
BEAAquaLogic
Service Bus™

User Guide

Version: 2.6
Document Revised: January 2007

AquaLogic Service Bus User Guide iii

Contents

Introduction to AquaLogic Service Bus
Document Scope and Audience . 1-2

Document Organization . 1-2

Modeling Message Flow in AquaLogic Service Bus
About AquaLogic Service Bus Message Flow . 2-2

Building a Message Flow . 2-3

Message Execution . 2-5

Pipelines . 2-6

Branching in Message Flows . 2-9

Operational Branching . 2-9

Conditional Branching . 2-9

Performing Transformations . 2-11

Transformations and Publish Actions . 2-12

Transformations and Route Nodes . 2-12

Configuring Single and Multiple Stages in Pipelines . 2-13

Communication. 2-14

Flow Control . 2-15

Message Processing . 2-15

Reporting . 2-16

Using Multiple Stages. 2-17

Constructing Service Callout Messages. 2-17

iv AquaLogic Service Bus User Guide

SOAP Document Style Services . 2-18

SOAP RPC Style Services . 2-20

XML Services . 2-23

Messaging Services. 2-24

Handling Errors . 2-24

Handling Errors . 2-29

Generating the Error Message, Reporting, and Replying . 2-30

Example of Action Configuration in Error Handlers. 2-31

Selecting a Service Type . 2-33

Using a WSDL to Define a Service . 2-35

SOAP Document Wrapped Web Services . 2-35

SOAP Document Style Web Services . 2-36

SOAP RPC Web Services . 2-38

Binding a Service to a WSDL Port Instead of to a Binding 2-42

Using Any SOAP or Any XML Service Types . 2-43

Using the Messaging Service Type . 2-43

Viewing Resource Details . 2-43

Using Dynamic Routing . 2-44

Sample XML File . 2-45

Creating an XQuery Resource From the Sample XML 2-46

Creating and Configuring the Proxy Service to Implement Dynamic Routing 2-46

Accessing Databases Using XQuery. 2-48

Understanding Message Context. 2-51

Message Context Components. 2-51

Guidelines for Viewing and Altering Message Context . 2-53

Copying JMS Properties From Inbound to Outbound . 2-54

Working with Variable Structures. 2-54

Using the Inline XQuery Expression Editor . 2-55

AquaLogic Service Bus User Guide v

Using Variable Structures . 2-55

Creating Variable Structure Mappings . 2-57

Sample WSDL. 2-57

Creating the Resources You Need for the Examples. 2-59

Example 1: Selecting a Predefined Variable Structure 2-62

Example 2: Creating a Variable Structure That Maps a Variable to a Type . . . 2-63

Example 3: Creating a Variable Structure that Maps a Variable to an Element 2-64

Example 4: Creating a Variable Structure That Maps a Variable to a Child Element
2-65

Quality of Service . 2-70

Delivery Guarantees . 2-70

Overriding the Default Element Attribute. 2-72

Delivery Guarantee Rules . 2-73

Threading Model . 2-75

Splitting Proxy Services . 2-75

Outbound Message Retries. 2-76

Content Types, JMS Type, and Encoding . 2-76

Throttling Pattern. 2-77

WS-I Compliance . 2-77

WS-I Compliance Checks . 2-79

Converting Between SOAP 1.1 and SOAP 1.2 . 2-82

Message Context
The Message Context Model . 3-2

Predefined Context Variables . 3-2

Message-Related Variables . 3-3

Header Variable . 3-4

Body Variable . 3-4

vi AquaLogic Service Bus User Guide

Attachments Variable . 3-4

Binary Content in the body and attachments Variables . 3-6

Inbound and Outbound Variables . 3-8

Sub-Elements of the inbound and outbound Variables . 3-9

service . 3-9

transport . 3-10

security . 3-16

Operation Variable . 3-18

Fault Variable . 3-18

Initializing Context Variables . 3-20

Initializing the attachments Context Variable . 3-22

Initializing the header and body Context Variables . 3-22

SOAP Services . 3-22

XML Services (Non SOAP) . 3-22

Messaging Services. 3-23

Performing Operations on Context Variables . 3-23

Constructing Messages to Dispatch . 3-25

SOAP Services . 3-25

XML Services (Non SOAP) . 3-25

Messaging Services . 3-26

About Sending Binary Content in Email Messages . 3-27

Message Context Schema . 3-28

Using the Test Console
Features . 4-2

Prerequisites . 4-2

Testing Proxy Services . 4-3

Direct Calls . 4-3

AquaLogic Service Bus User Guide vii

Indirect Calls . 4-4

HTTP Requests. 4-4

Testing Business Services . 4-5

Transport Security . 4-5

Recommended Approaches to Testing Proxy and Business Services 4-6

Tracing Proxy Services Using the Test Console . 4-7

Example: Testing and Tracing a Proxy Service . 4-8

Testing Resources . 4-12

MFL . 4-12

XSLT . 4-14

XQuery . 4-14

Performing In-line XQuery Testing. 4-16

Testing Services With Web Service Security . 4-16

Test Console Transport Settings . 4-22

About Security and Transports . 4-23

Understanding How the Run Time Uses the Transport Settings in the Test Console4-24

UDDI
Overview of BEA AquaLogic Service Bus and UDDI . 5-1

Basic Concepts of the UDDI Specification . 5-3

Benefits of Using a UDDI Registry with AquaLogic Service Bus 5-3

Introduction to UDDI Entities . 5-4

Prerequisites . 5-5

Certification . 5-5

Features. 5-5

What is the BEA AquaLogic Service Registry?. 5-6

Sample Business Scenario for AquaLogic Service Bus and UDDI 5-6

Basic Proxy Service Communication with a UDDI Registry 5-7

viii AquaLogic Service Bus User Guide

Cross-Domain Deployment in AquaLogic Service Bus 5-7

Using AquaLogic Service Bus and UDDI . 5-8

UDDI Workflow. 5-8

Configuring a Registry . 5-9

Publishing a Proxy Service to a UDDI Registry . 5-10

Using Auto-Publish . 5-11

Importing a Service from a Registry . 5-12

Using Auto-Import . 5-14

Auto-Synchronization of Services With UDDI . 5-15

Mapping AquaLogic Service Bus Proxy Services to UDDI Entities 5-16

UDDI Mapping Details for an AquaLogic Service Bus Proxy Service. 5-18

Transport Attributes . 5-21

Service Type Attributes . 5-23

Canonical tModels Supporting AquaLogic Service Bus Services 5-24

Example. 5-26

EJB Transport
Introduction . 6-1

Invoking EJBs from AquaLogic Service Bus . 6-3

Register a JNDI Provider Resource . 6-3

Adding a JNDI Provider . 6-4

Register an EJB Client JAR Resource . 6-4

Adding a Client or Converter JAR . 6-4

Create a Service Account (Optional) . 6-5

Locate an EJB in the JNDI Tree . 6-5

Create an EJB Business Service. 6-5

General Configuration . 6-5

EJB Transport-Specific Configuration . 6-7

AquaLogic Service Bus User Guide ix

EJB Business Service Interface Configuration . 6-9

Invoking EJB Business Services . 6-11

Exposing EJBs as Web Services . 6-11

Advanced Topics . 6-12

Transaction Processing, Retries, and Errors Handling . 6-12

Transactions. 6-12

Retries and Failover . 6-13

Error Handling. 6-14

Supported Types and Converter Class . 6-15

Converter Classes . 6-15

Troubleshooting. 6-16

Transports
E-mail . 7-2

Configuring Proxy Services using E-mail Transport Protocol 7-2

Configuring Business Services using E-mail Transport Protocol 7-3

EJB. 7-4

File . 7-4

Configuring Proxy Services using File Transport Protocol . 7-5

Configuring Business Services using File Transport Protocol 7-6

FTP . 7-6

Configuring Proxy Services using FTP Transport Protocol . 7-7

Configuring Business Services using FTP Transport Protocol 7-8

HTTP . 7-9

Configuring Proxy Services using HTTP Transport Protocol 7-9

Configuring Business Services using HTTP Transport Protocol 7-10

HTTP(S) . 7-11

Configuring Proxy Services using HTTP(S) Transport Protocol 7-11

x AquaLogic Service Bus User Guide

Configuring Business Services using HTTP(S) Transport Protocol 7-12

JMS . 7-13

Configuring Proxy Services using JMS Transport Protocol 7-13

Configuring Business Services using JMS Transport Protocol 7-16

Local . 7-18

Tuxedo. 7-18

Data Services Platform (DSP). 7-19

Local Transport
Introduction . 8-1

Features and Characteristics of Local Transport Proxy Services 8-2

Usage of Local Transport Proxy Services. 8-3

Limitations . 8-4

Extensibility Using Java Callouts and POJOs
Usage Guidelines. 9-1

Best Practices . 9-2

XQuery Implementation
Supported Function Extensions from AquaLogic Data Services Platform. 10-2

Function Extensions from AquaLogic Service Bus . 10-2

fn-bea:lookupBasicCredentials . 10-3

fn-bea: uuid() . 10-4

fn-bea:execute-sql() . 10-4

Example 1: Retrieving the URI from a Database for Dynamic Routing 10-5

Example 2: Getting XMLType Data from a Database 10-7

fn-bea:serialize() . 10-9

AquaLogic Service Bus User Guide xi

XQuery-SQL Mapping Reference
IBM DB2/NT 8 .A-2

Microsoft SQL Server .A-3

Oracle 8.1.x .A-4

Oracle 9.x, 10.x .A-6

Sybase 12.5.2 (and higher) .A-7

Pointbase 4.4 (and higher) .A-9

Base (Generic) RDBMS Data Type Mapping .A-10

Related Topics . A-11

Tuning AquaLogic Service Bus

Debugging AquaLogic Service Bus

AquaLogic Service Bus APIs
Resource Update and Customization. C-1

Management and Monitoring . C-2

Deployment . C-3

xii AquaLogic Service Bus User Guide

AquaLogic Service Bus User Guide 1-1

C H A P T E R 1

Introduction to AquaLogic Service Bus

BEA AquaLogic Service Bus is part of the BEA AquaLogic™ family of Service Infrastructure
Products. AquaLogic Service Bus manages the routing and transformation of messages in an
enterprise system. Combining these functions with its monitoring and administration capability,
AquaLogic Service Bus provides a unified software product for implementing and deploying
your Service-Oriented Architecture (SOA).

AquaLogic Service Bus is a configuration-based, policy-driven Enterprise Service Bus (ESB).
From the AquaLogic Service Bus Console, you can monitor your services, servers, and
operational tasks. You configure proxy and business services, set up security, manage resources,
and capture data for tracking or regulatory auditing. The AquaLogic Service Bus Console enables
you to respond rapidly and effectively to changes in your service-oriented environment.

AquaLogic Service Bus relies on WebLogic Server run-time facilities. It leverages WebLogic
Server capabilities to deliver functionality that is highly available, scalable, and reliable.

The following sections provide an overview of AquaLogic Service Bus and of this document:

“Document Scope and Audience” on page 1-2

“Document Organization” on page 1-2

In t roduct ion to AquaLog ic Se rv ice Bus

1-2 AquaLogic Service Bus User Guide

Document Scope and Audience
This guide provides detailed information on using and configuring AquaLogic Service Bus. It is
intended for those responsible for messaging and SOA, specifically enterprise architects,
application architects and developers.

Information for operations specialists such as Monitoring, Reporting, and Tracing resides in the
AquaLogic Service Bus Operations Guide.

Information for security architects and developers resides in the AquaLogic Service Bus Security
Guide.

Information for deployment specialists resides in the AquaLogic Service Bus Deployment Guide.

While sometimes providing procedural information, this guide does not provide detailed
information on how to configure resources using the AquaLogic Service Bus Console. For more
information on using the AquaLogic Service Bus Console, see Using the AquaLogic Service Bus
Console.

Document Organization
This document includes the following topics:

Modeling Message Flow in AquaLogic Service Bus: Guidelines for modeling message
flows in AquaLogic Service Bus. A message flow defines the implementation of a proxy
service, which is the AquaLogic Service Bus definition of an intermediary Web services
that is hosted locally on AquaLogic Service Bus. In AquaLogic Service Bus, service clients
exchange messages with an intermediary proxy service rather than directly with a business
service.

Using the Test Console: Using the test console to test proxy services, business services,
and some of the resources created and used in AquaLogic Service Bus.

UDDI: Using Universal Description, Discovery and Integration (UDDI) registries with
AquaLogic Service Bus. The UDDI protocol is one of the major building blocks required
for successful Web services. UDDI provides a standard interoperable platform that enables
enterprises and applications to find and use Web services over the Internet.

Transports: Transport protocols available in AquaLogic Service Bus.

EJB Transport: EJB transport features and business services.

Local Transport: Local transport features and use cases.

http://e-docs.bea.com/alsb/docs26/consolehelp/index.html
http://e-docs.bea.com/alsb/docs26/consolehelp/index.html
http://e-docs.bea.com/alsb/docs26/operations
http://e-docs.bea.com/alsb/docs26/security/
http://e-docs.bea.com/alsb/docs26/security/
http://e-docs.bea.com/alsb/docs26/deploy/

Document O rgan i zat i on

AquaLogic Service Bus User Guide 1-3

Extensibility Using Java Callouts and POJOs: Guidelines for using the Java callout action
with POJOs.

XQuery Implementation: AquaLogic Service Bus uses the BEA AquaLogic Data Services
Platform implementation. This section describes valid extensions of the AquaLogic Data
Services Platform for BEA AquaLogic Service Bus and AquaLogic Service Bus-specific
XQuery functions.

Tuning AquaLogic Service Bus: Optimizing the AquaLogic Service Bus performance in a
production environment.

Debugging AquaLogic Service Bus: Enabling debugging in AquaLogic Service Bus
modules.

http://edocs.bea.com/aldsp/docs25/index.html
http://edocs.bea.com/aldsp/docs25/index.html

In t roduct ion to AquaLog ic Se rv ice Bus

1-4 AquaLogic Service Bus User Guide

AquaLogic Service Bus User Guide 2-1

C H A P T E R 2

Modeling Message Flow in AquaLogic
Service Bus

In AquaLogic Service Bus, the Message Flow defines the implementation of a proxy service. You
configure AquaLogic Service Bus proxy services in the AquaLogic Service Bus Console, which
is described in Using the AquaLogic Service Bus Console. This section presents guidelines for
modeling and designing message flows. It contains the following topics:

“About AquaLogic Service Bus Message Flow” on page 2-2

“Pipelines” on page 2-6

“Branching in Message Flows” on page 2-9

“Performing Transformations” on page 2-11

“Configuring Single and Multiple Stages in Pipelines” on page 2-13

“Constructing Service Callout Messages” on page 2-17

“Handling Errors” on page 2-29

“Selecting a Service Type” on page 2-33

“Using a WSDL to Define a Service” on page 2-35

“Viewing Resource Details” on page 2-43

“Using Dynamic Routing” on page 2-44

“Accessing Databases Using XQuery” on page 2-48

“Understanding Message Context” on page 2-51

http://e-docs.bea.com/alsb/docs26/consolehelp/index.html

Mode l ing Message F l ow in AquaLog ic Serv ice Bus

2-2 AquaLogic Service Bus User Guide

“Working with Variable Structures” on page 2-54

“Quality of Service” on page 2-70

“Content Types, JMS Type, and Encoding” on page 2-76

“Throttling Pattern” on page 2-77

“WS-I Compliance” on page 2-77

“Converting Between SOAP 1.1 and SOAP 1.2” on page 2-82

About AquaLogic Service Bus Message Flow
A message flow consists of the pipelines, branch nodes, and route nodes that together define the
implementation of an AquaLogic Service Bus proxy service. A proxy service is an AquaLogic
Service Bus definition of an intermediary Web Service that is hosted locally on AquaLogic
Service Bus. Using the AquaLogic Service Bus Console, you can configure the logic for the
manipulation of messages in proxy service message flow definitions. This logic includes such
activities as transformation, publishing, and reporting—the logic is configured in individual
actions within the message flow.

The following figure shows a high level view of the components of the message flow definition.

Figure 2-1 Components of Message Flow

About AquaLog ic Se rv ice Bus Message F l ow

AquaLogic Service Bus User Guide 2-3

This topic includes the following sections:

“Building a Message Flow” on page 2-3

“Message Execution” on page 2-5

Building a Message Flow
Any component can be at the root of a message flow. (For a description of the components, see
Table 2-1, “Message Flow Components,” on page 2-4). One of the simplest of message flow
designs is to have only a route node representing the entire flow. No restrictions exist on what
two components you can chain together to create a message flow. For example, two pipeline pair
nodes can be linked together without a branch node in between. In the case of branch nodes, each
branch node can start with a different element. One branch can terminate with a route node,
another can be followed by a pipeline pair, and yet another may have no descendant. In the latter
case, a branch with no descendants means that at run time, when this branch is executed, response
processing begins immediately. However, in general a message flow is likely to be designed in
one of the following forms:

In the case of non-operational services (services that are not based on WSDLs with
operations), the flow likely consists of a single pipeline pair at the root followed by a route
node.

In the case of operational services, the flow likely consists of a single pipeline pair at the
root, followed by a branch node based on an operation, with each branch consisting of a
pipeline pair followed by a route node.

Mode l ing Message F l ow in AquaLog ic Serv ice Bus

2-4 AquaLogic Service Bus User Guide

A message flow is constructed by linking together instances of the top-level components
described in the following table. Subsequent sections in this topic describe the node types in more
detail.

Table 2-1 Message Flow Components

Node Type Summary

Pipeline Pair

See “Pipelines” on
page 2-6.

A pipeline pair combines a single request and a single response pipeline into one
top-level element. A pipeline pair node can have only one direct descendant in
the message flow. During request processing, only the request pipeline is
executed when AquaLogic Service Bus processes a pipeline pair node. The
execution path is reversed when AquaLogic Service Bus processes the response
pipeline.

For an example of a simple pipeline pair node, see Figure 2-3.

To learn how to configure a pipeline pair node, see “Adding a Pipeline Pair
Node” in Proxy Services: Message Flow in Using the AquaLogic Service Bus
Console.

Branch

See “Branching in
Message Flows” on
page 2-9.

A branch node allows processing to proceed along exactly one of several possible
paths. Branching is driven by an XPath-based switch table. Each branch in the
table specifies a condition (for example, <500) that is evaluated in order down
the message flow against a single XPath expression (for example, ./ns:
PurchaseOrder/ns:totalCost on $body). Whichever condition is
satisfied first determines which branch is followed. If no branch condition is
satisfied, then the default branch is followed. A branch node may have several
descendants in the message flow: one for each branch, including the default
branch.

Note: It is highly recommended that you define a default branch whenever
your message flow involves conditional branching.

To learn how to add a branch node, see “Adding a Conditional Branch Node” in
Proxy Services: Message Flow in Using the AquaLogic Service Bus Console.

For information about working with the message context variables to design
conditions, see Chapter 3, “Message Context.”

http://e-docs.bea.com/alsb/docs26/consolehelp/proxymessageflow.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxymessageflow.html

About AquaLog ic Se rv ice Bus Message F l ow

AquaLogic Service Bus User Guide 2-5

To create a message flow, see “Viewing and Changing Message Flow” in Proxy Services:
Message Flow in Using the AquaLogic Service Bus Console.

Message Execution
The following table gives brief description of the components in a typical message flow

Route A route node is used to perform request/response communication with another
service. It represents the boundary between request and response processing for
the proxy service. When the route node dispatches a request message, the request
processing is considered complete. When the route node receives a response
message, the response processing begins. The route node supports conditional
routing as well as request and response transformations.

Because a route node represents the boundary between request and response
processing, it cannot have any descendants in the message flow.

To learn how to add a route node, see Adding a Route Node in Proxy Services:
Message Flow in the Using the AquaLogic Service Bus Console.

Table 2-2 Path Of a Message during a Message Flow

Message Flow Node What Happens During Message Processing?

Request Processing Request processing begins at the root of the message flow.

Pipeline Pair Executes the request pipeline only.

Branch Evaluates the branch table and proceeds down the relevant branch.

Route Performs the route along with any request transformations.

Note: In the message flow, regardless of whether routing takes place or not,
the route node represents the change-over from processing a request to
processing a response. At the route node, the direction of the message
flow is reversed. If a request path does not have a route node, the
response processing is initiated in the reverse direction without
waiting for any response.

Response Processing Skips any branch nodes and continues with the node that preceded the branch.

Table 2-1 Message Flow Components

Node Type Summary

http://e-docs.bea.com/alsb/docs26/consolehelp/proxymessageflow.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxymessageflow.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxymessageflow.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxymessageflow.html

Mode l ing Message F l ow in AquaLog ic Serv ice Bus

2-6 AquaLogic Service Bus User Guide

Pipelines
The principal component in a proxy service implementation is the pipeline. A pipeline is a named
sequence of stages representing a non-branching one-way processing path.

Pipelines belong to one of the following categories:

Request—Request pipelines process the request path of the message flow.

Response—Response pipelines process the response path of the message flow.

Error—Error pipelines handle errors for stages and nodes in a message flow, and also at the
level of the message flow (service).

To create the request and response paths, you pair request and response pipelines and organize
them into a single node called a pipeline pair node.

“Message Flow Definition for a Proxy Service” on page 2-7 shows an example of a simple
message flow. It defines a proxy service named loanGateway3.

Route Executes any response transformations. See “Route” on page 2-5 for Request
Processing.

Branch Skips any branch nodes and continues with the node that preceded the branch.

Pipeline Pair Executes the response pipeline.

Root of the Message
Flow

Sends the response back to the client.

Table 2-2 Path Of a Message during a Message Flow

Message Flow Node What Happens During Message Processing?

Pipe l ines

AquaLogic Service Bus User Guide 2-7

Figure 2-2 Message Flow Definition for a Proxy Service

The message flow in the preceding figure shows:

A start node is the root of the tree structure for the loanGateway3 proxy service.

A pipeline pair node (PipelinePairNode1), which includes request and response
pipelines. The request pipeline includes one stage (validate loan application). The

 icon associated with the validate loan application stage indicates that an error
handler is defined for this stage. For more information about error handlers, which are also
implemented as message flows, see “Handling Errors” on page 2-29.

A Route node (Route to Normal Loan Processing Service)

In addition to the view of the message flow shown in the preceding figure, the AquaLogic Service
Bus Console displays the corresponding tree view map of the message flow to help you navigate
components of a message flow at design time.

Mode l ing Message F l ow in AquaLog ic Serv ice Bus

2-8 AquaLogic Service Bus User Guide

Figure 2-3 Message Flow Definition for a Proxy Service

To view or edit the components of the message flow, click the component in the Map of Message
Flow view. To edit or view a component from the tree view map, click the component and select
the appropriate action from the list.

This flow structure provides a clear overview of the message flow behavior at design time,
making both routes and branch conditions explicit parts of the overall design, rather than locating
them out of view inside a pipeline stage or route node. A branch node allows you to conditionally
execute these pipeline pairs, and route nodes at the ends of the branches perform the request and
response dispatching. For more information about branch nodes, see “Branching in Message
Flows” on page 2-9.

Branching in Message F lows

AquaLogic Service Bus User Guide 2-9

Branching in Message Flows
Two kinds of branching are supported in message flows: operational and conditional branching.
The following sections explain when to use operational branching and when to use conditional
branching.

Operational Branching
When message flows define Web Services Description Language (WSDL)-based proxy services,
operation-specific processing is required. Instead of configuring a branching node based on
operations manually, AquaLogic Service Bus provides a minimal configuration branching node
that automatically branches based on operations. In other words, when you create an operational
branch node in a message flow, you can quickly build your branching logic based on the
operations defined in the WSDL because the AquaLogic Service Bus Console presents those
operations in the branch node configuration page (Figure 2-4).

Figure 2-4 Definition for an Operation Branch

You must use operational branching in situations when a proxy service is based on a WSDL with
multiple operations. You can consider using an operational branch node to handle messages
separately for each operation. To learn how to configure operational branch nodes, see “Adding
an Operational Branch Node” and “Viewing and Changing Operational Branch Details” in Proxy
Services: Message Flow in Using the AquaLogic Service Bus Console.

Conditional Branching
If the proxy service is not based on a WSDL and receives multiple document types as input,
consider using a conditional branch node.

Conditional branching is driven by a lookup table with each branch tagged with a simple, but
unique, string value. A variable in the message context is designated as the lookup variable for

http://e-docs.bea.com/alsb/docs26/consolehelp/proxymessageflow.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxymessageflow.html

Mode l ing Message F l ow in AquaLog ic Serv ice Bus

2-10 AquaLogic Service Bus User Guide

that node, and at run time, its value is used to determine which branch to follow. If no branch
matches the value of the lookup variable, then the default branch is followed. You should design
the proxy service in such a way that the value of the lookup variable is set before reaching the
branch node.

Note: It is highly recommended that you define a default branch whenever your message flow
involves conditional branching.

For example, consider a case when a proxy service is of type Any SOAP or Any XML, and you
need to determine the type of the message is so that you can perform conditional branching. In
this case you can design a stage action to identify the message type and then design a conditional
branching node in the flow to separate processing based on the message type you receive. When
you design the conditional branch node in a message flow, you build the branching logic based
on evaluation of the value of the variable populated in the preceding stage.

For more information on conditional branch nodes, see “Adding a Conditional Branch Node” in
Proxy Services: Message Flow in Using the AquaLogic Service Bus Console.

You can also use conditional branching to expose the routing alternatives at the top level flow
view. For example, if you invoke service A or service B based on a condition, instead of
configuring conditional branching by using a routing table within the route node, you can expose
this branching in the message flow itself and use simple route nodes as the subflows for each of
the branches.

Figure 2-5 shows a simple message flow with a top-level branch node (BranchNode1) and two
subordinate route nodes. At run time, one branch is executed, causing messages to be routed to
either service A or service B.

http://e-docs.bea.com/alsb/docs26/consolehelp/proxymessageflow.html

Per fo rming T ransfo rmat ions

AquaLogic Service Bus User Guide 2-11

Figure 2-5 Branch Node

For more information on configuring a conditional branch in a route node, see “Adding Route
Node Actions” in Proxy Services: Message Flow in Using the AquaLogic Service Bus Console.

Consider your business scenario before deciding whether you configure branching in the message
flow or in a stage or route node. When making your decision, remember that configuring
branches in the message flow can awkward in the design interface if a large number of branches
extend from the branch node.

For more information, see “Overview of Message Flow” in Proxy Services: Message Flow in
Using the AquaLogic Service Bus Console.

Performing Transformations
This section presents guidelines to follow when you design transformations. Transformation
maps describe the mapping between two data types. AquaLogic Service Bus supports data
mapping that uses XQuery and the eXtensible Stylesheet Language Transformation (XSLT)
standards. XSLT maps describe XML-to-XML mappings, whereas XQuery maps can describe
XML-to-XML, XML to non-XML, and non-XML to XML mappings. For more information, see
XQuery Transformations and XSL Transformations in Using the AquaLogic Service Bus
Console. For information on using the BEA XQuery Mapper to create XQueries, see
Transforming Data Using the XQuery Mapper in Transforming Data Using the XQuery Mapper.

http://e-docs.bea.com/alsb/docs26/consolehelp/proxymessageflow.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxymessageflow.html
http://e-docs.bea.com/alsb/docs26/consolehelp/xslttransforms.html
http://e-docs.bea.com/alsb/docs26/dtguide/index.html
http://e-docs.bea.com/alsb/docs26/consolehelp/xquerytransforms.html

Mode l ing Message F l ow in AquaLog ic Serv ice Bus

2-12 AquaLogic Service Bus User Guide

The point in a message flow at which you specify a transformation depends on whether:

The message format relies on target services—that is, the message format must be in a
format acceptable by the route destination. This applies when the transformation is
performed in a route node or in one of the publish actions.

Publish actions identify a target service for a message and configure how the message is
packaged and sent to that service. AquaLogic Service Bus provides Publish Table actions
also. A Publish Table action consists of a set of routes wrapped in a switch-style condition
table. It is a shorthand construct that allows different routes to be selected, based upon the
results of a single XQuery expression.

You perform the transformation on the response or request message regardless of the route
destination. In this case, you can configure the transformations in the request or response
pipeline stages.

Transformations and Publish Actions
When transformations are designed in publish actions, the transformations have a local copy of
the $outbound variable and message-related variables ($header, $body, and $attachments).
Any changes you make to an outbound message in a publish action affect only the published
message. In other words, the changes you make in the publish action are rolled back before the
message flow proceeds to any actions that follow the publish action in your message flow. For
more information, see Proxy Services: Actions in Using the AquaLogic Service Bus Console and
Chapter 3, “Message Context.”.

For example, consider a message flow that deals with a large purchase order, and you have to send
the summary of the purchase order, through e-mail, to the manager. The summary of the of the
purchase order is created in the SOAP body of the incoming message when you include a publish
action in the request pipeline. In the publish action, the purchase order data is transformed into a
summary of the purchase order—for example, all the attachments in $attachments can be
deleted because they are not required in the summary of the purchase order.

Transformations and Route Nodes
In a situation in which you need to route messages to one of two possible destinations, based on
a WS-addressing header, content-based routing and the second destination requires the newer
version of the document in the SOAP body. In this situation, you can configure the route node to
conditionally route to one of the two destinations. You can configure a transformation in the route
node to transform the document for the second destination.

http://e-docs.bea.com/alsb/docs26/consolehelp/proxyactions.html

Conf igu r ing S ing le and Mu l t ip le S tages in P ipe l ines

AquaLogic Service Bus User Guide 2-13

You can also set the control elements in the outbound context variable ($outbound) to influence
the behavior of the system for the outbound message (for example, you can set the Quality of
Service). See “Inbound and Outbound Variables” and “Constructing Messages to Dispatch” in
Chapter 3, “Message Context.” for information about the sub-elements of the inbound and
outbound variables and how the content of messages is constructed using the values of the
variables in the message context.

For more information about:

Quality of Service: See “Quality of Service” on page 2-70.

Configuring pipelines: See “Pipelines” in “Overview of Message Flow” in Proxy Services:
Message Flow in Using the AquaLogic Service Bus Console.

Actions: See “Adding an Action” in Proxy Services: Actions in Using the AquaLogic
Service Bus Console.

Route nodes: See “Adding a Route Node” in Proxy Services: Message Flow in Using the
AquaLogic Service Bus Console.

Configuring Single and Multiple Stages in Pipelines
In AquaLogic Service Bus message flows, stages are the containers for actions that define the
logic of the message flow. In most cases it is sufficient to use a single stage in a pipeline.
However, some situations require the use of multiple stages. Section “Using Multiple Stages” on
page 2-17 explains the usage of multiple stages in a pipeline. For information about configuring
a stage, see “Adding a Stage” in Proxy Services: Actions in Using the AquaLogic Service Bus
Console.

The BEA AquaLogic Service Bus provides a wide range of actions with which you can configure
a stage in message flows. The actions are divided into following categories:

“Communication” on page 2-14

“Flow Control” on page 2-15

“Message Processing” on page 2-15

“Reporting” on page 2-16

Note:

Only communication and flow control actions are available in a stage under a route
node.

http://e-docs.bea.com/alsb/docs26/consolehelp/proxyactions.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxymessageflow.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxymessageflow.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxyactions.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxymessageflow.html

Mode l ing Message F l ow in AquaLog ic Serv ice Bus

2-14 AquaLogic Service Bus User Guide

The actions available to a stage under a message flow pipeline are different from
those in a stage under a route node.

In a stage under a pipeline error handler all the categories of actions similar to that
of the message flow pipeline are available.

Communication
The actions in this category control the message flow in the pipeline. You use them to specify the
target URL for a message flow, a mode of packaging for a message flow, and a mode to configure
a synchronous callout to an AquaLogic Service Bus registered proxy service or a business
service. Communication actions in a stage in a message flow pipeline include:

– Dynamic Publish

– Publish Overview

– Publish Table

– Routing Options

– Service Callout

– Transport Headers

For more information on communication actions, see Proxy Services: Action in Using the
AquaLogic Service Bus Console. The communication actions available in a route node are:

– Dynamic Routing

– Routing

– Routing Table

Note: For more information on adding action to a stage in a route node, see Proxy Services:
Message Flow-Adding Route Node Actions in Using the AquaLogic Service Bus
Console.

The communication actions available in an error handler stage are:

– Dynamic Publish

– Publish Table

– Routing Options

– Service Callout

– Transport Headers

http://e-docs.bea.com/alsb/docs26/consolehelp/proxyactions.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxymessageflow.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxymessageflow.html

Conf igu r ing S ing le and Mu l t ip le S tages in P ipe l ines

AquaLogic Service Bus User Guide 2-15

Flow Control
The actions in this category control the message flow in the pipeline. You use them to implement
conditional routing, conditional looping, and error handling within a stage in a message flow.
Also you can use them to notify the invoker of success or to skip the rest of the actions in the
stage. Flow actions in a stage in a pipeline include:

– For Each

– If... Then...

– Raise Error

– Reply

– Skip

For more information on actions in this category, see Proxy Services: Actions in Using the
AquaLogic Service Bus Console.

The flow control action available in a route node is If... Then...

Note: For more information on adding an action to a stage in a route node, see Proxy
Services: Message Flow-Adding Route Node Actions in Using the AquaLogic
Service Bus Console.

The flow control actions available in an error handler stage are

– For Each

– If... Then...

– Raise Error

– Reply

– Resume

– Skip

Note: For more information on adding an action to a stage in a route node, see Proxy
Services: Error Handlers in Using the AquaLogic Service Bus Console.

Message Processing
The actions in this category process the message flow. You can use the actions under this category
to modify the XPath expressions, invoke Java methods for processing, transform the message

http://e-docs.bea.com/alsb/docs26/consolehelp/proxyactions.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxymessageflow.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxymessageflow.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxyerrors.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxyerrors.html

Mode l ing Message F l ow in AquaLog ic Serv ice Bus

2-16 AquaLogic Service Bus User Guide

format, and set transport headers. Message Processing actions in a stage in a message flow
pipeline include:

– Assign

– Delete

– Insert

– Java Callout

– MFL Transform

– Rename

– Replace

– Validate

For more information on message processing actions, see Proxy Services: Actions in Using the
AquaLogic Service Bus Console.

Message processing actions available in a stage in a pipeline error handler includes:

– Assign

– Delete

– Insert

– Java Callout

– MFL Transform

– Rename

– Replace

– Validate

Reporting
You use the actions in this category to log or report errors and generate alerts if required in a
message flow within a stage. Reporting actions in a stage in a message flow pipeline include:

– Alert

– Log

– Report

http://e-docs.bea.com/alsb/docs26/consolehelp/proxyactions.html

Cons t ruc t ing Se rv ice Ca l lout Messages

AquaLogic Service Bus User Guide 2-17

Reporting actions in a stage under a pipeline error handler includes:

– Alert

– Log

– Report

For more information on the reporting actions, see Proxy Services: Actions in Using the
AquaLogic Service Bus Console.

Using Multiple Stages
Having multiple stages in a message flow enables you to define error handlers at a modular level.
Each stage in a message flow can have a separate error handling pipeline. You can use two types
of actions to control runtime execution of the actions in a stage:

Resume: This is typically used in the error handlers to resume the next action in the
message flow pipeline.

Note: The message flow processing resumes at the next stage in the pipeline.

Skip: On encountering this action the processing of the current stage is skipped and the
processing continues with the next stage in the message flow.

For more information, see “Adding a Stage” and “Viewing and Changing Stage Configuration
Details” in Proxy Services: Message Flow in Using the AquaLogic Service Bus Console.

Constructing Service Callout Messages
When AquaLogic Service Bus makes a call to a service via a Service Callout action, the content
of the message is constructed using the values of variables in the message context. The message
content for outbound messages is handled differently depending upon the type of the target
service. How the message content is created depends on the type of the target service and whether
you choose to configure the SOAP Body or the payload (parameters or document), as described
in the following topics:

“SOAP Document Style Services” on page 2-18

“SOAP RPC Style Services” on page 2-20

“XML Services” on page 2-23

“XML Services” on page 2-23

http://e-docs.bea.com/alsb/docs26/consolehelp/proxymessageflow.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxyactions.html

Mode l ing Message F l ow in AquaLog ic Serv ice Bus

2-18 AquaLogic Service Bus User Guide

SOAP Document Style Services
Messages for SOAP Document Style services (including EJB document and document-wrapped
services), can be constructed as follows:

The variable assigned for the request document contains the SOAP body.

The variable assigned for the SOAP Request Header contains the SOAP Header.

The response must be a single XML document—it is the content of the SOAP Body plus
the SOAP Header (if specified)

To illustrate how messages are constructed during callouts to SOAP Document Style services,
consider a Service Callout action configured as follows:

Request Document Variable: myreq

Response Document Variable: myresp

SOAP Request Header: reqheader

SOAP Response Header: respheader

Assume also that at run time, the request document variable, myreq, is bound to the following
XML.

Listing 2-1 Content of Request Variable (myreq)

<sayHello xmlns="http://www.openuri.org/">

<intVal>100</intVal>

<string>Hello AquaLogic</string>

</sayHello>

At run time, the SOAP Request Header variable, reqheader, is bound to the following SOAP
header.

Listing 2-2 Content of SOAP Request Header Variable (reqheader)

<soap:Header xmlns:soap=http://schemas.xmlsoap.org/soap/envelope/

xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing">

Cons t ruc t ing Se rv ice Ca l lout Messages

AquaLogic Service Bus User Guide 2-19

<wsa:Action>...</wsa:Action>

<wsa:To>...</wsa:To>

<wsa:From>...</wsa:From>

<wsa:ReplyTo>...</wsa:ReplyTo>

<wsa:FaultTo>...</wsa:FaultTo>

</soap:Header>

In this example scenario, the full body of the message sent to the external service is as shown in
the following listing (the contents of the myreq and reqheader variables are shown in bold).

