
BEAAquaLogic
Data Services
Platform™

Data Services
Developer’s Guide
Note: Product documentation may be revised post-release and
made available from the following BEA e-docs site::

http://e-docs.bea.com/aldsp/docs21/index.html

Version: 2.1
Document Date: June 2005
Revised: March 2006

http://e-docs.bea.com/aldsp/docs21/index.html

Copyright
Copyright © 2005-2006 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software is protected by copyright, and may be protected by patent laws. No copying or other use of this software is
permitted unless you have entered into a license agreement with BEA authorizing such use. This document is protected
by copyright and may not be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine
readable form, in whole or in part, without prior consent, in writing, from BEA Systems, Inc.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. FURTHER, BEA SYSTEMS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE DOCUMENT IN
TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved.BEA, BEA JRockit, BEA WebLogic Portal, BEA
WebLogic Server, BEA WebLogic Workshop, Built on BEA, Jolt, JoltBeans, SteelThread, Top End, Tuxedo, and
WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic Data Services Platform,
BEA AquaLogic Enterprise Security, BEA AquaLogic Service Bus, BEA AquaLogic Service Registry, BEA Builder,
BEA Campaign Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA MessageQ,
BEA WebLogic Commerce Server, BEA WebLogic Communications Platform, BEA WebLogic Enterprise, BEA
WebLogic Enterprise Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic Log Central, BEA
WebLogic Network Gatekeeper, BEA WebLogic Personalization Server, BEA WebLogic Personal Messaging API, BEA
WebLogic Platform, BEA WebLogic Portlets for Groupware Integration, BEA WebLogic Server Process Edition, BEA
WebLogic SIP Server, BEA WebLogic WorkGroup Edition, Dev2Dev, Liquid Computing, and Think Liquid are
trademarks of BEA Systems, Inc. BEA Mission Critical Support, BEA Mission Critical Support Continuum, and BEA
SOA Self Assessment are service marks of BEA Systems, Inc.

All other names and marks are property of their respective owners.

March 16, 2006 1:49 pm

Administration Guide v

Contents

1. Introduction to Data Services
Data Services and the Enterprise . 1-2

Data Access Integration Architecture . 1-3

Data Services Platform Applications and Projects . 1-5

DSP: Roles and Responsibilities . 1-7

DSP: Typical Development Process. 1-7

Examples, Samples, and Tutorials. 1-8

2. Data Services Platform Projects and Components
DSP-Based BEA WebLogic Projects . 2-2

Creating a DSP-based Application . 2-2

Adding a DSP Project to an Existing BEA WebLogic Application . 2-4

Major Components of a DSP Project . 2-4

Using the WebLogic Workshop IDE . 2-6

Survey of DSP Additions to WebLogic Workshop . 2-9

Building and Deploying Applications, EARs, and SDO Mediator Clients 2-22

Building, Deploying, and Updating Applications . 2-22

Creating the SDO Mediator API . 2-24

Refactoring DSP Artifacts . 2-25

Artifacts Supporting Refactoring . 2-27

Setting Refactor Options . 2-28

Impacts of Various Refactoring Operations . 2-32

vi Administration Guide

3. Obtaining Enterprise Metadata
Creating Data Source Metadata .3-1

Identifying DSP Procedures .3-4

Obtaining Metadata From Relational Sources .3-7

Importing Relational Table and View Metadata. 3-8

Importing Stored Procedure-Based Metadata . 3-16

Using SQL to Import Metadata. 3-31

Importing Web Services Metadata .3-37

Testing Metadata Import With an Internet Web Service URI .3-42

Importing Java Function Metadata .3-43

Supported Java Function Types .3-43

Adding Java Function Metadata Using Import Wizard .3-44

Creating XMLBean Support for Java Functions .3-48

Inspecting the Java Source. .3-51

How Metadata for Java Functions Is Created. .3-54

Importing Delimited File Metadata. .3-59

Providing a Document Name, a Schema Name, or Both .3-59

Using the Metadata Import Wizard on Delimited Files .3-60

Importing XML File Metadata .3-63

XML File Import Sample. .3-63

Testing the Metadata Import Wizard with an XML Data Source .3-66

Updating Data Source Metadata .3-67

Considerations When Updating Source Metadata .3-68

Using the Update Source Metadata Wizard .3-68

Archival of Source Metadata .3-72

4. Designing Data Services
Data Services in the Enterprise .4-2

Administration Guide vii

Physical and Logical Data Services. 4-2

Data Service Functions . 4-3

Data Service Design View Components . 4-4

XML Types and Return Types. 4-7

Creating a Data Service . 4-8

Adding a Function to Your Data Service. 4-10

Adding a Procedure to Your Data Service . 4-11

Adding a Private Function to Your Data Service . 4-11

Adding a Relationship to Your Data Service . 4-11

Working with Logical Data Service XML Types . 4-23

Creating an XML Type . 4-25

Managing Your Data Service . 4-26

Refactoring Data Service Functions . 4-27

Finding Usages of Data Services Platform artifacts . 4-27

Setting Update Options . 4-27

Adding Security Resources . 4-31

Caching Functions . 4-38

Notable Design View Properties . 4-40

5. Modeling Data Services
Model-Driven Data Services. 5-3

Logical and Physical Data Models. 5-3

Rules Governing Model Diagrams . 5-4

Building a Simple Model Diagram. 5-5

Displaying Relationships Automatically. 5-10

Generated Relationship Declarations in Source View . 5-10

Modeling Logical Data . 5-11

Building Data Service Relationships in Models. 5-12

viii Administration Guide

Direction, Role, and Relationships .5-12

Working with Model Diagrams .5-16

Model Right-click Menu Options .5-17

Creating Relationships in Model Diagrams .5-19

Locating Data Services in Large Model Diagrams .5-19

Generating Reports on Your Models .5-20

Zoom Mode .5-22

Editing XML Types in Model Diagrams .5-22

How Changes to Data Services and Data Sources Can Impact Models .5-24

How Metadata Update Can Affect Models. .5-24

6. Working with the XQuery Editor
Role of the XQuery Editor .6-2

Data Source Representations. .6-4

XQuery Editor Options .6-5

Creating a New Data Service and Data Service Function .6-7

Key Concepts of Query Function Building .6-15

Data Sources .6-15

Source Schemas and Return Types .6-16

XQuery Editor Components .6-16

Setting Conditions .6-31

Using XQuery Functions .6-35

Setting Expressions .6-41

Managing Query Components. .6-41

Working With Data Representations and Return Type Elements. .6-42

Mapping to Return Types .6-43

Modifying a Return Type .6-47

Administration Guide ix

7. Testing Query Functions and Viewing Query Plans
Running Queries Using Test View . 7-1

Using Test View . 7-3

Limiting Array Results . 7-11

Starting Client Transaction Option. 7-12

Validating Results . 7-13

Disregarding a Running Query . 7-13

Auditing Query Performance . 7-13

Analyzing Queries Using Plan View. 7-14

Using Query Plan View . 7-14

Analyzing a Sample Query . 7-17

Working With Your Query Plan. 7-19

Simply mouse-over the highlighted section of the plan to view the information or warning. .

7-20

Creating an Ad Hoc Query . 7-20

Sample Ad Hoc Queries . 7-21

8. Working with XQuery Source
What is Source View? . 8-1

XQuery Support . 8-2

Using Source View. 8-3

Finding Text. 8-3

Function Navigation . 8-4

Code Editing Features . 8-4

9. Best Practices and Advanced Topics
Using a Layered Data Integration and Transformation Approach. 9-1

Using Inverse Functions to Improve Performance During Updates . 9-3

x Administration Guide

Sample Inversible Data. .9-4

Considerations When Running Queries Against Logical Data .9-4

Improving Performance Using Inverse Functions: an Example .9-6

Leveraging Data Service Reusability .9-15

Modeling Relationships. .9-16

Data Services Developer’s Guide 1-1

C H A P T E R 1

Introduction to Data Services

Just as the BEA WebLogic Application Server freed application developers from the tedium associated
with managing multi-user applications across the Internet, BEA Aqualogic Data Services Platform
allows data application developers to concentrate on developing and extending enterprise
information without a need to directly program to the underlying physical data sources.

Data Services Platform (DSP) takes advantage of emerging standards to enable you to create
hierarchical, enterprise-wide data services which can be accessed by any Web-based application.

Specifically, data services enable you to:

Insulate integrated applications and processes from complexity of divergent data forms and
potentially disconnected sources of enterprise data.

Manage the metadata information imported from disparate data sources.

Create data models showing the relationships between various data services.

Note: DSP was originally named Liquid Data. Some artifacts of the original name remain in the
product, installation path, and components.

I n t roduct ion to Data Se rv ices

1-2 Data Services Developer’s Guide

Figure 1-1 BEA Integrated Development Environment

Data Services and the Enterprise
In modern enterprises data is generally readily available. While this has reduced that need to move
physical data into data warehouses, data marts, data mines, or other costly replications of existing
data structures, the problems of dynamic data integration, immediate secured access and update,
data transformation, and data synchronization remain some of the most vexing challenges facing the
IT world.

DSP provides a comprehensive approach to this challenge by:

Providing a unified means of importing metadata representing the structure of any data source
using its Metadata Import wizard.

Allowing for the creation of hierarchical data structures from tradition column-row data.

Providing a query-driven interface to extend the physical model so data specialists can create
powerful transformations of existing data and queries.

Automatically creating data models that introspect physical data structures (and their
contents) in situ, normalizes representation of diverse data, and allow the representation of
the relationship of physical and logical data.

Maintaining the accuracy of metadata through automated updates from the data source.

User Integration:
BEA

WebLogic Portal

JVM:
BEA WebLogic JRockit

Application Integration

BEA WebLogic Integration

In
te

gr
at

ed
 D

ev
el

op
m

en
t

En
vi

ro
nm

en
t

BE
A

 W
eb

Lo
gi

c
W

or
ks

ho
p

Application Server
BEA WebLogic Server

User Integration

WebLogic Portal

Enterprise Data Services
AquaLogic Data Services Platform

Application Framework
Beehive

Data Serv ices and the Ente rp r i se

Data Services Developer’s Guide 1-3

DSP can be used to create, refine, and validate logical data structures through a process of importing
data sources, creating physical and logical models, and designing queries for use by applications in an
infrastructure that provides for easy maintenance, while enhancing security and performance.

Through standardized Service Data Objects (SDO) technology, web-based applications can
automatically read and update relational data. Through simple Java programs DSP update capabilities
can be extended to support any logical data source.

For an overview of the DSP system, see the Data Services Platform Concepts Guide.

For detailed, hands-on tutorial illustrating many DSP features and techniques see the samples
tutorial, available from the Data Service Platform e-docs page.

Data Access Integration Architecture
In contemporary enterprise computing, data typically passes through multiple processing and storage
layers. While enterprise data can easily be accessed, turning that data into useful information
economically and efficiently, particularly updateable information, remains a difficult and
high-maintenance task.

http://e-docs.bea.com/liquiddata/docs85/index.html
http://e-docs.bea.com/liquiddata/docs85/concepts/index.html

I n t roduct ion to Data Se rv ices

1-4 Data Services Developer’s Guide

Figure 1-2 Data Services Platform Component Architecture

DSP approaches the problem of creating integration architectures by building logical data services
around physical data sources and then allowing business logic to be added as part of easily
maintained, graphically designed XML query functions (also called XQueries).

Using standard protocols such as JDBC, DSP automatically introspects data sources, creating
physical data services and corresponding schemas that model a physical data source. Optional model
diagrams capture relationships between relational data sources, such as primary and foreign keys.

Any WebLogic Workshop application can include DSP-based projects. And any application can access
DSP queries — including update functions — through a mediator API or a Data Services Platform
Control. In the case of relational data, updates can be performed automatically through Service Data
Objects (SDO) (For details see “Programming with Service Data Objects” in the DSP Client
Application Developer’s Guide.)

http://e-docs.bea.com/liquiddata/docs85/appdev/sdo.html

Data Serv ices and the Ente rp r i se

Data Services Developer’s Guide 1-5

DSP provides for the development of integrated queries within any WebLogic Workshop application.
Each application can contain multiple Data Services Platform-based projects, as well as any other
types of projects offered by WebLogic Workshop.

Figure 1-3 Sample Data Service

Data Services Platform Applications and Projects
DSP query and model development services are available through a DSP-based WebLogic Workshop
project. After you have installed DSP (see the Installation Guide), you have two options:

Creating a Data Services Platform-based project within any WebLogic Workshop application:
File → New → Project → DSP Project

Creating a new Data Services Platform-based application:
File → New → Application → DSP Application

Services Available to a Data Services Platform-Based Project
A DSP-based project is comprised of a number of interrelated data services used in developing models
and query functions. Service components are designed to enable rapid development, prototyping, and
deployment of these services and functions in your applications.

http://e-docs.bea.com/liquiddata/docs85/install/index.html

I n t roduct ion to Data Se rv ices

1-6 Data Services Developer’s Guide

Table 1-4 Survey of Major Services Provided by Data Services Platform

Service Feature

Data Services and Data Modeling • Physical models

• Logical models

• Relationships

• Read functions

• Procedures

• Navigation functions

• Roles

Metadata Management • Browse metadata

• Search metadata

• Impact analysis

• Auditing

• Reports

Import Metadata • Relational, Web services, XML files, delimited files, Java

• Update metadata

Query Management • Graphical query development

• Testing

• Plan analysis

• Performance reporting

• Auditing

• Source editing

• Caching

• Security

Application Services • Mediator API

• Data Services Platform control

• JDBC

Service Data Objects (SDO) • Automatic read-write to relational sources

• Custom update

XQuery Engine • Inverse functions

Data Serv ices and the Ente rp r i se

Data Services Developer’s Guide 1-7

For more information on WebLogic Workshop applications and projects see “Applications and
Projects” in WebLogic Workshop online documentation.

DSP: Roles and Responsibilities
Metadata Development. Using the DSP Metadata Import wizard, any team member can quickly
create a set of physical data services from enterprise data sources.

Data Service Development. A data architect with knowledge of the relationships between
enterprise data sources can then create data services based on physical and previously
developed logical services.

Query Development. Once data services are created, any IT team member can create reusable
query functions using the graphical XQuery Editor. The editor is directly tied to a Source View
that facilitates code-based modifications to automatically-generated designs.

Application Development. Application designers can use data service query functions in their
BEA WebLogic applications. Through Service Data Objects (SDO) and the Mediator API or a
Data Services Platform control, applications can retrieve and update data, yet remaining
insulated from the complexities of managing the underlying data interaction.

Metadata Management. Administrators, architects, and designers can use the Metadata
Browser for real-time introspection of disparate data source metadata that has been developed
through DSP.

DSP: Typical Development Process
The following steps summarize a typical Data Services Platform-based project development cycle.

1. Create your project. Create a DSP-based project in a new or existing WebLogic Workshop
application as described in “Creating a DSP-based Application” on page 2-2 and “Adding a DSP
Project to an Existing BEA WebLogic Application” on page 2-4.

2. Import metadata. Metadata can be obtained for any data source that is available through your
local application or BEA WebLogic Server. This may include relational data, Web service data,
delimited files (spreadsheets), custom Java functions, and XML files. See Chapter 3, “Obtaining
Enterprise Metadata.”

3. Create a data model. You can graphically build a data model that shows the relationships and
cardinality between the data services you have selected (see Chapter 5, “Modeling Data
Services” for details). In the data model, you can also modify and extend relationships between
various data services as well as their return type.

http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/project/conWorkspaces.html
http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/project/conWorkspaces.html

I n t roduct ion to Data Se rv ices

1-8 Data Services Developer’s Guide

4. Develop data services. You can elaborate on existing physical data through queries that span
multiple physical and/or logical data services (Chapter 4, “Designing Data Services”. The built-in
XQuery Editor (Chapter 6, “Working with the XQuery Editor”) includes standard XQuery
functions and language construct prototypes. Using the editor you can map source elements or
transformations to a return type.

The Data Service Palette provides access to all data services available to your application.
Queries and data service logic are maintained in a single, editable source file that is fully
integrated with your data service (Chapter 8, “Working with XQuery Source”).

5. Test your function. The data service functions you create can be tested at any time. You can
select any query in the current data service, add a simple or complex parameter (if required),
run the query, and see the results (Chapter 7, “Testing Query Functions and Viewing Query
Plans”). If you have appropriate permissions, you can also update source data through Test View.

6. Review the query plan. You can view the query plan prior to or after running your query. The
query plan describes the generated statements used to retrieve and update data. Execution time
statistics are also available (“Analyzing Queries Using Plan View” on page 7-14).

Examples, Samples, and Tutorials
Samples and examples used in this book are based on the Sample Retail Application (RTLApp) that
is included with DSP. See also the “Sample Retail Application Overview” in the DSP Installation
Guide.

A number of examples of DSP technology can be found in the DSP Samples Tutorial. This tutorial is
also based on RTLApp.

To access the tutorial see the DSP e-docs page:

http://edocs.bea.com/aldsp/docs21/index.html

http://e-docs.bea.com/aldsp/docs21/index.html
http://e-docs.bea.com/liquiddata/docs85/install/sampleapp.html

Data Services Developer’s Guide 2-1

C H A P T E R 2

Data Services Platform Projects and
Components

BEA Aqualogic Data Services Platform (DSP) can be added to WebLogic Workshop in two ways:

As a project in a new application

As a project in any existing BEA WebLogic application.

The basic menus, common behavior, and look-and-feel associated with WebLogic Workshop apply to
DSP.

Note: WebLogic Workshop online documentation is available at:

http://e-docs.bea.com/workshop/docs81/index.html

This chapter discusses various WebLogic Workshop facilities that you can use in creating and
managing your DSP-based projects. DSP extensions to WebLogic Workshop are also described from an
interface perspective.

The following topics are covered:

DSP-Based BEA WebLogic Projects

Major Components of a DSP Project

Building and Deploying Applications, EARs, and SDO Mediator Clients

Refactoring DSP Artifacts

http://localhost:7001/console
http://e-docs.bea.com/workshop/docs81/index.html

Data Serv i ces P la t fo rm Pro jec ts and Components

2-2 Data Services Developer’s Guide

DSP-Based BEA WebLogic Projects
As noted above, you can create a WebLogic Workshop application that automatically includes a Data
Services Platform project. Or you can add DSP projects to any BEA WebLogic application.

Note: It often makes sense to consolidate DSP queries into a WebLogic Workshop application
dedicated to DSP development. Other applications can then access these queries through the
DSP Mediator API or a Data Services Platform control. For complete details related to how
client applications can access Data Services Platform functions and procedures see the DSP
Client Application Developer’s Guide.

Verifying Your DSP Version Number
To ascertain that DSP is available to your application or to determine the version of DSP that you are
running, start your BEA WebLogic Server and access its Administration Console.

As an example, the WebLogic Server Console for the sample domain provided with BEA WebLogic can
be accessed from:

http://localhost:7001/console

Navigate to the Console → Versions page (Console being the top menu item) and find the version
number and creation date for DSP.

Creating a DSP-based Application
To create a DSP-based application select File → New → Application from WebLogic Workshop
menu. When the dialog appears, select DSP Application (Figure 2-1).

http://e-docs.bea.com/liquiddata/docs85/appdev/index.html

DSP-Based BEA WebLogic P ro j ec ts

Data Services Developer’s Guide 2-3

Figure 2-1 Creating a New Data Services Platform Application

You probably will want to change the name of the application from Untitled to something else. Your
new application automatically contains an initial DSP-based project.

Figure 2-2 Application View of a New Data Services Platform Application

Data Serv i ces P la t fo rm Pro jec ts and Components

2-4 Data Services Developer’s Guide

You can save your application at any time using the File →Save, Save As, or Save All commands.
Save All saves any modified files in your application.

When you initially create a WebLogic Workshop application such as “myLD”, a file called myLD.work
is created in the root directory of your application. Invoking Workshop using this file also opens your
application.

An application can contain any number of DSP or other types of WebLogic Workshop projects.

Adding a DSP Project to an Existing BEA WebLogic Application
You can also add one or several DSP projects to any WebLogic Workshop application.

To do this select File → New → Project. When the project creation dialog appears, choose DSP
Project.

Figure 2-3 Application Tab of a New Data Services Platform Application

Major Components of a DSP Project
When a new Data Services Platform application or project is created, a DSP project folder is also
created. This becomes the root directory of your project (see Figure 2-3). Two Java archive (.jar)
files are added to the application’s Libraries folder including ld-server-app.jar and the
mediator.jar. The latter file manages creation of Service Data Objects (SDOs), described in detail
in the Client Application Developer’s Guide.

Table 2-4 lists major DSP file types and their purposes.

http://e-docs.bea.com/liquiddata/docs85/appdev/index.html

Major Components o f a DSP P ro jec t

Data Services Developer’s Guide 2-5

Table 2-4 Data Services Platform Components, Including File Types

Component Purpose

Data Services (.ds files) Data services are contained in DS files and can be located anywhere in
your application. Each data service file is an XQuery document.

Note: Since a DS file may contain numerous XQueries as well as
other automatically-generated pragma directives, care should
be taken when editing this file directly.

Model Diagrams (.md files) Model diagrams provide a graphical representation of the relationships
between various data services, which themselves represent the physical
and logical data services available to your DSP queries.

Model diagrams have the extension .md and can be located anywhere
in your DSP project.

Metadata information Metadata information is contained in META-INF folders associated
with JAR files. The non-editable contents of this Libraries folder
contains information on data sources used by data services.

Schemas (.xsd files) Data services typically are associated with XML types whose physical
representation is an XML schema file. Schema files can be located
anywhere in your application. Schemas automatically created by the
Metadata Import wizard are placed in a schemas project inside your
application.

Schema files can be manually created or modified using any text editor.
There is also a built-in schema editor in DSP Design View and in model
diagrams containing the data service.

The XML type associated with a data service is also the return type of
each function in your data service.The return type precisely describes
the shape of the document to be returned by your query.

The return type can be modified through the XQuery Editor or directly
in source. However, this generally should only be done in conjunction
with the Save and Associate Schema command (see “Creating a New
Data Service and Data Service Function” on page 6-7 for details).

XQuery function libraries
(.xfl files)

XQuery function libraries typically contain utility XQuery functions that
can be used by application data services and in building data
transformations. A typical example would be a routine for converting
currencies based on daily exchange rate. Such transformational
functions could be used by any data service in your application.

Data Serv i ces P la t fo rm Pro jec ts and Components

2-6 Data Services Developer’s Guide

Other files which may appear in DSP projects include Java files containing custom update logic and
SDO configuration files such as sdo.xsdconfig, which allows XMLBean technology to create SDOs
rather than XMLBeans.

Using the WebLogic Workshop IDE
WebLogic Workshop is fully described in on-line and printed documentation. A good place to start is:

http://e-docs.bea.com/workshop/docs81/index.html

Alternatively, WebLogic Workshop provides complete on-line help.

Figure 2-5 Some WebLogic Workshop Components in a DSP-Based Project

The following table briefly describes:

WebLogic Workshop functionality extensively used by DSP.

DSP extensions to the Workshop user interface.

XML Type
(schema

Build
Results

Data Service
Views

Properties
Editor

XQuery
Functions

XQuery
Constructs

Application
Structure

Query
Functions

http://e-docs.bea.com/workshop/docs81/index.html

Major Components o f a DSP P ro jec t

Data Services Developer’s Guide 2-7

Table 2-6 Summary of WebLogic Workshop Pane Used by DSP

Table 2-7 describes the several WebLogic Workshop menu commands you will use with DSP projects.

Table 2-7 Summary of WebLogic Workshop Menu Services Used by DSP

Property Editor
You can use the Property Editor to view details related to any WebLogic Workshop artifact (see
Figure 2-8). For example, in Design View (see “Design View” on page 2-12) if you click on the general
data service, the Property Editor provides details on that service. If you click on a relationship

Service Purpose

Application pane Lists the projects and other components in your application.

Files pane Provides an ordered listing of files used in your application.

Build pane Provides feedback while the application is being built and reports
build success or failure.

Output pane Shows data sources accessed, execution times, and query
statement.

Property Editor Provides information on properties associated with the currently
selected object. Some properties are configurable or editable.

Service Purpose

File menu When working with DSP projects you will often use the following
File menu options:

• Save, Save As, Save All. The Save command saves the current
file while the Save All command saves all open or modified files
in your project. Use the Save All command to make sure that all
changes you have made to your application will be persisted.

• Import commands. Use the Import file browser to add files or
libraries to your application. For example, if you have an
externally developed schema you can use the Import command
and associated file browser to bring a copy of it into your
application.

Data Serv i ces P la t fo rm Pro jec ts and Components

2-8 Data Services Developer’s Guide

representation in your data service, property details on that relationship appear. In many cases,
property settings are editable or configurable.

Figure 2-8 Relationship Properties in a Data Service

Finding Text in Files
WebLogic Workshop provides a comprehensive file search facility with its Find in Files option,
available from the Edit menu (Edit →Find in Files).

Major Components o f a DSP P ro jec t

Data Services Developer’s Guide 2-9

Figure 2-9 Workshop File Search Facility

You can use Find in Files to search for references to any DSP artifacts such as particular data sources,
use of functions, and so forth.

Survey of DSP Additions to WebLogic Workshop
A DSP project adds menu items and views to the basic WebLogic Workshop environment to support
the following functionality:

Metadata Import

Data Models

Data Services

XQuery Function Libraries

Usages of Data Services Artifacts

Updating Application or Project Data Service Libraries

Metadata Import
Data services are central to creating data models and physical and logical data views that can be used
in DSP queries. The first step in creating a data service is to import metadata from physical data
sources so that corresponding physical data services can be created.

Data Serv i ces P la t fo rm Pro jec ts and Components

2-10 Data Services Developer’s Guide

Figure 2-10 Selecting Metadata Import for a DSP Project

For details related to importing and updating metadata into your DSP project see Chapter 3,
“Obtaining Enterprise Metadata.”

Data Models
Through the data model interface that you can:

Establish or modify relationships between data services.

Edit a data service’s return type.

Create annotations to a model or a data service.

Major Components o f a DSP P ro jec t

Data Services Developer’s Guide 2-11

Figure 2-11 Creating a Data Model Diagram from the File Menu

For details on developing and maintaining data models see Chapter 5, “Modeling Data Services.”

Data Services
Every data service provides a Design View, XQuery Editor View, Source View, Test View, and Query
Plan View. Each data service is based around a single XQuery source file. And every data service has
an associated XML type (XDS file).

Data services are composed of read and navigation functions and procedures. Read functions must
return the XML type of the data service. Navigation functions, return the XML type of their native data
service. Procedures, also known as side-effecting functions, need not return anything.

Data Serv i ces P la t fo rm Pro jec ts and Components

2-12 Data Services Developer’s Guide

Figure 2-12 Sample Data Service

Design View
Design View is the central reference point of every data service. Through Design View that you can:

Add or modify the XML type (associated schema).

Add read functions using the XQuery Editor View.

Add private functions.

Add relationships in the form of navigation functions. These functions are typically developed
using the Relationship wizard.

For details on developing and maintaining data services see Chapter 4, “Designing Data Services.”

XQuery Editor View
Through the XQuery Editor View you can develop query functions by projecting data service function
elements, as well as transformations, to the function’s return type.

Major Components o f a DSP P ro jec t

Data Services Developer’s Guide 2-13

Figure 2-13 Sample XQuery Editor Query with Its Return Type

The graphical editor directly supports common constructs of the 1.0 XQuery standard. Several
resources are available to help in the development and maintenance of business logic. These are all
available from the WebLogic Workshop View or View → Windows menu).

For details on developing queries using XQuery Editor View see Chapter 6, “Working with the XQuery
Editor.”

XQuery Function Palette

An XQuery function palette (Figure 2-14) is available that supports standard XQuery and BEA-specific
functions. This function palette is also available from the Workshop View → Windows menu.

Data Serv i ces P la t fo rm Pro jec ts and Components

2-14 Data Services Developer’s Guide

Figure 2-14 XQuery Function Palette

Like all Workshop panes, the XQuery Function Palette can be placed anywhere in the WebLogic
Workshop window. Functions from this palette can be dragged into XQuery Editor View, as well as
Source View.

XQuery Constructs Palette

DSP projects also have access to the XQuery Constructs palette (Figure 2-15). This palette supports
creation of different types of XQuery statements in the XQuery Editor View or Source View. Many of
the construct prototypes such as FLWGR, FGWOR, FWGR, and so forth are variations on the most
common XQuery construct, FLWR (for-let-where-return).

Major Components o f a DSP P ro jec t

Data Services Developer’s Guide 2-15

Figure 2-15 XQuery Constructs Palette

For example, FLWGR adds the DSP extension Group By. The prototype is shown below in Source View.

for $var in ()
let $var2:=()
where (true)
group by () as $var3 with partitions $var as $var4
return
 ()

For details on Group By and other BEA XQuery extensions see the XQuery Developer’s Guide.

Data Services Palette

The Data Services Palette (Figure 2-16) is only available to DSP projects. It provides the DSP XQuery
Editor with access to data service and XFL (XQuery function library) routines.

http://e-docs.bea.com/liquiddata/docs85/xquery/index.html

Data Serv i ces P la t fo rm Pro jec ts and Components

2-16 Data Services Developer’s Guide

Figure 2-16 Data Services Palette

For details on using the XQuery Editor see Chapter 6, “Working with the XQuery Editor.”

Editing XML Types and Return Types
A schema editor for modifying XML types in model diagrams and data services, as well as return types
in the XQuery Editor, is available. See “Working with Logical Data Service XML Types” on page 4-23.
Most editor options are available from the right-click menu.

Right-click menu commands for return types differ slightly from those in the XML type editor. The
reason is that you can use the XQuery Editor to create if-then-else constructs, zones, and cloned
elements as a means of more exactly specifying the form your query result document should take. (See
“Modifying a Return Type” on page 6-47.)

Major Components o f a DSP P ro jec t

Data Services Developer’s Guide 2-17

Figure 2-17 Editing an XML Type Element

Test View
After you have developed a query you can run it using Test View. For details see Chapter 7, “Testing
Query Functions and Viewing Query Plans.”

Source View
If you are working in Source View you can easily add pre-built XQuery functions and constructs to your
source, as well as make other editing changes to your data service. For additional details see
Chapter 8, “Working with XQuery Source.”

Query Plan View
You can review the query plan developed by DSP for a particular function in order to verify the
generated SQL or look for opportunities to improve performance. See “Analyzing Queries Using Plan
View” on page 7-14.

XQuery Function Libraries
You can create XQuery libraries containing functions that can be used by any data service in your
application. XQuery function libraries can be created in two ways:

Using the File →New XQuery Function Library option.

Automatically, when Java functions returning primitive types are imported as metadata (see
“Obtaining Enterprise Metadata” on page 3-1).

Data Serv i ces P la t fo rm Pro jec ts and Components

2-18 Data Services Developer’s Guide

An XQuery function library (.xfl file) is ideal for creating transformation, security, and other types
of functions that are not associated with an XML type.

XQuery Function Library Views
An XQuery function library (XFL) holds any number of functions.

XFL Design View is similar to the data service Design View (shown in “Sample Data Service” on
page 1-5). The primary differences are:

Since no schema is associated with a library, there is no XML type.

There are no relationship functions.

The tabular modes available in data services — Source View, XQuery Editor View, Test View, and
Query Plan View — are available to XQuery function libraries as well.

XFL files play an important role in creating inverse functions. See “Using Inverse Functions to
Improve Performance During Updates” on page 9-3 in Chapter 9, “Best Practices and Advanced
Topics.”

Creating an XFL Function
It is not difficult to make a function in a data service available throughout your project as an XML
function library.

Note: Namespace conflicts must to be resolved before you can make your function generally
available.

The following function is available in the RTLApp’s DataServices/RTLServices/Credit Card data
service (namespace declarations from a separate section of the source file are also included):

declare namespace ns1="ld:DataServices/BillingDB/CREDIT_CARD";

import schema namespace ns0="urn:retailerType" at
"ld:DataServices/RTLServices/schemas/CreditCard.xsd";

declare namespace tns="ld:DataServices/RTLServices/CreditCard";

(: ... :)

Also see in the Data Services Platform Samples Tutorial Part II:

- Lesson 35: Creating an XQuery Function Library

http://e-docs.bea.com/liquiddata/docs85/interm/SamplesTutorial2.pdf

Major Components o f a DSP P ro jec t

Data Services Developer’s Guide 2-19

declare function tns:getCreditCard() as element(ns0:CREDIT_CARD)* {
for $CREDIT_CARD in ns1:CREDIT_CARD()
return <ns0:CREDIT_CARD>
 <CreditCardID>{fn:data($CREDIT_CARD/CC_ID)}</CreditCardID>
 <CustomerID>{fn:data($CREDIT_CARD/CUSTOMER_ID)}</CustomerID>

<CustomerName>{fn:data($CREDIT_CARD/CC_CUSTOMER_NAME)}</CustomerName>
 <CreditCardType>{fn:data($CREDIT_CARD/CC_TYPE)}</CreditCardType>
 <CreditCardBrand>{fn:data($CREDIT_CARD/CC_BRAND)}</CreditCardBrand>

<CreditCardNumber>{fn:data($CREDIT_CARD/CC_NUMBER)}</CreditCardNumber>
 <LastDigits>{fn:data($CREDIT_CARD/LAST_DIGITS)}</LastDigits>
 <ExpirationDate>{fn:data($CREDIT_CARD/EXP_DATE)}</ExpirationDate>
 {fn-bea:rename($CREDIT_CARD/STATUS,<Status/>)}
 {fn-bea:rename($CREDIT_CARD/ALIAS,<Alias/>)}
 <AddressID>{fn:data($CREDIT_CARD/ADDR_ID)}</AddressID>
</ns0:CREDIT_CARD>

Here are the steps you would take to create this function in an XQuery library:

1. The first step is to create and name a library, if you do not already have one:

File →New →XQuery Function Library

Figure 2-18 Creating an XQuery Function Library

2. Name your library, such as myXQueryLibrary.

3. Copy your function into the newly created file.

Data Serv i ces P la t fo rm Pro jec ts and Components

2-20 Data Services Developer’s Guide

4. Change the function declaration to match the namespace of your library file.

Source for the XQuery library file containing the CREDIT_CARD function appears below. To simplify,
the object is returned as $x rather than as a set of individually-mapped elements.

(::pragma xfl <x:xfl xmlns:x="urn:annotations.ld.bea.com"></x:xfl> ::)

xquery version "1.0" encoding "WINDOWS-1252";

declare namespace tns="lib:DataServices/MyXQueryLibrary";

declare namespace ns1="ld:DataServices/BillingDB/CREDIT_CARD";
import schema namespace ns0="urn:retailerType" at
"ld:DataServices/RTLServices/schemas/CreditCard.xsd";

(: function pragma removed for readability :)

declare function tns:getCreditCard() as element(ns1:CREDIT_CARD)* {
for $x in ns1:CREDIT_CARD()
return $x

};

Usages of Data Services Artifacts
It is often convenient to determine which Data Services Platform artifacts are in use by which other
artifacts. For example, before making changes in an XML type it is important to determine what other
data services might be impacted. Of course you can do this through the Metadata Browser, described
in the “Viewing Metadata” chapter of the DSP Administration Guide. However, it is often more
convenient to do this in the context of the WebLogic Workshop navigation pane or the DSP Design
View.

For example, in the RTLApp, right-clicking on a data service shows a number of options including Find
Usages (Figure 2-19).

../admin/index.html

Major Components o f a DSP P ro jec t

Data Services Developer’s Guide 2-21

Figure 2-19 Finding Usages of a Data Service in RTLApp

When you pick this option, usages of the artifact are displayed, as shown in Figure 2-20.

Figure 2-20 Usages of the Customer Data Service in the RTLAPP

You can find the usages of the following types of DSP artifacts:

Data services

XML library function files

Read and relationship functions

Procedures

Data Serv i ces P la t fo rm Pro jec ts and Components

2-22 Data Services Developer’s Guide

Private functions

Schemas

Updating Application or Project Data Service Libraries
When you save a DSP application its JAR libraries files are bound to that application. If you
subsequently migrate to a newer version of DSP, you also need to migrate your application to the latest
library files. For details see “Migrating Legacy DSP Applications” in the DSP Installation Guide.

Building and Deploying Applications, EARs, and SDO Mediator
Clients

DSP attempts to rebuild your application as necessary. However, there are times when you will need
to initiate a build directly.

Building, Deploying, and Updating Applications
The following table describes relevant Build menu options and their uses.

Build Menu Options Usage

Build Application Builds or rebuilds your application. The result is that the contents
of all the project-specific JAR files are updated according to the
underlying project script. If your application has already been
deployed, this option will automatically redeploy after a successful
build.

You can also build individual projects.

Clean Application Attempts to undeploy EJBs and other resources that were produced
by the compilation process. In some cases this is not possible
because of the state of the server. If Clean Application does not
solve the problem, stop and restart WebLogic Server.

