;debugStdOut=true;debugFile=1djdbc.log;debugLog=true;

You can also specify configuration parameters as a Properties object or as a part of the JDBC
URL. The following is an example of how to specify the parameters as part of a Properties
object:

props = new Properties();
props.put (LigquidDatadDBCDriver .USERNAME_PROPERTY1, "weblogic") ;
props.put (LigquidDatadDBCDriver .PASSWORD_PROPERTY, "weblogic") ;
props.put (LigquidDatadDBCDriver .APPLICATION_NAME_PROPERTY, "RTLApp");
props.put (
LiquidDatadDBCDriver . PROJECT_NAME_PROPERTY, "DataSErvices~CustomerDB") ;
props.put (LigquidDatadDBCDriver .WLS_URL_PROPERTY, "t3://localhost:7001") ;
props.put (LigquidDatadDBCDriver .DEBUG_STDOUT_PROPERTY, "true") ;
props.put (LigquidDatadDBCDriver .DEBUG_LOG_PROPERTY, new Boolean (true)) ;
props.put (
LiguidDatadDBCDriver .DEBUG_LOG_FILENAME_PROPERTY, "ldjdbc.log") ;
Class.forName (""com.bea.ld.jdbc.LiquidDatadJDBCDriver"") ;
con = DriverManager .getConnection (
"jdbc:1d@localhost:7001 :Demo:DemoLdProject", props) ;

Alternatively, you can specify all the parameters in the JDBC URL itself as shown in the
following example:

Class.forName ("com.bea.ld.jdbc.LiquidDatadDBCDriver") ;

con =

DriverManager .getConnection ("jdbc:1d@localhost:7001:Demo:DemoLdProject;
;debugStdOut=true;debugFile=1djdbc.log;debuglLog=true;username=weblogic;
password=weblogic;", new Properties());

Client Application Developer's Guide

Using the JDBC Driver

Using the JDBC Driver

The steps for connecting an application to DSP as a JDBC/SQL data source are substantially the same
as for connecting to any JDBC/SQL data source. In the database URL, simply use the DSP application
name as the database identifier with "ld" as the sub-protocol, in the form:

jdbc:lde@<wWLServerAddress>:<WLServerPort>:<LDApplicationName>
For example:

jdbc:1d@localhost:7001:RTLAPP
The name of the Data Services Platform JDBC driver class is:

com.bea.ld.jdbc.LiquidDatadDBCDriver

Note: Ifyouare using the WebLogic Administration Console to configure the JDBC connection pool,
set the initial connection capacity to 0. The Data Services Platform JDBC driver does not
support connection pooling.

The following section describes how to connect using the driver class in a client application.

Obtaining a Connection

A JDBC client application can connect to a deployed DSP application in the same way as it can to any
database. It loads the Data Services Platform JDBC driver and then establishes a connection to DSP.

For example:

Properties props = new Properties();
props.put ("user", "weblogic");

props.put ("password", "weblogic");

// Load the driver
Class.forName ("com.bea.ld.jdbc.LiquidDatadJDBCDriver") ;

//get the connection
Connection con =

DriverManager.getConnection ("jdbc:1d@localhost:7001", props);

Client Application Developer's Guide 8-5

Using the Data Services Platform JDBC Driver

8-6

Using the preparedStatement Interface

The following method demonstrates how to use the preparedStatement interface given a connection
object (con) that is a valid connection obtained through the java.sql.Connection interface to a
WebLogic Server hosting DSP. (In the method, CUSTOMER refers to a CUSTOMER data service.)

public ResultSet storedQueryWithParameters () throws java.sql.SQLException {

PreparedStatement preStmt =
con.prepareStatement (
"SELECT * FROM CUSTOMER WHERE CUSTOMER.LAST_NAME=?") ;
preStmt.setString (1, "SMITH") ;
ResultSet res = preStmt.executeQuery () ;
return res;

}

Note: You can create a preparedStatement for a non-parametrized query as well. The statement can
also be used in the same manner.

Getting Data Using JDBC

Once a connection is established to a server where DSP is deployed, you can call a data service
function to obtain data by using a parameterized data service function call.

The following method demonstrates calling a stored query with a parameter (where con is a
connection to the Data Services Platform server obtained through the java.sql .Connection
interface). In the snippet, a stored query named dtaQuery is executed where custid is the parameter
name and CUSTOMER2 is the parameter value.

public ResultSet storedQueryWithParameters (String paramName)
throws java.sqgl.SQLException {

//prepare a stored query to execute
CallableStatement call = con.prepareCall ("dtaQuery") ;
call.setString (1, "CUSTOMER2") ;

ResultSet resultSet = call.executeQuery () ;

return resultSet;

Client Application Developer's Guide

Connecting to the JDBC Driver from a Java Application

Connecting to the JDBC Driver from a Java Application

You can also use the Data Services Platform JDBC driver from client Java applications. This is a good
way to learn how Data Services Platform exposes its artifacts through its JDBC/SQL driver.

Note: For details on supported reporting applications and connectivity software see "Configuring
the Data Services Platform JDBC Driver for Reporting Applications" in the Preparing to
Install Data Services Platform chapter of the DSP Installation Guide.

This section describes how to connect to the driver from DBVisualizer. Figure 8-2 shows a sample
application as viewed from DbVisualizer for WebLogic Workshop.

Figure 8-2 DbVisualizer View of DSP

ﬁ‘ Db¥isualizer Free 4.0.2 for WebLogic Workshop - C:¥Documents and Settings¥suieet_banztie'e¥1ﬂiiis i = |E il
File Edit View Database Bookmarks Window Help

e = P i o g N B
m F e YRR 25 B 28 <> PO 59
| o Database Objects | [P SQL Commander | 2 Maonitor
2 @0 7 VIEW: ADDRESSH#ADDRESS
@ (ii‘j";"““""s Application Name i Indexes 1 Privileges | » Rowld | [T versioned | =3 References
i & G RILA 1 & comns | [0 Data [B #Rows | . Primary Key
pp (defaul
L AGerices-ElecironicsWs TABLE CAT | TABLE SCHEM | TABLE MAME | COLUMN MAME | DATA TYPE |
b DataSemices-SemiceDB RTLApp DataServices~CustomerDB ADDRESS#ADDRESS ADDR_ID 12
o RTLApp DataServices~CustomerDB ADDRESS#ADDRESS CUSTOMER_ID 12
RTLApp DataSerices~CustomerDB ADDRESS#ADDRESS FIRST_MAME 12
RTLARRD DataServices~CustomerDB ADDRESS#ADDRESS LAST_MAME 12
DataServices~CustomerDB ADDRESS#ADDRESS STREET_ADDRESS1 12
DataServices~CustomerDB ADDRESS#ADDRESS STREET_ADDRESS?Z 12
5 3 DataSendces-Demo~CSY DataServices~CustomerDB ADDRESS#ADDRESS CITY 12
5 & DataSemices~Dermo-ML DataSeW!ces~CustomerDB ADDRESS#ADDRESS STATE 12
i & DataServices-Demo DataSeN!ces~CustnmerDB ADDRESS#ADDRESS | ZIPCODE 12
S 3 DataSerices-ApparelDB DataServices~CustomerDEB ADDRESS#ADDRESS COUNTRY 12
5 3 DataSemices~BilingDE DataSeW!ces~CustomerDB ADDRESS#ADDRESS DAY_PHOMNE 12
5- & DataServices-Demo-Java DataServices~CustomerDB ADDRESS#ADDRESS EVE_PHOMWE 12
i [WIEW [DataServices~CustomerDB ADDRESS#ADDRESS ALIAS 12
— @ Database Connaction DataSeW!ces~CustomerDB ADDRESS#ADDRESS STATUS 12
- @ LD DataSenices~CustomerDB ADDRESS#ADDRESS IS_DEFAULT &
— @& orcl

- a com.pointbase.jdbejdbcUniversalDriver

Schema Name. The location of the DS being
"DataServices/CustomerDB" inside the
application-folder "RT LApp".

Table Name. "ADDRESS" is the function that takes no
argument in the DS "ADDRESS.ds"

1| 1 v
(] Show Table Row Count 0125 560,000 sec [15718 [1-156 |

To use DBVisualizer, perform the following steps:

1. Configure DBVisualizer.

a. Ensure that 1djdbc . jar exists in your CLASSPATH. Start DBVisualiser from the Database
menu select Driver Manager.

Client Application Developer's Guide 8-7

../install/index.html

Using the Data Services Platform JDBC Driver

&, phvisualizer Free 4.0.2 for WebLogic Workshop - C:iDocuments and Settings'sujeet_banerjee’,dbyis.xml

File Edit View |D 4h _ guun.“..n\.;b Wi Help
o e _ LA IR X) (L)

=10l

&
@, Datahase Ohjd wt Connect Al

& @ @ 2 Disconnect All
@cC i &R Usetid URL | Driver

-

[Build Select Script... Chl-M

P Execute Chil-Enter
B commit '
¥ Rollback

Symhol Description

1% -_- Database Connection uses a JDBC Driver
1y @ Database Connection uses a JNDI Lookup Data Source
%) » Database Connection have overridden tool properties
3 ¥ Database Connection have filters defined
41 &5 Database Connection is established
4 EE Datahase Connection could not be established
43 Eﬁ Datahase Connection is aboutto be established
]

[] Show Tahle Row Count @ Datahase Connection will be established when "Connect All" is executed

b. Select Add CLASSPATH from the File menu of the driver manager dialog. You should see the
1djdbec. jar listed.

c. Select 1djdbc. jar from the list shown then select Find Drivers from the Edit menu of the
driver manager. You should see the com.bea.1d. jdbc.LiquidDataJDBCDriver. This
means the JDBC driver has been located.

8-8 Client Application Developer's Guide

Connecting to the JDBC Driver from a Java Application

I®. pb¥isualizer Free 4.0.2 for Weblogic Workshop - C:\Documents a‘n_d Sel

3

=10l x|
File Edit View Database Bookmarks Window Help

» Ep JEHE PRE 25 PO 0@ <> PO [8)

@ Database Objects | B S0L Commander | 4 Monitor

I =
< & | * Root: Connections Overview
'@ Connections DD 4] 5] Alas Userid URL | Driver
\
Dh¥isualizer Free - Driver Manager il
[Fle Edit View
] Add Location... AN @
Add CLASSPATH
@ stop | Add Incations in the CLASSPATH to the list
Close Chl-0 bnd the Criver Manager wil
automatically Tocate and Tt &l valid classes that are found.
Mon-existert paths are displayed with red color
ata Source
perties
43 E?:'J Datahase Connection could not be established
4) &l Database Connection is aboutto he established
[] Show Table Row Count 59 ¥ Database Connection will be established when "Connect All" is executed

d. Close the driver manager.
2. Add connection parameters by performing the following steps:

a. Onthe right pane select the JDBC Driver as com.bea.1d.jdbc.LiquidDatadDBCDriver,
dropping down the list.

b. For the Database URL, enter jdbc:ld@<machine_name>:<port>:<app_name>. For example
"jdbc:1d@localhost:7001:RTLApp"

¢. Provide the username and password for connecting to the DSP application.

3. Click connect. On completion of a successful connection, you should see the following:

Client Application Developer's Guide 8-9

Using the Data Services Platform JDBC Driver

8-10

& pbvisualizer Free 4.0.2 for WebLogic Workshop - C¥Documents and 5ettings¥sujeetihanerjee¥dbvi'_s._>_mﬂ s i, II:I Iil

File Edit View Database Bookmarks Window Help

e JEHE 280 25 A8 M <> PO 88
IE. Database Objects | B SAL Commander | 3 Monitor

2 = - .
& @ tw Database Connection: RTLApp
Fl %“ﬁ?!m‘!"!,s, Cannection [Database Info I Data Types 1 Table Types I Tables 1 References |
Tl |
g & EiiR%‘Eﬂnn (derault) Connection Data
o e ,
@ g giances tlnu IS Cantect Method: | I8 JDBC Diver | | & JNDI Lookug |
>~ 4 DataSenices~-RTLSemices Connection Alias: ‘RTLApp ‘
o~ & DataServices~CustomerDB ‘ - —
& [VIEW (D) JDBC Driver: | com bea.ld jdbe LiguidData =]
ADDRESS#ADDRESS Database URL: it I [~]
[Vl CUSTOMER#CUSTOMER - —
>~ & DataServices~-Demo-CSY Userid ‘WENDQ'C ‘
>~ 3 DataSenices~Dema~ML Bt vord ‘M ‘
> & DataServices~Demo
oo 3 DataSerices~ApparelDB .
>~ & DataSenices-BillingDa Reconnert | | Disconnent
> & DataServices~Demo~Jara

I i@ Database Connection Important note aboutthe URL

— ﬂ LD The URL box cortains some common URL templates . Replace
[~ ﬂ arel everything between <" =" with appropriate values

L i@ com.pointbase jdbe jdbcUniversalDriver and then make sure the "<" and =" characters are remaved

Connection Message

Liguid Data

8.2

com.bea.ldjdbe. LiguidData DECDriver
1.1

Connection Time: 01:00:34

[] Show Table Row Count Connection | Properties |

On the right pane of the window (see figure in step 3), you can see various tabs. The Tables tab
helps you view the information about the tables, including their metadata. The References tab
lets you view the field information and primary key of each table.

Execute ad hoc queries by activating the SQL Commander tab as shown in the following figure.
Type in your SQL query and click the execute button.

Client Application Developer's Guide

Connecting to the JDBC Driver from a Java Application

I IE. Db¥isualizer Free 4.0.2 for WeblLogic Workshop - C:Documents and S_Ettings_"\; 2 P] il
File Edit View Database Bookmarks Window Help

e CEE pRE S5 DR O <D o s

|0, Database Objects SQL Commander [y & Monitor |
Database Connection - Sticky” e - rLiguid Data Application \
|$ Database Connection \ |ZH ‘ \ |3|

— —— = 1= ===
CT *FROM CUSTOMERS

1. This tab let's you type in 3.Execute SQL
your Ad hoc SQL query

2. Type your quer)..' here

4 You see the result of
execution here

124 |Ins j
Auto Clear Log: [/
Qutput Yiew Feroeeas=
(7] 1: SELECT* FROM GUSTOMERS |
CUSTOMERS CUW’OMEHlD ‘ CUSTOMERS.CUSTOMERMNAME
987654 |Acms Widget Staras
BETESS Supermar
907656 Ajax Distributars
9B8YE57 Zenith Parts and Service
987658 Bitand Pisces
9B7658|Joe and Wanda's Junk
= e |3.079 szuin.000 sec 642 |16
Viegw: | Log] !T:l 'i.J'éiEllé'] [E Windum Max Rows: Max Chars Oulput Yiew:

Client Application Developer's Guide 8-11

Using the Data Services Platform JDBC Driver

Connecting to Data Services Platform Client Applications Using
the 0DBC-JDBC Bridge from Non-Java Applications

8-12

You can use an ODBC-JDBC bridge to connect to Data Services Platform JDBC driver from non-Java
applications. This section describes how to configure the OpenLink and EasySoft ODBC-JDBC bridges
to connect non-Java applications to the Data Services Platform JDBC driver.

Note: For details on supported reporting applications and connectivity software see "Configuring
the Data Services Platform JDBC Driver for Reporting Applications" in the Preparing to
Install Data Services Platform chapter of the DSP Installation Guide.

Using the EasySoft ODBC-JDBC Bridge

Applications can also communicate with the Data Services Platform JDBC Driver using EasySoft's
ODBC-JDBC Gateway. The installation and use of the EasySoft Bridge is similar to the OpenLink
bridge discussed in the previous section.

To use the EasySoft bridge, perform the following steps:

1. Install the EasySoft ODBC-JDBC bridge. Go to the EasySoft site for information about installation:

http://www.easysoft.com

2. Creating a system DSN and configuring it with respect to DSP by performing the following steps:

Client Application Developer's Guide

http://www.easysoft.com
../install/index.html

Connecting to Data Services Platform Client Applications Using the ODBC-JDBC Bridge from Non-Java

a. Open Administrative tools — Data Sources (ODBC).

£710DBC Data Source Administrator e |
UgerDSM Systerm DSH | File DSNI Driversl Tracingl Cohnection F'oolingl Abaut I

System Data Sources:

| Driver Add... |
Microzaft Access Driver [*.mdb)
efazhion icrozoft Acceszs Diiver [7.mdb] Remoye
LocalServer SOL Server

ODBC_JDBC_LITE OpenLink JOBC Lite for JOK. 1.4 [Earfigure... |

#treme Sample Databaze 10 Microzoft Access Driver [%.mdb]

| | H

An ODEC Spgtem data source gores information about how to connect to
the indicated data provider. A System data zource iz vizible to all uzers
on thiz machine, including MT services.

Ok I Cancel Apply Help

b. Go to the System DSN tab and click Add.

Client Application Developer's Guide 8-13

Using the Data Services Platform JDBC Driver

c. Select EasySoft ODBC-JDBC Gateway as shown in the figure below and click Finish.