Listing 2-3 Message Sent to the Service as a Result of Service Callout Action

<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Header xmlns:soap=http://schemas.xmlsoap.org/soap/envelope/

xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing">

<wsa:Action>...</wsa:Action>

<wsa:To>...</wsa:To>

<wsa:From>...</wsa:From>

<wsa:ReplyTo>...</wsa:ReplyTo>

<wsa:FaultTo>...</wsa:FaultTo>

</soap:Header>

<soapenv:Body>

<sayHello xmlns="http://www.openuri.org/">

<intVal>100</intVal>

<string>Hello AquaLogic</string>

</sayHello>

</soapenv:Body>

</soapenv:Envelope>

Based on the configuration of the Service Callout action described above, the response from the
service is assigned to the myresp variable. The full response from the external service is as shown
in the following listing.

Mode l ing Message F l ow in AquaLog ic Serv ice Bus

2-20 AquaLogic Service Bus User Guide

Listing 2-4 Response Message From the Service as a Result of Service Callout Action

<?xml version="1.0" encoding="UTF-8"?>

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:soapenc="http://schemas.xmlsoap.

org/soap/encoding/" xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<env:Header/>

<env:Body

env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<m:sayHelloResponse xmlns:m="http://www.openuri.org/">

<result xsi:type="xsd:string">This message brought to you by

Hello AquaLogic and the number 100

</result>

</m:sayHelloResponse>

</env:Body>

</env:Envelope>

In this scenario, the myresp variable is assigned the value shown in the following listing.

Listing 2-5 Content of Response Variable (myresp) as a Result of Service Callout Action

<m:sayHelloResponse xmlns:m="http://www.openuri.org/">

<result ns0:type="xsd:string"

xmlns:ns0="http://www.w3.org/2001/XMLSchema-instance">

This message brought to you by Hello AquaLogic and the number 100

</result>

</m:sayHelloResponse>

SOAP RPC Style Services
Messages for SOAP RPC Style services (including EJB RPC services) can be constructed as
follows:

Request messages are assembled from message context variables.

Cons t ruc t ing Se rv ice Ca l lout Messages

AquaLogic Service Bus User Guide 2-21

– The SOAP Body is built based on the SOAP RPC format (operation wrapper,
parameter wrappers, and so on).

– The SOAP Header is the content of the variable specified for the SOAP Request
Header, if one is specified.

– Part as element—the parameter value is the variable content.

– Part as simple type—the parameter value is the string representation of the variable
content.

– Part as complex type—the parameter corresponds to renaming the root of the variable
content after the parameter name.

Response messages are assembled as follows:

– The output content is the content of SOAP Header, if a SOAP Header is specified.

– Part as element—the output content is the child element of the parameter; there is at
most one child element.

– Part as simple/complex type—the output content is the parameter itself

To illustrate how messages are constructed during callouts to SOAP RPC Style services, take an
example with the following configuration:

A message context variable input1 is bound to a value 100

A message context variable input2 is bound to a string value: Hello AquaLogic.

A Service Callout action configured as follows:

– Request Parameter intval: input1

– Request Parameter string: input2

– Response Parameter result: output1

In this scenario, the body of the outbound message to the service is as shown in Listing 2-6:

Listing 2-6 Content of Outbound Message

<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Body>

<sayHello2 xmlns="http://www.openuri.org/">

Mode l ing Message F l ow in AquaLog ic Serv ice Bus

2-22 AquaLogic Service Bus User Guide

<intVal>100</intVal>

<string >Hello AquaLogic</string>

</sayHello2>

</soapenv:Body>

</soapenv:Envelope>

The response returned by the service to which the call was made is shown in the following listing.

Listing 2-7 Content of Response Message From the helloWorld Service

<?xml version="1.0" encoding="UTF-8"?>

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<env:Header/>

<env:Body

env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<m:sayHello2Response xmlns:m="http://www.openuri.org/">

<result xsi:type="n1:HelloWorldResult" xmlns:n1="java:">

<message xsi:type="xsd:string">

This message brought to you by Hello AquaLogic and the

number 100

</message>

</result>

</m:sayHello2Response>

</env:Body>

</env:Envelope>

The message context variable output1 is assigned the value shown in the following listing.

Cons t ruc t ing Se rv ice Ca l lout Messages

AquaLogic Service Bus User Guide 2-23

Listing 2-8 Content of Output Variable (output1)

<message ns0:type="xsd:string"

xmlns:ns0="http://www.w3.org/2001/XMLSchema-intance">

This message brought to you by Hello AquaLogic and the number 100</message>

XML Services
Messages for XML services can be constructed as follows:

The request message is the content of the variable assigned for the request document.

The content of the request variable must be a single XML document.

The output document is the response message

To illustrate how messages are constructed during callouts to XML services, take for example a
Service Callout action configured as follows:

Request Document Variable: myreq

Response Document Variable: myresp

Assume also that at run time, the request document variable, myreq, is bound to the following
XML.

Listing 2-9 Content of myreq Variable

<sayHello xmlns="http://www.openuri.org/">

<intVal>100</intVal>

<string>Hello AquaLogic</string>

</sayHello>

In this scenario:

The outbound message payload is the value of the myreq variable, as shown in the
preceding listing.

Mode l ing Message F l ow in AquaLog ic Serv ice Bus

2-24 AquaLogic Service Bus User Guide

The response and the value assigned to the message context variable, myresp, is shown in
the following listing.

Listing 2-10 Content of myresp Variable

<m:sayHelloResponse xmlns:m="http://www.openuri.org/">

<result xsi:type="xsd:string">This message brought to you by Hello

AquaLogic and the number 100

</result>

</m:sayHelloResponse>

Messaging Services
In the case of Messaging services:

The request message is the content of the request variable. The content can be simple text,
XML, or binary data represented by an instance of <binary-content ref=.../>
reference XML.

Response messages are treated as binary, so the response variable will contain an instance
of <binary-content ref= ... /> reference XML, regardless of the actual content
received.

For example, if the request message context variable myreq is bound to an XML document of the
following format: <hello>there</hello>, the outbound message contains exactly this
payload. The response message context variable (myresp) is bound to a reference element similar
to the following:

<binary-content ref=" cid:1850733759955566502-2ca29e5c.1079b180f61.-7fd8"/>

Handling Errors
You can configure error handling at the Message Flow, pipeline, route node, and stage level. For
information about doing so, see “Error Messages and Handling” on page 20-1. The types of errors
that are received from an external service as the result of a Service Callout include transport
errors, SOAP faults, responses that do not conform to an expected response, and so on.

The fault context variable is set differently for each type of error returned. You can build your
business and error handling logic based on the content of the fault variable. To learn more about
$fault, see “Fault Variable” on page A-14 and Appendix A, “Error CodesLocal Transport”

Cons t ruc t ing Se rv ice Ca l lout Messages

AquaLogic Service Bus User Guide 2-25

Transport Errors
When a transport error is received from an external service and there is no error response payload
returned to AquaLogic Service Bus by the transport provider (for example, in the case that an
HTTP 403 error code is returned), the Service Callout action throws an exception, which in turn
causes the pipeline to raise an error. The fault variable in a user-configured error handler is bound
to a message formatted similarly to that shown in the following listing.

Listing 2-11 Contents of the AquaLogic Service Bus fault Variable—Transport Error, no Error Response
Payload

<con:fault xmlns:con="http://www.bea.com/wli/sb/context">

<con:errorCode>BEA-380000</con:errorCode>

<con:reason>Not Found</con:reason>

<con:details>

.......

</con:details>

<con:location>

<con:node>PipelinePairNode1</con:node>

<con:pipeline>PipelinePairNode1_request</con:pipeline>

<con:stage>stage1</con:stage>

</con:location>

</con:fault>

In the case that there is a payload associated with the transport error—for example, when an
HTTP 500 error code is received from the business service and there is XML payload in the
response—a message context fault is generated with the custom error code: BEA-382502.

The following conditions must be met for a BEA-382502 error response code to be triggered as
the result of a response from a service—when that service uses an HTTP or JMS transport:

(HTTP) The response code must be any code other than 200 or 202

(JMS) The response must have a property set to indicate that it is an error response—the
transport metadata status code set to1 indicates an error.

The content type must be text/xml

Mode l ing Message F l ow in AquaLog ic Serv ice Bus

2-26 AquaLogic Service Bus User Guide

If the service is AnySoap or WSDL-based SOAP, then it must have a SOAP envelope. The
body inside the SOAP envelope must be XML format; it cannot be text.

If the service type is AnyXML, or a messaging service of type text returns XML content
with a non-successful response code (any code other than 200 or 202).

If the transport is HTTP, the ErrorResponseDetail element will also contain the HTTP error
code returned with the response. The ErrorResponseDetail element in the fault contains error
response payload received from the service. The following listing shows an example of the
ErrorResponseDetail element.

Listing 2-12 Contents of the AquaLogic Service Bus fault Variable—Transport Error, with Error Response
Payload

<ctx:Fault xmlns:ctx="http://www.bea.com/wli/sb/context">

<ctx:errorCode>BEA-382502<ctx:errorCode>

<ctx:reason> Service callout has received an error response from the

server</ctx:reason>

<ctx:details>

<alsb:ErrorResponseDetail xmlns:alsb="http://www.bea.com/...">

<alsb:detail> <![CDATA[

. . .

]]>

</alsb:detail>

<alsb:http-response-code>500</alsb:http-response-code>

</alsb:ErrorResponseDetail>

</ctx:details>

<ctx:location>. . .</ctx:location>

</ctx:Fault>

Note: The XML Schema for the Service Callout-generated fault is shown in “XML Schema for
the Service Callout-Generated Fault Details” on page 2-28.

SOAP Faults
In case an external service returns a SOAP fault, the AquaLogic Service Bus run time sets up the
context variable $fault with a custom error code and description with the details of the fault. To

Cons t ruc t ing Se rv ice Ca l lout Messages

AquaLogic Service Bus User Guide 2-27

do so, the contents of the 3 elements under the <SOAP-ENV:Fault> element in the SOAP fault
are extracted and used to construct an AquaLogic Service Bus fault element.

Take for example a scenario in which a service returns the following error.

Listing 2-13 SOAP Fault Returned From Service Callout

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Body>

<SOAP-ENV:Fault>

<faultcode>SOAP-ENV:Client</faultcode>

<faultstring>Application Error</faultstring>

<detail>

<message>That’s an Error!</message>

<errorcode>1006</errorcode>

</detail>

</SOAP-ENV:Fault>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The <faultcode>, <faultstring>, and <detail> elements are extracted and wrapped in an
<alsb:ReceivedFault> element. Note that the faultcode element in Listing 2-13 contains a
QName—any related namespace declarations are preserved. If the transport is HTTP, the
ReceivedFault element will also contain the HTTP error code returned with the fault response.

The generated <alsb:ReceivedFault> element, along with the custom error code and the error
string are used to construct the contents of the fault context variable, which in this example
takes a format similar to that shown in the following listing.

Listing 2-14 Contents of the AquaLogic Service Bus Fault Variable—SOAP Fault

<ctx:Fault xmlns:ctx="http://www.bea.com/wli/sb/context">
<ctx:errorCode>BEA-382500<ctx:errorCode>
<ctx:reason> service callout received a soap Fault

response</ctx:reason>
<ctx:details>

Mode l ing Message F l ow in AquaLog ic Serv ice Bus

2-28 AquaLogic Service Bus User Guide

<alsb:ReceivedFault xmlns:alsb="http://www.bea.com/...">
<alsb:faultcode

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">SOAP-ENV:Clien
</alsb:faultcode>
<alsb:faultstring>Application Error</alsb:faultstring>
<alsb:detail>

<message>That’s an Error!</message>
<errorcode>1006</errorcode>

</alsb:detail>

<alsb:http-response-code>500</alsb:http-response-code>
</alsb:ReceivedFault>

</ctx:details>
<ctx:location> </ctx:location>

</ctx:Fault>

Note: The unique error code BEA-382500 is reserved for the case when Service Callout actions
receive SOAP Fault responses.

Unexpected Responses
When a service returns a response message that is not what the proxy service’s run time expects,
a message context fault will be generated and initialized with the custom error code BEA-382501.
The details of the fault include the contents of the SOAP-Body element of the response. If the
transport is HTTP, the ReceivedFault element will also contain the HTTP error code returned
with the fault response.

The XML Schema for the Service Callout-generated fault is shown in Listing 2-15.

XML Schema for the Service Callout-Generated Fault Details
The XML schema definition of the service callout-generated fault details is shown in the
following listing.

Listing 2-15 XML Schema for the Service Callout-Generated Fault Details

<xs:complexType name="ReceivedFaultDetail">

<xs:sequence>

<xs:element name="faultcode" type="xs:QName"/>

<xs:element name="faultstring" type="xs:string"/>

<xs:element name="detail" minOccurs="0" >

Handl ing E r ro rs

AquaLogic Service Bus User Guide 2-29

 <xs:complexType>

<xs:sequence>

<xs:any namespace="##any" minOccurs="0"

maxOccurs="unbounded" processContents="lax" />

</xs:sequence>

<xs:anyAttribute namespace="##any" processContents="lax" />

 </xs:complexType>

</xs:element>

<xs:element name="http-response-code" type="xs:int"

minOccurs="0"/>\

type="xs:int" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="UnrecognizedResponseDetail">

<xs:sequence>

<xs:element name="detail" minOccurs="0" type="xs:string" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="ErrorResponseDetail">

<xs:sequence>

<xs:element name="detail" minOccurs="0" type="xs:string" />

</xs:sequence>

</xs:complexType>

Handling Errors
The process described in the next paragraph constitutes an error handling pipeline for the error
handling stage. In addition, an error pipeline can be defined for a pipeline (request or response)
or for an entire proxy service.

The error handler at the stage level is invoked for handling an error; If the stage-level error
handler is not able to handle a given type of error, the pipeline error handler is invoked. If the
pipeline -level error handler also fails to handle the error the service level error handler is

Mode l ing Message F l ow in AquaLog ic Serv ice Bus

2-30 AquaLogic Service Bus User Guide

invoked. If the service level error handler also fails, the error is handled by the system.The
following table summarizes the scope of the error handlers at various levels in the message flow.

Note: There are exceptions to the scope of error handlers. For example, an exception thrown by
a non-XML transformation at the Stage level is only caught by the Service level error
handler.Suppose a transformation occurs that transforms XML to MFL for an outgoing
proxy service response message, it always occurs in the binding layer. Therefore, for
example, if a non-XML output is missing a mandatory field at the stage level, only a
service level error handler can catch this error.

For more information on error messages and error handling, see “Error Messages and Handling”
in Proxy Services: Error Handlers in Using the AquaLogic Service Bus Console.

You can handle errors by configuring a test that checks if an assertion is true and use the reply
action configured false. You can repeat this test at various levels. Also you can have an error
without an error handler at a lower level and handle it through an error handler at an higher level
in message flow.In general, it is easier to handle specific errors at a stage level of the message
flow and use error handlers at the higher level for more general default processing of errors that
are not handled at the lower levels. It is good practice to explicitly handle anticipated errors in the
pipelines and allow the service-level handler to handle unanticipated errors.

Note: You can only handle WS-Security related errors at the service level.

Generating the Error Message, Reporting, and Replying
A predefined context variable (the fault variable) is used to hold information about any error
that occurs during message processing. When an error occurs, this variable is populated with

Table 2-3 Scope of Error Handlers

Level Scope

Stage Handles all the errors within a stage.

Pipeline Handles all the errors in a pipeline, along with any unhandled
errors from any stage in a pipeline.

Service Handles all the errors in a proxy service, along with any
unhandled errors in any pipeline in a service.

Note: All WS-Security errors are handled at this level.

System Handles all the errors that are not handled any where else in a
pipeline.

http://e-docs.bea.com/alsb/docs26/consolehelp/proxyerrors.html

Handl ing E r ro rs

AquaLogic Service Bus User Guide 2-31

information before the appropriate error handler is invoked. The fault variable is defined only
in error handler pipelines and is not set in request and response pipelines, or in route or branch
nodes. For additional information about $fault, see “Predefined Context Variables” on
page 3-2.

In the event of errors for request/response type inbound messages, it is often necessary to send a
message back to the originator outlining the reason why an error occurred. You can accomplish
this by using a Reply with Failure action after configuring the message context variables with the
response you want to send. For example, when an HTTP message fails, Reply with Failure
generates the HTTP 500 status. When a JMS message fails, Reply with Failure sets the
JMS_BEA_Error property to true. The AquaLogic Service Bus error actions are discussed in
“Error Messages and Handling” in Proxy Services: Error Handlers in Using the AquaLogic
Service Bus Console.

An error handling pipeline is invoked if a service invoked by a proxy service returns a SOAP fault
or transport error. Any received SOAP fault is stored in $body, so if a Reply with Failure is
executed without modifying $body, the original SOAP fault is returned to the client that invoked
the service. If a reply action is not configured, the system error handler generates a new SOAP
fault message. The proxy service recognizes that a SOAP fault is returned because a HTTP error
status is set, or the JMS property SERVER_Error is set to true.

Some use cases require error reporting. You can use the report action in these situations. For
example, consider a scenario in which the request pipeline reports a message for tracking
purposes, but the service invoked by the route node fails after the reporting action. In this case,
the reporting system logged the message, but there is no guarantee that the message was
processed successfully, only that the message was successfully received.

You can use the AquaLogic Service Bus Console to track the message to obtain an accurate
picture of the message flow. This allows you to view the original reported message indicating the
message was submitted for processing, and also the subsequent reported error indicating that the
message was not processed correctly. To learn how to configure a Report action and use the data
reported at run time, see Proxy Services: Actions in Using the AquaLogic Service Bus Console.

Example of Action Configuration in Error Handlers
This example shows how you can configure the Report and Reply actions in error handlers. The
message flow shown in Figure 2-2 includes an error handler on the validate loan
application stage. The error handler in this case is a simple message flow with a single stage
configured—it is represented in the AquaLogic Service Bus Console as shown in the following
figure.

http://e-docs.bea.com/alsb/docs26/consolehelp/proxyerrors.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxyactions.html

Mode l ing Message F l ow in AquaLog ic Serv ice Bus

2-32 AquaLogic Service Bus User Guide

Figure 2-6 Error Handler Message Flow

The stage is, in turn, configured with actions (Replace, Report, and Reply) as shown in the
following figure.

Figure 2-7 Actions in Stage Error Handler

The actions control the behavior of the stage in the pipeline error handler as follows:

Replace—The contents of a specified element of the body variable are replaced with the
contents of the fault context variable. The body variable element is specified by an XPath
expression. The contents are replaced with the value returned by an XQuery expression—
in this case $fault/ctx:reason/text()

Se lec t ing a Serv ice Type

AquaLogic Service Bus User Guide 2-33

Report— Messages from the reporting action are written to the AquaLogic Service Bus
Reporting Data Stream if the error handler configured with this action is invoked. The JMS
Reporting Provider reports the messages on the AquaLogic Service Bus Dashboard.
AquaLogic Service Bus provides the capability to deliver message data to one or more
reporting providers. Message data is captured from the body of the message and from any
other variables associated with the message, such as header or inbound variables. You can
use the message delivered to the reporting provider for functions such as tracking messages
or regulatory auditing.

When an error occurs, the contents of the fault context variable are reported. The key name
is errorCode, and the key value is extracted from the fault variable using the following
XPath expression: ./ctx:errorCode. Key/value pairs are the key identifiers that identify
these messages in the Dashboard at run time.

To configure a Report action and use the data reported at run time, see Proxy Services:
Actions in Using the AquaLogic Service Bus Console.

Reply— At run time, an immediate reply is sent to the invoker of the loanGateway3 proxy
service (see Figure 2-2) indicating that the message had a fault The reply is With
Failure.

For configuration information, see “Error Messages and Handling” in Proxy Services: Error
Handlers in Using the AquaLogic Service Bus Console.

Selecting a Service Type
AquaLogic Service Bus supports a variety of service types that range from conventional Web
services (using XML or SOAP bindings in WSDLs) to non-XML or generic services. This
section provides guidelines on selecting a service type.

AquaLogic Service Bus service types for a proxy service include:

SOAP Services—SOAP services receive and respond with SOAP messages. SOAP
messages are constructed by wrapping the contents of the header and body variables inside
a <soap:Envelope> element. SOAP services can be SOAP 1.1 or SOAP 1.2 services.

XML Services (Non SOAP)—The messages to XML-based services are XML, but can be
of any type allowed by the proxy service configuration.

Messaging Services—Messaging services are those that can receive messages of one data
type and respond with messages of a different data type. The supported data types include
XML, MFL, text, and untyped binary.

http://e-docs.bea.com/alsb/docs26/consolehelp/proxyactions.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxyactions.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxyerrors.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxyerrors.html

Mode l ing Message F l ow in AquaLog ic Serv ice Bus

2-34 AquaLogic Service Bus User Guide

WSDL Web Service—In AquaLogic Service Bus you define proxy services based on
WSDL. The WSDL indicates if the service is a SOAP 1.1 or a SOAP 1.2 service. Although
it is not mandatory, BEA recommends that you use a WSDL to define a proxy service. For
more information on WSDL based services, see “Using a WSDL to Define a Service” on
page 2-35.

Note: All service types can send and receive attachments using MIME.

For more information on selecting a service type, see Adding a Proxy Services in Using
the AquaLogic Service Bus Console

The following table shows the service types and the transports, which AquaLogic Service Bus
supports.
Table 2-4 Supported Service Types and Transports

Service Type Transport Protocols

SOAP or XML WSDL HTTP

HTTP(S)

JMS

Local

SOAP (no WSDL) HTTP

HTTP(S)

JMS

Local

XML (no WSDL)1 e-mail

File

FTP

HTTP

HTTP(S)

JMS

Local

Tuxedo2

http://e-docs.bea.com/alsb/docs26/consolehelp/proxyservices.html

Using a WSDL to Def ine a Serv i ce

AquaLogic Service Bus User Guide 2-35

BEA recommends that you use the local transport for communication between two proxy
services. For more information on local transport, see Chapter 8, “Local Transport.”

Using a WSDL to Define a Service
If a service has a well defined Web Services Description Language (WSDL) interface, it is
recommended, although not required, that you use the WSDL to define the service. For more
information on WSDL resources in AquaLogic Service Bus, see WSDLs in Using the AquaLogic
Service Bus Console.

There are three types of WSDLs you can define. They are:

“SOAP Document Wrapped Web Services” on page 2-35

“SOAP Document Style Web Services” on page 2-36

“SOAP RPC Web Services” on page 2-38

SOAP Document Wrapped Web Services
A document wrapped Web Service is described in a WSDL as a Document Style Service.
However, it follows some additional conventions. Standard document-oriented Web Service

Transport Typed EJB

Messaging Type (Binary, Text,
MFL, XML)

e-mail

File

FTP

HTTP

HTTP(S)

JMS

Local

Tuxedo

1. HTTP GET is supported for the XML (no WSDL) service type and Messaging Service.
2. For a Tuxedo transport-based service, if the service type is XML, an FML32 buffer with an
FLD_MBSTRING field from a Tuxedo client will not be transformed to XML.

Table 2-4 Supported Service Types and Transports

Service Type Transport Protocols

http://e-docs.bea.com/alsb/docs26/consolehelp/wsdls.html

Mode l ing Message F l ow in AquaLog ic Serv ice Bus

2-36 AquaLogic Service Bus User Guide

operations take only one parameter or message part, typically an XML document. This means that
the methods that implement the operations must also have only one parameter.
Document-wrapped Web Service operations, however, can take any number of parameters,
although the parameter values will be wrapped into one complex data type in a SOAP message.
This wrapped complex data type will be described in the WSDL as the single document for the
operation.

For more information on SOAP Document Wrapped Web Services see Adding a Business
Service in Using the AquaLogic Service Bus Console.

SOAP Document Style Web Services
You can configure proxy services as SOAP style proxy services and configure business services
as SOAP style business services.

The following listing provides an example of a WSDL for a sample document style Web service
using SOAP 1.1.

Listing 2-16 WSDL for a Sample Document Style Web Service

<definitions name="Lookup"
targetNamespace="http://example.com/lookup/service/defs"
xmlns:tns="http://example.com/lookup/service/defs"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:docs="http://example.com/lookup/docs"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>
<xs:schema targetNamespace="http://example.com/lookup/docs"

elementFormDefault="qualified">
<xs:element name="PurchaseOrg" type="xs:string"/>
<xs:element name="LegacyBoolean" type="xs:boolean"/>

</xs:schema>
</types>
<message name="lookupReq">
<part name="request" element="docs:purchaseorg"/>

</message>
<message name="lookupResp">
<part name="result" element="docs:legacyboolean"/>

</message>
<portType name="LookupPortType">
<operation name="lookup">

<input message="tns:lookupReq"/>
<output message="tns:lookupResp"/>

http://e-docs.bea.com/alsb/docs26/consolehelp/businessServices.html
http://e-docs.bea.com/alsb/docs26/consolehelp/businessServices.html

Using a WSDL to Def ine a Serv i ce

AquaLogic Service Bus User Guide 2-37

</operation>
</portType>
<binding name="LookupBinding" type="tns:lookupPortType">
<soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="lookup">

<soap:operation/>
<input>

<soap:body use="literal" />
</input>
<output>

<soap:body use="literal"/>
</output>

</operation>
</binding>

</definitions>

The service has an operation (equivalent to a method in a Java class) called lookup. The binding
indicates that this is a SOAP 1.1 document style Web service.

When the WSDL shown in the preceding listing is used for a request, the value of the body
variable ($body) that the document style proxy service obtains is displayed in the following
listing.

Note: Namespace declarations have been removed from the XML in the listings that follow for
the sake of clarity.

Listing 2-17 Body Variable Value

<soap-env:body>

<req:purchaseorg>BEA Systems</req:purchaseorg>

</soap-env:body>

In Listing 2-17, soap-env is the predefined SOAP 1.1 namespace and req is the namespace of
the PurchaseOrg element (<http://example.com/lookup/docs>).

If the business service to which the proxy service is routing uses the above WSDL, the value for
the body variable ($body) given above is the value of the body variable ($body) from the proxy
service.

Mode l ing Message F l ow in AquaLog ic Serv ice Bus

2-38 AquaLogic Service Bus User Guide

The value of the body variable ($body) for the response from the invoked business service that
the proxy service receives is displayed in the following listing.

Note: Namespace declarations have been removed from the XML in the listings that follow for
the sake of clarity.

Listing 2-18 Body Variable Value

<soap-env:body>

<req:legacyboolean>true</req:legacyboolean>

</soap-env:body>

This is also the value of the body variable ($body) for the response returned by the proxy service
using this WSDL.

There are many tools available (including BEA WebLogic Workshop tools) that take the WSDL
of a proxy service (obtained by adding the ?WSDL suffix to the URL of the proxy service in the
browser) and generate a Java class with the appropriate request and response parameters to
invoke the operations of the service. This Java class can be used to invoke the proxy service that
uses this WSDL.

SOAP RPC Web Services
You can configure proxy services as RPC style proxy services and configure business services as
RPC style business services.

The following listing provides an example of a WSDL for a sample RPC style Web service using
SOAP 1.1.

Listing 2-19 WSDL for a Sample RPC Style Web Service

<definitions name="Lookup"
targetNamespace="http://example.com/lookup/service/defs"
xmlns:tns="http://example.com/lookup/service/defs"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:docs="http://example.com/lookup/docs"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>

Using a WSDL to Def ine a Serv i ce

AquaLogic Service Bus User Guide 2-39

<xs:schema targetNamespace="http://example.com/lookup/docs"
elementFormDefault="qualified">

<xs:complexType name="RequestDoc">
<xs:sequence>

<xs:element name="PurchaseOrg" type="xs:string"/>
</xs:sequence>

</xs:complexType>
<xs:complexType name="ResponseDoc">

<xs:sequence>
<xs:element name="LegacyBoolean" type="xs:boolean"/>

</xs:sequence>
</xs:complexType>

</xs:schema>
</types>
<message name="lookupReq">
<part name="request" type="docs: RequestDoc"/>

</message>
<message name="lookupResp">
<part name="result" type="docs: ResponseDoc"/>

</message>
<portType name="LookupPortType">
<operation name="lookup">

<input message="tns:lookupReq"/>
<output message="tns:lookupResp"/>

</operation>
</portType>
<binding name="LookupBinding" type="tns:lookupPortType">
<soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="lookup">

<soap:operation/>
<input>

<soap:body use="literal"
namespace="http://example.com/lookup/service"/>

</input>
<output>

<soap:body use="literal"
namespace="http://example.com/lookup/service"/>

</output>
</operation>

</binding>
</definitions>

The service described in the preceding listing includes an operation (equivalent to a method in a
Java class) called lookup. The binding indicates that this is a SOAP RPC Web service. In other
words, the Web service’s operation receives a set of request parameters and returns a set of

Mode l ing Message F l ow in AquaLog ic Serv ice Bus

2-40 AquaLogic Service Bus User Guide

response parameters. The lookup operation has a parameter called request and a return
parameter called result. The namespace of the operation in the binding is:

http://example.com/lookup/service

When the WSDL shown in Listing 2-19 is used for a request, the value of the body variable
($body) that the SOAP RPC proxy service obtains is displayed in the following listing.

Note: Namespace declarations have been removed from the XML in the listings that follow for
the sake of clarity.

Listing 2-20 Body Variable Value

<soap-env:body>

<ns:lookup>

<request>

<req:purchaseorg>BEA Systems</req:purchaseorg>

</request>

</ns:lookup>

<soap-env:body>

Where soap-env is the predefined SOAP 1.1 name space, ns is the operation namespace
(<http://example.com/lookup/service>) and, req is the namespace of the PurchaseOrg
element (<http://example.com/lookup/docs>).

If the business service to which the proxy service routes the messages uses the WSDL shown in
Listing 2-17, the value for the body variable ($body), shown in Listing 2-18, is the value of the
body variable ($body) from the proxy service.

When this WSDL is used for a request, the value of the body variable ($body) for the response
from the invoked business service that the proxy service receives is displayed in the following
listing.

Listing 2-21 Body Variable Value

<soap-env:body>

<ns:lookupResponse>

<result>

Using a WSDL to Def ine a Serv i ce

AquaLogic Service Bus User Guide 2-41

<req:legacyboolean>true</req:legacyboolean>

</result>

</ns:lookupResponse>

<soap-env:body>

This is also the value of the body variable ($body) for the response returned by the proxy service
using this WSDL.

There are many tools available (including BEA WebLogic Workshop tools) that take the WSDL
of a proxy service (obtained by adding the ?WSDL suffix to the URL of the proxy in the browser)
and generate a Java class with the appropriate request and response parameters to invoke the
operations of that service. You can use such Java classes to invoke the proxy services that use this
WSDL.

The benefits of using a WSDL include the following:

The system can provide metrics for each operation in a WSDL.

Operational branching is possible in the pipeline. For more information, see “Branching in
Message Flows” on page 2-9.

For SOAP 1.1 services, the SOAPAction header is automatically populated for services
invoked by a proxy service. For SOAP 1.2 services, the action parameter of the
Content-Type header is automatically populated for services invoked by a proxy service.

A WSDL is required for services using WS-Security. WS-Policies are attached to WSDLs.
See WS-Polices in Using the AquaLogic Service Bus Console.

The system supports the <url>?WSDL syntax, which allows you to dynamically obtain the
WSDL of a HTTP proxy service. This is useful for a number of SOAP client generation
tools, including BEA WebLogic Workshop.

In the XQuery and XPath editors and condition builders, it is easy to manipulate the body
content variable ($body) because the editor provides a default mapping of $body to the
request message in the WSDL of a proxy service. See “Message Context” on page 3-1.

Note: The run-time contents of $body for a specific action can be different from the default
mapping displayed in the editor. This is because AquaLogic Service Bus is not a
programming language in which typed variables are declared and used. Instead,
variables are untyped and are created dynamically at run time when a value is
assigned. In addition, the type of the variable is the type that is implied by its contents
at any point in the message flow. To enable you to easily create XQuery and XPath

http://e-docs.bea.com/alsb/docs26/consolehelp/policies.html

Mode l ing Message F l ow in AquaLog ic Serv ice Bus

2-42 AquaLogic Service Bus User Guide

expressions, the design time editor allows you to map the type for a given variable by
mapping the variable to the type in the editor. To learn about using the XQuery and
XPath editor to create expressions, see “Working with Variable Structures” on
page 2-54.

Binding a Service to a WSDL Port Instead of to a Binding
If you use a WSDL service type, it is useful to bind the service to a WSDL port instead of to a
binding because:

If the service is bound to port X in the template WSDL, then port X is also defined in the
generated WSDL. Any other ports defined in the template WSDL are not included in the
generated WSDL. Furthermore, if you base the proxy service on a WSDL port, the
generated WSDL uses that port name and preserves any WS-Policies associated with that
port.

(The template WSDL is the WSDL for the service upon which you based your proxy
service; the generated WSDL is the WSDL created for the new proxy service.)

If the service is bound to binding Y in the template WSDL, the generated WSDL defines
one service and port (<service-name>QSService and <port-name>QSPort). None of
the ports defined in the template WSDL are included in the generated WSDL.

You can get the WSDL for an HTTP or HTTP(S)-based proxy service by entering the following
URL in your browser’s address field:

http://host:port/sbresource?PROXY/project/proxyname

In the WSDL returned by the http://host:port/sbresource?PROXY/project/proxyname
URL or the WSDL, which is obtained from the URL for the proxy service, the port name is
preserved if the proxy service is bound to a port on the WSDL and the URL accurately reflects
the URL of the proxy service. This can be important to some tools, which generate a client. The
URL in the WSDL port that is bound to the service is not used when you define a service, except
to populate the URL in the WSDL port as the default URL for a business service. You can
overwrite the transport type and transport URL in the transport configuration UI for the service
definition.

Any WS-Security policies at the port level apply. See “Overview of Proxy Services” in Proxy
Services in Using the AquaLogic Service Bus Console.

http://e-docs.bea.com/alsb/docs26/consolehelp/proxyservices.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxyservices.html

V iewing Resource Deta i l s

AquaLogic Service Bus User Guide 2-43

Using Any SOAP or Any XML Service Types
If you want to expose one port to clients for a variety of enterprise applications, use Any SOAP
or Any XML service types.

Note: For Any SOAP, you need to specify if it is SOAP 1.1 or SOAP 1.2.

Using the Messaging Service Type
If one of the request or response messages is non-XML, you must use the messaging service type.

AquaLogic Service Bus does not automatically perform “misunderstand” SOAP header
checking. However, you can use XQuery conditional expressions and validate actions to
explicitly perform this type of check. For more information on the validate action, see “Validate”
in Proxy Services: Actions in Using the AquaLogic Service Bus Console. For more information
on conditional XQuery expressions, see “Using the XQuery Condition Editor” in Proxy Services:
Editors in Using the AquaLogic Service Bus Console.

You can use AquaLogic Service Bus to configure a validate action and use XQuery conditional
expressions to perform validation checks explicitly in the message flow.

For more information on service types, see “Overview of Proxy Services” in Proxy Services in
Using the AquaLogic Service Bus Console.

Viewing Resource Details
AquaLogic Service Bus provides a resource servlet that is used to expose the resources registered
in AquaLogic Service Bus. The resources registered with AquaLogic Service Bus include:

The format of the URLs used to expose the resources is as follows:

WSDL (a WSDL registered as a resource in AquaLogic Service Bus)

Schema

MFL

WS-Policy

WSDL (a derived WSDL with resolved policies and port information for a proxy service—
this derived WSDL is available if the proxy service was created using a WSDL).

You can use the following URL formats to expose the resource details:

http://host:port/sbresource?WSDL/project/...wsdlname

http://e-docs.bea.com/alsb/docs26/consolehelp/proxyservices.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxyactions.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxyeditors.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxyeditors.html

Mode l ing Message F l ow in AquaLog ic Serv ice Bus

2-44 AquaLogic Service Bus User Guide

http://host:port/sbresource?POLICY/project/...policyname

http://host:port/sbresource?MFL/project/...mflname

http://host:port/sbresource?SCHEMA/project/...schemaname

http://host:port/sbresource?PROXY/project/...proxyname

Note: The URLs used to expose the resources in AquaLogic Service Bus must be encoded in
UTF-8 in order to escape special characters.

Using Dynamic Routing
When you do not know the service you need to invoke from the proxy service you are creating,
you can use dynamic routing.

For any given proxy service, you can use one of the following techniques to dynamically route
messages:

In a message flow pipeline, design an XQuery expression to dynamically set the fully
qualified service name in AquaLogic Service Bus and use the dynamic route or dynamic
publish actions.

Note: Dynamic Routing can be achieved in a route node, whereas dynamic publishing can
achieved in a stage in a request pipeline or a response pipeline.

With this technique, the proxy service dynamically uses the service account of the endpoint
business service to send user names and passwords in its outbound requests. For example,
if a proxy service is routing a request to Business Service A, then the proxy service uses
the service account from Business Service A to send user names and passwords in its
outbound request. See “Implementing Dynamic Routing” on page 2-45.

Configure a proxy service to route or publish messages to a business service. Then, in the
request actions section for the route action or publish action, add a Routing Options action
that dynamically specifies the URI of a service.

With this technique, to send user names and passwords in its outbound requests, the proxy
service uses the service account of the statically defined business service, regardless of the
URI to which the request is actually sent.

For information on how to use this technique, see “Implementing Dynamic Routing” on
page 2-45.