Clean Application addresses problems that occur due to cyclic
compilation of Java files during iterative development, not on
production servers.

You can also clean individual projects.

Build EAR Creates a Java archive (JAR) file of your application. The EAR file
has the same name as your application.

../install/index.html

Bui ld ing and Dep loy ing App l ica t ions , EARs , and SDO Mediato r C l ients

Data Services Developer’s Guide 2-23

When to Rebuild Your DSP Project
You need to rebuild your project whenever you delete a file from a DSP-based project. Rebuilds can
occur on a project or at the application level. Generally speaking, there is no need to rebuild your
entire application unless you have made changes to multiple projects.

Rebuild your project (or application) in two steps:

1. Clean your project (application). You can do this by right-clicking on your project (application) in
the Application pane and selecting the available Clean option. Alternatively, use the appropriate
Clean option available from the WebLogic Workshop Build menu.

2. Build your project (or application) using the appropriate right-click or Build menu options.

Note: If you try to run a function in Test View and it fails unexpectedly, it is often curative to clean,
then rebuild your application before attempting to run your query again.

Deploying Your Application
If your application is already deployed, it will be automatically redeployed whenever you rebuild it.
Under some conditions you may want to undeploy your application first. The following table describes
relevant options available when you click on your application folder in the Application pane.

Table 2-21 Usages of Various Deployment Menu Options

For additional information on deploying WebLogic Workshop applications see:

“Building and Deploying Integrated Applications”

“Deploying Applications to a Production Server”

Application Level Right-click Menu
Deployment Options

Usage

Deployment →Redeploy Redeploys your application.

Note: When you build your application it is automatically
redeployed.

Deployment →Full Redeploy First removes your application from the server, then
redeploys it.

Deployment →Undeploy Removes your application from the server.

http://e-docs.bea.com/workshop/docs81/doc/en/integration/deploy/deployIntro.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/guide/deployment/navDeployingApplications.html

Data Serv i ces P la t fo rm Pro jec ts and Components

2-24 Data Services Developer’s Guide

Creating the SDO Mediator API
After you have created and tested your application’s query functions, you need to make them available
to client applications. The SDO mediator API is the primary means of providing access to your
updatable functions.

Note: For details on SDO programming and accessing data in Java clients through the mediator API
see the Data Services Platform Client Application Developer’s Guide.

Generating the SDO Mediator JAR in Workshop
One way to create the SDO mediator client Java archive (.jar) file is through the right-click menu
option Build SDO Mediator Client. This is only available from the root folder of your application.

When successful, your SDO mediator client will be created in the root directory of your application.
The file will be named as:

<name_of_your_application>-ld-client.jar

The SDO mediator JAR file will also be automatically added to your application’s Libraries folder.

Note: Insure that all of your projects are up-to-date and built before creating your SDO mediator
JAR file. See also “Building, Deploying, and Updating Applications” on page 2-22.

Command-line Generation of the SDO Mediator API
You can also create the SDO mediator client JAR file through the command line using ant scripts.

When an EAR File Is Available
If you already have an EAR file you can use the script:

ant -f $WL_HOME/liquiddata/bin/ld_clientapi.xml
-Darchive=</your_path/name_of_your_application>.ear>

in which case the name of your JAR file will be taken from the EAR file:

<name_of_your_application>-ld-client.jar

It will be created in the same directory as the EAR file.

Generating an SDO Mediator JAR File
You can generate an SDO mediator client JAR file (without needing an EAR file) by simply specifying
an application directory:

ant -f $WL_HOME/liquiddata/bin/ld_clientapi.xml
-Dapproot=</your_path/name_of_your_application>/root>

http://e-docs.bea.com/liquiddata/docs85/appdev/index.html

Refacto r ing DSP Ar t i fac ts

Data Services Developer’s Guide 2-25

This approach will use the directory name of the application root to compute the JAR file name; in the
above case the name would be root-ld-client.jar. If that's not what is wanted, you could specify:

-Dsdojarname=<MyApp-ld-client.jar>

to override this. Either way the JAR file will be generated in the application root directory.

Generating JAR Files in Non-default Directories
For either case you could specify the additional ant parameter:

-Doutdir=</path/to/dir>

to generate the JAR file to a specific directory location.

Similarly you could use:

-Dtmpdir=</path/to/tmp>

to specify an alternate directory for temporary files, including the generated .java code.

The default tmp file location is specified by the Java system property:

java.io.tmpdir

In any case, when building from the command line, the SDO mediator.jar file will not be added to
your application’s Libraries folder (shown in Figure 2-2).

Refactoring DSP Artifacts
There are times when you will want to move, rename, or delete artifacts in your Data Services Platform
projects. A typical example: your application is first developed with test data, so as to not expose
confidential information to unauthorized individuals. Then, once developed, your application is ready
for deployment with the actual, secured data sources. You can use refactoring to greatly simplify the
renaming, deleting, or relocating of DSP components.

Data Serv i ces P la t fo rm Pro jec ts and Components

2-26 Data Services Developer’s Guide

Figure 2-22 Refactoring Options Available for the RTLApp’s Address Data Service

Without refactoring, changes you make to artifact names can easily result in invalid references. For
example, renaming a data service file automatically invalids any relationship functions in other data
services that refer to that file. The alternative to refactoring is to manually find all usages of a given
artifact and make manual edits to data service source; this can be quite tedious and error-prone,
particular as projects grow.

When you use the Refactor option you initially see the effect your refactoring change will have on
impacted application artifacts (Figure 2-23). A checkbox allows you to exempt any artifact from the
refactoring operation.

Note: Care should be taken when deselecting elements recommended for refactoring. Without
additional manual changes to the underlying source you likely will no longer be able to build
or deploy your application.

Refacto r ing DSP Ar t i fac ts

Data Services Developer’s Guide 2-27

Figure 2-23 Artifacts Impacted by a Refactoring

Artifacts Supporting Refactoring
Table 2-24 describes artifacts subject to refactoring and their options.

Table 2-24 Data Service Artifacts Supporting Refactoring and Available Refactoring Options

Move, rename, and add/remove parameter operations are typically accomplished without adverse
consequence. Delete operations, however, can adversely affect your project. For this reason the usages
of the artifact you have identified for deletion are shown (see Figure 2-25). From this information you
can easily determine the trade-offs between the automation of the refactoring operation and its
consequences, which may require additional manual actions on your part.

Artifact Refactoring Options

Data service (DS files) Move, refactor rename, safe delete

XML File Library (XFL files) Move, refactor rename, safe delete

Schemas (XSD files) referred to within a data service Move, refactor rename, safe delete

Functions (data service and XFL) Rename, safe delete, add/remove parameters

Namespace declarations Rename selected prefix or propagate the
change through the project.

Schema import (data service and XFL) Rename selected schema import prefix or
propagate the renaming through the project.

Data Serv i ces P la t fo rm Pro jec ts and Components

2-28 Data Services Developer’s Guide

Figure 2-25 Implications of a Safe Delete Operation

Setting Refactor Options
Access to refactor options depends on the artifact:

Data services, XFL files, schemas. Refactor operations for data services, XFL files, and
schemas can be accessed by right-clicking on the artifact in the Application pane.

Functions and procedures. Refactor options for functions and procedures can be access by
right-clicking on name of the function or procedure in Design View or by right-clicking on its
associated arrow.

Refacto r ing DSP Ar t i fac ts

Data Services Developer’s Guide 2-29

Figure 2-26 Refactoring a Data Service Function

Namespace declarations and schema import declarations. Refactor operations related to
namespaces and schema import declarations are accessed through the Prefix Bindings section
of Property Editor.

You can refactor a namespace or external schema prefix simply by changing its prefix name
(binding) in the Property Editor (Figure 2-26).

Data Serv i ces P la t fo rm Pro jec ts and Components

2-30 Data Services Developer’s Guide

Figure 2-27 Refactoring Namespace Declarations

When you change a prefix binding you are also given the option of making the change
throughout your project (globally).

If you choose this option (see anywhere the uri (urn:retailerType) appears in your project, the
prefix will become “retailer1”.

Refacto r ing DSP Ar t i fac ts

Data Services Developer’s Guide 2-31

Figure 2-28 Changing a Prefix Binding Throughout Your Project

If you choose Yes, a list of usages of the URI appears.

Figure 2-29 List of Prefix Bindings Potentially Affected by a Global Prefix Change

Warning: Although you can deselect any artifact that you do not want to be included in a refactor
operation, doing so will invalidate that artifact and any files dependent on that artifact.
For this reason selective deselection of artifacts scheduled for refactoring should
generally not be employed.

Data Serv i ces P la t fo rm Pro jec ts and Components

2-32 Data Services Developer’s Guide

Note: In the case of namespace prefixes, names should be changed (or not) based on readability
or consistency issues. Neither a local or a global change will adversely affect your code.

Impacts of Various Refactoring Operations
It is useful to understand the various potential effects of a refactoring operation.

In this section each type of refactoring operation is described in terms of its potential impact on
related artifacts.

Refacto r ing DSP Ar t i fac ts

Data Services Developer’s Guide 2-33

Table 2-30 Refactoring Effects on Artifact Types

Artifact(s) Renaming Operations Move Operations Safe Delete Operations

Data service Renames data service

Updates:

• Name in source.

• Namespace URI for
data service
functions

• Dependent
annotations

• Dependent function
references

• Dependent model
diagrams

• Dependent data
service controls

• Function dependent
on read function and
relationship
functions

Moves data service to a
new location in the
project.

Move operations update
the same artifacts listed
under Renaming
Operations.

Deletes after warning
regarding any
dependencies.

• Data service read
functions

• Relationship
functions

• Private functions

• XFL functions

Updates:

• Name in source.

• External or internal
references to this
function in other
function bodies, if
any.

• References to this
function in inverse
and equivalent
transform
annotations, if any.

N/A • Delete name in
source.

• Warns of any
dependencies,
including:

– references to
this function
in other
function
bodies

– references to
this function
in inverse and
equivalent
transform
annotations.

Data Serv i ces P la t fo rm Pro jec ts and Components

2-34 Data Services Developer’s Guide

• Namespace
declarations

• Schema import
declarations

Updates:

• Prefix declaration
and usages in source
(local).

• Prefix usages for the
specified namespace
URI for the entire
project (global
option).

N/A N/A

External schema
declarations

Updates:

• External schema URI
(local)

• External schema URI
for the entire project
(global option).

N/A N/A

Artifact(s) Renaming Operations Move Operations Safe Delete Operations

Data Services Developer’s Guide 3-1

C H A P T E R 3

Obtaining Enterprise Metadata

A first step in creating data services for the BEA Aqualogic Data Services Platform (DSP) is to obtain
metadata from physical data needed by your application.

This chapter describes this process, including the following topics:

Creating Data Source Metadata

Obtaining Metadata From Relational Sources

– Importing Relational Table and View Metadata

– Importing Stored Procedure-Based Metadata

– Using SQL to Import Metadata

Importing Web Services Metadata

Importing Java Function Metadata

Importing Delimited File Metadata

Importing XML File Metadata

Updating Data Source Metadata

Creating Data Source Metadata
Metadata is simply information about the structure of a data source. For example, a list of the tables
and columns in a relational database is metadata. A list of operations in a Web service is metadata.

Obta in ing Ente rp r i se Metadata

3-2 Data Services Developer’s Guide

In DSP, a physical data service is based almost entirely on the introspection of physical data sources.

Figure 3-1 Data Services Available to the RTL Sample Application

Table 3-2 list the types of sources from which DSP can create metadata.

Table 3-2 Data Sources Available for Creating Data Service Metadata

Data Source Type Access

Relational (including
tables, views, stored
procedures, and SQL)

JDBC

Web services (WSDL files) URI, UDDI, WSDL

Delimited (CSV files) File-based data, such as spreadsheets.

Creat ing Data Source Metadata

Data Services Developer’s Guide 3-3

When information about physical data is developed using the Metadata Import Wizard two things
happen:

A physical data service (extension .ds) is created in your DSP-based project.

A companion schema of the same name (extension.xsd), is created. This schema describes
quite exactly the XML type of the data service. Such schemas are placed in a directory named
schemas which is a sub-directory of your newly created data service.

Figure 3-3 DSP Application Pane Displaying a Data Service and Its Schema Directory

Java functions (.java) Programmatic

XML (XML files) File- or data stream-based XML

Data Source Type Access

Obta in ing Ente rp r i se Metadata

3-4 Data Services Developer’s Guide

You can import metadata on the data sources needed by your application using the DSP Metadata
Import wizard. This wizard introspects available data sources and identifies data objects that can be
rendered as data services and functions. Once created, physical data services become the
building-blocks for queries and logical data services.

Data source metadata can be imported as Data Services Platform functions or procedures. For
example, the following source resulted from importing a Web service operation:

(::pragma function <f:function xmlns:f="urn:annotations.ld.bea.com" kind="read"
nativeName="getCustomerOrderByOrderID" nativeLevel1Container="ElecDBTest"
nativeLevel2Container="ElecDBTestSoap" style="document"/>::)

declare function f1:getCustomerOrderByOrderID($x1 as
element(t1:getCustomerOrderByOrderID)) as
schema-element(t1:getCustomerOrderByOrderIDResponse) external;

Notice that the imported Web service is described as a “read” function in the pragma. “External” refers
to the fact that the schema is in a separate file. You can find a detailed description of source code
annotations in “Understanding Data Services Platform Annotations” in the XQuery Reference Guide.

For some data sources such as Web services imported metadata represents functions which typically
return void (in other words, these functions perform operations rather than returning data). Such
routines are classified as side-effecting functions or, more formally, as DSP procedures. You also have
the option of marking routines imported from certain data sources as procedures. (See “Identifying
DSP Procedures” on page 3-4.)

The following source resulted from importing Web service metadata that includes an operation that
has been identified as a side-effecting procedure:

(::pragma function <f:function xmlns:f="urn:annotations.ld.bea.com"
kind="hasSideEffects" nativeName="setCustomerOrder" style="document"/>::)

declare function f1:setCustomerOrder($x1 as element(t3:setCustomerOrder)) as
schema-element(t3:setCustomerOrderResponse) external;

In the above pragma the function is identified as “hasSideEffects”.

Note: DSP procedures are only associated with physical data services and can only be created
through the metadata import process. So, for example, attempting to add procedures to a
logical data service through Source View will result in an error condition.

Identifying DSP Procedures
When you import source metadata for Web services, relational stored procedures, or Java functions
you have an opportunity to identify the metadata that represents side-effecting routines. A typical

../xquery/index.html

Creat ing Data Source Metadata

Data Services Developer’s Guide 3-5

example is a Web service that creates a new customer record. From the point of view of the data
service such routines are procedures.

Procedures are not standalone; they always are part of a data service from the same data source.

When importing data from such sources the Metadata Import wizard automatically categorizes
routines that return void as procedures. The reason for this is simply: if a routine does not return data
it cannot inter-operate with other data service functions.

There are, however, routines that both return data and have side-effects; it is these routines which
you need to identify as procedures during the metadata import process. Identification of such
procedures provides the application developer with two key benefits:

Creating a procedure during metadata input makes that the routine more easily available to the
application programmer through the DSP invokeProcedure() API.

If you import a routine that has side effects simply as a data service or as an executable
function in an XML Function Library, invoking that routine through XQuery may have
unexpected results, including the possibility that the routine will not be invoked at all. (The
reason for this is that XQuery is a declarative language. You define your goals and the query
engine determines how to achieve those goals. If a function is not intrinsic to achieving the
overall goal of the query then its execution may be skipped even though it is specified as part of
the overall query.)

Table 3-4 lists common DSP operations, identifying which operations are available or unavailable for
data service procedures.

Table 3-4 Data Services Platform Scope of Procedures

Artifact Procedures Available Procedures Unavailable

Data Services Platform IDE • Metadata import operations

• Function execution from Test
View

• DSP Control query function
palette

• DSP Palette

• XQuery Editor function list

• Query Plan Viewer function
list

• For use in ad hoc queries

• For use in logical data services

Obta in ing Ente rp r i se Metadata

3-6 Data Services Developer’s Guide

Procedures greatly simplify the process of updating non-relational back-end data sources by providing
an invokeProcedure() API. This API encapsulates the operational logic necessary to invoke relational
stored procedures, Web services, or Java functions. In such cases update logic can be built into a
back-end data source routine which, in turn, updates the data.

For information on updating non-relational sources and other special cases see “Enabling SDO Data
Source Updates” in the Client Application Developer’s Guide.

For an example showing how you can identify side-effecting procedures during the metadata import
process see “Importing Web Services Metadata” on page 3-37.

Data Services Platform Console • Function security settings

• Left tree access

• Cache operations

Data Services Platform APIs • invokeProcedure()

• Strongly typed API

• DSP control

• invoke() API (only for use with
functions)

• prepareExpression() for
running ad hoc queries

Artifact Procedures Available Procedures Unavailable

../appdev/index.html

Obta in ing Metadata F rom Re la t i ona l Sources

Data Services Developer’s Guide 3-7

Obtaining Metadata From Relational Sources
You can obtain metadata on any relational data source available to the BEA WebLogic Platform. For
details see the BEA Platform document entitled “How Do I Connect a Database Control to a Database
Such as SQL Server or Oracle.”

Four types of metadata can be obtained from a relational data source:

Table-based

View-based

Stored procedure-based

SQL-based

Functions

Note: When using an XA transaction driver you need to mark your data source’s connection pool to
allow LocalTransaction in order for single database reads and updates to succeed.

For additional information in XA transaction adaptor settings see “Developing Adaptors” in
BEA WebLogic Integration documentation:
http://e-docs.bea.com/wli/docs81/devadapt/dbmssamp.html

http://e-docs.bea.com/workshop/docs81/doc/en/workshop/guide/howdoi/howConnectDatabaseControlSQLServerOracle.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/guide/howdoi/howConnectDatabaseControlSQLServerOracle.html
http://e-docs.bea.com/wli/docs81/devadapt/dbmssamp.html

Obta in ing Ente rp r i se Metadata

3-8 Data Services Developer’s Guide

Importing Relational Table and View Metadata
To create metadata on relational tables and views follow these steps:

1. Select the project in which you want to create your metadata. For example, if you have a project
called myLDProject right-click on the project name and select Import Source Metadata... from the
pop-up menu. Click Next.

2. From the available data sources in the Import Wizard select Relational (see Figure 3-5).

Figure 3-5 Selecting a Relational Source from the Import Metadata Wizard

3. Either select a data source from available sources or make a new data source available to the
WLS.

Obta in ing Metadata F rom Re la t i ona l Sources

Data Services Developer’s Guide 3-9

Figure 3-6 Import Data Source Metadata Selection Dialog Box

Data Object Selection Options
For information on creating a new data source see “Creating a New Data Source” on page 3-10.

If you choose to select from an existing data source, several options are available (Figure 3-6).

Select All Database Objects
If you choose to select all, a table will appear containing all the tables, views, and stored procedures
in your data source organized by catalog and schema.

Filter Data Source Objects
Sometimes you know exactly the objects in your data source that you want to turn into data services.
Or your data source may be so large that a filter is needed. Or you may be looking for objects with
specific naming characteristics (such as %audit2003%, a string which would retrieve all objects
containing the enclosed string).

In such cases you can identify the exact parts of your relational source that you want to become data
service candidates using standard JDBC wildcards. An underscore (_) creates a wildcard for an

Obta in ing Ente rp r i se Metadata

3-10 Data Services Developer’s Guide

individual character. A percentage sign (%) indicates a wildcard for a string. Entries are
case-sensitive.

For example, you could search for all tables starting with CUST with the entry: CUST%. Or, if you had
a relational schema called ELECTRONICS, you could enter that term in the Schema field and retrieve
all the tables, views, and stored procedure that are a part of that schema.

Another example:

CUST%, PAY%

entered in the Tables/Views field retrieves all tables and views starting with either CUST or PAY.

Note: If no items are entered for a particular field, all matching items are retrieved. For example,
if no filtering entry is made for the Procedure field, all stored procedures in the data object
will be retrieved.

For relational tables and views you should choose either the Select all option or Selected data source
objects.

You can also use wildcards to support importing metadata on internal stored procedures. For example,
entering the following string as a stored procedure filter:

%TRIM%

retrieves metadata on the system stored procedure:

STANDARD.TRIM

In such a situation you would also want to make a nonsense entry in the Table/View field to avoid
retrieving all tables and views in the database.

For details on stored procedures see “Importing Stored Procedure-Based Metadata” on page 3-16.

SQL statement
Allows you to enter an SQL statement that is used as the basis for creating a data service. See “Using
SQL to Import Metadata” on page 3-31 for details.

Creating a New Data Source
Most often you will work with existing data sources. However, if you choose New... the WLS DataSource
Viewer appears (Figure 3-7). Using the DataSource Viewer you can create new data pools and sources.

Obta in ing Metadata F rom Re la t i ona l Sources

Data Services Developer’s Guide 3-11

Figure 3-7 BEA WebLogic Data Source Viewer

For details on using the DataSource Viewer see “Configuring a Data Source” in WebLogic
Workshop documentation.

Selecting an Existing Data Source
Only data sources that have set up through the BEA WebLogic Administration Console are available
to a Data Services Platform application or project. In order for the BEA WebLogic Server used by DSP
to access a particular relational data source you need to set up a JDBC connection pool and a JDBC
data source.

For details on setting up a JDBC connection pool see:

http://e-docs.bea.com/wls/docs81/ConsoleHelp/domain_jdbcconnectionpool_config_
general.html

For details on setting up a JDBC data source see:

http://e-docs.bea.com/wls/docs81/ConsoleHelp/domain_jdbcdatasource_config.html

http://e-docs.bea.com/workshop/docs81/doc/en/workshop/guide/datasource/navWorkingWithDataSources.html
http://e-docs.bea.com/wls/docs81/ConsoleHelp/domain_jdbcconnectionpool_config_general.html
http://e-docs.bea.com/wls/docs81/ConsoleHelp/domain_jdbcdatasource_config.html

Obta in ing Ente rp r i se Metadata

3-12 Data Services Developer’s Guide

Figure 3-8 Selecting a Data Source

Once you have selected a data source, you need to choose how you want to develop your metadata —
by selecting all objects in the database, by filtering database objects, or by entering a SQL statement.
(see Figure 3-6).

Creating Table- and View-Based Metadata
Once you have selected a data source and any optional filters, a list of available database objects
appears.

Obta in ing Metadata F rom Re la t i ona l Sources

Data Services Developer’s Guide 3-13

Figure 3-9 Identifying Database Objects to be Used as Data Services

Using standard dialog commands you can add one or several tables to the list of selected data
objects. To deselect a table, select that table in the right-hand column and click Remove.

A Search field is also available. This is useful for data sources which have many objects. Enter a
search string, then click Search repeatedly to move through your list.

4. Once you have selected one or several data sources, click Next to verify the location of the
to-be-created data services and the names of your new data services.

The imported data summary screen:

– Lists selected objects by name. You can mouse over the XML type to see the complete path
(Figure 3-10).

– Lists the location of the generated data service in the current application.

– Identifies any name conflicts. Name conflicts occur when there is an data service of the
same name present in the target directory. Any name conflicts are highlighted in red.

You can edit the file name to clarify the name or to avoid conflicts. Simply click on the name
of the file and make any editing changes.

Obta in ing Ente rp r i se Metadata

3-14 Data Services Developer’s Guide

Alternatively, choose Remove All to return to the initial, nothing-is-selected state.

5. There are several situations where you will need to change the name of your data service:

– There already is a data service of the same name in your application.

– You are trying to create multiple data services with the same name.

In such cases the name(s) of the data service(s) having name conflicts appear in red. Simply
change to a unique name using the built-in line editor.

Figure 3-10 Relational Source Import Data Summary Screen

6. Click Finish. A data service will be created for each object selected. The file extension of the
created data services will always be .ds.

Database-specific Considerations
Database vendors variously support database catalogs and schemas. Table 3-11 describes this support
for several major vendors.

Obta in ing Metadata F rom Re la t i ona l Sources

Data Services Developer’s Guide 3-15

Table 3-11 Vendor Support for Catalog and Schema Objects

XML Name Conversion Considerations
When a source name is encountered that does not fit within XML naming conventions, default
generated names are converted according to rules described by the SQLX standard. Generally
speaking, an invalid XML name character is replaced by its hexadecimal escape sequence (having the
form _xUUUU_).

For additional details see section 9.1 of the W3C draft version of this standard:

http://www.sqlx.org/SQL-XML-documents/5WD-14-XML-2003-12.pdf

Once you have created your data services you are ready to start constructing logical views on your
physical data. See Chapter 4, “Designing Data Services.” and Chapter 5, “Modeling Data Services.”

Vendor Catalog Schema

Oracle Does not support catalogs. When specifying
database objects, the catalog field should
be left blank.

Typically the name of an Oracle user ID.

DB2 If specifying database objects, the catalog
field should be left blank.

Schema name corresponds to the catalog
owner of the database, such as db2admin.

Sybase Catalog name is the database name. Schema name corresponds to the database
owner.

Microsoft SQL
Server

Catalog name is the database name. Schema name corresponds to the catalog
owner, such as dbo. The schema name
must match the catalog or database owner
for the database to which you are
connected.

Informix Does not support catalogs. If specifying
database objects, the catalog field should
be left blank.

Not needed.

PointBase Pointbase database systems do not support
catalogs. If specifying database objects, the
catalog field should be left blank.

Schema name corresponds to a database
name.

http://www.sqlx.org/SQL-XML-documents/5WD-14-XML-2003-12.pdf

Obta in ing Ente rp r i se Metadata

3-16 Data Services Developer’s Guide

Importing Stored Procedure-Based Metadata
Enterprise databases utilize stored procedures to improve query performance, manage and schedule
data operations, enhance security, and so forth. You can import metadata based on stored procedures.
Each stored procedure becomes a data service.

Note: Refer to your database documentation for details on managing stored procedures.

Stored procedures are essentially database objects that logically group a set of SQL and native
database programming language statements together to perform a specific task.

Table 3-12 defines some commonly used terms as they apply to this discussion of stored procedures.

Table 3-12 Terms Commonly Used When Discussing Stored Procedures

Term Usage

Function A function is identical to a procedure except a function always return one or more
values to the caller and a procedure never returns a value. The value can be a
simple type, a row type, or a complex user defined type.

Package A package is a group of related procedures and functions, together with the
cursors and variables they use, stored together in a database for continued use as
a unit. Similar to standalone procedures and functions, packaged procedures and
functions can be called explicitly by applications or users.

Stored
Procedure

A sequence of programming commands written in an extended SQL (such as
PL/SQL or T-SQL), Java or XQuery, stored in the database where it is to be used to
maximize performance and enhance security. The application can call a
procedure to fetch or manipulate database records, rather than using code outside
the database to get the same results. Stored procedures do not return values.

DSP Procedure Typically a routine which performs work but does not return data. An example
would be a routine callable from a data service which writes information to a log
file.

Rowset The set of rows returned by a procedure or query.

Result set JDBC term for rowset.

Parameter mode Procedures can have three modes: IN, OUT, and INOUT. There roughly correspond
to “write”, “read”, and “read/write”.

Obta in ing Metadata F rom Re la t i ona l Sources

Data Services Developer’s Guide 3-17

Importing Stored Procedures Using the Metadata Import Wizard
Imported stored procedure metadata is quite similar to imported metadata for relational tables and
views. The initial three steps for importing stored procedures are the same as importing any relational
metadata (described under “Importing Relational Table and View Metadata” on page 3-8).

Note: If a stored procedure has only one return value and the value is either simple type or a RowSet
which is mapping to an existing schema, no schema file created.

You can select any combination of database tables, views, and stored procedures. If you select one or
several stored procedures, the Metadata Import wizard will guide you through the additional steps
required to turn a stored procedure into a data service. These steps are:

1. Select one or several stored procedures. A data service can represent only one stored procedure.
In other words, if you have five stored procedures, you will create five data services.

Also see in the Data Services Platform Samples Tutorial Part II:

- Lesson 31: Accessing Data in Stored Procedures

http://e-docs.bea.com/liquiddata/docs85/interm/SamplesTutorial2.pdf

Obta in ing Ente rp r i se Metadata

3-18 Data Services Developer’s Guide

Figure 3-13 Selecting Stored Procedure Database Objects to Import

2. After you have added the database objects that you want to become data services.

3. From the selected procedures (Figure 3-14) configure each stored procedure. If your stored
procedure has an OUT parameter requiring a complex element, you may need to provide a
schema.

Obta in ing Metadata F rom Re la t i ona l Sources

Data Services Developer’s Guide 3-19

Figure 3-14 Configuring a Stored Procedure in Pre-editing Mode

Data objects in the stored procedure that cannot be identified by the Metadata Import wizard
will appear in red, without a datatype. In such cases you need to enter Edit mode (click the
Edit button) to identify the data type.

Your goal in correcting an “<unknown>” condition associated with a stored procedure
(Figure 3-14) is to bring the metadata obtained by the import wizard into conformance with the
actual metadata of the stored procedure. In some cases this will be by correcting the location of
the return type. In others you will need to adjust the type associated with an element of the
procedure or add elements that were not found during the initial introspection of the stored
procedure.

Obta in ing Ente rp r i se Metadata

3-20 Data Services Developer’s Guide

Figure 3-15 Stored Procedure in Editing Mode (with Callouts)

4. Edit your procedure as appropriate using the following steps:

a. Select a stored procedure from the complete list of stored procedures that you want to turn
into data services.

b. Edit the stored procedure parameters including setting mode (in, out, inout), type, and for out
parameters, schema location.

c. Verify and, if necessary, add, remove, or change the order of parameters.

d. Verify and, if necessary, add, remove, or change any editable rowset.

e. Supply a return type (either simple or complex through identifying a schema location) in cases
the Metadata Import wizard was unable to determine the type.

f. Accept or cancel your changes.

You need to complete information for each selected stored procedure before you can move to
the next step. In particular, any stored procedures shown in red must be addressed.

Details for each section of the stored procedure import dialog box appear below.

1
2

3

4

5

6

Obta in ing Metadata F rom Re la t i ona l Sources

Data Services Developer’s Guide 3-21

Procedure Profile
Each element in a stored procedure is associated with a type. If the item is a simple type, you
can simply choose from the pop-up list of types.

Figure 3-16 Changing the Type of an Element in a Stored Procedure

If the type is complex, you may need to supply an appropriate schema. Click on the schema
location button and either enter a schema path name or browse to a schema. The schema must
reside in your application.

After selecting a schema, both the path to the schema file and the URI appear. For example:

http://temp.openuri.org/schemas/Customer.xsd}CUSTOMER

Procedure Parameters
The Metadata Import wizard, working through JDBC, also identifies any stored procedure
parameters. This includes the name, mode (input [in], output [out], or bidirectional [inout])
and data type. The out mode supports the inclusion of a schema.

Complex type is only supported under three conditions:

– as the output parameter

Obta in ing Ente rp r i se Metadata

3-22 Data Services Developer’s Guide

– as the return type

– as a rowset

All parameters are editable, including the name.

Note: If you make an incorrect choice you can use the Previous, then Next button to return the
dialog to its initial state.

Rowsets
Not all databases support rowsets. In addition, JDBC does not report information related to
defined rowsets. In order to create data services from stored procedures that use rowset
information, supply the correct ordinal (matching number) and a schema. If the schema has
multiple global elements, you can select the one you want from the Type column. Otherwise the
type will be the first global element in your schema file.

The order of rowset information is significant; it must match the order in your data source. Use
the Move Up / Move Down commands to adjust the ordinal number assigned to the rowset.

Complete the importation of your procedures by reviewing and accepting items in the Summary
screen (see step 4. in “Importing Relational Table and View Metadata” for details).

Note: XML types in data services generated from stored procedures do not display native types.
However, you can view the native type in the Source View pragma (see “Working with
XQuery Source”).

Handling Stored Procedure Rowsets

A rowset type is a complex type. The name of the rowset type can be:

– The parameter name (in case of a input/output or output only parameter)

– An assigned name such as RETURN_VALUE (if return value)

– The referenced element name (result rowsets) in a user-specified schema

The rowset type contains a sequence of a repeatable elements (for example called CUSTOMER)
with the fields of the rowset.

Note: All rowset-type definitions must conform to this structure.

In some cases the Metadata Import wizard can automatically detect the structure of a rowset
and create an element structure. However, if the structure is unknown, you will need to provide
it through the wizard.

5. Mark Appropriate Imported Stored Procedure Metadata as DSP Procedures

Obta in ing Metadata F rom Re la t i ona l Sources

Data Services Developer’s Guide 3-23

Identifying Stored Procedures as DSP Procedures
It is often convenient to leverage independent routines as part of managing enterprise
information through a data service. An obvious example would be to leverage standalone update
or security functions through data services. Such functions have noXML type; in fact they
typically return nothing (or void). Instead the data service knows that they have side-effects
and are associated as procedures with a data service of the same data source.

Stored procedures are very often side-effecting from the perspective of the data service, since
they perform internal operations on data. In such cases all you need to do is identify the stored
procedures as a DSP procedure during the metadata import process.

After you have identified the stored procedures that you want to add to your data service or
XML file library (XFL), you also have an opportunity to identify which of these should be
identified as DSP procedures.

Figure 3-17 Identifying Stored Procedures Having Side Effects

Note: DSP procedures based around atomic (simple) types are collected in an identified XML
function library (XFL) file. Other procedures need to be associated with a data service
that is local to your DSP-enabled project.

Obta in ing Ente rp r i se Metadata

3-24 Data Services Developer’s Guide

Internal Stored Procedure Support
You can import metadata for an internal stored procedures. See “Filter Data Source Objects” on
page 3-9 for details.

Stored Procedure Version Support
Only the most recent version of a stored procedure can be imported into DSP. For this reason you
cannot identify a version number when importing a stored procedure through the Metadata Import
wizard. Similarly, adding a version number to DSP source will result in a query exception.

Stored Procedure Support for Commonly Used Databases
Each database vendor approaches stored procedures differently. XQuery support limitations are, in
general, due to JDBC driver limitations.

General Restriction
DSP does not support rowset as an input parameter.

Oracle Stored Procedure Support
Table 3-18 summarizes DSP support for Oracle database procedures.

Table 3-18 Support for Oracle Store Procedures

Term Usage

Procedure types • Procedures

• Functions

• Packages

Parameter
modes

• Input only

• Output only

• Input/Output

• None

Obta in ing Metadata F rom Re la t i ona l Sources

Data Services Developer’s Guide 3-25

Sybase Stored Procedure Support
Table 3-19 summarizes DSP support for Sybase SQL Server database procedures.

Parameter data
types

Any Oracle PL/SQL data type except those listed below:

• ROWID

• UROWID

Note: When defining function signatures, note that the Oracle %TYPE and
%ROWTYPE types must be translated to XQuery types that match the
true types underlying the stored procedure’s %TYPE and %ROWTYPE
declarations. %TYPE declarations map to simple types; %ROWTYPE
declarations map to rowset types.

For a list of database types supported by DSP see “Relational Data
Types-to-Metadata Conversion” on page 3-32.

Data returned
from a function

Oracle supports returning PL/SQL data types such as NUMBER, VARCHAR,
%TYPE, and %ROWTYPE as parameters.

Comments The following identifies limitations associated with importing Oracle database
procedure metadata.

• The Metadata Import wizard can only detect the data structure for cursors
that have a binding PL/SQL record. For a dynamic cursor you need to manually
specify the cursor schema.

• Data from a PL/SQL record structure cannot be retrieved due to Oracle JDBC
driver limitations.

• The Oracle JDBC driver supports rowset output parameters only if they are
defined as reference cursors in a package.

• The Oracle JDBC driver does not support NATURALN and POSITIVEN as
output only parameters.

Term Usage

Obta in ing Ente rp r i se Metadata

3-26 Data Services Developer’s Guide

Table 3-19 Support for Sybase Stored Procedures

Term Usage

Procedure types • Procedures

• Grouped procedures

• Functions

Functions are categorized as a scalar or inline table-valued and
multi-statement table-valued function. Inline table-valued and
multi-statement table-valued functions return rowsets.

Parameter
modes

• Input only

• Output only

Parameter data
types

For the complete list of database types supported by DSP see “Relational Data
Types-to-Metadata Conversion” on page 3-32.

Data returned
from a function

Sybase functions supports returning a single value or a table.

Procedures return data in the following ways:

• As output parameters, which can return either data (such as an integer or
character value) or a cursor variable (cursors are rowsets that can be
retrieved one row at a time).

• As return codes, which are always an integer value.

• As a rowset for each SELECT statement contained in the stored procedure or
any other stored procedures called by that stored procedure.

• As a global cursor that can be referenced outside the stored procedure
supports, returning single value or multiple values.

Comments The following identifies limitations associated with importing Sybase database
procedure metadata:

• The Sybase JDBC driver does not support input/output or output only
parameters that are rowsets (including cursor variables).