Creake Mew Source

M armne | ‘;;I
Diriver do Microzoft dB age [*.dbf)

Diriver do Microzoft Excel(* k] iJ
Diriver do Microzoft Paradox (*.db] :

Diiver para o Microzolt Visual FoxPro
Easyenft DDBC-JDEBC G: "
Microgoft dceess Driver [mdb)
Microsoft Access-Treiber [*.mdb]
Microsoft dBaze Driver [*.dbf)

E

1

:

:

:
Microsoft dBaze WFP Driver [*.dbf] Ew
4 | | 4 I

< Back I Finizh I Cancel

d. On the next screen, fill in the fields as follows:

e For Class Path, enter the absolute path to the ldjdbc.jar
¢ For URL, enter:

jdbc:1ld@<machine_name>:<port>:<app_name>
e For Driver class, enter:

com.bea.ld.jdbc.LiquidDatadJDBCDriver

8-14 Client Application Developer's Guide

Connecting to Data Services Platform Client Applications Using the ODBC-JDBC Bridge from Non-Java

B Easysoft DDBC-IDBEC Gateway DSh Setup 2] x|
DSN: |EasyDema
Description: I
Uszer Hame: IWEHDgiC
E=snod: Ixxxxxxxx
Diiver Class: |cnm.bea.ld.idbc.LiquidDataJDBl:Driver
Clazs Path: p-corekldidbc\lddbd Abuildsdisthldidbe.jar &I
LURL: |.lgSthut=tlue;debugFi|e=|didbc.IDg;debugLog=tlue
Strip Quote: r Single Statement; [|
With Schema:; i todify Metadata: H
Reusze CL Object: v Strip Ezcape: H
Bigint Default: o
Test | oK. Carcel Help

e. Click Test. The following screen will display, indicating the connection has completed
successfully.

B oDBC-1DBC Gateway Test x |

& Conneckion to Liquid Data, com.bea.ld. jdbc. LiquidDataDEC Driver (5.2) - QK

f. Click OK to complete the set-up sequence.

Client Application Developer's Guide 8-15

Using the Data Services Platform JDBC Driver

Using OpenLink ODBC-JDBC Bridge

The Openlink ODBC-JDBC driver can be used to interface with the Data Services Platform JDBC
driver to query DSP applications with client applications, such as Crystal Reports 10, Business Objects
6.1, and MS Access 2000.

To use the OpenLink bridge, you will need to install the bridge and create a system DSN using the
bridge. The following are the steps for these two tasks:

1. Install the OpenLink ODBC-JDBC bridge (called ODBC-JDBC-Lite). For information on the
installation of OpenLink ODBC-JDBC-Lite, see:

http://www.openlinksw.com/info/docs/uda5l/1lite/installation.html

Warning: For Windows platforms, be sure that you preserve your CLASSPATH before installation.
The installer might overwrite it.

2. Create a system DSN and configure it for your DSP application by performing the following
steps:

a. Ensure that the CLASSPATH contains the following jars required by ODBC-JDBC-Lite, as well
as the 1djdbc. jar. A typical CLASSPATH might look like:

D:\1lddriver\1ldjdbc.jar; D:\odbc-odbc\openlink\jdkl.4\opljdbc3.jar;
D:\odbc-jdbc\openlink\jdkl.4\megathin3.jar;

b. Update your system path to point to the jvm.d11, which should be under your

%javaroot%/jre/bin/server directOIy.

c. Open Administrative tools Data Sources (ODBC). You should see the following:

8-16 Client Application Developer's Guide

http://www.openlinksw.com/info/docs/uda51/lite/installation.html

Connecting to Data Services Platform Client Applications Using the ODBC-JDBC Bridge from Non-Java

£710DBC Data Source Administrator e |

UgerDSM Systerm DSH | File DSNI Driversl Tracingl Cohnection F'oolingl Abaut I

System Data Sources:

N ame | Driver Add. |
icrozoft Acceszs Diiver [7.mdb]

efazhion Microzoft Access Diiver [*.mdb] Hemove |
LocalServer SOL Server

ODBC_JDBC_LITE OpenLink JOBC Lite for JOK. 1.4 [Earfigure... |

#treme Sample Databaze 10 Microzoft Access Driver [%.mdb]

4| | H

An ODEC Systern data source stores information about how ta connect to
the indicated data provider, A& System data zource iz visible to all uzers
an thiz maching, including MT services.

0k I Cancel Apply Help

d. Go to the System DSN tab and click Add.

Client Application Developer's Guide 8-11

Using the Data Services Platform JDBC Driver

e. Select JDBC Lite for JDK 1.4 (32 bit) and click Finish.

Create New Data Source ll

Select a driver for which pou want to zet up a data source.

MHame | \-":I
ticrosoft Wisual FoxPra Driver g
ticrozoft Wisual FoxPro-Treiber

OpenLink JOBC Lite for JOK. 1.2 [32 Bit)

OpenLink JOBC Lite for JOK 1.2 [32 Bit] [Unicode)
OpenLink JOBC Lite for JOK. 1.3 [32 Bit)

OpenLink JOBC Lite for JOK. 1.3 [32 Bit] [Unicode)
UpenLink JUSL Lite tar JUE, |4 |52 Bit)

OpenLink JOBC Lite for JOK, 1.4 [32 Bit) [Unicode)
SOL Server

LR isReazmnnn

[N O (N N o o o)

-

< Hack I Firizh I Cahicel |

f. Write a name for the DSN. For example, ODBC_JDBC_LITE, as shown in the figure below:

OpenlLink Single Tier DSN Configuration ﬂ

Thiz wizard will help you create an ODBC data zource that you can uze to
conhect to a remate OpenLink Request Broker.

Ww'hat name do pou want bo uze to refer to the data source’

Mame: |ODBC_JDBC_LITE

How do you want to degcribe the data source?

Descrption: |ODBC_JDEC_LITE

EOPENI,NN

SOFTWARE

¢ Back I Mext » I Cancel

8-18 Client Application Developer's Guide

Connecting to Data Services Platform Client Applications Using the O0DBC-JDBC Bridge from Non-Java

g. Click Next. Then on the next screen, enter the following in the JDBC driver field:
com.bea.ld.jdbc.LiquidDatadJDBCDriver.
Enter the following in the URL string field:

jdbc:1ld@<machine_name>:<port>:<app_name>

DpenLink Single Tier D5N Configuration x|
‘which sarver doyou wanl b confect 107
JDBC diiver: |combea H jdbe LinudDatal DECDiiver =l
UAL sting: [idbc:ld@loealost 7001 =

- Cigniact now 1o verify that a1 satfings are conect.

LogniD: [syetem

@O panod [

< Back, | Heut s I Cancel |

h. Check the Connect now to verify that all settings are correct checkbox. Provide the login and
password to connect to the Data Services Platform WebLogic Server.

Client Application Developer's Guide 8-19

Using the Data Services Platform JDBC Driver

8-20

i

Click Next. The screen shown below will display:

OpenLink Single Tier DSN Configuration

Additional JOBC specilic parameters:

[~ Dirop Catalog name from Databasebdetal ata calls

[~ Diop Schema name from D atabasetetaliata calls
[Retumn an emphy BesultSet for SOLStatistics

[Disable support of quated identifisr

[~ Disable support of search pattem escape

[~ Enable logging of JOBC calls to the log file

Patch null size of SELChar on: IU ﬂ

< Back I Mest » I

Cancel

Client Application Developer's Guide

Connecting to Data Services Platform Client Applications Using the ODBC-JDBC Bridge from Non-Java

j.Click Next. The following screen will display:

OpenLink Single Tier DSN Configuration x|

Additianal connect parameters:
[
[Defer fetching of long data

[" Disable interactve login

Row buffer size: IE':I
M ax rowes override; IEI

Initial SBL:I

EEEE

Dynamic cursar sensitivity: ILl:-w ﬂ

[" Enable Microsdt Jet engine optiots
™ Disable Autocommit

[Disable rowset size limit

[Enable laggingta the log file: I

< Back I Mewut » I Cancel

Client Application Developer's Guide 8-21

Using the Data Services Platform JDBC Driver

k. Click Test Data Source. This screen will verify the setup is successful.

OpenLink Single Tier DSN Configuration

A new ODBC Datazource will be created with the
following configuration;

OpenLink, Lite for JOBC 1.3 [32 Bit] Yerzion: 5.10.1121
File: C:\Program Fileshopenlink\ite324nt5i 4z.dll

Aftempting connection
Connection established
"erifying option settings

Running connectivity tests. .

Actual database iz LiquidData [LiquidD ata]
Dizconnecting from server

TESTS COMPLETED SUCCESSFULLY!

< Back Finizh

Cahicel

1. Click Finish.

8-22 Client Application Developer's Guide

Using Reporting Tools with the Data Services Platform ODBC-JDBC Driver

Using Reporting Tools with the Data Services Platform
0DBC-JDBC Driver

Once you have configured your ODBC-JDBC Bridge, you can use your application to access the data
source presented by DSP. The usual reason for doing so is to connect Data Services Platform to your
favorite reporting tool.

Note: For details on supported reporting applications and connectivity software see "Configuring
the Data Services Platform JDBC Driver for Reporting Applications" in the Preparing to
Install Data Services Platform chapter of the DSP Installation Guide.

This section describes how to configure the following reporting tools to use the Data Services Platform
ODBC-JDBC driver:

e Crystal Reports 10 - ODBC

e (rystal Reports 10 - JDBC

e Business Objects 6.1 - ODBC
e Microsoft Access 2000 - ODBC

Note: Some reporting tools issue multiple SQL statement executions to emulate a scrollable cursor
if the ODBC-JDBC bridge does not implement one. Some drivers do not implement a
scrollable cursor, so the reporting tool issues multiple SQL statements. This can affect
performance.

Crystal Reports 10 - ODBC

This section describes how to connect Crystal Reports to the Data Services Platform ODBC-JDBC
driver. To connect Crystal Reports to the driver, perform the following steps:

1. In Crystal Reports 10, you need to create a new Connection on ODBC RDO. You can do this by
clicking on the New Report wizard button, which will prompt you immediately for a data source.
Select the ODBC (RDO) option in the left-hand window as shown in the Figure 8-3.

Client Application Developer's Guide 8-23

../install/index.html

Using the Data Services Platform JDBC Driver

Figure 8-3 Data Source Selection

'S Standand Report Creatien Wizord s2f R]|
Data a]
Choces the dels o ek 51693t 00,

Aipalabis Diala Souces: Sebecied Tabler
il

FindFile D50 (s
Fi= D e |
Erdn Conrection Stirg »

ek Wer | Fesh | Coed | b |

o | Mews | Fwih | Eses | Hew L
You can select the DSN you have created earlier (see the procedure in section “Using OpenLink
ODBC-JDBC Bridge” or “Using the EasySoft ODBC-JDBC Bridge”). In this example, it is
ODBC_JDBC_LITE.

Selecting ODBC_JDBC_LITE, prompts the following dialog:

8-24 Client Application Developer's Guide

Using Reporting Tools with the Data Services Platform ODBC-JDBC Driver

i

Connection Information
Provide neceszary information ta log on to the chosen data source

Server IDDBE_JDEI:_LITE

User ID: I

Paszzword: I

< Back | et | Finizh I Cancel | Help |

2. Enter the domain login and password. Note that because the URL contains the Data Services
Platform RTLApp application, you should use the domain login and password that the domain of
the RTLApp application uses. (These will most likely be "weblogic".)

Once authenticated, Crystal Reports will show you a view of the DSP application on the server
as shown in Figure 8-4.

Client Application Developer's Guide 8-25

Using the Data Services Platform JDBC Driver

Figure 8-4 Available Data Sources

Hl O standard Report Creation Wizard

Data =

Choose the data you want to report on

Available Data Sources: Selected Tables:

Fl- (] Current Connections

- [dFavaiites

(] History

=1 [Create New Connection
([Decess/Excel DAO)
([Database Files
(Z3DB2 Urnicode
(C3JDBC UNDI)
=+ C0DBC RDO)

3 Make New Connection
E S Su

£ Add Command S
DataSemvices™ApparelB electe
&) DataServices BilingDB / Tables

=B Dat

EECEE

DataServices Demo™CSV
DataServices™RTLServices
Bl DataServicesServiceDB

([CaMore Data Sources
(] Repository

ok [mets | Frin | Cancdd | Help

3. Generate a report using the Add command or by dragging the metadata to the right. In this
example we will be using both options. You can choose the tables you want to use in the report
as shown in Figure 8-5.

8-26 Client Application Developer's Guide

Using Reporting Tools with the Data Services Platform ODBC-JDBC Driver

Figure 8-5 Selecting the Table View

B Standard Report Creation Wizard

=
Data
Chuoowe thre dta you vrand Lo tepurl on Elt!
fvalsble Dt Sources: Selected Tables:
CiCimale Hew Corrmsinn B 5 @ ODEC_JDEC_UTE
® P - CLSTOMERS it pivicea sk USTOMERS et erTLSTOMERS PAIII
5 |[mm PayMENTS i YMENTS. 11400 e/ PAYMENTS POINTES
= CJUD8C (HOO)
G Malor Mew Connection 20
=i, ODBC_J0BC_UTE | These buttons help you choose the tables
4] fusd Corsaiered 4
WOstaSeoicer Cumtomer sl e =
Satiers ey J
A Elor I i TList s
A .'bonedl’!oced.lel --
] oo st (oo s Customes K D ks o—
(] getCisshomes jgetCistnmer™ Hnmﬂnw:m"umml\
waerices CUSTOMERS s ——
/) CUSTUMERS KD alaServoesschemas/LUS TUMERS. azd""‘l.l[’dnhumuﬂb— ¥

Do EMS nis |I e
I ITEMS | TEMS ya=1d SATEMS FOINTAS -
HD:MMH PAYMENTS s | Select the Table (View) you want In your repert, from this list.
e
\] PATMENTS i TS e)
\ =] Stored Procedues

hY] okl [lookian WD s ervcms PAYMEN T 5. PUINI&}GEMBLU[.ILJ

3 e DataSenicns” PO_CUSTOMERS s

B F0_CUSTOMERS [DistaSenvices/schemst /PO :u{mn:ns e DistaS e
Datafiermn FO_ITEMS ne

giren, | mrmq, ,l,m.u: sadid cra/FO_ITE
1000 — e
CI0LE DE 100) —
& [Moe Dot Sources
CaFrepasion =]
Ly | e 4 |]

ek [temr Frih | Concel | Heb |

@
Alternatively, you can choose the Add Command option to type an SQL query directly, which
will show you a window like one in the Figure 8-6.

Figure 8-6 Add Command

O Add Command To Report |
Enter SEL query in the box below. - ter List
SELECT *FROM CUSTOMER LEFT OUTER JOIM ADDRESS ON - Create...
CUSTOMER.CUSTOMER_ID = ADDRESS CUSTOMER_ID| _I —I
odify... |
Femove |
ok Cancel
4

Client Application Developer's Guide 8-21

Using the Data Services Platform JDBC Driver

4. Click the Ok Button to see the Command added to the Right hand side of the window.

Clicking Next in the wizard shows you all the available views for this Report generation, as

shown in Figure 8-7.

Figure 8-7 Link Screen

I standard Report Creation Wizard

Link
Link together the tables pou added to the report,

x|
A

ADDRES
ADDR_ID
CUSTOMER._ID
FIRST_MAME
LAST_MAME
STREET_ADDRESS1

STHECT Ammnccos

[|

CUSTOMER_CUSTOMER
CUSTOMER_ID
FIRST_MAME
LAST_MAME
CUSTOMER_SINCE

CRAATL ARMnESC

CUSTOMER. CUSTOMER, _ID
CUSTOMER.FIRST_MAME
CUSTOMER.LAST_MAME
CUSTOMER, CUSTOMER_SINCE
CUSTOMER.EMAIL_ADDRESS
CUSTOMER, TELEPHOME _NUMBER.
CUSTOMER. 55N
CUSTOMER.BIRTH_DAY
CUSTOMER, DEFAULT _SHIP_METHCD
CUSTOMER.EMAIL_MOTIFICATION
CUSTOMER. MEW/S_LETTTER.

Command

-

=

Auto-Arange

Auto-Link
& ByMName
" ByKey

Link |

Order Links...

Clear Links

Delete Link

Lirk Options...

Index Legend...

< Back I Mest > I

Finizh

Cancel

Help

h—

8-28 Client Application Developer's Guide

Using Reporting Tools with the Data Services Platform ODBC-JDBC Driver

Clicking Next again will take you to the Column chooser window, which allows you to select
which Columns you want to see in the final Report, which appears as shown in Figure 8-8.

Figure 8-8 Column Chooser

i @ standard Report Creation Wizard ; - |
Fields
Chooze the information to dizplay on the report,
|
I Available Fields: Fields to Display: o v
= ADDRESS_ADDRESS = = ADDRESS_4ADDRESS.CITY
-m=2 ADDR_ID = ADDRESS_ADDRESS.COUNTRY
2= CUSTOMER_ID = CUSTOMER_CUSTOMER.FIRST_MNAME
-e= FIRST_MAME = CUSTOMER_CUSTOMER.LAST_MAME
m= LAST_MAME = CUSTOMER_CUSTOMER.TELEPHONE_MUMBER

--m= STREET_ADDRESST
@32 STREET_ADDRESS2
SICITY

m3 STATE
2= ZIPCODE
= COLUNTRY
== DaY_PHOME

== EYE_PHOME

= ALIAS

3 STATUS

e |5_DEFALLT i
=B CUSTOMER_CUSTOMER

-m= CUSTOMER_ID

lelE

.m= CUSTOMER_SINCE
m= EMAIL_ADDRESS |

= TCI COUMAKIE AIIWDCD

Browse Data Find Field...

< Back I Mext » I Finizh | Cancel | Help |
/)

55

Note: This example chooses columns from the user-generated Command and the view
CUSTOMER.

Client Application Developer's Guide 8-29

Using the Data Services Platform JDBC Driver

8-30

Clicking on Next again takes us to the Group by screen (as shown in Figure 8-9), which allows
you to choose a column to group by. (This is grouping is performed by Crystal Reports. The

Group-by information is not passed on to the JDBC driver.)

Figure 8-9 Group-by Screen

I standard Report Creation Wizard

Grouping
[Optional] Group the information on the report.