Note: This technique is used when the overview of the interface is fixed. The overview of
the interface includes message types, port types, and binding, and excludes the

Using Dynamic Rout ing

AquaLogic Service Bus User Guide 2-45

concrete interface. The concrete interface is the transport URL at which the service is
located.

Implementing Dynamic Routing
You can use dynamic routing to determine the destination during the runtime of a proxy service.
To achieve this you can use a routing table in an XML file to create an XQuery resource.

Note: Instead of using the XQuery resource, you can also directly use the XML file from which
the resource is created.

An XML file or the Xquery resource can be maintained easily. At runtime you provide the entry
in the routing table that will determine the routing or publishing destination of the proxy
service.The XML file or the XQuery resource contains a routing table, which maps a logical
identifier to (such as the name of a company) to the physical identifier (the fully qualified name
of the service in AquaLogic Service Bus). The logical identifier, which is extracted from the
message, maps on to the physical identifier, which is the name of the service you want to invoke.

Note: To use the dynamic route action, you need the fully qualified name of the service in
AquaLogic Service Bus.

In a pipeline the logical identifier is obtained with an XPath into the message.You assign the
XML table in the XQuery resource to a variable. You implement a query against the variable in
the routing table to extract the physical identifier based on the corresponding logical identifier.
Using this variable you will be able to invoke the required service. The following sections
describe how to implement dynamic routing.

“Sample XML File” on page 2-45.

“Creating an XQuery Resource From the Sample XML” on page 2-46.

“Creating and Configuring the Proxy Service to Implement Dynamic Routing” on
page 2-46

Sample XML File
You can create an XQuery resource from the following XML file. Save this as
sampleXquery.xml.

Listing 2-22 Sample XML File

<routing>

Mode l ing Message F l ow in AquaLog ic Serv ice Bus

2-46 AquaLogic Service Bus User Guide

 <row>

 <logical>BEA Systems</logical>

 <physical>default/goldservice</physical>

 </row>

 <row>

 <logical>ABC Corp</logical>

 <physical>default/silverservice</physical>

 </row>

</routing>

Creating an XQuery Resource From the Sample XML
1. In an active session, select Project Explorer from the left navigation panel. The Project

View page is displayed.

2. Select the project to which you want to add the XQuery resource.

3. In the Project view page select the XQuery resource from the Select Resource Type
drop-down list. The Create XQuery page is displayed.

4. In the Resource Name field, enter the name of the resource. This is a mandatory.

5. In the Resource Description field provide the a description for the resource. This is optional.

6. In the XQuery field provide the path to the XML you are using as an XQuery resource. Click
on the Browse to locate the file. Optionally you can copy and paste the XML in the XQuery
field. This is mandatory.

7. Save the XQuery resource.

8. Activate the session.

Creating and Configuring the Proxy Service to Implement Dynamic Routing
1. In an active session select Project Explorer from the left navigation panel. The Project View

page is displayed.

2. Select the project to which you want to add the proxy service.

Using Dynamic Rout ing

AquaLogic Service Bus User Guide 2-47

3. In the Project View page, select the Proxy Service resource from the Select Resource Type
drop-down list. The General Configuration page is displayed.

4. In the Service Name field of the General Configuration page enter the name of the proxy
service. This is mandatory.

5. Select the type of service by clicking on the button adjacent to various types of services
available under Service Type. For more information on selecting the service type, see Proxy
Services: Actions.

6. Click Finish. On the Summary page, click Save to save the proxy service.

7. On the Project View page, click the Edit Message Flow icon against the newly created proxy
service in the Resource table. The Edit Message Flow page is displayed.

8. Click on the message flow to add a pipeline pair to the message flow.

9. Click on request pipeline icon select Add Stage from the menu.

10. Click on the stage1 icon to and select Edit Stage from the menu. The Edit Stage
Configuration page appears.

11. Click Add Action icon. Choose Add an Action item from the menu.

12. Choose the Assign action from Message Processing.

13. Click on Expression. The XQuery Expression Editor is displayed.

14. Click on XQuery Resources. The browser displays the page where you can import the
XQuery resource. Click on the Browse to locate the XQuery resource.

15. Click on Validate to validate the imported XQuery resource.

16. Save the imported XQuery resource on successful validation.

17. In the Edit Stage Configuration page enter the name of the variable in the field. By this you
assign the XQuery resource to this variable.
This variable now contains the externalized routing table.

18. Click on the Assign action icon to add another assign action.

Note: To do this repeat step 11 to step 13

19. Enter the following Xquery:

<ctx: route>
<ctx:

http://e-docs.bea.com/alsb/docs26/consolehelp/proxyactions.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxyactions.html

Mode l ing Message F l ow in AquaLog ic Serv ice Bus

2-48 AquaLogic Service Bus User Guide

service>{$routingtable/row[logical/text()=$logicalidentifier]/physical/
text()}</ctx: service>
</ctx: route>

In the above code, replace $logicalidentifier by the actual XPath to extract the logical
identifier from the message (example from $body).

20. Click on Validate to validate the Xquery.

21. Save the Xquery on successful validation.

22. In the Edit Stage Configuration page, enter the name of the variable (for example,
routeresult) in the field.

By this you extract the XML used by the dynamic route action into this variable.

23. Click on the message flow to add a route node to the end of the message flow.

24. Click on the route node icon and select Edit from the menu.

25. Click the Add Action icon. Choose Add an Action item from the menu.

26. Choose the Dynamic Route action.

27. Click on Expression. The XQuery Expression Editor is displayed.

28. Enter the variable from step 22 (for example, $routeresult)

Accessing Databases Using XQuery
AquaLogic Service Bus provides read-access to databases from proxy services without requiring
you to write a custom EJB or custom Java code and without the need for a separate database
product like AquaLogic Data Services Platform. You can use the execute-sql() function to
make a simple JDBC call to a database to perform simple database reads. Any SQL query is legal,
from a query that gets a single tax rate for the supplied location to a query that does a complex
join to obtain an order's current status from several underlying database tables.

A database query can be used to get data for message enrichment, for routing decisions, or for
customizing the behavior of a proxy service. Take for example a scenario in which an AquaLogic
Service Bus proxy service receives “request for quote” messages. The proxy service can route the
requests based on the customer's priority to one of a number of quotation business services (say,
standard, gold, or platinum level services). The proxy service can then perform a SQL-based
augmentation of the results that those services return—for example, based on the selected ship

Access ing Databases Us ing XQue ry

AquaLogic Service Bus User Guide 2-49

method and the weight of the order, the shipping cost can be looked up and that cost added to the
request for quote message.

“fn-bea:execute-sql()” on page 10-4 describes the syntax for the function and provides examples
of its use. The execute-sql() function returns typed data and automatically translates values
between SQL/JDBC and XQuery data models.

You can store the returned element in a user-defined variable in an AquaLogic Service Bus
message flow.

The following databases and JDBC drivers are supported using the execute-sql() function:

IBM DB2/NT 8

Microsoft SQL Server 2000, 2005

Oracle 8.1.x

Oracle 9.x, 10.x

Pointbase 4.4, 5.x

Sybase 12.5.2 and 12.5.3

WebLogic Type 4 JDBC drivers

Third-party drivers supported by WebLogic Server

Use non-XA drivers for datasources you use with the fn-bea:execute-sql() function—the function
supports read-only access to the datasources.

WARNING: In addition to specifying a non-XA JDBC driver class to use to connect to the
database, you must ensure that you disable global transactions and two-phase
commit. (Global transactions are enabled by default in the WebLogic Server
console for JDBC data sources.) These specifications can be made for your data
source via the WebLogic Server Administration Console. See Create JDBC Data
Sources in the WebLogic Server Administration Console Online Help.

For complete information about database and JDBC drivers support in AquaLogic Service Bus,
see Supported Database Configurations in Supported Configurations for AquaLogic Service Bus.

Databases other than the core set described in the preceding listing are also supported. However,
for the core databases listed above, the XQuery engine does a better recognition and mapping of
data types to XQuery types than it does for the non-core databases—in some cases, a core
database’s proprietary JDBC extensions are used when fetching data. For the non-core databases,

../../../platform/suppconfigs/configs_al26/26_over/supported_db.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jdbc/jdbc_datasources/CreateDataSources.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jdbc/jdbc_datasources/CreateDataSources.html

Mode l ing Message F l ow in AquaLog ic Serv ice Bus

2-50 AquaLogic Service Bus User Guide

the XQuery engine relies totally on the standard type codes provided by the JDBC driver and
standard JDBC resultset access methods.

When designing your proxy service, you can enter XQueries inline as part of an action definition
instead of entering them as resources. You can also use inline XQueries for conditions in
If...Then... actions in message flows. For information about using the inline XQuery editor, see
“Creating Variable Structure Mappings” on page 2-57.

Unders tand ing Message Context

AquaLogic Service Bus User Guide 2-51

Understanding Message Context
The message context is a set of variables that hold message context and information about
messages as they are routed through the AquaLogic Service Bus. Together, the header, body,
and attachments variables, (referenced as $header, $body and $attachments in XQuery
statements) represent the message as it flows through AquaLogic Service Bus. The canonical
form of the message is SOAP. Even if the service type is not SOAP, the message appears as
SOAP in the AquaLogic Service Bus message context.

Message Context Components
In a Message Context, $header contains a SOAP Header element and $body contains a SOAP
Body element. The Header and Body elements are qualified by the SOAP 1.1 or SOAP 1.2
namespace depending on the service type of the proxy service. Also in a Message Context,
$attachments contains a wrapper element called attachments with one child attachment
element per attachment. The attachment element has a body element with the actual attachment.

When a message is received by a proxy service, the message contents are used to initialize the
header, body, and attachments variables. For SOAP services, the Header and Body elements are
taken directly from the envelope of the received SOAP message and assigned to $header and
$body respectively. For non-SOAP services, the entire content of the message is typically
wrapped in a Body element (qualified by the SOAP 1.1 namespace) and assigned to $body, and
an empty Header element (qualified by the SOAP 1.1 namespace) is assigned to $header.

Binary and MFL messages are initialized differently. For MFL messages, the equivalent XML
document is inserted into the Body element that is assigned to $body. For binary messages, the
message data is stored internally and a piece of reference XML is inserted into the Body element
that is assigned to $body. The reference XML looks like <binary-content ref="..."/>,
where "..." contains a unique identifier assigned by the proxy service.

The message context is defined by an XML Schema. You must use XQuery expressions to
manipulate the context variables in the message flow that defines a proxy service.

The predefined context variables provided by AquaLogic Service Bus can be grouped into the
following types:

Message-related variables

Inbound and outbound variables

Operation variable

Mode l ing Message F l ow in AquaLog ic Serv ice Bus

2-52 AquaLogic Service Bus User Guide

Fault variable

For information about the predefined context variables, see “Predefined Context Variables” on
page 3-2.

The $body contains message payload variable. When a message is dispatched from
AquaLogic Service Bus you can decide the variables, whose you want to include in the outgoing
message. That determination is dependent upon whether the target endpoint is expecting a SOAP
or a non-SOAP message:

For a binary, any text or XML message content inside the Body element in $body is sent.

For MFL messages, the Body element in $body contains the XML equivalent of the MFL
document.

For text messages, the Body element in $body contains the text. For text attachments, the
body element in $attachments contains the text. If the contents are XML instead of
simple text, the XML is sent as a text message.

For XML messages, the Body element in $body contains the XML. For XML attachments,
the body element in $attachments contains the XML.

SOAP messages are constructed by wrapping the contents of the header and body variables
inside a <soap:Envelope> element. (The SOAP 1.1 namespace is used for SOAP 1.1
services, while the SOAP 1.2 namespace is used for SOAP 1.2 services.) If the body
variable contains a piece of reference XML, it is sent.That is the referenced content is not
substituted in the message.

For non-SOAP services, if the Body element of $body contains a binary-content element, then
the referenced content stored internally is sent ‘as is’, regardless of the target service type.

For more information, see Chapter 3, “Message Context.”

The types for the message context variables are defined by the message context schema
(MessageContext.xsd). When working with the message context variables in the BEA XQuery
Mapper, you need to reference MessageContext.xsd and the transport-specific schemas, which
are available in a JAR file at the following location in your AquaLogic Service Bus installation:

<BEA_HOME>\weblogic92\servicebus\lib\sb-schemas.jar

where BEA_HOME represents the directory in which you installed AquaLogic Service Bus.

To learn about the message context schema and the transport specific schemas, see “Message
Context Schema” on page 3-28.

Unders tand ing Message Context

AquaLogic Service Bus User Guide 2-53

Guidelines for Viewing and Altering Message Context
Consider the following guidelines when you want to inspect or alter the message context:

In an XQuery expression, the root element in a variable is not present in the path in a
reference to an element in that variable. For example, the following XQuery expression
obtains the Content-Description of the first attachment in a message:

$attachments/ctx:attachment[1]/ctx:content-Description

To obtain the second attachment

$attachments/ctx:attachment[2]/ctx:body/*

A context variable can be empty or it can contain a single XML element or a string value.
However, an XQuery expression often returns a sequence. When you use an XQuery
expression to assign a value to a variable, only the first element in the sequence returned
by the expression is stored as the variable value. For example, if you want to assign the
value of a WS-Addressing Message ID from a SOAP header (assuming there is one in the
header) to a variable named idvar, the assign action specification is:

assign data($header/wsa:messageID to variable idvar

Note: In this case, if two WS-Addressing MessageID headers exist, the idvar variable will
be assigned the value of the first one.

The variables $header, $body, and $attachments are never empty. However, $header
can contain an empty SOAP Header element, $body can contain an empty SOAP Body
element, and $attachments can contain an empty attachment element.

In cases in which you use a transformation resource (XSLT or XQuery), the transformation
resource is defined to transform the document in the SOAP body of a message. To make
this transformation case easy and efficient, the input parameter to the transformation can be
an XQuery expression. For example, you can use the following XQuery expression to feed
the business document in the Body element of a message ($body) as input to a
transformation:

$body/* [1]

The result of the transformation can be put back in $body with a Replace action. That is
replace the content of $body, which is the content of the Body element. For more
information, see XQuery Transformations and XSL Transformations in Using the
AquaLogic Service Bus Console.

In addition to inserting or replacing a single element, you can also insert or replace a
selected sequence of elements using an insert or replace action. You can configure an

http://e-docs.bea.com/alsb/docs26/consolehelp/xslttransforms.html
http://e-docs.bea.com/alsb/docs26/consolehelp/xquerytransforms.html

Mode l ing Message F l ow in AquaLog ic Serv ice Bus

2-54 AquaLogic Service Bus User Guide

XQuery expression to return a sequence of elements. For example, you can use insert and
replace actions to copy a set of transport headers from $inbound to $outbound. For
information on adding an action, see “Adding an Action” in Proxy Services: Actions in
Using the AquaLogic Service Bus Console. For an example, see “Copying JMS Properties
From Inbound to Outbound” on page 2-54.

Copying JMS Properties From Inbound to Outbound
It is assumed that the interfaces of the proxy services and of the invoked business service may be
different. Therefore, AquaLogic Service Bus does not propagate any information (such as the
transport headers and JMS properties) from the inbound variable to the outbound variable.

The transport headers for the proxy service’s request and response messages are in $inbound and
the transport headers for the invoked business service’s request and response are in $outbound.

For example, the following XQuery expression can be used in a case where the user-defined JMS
properties for a one-way message (an invocation with no response) need to be copied from
inbound message to outbound message:

Use the Transport Headers action to set

$inbound/ctx:transport/ctx:request/tp:headers/tp:user-header

as the first child of:

./ctx:transport/ctx:request/tp:headers

in the outbound variable.

To learn how to configure the Transport Header action in the AquaLogic Service Bus Console,
see “Transport Headers” in Proxy Services: Actions in Using the AquaLogic Service Bus
Console.

Working with Variable Structures
The following sections describe

“Using the Inline XQuery Expression Editor” on page 2-55

“Using Variable Structures” on page 2-55

“Creating Variable Structure Mappings” on page 2-57

http://e-docs.bea.com/alsb/docs26/consolehelp/proxyactions.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxyactions.html

Work ing w i th Var iab le S t ruc tu res

AquaLogic Service Bus User Guide 2-55

Using the Inline XQuery Expression Editor
AquaLogic Service Bus allows you to import XQueries that have been created with an external
tool such as the BEA XQuery Mapper. You can use these XQueries anywhere in the proxy service
message flow by binding the XQuery resource input to an Inline XQuery, and binding the
XQuery resource output to an action that uses the result as the input; for example, the Assign,
Replace, or Insert actions.

However, you can enter the XQuery inline as part of the action definition instead of entering the
XQuery as a resource. You can also use Inline XQueries for the condition in an If...Then... action.

The Inline XQuery Expression Editor to enter simple XQueries that consist of the following:

Fragments of XML with embedded XQueries.

Simple variable paths along the child axis.

Note: For more complex XQueries, it is recommended that you use the XQuery Mapper,
especially if you are not familiar with XQuery.

Inline XQueries can be used effectively to:

Create variable structures by using the Inline XQuery Expression Editor. See “Using
Variable Structures” on page 2-55.

Extract or access a business document or RPC parameter from the SOAP envelope
elements in $header or $body.

Extract or access an attachment document in $attachments.

Set up the parameters of a Service Callout action by extracting it from the SOAP envelope.

Insert the result parameter of a Service Callout action into the SOAP envelope.

Extract a sequence from the SOAP envelope to drive a for loop.

Update an item in the sequence in a for loop with an Update action.

Note: You can also use the Inline XQuery Expression Editor to create variable structures. For
more information, see “Using Variable Structures” on page 2-55

Using Variable Structures
You can use the Inline XQuery Expression Editor to create variable structures, with which you
define the structure of a given variable for design purposes. For example, it is easier to browse
the XPath variable in the console rather than viewing the XML Schema of the XPath variable.

Mode l ing Message F l ow in AquaLog ic Serv ice Bus

2-56 AquaLogic Service Bus User Guide

Note: It is not necessary to create variable structures for your runtime to work. Variable
structures define the structure of the variable or the variable path but do not create the
variable. Variables are created at runtime as the target of the Assign action in the stage.

In a typical programming language, the scope of variables is static. Their name and type are
explicitly declared. The variable can be accessed anywhere within the static scope.

In AquaLogic Service Bus, there are some predefined variables, but you can also dynamically
create variables and assign value to them using the Assign action or using the loop variable in
the for-loop. When a value is assigned to a variable, the variable can be accessed anywhere in the
proxy service message flow. The variable type is not declared but the type is essentially the
underlying type of the value it contains at any point in time.

Note: The scope of the for-loop variable is limited and cannot be accessed outside the stage.

When you use the Inline XQuery Expression Editor, the XQuery has zero or more inputs and one
output. Because you can display the structure of the inputs and the structure of the output visually
in the Expression Editor itself, you do not need to open the XML Schema or WSDL resources to
see their structure when you create the Inline XQuery. The graphical structure display also
enables you to drag and drop simple variable paths along the child axis without predicates, into
the composed XQuery.

Each variable structure mapping entry has a label and maps a variable or variable path to one or
more structures. The scope of these mappings is the stage or route node. Because variables are
not statically typed, a variable can have different structures at different points (or at the same
point) in the stage or route node. Therefore, you can map a variable or a variable path to multiple
structures, each with a different label. To view the structure, select the corresponding label with
a drop-down list.

Note: You can also create variable structure mappings in the Inline XPath Expression Editor.
However, although the variable or a variable path is mapped to a structure, the XPaths
generated when you select from the structure are XPaths relative to the variable. An
example of a relative XPath is ./ctx:attachment/ctx:body.

Work ing w i th Var iab le S t ruc tu res

AquaLogic Service Bus User Guide 2-57

Creating Variable Structure Mappings
The following sections describe how to create several types of variable structure mappings:

“Sample WSDL” on page 2-57

“Creating the Resources You Need for the Examples” on page 2-59

“Example 1: Selecting a Predefined Variable Structure” on page 2-62

“Example 2: Creating a Variable Structure That Maps a Variable to a Type” on page 2-63

“Example 3: Creating a Variable Structure that Maps a Variable to an Element” on
page 2-64

“Example 4: Creating a Variable Structure That Maps a Variable to a Child Element” on
page 2-65

“Example 5: Creating a Variable Structure that Maps a Variable to a Business Service” on
page 2-66

“Example 6: Creating a Variable Structure That Maps a Child Element to Another Child
Element” on page 2-68

Sample WSDL
This sample WSDL is used in most of the examples in this section. You need to save this WSDL
as a resource in your configuration. For more information, see Creating the Resources You Need
for the Examples.

Listing 2-23 Sample WSDL

<definitions

name="samplewsdl"

targetNamespace="http://example.org"

xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:s0="http://www.bea.com"

xmlns:s1="http://example.org"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">

<types>

<xs:schema

attributeFormDefault="unqualified"

Mode l ing Message F l ow in AquaLog ic Serv ice Bus

2-58 AquaLogic Service Bus User Guide

elementFormDefault="qualified"

targetNamespace="http://www.bea.com"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="PO" type="s0:POType"/>

<xs:complexType name="POType">

<xs:all>

<xs:element name="id" type="xs:string"/>

<xs:element name="name" type="xs:string"/>

</xs:all>

</xs:complexType>

<xs:element name="Invoice" type="s0:InvoiceType"/>

<xs:complexType name="InvoiceType">

<xs:all>

<xs:element name="id" type="xs:string"/>

<xs:element name="name" type="xs:string"/>

</xs:all>

</xs:complexType>

</xs:schema>

</types>

<message name="POTypeMsg">

<part name="PO" type="s0:POType"/>

</message>

<message name="InvoiceTypeMsg">

<part name="InvReturn" type="s0:InvoiceType"/>

</message>

<portType name="POPortType">

<operation name="GetInvoiceType">

<input message="s1:POTypeMsg"/>

<output message="s1:InvoiceTypeMsg"/>

</operation>

</portType>

<binding name="POBinding" type="s1:POPortType">

<soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="GetInvoiceType">

<soap:operation soapAction="http://example.com/GetInvoiceType"/>

<input>

Work ing w i th Var iab le S t ruc tu res

AquaLogic Service Bus User Guide 2-59

<soap:body use="literal"/>

</input>

<output>

<soap:body use="literal"/>

</output>

</operation>

</binding>

</definitions>

Creating the Resources You Need for the Examples
To make use of the examples that follow, you save the sample WSDL as a resource in your
configuration and create the sample business service and proxy service that use the sample
WSDL.

The tasks in this procedure include:

“Save the WSDL as a Resource” on page 2-59

“Create a Proxy Service That Uses the Sample WSDL” on page 2-60

“Build a Message Flow for the Sample Proxy Service” on page 2-61

“Create a Business Service That Uses the Sample WSDL” on page 2-61

Save the WSDL as a Resource

1. In the left navigation pane in the AquaLogic Service Bus Console, under Change Center,
click Create to create a new session for making changes to the current configuration.

2. In the left navigation pane, click on Project Explorer.

3. In the Project View page, click the project to which you want to add the WSDL.

4. In the Project View page, in the Create Resource field, select WSDL under Interface.

5. In the Create a New WSDL Resource page in the Resource Name field, enter SampleWSDL.
This is a required field.

6. In the WSDL field, copy and paste the text from the sample WSDL into this field.

Note: This is a required field.

Mode l ing Message F l ow in AquaLog ic Serv ice Bus

2-60 AquaLogic Service Bus User Guide

7. Click Save. The new WSDL SampleWSDL is included in the list of resources and saved in the
current session. You must now create a proxy service that uses this WSDL, see“Create a
Proxy Service That Uses the Sample WSDL” on page 2-60.

Create a Proxy Service That Uses the Sample WSDL

1. In the left navigation pane, click Project Explorer.

2. In the Project View page, select the project to which you want to add the proxy service.

3. In the Project View page, in the Create Resource field, select Proxy Service under Service.

4. In the Edit a Proxy Service - General Configuration page, in the Service Name field, enter
ProxywithSampleWSDL. This is a required field.

5. In the Service Type field, which defines the types and packaging of the messages exchanged
by the service:

a. Select WSDL Web Service from under Create a New Service.

b. Click Browse. The WSDL Browser is displayed.

c. Select SampleWSDL, then select POBinding in the Select WSDL Definitions pane.

d. Click Submit.

6. Use the default values for all other fields on the General Configuration page, then click
Next.

7. Use the default values for all fields on the Transport Configuration pages, then click Next.

8. In the Operation Selection Configuration page, make sure SOAP Body Type is selected in
the Selection Algorithm field, then click Next.

9. Review the configuration data that you have entered for this proxy service, then click Save.
The new proxy service ProxywithSampleWSDL is included in the list of resources and saved
in the current session.To build message flow for this proxy service, see “Build a Message
Flow for the Sample Proxy Service” on page 2-61.

Work ing w i th Var iab le S t ruc tu res

AquaLogic Service Bus User Guide 2-61

Build a Message Flow for the Sample Proxy Service

1. In the Project View page, in the Actions column, click the Edit Message Flow icon for the
ProxywithSampleWSDL proxy service.

2. In the Edit Message Flow page, click the ProxywithSampleWSDL icon, then click Add
Pipeline Pair. PipelinePairNode1 is displayed, which includes request and response
pipelines.

3. Click the request pipeline, then click Add Stage. The stage stage1 is displayed.

4. Click Save. The basic message flow is created for the ProxywithSampleWSDL proxy service.

Create a Business Service That Uses the Sample WSDL

1. In the left navigation pane, click on Project Explorer. The Project View page is displayed.

2. Select the project to which you want to add the business service.

3. From the Project View page, in the Create Resource field, select Business Service from
under Service. The Edit a Business Service - General Configuration page is displayed.

4. In the Service Name field, enter BusinesswithSampleWSDL. This is a required field.

5. In the Service Type field, which defines the types and packaging of the messages exchanged
by the service, do the following:

a. Select WSDL Web Service from under Create a New Service.

b. Click Browse. The WSDL Browser is displayed.

c. Select SampleWSDL, then select POBinding in the Select WSDL Definitions pane.

d. Click Submit.

6. Use the default values for all other fields on the General Configuration page.
Click Next.

7. Enter an endpoint URI in the Endpoint URI field on the Transport Configuration page.
Click Add, and then click Next.

8. Use the default values for all fields on the SOAP Binding Configuration page.
Click Next.

Mode l ing Message F l ow in AquaLog ic Serv ice Bus

2-62 AquaLogic Service Bus User Guide

9. Review the configuration data that you have entered for this business service, and then click
Save. The new business service BusinesswithSampleWSDL is included in the list of
resources and is saved in the current session.

10. From the left navigation pane, click Activate under Change Center. The session ends and
the configuration is deployed to run time. You are now ready to use the examples—continue
in “Example 1: Selecting a Predefined Variable Structure” on page 2-62.

Example 1: Selecting a Predefined Variable Structure
In this example, you select a predefined variable structure using the proxy service
ProxyWithSampleWSDL, which has a service type WSDL Web Service that uses the binding
POBinding from SampleWSDL.

The proxy service message flow needs to know the structure of the message in order to
manipulate it. To achieve this, AquaLogic Service Bus automatically provides a predefined
structure that maps the body variable to the SOAP body structure as defined by the WSDL of the
proxy service for all the messages in the interface. This predefined structure mapping is labeled
body.

Note: This predefined structure is also supported for messaging services with a typed interface.

To select a predefined variable structure:

In the Variable Structures panel on the XQuery Expression Editor page, select body from the
drop-down list of built-in structures.

The variable structure body is displayed as follows:

Figure 2-8 Variable Structures—body

Work ing w i th Var iab le S t ruc tu res

AquaLogic Service Bus User Guide 2-63

Example 2: Creating a Variable Structure That Maps a Variable to a Type
Suppose the proxy service ProxyWithSampleWSDL invokes a service callout to the business
service BusinessWithSampleWSDL, which also has a service type WSDL Web Service that uses
the binding POBinding from SampleWSDL. The operation GetInvoiceType is invoked.

In this example, the message flow needs to know the structure of the response parameter in order
to manipulate it. To achieve this, you can create a new variable structure that maps the response
parameter variable to the type InvoiceType.

To map a variable to a type:

1. In the Variable Structures panel, click Add New Structure. Additional fields are displayed as
follows:

Figure 2-9 Variable Structures—Add a New Structure

2. Select the XML Type.

Mode l ing Message F l ow in AquaLog ic Serv ice Bus

2-64 AquaLogic Service Bus User Guide

3. In the Structure Label field, enter InvoiceType as the display name for the variable
structure you want to create. This display name enables you to give a meaningful name to the
structure so you can recognize it at design time but it has no impact at run time.

4. In the Structure Path field, enter $InvoiceType as the path of the variable at run time.

5. To select the type InvoiceType, do the following:

a. Under the Type field, select the appropriate radio button, then select WSDL Type from
the drop-down list.

b. Click Browse. The WSDL Browser is displayed.

c. In the WSDL Browser, select SampleWSDL, then select InvoiceType under Types in
the Select WSDL Definitions pane.

d. Click Submit. InvoiceType is displayed under your selection WSDL Type.

6. Click Add. The new variable structure InvoiceType is included under XML Type in the
drop-down list of variable structures.

The variable structure InvoiceType is displayed as follows:

Figure 2-10 Variable Structures—InvoiceType

Example 3: Creating a Variable Structure that Maps a Variable to an Element
Suppose a temporary variable has the element Invoice described in the SampleWSDL WSDL. In
this example, the ProxyWithSampleWSDL message flow needs to access this variable. To achieve
this, you can create a new variable structure that maps the variable to the element Invoice.

To map a variable to an element:

1. In the Variable Structures panel, click Add New Structure.

2. Make sure you select the XML Type.

Work ing w i th Var iab le S t ruc tu res

AquaLogic Service Bus User Guide 2-65

3. In the Structure Label field, enter Invoice as the meaningful display name for the variable
structure you want to create.

4. In the Structure Path field, enter $Invoice as the path of the variable structure at run time.

5. To select the element Invoice, do the following:

a. For the Type field, make sure you select the appropriate radio button.Then select WSDL
Element from the drop-down list.

b. Click Browse.

c. In the WSDL Browser, select SampleWSDL, then select Invoice under Elements in the
Select WSDL Definitions pane.

d. Click Submit. Invoice is displayed under your selection WSDL Element.

6. Click Add. The new variable structure Invoice is included under XML Type in the
drop-down list of variable structures.

The variable structure Invoice is displayed as follows:

Figure 2-11 Variable Structures—Invoice

Example 4: Creating a Variable Structure That Maps a Variable to a Child
Element
The ProxyWithSampleWSDL proxy service routes to the document style Any SOAP business
service that returns the Purchase Order in the SOAP body. In this example, the
ProxyWithSampleWSDL proxy service message flow must then manipulate the response. To
achieve this, you can create a new structure that maps the body variable to the PO element, and
specify the PO element as a child element of the variable. You need to specify it as a child
element because the body variable contains the SOAP Body element and the PO element is a child
of the Body element.

To map a variable to a child element:

Mode l ing Message F l ow in AquaLog ic Serv ice Bus

2-66 AquaLogic Service Bus User Guide

1. In the Variable Structures panel, click Add New Structure.

2. Make sure you select the XML Type.

3. In the Structure Label field, enter body to PO as the meaningful display name for the
variable structure you want to create.

4. In the Structure Path field, enter $body as the path of the variable structure at run time.

5. To select the PO element:

a. Under the Type field, make sure you select the appropriate radio button, and then select
WSDL Element from the drop-down list.

b. Click Browse.

c. In the WSDL Browser, select SampleWSDL, then select PO under Elements in the Select
WSDL Definitions pane.

d. Click Submit.

6. Select the Set as child checkbox to set the PO element as a child of the body to PO variable
structure.

7. Click Add. The new variable structure body to PO is included under XML Type in the
drop-down list of variable structures.

The variable structure body to PO is displayed as follows:

Figure 2-12 Variable Structures—body to PO

Example 5: Creating a Variable Structure that Maps a Variable to a Business
Service
The ProxyWithSampleWSDL proxy service routes the message to the
BusinessWithSampleWSDL business service, which also has a service type WSDL Web Service
that uses the binding POBinding from SampleWSDL. In this example, the message flow must then

Work ing w i th Var iab le S t ruc tu res

AquaLogic Service Bus User Guide 2-67

manipulate the response. To achieve this, you can define a new structure that maps the body
variable to the BusinessWithSampleWSDL business service. This results in a map of the body
variable to the SOAP body for all the messages in the WSDL interface of the service.

Note: This mapping is also supported for messaging services with a typed interface.

To map a variable to a business service:

1. In the Variable Structures panel, click Add New Structure.

2. Select Service Interface.

3. In the Structure Label field, enter BusinessService as the meaningful display name for
the variable structure.

4. In the Structure Path field, $body is already set as the default. This is the path of the variable
structure at run time.

5. To select the business service, do the following:

a. Under the Service field, click Browse. The Service Browser is displayed.

b. In the Service Browser, select the BusinessWithSampleWSDL business service, then
click Submit. The business service is displayed under the Service field.

c. In the Operation field, select All.

6. Click Add. The new variable structure BusinessService is included under Service
Interface in the drop-down list of variable structures.

The variable structure BusinessService is displayed as shown below:

Mode l ing Message F l ow in AquaLog ic Serv ice Bus

2-68 AquaLogic Service Bus User Guide

Figure 2-13 Variable Structures—BusinessService

Example 6: Creating a Variable Structure That Maps a Child Element to
Another Child Element
Modify the SampleWSDL so that the ProxyWithSampleWSDL proxy service receives a single
attachment. The attachment is a Purchase Order. In this example, the proxy service message flow
must then manipulate the Purchase Order. To achieve this, you can define a new structure that
maps the body element in $attachments to the PO element, which is specified as a child
element. The body element is specified as a variable path of the form:

$attachments/ctx:attachment/ctx:body

You can select and copy the body element from the predefined attachments structure, paste this
element as the variable path to be mapped in the new mapping definition.

To map a child element to another child element:

1. In the Variable Structures panel, select attachments from the drop-down list of built-in
structures.

The variable structure attachments is displayed as follows:

Work ing w i th Var iab le S t ruc tu res

AquaLogic Service Bus User Guide 2-69

Figure 2-14 Variable Structures—attachments

2. Select the body child element in the attachments structure. The variable path of the body
element is displayed in the Property Inspector on the right side of the page:

$attachments/ctx:attachment/ctx:body

3. Copy the variable path of the body element.

4. In the Variable Structures panel, click Add New Structure.

5. Select the XML Type.

6. In the Structure Label field, enter PO attachment as the meaningful display name for this
variable structure.

7. In the Structure Path field, paste the variable path of the body element:

$attachments/ctx:attachment/ctx:body

This is the path of the variable structure at run time.

8. To select the PO element:

a. Under the Type field, make sure the appropriate radio button is selected, then select
WSDL Element.

b. Click Browse.

c. In the WSDL Browser, select SampleWSDL, then select PO under Elements in the Select
WSDL Definitions pane.

d. Click Submit.

9. Select the Set as child checkbox to set the PO element as a child of the body element.

Mode l ing Message F l ow in AquaLog ic Serv ice Bus

2-70 AquaLogic Service Bus User Guide

10. Click Add. The new variable structure PO attachment is included under XML Type in the
drop-down list of variable structures.

11. If there are multiple attachments, add an index to the reference when you use fields from this
structured variable in your XQueries. For example, if you drag the PO field to the XQuery
field, but as PO will be the second attachment, change the inserted value from
$attachments/ctx:attachment/ctx:body/bea:PO/bea:id

to
$attachments/ctx:attachment[2]/ctx:body/bea:PO/bea:id

Quality of Service
The following sections discuss quality of service features in AquaLogic Service Bus messaging:

“Delivery Guarantees” on page 2-70

“Outbound Message Retries” on page 2-76

Delivery Guarantees
BEA AquaLogic Service Bus supports reliable messaging. The value of the qualityOfService
element in the outbound context variable provides AquaLogic Service Bus with a hint on the
desired delivery behavior. When messages are routed to another service from a route node, the
default Quality of Service element in $outbound is either exactly-once or best-effort.

The following delivery guarantee types are provided in AquaLogic Service Bus:

Qual i t y o f Se rv i ce

AquaLogic Service Bus User Guide 2-71

Table 2-5 Delivery Guarantee Types

Delivery Reliability Description

Exactly once Exactly once means reliability is optimized. Exactly once delivery reliability
is a hint, not a directive. When exactly-once is specified, exactly-once
reliability is provided if possible.

The default value of the qualityOfService element is exactly-once
for a Route Node action for the following inbound transports:
• e-mail
• FTP
• File
• JMS/XA
• Transactional Tuxedo

Note: Do not retry the outbound transport when the QoS is exactly once

Mode l ing Message F l ow in AquaLog ic Serv ice Bus

2-72 AquaLogic Service Bus User Guide

Overriding the Default Element Attribute
You can override the default qualityOfService element attribute for the following:

Route Node action

Publish action

Service Callout

To override the qualityOfService element attribute, you must use the Route Options action to
route or publish, and also select the checkbox for a service callout action. See “Message Context
Schema” on page 3-28.

At least once At least once delivery semantics is attempted if exactly once is not possible but
the qualityOfService element is exactly-once.

Best effort Best effort means that performance or availability is optimized. It is performed
if the qualityOfService element is best-effort. Best effort delivery
is also performed if exactly once and at least once delivery semantics are not
possible but the qualityOfService element is exactly-once.

The default value of the qualityOfService element for a route node is
best-effort for the following inbound transports:
• JMS/nonXA
• HTTP
• HTTP(S)
• Non-Transactional Tuxedo

The default value of the qualityOfService element is always
best-effort for the following:
• Service callout action — always best-effort, but can be changed if

required.
• Publish action — defaults to best-effort, modifiable

Note: When the value of the qualityOfService element is
best-effort for a Publish action, all errors are ignored. However,
when the value of the qualityOfService element is
best-effort for a Route Node action or a Service callout action,
any error will raise an exception.