• The Jconnect driver and some versions of the BEA Sybase driver cannot detect
the parameter mode of the procedure. In this case, the return mode will be
UNKNOWN, preventing importation of the metadata. To proceed, you need to
set the correct mode in order to proceed.

• Only data types generally supported by DSP metadata import can be imported
as part of stored procedures.

Obta in ing Metadata F rom Re la t i ona l Sources

Data Services Developer’s Guide 3-27

IBM DB2 Stored Procedure Support
Table 3-20 summarizes DSP support for IBM DB2 database procedures.

Table 3-20 Support for IBM Store Procedures

Term Usage

Procedure types • Procedures

• Functions

• Packages

Each function is also categorized as a scalar, column, row, or table function.

Here are additional details on function categorization:

• A scalar function is one that returns a single-valued answer each time it is
called.

• A column function is one which conceptually is passed a set of like values (a
column) and returns a single-valued answer (AVG()).

• A row function is a function that returns one row of values.

• A table function is function that returns a table to the SQL statement that
referenced it.

Parameter
modes

• Input only

• Output only

• Input/output

Parameter data
types

For the complete list of database types supported by DSP see “Relational Data
Types-to-Metadata Conversion” on page 3-32.

Data returned
from a function

DB2 supports returning a single value, a row of values, or a table.

Comments The following identifies limitations associated with importing DB2 database
procedure metadata:

• Column type functions are not supported.

• Rowsets as output parameters are not supported.

• The DB2 JDBC driver supports float, double, and decimal input only and
output only parameters.

Float, double, and decimal data types are not supported as input/output
parameters.

• Only data types generally supported by DSP metadata import can be imported
as part of stored procedures.

Obta in ing Ente rp r i se Metadata

3-28 Data Services Developer’s Guide

Informix Stored Procedure Support
Table 3-21 summarizes DSP support for Informix database stored procedures.

Table 3-21 Support for Informix Stored Procedures

Term Usage

Procedure types • Procedures

• Functions

A function may return more than one value.

Parameter
modes

• Input only

• Output only

• Input/output

Parameter data
types

For the complete list of database types supported by DSP see “Relational Data
Types-to-Metadata Conversion” on page 3-32.

Obta in ing Metadata F rom Re la t i ona l Sources

Data Services Developer’s Guide 3-29

Microsoft SQL Server Stored Procedure Support
Table 3-22 summarizes DSP support for Microsoft SQL Server database procedures.

Data returned
from a function

Informix supports returning single value, multiple values, and rowsets.

Comments Informix treats return value(s) from functions or procedures as a rowset. For this
reason a rowset needs to be defined for the return value(s).

The following limitations have been identified:

Informix Native Driver Limitations

• All parameter names are missing; instead in the Metadata Import wizard
parameters are assigned the same system-generated name:

RETURN VALUE

• All return values are reported as parameters with mode return instead of
mode result. This leads to a problem since only the first parameter should
be in mode return. This also causes a runtime failure. The workaround is to
get the value(s) using resultset.

BEA WebLogic Driver Limitations

• Input parameter names and return values are reported as result mode.
Since there is no name declared for those return values insider the procedure,
their corresponding parameters have no name either. The problem is that this
does not model “result” parameters as a group; thus result parameters are
likely to repeat as multiple rows. (Unlike the Oracle cursor which has the
cursor itself as an outer parameter, there is no holder for Informix result
parameters.)

Recommendations

Due to the limitations described above, the following approach is suggested for
importing Informix stored procedure metadata:

1. Use the BEA WebLogic driver wherever possible.

2. Define a schema that matches the return value structure (using the same
approach as external schemas for other databases).

3. In the Metadata Import wizard’s stored procedure section, remove all the
parameters in the Result section using Edit mode. Add a result parameter and
associate it with the schema defined in step 2. (If you are using the Informix
native driver assign a proper name for the input parameters.)

4. Manually edit the parameter’s section of the generated data service file.

Term Usage

Obta in ing Ente rp r i se Metadata

3-30 Data Services Developer’s Guide

Table 3-22 DSP Support for Microsoft SQL Server Stored Procedures

Term Usage

Procedure types SQL Server supports procedures, grouped procedures, and functions. Each
function is also categorized as a scalar or inline table-valued and multi-statement
table-valued function.

Inline table-valued and multi-statement table-valued functions return rowsets.

Parameter
modes

SQL Server supports input only and output only parameters.

Parameter data
types

SQL Server procedures/functions support any SQL Server data type as a
parameter.

Data returned
from a function

SQL Server functions supports returning a single value or a table.

Data can be returned in the following ways:

• As output parameters, which can return either data (such as an integer or
character value) or a cursor variable (cursors are rowsets that can be
retrieved one row at a time).

• As return codes, which are always an integer value.

• As a rowset for each SELECT statement contained in the stored procedure or
any other stored procedures called by that stored procedure.

Comments The following identifies limitations associated with importing SQL Server
procedure metadata.

• Result sets returned from SQL server (as well as those returned from Sybase)
are not detected automatically. Instead you will need to manually add
parameters as a result.

• The Microsoft SQL Server JDBC driver does not support rowset input/output
or output only parameters (including cursor variables).

• Only data types generally supported by DSP metadata import can be imported
as part of stored procedures.

Obta in ing Metadata F rom Re la t i ona l Sources

Data Services Developer’s Guide 3-31

Using SQL to Import Metadata
One of the relational import metadata options (see Figure 3-6) is to use an SQL statement to
customize introspection of a data source. If you select this option the SQL Statement dialog appears.

Figure 3-23 SQL Statement Dialog Box

You can type or paste your SELECT statement into the statement box (Figure 3-23), indicating
parameters with a “?” question-mark symbol. Using one of the DSP data samples, the following
SELECT statement can be used:

SELECT * FROM RTLCUSTOMER.CUSTOMER WHERE CUSTOMER_ID = ?

RTLCUSTOMER is a schema in the data source, CUSTOMER is, in this case, a table.

For the parameter field, you would need to select a data type. In this case, CHAR or VARCHAR.

The next step is to assign a data service name.

When you run your query under Test View, you will need to supply the parameter in order for the query
to run successfully.

Obta in ing Ente rp r i se Metadata

3-32 Data Services Developer’s Guide

Once you have entered your SQL statement and any required parameters click Next to change or verify
the name and location of your new data service.

Figure 3-24 Relational SQL Statement Imported Data Summary Screen

The imported data summary screen identifies a proposed name for your new data service.

The final steps are no different than you used to create a data service from a table or view.

Relational Data Types-to-Metadata Conversion
The following table shows how data types provided by various relational databases are converted into
XQuery data types. Types are listed in alphabetical order.

Also see in the Data Services Platform Samples Tutorial Part II:

- Lesson 22: Creating Data Services Based on SQL Statements

../interm/SamplesTutorial2.pdf

Obta in ing Metadata F rom Re la t i ona l Sources

Data Services Developer’s Guide 3-33

Table 3-25 Relational Data Types and Their XQuery Counterparts

Datatype Name XQuery
Equivalent

Oracle IBM
DB2

Sybase Informix Microsoft
SQL Server

Pointbase

ARRAY not supported x
BFILE not supported x
BIGINT xs:long x x x
BINARY xs:hexBinary x x
BIT xs:boolean x x
BLOB xs:hexBinary x x x x
BOOLEAN xs:Boolean x x
BYTE xs:hexBinary x
CHAR xs:string x x x x x x
CHAR() FOR BIT
DATA

xs:hexBinary x

CLOB xs:string x x x x
DATE xs:date x x
DATE xs:datetime x
DATETIME xs:datetime x x x
DECIMAL{n, s}
s>0

xs:decimal x x x x x

DECIMAL{n} xs:integer x x x x x
DOUBLE xs:double x
DOUBLE
PRECISION

xs:double x x

FLOAT xs:double x x x x x x
IMAGE xs:hexBinary x x
INT xs:int x x
INT8 xs:long x
INTEGER xs:int x x x

Obta in ing Ente rp r i se Metadata

3-34 Data Services Developer’s Guide

INTERVAL not supported x
INTERVALDS xdt:dayTimedu

ration
x

INTERVALYM xdt:yearMonth
duration

x

LONG xs:string x
LONG RAW xs:hexBinary x
LONG VARCHAR xs:string x
LONG VARCHAR
FOR BIT DATA

xs:hexBinary x

LVARCHAR xs:string x
MONEY xs:decimal x x x
MSLABEL not supported x
NCHAR xs:string x x x x
NTEXT xs:string x
NUMBER xs:double x
NUMBER{n, s}
s<0

xs:integer x

NUMBER{n, s}
s>0

xs:decimal x

NUMBER{n} xs:integer x
NUMERIC{n, s}
s>0

xs:decimal x x x x

NUMERIC{n} xs:decimal x x x x
NVARCHAR xs:string x x x
NVARCHAR2 xs:string x
RAW xs:hexBinary x
REAL xs:float x x x x

Datatype Name XQuery
Equivalent

Oracle IBM
DB2

Sybase Informix Microsoft
SQL Server

Pointbase

Obta in ing Metadata F rom Re la t i ona l Sources

Data Services Developer’s Guide 3-35

REF not supported x
ROWID xs:string x
SERIAL not supported x
SERIAL8 not supported x
SMALLDATETIME xs:datetime x x
SMALLFLOAT xs:float x
SMALLINT xs:short x x x x x
SMALLMONEY xs:decimal x x
SQL_VARIANT xs:string x
STRUCT not supported x
SYSNAME xs:string x x
TEXT xs:string x x x
TIME xs:time x x
TIMESTAMP xs:datetime x x x
TIMESTAMP xs:hexBinary x
TIMESTAMP WITH
LOCAL TIME ZONE

xs:datetime x

TIMESTAMP WITH
TIME ZONE

xs:datetime x

TINYINT xs:short x x
UNIQUEIDENTIFI
ER

xs:hexbinary x

UROWID xs:string x
VARBINARY xs:hexBinary x x
VARCHAR xs:string x x x x x

Datatype Name XQuery
Equivalent

Oracle IBM
DB2

Sybase Informix Microsoft
SQL Server

Pointbase

Obta in ing Ente rp r i se Metadata

3-36 Data Services Developer’s Guide

VARCHAR() FOR
BIT DATA

xs:hexBinary x

VARCHAR2 xs:string x

Datatype Name XQuery
Equivalent

Oracle IBM
DB2

Sybase Informix Microsoft
SQL Server

Pointbase

Impo r t ing Web Se rv ices Metadata

Data Services Developer’s Guide 3-37

Importing Web Services Metadata
A Web service is a self-contained, platform-independent unit of business logic that is accessible
through application adaptors, as well as standards-based Internet protocols such as HTTP or SOAP.

Web services greatly facilitate application-to-application communication. As such they are
increasingly central to enterprise data resources. A familiar example of an externalized Web service
is a frequent-update weather portlet or stock quotes portlet that can easily be integrated into a Web
application. Similarly, a Web service can be effectively used to track a drop shipment order from a
seller to a manufacturer.

Note: Multi-dimensional arrays in RPC mode are not supported.

Creating a data service based on a Web service definition (schema) is similar to importing relational
data source metadata (see “Importing Relational Table and View Metadata” on page 3-8).

Here are the Web service-specific steps involved:

1. Select the DSP-based project in which you want to create your Web service metadata. For example,
if you have a project called DataServices right-click on the project name and select Import
Metadata... from the pop-up menu.

2. From the available data sources in the Metadata Import wizard select Web service and click
Next.

3. There are three ways to access a Web service:

– From a Web service description language (WSDL) file that is in your current DSP project.

– From a URI which is a WSDL accessible via a URL (HTTP).

– From a Universal Description, Discovery, and Integration service (UDDI).

Obta in ing Ente rp r i se Metadata

3-38 Data Services Developer’s Guide

Figure 3-26 Locating a Web Service

Note: For the purpose of showing how to import Web service metadata a WSDL file from the RTLApp
sample is used for the remaining steps. If you are following these instructions enter the
following into the URI field to access the WSDL included with RTLApp:

http://localhost:7001/ElecWS/controls/ElecDBTestContract.wsdl

4. From the selected Web service choose the operations that you want to turn into data services or
XFL functions.

5. Identify which, if any, Web service-based data services should be marked as having side-effects.

Note: Imported operations returning void are automatically imported as DSP procedures. You can
identify other operations as procedures using the Select Side Effect Procedures dialog
(Figure 3-27).

It is often convenient to leverage side-effecting operations as part of managing enterprise
information through a data service. An obvious example would be to manage standalone update
or security functions through data services. The data service registers that such operations have
side-effects.

Procedures are not standalone; they always are part of a data service from the same data
source.

Impo r t ing Web Se rv ices Metadata

Data Services Developer’s Guide 3-39

Web services are side-effecting from the perspective of the data service even when they do
return data. In such cases, you need to associate the Web service operation with a data service
during the metadata import process.

Figure 3-27 Marking Imported Operations DSP Procedures

Procedures must be associated with a data service that is local to a DSP-enabled project.

Obta in ing Ente rp r i se Metadata

3-40 Data Services Developer’s Guide

Figure 3-28 Identifying Web Service Operations to be Used as Data Services

Using standard dialog editing commands you can select one or several operations to be added to
the list of selected Web service operations. To deselect an operation, click on it, then click
Remove. Or choose Remove All to return to the initial state.

6. Click Next to verify the location of the to-be-created data services and their names.

Impo r t ing Web Se rv ices Metadata

Data Services Developer’s Guide 3-41

Figure 3-29 Web Services Imported Data Summary Screen

The summary screen shown in Figure 3-29:

– Lists the Web service operations you have selected.

– Lists the target name for the generated data services.

– Identifies in red any data service name conflicts.

Even if there are no name conflicts you may want to change a data service name for clarity.
Simply click on the name of the data service and enter the new name.

– Provides an option for adding the function to an existing data service based on the same
WSLD. This option is only enabled if such a data service exists in your project. If there are
several data services based on the same WSDL, a dropdown menu allows you to choose the
data service for your function.

Note: Web Service functions identified as side-effecting procedures must be associated with a data
service based on the same WSDL.

Note: When importing a Web service operation that itself has one or more dependent (or
referenced) schemas, the Metadata Import wizard creates second-level schemas according to
internal naming conventions. If several operations reference the same secondary schemas,

Obta in ing Ente rp r i se Metadata

3-42 Data Services Developer’s Guide

the generated name for the secondary schema may change if you re-import or synchronize
with the Web service.

7. Click Finish. A data service will be created for each selected operation.

Testing Metadata Import With an Internet Web Service URI
If you are interested in trying the Metadata Import wizard with an internet Web service URI, the
following page (available as of this writing) provides sample URIs:

http://www.strikeiron.com/BrowseMarketplace.aspx?c=14&m=1

Simply select a topic and navigate to a page showing the sample WSDL address such as:

http://ws.strikeiron.com/SwanandMokashi/StockQuotes?WSDL

Copy the string into the Web service URI field and click Next to select the operations want to turn into
sample data services or procedures.

Another external Web service that can be used to test metadata import can be located at:

http://www.whitemesa.net/wsdl/std/echoheadersvc.wsdl

Also see in the Data Services Platform Samples Tutorial Part I:

- Lesson 6: Accessing Data in Web Services

http://e-docs.bea.com/liquiddata/docs85/interm/SamplesTutorial1.pdf

Impor t ing Java Funct i on Metadata

Data Services Developer’s Guide 3-43

Importing Java Function Metadata
You can create metadata based on custom Java functions. When you use the Metadata Import wizard
to introspect a .class file, metadata is created around both complex and simple types. Complex
types become data services while simple Java routines are converted into XQueries and placed in an
XQuery function library (XFL). In Source View (see Chapter 8, “Working with XQuery Source”) a
pragma is created that defines the function signature and relevant schema type for complex types
such as Java classes and elements.

In the RTLApp DataServices/Demo directory there is a sample that can be used to illustrate Java
function metadata import.

Supported Java Function Types
Your Java file can contains two types of functions:

Before you can create metadata on a custom Java function you must create a Java class containing
both schema and function information. A detailed example is described in “Creating XMLBean
Support for Java Functions” on page 3-48.

Types of Java Functions Use in Data Services Platform

Functions processing
primitive types or arrays of
primitive types

Grouped into an XQuery Function Library file, callable by any data service in
the same application.

Functions processing
complex types or arrays of
complex types

Grouped into a data services, using XMLBean Java-to-XML technology.

Also see in the Data Services Platform Samples Tutorial Part I:

- Lesson 10: Updating Data Services Using Java

Also see in Data Services Platform Samples Tutorial Part II:

1- Lesson 32: Accessing Data with Java Functions

../interm/SamplesTutorial1.pdf
../interm/SamplesTutorial2.pdf

Obta in ing Ente rp r i se Metadata

3-44 Data Services Developer’s Guide

Adding Java Function Metadata Using Import Wizard
Importing Java function metadata is similar to importing relational data source metadata (see
“Importing Relational Table and View Metadata” on page 3-8). Here are the Java function-specific
steps involved:

1. Select the DSP-based project in which you want to create your Java function metadata. (In the
DataServices project of the RTLApp there is a special Demo folder containing XML, CSV, and Java
data and schema samples.)

2. Build your project to validate its contents. A build will create a .class file from your .java
function and place it in your application’s library.

3. Right-click on the Java folder and select Import Source Metadata from the pop-up menu.

4. From the available data sources in the Metadata Import wizard select Java Function (see
Figure 3-30). Click Next.

Figure 3-30 Selecting a Java Function as the Data Source

5. Your Java .class file must be in your BEA WebLogic application. You can browse to your file or
enter a fully-qualified path name starting from the root directory of your DSP-based project.

Impor t ing Java Funct i on Metadata

Data Services Developer’s Guide 3-45

Figure 3-31 Specifying a Java Class File for Metadata Import

6. Select Java functions for import.

Figure 3-32 Selecting Java Functions to Become Either Data Services or XFL Functions

7. Java functions with the following input and output types are supported for import:

Obta in ing Ente rp r i se Metadata

3-46 Data Services Developer’s Guide

Simply types

XMLBean types

Java arrays of simple types

Java arrays of XMLBean types

8. Identify which, if any, Java function-based data services should be identified as having
side-effects.

It is often convenient to leverage independent routines as part of managing enterprise
information through a data service. An obvious example would be to leverage standalone update
or security functions through data services. Such functions have noXML type; in fact they
typically return nothing (or void). Instead the data service knows that the routine has
side-effects, but those effects are not transparent to the service. DSP procedures can also be
thought of as side-effecting functions.

Java functions are “side-effecting” from the perspective of the data service when they perform
internal operations on data.

After you have identified the Java functions that you want to add to your project, you can also
identify which, if any, of these should be treated as DSP procedures (Figure 3-33). In the case of
main(), the Metadata Import wizard detects that it returns void so it is already marked as a
procedure.

Impor t ing Java Funct i on Metadata

Data Services Developer’s Guide 3-47

Figure 3-33 Marking Java Functions as DSP Procedures

Functions based around atomic (simple) types are collected in an identified XML function
library (XFL) file.

Note: Side-effecting procedures must to be associated with a data service that is from the same data
source. In this case, the source is your Java file. In other words, in order to specify a Java
function as a procedure, a function in the same file that returns a complex element must
either be created at the same time or already exist in your project.

9. Click Next to verify the name and location of your new data service(s).

Obta in ing Ente rp r i se Metadata

3-48 Data Services Developer’s Guide

Figure 3-34 Java Function Imported Data Summary Screen

You can edit the proposed data service name either for clarity or to avoid conflicts with other
existing or planned data services. All functions returning complex data types will be in the
same data service. Click on the proposed data service name to change it.

Procedures must be associated with a data service that draws data from the same data source
(Java file). In the sample shown in Figure 3-34, the only available data service is PRODUCTS
(or whatever name you choose).

If there are existing XFL files in your project you have the option of adding atomic functions to
that library or creating a new library for them. All the Java file atomic functions are located in
the same library.

10. Click Finish.

Creating XMLBean Support for Java Functions
Before you can import Java function metadata, you need to create a .class file that contains
XMLBean classes based on global elements and compiled versions of your Java functions. To do this,
you first create XMLBean classes based on a schema of your data. There are several ways to
accomplish this. In the example in this section you create a WebLogic Workshop project of type
Schema.

Impor t ing Java Funct i on Metadata

Data Services Developer’s Guide 3-49

Generally speaking, the process involves:

Creating a WebLogic Workshop project of type Schema. Schema projects (and applications)
generate XMLBeans from schema files.

Importing a schema (.xsd file) representing the shape of the global elements invoked by your
function.

Importing your custom Java function into your DSP-based project or Java project.

Building your application to create a Java .class file, if under a DSP-based project, or you can
add the JAR file from a Java project to the Library folder of your application.

Creating metadata for your data service based on the .class file.

Use the resulting data service or functions in your application.

Creating a Metadata-enriched Java Class: An Example
In the following example there are a number of custom functions in a .java file called
FuncData.java. In the RTLApp this file can be found at:

ld:DataServices/Demo/Java/FuncData.java

Some functions in this file return primitive data types, while others return a complex element. The
complex element representing the data to be introspected is in a schema file called FuncData.xsd.

The schema file can be found at:

ld:DataServices/Demo/Java/schema/FuncData.xsd

To simplify the example a small data set is included in the .java file as a string.

The following steps will create a data service from the Java functions in FuncData.java:

1. Create a new DSP-based application called CustomFunctions.

2. Create a new project of type Schema in your application; name it Schemas.

File Purpose

FuncData.java Contains Java functions to be converted into data service
query functions. Also contains as small data sample.

FuncData.xsd Contains a schema for the complex element identified in
FuncData.java

Obta in ing Ente rp r i se Metadata

3-50 Data Services Developer’s Guide

3. Right-click on the newly created Schemas project and select the Import... option.

4. Browse to the RTLApp and select FuncData.xsd for import.

Importing a schema file into a schema project automatically starts the project build process.

When successful, XMLBean classes are created for each function in your Java file and placed in
a JAR file called JavaFunctSchema.jar

The JAR file is located in the Libraries section of your application.

5. Build your project.

6. In your DSP-based project (customFunctionsDataServices) create a folder called
JavaFuncMetadata.

7. Right-click on the newly created JavaFuncMetadata folder and select the Import... option.

8. Browse to the ld:DataServices/Demo/Java folder in the RTLApp and select
FuncData.java for import. Click Import.

9. Build your project.

The JAR file named for your DSP-based project is updated to include a.class file named
FuncData.class; It is this file that can be introspected by the Metadata Import wizard. The
file is located in a folder named JavaFuncMetadata in the Library section of your application.

Impor t ing Java Funct i on Metadata

Data Services Developer’s Guide 3-51

Figure 3-35 Class File Generated Java Function XML Beans

10. Now you are ready to create metadata from your Java function. These steps are described in
“Adding Java Function Metadata Using Import Wizard” on page 3-44.

Inspecting the Java Source
The .java file used in this example contains both functions and data. More typically, your routine will
access data through a data import function.

The first function in Listing 3-1 simply retrieves the first element in an array of PRODUCTS. The
second returns the entire array.

Listing 3-1 JavaFunc.java getFirstPRODUCT() and getAllPRODUCTS() Functions

public class JavaFunc {

...

public static noNamespace.PRODUCTSDocument.PRODUCTS getFirstProduct(){

Obta in ing Ente rp r i se Metadata

3-52 Data Services Developer’s Guide

noNamespace.PRODUCTSDocument.PRODUCTS products = null;
try{

noNamespace.DbDocument dbDoc =
noNamespace.DbDocument.Factory.parse(testCustomer);
 products = dbDoc.getDb().getPRODUCTSArray(1);
 //return products;

}catch(Exception e){
e.printStackTrace();

}
return products;

}

public static noNamespace.PRODUCTSDocument.PRODUCTS[] getAllProducts(){
noNamespace.PRODUCTSDocument.PRODUCTS[] products = null;
try{

noNamespace.DbDocument dbDoc =
noNamespace.DbDocument.Factory.parse(testCustomer);
 products = dbDoc.getDb().getPRODUCTSArray();
 //return products;

}catch(Exception e){
e.printStackTrace();

}
return products;

}
}

The schema used to create XMLBeans is shown in Listing 3-2. It simply models the structure of the
complex element; it could have been obtained by first introspecting the data directly.

Listing 3-2 B-PTest.xsd Model Complex Element Parsed by Java Function

<xs:schema elementFormDefault="qualified"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="db">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="PRODUCTS" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="AVERAGE_SERVICE_COST" type="xs:decimal"/>

Impor t ing Java Funct i on Metadata

Data Services Developer’s Guide 3-53

 <xs:element name="LIST_PRICE" type="xs:decimal"/>

 <xs:element name="MANUFACTURER" type="xs:string"/>

 <xs:element name="PRODUCTS">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="PRODUCT_NAME"/>

 <xs:element ref="MANUFACTURER"/>

 <xs:element ref="LIST_PRICE"/>

 <xs:element ref="PRODUCT_DESCRIPTION"/>

 <xs:element ref="AVERAGE_SERVICE_COST"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="PRODUCT_DESCRIPTION" type="xs:string"/>

 <xs:element name="PRODUCT_NAME" type="xs:string"/>

</xs:schema>

Java functions require that an element returned (as specified in the return signature) come from a
valid XML document. A valid XML document has a single root element with zero or more children, and
its content matches the schema referred.

Listing 3-3 Approach When Data is Retrieved Through a Document

public static noNamespace.PRODUCTSDocument.PRODUCTS getNextProduct(){

 // create the dbDocument (the root)
 noNamespace.DbDocument dbDoc =
noNamespace.DbDocument.Factory.newInstance();
 // the db element from it
 noNamespace.DbDocument.Db db = dbDoc.addNewDb();
 // get the PRODUCTS element
 PRODUCTS product = db.addNewPRODUCTS();
 //.. create the children
 product.setPRODUCTNAME("productName");
 product.setMANUFACTURER("Manufacturer");
 product.setLISTPRICE(BigDecimal.valueOf((long)12.22));
 product.setPRODUCTDESCRIPTION("Product Description");
 product.setAVERAGESERVICECOST(BigDecimal.valueOf((long)122.22));

Obta in ing Ente rp r i se Metadata

3-54 Data Services Developer’s Guide

 // .. update children of db
 db.setPRODUCTSArray(0,product);

 // .. update the document with db
 dbDoc.setDb(db);

 //.. now dbDoc is a valid document with db and is children.
 // we are interested in PRODUCTS which is a child of db.
 // Hence always create a valid document before processing the

children.
// Just creating the child element and returning it, is not
// enough, since it does not mean the document is valid.
// The child needs to come from a valid document, which is created
// for the global element only.

 return dbDoc.getDb().getPRODUCTSArray(0);

}

How Metadata for Java Functions Is Created
In DSP, user-defined functions are typically Java classes. The following are supported:

Java primitive types and single-dimension arrays.

Global elements, global complex types, and global arrays through XMLBean classes

In order to support this functionality, the Metadata Import wizard supports marshalling and
unmarshalling so that token iterators in Java are converted to XML and vice-versa.

Functions you create should be defined as static Java functions. The Java method name when used in
an XQuery will be the XQuery function name qualified with a namespace.

Table 3-36 shows the casting algorithms for simple Java types, schema types and XQuery types.

Table 3-36 Simple Java Types and XQuery Counterparts

Java Simple or Defined Type Schema Type

boolean xs:boolean

byte xs:byte

char xs:char

Impor t ing Java Funct i on Metadata

Data Services Developer’s Guide 3-55

double xs:double

float xs:float

int xs:int

long xs:long

short xs:short

string xd:string

java.lang.Date xs:datetime

java.lang.Boolean xs:boolean

java.math.BigInteger xs:integer

java.math.BigDecimal xs:decimal

java.lang.Byte xs.byte

java.lang.Char xs:char

java.lang.Double xs:double

java.lang.Float xs:float

java.lang.Integer xs:integer

java.lang.Long xs:long

java.lang.Short xs:short

java.sql.Date xs:date

java.sql.Time xs:time

java.sql.Timestamp xs:datetime

java.util.Calendar xs:datetime

Java Simple or Defined Type Schema Type

Obta in ing Ente rp r i se Metadata

3-56 Data Services Developer’s Guide

Java functions can also consume variables of XMLBean type that are generated by processing a
schema via XMLBeans. The classes generated by XMLBeans can be referred in a Java function as
parameters or return types.

The elements or types referred to in the schema should be global elements because these are the only
types in XMLBeans that have static parse methods defined.

The next section provides additional code samples that illustrate how Java functions are used by the
Metadata Import wizard to create data services.

Technical Details, with Additional Example Code
In order to create data services or members of an XQuery function library, you would first start with a
Java function.

Processing a Function Returning an Array of Java Primitives
As an example, the Java function getListGivenMixed() can be defined as:

public static float[] getListGivenMixed(float[] fpList, int size) {
int listLen = ((fpList.length > size) ? size : fpList.length);
float fpListop = new float[listLen];
for (int i =0; i < listLen; i++)
fpListop[i]=fpList[i];
return fpListop;
}

After the function is processed through the wizard the following metadata information is created:

xquery version "1.0" encoding "WINDOWS-1252";

(::pragma xfl <x:xfl xmlns:x="urn:annotations.ld.bea.com">
<creationDate>2005-06-01T14:25:50</creationDate>
<javaFunction class="DocTest"/>
</x:xfl>::)

declare namespace f1 = "lib:testdoc/library";

 (::pragma function <f:function xmlns:f="urn:annotations.ld.bea.com"
nativeName="getListGivenMixed">
 <params>
 <param nativeType="[F"/>
 <param nativeType="int"/>
 </params>
 </f:function>::)

 declare function f1:getListGivenMixed($x1 as xsd:float*, $x2 as xsd:int) as
xsd:float* external;

Impor t ing Java Funct i on Metadata

Data Services Developer’s Guide 3-57

Here is the corresponding XQuery for executing the above function:

declare namespace f1 = "ld:javaFunc/float";
let $y := (2.0, 4.0, 6.0, 8.0, 10.0)
let $x := f1:getListGivenMixed($y, 2)
return $x

Processing complex types represented via XMLBeans
Consider that you have a schema called Customer (customer.xsd), as shown below:

<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema targetNamespace="ld:xml/cust:/BEA_BB10000"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="CUSTOMER">
<xs:complexType>
<xs:sequence>
<xs:element name="FIRST_NAME" type="xs:string" minOccurs="1"/>
<xs:element name="LAST_NAME" type="xs:string" minOccurs="1"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

If you want to generate a list conforming to the CUSTOMER element you could process the schema via
XMLBeans and obtain xml.cust.beaBB10000.CUSTOMERDocument.CUSTOMER. Now you can use
the CUSTOMER element as shown:

public static xml.cust.beaBB10000.CUSTOMERDocument.CUSTOMER[]
getCustomerListGivenCustomerList(
xml.cust.beaBB10000.CUSTOMERDocument.CUSTOMER[] ipListOfCust)
throws XmlException {
xml.cust.beaBB10000.CUSTOMERDocument.CUSTOMER [] mylocalver =
ipListOfCust;
return mylocalver;
}

Then the metadata information produced by the wizard will be:

(::pragma function <f:function xmlns:f="urn:annotations.ld.bea.com"
kind="datasource" access="public">
<params>
<param nativeType="[Lxml.cust.beaBB10000.CUSTOMERDocument$CUSTOMER;"/>
</params>
</f:function>::)

declare function f1:getCustomerListGivenCustomerList($x1 as
element(t1:CUSTOMER)*) as element(t1:CUSTOMER)* external;

The corresponding XQuery for executing the above function is:

Obta in ing Ente rp r i se Metadata

3-58 Data Services Developer’s Guide

declare namespace f1 = "ld:javaFunc/CUSTOMER";

let $z := (

validate(<n:CUSTOMER
xmlns:n="ld:xml/cust:/BEA_BB10000"><FIRST_NAME>John2</FIRST_NAME><LAST_
NAME>Smith2</LAST_NAME>

</n:CUSTOMER>),

validate(<n:CUSTOMER
xmlns:n="ld:xml/cust:/BEA_BB10000"><FIRST_NAME>John2</FIRST_NAME><LAST_
NAME>Smith2</LAST_NAME>

</n:CUSTOMER>),

validate(<n:CUSTOMER
xmlns:n="ld:xml/cust:/BEA_BB10000"><FIRST_NAME>John2</FIRST_NAME><LAST_
NAME>Smith2</LAST_NAME>

</n:CUSTOMER>),

validate(<n:CUSTOMER
xmlns:n="ld:xml/cust:/BEA_BB10000"><FIRST_NAME>John2</FIRST_NAME><LAST_
NAME>Smith2</LAST_NAME>

</n:CUSTOMER>))

for $zz in $z
return
f1:getCustomerListGivenCustomerList($z)

Restrictions on Java Functions
The following restrictions apply to Java functions:

Function overloading is based on the number of arguments; not on the types of the parameter.

Array support is restricted to single-dimension arrays only.

In functions returning complex types the return element needs to be extracted from a valid
XML document.

Impor t ing De l imi ted F i l e Me tadata

Data Services Developer’s Guide 3-59

Importing Delimited File Metadata
Spreadsheets offer a highly adaptable means of storing and manipulating information, especially
information which needs to be changed quickly. You can easily turn such spreadsheet data in a data
services.

Spreadsheet documents are often referred to as CSV files, standing for comma-separated values.
Although CSV is not a typical native format for spreadsheets, the capability to save spreadsheets as
CSV files is nearly universal.

Although the separator field is often a comma, the Metadata Import wizard supports any ASCII
character as a separator, as well as fixed-length fields.

Note: Delimited files in a single server must share the same encoding format. This encoding can be
specified through the system property ld.csv.encoding and set through the JVM
command-line directly or via a script such as startWebLogic.cmd (Windows) or
startWebLogic.sh (UNIX).

Here is the format for this command:

-Dld.csv.encoding=<encoding format>

If no format is specified through ld.csv.encoding, then the format specified in the
file.encoding system property is used.

In the RTLApp DataServices/Demo directory there is a sample that can be used to illustrate delimited
file metadata import.

Providing a Document Name, a Schema Name, or Both
There are several approaches to developing metadata around delimited information, depending on
your needs and the nature of the source.

Provide a delimited document name only. If you supply the Metadata Import wizard with the
name of a valid CSV file, the wizard will automatically create a schema based on the columns in
the document. All the columns will be of type string, although you can later modify the
generated schema with more accurate type information.

Also see in the Data Services Platform Samples Tutorial Part II:

- Lesson 34: Accessing Data in Flat Files

../interm/SamplesTutorial2.pdf

Obta in ing Ente rp r i se Metadata

3-60 Data Services Developer’s Guide

Note: The generated schema takes the name of the source file.

Providing a schema name only. This option is typically used when the source file is dynamic;
for example, when data is streamed.

Providing both a schema and a document name. Providing a schema gives you the ability to
more accurately type information in the columns of a delimited document.

Using the Metadata Import Wizard on Delimited Files
Importing XML file information is similar to importing a relational data source metadata (see
“Importing Relational Table and View Metadata” on page 3-8). Here are the steps that are involved:

1. Select the project in which you want to create your delimited file metadata. For example, if you
have a project called myProject right-click on the project name and select Import Source Metadata
from the pop-up menu.

2. From the available data sources in the Metadata Import wizard select Delimited Source as the
data type (see Figure 3-37).

Figure 3-37 Selecting a Delimited Source from the Import Metadata Wizard

3. You can supply either a schema name, a source file name, or both. Through the wizard you can
browse to a file located in your project. You can also import data from any CSV file on your
system using an absolute path prepended with the following:

file:///

For example, on Windows systems you can access an XML file such as Orders.xml from the root
C: directory using the following URI:

file:///<c:/home>/Orders.csv

On a UNIX system, you would access such a file with the URI:

Impor t ing De l imi ted F i l e Me tadata

Data Services Developer’s Guide 3-61

file:///<home>/Orders.csv

4. Select additional import options:

– Header. Indicates whether the delimited file contains header data. Header data is located
in the first row of the spreadsheet. If you check this option, the first row will not be treated
as data.

– Delimited or Fixed Width. Data in your file is either separated by a specific character
(such as a comma) or is of a fixed width (such as 10 spaces). If the data is delimited, you
also need to provide the delimited character. By default the character is a comma (,).

Figure 3-38 Specifying Import Delimited Metadata Characteristics

5. Once you have selected a document and, optionally, a schema, click Next to verify the location
and unique location/name of your new data service.

Obta in ing Ente rp r i se Metadata

3-62 Data Services Developer’s Guide

Figure 3-39 Delimited Document Imported Data Summary Screen

You can edit the data service name either to clarify the name or to avoid conflicts with other
existing or planned data services. Any name conflicts are displayed in red. To change the name,
double click on the name of the data service to activate the line editor.

6. Click Finish. A data service (.ds file) will be created with your schema as its XML type.

Note: When importing CSV-type data there are several things to keep in mind:

The number of delimiters in each row must match the number of header columns in
your source minus one (# of columns-1). If subsequent rows contain more than the
maximum number of delimiters (fields), subsequent use of the data service will not be
successful.