-
-

Available Fields: Group By:

=&, Report Fields E ADDRESS_ADDRESS.COUNTRY - A
i B ADDRESS_ADDRESS.CITY -4

|»

= RE IR TR
o= CUSTOMER_CUSTOMER. FIRST_MAME
o= CUSTOMER_CUSTOMER.LAST_MAME
--m= CUSTOMER_CUSTOMER. TELEPHOME_MUMBER
=B ADDRESS_ADDRESS
== ADDR_ID
--m= CUSTOMER_ID
.m= FIRST_NAME
= LAST_MNAME
--m= STREET_ADDRESST
--m= STREET_ADDRESS2
2= ZIPCODE
2= COUNTRY
== DaY_PHOME
== EYE_PHOME
=3 ALIAS -
= STATUS
o= |5_DEFAULT
& &

m WS SIS TAMED CHCTORED

Al

Browse Data.., Find Field... lin azcending order.

< Back I et > I Finizh

Cancel |

Client Application Developer's Guide

Using Reporting Tools with the Data Services Platform ODBC-JDBC Driver

5. Skip the next few screens for now, clicking Next till you reach the Template Chooser Screen
Figure 8-10. Choose any appropriate Template. In this example, the user has chosen the Block
(Blue) Template.

Figure 8-10 Template Chooser Screen

M Stamdard Report Creation Wizard X
Tamplate E
TOplional] Select a fesmplae fox e repart =
Andabn Temginins Prewiow
W ok (s e B

cpock | tes | [cocel | nee |

Client Application Developer's Guide 8-31

Using the Data Services Platform JDBC Driver

8-32

Figure 8-11 Generated Report

5___{:-Erysta| Reports - [Report3]

6. Click Finish. A Report similar to that shown in Figure 8-11 is generated.

=10 x|
[%] Filz Edit Wiew Insert Format Database Report Window Help = ﬁ‘|1|
D@ RB@sas|s 2R yo-o BB A v |
[I EIEE = = e e ul= = |& B -= @S 5 %%
Jau{.:.):ﬂllaa&,-nﬂ9|
|wEragadeae s |
Design Plewewl 2247 % |4 4 1ot boplm
EI-Report3 L I I R R e S e S SRR RN A AR I ARt S
E-USA
% . W A
i Anacortes FHa . powered by
- Austin y tal . L
i Dallas 5
Phoenis
Heng b Report Description:
San Franisc g%
Bk
SanJose GH1a -
i Seattle < USA
+ Tugson B
GETHL Y - £OUNTRY EITY FIRST_NAME LAST_NAME TELEFHONE_NUMBER
RH? o Anacurtes
e Angcaries Jeuy Gieanpeig 160746726
FH? - Aushn L
- usi Auslin Lan Jannzan S128317204
¥ ush Austin Kevin Smitn 4BEE12025]
F‘H? : Dallas
o uss Dallax Jack Elack 2145114118
FH? i Phoenix
: usa LLLELES ML Gupla BD2EABIFET
FH? = Reno
J: - usa Rena Slave Ling EBED] 52456
GH? i San Francisco
e N San Flancizca Michael Snaw 4150460017
~A ¢ Can laca e
B] 4] | »
For Help, press F1 l4.8,1.8:1.5%0.1 |Records: 10 [100% 7

Client Application Developer's Guide

Using Reporting Tools with the Data Services Platform ODBC-JDBC Driver

Crystal Reports 10 - JDBC

Crystal Reports 10.0 comes with a direct JDBC interface that can be used to interact directly with the
Data Services Platform JDBC driver. The only difference between the ODBC and JDBC approach is

that in JDBC, a new type of connection is used, as shown in Figure 8-12.

Figure 8-12 Connection Dialog Box

Connection
Pleaze enter connection information ...

JDBC Connection: o

Cannection UAL: Iidbc:ld@shanor:?ﬂm RTLApp

Database Classname: Icom. bea.ld.jdbc. LiquidD atal DECDriver

JHDI Conmection Mame I
[Optional):

JNDI Connection; -

JNI Frowider IRL: |

JHDI Weermame; Iweblogic
JHDOT Fagswond: I
|mitial Eantewt: I.-*

& Batk I Mest » I Firish Caticel i

Help

Figure 8-13 shows screen that requests the connection parameters for the JDBC Interface of Crystal

Reports.

Client Application Developer's Guide

8-33

Using the Data Services Platform JDBC Driver

Figure 8-13 Connection Information Dialog Box

x

Connection Information
Provide neceszary information to log on to the chozen data zource

Server I

Uzer D Iweblogic

B! I xxxxxxxx

Database: I j
Trusted Connection: r

< Back | =0 | Finizh I Cancel | Help |

Note: The Database drop down box is populated with the available catalogs (DSP applications) once
you have specified the correct parameters for User ID and, Password, as shown in Figure 8-13.

8-34 Client Application Developer's Guide

Using Reporting Tools with the Data Services Platform ODBC-JDBC Driver

Clicking the Finish button on the previous screen. This takes you the metadata browser shown in
Figure 8-14. The rest of the process is similar to the procedure described in the section “Crystal
Reports 10 - ODBC.”

Figure 8-14 Metadata Browser Window

M Standard Report Creation Wizard ; e |
Data ml
Chooze the data you want to report on.
Available Data Sources: Selected T ables:

B D Create Mew Connection
f- ([Access/Excel (DAD)
([Database Files

(C1DB2 Unicode |
|
<4 |

-] = idbe:ld@shanor 7001:RTLApp
ADDRESSHADDRESS
CUSTOMERHCUISTOMER

Make Mew Connection
@; jdbc:ld@shanor 7000:RTLApp
Add Camnmand

DataServices~ApparelD B

&) DataServicesBilingDB

&) DataServices~CustomerD B
D -

ataServices~Demo~CSY
&) DataServices~RTLS ervices
D ataServices™ServiceDB
#-(LJ0DEC [RDO)
#- (] 0lap
7 (L] OLE DB [2D0) L‘

< Back | Mext » Finizh Cancel Help

!

Client Application Developer's Guide 8-35

Using the Data Services Platform JDBC Driver

Business Objects 6.1 - ODBC

Business Objects 6.1 allows you to create a Universe and also allows you to generate reports based on
the specified Universe. In addition, you can execute pass-through SQL queries against Business
Objects that do not need the creation of a Universe.

To generate a report, perform the following steps:
1. Creating a Universe by doing the following:
a. Run the Business Objects 6.1 Designer application and click New to create a new universe.

b. Fill in a name for your Universe and select the appropriate DSN connection from the
drop-down list, as shown in Figure 8-15.

Figure 8-15 Selecting the DSN Connection

Universe Parameters _ﬁ

Diefinition | Summaryi Strategiesl Eontrolsl 500 I Links I Parameter

The fallowing information identifies the universe. & universe is
defined by itz name and database connection:

¥
Description: This universe iz created to demonstrate how to use _-_]

Busineszz0bjects 6.1 with LiquidD ata JDBEC driver using
EasySoft-0DBD-JDEC-Gateway.

Connection: & New Connection

0k I Cancel | Help |

8-36 Client Application Developer's Guide

Using Reporting Tools with the Data Services Platform ODBC-JDBC Driver

c. Ifthe DSN you wish doesn't appear in the list (this happens if you are using the application for
the first time), use New to create a new connection. Select ODBC Drivers, as shown in
Figure 8-16, and click OK.

Figure 8-16 Selecting the 0DBC Drivers

¥ Designer ;IEI_X_I
File Edit Wew Insert Tools ‘Window Help |
DEH SR 2RAL o BB %S| FEE = |
Meve | s aa Y|

X o 5|

Universe Parameters
Add a connection

Definition | Summaryl Shategies I Eontrolsl S0L | . 5
' - Select the network layer you want to uze.

The fallawing information identifies t Click OK. and then define parameters for the connection.

defined by itz name and database c

Metwork Layer:

It DEZ Client
M ame: IEustomerUniverse IBM iSeries Access
Informix ODBC Criver
Description: Thiz universe is created to demons! I
BusinessObjects 6.1 with LiquidDat | Oracle Client
EasySoft-0DBD-JDBC-Gateway. Svbase Open Client
Teradata ODBC Driver

Connection; I M Mew Connection =
Description

Mew... Allowes pou to access various databases

ok I Cancel |

Lancel

B e

Client Application Developer's Guide 8-31

Using the Data Services Platform JDBC Driver

8-38

d. Now select the database engine as a Generic ODBC data source, as shown in Figure 8-17. Use
the ODBC Admin button to check if the DSN you wish is already created. For any help creating
a DSN using OpenLink or EasySoft please refer to the section ODBC-JDBC bridge of this
document.

Figure 8-17 Selecting the Database Engine

=lolx|

et Add a connection :
& Oy e ot e e (e |
ODBC Drivers X |

Lagin | Advanced I Cusztom I

File Edit View Insert Tools ‘Window Helo

0O Universe Parameters

X

ection.

Mame: [ratabaze engine:
Name IDemoEon IMS Access 2000
Desci — Login P, Generic DDBC datasource

k4S5 Access 2000

I

Uszer name:

Coritu
Password: I

[rata zource name: I

Type: I Perzonal ;I

e

Client Application Developer's Guide

Using Reporting Tools with the Data Services Platform ODBC-JDBC Driver

e. Now select the data source name as shown in Figure 8-18. This would be the name of DSN you
wish to connect to. Refer to the picture below. Click OK to get back to the Universe creation
window.

Figure 8-18 Selecting the Data Source Name

+9 Designer o |EI[1[
(5[0 = (8 Liniverse Parameters | ﬂl
= i 3 echion x|
0 & & Definition | ODBC Drivers x|
i @ ¥ ﬁ Lagin |Advanced| Eustoml
b Meb Narme: Diatabase engine:
Mame: "B IEustomerUniverseEonnection Generic ODBC datasource j
- :EE r— Login P.
Descriptio o0 ; ;
- ™ Use BusinessObjects user name and password
12
Sut > =
Tl Uszer name: Iwebloglc ODBC Admin |
Connectio Password: I xxxxxxxx
Des
el ['ata source name: IEasySth_DDBE_JDBE_Gateway j Test I
Type: I Perzonal j
0k, | Cancel | Help |
T T T B

Client Application Developer's Guide 8-39

Using the Data Services Platform JDBC Driver

f. Fill in the other details and click Test to see if the connection is successful. Click OK. You
should see a new blank panel, as shown in Figure 8-19.

Figure 8-19 Designer Ul Screen

%% Designer - CustomerUniverse i |EI|1|
J'la File Edit Wiew | Insert Tools Window Help =] =]
D d & rEE EEE N |

- At alias...
i s B %o Y |
i Al
X b I 5:‘5' Cantest, ., ||
[af] Class... a
Subclass, ..
& Obiject..

g Copdition..
Candidate Objects, .,

User Objects...

Universe, .,
c48 v #B | | _;l_l
Displays the table brawser - 0,0] il

8-40 Client Application Developer's Guide

Using Reporting Tools with the Data Services Platform ODBC-JDBC Driver

g. From the Insert menu select Table, as shown in Figure 8-19. Once the list of tables is shown in
the Table Browser, double click on the tables you wish to put in the Universe you are creating.
You should see a screen similar to that shown in Figure 8-20.

Figure 8-20 Table Browser

%% Designer - CustomerUniverse i Ellﬂ
J'lE File Edit View Insert Tools Window Help ==l
DEH SA|i2EdMs, - BB S |EEE s -

N e sl e |
e |
s &
[E-i24 Rtlapp Dataservices™customerdb Address#address -
B Addrid RTLApp.DataServices”CustomerDB. ADDRESS#ADDRESS
~ @ Customer Id SSEFU_IEER &
@ First Name FIRST_MAME
- @ Last Hame LAST_MAME
STREET_ADDRESS!
& Street Address STREET ADDRESSZ
= @ Street Addess2 CITY
@ Ciy STATE
ZIPCODE
~ @ State
@ Zipcode
- @ Country IF
@ Day Phone CUSTOMER_ID -
i FIRST_HAME
L EYE RIETE LAST_MAME
@ plias CUSTOMER_SINCE
L@ Status EMAIL_ADORESS
TELEPHONE_MUMBER:
& s Default -
BB R tlapp D el o BIRTH_DAY
DEFAULT_SHIP_METHOD
@ Customer Id Serdred LI
- @ First Name
@ Last Mame
- @ Custnmen Sinee = =
cg cv B y ,
0D hUM | il

h. Save the Universe and exit.

Client Application Developer's Guide 8-41

Using the Data Services Platform JDBC Driver

2. Creating a report using the New Report wizard. To create a new report, follow these steps:

a. Run the Business Objects application. Click New to open the New Report Wizard. Choose
Specify to access data and click Begin. You should see the dialog-box shown in Figure 8-21.

Figure 8-21 Available Universe Dialog Box

MNew Report Wizard

f Select a Universe

To access universe data, select a universe.

Available Universes:
Custamerlniverse
lzland Resorts Marketing
SU1

UMY _CUST_TEST
UniProc

Univers1 [Univers1.uny |
Univers1 [MyUniver uny |

Urivers0L LI
[Set az My Default Universe

Help on the selected universe:

< Back | Finizh I Cancel

8-42 Client Application Developer's Guide

b. Choose a Universe. Click Next. On the left pane, you should see the tables and their fields

Using Reporting Tools with the Data Services Platform ODBC-JDBC Driver

(columns) on expansion, as shown in Figure 8-22.

Figure 8-22 Query Panel

Classes and Objects

<n Query Panel - CustomerUniverse Universe

=10f x|

IEQSI ?l%ll IScope of Analysis: None ;I @l%‘llsﬁéf-lﬁﬂlwl gl

Resulk Objects

Addr Id

First Marne
Last Mame

City
State
Zipcode
Counkry
Day Phone
Eve Phone
Alias
Status

Is Default

& First Name

1|
cf v

=l Rtlapp Dataservices~clﬂ

Street Address1
Street Addressz

(=142 Rtlapp Dataservices~c
@ Customer Id

aif
A

Optiong... |

To insert an object in the query, open a class folder then double-click the ohject.

Conditions
To apply a condition, drag an object to this pane.

Save and Cloze e, | Fun Cancel

Client Application Developer's Guide

8-43

Using the Data Services Platform JDBC Driver

c¢. Select the Universe of your choice and click Finish. Double-click a column (table-field) in the
left pane to select it in the result, as shown in Figure 8-23.

Figure 8-23 Selecting the Object

<n Query Panel - CustomerUniverse Universe

WQ{’I ?l%ll IScope of Analysis: None j @l%‘llﬂlﬁﬂl@l gl

Classes and Objects Result Objects

Customer Id ;‘ -
First Mame @ Customer Id | & City | B Country

Last Name & First Name | & Last Name | |
Street Address1
Street Addressz \{

City -
State BT
Zipcode
Counkry
Day Phone
Eve Phone Conditions
Alias To apply a condition, drag an object to this pane.
Status

- @ Is Default
El-@ Rtlapp Dataserviceseo
- @ Customer Id
@ First Name

=10l x|

Double-Click to select the fields to be
displayed in the result.

4 O Hl
Optiong... | Save and Cloze Wiew.. | Bun Cancel

8-44 Client Application Developer's Guide

Using Reporting Tools with the Data Services Platform ODBC-JDBC Driver

d. Click Run to execute the query. The result is seen as shown in Figure 8-24.

Figure 8-24 Business Objects Panel

B BusinessObjects - Document2

@ File Edit Wiew Insert Format Tools Data Analysis Window Help

=10ix|

=12

sl 3l @ |
NSl s2Rxa|aso~|REETA | falE =]
o0 2| W vk BN
ﬁ :
& Data | & Map | Report Title
£ Wariables
: Etﬁmw Customer Id City Country First Name Last Name
& Customer|d CUSTOMERD Austin USA Britt Pierce
@ First Name CUSTOMERD Austin LSA Don lJohnson
@ LastName CUSTOMERD |Austin usa Hommer Simpson
(B Fomles CUSTOMERD |Austin USA Jack Black
CUSTOMERD Austin USA Jerry Greenbery
CUSTOMERD Austin USA Kevin Smith
CUSTOMERD Austin USA ichael Snow
I CUSTOMERD Austin US4 Nitin Gupta
i CUSTOMERD Austin USA Steve Ling
CUSTOMERD Austin LISA Tirn Floyd
CUSTOMERD San Jose USA Britt Pierce
CUSTOMERD San Jose USA Don lohnson
IS TOkAFDN Con laen e a Horarmnr Cirnnenn i
o ‘@ C El Report1 I
| | Last Exec: 6/10/2005 11:48 AM I [i

3. You can execute the pass-through queries as follows:

a.
b.

C.

In the Business Object application, click New to create a new report.

In the New Report Wizard choose Others instead of Universe as shown in Figure 8-25.

Choose Free-hand SQL and click Finish.

Client Application Developer's Guide

8-45

Using the Data Services Platform JDBC Driver

8-46

d. Select the connection you made using Designer 6.1, as shown in Figure 8-25.

Figure 8-25 Free Hand SQL Menu

@ 5] Free-hand SOL

BusinessObjects - Docum

=10] x|

Irv the free-hand SGL editor, you create or open a SOL scripl
selected database connection.

=181x]

t, and i it on the

| | [io0z

EIEI 2| Connection: I 1 MyNewConn ﬂ &I&IEI
= | merllr e
Dat @ MyConnection AI
@ S @ MyMNewConn by
M Mew Connection -
4] Ll_l
[T Build Hisrarchies and Start in Drill Mods
WiEw., I Frun Cancel | Help | _'ILI
o i
@ s 1
I HUM 4

Client Application Developer's Guide

Using Reporting Tools with the Data Services Platform ODBC-JDBC Driver

e. Type in your SQL query and click Run to generate the report, as shown in Figure 8-26.

Figure 8-26 Specifying the SQL Query

| oy
i I BusinessObjects - Document4 i =1o] x|
@ (54 Free-hand SQL =18 x|
Ir the free-hand SAL editor, you create or open a SOL script, and run it on the
zelected databaze connection. | | 100%
ol
i D”'lEI L e I] EustomerUniverseEonneclj &I&IEI
SELECT *FROM CUSTOMER MATURALJOIN ADDRESS -
& Data 4 —I

¥ il

™ Build Hisrarchies and Start in Drill Mods

i Wiew... | Fiun Cancel | Help | _'ILI

[oF - :

T [[

Client Application Developer's Guide 8-41

Using the Data Services Platform JDBC Driver

8-48

f. Click Run. You should see the report shown in Figure 8-27.