Table 2-5 Delivery Guarantee Types

Delivery Reliability Description

Qual i t y o f Se rv i ce

AquaLogic Service Bus User Guide 2-73

Delivery Guarantee Rules
The delivery guarantee supported when a proxy service publishes a message or routes a request
to a business service depends on the following conditions:

The value of the qualityOfService element.

The inbound transport (and connection factory, if applicable).

The outbound transport (and connection factory, if applicable).

However, if the inbound proxy service is a Local Transport and is invoked by another proxy
service, the inbound transport of the invoking proxy service is responsible for the delivery
guarantee. That is because a proxy service that invokes another proxy service is optimized into a
direct invocation if the transport of the invoked proxy service is a Local Transport. For more
information on transport protocols, see “Adding a Proxy Service” and “Adding a Business
Service” in Proxy Services in Using the AquaLogic Service Bus Console.

Note: No delivery guarantee is provided for responses from a proxy service.

The following rules govern delivery guarantees:

Note: To support at least once and exactly-once delivery guarantees with JMS, you must
exploit JMS transactions and configure a retry count and retry interval on the JMS queue
to ensure that the message is redelivered in the event of a server crash or a failure that is
not handled in an error handler with a Reply or Resume action. File, FTP, and e-mail
transports also internally use a JMS/XA queue. The default retry count for a proxy

Table 2-6 Delivery Guarantee Rules

Delivery Guarantee Provided Rule

Exactly once The proxy service inbound transport is transactional and the value
of the qualityOfService element is exactly-once to an
outbound JMS/XA transport.

At least once The proxy service inbound transport is file, FTP, or e-mail and the
value of the qualityOfService element is exactly-once.

At least once The proxy service inbound transport is transactional and the value
of the qualityOfService element, where applicable, is
exactly-once to an outbound transport that is not
transactional.

No delivery guarantee All other cases, including all response processing cases.

http://e-docs.bea.com/alsb/docs26/consolehelp/proxyservices.html

Mode l ing Message F l ow in AquaLog ic Serv ice Bus

2-74 AquaLogic Service Bus User Guide

service with a JMS/XA transport is 1. For a list of the default JMS queues created by
AquaLogic Service Bus, see AquaLogic Service Bus Deployment Guide.

The following are some more delivery guarantee rules:

If the transport of the inbound proxy service is File, FTP, e-mail, Transactional Tuxedo, or
JMS/XA, the request processing is performed in a transaction.

– When the qualityOfService element is set to exactly-once, any Route node and
Publish actions executed in the request flow to a transactional destination are performed
in the same transaction.

– When the qualityOfService element is set to best-effort for any action in a
Route node, Service Callout or Publish actions are executed outside of the request flow
transaction. Specifically, for JMS, Tuxedo, Transactional Tuxedo, or EJB transport, the
request flow transaction is suspended and the Transactional Tuxedo work is done
without a transaction or in a separate transaction that is immediately committed.

– If an error occurs during request processing, but is caught by a user error handler that
manages the error (by using the Resume or Reply action), the message is considered
successfully processed and the transaction commits. A transaction is aborted if the
system error handler receives the error—that is, if the error is not handled before
reaching the system level. The transaction is also aborted if a server failure occurs
during request pipeline processing.

If a response is received by a proxy service that uses a JMS/XA transport to business
service (and the proxy inbound is not Transactional Tuxedo), the response processing is
performed in a single transaction.

– When the qualityOfService element is set to exactly-once, all Route, Service
Callout, and Publish actions are performed in the same transaction.

– When the qualityOfService element is set to best-effort, all Publish actions and
Service Callout actions are executed outside of the response flow transaction.
Specifically, for JMS, EJB, or transactional Tuxedo types of transports, the response
flow transaction is suspended and the service is invoked without a transaction or in a
separate transaction that is immediately committed.

– Proxy service responses executed in the response flow to a JMS/XA destination are
always performed in the same transaction, regardless of the qualityOfService
element setting.

If the proxy service inbound transport is transactional Tuxedo, both the request processing
and response processing are done in this transaction.

http://e-docs.bea.com/alsb/docs26/deploy/index.html

Qual i t y o f Se rv i ce

AquaLogic Service Bus User Guide 2-75

Note: You will encounter a run-time error when the inbound transport is transactional
Tuxedo and the outbound is an asynchronous transport, for example, JMS/XA.

Threading Model
The BEA AquaLogic Service Bus threading model works as follows:

The request and response flows in a proxy service execute in different threads.

Service callouts are always blocking. An HTTP route or publish action is non-blocking (for
request/response or one-way invocation), if the value of the qualityOfService element is
best-effort.

JMS Route actions or Publish actions are always non-blocking, but the response is lost if
the server restarts after the request is sent because AquaLogic Service Bus has no
persistent message processing state.

Note: In a request or response flow Publish action, responses are always discarded because
Publish actions are inherently a one-way message send.

Splitting Proxy Services
You may want to split a proxy service in the following situations:

When HTTP is the inbound and outbound transport for a proxy service, you may want to
incorporate enhanced reliability into the middle of the message flow. To enable enhanced
reliability in this way, split the proxy service into a front-end HTTP proxy service and a
back-end JMS (one-way or request/response) proxy service with an HTTP outbound
transport. In the event of a failure, the first proxy service must quickly place the message
in the queue for the second proxy service, in order to avoid loss of messages.

To disable the direct invocation optimization for a non-JMS transport when a proxy
service, say loanGateway1 invokes another proxy service, say loanGateway2. Route to
the proxy service loanGateway2 from the proxy service loanGateway1 where the proxy
service loanGateway2 uses JMS transport.

To have an HTTP proxy service publish to a JMS queue but have the Publish action
rollback if there is a exception later on in the request processing, split the proxy service
into a front-end HTTP proxy service and a back-end JMS proxy service. The Publish
action specifies a qualityOfService element of exactly-once and uses an XA
connection factory.

Mode l ing Message F l ow in AquaLog ic Serv ice Bus

2-76 AquaLogic Service Bus User Guide

Outbound Message Retries
In addition to configuring inbound retries for messages using JMS, you can configure outbound
retries and load balancing. Load balancing, failover, and retries work in conjunction to provide
performance and high availability. For each message, the list of URLs you provide as failover
URLs is automatically ordered based on the load balancing algorithm into a failover sequence. If
the retry count is N, the entire sequence is retried N times before stopping. The system waits for
the specified retry interval before commencing subsequent loops through the sequence. After
completing the retry attempts, if there is still an error, the error handler pipeline for the route node
is invoked. For more information on the error handler pipeline, see “Adding Pipeline Error
Handling” in Proxy Services in Using the AquaLogic Service Bus Console.

Note: For HTTP and HTTP(S) transports, any HTTP status other than 200 or 202 is considered
an error by AquaLogic Service Bus and must be retried. Because of this algorithm, it is
possible that AquaLogic Service Bus retries errors like authentication failure that may
never be rectified for that URL within the time period of interest. On the other hand, if
AquaLogic Service Bus also fails over to a different URL for subsequent attempts to send
a given message, the new URL may not give the error.

For quality of service=exactly once failover or retries will not be executed.

Content Types, JMS Type, and Encoding
To support interoperability with heterogeneous endpoints, AquaLogic Service Bus allows you to
control the content type used, the JMS type used, and the encoding used.

AquaLogic Service Bus does not make assumptions about what the external client or service
needs, and uses the information configured for this purpose in the service definition. AquaLogic
Service Bus derives the content type for outbound messages from the service type and interface.
Content type is a part of the e-mail and HTTP(S) protocols.

If the service type is:

XML or SOAP with or without a WSDL, the content type is text/XML.

Messaging and the interface is MFL or binary, the content type is binary/octet-stream.

Messaging and the interface is text, the content type is text/plain.

Messaging and the interface is XML, the content type is text/XML.

Additionally, there is a JMS type, which can be byte or text. You configure the JMS type to use
when you define the service in AquaLogic Service Bus Console.

http://e-docs.bea.com/alsb/docs26/consolehelp/proxyservices.html

Thro t t l ing Pat te rn

AquaLogic Service Bus User Guide 2-77

You can override the content type in the outbound context variable ($outbound) for proxy
services invoking a service, and in the inbound context variable ($inbound) for a proxy service
response. For more information on $outbound and $inbound context variables, see “Inbound
and Outbound Variables” on page 3-8.

Encoding is also explicitly configured in the service definition for all outbound messages. For
more information on service definitions, see Adding a Proxy Service in and Adding a Business
Service in Using the AquaLogic Service Bus Console.

Throttling Pattern
A throttling pattern is typically used with an HTTP Web service to restrict the degree of
concurrency, that is to keep the number of outstanding requests without a response below a limit.
Instead of accessing the business service directly, you access the business service through another
proxy service. This proxy service typically uses the JMS one-way transport or JMS request
response transport to communicate with the business service.You should define a work manager
for the JMS request queue. For more information on defining a work manager, see Work
Manager. Configure the work manager to have the maximum number of threads. This restricts
the number of requests that can be placed in the request queue. That is no requests can be placed
in the queue if the number of incoming request exceeds the maximum number of threads
configured in the work manager.

Note: Set the qualityOfService of the business service $outbound to Exactly Once.You
can use the Routing Options action to set the required qualityOfService. For more
information, see Routing Options Using the AquaLogic Service Bus Console.

When a throttling pattern is implemented in a cluster, the total number of requests across
all the Managed Servers should be equal to
maximum number of threads on the work manager / number of managed
servers

WS-I Compliance
BEA AquaLogic Service Bus provides Web Service Interoperability (WS-I) compliance for
SOAP 1.1 services in the run-time environment. The WS-I basic profile has the following goals:

Disambiguate the WSDL and SOAP specifications wherever ambiguity exists.

Define constraints that can be applied when receiving messages or importing WSDLs so
that interoperability is enhanced. When messages are sent, construct the message so that
the constraints are satisfied.

http://e-docs.bea.com/alsb/docs26/consolehelp/proxyservices.html
http://e-docs.bea.com/alsb/docs26/consolehelp/businessServices.html
http://e-docs.bea.com/alsb/docs26/consolehelp/businessServices.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxyactions.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/pagehelp/Corecoreworkmanagerstitle.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/pagehelp/Corecoreworkmanagerstitle.html

Mode l ing Message F l ow in AquaLog ic Serv ice Bus

2-78 AquaLogic Service Bus User Guide

The WS-I basic profile is available at the following URL:

http://www.ws-i.org/Profiles/BasicProfile-1.1.html.

When you configure a proxy service or business service based on a WSDL, you can use the
AquaLogic Service Bus Console to specify whether you want AquaLogic Service Bus to enforce
WS-I compliance for the service. For more information on how to do this, see “Adding a Proxy
Service” in Proxy Services in Using the AquaLogic Service Bus Console.

When you configure WS-I compliance for a proxy service, checks are performed on inbound
request messages received by that proxy service. When you configure WS-I compliance for an
invoked service, checks are performed when any proxy receives a response message from that
invoked service. BEA recommends that you create an error handler for these errors, since by
default, the proxy service SOAP client receives a system error handler-defined fault. For more
information on creating fault handlers, see “Error Messages and Handling” in Proxy Services in
Using the AquaLogic Service Bus Console.

For messages sent from a proxy service, whether as outbound request or inbound response, WS-I
compliance checks are not explicitly performed. That is because the pipeline designer is
responsible for generating most of the message content. However, the parts of the message
generated by AquaLogic Service Bus should satisfy all of the supported WS-I compliance checks.
This includes the following content:

Service invocation request message.

System-generated error messages returned by a proxy service.

HTTP status codes generated by a proxy service.

The Enforce WS-I Compliance checkbox is displayed as shown in Figure 2-15:

http://e-docs.bea.com/alsb/docs26/consolehelp/proxyservices.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxyservices.html
http://www.ws-i.org/Profiles/BasicProfile-1.1.html

WS- I Compl iance

AquaLogic Service Bus User Guide 2-79

Figure 2-15 Enforce WS-I Compliance Checkbox

WS-I Compliance Checks
Note: WS-I compliance checks require that the system knows what operation is being invoked

on a service. For request messages received by a proxy service, that means that the
context variable $operation should not be null. That depends upon the operation
selection algorithm being configured properly. For response messages received from
invoked services, the operation should be specified in the action configurations for
Route, Publish, and Service Callout.

Mode l ing Message F l ow in AquaLog ic Serv ice Bus

2-80 AquaLogic Service Bus User Guide

When you configure WS-I compliance checking for a proxy service or a business service,
AquaLogic Service Bus carries out the following checks.

Table 2-7 AquaLogic Service Bus WS-I Compliance Checks

Check WS-I Basic Profile Details AquaLogic Service Bus Description

3.1.1 SOAP Envelope
Structure

R9980 An Envelope must conform to the
structure specified in SOAP 1.1, Section 4,
“SOAP Envelope” (subject to amendment).

This check applies to request and
response messages. If a response
message is checked and the message
does not possess an outer Envelope
tag, a soap:client error is
generated. If the message is an
Envelope tag but possesses a different
namespace, it is handled by the 3.1.2
SOAP Envelope Namespace.

3.1.2 SOAP Envelope
Namespace

R1015 A Receiver must generate an error if
they encounter an envelope whose
document element is not soap:Envelope.

This check applies to request and
response messages and is related to the
3.1.1 SOAP Envelope Structure. If a
request message has a local name of
Envelope, but the namespace is not
SOAP 1.1, a
soap:VersionMismatch error is
generated.

3.1.3 SOAP Body
Namespace
Qualification

R1014 The child elements of the
soap:body element in an Envelope must
be namespace qualified.

This check applies to request and
response messages. All request error
messages generate a soap:Client
error.

3.1.4 Disallowed
Constructs

R1008 An Envelope must not contain a
Document Type Declaration.

This check applies to request and
response messages. All request error
messages generate a soap:Client
error.

3.1.5 SOAP Trailers R1011 An Envelope must not have any
child elements of soap:Envelope
following the soap:body element.

This check applies to request and
response messages. All request error
messages generate a soap:Client
error.

WS- I Compl iance

AquaLogic Service Bus User Guide 2-81

3.1.9 SOAP attributes
on SOAP 1.1
elements

R1032 The soap:Envelope,
soap:header, and soap:body elements
in an Envelope must not have attributes in
the namespace
http://schemas.xmlsoap.org/soa
p/envelope/

This check applies to request and
response messages. Any request error
messages generate a soap:client
error.

3.3.2 SOAP Fault
Structure

R1000 When an Envelope is a fault, the
soap:Fault element must not have
element children other than faultcode,
faultstring, faultactor, and
detail.

This check only applies to response
messages.

3.3.3 SOAP Fault
Namespace
Qualification

R1001 When an Envelope is a Fault, the
element children of the soap:Fault
element must be unqualified.

This check only applies to response
messages.

3.4.6 HTTP Client
Error Status Codes

R1113 An instance should use a “400 Bad
Request” HTTP status code if a HTTP
request message is malformed.

R1114 An instance should use a “405
Method not Allowed” HTTP status
code if a HTTP request message is
malformed.

R1125 An instance must use a 4xx HTTP
status code for a response that indicates a
problem with the format of a request.

Only applies to responses for a proxy
service where you cannot influence the
status code returned due to errors in the
request.

3.4.7 HTTP Server
Error Status Codes

R1126 An instance must return a “500
Internal Server Error” HTTP status
code if the response envelope is a fault.

This check applies differently to request
and response messages. For request
messages, any faults generated have a
500 Internal Server Error
HTTP status code. For response
messages, an error is generated if fault
responses are received that do not have
a 500 Internal Server Error
HTTP status code.

Table 2-7 AquaLogic Service Bus WS-I Compliance Checks

Check WS-I Basic Profile Details AquaLogic Service Bus Description

Mode l ing Message F l ow in AquaLog ic Serv ice Bus

2-82 AquaLogic Service Bus User Guide

Converting Between SOAP 1.1 and SOAP 1.2
AquaLogic Service Bus supports SOAP 1.1 and SOAP 1.2. A SOAP 1.1 proxy service can invoke
a SOAP 1.2 business service or vice versa. The SOAP namespace is automatically changed by

4.7.19 Response
Wrappers

R2729 An envelope described with an
rpc-literal binding that is a response must
have a wrapper element whose name is the
corresponding wsdl:operation name
suffixed with the string Response.

This check only applies to response
messages. AquaLogic Service Bus
never generates a non-fault response
from a proxy service.

4.7.20 Part Accessors R2735 An envelope described with an
rpc-literal binding must place the part
accessor elements for parameters and return
value in no namespace.

R2755 The part accessor elements in a
message described with an rpc-literal
binding must have a local name of the same
value as the name attribute of the
corresponding wsdl:part element.

This check applies to request and
response messages. Any request error
messages generate a soap:client
error.

4.7.22 Required
Headers

R2738 An envelope must include all
soapbind:headers specified on a
wsdl:input or wsdl:output of a
wsdl:operation of a wsdl:binding
that describes it.

This check applies to request and
response messages. Any request error
messages generate a soap:client
error.

4.7.25 Describing
SOAPAction

R2744 A HTTP request message must
contain a SOAPAction a HTTP header field
with a quoted value equal to the value of the
soapAction attribute of
soap:operation, if present in the
corresponding WSDL description.

R2745 A HTTP request message must
contain a SOAP action a HTTP header field
with a quoted empty string value, if in the
corresponding WSDL description, the
SOAPAction of soapbind:operation
is either not present, or present with an
empty string as its value.

This check applies to request messages
and a soap:client error is returned.

Table 2-7 AquaLogic Service Bus WS-I Compliance Checks

Check WS-I Basic Profile Details AquaLogic Service Bus Description

Conver t ing Between SOAP 1 .1 and SOAP 1 .2

AquaLogic Service Bus User Guide 2-83

AquaLogic Service Bus before invoking the business service. If a fault comes back from the
business service it is automatically changed to the SOAP version of the proxy service. It is,
however, up to the pipeline actions to map the SOAP header-related XML attributes (like
MustUnderstand) between the two versions. It is also up to the pipeline actions to change the
SOAP encoded name space for encoded envelopes.

Mode l ing Message F l ow in AquaLog ic Serv ice Bus

2-84 AquaLogic Service Bus User Guide

AquaLogic Service Bus User Guide 3-1

C H A P T E R 3

Message Context

This section describes the BEA AquaLogic Service Bus message context model and the
predefined context variables that are used in message flows. It includes the following topics:

“The Message Context Model” on page 3-2

“Predefined Context Variables” on page 3-2

“Message-Related Variables” on page 3-3

“Inbound and Outbound Variables” on page 3-8

“Operation Variable” on page 3-18

“Fault Variable” on page 3-18

“Initializing Context Variables” on page 3-20

“Performing Operations on Context Variables” on page 3-23

“Constructing Messages to Dispatch” on page 3-25

“Message Context Schema” on page 3-28

Message Contex t

3-2 AquaLogic Service Bus User Guide

The Message Context Model
The BEA AquaLogic Service Bus message context is a set of properties that hold message
content as well as information about messages as they are routed through AquaLogic Service
Bus. These properties are referred to as context variables—for example, service endpoints are
represented by predefined context variables. AquaLogic Service Bus also supports user-defined
context variables.

The message context is defined by an XML Schema. You typically use XQuery expressions to
manipulate the context variables in the message flow that defines a proxy service.

Predefined Context Variables
The following table describes the predefined context variables. The predefined context variables
can be grouped into the following types: message-related variables, inbound and outbound
variables, the operation variable, and the fault variable.

For information about the element types in the message context variables, see “Message Context Schema”
on page 3-28.

Table 3-1 Predefined Context Variables in AquaLogic Service Bus

Context Variable1 Description See Also...

header For SOAP message, contains the SOAP header. (If the
proxy service is SOAP 1.2, header contains a SOAP 1.2
Header element.)

For message types other than SOAP, header contains an
empty SOAP header element.

“Message-Related
Variables” on page 3-3

body For the following cases:
• SOAP messages—contains the <SOAP:Body> part

extracted from the SOAP envelope. (If the proxy service
is SOAP 1.2, the body variable contains a SOAP 1.2
Body element.)

• Non-SOAP, non-binary messages—contains the entire
message content wrapped in a <SOAP:Body> element.

• Binary messages—contains a <SOAP:Body> wrapped
reference to an in-memory copy of the binary message.

“Message-Related
Variables” on page 3-3

attachments Contains the MIME attachments for a given message. “Message-Related
Variables” on page 3-3

Message-Re lated Var iab les

AquaLogic Service Bus User Guide 3-3

Message-Related Variables
Together, the message-related variables header, body and attachments represent the canonical
format of a message as it flows through AquaLogic Service Bus. These variables are initialized
using the message content received by a proxy service and are used to construct the outgoing
messages that are routed or published to other services.

If you want to modify a message as part of processing it, you must modify these variables.

A message payload (that is, a message content exclusive of headers or attachments) is contained
in the body variable. The decision about which variable’s content to include in an outgoing
message is made at the point at which a message is dispatched (published or routed) from
AquaLogic Service Bus. That determination is dependent upon whether the target endpoint is
expecting a SOAP or a non-SOAP message:

When a SOAP message is expected, the header and body variables are combined in a
SOAP envelope to create the message.

When a non-SOAP message is expected, the contents of the Body element in the body
variable constitutes the entire message.

inbound Contains:
• Information about the proxy service that received a

message
• The inbound transport headers

“Inbound and Outbound
Variables” on page 3-8

outbound Contains:
• Information about the target service to which a message

is to be sent
• The outbound transport headers

“Inbound and Outbound
Variables” on page 3-8

operation Identifies the operation that is being invoked on a proxy
service.

“Operation Variable” on
page 3-18

fault Contains information about errors that have occurred during
the processing of a message.

“Fault Variable” on
page 3-18

1. The “Message Context Schema” on page 3-28 specifies the element types for the message context
variables.

Table 3-1 Predefined Context Variables in AquaLogic Service Bus

Context Variable1 Description See Also...

Message Contex t

3-4 AquaLogic Service Bus User Guide

In either case, if the service expects attachments, a MIME package is created from the
resulting message and the attachments variable.

Header Variable
The header variable contains SOAP headers associated with a message. The header variable
points to a <SOAP:Header> element with headers as sub-elements. (If the proxy service is SOAP
1.2, the header variable contains a SOAP 1.2 Header element.) In the case of non-SOAP
messages or SOAP messages with no headers, the <SOAP:Header> element is empty, with no
sub-elements.

Body Variable
The body variable represents the core message payload and always points to a <SOAP:Body>
element. (If the proxy service is SOAP 1.2, body contains a SOAP 1.2 Body element.) The core
payload for both SOAP and non-SOAP messages is available in the same variable and with the
same packaging—that is, wrapped in a <SOAP:Body> element:

In the case of SOAP messages, the SOAP body is extracted from the envelope and
assigned to the body variable.

In the case of non-SOAP, non-binary, messages, the full message contents are placed
within a newly created <SOAP:Body> element.

In the case of binary messages, rather than inserting the message content into the body
variable, a <binary-content/> reference element is created and inserted into the
<SOAP:Body> element. To learn how binary content is handled, see “Binary Content in the
body and attachments Variables” on page 3-6.

Attachments Variable
The attachments variable holds the attachments associated with a message. The attachments
variable is defined by an XML schema. It consists of a single root node: <ctx:attachments>,
with a <ctx:attachment> sub-element for each attachment. The sub-elements contain
information about the attachment (derived from MIME headers) as well as the attachment
content. As with most of the other message-related variables, attachments is always set, but if
there are no attachments, the attachments variable consists of an empty <ctx:attachments>
element.

Message-Re lated Var iab les

AquaLogic Service Bus User Guide 3-5

Each attachment element includes a set of sub-elements, as described in the following table.

With the exception of the untyped body element, all other elements contain string values that are
interpreted in the same way as they are interpreted in MIME—for example, valid values for the
Content-Type element include text/xml and text/xml; charset=utf-8.

The parsing of attachments is not recursive. If an attachment has a Content-Type of
multipart/..., the body element holds the original unpacked MIME content as a stream of
bytes and does not contain attachment sub-elements. Because the MIME stream may contain
binary data, it is represented by a <binary-content> reference element.

To learn how binary content is handled, see “Binary Content in the body and attachments
Variables” on page 3-6.

Messages whose Content-Type is multipart/form-data are constructed at run-time as
follows:

Inbound: All parts of a received inbound multipart/form-data type message are
assigned to the $attachments variable. The $body variable is left empty.

Table 3-2 Sub-Elements of the Attachments Variable

Elements of the Attachments
Variable

Description1

1. The “Message Context Schema” on page 3-28 specifies the element types for the message
context variables.

Content-ID A globally-unique reference that identifies the attachment.The
type is string.

Content Type Specifies the media type and sub-type of the attachment. The
type is string.

Content-Transfer-Encoding Specifies how the attachment is encoded. The type is string.

Content-Description A textual description of the content. The type is string.

Content-Location A locally-unique URI-based reference that identifies the
attachment. The type is string.

Content-Disposition Specifies how the attachment should be handled by the
recipient. The type is string.

body Holds the attachment data. The type is anyType.

Message Contex t

3-6 AquaLogic Service Bus User Guide

Outbound: The content of an outbound multipart/form-data type message is built
from the content of the$attachments variable. Nothing from $header or $body is
included.

Note: If the inbound message is of a different multipart type than
multipart/form-data (for example, multipart/related) and the outbound
message is multipart/form-data, you must explicitly preserve the headers and
content of the inbound root part, because they will not otherwise be passed through.

Attachments are supported on inbound requests and on outbound responses (that is, in messages
received by a proxy service) only when the transport is HTTP, HTTPS or e-mail. Attachments
are supported for all transport types for outbound requests and inbound responses (that is for
messages sent by a proxy service).

AquaLogic Service Bus does not support sending attachments to EJB-based or Tuxedo-based
services.

Binary Content in the body and attachments Variables
In the case of both the body and attachments variables, text-, XML- and MFL-based content is
placed directly inside of an XML element. For binary data, which can contain byte values that are
illegal in XML, AquaLogic Service Bus does not place the binary content in the XML element.
Consequently, the binary content cannot be manipulated, but it is handled efficiently.

When binary content is received, the AquaLogic Service Bus run time stores it in an in-memory
hash table and a reference to that content is inserted into the XML (body or attachments)
element. This reference is represented by the following XML snippet:
<binary-content ref="..."/>

where the ref attribute contains a URI or URN that uniquely identifies the binary content. This
XML can be manipulated in a AquaLogic Service Bus pipeline, branch, or route node in the same
way any other content can be manipulated, but only the reference and not the underlying binary
content is affected.

For example:

Binary content in the body variable can be copied to an attachment by copying the
reference XML to the body sub-element of an attachment element.

Binary content in two different attachments can be swapped by swapping the snippets of
reference XML or by swapping the values of the ref attributes.

Message-Re lated Var iab les

AquaLogic Service Bus User Guide 3-7

When messages are dispatched from AquaLogic Service Bus, the URI in the reference XML is
used to restore the relevant binary content in the outgoing message. For information about how
outbound messages are constructed, see “Constructing Messages to Dispatch” on page 3-25.

Clients and certain transports, notably e-mail, file and FTP can use this same reference XML to
implement pass-by-reference. In this case, the transport or client creates the reference XML
rather than the proxy service run time. Also, the value of the URI in the ref attribute is specified
by the user that creates the reference XML. For these cases in which the reference XML is not
created by the proxy service run time—specifically, when the URI is not recognized as one
referring to internally managed binary content—AquaLogic Service Bus does not de-reference
the URI, and the content is not substituted into an outgoing message.

Message Contex t

3-8 AquaLogic Service Bus User Guide

Inbound and Outbound Variables
The inbound and outbound context variables contain information about the inbound and
outbound endpoints. The inbound variable contains information about the proxy service that
received the request message; the outbound variable contains information about the target
business service to which a message is sent.

The outbound variable is set in the Route action in route nodes and Publish actions. You can
modify $outbound by configuring request and response actions in route nodes and by
configuring request actions in Publish actions.

WARNING: Some modifications that you can make for the inbound and outbound context
variables are not honored at run time. That is, the values of certain headers and
metadata can be overwritten or ignored by the AquaLogic Service Bus run time.
The same limitations are true when you set the transport headers and metadata
using the Transport Headers and Service Callout actions, and when you use the
Test Console to test your proxy or business services. For information about the
headers and metadata for which there are limitations, see “Understanding How
the Run Time Uses the Transport Settings in the Test Console” on page 4-24.
Note also that any modifications you make to $outbound in the message flow
outside of the request or response actions in route nodes and Publish actions are
ignored. In other words, those modifications are overwritten when $outbound is
initialized in the route nodes and publish actions.

You cannot modify the outbound variable in Service Callout actions.

The inbound and outbound variables have the following characteristics:

Have the same XML schema—the inbound and outbound context variables are instances
of the endpoint element as described in “Message Context Schema” on page 3-28.

Contain a single name attribute that identifies the name of the endpoint as it is registered in
the service directory. The name attribute should be considered read-only for both inbound
and outbound.

WARNING: The read-only rule is not enforced. Changing read-only elements can result in
unpredictable behavior.

Contain the service, transport and security sub-elements described in the following
section.

Attachments are supported on inbound requests and outbound responses (that is, in messages
received by a proxy service) only when the transport is HTTP, HTTPS or e-mail.

I nbound and Outbound Var iab les

AquaLogic Service Bus User Guide 3-9

Attachments are supported for all transport types for outbound requests and inbound responses
(that is for messages sent by a proxy service).

AquaLogic Service Bus does not support sending attachments to EJB-based or Tuxedo-based
services.

Sub-Elements of the inbound and outbound Variables
This section describes the sub-elements of the inbound and outbound context variables,
including information about whether a given sub-element is initialized at run time. To learn about
how context variables are initialized, see “Initializing Context Variables” on page 3-20. The
sub-elements include:

service

transport

security

service
The service element is read-only for both inbound and outbound. Sub-elements include
providerName and operation.

Table 3-3 Sub-Elements of the service Element

Sub-Elements1 Description...

providerName Specifies the name of the proxy service provider.

Initialized based on the configuration of publish and routing actions.

operation

(outbound only)
Used in the outbound variable, specifies the name of the operation to be invoked
on the target business service.

Initialized based on the inbound and outbound.

Note: This element is used for the outbound variable only. In the case of
inbound messages, the name of the operation to be invoked on the proxy
service is specified by the operation variable.

1. The “Message Context Schema” on page 3-28 specifies the element types for the message context
variables.

Message Contex t

3-10 AquaLogic Service Bus User Guide

transport
The transport element is read-only on inbound, except for the response element, which you can
modify to set the response transport headers. The sub-elements of the transport element are
described in the following table.

I nbound and Outbound Var iab les

AquaLogic Service Bus User Guide 3-11

Message Contex t

3-12 AquaLogic Service Bus User Guide

Table 3-4 Sub-Elements of the Transport Element

Sub-Elements1 Description...

uri Identifies the URI of the endpoint:
• When used in the inbound variable, this is the URI by which the message

arrived.
• When used in the outbound variable, this is the URI to use when sending the

message—it overrides any URI value registered in the service directory.

Initialization

The URI element is initialized as follows:
• Always initialized on the inbound variable
• Never initialized on the outbound variable. You can set the URI on

outbound when you want to override the set of URIs in the service
configuration. URI failover is not supported if this element is set.

I nbound and Outbound Var iab les

AquaLogic Service Bus User Guide 3-13

request

This element is read-only2
in the inbound variable.
You can modify it for the
outbound variable.

Specifies transport-specific metadata about the request (including transport
headers). The value for this element is defined by the transport protocol
(specifically, the RequestMetaData XML defined by the transport
SDK).Therefore, the structure of this element depends on the transport being used.

To learn about the transport-specific types for this element, see the appropriate
transport schema, which is available in a JAR file at the following location
in your AquaLogic Service Bus installation:

BEA_HOME\weblogic92\servicebus\lib\sb-schemas.jar

where BEA_HOME represents the directory in which you installed
AquaLogic Service Bus.
Initialization

The URI element is initialized as follows:
• Initialized on the inbound variable using information from the request

message received by AquaLogic Service Bus.
• On the outbound variable, the request element is created with the proper

typing. The typing is transport-dependent. The request element is typically
initialized as an empty element, with the exception of certain important
transport headers—for example, content-type and SOAPAction.

You can set a filename for an outbound message using the File transport protocol
by configuring $outbound in a route node request action, as follows:
• If the fileName only is specified, a file of that name is stored at the location

specified by the endpoint URI of the target business service.
• If isFilePath is set to true, the value of fileName is used as a relative

path appended to the endpoint URI of the target business service. For example,
if the endpoint URI is file:////apollo/ob/data, and the fileName
header is set to ./foo/bar.xml, and isFilePath is set to true, the
message will be stored at /apollo/ob/data/foo/bar.xml.
If a file already exists with that name, a new name is generated, following the
format path/filename_random-number.xml, where random-number
is an integer in the range of 0 to 999999.

Table 3-4 Sub-Elements of the Transport Element

Sub-Elements1 Description...

Message Contex t

3-14 AquaLogic Service Bus User Guide

response

This element is read-only
in the outbound
variable. You can
modify it for the inbound.
variable.

Specifies transport-specific metadata about the response (including transport
headers). The value for this element is defined by the transport protocol
(specifically, the ResponseMetaData XML defined by the transport
SDK).Therefore, the structure of this element depends on the transport being used.

To learn about the transport-specific types for this element, see the appropriate
transport schema, which is available in a JAR file at the following location in your
AquaLogic Service Bus installation:

BEA_HOME\weblogic92\servicebus\lib\sb-schemas.jar

where BEA_HOME represents the directory in which you installed
AquaLogic Service Bus.
Initialization

The URI element is initialized as follows:
• Initialized on the outbound variable using information from the response

message received by AquaLogic Service Bus.
• On the inbound variable, the response element is created with the proper

typing. The typing is transport-dependent. The response element is
typically initialized as an empty element, with the exception of certain
important transport headers—for example, content-type and
SOAPAction.

For a description of the standard HTTP headers, see
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

For a description of the standard JMS headers, see Value-Added Public JMS API
Extensions.

Note: The following MQ headers do not have equivalents in BEA JMS:
ApplOriginData, ApplIdentityData, Accounting Token

mode Specifies whether the communication style is request (one-way) or
request-response (two-way).

Initialization

Initialized on the inbound and outbound variables using information from the
service and its operations (if applicable). For example, if a request-only operation
is being invoked, the mode element is set to request, rather than to
request-response.

Table 3-4 Sub-Elements of the Transport Element

Sub-Elements1 Description...

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
http://e-docs.bea.com/wls/docs92/jms/fund.html#jms_features
http://e-docs.bea.com/wls/docs92/jms/fund.html#jms_features

I nbound and Outbound Var iab les

AquaLogic Service Bus User Guide 3-15

qualityOfService

This element is read only
for inbound.

You can modify it for the
outbound case— in the
outbound request actions of
a publish or routing action.

Specifies the quality of service expected when sending or receiving a message.
Valid values include best-effort and exactly-once:
• best-effort means that each dispatch defines its own transactional context

(if the transport is transactional).

Best effort means that there is no reliable messaging and no elimination of
duplicate messages—however, performance is optimized.

For the scenario in which a message is dispatched as a result of a publish
action, any dispatch errors are suppressed.

For the scenario in which a message is dispatched from a routing node,
dispatch errors are not suppressed.

• exactly-once means that the dispatch is included as part of the inbound
transactional context (if one exists and if the outbound transport is
transactional) and errors cause processing to abort and trigger the relevant
error handler (in the case of both the route and publish scenarios).

Exactly once reliability means that messages are delivered from inbound to
outbound exactly once, assuming a terminating error does not occur before the
outbound message send is initiated.

Initialization

The qualityOfService element is initialized on the inbound and outbound
variables as follows:
• In the inbound case, the quality of service (QoS) is dictated by the transport.

For example, for the JMS/XA transport, the QoS is exactly once; for the HTTP
transport, the QoS is best effort.

• In the outbound case, the QoS is set differently for publishing and for routing,
as follows:

Routing—When messages are routed to another service from a route node, the
QoS is always initialized using the value from the inbound context variable. In
other words, the outbound QoS is set to exactly once if (and only if) the
inbound QoS is exactly once. Otherwise, the outbound QoS is set to best effort.

Publishing—When a message is published to another service as the result of
a publish action, the quality of service (QoS) is always initialized to best effort
regardless of the inbound setting.

Table 3-4 Sub-Elements of the Transport Element

Sub-Elements1 Description...

Message Contex t

3-16 AquaLogic Service Bus User Guide

security
The sub elements of the security element are described in the following table.

retryCount

(outbound only)
Specifies the number of retries to attempt when sending a message from
AquaLogic Service Bus.

If retryCount is set, the setting overrides any retry count value configured in
the target service configuration.

retryInterval

(outbound only)
Specifies the interval, in seconds, to wait before attempting to re-send a message
from AquaLogic Service Bus.

If retryInterval is set, the setting overrides any retry interval value
configured in the target service configuration.

1. The “Message Context Schema” on page 3-28 specifies the element types for the message context
variables.
2. The read-only rule is not enforced. Changing read-only elements can result in unpredictable behavior.

Table 3-4 Sub-Elements of the Transport Element

Sub-Elements1 Description...

Table 3-5 Sub-Elements of the Security Element

Sub-Elements1 Description...

transportClient

(inbound only, read
only2)

Specifies authenticated transport-level user information. The user information
includes a username and any optional principals. The principals can themselves
include zero or more groups, one for each group the subject belongs to.