If the delimited file has rows with a variable number of delimiters (fields), you can
supply a schema that contains optional elements for the trailing set of extra elements.

Not all characters are not equal. Some may need special escape sequences before
spreadsheet data can be accessed at run-time.

Impor t ing XML F i l e Me tadata

Data Services Developer’s Guide 3-63

Importing XML File Metadata
XML files are a convenient means of handling hierarchical data. XML files and associated schemas are
easily turned into data services.

Importing XML file information is similar to importing a relational data source metadata (see
“Importing Relational Table and View Metadata” on page 3-8).

The Metadata Import wizard allows you to browse for an XML file anywhere in your application. You
can also import data from any XML file on your system using an absolute path prepended with the
following:

file:///

For example, on Windows systems you can access an XML file such as Orders.xml from the root C:
directory using the following URI:

file:///c:/Orders.xml

On a UNIX system, you would access such a file with the URI:

file:///home/Orders.xml

XML File Import Sample
In the RTLApp DataServices/Demo directory there is a sample that can be used to illustrate XML file
metadata import.

Here are the steps involved:

1. Select your DSP-based project in which you want to create your XML file metadata. For example,
if you have a project called myProject, right-click on the project name and select Import
Metadata... from the pop-up menu.

2. From the available data sources in the Metadata Import wizard select XML Source.

Obta in ing Ente rp r i se Metadata

3-64 Data Services Developer’s Guide

Figure 3-40 Selecting an XML File from the Import Metadata Wizard

3. In order to access XML data you must first identify a schema; the schema must be located in
your application.

Figure 3-41 Specify an XML File Schema for XML Metadata Import

4. Optionally specify an XML file. If the XML file exists in your DSP-based project you can simply
browse to it. More likely your document is available as a URI, in which case you want to leave the
XML file field empty and supply a URI at runtime.

5. Once you have selected a schema and optional document name, click Next to verify that the
name of your new data service is unique to your application.

Impor t ing XML F i l e Me tadata

Data Services Developer’s Guide 3-65

Figure 3-42 XML File Imported Data Summary Screen

You can edit the data service name either to clarify the name or to avoid conflicts with other
existing or planned data services. Conflicts are shown in red. Simply click on the name of the
data service to change its name. Then click Next.

6. Next select a global element in your schema (Figure 3-43). Click Ok.

Figure 3-43 A Selecting a Global Element When Importing XML Metadata

7. Complete the importation of your procedures by reviewing and accepting items in the Summary
screen (see step 4. in “Importing Relational Table and View Metadata” for details).

Obta in ing Ente rp r i se Metadata

3-66 Data Services Developer’s Guide

Testing the Metadata Import Wizard with an XML Data Source
When you create metadata for an XML data source but do not supply a data source name, you will need
to identify the URI of your data source as a parameter when you execute the data service’s read
function (various methods of accessing data service functions are described in detail in the Client
Application Developer’s Guide).

The identification takes the form of:

<uri>/path/filename.xml

where uri is representative of a path or path alias, path represents the directory and filename.xml
represents the filename. The .xml extension is needed.

You can access files using an absolute path prepended with the following:

file:///

For example, on Windows systems you can access an XML file such as Orders.xml from the root C:
directory using the following URI:

file:///c:/Orders.xml

On a UNIX system, you would access such a file with the URI:

file:///home/Orders.xml

Figure 3-44 shows how the XML source file is referenced.

Also see in the Data Services Platform Samples Tutorial Part I:

- Lesson 11: Filtering, Sorting, and Truncating XML Data

Also see in the Data Services Platform Samples Tutorial Part II:

- Lesson 33: Accessing Data in XML Files

http://e-docs.bea.com/liquiddata/docs85/appdev/index.html
http://e-docs.bea.com/liquiddata/docs85/appdev/index.html
../interm/SamplesTutorial1.pdf
../interm/SamplesTutorial2.pdf

Updat ing Data Source Metadata

Data Services Developer’s Guide 3-67

Figure 3-44 Specifying an XML Source URI in Test View

Updating Data Source Metadata
When you first create a physical data service its underlying metadata is, by definition, consistent with
its data source. Over time, however, your metadata may become “out of sync” for several reasons:

The structure of underlying data sources may have changed, in which case it is important to be
able to identify those changes so that you can determine when and if you need to update your
metadata.

You have modified schemas or added relationships to your data service.

You can use the Update Source Metadata right-click menu option to identify differences between your
source metadata files and the structure of the source data including:

Object added

Object deleted

Obta in ing Ente rp r i se Metadata

3-68 Data Services Developer’s Guide

Object modified

Source Unavailable

In the case of Source Unavailable, the issue likely relates to connectivity or permissions. In the case
of the other types of reports, you can determine when and if to update data source metadata to
conform with the underlying data sources.

If there are no differences between your metadata and the underlying source, the Update Source
Metadata wizard will report up-to-date for each data service tested.

Considerations When Updating Source Metadata
Source metadata should be updated with care since the operation can have both direct and indirect
consequences. For example, if you have added a relationship between two physical data services,
updating your source metadata can potentially remove the relationship from both data services. If the
relationship appears in a model diagram, the relationship line will appear in red, indicating that the
relationship is no longer described by the respective data services.

In many cases the Update Source Metadata Wizard can automatically merge user changes with the
updated metadata. See “Using the Update Source Metadata Wizard,” for details.

Direct and Indirect Effects
Direct effects apply to physical data services. Indirect effects occur to logical data services, since such
services are themselves ultimately based — at least in part — on physical data service. For example,
if you have created a new relationship between a physical and a logical data service, updating the
physical data service can invalidate the relationship. In the case of the physical data service, there
will be no relationship reference. The logical data service will retain the code describing the
relationship but it will be invalid if the opposite relationship notations is no longer be present.

Thus updating source metadata should be done carefully. Several safeguards are in place to protect
your development effort while preserving your ability to keep your metadata up-to-date. See “Archival
of Source Metadata” on page 3-72 for information of how your current metadata is preserved as part
of the source update.

Using the Update Source Metadata Wizard
The Update Source Metadata wizard allows you to update your source metadata.

Note: Before attempting to update source metadata you should make sure that your build project
has no errors.

Updat ing Data Source Metadata

Data Services Developer’s Guide 3-69

Figure 3-45 Updating Source Metadata for Several Data Services

You can verify that your data structure is up-to-date by performing a metadata update on one or
multiple physical data services in your DSP-based project. For example, in Figure 3-45 all the physical
data services in the project will be updated.

After you select your target(s), the wizard identifies the metadata that will be verified and any
differences between your metadata and the underlying source.

You can select/deselect any data service or XFL file listed in the dialog using the checkbox to the left
of the name (Figure 3-46).

Obta in ing Ente rp r i se Metadata

3-70 Data Services Developer’s Guide

Figure 3-46 Data Services Metadata to be Updated

Metadata Update Analysis
Next, an analysis is performed on your metadata by the wizard. The following types of synchronization
mismatches are identified:

Structural differences between the data source and the metadata. These will be resolved in
favor of the data source and includes generated schema (data services XML type) based on the
physical source.

Differences that will be overwritten in favor of the values coming from the data source.

Additions and modifications to the physical data service that will automatically be merged back
into the updated metadata. This includes data service functions.

A update preview screen report (Figure 3-47) is prepared describing these differences both generally
and for field-level data.

Updat ing Data Source Metadata

Data Services Developer’s Guide 3-71

Figure 3-47 Metadata Update Plan for RTLApp’s DataServices Project

The Metadata Update Preview screen identifies:

Metadata changes to be applied. These changes are necessary in order for the physical data
service to remain a valid representation of a underlying physical data source.

User changes dropped. These are changes which cannot be merged into the updated metadata.

User changes carried forward. These are changes will can be merged into the update
metadata.

Icons differentiate elements as to be added, removed, or changed. Table 3-48 describes the update
source metadata message types and color legends.

Table 3-48 Source Metadata Update Targets and Color Legend

Category Color Description

Data source field added Green A data source field has been added since
the last metadata update.

Data service schema (XML type) modified Black A change has been made in a schema that
was derived from a data source.

Obta in ing Ente rp r i se Metadata

3-72 Data Services Developer’s Guide

Synchronization Mismatches
Under some circumstances the Update Source Metadata wizard flags data service artifacts as changed
locally when, in fact, no change was made.

For example, in the case of importing a Web service operation, a schema that is dependent (or
referenced) by another schema will be assigned an internally-generated filename. If a second
imported Web service operation in your project references the same dependent schema, upon
synchronization the wizard may note that the name of the imported secondary schema file has
changed. Simply proceed with synchronization; the old second-level schema will automatically be
removed.

Archival of Source Metadata
When you update source metadata two files are created and placed in a special directory in your
application:

A copy of the update report in the form:

ld:/updateMetadataHistory/metadatadiff<timestamp>.xml

The XQuery source data services and other artifacts that were overwritten by the update
operation are saved in the form of:

ld:/updateMetadataHistory/sourceBackUp<timestamp>.zip

An update metadata source operations assigns the same timestamp to both generated files.

Data source field deleted Red A field used by your metadata is no longer
appearing in source.

Field modified Blue A field in your metadata does not exactly
match the data source field.

Function modified Blue A function in your metadata does not
exactly match the data source function.

Category Color Description

Updat ing Data Source Metadata

Data Services Developer’s Guide 3-73

Figure 3-49 UpdateMetadataHistory Directory Sample Content

Working with a particular update operations report and source, you can often quickly restore
relationships and other changes that were made to your metadata while being assured that your
metadata is up-to-date.

Obta in ing Ente rp r i se Metadata

3-74 Data Services Developer’s Guide

Data Services Developer’s Guide 4-1

C H A P T E R 4

Designing Data Services

A data service gives you access to a structured view of a unit of information in the enterprise such as
a customer, sales order, product, or service.

Collectively, a set of data services comprise the data integration layer in an IT environment. For
additional information on data services see “Unifying Information with Data Services” in the BEA
Aqualogic Data Services Platform Concepts Guide.

Design View presents the data service as a “integrated chip” or schematic representation (Figure 4-1)
of all the query functions, underlying data sources, navigational relationships, and transformation
logic needed to support returning results in a particular arrangement, the return type. For details see
Chapter 2, “Data Services Platform Projects and Components.”

A data service exists in a DSP-based project as a single XQuery file containing query functions and
metadata support. For details see Chapter 8, “Working with XQuery Source” and the Data Services
Platform XQuery Developer’s Guide.

For information on setting security and caching policies for functions and elements see “Securing
Data Services Platform Resources” in the Administration Guide.

The following major topics are included in this chapter:

Data Services in the Enterprise

Data Service Design View Components

Creating a Data Service

Managing Your Data Service

http://e-docs.bea.com/liquiddata/docs85/concepts/dataServices.html
../xquery/index.html
http://e-docs.bea.com/liquiddata/docs85/admin/security.html

Des ign ing Data Se rv ices

4-2 Data Services Developer’s Guide

Data Services in the Enterprise
In modern enterprises there are increasingly two “data worlds”: the traditional relational world of
tables, columns, views, and stored procedures and the world of Web services and other forms of data
that is accessed through the desktop or through various Web interfaces.

Increasingly, the cost of accessing and updating data across systems with fundamentally different
architectures and purposes can rival the cost of setting up the services themselves.

Comparing Data Services with Web Services
A data service is similar to a conventional Web service in the following respects:

It consists of public functions.

The functions that access services are modular, reusable, and extensible.

Implementation details are hidden.

Of course a conventional Web service does not have a core XML data type that allows for easy
manipulation of the shape of the return data. Another minor difference is that data services can access
private functions contained in XQuery library files (.xfl files).

In concrete terms, a data service is a file that contains XML Query (XQuery) instructions for
retrieving, aggregating, and transforming data.

Physical and Logical Data Services
There are two types of data services: physical and logical. Physical data services comprise both
relational and service data. Logical data services are consumers of physical or other logical data
services. The data access layer of the enterprise includes both logical and physical data services.

Also see in the Data Services Platform Samples Tutorial Part I:

- Lesson 2: Creating a Physical Data Service

- Lesson 3: Creating a Logical Data Service

- Lesson 4: Integrating Data from Multiple Data Services

../interm/SamplesTutorial1.pdf

Data Se rv ices in the Ente rpr i se

Data Services Developer’s Guide 4-3

An important benefit of this approach is that in the case of a virtual data access layer such as the Data
Services Platform provides there is no transfer or storage of data — other than for
application-controlled caching. Instead data services simply expose interface calls to read functions
that dynamically retrieve data from data sources. The retrieved data is then arranged based on the
data service’s XML type. Update logic is associated with each data service. In the case of relational
data the update logic is automatic; otherwise custom update functions can be developed (see Enabling
SDO Data Source Updates in the Application Developer’s Guide.

Note: Logical data services are built upon physical data services which in turn represent an
underlying physical data source. Physical data service are created by importing metadata on
a physical source and updated through synchronization. The schema file or XML type
generated by this process should never be modified either in DSP or externally. Doing so risks
invalidating your data service and dependent logical data services. (If you need to modify a
data service based on a single source it is a simple matter to create a logical data service
based on that one source.)

Data Service Functions
Data services should be designed so as to present client applications with a sensible, uniform data
access layer for obtaining and updating data.

The data service interface consists of several types of functions:

Read functions. Return data in the form of the data service’s XML type. Read functions can be
developed either in the XQuery Editor or through Source View. Data services are ideal for
encapsulating any number of specific functions with roles such as “Get all customers with
pending orders”, “Find customer number ___ ”, and so forth.

Procedures. Procedures are also known as side-effecting functions. They refer to external
functions that typically return void. Procedures are identified during the metadata import
process and are only associated with physical data services. Sources for procedures include
Java routines, Web services, and relational stored procedures.

Navigation functions. Return data in the form of a related data service’s XML type using an
instance of the current data service as a parameter. See“Understanding Navigation Functions”
on page 4-11.

Private functions. In addition to public functions, a data service or a XQuery function library
(.xfl file) can contain private functions. Private functions can be accessed only by other
functions within the data service or XFL. Such functions generally contain common processing
logic, that is, operations for use in more than one function in the data service. (For functions
designed to be shared across data services, see “XQuery Function Libraries” on page 2-17.)

http://e-docs.bea.com/liquiddata/docs85/appdev/sdoupdate.html
http://e-docs.bea.com/liquiddata/docs85/appdev/sdoupdate.html

Des ign ing Data Se rv ices

4-4 Data Services Developer’s Guide

In Source View you will notice that private functions are so identified in the pragma statement
above the function.

A submit function. Allows clients to persist changes (update) to underlying (physical) data.

Note: The single submit() function can be found in Source View. It is not represented in the
Design View of the data service.

Data Service Design View Components
Design View provides a means of visualizing the entire data service (see Figure 4-1). Each data service
appears in WebLogic Workshop optionally bounded by panes that describe the application
components, properties of selected Design View properties, and so forth. For details on DSP-based
project components see Chapter 2, “Data Services Platform Projects and Components.”

At the heart of each data service is its XML type. The XML type describes the shape of the document
that will be returned when read functions are called either from this or a related navigation function.
(For additional information see “XML Types and Return Types” on page 4-7.)

Design View displays:

Read functions, also called query functions, that return data according to the XML type
associated with the service. Navigation functions to related data services; these return data in
the shape of their native XML type.

Immediate underlying physical and logical data services and their read functions.

Data Se rv i ce Des ign V iew Components

Data Services Developer’s Guide 4-5

Figure 4-1 Major Visual Components of a Data Service

Table 4-2 details the functional components of the data service shown in Figure 4-1.

1

3

2
4

5

Des ign ing Data Se rv ices

4-6 Data Services Developer’s Guide

Table 4-2 Graphical Components of a Data Service

Key Component Purpose

1 Query functions
and procedures

Read function and DSP procedures are typically developed through the
XQuery Editor.

Read functions provide an API for the data service. In Figure 4-1 the
getCustomer() function accepts a custID and returns data in the shape of
the customer XML type. (See “Modifying a Return Type” on page 6-47).

Procedures refer to functions which have side effects; often such
functions return void.

2 Base data services The data services that are used as immediate building blocks for the current

data service are shown. Click on its chevron symbol inside the
underlying data service representation to view its functions that are used by
the current data service. If you click on the function name itself the data
service will open. (Use the Back button to return to the original data
service.)

Note: Underlying data services are only displayed to one level. Use the
Metadata Browser to identify all underlying data services and
dependencies (see “Viewing Metadata” in the Data Services
Platform Administration Guide).

3 Navigation
functions

Relationships that are both inferred (relational) or created are shown.
Navigation functions return data in the shape of their native type. Clicking

on the chevron symbol inside your relationship representation, you will
see the navigation functions that are defined for that relationship.

If you click on the function name your view will switch to the XQuery Editor.

Relationships can be created through the Data Services Platform modeler
(see Chapter 5, “Modeling Data Services”) or directly in your data service
using the relationship wizard (see “Using the Relationship Wizard to Create
Navigation Functions” on page 4-13).

4 XML type The XML type is represented by an editable XML schema. The return type
of read functions shown in the XQuery Editor (see Chapter 6, “Working
with the XQuery Editor”) should match the data service XML type.

5 Private functions Private functions are only available to other functions in the data service.
They appear in Design View between read functions and navigation
functions.

http://e-docs.bea.com/liquiddata/docs85/admin/metadataBrowser.html

Data Se rv i ce Des ign V iew Components

Data Services Developer’s Guide 4-7

Note: Multiple data services can depend on a single XML type. In such situations it is advantageous
to design such data services as a group, so that they always should return the same XML type.

XML Types and Return Types
A key product of DSP-based projects are data service query functions and return types, sometimes
called target schemas. XML schemas are used to represent in hierarchical form physical and logical
data and the shape of documents returned from DSP queries.

Return types can be thought of as the backbone of both data services and data models.
Programmatically, return types are the “r” in for-let-where-return (flwr) queries.

Figure 4-3 Sample Return Type from the RTLApp

Return types have the following main purposes:

Provide a template for the mapping of data from a variety of data sources.

Help determine the arrangement of the XML document generated by the XQuery.

For more information on specifying the XML type in a data service see “Associating an XML Type” on
page 4-23.

Des ign ing Data Se rv ices

4-8 Data Services Developer’s Guide

Where XML Types are Used
The Data Services Platform modeler, data services, XQuery Editor, and Metadata Browser use XML
type representations as follows:

Modeler. A DSP Model shows the relationships and cardinality between data services, as well as
read query functions. For details see Chapter 5, “Modeling Data Services.”

Data Service. A data service generally contains an editable return type.

Data Sources. Hierarchical-structured XML types represent both relational and non-relational
data. For details see Chapter 3, “Obtaining Enterprise Metadata.”

XQuery Editor. The XQuery Editor uses physical and logical data source representations and
transformational functions to develop queries that are mapped to a return type. For details see
Chapter 6, “Working with the XQuery Editor.”

Metadata Browser. The Metadata Browser can display the return type associated with a data
service. For details see “Viewing Metadata” in the Data Services Platform Administration Guide).

For the versions of the XQuery and XML specifications implemented in DSP see the DSP XQuery
Developer’s Guide.

Note: Data services supporting ADO.NET have additional, specific XML type requirements. For
details see “Supporting ADO.NET Clients” in the Client Application Developer’s Guide.

Where Return Types are Used
Return types describes the structure or shape of data that a query produces when it is run. A return
type can be thought of as an object of XML type.

Note: In order to maintain the integrity of DSP queries used by your application, it is important that
the query return type match the XML type in the containing data service. Thus if you make
changes in the return type, you should use the XQuery Editor’s “Save and associate schema”
command to make the data service’s XML type consistent with query-level changes.
Alternatively, create a new data service based on your return type. For details see “Creating
a New Data Service and Data Service Function” on page 6-7.

Creating a Data Service
You can create a data service in several ways:

Through the DSP Metadata Import wizard, which automatically generates physical data services
from available data sources. See Chapter 3, “Obtaining Enterprise Metadata.”

../appdev/index.html
http://e-docs.bea.com/liquiddata/docs85/admin/metadataBrowser.html

Creat ing a Data Serv i ce

Data Services Developer’s Guide 4-9

By selecting a DSP-based project and then choosing File →New →Data Service.
Alternatively, right click on the project folder and choose New →Data Service.

By selecting Create Data Service from a data model and then opening the newly-created data
service. See Chapter 5, “Modeling Data Services.”

Figure 4-4 Adding a Function to a Data Service

Data services always reside in the current DSP-based project. Once created, you can use the Data
Service menu (or right-click) to develop your data service. Table 4-5 lists available right-click options
and their usage.

Des ign ing Data Se rv ices

4-10 Data Services Developer’s Guide

Table 4-5 Data Service Menu Options

Subsequent sections describe each of these commands in detail.

Adding a Function to Your Data Service
Read functions can be accessed by any calling application with the appropriate security credentials.
When adding a read function to your data service, you can accept the default function name or edit it

Command Usage

Add Function Adds a function to your data service. After entering a name for the
function, clicking on the name will open the XQuery Editor.

Add Function (empty) Adds an empty function to your data service. An empty function will
not initally contain a representation of the XML type even if a type
is associated with your data service. In such cases, the schema
“mark-up” can be added manually. This is particularly useful in
cases where your XML type contains a large number of elements,
many of which will not be used in the query functions planned for
the data service.

Add Relationship Creates a relationship to another data service. A file browser allows
you to enter the name of the data service which you want to relate
to your current data service. This, in turn, will bring up the
Relationship wizard, where you can define the navigation functions
that will relate the two services.

Add Private Function Adds a private function to your data service. After entering a name
for the function, clicking on the name will open the XQuery Editor.

Associate XML Type Associates your data service with an XML type. You can choose the
type (.xsd schema) from anywhere in your application. If your
data service currently has an associated XML type, it will be
replaced.

Create XML Type Allows you to create an XML type using the built-in schema editor.

Note: Once your data service is associated with a XML type, this
option becomes unavailable.

Display XML Type /
Display Native Type

For physical data services you can display either the element’s XML
type (example: xs:int) or its native type (example: CUSTOMERID
INTEGER(10)).

Creat ing a Data Serv i ce

Data Services Developer’s Guide 4-11

directly. Then, when you click on the name of your new function, you will be placed in the XQuery
Editor. See Chapter 6, “Working with the XQuery Editor”.

Note: It is important that function names in any given data service be unique even when their arity
(number of parameters) does not match. This is because JDBC is not able to differentiate
between functions of the same name.

Adding a Procedure to Your Data Service
Data service procedures or side-effecting functions enable you to invoke external routines that do not
necessarily return data. A common scenario would to use a procedure to invoke a Web service which
in turn updates data. Another use of a procedure would be to invoke a relational stored procedure
which in turn performs a database operation. The only thing returned in such a case might be a
“success” message and that would only happen if the stored procedure was designed to report its
status and the calling procedure was set up to handle such returned data.

Procedures are added to physical data services only, as part of the metadata import process. For
details see “Identifying DSP Procedures” on page 3-4.

Adding a Private Function to Your Data Service
A private function is similar to a read function, but it is only available to other functions in your data
service. You can change a private function to a read function through the Property Editor or by editing
the Source View pragma.

Adding a Relationship to Your Data Service
Relationships allow you to call out to another data service using an instance of your data service as a
parameter. Data is returned in the shape of the related service. In this way you can populate your data
services with a set of functions.

Understanding Navigation Functions
Two data services can be related by one or more relationships.

For example, CUSTOMER and ORDER might be related by a CUSTOMER-ORDER relationship that has
three navigation functions in all:

cst:getAllOrders(CUSTOMER) →ORDER*

cst:getOpenOrders(CUSTOMER) →ORDER*

ord:getCustomer(ORDER) →CUSTOMER

Des ign ing Data Se rv ices

4-12 Data Services Developer’s Guide

The first two functions are different ways of navigating the CUSTOMER-ORDER relationship from a
customer to all or some of their orders. The third function is a way to navigate from an ORDER to the
associated CUSTOMER.

In the most common case, a relationship will result in the availability of two navigation functions, one
for moving through the relationship in one direction and one for moving in the other direction.

In the less common case of a unidirectional relationship, there will be only one navigation function.

Effect of Using a Navigation Function to Return Data
In a data service the functional difference between a read function and a navigation function is the
shape of the returned data. Here is a simple example:

In a read function if you have an OpenOrders data service with an XML type of:

<openOrders>
<custID>
<first_name>
<last_name>
<orderID>
..

</openOrders>

and pass it a customer ID such as 101 and an order ID such as LRP-111. The query result
appears as:

<customerInfo>
<custID>101</custID>
<first_name>Jane</first_name>
<last_name>Smith</last_name>
<orderID>Smith</orderID>
..

</customerInfo>

However, if your data service has a navigation function associated with a table called
TrackOrders, the query parameter can remain the same but data will be returned in the shape
of the TrackOrders type, which looks like this:

<TrackOrders>
<custID>
<first_name>
<last_name>
<orderID>
<ship_date>
<weight>
<delivery_date>
...

</TrackOrders>

Creat ing a Data Serv i ce

Data Services Developer’s Guide 4-13

Creating a Relationship Between Data Services
In a data service adding a relationship is a three-part process:

1. Add and name the relationship.

Figure 4-6 Adding a Relationship to a Data Service Using Right-click Menu Option

2. Associate the relationship with an existing data service.

3. Use the Relationship wizard to define the relationship.

Using the Relationship Wizard to Create Navigation Functions
You can develop fully-functional binary navigation functions using the Relationship wizard.

The value of navigation functions is that client applications can call the function using complex
parameters without having to know the internal structure of function, join conditions, and so forth.
From the perspective of the data service creator, the internals of the function can be changed without
affecting applications dependent on the ability to invoke the data service function.

When you choose to create a relationship through Design View or within a model diagram, the
Relationship wizard is invoked. With the wizard you can set the following navigation function
notations:

Role names

Des ign ing Data Se rv ices

4-14 Data Services Developer’s Guide

Direction

Cardinality

You can also identify parameters and specify where clauses.

Setting Relationship Notations: Role Names, Direction, Cardinality
The first dialog of the Relationship wizard allows you to set role names, direction, and cardinality.
Table 4-8 provides details on the callouts shown in Figure 4-7.

Figure 4-7 Relationship Wizard Specifying Direction, Cardinality, and Role Name

1

3

1

2

3

Creat ing a Data Serv i ce

Data Services Developer’s Guide 4-15

Table 4-8 Primary Relationship Settings

Setting Function Name, Identifying the Opposite Data Service, Mapping Parameters, and
Building Where Clauses
The second Relationship wizard dialog page allows you to set the navigation function name and other
characteristics.

Key Component Purpose

1 Direction Query functions are typically developed using the XQuery Editor. A
bidirectional relationship is the default condition. This means that each
data service will have a navigation function that invokes the related data
service. Direction notations have no run-time effect.

Direction can also be specified through the Property Editor associated with
each data service or through a model diagram.

2 Role name Each end of a relationship can have a target role name. By default, the role
name is the same as its adjacent data service. For example, the default role
name for the ADDRESS data service is ADDRESS. You can change the role
name in the Relationship wizard.

Role names can also be specified through the Property Editor associated
with your data service or through a model diagram showing the relationship.

Note: Role name notations have no run-time effect.

3 Cardinality Cardinality notations can be set for each side of the relationship. The
default cardinality is 1-to-1 but this can be changed to any combination of
<blank>, 0, 1, and n.

Cardinality can also be specified through the Property Editor associated
with your data service or through a model diagram showing the relationship.

Note: Cardinality notations have no run-time effect

Des ign ing Data Se rv ices

4-16 Data Services Developer’s Guide

Figure 4-9 Relationship Wizard Dialog Specifying Function Name, Parameters, and Where Clauses

Table 4-10 provides details on callouts shown in Figure 4-9.

1

2

3

4

5

6

Creat ing a Data Serv i ce

Data Services Developer’s Guide 4-17

Table 4-10 Primary Relationship Settings

Example of Creating a Navigation Function
This section contains a small example showing how you can use the Relationship wizard to create
fully-formed navigation functions. The goal is to create a navigation function that returns the first
available address on file for a particular customer by supplying a customer ID.

The following steps use the RTLApp provided with DSP.

Key Component Purpose

1 Navigation
function name

By default, the navigation function name is the name of the target data
service with “get” prepended, as in “getCustomer”. If a function of that
name exists, numbers will be appended to the function name as in
getCustomer1.

However, you can change the navigation function name to any valid function
name.

Note: When you invoke the Relationship wizard through a model
diagram the opposite data service is determined by the gesture of
drawing a line from one data service to another. In such cases the
option of selecting a navigation function name is not present.

2 Related data
service function

By default, the root function in the target data service is selected. However,
you can select any available read function in the target data service.

3 Map input
parameters

If the related function has input parameters, the name and type of the
available parameters are displayed. You can then use a pulldown menu to
select an element from the target data service to map as the input
parameter.

4 Build WHERE
clause

Where clauses can be added to the function using pulldown menus that
allow you to select join elements from each side of the relationship.

5 Add or Remove Allows you to add additional where clauses or delete a selected where
clause.

6 Next When the relationship between data services is bidirectional clicking Next
changes the focus to the second data service, where you can identify a
navigation function name, parameters, and add where clauses for the
second side of the relationship.

Des ign ing Data Se rv ices

4-18 Data Services Developer’s Guide

1. Starting with the RTLServices/ApplOrder data service in Design View, select Add Relationship
from the right-click menu.

2. Select a target data service. In this case RTLServices/CustomerProfile.

Figure 4-11 Selecting a Target Data Service for the ApplOrder Navigation Function

3. Next you can set direction and cardinality.

The relationship remains bidirectional, meaning that you can get customer profile information
by supplying an address object and you get can address information using a customer profile
object. However, the cardinality relationship notation of Customer Profile →Address is 1-to-n,
since a customer can have multiple orders.

Creat ing a Data Serv i ce

Data Services Developer’s Guide 4-19

Figure 4-12 Setting Direction and Cardinality for the Relationship

4. Click Next. This creates the first navigation function which is given a default name of
getCustomerProfile().

The next stage for each navigation function is to:

– accept or change the name of the navigation function

– identify a read function contained in the navigation function (there may be more than one)

– specify parameters to invoke if parameters are supported by the underlying query function

– optionally add one or multiple where clauses

Des ign ing Data Se rv ices

4-20 Data Services Developer’s Guide

Figure 4-13 Defining the First Navigation Function

In the case of the getCustomerProfile() navigation function:

– there is only a single read function

– there are no parameters

– the where clause join elements are APPL_ORDER/CustomerID and
CustomerProfile/Customer/CUSTOMER_ID

5. Click Next to define the opposite navigation function whose default name is getApplOrder().

The apparel orders data service more typically contains multiple read functions. If you select
getApparelOrdersByCustID(), then you will be able to map an element (cust_id) from the
opposite data service.

Notice in Figure 4-14 that the where clause you defined for the first navigation function is
pre-determined and shown in read-only format.

Creat ing a Data Serv i ce

Data Services Developer’s Guide 4-21

Figure 4-14 Selecting a Parameter

6. Click Finish.

Des ign ing Data Se rv ices

4-22 Data Services Developer’s Guide

Figure 4-15 Resulting getCustomerProfile() Navigation Function

Testing Your Navigation Function
When you execute a navigation function in Test View, you can provide input in the form of a complex
parameter such as would result from, for example, getting back a customer record. Alternatively, you
could use the Test View template option to supply the appropriate parameter. See “Using the XML
Type to Identify Input Parameters” on page 7-10.

Navigation Functions in Source View
In data service Source View the navigation function is defined through a pragma and a function body.
(For details see the Data Services Platform XQuery Developer’s Guide).

For example, a navigation function named Payment() has a read function getPaymentList().

The navigation function appears as:

declare function ns1:getCustomer($arg as element(ns0:APPL_ORDER)) as
element(ns15:PROFILE)* {
 for $b in ns16:getCustomerByCustID($arg/CustomerID)
return $b
};

Creat ing a Data Serv i ce

Data Services Developer’s Guide 4-23

A key element in understanding this function is in the namespace ns15 which imports the schema that
models the XML type, PAYMENTList.xsd. The namespace is defined as:

import schema namespace ns15="urn:retailerType" at
"ld:DataServices/RTLServices/schemas/Profile.xsd";

Note: If you modify a role name in the pragma of your data service, and that relationship exists in
any model diagram, then you will need to similarly modify the role name in any model
diagrams in which the relationship appears. Otherwise the relationship will become invalid.

Working with Logical Data Service XML Types
Read functions associated with data services return information in the shape of the data service’s XML
type.

Note: Logical data services are built upon physical data services which in turn represent an
underlying physical data source. Physical data service are created by importing metadata on
a physical source and updated through synchronization. The schema file or XML type
generated by this process should never be modified either in DSP or externally. Doing so risks
invalidating your data service and dependent logical data services. (If you need to modify a
data service based on a single source it is a simple matter to create a logical data service
based on that one source.)

Associating an XML Type
You can add or replace an XML type that has been associated with an data service using a browser.
Your type must be located in the your application file structure.

Selecting a Global Element
If the schema you select has more than one global element, a dialog allows you to choose the global
element you want to use.

Figure 4-16 Select Global Element Dialog Box

Des ign ing Data Se rv ices

4-24 Data Services Developer’s Guide

Editing an XML Type
You can also edit an XML type. Several XML type right-click menu options are available (Table 4-17).

Warning: Editing changes to an XML types in Design View immediately modify the schema file
upon which the XML type is based. Such changes cannot be reversed through the Undo
command. For this reason, XML types should be modified carefully, with adequate
backup in case you need to revert to the original version.

Table 4-17 Right-click XML Type Editing Options

Another option, Enable Optimistic Locking, becomes available for elements in relational-based XML
types under some conditions. See “Enable/Disable Optimistic Locking” on page 4-28.

Table 4-18 identifies how various right-click options apply to different XML type elements.

Option Purpose

Add Child Adds a child element to the currently selected element. Available sub-menu options
include special-purpose schema elements Choice and All.

Add Sibling Adds a sibling element to the currently selected element. Available sub-menu options
include special-purpose schema elements Sequence and Choice.

Add Attribute Adds an attribute to the currently selected element.

Delete Deletes the currently selected element or attribute. This option is not available for the
root element of the schema.

Allow Global
Types and
Elements Editing

A toggle that applies to the entire schema. Schemas should be edited with care. To do so,
this option must be selected.

Go to Source Opens the XML type in the built-in schema editor.

Move Up Moves the selected element towards the top of the schema.

Move Down Moves the selected element towards the bottom of the schema.

Find Finds text within the selected complex element (such as the root element).

Creat ing a Data Serv i ce

Data Services Developer’s Guide 4-25

Table 4-18 XML Type Editing Options / Element Matrix

In some cases complex type components that appear in schemas will not appear in your XML type.

Warning: XML types are based on schemas which may be used by other data services. For this
reason, XML types should be modified carefully, with adequate backup in case you need
to revert to the original version. Similarly, all the functions in your data service should
be written to return the XML type of your data service.

External Editing of XML Types
In addition to the right-click menu described in Table 4-18, you can use the Go to source command to
edit your schema file using WebLogic Workshop’s assigned text editor.

Creating an XML Type
You can choose to create an XML type for a new data service. Since your data service already has a
name, you need only supply:

A schema file (XSD file) name

Element Add Child
Element/
Choice/

All

Add
Sibling

Element/
Sequence/

Choice

Add
Attribute

Delete Move
Up/

Move
Down

Root element ⌧ ⌧

Complex element ⌧ ⌧ ⌧

Leaf element ⌧ ⌧ ⌧ ⌧

Conditional
element

⌧ ⌧

All element ⌧ ⌧

Sequence element ⌧ ⌧ ⌧ ⌧

Choice element ⌧ ⌧ ⌧

Attribute ⌧

Des ign ing Data Se rv ices

4-26 Data Services Developer’s Guide

An XML type root element

A target namespace

By default, the name of your data service is the same as the schema file name, the schema, and the
target namespace.

Figure 4-19 Create New Schema File Dialog

Once created, you can use the data services built-in schema editor to create your schema.
Alternatively, you can create a schema in a program such as XMLSpy.

Managing Your Data Service
There are several important pre-deployment tasks you need to accomplish before you can make your
data service available to client applications. This includes setting properties for your data service and
it’s functions.

Figure 4-20 Data Service Properties

You can use the Properties Editor (View →Property Editor) to set or change key data service
functionality including:

Enabling or disabling update logic.

Managing Your Data Serv i ce

Data Services Developer’s Guide 4-27

Specifying the Java file to access for update logic.

Creating user-defined properties, which then become available to the DSP Metadata Browser.

Enabling or disabling caching for particular functions.

Changing relationship settings include role name, target data service, and cardinality.

See “Notable Design View Properties” on page 4-40.

Refactoring Data Service Functions
You can refactor data service functions insofar as they can be renamed or safely deleted. See
“Refactoring DSP Artifacts” on page 2-25.

Finding Usages of Data Services Platform artifacts
For most DSP artifacts you can quickly determine the artifacts usage through a right-click menu
option. See “Usages of Data Services Artifacts” on page 2-20.