Figure 8-27 Business Objects Report

“48 T/

I # BusinessObjects - Document4 _|EI|5]
@ File Edit Wiew Insert Format Tools Data Analysis Window Help 18] x|
ARARUN
NSESR[s =B XA~ R [ExDs|Ea|fx |
4 X% v B |

il ﬂ
& 0ata | Man | Report Title
-4 Variables -
- @ ADDRESS.ADDR_ID
P e PG CUSTOMER_ID FIRT_NAME LAT_NAME CUSTOMER.C ;
@ ADDRESS.CITY CUSTOMEROD Kewin Snith 114172001 Kevin@aol.co
@ ADDRESS.COUNTRY CUSTOMERD Kewin Sith 11472001 Kevini@aol.co
@ sDDRESS.DAY_PHO CUSTOMER1 Jack Black 114172001 Jack@@hotmai
- @ ADDRESS.EVE_PHO
8@ ADDRESS STATE CUSTOMERZ2 Je.rry G.reenherg 11472001 JOHM_2Ehyat
@ ADDRESS STATUS CUSTOMER3 Biritt Pierce 114172001 JOHM_3Ehatt.
@ ADDRESS.STREET | CUSTOMER4 Steve Ling 11/2/2001 JOHM_4iGhatt.
@ ADDRESS.STREET . CUSTOMERS Michael Show 114172001 JOHM_SEhaol
- @ ADDRESSZIPCODE
8@ CUSTOMEREIRTH I CUSTOMERGE D.on Johnson 11472001 JOHM_EEhot
@ CUSTOMER.CUSTOR CUSTOMER? Tim Floyd 114172001 JOHM_7iEhyat
- @ CUSTOMER.DEFAUL CUSTOMERS Nitin Gupta 114172001 JOHM_Bidhatt.
- @ CUSTOMER.EMaIL_¢
- @ CUSTOMER.LOGIM_|
- @ CUSTOMER.S5M
..... & CSTAMFR TFI Fﬂﬂ =
4 i » = _’l—l

Reportl I

| Last Exec: 6/10/2005 12:38 PM

T

Client Application Developer's Guide

Using Reporting Tools with the Data Services Platform ODBC-JDBC Driver

Microsoft Access 2000 - ODBC

This section describes the procedure for connecting Microsoft Access 2000 to DSP through an
ODJB-JDBC bridge.

Note: If you are using Microsoft Access 2000 you should use OpenLink’s ODBC- JDBC bridge. The
EasySoft bridge does not support Microsoft Access 2000.

To connect Access 2000 to the bridge, perform the following steps.

1. Run MS Access, click File Open, then select ODBC Databases as the file type as shown in the
Figure 8-28.

Figure 8-28 Selecting the 0DBC Database in Access

File Edit Wiew Insert Lok i ID My Documnenks ;I = | @ > 05 + Todls -

1 Histary 18]0DBC13.mdb
My Business Objects Documents ODBCH.mdb
(_1My B2ZFlag Files 18] 0DBC15.mdb
My eBooks 1] oDBC16.mdb
My Games 18 0DBC17.mdb
23 My Music 18 0DBC18.mdb
(Z5]My Pictures 1] oDECz.mdb
(£ 5ecurity 18] 0DBC3.mdb
(3 sujeet_iitd 18] 0DEC4.mdb
21 0DBC. mdb 1] oDBCS. mdb
(2] 00BC1 . mdb 18] oDBCs mdb
[#21]0DEC10.mdb 18] 0DBC7 mdb
(2] 0DEC11.mdb [opECa.mdb
[0DBEC12.mdb 18] 0DBCa.mdb

File name: I ;I G Open |t |

Files of type: IData Files (*.mdb;*, adp;* mdw;* mda;*.mde; *.ade;*.n:‘ZI

Microsoft Excel (*,xls)
Exchanged)

Cancel |

Ready NS S o o 7

Client Application Developer's Guide 8-49

Using the Data Services Platform JDBC Driver

2. Once the dialog Select Data Source pops up, click Cancel to close it. You should see the window
shown in Figure 8-29.

Figure 8-29 0BDC23: Database Screen

gE8 DDBC25 ; Database

=1o] x|

Create query by using wizard

)

Groups

E3 Favorites

8-50 Client Application Developer's Guide

Using Reporting Tools with the Data Services Platform ODBC-JDBC Driver

3. Click Queries, then Design as indicated in Figure 8-29. You should see a screen shown similar to
that shown in Figure 8-30.

Figure 8-30 Select Query and Show Table Screens
ra Microsoft Access : ;Iglil

JE“E Edit Wiew Insert Query Tools ‘Window Help ‘

[DeE/zhy|see s R ke 0.

1=F Queryl : select Query

ETTEE 2l

Tables |Quer|es| Both I Add

Field:
Table:
Sork:

Show:
Criberia:
or:

Ready [
4, Close the Show Table dialog box. You should now be able to see the Select Query dialog.

Client Application Developer's Guide 8-51

Using the Data Services Platform JDBC Driver

5. Right click in the upper pane and select SQL Specific — Pass-Through as indicated in
Figure 8-31. This will open an editor.

Figure 8-31 Selecting SQL Specific and Pass Through

K2 Microsoft Access E ==l il

JE“E Edit Wiew Insert Query Tools ‘Window Help ‘

[su-@E@Ry|izas| & ezs @248

Right Click SOL 501 Yiew
Dabashest View

c’@ Show Table. ..
d5[-;] Parameters. ..

BB Query Type | »

Field:

Table: oF Relationships...
Sort: R i

Show: Properties... | L
Crikeria: —_—

of:

Ready G}

8-52 Client Application Developer's Guide

Using Reporting Tools with the Data Services Platform ODBC-JDBC Driver

6. Type in your SQL query and click Run, as shown in the Figure 8-32.

Figure 8-32 Running the SQL Query
'; Microsoft Access F ;IEILI

JEiIe Edit Yiew Insert CQuery Tools ‘Window Help |

B-d[aky[iaes]-][& |% =] R

EEH DDBC26 : Database
= ¥i 7oL Pass Through Query

ELECT * FROM CUSTOMERS

2. Click to run the query

1. Type your query here

Ready ksl [[

Client Application Developer's Guide 8-53

Using the Data Services Platform JDBC Driver

7.

In the dialog that pops up (as shown in Figure 8-33), move to the tab Machine Data Source and
select the appropriate DSN for the database connectivity.

Figure 8-33 Selecting the DSN for the Database

’3“ Microsoft Access

JE\Ie Edit View Insert Tools wWindow Help |

i]
&

Groups

== ET R

r File Data Source #Machine Data Source
gB8 ODBC19: Database

Qpen g Design ’Yj [lew

Ll
L
o

| T
[rata Source Name vpe ‘ Desciiption a
club Swpstem
dBASE Files User
dBase Files - wiar Lser

asyDema System I
efashion yetem at
Excel Files User Select the DSN
FowrPro Files - word User
MaIs o User SOL Server -
<] | »
Mew...

A Machine Data Source is specific to this machine, and cannot be shared.
"User" data sources are specific to a uzer on this machine. "'System’' data
sources can be uzed by all users on thiz machine, or by a system-wide service.

o]

Cancel I Help |

|VeriFying system objects

JA S R Y

DSP and SQL Type Mappings

When data service information is accessed from a JDBC client, the data is mapped from its XML
schema format to SQL types. The mapping between the types is shown in Table 8-34.

The XML types are defined by xmlIns:xs="http://www.w3.org/2001/XMLSchema". The Java types are
defined by java.sql.Types.

Table 8-34 XML to SQL Type Mapping
XML Type

8-54

SQL Types

xs:Boolean

Types .BOOLEAN.

xs:byte Types.TINYINT
xs:dateTime Types.TIMESTAMP
xs:date Types.DATE

xs:decimal

Types .DECIMAL

Client Application Developer's Guide

SQL-92 Support

Table 8-34 XML to SQL Type Mapping

XML Type SQL Types
xs:double Types .DOUBLE
xs:duration Types.TIMESTAMP
xs:float Types.FLOAT
xs:int Types . INTEGER
xs.integer Types .NUMERIC
xs:long Types.BIGINT
xs:short Types.SMALLINT
xs:string Types .VARCHAR
xS:time Types.TIME

SQL-92 Support

This section outlines the SQL-92 support in the Data Services Platform JDBC driver.

Supported Features

The Data Services Platform JDBC driver supports many standard SQL-92 features. In particular,
supported features include:

e Only SELECT construct is supported. Inserts, updates, and deletes are not supported.

e SELECT clause with:
— DISTINCT and ALL

— Scalar expressions and functions, CASE statements, CAST, string and date literals, column
wildcards.

e Projections (sub-queries) within the select clause are not supported.

e FROM clause with:
— Basic table names

— Sub-queries

Client Application Developer's Guide 8-55

Using the Data Services Platform JDBC Driver

8-56

Joins

Set operations

e GROUP BY clause

e HAVING clause

e WHERE clause with:

Predicate expressions (arithmetic operators, functions, CASE statements)
Predicates involving non-correlated and correlated sub-queries

EXISTS

BETWEEN

LIKE

NULLIF

COALESCE

UNIQUE

IS NULL, IS NOT NULL, IS TRUE, IS FALSE

— ALL, SOME, ANDY

e Joins of the following type:

e Cross joins, inner joins, and union joins

e Natural joins and joins with ON and USING

o Left, right, and full outer joins

e Set operations:

UNION
INTERSECT
MINUS

e Parameterized queries (with standard SQL-92 notation)

e ORDER by clause

e Functions:

Client Application Developer's Guide

STR

CONCAT
CURRENT _TIME
CURRENT_DATE
CURRENT_TIMESTAMP
ROUND

FLOOR

LOWER

UPPER
SUBSTRING
CASTTODATE
CASTTOTIME
COUNT

AVG

SUM

MIN

MAX

EXTRACT

TRIM

SQL-92 Support

The Data Services Platform JDBC driver implements the following interfaces from java . sql package
specified in JDK 1.4x:

® java.sqgl.Connection

java.
java.
java.
java.
java.

java.

sqgl

sgl

sqgl.

sqgl.

sqgl

sqgl.

.CallableStatement

.DatabaseMetaData

ParameterMetaData

PreparedStatement

.ResultSet

ResultSetMetaData

Client Application Developer's Guide

8-57

Using the Data Services Platform JDBC Driver

® java.sqgl.Statement

Limitations

The following limitations are known to exist in the Data Services Platform JDBC driver:

e Each connection points to only one DSP application.

e An XML schema name can contain special characters that are illegal for database schema
names (such as "/" and "."). The Data Services Platform JDBC driver translates the characters
to legal characters ("~" and """, respectively).

The following table notes additional limitations that apply to SQL language features.

Unsupported Feature

Comments

Example

OVERLAPS

Intervals not supported

WHERE (, ,) OVERLAPS (,,)

range-variable-
comma-list

The table_name can have an alias,
but you cannot specify the
colmn_name_alias_list
within it.

SELECT ID, NM, CT
FROM STAFF AS (ID, NM, GD, CT);

Assignment in select

Not supported.

SELECT MYCOL = 2
FROM VTABLE
WHERE COL4 IS NULL

The CORRESPONDING
BY construct with the
set-Operations(UNION,
INTERSECT and
EXCEPT)

The SQL-92 specified default column
ordering in the set operations is
supported.

Both the table-expressions (the
operands of the set-operator) must
conform to the same relational
schema.

(SELECT NAME, CITY FROM CUSTOMER1)
UNION CORRESPONDING BY (CITY, NAME)
(SELECT CITY, NAME FROM CUSTOMER2)

The supported query is:

(SELECT NAME, CITY FROM CUSTOMER1)
UNION (SELECT NAME, CITY FROM
CUSTOMER2)

8-58 Client Application Developer's Guide

SQL-92 Support

Unsupported Feature

Comments

Example

"...tablel UNION table2..."

Not supported. Also not supported are
set operations between tables in a
FROM clause, except through a
sub-query.

The TABLE keyword is not supported.

SELECT * FROM TABLE CUSTOMER1 UNION
TABLE CUSTOMER2

Where TABLE is a keyword not supported by
the LDJDBC SQL interface.

The supported version is:

SELECT * FROM (SELECT * FROM
CUSTOMER1 UNION SELECT * FROM
CUSTOMER2) T1

Other supported UNION constructs:

SELECT*FROM CUSTOMER1 UNION SELECT
* FROM CUSTOMER2

SELECT * FROM CUSTOMER1 UNION
(SELECT * FROM CUSTOMER2 UNION
SELECT * FROM CUSTOMERS3)

SELECT-query within the
SELECT clause

Not supported.

SELECT A, (SELECT B FROM C) FROM...
WHERE...

Client Application Developer's Guide 8-59

Using the Data Services Platform JDBC Driver

8-60 Client Application Developer's Guide

CHAPTERa

Customizing Data Service Update
Behavior

BEA AquaLogic Data Services Platform handles updates to relational data sources automatically.
However, for any non-relational data sources, including Web services, you must provide the update
logic by writing an update override class and associating it with the data service. In addition, there are
times when you may want (or need) to provide custom update logic for relational data sources as well.

Any data service, logical or physical, can have an associated update override class to perform a variety
of customizations.

This chapter explains how to create an update override class (the class comprising the update
behavior) and when you may want to do so for relational data sources. It includes the following topics:

e What is an Update Override?

e When Are Update Overrides Required?

e When Are Update Overrides Required for Relational Data Sources?
e Developing the UpdateOverride Class

e Update Override Programming Patterns

What is an Update Override?

An update override provides you with a mechanism for customizing or completely replacing the
default update process (as discussed in “How It Works: The Decomposition Process” on page 2-16).
With an update override associated with your data service, you can:

e Invoke data service functions or procedures.

Client Application Developer’s Guide 9-1

Customizing Data Service Update Behavior

e Execute externally defined JPDs (Java process definition) to perform workflow operations from
a data service. For example, you can initiate a workflow that ties together numerous data
services to accomplish distributed transactional semantics across data services that comprise
non-XA-compliant data sources (such as Web services).

e Validate changes before submitting them, checking or modifying the values in some way.

e Invoke other resources, for example, by passing modified values to a workflow or Web service.
e Execute SQL statements directly within the update plan.

e Log changes to an external log file.

e Perform virtually any other customization required.

An Update Override is a Java Class

In programming terms, an update override is a Java class; it is a compiled Java source code file that
implements the UpdateOverride interface (<UpdateOverride>, one of the DSP APIs located in the
com.bea.1d.dsmediator .update package). The UpdateOverride interface has as its sole method
an empty performChange() method (see Listing 9-1).

As shown in Listing 9-1, the performChange() method takes a DataGraph object (passed to it by the
Mediator). This object is the SDO on which your update override class will operate. The DataGraph

object contains the data object, the changes to the object, and other artifacts, such as metadata (as
discussed in “Data Services Platform and Service Data Objects (SDOs)” on page 2-2.)

Listing 9-1 UpdateOverride Interface

package com.bea.ld.dsmediator.update;

import commonj.sdo.DataGraph;

import commonj.sdo.Property;

public interface UpdateOverride

{
public boolean performChange (DataGraph sdo)
{

9-2 Client Application Developer's Guide

When Are Update Overrides Required?

As you can see from the performChange() method signature (Listing 9-1), it returns a Boolean value.
This value serves as something of a flag to the Mediator, as follows:

e True signals the Mediator to continue with the automated update process.

e False signals the Mediator to discontinue the automated update process.

How an Update Override Affects Update Processing

The performChange() method will be executed whenever a submit is issued for objects bound to the
overridden data service.

If the object being passed in the submit() is an array of DataService objects, the array is decomposed
into a list of singleton DataService objects. Some of these objects may have been added, deleted, or
modified; therefore, the update override might be executed more than once (that is, once per changed
object.)

In your code, you should verify that the root data object for the data graph being passed at runtime is
an instance of the singleton data object bound to the data service (configured with the update
override).

When Are Update Overrides Required?

You must create custom update classes to update any non-relational data sources—Web services,
XML files, flat-files, and DSP procedures, for example, and for these types of scenarios:

e Initiate a workflow (business process or JPD) from a DSP application.
e Compute your own primary key value when adding a data object as a new record to an RDBMS.

e Handle circular dependencies that arise when modifying or adding objects with mutual
dependencies.

For example, your client application code is adding both a department and a manager; however,
manager is also a required field of department. How can you set the department’s manager field
before the manager exists? As follows:

— 1) Add department with manager set to a temporary value
— 2) Add the employee manager

— 3) Reset the department manager to the new employee.

Client Application Developer's Guide 9-3

Customizing Data Service Update Behavior

Once you have written and compiled the Java code that comprises the update override class, you must
register the class with the data service. Update overrides can be registered on physical or logical data
services: Each data service has an Override Class property that can be associated with a specific Java
class file that comprises the implementation of the UpdateOverride.

At runtime, the data service executes the UpdateOverride class when it identifies it as available during
the decomposition process (see “Logical Data Service Update Process” on page 2-18).

For relational sources, you may also want to use custom update classes to apply custom logic to the
update process, or if an aspect of the data service design prevents automated updates, as discussed in
When Are Update Overrides Required for Relational Data Sources?

When Are Update Overrides Required for Relational Data
Sources?

9-4

DSP automatically updates relational data sources. However, in some cases, such as those listed
Table 9-1, DSP cannot automatically update relational data sources, and requires that you provide an
update override to handle update processing.