Note: If the subject is anonymous, then the username is "anonymous" and there
are no groups.

Initialized by AquaLogic Service Bus. The inbound transportClient element
is read-only.

I nbound and Outbound Var iab les

AquaLogic Service Bus User Guide 3-17

Related Topics
Proxy Services: Actions in Using the AquaLogic Service Bus Console

“Adding Route Node Actions” in Proxy Services: Message Flow in Using the AquaLogic Service
Bus Console

For a description of the standard HTTP headers, see
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

For a description of the standard JMS headers, see
http://e-docs.bea.com/wls/docs92/jms/fund.html#jms_features

messageLevelClient

(inbound only, read
only2)

Specifies authenticated message-level user information. The user information
includes a username and any optional principals. The principals can themselves
include zero or more groups, one for each group the subject belongs to.

Note: If the subject is anonymous, then the username is "anonymous" and there
are no groups.

Initialized by AquaLogic Service Bus. The inbound messageLevelClient
element is read-only.

doOutboundWss

(outbound only)
AquaLogic Service Bus sets the value of this element during routing or publishing.

Some infrequently used design patterns set the value to false to preempt a proxy
service from automatically generating the outbound WS-Security SOAP envelope.

Future releases of AquaLogic Service Bus will provide an easier way to disable
outbound WS-Security.

For more information, see “Disabling Outbound WS-Security” under
Message-Level Security in AquaLogic Service Bus Security Guide.

1. The “Message Context Schema” on page 3-28 specifies the element types for the message context
variables.
2. The read-only rule is not enforced. Changing read-only elements can result in unpredictable
behavior.

Table 3-5 Sub-Elements of the Security Element

Sub-Elements1 Description...

http://e-docs.bea.com/alsb/docs26/security/message_level.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
http://e-docs.bea.com/wls/docs92/jms/fund.html#jms_features
http://e-docs.bea.com/alsb/docs26/consolehelp/proxyactions.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxymessageflow.html

Message Contex t

3-18 AquaLogic Service Bus User Guide

Operation Variable
The operation variable is a read-only variable. It contains a string that identifies the operation
to be invoked on a proxy service. If no operations are defined for a proxy service, the operation
variable is not set and returns the equivalent of null.

AquaLogic Service Bus provides the operation variable as a stand-alone variable, rather than
as a sub-element of the inbound variable to optimize performance—the computation of the
operation may be deferred until the operation variable is explicitly accessed rather than anytime
the inbound variable is accessed.

Fault Variable
The fault variable is used to hold information about any error that has occurred during message
processing. When an error occurs, this variable is populated with information before the
appropriate error handler is invoked.

Note: This variable is defined only in error handler pipelines and is not set in request and
response pipelines, or in route or branch nodes.

The fault variable includes the errorCode, reason, details, and location sub-elements
described in the following table.

Table 3-6 Sub-Elements of the Fault Variable

Elements of the Fault
Variables

Description1...

errorCode Specifies the error code as a string value

reason Contains a text description of the error

Faul t Va r iab le

AquaLogic Service Bus User Guide 3-19

The contents of the fault variable are modeled after SOAP faults to facilitate fault generation
when replying from a SOAP-based proxy service. The values for error codes generated by
AquaLogic Service Bus correspond to system error codes and are prefixed with BEA string.

The error codes associated with the errors surface inside the element of the fault context
variable. You can access the value using the following XQuery statement:
$fault/ctx:errorCode/text()

AquaLogic Service Bus defines three generic error codes for the three classes of possible errors.
The format of the generic codes is BEA-xxx000, where xxx represents a generic category as
follows:

380 Transport

382 Proxy

386 Security

394 UDDI

details Contains user-defined XML content related to the error

location Identifies the node, pipeline and stage in which the error occurred. Also
identifies if the error occurred in an error handler. The sub-elements
include:
• node—the name of the Pipeline/Branch/Route node where an error

occurred; a string.
• pipeline—the name of the Pipeline where an error occurred (if

applicable); a string.
• stage—the name of the stage where an error occurred (if applicable); a

string.
• error-handler—indicates if an error occurred from inside an error

handler; a boolean.

1. The “Message Context Schema” on page 3-28 specifies the element types for the message
context variables.

Table 3-6 Sub-Elements of the Fault Variable

Elements of the Fault
Variables (Continued)

Description1...

Message Contex t

3-20 AquaLogic Service Bus User Guide

This yields the generic codes as follows:

BEA–380000—BEA–380999

Indicates a transport error (for example, failure to dispatch a message).

BEA–382000—BEA–382499

Indicates a proxy service run-time error (for example, a stage exception).

BEA–382500—BEA–382999

Indicates an error in a proxy service action.

BEA–386000—BEA–386999

Indicates a WS-Security error (for example, authorization failure).

BEA–394500—BEA–394999

Indicates an error in the UDDI sub system.

AquaLogic Service Bus defines unique codes for specific errors. For example:

BEA-382030—Indicates a message parse error (for example, a SOAP proxy service received a
non-SOAP message).

BEA-382500—Reserved for the case in which a Service Callout action receives a SOAP Fault
response.

For information about these and other specific error codes, see Error Codes in Using the
AquaLogic Service Bus Console. See also “Handling Errors” on page 2-29.

Initializing Context Variables
The message context and its variables are initialized in the binding layer when a message is
received and before message processing begins. The following table summarizes how context
variables are initialized.

http://e-docs.bea.com/alsb/docs26/consolehelp/errorcodes.html

I n i t ia l i z ing Context Var iab les

AquaLogic Service Bus User Guide 3-21

Table 3-7 Initializing Context Variables

Context Variable How Initialized

outbound Initialized to null because no routing or errors have yet occurred.

The outbound variable is initialized in the route action in route nodes and
publish actions. You can modify $outbound through the request actions
in routing nodes and publish actions (also in the response actions in routing
nodes). For more information, see “Inbound and Outbound Variables”
on page 3-8.
For information about the initialization of sub-elements of outbound, see
“Sub-Elements of the inbound and outbound Variables” on page 3-9.

fault

inbound Initialized with service, transport and security information that is
obtained from Service Bus metadata about the registered proxy
service and transport-level metadata (transport headers,
authenticated user information, and so on) about the specific
incoming request.
For information about the initialization of sub-elements of inbound, see
“Sub-Elements of the inbound and outbound Variables” on page 3-9.

header Initialized using the content of the inbound message. How the initialization
is performed depends on the type of proxy service, as described in the
subsequent topics in this section:
• “Initializing the attachments Context Variable” on page 3-22
• “Initializing the header and body Context Variables” on page 3-22

The header, body, and attachments variables are re initialized after
routing using the content of the response that is received. If no routing is
performed or if the communication mode is request-only, then these
variables are not re initialized. That is, they are not cleared of any content.

body

attachments

operation

Message Contex t

3-22 AquaLogic Service Bus User Guide

Initializing the attachments Context Variable
The attachments context variable is initialized with any MIME attachments that accompany the
message, but does not include the part representing the main message (whether it is SOAP, XML,
MFL, and so on). Each <attachment> element is initialized using the MIME headers that
accompany each part in the MIME package.

The contents of the <body> element in the <attachment> can be one of the following depending
on the attachment’s Content-Type:

XML

text

A snippet of reference XML that refers to the attachment content (see “Binary Content in
the body and attachments Variables” on page 3-6)

Initializing the header and body Context Variables
This section describes how the initialization of header and body context variables is performed
depending on the type of proxy service: SOAP Services, XML Services (Non SOAP), Messaging
Services.

SOAP Services
Messages to SOAP-based services are SOAP messages containing XML that is contained in a
<soap:Envelope> element. In the case that messages include attachments, the content of the
inbound message is a MIME package that includes the SOAP envelope as one of the parts—
typically the first part or one identified by the top-level Content-Type header. The context
variables are initialized as follows:

header—initialized with the <soap:Header> element from the SOAP message

body—initialized with the <soap:Body> element from the SOAP message

XML Services (Non SOAP)
The messages to XML-based services are XML, but can be of any type allowed by the proxy
service configuration. In the case that messages include attachments, the content of the inbound
messages is a MIME package that includes the primary XML payload as one of the parts—
typically the first part or one identified by the top-level Content-Type header.

Per fo rming Opera t i ons on Context Var iab les

AquaLogic Service Bus User Guide 3-23

The context variables are initialized as follows:

header—initialized with an empty <soap:Header/> element.

body—initialized with a <soap:Body> element that wraps the entire XML payload.

Messaging Services
Messaging services are those that can receive messages of one data type and respond with
messages of a different data type. The supported data types include XML, MFL, text, untyped
binary. The context variables are initialized as follows:

header—initialized with an empty <soap:Header/> element.

body—initialized with a <soap:Body> element that wraps the entire payload.

– In the case of XML, MFL, and text content, it is placed directly within the
<soap:Body> element.

– In the case of binary content, a piece of reference XML is created and inserted inside
the <soap:Body> element (see “Binary Content in the body and attachments Variables”
on page 3-6). The binary content cannot be accessed or modified, but the reference
XML can be examined, modified, and replaced with inline content.

Performing Operations on Context Variables
You interact with and manipulate the message context through actions in the pipelines, branch,
or route nodes that define a proxy service. Most actions expose the XQuery language to do so.
Each context variable is represented as an XQuery variable of the same name. For example, the
header variable is accessible in XQuery as $header, the body variable is accessible as $body,
and so on. The examples in this section show the use of XQuery to examine and manipulate
context variables.

$body
The $body variable includes the <soap-env:Body>...</soap-env:Body> element. (If the
proxy service is SOAP 1.2, the body variable contains a SOAP 1.2 Body element.)

For example, if you assign data to the body context variable using the Assign action, you must
wrap it with the <soap-env:Body> element. In other words, you build the SOAP package by
including the <soap-env:Body> element in the context variable.

http://e-docs.bea.com/alsb/docs26/consolehelp/proxyactions.html

Message Contex t

3-24 AquaLogic Service Bus User Guide

There is an exception to this behavior in AquaLogic Service Bus—for the case in which you build
the Request Document Variable for the Service Callout action. Service Callout actions work with
the core payload (RPC parameters, documents, and so on) and AquaLogic Service Bus builds the
SOAP package around the core payload. In other words, when you configure the Request
Document Variable for a Service Callout action, you do not wrap the input document with
<soap-env:Body>...</soap-env:Body>.

For information about configuring the Service Callout action, see Proxy Services: Actions in
Using the AquaLogic Service Bus Console.

$header
The $header variable includes the <soap-env:Header>...</soap-env:Header> element. (If
the proxy service is SOAP 1.2, the header variable contains a SOAP 1.2 Header element.)

For example if you assign data to the header context variable using the Assign action, you must
wrap it with the <soap-env:Header> element. In other words, you build the SOAP package by
including the <soap-env:Header> element in the context variable. This is true for all
manipulations of $header, including the case in which you can set one or more SOAP Headers
for a Service Callout request. For information about configuring SOAP Headers for a Service
Callout action, see Proxy Services: Actions in Using the AquaLogic Service Bus Console.

Extract the WS-Addressing Header—From
$header/wsa:From

Extract the Payload From a Non-SOAP Message
$body/*

Extract the user-header From an Outbound Response Message
$outbound/ctx:transport/ctx:response/tp:user-header[@name=’myheader’
]/@value

When creating a body input variable that is used for the request parameter in a Service Callout to
a SOAP Service, you would define that variable’s contents using body/* (to remove the wrapper
soap-env:Body), not $body (which results in keeping the soap-env:Body wrapper).

Assign Variable Contents for Request Parameter in a Service Callout
$body/*

Related Topics
For more information about handling context variables using the XQuery and XPath editors in
the AquaLogic Service Bus Console, see the following topics:

http://e-docs.bea.com/alsb/docs26/consolehelp/proxyactions.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxyactions.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxyactions.html

Cons t ruc t ing Messages to D ispatch

AquaLogic Service Bus User Guide 3-25

“Working with Variable Structures” on page 2-54.

Proxy Services: XQuery Editors in Using the AquaLogic Service Bus Console.

Constructing Messages to Dispatch
When AquaLogic Service Bus publishes or routes a message, the content of the message is
constructed using the values of variables in the Message Context. For example, transport headers
and other transport-specific metadata are taken from $outbound/transport/request. As is
the case with initialization of the context, the message content for outbound messages is handled
differently depending upon the type of the target service. How the outbound message content is
created depends on the type of the target service, as described in the following topics:

SOAP Services

XML Services (Non SOAP)

Messaging Services

SOAP Services
An outgoing SOAP message is constructed by wrapping the contents of the header and body
variables inside a <soap:Envelope> element. If the invoked service is a SOAP 1.2 service, the
envelope created is a SOAP 1.2 envelope. If the invoked service is a SOAP 1.1 service, the
envelope created is a SOAP 1.1 envelope. If the body variable contains a piece of reference XML,
it is sent as is—in other words, the referenced content is not substituted into the message.

If attachments are defined in the attachments variable, a MIME package is created from the
main message and the attachment data. The handling of the content for each attachment part is
similar to how content is handled for messaging services.

XML Services (Non SOAP)
The messages to XML-based services from AquaLogic Service Bus is constructed from the
contents of the body variable:

If the body variable is empty, then a zero-size message is sent.

If the body variable contains multiple XML snippets, then only the first snippet is used in
the outbound message. For example, if <soap:Body> contains <abc/><xyz/>, only
<abc/> is sent.

http://e-docs.bea.com/alsb/docs26/consolehelp/proxyeditors.html

Message Contex t

3-26 AquaLogic Service Bus User Guide

If the content of the body variable is text and not XML, an error is thrown.

If the body variable contains a piece of reference XML, it is sent as is—in other words, the
referenced content is not substituted into the message.

If attachments are defined in the attachments variable, a MIME package is created from
the XML message and the attachment data. In the case of a null XML message, the
corresponding MIME body part is empty. The handling of the content for each attachment
part is similar to how content is handled for messaging services.

Regardless of any data it contains, the header variable does not contribute any content to the
outbound message.

For examples of how messages are constructed for Service Callout Actions, see Proxy Services:
Actions in Using the AquaLogic Service Bus Console.

Messaging Services
The messages to messaging services from AquaLogic Service Bus are constructed from the
contents of the body variable.

If the body variable is empty, then a zero-size message is sent, regardless of the outgoing
message type.

If the outgoing message type is XML, then the message is constructed in the same way as
it is for XML Services (Non SOAP).

If the outgoing message type is MFL, then the behavior is similar to that for XML message
types except that the extracted XML is converted to MFL. (An error occurs if the
XML→MFL conversion cannot be performed.)

If the target service requires text messages, the contents of the body variable are
interpreted as text and sent. In this way, it is possible for AquaLogic Service Bus to handle
incoming XML messages that must be delivered to a target service as text. In other words,
you do not need to configure the message flow to handle such messages.

For target services that expect binary messages, the body variable must contain a piece of
reference XML—the reference URI references the binary data stored in the AquaLogic
Service Bus in-memory hash table. The referenced content is sent to the target service.

For cases in which a client, a transport, or the designer of a proxy service specifies the
reference URI, the referenced data is not stored in the AquaLogic Service Bus and thus
cannot be de referenced to populate the outbound message. Consequently, the reference
XML is sent in the message.

http://e-docs.bea.com/alsb/docs26/consolehelp/proxyactions.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxyactions.html

Cons t ruc t ing Messages to D ispatch

AquaLogic Service Bus User Guide 3-27

If the body variable contains a piece of reference XML, and the target service requires a
message type other than binary, the reference XML inside the body variable is treated as
content. In other words, it is sent as XML, converted to text, or converted to MFL. This is
true regardless of the URI in the reference XML.

Regardless of any data it contains, the header variable does not contribute any content to the
outbound message.

For examples of how messages are constructed for Service Callout Actions, see Proxy Services:
Actions in Using the AquaLogic Service Bus Console.

About Sending Binary Content in Email Messages
For binary messages, AquaLogic Service Bus does not insert the message content into the body
variable. Instead, a <binary-content/> reference element is created and inserted into the
<SOAP:Body> element (see “Message-Related Variables” on page 3-3). However, the email
standard does not support sending binary content type as the main part of a message. If you want
to send binary messages via email to a messaging service that accepts text or XML documents
and optional attachments, you can do so as follows:

1. Transfer the binary-content reference XML from $body to $attachments.

2. Replace the content of $body with text or XML wrapped in a <SOAP:Body> element.

For the case in which the outgoing message type is MFL, the contents of $body is converted from
XML to text or binary based on the MFL transformation:

If the target service expects to receive text message, you can set the content-type (the
default is binary for MFL message type) as text/plain in $outbound

If the target service expects to receive binary messages, it is not possible to send MFL
content via the email transport.

To learn more about how binary content is handled, see “Binary Content in the body and
attachments Variables” on page 3-6.

Related Topics
“Message Context Schema” on page 3-28

In Using the AquaLogic Service Bus Console:

“Service Callout” and “Transport Headers” in Proxy Services: Actions

“Adding a Route Node” in Proxy Services: Message Flow

http://e-docs.bea.com/alsb/docs26/consolehelp/proxyactions.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxyactions.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxyactions.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxymessageflow.html

Message Contex t

3-28 AquaLogic Service Bus User Guide

Message Context Schema
The message context schema (MessageContext.xsd) that specifies the types for the message
context variables is shown in “Message Context.xsd” on page 3-28.

When working with the message context variables, you need to reference MessageContext.xsd
and the transport-specific schemas, which are available in a JAR file at the following location in
your AquaLogic Service Bus installation:

BEA_HOME\weblogic92\servicebus\lib\sb-schemas.jar

where BEA_HOME represents the directory in which you installed AquaLogic Service Bus.
sb-schemas.jar includes the following context-related schemas:

Alert Reporting Schema (AlertReporting.xsd)

Email Transport Schema (EmailTransport.xsd)

File Transport Schema (FileTransport.xsd)

FTP Transport Schema (FTPTransport.xsd)

HTTP Transport Schema (HttpTransport.xsd)

HTTPS Transport Schema (HttpsTransport.xsd)

Message Context Schema (MessageContext.xsd)

Message Reporting Schema (MessageReporting.xsd)

JMS Transport Schema (JmsTransport.xsd)

Reference Schema(ServiceBusReference.xsd)

Common Transport Schema (TransportCommon.xsd)

Message Context.xsd
//depot/dev/src/wli/public/sb/schemas/MessageContext.xsd last updates @v9 6/11/05

<schema targetNamespace="http://www.bea.com/wli/sb/context"
 xmlns:mc="http://www.bea.com/wli/sb/context"
 xmlns="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 <!--== -->

Message Contex t Schema

AquaLogic Service Bus User Guide 3-29

 <!-- The context variable 'fault' is an instance of this element -->
 <element name="fault" type="mc:FaultType"/>

 <!-- The context variables 'inbound' and 'outbound' are instances of this
element -->
 <element name="endpoint" type="mc:EndpointType"/>

 <!-- The three sub-elements within the 'inbound' and 'outbound' variables -->
 <element name="service" type="mc:ServiceType"/>
 <element name="transport" type="mc:TransportType"/>
 <element name="security" type="mc:SecurityType"/>

 <!-- The context variable 'attachments' is an instance of this element -->
 <element name="attachments" type="mc:AttachmentsType"/>

 <!-- Each attachment in the 'attachments' variable is represented by an
instance of this element -->
 <element name="attachment" type="mc:AttachmentType"/>

 <!-- Element used to represent binary payloads and pass-by reference content
-->
 <element name="binary-content" type="mc:BinaryContentType"/>

 <!-- === -->

 <!-- The schema type for -->
 <complexType name="AttachmentsType">
 <sequence>
 <!-- the 'attachments' variable is just a series of attachment elements
-->
 <element ref="mc:attachment" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>

 <complexType name="AttachmentType">
 <all>
 <!-- Set of MIME headers associated with attachment -->
 <element name="Content-ID" type="string" minOccurs="0"/>
 <element name="Content-Type" type="string" minOccurs="0"/>
 <element name="Content-Transfer-Encoding" type="string"
minOccurs="0"/>
 <element name="Content-Description" type="string" minOccurs="0"/>
 <element name="Content-Location" type="string" minOccurs="0"/>
 <element name="Content-Disposition" type="string" minOccurs="0"/>

 <!-- Contains the attachment content itself, either in-lined or as
<binary-content/> -->
 <element name="body" type="anyType"/>
 </all>

Message Contex t

3-30 AquaLogic Service Bus User Guide

 </complexType>

 <complexType name="BinaryContentType">
 <!-- URI reference to the binary or pass-by-reference payload -->
 <attribute name="ref" type="anyURI" use="required"/>
 </complexType>

 <!-- === -->

 <complexType name="EndpointType">
 <all>
 <!-- Sub-elements holding service, transport, and security details
for the endpoint -->
 <element ref="mc:service" minOccurs="0" />
 <element ref="mc:transport" minOccurs="0" />
 <element ref="mc:security" minOccurs="0" />
 </all>

 <!-- Fully-qualified name of the service represented by this endpoint -->
 <attribute name="name" type="string" use="required"/>
 </complexType>

 <!-- === -->

 <complexType name="ServiceType">
 <all>
 <!-- name of service provider -->
 <element name="providerName" type="string" minOccurs="0"/>

 <!-- the service operation being invoked -->
 <element name="operation" type="string" minOccurs="0"/>
 </all>
 </complexType>

 <!-- === -->

 <complexType name="TransportType">
 <all>
 <!-- URI of endpoint -->
 <element name="uri" type="anyURI" minOccurs="0" />

 <!-- Transport-specific metadata for request and response (includes
transport headers) -->
 <element name="request" type="anyType" minOccurs="0"/>
 <element name="response" type="anyType" minOccurs="0" />

 <!-- Indicates one-way (request only) or bi-directional
(request/response) communication -->
 <element name="mode" type="mc:ModeType" minOccurs="0" />

Message Contex t Schema

AquaLogic Service Bus User Guide 3-31

 <!-- Specifies the quality of service -->
 <element name="qualityOfService" type="mc:QoSType" minOccurs="0" />

 <!-- Retry values (outbound only) -->
 <element name="retryInterval" type="integer" minOccurs="0" />
 <element name="retryCount" type="integer" minOccurs="0" />
 </all>
 </complexType>

 <simpleType name="ModeType">
 <restriction base="string">
 <enumeration value="request"/>
 <enumeration value="request-response"/>
 </restriction>
 </simpleType>

 <simpleType name="QoSType">
 <restriction base="string">
 <enumeration value="best-effort"/>
 <enumeration value="exactly-once"/>
 </restriction>
 </simpleType>

 <!-- === -->

 <complexType name="SecurityType">
 <all>
 <!-- Transport-level client information (inbound only) -->
 <element name="transportClient" type="mc:SubjectType" minOccurs="0"/>

 <!-- Message-level client information (inbound only) -->
 <element name="messageLevelClient" type="mc:SubjectType"
minOccurs="0"/>

 <!-- Boolean flag used to disable outbound WSS processing (outbound
only) -->
 <element name="doOutboundWss" type="boolean" minOccurs="0"/>
 </all>
 </complexType>

<complexType name="SubjectType">
<sequence>
<!-- User name associated with this tranport- or message-level subject -->
<element name="username" type="string"/>
<element name="principals" minOccurs="0">
<complexType>
<sequence>
<!-- There is an element for each group this subject belongs to, as

Message Contex t

3-32 AquaLogic Service Bus User Guide

determined by the authentication providers -->
<element name="group" type="string"

minOccurs="0" maxOccurs="unbounded"/>
</sequence>
</complexType>

<!-- === -->

 <complexType name="FaultType">
 <all>
 <!-- A short string identifying the error (e.g. BEA38229) -->
 <element name="errorCode" type="string"/>

 <!-- Descriptive text explaining the reason for the error -->
 <element name="reason" type="string" minOccurs="0" />

 <!-- Any additional details about the error -->
 <element name="details" type="anyType" minOccurs="0" />

 <!-- Information about where the error occured in the proxy -->
 <element name="location" type="mc:LocationType" minOccurs="0" />
 </all>
 </complexType>

 <complexType name="LocationType">
 <all>
 <!-- Name of the Pipeline/Branch/Route node where error occured -->
 <element name="node" type="string" minOccurs="0" />

 <!-- Name of the Pipeline where error occured (if applicable) -->
 <element name="pipeline" type="string" minOccurs="0" />

 <!-- Name of the Stage where error occured (if applicable) -->
 <element name="stage" type="string" minOccurs="0" />

 <!-- Indicates if error occured from inside an error handler -->
 <element name="error-handler" type="boolean" minOccurs="0" />
 </all>
 </complexType>

<!-- Encapsulates any stack-traces that may be added to a fault <details> -->
 <element name="stack-trace" type="string"/>
</schema>

Message Contex t Schema

AquaLogic Service Bus User Guide 3-33

Related Topics
“Inbound and Outbound Variables” on page 3-8

“Performing Operations on Context Variables” on page 3-23

“Constructing Messages to Dispatch” on page 3-25

Message Contex t

3-34 AquaLogic Service Bus User Guide

AquaLogic Service Bus User Guide 4-1

C H A P T E R 4

Using the Test Console

The BEA AquaLogic Service Bus Test Console is a browser-based test environment used to
validate and test the design of your system. It is an extension of the AquaLogic Service Bus
Console. You can configure the object of your test (proxy service, business service, XQuery,
XSLT, MFL resource), execute the test, and view the results in the console. In some instances
you can trace through the code and examine the state of the message at specific trace points.
Design time testing helps isolate design problems before you deploy a configuration to a
production environment. The test console can test specific parts of your system in isolation and
it can test your system as a unit.

The test console can be invoked to test any proxy service or business service and certain resources
used by these services. You can also do in-line XQuery testing.

You can invoke the test console in a number of ways in the AquaLogic Service Bus Console,
depending on what part of your process you want to test. You can invoke the test console from:

The Project Explorer

The Resource Browser

The XQuery Editor

You can run and test a proxy service that makes a call to another proxy service or business service
and vice versa. You can test the resources used by your services. When testing services you must
be aware of the information that is passing from the test console to the service and vice versa.

Using the Tes t Conso le

4-2 AquaLogic Service Bus User Guide

Features
The test console supports the following features:

Testing proxy services

Testing business services

Testing resources

Testing in-line XQueries

Tracing the message through the message flow (for proxy services only)

Prerequisites
To use the test console:

You must have AquaLogic Service Bus running and you must have activated the session
that contains the resource you want to test.

You must disable the pop-up blockers in your browser for the inline XQuery testing to
work. Note that if you have toolbars in the Internet Explorer browser, this may mean
disabling pop-up blockers from under the Options menu as well as for all toolbars that are
configured to block them. Inline XQuery testing is done only in the design time
environment (in an active session).

If you want the test console to generate and send SAML tokens to a proxy service, you
must configure the proxy service to require SAML tokens and to be a relying party. For
more information on creating a SAML relying party, see Create a SAML Relying Party in
WebLogic Server Administration Console Online Help.

Note: When creating a SAML relying party:

Only WSS/Sender-Vouches and WSS/Holder-of-Key SAML profiles are applicable
to a proxy service.

When you are configuring the relying party, for the Target URL value
provide the URI of the proxy service. You can view the URI of the proxy
service by clicking on the proxy service name in the AquaLogic Service Bus
Console's Project Explorer module. The URI displays in the Endpoint URI row of
the Transport Configuration table.

http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/security/CreateRelyingParty.html

Tes t ing P roxy Se rv ices

AquaLogic Service Bus User Guide 4-3

Testing Proxy Services
You must have activated a session to test a proxy service. You can test a proxy service from the
Resource Browser or Project Explorer. You can test the following types of proxy services:

WSDL Web Service

Messaging Service

Any Soap Service

Any XML Service

Direct Calls
A Direct Call is used to test a proxy service that is collocated in the AquaLogic Service Bus
domain. Using the Direct Call option, messages are sent directly to the proxy service, bypassing
the transport layer. When you employ the Direct Call option, tracing is turned on by default,
allowing you to diagnose and troubleshoot a message flow in the test console. By default, testing
of proxy services is done using the Direct Call option.

When you use the Direct Call option to test a proxy service, the configuration data you input to
the test console must be that which is expected by the proxy service from the client that invokes
it. In other words, the test console plays the role of the client invoking the proxy service. Also
when you do a direct call testing you bypass the monitoring framework for the message and

The following figure illustrates a direct call. Note that the message bypasses the transport layer;
it is delivered directly to the proxy service (P1).

Figure 4-1 Direct Call to Test a Proxy Service

A Direct Call strategy is best suited for testing proxy services’ internal message flow logic. Your
test data should simulate the expected message state at the time it is dispatched. Use this test

Using the Tes t Conso le

4-4 AquaLogic Service Bus User Guide

approach in conjunction with setting custom (inbound) transport headers in the test console’s
Transport section to accurately simulate the service call.

Indirect Calls
When you test a proxy service with an indirect call (that is, when the Direct Call option is not
checked), the message is sent to the proxy service through the transport layer. The transport layer
performs manipulation of message headers or metadata as part of the test. The effect is to invoke
a proxy service to proxy service invocation run-time path.

The following figure illustrates an indirect call. Note that the message is first processed through
the transport layer and is subsequently delivered to the proxy service (P1).

Figure 4-2 Indirect Call to Test a Proxy Service

This testing strategy is recommended when testing a proxy service to proxy service interface
when both services run in the same JVM. Use this test approach in conjunction with setting
custom (outbound) transport headers in the test console’s Transport panel to accurately simulate
the service call. For more information on Transport settings in the test console, see “Test Console
Transport Settings” on page 4-22.

Using the indirect call, the configuration data you input to the test is the data being sent from a
proxy service (for example from a Route Node or a Service Callout action of another proxy
service). In the indirect call scenario, the test console plays the role of the proxy service that
routes to, or makes a callout to, another service.

HTTP Requests
When you test proxy services, the test console never sends a HTTP request over the network,
therefore transport-level access control is not applied.

(This transport-level access control is achieved through the Web Application layer—in other
words, even in the case that an indirect call is made through the AquaLogic Service Bus Console

Tes t ing Bus iness Serv ices

AquaLogic Service Bus User Guide 4-5

transport layer, an HTTP request is not sent over the network and this transport-level access
control is not applied.) For information about message processing in the transport layer, see
Architecture Overview in AquaLogic Service Bus Concepts and Architecture.

For information about transport settings, see “Understanding How the Run Time Uses the
Transport Settings in the Test Console” on page 4-24.

Testing Business Services
You must have activated a session to test services. You can test the following types of business
services:

WSDL Web Service

Transport Typed Service

Messaging Service

Any Soap Service

Any XML Service

When testing business services, the messages are always routed through the transport layer. The
“Direct Calls” on page 4-3 option is not available. The configuration data that you provide to the
test console to test the service is that which represents the state of the message that is expected to
be sent to that business service—for example, from a Route Node or a Service Callout action of
a proxy service. The test console is in the role of the caller proxy service when you use it to test
a business service.

Tip: Ensure that the user name and password that you specify in the test console exists in the
local AquaLogic Service Bus domain even if the business service being tested is in a
remote domain. The test service performs a local authentication before invoking any
proxy or business service.

Transport Security
When using the test console to test HTTP(S) business services with BASIC authentication, the
test console authenticates with the user name-password from the service account of the business
service. Similarly, when testing JMS, e-mail, or FTP business services that require
authentication, the test console authenticates with the service account associated with the
business service.

http://e-docs.bea.com/alsb/docs26/concepts/architecture_overview.html
http://e-docs.bea.com/alsb/docs26/concepts/architecture_overview.html

Using the Tes t Conso le

4-6 AquaLogic Service Bus User Guide

Recommended Approaches to Testing Proxy and
Business Services

In the scenario depicted in the following figure, a client invokes the proxy service (P1). The
message flow invokes business service B1, then proxy service P2, then proxy service P3 before
returning a message to the client. Interfaces are identified by number.

Figure 4-3 Test Scenario Example

There are many valid test strategies for this scenario. The following are recommended test
strategies:

It is recommended that you complete the testing of interfaces other than the client interface
to a given proxy service before you test the client call. In the sample scenario illustrated in
the preceding figure, this means that you complete the testing of interfaces 1 through 4
first, then test interface 5. In this way, the message flow logic for the proxy service (P1)
can be iteratively changed and tested (via interface 5) knowing that the other interfaces to
the proxy service function correctly.

It is recommended that all the XQuery expressions in a message flow be validated and
tested prior to a system test. In the preceding figure, interface 1 refers to XQuery
expression tests.

Trac ing P roxy Se rv ices Us ing the Tes t Conso le

AquaLogic Service Bus User Guide 4-7

Proxy service to business service (interface 2 in the preceding figure) is tested using a
indirect call. In other words, the messages are routed through the transport layer.

Proxy service to proxy service tests (Interfaces 3 and 4 in the preceding figure) are tested
using an indirect call. In other words, disable the Direct Call option, which means that
during the testing, the messages are routed through the transport layer.

Your final system test simulates the client invoking the proxy service P1. This test is
represented by interface 5 in the preceding figure.

Test interface 5 with a Direct Call. In this way, during the testing, the messages bypass the
transport layer. Tracing is automatically enabled with a Direct Call.

It is recommended that the message state be saved after executing successful interface tests
to facilitate future troubleshooting efforts on the system. Testing interface 5 is in fact a test
of the complete system and knowing that all other interfaces in the system work correctly
helps narrow the troubleshooting effort when system errors arise.

Tracing Proxy Services Using the Test Console
Tracing the message through a proxy service involves examining the message context and
outbound communications at various points in the message flow. The points at which the
messages are examined are predefined by AquaLogic Service Bus. AquaLogic Service Bus
defines tracing for stages, error handlers and route nodes.

For each stage, the trace includes the changes that occur to the message context and all the
services invoked during the stage execution. The following information is provided by the trace:

New variables— —the names of all new variables and their value (values can be
seen by clicking +)

Deleted variables— —the names of all deleted variables

Changed variables— —the names of all variables for which the value changed.
The new value is visible by clicking on the + sign).

Publish—every publish call is listed. For each publish call, the trace includes the name of
the service invoked, and the value of the outbound, header, body and attachment
variables.

Service Callout—every Service Callout is listed. For each Service Callout, the trace
includes the name of the service that is invoked, the value of the outbound variable, the

Using the Tes t Conso le

4-8 AquaLogic Service Bus User Guide

value of the header, body, and attachment variables for both the request and response
messages.

The trace contains similar information for Route Nodes as for stages. In the case of Route Nodes,
the trace contains the following categories of information:

The trace for service invocations on the request path

The trace for the Routed Service

The trace for the service invocations on the response path

Changes made to the message context between the entry point of the route node (on the
request path) and the exit point (on the response path)

Example: Testing and Tracing a Proxy Service
This example uses one of the proxy services in the example AquaLogic Service Bus domain as a
basis of instruction.

For more information on how to start the examples domain and run the examples provided there,
see BEA AquaLogic Service Bus Samples. This example scenario uses the proxy service named
loanGateway3, associated with the Validating a Loan Application example.

The message flow for loanGateway3 is represented in the following figure. The figure is
annotated with the configuration for the validate loan application stage and the configuration for
the route node.

http://e-docs.bea.com/alsb/docs26/examples/example.html

Trac ing P roxy Se rv ices Us ing the Tes t Conso le

AquaLogic Service Bus User Guide 4-9

Figure 4-4 Message Flow for Proxy Service (LoanGateway3)

To test this proxy service in the AquaLogic Service Bus examples domain using the test console,
complete the following procedure:

1. Start the AquaLogic Service Bus examples domain and load the samples data, as described in
BEA AquaLogic Service Bus Samples.

2. Log in to the AquaLogic Service Bus Console, then select Project Explorer and locate the
LoanGateway3 proxy service.

3. Select the Launch Test Console icon for the LoanGateway3 proxy service. The Proxy
Service Testing - LoanGateway3 page is displayed. Note that the Direct Call and the
Include Tracing options are selected.

4. Edit the test XML provided to send the following message for the test.

Listing 4-1 Test Message for LoanGateway3

<loanRequest xmlns:java=”java:normal.client”>

<java:Name>Name_4</java:Name>

<java:SSN>SSN_11</java:SSN>

<java:Rate>4.9</java:Rate>

http://e-docs.bea.com/alsb/docs26/examples/index.html

Using the Tes t Conso le

4-10 AquaLogic Service Bus User Guide

<java:Amount>2500</java:Amount>

<java:NumOfYear>20.5</java:NumOfYear>

<java:Notes>Name_4</java:Notes>

</loanRequest>

5. Click Execute.

The results page is displayed. Scroll to the bottom of the page to see the tracing results in
the Invocation Trace panel.

Trac ing P roxy Se rv ices Us ing the Tes t Conso le

AquaLogic Service Bus User Guide 4-11

Figure 4-5 Invocation Trace for a Proxy Service (LoanGateway3) Test

Compare the output in the trace with the nodes in the message flow shown in Figure 4-4.

The trace indicates the following:

Initial Message Context—Shows the variables initialized by the proxy service when it is
invoked. To see the value of any variable, click the + associated with the variable name.

Using the Tes t Conso le

4-12 AquaLogic Service Bus User Guide

Changed Variables—$header $body and $inbound changed as a result of the processing
of the message through the validate loan application stage. These changes are seen at
the end of the message flow.

The contents of the fault context variable ($fault) is shown as a result of the Stage
Error Handler handling the validation error. (The non-integer value (20.5) you entered for
the <java:NumOfYear> element in Listing 4-1 caused the validation error in this case.)

For more information about this loan application scenario, see Tutorial 3: Validating a
Loan Application in AquaLogic Service Bus Tutorials.