Setting Update Options
Each data service contains a set of properties that control its update characteristics.

Note: For complete information on decomposition functions, override classes, optimistic locking
settings, and other SDO-related information see “Enabling SDO Data Source Updates” in the
Application Developer’s Guide.

Also see in the Data Services Platform Samples Tutorial Part II:

- Lesson 23: Performing Custom Data Manipulation Using Update
Override

- Lesson 24: Updating Web Services Using Update Override

- Lesson 25: Overriding SQL Updates Using Update Overrides

http://e-docs.bea.com/liquiddata/docs85/appdev/sdoupdate.html
../interm/SamplesTutorial2.pdf

Des ign ing Data Se rv ices

4-28 Data Services Developer’s Guide

Allowing Updates
You can use the Allow Update option in the Property Editor to control whether calling applications
can exercise update logic associated with your data service. This is especially important in regard to
relational-based data services, since update logic is automatically available unless disabled.

Set the option to True to allow update; False to prevent updates.

Setting the Override Class
In order to update non-relational sources that are associated with your data service you need to create
an update override class. In addition, you may want to overwrite built-in update logic for relational
sources to apply custom logic to the update process.

Before you can set the override class, you need to develop it. The steps involved are:

Add an appropriately named Java class to your DSP-based project.

Within the Java file, implement the UpdateOverride interface.

Import the required packages into your class and add a performChange() function to the class.

Implement your processing logic.

Associate your data service with the class.

<javaUpdateExit className=”nameOfYourJavaClass”/>

For information on developing an override class see “Enabling SDO Data Source Updates” in the
Application Developer’s Guide.

Note: Each data service can have only one update override class. However, multiple data services
can share the same update override class.

Enable/Disable Optimistic Locking
The SDO update mechanism for relational data uses an optimistic locking policy to avoid change
conflicts. With optimistic locking, the data source is not locked after the SDO client acquires the data.
Later, when an updated is needed, the data in the source is compared to a copy of the data at a time
when it was acquired. If there are discrepancies, the update is not committed.

http://e-docs.bea.com/liquiddata/docs85/appdev/sdoupdate.html

Managing Your Data Serv i ce

Data Services Developer’s Guide 4-29

Optimistic locking update policy is set for each data service. The following table lists the three
optimistic locking update policy options.

For relational-based data service the Enable/Disable Optimistic Locking option becomes available for
elements in its XML type when the optimistic locking property is set to Selected. (Optimistic locking
policies are viewed and set through the Property Editor (Figure 4-21). For information on additional
properties see “Notable Design View Properties” on page 4-40.

Optimistic Locking
Update Policy

Effect

Projected Projected is the default setting. It uses a 1-to-1 mapping of elements
in the SDO data graph to the data source to verify the
“updateability” of the data source.

This is the most complete means of verifying that an update can be
completed, however if many elements are involved updates will
take longer due to the greater number of fields needing to be
verified.

Updated Only fields that have changed in your SDO data graph are used to
verify the changed status of the data source.

Selected Fields Selected fields are used to validate the changed status of the data
source.

Des ign ing Data Se rv ices

4-30 Data Services Developer’s Guide

Figure 4-21 Data Service Allowing Updates and Optimistic Locking on Selected Fields

When active, the Selected Fields option allows you to validate optimistic locking logic prior to an
update. Any number of fields can be selected through the right-click menu associated with the XML
type. (If a complex element is selected, all its children are selected even though they are not so
marked.)

When the Selected Fields option is picked, a right-click toggle option named Enable/Disable
Optimistic Locking becomes available. Multiple elements can be selected.

Managing Your Data Serv i ce

Data Services Developer’s Guide 4-31

Figure 4-22 Disabling Optimistic Locking Policy for a Field

In Figure 4-22 two fields are selected, PRODUCT_ID and QUANTITY.

These choices are reflected in the Source View pragma.

<optimisticLockingFields>
<field name="PRODUCT_ID"/>
<field name="QUANTITY"/>

</optimisticLockingFields>

For complete details on handling change conflicts based on optimistic locking policies see “Enabling
SDO Data Source Updates” in the Application Developer’s Guide.

Adding Security Resources
Security resource settings are created at the data service level and activated at through the Data
Services Platform Console. The steps involved are:

Create as many security resources as are needed by your data service.

Structure your query to support security resource validation.

Assign security resources to your element through the DSP Console.

http://e-docs.bea.com/liquiddata/docs85/appdev/sdoupdate.html
http://e-docs.bea.com/liquiddata/docs85/appdev/sdoupdate.html

Des ign ing Data Se rv ices

4-32 Data Services Developer’s Guide

Use Test View to validate your security policy settings.

An easy way to understand security settings is to create an example using the Shipping data service
found in the DataServices/Demo/Java/Logical folder of RTLApp.

Goal. The goal is to restrict access for the East shipping region to the XML type’s ShipRegion string
to a particular traffic monitor named Igor.

The following section describe the steps involved.

Create Necessary Security Resources
1. Open your data service.

2. Open the Property Editor.

3. Create a security resource by clicking the + on the Security Resource line. Any value (name) can
be assigned to a security resource. In this case the name of an element in your XML type is used.

Figure 4-23 Create a Security Resource

This action add your new security resource (highlighted below) to the data service pragma in
Source View.

(::pragma xds <x:xds targetType="ship:ShipSource"
xmlns:ship="http://Logical/ShipSource"
xmlns:x="urn:annotations.ld.bea.com">
 <creationDate>2005-11-01T15:50:28</creationDate>
 <userDefinedView/>
 <secureResources>
 <secureResource>shipregion</secureResource>
 </secureResources>

Managing Your Data Serv i ce

Data Services Developer’s Guide 4-33

</x:xds>
::)

Structure Your Query To Support Security Resource Validation
In this section you use the XQuery Editor to attach your newly created security resource to the EAST
group, ShipRegion element.

1. Click XQuery Editor View.

2. In the return type attach a security resource to the EAST group, ShipRegion element. Do this by
right-clicking on the element to which you want to attach a security resource, then select the
Make Conditional option.

Figure 4-24 Creating an If-Else Construct for East Group’s ShipRegion String

3. Associate your new conditional element with the built-in fn-bea:is-access-allowed() function by
clicking on the element and dragging the function into the Expression editor. The function takes
two parameters: a string and the name of a data service. In this case the string exactly matches
your security resource name.

Note: (For details on built-in BEA functions see the DSP XQuery Developer’s Guide. For details
on editing expressions see “Transforming Data Using XQuery Functions” on page 6-38.)

4. Populate the function parameters by either entering the appropriate strings or dragging
elements into the function placeholders.

../xquery/index.html

Des ign ing Data Se rv ices

4-34 Data Services Developer’s Guide

Figure 4-25 Establishing Security Control for East Group’s ShipRegion Element

5. The If-Else construct may now be read as “if access is allowed to the element return data,
otherwise return nothing”. In many cases it is appropriate to return the fact that access is not
allowed. This can be accomplished by setting the expression associated with the Else side of the
conditional to “N/A” (not available).

In Source View your conditional is rendered as an XQuery if-else statement.

if (fn:upper-case($SourceRegion) eq 'EAST') then
 (
 for $ShipSource1 in ns10:getShipSource1()/SHIPPING
 where $ShipSource1/ShipSource eq $SourceState
 and $ShipSource1/ShipDest eq $DestState
 return
 <SHIPPING DataLineage?="{'EAST Shipping Source'}">

...

<ShipPrice>{fn:data($ShipSource1/ShipPrice)}</ShipPrice>
 {
 if (fn-bea:is-access-allowed("shipregion",
"ld:DataServices/Demo/Java/Logical/Shipping")) then

Managing Your Data Serv i ce

Data Services Developer’s Guide 4-35

 <ShipRegion>{fn:data($ShipSource1/ShipRegion)}</ShipRegion>
 else
 <ShipRegion>{"N/A"}</ShipRegion>
 }
 <ShipTime>{fn:data($ShipSource1/ShipTime)}</ShipTime>
 </SHIPPING>

6. Build your project. This deploys your new security settings to the server.

Assign Security Resources Through the DSP Console
The next steps involve the Data Services Platform Console (see “Securing Data Service Platform
Resources” in the DSP Administration Guide for complete details).

1. Sign into the DSP Console. For the RTLApp sample the user name and password are both
‘weblogic’.

Note: Unless a secured resource has been marked as available to user weblogic or some group
that user weblogic is a member of, it will not be available.

2. Find the heading Search Metadata. Click on the Search ldplatform (the RTLApp sample domain
server).

3. In the data service name field search for “shipping”.

4. In the Search Results click on the Shipping.ds name link to view the various administrative,
caching, auditing, metadata search, and security options available to the data service.

5. Click the Security tab.

../admin/security.html
../admin/security.html

Des ign ing Data Se rv ices

4-36 Data Services Developer’s Guide

Figure 4-26 Security Policies Associated with the RTLApp’s Shipping Data Service

6. Since you created a security resource named shipregion for your data service, it appears as an
available resource name. Now security policies must be associated with the resource. Click the
Action icon.

7. In the Administration Policies pane select the User name of the caller policy condition, then
click Add.

8. A dialog box appears where you can enter the name of the user.

Managing Your Data Serv i ce

Data Services Developer’s Guide 4-37

Figure 4-27 Associating a User Name with a Security Resource

9. Click Apply.

Validating Security Policies Through Test View
Once security policies are established, they should be tested.

1. With the Shipping data service selected click the Test View tab.

2. The getShippingSource() function requires a source state and a destination state. (Valid states
are shown in the Examples.txt source file which is located in the Demo/Java/Logical folder.)

3. Enter MA as the source state and VA as the destination, then click Execute.

Des ign ing Data Se rv ices

4-38 Data Services Developer’s Guide

Figure 4-28 Validating that the ShipRegion Element is Secured

4. Notice that rather than returning the region, the Else string N/A is returned. This is because the
registered user of Test View is user weblogic, not user Igor.

Caching Functions
For each function in your data service, the Allow Caching option can be set to True or False. If False,
results from executing your query function cannot be cached. If True, results from earlier invocations
of your function can be cached if cache for that function is enabled through the Data Services Platform
Console. In other words, in order to cache a function it must be Enabled:True in its data service and
also enabled through the DSP Console. For details on enabling cache for a function as well as setting
the cache’s TTL (time-to-live) see the DSP Administration Guide.

http://e-docs.bea.com/liquiddata/docs85/admin/index.html

Managing Your Data Serv i ce

Data Services Developer’s Guide 4-39

Caching Considerations
There are several things to keep in mind when considering whether to enable caching for a particular
function:

If the data accessed by your function is updated frequently, the function is not a good candidate
for caching.

Generally speaking, you should only enable cache to data service functions that have
parameters. Since relational tables do not, by definition, have parameters, the cache for such
tables should generally not be enabled.

Setting Caching Policy for a Function
To inspect or set the Allowed caching policy for a particular read function in your data service, click
on the arrow to the left of the name of the function, then set its caching policy through the Properties
Editor.

Figure 4-29 Click Arrow to the Left of a Function Name to Inspect or Set Its Caching Policy

You need to build your application in order for cache policy changes effective.

Note: When a cache policy of Enabled:False is set for a function it cannot be overridden through the
Data Services Platform Console.

Des ign ing Data Se rv ices

4-40 Data Services Developer’s Guide

Notable Design View Properties
The following table identifies notable Data Services Platform Design View properties.

Table 4-30 Notable Design View Properties

Focus Property Settings Comments

Data service Name Editable Must end in .ds

Description Text Optional

Author Text Optional

Creation Date Non-editable

Type URI to optional XML type Also known as XML type.

DS Update : Allow
Update

True / False Allows calling applications
to execute the data service’s
update logic.

DS Update :
Decomposition
Function

Selectable for logical data
services with more than one
read functions.

Identifies the function used
for decomposition of the
data service. In the case of
physical data services the
decomposition function is
pre-defined by the source
metadata.

For logical data services,
however, you can change the
default decomposition
function to another read
function in your data service.

For additional information
on decomposition functions
see “Leveraging Data Service
Reusability” on page 9-15.

DS Update : Override
Class

Optional and editable Identifies a external Java
class that provides custom
update logic.

Managing Your Data Serv i ce

Data Services Developer’s Guide 4-41

Optimistic Locking
Fields

Projected / Updated /
Selected Fields

Applies only to
relational-based data
services.

Security Resources Any number of name:value
pairs.

See “Adding Security
Resources” on page 4-31.

Prefix bindings Any valid, non-conflicting
prefix can be entered for
namespaces defined in the
data service.

See “Refactoring DSP
Artifacts” on page 2-25.

User-defined
Properties

Optional and editable Create any number of
name/value pairs.

Data Service
Read and Private
Functions and
Procedures

Name Editable

Function type Selectable (read or private) Selectable for read function
or private functions; not
selectable for procedures.

Cache enabled True / False Enables cache for the
function.

User Defined
Properties

Optional and editable Create any number of
name/value pairs.

XML type Root: Name Editable Typically same name as the
data service without the
file’s extension.

Root: Is Referenced False Read only. For the root
element the Is Referenced
property is always false as it
is always a global element in
the schema.

Root: Type <blank> or named type Blank if the root element is
an anonymous type;
otherwise named type is
shown

Focus Property Settings Comments

Des ign ing Data Se rv ices

4-42 Data Services Developer’s Guide

Element: Is
Referenced

True / False Read only. Identifies any
elements that are imported
into the current function. In
source this appears as
ref=”element”.

Element: Type XML type Examples: xs:int; retailer:
CUSTOMER_VIEW

Element: Min Occurs 1, 0, or n

Element: Max Occurs 1, 0, or n

Element: Native Type Data type Available only for physical
data. Example: VARCHAR

Element: Native Size Size of the data Available only for physical
data. Example: 10

Focus Property Settings Comments

Managing Your Data Serv i ce

Data Services Developer’s Guide 4-43

Primary key:
AutoNumber

<blank>, identity, sequence,
or userComputed

This and the Sequence
Object Name option appear
for elements representing
primary keys in
relational-based physical
data services.

Autonumber can be used to
provide a value for a
database primary key.

• Leaving the field blank
means you will provide a
value for the primary
key.

• The identity option
pertains to IBM DB2,
Sybase, SQL Server, and
MySQL. In this case the
database will provide a
value for the primary
key.

• Sequence objects are
available for DB2 and
Oracle. You must
provide a sequence
object name.

• User computed is a
notational flag
indicating that the
primary key information
has been provided to the
database through your
SDO custom update
override class.

Note: It is not necessary
to set this flag in
order for the
update override
computed primary
key logic to be
used.

Focus Property Settings Comments

Des ign ing Data Se rv ices

4-44 Data Services Developer’s Guide

Primary key:
Sequence Object
Name

If sequence is selected in the
AutoNumber property
(above), then the sequence
object name must be
supplied

Related Data
Service

Role Name Editable Also changes the role name
shown in a model diagram.

Related Data Service Path to the related data
service

Min Occurs 1, 0, or n

Max Occurs 1, 0, or n

Opposite Role Name Editable Also changes the role name
shown in the model diagram.

Relationship
Read Function

Name Editable

Cache True / False Enables cache for the
function.

Return type Non-editable Always navigation type.

User Defined
Properties

Editable Create any number of
name/value pairs.

XML File Library
(XFL)

Name Editable Must end in .xfl

Prefix bindings Any valid, non-conflicting
prefix can be entered for
namespaces defined in the
data service.

See “Refactoring DSP
Artifacts” on page 2-25.

Focus Property Settings Comments

Data Services Developer’s Guide 5-1

C H A P T E R 5

Modeling Data Services

Using BEA Aqualogic Data Services Platform (DSP), you can create and maintain models of your
enterprise data services. Models describe data, relationship between data objects, data semantics,
and consistency constraints.

Models also express relationships between physical data services, logical data services, or a
combination. In DSP all model relationships are binary; each binary relationship is expressed in a
model diagram as one or more lines between two data services.

You can use DSP model diagrams to:

Obtain a high-level, visual view of data resources

View the relationships between physical and logical data resources

Facilitate the creation or modification of relationships between resources

Quickly access or create a data service

Modify a XML type of a data service

The following topics are covered in this chapter:

Model-Driven Data Services

Building a Simple Model Diagram

Building Data Service Relationships in Models

Working with Model Diagrams

Model ing Data Se rv ices

5-2 Data Services Developer’s Guide

How Changes to Data Services and Data Sources Can Impact Models

Note: For more information on data service modeling concepts see “Modeling and a
Service-Oriented Architecture” in the Data Services Platform Concepts Guide.

Figure 5-1 Model Diagram of Physical Data Services

A model diagram is a graphical representation of a data model supported by DSP. In addition to
showing collections of data services and relationships between data services, model diagrams also

Also see in the Data Services Platform Samples Tutorial Part I:

- Lesson 5: Modeling Data Services

Also see in the Data Services Platform Samples Tutorial Part II:

- Lesson 20: Implementing Relationship Functions and Logical Modeling

http://e-docs.bea.com/liquiddata/docs85/concepts/modeling.html
http://e-docs.bea.com/liquiddata/docs85/concepts/modeling.html
../interm/SamplesTutorial1.pdf
../interm/SamplesTutorial2.pdf

Mode l -Dr iven Data Serv ices

Data Services Developer’s Guide 5-3

identify role direction and cardinality information at each end of the relationship. By default, types
shown in model diagrams are XML schema types, but you can change this to display native data source
types in the case of physical data services.

Model-Driven Data Services
In large enterprises modeling is — or at least should be — an early task in developing a data services
layer. By starting with a graphical representation of physical data resources it is easier to view data
resources globally, leveraging existing information in interesting and useful ways. It is also easy to see
opportunities for creating additional business logic in the form of logical services.

Model diagrams are quite flexible; they can be based on existing data services (and corresponding
underlying data sources), planned data services, or a combination. You can also create and modify
data services and data service XML types directly in a modeler diagram.

In DSP model relationships are logical connections between two data services. The connections
describe:

The direction of the binary relationship (one- or two-way)

The cardinality of the relationship (1-to-1, 1-to-many, 0-to-many, or many-to-many)

A role name for each side of the relationship

Relationships can have one or more navigation functions that allows data associated with one data
service (such as Customer) to potentially become a complex parameter for a related data service
(such as Orders).

Some relationships — such as between relational data services — are automatically inferred through
introspection of primary and foreign keys. See “Importing Relational Table and View Metadata” on
page 3-8 for details.

Additional relationships can be created in several ways:

Automatically, by dragging two or more relational-based data services into a model diagram
simultaneously. In such cases primary/foreign key relationships are automatically identified.

Graphically, through gestures you make in your model diagram.

Programmatically, through Source View of a data service.

Logical and Physical Data Models
Models can represent any combination of logical and physical data services.

Model ing Data Se rv ices

5-4 Data Services Developer’s Guide

Physical Data Models
Physical data services represent data that physically resides in the enterprise (see Chapter 3,
“Obtaining Enterprise Metadata”). The source may be from a relational database, a Web service, an
XML data stream or document, a flat file such as a spreadsheet, or a Java file contain custom
functions.

Logical Data Models
Logical data models are developed in DSP and are based on physical other logical data.

In other words, each physical model entity represents a single data source. Logical data model
entities represent composite views of physical and/or logical models.

Rules Governing Model Diagrams
Model diagrams follow a set of rules:

Each entity in the model has a title which is the data service local name (the fully-qualified
name is visible as a mouse-over).

Data services in models need not be associated with an XML type. However, if they are, the type
is always displayed. For physical data services you have the option of displaying native schema
types such as Integer(10).

Associated read functions can be displayed, with or without signatures.

Model diagrams do not “own” data services, but simply reference them. Multiple models can,
without limit, contain representations of the same data service or relationships between data
services.

Models are not nested. That is, one model diagram cannot reference another.

Multiple models can be defined and located anywhere in your project.

Changes made to a model diagram can be reversed using the Edit → Undo command.
However it is important to keep in mind that changes to any underlying files such as schemas
(XML types) or data services made through the model will not be undone. Instead, edit the data
service directly or close and reopen your application before saving your changes.

Note: Changes to a model diagram that affect data services such as when a new relationship is
created are only made permanent in WebLogic Workshop after you do a File →Save All.

Bui ld ing a S imple Mode l D iagram

Data Services Developer’s Guide 5-5

Building a Simple Model Diagram
You can create a data model by selecting a DSP-based project and then choosing:

File →New →Model Diagram

The following example describes how to create a model around physical data.

Figure 5-2 Creating a Data Model Using the File Menu

This example assumes that you are using the DSP demonstration program RTLApp.

The data services used in the example in this chapter are PRODUCT, CUSTOMER_ORDER, and
CUSTOMER_ORDER_LINE_ITEM. See Chapter 3, “Obtaining Enterprise Metadata” for details
related to importing metadata.

Here are the steps required to create and populate a simple model:

1. First choose a name and physical location for your model. It can be created anywhere in your BEA
WebLogic application. In the demonstration application provided with DSP, models are located in
a MODELS folder.

Model ing Data Se rv ices

5-6 Data Services Developer’s Guide

2. Right-click on your project and select New →Model Diagram.

3. Pick a location for your model and name it myModel Diagram.

Figure 5-3 Selecting a Data Service

4. Right-click in the work area of your new model and select Add Data Service.

5. From the dialog box select the CUSTOMER_ORDER data service in Data Services/ApparelDB.

Bui ld ing a S imple Mode l D iagram

Data Services Developer’s Guide 5-7

Figure 5-4 Adding Data Services to a Data Model

Since the data services in this example are representations of relational sources, a considerable
amount of metadata is available. For example, primary keys are identified from the data; these

are shown in data service type as a key icon ().

6. Right-click on the CUSTOMER_ORDER data service titlebar and choose the Add Related
Services command.

In this case you will see that two relationship already exists: CUSTOMER and
CUSTOMER_ORDER_LINE_ITEM (Figure 5-5).

Model ing Data Se rv ices

5-8 Data Services Developer’s Guide

Figure 5-5 Adding Related Services

7. Mouse over to the related data service that you want to add to your model diagram. For this
example perform this operation twice, adding both related data services to your model.

Once you have done this, you should automatically see the relationships between these three
data services (Figure 5-6). (If not, try selecting the Show Relationship command for the
Address data Service.)

Bui ld ing a S imple Mode l D iagram

Data Services Developer’s Guide 5-9

Figure 5-6 Automatically Inferred Relationships Between Physical Data Sources

As described previously, relationship lines are graphical representations of relationship
declarations and navigation functions.

There is a role at each end of a relationship. Initially, role names simply reflect their respective
data service. Table 5-7 details the model diagram’s services, roles, and cardinality of the model
diagram, shown in Figure 5-1.

Table 5-7 Relationship Declarations in Sample Model’s Data Services

data
service

Role
Name

Role
Number

Opposite Role
data service

Current
Role

Minimum
Occurrences

Maximum
Occurrences

Address Customer 1 customer.xds Address 1 1

CreditCard 2 credit_card.xds Address 0 n

Credit_Card Address 1 address.xds Credit_card 1 1

Customer Address 2 address.xds Customer 0 n

Model ing Data Se rv ices

5-10 Data Services Developer’s Guide

Displaying Relationships Automatically
In the Application pane you can multi-select data services using either Shift-click (contiguous
services) or Control-click (individual services). If you drag a set of data services into a model diagram,
any existing relationships to other data services in the model will be created automatically.

The relationships shown in the example are based on automatically created navigation functions
found in the respective physical data services (see Table 5-8).

Table 5-8 Navigation Functions in a Model’s Data Services

Generated Relationship Declarations in Source View
An example of a navigation function in the underlying source is:

(::pragma function <f:function xmlns:f="urn:annotations.ld.bea.com"
kind="navigate" roleName="ADDRESS"/>::)

This specifies a relationship to the Address data service from the Customer data service.

Data services also contain declarations describing the nature of the relationship; this information is
the source for the role names and cardinality values that appear in your model diagram.

For example, the data service Address contains the following relationship declarations:

<relationshipTarget roleName="CUSTOMER" roleNumber="1"
XDS="ld:DataServices/CustomerDB/CUSTOMER.ds" opposite="ADDRESS"/>

For each data service, a relationship is created which identifies its role name, cardinality, opposite
data service, and a unique (to the data service) role number.

In the above example, a navigation function is automatically created that retrieves customer
information based on the customerID. The Customer data service getAddress() function is show in
Listing 5-1.

data service Returns Navigation Function

Address Customer, Credit_ Card getCustomer()

Customer Address getAddress()

Bui ld ing a S imple Mode l D iagram

Data Services Developer’s Guide 5-11

Listing 5-1 Customer Data Service getAddress() Navigation Function

import schema namespace t2 = "ld:DataServices/CustomerDB/ADDRESS" at
"ld:DataServices/CustomerDB/schemas/ADDRESS.xsd";

 (::pragma function <f:function xmlns:f="urn:annotations.ld.bea.com"
kind="navigate" roleName="ADDRESS"/>::)

 declare function f1:getADDRESS($pk as element(t1:CUSTOMER)) as
element(t2:ADDRESS)*
 {
 for $fk in f2:ADDRESS()
 where $pk/CUSTOMER_ID eq $fk/CUSTOMER_ID
 return $fk
 };

In the case of the relationship between Customer and Address, the relationship is 0-to-n for the
Address role (it can make and appearance any number of times or not at all) based on CustomerID
being a foreign key in Address and a primary key in the Customer data service (and the underlying
relational data sources respectively).

Since the relationships are bilateral, Customer’s opposite is Address while Address’s opposite is
Customer. This is shown in the Properties Editor (Figure 5-9).

Figure 5-9 Property Editor for New Model Diagram

Modeling Logical Data
The major difference between a logical model and a physical model is that the logical model contains
representations of at least one logical data service, in addition to physical data services. In practice

Model ing Data Se rv ices

5-12 Data Services Developer’s Guide

there are no constraints between creating models that contain mixtures of logical or physical data
services, including data services which are themselves composed of logical data services.

If your data model is composed of both physical and logical data services, you should keep in mind that
a metadata update on any underlying physical data services will remove any relationships you have
created involving those data services. For details see “Updating Data Source Metadata” on page 3-67.

Building Data Service Relationships in Models
In model diagrams, a relationship is created by the gesture of drawing a line from one data service to
another (see Figure 5-1). In some cases (such as relational data services) relationships and the lines
representing the relationship can be automatically inferred. In other cases, you need to create the
relationship.

A relationship has several editable properties:

Cardinality. Is the relationship zero-to-one (0:1 or 1:0) as in customer and promotion,
one-to-one (1:1) as in customerID and custID, one-to-many (1:n) as in customers and orders, or
many-to-many (n:n) as in customer orders and ordered items?

Direction. Arrows indicate possible navigation paths. Is there an originating entity associated
with a subordinate entity (such as orders and order items) or is the relationship bidirectional
(such as customers and orders)?

Roles. A name matching the name of the adjacent data services navigation function (see
below). Does the assigned relationship name capture the purpose of the navigation function it
represents?

Navigation functions are visible as properties of each data service in the binary relationship. They can
be fully inspected in Source View for each data service. Navigation functions also appear as
mouse-over text over each endpoint of the relationship line.

Direction, Role, and Relationships
In a model diagram, each side of a relationship represents the role played by the adjacent data service.
For example, in an ADDRESS: CUSTOMER relationship the end of the line near the customer is, by
default, also called CUSTOMER. If you mouse over the role name, the opposite role name appears
(Figure 5-10), as well as the name of the navigation function.

Bui ld ing Data Serv ice Re lat ionsh ips in Mode ls

Data Services Developer’s Guide 5-13

Figure 5-10 Model of Two Relational Data Services, ADDRESS and CUSTOMER

In the model diagram shown in Figure 5-10 the ADDRESS role is accessed by CUSTOMER through its
primary key, ADDR_ID. In the CUSTOMER data service the ADDRESS relationship has an
automatically created function called getADDRESS(). Its role is to return address-type information
about the holders of specific credit cards.

Cardinality notations

Navigation functions

Read functions

on navigation functions

Model ing Data Se rv ices

5-14 Data Services Developer’s Guide

Figure 5-11 getAddress(pk) Function in the CUSTOMER Data Service

In the function shown in Figure 5-11 the navigation function getADDRESS(pk) can take any
CUSTOMER parameter input that includes a primary key CUSTOMER_ID and returns customer
address information.

At the other end of the relationship in Figure 5-10 is the CUSTOMER role, which supplies customer
information to the ADDRESS data service also based on a unique customer ID.

In Figure 5-10 notational arrows also identify cardinality notations. The ADDRESS role has a 0-to-1
cardinality with CUSTOMER, since your data source can have a customer without address information.
The ADDRESS role has a 1-to-1 cardinality with CUSTOMER, since each ADDRESS must be identified
with a single customer.

Cardinality notations can be modified in three places:

Through your model diagram’s Property Editor (see “Model Diagram Properties” on page 5-23).

Through each data service Design View, using the Property Editor.

Through Source View in each data service (not recommended).

Bui ld ing Data Serv ice Re lat ionsh ips in Mode ls

Data Services Developer’s Guide 5-15

Role Names
You can change role names to better express the relationship between two data services. This is
particularly useful when there are multiple relationships between two data services.

Take, for example: Customers and Orders. One relationship between these two data services would
typically by 1: n, expressing two facts about the relationship:

There is no limit to the number of orders a customer may have made.

An order must be associated with one and only one customer.

By default, the role names would also be Customers and Orders. However you could change the role
names to Supplies_Customer_Info and Orders_Array, respectively, to more precisely express the role
of each side of the relationship.

A second relationship line could represent a different function, getMostRecentOrder(). This
relationship would be 1:1 and the roles could be expressed as CustInfo and getOrder.

Figure 5-12 Mousing Over a Role Displays Its Navigation Function Name

If you mouse over the end of a relationship line you will either see the navigation functions defined for
that particular role (Figure 5-12) or a message indicating that no navigation functions have been
defined.

Relationships
In a model diagram, drawing a line between two data services opens the Relationship Wizard.

Model ing Data Se rv ices

5-16 Data Services Developer’s Guide

Figure 5-13 First Dialog of Relationship Wizard

The wizard allows you to specify:

Direction

Role name

Cardinality

Then, for each data service, you can additionally specify:

Join conditions

Parameters

When you are done you will have created a fully functional navigation function.

For an example and additional details see “Adding a Relationship to Your Data Service” on page 4-11.
With a few minor exceptions the Relationship wizard works the same when invoked in a model
diagram as it does when you add a relationship to an existing data service.

Working with Model Diagrams
This section describes some of the common operations you will use when working with model
diagrams.

Work ing wi th Mode l D iagrams

Data Services Developer’s Guide 5-17

Model Right-click Menu Options
You can edit your model using a combination of right-click menu options and the model Property
Editor. Table 5-14 describes right-click options based on the functional area of the model diagram that
is in scope.

Table 5-14 Data Model Options

Scope Command Meaning

Data Model Add Data Service Allows you to add one or several data services in your application to
the current model diagram. The Add command brings up a file
browser from which you can select a data service.

Alternatively, you can drag data services from the Application pane
into the model either individually or in groups (press the Ctrl key to
select non-contiguous data services from your application).

In the case of relational-based data services, dragging multiple data
services into a model diagram at the same time will create
relationships between the data services, if any exist. The
relationships, of course, are based on primary/foreign key
relationships that are available through imported metadata.

Note: If a data service is already represented in your diagram,
dragging will have no effect.

New Data Service Allows you to create a new data service. After selecting a name and
physical location for the data service (.ds) file using a browser,
the service is created and placed on the diagram.

Select All Nodes Select all nodes in the model diagram.

Generate Report Creates either a Summary or Detail report describing the data
services in the model, their bilateral relationships, and a
description of each data service. See “Generating Reports on Your
Models” on page 5-20.

Find Data Service Locates a data service within your model. See “Locating Data
Services in Large Model Diagrams” on page 5-19 for details.

Data Service Open Opens the currently selected data service in Design View (see
“Creating a Data Service” on page 4-8). Alternatively, double-click
on the data service representation.

Model ing Data Se rv ices

5-18 Data Services Developer’s Guide

Add Related Data
Service

The Add Related command is available when one or several data
services are selected in the model. Add Related lists data services
that contain navigation functions referencing your currently
selected data source. Click on the service you want to add and then
repeat the process to add other available related services, if any.

Remove Data
Service

Removes the selected data service from the model diagram.
Alternatively, use the Delete key.

Note: This operation does not affect the underlying data service.

Create
Relationship to
Another Data
Service

Dialog allows you to select from a list of data services in the model
diagram. As with drawing a line between two data services, this
option brings up the Relationship wizard. (See “Using the
Relationship Wizard to Create Navigation Functions” on page 4-13.

Show
Relationship

Optionally displays/hides relationship lines associated with the
currently selected data service. Click a relationship name in the
sub-menu to select/deselect the display of its relationships.

Show/Hide Native
XML Types

Optionally displays/hides native types for elements representing
physical objects associated with simple data types. Example:
VARCHAR(25).

Show/Hide Read
Functions

Display/hides read functions associated with the data service.

Show Function
Signatures

Displays/hides full read function signatures such as:

getAddress() as element(Address)

Relationship line Remove
Relationship

Removes the relationship from the diagram without affecting the
underlying data service.

Delete
Relationship

Removes relationship notations in each respective data services
and removes the relationship line from the model diagram.

Show/Hide Role
Name

Displays/hides the role name assigned to each side of the
relationship.

Scope Command Meaning

Work ing wi th Mode l D iagrams

Data Services Developer’s Guide 5-19

Creating Relationships in Model Diagrams
You can create additional relationship notations in model diagrams in several ways:

1. By drawing a line between two data services in your model diagram.

2. By right-clicking on a data service representation and selecting Add Related Data Service. Then
select a data service from the sub-menu. The related data service will appear in the diagram
along with a relationship line.

3. By selected a data service already in the model. Right-click on your data service and select
Create Relationship to Another Data Service. Then, from the dropdown list in the resulting
dialog, choose the data service to which you want to create a relationship. This will create a
relationship line between the two data service representations.

4. By editing in Source View.

In the cases of options 1and 2, above, the Relationship wizard will appear. The wizard is fully described
in “Adding a Relationship to Your Data Service” on page 4-11. Note that in the model diagram you do
not have the option of changing the names of each side of the relationships since this has already been
defined by the line connecting the two data services.

Locating Data Services in Large Model Diagrams
You can locate data services in your model diagram using the Find Data Services option, available from
the right-click menu in your model diagram. Alternatively, use Ctrl-F when your model diagram is in
focus.

Show/Hide
Cardinality

Displays/hides the cardinality of each side of the relationship. Only
relationships between relational sources typically display
cardinality.

XML type Various XML types can be edited in your model diagram. For important
editing information see “Editing an XML Type” on page 4-24.

Scope Command Meaning

Model ing Data Se rv ices

5-20 Data Services Developer’s Guide

Figure 5-15 Find Data Service Dialog Box

Options include the ability to:

Match case

Restrict search to whole words only

Restrict the search to regular expressions

Wildcard character (?) and string (*) search is available.

Nodes matching the search criteria are highlighted and the model diagram view changes to show the
first matching node.

Searches made during the current session can be retrieved using the drop-down combination listbox
and entry field.

Generating Reports on Your Models
You can generate summary and detailed reports on the current model using the right-click Generate
Report menu option, available from the title bar of your model. There are two types of reports:
Summary and Detailed.

Summary Report. Provides general information related the model including:

– Location of each data service in the model

– Type: logical or physical

– Allows updates: true/false

– Owner (if any)

– Comment (if any)

– Date created

– Date last modified

Work ing wi th Mode l D iagrams

Data Services Developer’s Guide 5-21

Detail Report. A detailed model report contains all summary information listed above and, for
each relationship between data services, the following additional information:

– Return type fully qualified name (known as the qname)

– Details on each read function including return type, description, and comments

– Details on the data service relationships including role name, target data service, minimum
and maximum occurrences, opposite role name, navigation functions including return type,
description, comment and user-defined properties

– Dependencies — a list of all dependent data services

Creating a Model Report
When you choose the Create a Model Report right-click option you are asked to select a name for the
HTML document that is generated. By default, the name of the summary report is:

<model_name>_md_summary.html

and the name of the detail report is:

<model_name>_md_detail.html

Figure 5-16 Model Report Generator Dialog Box

You can save the report to any location in your application (Figure 5-16) including to a new folder.

Model Report Format
The model report is in HTML format. When you initially run your report it opens in a WebLogic
Workshop pane in HTML. A source tab is also available (Figure 5-17).

Model ing Data Se rv ices

5-22 Data Services Developer’s Guide

Figure 5-17 Sample Summary Model Report

Note: Print your report from any browser or application that supports HTML printing.

Zoom Mode
For larger models you can use a display-only zoom option, available in the lower right-hand corner of
your model diagram (Figure 5-19). When in zoom mode an “lock” icon appears, indicating that Zoom
mode is active and the model is read only.