Table 9-1 Issues that Can Interfere with Automatic Relational Data Source Updates

Issue Description, example, or recommendation

Ambiguous data lineage The data service decomposition function cannot contain “if-then-else”
constructs that provide alternate composition from lower level data
services.

Transformation issue The lineage involves a transformation other than data() or rename. For

example, the following would not be supported by automatic updates:
<ACCOUNT> { sum(data ($C/ACCOUNT)) }; </ACCOUNT>

Multiple lineage for a An example of a property with more than one lineage, or data source,
composed property for a property:

<customerName>{ cat (data($C/FNAME), " ",

data (SWS/LAST NAME)) }; </customerName>

Client Application Developer's Guide

When Are Update Overrides Required for Relational Data Sources?

Issue

Description, example, or recommendation

Nested matching logic issue

Typically, nested containment is expressed in XQuery using a where
clause. If the query does not use a where clause to implement nesting,
DSP cannot determine the foreign key-primary key association. (Nested
matching logic should be expressed in a where predicate clause.)

For instance, if an element of a complex type has values from more than
one source (that is, a data object has fields from more than one source),
the where predicate does not indicate a 1-N cardinality between the two
source because the where predicate does not involve a primary key. For
example, any M:N join like Orders with Payments is not usually a
common join, and in this case neither Orders nor Payments would be
decomposed.

Ambiguous tuple identity

Distinct-values or group-by would lead to an arbitrary tuple remaining
from a set of duplicate tuples.

Redundant instance values

If the same source value instance gets projected in the SDO (or the
same physical data source value), and if it is updated in the SDO, it will
not be automatically decomposed.

Repeating complex type
values issue

In some complex types (such as Part and Item values), the Part values
may repeat and are therefore not decomposed. For example:

¢ You can determine whether a primary key is projected or derivable
by knowing the cardinality between two tuples that provide the
data object values. If the predicate between the tuples identifies a
primary key on one side (tuplel) but not on the other side (tuple2),
values from tuplel may repeat. Tuplel values would not be
decomposed, but tuple2 values would be decomposed. If the
predicate identifies that both tuples primary keys are equal, then
values for both tuples would be decomposed.

e Iftwo Lists of Orders occur in a data object, the predicates used to
produce them may or may not make them disjointed. No attempt is
made to detect this case. Updates from each instance will be
decomposed as separate updates. Depending on the chosen
optimistic locking strategy for the data service, the second update
may or may not succeed and may overwrite changes made in the
first update.

Typematch issue

Ifthe query plan of the decomposition function has a “typematch” node,
the decomposition will stop at that point for the SDO.

Client Application Developer's Guide

9-5

Customizing Data Service Update Behavior

Developing the UpdateOverride Class

To create an update override class, perform the following steps:

9-6

1. Create anew Java class file in the DSP project. (If you do not add the Java class file to the project,
it must be in the classpath.) You can put the class anywhere in the application folder. For basic
projects, you can simply add the class to the same directory as your data services. For larger
projects, you might want to keep update classes in their own folder.

2.
3.

g.

Import the appropriate DSP API and SDO DataGraph packages into the class in which you are
implementing the UpdateOverride interface:

import com.bea.ld.dsmediator.update.UpdateOverride;
import commonj.sdo.DataGraph;

Your Java class declaration must implement the UpdateOverride interface, as in:

public class SpecialOrders implements UpdateOverride

Add a performChange() method to the class. This public method takes a DataGraph object
(containing the modified data object) and returns a Boolean value. For example:

public boolean performChange (DataGraph graph)

In the body of the performChange() method, implement your processing logic. Your
processing logic can access the changed object; instantiate new data objects;modify and
submit them, or access the Mediator context’s update plan and decomposition map. You can
also invoke a data service procedure from within this method, or invoke a JPD.

Compile the Java source code to create the class file.

Associate the class file with a specific data service by embedding the appropriate text in the
data service source code (the .ds file) or by setting the Update Override property on the data
service. WebLogic Workshop is used for either approach, albeit from within two different view
tabs, as follows:

a.

b.

Add the name of the update override class (classname only, without the .class extension) as
an attribute of an empty javaupdateExit element tag (in the pragma statement of the data
service). For example:

<javaUpdateExit className="SpecialOrderUpdate" />

Alternatively, open the Property entering the class name in the Update Override property
WebLogic Workshopas the update override class Update Override for specific data service by
referring to it from the data service by placing a javaUpdate element in the pragma statement
of the data service.

Client Application Developer's Guide

Listing 9

Developing the UpdateOverride Class

Listing 9-2 is an example of an update override implementation.

-2 Update Override Sample

package RTLServices;

import
import
import
import
import
import
import

public
{
pu

com.bea.ld.dsmediator.update.UpdateOverride;
commonj .sdo.DataGraph;

java.math.BigDecimal;

java.math.BigInteger;
retailer.ORDERDETAILDocument;
retailerType.LINEITEMTYPE;
retailerType.ORDERDETAILTYPE;

class OrderDetailUpdate implements UpdateOverride

blic boolean performChange (DataGraph graph) {
ORDERDETAILDocument orderDocument =
(ORDERDETAILDocument) graph.getRootObject () ;
ORDERDETAILTYPE order =
orderDocument .getORDERDETAIL () .getORDERDETAILArray (0) ;
BigDecimal total = new BigDecimal (0) ;
LINEITEMTYPE[] items = order.getLINEITEMArray () ;
for (int y=0; y < items.length; y++) {
BigDecimal quantity =
new BigDecimal (Integer.toString(items[y].getQuantity()));
total = total.add(quantity.multiply(items[y].getPrice()));
}
order.setSubTotal (total) ;
order.setSalesTax (
total.multiply(new BigDecimal (".06")) .setScale(2,BigDecimal .ROUND_UP)) ;
order.setHandlingCharge (new BigDecimal (15)) ;
order.setTotalOrderAmount (
order.getSubTotal () .add (
order.getSalesTax () .add (order.getHandlingCharge())));
System.out.println(">>> OrderDetail.ds Exit completed");
return true;

In the sample class shown in Listing 9-2, an OrderDetailUpdate class implements the UpdateOverride
class, and, as required by the interface, defines a performChange() method. Listing 9-2 demonstrates
a common coding pattern for update overrides:

Client Application Developer's Guide 9-7

Customizing Data Service Update Behavior

9-8

e The submitted data graph (as changed by the client application) is passed to the
performChange() method.

e The data graph’s root data object is obtained and then cast to an ORDERDETAILDocument
using the variable name orderDocument.

ORDERDETAILDocument orderDocument =
(ORDERDETAILDocument) graph.getRootObject () ;

e Objects in the changed object list are accessed through the appropriate get call and index
value. For example, to obtain the first such object:

ORDERDETAILTYPE order =
orderDocument .getORDERDETAIL () .getORDERDETAILArray (0)

e A processing loop iterates through the objects in the array of line items and calculates
sub-totals and sales tax for each order item, adding the amounts to the order object.

e Finally, the method returns true and the Mediator continues with the normal course of update
processing (using the modified update plan).

Note: See “Update Override Programming Patterns” on page 9-14 for some other common
programming patterns.

Invoking Data Service Procedures from an UpdateOverride

Listing 9-3 shows an example of an update override class that invokes a data service procedure. Since
UpdateOverrides are invoked locally, within the DSP server, the sample uses the typed Mediator API.
As shown in Listing 9-3, several Web services operations (to create, delete, and modify a customers
address) have been registered with a Data Service.

Listing 9-3 Invoking a Procedure from an UpdateOverride

public class CustomerAddressUpdate implements UpdateOverride {
public boolean performChange (DataGraph graph) {

bool status = true; // assume the best

ChangeSummary changeSum = datagraph.getChangeSummary () ;

// If no changes, do nothing.

if (changeSum.getChangedDataObjects () .size()==0) {

return true;

}

// Get the DataGraph’s root DataObject and cast to customer object to

Client Application Developer's Guide

Developing the UpdateOverride Class

// enable getting DataGraph constituents
CUSTOMERDocument custDoc = (CUSTOMERDocument) graph.getRootObject();
ADDRESS[] addr = custDoc.ADDRESS() .getADDRESSArray () ;
int 1i;
try {
CUSTOMER custDS = CUSTOMER.getInstance (
new InitialContext(), "RTLApp");

// For each address in the Customer’s address array, call the Web Service’s
// update, delete, or create procedure as appropriate

for(1 = 0; 1 < addr.length; i++) {

if (changeSum.isModified(addr[i 1)) {
custDS. invokeProcedure ("modifyCustomerAddress",
new Object [] {addr[i 1});
}
else if (changeSum.isDeleted(addr[i 1)) {
custDS. invokeProcedure ("deleteCustomerAddress",
new Object [] {addr[1 1});
}
else if (changeSum.isCreated(addr[i])) {
custDS. invokeProcedure ("createCustomerAddress",
new Object [] {addr[i 1});
}
else {
// throw an exception for IllegalState
}
}

} // end for

}

catch(Exception ex) {
System.err.println(ex.printStackTrace());
throw ex;

}

return status;

Client Application Developer's Guide 9-9

Customizing Data Service Update Behavior

The example in Listing 9-3 is for a Web service running locally on the WebLogic Server instance, so it
does not include basic setup code to obtain context and location. (If the Web service is not local to the
WebLogic Server instance, your code must obtain an InitialContext and providing appropriate location
and security properties. See “Obtaining a WebLogic JNDI Context for Data Services Platform” on
page 3-7 for more information about InitialContext.)

Listing 9-4 shows an update override alters the update plan in order to enforce referential integrity by
removing product information from the middle of a list and adds it back at the end.

Listing 9-4 Update Override Example That Enforces Referential Integrity

// delete order, item, product, due to RI between ITEM and Product
// product has to be deleted after items

public boolean performChange (DataGraph graph)

{

DataServiceMediatorContext context =

DataServiceMediatorContext.currentContext () ;

UpdatePlan up =context.getCurrentUpdatePlan(graph, false);
Collection dsCollection = up.getDataServiceList();
DataServiceToUpdate ds2u = null;

for (Iterator it=dsCollection.iterator();it.hasNext () ;)
{
ds2u = (DataServiceToUpdate)it.next();
if
(ds2u.getDataServiceName () .compareTo ("1ld:DataServices/PRODUCT.ds") == 0) {

// remove product from the mid of list and add it back at the end
up.removeContainedDataService (ds2u.getDataGraph());
up.addDataService (ds2u.getDataGraph (), ds2u);

};
}
context.executeUpdatePlan(up);

return false;

9-10 Client Application Developer's Guide

Developing the UpdateOverride Class

Testing Submit Results

Data service updates should always be tested to ensure that changes occur as expected. You can test
submits using the Test View in BEA WebLogic Workshop.

The results in Test View depend on the type of changes being made, specifically, whether you are
testing read and navigate functions or DSP procedures. For functions, the submit() returns the data.

For procedures, the Test View displays:

"Side effect function executed successfully."

For information on testing submits, refer to the Data Services Developer’s Guide.

While Test View gives you a quick way to test simple update cases in the data services you create, for
more substantial testing and troubleshooting you can use an update override class to inspect the
decomposition mapping and update plan for the update.

The override class is also the mechanism you can use to extend and override the Mediator’s default
update processing. You can use it to implement updates for data services that would otherwise not
support updates, such as non-relational sources. See “Developing the UpdateOverride Class” on
page 9-6 for information about override classes.

Update Override Context

Although an update override class can programmatically access several update framework artifacts,
including the update plan, decomposition map, and the tree of modified data objects, the content
available at any time depends on the data service context, as follows:

o Top-level logical data service object. The update override class has access to the entire tree of
changed data objects.

e Any lower-level or physical data service. Only the objects in the change tree bound to the data
service are available, along with the contents of the immediate container object—the
performChange() method cannot access objects at any layer above it.

Figure 9-2 illustrates the context visibility within an update override.

Client Application Developer's Guide 9-11

Customizing Data Service Update Behavior

Figure 9-2 Context Visibility in Update Override

@ customer
O customerlD

- customerName
) orders
4@ OrderID
— ltems

—— ItemID
@D Parts

Update Overrides and Physical Data Services

Considerations for implementing update override classes for physical level data services include the
following:

e For updated data objects bound to physical data services, further decomposition does not occur.
Therefore, requesting a decomposition map or update plan in the override class of an object
bound to such a service returns null.

o [f the data service is bound to a relational data source, returning true causes the Mediator to
apply the changes currently indicated by the data object to the database. It does so using the
optimistic locking strategy specified for the data service. (Note that if the data service is not
bound to a relational data source, returning true will cause an exception.)

e For physical data services, the update override can calculate a primary key value or perform
other validations or calculations on the submitted data object. If an object bound to a physical
data service is being updated in the context of an update to a higher-level data service object
(that is, as a product of decomposition), changes in the physical update override (such as the
primary key calculation) will be available when the higher-level update plan is applied.
Therefore, if a primary key is calculated in the physical update override as part of a data object
insert, the key will be available in the logical update plan, so that it can be assigned as a
foreign key for the containing object.

e A modified SDO that is passed to the physical level update override can see only those data
object properties projected in the higher level data service. (See Figure 9-3.) To access the
unprojected values as well, the update override must re-instantiate the data object.

9-12 Client Application Developer's Guide

Developing the UpdateOverride Class

Figure 9-3 Projected Data Objects

Changed object data tree
With new values only:

customer Not projected

() customerID =123

-4 FirstName = Edna

@ LastName = Smith-Owens Composite:

customer

customerlD = 123
Instantiated to access
existing values:

— FirstName = Edna
@ LastName = Smith-Owens

customer
customerID = 123
— FirstName = Edna
— LastName = Smith

Additional considerations concerning update overrides for relational data services include:

e If performChange() returns True, the Mediator applies the changes indicated in the data
object to the source database using the optimistic locking strategy specified for the data
service.

e If an object is inserted with unset property values:
— If default values for the property are indicated by the data service schema, they are used.

— If default values are not configured, NULL is used.

o If a primary key was not projected or specified, the automated update raises an error and
cancels the update request.

For physical non-relational data services, your performChange() method must:
e Provide an implementation for propagating the data change because the Mediator does not
provide automatic updates for non-relational sources. Using the change summary information in

the data object, the method can identify the changes to make and submit them to the data
source using any interface or mechanism supported by the data source.

Client Application Developer's Guide 9-13

Customizing Data Service Update Behavior

o If no update override exists for a non-relational physical data service object for which an update
call is made, an error occurs indicating that the change cannot be persisted.

Update Override Programming Patterns

9-14

In an update override, you can modify the server-side update process as much or as little as you like,
at any step of the way, to accomplish your goal. This section provides some code samples that illustrate
common update override programming patterns, including:

e Overriding the Entire Decomposition and Update Process
e Augmenting Data Object Content

e Customizing an Update Plan

Executing an Update Plan

e Retrieving the Container of the Current Data Object

Invoking Other Data Service Functions and Procedures

Capturing Runtime Data about Overrides in the Server Log

Default Optimistic Locking Policy: What it Means, How to Change

Remember that an Update Override class is simply a Java class that implements the UpdateOverride
interface. You can give the class any valid Java filename, but should use a meaningful name for
common-sense reasons. After writing the class, you must register it with the data service, by setting
the name of the class in the data service’s Update Override Property field.

The class must include an implementation of the performChange() method; it is inside this method
that you provide all custom code required for the programming task at hand. The performChange()
method returns a boolean value that either continues or aborts processing by the Mediator, as
discussed in “How It Works: The Decomposition Process” on page 2-16. The level of customization that
you provide in your performChange() method determines whether you should return true or false, as
noted in each of the sections below.

Overriding the Entire Decomposition and Update Process

To customize the entire decomposition and update process, the performChange() method can
implement the following types of routines:

e Instantiating lower level data objects and submit them for update.

Client Application Developer's Guide

Update Override Programming Patterns

e (Calling a Web service passing the appropriate data.

e Using JDBC to execute SQL statements.

If your performChange() method does take over all processing, it should return false so that the
Mediator does not proceed with automated decomposition.

Augmenting Data Object Content

The performChange() method can include code to inspect changed data object values and raise
DataServiceException to signal errors, rolling back the transaction in such cases.

Return true to have the Mediator proceed with update propagation using the objects as changed.

Accessing the Data Service Mediator Context

To access the change plan and decomposition map for an update, you first must get the data service’s
Mediator context. The context enables you to view the decomposition map, produce an update plan,
execute the update plan, and access the container data service instance for the data service object
currently being processed.

The following code snippet shows how to get the context:

DataServiceMediatorContext context =

DataServiceMediatorContext () .getInstance() ;

Accessing the Decomposition Map
Once you have the context, you can access the decomposition map as follows:

DecompositionMapDocument .DecompositionMap dm =

context .getCurrentDecompositionMap () ;

Once you have a decomposition map, you can use its toString() method to obtain the string rendering
of the XML that map, as shown in Listing 9-5. (Note that although you can access the default
decomposition map, you should not modify it.)

In addition to accessing the decomposition map, you can access the update plan in the override class.
You can modify values in the tree, remove nodes, or rearrange them (to change the order in which they
are applied). However, if you modify the update plan, you should execute the plan within the override
if you want to keep the changes. As you modify the values in the tree, remove nodes or rearrange them,
the update plan will track your changes automatically in the change list.