You can test the service using different input parameters or change the behavior of the message
flow in the AquaLogic Service Bus Console Project Explorer, and run the test again to view the
results.

Testing Resources
You can test resources inside an active session or from outside a session. You can test the
following resources:

“MFL” on page 4-12

“XSLT” on page 4-14

“XQuery” on page 4-14

MFL
A Message Format Language (MFL) document is a specialized XML document used to describe
the layout of binary data.

MFL resources support the following transformations:

XML to Binary - there is one required input (XML) and one output (Binary).

Binary to XML - there is one required input, Binary, and one output, XML.

Each transformation only accepts one input and provides a single output.

The following example describes an XML input file to be tested in the test console. When you
invoke the test console to test the MFL file, sample XML data is generated. Execute the test using
the sample XML—in this case, a successful test results in the transformation of the message
content of the input XML document in to binary format. The following “Example” on page 4-13
section describes the MFL, the test XML, and the data resulting from the test.

http://e-docs.bea.com/alsb/docs26/tutorial/tutErrorHandling.html
http://e-docs.bea.com/alsb/docs26/tutorial/tutErrorHandling.html

Test ing Resources

AquaLogic Service Bus User Guide 4-13

Example
The following listing is an example MFL file.

Listing 4-2 Contents of an MFL File

<?xml version='1.0' encoding='windows-1252'?>

<!DOCTYPE MessageFormat SYSTEM 'mfl.dtd'>

<MessageFormat name='StockPrices' version='2.01'>

<StructFormat name='PriceQuote' repeat='*'>

<FieldFormat name='StockSymbol' type='String' delim=':'

codepage='windows-1252'/>

<FieldFormat name='StockPrice' type='String'

delim='|'codepage='windows-1252'/>

</StructFormat>

</MessageFormat>

The XML input generated by the test console to test the MFL file in the Listing 4-2 is described
in the following listing.

Listing 4-3 Test Console XML Input

<StockPrices>

 <PriceQuote>

 <StockSymbol>StockSymbol_31</StockSymbol>

 <StockPrice>StockPrice_17</StockPrice>

 </PriceQuote>

</StockPrices>

In the test console, click Execute to run the test—the result is the Stock symbol and the stockPrice
in binary format as shown in the following listing.

Using the Tes t Conso le

4-14 AquaLogic Service Bus User Guide

Listing 4-4 MFL Test Console Results

00000000:53 74 6F 63 6B 53 79 6D 62 6F 6C 5F 33 31 3A 53 StockSymbol_31:S

00000010:74 6F 63 6B 50 72 69 63 65 5F 31 37 7C StockPrice_17|...

XSLT
Extensible Stylesheet Language Transformation (XSLT) describes XML-to-XML mappings in
AquaLogic Service Bus. You can use XSL Transformations when you edit XQuery expressions
in the message flow of proxy services

To test an XSLT resource, you must supply an input XML document. The test console displays
the output XML document as a result of the test. You can create parameters in your document to
assist with a transformation. XSLT parameters accept either primitive values or XML document
values. You cannot identify the types of parameters from the XSL transformation. In the Input
and parameters section of the XSLT Resource Testing page in the test console, you must provide
the values to bind to the XSLT parameters defined in your document.

XQuery
XQuery uses the structure of XML intelligently to express queries across different kinds of data,
whether physically stored in XML or viewed as XML.

An XQuery transformation can take multiple inputs and returns one output. The inputs expected
by an XQuery transformation are variable values to bind to each of the XQuery external variables
defined. The value of an XQuery input variable can be a primitive value (string, integer, date), an
XML document, or a sequence of the previous types. The output value can be primitive value
(string, integer, date), an XML document, a sequence of the previous types.

XQuery is a typed language—every external variable is given a type. The types can be
categorized into the following groups:

Simple/primitive type—string, int, float, and so on.

XML nodes

Untyped

In the test console, a single-line edit box is displayed if the expected type is a simple type. A
multiple-line edit box is displayed if the expected data is XML. A combination input is used when

Test ing Resources

AquaLogic Service Bus User Guide 4-15

the variable is not typed. The test console provides the following field in which you can declare
the variable type: [] as XML. Input in the test console is rendered based on the type. This makes
it easy to understand the type of data you must enter.

For example, the following figure shows an XQuery with three variables: int, XML, and
undefined type.

Figure 4-6 Input to the XQuery Test

In the test console, all three variables are listed in the Variables section. By default, XML is
selected for the untyped variable as it is the most typical case. You must configure these variables.

Using the Tes t Conso le

4-16 AquaLogic Service Bus User Guide

Figure 4-7 Configuring the XQuery Variables in the Test Console

You can also test an XQuery expression from the XQuery Editor.

Performing In-line XQuery Testing
You must disable the pop-up blockers in your browser for the inline XQuery testing to work. Note
that if you have toolbars in the Internet Explorer browser, you may need to disable pop-up
blockers from under the browser’s Options menu as well as for all toolbars that are configured to
block them.

When performing in-line XQuery testing with the test console, you can use the Back button to
return to the page from where you can execute a new test. But if you want to execute a new test
after making changes to the in-line XQuery, you must close and re-open the test console for the
changes to take effect.

Testing Services With Web Service Security
The test console supports testing proxy services and business services protected with Web
Service Security (WSS). A SOAP service is protected with WSS if it has WS-Policies with
WS-Security assertions assigned to it. Specifically, a service operation is protected with
WS-Security if the operation’s effective request and/or response WS-Policy includes
WS-Security assertions. WS-Policies are assigned to a service by a mechanism called
WS-PolicyAttachment. See “Attaching WS-Policy Statements to WSDL Documents” in Using
Web Services Policy to Specify Inbound Message-Level Security in the AquaLogic Service Bus
Security Guide. Note that an operation may have both a request policy and a response policy.

When an operation has a request WS-Policy or response WS-Policy, the message exchange
between the test console and the service is protected by the mechanisms of WS-Security.
According to the operation’s policy, the test service digitally signs and/or encrypts the message
(more precisely, parts of the message) and includes any applicable security tokens. The input to

http://e-docs.bea.com/alsb/docs26/security/ws_policy.html
http://e-docs.bea.com/alsb/docs26/security/ws_policy.html

Test ing Serv i ces Wi th Web Serv ice Secur i t y

AquaLogic Service Bus User Guide 4-17

the digital signature and encryption operations is the clear-text SOAP envelope specified by the
user as described in “Configuring Proxy Service Test Data” and “Configuring Business Service
Test Data” in Test Console in the Using the AquaLogic Service Bus Console.

Similarly, the service processes the response according to the operation’s response policy. The
response may be encrypted or digitally signed. The test service then processes this response and
decrypts the message and/or verifies the digital signature.

The test console (Security panel) displays fields used for testing services with WS-Security:
Service Provider, Username and Password.

Figure 4-8 Security Panel in Test Console

If you specify a proxy service provider in the test console, all client-side PKI key-pair credentials
required by WS-Security are retrieved from the proxy service provider. You use the user name
and password fields when an operation’s request policy specifies an Identity assertion and user
name Token is one of the supported token types. For more information, see Web Service Policy.

The Service Provider, user name, and Password fields are displayed whenever the operation has
a request or response policy. Whether the values are required depends on the actual request and
response policies.

http://e-docs.bea.com/alsb/docs26/consolehelp/testing.html
http://e-docs.bea.com/alsb/docs26/security/ws_policy.html

Using the Tes t Conso le

4-18 AquaLogic Service Bus User Guide

The following table describes the different scenarios.

Table 4-1 Digital Signature and Encryption Scenarios

Scenario Is Proxy Service Provider Required?

The request policy has a Confidentiality assertion. No. The test service encrypts the request with the
service’s public key. When testing a proxy service, the test
service automatically retrieves the public key from the
encryption certificate assigned to the proxy service
provider of the proxy service.

When testing a business service, the encryption certificate
is embedded in the WSDL of the business service. The test
service automatically retrieves this WSDL from the
WSDL repository and extracts the encryption certificate
from the WSDL.

The response policy has a Confidentiality
assertion.

Yes. In this scenario, the operation policy requires the
client to send its certificate to the service. The service will
use the public key from this certificate to encrypt the
response to the client. A proxy service provider must be
specified and must have an associated encryption
credential.

If both request and response encryption are supported,
different credentials must be used.

Test ing Serv i ces Wi th Web Serv ice Secur i t y

AquaLogic Service Bus User Guide 4-19

The request policy has an Integrity assertion. Yes. The client must sign the request. A proxy service
provider must be specified and must have an associated
digital signature credential.

Furthermore, if this is a SAML holder-of-key integrity
assertion, a user name and password is needed in addition
to the proxy service provider.

The response policy has an Integrity assertion. No. In this case, the policy specifies that the service must
sign the response. The service signs the response with its
private key. The test console simply verifies this
signature.

When testing a proxy service, this is the private key
associated to the proxy service provider’s digital signature
credential for the proxy service.

When testing a business service, the service signing
key-pair is configured in a product-specific way on the
system hosting the service.

In the case that the current security realm is configured to
do Certificate Lookup and Validation, then the certificate
that maps to the proxy service provider must be registered
valid in the certificate lookup and validation framework.

For more information on Certificate Lookup and
Validation, see ''Configuring the Credential Lookup and
Validation Framework” in Configuring WebLogic
Security Providers in Securing WebLogic Server.

Table 4-1 Digital Signature and Encryption Scenarios

Table 4-2 Identity Policy Scenarios (Assuming that the Policy has an Identity Assertion)

Supported Token
Types1

Description Comments

UNT The service only
accepts WSS user
name tokens

The user must specify a user name and password in the security
section.

X.509 The service only
accepts WSS
X.509 tokens

The user must specify a proxy service provider in the security section
and the proxy service provider must have an associated WSS X.509
credential.

http://e-docs.bea.com/wls/docs92/secmanage/providers.html
http://e-docs.bea.com/wls/docs92/secmanage/providers.html

Using the Tes t Conso le

4-20 AquaLogic Service Bus User Guide

Limitations for Services and Policies
The following limitations exist for testing proxy services with SAML policies and business
services with SAML holder-of-key policies:

Testing of proxy services with inbound SAML policies is not supported

Testing business services with a SAML holder-of-key policy is a special case.

The SAML holder-of-key scenario can be configured in two ways:

SAML The service only
accepts WSS
SAML tokens

The user must specify a user name and password in the security
section or a user name and password in the transport section. If both
are specified, the one from the security section is used as the identity
in the SAML token.

UNT, X.509 The service
accepts UNT or
X.509 tokens

The user must specify a user name and password in the security
section or a proxy service provider in the security section with an
associated WSS X.509 credential. If both are specified, only a UNT
token is generated.

UNT, SAML The service
accepts UNT or
SAML tokens

The user must specify a user name and password in the security
section or a user name and password in the transport section. If both
are specified, only a UNT token is sent.

X.509, SAML The service
accepts X.509 or
SAML tokens

The user must specify one of the following:
• a user name and password in the security section
• a user name and password in the transport section
• a proxy service provider with an associated WSS X.509

credential

UNT, X.509,
SAML

The service
accepts UNT,
X.509 or SAML
tokens

The user must specify one of the following:
• a user name and password in the security section
• a user name and password in the transport section
• a proxy service provider with an associated WSS X.509

credential.

1. From the Identity Assertion inside the request policy.

Table 4-2 Identity Policy Scenarios (Assuming that the Policy has an Identity Assertion)

Supported Token
Types1

Description Comments

Test ing Serv i ces Wi th Web Serv ice Secur i t y

AquaLogic Service Bus User Guide 4-21

– as an integrity policy (this is the recommended approach)

– as an identity policy

In both cases the user must specify a user name and password—the SAML assertion will
be on behalf of this user. If SAML holder-of-key is configured as an integrity policy, the
user must also specify a proxy service provider. The proxy service provider must have a
digital signature credential assigned to it. This case is special because this is the only case
where a user name and password must be specified even if there is not an identity policy.

Note: After executing a test in the test console, the envelope generated with WSS is not always
a valid envelope—the results page in the test console includes white spaces for improved
readability. That is, the secured SOAP message is displayed printed with extra white
spaces. Because white spaces can affect the semantic of the document, this SOAP
message cannot always be used as the literal data. For example, digital signatures are
white-space sensitive and can become invalid.

Using the Tes t Conso le

4-22 AquaLogic Service Bus User Guide

Test Console Transport Settings
The transport panel in the test console provides the functionality to specify the metadata and
transport headers for messages in your test system. The following figure shows an example of a
Transport panel on the test console.

Figure 4-9 Transport Panel in the Test Console

The preceding figure displays an example of the transport panel for a given service—in this case,
a WSDL-based proxy service.

You can set the metadata and the transport headers in the message flow of a proxy service. In
doing this, you influence the actions of the outbound transport. You can test the metadata, the

Test Conso le T ranspor t Se t t ings

AquaLogic Service Bus User Guide 4-23

message, and the headers so that you can see the output you get in the pipeline. The fields that are
displayed in the Transport panel when testing a proxy service represent those headers and
metadata that are available in the pipeline. The test console cannot filter the fields it presents
depending on the proxy service. The same set of transport parameters are displayed on the page
for every HTTP-based request.

The Username and Password fields are used to implement basic authentication for the user that
is running the proxy service. The Username and Password fields are not specifically transport
related.

Metadata fields are grouped in the Transport panel, below the Username and Password fields
and above the group of transport header fields. The fields displayed are based on the transport
type of the service. Certain fields are pre populated in the test console depending on the operation
selection algorithm you selected for the service when you defined it.

For example, in the case of the transport panel displayed in Figure 4-9, the SOAPAction header
field is populated with “http://example.orgprocessLoanApp”. This value was taken from
the service definition (the selection algorithm selected for this proxy service was SOAPAction
Header). For more information about the selection algorithms, see “Adding a Proxy Service” in
Proxy Services in Using the AquaLogic Service Bus Console.

When you specify values for fields in the transport panel, be aware whether you opted to test the
service using a direct or indirect call—see “Direct Calls” on page 4-3 and “Indirect Calls” on
page 4-4—and specify the values according to whether the message will be processed through
the transport layer or not.

When testing a proxy service with a direct call, the test data must represent the message as if it
had been processed through the transport layer. That is, the test data should represent the message
in the state expected at the point it leaves the transport layer and enters the service. When testing
a proxy or business service, using an indirect call, the test data represents the data that is sent from
a route node or a service callout. The test message is processed through the transport layer.

For information about specific headers and metadata and how they are handled by the test
framework, see Understanding How the Run Time Uses the Transport Settings in the Test
Console.

About Security and Transports
When using the test console to test HTTP(S) business services with BASIC authentication,
the test console authenticates with the user name and password from the service account of
the business service. Similarly, when testing JMS, e-mail, or FTP business services that

http://e-docs.bea.com/alsb/docs26/consolehelp/proxyservices.html

Using the Tes t Conso le

4-24 AquaLogic Service Bus User Guide

require authentication, the test console authenticates with the service account associated
with the business service.

When you test proxy services, the test console never sends a HTTP request over the
network. Therefore transport-level access control is not applied.

Understanding How the Run Time Uses the Transport
Settings in the Test Console
The test console allows you to specify header values and metadata. However, when the message
is sent out, some headers and metadata may be modified or removed, and the underlying transport
may in turn, ignore some of the headers and use its own values when the test is executed.

The following table describes the headers and metadata for which there are limitations when
using the test console.

Table 4-3 Limitations to Transport Header and Metadata Values You Specify in the Test Console When Testing a
Service

Transport Testing this Service
Type

Description of Limitation Transport Headers Affected

HTTP(S)1 Proxy Service All transport headers and other
fields you set are preserved at
run time.

This is true whether or not the
Direct Call option is set.

All

Business Service The AquaLogic Service Bus
run time overrides any values
you set for these parameters.

• Content-Length
• Content-Type
• relative-URI
• client-host
• client-address

Test Conso le T ranspor t Se t t ings

AquaLogic Service Bus User Guide 4-25

JMS Proxy Service Direct Call

When the Direct Call option is
used, all transport headers and
other fields you set are
preserved at run time.

All

X Direct Call

When the Direct Call option is
not used, the same limitations
apply as for a transport header
action configuration.

See the limitations for JMS
transport headers described
in “Transport Headers” in
Proxy Services: Actions in
Using the AquaLogic
Service Bus Console.

Business Service The same limitations apply as
for a transport header action
configuration.

See the limitations for JMS
transport headers described
in “Transport Headers” in
Proxy Services: Actions in
Using the AquaLogic
Service Bus Console.

Table 4-3 Limitations to Transport Header and Metadata Values You Specify in the Test Console When Testing a
Service

Transport Testing this Service
Type

Description of Limitation Transport Headers Affected

http://e-docs.bea.com/alsb/docs26/consolehelp/proxyactions.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxyactions.html

Using the Tes t Conso le

4-26 AquaLogic Service Bus User Guide

E-Mail Proxy Service No limitations. In other words,
any transport headers and
other fields you set are
honored by the run time. This
is true whether or not Direct
Call is specified.

Business Service The AquaLogic Service Bus
run time overrides any values
you set for these parameters.

• Content-Type

From and Date headers have
no meaning for outbound
requests. If they are set
dynamically (that is, if they are
set in the $outbound headers
section), they are ignored.

These headers are received in
$inbound. Date is the time
the mail was sent by the
sender. From is retrieved from
incoming mail headers.

• From
• Date

File Proxy Service No limitations. In other words,
any transport headers and
other fields you set are
honored by the run time.2

Business Service

FTP Proxy Service No limitations. In other words,
any transport headers and
other fields you set are
honored by the run time.

Business Service

1. When you test proxy services, the test console never sends a HTTP request over the network,
therefore transport-level access control is not applied.
2. In the case of FileName (Transport metadata)—the value you assign is used to append to the
output file name. For example, 1698922710078805308-b3fc544.1073968e0ab.-7e8e-{$FileName}

Table 4-3 Limitations to Transport Header and Metadata Values You Specify in the Test Console When Testing a
Service

Transport Testing this Service
Type

Description of Limitation Transport Headers Affected

AquaLogic Service Bus User Guide 5-1

C H A P T E R 5

UDDI

This section contains the information on the following topics:

“Overview of BEA AquaLogic Service Bus and UDDI” on page 5-1

“Using AquaLogic Service Bus and UDDI” on page 5-8

“Configuring a Registry” on page 5-9

“Publishing a Proxy Service to a UDDI Registry” on page 5-10

“Using Auto-Publish” on page 5-11

“Importing a Service from a Registry” on page 5-12

“Using Auto-Import” on page 5-14

“Auto-Synchronization of Services With UDDI” on page 5-15

“Mapping AquaLogic Service Bus Proxy Services to UDDI Entities” on page 5-16

“Canonical tModels Supporting AquaLogic Service Bus Services”

“Example” on page 5-26

Overview of BEA AquaLogic Service Bus and UDDI
Universal Description, Discovery and Integration (UDDI) registries are used in an enterprise to
share Web services. Using UDDI services helps companies organize and catalog these Web
services for sharing and reuse in the enterprise or with trusted external partners.

UDDI

5-2 AquaLogic Service Bus User Guide

A UDDI registry service for Web services is defined by the UDDI specification available at:
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3

UDDI registries are based on this specification, which provides details on how to publish and
locate information about Web services using UDDI. The specification does not define run-time
aspects of the services (it is only a directory of the services). UDDI provides a framework in
which to classify your business, its services, and the technical details about the services you want
to expose.

Publishing a service to a registry requires knowledge of the service type and the data structure
representing that service in the registry. A registry entry has certain properties associated with it
and these property types are defined when the registry is created. You can publish your service
to a registry and make it available for other organizations to discover and use. Proxy services
developed in BEA AquaLogic Service Bus can be published to a UDDI registry. AquaLogic
Service Bus can interact with any UDDI 3.0 compliant registry. BEA provides the AquaLogic
Service Registry.

Figure 5-1 AquaLogic Service Bus integration with UDDI

AquaLogic Service Bus’ Web-based interface to AquaLogic Service Registry makes the registry
accessible and easy to use. In working with UDDI, AquaLogic Service Bus promotes the reuse
of standards based Web services. In this way, AquaLogic Service Bus registry entries can be
searched for and discovered and used by a multiple domains. Web services and UDDI are built
on a set of standards, so reuse promotes the use of acceptable, tested Web services and application
development standards across the enterprise. The Web services and interfaces can be catalogued
by type, function, or classification so that they can be discovered and managed more easily.

http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3

Overv iew o f BEA AquaLog ic Se rv ice Bus and UDDI

AquaLogic Service Bus User Guide 5-3

Basic Concepts of the UDDI Specification
UDDI is based upon several established industry standards, including HTTP, XML, XML
Schema Definition (XSD), SOAP, and WSDL. The latest version of the UDDI specification is
available at:

http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3

An UDDI specification describes a registry of Web services and its programmatic interfaces.
UDDI itself is a set of Web services. The UDDI specification defines services that support the
description and discovery of:

Businesses, organizations, and other Web services providers

The Web services they make available

The technical interfaces that can be used to access and manage those services

Benefits of Using a UDDI Registry with AquaLogic Service
Bus
A UDDI registry stores data and metadata about business services. It is a standards-based library
of catalogued and managed information about Web services for discovery and reuse by other
applications. UDDI offers several benefits to IT managers at both design time and run time,
including increasing code reuse. UDDI also provides benefits to developers, including the
following:

UDDI improves infrastructure management by publishing information about proxy services
to the registry and categorizes the services for discovery. Thus growing a portfolio of
services making it easier to understand and manage relationships among services,
component versioning, and dependencies.

UDDI services can be imported from a registry to configure the parameters required to
invoke the Web service and the necessary transport and security protocols.

UDDI promotes the use of standards-based Web services and business services
development in business applications and provides a link to a library of resources for Web
services developers. This decreasing the development lifecycle and improves productivity.
It also increases the prospect of interoperability between business applications by sharing
standards-based resources.

UDDI provides a user friendly interface for searching and discovering Web services. You
can search on criteria specified by you.

http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3

UDDI

5-4 AquaLogic Service Bus User Guide

Introduction to UDDI Entities
UDDI uses a specific data model to represent entities that define organizations and services.
Figure 5-2 shows the relationship between different UDDI entities.

Figure 5-2 UDDI Entities Representing Organizations and Services

A high-level overview of the UDDI entities is provided.

Table 5-1 High-Level Description of UDDI Entities

Business Entity An organization or group of people who own and provide the services. It
can be described by a set of names, descriptions, contact details for the
service provider, a set of categories that represent the business entity’s
features, unique identifiers, discovery URLs.

Business Service A business service represents functionality or resources provided by a
business entity. It is described by a name, a description, and a set of
categories that represent the function of the service. It is not necessarily a
Web service.

Overv iew o f BEA AquaLog ic Se rv ice Bus and UDDI

AquaLogic Service Bus User Guide 5-5

For more information on the UDDI data model and entities used in UDDI, see Introduction to
BEA AquaLogic Service Registry in BEA AquaLogic Service Registry 2.1 User’s Guide.

Prerequisites
Before using AquaLogic Service Bus with a UDDI registry you must perform the following tasks:

AquaLogic Service Registry must be installed and running. For information on how to
install BEA AquaLogic Service registry 2.1, see in BEA AquaLogic Service Registry
Installation Guide.

AquaLogic Service Bus must be installed and running. For information on how to install
BEA AquaLogic Service Bus 2.5, see, in BEA AquaLogic Service Bus Installation Guide.

Certification
AquaLogic Service Bus works with any UDDI registry that is fully compliant with the version 3
implementation of UDDI (Universal Description, Discovery and Integration).

AquaLogic Service Registry 2.1 is a version 3 UDDI-compliant registry and is certified to work
with AquaLogic Service Bus.

Features
The AquaLogic Service Bus Console provides you with access to any version 3 implementation
of UDDI registry once it has been set up to work with AquaLogic Service Bus. The following
features are available:

Binding Template A binding template represents the technical details of how to invoke a
business service. A business service can contain one or more binding
templates. It is described by an Access Point representing the service
endpoint (the endpoint URI and protocol specification), tModel instance
information, and categories to reference specific features of the binding
template.

tModel This is the technical model describing how services must be represented in
the UDDI registry. The description of a service includes a name, a
description, an overview document (a reference to a document specifying
the purpose of the tModel), a category, and an identifier (to uniquely
identify the tModel).

Table 5-1 High-Level Description of UDDI Entities

http://edocs.bea.com/alsr/docs21/registry/usr_guide/usr.srintro.html
http://edocs.bea.com/alsr/docs21/registry/usr_guide/usr.srintro.html
http://edocs.bea.com/alsr/docs21/install/index.html
http://edocs.bea.com/alsr/docs21/install/index.html

http://e-docs.bea.com/alsb/docs26/install/index.html

UDDI

5-6 AquaLogic Service Bus User Guide

Configure AquaLogic Service Bus to work with one or more version 3 UDDI compliant
registries.

The import feature allows you to search for specific services in a registry or list all services
available. You can search on business entity, service name pattern, or both, and then make
your selection from the results list.

Import selected business services from a registry.

Publish selected AquaLogic Service Bus proxy services to the registry.

For more information on how to configure and search the registry, import business services to
AquaLogic Service Bus, and how to publish proxy services to a UDDI registry, see the following
topics in System Administration in Using the AquaLogic Service Bus Console:

Configuring a UDDI Registry

Importing a Business Service from UDDI Registry

Publishing a Proxy Service to a UDDI Registry

What is the BEA AquaLogic Service Registry?
BEA AquaLogic Service Registry is a compliant fully with version 3 implementation of UDDI
and is a key component of a Service Oriented Architecture (SOA).

Note: AquaLogic Service Registry is not provided with AquaLogic Service Bus. In order to use
AquaLogic Service Registry you have to buy a separate licence from BEA.

A UDDI registry provides a standards-based foundation infrastructure for locating services,
invoking services, and managing metadata about services (security, transport or quality of
service). Using the Registry Console you can browse and publish registry content. The Registry
Console is the primary console for administrators to perform registry management. You can
launch the AquaLogic Service Registry console in a Web browser by opening the following URL:
http://hostname:port/uddi/web, where hostname and port are defined when AquaLogic
Service Registry is installed. The default port is 8080. For more information on the management
of AquaLogic Service Registry, particularly configuring the registry and managing permissions,
approval, and replication, see BEA AquaLogic Service Registry Administrator’s Guide.

Sample Business Scenario for AquaLogic Service Bus and
UDDI
The following are two sample business scenarios that highlight the benefit of using UDDI.

http://e-docs.bea.com/alsb/docs26/consolehelp/systemadmin.html
http://edocs.bea.com/alsr/docs21/registry/index.html
http://e-docs.bea.com/alsb/docs26/consolehelp/systemadmin.html
http://e-docs.bea.com/alsb/docs26/consolehelp/systemadmin.html
http://e-docs.bea.com/alsb/docs26/consolehelp/systemadmin.html

Overv iew o f BEA AquaLog ic Se rv ice Bus and UDDI

AquaLogic Service Bus User Guide 5-7

Basic Proxy Service Communication with a UDDI Registry
This scenario describes how you can use AquaLogic Service Bus to import services form a
registry and then publish the services back to a registry as part of an AquaLogic Service Bus
proxy service.

AquaLogic Service Bus imports business services from a UDDI registry. Proxy services are
configured to communicate with the business services in the Message Flow. The proxy services
themselves can be published back to the registry and made available for use by other domains.

Figure 5-3 Proxy Service Communication with a UDDI Registry

Cross-Domain Deployment in AquaLogic Service Bus
This scenario describes cross-domain deployment using AquaLogic Service Bus. An AquaLogic
Service Bus application in one domain requires access to an AquaLogic Service Bus service in
another domain at run time.

An instance of AquaLogic Service Bus is deployed in each of two domains. The AquaLogic
Service Bus Proxy service (P1) is configured in domain (D1). The AquaLogic Service Bus Proxy
service (P2) in domain (D2) requires to access proxy service (P1). As the domains can not
communicate directly with each other, P2 in D2 can not discover P1 in D1. The AquaLogic
Service Bus import and export feature does not support run-time discovery of services in different
domains, but publishing the service to a publicly available UDDI registry allows for the discovery
of the service in any domain. Once P1 is made available in the UDDI registry it can be invoked
at run time (for example, get a stock quote) and imported as a business services in another
AquaLogic Service Bus proxy service.

When importing and exporting from different domains you should have network connectivity. A
proxy service might reference schemas located in the repository of a different domain, in which
case it needs HTTP access to the domain to import using the URL. In the absence of connectivity
an error message will be returned.

UDDI

5-8 AquaLogic Service Bus User Guide

Figure 5-4 Sample Business Case of Cross-Domain Deployment

Using AquaLogic Service Bus and UDDI
You can use the AquaLogic Service Bus Console to:

Publish information about any proxy service to a registry, including the following service
types: WSDL, messaging, any SOAP, and any XML.

Search a registry for information about a service and discover the service.

Configure a registry to allow users to publish services and import services.

Import Web services and integrate them with your application.

UDDI Workflow
The typical workflow for using UDDI with AquaLogic Service Bus is as follows:

Install AquaLogic Service Bus. For more information on the installation, see AquaLogic
Service Bus Installation Guide.

Install AquaLogic Service Registry. For information on installation, see AquaLogic Service
Registry Installation Guide.

Configure the registry in the ALSB console. For more information, see “Configuring a
UDDI Registry” in System Administration in Using the AquaLogic Service Bus Console.

http://e-docs.bea.com/alsb/docs26/install/index.html
http://e-docs.bea.com/alsb/docs26/install/index.html
http://e-docs.bea.com/alsb/docs26/consolehelp/systemadmin.html
http://edocs.bea.com/alsr/docs21/install/index.html
http://edocs.bea.com/alsr/docs21/install/index.html

Conf igur ing a Regis t r y

AquaLogic Service Bus User Guide 5-9

Set a default registry. For more information see Setting Up a Default UDDI Registry in
Using the AquaLogic Service Bus Console.

Configuring a Registry
You can configure a UDDI registry, make it available in AquaLogic Service Bus, and then
publish AquaLogic Service Bus proxy services to it or import business services from the registry
to be used in a proxy service. You must be in an active AquaLogic Service Bus session in the
AquaLogic Service Bus Console to configure the registry.

The following table describes the fields for configuring a UDDI registry. An asterisk denotes a
required field.

Table 5-2 UDDI Registry Configuration Settings

Property Description

Name* The name of the registry. The name is assigned to it when it is first
published. Select the registry name to edit the details for the registry. You
can edit the inquiry URL, publish URL, security URL, and the service
account, but not the name of the registry.

Inquiry URL* The URL used to locate and import a service. To read from a registry, you
only need to specify a name and inquiry URL.

Publish URL* The URL used to publish a service. When publishing a service you must
also specify a security URL and specify the service account associated with
the registry.

Security URL* The URL used to get an authentication token so that you can publish to the
registry. You must specify a publish URL and a security URL if you have
a service account defined.

Subscription URL* The URL used to subscribe to changes from the corresponding service in
the registry. You use this URL to synchronize the service in the AquaLogic
Service Bus console with the changes in the corresponding service in the
registry using Auto-Import.

User Name* The user name for the registry console. This is required for authentication
into the registry console.

Password/(Change
Password)

The password for the registry console. This is required for authentication
into the registry console.

http://e-docs.bea.com/alsb/docs26/consolehelp/systemadmin.html

UDDI

5-10 AquaLogic Service Bus User Guide

When publishing services to AquaLogic Service Registry, to gain access to the registry, you must
be authenticated for which you should have a valid user name and password. The user name and
password combination is implemented as a service account resource in AquaLogic Service Bus.
Service accounts must be defined before configuring proxy services so that the authentication
criterion is set up to work with a service during the configuration of the proxy service.

You can set up registries with multiple user name and passwords allowing different users to have
different permissions based on the service account. Permissions in AquaLogic Service Registry
are such that administrators can manage users’ privileges in BEA AquaLogic Service Registry
and create views into the registry, specific to the needs of the different user types. User
permissions set in AquaLogic Service Bus govern access to the registries, their content, and the
functionality available to you.

Publishing a Proxy Service to a UDDI Registry
You can use the AquaLogic Service Bus Console to publish proxy services to AquaLogic Service
Registry. You must have an account set up in AquaLogic Service Registry to do this. You can
publish any proxy service to a UDDI registry except proxy services using the local transport. The
service types and transports are listed in Table 5-3.

Load tModels into registry Loads the tModels into the selected registry. This option only has to be
selected once per registry.

Enable Auto-Import Auto-synchronizes services with the UDDI Registry.

Table 5-2 UDDI Registry Configuration Settings (Continued)

Property Description

Table 5-3 Service Types and Transports for a Proxy Service

Service Type Transports

WSDL HTTP(S), JMS

Any SOAP HTTP(S), JMS

Any XML HTTP(S), JMS, E-mail, File, FTP, Tuxedo

Using Auto-Pub l ish

AquaLogic Service Bus User Guide 5-11

You can select the Business Entity under which a service is to be published. Business Entity
Administration (including creation, removal, update, and deletion of entities) is done using the
management console provided by the registry vendor (the Business Service Console in the case
of AquaLogic Service Registry). The first time you publish to a registry you must load the
tModels to that registry. This is done at the time you configure the publishing details in the
AquaLogic Service Bus Console.

For more information on how to publish to a UDDI registry, see “Publishing a Proxy Service to
a UDDI Registry” in System Administration in Using the AquaLogic Service Bus Console.

AquaLogic Service Bus works with any UDDI version 3 compliant registry but it has been
certified to work with AquaLogic Service Registry only.

Note: An error can occur when you attempt to import a service from a UDDI registry if that
service was originally published to the registry from an AquaLogic Service Bus cluster
in which any of the clustered servers uses the localhost address. Specifically, when the
service being imported references a resource (WSDL or XSD) which references other
resources (WSDL or XSD).

Ensure that before you publish services to a UDDI registry from a clustered domain, none
of the servers in the cluster use localhost in the server addresses. Instead, use either the
machine name or the IP address.

Using Auto-Publish
When you create a proxy service you can publish it to the default registry automatically. In order
to do this you have to first set a default registry to which the proxy services are published when
you create or modify them. You can select the check box beside Publish To Registry in the
Create a Proxy Service-General Configuration page to enable or disable the Auto-Publish
feature for individual proxy services. For more information on setting up a default registry, see
Setting up a Default Registry in Using the AquaLogic Service Bus Console.

When you enable the Publish To Registry in the Create a Proxy Service-General
Configuration page the proxy service is published to the default registry. The services are

Messaging HTTP(S), JMS, E-mail, File, FTP, Tuxedo

Note: Messaging services can have different content for requests and responses, or can have no response
at all (one-way messages). E-mail, File, and FTP should be one-way.

Table 5-3 Service Types and Transports for a Proxy Service

Service Type Transports

http://e-docs.bea.com/alsb/docs26/consolehelp/systemadmin.html
http://e-docs.bea.com/alsb/docs26/consolehelp/systemadmin.html

UDDI

5-12 AquaLogic Service Bus User Guide

automatically published to the registry when you activate the session, only when the Publish to
Registry check box is selected for the proxy service. If the Registry is unavailable, the publish is
retried in the background. Any further changes to the proxy service resets the retry attempts.
When a proxy service is republished to UDDI, all taxonomies and categorizations, which are
defined in UDDI for the proxy service are preserved.

When you change the default registry all the proxy services that are enabled to auto-publish will
be published to the new default registry. Synchronization will now take place with the current
default registry. When a proxy service is not synchronized, the AquaLogic Service Bus Console

console displays this icon beside the proxy service.

Note: When you have a default registry and you import a sbconfig.jar, which has a default
registry set with the same logical name during the import, it is possible that the default
registry will have an incorrect value for the business entity. You may now see errors in
the Auto Publish Status page, if there are any auto-published proxy services. You can
correct this by selecting the default registry again.

Importing a Service from a Registry
You can import services from a registry as AquaLogic Service Bus business services. When
importing a WSDL-based service, if multiple UDDI binding templates are encountered,
AquaLogic Service Bus creates a different business service for each binding template.

To establish access to UDDI registries in AquaLogic Service Bus you must have AquaLogic
Service Bus system administration privileges. The registry entries appear on the System
Administration > Import from UDDI page of the AquaLogic Service Bus Console. When
importing, you make a selection from the list of available registries. To discover a service in a
registry you must query a specific registry. Entries in registries are unique. This query is
performed when you specify what registry you want to use for importing a service.

You can import the following business services types from a UDDI registry into AquaLogic
Service Bus:

WSDL over HTTP binding. When multiple UDDI binding templates are present, a
business service is created for each binding template.

SOAP or XML binding over HTTP, or HTTP(S).

Services that are categorized as AquaLogic Service Bus services. These are AquaLogic
Service Bus proxy services that are published to a UDDI registry. This feature is primarily

Impor t ing a Serv ice f rom a Reg is t r y

AquaLogic Service Bus User Guide 5-13

used in multi-domain AquaLogic Service Bus deployments where proxy services from one
domain need to discover and route to proxy services in another domain.

For information on how to use the AquaLogic Service Bus Console to import services from a
UDDI registry, see “Importing a Business Service from a UDDI Registry” in System
Administration in Using the AquaLogic Service Bus Console.

When a service is updated, you must re-import the service from the registry to get the most recent
version, unless you have selected the Enable Auto Import option to auto-synchronize imported
services with the UDDI Registry. Any service that is imported with this option selected will be
kept in synchrony with the UDDI Registry. If there is any failure during auto-synchronization, it
will be reported on the Auto-Import Status page where you can update it manually.

Services have documents associated with them and these documents can include a number of
other documents (schemas, policies, and so on). On import, the UDDI registry points to the
document location based on the inquiry URL of the service. When a document that includes or
references other resources is located, all of the referenced information and each included item is
added as a separate resource in AquaLogic Service Bus.