Editing XML Types in Model Diagrams
You can edit any data service XML type represented in your model diagram. For XML type options see
“Editing an XML Type” on page 4-24.

Work ing wi th Mode l D iagrams

Data Services Developer’s Guide 5-23

Model Diagram Properties
Properties both reflect and define relationships created in the model diagram. Table 5-18 describes
data model properties based on scope: data service, relationship, navigation functions, and XML type.

Table 5-18 Notable Data Model Properties

Scope Property Settings Comments

Data Service Properties described in
“Managing Your Data
Service” on page 4-26.

Relationship data service1(Role 1)
- data service2 (Role 2

Read only Shows names of the related
data services and their
respective roles.

Role (1) Provides information on Role
1.

role-name Editable text

target data service Read only Name of data service1.

min-occurs Drop down, editable Minimum occurrences can
be blank, 0, 1, or n.

max-occurs Drop down, editable Maximum occurrences can
be blank, 0, 1, or n.

Role (2) See above. Same settings as Role (1).

Navigation
function

Name Read only

Return Cardinality Read only, 1 or * Returns single type or an
array

return type See “Editing XML Types and
Return Types” on page 2-16.

Model ing Data Se rv ices

5-24 Data Services Developer’s Guide

How Changes to Data Services and Data Sources Can Impact
Models

A model diagram is dependent on its components including physical data, logical data, and
relationships, all of which are subject to change outside the model itself.

Changes in a qualified name or deletion of a data service or changes in the underlying data can all
cause a data model to become an incorrect representation of data services and their relationships.

A model diagram is revalidated when:

it is opened or regains focus

when the application is saved

when metadata is updated

You can also use the Property Editor to correct a qualified name reference or to delete a stale
reference. See “Model Diagram Properties” on page 5-23 for details.

How Metadata Update Can Affect Models
Updating metadata will remove any manually created relationships between affected data services. In
your model diagram this change is represented by the relationship line, appearing in red. In such
cases, you will need to recreate the relationship with the newly updated data services.

How Changes to Data Se rv ices and Data Sources Can Impact Mode ls

Data Services Developer’s Guide 5-25

Figure 5-19 Relationships Invalidated by Metadata Update Appear in Red

Model ing Data Se rv ices

5-26 Data Services Developer’s Guide

Data Services Developer’s Guide 6-1

C H A P T E R 6

Working with the XQuery Editor

BEA Aqualogic Data Services Platform (DSP) services provide a framework for creation and
maintenance of functions that access and transform available data. You can use the XQuery Editor to
create such functions.

A valid query function is always associated with a return type. In Source View a return type is
described for each function. It typically matches the XML type — or schema — that defines the shape
of your data service.

Once created, your query functions can be called by client applications. Details on the various
methods of invoking DSP functions can be found in the Data Services Platform Client Application
Developer’s Guide.

You can also use the XQuery Editor to create standalone, ad hoc queries that can be run in Test View
(see Chapter 7, “Testing Query Functions and Viewing Query Plans”).

Topics discussed in this chapter include:

Role of the XQuery Editor

Key Concepts of Query Function Building

Managing Query Components

Working With Data Representations and Return Type Elements

http://e-docs.bea.com/liquiddata/docs85/appdev/index.html
http://e-docs.bea.com/liquiddata/docs85/appdev/index.html

Work ing wi th the XQuery Ed i to r

6-2 Data Services Developer’s Guide

Role of the XQuery Editor
Using the XQuery Editor you can create query functions using an intuitive, drag-and-drop approach.
During the creation process you can easily move back and forth between the editor to Source View.

Figure 6-1 Sample Parameterized Function in the XQuery Editor

The XQuery Editor relies on data services functions for the metadata necessary to represent various
types of data. (For detailed information on importing metadata see Chapter 3, “Obtaining Enterprise
Metadata”.)

Ro le o f the XQuery Ed i to r

Data Services Developer’s Guide 6-3

A data service may represent a physical data source or it may represent logical data that has previously
been created. Data service and custom XQuery library functions are both represented from the Data
Service Palette (Figure 6-2), a WebLogic Workshop pane available when XQuery Editor View is active.

Figure 6-2 Data Service Functions Available to the RTL Sample Application

Also see in the Data Services Platform Samples Tutorial Part II:

- Lesson 18: Building XQueries in XQuery Editor View

- Lesson 19: Building XQueries in Source View

../interm/SamplesTutorial2.pdf

Work ing wi th the XQuery Ed i to r

6-4 Data Services Developer’s Guide

Notice in Figure 6-2 that there are two different type of function representations: Functions represent
by a straight (green) arrow are read functions, while functions represented by a more stylized (blue)
arrow are navigation functions.

Essentially you create a query function by:

Dragging in data representations from the Data Service Palette to the XQuery Editor work area.

Identifying conditions, parameters, functions, and expressions that for your query.

Associating elements with a return type.

As you work graphically you are automatically creating an XQuery in Source View.

Once created, you can execute your function using Test View (see Chapter 7, “Testing Query Functions
and Viewing Query Plans”). When you execute your query function, underlying data sources are
accessed and the results appear. If you have appropriate permissions, data can be updated directly
after the query is run.

Data Source Representations
Metadata representations of source are available to the XQuery Editor from the Data Service Palette.
The Data Service Palette lists available data services and their read and relationship functions. Any
such function can be dragged into the XQuery Editor work area where it will be transformed into a for
clause.

Read functions and Web services often have input parameters. For example, the logical data service
Customer (customer.ds) can be represented in the XQuery Editor by its read functions:
getCustomer() and getPaymentList(). If you drag the getCustomer() item from the Data Service
Palette to the XQuery Editor, the source representation shown in Figure 6-3 appears in the work area.

Ro le o f the XQuery Ed i to r

Data Services Developer’s Guide 6-5

Figure 6-3 Data Service Function From the Data Service Palette

In some cases you may want to use a physical or logical data source representation several times in a
query.

See Chapter 3, “Obtaining Enterprise Metadata” and Chapter 4, “Designing Data Services” for details
on creating physical and logical data services.

XQuery Editor Options
When you create a new function in your data service and then click on the name of your new function
(Figure 6-1), you will automatically be placed in the XQuery Editor. Alternatively, click the XQuery
Editor View tab and select your function from the drop-down menu. Initially your XQuery will have only
a return type, assuming that your data service is associated with an XML type (see “Associating an
XML Type” on page 4-23).

Work ing wi th the XQuery Ed i to r

6-6 Data Services Developer’s Guide

Figure 6-4 Right-click Menu Options in the XQuery Editor

Several right-click menu options are available when you click in any unoccupied part of the work area.

Option Meaning

Edit in Source View Opens Source View to the section containing the currently selected
function.

Default layout The elements in the XQuery Editor are rearranged according to a
pre-established formula including docking the return type to the
right side of the work area.

Add Parameter Adds a simple or complex parameter to your work area. Complex
parameters require you to select a schema file and global type. See
“Parameter Nodes” on page 6-20.

Show Condition Lines Hides/displays lines that identify conditions such as where clause
predicates. By default condition lines are shown.

Remove Selected Item(s) Deletes selected items from the work area.

Collapse All Collapses all nodes in the work area including the return type.

Expand All Expands all nodes in the work area.

Creat ing a New Data Se rv ice and Data Se rv ice Funct i on

Data Services Developer’s Guide 6-7

Creating a New Data Service and Data Service Function
Creating a data service — as you will if you follow the steps in this section — is a good way to get the
feel of what it is like to work with the XQuery Editor, as well as other aspects of data services. For
example, through Source View you can quickly see how changes in the XQuery Editor are translated
into XQuery code. Similarly, any changes you make in Source View will be immediately reflected in the
XQuery Editor work area. (See Chapter 8, “Working with XQuery Source.”)

The Goal
The goal of this exercise is to quickly create a logical data service from scratch, including creating an
XML type for your data service, using the XQuery Editor. You create a logical data service by first
building up a return type from several physical data services and then making that the type of your
data service.

Note: The easiest way to change something you have done in the XQuery Editor is to use the
Edit →Undo command (or Ctrl-Z). Since before saving your application you will be able to
undo any number of previous steps, it is often preferable to use Undo rather than redrawing
mappings, zone settings, or conditions, since these actions all modify the underlying source.

Setting Up Your Application
Using DSP sample data, the following steps illustrate one way to create a logical data service,
including its return type.

Importing Your Metadata
In this section you will create a new application and DSP project and import the data source metadata
sufficient to create the necessary physical data services.

1. Create a new Data Services; you can name it myLogical. (For details on creating DSP projects and
applications see “DSP-Based BEA WebLogic Projects” on page 2-2.)

1. Right-click on the automatically-created project entitled myLogicalDataServices.

2. Select Import Source Metadata. (If your ldplatform samples server is not already running you
will need to start it before importing source metadata.)

3. Select Relational as the data source type.

4. Select all objects in cgDataSource from the drop-down list of available relational data sources.

5. Select the CUSTOMER table from the RTLCUSTOMER database.

Work ing wi th the XQuery Ed i to r

6-8 Data Services Developer’s Guide

6. Add it as a selected database object.

7. Repeat steps 5 and 6 for CUSTOMER_ORDER table in the RTLAPPLOMS database.

8. Click through the remaining options in the wizard to created two new data services.

Creating Your Logical Data Service
In this section you create a logical data service that provides client applications with the ability to
retrieve customer-order information. In this section you will:

Create a new data service and a new function.

Add functions that represent source data (in this case customers and orders).

Build up your return type using graphical gestures. This is where the master-detail arrangement
of your returned data is defined.

Modify return type zones to reflect nested for statements. This supports the nesting of all order
details for a particular customer under that customer.

Create your join conditions through a graphical gesture.

Here are the specific steps involved:

1. Right-click again on the myLogicalDataServices project and choose New →Data Service.

2. Name the data service myLogicalDS, then click Create. At this point your data service has no
XML type.

3. Click on the titlebar of your new data service; select Add function. Name your new function
CustOrder. Enter the XQuery Editor by clicking on the newly assigned name.

4. From your Data Service Palette drag the CUSTOMER() and CUSTOMER_ORDER() functions
into the XQuery Editor work area (Figure 6-5).

Creat ing a New Data Se rv ice and Data Se rv ice Funct i on

Data Services Developer’s Guide 6-9

Figure 6-5 XQuery Editor With Two Data Sources and an Empty Return Type

The existence of the two incomplete for clauses, $CUSTOMER and $CUSTOMER_ORDER, is
accounted for by the return type’s list of empty elements.

Next you need to populate the return type. In this case CUSTOMER_ORDER should be set up as
a child of CUSTOMER so that information will be return in the following shape:

Customer1
..
Order1

..
Order2

..
Customer2
..

5. Holding down the Ctrl key map the CUSTOMER* element in the CUSTOMER for node to the
topmost empty element in the return type.

Work ing wi th the XQuery Ed i to r

6-10 Data Services Developer’s Guide

Figure 6-6 Return Type After An Induced Mapping of the Customer For Node

6. In your return type right-click on the new CUSTOMER root element and select Expand Complex
Mapping. This maps all the elements in your CUSTOMER node to corresponding elements in
your return type.

As this document must also list each customer’s orders, you will need to create a second for
statement. One way to do this is to simply add the CUSTOMER_ORDER type as a subordinate to
CUSTOMER, as shown in the next step.

7. Holding down Shift+Ctrl keys select the root element in the $CUSTOMER_ORDER for node and
drag it over the CUSTOMER root element in your return type.

Creat ing a New Data Se rv ice and Data Se rv ice Funct i on

Data Services Developer’s Guide 6-11

Figure 6-7 Append Mapping of the $CUSTOMER_ORDER to the Return Type

The CUSTOMER_ORDER elements will appear as subordinate to CUSTOMER.

Work ing wi th the XQuery Ed i to r

6-12 Data Services Developer’s Guide

Figure 6-8 Subordinate Node Added to the Return Type

If you try to run a query at this point it will fail for several reasons:

– Your data service has no associated XML type (schema).

– Your project (or application) needs to be build to create the proper SDO infrastructure.

– No where clause connecting the customer ID keys in the two data source representations
has been created.

– The master-detail structure of the document has not been created.

Similarly, if you attempt to map source elements to CUSTOMER_ORDER, you will not be
successful. This is because the implicit assumption behind the mapping of a complex element is
that all the child elements are mapped to the return type.

These issues are resolved through the steps that follow.

Creat ing a New Data Se rv ice and Data Se rv ice Funct i on

Data Services Developer’s Guide 6-13

8. In your CUSTOMER_ORDER node select the zone icon (see Figure 6-9) and drag it over the
CUSTOMER_ORDER element in your return type. (Notice that now when you mouse over the
CUSTOMER_ORDER note, only the subordinate CUSTOMER_ORDER node is highlighted.) This
action creates an inner zone in your return type which in source translates into an inner for
clause for your query. An inner zone corresponds to the detail part of a relational master-detail
ordering. (For more information on return type zones see “Setting Zones in Your Return Type” on
page 6-50.)

Figure 6-9 Creating a Zone Supporting CUSTOMER_ORDER

9. Create a join between your two data source representations by dragging the CUSTOMER_ID
element in the CUSTOMER node to the C_ID element in the CUSTOMER_ORDER node. A green
line connecting the two elements appears.

Zone icon

Work ing wi th the XQuery Ed i to r

6-14 Data Services Developer’s Guide

Creating Your Data Service’s XML Type, Building Your Application, and Running Your Query
The default name for your new schema matches the name of your data service; the default namespace
is the qualified name (qname) of the root element of your return type.

1. Click on the titlebar of your return type and select Save and Associate XML Type from the
right-click menu. In order to complete this operation you need to provide the location of your new
schema file, its namespace, and a name for the root element in your return type. In each case a
default setting is provided, as shown in Figure 6-10.

Figure 6-10 Save and Associate XML Type Dialog

2. Since the proposed qualified namespace of your new XML type is identical to the qualified name
of your CUSTOMER data service, a type conflict will occur if you try to set your XML type to the
return type. The solution is to modify either the namespace or the root name. Change the root
name from CUSTOMER to CUST_ORDER_DETAIL. This will also change the root name of your
return type and complete the association.

3. Build your project (or application).

4. Execute your query through Test View. Results should show customer orders nested for each
customer. (See partial results in Figure 6-11.)

Key Concepts o f Query Funct ion Bu i ld ing

Data Services Developer’s Guide 6-15

Figure 6-11 Test Results

Although there are several ways to go about accomplishing the same task, it is also important to be
aware that there were points along the way where an effort to build or deploy your application would
not have been successful because the query or the return type was not fully formed. Thus the order in
which steps are accomplished is often important.

Key Concepts of Query Function Building
The following terms and concepts are introduced in this section:

Data Sources

Source Schemas and Return Types

XQuery Editor Components

The Distinct By node represents a single distinct by clause.

Setting Expressions

Mapping to Return Types

Modifying a Return Type

Data Sources
DSP supports multiple data sources including:

Work ing wi th the XQuery Ed i to r

6-16 Data Services Developer’s Guide

RDBMS (relational database management systems)

Web services

Java functions

Delimited files (such as spreadsheets)

XML files

For details on importing data source metadata from these sources into DSP-based projects see
“Obtaining Enterprise Metadata.”

Source Schemas and Return Types
The XQuery Editor uses XML schema representations as:

XML type. An XML schema that describes the structure of a physical or logical data source.

Return type. The return type of a function. In the XQuery Editor the return type contains
information necessary to support customized queries in terms of the ordering of information
returned from the query.

For more information see “XML Types and Return Types” on page 4-7.

XQuery Editor Components
Using the XQuery Editor, query functions can be built up graphically using a combination of graphical
gestures and functions, including:

Standard XQuery for and let clauses

XQuery constructs such as where and order by

XQuery extensions such as group by and if-then-else

Standard and user-defined XQuery functions

Physical and logical data source references

The following topics describe XQuery clauses as rendered in the XQuery Editor. (For information on
the XQuery engine used by DSP and specific uses of XQuery in Source View see the Data Services
Platform XQuery Developer’s Guide. This document also contains references to the most up-to-state
XQuery W3C specifications.)

http://e-docs.bea.com/liquiddata/docs85/xquery/index.html

Key Concepts o f Query Funct ion Bu i ld ing

Data Services Developer’s Guide 6-17

Return Type Node
Query functions always map to a single return type. If your data service is associated with a return
type, that type will appear in the Return node.

Figure 6-12 Sample Return Type

The return type can be thought of as extending the XML type to in support of:

If-then-else constructs using the right-click Conditional operation.

Zones (see “Setting Zones in Your Return Type” on page 6-50).

When you click on a simple element in the return type, the expression on that element’s constructor
appears.

For Clause Nodes
A for clause node represents a named XQuery for clause construct. For and let clause nodes are always
based data service functions.

Figure 6-13 Sample For Statement Node

By default, whenever you add a data service to the XQuery Editor work area, it is represented in a for
node. The for node typically represents looping over a query function using either:

Work ing wi th the XQuery Ed i to r

6-18 Data Services Developer’s Guide

a variable reference

an expression

Parameterized Input
A for node, representing a parameterized query function, provides both Input and Output sections. As
you would expect, parameters are mapped to the Input elements while Output elements either serve
as input to other nodes or to the return type.

Figure 6-14 Example of Parameterized For Node

For and Let Node Options
Several options are available when you right-click on the title of a for node.

Option Meaning

Rename Brings up a dialog which allows you to rename your node. Names
cannot contain spaces.

Delete Removes the node and any mappings in or out of the node from the
work area.

Key Concepts o f Query Funct ion Bu i ld ing

Data Services Developer’s Guide 6-19

Converting Between For and Let Clauses
For and let clauses (see “Let Statement Nodes” on page 6-20) have many interchangeable
characteristics.

The following code shows the conversion of the DataServices/RTLServices/Case/getCaseByCustID()
function expression from a for clause:

declare function ns1:getCaseByCustID($cust_id as xs:string) as
element(ns0:CASE)* {

for $x0 in ns1:getCase()
where $cust_id eq $x0/CustomerID

return $x0
};

to a let clause:

declare function ns1:getCaseByCustID($cust_id as xs:string) as
element(ns0:CASE)* {
let $x0 := ns1:getCase()

where $cust_id eq $x0/CustomerID
return $x0
};

Convert to let/for Clause Changes the clause from a for to a let or from a let to a for. This
operation is reversible.

Go to definition Opens the data service that is represented by the node. The data
service is opened to the current function in XQuery Editor View.
However, if the function represents a physical data service (termed
external in Source View), then the function definition in Source
View appears. You can use the back arrow to return to your initial
data service.

Relationship Functions Relationship functions associated with the data service are listed.
Selecting a relationship function allows your for or let node to serve
as input for the relationship. See “Adding Relationship Functions to
an Existing Data Service” on page 6-24 for an illustration and code
sample.

View Source Shows the source underlying the currently selected node.

Option Meaning

Work ing wi th the XQuery Ed i to r

6-20 Data Services Developer’s Guide

Let Statement Nodes
A let clause binds a sequence of elements (graphically contained in a node) to a variable that in turn
becomes available to the FLWR expression.

Options available for use with for clauses are also available for let clauses. See “For and Let Node
Options” on page 6-18.

Figure 6-15 Let Statement in the RTLServices/OrderSummaryView Data Service

When examining a let clause, you can read the assign string (:=) as the “be bound to”. For example, in
the following let clause:

let $x := (1, 2, 3)

Can be read as "let the variable named x be bound to the sequence containing the items 1, 2, and 3."

See also “Converting Between For and Let Clauses” on page 6-19.

Parameter Nodes
Parameter nodes enable you to associate a parameter with a for or let clause. Parameter nodes are
created in the XQuery Editor work area (Figure 6-4). Three right-click menu options are available:
Rename, Delete, and View Source.

Key Concepts o f Query Funct ion Bu i ld ing

Data Services Developer’s Guide 6-21

Figure 6-16 XQuery Editor Add Parameter Dialog Box

You can create parameters that range from simple data elements to elements of any complexity.

Adding a Parameter Requiring a Simple Type
You can create a simple type parameter by selecting the type from the drop-down list and clicking Ok.

Figure 6-17 Setting a Simple Parameter Types

The act of mapping a parameter to a for or a let node containing an Input creates a parameterized
query and also establishes a where condition. In Figure 6-18 the customer_id string parameter is
dragged over the element in the ADDRESS node which is to be associated with the parameter through
a where clause.

Work ing wi th the XQuery Ed i to r

6-22 Data Services Developer’s Guide

Figure 6-18 Parameter Mapped to a For Node

The corresponding Source View code highlights the parameter:

declare function ns5:getCaseView($custID as xs:string) as
element(ns6:CaseView) {
<ns6:CaseView>
{

<CASE_VIEW>
<CASES>{

for $Case in ns7:getCaseByCustID($custID)
return <CASE>

<CaseID> {fn:data($Case/CaseID)} </CaseID>
<CustomerID>{fn:data($Case/CustomerID)}</CustomerID>
<CaseType> {fn:data($Case/CaseType)} </CaseType>
<ProductID> {fn:data($Case/ProductID)} </ProductID>
<Status> {fn:data($Case/Status)} </Status>
<StatusDate> {fn:data($Case/StatusDate)} </StatusDate>
</CASE>
}

</CASES>
</CASE_VIEW>
}

</ns6:CaseView>
};

When you invoke your function from an application — or execute your function in Test View — you
will supply a value for your parameter.

Key Concepts o f Query Funct ion Bu i ld ing

Data Services Developer’s Guide 6-23

Adding a Complex Parameter
Complex parameters are established by identifying a schema and a global element. Some schemas
have only one global element.

Figure 6-19 Setting a Complex Parameter Type

The resulting parameter can be associated with any for or let node. See also “Parameterized Input” on
page 6-18.

Using the Parameter Dialog to Create a WHERE Clause
You can use the parameter dialog to create a where clause condition simply by dragging the simple or
complex parameter over an element in a for or let clause. In Figure 6-20 the newly created parameter
productID is mapped to PRODUCT_ID. Since the $PRODUCT for node is selected, the where clause is
in scope.

Work ing wi th the XQuery Ed i to r

6-24 Data Services Developer’s Guide

Figure 6-20 Parameterized Where Clause

Adding Relationship Functions to an Existing Data Service
There are several ways to add relationship functions to existing data services. The recommended way
is to use the right-click menu option available from for and let nodes, since this will created more
appropriately nested clauses than simply dragging a relationship function from the Data Service
Palette into the work area.

For example, if you want to create a logical data service that was a union of customer order and order
line items, you could start with a customer order and add the related line item data.

Figure 6-21 takes the RTLApp DataServices/ApparelDB/CUSTOMER_ORDER() function and shows
the process of adding the related getCUSTOMER_ORDER_LINE_ITEM() function.

Key Concepts o f Query Funct ion Bu i ld ing

Data Services Developer’s Guide 6-25

Figure 6-21 Adding a Relationship Function

The function initially appears as:

declare function tns:newFunction() as element(ns30:CUSTOMER_ORDER9)* {

for $CUSTOMER_ORDER in ns28:CUSTOMER_ORDER()

return $CUSTOMER_ORDER

};

Adding the relationship function changes it to:

declare function tns:newFunction() as element(ns30:CUSTOMER_ORDER9)* {

for $CUSTOMER_ORDER in ns28:CUSTOMER_ORDER()

for $CUSTOMER_ORDER_LINE_ITEM in

ns28:getCUSTOMER_ORDER_LINE_ITEM($CUSTOMER_ORDER)

return $CUSTOMER_ORDER

};

To complete this simple example you would need to add elements from the related data service to your
return type and complete your mappings, as well as any transformations.

Group By Statement Nodes
The Group By node represents a single group by clause with zero or more grouping expressions. The
top part of the Group By node defines variables available to the generated group by expression. The
bottom part defines the grouping expression itself.

Work ing wi th the XQuery Ed i to r

6-26 Data Services Developer’s Guide

Group By expressions are often used with aggregation functions such as grouping customers by total
sales. A for or let clause supports multiple group by elements.

You can generate a Group By node by right-clicking on any element in a for or let node and selecting
Create Group By from the right-click menu.

Figure 6-22 Creating a Group By Expression

In Figure 6-22 output will be grouped by the C_ID (customer ID) element. Once a GroupBy node is
created, mappings to target objects — such as the return type — are done through the new node.

Key Concepts o f Query Funct ion Bu i ld ing

Data Services Developer’s Guide 6-27

Figure 6-23 Projecting Total Orders Grouped by Customer ID

The default name of the group by node will be a unique name based on the local name of the for/let
node. Thus the CUSTOMER_ORDER for clause becomes the basis for CUSTOMER_ORDER_group0.
Group By nodes cannot be renamed from the XQuery Editor.

As seen in Figure 6-23, any node mappings are automatically transferred to the Group By node.

The resulting source is:

declare function tns:getCustomerOrderAmount() as
element(ns5:CUSTOMER_ORDER)* {
 for $CUSTOMER_ORDER in ns6:CUSTOMER_ORDER()
group $CUSTOMER_ORDER as $CUSTOMER_ORDER_group by $CUSTOMER_ORDER/C_ID
as $C_ID_group

return
<ns5:CUSTOMER_ORDER>
 <ORDER_ID></ORDER_ID>
 <C_ID>{fn:data($C_ID_group)}</C_ID>
 <ORDER_DT></ORDER_DT>
 <SHIP_METHOD_DSC></SHIP_METHOD_DSC>
 <HANDLING_CHRG_AMT></HANDLING_CHRG_AMT>
 <SUBTOTAL_AMT></SUBTOTAL_AMT>

Work ing wi th the XQuery Ed i to r

6-28 Data Services Developer’s Guide

<TOTAL_ORDER_AMT>{fn:sum($CUSTOMER_ORDER_group/TOTAL_ORDER_AMT)}</TOTAL
_ORDER_AMT>
 <SALE_TAX_AMT></SALE_TAX_AMT>
 <SHIP_TO_ID></SHIP_TO_ID>
 <SHIP_TO_NM></SHIP_TO_NM>
 <BILL_TO_ID></BILL_TO_ID>
 <ESTIMATED_SHIP_DT></ESTIMATED_SHIP_DT>
 <STATUS></STATUS>
 <TRACKING_NO?></TRACKING_NO>
 </ns5:CUSTOMER_ORDER>
};

If you delete a Group By node any mappings from the parent node will need to be redrawn.

Creating Multiple Group By Elements
In the example you can add additional grouping expressions simply by dragging new elements over the
“By” separator, (Figure 6-24).

Figure 6-24 Adding a Second Group By Element

The act of dragging the element over an existing group by expression, adds a second group by
expression, as shown in Figure 6-25.

Key Concepts o f Query Funct ion Bu i ld ing

Data Services Developer’s Guide 6-29

Figure 6-25 The New Group By Expression Element

The effect of adding the second group by in the above example is to group total orders by their status
value.

<ORDER_ID/>
 <C_ID>CUSTOMER0</C_ID>
 <TOTAL_ORDER_AMT>1173.2</TOTAL_ORDER_AMT>
 <STATUS>CLOSED</STATUS>
 </ns0:CUSTOMER_ORDER5>
 <ns0:CUSTOMER_ORDER5
xmlns:ns0="ld:DataServices/ApparelDB/CUSTOMER_ORDER5">
 <ORDER_ID/>
 <C_ID>CUSTOMER0</C_ID>
 <TOTAL_ORDER_AMT>436.3</TOTAL_ORDER_AMT>
 <STATUS>OPEN</STATUS>
 </ns0:CUSTOMER_ORDER5>
 <ns0:CUSTOMER_ORDER5
xmlns:ns0="ld:DataServices/ApparelDB/CUSTOMER_ORDER5">
 <ORDER_ID/>

Using Multiple Group Nodes
You can create additional multiple Group By expressions to enable creation of logic such as:

Work ing wi th the XQuery Ed i to r

6-30 Data Services Developer’s Guide

Group by A, then
Group by B

In order to do this you need to introduce an additional for or let clause to establish the parent-child
structure that will support the needed logic.

To creating a second-level group by:

1. Creating a child for clause. Right-click on the root element in your primary group by node and
select Create For Clause.

2. Create a new zone (see “Setting Zones in Your Return Type” on page 6-50) in your return type.
There are several ways to do this. One is to Add a Child Element.

3. Right-click on the new child element and select Mark as Zone.

4. Set the zone of your new for clause to the new child element. Do this by dragging the zone
symbol over your new child element. You will know you have succeeded when the
newChildElement displays an array symbol.

NewChildElement * empty

And, when you mouse over the new child element, it will be highlighted, indicating that it is a
zone unto itself.

5. Create a group by right-clicking on the grouping element in the new for clause node.

6. Replace the new child element by dragging the group by element over the new child element
while holding down the control key. This effectively overwrites the element with the group by
expression.

7. Save and associate your new return type so that it become the XML type of your data service.

You can use Test View to verify your work.

Distinct By Statement Nodes
The Distinct By node represents a single distinct by clause.

Distinct by is useful:

When you what to return all distinct values for a particular element.

When you want to perform functional operations on the result of a distinct by, such as the total
number of distinct elements.

Key Concepts o f Query Funct ion Bu i ld ing

Data Services Developer’s Guide 6-31

Setting Conditions
Several types of conditions can be graphically applied to for and let clauses. You can create these
conditions using a multifunction editor that appears at the bottom of XQuery Editor work area.
(Figure 6-26).

Figure 6-26 Multifunction Condition Editor

To add or modify constraints for a for or let node first select the node, then click anywhere in the
multifunction editor. Everything but your selected expression will become unavailable, as indicated
by the “grayed out” appearance of unselected objects.

Condition types are:

where

group by

Figure 6-27 provides a closer look at the multifunction dialog which includes the ability to:

Add any number of where or order by conditions.

Edit a condition using the built-in line editor.

Condition Editor

Work ing wi th the XQuery Ed i to r

6-32 Data Services Developer’s Guide

Adjust the order in which the conditions are applied.

Select XQuery operators from a drop-down list.

Accept or cancel editing changes to a particular condition.

Delete a where or order by clause.

Functions from the XQuery Function Palatte can be dragged into the multifunction box and then
edited.

Figure 6-27 Detail of Multifunction Box

The Where Clause
The where clause places a condition on a for and/or let clause. A where clause can be any query
expression, including another FLWR expression. The where clause typically filters the number of
matches in a FLWR loop.

A common use of the where clause is to specify a join between two sources. For example, consider the
following query:

<results>
{
for $x in (1, 2, 3), $y in (2, 3, 4)
where $x eq $y
return
 <matches>{$x}</matches>
}
</results>

Order ByWhereCancel Accept

Close

Move Up
Move Down

XQuery Operators
Add Add

Key Concepts o f Query Funct ion Bu i ld ing

Data Services Developer’s Guide 6-33

The where clause in this query filters (or joins or constraints) the results that match two sequences
specified in the for clause. In this case, the numbers 2 and 3 match, and the query returns the
following results:

<results>
 <matches>2</matches>
 <matches>3</matches>
</results>

To effect this in the XQuery Editor you would select the for or let clause to which the where condition
applies. Then, in the where condition field, you enter:

$x eq $y

You can type in the name of an element or drag it from the a node in the work area into the
multifunction editor.

The eq XQuery operator can be entered directly or selected from the conditional pop-up list
(Figure 6-28).

Figure 6-28 Conditional Operator Selection List

Here is a more complete example involving an XQuery function (see “Using XQuery Functions” on
page 6-35). It involves finding all customers whose first name is Jack.

Work ing wi th the XQuery Ed i to r

6-34 Data Services Developer’s Guide

Using a Where Clause as a Filtering Device
The following example illustrates the use of a where clause in the multifunction editor:

1. Using the RTLApp sample application DataServices project create a new data service. Choose any
name.

2. Select the Add Function option from the Data Service menu. Use any name.

3. Click on the new function name to enter the XQuery Editor.

4. From the Data Service Palette (View → Windows → Data Services Palette) select the
CUSTOMER() function from the CustomerDB/CUSTOMER data service; drag it into the work
area.

5. Associate the empty return type with the CUSTOMER elements by mapping the top node
CUSTOMER element to the empty element in the return type while holding down the Control
key (Ctrl-map).

6. In your return type select Expand Complex Mapping from the right-click menu associated with
the top element in your return type (now CUSTOMER).

7. In the return type title select the Save and Associate right-click menu option associated with the
return type title.

You can create a valid XML type (schema file) for your new data service by associating your
return type with your data service. The name of the global element in your return type or the
alias assigned to the namespace or both needs to be changed because there already is a schema
named CUSTOMER that was based on the physical data source you started with. (For details on
Save and Associate see “Creating a New Data Service and Data Service Function” on page 6-7.)

If you change the name field CUSTOMER to CUSTOMER_WHERE and click Ok you will notice
that the name of the complex element in your return type will change.

8. Click on the title bar of the Customer node. This highlights the multifunction editor.

9. Click on the Where clause icon (Figure 6-31). A field for the where clause appears.

10. Click on FIRST_NAME in the CUSTOMER node.

11. Add an equals operator following by “Jack” so that the entire clause appears as:

$CUSTOMER/FIRST_NAME eq "Jack"

Notice that the clause becomes red whenever your expression is invalid.

12. In Test View run your new function. Notice in your results that the where conditions are fulfilled.

Key Concepts o f Query Funct ion Bu i ld ing

Data Services Developer’s Guide 6-35

See also “Using the Parameter Dialog to Create a WHERE Clause” on page 6-23.

The Order By Clause
The order by clause indicates output order for a given set of data.

Unless otherwise specified, the order data appears will follow the XML tree. This is known as the
document order. The order by keyword indicates that the content should be sorted in ascending
order by the identified element(s).

XQuery keywords such as descending are supported. For example, an XQuery can be written that
orders the customers by last name in descending order:

for $customer in document('customers.xml')//customer
order by last_name descending
return

<customer>
{$customer/first_name}
{$customer/last_name}

</customer>
...

In the XQuery Editor you would select the for or let clause to which the order by condition applies and
in the order by condition field enter:

last_name descending

You can type in the name of an element or drag it from the work area into the multifunction editor
Figure 6-27.

Creating Join Conditions
Join conditions are represented as equality relationships in where clauses. Therefore you can create
such an equality relationship by dragging and dropping the eq function onto a row in the Conditions
tab and then selecting two source elements/attributes into the same row.

Using XQuery Functions
Data Services Platform contains a full set of built-in XQuery functions. Most XQuery functions in the
XQuery Function Palette are standard XQuery functions supported by the W3C. However, there are
several BEA-specific functions as well as several extensions to the language. (For details on the BEA
implementation of the 1.0 XQuery engine see XQuery Developer’s Guide. For more detailed
information on standard XQuery functions, see the W3C XQuery 1.0 and XPath 2.0 Functions and
Operators specification.)

http://e-docs.bea.com/liquiddata/docs85/xquery/index.html
http://www.w3.org/TR/2001/WD-xquery-operators-20011220/
http://www.w3.org/TR/2001/WD-xquery-operators-20011220/

Work ing wi th the XQuery Ed i to r

6-36 Data Services Developer’s Guide

The functions available from the XQuery Functions palette help you create conditions around for and
let clauses. XQuery functions can be used in several contexts:

In where clauses.

As input to another XQuery function.

Mapped to a target element.

As input to a data service function.

Using XQuery Functions in Where Clauses
To create a where clause condition that filters customers a query returns you can follow these steps:

1. Follow steps 1-7 under “Using XQuery Functions in Where Clauses” on page 6-36.

2. Click on the title bar of your CUSTOMER node.

3. Click the Where icon (see “The Where Clause” on page 6-32) to create a new where condition.

4. Open the XQuery Function palette (View → Windows → XQuery Function Palette).

5. Drag the fn:string-length() as xs:integer function from the XQuery Palette into the Where
condition.

Key Concepts o f Query Funct ion Bu i ld ing

Data Services Developer’s Guide 6-37

Figure 6-29 XQuery Palette

6. Using the condition and expression built-in line editor highlight the function argument ($arg).

7. Click on $CUSTOMER/LAST_NAME. The string appears as:

Where fn:string-length($CUSTOMER/LAST_NAME)

8. Add <5 as the predicate so the string appears as:

Where fn:string-length($i/ORDERID)>5

Work ing wi th the XQuery Ed i to r

6-38 Data Services Developer’s Guide

Figure 6-30 Editing an XQuery Function

9. Click the checkmark in the editor.

If you mouse over the title of your for clause, you can see that the condition has been associated
with the fragment. You can also verify this change in source view.

Figure 6-31 Mouseover of Node Title Displays Its Conditions

When you run the function only records with LAST_NAMEs shorter than five characters will
appear.

Automatic type casting generally ensures that input parameters used in functions and mappings are
appropriate to the function in which they are used.

Transforming Data Using XQuery Functions
There are many transformational XQuery functions. In the following example the concat() function is
used to quickly enrich data returned from a physical data service by adding functionality to the
expression associated with an element returned by the function.