Client Application Developer's Guide 9-15

Customizing Data Service Update Behavior

Listing 9-5 Decomposition Map Example as XML String Fragment

<xml-fragment xmlns:upd="update.dsmediator.ld.bea.com">
<Binding>
<DSName>1d:DataServices/CUSTOMERS.ds</DSName>
<VarName>f1603</VarName>
</Binding>
<AttributeLineage>
<ViewProperty>CUSTOMERID</ViewProperty>
<SourceProperty>CUSTOMERID</SourceProperty>
<VarName>f1603</VarName>
</AttributeLineage>
<AttributeLineage>
<ViewProperty>CUSTOMERNAME</ViewProperty>
<SourceProperty>CUSTOMERNAME</SourceProperty>
<VarName>f1603</VarName>
</AttributeLineage>
<upd:DecompositionMap>
<Binding>
<DSName>1d:DataServices/getCustomerCreditRatingResponse.ds</DSName>
<VarName>getCustomerCreditRating</VarName>
</Binding>
<AttributeLineage>
<ViewProperty>CREDITSCORE</ViewProperty>
<SourceProperty>
getCustomerCreditRatingResult/TotalScore
</SourceProperty>
<VarName>getCustomerCreditRating</VarName>

</AttributeLineage>

</upd:DecompositionMap>
</upd:DecompositionMap>
<ViewName>1ld:DataServices/Customer.ds</ViewName>

</xml-fragment>

9-16 Client Application Developer's Guide

Update Override Programming Patterns

Customizing an Update Plan

After possibly validating or modifying the values in the submitted data object, the function retrieves
the update plan by passing in the current data object to the following function:

DataServiceMediatorContext.getCurrentUpdatePlan ()
The update plan can be augmented in several ways, including:
e Setting values on decomposed data objects.
e Adding, removing, or rearranging data objects in the update tree.
e Passing the modified update plan executeUpdatePlan() method, as in:
DataServiceMediatorContext.executeUpdatePlan ()

After executing the update plan, the performChange() method should return false so that the
Mediator does not attempt to apply the update plan.

The update plan lets you modify the values to be updated to the source. It also lets you modify the
update order.

You can programmatically walk the update plan to view its contents by using your own method, similar
to the navigateUpdatePlan(). As shown in Listing 9-6, navigateUpdatePlan() method takes a
Collection object and uses an iterator to recursively walk the plan.

Listing 9-6 Walking an Update Plan

public boolean performChange (DataGraph datagraph) {

UpdatePlan up = DataServiceMediatorContext.currentContext() .
getCurrentUpdatePlan(datagraph);
navigateUpdatePlan(up.getDataServiceList ());

return true;

private void navigateUpdatePlan(Collection dsCollection) {
DataServiceToUpdate ds2u = null;
for (Iterator it=dsCollection.iterator();it.hasNext();) {

ds2u = (DataServiceToUpdate)it.next() ;

Client Application Developer's Guide 9-17

Customizing Data Service Update Behavior

// print the content of the SDO
System.out.println (ds2u.getDataGraph());

// walk through contained SDO objects
navigateUpdatePlan (ds2u.getContainedDSToUpdateList ());

}

A sample update plan report would look like the following

UpdatePlan
SDOToUpdate
DSName: ... :PO_CUSTOMERS
DataGraph: ns3:PO_CUSTOMERS to be added
CUSOTMERID = 01

ORDERID = unset
PropertyMap = null

Now consider an example in which a line item is deleted along with the order that contains it. Given
the original data, Listing 9-7 illustrates an update plan in which item 1001 will be deleted from Order
100, and then the Order is deleted.

Listing 9-7 Example of Deleting a Line Item and Then Its Container

UpdatePlan
SDOToUpdate
DSName: ... :PO_CUSTOMERS
DataGraph: ns3:PO_CUSTOMERS to be deleted
CUSTOMERID = 01
ORDERID = 100
PropertyMap = null
SDOToUpdate
DSName: ... :PO_ITEMS
DataGraph: ns4:PO_ITEMS to be deleted

ORDERID = 100

9-18 Client Application Developer's Guide

Update Override Programming Patterns

ITEMNUMBER = 1001
PropertyMap = null

In this case, the execution of the update plan is as follows: before deleting the PO_CUSTOMERS, the
contained SDOToUpdates routines are visited and processed. So the PO_ITEMS is deleted first and
then PO_CUSTOMERS is deleted.

If the contents of the Update Plan are changed the new plan can then be executed. The update exit
should then return false, signaling that no further automation should occur.

The plan can then be propagated to the data source, as described in “Executing an Update Plan.”

Executing an Update Plan

After modifying an update plan, you can execute it. Executing the update plan causes the Mediator to
propagate changes to the indicated data sources.

Given a modified update plan named up, the following statement executes it:

context .executeUpdatePlan (up) ;

Retrieving the Container of the Current Data Object

On a data service that is being processed for an update plan, you can get the container of the SDO
being processed. The container must exist in the original changed object tree, as decomposed. If no
container exists, null is returned. Consider the following example:

String containerDS = context.getContainerDataServiceName () ;

DataObject container = context.getContainerSDO() ;

In this example, if in the update override class for the Orders data service the you ask to see the
container, the Customer data service object for the Order instance being processed would be
returned. If that Customer instance was in the update plan, then it would be returned. If it was not in
the update plan, then it would be decomposed from CustOrders and returned.

The update plan only shows what has been changed. In some cases, the container will not be in the
update plan. When the code asks for the container, it will be returned from the update plan if present;
otherwise, it will be decomposed from the source SDO.

Client Application Developer's Guide 9-19

Customizing Data Service Update Behavior

9-20

Invoking Other Data Service Functions and Procedures

Other data services may be accessed and updated from an update override. The data service the
Mediator API can be used to access data objects, modify and submit them. Alternatively, the modified
data objects can be added to the update plan and updated when the update plan is executed. If the
data object is added to the update plan, it will be updated within the current context and its container
will be accessible inside its data service update override.

If the DataService Mediator API is used to perform the update, a new DataService context is
established for that submit, just as if it were being executed from the client. This submit() acts just
like a client submit — changes are not reflected in the data object. Instead, the object must be
re-fetched to see the changes made by the submit.

Capturing Runtime Data about Overrides in the Server Log

DSP uses the underlying WebLogic Server for logging. WebLogic logging is based on the JDK 1.4
logging APIs (available in the java.util.logging package). You can contribute to the log (from an update
override) by acquiring a DataServiceMediatorContext instance, and then calling the getLogger()
method on the context, as follows:

DataServiceMediatorContext context =

DataServiceMediatorContext () .getInstance() ;

Logger logger = context.getLogger ()
You can then contribute to the log by issuing the appropriate logger call with a specific log level. The
log level implies the severity of the event. When WebLogic Server message catalogs and the
NonCatalogLogger generate messages, they convert the message severity to a
weblogic.logging. WLLevel object. A WLLevel object can specify any of the values listed in Table 9-4,
from lowest to highest impact:

Table 9-4 WebLogic Server Log Level Definitions

Level Description
DEBUG Debug information, including execution times.
INFO Normal events with informational value. This will allow you

to see SQL that is executed against the underlying databases.

WARNING Events that may cause errors.

ERROR Events that cause errors.

Client Application Developer's Guide

Update Override Programming Patterns

Level Description

NOTICE

Normal but significant events.

CRITICAL, ALERT,
EMERGENCY

Significant events that require immediate intervention.

Development_time logging is written to the following location:

<bea_home>\user_projects\domains\<domain_name>

Given the specified logging level, the Mediator logs the following information:

Tahle 9-5 DSP Log Levels

Level Information provided for...

Information captured

Notice or summary Each submit from a client

e Fully qualified data service name
e Invocation time

e Total execution time

e Invocation by user/group

Each submit on a data
service at any level

Information or Detail

For a fully qualified data service name:
e Invocation time

e Number of times executed

e Total execution time

Forrelational sources, per SQL statement type per
table:

e SQL script
e Total execution time

e Number of times executed

Each update override
invocation

e Name of data service being overridden
e Number of times called

e Total execution time

Listing 9-8 shows a sample log entry.

Client Application Developer's Guide 9-21

Customizing Data Service Update Behavior

9-22

Listing 9-8 Sample Log Entry

<Nov 4, 2004 11:50:10 AM PST> <Notice> <LiquidData> <000000> <Demo - begin
client sumbitted DS: ld:DataServices/Customer.ds>

<Nov 4, 2004 11:50:10 AM PST> <Notice> <LiquidData> <000000> <Demo -
ld:DataServices/Customer.ds number of execution: 1 total execution
time:171>

<Nov 4, 2004 11:50:10 AM PST> <Info> <LiguidData> <000000> <Demo -
ld:DataServices/CUSTOMERS.ds number of execution: 1 total execution time:0>
<Nov 4, 2004 11:50:10 AM PST> <Info> <LiquidData> <000000> <Demo - EXECUTING
SQL: update WEBLOGIC.CUSTOMERS set CUSTOMERNAME=? where CUSTOMERID=? AND
CUSTOMERNAME=? number of execution: 1 total execution time:0>

<Nov 4, 2004 11:50:10 AM PST> <Info> <LiguidData> <000000> <Demo -
ld:DataServices/PO_ITEMS.ds number of execution: 3 total execution
time:121>

<Nov 4, 2004 11:50:10 AM PST> <Info> <LiquidData> <000000> <Demo - EXECUTING
SQL: update WEBLOGIC.PO_ITEMS set ORDERID=? , QUANTITY=? where ITEMNUMBER=?
AND ORDERID=? AND QUANTITY=? AND KEY=? number of execution: 3 total
execution time:91>

<Nov 4, 2004 11:50:10 AM PST> <Notice> <LiquidData> <000000> <Demo - end
clientsumbitted ds: ld:DataServices/Customer.ds Overall execution time:
381>

Default Optimistic Locking Policy: What it Means, How to
Change

Locking mechanisms are used in numerous types of multi-user systems for concurrency control—to

ensure that data is consistent, across transactions and regardless of the number of users acting on the
system at the same time. Optimistic locking mechanisms are so-called because they typically only lock
data at the time it is being updated (written to), not when it is being read.

DSP uses optimistic locking as its concurrency control policy, locking data only when updates are
being attempted. When DSP receives submitted data graph, it compares the values of the data used to
instantiate the original data objects with the original values in the data graph to ensure that the data
was not changed by another user process during the time the data objects were being modified by a
client application.

Client Application Developer's Guide

Update Override Programming Patterns

The Mediator compares fields from the original and the source; by default, Projected is used as the
point of comparison (see Table 9-6).

You can specify the fields to be compared at the time of the update for each table. Note that primary
key column must match, and BLOB and floating types might not be compared. Table 9-6 describes the
options.

Table 9-6 Optimistic Locking Update Policy Options

Optimistic Locking Effect
Update Policy

Projected Projected is the default setting. It uses a 1-to-1 mapping of elements in the SDO data
graph to the data source to verify the “updateability” of the data source.

This is the most complete means of verifying that an update can be completed,
however if many elements are involved updates will take longer due to the greater
number of fields to be verified.

Update Only fields that have changed in your SDO data graph are used to verify the changed
status of the data source.

Selected Fields Selected fields are used to validate the changed status of the data source.

Note: If DSP cannot read data from a database table because another application has a lock on the
table, queries issued by DSP are queued until the application releases the lock. You can
prevent this by setting transaction isolation (on your WebLogic Server’s JDBC connection
pool) to read uncommitted. See "Setting the Transaction Isolation Level" in the
Administration Guide for details on how to set the transaction isolation level.

Client Application Developer's Guide 9-23

http://e-docs.bea.com/liquiddata/docs85/admin/server.html
http://e-docs.bea.com/liquiddata/docs85/admin/index.html

Customizing Data Service Update Behavior

9-24 Client Application Developer's Guide

Advanced Topics

This chapter provides information on miscellaneous topics related to client programming with BEA
AquaLogic Data Services Platform (DSP). It covers the following topics:

e Using Catalog Services to Obtain Data Services’ Metadata
e Filtering, Sorting, and Fine-tuning Query Results
e Handling Large Result Sets with Streaming APIs

e Providing Role-based Access to DSP Relational Sources

Using Catalog Services to Obtain Data Services’ Metadata

BEA AquaLogic Data Services Platform (DSP) maintains metadata about all data services through a
system catalog-type data service, known as Catalog Services. Catalog Services are available to client
application developers to use in the same way they use any other data service in DSP.

Catalog services provide a convenient way for client-application developers to programmatically
obtain information about the data services that are running on the server. The primary benefit of
Catalog Services to developers is that they can create dynamic applications based on the metadata
underlying the data service applications that have been deployed. Enterprise, third-party, and other
developers who want to build dynamic, metadata driven query-by-form (QBF) applications can
leverage DSP’s Catalog Services to do just that. In addition, Catalog Services enables interoperability
with other metadata repositories.

By querying Catalog Services, developers can obtain all the information they need about data services.
For example, you can obtain information about:

Client Application Developer's Guide 10-1

Advanced Topics

10-2

e Applications

e Folders

e DataServices

e DataServiceRefs
e Functions

e Relationships

e Schemas

e SchemaRefs

To develop a metadata-driven application, developers can use the client Mediator API and invoke the
Catalog Service’s methods (see Listing 10-2) as needed populate the page they present to users of
their application, for example.

Since the Catalog Services are data services, just as with any other data service you can also view these
data services in three other ways, specifically through the:

e DSP Console
e DSP Palette

e Data Service controls

However, given the typical use case for the catalog services—metadata driven QBF applications—it
is far more likely that application developers will invoke Catalog Services methods by using the
Mediator API.

Generally speaking, to create a QBF application your code can leverage Catalog Services as follows:
1) Call Folder.getFolder()

2) Select a data service

3) Call DataService.getDataServiceByld(dsId)

4) [optional] call Schema.getSchemaByDataServiceRef(ds.getRef())

5) Select a function from the selected dataservice

6) Provide a form to enter the arguments. The more complex the arguments, the more complex the
code you must write.

Client Application Developer's Guide

Using Catalog Services to Obtain Data Services’ Metadata

Obtain a schema for parameters using the Catalog I think you can get the schema for parameters from
Catalog Services — see Test View code on how to generate a ‘template’

Installing Catalog Services

The ability to build Catalog Services within any DSP-enabled application is available by default when

you install the product. DSP Catalog Services are installed easily on a per-application basis, by

selecting Install Catalog Services from the WebLogic Workshop main menu.

Figure 10-1 Installing Catalog Services

* || Function_Test.ds.bak - {

|| Application
3 AnatherSam — ¥equery version
@ Find in Files. ..

& @ _ratalo {::pragma xds
CmET Mew 4 <creationD:
= orig nzerfiefin

a t]B » Update Portal Libraries
Build Application %
qﬁ Clean Application Portal
Deployment » Update Data Service Libraries
qﬁ Commerce Services
Imnpork Project. .,
e Fipeline Services
B Build SDO Mediator Client:
Controls »
:lE (s [::pragma furn

Installing the Catalog Services creates a _meta
creates the various CLASS files that provide the typed accessors (see Table 10-2).

After installing Catalog Services, you will have access to all application metadata. For any

data.jarfileint

he application’s Library folder, and

DSP-enabled application that you want to leverage in this way, simply install the Catalog Services into

the application.

Table 10-2 Catalog Services Accessor Methods

Data Service Name Return Type (Java Accessor

Class)
DataService DataService getDataServiceByRef(DataServiceRef)
DataService DataService getDataServiceByld(string)
DataService DataServiceRef getDataServiceDependencyRefs(DataService)
DataService DataServiceRef getDataServiceDependentRefs(DataService)
DataService Function getFunctionsByDataService(DataService)

Client Application Developer's Guide

10-3

Advanced Topics

Data Service Name Return Type (Java Accessor

Class)
DataService Relationship getRelationshipsByDataService(DataService)
DataService SchemaRef getSchemaRefsByDataService(DataService)
DataServiceRef DataServiceRef getDataServiceRefs()
Folder Folder getFolder(String)
Function Function getFunctionByld(Functionld)
Function DataService getDataServiceByFunction(Function)
Function Function getFunctionDependenciesByFunction(Function)
Function Function getFunctionDepdendentsByFunction(Function)
Function Relationship getRelationshipsByFunction(Function)
Function SchemaRef getSchemaRefsByFunction(Function)
Relationship Relationship getRelationshipsByDataService(DataService)
Relationship Relationship getRelationshipsByDataServiceld(String)
Relationship Relationship getRelationshipByld(String)
Schema Schema getSchemaByld (String)
Schema SchemaRef getSchemaDependencyRefsBySchema (Schema)
SchemaRef SchemaRef getSchemaDependencyRefsBySchemaRef (SchemaRef)
SchemaRef Schema getSchemaByRef(SchemaRef)

In addition to the methods shown in Table 10-2, you will also see several extraneous methods that
define relationships among data services. However, the methods shown in Table 10-2 are the only
methods you need to develop a metadata-driven client application.

10-4 Client Application Developer's Guide

Filtering, Sorting, and Fine-tuning Query Results

Creating a Query-by-Form (QBF) Application Using Catalog
Services

You can create a Query-by-Form (QBF) application using DSP’s Catalog Services and the Mediator
APis. Your application can leverage the Catalog Service in the same way you might leverage any data
service using the Mediator APIs.

Note: For more information about using the Mediator API, see Chapter 3, “Accessing Data Services
from Java Clients.”

Filtering, Sorting, and Fine-tuning Query Results

The Filter API enables client applications to apply filtering conditions to the information returned by
data service functions. In a sense, filtering allows client applications to extend a data service interface
by allowing them to specify more about how data objects are to be instantiated and returned by
functions.

The Filter API alleviates data service designers from having to anticipate every possible data view that
their clients may require and to implement a data service function for each view. Instead, the designer
may choose to specify a broader, more generic interface for accessing a business entity and allow
client applications to control views as desired through filters.

Only objects in the function return set that meet the condition are returned to the client. (The
evaluation occurs at the server, so objects that are filtered are not passed over the network. Often,
objects that are filtered out are not even retrieved from the underlying sources.) A filter is similar to
a WHERE clause in an XQuery or SQL statement—it applies conditions to a possible result set. You
can apply multiple filter conditions using AND and or operators. Other operators that be applied to
filter conditions are listed in Table 10-3.