Business Entity and pattern are the criteria used to search for a service in a registry. For example,
you can enter foo%, when searching for a service. Services published by AquaLogic Service Bus
have specific tmodel keys identifying the services that are used when searching for the service
in the registry.

Import automatically tries to connect to a registry when you attempt to get the list of business
entities from the registry. The Business Entity is the highest level of organization in the registry,
though you can use other search criteria, such as business, application type, and so on. If you
require authentication, then you need a user name and password which you must get from your
systems Administrator.

Related References
Technical Notes can be found at
http://www.oasis-open.org/committees/uddi-spec/doc/tns.htm. The note on s
Using WSDL in a UDDI Registry is important.

UDDI product and development tool information is available at the OASIS UDDI
Solutions page at http://uddi.org/solutions.html.

The UDDI specifications The specification defines the following:
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm

http://e-docs.bea.com/alsb/docs26/consolehelp/systemadmin.html
http://e-docs.bea.com/alsb/docs26/consolehelp/systemadmin.html
http://www.oasis-open.org/committees/uddi-spec/doc/tns.htm
http://uddi.org/solutions.html
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm

UDDI

5-14 AquaLogic Service Bus User Guide

– SOAP APIs that applications use to query and to publish information to a UDDI
registry

– XML Schema schemata of the registry data model and the SOAP message formats

– WSDL definitions of the SOAP APIs

– UDDI registry definitions (tModels) of various identifier and category systems that
may be used to identify and categorize UDDI registrations

Using Auto-Import
You can use the Auto-Import feature to synchronize the business services, which are imported
from the AquaLogic Service Registry, with the corresponding services in the registry. For more
information on Using Auto-Import see, Auto-Import in Using the AquaLogic Service Bus
Console. You can use Auto-Import to do the following:

“Synchronize” on page 5-14

“Detach” on page 5-15

Synchronize
You can synchronize the services you have imported from the registry. If the services in the
registry change, you can synchronize services in the AquaLogic Service Bus Console with those
in the registry. The following use case illustrates the process of synchronization. If the business
service is not detached from the registry, AquaLogic Service Bus automatically subscribes to any

changes to the service in the registry. If the service changes, the icon in the resource browser
and project explorer indicates the service needs to be synchronized. In addition, the Auto Import
Status page shows this service and provides the options to synchronize the service or detach it
from the registry. Under certain circumstances, synchronizing the service might result in
semantic validation errors that shows up in the view conflicts page. These will have to be fixed
manually fixed before the session is activated.

When a service is synchronized, the service is updated only with fields that are obtained from
UDDI. Other fields in the service definition will preserve their values if modified since last
import.

http://e-docs.bea.com/alsb/docs26/consolehelp/systemadmin.html

Auto-Synchron i za t ion o f Se rv ices Wi th UDDI

AquaLogic Service Bus User Guide 5-15

Figure 5-5 Sample Business Case of Cross-Domain Deployment

Consider a scenario where you publish services from Domain1(see Figure 5-5) to a registry. You
then import these services to another domain, Domain2. When you make changes to the
corresponding service in Domain1 and update it in the registry. You can update the services in
Domain2 by synchronizing it with the registry using Auto-Import.

Detach
When you do not want the service in the AquaLogic Service Bus Console synchronized with the
corresponding service in the registry then, you can avoid synchronization by detaching it from
the registry. For more information on using Detach, see “Detaching a Service” in System
Administration in Using the AquaLogic Service Bus Console.

Auto-Synchronization of Services With UDDI
You can keep the service definitions in AquaLogic Service Bus automatically synchronized (both
ways) with those in UDDI.

Services can be automatically published to a UDDI registry after they are created or changed
within AquaLogic Service Bus and business service definitions can be imported from UDDI and
automatically updated when the original service is changed in UDDI. Alternatively, you can
configure the AquaLogic Service Bus Console to prompt you for approval for synchronization
when a service changes in the UDDI registry.

http://e-docs.bea.com/alsb/docs26/consolehelp/systemadmin.html
http://e-docs.bea.com/alsb/docs26/consolehelp/systemadmin.html

UDDI

5-16 AquaLogic Service Bus User Guide

When configuring a registry, select the Enable Auto Import option to auto-synchronize
imported services with the UDDI Registry. Any service that is imported with this option selected
will be kept in synchrony with the UDDI Registry automatically. If there is any failure during
auto-synchronization, it will be reported on the Auto-Import Status page where you can update it
manually. See “Configuring a UDDI Registry” in System Administration in the Using the
AquaLogic Service Bus Console.

Mapping AquaLogic Service Bus Proxy Services to UDDI
Entities

AquaLogic Service Bus proxy service attributes must be mapped to the data model supported by
the UDDI registry to allow a proxy service to be published as a UDDI business entity. The
following table shows the service types, message types, and transports relevant to the UDDI
registry mapping for an AquaLogic Service Bus proxy service.

Note: Optional parts are listed in parentheses. Messaging services can have different content
for requests and responses, or can have no response at all (one-way messages). E-mail,
File, and FTP should be one-way.

Proxy services have attributes in common and also attributes that are specifically defined by the
transport protocols used by the service and the type of service. Each proxy service can deliver
messages of a certain type.

The primary relevant entities in UDDI are:

businessService: this represents the service as a whole and contains high-level general
information about the service.

Table 5-4 Proxy Service Attributes and Service Types

Service Type Message Content Type Transports

WSDL SOAP or XML (with attachment) HTTP(S), JMS

Any SOAP Untyped SOAP (with attachment) HTTP(S), JMS

Any XML Untyped XML (with attachment) HTTP(S), JMS, E-mail, File, FTP,
and Tuxedo

Messaging Binary, Text, MFL, XML (schema) HTTP(S), JMS, E-mail, File, FTP,
and Tuxedo

http://e-docs.bea.com/alsb/docs26/consolehelp/systemadmin.html

Mapping AquaLog ic Serv ice Bus Proxy Serv ices t o UDDI En t i t i es

AquaLogic Service Bus User Guide 5-17

bindingTemplate: this contains information for accessing the service.

tModels: tModels are used to supply the individual attributes for categorizing and defining
the service.

Figure 5-6 shows how WSDL-based services are mapped to UDDI business entities.

Figure 5-6 WSDL Service to UDDI Mapping

The technical note on Using WSDL in a UDDI registry, version 2.0.2, at
http://www.oasis-open.org/committees/uddi-spec/doc/tns.htm, is used as the basis
for publishing WSDL-based proxy services to the UDDI registry. This document is also used as
a reference point for publishing non-WSDL based services. The document and the base UDDI
specification describe the canonical technical models (tModels) used to describe UDDI entities.
To publish AquaLogic Service Bus proxy services as entities in the UDDI registry, you must add
additional canonical tModels to support some of the constructs specific AquaLogic Service Bus.
Not all attributes of an AquaLogic Service Bus proxy service are useful when searching for a
service, for example service type and transport details. These attributes do not categorize the
service. tmodels are configuration details of the service once it has been discovered. These

http://www.oasis-open.org/committees/uddi-spec/doc/tns.htm

UDDI

5-18 AquaLogic Service Bus User Guide

configuration details are mapped to the business service binding template
tmodelinstanceDetails section. Other attributes specifically identify a service and can be
used as the search criteria for the service. These attributes are mapped using keyed references to
tModels with values in the categoryBag of the binding template.

An example of how AquaLogic Service Bus maps to UDDI is shown in Figure 5-7.

Figure 5-7 AquaLogic Service Bus to UDDI Mapping

UDDI Mapping Details for an AquaLogic Service Bus Proxy
Service
AquaLogic Service Bus high-level proxy service information maps into the Business Service as
follows:

Name and Description map to businessService elements.

There is a Special keyed Reference Group for AquaLogic Service Bus properties. An
example of a key is uddi:bea.com:attributes:aqualogicservicebus.

AquaLogic Service Bus type (WSDL, SOAP, XML, and Mixed) and Instance are mapped
to keyedReferences in the service category. An example of a key is
uddi:bea.com:servicetype.

An AquaLogic Service Bus Instance maps to a keyedReference in the AquaLogic
Service Bus keyedReferenceGroup (Name = “AquaLogicServiceBus”, Values = URL
of the AquaLogic Service Bus instance).

Mapping AquaLog ic Serv ice Bus Proxy Serv ices t o UDDI En t i t i es

AquaLogic Service Bus User Guide 5-19

This instance serves two purposes:

– To indicate that this service is in fact hosted by an AquaLogic Service Bus server.

– To contain the URL of the AquaLogic Service Bus instance.

Listing 5-1 shows a mapping of high-level proxy service information to a business service.

Listing 5-1 Sample Proxy Service to Business Service Mapping

<keyedReferenceGroup tModelKey="uddi:bea.com:servicebus:properties">

 <keyedReference tModelKey="uddi:bea.com:servicebus:servicetype"

 keyName="Service Type"

 keyValue="SOAP"/>

 <keyedReference tModelKey="uddi:bea.com:servicebus:instance"

 keyName="Service Bus Instance"

 keyValue="http://FOO02.amer.bea.com:7001"/>

</keyedReferenceGroup>

Note: The key for the businessService created when a proxy service is published is a publisher
assigned key name. It is derived from the AquaLogic Service Bus domain name, the path
of the proxy service, and the proxy service name. It takes the following form:

uddi:bea.com:servicebus:<domainname>:<path>:<servicename>.

For example, AnonESBan, which is a domain in AquaLogic Service Bus, contains a
project named Proxy, which contains a folder named Accounting, which in turn contains
a proxy service called PayoutProxy. When PayoutProxy is published to UDDI, its
businessService is created with the following key:
uddi:bea.com:servicebus:AnonESB:Proxies:Accounting:PayoutProxy.

AquaLogic Service Bus detailed proxy service information maps into the binding template as
follows:

The Endpoint URI maps to the access point.

The Marker tModel for each transport maps to tModelInstanceDetails.

UDDI

5-20 AquaLogic Service Bus User Guide

– Transport tModels for HTTP, JMS, File, FTP, E-mail. New tModels are packaged
with AquaLogic Service Bus to support JMS and file transports.

– Detailed AquaLogic Service Bus configuration information maps to instanceParms.

The Market tModel for each service type maps to the tModelInstanceDetails.This includes
the following:

– Protocol tModels for WSDL, any SOAP, any XML, Messaging. New tModels are
packaged with AquaLogic Service Bus to support anySOAP, anyXML, and Messaging.

– WSDL maps via WSDL to UDDI technology note.

– Messaging has detailed configuration information that maps to InstanceParms.

Listing 5-2 shows a detailed information mapping to the binding template.

Listing 5-2 Sample Detailed Mapping to the Binding Template

<bindingTemplate bindingKey="uddi:" serviceKey="uddi:">

 <accessPoint useType="endPoint">file:///c:/temp/in3</accessPoint>

 <tModelInstanceDetails>

 <tModelInstanceInfo tModelKey="uddi:uddi.org:transport:file">

 <InstanceDetails>

 <InstanceParms><ALSBInstanceParms xmlns="http://www.bea.com/wli/sb/uddi">

 <property name="fileMask" value="*.*"/>

 <property name="sortByArrival" value="false"/> </ALSBInstanceParms>

 </InstanceParms>

 </InstanceDetails>

 </tModelInstanceInfo>

 <tModelInstanceInfo tModelKey="uddi:bea.com:servicebus:protocol:

 messagingservice">

 <InstanceDetails>

 <InstanceParms><ALSBInstanceParms xmlns="http://www.bea.com/wli/sb/uddi">

 <property name="requestType" value="XML"/>

Mapping AquaLog ic Serv ice Bus Proxy Serv ices t o UDDI En t i t i es

AquaLogic Service Bus User Guide 5-21

 <property name="RequestSchema" value="http://domain.com:7001

 /sbresource?SCHEMA%2FDJS%2FOAGProcessPO"/>

 <property name="RequestSchemaElement"

 value="PROCESS_PO"/>

 <property name="responseType" value="None"/></ALSBInstanceParms>

 </InstanceParms>

 </InstanceDetails>

 </tModelInstanceInfo>

</tModelInstanceDetails>

</bindingTemplate>

Transport Attributes
Each of the transport types in the uddi:uddi.org:transport: * group has a different set of
detailed metadata. (See Table 5-4, “Proxy Service Attributes and Service Types,” on page 5-16.)
This metadata provides configuration details of the transport for the proxy service. It is neither
useful for characterizing the service nor useful in querying the service. However, after the service
has been discovered, this data is needed to access the service. The metadata is represented by an
XML string and is located in the instanceParms field in tModelInstanceInfo.

If you are mapping a proxy service that uses the HTTP transport, and as part of the HTTP
configuration you need to describe some detailed configuration details, including the required
client authorization and the request and response character encoding, the following Listing 5-3
provides an example of what must appear in the bindingTemplate tModelInstanceDetails.

Listing 5-3 Example of tModelInstanceDetails

<tModelInstanceDetails>
<tModelInstanceInfo tModelKey="uddi:uddi.org:transport:http">
<instanceDetails>

<instanceParms>
<ALSBInstanceParms xmlns="http://www.bea.com/wli/sb/uddi">

<property name="client-auth" value="basic"/>
<property name="request-encoding" value="iso-8859-1"/>
<property name="response-encoding" value="utf-8"/>

UDDI

5-22 AquaLogic Service Bus User Guide

<property name="Scheme" value="http"/>
</ALSBInstanceParms>

</instanceParms>
</instanceDetails>

</tModelInstanceInfo>
</tModelInstanceDetails>

Note: For each transport, the service endpoint is always stored in the bindingTemplate’s
accessPoint field.

The client-auth property is present in the instanceParms of the HTTP or HTTPS transport
attributes whenever authentication is configured. The possible values for client-auth are basic,
client-cert, and custom-token. Whenever the value is custom-token, two additional properties are
present: token-header and token-type.

Because AquaLogic Service Bus business service definitions do not support custom token
authentication in this release, if you import a service from UDDI that has a value of custom-token
for client-auth, the service is imported as if it does not have any authentication configuration.

Table 5-5 is organized by transport type and lists the tModelKey and instanceParms used by
each of the transports.

Table 5-5 Transport Attributes

Transport tModelKey InstanceParms

HTTP uddi:uddi.org:transport:http • Client Authentication [None, Basic,
Client Cert (HTTP(S) only), and
Custom Token]

• Request encoding
• Response encoding

JMS uddi:uddi.org:transport:jms • Destination Type [Queue, Topic]
• Response required, Response URI
• Response Message Type [Bytes, Text]
• Request encoding
• Response encoding

Mapping AquaLog ic Serv ice Bus Proxy Serv ices t o UDDI En t i t i es

AquaLogic Service Bus User Guide 5-23

Service Type Attributes
Table 5-6 provides a high-level description of each of the service types.

File uddi:uddi.org:transport:file • File Mask
• Sort by Arrival [Boolean]
• Request Encoding

FTP uddi:uddi.org:transport:ftp • File Mask
• Sort by Arrival [Boolean]
• Transfer Mode [Text, Binary]
• Request Encoding

E-mail1 uddi:uddi.org:transport:smtp • Attachment supported [Boolean]
• Request Encoding

Tuxedo uddi:bea.org:transport:tuxed
o

• Response required
• Access point ID
• Buffer type
• Buffer subtype
• Classes jar
• Field table classes
• View classes

1. The accessPoint in the Binding Template for an E-mail Transport uses the standard
mailto URL format:
mailto:name@some_server.com
This is different from the one configured for the proxy service in AquaLogic Service Bus,
which is a URL oriented toward reading e-mail. It is not be possible to derive this
mailto URL from the proxy service definition as the server name is not known. For
example, if the proxy service is defined to read from a POP3 server, it might be defined
with a URL such as mailfrom:pop3.bea.com. When publishing such a proxy service,
a dummy server is added. In the above example, the published URL will take the form
mailto:some_name@some_server.com.

Table 5-5 Transport Attributes

Transport tModelKey InstanceParms

UDDI

5-24 AquaLogic Service Bus User Guide

Canonical tModels Supporting AquaLogic Service Bus
Services

The AquaLogic Service Bus-UDDI mapping introduces a number of new canonical tModels that
are used to represent AquaLogic Service Bus metadata and relationships. These tModels must

Table 5-6 Service Type Attributes

Service Description

WSDL WSDL based proxies map to UDDI based on the Using WSDL in a UDDI
Registry, version 2.0.2 technical note at URL:

http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-

spec-tc-tn-wsdl-v202-20040631.htm.

Any SOAP A simple marker protocol in the tModel in the bindingTemplate’s
tModelInstanceDetails, as well as in the categoryBag, defines the Any
Soap attributes.

Any XML A simple marker protocol tModel within the bindingTemplate’s
tModelInstanceDetails, as well as in the categoryBag defines the Any
XML attributes. This is a new detailed tModel.

Messaging
Services

A simple marker protocol tModel in the bindingTemplate’s
tModelInstanceDetails, defines the messaging services attributes. This is a
new detailed tModel.Unlike the other service types, messaging services have
additional configuration information associated with them, which provide details
about the request and response messages. The configuration details are represented as
XML data in the InstanceParms data for the following tModel reference in the
tModelInstanceInfo:
• Input message format (XML, Text, Binary, MFL)
• URL of input message Schema in AquaLogic Service Bus (optional, if input

message is XML)
• URL of input message MFL in AquaLogic Service Bus (if input message is MFL)
• Output message format (none, XML, Text, Binary, MFL)
• URL of output message Schema in AquaLogic Service Bus (optional, if output

message is XML)
• URL of output message MFL in AquaLogic Service Bus (if output message

is MFL)

http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v202-20040631.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v202-20040631.htm

Canonica l tMode ls Suppor t ing AquaLog ic Se rv i ce Bus Serv ices

AquaLogic Service Bus User Guide 5-25

be registered in the UDDI registry to support this mapping. You can create these tModels in
AquaLogic Service Registry under the administrator ID.

The following table provides a summary of the new tModels.

Table 5-7 AquaLogic Service Bus tModels

Name Value Description

CategorizationGroup tModel Types

bea-com:servicebus:propertie
s

Describes very specific attributes of an AquaLogic
Service Bus service. In the data model it is used in
the business service categoryBag.

Categorization tModel Types

bea-com:servicebus:serviceTy
pe

WSDL,
SOAP, XML,
Messaging
Service

Describes the service type of the AquaLogic
Service Bus service.

bea-com:servicebus:instance URL of
AquaLogic
Service Bus
Console

Describes the service instance in AquaLogic
Service Bus responsible for publishing the service
to UDDI.

Transport tModel Types

uddi-org:jms Describes the type of transport used by the service.
A reference to it is found in the accessPoint
attribute of the business service binding template.

uddi-org:file Describes the type of transport used to invoke the
service. A reference to it is found in the
accessPoint attribute of the business service
binding template.

Protocol tModel Types

bea-com:servicebus:anySoap Describes the type of protocol used to access the
service. It designates services that have a SOAP
message but not defined by a WSDL or schema.
The message body content is determined
dynamically by the application.

UDDI

5-26 AquaLogic Service Bus User Guide

Example
The following is an example of the mapping for a Messaging Service, configured with JMS
transport, the request being XML with a Schema and the response being a text message.

Listing 5-4 Sample Messaging Service Mapping

<businessService
serviceKey="uddi:bea.com:servicebus:Domain:Project:JMSMessaging"
businessKey="uddi:9cb77770-57fe-11da-9fac-6cc880409fac"
xmlns="urn:uddi-org:api_v3">
<name>JMSMessagingProxy</name>
<bindingTemplates>

<bindingTemplate
bindingKey="uddi:4c401620-5ac0-11da-9faf-6cc880409fac"
serviceKey="uddi:bea.com:servicebus:

Domain:Project:JMSMessaging">
<accessPoint useType="endPoint">

jms://server.com:7001/weblogic.jms.XAConnectionFactory/
ReqQueue

</accessPoint>
<tModelInstanceDetails>

<tModelInstanceInfo tModelKey="uddi:uddi.org:transport:jms">
<instanceDetails>
<instanceParms>

bea-com:servicebus:anyXML Describes the type of protocol used to access the
service. It designates services having an XML
message but not defined by a WSDL or schema.
The message body content is determined
dynamically by the application.

bea-com:servicebus:messaging
Service

Describes the type of protocol used to access the
service. It designates services where the request
message can be any XML (with or without
schema), text, binary, or MFL and whose response
messge can be any of the above or none. The
message body content is determined dynamically
by the application.

Table 5-7 AquaLogic Service Bus tModels

Name Value Description

Example

AquaLogic Service Bus User Guide 5-27

<ALSBInstanceParms
xmlns="http://www.bea.com/wli/sb/uddi">
<property name="is-queue" value="true"/>
<property name="request-encoding"
value="iso-8859-1"/>

<property name="response-encoding"
value="utf-8"/>

<property name="response-required"
value="true"/>

<property name="response-URI"
value="jms://server.com:7001/
.jms.XAConnectionFactory/

RespQueue"/>
<property name="response-message-type"
value="Text"/>

<property name="Scheme" value="jms"/>
</ALSBInstanceParms>

</instanceParms>
</instanceDetails>

</tModelInstanceInfo>
<tModelInstanceInfo

tModelKey="uddi:bea.com:servicebus:
protocol:messagingservice">

<instanceDetails>
<instanceParms>

<ALSBInstanceParms xmlns=
"http://www.bea.com/wli/sb/uddi">
<property name="requestType" value="XML"/>
<property name="RequestSchema"

value="http://server.com:7001/
sbresource?SCHEMA%2FDJS%2FOAGProcessPO"/>

<property name="RequestSchemaElement"
value="PROCESS_PO_007"/>

<property name="responseType" value="Text"/>
</ALSBInstanceParms>

</instanceParms>
</instanceDetails>

</tModelInstanceInfo>
</tModelInstanceDetails>

</bindingTemplate>
</bindingTemplates>

<categoryBag>
<keyedReferenceGroup tModelKey="uddi:bea.com:servicebus:properties">
<keyedReference tModelKey="uddi:bea.com:servicebus:servicetype"

keyName="Service Type"
keyValue="Mixed" />

<keyedReference tModelKey="uddi:bea.com:servicebus:instance"
keyName="Service Bus Instance"
keyValue="http://cyberfish.bea.com:7001" />

UDDI

5-28 AquaLogic Service Bus User Guide

</keyedReferenceGroup>
</categoryBag>

</businessService>

AquaLogic Service Bus User Guide 6-1

C H A P T E R 6

EJB Transport

Using the EJB Transport, AquaLogic Service Bus supports native RMI invocation of Stateless
Session Beans deployed on WebLogic Server 8.1, 9.0, 9.1, or 9.2. It allows transactional and
secure communications. The EJB transport can also be leveraged to expose an EJB as a Web
service through AquaLogic Service Bus.

This section includes the following topics:

“Introduction” on page 6-1

“Invoking EJBs from AquaLogic Service Bus” on page 6-3

“Exposing EJBs as Web Services” on page 6-11

“Advanced Topics” on page 6-12

“Troubleshooting” on page 6-16

Introduction
You can design business services in AquaLogic Service Bus to use the EJB transport. The EJB
transport is fully integrated into the AquaLogic Service Bus configuration, management,
monitoring, and test consoles. Business services built with the EJB transport can be used for
Publish, Service Callout, and service invocations. You cannot create proxy services that use the
EJB transport.

An EJB can be exposed as a Web service, without the need for tools or the modification of the
legacy code on the application server that hosts the EJB.

EJB T ranspor t

6-2 AquaLogic Service Bus User Guide

The EJB transport provides the following capabilities:

Transactional Integrity
You can call EJB Business service in the context of a global transaction. The EJB
Transport can also suspend or start a global transaction before invoking an EJB.

Security Propagation
The security context established at the beginning of a message flow, from an AquaLogic
Service Bus client is propagated to the other system. In other words, an incoming SOAP
over HTTP request to AquaLogic Service Bus that requires authentication is authenticated
by AquaLogic Service Bus and the authenticated subject can then be propagated to the
EJB server.

HTTP Tunneling and Encrypted Communication
You can access EJBs that are behind a fire wall with HTTP tunneling. For additional
security, you can use SSL to encrypt all of the communications with the EJB Server.

JNDI Provider
EJB transport leverages the JNDI provider—an AquaLogic Service Bus resource. The
JNDI provider defines communication protocols and security credentials for accessing
remote servers. A JNDI provider can be reused by multiple EJB business services. This
provides a centralized way for administrators to manage remote EJB server
configurations.

For information about JNDI provider resources, see System Administration in Using the
AquaLogic Service Bus Console.

High Performance Caching
The EJB transport is built on high performance cache. This allows the reuse of established
connections and minimizes EJB stubs lookups.

Failover and Load Balancing
The EJB transport can take advantage of scenarios in which the same EJB is deployed in
multiple domains or on a cluster for load balancing or failover or both.

Advanced XML to Java Binding Capabilities
The EJB transport leverages the WebLogic Server JAX-RPC stack to perform Java to
XML bindings. The JAX-RPC stack is a high performance engine that supports advanced
Java objects such as XML Beans. If the Java type is not recognized by the stack, an
extension mechanism is provided to facilitate support of these Java types. For information
about this extension mechanism (using the converter classes), see Supported Types and
Converter Class.

http://e-docs.bea.com/alsb/docs26/consolehelp/systemadmin.html

I nvok ing E JBs f rom AquaLog ic Se rv i ce Bus

AquaLogic Service Bus User Guide 6-3

Intelligent Retries
The EJB transport makes retry decisions based on the nature of the failure that can occur
during the invocation of an EJB.

Invoking EJBs from AquaLogic Service Bus
Before you can configure a business service in AquaLogic Service Bus, you must register a JNDI
provider resource and a client JAR resource. This section describes how to design and configure
an EJB transport business service in AquaLogic Service Bus. It includes the following topics:

“Register a JNDI Provider Resource” on page 6-3

“Register an EJB Client JAR Resource” on page 6-4

“Create an EJB Business Service” on page 6-5

“Invoking EJB Business Services” on page 6-11

Register a JNDI Provider Resource
A JNDI Provider resource allows you to specify the communication protocols and security
credentials used to retrieve EJB stubs bound in the JNDI tree of remote WebLogic 8.1 or 9.x
domains. (For more information how to setup a JNDI tree, see Programming WebLogic JNDI in
the BEA WebLogic Server documentation.)

Typically, the target EJB is not located in the same domain as AquaLogic Service Bus. In this
case, you must register a JNDI Provider resource. When the EJB is located in the same domain,
you can define a provider to specify credentials and take advantage of stubs caching, although it
is optional in this case.

The JNDI provider has a high performance caching mechanism for remote connections and EJB
stubs. The preferred communication protocol from AquaLogic Service Bus to a WebLogic Server
domain is t3 or t3s. If messages need to go through a fire wall, you can use HTTP tunneling.
For more information about HTTP tunneling, see HTTP Tunneling and Encrypted
Communication.

Notes:

Although it is possible to use a WebLogic Server foreign JNDI Provider, BEA
recommends that you do not.

2-way SSL is not supported.

http://e-docs.bea.com/wls/docs92/jndi/index.html
http://e-docs.bea.com/wls/docs92

EJB T ranspor t

6-4 AquaLogic Service Bus User Guide

EJB transport provider does not support CLIENT CERT to look-up JNDI tree or
access a method on an EJB.

Adding a JNDI Provider
For information about registering and configuring a JNDI provider resource in AquaLogic
Service Bus, see “Adding a JNDI Provider” in System Administration in Using the AquaLogic
Service Bus Console.

Register an EJB Client JAR Resource
A client JAR must be registered as a resource in AquaLogic Service Bus. It is therefore part of
the AquaLogic Service Bus configuration and can be exported from and imported into a project.

An EJB client JAR file must contain the interfaces and classes needed by AquaLogic Service Bus
to access an EJB. This includes the remote and home interfaces and any dependent types to which
the client is exposed, such as method parameter types or application exceptions.

If your business service requires converter classes, you can register a JAR file containing the
converter classes as an AquaLogic Service Bus resource and subsequently use these classes to
help map parameter and return value types to Java classes that can be mapped to XML.
Alternatively, you can package these converter classes in the EJB client JAR. For information
about converter classes, see Converter Classes.

Consider the following guidelines when using EJB client JARs:

Adding Home and remote interfaces in the system classpath is bad practice and is not
supported by AquaLogic Service Bus.

BEA recommends that you keep the client JAR size small, include a single home interface
per JAR and not register the entire ejb-jar file.

You can use WebLogic Workshop to obtain a client JAR for EJBs deployed on WebLogic
Server 8.1 or 9.x.

Client-jars compiled with JDK 1.4 or later are supported.

Adding a Client or Converter JAR
For information about registering and configuring a JAR resource in AquaLogic Service Bus, see
“Adding a JAR” in JARs in Using the AquaLogic Service Bus Console.

http://e-docs.bea.com/alsb/docs26/consolehelp/jars.html
http://e-docs.bea.com/alsb/docs26/consolehelp/systemadmin.html

I nvok ing E JBs f rom AquaLog ic Se rv i ce Bus

AquaLogic Service Bus User Guide 6-5

Create a Service Account (Optional)
If the EJB methods are protected, you can specify the credentials you want to use for the
invocations. Those credentials are often different than the credentials used by the JNDI provider.
For information about adding and using service accounts, see Service Accounts in Using the
AquaLogic Service Bus Console.

Locate an EJB in the JNDI Tree
If you do not know the JNDI name for an EJB, you can browse the EJB Server JNDI tree. For
information about browsing the JNDI tree using the WebLogic Server Administration Console,
see:

JNDI in the WebLogic Server 8.1 Administration Console Online Help (for WebLogic
Server 8.1)

View objects in the JNDI tree in the WebLogic Server 9.2 Administration Console Online
Help (for WebLogic Server 9.x)

Create an EJB Business Service
This section provides information about creating a business service that uses the EJB transport.
It includes the following topics:

“General Configuration” on page 6-5

“EJB Transport-Specific Configuration” on page 6-7

“EJB Business Service Interface Configuration” on page 6-9

General Configuration
1. Open the AquaLogic Service Bus Console and in an active session, select Project Explorer

from the left navigation panel. The Project View page is displayed.

2. Select the project in which you want to create the business service. A page in which you can
create a business service is displayed—create a new business service.

3. On the General Configuration page, as shown in the following figure, enter a name for the
business service and select the Transport Typed Service as the Service Type.

An EJB business service is a Transport Typed Service, meaning that the type of the
transport is determined by the configuration of the service. The EJB transport is currently

http://edocs.bea.com/wls/docs81/ConsoleHelp/jndi.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jndi/ViewObjectsInTheJNDITree.html
http://e-docs.bea.com/alsb/docs26/consolehelp/serviceAccounts.html

EJB T ranspor t

6-6 AquaLogic Service Bus User Guide

the only such transport type. You can add other transports by using the AquaLogic Service
Bus Transport SDK.

An entry in the Description field is optional.

Figure 6-1 Create a Business Service - General Configuration

4. Click Next to open the transport-specific configuration page.

5. In the Transport Configuration page, select ejb as the Protocol.

I nvok ing E JBs f rom AquaLog ic Se rv i ce Bus

AquaLogic Service Bus User Guide 6-7

Figure 6-2 Create a Business Service—Transport Configuration

6. Enter the Endpoint URI and add it to the list of EXISTING URIs. To build the URI you need
the name of the provider you used in “Adding a JNDI Provider” on page 6-4 and the location
of the EJB home interface in the JNDI tree you determined in “Locate an EJB in the JNDI
Tree” on page 6-5:
ejb:provider:jndi_name

If the EJB is deployed locally, you need not provide a JNDI provider name. In this case,
the URI format is:

ejb::jndi_name

7. As for any AquaLogic Service Bus transport, you can also specify the Load Balancing
Algorithm, Retry count, Retry Interval and specify multiple URIs for failover. See “Retries
and Failover” on page 6-13.

8. Click Next to open the EJB transport-specific configuration page.

EJB Transport-Specific Configuration
After completing the general configuration of the business service you specify EJB
transport-specific information such as the Home and Remote interfaces. The EJB Transport
Configuration page in the AquaLogic Service Bus Console is shown in the following figure.

EJB T ranspor t

6-8 AquaLogic Service Bus User Guide

Figure 6-3 Create a Business Service— EJB Transport Configuration

To Configure the EJB Transport

1. Optionally select a Service Account.

If the EJB methods are protected and you defined a service account as described in “Create
a Service Account (Optional)” on page 6-5, click Browse to locate the appropriate Service
Account.

2. By default, the Supports Transaction option is selected. This specifies that the EJB supports
transaction. If you do not want to propagate transactions, or if the EJB does not support
transactions, deselect Supports Transaction.

For information about transaction processing with the EJB Transport, see “Transaction
Processing, Retries, and Errors Handling” on page 6-12.

3. Select the Client JAR—browse and select the Client JAR you registered previously, as
described in “Adding a Client or Converter JAR” on page 6-4.

When you select a Client JAR, a list of its Home Interface is displayed on this page.
Additionally, a Converter JAR field is displayed.

4. If required, select the Converter JAR—browse and select the Converter JAR you registered
previously, as described in “Adding a Client or Converter JAR” on page 6-4.

5. Select the Home Interface from the list of interfaces provided in the Home Interface field.

Notice that the Remote Interface is automatically deduced from the Home Interface and the
configuration page is refreshed. The Remote Interface field is populated and other options
are provided that allow you to control the interface of the service and the WSDL generated
when you finish configuration of this business service.

I nvok ing E JBs f rom AquaLog ic Se rv i ce Bus

AquaLogic Service Bus User Guide 6-9

Figure 6-4 Create a Business Service— EJB Transport Configuration after Selecting the Home Interface

EJB Business Service Interface Configuration
An EJB business service is a Transport Typed Service, which means the type of the transport is
determined by the configuration of the service.

The type of an EJB business service is equivalent to a SOAP XML service—in other words, you
can use an EJB business service like any other SOAP XML business service. A WSDL is
generated when you save the EJB Transport Configuration.

The WSDL is generated based on the interface of the EJB. The EJB transport configuration page
provides configuration options for you to control the interface of the service and the WSDL that
is generated. To do so, complete the configuration on the EJB Transport Configuration page as
shown in the preceding figure:

1. TargetNamespace—Specify the target namespace of the WSDL.

2. Style—You can select Document Wrapped or RPC.

3. Encoding—Select Literal or Encoded.

EJB T ranspor t

6-10 AquaLogic Service Bus User Guide

4. The methods displayed are those of the EJB Remote Interface you selected. For example, the
following figure displays two methods: sayHello and sort.

Figure 6-5 Create a Business Service— EJB Transport Configuration, Expanded Methods Configuration

5. You can exclude the methods you do not want to expose by unchecking the check box
associated with the method names.

6. You can change the default operation name for a given method. (By default, the operation
name is the method name.) If an EJB contains methods with same name, you must change the
operation names so that they are unique—WSDLs require unique operation names.

7. You must exclude the methods with parameters or return types that are not supported by the
JAX-RPC stack or you must associate such arguments with “Converter Classes” on
page 6-15.

The following figure shows an example of a custom methods configurations.

Expos ing E JBs as Web Serv ices

AquaLogic Service Bus User Guide 6-11

Figure 6-6 Create a Business Service— EJB Transport Configuration, Customized Methods Configuration

8. Click Next. Save the service and activate the session.

Note: If the credentials or transaction settings are different between the methods for a given
EJB, you can leverage the ability to customize the methods for a given business service,
and create a business service per method. This gives you fine-grained control over
transactions and credentials.

Invoking EJB Business Services
An EJB business service can be used as a SOAP XML business service. You can publish to, route
to, or callout to an EJB business service. If you need transaction support, set the QoS to
Exactly-Once. See “Transaction Processing, Retries, and Errors Handling” on page 6-12.

You can also use the test console to validate your configuration and to help you to determine the
shape of the XML request.

Exposing EJBs as Web Services
You can leverage the EJB transport to easily expose EJBs as Web Services.

Note: You cannot create a proxy service from an existing EJB business service—you must first
get the WSDL generated from the EJB business service, and then create the proxy service based
on that WSDL. To do so, complete the following steps:

EJB T ranspor t

6-12 AquaLogic Service Bus User Guide

1. Create an EJB business service pointing to the EJB you want to expose, as described in
“Create an EJB Business Service” on page 6-5.

2. From the service details page on the AquaLogic Service Bus Console, get the WSDL for the
EJB business service.

The WSDL is contained in a JAR file. You can obtain the WSDL only if there is no
pending session.

3. Extract the WSDL from the JAR and register it as a WSDL resource. For information about
creating WSDL resources, see WSDLs in Using the AquaLogic Service Bus Console.

If the configuration of the business service changes, a new WSDL is generated. If that
happens, you must get the new WSDL and re-register it as a WSDL resource.

4. Create a SOAP XML proxy service based on the WSDL.

5. Edit the proxy service pipeline and route to the EJB business service.

You can now invoke the EJB as a Web Service with no need for purchasing an expensive Web
Service toolkit or carrying out intrusive actions on the EJB server.

Advanced Topics
This section includes information about EJB transport that will help you understand how EJB
business services behave at run time depending on how they are configured at design time. It
includes the following topics:

“Transaction Processing, Retries, and Errors Handling” on page 6-12

“Supported Types and Converter Class” on page 6-15

Transaction Processing, Retries, and Errors Handling

Transactions
The EJB transport can create, suspend, and propagate transactions. The transaction between
AquaLogic Service Bus and the EJB server are XA transactions. If you use transactions with
HTTP tunneling or have a dedicated communication channel and the EJBs are deployed on 8.1
servers, you must set the security interoperability mode for the transaction manager to
performance. For information about setting the security interoperability mode and other
transaction configurations, see Configuring Transactions in Programming WebLogic JTA.

http://e-docs.bea.com/wls/docs92/jta/trxcon.html
http://e-docs.bea.com/alsb/docs26/consolehelp/wsdls.html

Advanced Top ics

AquaLogic Service Bus User Guide 6-13

For the deployment descriptors to be set appropriately for XA capable resources (JMS,
TUXEDO, EJB), you must set the XA attribute on the referenced connection factory before
creating a proxy service.