Key Concepts o f Query Funct ion Bu i ld ing

Data Services Developer’s Guide 6-39

1. Follow steps 1-7 under “Using XQuery Functions in Where Clauses” on page 6-36.

2. Open the XQuery Function palette.

3. In the return type add a child element.

4. Rename it to NAME_ID_STATEMENTSTATUS. Initially no type is assigned to the element. This
will be derived from the element or function mapped to it.

5. Click on your new element.

6. Then click in the expression field of the multifunction editor.

7. Drag the fn:concat($arg1,$arg2,...) function into the expression field.

Figure 6-32 Creating a Concatinated Element in the Return Type

8. Highlight the first argument ($arg1) and click on FIRST_NAME in the $CUSTOMER node.
Similarly, select $arg2 and click on LAST_NAME. Select the ellipses and then click on
ONLINE_STATEMENT.

Work ing wi th the XQuery Ed i to r

6-40 Data Services Developer’s Guide

9. The concat() function requires that all input parameters be of type string. Since
ONLINE_STATEMENT of type short, it needs to be cast as a string. You can do this through the
editor. Similarly, you can add spaces and a small legend to make the results more readable.

When your editing is complete, the XQuery function will appear as:

{fn:concat($CUSTOMER/FIRST_NAME, ' ',$CUSTOMER/LAST_NAME,' |
',($CUSTOMER/ONLINE_STATEMENT cast as xs:string),' (online=1; printed=0)')}

10. Check the green box to accept your changes.

11. Since you made changes to the return type schema, rebuild your application.

Notice also (Figure 6-33) how the new functionality is reflected in the source-to-target mapping.

Figure 6-33 XQuery Editor Work Area After Adding an Element Containing a Function to the Return Type

12. When you run you program in Test View results will now include the following type of
information:

<NAME_ID_STATEMENTSTATUS>
Jack Black | 1 (online=1; printed=0)

</NAME_ID_STATEMENTSTATUS>

Managing Query Components

Data Services Developer’s Guide 6-41

Setting Expressions
The Expression editor is most commonly used to edit return type expressions. For example, if the
return type contains:

ORDERID xsd:int

The editor can be used to limit the scope of the expression to a single customer:

Expression>{fn:data($o/ORDERID)} eq “1001”

Prototypes of functions available from the XQuery Function Palette can be dragged into the editor or
you can use the build-in line editor to enter them yourself.

Figure 6-34 Expression Editor

Operation of the Expression editor is similar to that for the multifunction box. When you select a
element other workspace artifacts are grayed out. However, you can drag elements from any part of
the work area into the Expression Editor.

XQuery operators are available as a drop down list, as shown in Figure 6-28, or you can simply type
them in.

Managing Query Components
If you think of selected data elements as nouns (what you want to work on), the functions as verbs
(the action), then the mapping among the data elements creates a logical sentence that expresses
the query.

Results and query performance can change significantly depending on how you:

Map (or project) source data from one or more sources to the return type.

Specify zones and other conditions (filter source data) and expressions (element level
operations).

Cancel Accept Operators Condition Editor

Work ing wi th the XQuery Ed i to r

6-42 Data Services Developer’s Guide

Although you can simply type in an XQuery and run it from Test View, the more common way to create
a query is build it up through the following operations:

Map simple or complex elements to the return type

Define query parameters

Transform information using built-in or custom functions

Filter data using where or order by conditions

Adjust expressions as required by business requirements

Note: Some operations are not deterministic. For example if a node has elements mapped to a
return type, deleting the node before removing the mappings may create error conditions.
Instead you can use Undo and then delete the mappings or you can make the necessary
changes in Source View.

Working With Data Representations and Return Type Elements
Mapping elements involves establishing a visual relationship between data source elements and the
return type or an intermediary node requiring input parameters.

There are two types of schema elements: simple and complex. Complex elements contain elements
and/or attributes.

Work ing Wi th Data Representa t ions and Re tu rn T ype E lements

Data Services Developer’s Guide 6-43

Figure 6-35 Expanded Schema Showing Complex and Simple Elements

To expand a complex element, click on the plus sign (+) to the left of its name. (If you double click on
the name itself, you will enter edit mode.)

Mapping to Return Types
As shown in “Creating a New Data Service and Data Service Function” on page 6-7, the XQuery Editor
automatically generates queries based on graphical mappings into a return type.

The XQuery Editor supports two types of mappings: value mappings and complex element mappings.
Value mappings map (assign) only the value of an element or attribute from a source to the value of
its target element or attribute. Element mappings allow mapping source elements (simple or
complex) to target.

In order to map an element to a return type, that element needs to be in scope. If the element you are
attempting to map is not in scope, a message will appear indicated that the mapping is invalid (see
XX). Invalid mappings occur whenever the underlying for or let statement would not be able to validly
handle the association of the data element(s) with the return type schema.

Work ing wi th the XQuery Ed i to r

6-44 Data Services Developer’s Guide

Figure 6-36 Invalid Mapping Attempt Flagged by Alert

For more information on element scoping and other related issues see “XML Types and Return Types”
on page 4-7 and “Editing XML Types and Return Types” on page 2-16.

Mapping Elements and Attributes to the Type
A questionmark symbol [?] next to an element name represents an optional element, meaning that it
is not required by the query. Primary keys are never optional.

Complex Element Mappings to a Return Type
You can rapidly map complex elements from source to your return type. This known as an induced
mapping is useful where all or part of the return type should match source representations.

There are many situations when you will find it convenient to map elements into your type, including:

When you are creating a type from scratch.

When you want elements individually mapped but it is easier to map complex elements, expand
the mappings to include values, and then add or delete some mappings using right-click return
type management commands.

If the match is not exact, mapping a complex element to your return type will be appended.

Work ing Wi th Data Representa t ions and Re tu rn T ype E lements

Data Services Developer’s Guide 6-45

There are several benefits of mapping or projecting elements:

Manual one-to-one mapping of multiple elements is less often needed.

The query is often easier to read.

If the underlying structure of the complex element changes — an element is added, deleted, or
an attribute is changed — the generated query does not change.

Figure 6-37 shows the results of the mapping of a complex element to a return type.

Figure 6-37 Example of Mapping of a Complex Element

Note: You cannot map multiple elements to a single target element.

Source-to-Target Mapping Options
Three source-to-return type gesture mappings are available — value mappings, overwrite mappings,
and append mappings.

Value mappings. Individual source node elements are individually mapped to simple elements
or attributes in the return type. You can create a value or simple mapping by dragging and
dropping elements from the source node to a corresponding target element in the return type.
All elements may not need to be mapped, depending on the information you want in the XML
document generated by your query function. However, special attention should be paid to

Work ing wi th the XQuery Ed i to r

6-46 Data Services Developer’s Guide

non-optional elements (those without adjacent question-marks (?)), since your query will fail if
non-optional elements are not projected.

Overwrite mappings. When you hold down the Ctrl key when mapping an element, the source
element (and any children) will replace the target element (and any children). This gesture
sometimes results in an induced mapping. An induced mapping occurs when a complex
element in source is mapped to a comparable (exactly named) element in the return type. For
example, you create an induced map when you drag and drop the CREDIT_CARD* element
(root element in a source node) onto the CREDIT_CARD complex element in the return type.

The following code expresses the results of an induced mapping:

declare function tns:newFunction() as element(ns5:CREDIT_CARD)* {
 for $CREDIT_CARD in tns:getCreditCard()
return
$CREDIT_CARD

In many cases an induced mapping is insufficient either for further building your query function
or running it. You can always expand an induced mapping by right-clicking on the element in
the return type and selecting the only available option: Expand Complex Elements.

In the above case the source would be correspondingly modified:

declare function tns:newFunction() as element(ns5:CREDIT_CARD)* {
 for $CREDIT_CARD in tns:getCreditCard()
return
<ns5:CREDIT_CARD>
 <CreditCardID>{fn:data($CREDIT_CARD/CreditCardID)}</CreditCardID>
 <CustomerID>{fn:data($CREDIT_CARD/CustomerID)}</CustomerID>
 <CustomerName>{fn:data($CREDIT_CARD/CustomerName)}</CustomerName>
 <CreditCardType>{fn:data($CREDIT_CARD/CreditCardType)}</CreditCardType>
 <CreditCardBrand>{fn:data($CREDIT_CARD/CreditCardBrand)}</CreditCardBrand>

<CreditCardNumber>{fn:data($CREDIT_CARD/CreditCardNumber)}</CreditCardNumber>
 <LastDigits>{fn:data($CREDIT_CARD/LastDigits)}</LastDigits>
 <ExpirationDate>{fn:data($CREDIT_CARD/ExpirationDate)}</ExpirationDate>
 <Status?>{fn:data($CREDIT_CARD/Status)}</Status>
 <Alias?>{fn:data($CREDIT_CARD/Alias)}</Alias>
 <AddressID>{fn:data($CREDIT_CARD/AddressID)}</AddressID>
</ns5:CREDIT_CARD>
};

Work ing Wi th Data Representa t ions and Re tu rn T ype E lements

Data Services Developer’s Guide 6-47

Figure 6-38 Expanded Complex Element

Append mappings. You can append a source element and children (if any) to an element in a
return type using the key combination of Ctrl+Shift. Click the source element, press the key
combination of Ctrl+Shift and drag the element over an element in the return type. If the
underlying element is highlighted, you can add the source as its child.

Note: Any changes you make to a return type should be propagated to your data services XML type
using the Save and Associate XML Type right-click option, available from the return type
titlebar.

Removing Mappings
You can delete mappings between elements by selecting the mapping line (link) and pressing Delete.
Alternatively, use the Delete key.

Modifying a Return Type
The shape of the information returned by your query is determined by its return type. Using a
combination of mapping techniques and return type options you can:

Add or remove elements and attributes from your return type.

Set up repeatable sections, known as zones.

Work ing wi th the XQuery Ed i to r

6-48 Data Services Developer’s Guide

You should only modify a return type if you intend to propagate the change to the data service’s XML
type using the Save and Associate XML Type command, described in “Creating a New Data Service and
Data Service Function” on page 6-7.

Modifying a Return Type
You can edit your return type by right-clicking any element. Editing options for a type in the XQuery
Editor are somewhat different options described in “Editing an XML Type” on page 4-24. For example,
in a return type you can create zones automatically add for clauses to your query, allowing for a
“master-detail” arrangement of results.

Warning: While it is possible to modify a return type and run a query in an ad hoc manner,
problems will likely arise when your application calls a query with a mismatch between
the return clause and the XML type of the data service.

Table 6-39 describes notable return type editing options.

Table 6-39 Notable Return Type Options

Option Meaning

Add Child Element Creates a child element for the currently selected element.

Add Complex Child
Element

Allows you to specify a schema and type for a new complex child
element. By default, the type is the root element of the schema. If
the schema has several global elements, however, you will first
need to specify the element that you want to become the root.

Add Attribute Creates an attribute for the selected element.

Make Conditional Inserts an element named Conditional above the currently selected
element and clones the element (and children, if any).

Conditional elements can be used in conjunction with if-then-else
constructs. Transformational logic can then be developed through
the XQuery Editor and mapped to the appropriate branch of the
condition.

Clone Duplicates the selected element (and children, if any) to the same
level of the schema hierarchy.

If you clone a simple element an unmapped, untyped element of the
same name will be created.

Work ing Wi th Data Representa t ions and Re tu rn T ype E lements

Data Services Developer’s Guide 6-49

A special option, Expand Complex Mappings, is becomes available for use with Induced mappings. See
“Complex Element Mappings to a Return Type” on page 6-44 for details.

There are several things to keep in mind when making changes to a return type:

Changes to a return type should be propagated the your data service’s XML type.

Changes to a return type through DSP components exist only in memory until you run the
File →Save All command in WebLogic Workshop.

Changes to a file using the Save All command cannot be reversed through Undo.

Adding a Complex Child Element
You can add a complex child element to a return type by selecting a schema and identifying a global
element (a type). Complex child elements incorporate data service schemas (.xsd file) into the
return type.

To add a complex global element to your return type:

1. Click on the element you want to be the parent of the complex element.

2. Right-click and select Add Complex Child Element.

3. In the dialog that appears navigate to the schema you want to use. If your schema only has one
global element, then it will be automatically selected. Otherwise, you will need to pick which
global element to use.

When you add a complex child element it will be place at the end of its peers in the return
type.

Mark as Zone /
Remove Zone

Sets (or removes) a zone setting for the current element and its
children (if any).

If the elements are in a zone the query will return them in a
master-detail arrangement. See “Setting Zones in Your Return
Type” on page 6-50.

Delete Deletes the selected element and any child elements or attributes.

Find The Find dialog allows you to search for text strings in the return
type with options to match case, match whole words only, use
wildcards (*,?), or regular expressions.

Option Meaning

Work ing wi th the XQuery Ed i to r

6-50 Data Services Developer’s Guide

Setting Zones in Your Return Type
In DSP return types zones identify how query results will be arranged. Adding or changes zones
through the XQuery Editor is the same as adding or changing the order of subordinate for statements
in Source View. (For a detailed example of building a logical data service that makes use of zones to
create a nested master-detail arrangement of data see “Creating a New Data Service and Data Service
Function” on page 6-7.

For example in Figure 6-40 the CUSTOMER_ORDER elements for a particular customer will be
grouped under that customer.

Figure 6-40 Sample Return Type With Two Zones

By default, return types have only a single zone. However, without additional zones elements simply
repeat in their natural order. In the simple example shown in Figure 6-40 this would mean that if a
customer had more than one order, both the customer information and the order information would
be repeated it your report until all matching orders had appeared.

The following slightly simplified XML illustrates a single-zone approach.

Zones
Markers

Inner zone

Outer zone

Work ing Wi th Data Representa t ions and Re tu rn T ype E lements

Data Services Developer’s Guide 6-51

<CUSTOMERID>987655</CUSTOMERID>
<CUSTOMERNAME>Supermart</CUSTOMERNAME>
<ORDER>

<ORDERID>632</ORDERID>
<CUSTOMERID>987655</CUSTOMERID>

<CUSTOMERID>987655</CUSTOMERID>
<CUSTOMERNAME>Supermart</CUSTOMERNAME>
<ORDER>

<ORDERID>888</ORDERID>
<CUSTOMERID>987655</CUSTOMERID>

..

Notice the repetition of CUSTOMERNAME and CUSTOMERID.

XQuery source for a similar function clearly shows why this is:

for $CUSTOMER in ns0:CUSTOMER()
 for $CUSTOMER_ORDER in ns1:CUSTOMER_ORDER()
 where $CUSTOMER/CUSTOMER_ID = $CUSTOMER_ORDER/C_ID
return <ns2:CUSTOMER7>
 <CUSTOMER_ID>{fn:data($CUSTOMER/CUSTOMER_ID)}</CUSTOMER_ID>
 <LAST_NAME>{fn:data($CUSTOMER/LAST_NAME)}</LAST_NAME>

<ns1:CUSTOMER_ORDER>
 <ORDER_ID>{fn:data($CUSTOMER_ORDER/ORDER_ID)}</ORDER_ID>
 <C_ID>{fn:data($CUSTOMER_ORDER/C_ID)}</C_ID>

<TOTAL_ORDER_AMT>{fn:data($CUSTOMER_ORDER/TOTAL_ORDER_AMT)}</TOTAL_ORDE
R_AMT>
</ns1:CUSTOMER_ORDER>
</ns2:CUSTOMER7>

If you were, however, to create a repeatable zone around the CUSTOMER_ORDER element, a
subordinate for clause will be introduced in Source View.

for $CUSTOMER in ns0:CUSTOMER()
return <ns2:CUSTOMER7>
 <CUSTOMER_ID>{fn:data($CUSTOMER/CUSTOMER_ID)}</CUSTOMER_ID>
 <LAST_NAME>{fn:data($CUSTOMER/LAST_NAME)}</LAST_NAME>{
for $CUSTOMER_ORDER in ns1:CUSTOMER_ORDER()
where $CUSTOMER/CUSTOMER_ID = $CUSTOMER_ORDER/ORDER_ID
return
<ns1:CUSTOMER_ORDER>
 <ORDER_ID>{fn:data($CUSTOMER_ORDER/ORDER_ID)}</ORDER_ID>
 <C_ID>{fn:data($CUSTOMER_ORDER/C_ID)}</C_ID>

<TOTAL_ORDER_AMT>{fn:data($CUSTOMER_ORDER/TOTAL_ORDER_AMT)}</TOTAL_ORDE
R_AMT>
</ns1:CUSTOMER_ORDER>

Work ing wi th the XQuery Ed i to r

6-52 Data Services Developer’s Guide

}
</ns2:CUSTOMER7>

Specifically the highlighted where clause in the second code fragment mandates that all orders be
collected under a single instance of customer.

To create a zone simply right-click on an element and select Mark as Zone. Once created, the zone will
appear highlighted whenever you move your cursor into areas under its control (Figure 6-40).

Associating XQuery Editor Nodes With Zones
In XQuery for, let, and group by clauses can enclose other for, let, or group by clauses. Similarly, nodes
representing these constructs can be associated with return type zones using the create zone icon in
the titlebar of the node (see Figure 6-9 in the XQuery Editor example at the beginning of this chapter).
Simply drag the icon over an existing zone to associate the node with the zone.

To verify that the operation is successful mouse-over the zone icon after the association is complete.
If successful, the appropriate zone will be highlighted (see Figure 6-40). Alternatively, look at Source
View to verify that your operation has been successful or simply run your query under Test View.

Note: The order in which you create zones and other aspects of your XQuery in the XQuery Editor
can be significant. For example, zones should be created before creating a where clause
associating two nodes.

Removing Zones
To remove a zone, right-click on the parent element in the zone and select the Remove Zone option.

Validating and Saving Your Return Type
You can make changes in your function’s return type and, optimally, bring your data service into
conformance with the changes that you have made.

Work ing Wi th Data Representa t ions and Re tu rn T ype E lements

Data Services Developer’s Guide 6-53

Figure 6-41 Return Type Management Options

Several right-click menu options are available for managing the return type, including:

Show Type Difference. A toggle that displays or hides distinctions between your return type
and the data service XML type. When activated Show Type Difference color coding is used to
categorize differences between your return type and your data service’s XML type.

Notice in the following example that two new child elements have been added to the return
type.

Elements differences detected when comparing the return type with the content of the XML
type are shown in red. This includes elements you have deleted from the return type as well as
those you have added to the return type.

The addition of DESCRIPTION to the return type is shown in blue in Figure 6-42.

Color Meaning

Black Unchanged from XML type.

Red Removed from the return type (but still present in the XML type).

Blue In the return type but not the XML type.

Work ing wi th the XQuery Ed i to r

6-54 Data Services Developer’s Guide

Figure 6-42 Return Type With a New Element

The arrows to the left of changed items indicate whether the change is originating locally in the
return type (→) or in the data service’s XML type (<−).

Save and Associate Schema. Provides a means for substituting the schema of a revised return
type for the data service XML type. In order to change the data service XML type using this
command you should not change the return type name.

Figure 6-43 Save and Associate Dialog

This command can also be used to save the revised return type to a schema, schema location,
target Namespace, or root name that is different than that used by the containing data service.

When you are building a return type from data service functions it is sometimes necessary to
change either the namespace or the root name prior to using the Save and Associate Schema
command. This is because the qualified name of your return type will initially be the same as
the function used to create the return type.

Other options include:

Work ing Wi th Data Representa t ions and Re tu rn T ype E lements

Data Services Developer’s Guide 6-55

– Going to Design View and use the right-click menu Associate XML Type to change the
schema associated with the data service (see “Associating an XML Type” on page 4-23). This
will change the return type for all the read functions in your data service.

– Saving your data service to a new name using the Save As command. Then associate the new
XML type. This is probably the better option if you have other data services that are
dependent on the XML type.

Dock to Right. A toggle that attaches/detaches the return type to the right edge of the work
area.

View Source. Shows your return type in its native XML format.

Work ing wi th the XQuery Ed i to r

6-56 Data Services Developer’s Guide

Data Services Developer’s Guide 7-1

C H A P T E R 7

Testing Query Functions and Viewing
Query Plans

You can use Test View to execute any data service read or relationship function for which data is
available.

When you run a query in Test View results appear in an editable window in text or structured XML
form. When updates are available for your data, you can immediately update your back-end data. Query
results can also be used as complex parameters for other queries.

In creating support for query functions, BEA Aqualogic Data Services Platform (DSP) determines Test
View options from your query function’s signature. Several types of query function signatures are
supported including queries with and without parameters, simple and complex parameters, and ad
hoc queries.

The following major topics are covered in this chapter:

Running Queries Using Test View

Analyzing Queries Using Plan View

Creating an Ad Hoc Query

Running Queries Using Test View
In Test View you can select any read or navigation functions or procedures defined in your data service
from a drop-down list.

Tes t ing Query Funct i ons and V i ewing Quer y P lans

7-2 Data Services Developer’s Guide

Figure 7-1 Test View Options for a Function Accepting a Simple Parameter

If the query accepts complex parameters, the parameter entry dialog automatically adjusts, as shown
in Figure 7-2.

Available query functions

Query function parameter(s)

Results

Limit elements in specified array results

1

2

5

3

4 Edit results

6 Initiate client transaction 7 Validate results
against schema

Also see in the Data Services Platform Samples Tutorial Part II:

- Lesson 21: Running Ad Hoc Queries

- Lesson 26: Understanding the Query Plan

../interm/SamplesTutorial2.pdf

Running Que r i es Us ing Test V i ew

Data Services Developer’s Guide 7-3

Figure 7-2 Function Accepting a Complex Parameter As Input

Using Test View
To use Test View, follow these steps:

1. Select the Test View tab, then chose a function from the pulldown menu. The menu contains the
read and navigation functions in your current data service, as well as the data service’s procedures.

2. Enter parameters, if any.

3. Click on Execute to run the query and view the results.

4. If you have back-end data write permission, you can make changes in your data as well. Click on
Edit Results and make any necessary changes. Then click Submit to update your data.

You can review your generated query in the Output window. See “Auditing Query Performance” on
page 7-13 for details.

Tes t ing Query Funct i ons and V i ewing Quer y P lans

7-4 Data Services Developer’s Guide

Running a Query That Needs No Parameters
In the case of a query such as getAllCustomers(), no parameters are needed (Figure 7-3).

Figure 7-3 Query Without Parameters

When you click Execute the query will run.

Results are returned in text or XML form. Click on the + next to a complex element (in this case, a
table representation) to see more detailed results.

Editing Results
When you have appropriate update permissions — as is commonly the case with “sand box” testing —
you can directly edit results using the Edit command (Figure 7-4).

Figure 7-4 Editing Query Results

You also have the option of adding a record once you are in Edit mode.

Running Que r i es Us ing Test V i ew

Data Services Developer’s Guide 7-5

Figure 7-5 Adding a Record to a Data Set

The structure for the root XML Type will be added to end of the data set. You will need to supply the
content, of course. If you right-click on the root element of your new record, you can also add complex
child elements.

When you are satisfied with the changes click Submit.

Running a Query Function With Simple Parameters
When your query requires one or multiple simple parameters, Test View display each parameter in its
own field, identified by name and required type.

Tes t ing Query Funct i ons and V i ewing Quer y P lans

7-6 Data Services Developer’s Guide

Figure 7-6 Function with Two Input Parameters

See “Running a Query That Needs No Parameters” on page 7-4 for details or executing a query and
editing and submitting results.

Testing a Query Function With Complex Parameters
Enterprise-scale queries often require a complex parameter type as input. For example, an inventory
query may require a set of parameters which are based on a Web service supplying details of orders
received. It is usually easier to just pass the entire object than to specify a large set of individual
parameters.

When your query requires a complex parameter, the function will be listed with a parameter as in:

getProfileView(arg)

The arg parameter indicates that a complex parameter type is needed.

For such parameters Test View displays a box (Figure 7-2) into which you can:

Paste the results of the most recently run query (assuming the results match the input
requirements of the current function).

Paste a template of the complex parameter into which you can enter necessary (that is,
required primary key) values.

Identify to an XML file to serve as input.

Enter your complex parameter directly.

Running Que r i es Us ing Test V i ew

Data Services Developer’s Guide 7-7

Using Prior Results as Input
For any given data service you can use results from a previously run query as input. This is particularly
useful when invoking navigation functions, since navigation functions generally require complex
parameters.

Note: When pasting prior results it’s important to keep in mind that queries returning multiple
results (arrays) cannot be input to functions looking for a single object as a parameter. For
example, a function that gets orders for a particular customer is likely to return multiple
orders. Those results cannot be used as input to a function that returns information about a
particular customer.

The following steps show how results of a singleton query can be repurposed as input for a complex
parameter.

1. Assume that you have first run a simple query, selecting information on a particular order. Then
you want to get additional information on the customer who placed the order.

Results shown below contain elements called for by the function:

getElecOrderByOrdID(ORDER_ID)

located in the RTLServices/ElecOrder data service.

2. In the Test View parameter area supply a valid order ID such as ORDER_1_0.

Tes t ing Query Funct i ons and V i ewing Quer y P lans

7-8 Data Services Developer’s Guide

Figure 7-7 Executing a simple parameterized query

3. Your results now contain the required customer ID. Select the getCustomer() relationship
function from the dropdown list of available functions.

4. Click on the Paste Result button. Your previous results appear as an editable complex parameter
in XML format (Figure 7-8).

Running Que r i es Us ing Test V i ew

Data Services Developer’s Guide 7-9

Figure 7-8 Using Query Results in a New Query

Note: Your results have been returned as a singleton element in an array (highlighted in blue
in Figure 7-8). The array element needs to removed before you can successfully execute
your navigation function.

5. Edit your results to remove the ArrayOfELEC_ORDER element. The outermost elements of your
XML document will change from:

<ns0:ArrayOfELEC_ORDER xmlns:ns0="urn:retailerType">
<ns0:ELEC_ORDER TYPE="ELEC">

<OrderID>ORDER_1_0</OrderID>
...

</ns0:ELEC_ORDER>
</ns0:ArrayOfELEC_ORDER>

to:

<ns0:ELEC_ORDER TYPE="ELEC" xmlns:ns0="urn:retailerType">
<OrderID>ORDER_1_0</OrderID>
...

</ns0:ELEC_ORDER>

6. After making the necessary changes click Execute. Results of your new query are based on the
Customer XML type appear (Figure 7-9).

Tes t ing Query Funct i ons and V i ewing Quer y P lans

7-10 Data Services Developer’s Guide

Figure 7-9 Complex Parameterized Query Results

Using the XML Type to Identify Input Parameters
You can automatically enter a template of the XML type of your data service. In Figure 7-10, a
customer ID (CUSTOMER3) and order ID (ORDER_3_0), are provided through the template. Results
are also shown.

Running Que r i es Us ing Test V i ew

Data Services Developer’s Guide 7-11

Figure 7-10 Using XML Type Template to Guide Data Input

Template parameters are useful when you know the key parameters required by your query.

See “Running a Query That Needs No Parameters” on page 7-4 for details or executing a query and
editing and submitting results.

Testing DSP Procedures
In Test View procedures are selected and run from the Select Functions drop-down list box in the same
was that functions are selected. Running a procedure under Test View shows results only if the
procedure returns data or a confirming message as to whether the operation was successful, for
example.

Limiting Array Results
You can filter query results through Test View to n instances of a single element such as the first five
of an array of 5,000 customers.

Tes t ing Query Funct i ons and V i ewing Quer y P lans

7-12 Data Services Developer’s Guide

Figure 7-11 shows a function where the results for RTLServices/Address/getAddress() are limited to
three Address elements. Without such a limitation, all customer records would be returned.

Figure 7-11 Limiting Elements in an Array Result

Starting Client Transaction Option
The Client Transaction Option supports functions that query more than multiple (two or more)
relational sources using XA transaction drivers. By default this option is not selected, meaning that
the NotSupported EJB transaction method is used. If the option is checked, the Required transaction
mode will be used instead.

For general information on the subject see “Transactions in EJB Applications” WebLogic Server
documentation.

http://e-docs.bea.com/wls/docs81/jta/trxejb.html

Running Que r i es Us ing Test V i ew

Data Services Developer’s Guide 7-13

Validating Results
Test View results are validated against the data service’s schema file when the Validate Results
checkbox (shown in Figure 7-11) is selected. When active the following conditions will be flagged as
invalid:

An illegal type mismatch between source elements and the return type. For example, if an
element of type string is mapped to an element of type date, the query results are invalid since
a string cannot be guaranteed to cast successfully to a date.

An element or attribute that is required in the schema is removed from the return type.

An element or attribute is added to the return type.

Invalid results are reported in the Output window. Such results can be addressed by correcting the
return type or associating the return type with a new, corrected schema. See “Validating and Saving
Your Return Type” on page 6-52.

Notes: Whenever you attempt to edit results of a query, those results are re-validated. The criteria is
the same as that used for the Validate Results option.

Results are validated by calling the XMLBean validate() method, currently documented at
the following URL:

http://edocs.bea.com/workshop/docs81/doc/en/workshop/java-class/com/bea/xml/Xm
lObject.html#validate()

Disregarding a Running Query
An executing query can be ended through the Data Services Platform Console or by ending your server
process. However, you can start a new query by changing your selection in Test View.

Auditing Query Performance
You can audit query performance by activating Audit for your application. This is a one-time operation
which is accomplished through the Data Services Platform Console.

When a query function is invoked through Test View and DSP auditing is enabled, basic validation and
performance information appears in the WebLogic Workshop Output window
(View →Windows →Output). You can find the most recent query results at the bottom of the
Output pane.

Note: For details on enabling auditing and tuning audit options see “Audit and Log Information” in
the DSP Administration Guide.

http://edocs.bea.com/workshop/docs81/doc/en/workshop/java-class/com/bea/xml/XmlObject.html#validate()
../admin/monitor.html

Tes t ing Query Funct i ons and V i ewing Quer y P lans

7-14 Data Services Developer’s Guide

By default an audit includes such information as query compilation and execution time, user, server, and
so forth (Figure 7-12).

Figure 7-12 Output Window Audit Results

Note: Query plan audit properties are not collected when a function is executed from Test View. This
is because the function cache is not utilized for functions executed in Test View.

Analyzing Queries Using Plan View
Two types of information are available to help you analyze the design and performance of your query.

Auditing information which appears in the Results window (see Auditing Query Performance).

Query Plan View

Query Plan View helps in understanding how a query is designed. In addition to being able to view the
plan, you can also print it (using the right-click menu option) or save it to a file in XML format.

Using Query Plan View
The interface for Query Plan View is quite similar to that used for testing your query functions. You select
a function or procedure from a drop down list and then click the Show Query Plan button (Figure 7-13).

Analyz ing Quer ies Us ing P lan V i ew

Data Services Developer’s Guide 7-15

Figure 7-13 Query Plan Right-Click Options

A query plan identifies the following query components:

Joins

Outer join

Select statements

Data sources

Custom function calls

Order-bys

Remove duplicates

Source access operator

Tes t ing Query Funct i ons and V i ewing Quer y P lans

7-16 Data Services Developer’s Guide

Figure 7-14 Query Plan Fragment for RTLApp’s Customer Data Service getCustomerByCustID(cust_id)
Function

There are several ways that a query plan can be viewed:

Tree view. A collapsible graphical presentation of the query plan.

XML view. A collapsible XML document view of the query plan.

Text view. Presents the information as text.

Join

Source identification

Return type View Options

Temporary Traceable
Variables

Analyz ing Quer ies Us ing P lan V i ew

Data Services Developer’s Guide 7-17

Query Plan Information and Warnings
The query plan shows both informational and warning messages. When a section of the plan is flagged
with a warning, the plan segment is highlighted in red. If you mouse over the segment, the warning
message appears.

Informational messages also can appear with plan segments. Such segments are highlighted in yellow.
The following table identifies the conditions associated with informational and warning messages.

Table 7-15 Informational and Warning Messages Associated With Query Plan Segments

Printing Your Query Plan
A right-mouse option allows you to print a query plan to a printer or a file. Right-click on any node in
the plan and select either the print or print to a file option.

If you print to a file the filename will be of type XML. The name of the file will be the function name
followed by the letters _qp, as in:

getCustomerView_qp.xml

The file can be saved anywhere in your application.

Analyzing a Sample Query
The following query is from the Data Services Platform RTLApp:

(RTLServices/OrderDetailView/getElecOrderDetailView(order_id,
customer_id)

From the function signature you know that the query returns data related to order details after it is
passed an order ID and a customer ID.

Warning Message Type Informational Message Type

• Typematch. Typematch issues that will
be resolved by the compiler (may affect
performance)

• Audit. Auditing has been set for this
particular function (will affect
performance).

• No where clause. There is no predicate
associated with the query function (will
affect performance).

• Cache. Function is cached (may
enhance performance).

• SQL pushdown generation details.

Tes t ing Query Funct i ons and V i ewing Quer y P lans

7-18 Data Services Developer’s Guide

The following pseudocode describes the query:

for electronic orders matching CustomerID and OrderID
return order information and ship-to information

for credit card information matching an AddressID
return credit information and bill-to address information

for electronic line item information matching the line item in the order
 return line item information

A compressed version of the query plan is shown in Figure 7-16.

Figure 7-16 Query Plan for getElecOrderDetailView()

The let statements represent mappings or projections in the data service. This can be useful when
trying to trace performance issues.

The join conditions are identified in the plan as a left-outer join driven by a complex parameter. By
definition, joins have left and right sides, each of which can contain additional joins. One of the best
uses of the query plan is to see how the query logic works up the various data threads to return results,
as shown in Figure 7-17.

Analyz ing Quer ies Us ing P lan V i ew

Data Services Developer’s Guide 7-19

Figure 7-17 Top Down Schematic of getElecOrderDetailView() Function

Working With Your Query Plan
Two options are available in Query Plan.

Expand All. This right-click menu option expands the currently selected element and any
children. If applied to the top-most element in the plan, all elements are expanded.

left-outer join
index-cpp

left-outer join
index-cpp RTLCUSTOMER : ADDRESS

left-outer join
index-cpp

RTLCUSTOMER : ADDRESS

getCustomerOrderByCustomerID

(order by emptyOrder ascending)
RTLBILLING :CREDITCARD

Tes t ing Query Funct i ons and V i ewing Quer y P lans

7-20 Data Services Developer’s Guide

Match highlighting. When you click on a variable name any elements (open or closed) containing a
match for that variable are highlighted. This feature helps you trace variables in the query plan.

Identifying Problematic Conditions Through the Query Plan
When you show a query plan for a particular function, you may notice red or yellow highlighting of
particular routines. These correspond to warnings or informational messages from the plan
interpreter. For example, if a for statement is missing a where clause (potentially leading to slow
performance or retrieval of a massive amount of data) a red warning will appear adjacent to the
statement.

Figure 7-18 Query Plan Viewer Flagging a For Statement with a Missing Where Clause

Simply mouse-over the highlighted section of the plan to view the information or warning.

Creating an Ad Hoc Query
It can be useful to quickly enter and test queries. You can do this through any data service’s Test View.
Simply pull town the list of available functions and select the ad hoc query option (shown in
Figure 7-19).

Creat ing an Ad Hoc Query

Data Services Developer’s Guide 7-21

Figure 7-19 Selecting Ad Hoc Query Option From Test View

As the name implies, an ad hoc query is not limited to the currently selected data service. Any data
service in the scope of the current application can be utilized.

Note: An ad hoc query remains available whenever the data service active when it was created is
open to Test View. However, the ad hoc query is not visible in Source View and can only be
saved by copying it to an external application.

Sample Ad Hoc Queries
In Figure 7-20 a small query has been entered. Although the constructor function for the current data
service was used (DataServices/CustomerDB/CUSTOMER), this was unnecessary.

Figure 7-20 Creating an Ad Hoc Query

Tes t ing Query Funct i ons and V i ewing Quer y P lans

7-22 Data Services Developer’s Guide

If your query requires simple or complex parameters, these can be exposed using the Show
Parameters button.

A Results pane below the Execute button will contain the data returned by the query (if any).

In the RTLApp sample application you can copy the code in Listing 7-1 into an ad hoc query pane. This
query is designed to take several minutes to complete. It can also be used to experiment with
monitoring and stopping executing queries through the Data Services Platform Console.

Note: In order to execute this query the applications Check Access Control option in Data Services
Platform Console’s General tab must be deselected. See DSP Administration Guide for
details.