Client Application Developer's Guide 10-5

Advanced Topics

Table 10-3 Filter Operators

Operator

Usage note or example

LESS_THAN

Can also use "<". For example:
myFilter.addFilter("CUST/CUST_ORDER/ORDER",
"CUST/CUST_ORDER/ORDER/ORDER_AMOUNT", ">",
"1000");

myFilter.addFilter("CUST/CUST_ORDER/ORDER,
"CUST/CUST_ORDER/ORDER/ORDER_AMOUNT",
FilterXQuery.GREATER_THAN, "1000");

GREATER_THAN

Can also use ">".

LESS_THAN_EQUAL

Can also use "<=".

GREATER_THAN_EQUAL

Can also use ">=".

EQUAL Can also use "=",

NOT_EQUAL Can also use "l=".

matches Tests for string equality.

sql-like Tests whether a string contains a specified pattern.

OR Compound operator that can apply to more than one filter.
NOT Compound operator that can apply to more than one filter.
AND Compound operator that can apply to more than one filter.

Note: Filter API Javadoc, as well as other Data Services Platform APIs, is described at “DSP
Mediator API Javadoc” on page 1-13.

Using Filters

Filtering capabilities are available to Mediator and Data Service control client applications. You use
filter conditions to specify the data you want returned, sort the data, or limit the number of records

returned. To use filters in a mediator client application, import the appropriate package and use the
supplied interfaces for creating and applying filter conditions. Data service control clients get the

10-6

Client Application Developer's Guide

Using Filters

interface automatically. When a function is added to a control, a corresponding "WithFilter" function
is added as well.

The filter package is named as follows:

com.bea.ld.filter.FilterXQuery;

To use a filter, perform the following steps:

1. Create an FilterXQuery object, such as:

FilterXQuery myFilter = new FilterXQuery () ;

2. Add a condition to the filter object using the addFilter() method. With this method you can
specify what node your filter condition will apply to and specify the number of records to be
returned based on a limit; for example, you can specify the filter will apply to customer orders
where only orders with an amount over a specified value will be returned.

The addFilter() method has several signatures with different parameters, including the
following:

public void addFilter (java.lang.String appliesTo,
java.lang.String field,
java.lang.String operator,
java.lang.String value,
java.lang.Boolean everyChild)

This version of the method takes the following arguments:

— appliesTo indicates the node that filtering affects. That is, if a node specified by the field
argument does not meet the condition, app1iesTo nodes are filtered out.

— fieldisthe node against which the filtering condition is tested.

— operator and value together compose the condition statement. The operator
parameter specifies the type of comparison to be made against the specified value. See
Table 10-3, “Filter Operators,” on page 10-6 for information about available operators.

everyChild is an optional parameter. It is set to false by default. Specifying true for this
parameter indicates that only those child elements that meet the filter criteria will be
returned. For example, by specifying an operator of GREATER_THAN (or ">") and a value
of 1000, only records for customers where all orders are over 1000 will be returned. A
customer that has an order amount less than 1000 will not be returned, although other
order amounts might be greater than 1000.

The following is an example of an add filter method where those orders with an order
amount greater than 1000 will be returned (note that everyChild is not specified, so order
amounts below 1000 will be returned):

Client Application Developer's Guide 10-7

Advanced Topics

10-8

myFilter.addFilter ("CUSTOMERS/CUSTOMER/ORDER",
"CUSTOMERS/CUSTOMER/ORDER/ORDER_AMOUNT",
"y
"1000") ;

3. Use the Mediator API call setFilterCondition() to add the filter to a data service, passing the
FilterXQuery instance as an argument. For example,

CUSTOMER custDS = CUSTOMER.getInstance(ctx, "RTLApp");
custDS.setFilterCondition (myFilter) ;

4, Invoke the data service function. (For more information on invoking data service functions, see
Chapter 3, “Accessing Data Services from Java Clients.”)

Specifying Filter Effects

If a filter condition applied to a specified element value resolves to false, an element is not included
in the result set. The element that is filtered out is specified as the first argument to the addFilter()
function.

The effects of a filter can vary, depending on the desired results. For example, consider the
CUSTOMERS data object shown in Figure 10-1. It contains several complex elements (CUSTOMER
and ORDERS) and several simple elements, including ORDER_AMOUNT. You can apply a filter to any
elements in this hierarchy.

Figure 10-1 Nested Value Filtering

CUSTOMER *
ORDERS *
ORDER_AMOUNT

In general, with nested XML data, a condition such as “CUSTOMER/ORDER/ORDER_AMOUNT >
1000” can affect what objects are returned in several ways. For example, it can cause all CUSTOMER
objects to be returned, but filter ORDERS that have an amount less than 1000.

Alternatively, it can cause only CUSTOMER objects to be returned that have at least one large order,
and all ORDER objects are returned for every CUSTOMER. Further, it can cause only CUSTOMER
objects to be returned for which every ORDER is greater than 1000. For example,

XQueryFilter myFilter = new XQueryFilter();
myFilter.addFilter("CUSTOMERS/CUSTOMER",

Client Application Developer's Guide

Using Filters

"CUSTOMERS/CUSTOMER/ORDER/ORDER_AMOUNT" ,
FilterXQuery.GREATER_THAN, "1000", true) ;

Note that in the optional fourth parameter everychild = true, by default this attribute is false.
By setting this parameter to true, only those CUSTOMER objects for which every ORDER is greater
than 1000 will be returned.

The following examples show how filters can be applied in several different ways:

e Returns all CUSTOMER objects but only their large ORDER objects:

XQueryFilter myFilter = new XQueryFilter();
Filter fl = myFilter.createFilter(
"CUSTOMERS/CUSTOMER /ORDER/ORDER_AMOUNT" ,
FilterXQuery.GREATER_THAN, "1000") ;
myFilter.addFilter ("CUSTOMERS/CUSTOMER/ORDER", f1);

e Returns only CUSTOMER objects that have at least one large order but view all ORDER objects
for such CUSTOMER:

XQueryFilter myFilter = new XQueryFilter();

myFilter.addFilter ("CUSTOMERS/CUSTOMER",
"CUSTOMERS/CUSTOMER/ORDER/ORDER_AMOUNT" ,
FilterXQuery.GREATER_THAN, "1000") ;

Client Application Developer's Guide 10-9

Advanced Topics

10-10

e Returns only CUSTOMER objects that have at least one large order and return only large
ORDER objects:

XQueryFilter myFilter = new XQueryFilter();

myFilter.addFilter ("CUSTOMERS/CUSTOMER",
"CUSTOMERS/CUSTOMER /ORDER/ORDER_AMOUNT" ,
FilterXQuery.GREATER_THAN, "1000") ;

myFilter.addFilter ("CUSTOMERS/CUSTOMER/ORDER",
"CUSTOMERS/CUSTOMER /ORDER/ORDER_AMOUNT" ,
FilterXQuery.GREATER_THAN, "1000") ;

The last example is a compound filter; that is, a filter with two conditions. Listing 10-1 uses the AND
operator to apply a combination of filters to a result set, given a data service instance customerDS.

Listing 10-1 Example of Combining Filters by Using Logical Operators

FilterXQuery myFilter = new FilterXQuery();

Filter f1 = myFilter.createFilter ("CUSTOMER_PROFILE/ADDRESS/ISDEFAULT",
FilterXQuery.NOT_EQUAL,"0") ;

Filter f2 = myFilter.createFilter ("CUSTOMER/ADDRESS/STATUS",
FilterXQuery.EQUAL,
"\"ACTIVE\"") ;

Filter f3 = myFilter.createFilter (fl,£f2, FilterXQuery.AND) ;

Customer customerDS = Customer.getInstance(ctx, "RTLApp") ;

CustomerDS.setFilterCondition (myFilter) ;

Ordering and Truncating Data Service Results

Another type of filter you can use in client application code is an ordering condition—you specify the
order (descending, ascending) in which results should be returned from the data service. The method
(addOrderBy(), in the FilterXQuery class), takes a property name as the criterion upon which the

ascending or descending decision is based. Listing 10-2 provides an example of creating a filter that
will return customer profiles in ascending order, based on the date each person became a customer.

Listing 10-2 Example of Applying an Ordering Filter

FilterXQuery myFilter = new FilterXQuery();
myFilter.addOrderBy ("CUSTOMER_PROFILE",

Client Application Developer's Guide

Using Filters

"CustomerSince" ,FilterXQuery.ASCENDING) ;
ds.setFilterCondition(myFilter) ;
DataObject objArrayOfCust = (DataObject) ds.invoke("getCustomer", null);

Similarly, you can set the maximum number of results that can be returned from a function. The
setLimit() function limits the number of elements in an array element to the specified number. And
on a repeating node, it makes sense to specify a limit on the results to be returned. (Setting the limits
on non-repeating nodes does not truncate the results.)

Listing 10-3 shows how to use the setLimit() method. It limits the number of active address in the
result set (filtering out active addresses) to 10 given a data service instance ds.

Listing 10-3 Example of Applying a Filter that Truncates (Limits) Results

FilterXQuery myFilter = new FilterXQuery();

Filter f2 = myFilter.createFilter ("CUSTOMER_PROFILE/ADDRESS",
FilterXQuery.EQUAL, "\"INACTIVE\"") ;

myFilter.addFilter ("CUSTOMER_PROFILE", £f2);

myFilter.setLimit ("CUSTOMER_PROFILE", "10");

ds.setFilterCondition (myFilter) ;

Using Ad Hoc Queries to Fine-tune Results from the Client

An ad hoc query is an XQuery function that is not defined as part of a data service, but is instead
defined in the context of a client application. Ad hoc queries are typically used in client applications
to invoke data service functions and refine the results in some way. You can use an ad hoc query to
execute any valid XQuery expression against a data service. The expression can target the actual data
sources that underlie the data service, or can use the functions and procedures hosted by the data
service.

To execute an XQuery expression, use the PreparedExpression interface, available in the Mediator
API. Similar to JDBC's PreparedStatement interface, the PreparedExpression interface takes the
XQuery expression as a string in its constructor, along with the JNDI server context and application
name. After constructing the prepared expression object in this way, you can call the executeQuery()
method on it. If the ad hoc query invokes data service functions or procedures, the data service’s

Client Application Developer's Guide 10-11

Advanced Topics

10-12

namespace must be imported into query string before you can reference the methods in your ad hoc
query. Listing 10-4 shows a complete example; the code returns the results of a data service function
named getCustomers(), which is in the namespace:

1ld:DataServices/RTLServices/Customer

Listing 10-4 Invoking Data Service Functions using an Ad Hoc Query

String queryStr =
"declare namespace nsO=\"ld:DataServices/RTLServices/Customer\";" +
"<Results>" +
" { for Scustomer_profile in nsO:getCustomer ()" +
" return S$customer_profile }" +
"</Results>";
PreparedExpression adHocQuery =
DataServiceFactory.prepareExpression (context, "RTLApp" , queryStr) ;
XmlObject objResult = (XmlObject) adHocQuery.executeQuery () ;

DSP passes information back to the ad hoc query caller as an XMLObject data type. Once you have the
XMLObject, you can downcast to the data type of the deployed XML schema. Since XMLObject has only
a single root type, if the data service function returns an array, your ad hoc query should include a root
element as a container for the array.

For example, the ad hoc query shown in Listing 10-4 specifies a <Results> container object to hold
the array of CUSTOMER_PROFILE elements that will be returned by the getCustomer() data service
function.

Security policies defined for a data service apply to the data service calls in an ad hoc query as well.
If an ad hoc query uses secured resources, the appropriate credentials must be passed when creating
the JNDI initial context. (For more information, see “Obtaining a WebLogic JNDI Context for Data
Services Platform” on page 3-7.)

As with the PreparedStatement interface of JDBC, the PreparedExpression interface supports
dynamically binding variables in ad hoc query expressions. PreparedExpression provides several
methods (bind7ype () methods; see Table 10-4), for binding values of various data types.

Client Application Developer's Guide

Using Filters

Table 10-4 PreparedExpression Methods for Bind Variables

To hind data type of...

Use hind method...

Binary bindBinary (javax.xml.namespace.QName gname, byte[] abyte0)

BinaryXML bindBinaryXML (javax.xml.namespace.QName gname, bytel[]
abyte0)

Boolean bindBoolean (javax.xml.namespace.QName gname, boolean flag)

Byte bindByte (javax.xml .namespace.QName gname, byte byte0)

Date bindDate (javax.xml.namespace.QName gname, java.sqgl.Date
date)

Calendar bindDateTime (javax.xml.namespace.QName gname,
java.util.Calendar calendar)

DateTime bindDateTime (javax.xml.namespace.QName gname,
java.util.Date date)

DateTime bindDateTime (javax.xml.namespace.QName gname,
java.sgl.Timestamp timestamp)

BigDecimal bindDecimal (javax.xml.namespace.QName gname,
java.math.BigDecimal bigdecimal)

double bindDouble (javax.xml .namespace.QName gname, double d)

Element bindElement (javax.xml.namespace.QName gname,
org.w3c.dom.Element element)

Object bindElement (javax.xml.namespace.QName gname,
java.lang.String s)

float bindFloat (javax.xml.namespace.QName gname, float f)

int bindInt (javax.xml.namespace.QName gname, int i)

long bindLong (javax.xml .namespace.QName gname, long 1)

Object bindObject (javax.xml .namespace.QName gname,
java.lang.Object obj)

short bindShort (javax.xml.namespace.QName gname, short word0)

String bindString (javax.xml.namespace.QName gname,
java.lang.String s)

Time bindTime (javax.xml .namespace.QName gname, java.sqgl.Time
time)

URI bindURI (javax.xml.namespace.QName gname, java.net.URI uri)

Client Application Developer's Guide 10-13

Advanced Topics

To use the bindType methods, pass the variable name as an XML qualified name (QName) along with
its value; for example:

adHocQuery.bindInt (new QName("i"),94133);

Listing 10-5 shows an example of using a bindInt() method in the context of an ad hoc query.

Listing 10-5 Binding a Variable to a QName (Qualified Name) for use in an Ad Hoc Query

PreparedExpression adHocQuery = DataServiceFactory.preparedExpression (
context, "RTLApp",
"declare variable $i as xs:int external;
<result><zip>{fn:data($i) }</zip></result>");

adHocQuery.bindInt (new QName("i"),94133);

XmlObject adHocResult = adHocQuery.executeQuery () ;

Note: For more information on QNames, see:

http://www.w3.org/TR/xmlschema-2/#QName

Listing 10-6 shows a complete ad hoc query example, using the PreparedExpression interface and
QNames to pass values in bind methods.

Listing 10-6 Sample Ad Hoc Query

import com.bea.ld.dsmediator.client.DataServiceFactory;
import com.bea.ld.dsmediator.client.PreparedExpression;
import com.bea.xml.XmlObject;

import javax.naming.InitialContext;

import javax.naming.NamingException;

import javax.xml.namespace.QName;

import weblogic.jndi.Environment;

public class AdHocQuery
{
public static InitialContext getInitialContext () throws NamingException {
Environment env = new Environment () ;
env.setProviderUrl ("t3://localhost:7001") ;
env.setInitialContextFactory ("weblogic.jndi.WLInitialContextFactory") ;
env.setSecurityPrincipal ("weblogic") ;
env.setSecurityCredentials ("weblogic") ;

10-14 Client Application Developer's Guide

http://www.w3.org/TR/xmlschema-2/#QName

Handling Large Result Sets with Streaming APIs

return new InitialContext (env.getInitialContext () .getEnvironment ()) ;
}
public static void main (String argsl[]) {
System.out.println("========== Ad Hoc Client ==========");
try {

StringBuffer xquery = new StringBuffer();
xquery.append ("declare variable S$Sp_firstname as Xs:string external; \n");
xquery.append ("declare variable $p_lastname as xXs:string external; \n");

xquery . append (

"declare namespace nsl=\"ld:DataServices/MyQueries/XQueries\"; \n");
xquery . append (

"declare namespace ns0=\"ld:DataServices/CustomerDB/CUSTOMER\"; \n\n");

xquery .append ("<nsl:RESULTS> \n") ;
xquery .append (" { \n") ;
xquery.append (" for $customer in ns0:CUSTOMER () \n") ;
xquery .append (" where ($customer/FIRST_NAME eq $p_firstname \n");
xquery .append (" and $customer/LAST NAME eq S$p_lastname) \n") ;
xquery.append (" return \n");
xquery .append (" Scustomer \n");
xquery.append (" } \n") ;
xquery.append ("</nsl:RESULTS> \n") ;

PreparedExpression pe = DataServiceFactory.prepareExpression (

getInitialContext(), "RTLApp", xXquery.toString()):;
pe.bindString (new QName ("p_firstname"), "Jack");
pe.bindString (new QName ("p_lastname"), "Black") ;

XmlObject results = pe.executeQuery() ;
System.out.println (results) ;

} catch (Exception e) {
e.printStackTrace() ;

Handling Large Result Sets with Streaming APIs

This section discusses further programming topics related to client programming with the Data
Service Mediator API. It includes the following topics:

e Using the Streaming Interface

e Writing Data Service Function Results to a File

Client Application Developer's Guide 10-15

Advanced Topics

10-16

Using the Streaming Interface

When a function in the standard data service interface is called, the requested data is first
materialized in the system memory of the server machine. If the function is intended to return a large
amount of data, in-memory materialization of the data may be impractical. This may be the case, for
example, for administrative functions that generate "inventory reports" of the data exposed by DSP.
For such cases, DSP can serve information as an output stream.

DSP leverages the WebLogic XML Streaming API for its streaming interface. The WebLogic Streaming
API is similar to the standard SAX (Streaming API for XML) interface. However, instead of contending
with the complexity of the event handlers used by SAX, the WebLogic Streaming API lets you use
stream-based (or pull-based handling of XML documents in which you step through the data object
elements. As such, the WebLogic Streaming API affords more control than the SAX interface, in that
the consuming application initiates events, such as iterating over attributes or skipping ahead to the
next element, instead of reacting to them.

Note: For more information on the WebLogic Streaming API, see "Using the WebLogic XML
Streaming API" at http://e-docs.bea.com/wls/docs81/xml/xml_stream.html.

It is important to note that although serving data as a stream relieves the server from having to
materialize large objects in memory, the server is using the request thread while output streaming
occurs. This can tie up a thread for quite a while and affect the server’s ability to respond to other
service requests in a timely fashion. The streaming API is intended for use only for administrative sorts
of uses, and should be avoided except at off-peak times or in non-production environments.

Data Services Platform streaming API can only be invoked from Java code that is part of the same
application from which you are streaming data. That is, the client code needs to be in the same EAR
application file in which the data services are hosted.

You can get DSP information as a stream by using either an ad hoc or an untyped data service
interface.

Note: Streaming is not supported through static interfaces.

The streaming interface is in these classes in the com.bea.ld.dsmediator.client package:
e StreamingDataService

e StreamingPreparedExpression

Using these interfaces is very similar to using their SDO mediator client API equivalents. However,
instead of a document object, they return data as an XML InputStream. For functions that take
complex elements (possibly with a large amount of data) as input parameters, XML InputStream is
supported as an input argument as well. The following is a example:

Client Application Developer's Guide

http://e-docs.bea.com/wls/docs81/xml/xml_stream.html

Handling Large Result Sets with Streaming APIs

StreamingDataService ds = StreamingDataServiceFactory.getInstance (
context,
"ld:DataServices/RTLServices/Customer") ;

XMLInputStream stream = ds.invoke ("getCustomerByCustID", "CUSTOMERO") ;

The previous example shows the dynamic streaming interface. The following example uses an ad hoc
query:
String adhocQuery =
"declare namespace ns0=\"ld:DataServices/RTLServices/Customer\";\n" +
"declare variable $cust_id as xs:string external;\n" +
"for $customer in ns0:getCustomerByCustID(Scust_id)\n" +
"return\n" +
" Scustomer\n";
StreamingPreparedExression expr =

DataServiceFactory.prepareExpression (context, adhocQuery) ;

If you have external variables in the query string (adhocQuery in the above example), you will also
need to do the following:

expr.bindString ("$Scust_id", "CUSOMERO") ;
XMLInputStream xml = expr.executeQuery/() ;

Note: For more information on using the dynamic and ad hoc interfaces, see “Using a Dynamic
Mediator API” in Chapter 3, “Accessing Data Services from Java Clients.”

Javadoc for the StreamingDataService interface and other Data Services Platform APIs is
described at: “DSP Mediator API Javadoc” on page 1-13.

Listing 10-7 shows an example of a method that reads the XML input stream. This method uses an
attribute iterator to print out attributes and namespaces in an XML event and throws an XMLStream
exception if an error occurs.

Listing 10-7 Sample Streaming Application

import weblogic.xml.stream.Attribute;

import weblogic.xml.stream.Attributelterator;
import weblogic.xml.stream.ChangePrefixMapping;
import weblogic.xml.stream.CharacterData;
import weblogic.xml.stream.XMLEvent;

import weblogic.xml.stream.EndDocument;

import weblogic.xml.stream.EndElement;

Client Application Developer's Guide 10-17

Advanced Topics

import weblogic.xml.stream.EntityReference;
import weblogic.xml.stream.Space;

import weblogic.xml.stream.StartDocument;

import weblogic.xml.stream.XMLInputStream;

import weblogic.xml.stream.XMLInputStreamFactory;
import weblogic.xml.stream.XMLName;

import weblogic.xml.stream.XMLStreamException;
import java.io.FileInputStream;

import java.io.FileNotFoundException;

public class ComplexParse {

public void parse (XMLEvent event)throws XMLStreamException
{
switch (event.getType()) {
case XMLEvent.START_ELEMENT:
StartElement startElement = (StartElement) event;
System.out.print ("<" + startElement.getName () .getQualifiedName());
Attributelterator attributes = startElement.getAttributesAndNamespaces() ;
while (attributes.hasNext ()) {
Attribute attribute = attributes.next();

System.out.print (" " + attribute.getName () .getQualifiedName() +
"='" + attribute.getValue() + "'");

}

System.out.print (">");
break;

case XMLEvent.END_ELEMENT :
System.out.print("</" + event.getName () .getQualifiedName() +">");
break;

case XMLEvent.SPACE:
case XMLEvent.CHARACTER_DATA:
CharacterData characterData = (CharacterData) event;
System.out.print (characterData.getContent()) ;
break;
case XMLEvent.COMMENT :
// Print comment
break;
case XMLEvent.PROCESSING_INSTRUCTION:

// Print ProcessingInstruction

10-18 Client Application Developer's Guide

break;

case XMLEvent.START_DOCUMENT :
// Print StartDocument
break;

case XMLEvent.END_DOCUMENT :
// Print EndDocument
break;

case XMLEvent.START_PREFIX_MAPPING:
// Print StartPrefixMapping
break;

case XMLEvent.END_PREFIX_ MAPPING:
// Print EndPrefixMapping

break;

Handling Large Result Sets with Streaming APIs

case XMLEvent.CHANGE_PREFIX MAPPING:

// Print ChangePrefixMapping

break;
case XMLEvent.ENTITY_ REFERENCE:

// Print EntityReference

break;
case XMLEvent.NULL_ELEMENT:

throw new XMLStreamException ("A

default:

throw new XMLStreamException ("Atte

+eve

ttempt to write a null event.");

mpt to write unknown event["

nt.getType()+"1");

Writing Data Service Function Results to a File

You can write serialized results of a data service fu

nction to a file using a WriteOutputToFile method.

Such a function is generated automatically for each function defined in the data service. For security

reasons it writes only to a file on the server’s file system.

These functions provide services that are similar to streaming APIs. They are intended for creating
reports or an inventory of data service information. However, the writeOutputToFile method can be

Streaming Interface” on page 10-16).

invoked from a remote mediator API (in contrast with the streaming API described in “Using the

Client Application Developer's Guide 10-19

Advanced Topics

The following example shows how to write to a file from the untyped interface.

StreamingDataService sds =
DataServiceFactory.newStreamingDataService (
context, "RTLApp", "1d:DataServices/RTLServices/Customer"") ;
sds.writeOutputToFile ("getCustomer", null, "streamContent.txt");

sds.closeStream() ;

Note: No attempt to create folders is made. In the above example, if you want to write data inside a
folder named myData that folder should be present in the server domain root prior to the
write operation.

Providing Role-based Access to DSP Relational Sources

10-20

When you import metadata from relational sources, you can provide logic in your application that
maps users to different data sources depending on the user’s role. This is accomplished by creating an
intercepter and adding an attribute to the RelationalDB annotation for each data service in your
application.

The interceptor is a Java class that implements the SourceBindingProvider interface. This class
provides the logic for mapping a users, depending on their current credentials, to a logical data source
name or names. This makes it possible to control the level of access to relational physical source based
on the logical data source names.

For example, you could have the data source names cgDataSourcel, cgDataSourc2, and
cgDataSource3 defined on your WebLogic Server and define the logic in your class so that an user who
is an administrator can access all three data sources, but a normal user only has access to the data
source cgDataSourcel.

Note: Allrelational, update overrides, stored procedure data services, or stored procedure XFL files
that refer to the same relational data source should also use the same source binding
provider; that is, if you specify a source binding provider for at least one of the data service
(. as) files, you should set it for the rest of them.

To implement the interceptor logic, do the following:
1. Write a Java class SQLInterceptor that implements the interface

com.bea.ld.binds.SourceBindingsProvideranddeﬁneagetBindings()pubﬁc
method within the class. The signature of this method is:

public String getBinding (String genericLocator, boolean isUpdate)

The genericLocator parameter specifies the current logical data source name. The isUpdate
parameter indicates whether a read or an update is occurring. A value of true indicates an

Client Application Developer's Guide

Providing Role-based Access to DSP Relational Sources

update. A value of false indicates a read. The string returned is the logical data source name to
which the user is to be mapped. Listing 10-8 shows an example sQLInterceptor class.

2. Compile your class into a JAR file.

3. Inyour application, save the JAR file in the APP-INF/lib directory of your WebLogic Workshop
application.

4, Define the configuration interceptor for the data source in your DS or XFL files (or both if
necessary) by adding a sourceBindingProviderClassName attribute to the RelationalDB
annotation. The attribute must be assigned the name of a valid Java class, which is the name of
as your interceptor class. For example (the attribute and Java class are in bold):

<relationalDB dbVersion="4" dbType="pointbase" name="cgDataSource"
sourceBindingProviderClassName="sqgl.SQLInterceptor" />

5. Compile and run you application. The interceptor will be invoked on execution.

Listing 10-8 Interceptor Class Example

public class SglProvider implements com.bea.ld.bindings.SourceBindingProvider{
public String getBinding(String dataSourceName, boolean isUpdate) {

weblogic.security.Security security = new weblogic.security.Security();
javax.security.auth.Subject subject = security.getCurrentSubject();
weblogic.security.SubjectUtils subUtils =

new weblogic.security.SubjectUtils () ;

System.out.println(" the user name is " + subUtils.getUsername (subject)) ;

if (subUtils.getUsername (subject) .equals ("weblogic"))

dataSourceName = "cgDataSourcel";
System.out.println("The data source is " + dataSourceName) ;
System.out.println("SDO " + (isUpdate ? " YES " : " NO "));

return dataSourceName;

Client Application Developer's Guide 10-21

Advanced Topics

10-22 Client Application Developer's Guide

	Introducing Data Services Platform for Client Application Developers
	Simplifying Application Data Programming
	What is a Data Services Platform Client?
	Data Your Way

	The Role of WebLogic Server and WebLogic Workshop
	What is a Data Service?
	What is a Data Services Platform Client Application?
	Security Considerations in Client Applications

	Choosing a Data Services Programming Model
	Introducing Service Data Objects (SDO)
	Update Frameworks and the Data Service Mediator

	Typical Client Application Development Process
	Development Resources
	Runtime Client JAR Files
	DSP Mediator API Javadoc

	Performance Considerations

	Additional Technical and Product Information

	DSP’s Data Programming Model and Update Framework
	Data Services Platform and Service Data Objects (SDOs)
	Static and Dynamic Data APIs
	Static Data API
	XML Schema-to-Java Type Mapping Reference
	Dynamic Data API

	Role of the Mediator and SDOs

	The Data Services Platform Update Framework
	How It Works: The Decomposition Process
	Physical Data Service Update Process
	Logical Data Service Update Process
	Primary-Foreign Key Relationships Mapped Using a KeyPair
	Managing Key Dependencies
	Transaction Management

	Accessing Data Services from Java Clients
	Overview of the Data Services Platform Mediator API
	Setting the Classpath
	Mediator API Summary and Reference

	Generating a Static Mediator API JAR File
	Building the Client JAR
	Using the Data Service Mediator API
	Obtaining a WebLogic JNDI Context for Data Services Platform
	Invoking Functions and DSP Procedures
	Static and Dynamic Mediator APIs
	Using a Static Data Service Mediator API
	Using a Dynamic Mediator API

	Static and Dynamic SDO APIs
	Using the Static SDO API
	Using the Dynamic SDO API

	Bypassing the Cache When Using the Mediator API

	Step-by-Step: A Java Client Programming Example
	Step 1. Instantiating and Populating Data Objects
	Step 2: Accessing Data Object Properties
	Step 3: Modifying, Adding, and Deleting Data Objects and Properties
	Modifying Data Object Properties
	Adding New Data Objects
	Deleting Data Objects

	Step 4: Submitting Changes to the Data Service

	Examining a Java Client Application

	Web Services and DSP-Enabled Applications
	Overview of Web Services and DSP
	Different Styles of Web Services Integration for DSP

	Server-side DSP-Enabled Web Service Development
	Adding a Data Service Control to a Web Service
	Generating a Web Service from a Data Service Control
	Modifying Submit Operations and Generating a WSDL File

	Testing a Web Service in WebLogic Workshop

	Client-side DSP-Enabled Web Service Development
	Client-side Artifact Generation Utilities
	Generating SDO Client Classes
	Setting the Environment for the Utilities
	Generating SDO Classes Using Ant
	Generating SDO Classes Using Java

	Generating SDO-Enabled Web Services Clients
	Generating SDO Web Services Clients Using Ant
	Generating SDO Web Services Clients using Java
	Using the SDO Web Service Client Gen Utility

	Post-Generation Development Tasks
	Sample build.xml File

	Accessing Data Services from WebLogic Workshop Applications
	WebLogic Workshop and Data Services Platform
	Data Service Controls
	Use With Page Flow, Web Services, Portals, Business Processes

	Data Service Control (JCX) File
	Design View
	Source View
	Using Data Service Controls for Ad Hoc Queries

	Creating Data Service Controls
	Step 1: Create a Project in an Application
	Step 2: Start WebLogic Server, If Not Already Running
	Step 3: Create a Folder in a Project
	Step 4: Create the Data Service Control
	Step 5: Enter Connection Information for WebLogic Server
	Step 6: Select Data Service Functions to Add to Your Control

	Modifying Existing Data Service Controls
	Changing a Method Used by a Control
	Adding a New Method to a Control
	Updating an Existing Control When Schemas Change

	Using Data Services Platform with NetUI
	Generating a Page Flow From a Control
	To Generate a Page Flow From a Data Service Control

	Adding a Data Service Control to an Existing Page Flow
	Adding Service Data Objects (SDO) Variables to the Page Flow
	To Add a Variable to a Page Flow
	To Initialize the Variable in the Page Flow
	Working with Data Objects

	Displaying Array Values in a Table or List
	Adding a Repeater to a JSP File
	Adding a Nested Level to an Existing Repeater
	Adding Code to Handle Null Values

	Caching Considerations When Using Data Service Controls
	Bypassing the Cache When Using a Data Service Control
	Cache Bypass Example When Using a Data Service Control

	Security Considerations When Using Data Service Controls
	Security Credentials Used to Create Data Service Controls
	Testing Controls With the Run-As Property in the JWS File
	Trusted Domains
	Configuring Trusted Domains

	Supporting ADO.NET Clients
	Overview of ADO.NET Integration in Data Services Platform
	Understanding ADO.NET
	ADO.NET Client Application Development Tools

	Understanding How DSP Supports ADO.NET Clients
	Supporting Java Clients

	Enabling DSP Support for ADO.NET Clients
	Creating a New Web Service Project
	Creating an ADO.NET-Enabled Data Service Control
	Generating a Web Service for ADO.NET Clients
	Generating an ADO.NET-Enabled WSDL

	Adapting DSP XML Types (Schemas) for ADO.NET Clients
	Approaches to Adapting XML Types for ADO.NET
	XML Type Requirements for Working With ADO.NET DataSets

	References

	Generated Artifacts Reference
	XML Schema Definition for ADO.NET Typed DataSet
	Web Services Description Language (WSDL) File for Microsoft ADO.NET Clients

	Using Workflow with DSP-Enabled Applications
	Brief Overview of WebLogic Integration JPDs
	How SDO’s Handling of XMLObjects Differs from JPD
	Adding a Data Service Control to a Process
	Creating a Data Service Control
	Adding a Data Service Control to a JPD File
	Setting Up the Data Service Control in the Business Process
	Submitting Changes from a Business Process

	Invoking JPDs from Data Services Platform
	Invoking a JPD from an Update Override
	Invoking a JPD by Using the JpdService API in an Update Override
	Synchronous and Asynchronous Behavior
	Error Handling

	Using the Data Services Platform JDBC Driver
	About the Data Services Platform JDBC Driver
	Features of the Data Services Platform JDBC Driver
	Data Services Platform and JDBC Driver Terminology

	Installing the Data Services Platform JDBC Driver with JDK 1.4x
	Using the JDBC Driver
	Obtaining a Connection
	Using the preparedStatement Interface
	Getting Data Using JDBC

	Connecting to the JDBC Driver from a Java Application
	Connecting to Data Services Platform Client Applications Using the ODBC-JDBC Bridge from Non-Java...
	Using the EasySoft ODBC-JDBC Bridge
	Using OpenLink ODBC-JDBC Bridge

	Using Reporting Tools with the Data Services Platform ODBC-JDBC Driver
	Crystal Reports 10 - ODBC
	Crystal Reports 10 - JDBC
	Business Objects 6.1 - ODBC
	Microsoft Access 2000 - ODBC

	DSP and SQL Type Mappings
	SQL-92 Support
	Supported Features
	Limitations

	Customizing Data Service Update Behavior
	What is an Update Override?
	An Update Override is a Java Class
	How an Update Override Affects Update Processing

	When Are Update Overrides Required?
	When Are Update Overrides Required for Relational Data Sources?
	Developing the UpdateOverride Class
	Invoking Data Service Procedures from an UpdateOverride
	Testing Submit Results
	Update Override Context
	Update Overrides and Physical Data Services

	Update Override Programming Patterns
	Overriding the Entire Decomposition and Update Process
	Augmenting Data Object Content
	Accessing the Data Service Mediator Context
	Accessing the Decomposition Map

	Customizing an Update Plan
	Executing an Update Plan

	Retrieving the Container of the Current Data Object
	Invoking Other Data Service Functions and Procedures
	Capturing Runtime Data about Overrides in the Server Log
	Default Optimistic Locking Policy: What it Means, How to Change

	Advanced Topics
	Using Catalog Services to Obtain Data Services’ Metadata
	Installing Catalog Services
	Creating a Query-by-Form (QBF) Application Using Catalog Services

	Filtering, Sorting, and Fine-tuning Query Results
	Using Filters
	Specifying Filter Effects
	Ordering and Truncating Data Service Results
	Using Ad Hoc Queries to Fine-tune Results from the Client

	Handling Large Result Sets with Streaming APIs
	Using the Streaming Interface
	Writing Data Service Function Results to a File

	Providing Role-based Access to DSP Relational Sources