Listing 7-1 Sample Ad Hoc Query Executable From RTLApp’s Test View

import schema namespace ns2="urn:retailerType" at
"ld:DataServices/RTLServices/schemas/CustomerProfile.xsd";

declare namespace ns9="ld:DataServices/RTLServices/Customer";

declare function ns9:getCustomerSlowly() as element(ns2:CUSTOMER_PROFILE)* {

 for $CUSTOMER_PROFILE in ns9:getCustomer(),
 $c1 in ns9:getCustomer()[CustomerID lt $CUSTOMER_PROFILE/CustomerID],
 $c2 in ns9:getCustomer()[CustomerID gt $CUSTOMER_PROFILE/CustomerID],
 $c3 in ns9:getCustomer()[CustomerID eq $CUSTOMER_PROFILE/CustomerID],
 $c4 in ns9:getCustomer()[CustomerID lt $CUSTOMER_PROFILE/CustomerID],
 $c5 in ns9:getCustomer()[CustomerID gt $CUSTOMER_PROFILE/CustomerID],
 $c6 in ns9:getCustomer()[CustomerID eq $CUSTOMER_PROFILE/CustomerID],
 $c7 in ns9:getCustomer()[CustomerID = $CUSTOMER_PROFILE/CustomerID],
 $c8 in ns9:getCustomer()[CustomerID != $CUSTOMER_PROFILE/CustomerID],
 $c9 in ns9:getCustomer()[CustomerID = $CUSTOMER_PROFILE/CustomerID],
 $c10 in ns9:getCustomer()[CustomerID !=

$CUSTOMER_PROFILE/CustomerID],
 $c11 in ns9:getCustomer()[CustomerID eq $CUSTOMER_PROFILE/CustomerID],
 $c12 in ns9:getCustomer()[CustomerID eq $CUSTOMER_PROFILE/CustomerID]
return $CUSTOMER_PROFILE
};

ns9:getCustomerSlowly()

../admin/index.html

Creat ing an Ad Hoc Query

Data Services Developer’s Guide 7-23

Once an ad hoc query has been entered, its query plan can be reviewed. See “Analyzing Queries Using
Plan View.”

Also see in the Data Services Platform Samples Tutorial Part II:

- Lesson 21: Running Ad Hoc Queries

../interm/SamplesTutorial2.pdf

Tes t ing Query Funct i ons and V i ewing Quer y P lans

7-24 Data Services Developer’s Guide

Data Services Developer’s Guide 8-1

C H A P T E R 8

Working with XQuery Source

This chapter describes BEA Aqualogic Data Services Platform (DSP) Source View. It includes the
following topics:

What is Source View?

Using Source View

What is Source View?
The underlying XQuery source of a data service typically:

References a schema as the data service’s XML type

Defines one or several read functions and, optionally, one or several relationship functions

Declares namespaces for referenced services

Contains various pragma directives to the XQuery engine

In addition, data services created from physical data sources contain metadata related to the physical
sources. For example, data services based on relational data describe the XML field type (such as
xs:string), the xpath, native size, native type, null-ability setting and so forth.

In developing data services there are many occasions when it is more convenient or necessary to
modifying source.

Work ing wi th XQuery Source

8-2 Data Services Developer’s Guide

There are times when it may be preferable to develop or troubleshoot data services by working directly
in source. The Source View tab allows you to directly edit data service source code, as well as schemas.
Changes to source are immediately reflected in other data service modes such as the XQuery Editor;
similarly, source is immediately updated when changes are made through the XQuery Editor View or
Design View.

XQuery Support
Data Services Platform supports the XQuery language as specified in XQuery 1.0: An XML Query
Language, W3C Working Draft of July, 23, 2004. You can use any feature of the language described
by the specification.

DSP supplements the base XQuery syntax with a set of elements and directives that appear in the
source view as pragmas. Pragmas are a standard XQuery feature that give implementors and vendors
a way to include custom elements and directives within XQuery code.

The BEA implementation of XQuery also contains some extensions to the language and additional
functions. BEA extensions to XQuery and links to W3C documentation are described in the Data
Services Platform XQuery Developer’s Guide.

Also see in the Data Services Platform Samples Tutorial Part II:

- Lesson 28: Configuring Alternatives for Unavailable Data Sources

http://e-docs.bea.com/liquiddata/docs85/xquery/index.html
../interm/SamplesTutorial2.pdf

Using Source V i ew

Data Services Developer’s Guide 8-3

Figure 8-1 Source View Showing Pragmas, Namespace Declarations, and a Function

Using Source View
You can view a file in Source View by clicking the Source View tab. To open Source View to a particular
query function, first select the function from Design View or XQuery Editor View, then click the Source
View tab.

Finding Text
You can search for specific text strings in Source View using is open you can access file search using
WebLogic Workshop’s Edit →Find command option or <Ctrl-f>. Complete search and replace
facilities are available including specifying case, whole words only, wildcard search patterns, and
limited search. You also have the option to mark all occurrences of found strings.

Found items are highlighted in yellow. This makes it easy to trace the use of variables, for example.

Work ing wi th XQuery Source

8-4 Data Services Developer’s Guide

Figure 8-2 Source View Search Dialog Box

Function Navigation
As a convenience you can quickly navigate to the data service represented by a particular function by
clicking Ctrl while holding your mouse over a particular function call such as:

for $fk in f3:ADDRESS()

If you click the pop-up which repeats the function name, the data service that contains that function
will open to that function.

Code Editing Features
WebLogic Workshop contains a rich code editing environment.

Color Coding
XQuery documents in Source View are color-coded to highlight the various elements of the source
code. By default keywords are blue and bold, comments (including pragmas) are colored grey, and
variables are colored magenta.

Using Source V i ew

Data Services Developer’s Guide 8-5

Figure 8-3 Color Coding in Source View

You can customize color coding through the Preferences dialog (Tools →Preferences).

Code Complete
When working with Source View you can use WebLogic Workshop function completion feature.

Completing Functions
If you know the namespace prefix, you can activate the function-completion mechanism.

Function completion is invoked when you type a namespace prefix followed by a colon. The namespace
prefix should be bound to a URI corresponding to a data service or XFL file. Alternatively, you can type
the prefix followed by a colon followed by Ctrl-Space.

Figure 8-4 Function Completion Using Namespace Prefixes

Completing Xpath Expressions
The function-completion facility can also be used to complete Xpath expressions:

Work ing wi th XQuery Source

8-6 Data Services Developer’s Guide

1. Position your cursor at the end of the existing path expression.

2. Press the key combination of Ctrl-Space.

3. Select the appropriate element from the pop-up list (Figure 8-5).

Figure 8-5 XPath Code Completion in Source View

Error Identification
Syntax errors that occur in source either as a result of editing or as a result of changes made in the
XQuery Editor are flagged on Source View scroll bar (Figure 8-6). Clicking on the error mark takes the
cursor to that line of code.

The actual code in question is underlined in red. Mouse-over the text to see the complete error
message.

For additional information on editing the WebLogic Workshop properties configuration file see:

http://e-docs.bea.com/workshop/docs70/help/reference/configfiles/conWorkshop_propertiesConfigur
ationFile.html

http://e-docs.bea.com/workshop/docs70/help/reference/configfiles/conWorkshop_propertiesConfigurationFile.html

Using Source V i ew

Data Services Developer’s Guide 8-7

Figure 8-6 Syntax Errors Are Flagged and Mouse-over Text Provides Details

If you would like Source View to provide code completion and error highlighting for additional classes,
you can edit the Workshop.properties file to add class files or JAR files to the paths.classPath
property, then restart WebLogic Workshop.

Work ing wi th XQuery Source

8-8 Data Services Developer’s Guide

Data Services Developer’s Guide 9-1

C H A P T E R 9

Best Practices and Advanced Topics

This section contains general guidelines and patterns for creating a BEA Aqualogic Data Services
Platform (DSP) services layer. The following topics are covered:

Using a Layered Data Integration and Transformation Approach

Using Inverse Functions to Improve Performance During Updates

Leveraging Data Service Reusability

Modeling Relationships

Using a Layered Data Integration and Transformation Approach
When planning a data service deployment, it is helpful to think of the data service layer in terms of an
assembly line. In an assembly line, a product is built incrementally as it passes through a series of
machines or assemblers that specialize in an aspect of the fabrication of the product.

Similarly, a well-designed data services layer transforms input (source data) into output (structured
information) incrementally, through a series of small transformations. Such a design eases
development and maintenance of the data services and increases the opportunity for reuse.

Note: Keep in mind that a multi-level data service implementation model described here is
flattened when the data services are compiled for deployment. That is, adding a conceptual
layers does not add overhead to the data integration work performed by the DSP deployment,
and therefore does not affect performance.

Best P ract ices and Advanced Top ics

9-2 Data Services Developer’s Guide

By this design, distinct subsets of data services comprise sub-layers in the overall transformation
layer. As data passes from layer to layer data is transformed from a more generalized state to a more
application-specific state.

To further illustrate this design, consider a deployment with the following sublayers:

Raw data layer. The first sublayer (that is, the first one to touch the raw data) is the physical
data services layer. This layer exists in any DSP deployment, whether or not data is further
transformed. The data services in this layer are generated when you import metadata for a data
source. A physical data service and its XML type should not be modified other than to
synchronize with the source data. See “Updating Data Source Metadata” on page 3-67 for details
on data synchronization.)

Data normalization. The second sublayer of data services should normalize the data while
retaining the data shape as imported. For example, it can change element names (that is, tag
names) to make them consistent with other sources and make minor modifications to data
values, for example, concatenating names or adjusting time values for a time zone or other
cast-like operation.

Data integration. Data services in the next sublayer can then use the normalized data to
represent integrated business entities in the data domain, such as an a unified view of a
customer. The data services can unify data sources, for example, or change the shape of the
data in any way desired. Another way to look at this operation is as the creation of a virtual
database from disparate data sources and other business logic.

This sublayer does most of what might be called the integration work of the overall data
services layer; it is where the integration logic and predicates and primary relationships are
specified. (In small projects, this layer may be combined with the second sublayer. That is, it
would contain data services that both normalize the data and define data shapes for the
integration layer.)

Data specialization. A final sublayer customizes information specifically for applications. This
layer, which can be thought of as the extended services layer, tailors information in a way that
makes sense to particular applications or types of applications, such as executive dashboards,
sales portals, or HR applications. For example, it might specify nesting in its data shape a way
that is useful for particular applications, such as having order items as a child of a customer
item or, on the other hand, customers as a child of orders (as shown in Figure 9-1).

For very large database sources, instead of creating a single master data service, it is best to decide
what a client application needs and build corresponding, minimal data services. The concept is to
build client-specific data services from a manageable number of views that query a reasonable number
of data sources, providing an abstraction from the lowest level and most common relationships while
keeping the overall view reasonably simple. DSP also provides a metadata API that allows client

Us ing Inverse Funct ions to Improve Pe r fo rmance Dur ing Updates

Data Services Developer’s Guide 9-3

applications to discover relationships between data services at runtime, allowing applications to
navigate the data services without the need for a master data service.

Figure 9-1 Layered Data Services Design Strategy

The most significant benefit of this approach is that it increases the opportunity for reuse within the
overall data services layer. As shown in Figure 9-1, once you have defined a single form of a business
entity (such as a customer) in a data service dedicated to the task, you can have multiple
application-specific data services use the information without having to repeat data normalization
and integration tasks. An additional benefit is that it aids maintenance because there is a clear
separation of concerns between the data service layers.

Using Inverse Functions to Improve Performance During
Updates

When dealing with disparate data sources it is often necessary to normalize data during updates.
Typical normalization includes simple type casting, currency, weights and measures, handling of
composite keys, and text and numeric formatting.

While transformational functions are easy to create in XQuery, such functions do not automatically
take advantage of the processing power of underlying sources. This becomes especially noticeable
when large amounts of relational data are being manipulated.

You can use inverse functions to retain the benefits of high-performance data processing for your
logical data.

data shape
specialization

data
integration

data/element name
normalization

physical layer o

o c1 i

i

i
o

o
c

c2

c2

c

c
o

c1

Best P ract ices and Advanced Top ics

9-4 Data Services Developer’s Guide

Sample Inversible Data
Inverse functions are very useful in several types of commonly encountered situations, described in
this section. For this topic you can assume underlying data sources with the following characteristics:

A US_EMPLOYEE table containing information on U.S. employees including employee ID, first
name, last name, social security number, hire date (in milliseconds post 1/1/1970), and salary in
U.S. dollars.

A UK_EMPLOYEE table containing employee ID, full name, hired date, and salary in British
sterling.

Employee IDs are unique and normalized across the enterprise.

The US_EMPLOYEE and UK_EMPLOYEE tables are accessible through two functions in a logical data
service: US_EMPLOYEE() and UK_EMPLOYEE().

Considerations When Running Queries Against Logical Data
Here are several examples where running queries against logical data can result in noticeably
degraded performance when compared with operations against the physical data itself:

A logical data service has a fullname() function that concatenates first_name and last_name
elements. Any attempts to sort by fullname would be penalized by the required retrieval of
information on all customers, followed by local processing of the returned results.

A CUSTOMER table contains a customer_since column of type long. You have built a
CustomerProfile logical data service and created a Java transformational function that converts
a simple (atomic) datatype from long to xs:date.

ID LNAME (string) FNAME (string) HIRED (long) SALARY (int)

1 Smith Victor 99500000000 120000

2 Davis Michael 11000000000 95000

ID (int) FULLNAME (string) HIRED (long) SALARY (int)

3 Jones, Paul 99000000000 60000

4 Williams, John 99100000000 55000

Us ing Inverse Funct ions to Improve Pe r fo rmance Dur ing Updates

Data Services Developer’s Guide 9-5

While a function collecting the names of customers entered after a particular date would
succeed, the results would not be optimized. In other words, the processing required by the
function would not take advantage of the underlying database’s inherent processing power. If a
large number of records were involved, the performance impact could be considerable.

Situations Where Inverse Functions Can Improve Performance
The thing to keep in mind when creating inverse functions is that the functions you create need to be
truly inversible.

For example, in the following case date is converted to a string value:

public static String dateToString(Calendar cal) {
 SimpleDateFormat formatter;
 formatter = new SimpleDateFormat("MM/dd/yyyy hh:mm:ss a");
 return formatter.format(cal.getTime()) ;
 }

However, notice that the millisecond value is not in the return string value. You get data back but you
have lost an element of precision. By default, all values projected are used for optimistic lock
checking, so a loss of precision can lead to a mismatch with the database’s original value and thus an
update failure.

Instead the above code should have retained millisecond values in its return string value, thus
ensuring that the data you return exactly the same as the original value.

Additional Inverse Function Scenarios
Here are some additional scenarios where inverse functions can improve performance, especially
when large amounts of data are involved:

Type mismatches. A UK employees database stores date of hire as an integer number; the U.S.
employees database stores hire dates in a datetime() format. You can convert the integer values
to timedate, but then searching on hire date would require fetching every record in the
database and sorting at the middleware layer. So, in addition, you could use inverse functions.

Data Normalization. In order to avoid confusion of UK and U.S. employees, a data service
function prepends a country code to the employee IDs of both groups. Again, sorting based on
these values will be time consuming since the processing cannot be achieved on the backend
without modifying the underlying data.

Data Conversion. There are many cases where values need to be converted to their inverse
based on established formulas. For example it could be requirement the application retrieve
customers by date using the xs:dataTime rather than as a numeric. In this way users could
supply date information in a variety of formats.

Best P ract ices and Advanced Top ics

9-6 Data Services Developer’s Guide

The data architect creates the following XQuery function:

declare function tns:getEmpWithFixedHireDate() as element(ns0:usemp)*{

for $e in ns1:USEMPLOYEES()

return

<emp>

<eid>{fn:data($e1/ID)}</eid>

<name>{mkName($e1/LNAME, $e1/FNAME)}</name>

<hiredate>{int2date($e1/HIRED)}</hiredate>

<salary>)fn:data($e1/SAL)}</salary>

</emp>

}

Given such a function, issuing a filter query on hiredate, on top of this function, results in
inefficient execution since every record from the back-end must be retrieved and then
processed in the middle tier.

Improving Performance Using Inverse Functions: an Example
Taking the first example in “Considerations When Running Queries Against Logical Data” on page 9-4,
it is clear that performance would be adversely affected when running the fullname() function against
large data sets.

The ideal would be to have a function or functions which decomposed fullname into its indexed
components, passes the components to the underlying database, gets the results and reconstitutes the
returned results to match the requirements of fullname(). In fact, that is the basis of inverse
functions.

Of course there are no XQuery functions to magically deconstruct a concatenated string. Instead you
need to define, as part of your data service development process, custom functions that inverse
engineer fullname().

Often complimentary inverse functions are needed. For example, FahrenheitToCentigrade() and
centigradeToFahenheit() would be inverses of each other. Complimentary inverse functions are also
needed to support fullname().

In addition to creating inverse functions, you also need to identify inverse functions as part of the
metadata import process. The import process is described in Chapter 3, “Obtaining Enterprise
Metadata.” The specific application of this process for inverse functions is described in “Step 4:
Configure Inverse Functions” on page 9-9.

Us ing Inverse Funct ions to Improve Pe r fo rmance Dur ing Updates

Data Services Developer’s Guide 9-7

Deconstructing Composite Keys
The RTLApp contains several examples of inverse functions. In the case of the fullname() function,
custom Java code provides the underlying inverse function logic. The following actions were involved
in creating this example:

Make sure underlying data sources are available.

Create the underlying Java functions.

Import metadata based on those functions.

Create additional XFL functions required to deconstruct the function written against the virtual
data service database.

Build your data service, including identifying inverse functions.

The following describes the detailed steps involved:

Step 1: Create the necessary programming logic
The string manipulation logic needed by the inverse function is in the following Java file in the
RTLApp:

DataServices/Demo/InverseFunction/functions/LastNameFirstName.java

This file defines several straightforward string manipulation functions.

Listing 9-1 String Manipulation Functions in RTLApp’s LastNameFirstName.java

package Demo.InverseFunction.functions;

public class LastNameFirstName
{
 public static String mkname(String ln, String fn) { return ln + ", " + fn; }

 public static String fname(String name) {
 return name.substring(name.indexOf(',') + 2);
 }

 public static String lname(String name) {
 int k = name.indexOf(',');
 return name.substring(0, k);
 }
}

Best P ract ices and Advanced Top ics

9-8 Data Services Developer’s Guide

In Listing 9-1 the function mkname() simply concatenates first and last name. The fname() and
lname() functions deconstruct the resulting full name using the required comma in the mkname
string as the marker identifying the separation between first and last names.

Step 2: Importing Java Function Metadata
After you have compiled your Java function you can import metadata from its class file, in this case
LastNameFirstName.class. The resulting functions will be imported into an XML file library
(XFL) named concatLibrary.xfl. Figure 9-2 shows the resulting XFL as well as the right-click
options available for the mkname() function.

Figure 9-2 Imported Metadata from the LastNameFirstName.class

Step 3: Add Functionality to Your XFL File
As is often the case, some additional programming logic is necessary. In this case two functions need
to be added to the concatLibrary XFL file:

A function — precedesName() — returns a Boolean based on a comparison of two names.
First a determination is made as to whether the first lname (x1) precedes ("is less than") or is
the same as ("is equal to") the second lname (x2). If the names are identical then a similar
comparison is made between fname. The function returns True if conditions are fulfilled.

declare function f1:precedesName($x1 as xsd:string?, $x2 as xsd:string?) as

xsd:boolean? {

Us ing Inverse Funct ions to Improve Pe r fo rmance Dur ing Updates

Data Services Developer’s Guide 9-9

 f1:lname($x1) lt f1:lname($x2) or ((f1:lname($x1) eq f1:lname($x2))

 and (f1:fname($x1) lt f1:fname($x2)))

 };

This function is necessary in order to retrieve an ordered list of names from an inverse function.

A function — eqName() — comparing names and reporting through a Boolean whether the
names are identical.

declare function f1:eqName($x1 as xsd:string?, $x2 as xsd:string?) as

xsd:boolean? {

(f1:lname($x1) eq f1:lname($x2) and f1:fname($x1) eq f1:fname($x2))

 };

Inverse functions can only be defined when the input and output function parameters are atomic
types.

To improve code readability by making a change to the mkname() function. Replace the $x1 and $x2
variables with $lastName and $firstName, respectively. When you are done the function appears as:

 declare function f1:mkname($lastName as xsd:string?, $firstName as
xsd:string?) as xsd:string? external;

The benefits for doing this become apparent in the next step.

Step 4: Configure Inverse Functions
Since all the functions in concatLibrary.xfl have simple parameter types, you could create
inverses for each. In this example you only need inverse functions to enable the XQuery engine to
deconstruct the mkname() function into its component operations.

 For each parameter in the mkname() function an inverse function is identified. A simplified view of
the operation and relevant code can be seen in Figure 9-3.

Best P ract ices and Advanced Top ics

9-10 Data Services Developer’s Guide

Figure 9-3 Inverse Functions Associated With mkname Concatenation Function

In XFL Design View you can association the parameters of functions whose input and output types are
atomic with inverse functions. To do this right-click on a function. The option Configure Inverse
Function (shown in Figure 9-2) is available for functions that qualify.

Figure 9-4 illustrations the association of parameters with inverse functions.

public static String fname(String name) {
return name.substring(name.indexOf(’,’) + 2);

}

public static String lname(String name) {
 int k = name.indexOf(’,’);

 return name.substring(0, k);
}

...

myCustomer

items

...
declare function f1:mkname($firstName as xsd:string), $lastName as xsd:string) ...

mkname fname , lname)(

lname ()name fname ()name

Us ing Inverse Funct ions to Improve Pe r fo rmance Dur ing Updates

Data Services Developer’s Guide 9-11

Figure 9-4 Configuring Inverse Functions for mkname

Step 5: Configuring Conditions for Transformational Functions

After you have associated inverse functions with the correct parameters you may want to associate
custom conditional logic with the functions. You do this by substituting a custom function for such
generic conditions as eq (is equal to) and gt (is greater than).

Associating a particular conditional (such as "is greater-than") with a transformational function
allows the XQuery engine to substitute such custom logic for a simple conditional.

You can associate comparison operators with transformational functions. As is always the case with
DSP, the original source of the function does not matter. It could be created in your data service, in
an XFL, or externally in a Java or other routine. In the case of this example the transformational
function, eqName(), is in an XFL file.

Best P ract ices and Advanced Top ics

9-12 Data Services Developer’s Guide

Figure 9-5 Conditional Operators That Can be Used for Equivalent Transforms

The next step is to match comparison operators with an equivalent transform functions. Custom logic
is needed to support pushdown operations in conjunction with comparison operations. In the current
exercise the string-less-than (lt) operation is associated with the XFL precedesName() function; the
string-equal (eq) operation is associated with the eqName() functions. When your query function
encounters these operators, the corresponding custom logic is substituted.

Figure 9-6 Associating an Equivalent Transform With an Operator

Two equivalent transform functions were created in the concatLibrary.xfl. The first,
precedesName(), tests names to make sure they are in ascending order. The second, eqName() simply
compares two first names and two last names and makes sure they are identical.

string-greater-than (gt) string-not-equal (ne)

string-less-than (lt) string-greater-than-or-equal (ge)

string-equal (eq) string-less-than-or-equal (le)

Us ing Inverse Funct ions to Improve Pe r fo rmance Dur ing Updates

Data Services Developer’s Guide 9-13

Step 6: Create Your Data Service

Now you are ready to create a data service that will contain functions such as getCustomerByName()
and getCustomerByNameLessThan(). In reviewing available facilities, you have:

Several custom Java functions which you added in the concatLibrary XFL file.

XFL routines that you associated with conditional operators.

The data service, called Concatenation, uses a XML type associated with the
LastNameFirstName.xsd schema.

Figure 9-7 Concatenation Data Service

This schema could have been created through the XQuery Editor, through the DSP schema editor, or
through a third-party editing tool. (Notice also that one of the building blocks of your data service is
the concatLibrary XFL.)

The familiar getCustomer() function operates somewhat differently in this example.

declare function tns:getCustomer() as element(ns0:LastNameFirstName)* {
 for $CUSTOMER in ns1:CUSTOMER()
 return
 <ns0:LastNameFirstName>
 <SSN>{fn:data($CUSTOMER/SSN)}</SSN>

<FULLNAME>{ns2:mkname(fn:data($CUSTOMER/LAST_NAME),fn:data($CUSTOMER/FIRST
_NAME))}</FULLNAME>

Best P ract ices and Advanced Top ics

9-14 Data Services Developer’s Guide

 <DEPT?></DEPT>
 </ns0:LastNameFirstName>

};

Using a U.S. social security number as the primary key, the routine relies on the Java-based mkName()
function to retrieve first and last name from the data source and concatenate the results into a
"fullname".

The getCustomerByName() routine takes fullname as input and returns $LastNameFullName and the
associated social security number.

declare function tns:getCustomerByName($Name as xs:string) as
element(ns0:LastNameFirstName)* {
 for $LastNameFirstName in tns:getCustomer()
 where $LastNameFirstName/FULLNAME eq $Name
 return $LastNameFirstName
};

In the above code the equality (eq) test is evaluated by substituting the logic of the concatLibrary
eqName() function.

The getCustomerByNameLessThan() routine uses the substitute condition logic available for the lt
operator. First the routine.

declare function tns:getCustomerByNameLessThen($Name as xs:string) as

element(ns0:LastNameFirstName)* {

 for $LastNameFirstName in tns:getCustomer()

 where $Name lt $LastNameFirstName/FULLNAME

 return $LastNameFirstName

};

The logic of the less-than substitution can be derived from examining LastNameFirstName.java
and the concatLibrary. The raw processing is containing in the Java file:

 public static boolean ltName(String name1, String name2) {
 String ln1 = lname(name1);
 String ln2 = lname(name2);
 return (ln1.compareTo(ln2)<0) || (ln1.equals(ln2) &&
fname(name1).compareTo(fname(name2))<0);
 }

The XFL function, precedesName() is:

 declare function f1:precedesName($x1 as xsd:string?, $x2 as xsd:string?)
as xsd:boolean? {
 f1:lname($x1) lt f1:lname($x2) or ((f1:lname($x1) eq f1:lname($x2))

Leverag ing Data Serv ice Reusab i l i t y

Data Services Developer’s Guide 9-15

 and (f1:fname($x1) lt f1:fname($x2)))
};

Leveraging Data Service Reusability
A typical design pattern within a logical data service is to have a single read function that defines the
data shape without filtering conditions. The function may be declared private so that it can only be
called by other functions within the same data service. Also, it is the only function containing
integration logic. This is known as the decomposition function. By default the decomposition function
is the first function listed in Design View of your logical data service. However you can, through the
Properties Editor, set the decomposition function to be any public or private function in your data
service. Additional functions, either in the same data service or in other data services, can use the
private function to specify filtering criteria. Figure 9-8 shows the design view of a data service
exhibiting this pattern.

Figure 9-8 Customer Data Service functions

The following XQuery sample demonstrates the mechanics behind data service reuse. This function,
getCustomerByName(), filters instances based on the customer name:

 declare function l1:getCustomerByName($c_name as xs:string)

 as element(t1:CUSTOMER)*

 {

 for $c in l1:getAllCustomers()

 where $c/CUSTOMERNAME eq $c_name

 return $c

 };

The getAllCustomers() function, in turn, would assemble the data shape for the returned data and
provide join logic and transformation, as shown its return clause:

read functions

Best P ract ices and Advanced Top ics

9-16 Data Services Developer’s Guide

 ...

 return

 <t1:CUSTOMER>

 <CUSTOMERID>{fn:data($c/CUSTOMERID)}</CUSTOMERID>

 <CUSTOMERNAME>{fn:data($c/CUSTOMERNAME)}</CUSTOMERNAME>

 {

 for $a in f2:ADDRESS()

 where $c/CUSTOMERID eq $a/CUSTOMERID

 return

 <ADDRESS>

 <STREET>{fn:data($a/RTL_STREET)}</STREET>

 <CITY>{fn:data($a/RTL_CITY)}</CITY>

 <STATE>{fn:data($a/RTL_STATE)}</STATE>

 </ADDRESS>

 }

 </t1:CUSTOMER>

Keep in mind that client application themselves can specify filtering conditions on a data service
function call. Therefore, you as the data service designer can choose whether to have broadly defined
data access functions (that is, without filter conditions), and let the client to apply filtering as desired,
or narrowly by defining the criteria in the API.

Note: All functions whose bodies are some variation of a flwor (for-let-where-order-return)
statement should be declared to return a plural rather than a singular result; for example:

element(purchase_order)*

rather than:

 element(purchase_order)

applies to both read and navigation functions.

The reason for declaring returns to be plural is that the XQuery compiler wants to be sure that
you indeed deliver the declared result at runtime. If it cannot determine that something is
singular it inserts a runtime typematch operator in the query evaluation plan. You won't get
the wrong result, but that operator will cause important pushdown-related optimizations
(function unfolding) to be defeated.

Modeling Relationships
There are several ways to implement a logical relationship between distinct units of information with
data services:

Mode l ing Re la t ionsh ips

Data Services Developer’s Guide 9-17

Data shape containment

Navigation functions

When containment is implemented in the data shape, it means that the XML data type of the data
service is nested; that is, one element is the parent of another element. For example, in the following
sample a customer element contains orders:

<customer>

 <customerId>...</customerId>

 <customerName>...</customerName>

 <orders>

 <order>...</order>

 <orderId>...</orderId>

 </orders>

</customer>

A diagram of this XML structure would be:

In this type of containment, the parent-child hierarchy between the customer and order is locked into
the data shape. This nesting might make sense for most applications, particularly those oriented by
customer. However, other applications may benefit from an orders-oriented view of the data. For
example, an inventory application may prefer to work with the data in an orders-first fashion, with the
customer as a child element of each order.

Conceptually, in this case it could also be said that an Order is not existence-dependent on a
Customer. If a Customer record is deleted, it may not necessarily follow that the customer’s order
should be deleted as well.

Customer

Order

Order

Customer

Best P ract ices and Advanced Top ics

9-18 Data Services Developer’s Guide

Alternatively, other relationships do not require this type of hierarchical flexibility. In most cases, this
also implies that the business entity’s existence does depend on the existence of the parent. For
example, consider an order that contains items.

In most logical data models, it would not make sense to have an item outside of the context of the order
that contains it. When deleting an order, it is safe to say that composing order items would need to be
deleted as well.

The choice when modeling such containment either through a relationship or through data shape
nesting is informed by these considerations. When choosing whether to model containment either
through data shape nesting or using relationships, it is recommended that:

Existence-dependent entities are modeled as nested elements.

Existence-independent entities are modeled as relationships.

By modeling independent entities with bi-directional relationships, data service users and designers
can easily specialize the logical hierarchy between business entities as best suited for their
applications.

Order

Item

	Introduction to Data Services�
	Data Services and the Enterprise
	Data Access Integration Architecture
	Data Services Platform Applications and Projects
	Services Available to a Data Services Platform-Based Project

	DSP: Roles and Responsibilities
	DSP: Typical Development Process
	Examples, Samples, and Tutorials

	Data Services Platform Projects and Components
	DSP-Based BEA WebLogic Projects
	Verifying Your DSP Version Number
	Creating a DSP-based Application
	Adding a DSP Project to an Existing BEA WebLogic Application

	Major Components of a DSP Project
	Using the WebLogic Workshop IDE
	Property Editor
	Finding Text in Files

	Survey of DSP Additions to WebLogic Workshop
	Metadata Import
	Data Models
	Data Services
	XQuery Function Libraries
	Usages of Data Services Artifacts
	Updating Application or Project Data Service Libraries

	Building and Deploying Applications, EARs, and SDO Mediator Clients
	Building, Deploying, and Updating Applications
	When to Rebuild Your DSP Project
	Deploying Your Application

	Creating the SDO Mediator API
	Generating the SDO Mediator JAR in Workshop
	Command-line Generation of the SDO Mediator API

	Refactoring DSP Artifacts
	Artifacts Supporting Refactoring
	Setting Refactor Options
	Impacts of Various Refactoring Operations

	Obtaining Enterprise Metadata
	Creating Data Source Metadata
	Identifying DSP Procedures
	Data Object Selection Options
	Creating a New Data Source
	Selecting an Existing Data Source
	Creating Table- and View-Based Metadata
	Importing Stored Procedures Using the Metadata Import Wizard
	Stored Procedure Support for Commonly Used Databases
	Relational Data Types-to-Metadata Conversion

	Testing Metadata Import With an Internet Web Service URI
	Supported Java Function Types
	Adding Java Function Metadata Using Import Wizard
	Creating XMLBean Support for Java Functions
	Inspecting the Java Source
	How Metadata for Java Functions Is Created
	Technical Details, with Additional Example Code

	Providing a Document Name, a Schema Name, or Both
	Using the Metadata Import Wizard on Delimited Files
	XML File Import Sample
	Testing the Metadata Import Wizard with an XML Data Source

	Updating Data Source Metadata
	Considerations When Updating Source Metadata
	Direct and Indirect Effects

	Using the Update Source Metadata Wizard
	Metadata Update Analysis
	Synchronization Mismatches

	Archival of Source Metadata

	Designing Data Services
	Data Services in the Enterprise
	Physical and Logical Data Services
	Data Service Functions

	Data Service Design View Components
	XML Types and Return Types
	Where XML Types are Used
	Where Return Types are Used

	Creating a Data Service
	Adding a Function to Your Data Service
	Adding a Procedure to Your Data Service
	Adding a Private Function to Your Data Service
	Adding a Relationship to Your Data Service
	Understanding Navigation Functions
	Effect of Using a Navigation Function to Return Data
	Creating a Relationship Between Data Services
	Using the Relationship Wizard to Create Navigation Functions
	Example of Creating a Navigation Function
	Navigation Functions in Source View

	Working with Logical Data Service XML Types
	Associating an XML Type
	Editing an XML Type

	Creating an XML Type

	Managing Your Data Service
	Refactoring Data Service Functions
	Finding Usages of Data Services Platform artifacts
	Setting Update Options
	Allowing Updates
	Setting the Override Class
	Enable/Disable Optimistic Locking

	Adding Security Resources
	Create Necessary Security Resources
	Structure Your Query To Support Security Resource Validation
	Assign Security Resources Through the DSP Console
	Validating Security Policies Through Test View

	Caching Functions
	Notable Design View Properties

	Modeling Data Services
	Model-Driven Data Services
	Logical and Physical Data Models
	Physical Data Models
	Logical Data Models

	Rules Governing Model Diagrams

	Building a Simple Model Diagram
	Displaying Relationships Automatically
	Generated Relationship Declarations in Source View
	Modeling Logical Data

	Building Data Service Relationships in Models
	Direction, Role, and Relationships
	Role Names
	Relationships

	Working with Model Diagrams
	Model Right-click Menu Options
	Creating Relationships in Model Diagrams
	Locating Data Services in Large Model Diagrams
	Generating Reports on Your Models
	Creating a Model Report
	Model Report Format

	Zoom Mode
	Editing XML Types in Model Diagrams
	Model Diagram Properties

	How Changes to Data Services and Data Sources Can Impact Models
	How Metadata Update Can Affect Models

	Working with the XQuery Editor
	Role of the XQuery Editor
	Data Source Representations
	XQuery Editor Options

	Creating a New Data Service and Data Service Function
	Key Concepts of Query Function Building
	Data Sources
	Source Schemas and Return Types
	XQuery Editor Components
	Return Type Node
	For Clause Nodes
	Converting Between For and Let Clauses
	Let Statement Nodes
	Parameter Nodes
	Adding Relationship Functions to an Existing Data Service
	Group By Statement Nodes
	Distinct By Statement Nodes

	Setting Conditions
	The Where Clause
	The Order By Clause
	Creating Join Conditions

	Using XQuery Functions
	Using XQuery Functions in Where Clauses
	Transforming Data Using XQuery Functions

	Setting Expressions

	Managing Query Components
	Working With Data Representations and Return Type Elements
	Mapping to Return Types
	Mapping Elements and Attributes to the Type
	Complex Element Mappings to a Return Type
	Removing Mappings

	Modifying a Return Type
	Modifying a Return Type
	Adding a Complex Child Element
	Setting Zones in Your Return Type
	Validating and Saving Your Return Type

	Testing Query Functions and Viewing Query Plans
	Running Queries Using Test View
	Using Test View
	Running a Query That Needs No Parameters
	Running a Query Function With Simple Parameters
	Testing a Query Function With Complex Parameters

	Limiting Array Results
	Starting Client Transaction Option
	Validating Results
	Disregarding a Running Query�
	Auditing Query Performance

	Analyzing Queries Using Plan View
	Using Query Plan View
	Query Plan Information and Warnings
	Printing Your Query Plan

	Analyzing a Sample Query
	Working With Your Query Plan
	Match highlighting. When you click on a variable name any elements (open or closed) containing a ...
	Identifying Problematic Conditions Through the Query Plan

	Simply mouse-over the highlighted section of the plan to view the information or warning.

	Creating an Ad Hoc Query
	Sample Ad Hoc Queries

	Working with XQuery Source
	What is Source View?
	XQuery Support

	Using Source View
	Finding Text
	Function Navigation
	Code Editing Features
	Color Coding
	Code Complete
	Error Identification

	Best Practices and Advanced Topics
	Using a Layered Data Integration and Transformation Approach
	Using Inverse Functions to Improve Performance During Updates
	Sample Inversible Data
	Considerations When Running Queries Against Logical Data
	Situations Where Inverse Functions Can Improve Performance

	Improving Performance Using Inverse Functions: an Example
	Deconstructing Composite Keys

	Leveraging Data Service Reusability
	Modeling Relationships