To determine the behavior of the EJB business service, considerations include whether the proxy
service pipeline has a transactional context, and what qualities of service (QoS) settings are
specified in the pipeline when invoking the service:

QoS Best-Effort
If Best Effort QoS is specified in the pipeline, no transaction is propagated to the EJB—
any ongoing transaction is suspended before invocation, and resumed after invocation.

QoS Exactly-Once
If Exactly Once QoS is specified in the pipeline, and

If the EJB does not support transactions (that is, if the Supports Transaction
option on the EJB transport configuration page is unchecked), no transaction is
propagated to the EJB. As in the case of Best Effort, any ongoing transaction is
suspended before invocation and resumed afterwards.
or
If the EJB supports transactions (that is, if the Supports Transaction option on
the EJB transport configuration page is checked), the EJB is invoked in the context
of a transaction—any ongoing transaction is propagated to the EJB. If no
transaction is present, a transaction is created before invocation and committed
afterwards.

For more information about QoS in AquaLogic Service Bus services, see “Quality of Service” on
page 2-70.

Retries and Failover
Assuming that the EJB business service is configured for retries or failovers, the EJB transport
distinguishes the following types of exceptions:

Runtime Exceptions or Remote Exceptions—typically unexpected fatal errors or
communication exceptions

Exception raised by the JAX-RPC engine—exceptions that occur during the XML to Java
conversion

EJB Checked Exceptions—exceptions declared in the EJB method signature specific to the
EJB implementation; also called Business Exceptions

Retries and failover are based on the type of errors and also in the QoS:

EJB T ranspor t

6-14 AquaLogic Service Bus User Guide

QoS Best-Effort
If a run-time or remote exception is thrown, the EJB transport attempts retries or failovers.

If an exception occurs in the JAX-RPC engine, an error is raised to the pipeline and no
retries or failover attempts are made.

If an EJB Checked Exception is thrown, an error is raised to the pipeline and no retries or
failover attempts are made.

QoS Exactly-Once
If a run-time or remote exception is thrown and the ongoing transaction has been set as
rollback only (likely by the EJB container), it means the EJB container has been reached
and a fatal error either occurred within the EJB container or the EJB. In this case, no retries
or failover attempts are made and an error is raised to the pipeline.

If a runtime or remote exception is thrown but the ongoing transaction has not been set as
rollback only, it means an error occurred before the invocation of the EJB container and
the EJB transport will attempt retries or failovers. Note that in this case, the EJB transport
still respects the exactly-once semantic.

If an exception occurs in the JAX-RPC engine, the EJB transport sets the ongoing
transaction to rollback only and an error is raised to the pipeline; no retries or failover
attempts are made.

If an EJB Checked Exception is thrown, an error is raised to the pipeline and no retries or
failover attempts are made.

See “Transactions” on page 6-12 for other repercussions of QoS specifications for an EJB
business service.

Error Handling
When throwing a checked exception, according to the EJB specifications, the ongoing transaction
can be specified as rollback only.

If the ongoing transaction is set as rollback only by the EJB developer, the transaction is
eventually rolled back by its creator (most likely the proxy service).

If the ongoing transaction is not set to rollback only, and a checked exception is raised, it is
important to catch EJB checked exceptions in the pipeline with an error handler. If those
exceptions are not caught, the pipeline errors are propagated back to the proxy service. The proxy
service, in turn, is likely to rollback the ongoing transaction (depending of the transport
implementation)—this may not be the intended result.

For example, assume you have an EJB with the following method:

Advanced Top ics

AquaLogic Service Bus User Guide 6-15

public void withdrawFunds(float amount) throws RemoteException,

InsufficientFundsException {…}

Also assume that when an InsufficientFundsException exception is thrown, the EJB does
not set the current transaction as rollback only. In most scenarios, it is wrong to allow the proxy
service to roll back the transaction—you may need to configure an error handler in the pipeline
to catch the error and avoid this scenario.

Supported Types and Converter Class
The EJB transport is responsible for the XML←→Java conversion. The conversion is performed
by the WebLogic Server JAX-RPC engine.

The EJB transport natively supports the following types:

Primitive types

XmlObject (both Apache and BEA versions)

Schema generated XMLBeans (both Apache and BEA versions)

JavaBean classes

For the full list of natively supported types, see Data Types and Data Binding in Programming
Web Services for WebLogic Server.

An EJB method can use parameters/return types that are either not supported by the JAX-RPC
engine (an error is reported at design time), or that do not map directly to XML (errors occur at
run time). The most commonly used unsupported types are:

“Object”, “Object[]”

Java Collections as they are not strongly-typed (for example, List, Set)

Java classes that do not follow the JavaBean pattern (for example, Map)

You can write a custom converter class than converts those types into types more suitable for
XML←→Java conversions. The EJB transport supports custom converter classes.

Converter Classes
A Converter class is a Java class that implements and conforms to the contract defined by the
com.bea.wli.sb.transports.ejb.ITypeConverter Java interface of the AquaLogic
Service Bus public API. For information about the ITypeConverter Java interface and other
AquaLogic Service Bus APIs, see the AquaLogic Service Bus Javadoc.

http://e-docs.bea.com/wls/docs92/webserv/data_types.html
http://e-docs.bea.com/alsb/docs26/javadoc/
http://e-docs.bea.com/alsb/docs26/javadoc/

EJB T ranspor t

6-16 AquaLogic Service Bus User Guide

To use a converter class for an EJB business service, you must:

1. Create a converter class by implementing and compiling the interface.

2. Add the converter class to the client JAR or to a converter class JAR file (See “Adding a
Client or Converter JAR” on page 6-4).

3. When customizing the method configuration during the creation of an EJB business service,
navigate to one of the parameter/return types and select the desired converter. See step 7 in
“EJB Business Service Interface Configuration” on page 6-9—the AquaLogic Service Bus
Console displays a list of the converters available that can be applied to a particular
parameter/return type.

Troubleshooting
The information in this section is provided to help you troubleshoot problems when designing or
running an EJB business service.

Enabling Debug Mode

The EJB transport uses the same logger as other AquaLogic Service Bus transports. To enable
the debug mode, before starting the server, edit the wlidebug.xml file in the domain directory
and set the category wli-sb-transports-debug to true. For more information about the
wlidebug.xml file and the debug flags, see Appendix B, “Debugging AquaLogic Service Bus.”

Temp Directories

During design time, the EJB transport generates files in the subfolder alsbejbtransport and
subfolders prefixed with appcgen_ in the temp directory. It is safe to delete those folders and
files, and sometimes may be useful to check them to determine what went wrong during
activation.

Deployed Application

When an EJB business service is created an application is deployed on the AquaLogic Server.
You can use the WebLogic Server Administration Console to monitor and tune this application.
The name of EJB business service applications is prepended with ALSB EJB, which is followed
by the WSDL type and an auto generated suffix.

Errors

The following items may help in the event that you need to troubleshoot a problem with an EJB
business service:

Troub leshoot ing

AquaLogic Service Bus User Guide 6-17

The following error when creating a business service is due to a Windows operating
system limitation—paths containing more than 255 characters are not supported:

The system cannot find the path specified):Probably the string length of
the path of the file being extracted was too long

You can try to reduce the path length by creating a shorter path to the AquaLogic Service
Bus domain, or you can use the following option to override the WebLogic Server temp
directory when starting the server:

-Dweblogic.j2ee.application.tmpDir=$desired_short_dir

If you get an XML marshalling error when invoking an EJB business service and you
believe the request to be valid against the service WSDL, you probably need to write a
converter class. For information, see “Converter Classes” on page 6-15.

If the EJB interfaces and stubs are changed on the remote server, the first time you try to
invoke the new EJB, an error is thrown. Those changes on the remote server are not visible
to AquaLogic Service Bus—it tries to invoke the cached EJB stubs, which are no longer
valid. However, when the invocation error occurs, the transport assumes that those stubs
are now invalid, and remove them from the cache—in this way, the error is prevented on
subsequent attempts to invoke the EJB. To avoid this first-time error, you can reset the
JNDI Provider in the AquaLogic Service Bus Console.

For HTTP tunneling between WebLogic Server 9.2 and WebLogic Server 8.1 to work, you
must set the t3-server-abbrev-table-size element to 255 in the config.xml file in
the AquaLogic Service Bus domain, as shown in the following code snippet:

<server>

 <name>AdminServer</name>

 <ssl>

 <name>AdminServer</name>

 <enabled>true</enabled>

 </ssl>

 <t3-server-abbrev-table-size>255</t3-server-abbrev-table-size>

 <listen-address></listen-address>

 </server>

EJB T ranspor t

6-18 AquaLogic Service Bus User Guide

AquaLogic Service Bus User Guide 7-1

C H A P T E R 7

Transports

You can configure BEA AquaLogic Service Bus proxy services and business services to use one
of the following transport protocols. The transport protocol you select depends on the service
type, the type of authentication required, the service type of the invoking service, and so on. This
section describes the transport protocols supported by AquaLogic Service Bus. They include:

“E-mail” on page 7-2

“EJB” on page 7-4

“File” on page 7-4

“FTP” on page 7-6

“HTTP” on page 7-9

“HTTP(S)” on page 7-11

“JMS” on page 7-13

“Local” on page 7-18

“Tuxedo” on page 7-18

“Data Services Platform (DSP)” on page 7-19

Transpo r ts

7-2 AquaLogic Service Bus User Guide

E-mail
You can select the e-mail transport protocol when you configure a Messaging Type or Any XML
Service type of proxy service or business service. The following sections describe

“Configuring Proxy Services using E-mail Transport Protocol” on page 7-2

“Configuring Business Services using E-mail Transport Protocol” on page 7-3

Configuring Proxy Services using E-mail Transport Protocol
When you configure a proxy service using the e-mail transport protocol, you must specify an
endpoint URI in the following format:

mailfrom:<mailserver-host:port>

where

• mailserver-host: is the name of the host mail server

• port: is the port used by the mailserver host

You can configure the following parameters for an e-mail transport proxy service:

Service Account: This is a mandatory parameter. This is the service account resource. The
service account consists of a user name/password combination required to access the
e-mail account.

Polling Interval: This is a mandatory parameter. This parameter specifies the interval in
milliseconds. The default value is 60 ms.

E-mail protocol: This is a mandatory parameter. There are two types of protocol from
which you can select, imap and pop3. The default protocol is pop3.

Read Limit: This is a mandatory parameter. This specifies the number of files to be read in
each poll. The default value is 10.

Pass By Reference: If this parameter is enabled, the file is staged in the archive directory
and passed as a reference in the message headers.

Post Read Action: This is a mandatory parameter. This specifies whether the files should
be deleted, moved, or archived after being read by the service. By default the files are
deleted after reading.

Attachments: This is a mandatory parameter. This parameter specifies if the attachments
are to be archived or ignored. By default this parameter is set to ignore.

E-mai l

AquaLogic Service Bus User Guide 7-3

IMAP Move Folder: This is the destination of the messages if the Post Read Action is
set to move.

Note: You must configure this field only if Post Read Action is set to move.

Download Directory: This is a mandatory parameter. It specifies the file system directory
path to download the message.

Archive Directory: This is a mandatory parameter. A file URI that points to the directory
where the files are archived. This field is active only when Post Read Action parameter
is set to archive.

Error Directory: This is a mandatory parameter. This URI points to a directory in which the
contents of the file will be stored in case of an error.

Request Encoding: This is an optional parameter. This parameter specifies the type of
encoding to read the request message. The default encoding is iso-8859-1.

For more information on how to configure e-mail services, see Adding a Proxy Service:
Transport Configuration in Using the AquaLogic Service Bus Console.

Configuring Business Services using E-mail Transport
Protocol
When you configure a business service using the e-mail transport protocol, you must specify the
endpoint URI in the following format:

mailto:<name@domain_name.com>

where <name@domain_name.com> is the e-mail destination.

You can configure the following parameters for an e-mail transport business service:

SMTP Server: You must select an SMTP Server from the drop-down list.

Note: You must first create the SMTP Server resource.

Mail Session: This parameter is optional. It is the JNDI name of the configured mail
session. You can select mail sessions from the drop-down list.

Notes:

You must first configure mail sessions in the WebLogic Server Console. For more
information on configuring a mail session, see Create a Mail Session in WebLogic
Server Administration Console.

http://e-docs.bea.com/alsb/docs26/consolehelp/proxyservices.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxyservices.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/pagehelp/Mailcreatemailsessionpagetitle.html

Transpo r ts

7-4 AquaLogic Service Bus User Guide

Also you should set either the Mail Session parameter or the SMTP Server
parameter.

From Name: This is an optional parameter. This parameter specifies the name from which
the reply should be sent.

From Address: This is an optional parameter. This parameter specifies the e-mail address
from which the e-mail message should be sent.

Reply To Name: This is an optional parameter. This parameter specifies the name to which
the reply should be sent.

Reply To Address: This is an optional parameter. This parameter specifies the e-mail
address, to which the reply should be sent.

Connection Timeout: This is an optional parameter. You can use this parameter to specify
time in milliseconds after which the connection to the SMTP server times out.

Request Encoding: This is an optional parameter. This parameter specifies the type of
encoding to read the request message. The default encoding is iso-8859-1.

For more information on how to configure this transport, see Adding a Business Service:
Transport Configuration in Using the AquaLogic Service Bus Console.

EJB
An EJB business service is a Transport Typed Service, that is, the type of the transport is
determined by the configuration of the service. The EJB transport supports native Remote
Method Invocation (RMI) of Stateless Session Beans deployed on WebLogic Server. The EJB
transport can also be leveraged to directly expose an EJB as a Web service through AquaLogic
Service Bus. For information about the EJB transport, see “EJB Transport” on page 6-1.

File
You can select the file transport protocol when you configure a Messaging Type or Any XML
Service type of proxy service and the endpoint URI is of the form:

file:///<root-dir/dir1>

where root-dir/dir1 is the absolute path to the destination directory.
The following sections describe:

“Configuring Proxy Services using File Transport Protocol” on page 7-5

http://e-docs.bea.com/alsb/docs26/consolehelp/businessServices.html
http://e-docs.bea.com/alsb/docs26/consolehelp/businessServices.html

F i le

AquaLogic Service Bus User Guide 7-5

“Configuring Business Services using File Transport Protocol” on page 7-6

Configuring Proxy Services using File Transport Protocol
To configure the file transport for a proxy service you must specify the following fields:

File Mask: This is an optional parameter. This specifies the files that should be polled by
the proxy service. If the URI is a directory and *.* is specified, then the service will poll
for all the files in the directory.

Polling Interval: This is a mandatory parameter. This specifies the value for the polling
interval in milliseconds. The default value is 60 ms.

Read Limit: This is a mandatory parameter. This specifies the number of files to be read in
each poll. The default value is 10.

Note: If ‘0’ is specified, all the files are read.

Sort By Arrival: This is an optional parameter. This parameter indicates the sequence of
events raised in the order of the arrival of files. The default value for this parameter is
False.

Scan Subdirectories: This is optional. If enabled, the sub-directories are also scanned.

Pass By Reference: If this parameter is enabled, the file is staged in the archive directory
and passed as a reference in the headers.

Post Read Action: This parameter is mandatory. This specifies whether the files should be
deleted or archived after being read by the service. By default the files are to be deleted
after reading.

Stage Directory: This is a mandatory parameter. This file URI points to the staging
directory.

Archive Directory: This is a mandatory parameter. This file URI points to the directory
where the files are archived. This field is active only when Post Read Action parameter
is set to archive.

Error Directory: This is a mandatory parameter. This URI points to a directory, in which
the contents of the file will be stored in case of a error.

Request Encoding: This is an optional parameter. This parameter specifies the type of
encoding to read the request message. The default encoding is utf-8.

Transpo r ts

7-6 AquaLogic Service Bus User Guide

For more information on how to configure this transport, see Adding a Proxy Service: Transport
Configuration in Using the AquaLogic Service Bus Console.

Configuring Business Services using File Transport
Protocol
When you configure a business service using the file transport protocol you must specify the
endpoint URI in the following format:

file:///<root-dir/dir1>

where root-dir/dir1 is the absolute path to the destination directory.

When you use this type of transport to configure a business service you must configure the
following fields:

Prefix: This is an optional parameter. This parameter specifies the prefix to be attached to
the filename.

Suffix: This is an optional parameter. This parameter specifies the suffix to be attached to
the filename.

Request Encoding: This is an optional parameter. This specifies the type of encoding to
read the message. The default encoding which will be used is utf-8.

For more information on how to configure this transport, see Adding a Business Service:
Transport Configuration in Using the AquaLogic Service Bus Console.

FTP
You can select the FTP transport protocol when you configure a Messaging Type or Any XML
Service type of proxy service and the endpoint URI is of the form:

ftp://<hostname:port/directory>

where

• hostname: is the name of the host on which the destination directory is stored.

• port: is the port number at which the FTP connection is made.

• directory: is the destination directory.

The following sections describe

“Configuring Proxy Services using FTP Transport Protocol” on page 7-7

http://e-docs.bea.com/alsb/docs26/consolehelp/proxyservices.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxyservices.html
http://e-docs.bea.com/alsb/docs26/consolehelp/businessServices.html
http://e-docs.bea.com/alsb/docs26/consolehelp/businessServices.html

FTP

AquaLogic Service Bus User Guide 7-7

“Configuring Business Services using FTP Transport Protocol” on page 7-8

Configuring Proxy Services using FTP Transport Protocol
To configure the FTP transport for a proxy service you must specify the following fields:

User Authentication: You must select one of the following types of User
Authentication:

– anonymous: If you select anonymous, you do not require any login credentials to login
to the FTP server, but you optionally supply your e-mail ID for identification.

– external user: If you select external user, you have to reference a Service Account
resource, which contains your user name/password for the FTP server.

Pass By Reference: This is an optional parameter. If this parameter is enabled, the file is
staged in the archive directory and passed as a reference in the headers.

Remote Streaming: This is an optional parameter. Setting this parameter to True will poll
FTP files directly from the remote server at processing time.

File Mask: This is a mandatory parameter. This specifies the files that should be polled by
the proxy service. If the URI is a directory and *.* is specified, then the service will poll
all the files in the directory.

Polling Interval: This is a mandatory parameter. This specifies the value for the polling
interval in milliseconds. The default value is 60 ms.

Read Limit: This is a mandatory parameter. This specifies the value for the polling interval
in milliseconds. The default value is 60 ms.

Post Read Action: This is a mandatory parameter. This specifies whether the files should
be deleted or archived after being read by the service. By default the files are deleted after
reading.

Transfer Mode: This parameter specifies whether the mode of file transfer is binary or
ascii. By default the transfer is binary.

Stage Directory: This is a mandatory parameter. This file URI points to the staging
directory.

Archive Directory: This is a mandatory parameter. This file URI points to the directory
where the files are archived. This field is active only when Post Read Action parameter
is set to archive.

Transpo r ts

7-8 AquaLogic Service Bus User Guide

Error Directory: This is a mandatory parameter. This URI points to a directory location,
where the contents of the file will be stored in case of a error.

Request Encoding: This is an optional parameter. This parameter specifies the type of
encoding to read the request message. The default encoding is utf-8.

Advanced Settings: Click the icon to expand the Advanced Settings section.
Configuring parameters in this section is optional.

– Scan Subdirectories: This is optional. If enabled the sub-directories are also scanned.

– Sort By Arrival: This is an optional parameter. This parameter indicates the sequence of
the events being raised in the order of the arrival of files. The default value for this
parameter is False.

– Timeout: This is an optional parameter. This parameter specifies the FTP timeout
interval, in seconds, before the connection is dropped. The default value for this
parameter is 0.

– Retry: This is an optional parameter. This parameter specifies the maximum number of
retries for the FTP connection failures.

For more information on how to configure this transport, see Adding a Proxy Service: Transport
Configuration in Using the AquaLogic Service Bus Console.

Configuring Business Services using FTP Transport
Protocol
You can select the FTP transport protocol when you configure a Messaging Type or Any XML
Service type of business service and the endpoint URI is of the form:

ftp://<hostname:port/directory>

where

• hostname: is the name of the host on which the destination directory is stored.

• port: is the port number at which the FTP connection is made.

• directory: is the destination directory.

To configure the FTP transport for a business service you must specify the following fields:

User Authentication: You must select one of the following types of User
Authentication:

http://e-docs.bea.com/alsb/docs26/consolehelp/proxyservices.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxyservices.html

HTTP

AquaLogic Service Bus User Guide 7-9

– anonymous: If you select anonymous, you do not require any login credentials to login
to the FTP server. But you optionally supply your e-mail ID for identification.

– external user: If you select external user, you have to reference a Service Account
resource, which contains your user name/password for the FTP server.

Prefix for destination filename: This is a mandatory parameter. This parameter specifies the
prefix to be attached to the filename.

Suffix for destination filename: This is a mandatory parameter. This parameter specifies
the suffix to be attached to the filename.

Request Encoding: This is an optional parameter. This parameter specifies the encoding for
the request message.

For more information on how to configure this transport, see Adding a Business Service:
Transport Configuration in Using the AquaLogic Service Bus Console.

HTTP
The following sections describe:

“Configuring Proxy Services using HTTP Transport Protocol” on page 7-9

“Configuring Business Services using HTTP Transport Protocol” on page 7-10

Configuring Proxy Services using HTTP Transport Protocol
You can select HTTP as the transport protocol when you configure any type of proxy service and
the endpoint URI is of the form:

/<someService>

where someService is the name of proxy service or a business service

To configure the HTTP transport for a proxy service you must specify the following fields:

Basic Authentication Required: If enabled, basic authentication is required to access this
service.

Dispatch Policy: You must configure Work Managers in the WebLogic Server
Administration Console in order to have other dispatch policies in addition to the default
dispatch policy. For more information on how to configure a Work Manager, see Create a
Global Work Manager in WebLogic Server Administration Console.

http://e-docs.bea.com/alsb/docs26/consolehelp/businessServices.html
http://e-docs.bea.com/alsb/docs26/consolehelp/businessServices.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/work/CreateGlobalWorkManager.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/work/CreateGlobalWorkManager.html

Transpo r ts

7-10 AquaLogic Service Bus User Guide

Request Encoding: This parameter specifies the character set encoding for the request
messages.

Response Encoding: This parameter specifies the character set encoding for the response
messages.

For more information on how to configure this transport, see Adding a Proxy Service: Transport
Configuration in Using the AquaLogic Service Bus Console.

Configuring Business Services using HTTP Transport
Protocol
You can select HTTP as the transport protocol when you configure any type of business service
and the endpoint URI is of the form:

http://<host:port/someService>

where

• host: is the name of the system that hosts the service.

• port: is the port number at which the connection is made.

• someService: is a target service.

To configure the HTTP transport for a business service you must specify the following fields:

Timeout: This parameter specifies the HTTP timeout interval, in seconds, before the
connection is dropped. The default value for this parameter is 0.

HTTP Request Method: This parameter enables you to select the get method or the post
method for the HTTP requests.

Basic Authentication Required: If enabled, basic authentication is required to access this
service.

Service Account: This resource contains the login credentials required for the Basic
Authentication.

Follow HTTP redirects: Enabling this parameter allows the business to follow the HTTP
redirects.

Dispatch Policy: You must configure Work Managers in the WebLogic Server
Administration Console in order to have other dispatch policies in addition to the default
dispatch policy. For more information on how to configure a Work Manager, see Create a
Global Work Manager in WebLogic Server Administration Console.

http://e-docs.bea.com/alsb/docs26/consolehelp/proxyservices.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxyservices.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/work/CreateGlobalWorkManager.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/work/CreateGlobalWorkManager.html

HTTP(S)

AquaLogic Service Bus User Guide 7-11

Request Encoding: This parameter specifies the character set encoding for request
messages.

Response Encoding: This parameter specifies the character set encoding for response
messages.

For more information on how to configure this transport, see Adding a Business Service:
Transport Configuration in Using the AquaLogic Service Bus Console.

HTTP(S)
You can select the HTTP(S) transport protocol when you configure any type of proxy service and
the endpoint URI is of the form:

/<someService>

where someService is the name of a proxy service or a business service. Following
sections describe:

“Configuring Proxy Services using HTTP(S) Transport Protocol” on page 7-11

“Configuring Business Services using HTTP(S) Transport Protocol” on page 7-12

Configuring Proxy Services using HTTP(S) Transport
Protocol
To configure the HTTP(S) transport for a proxy service you must specify the following fields:

Client Authentication: The Client Authentication method provides you with three options:

– None: This option enables one-way SSL. No client authentication is required.

– Basic: This option enables one-way SSL. But this requires user/password client
authentication.

– Client Certificate: This option enables one-way SSL. But this requires user/password
client-side and server-side authentication. BEA recommends this method of client
authentication.

Dispatch Policy: You must configure Work Managers in the WebLogic Server
Administration Console in order to have other dispatch policies in addition to the default
dispatch policy. For more information on how to configure a Work Manager, see Create a
Global Work Manager in WebLogic Server Administration Console.

http://e-docs.bea.com/alsb/docs26/consolehelp/businessServices.html
http://e-docs.bea.com/alsb/docs26/consolehelp/businessServices.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/work/CreateGlobalWorkManager.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/work/CreateGlobalWorkManager.html

Transpo r ts

7-12 AquaLogic Service Bus User Guide

Request Encoding: This parameter specifies the character set encoding for the request
messages.

Response Encoding: This parameter specifies the character set encoding for the response
messages.

For more information on how to configure this transport, see Adding a Proxy Service: Transport
Configuration in Using the AquaLogic Service Bus Console.

Configuring Business Services using HTTP(S) Transport
Protocol
You can select the HTTP(S) transport protocol when you configure any type of business service
and the endpoint URI is of the form:

http(s)://<host:port/someService>

where

• host: is the name of the system that hosts the service.

• port: is the port number at which the connection is made.

To configure the HTTP(S) transport for a business service you must specify values for the
following fields:

Timeout: This parameter specifies the HTTP timeout interval, in seconds, before the
connection is dropped. The default value for this parameter is 0.

HTTP Request Method: This parameter enables you to select the get method or the post
method for the HTTP requests.

Basic Authentication Required: Enabling basic authentication is required to access this
service.

Service Account: This resource contains the login credentials required for the Basic
Authentication.

Follow HTTP redirects: Enabling this parameter allows business services to follow HTTP
redirects.

Dispatch Policy: You must configure Work Managers in the WebLogic Server
Administration Console in order to have other dispatch policies in addition to the default
dispatch policy. For more information on how to configure a Work Manager, see Create a
Global Work Manager in WebLogic Server Administration Console.

http://e-docs.bea.com/alsb/docs26/consolehelp/proxyservices.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxyservices.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/work/CreateGlobalWorkManager.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/work/CreateGlobalWorkManager.html

JMS

AquaLogic Service Bus User Guide 7-13

Request Encoding: This parameter specifies the character set encoding for the request
messages.

Response Encoding: This parameter specifies the character set encoding for the response
messages.

For more information on how to configure this transport, see Adding a Business Service:
Transport Configuration in Using the AquaLogic Service Bus Console.

JMS
You can select JMS as the transport protocol for all the types of proxy services. AquaLogic
Service Bus is certified with the following JMS implementations:

WebLogic Server 9.x JMS

IBM WebSphere MQ/JMS release 5.3

TIBCO Enterprise Message ServiceTM release 4.2

The proxy services and business services must be configured to use the JMS transport as
described in Adding a Proxy Service: Transport Configuration and Adding a Business Service:
Transport Configuration sections of Using the AquaLogic Service Bus Console.

For more information on the JMS transport, see Interoperability Solutions for JMS and
WebSphere MQ. The following sections describe:

“Configuring Proxy Services using JMS Transport Protocol” on page 7-13

“Configuring Business Services using JMS Transport Protocol” on page 7-16

Configuring Proxy Services using JMS Transport Protocol
You can select the JMS transport protocol when you configure any type of proxy service and the
endpoint URI is of the form:

jms://<host:port[,host:port]*/factoryJndiName/destJndiName>

where

• host: is the name of the system that hosts the service.

• port: is the port number at which the connection is made.

• [,host:port]*: indicates that you can configure multiple hosts with corresponding
ports.

http://e-docs.bea.com/alsb/docs26/consolehelp/businessServices.html
http://e-docs.bea.com/alsb/docs26/consolehelp/businessServices.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxyservices.html
http://e-docs.bea.com/alsb/docs26/consolehelp/businessServices.html
http://e-docs.bea.com/alsb/docs26/consolehelp/businessServices.html
http://e-docs.bea.com/alsb/docs26/interopjms/intro.html
http://e-docs.bea.com/alsb/docs26/interopjms/intro.html

Transpo r ts

7-14 AquaLogic Service Bus User Guide

• factoryJndiName: The name of the JNDI Connection Factory. For more
information on how to define a connection factory queue, see Configure resources
for JMS system modules in Administration Console Online Help.

• destJndiName: is the name of the JNDI destination.

To target a JMS destination to multiple servers, use the following format of the URI:
jms://host1:port,host2:port/QueueConnectionFactory/destJndiName

where QueueConnectionFactory is name of the connection factory queue. For more
information on how to define a connection factory queue, see Configure resources for JMS
system modules in Administration Console Online Help.

To configure a proxy service using JMS transport protocol you must specify values for the
following fields:

Destination Type: You must specify the destination to be of one of the following:

– Queue: This defines a point-to-point destination type. You can use this destination type
for peer asynchronous communications. A message, which is delivered to a queue is
distributed to only one destination.

– Topic: This defines a publish or a subscribe destination type. You can use this
destination type for peer asynchronous communications. A message, which is delivered
to a topic is distributed to all the subscribers of the topic.

Is Response Required: If you expect a response to the outbound message, you must specify
the following parameters for the response message:

– Response Correlation Pattern: This configures the design pattern for JMS response
message to be one of the following:

• JMS Correlation ID: You must select JMS Correlation ID design pattern for your
message if you want to correlate by JMS Correlation ID and send the response to the
URI configured in the Response URI field.

Note: The Response URI field is active only when you select JMS Correlation ID
design pattern for your response message.

• JMS Message ID: You can JMS Message ID design pattern for your message if you
want to correlate by JMS Message ID and send the response to the JMSReplyTo
Destination by configuring the Response Connection Factory field.

Note: The Response Connection Factory field is active only when you select JMS
Message ID design pattern for your response message.

– Response Message Type: You can set type of the response message to Bytes or Text.

http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/modules/ConfigureJMSModuleResources.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/modules/ConfigureJMSModuleResources.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/modules/ConfigureJMSModuleResources.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/modules/ConfigureJMSModuleResources.html

JMS

AquaLogic Service Bus User Guide 7-15

– Response Encoding: You can set the encoding for the response message. The default
encoding is UTF-8.

– Client Response Timeout: This parameter specifies the response timeout interval, in
seconds.

Request Encoding: You can set the encoding for the request message. The default encoding
is UTF-8.

Dispatch Policy: This specifies the dispatch policy for the endpoint. You must configure
Work Managers in the WebLogic Server Administration Console in order to have other
dispatch policies in addition to the default dispatch policy. For more information on how to
configure a Work Manager, see Create a Global Work Manager in WebLogic Server
Administration Console.

Advanced Settings: Click the icon to expand the Advanced Settings section.
Configuring parameters in this section is optional.

You can set the following parameters in the section:

– Use SSL: This specifies whether the connections can be made over SSL or not.

– Message Selector: You can use this field to specify the criteria for selecting messages.

– Durable Subscription: You can check if the subscription is durable only if the
destination type is Topic.

– Retry Count: In this field you can configure the maximum number of retries for the
connection.

– Retry Interval: In this field you can configure the time interval in milliseconds between
consecutive retries.

– Error Destination: In this field you can configure the name of the target destination for
the messages, which have reached the maximum number of retry count.

– Expiration Policy: In this field you can specify the message expiration policy to be used
when you encounter an expired message at a WebLogic Server or a JMS destination.

– JMS Service Account: In this field you can specify the name of the service account
resource to be used to make the connection over the secured socket layer.

http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/work/CreateGlobalWorkManager.html

Transpo r ts

7-16 AquaLogic Service Bus User Guide

Configuring Business Services using JMS Transport
Protocol
You can select the JMS transport protocol when you configure any type of business service and
the endpoint URI is of the form:

jms://<host:port[,host:port]*/factoryJndiName/destJndiName >

where

• host: is the name of the system that hosts the service.

• port: is the port number at which the connection is made.

• [,host:port]*: indicates that you can configure multiple hosts with corresponding
ports.

• factoryJndiName: The name of the JNDI Connection Factory. For more
information on how to define a connection factory queue, see Configure resources
for JMS system modules in Administration Console Online Help.

• destJndiName: is the name of the JNDI destination.

To target a target a JMS destination to multiple servers, use the following format of the URI:
jms://host1:port,host2:port/QueueConnectionFactory/destJndiName

where QueueConnectionFactory is name of the connection factory queue. For more
information on how to define a connection factory queue, see Configure resources for JMS
system modules in Administration Console Online Help.

When you register a JMS business service, you must manually edit the URI from the WSDL file
when adding it to the service definition. The URI format is as follows:
jms://<host>:<port>/factoryJndiName/destJndiName

To configure a business service using the JMS transport protocol you must specify values for the
following fields:

Destination Type: You can specify the destination to be of one of the following:

– Queue: This defines a point-to-point destination type. You can use this destination type
for peer asynchronous communications. A message, which is delivered to a queue is
sent to only one destination.

– Topic: This defines a publish or a subscribe destination type. You can use this
destination type for peer asynchronous communications. A message, which is delivered
to a topic is distributed to all the subscribers of the topic.

http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/modules/ConfigureJMSModuleResources.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/modules/ConfigureJMSModuleResources.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/modules/ConfigureJMSModuleResources.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jms_modules/modules/ConfigureJMSModuleResources.html

JMS

AquaLogic Service Bus User Guide 7-17

Is Response Required: You can specify if you expect a response to the outbound message.
If you expect a response you must specify the following parameters for the response
message:

– Response Correlation Pattern: You can configure the design pattern for JMS response
message to be one of the following:

• JMS Correlation ID: You must select a JMS Correlation ID design pattern for
your message if you want to correlate by JMS Correlation ID and send the response
to the URI configured in the Response URI field.

Note: The Response URI field is active only when you select JMS Correlation ID
design pattern for your response message.

• JMS Message ID: You must select JMS Message ID design pattern for your message
if you want to correlate by JMS Message ID and send the response to the
JMSReplyTo Destination by configuring the Response Connection Factory
field.

Note: The Response Connection Factory field is active only when you select JMS
Message ID design pattern for your response message.

– Response Message Type: You can set type of the response message to Bytes or Text.

– Response Encoding: You can set the encoding for the response message. The default
encoding is UTF-8.

– Client Response Timeout: This parameter specifies the response timeout interval, in
seconds.

Request Encoding: You can set the encoding for the request message. The default encoding
is UTF-8.

Dispatch Policy: You can specify the dispatch policy for the endpoint. You must configure
Work Managers in the WebLogic Server Administration Console in order to have other
dispatch policies in addition to the default dispatch policy. For more information on how
to configure a Work Manager, see Create a Global Work Manager in WebLogic Server
Administration Console.

Advanced Settings: To configure the advance settings click on icon on the right
hand side to expand the advanced settings section. Configuring parameters in this section is
optional.

You can set the following parameters in the section:

http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/work/CreateGlobalWorkManager.html

Transpo r ts

7-18 AquaLogic Service Bus User Guide

– Use SSL: This specifies if the connections can be made over SSL or not.

– Expiration: This specifies the time interval in milliseconds after which the message will
expire. Default value is 0, which means that the message never expires.

– Unit Of Order: This is a value added feature of WebLogic, which enables a message
producer to group messages into a single unit with respect to the order of processing.
This single unit is called the Unit of Order. All the messages in a unit must be
processed sequentially in the same order they were created.

Note: This is supported by WebLogic Server 9.0.

– JNDI Service Account: You can select the service account resource to be used for JNDI
lookups.

– JMS Service Account: You can select the service account resource to be used for the
JMS server connection.

Local
Every proxy service is associated with a protocol that determines the level of communication
used by the clients to send requests to the proxy service. In AquaLogic Service Bus there two
categories of proxy services—the proxy services of first category are invoked directly by the
clients; those of the second category are invoked by other proxy services in the message flow.
The proxy services of the second category use a new transport called the local transport. For more
information on Local Transport, see “Local Transport” on page 8-1.

Tuxedo
BEA AquaLogic Service Bus and BEA Tuxedo can inter-operate to use the services each of them
offer. The Tuxedo transport is secure, reliable, high performing, and provides bi-directional
access to the Tuxedo domain from AquaLogic Service Bus. You can access domains in
AquaLogic Service Bus from Tuxedo. Also you can access tuxedo domains from AquaLogic
Service Bus. For more information about Tuxedo transport, see Interoperability Solution for
Tuxedo.

You can configure both proxy services and business services in AquaLogic Service Bus. For
more information on configuring a proxy service, see Adding a Proxy Service: Transport
Configuration and for more information on configuring a business service, see Adding a Business
Service: Transport Configuration sections of Using the AquaLogic Service Bus Console.

http://e-docs.bea.com/alsb/docs26/interoptux/tuxintro.html
http://e-docs.bea.com/alsb/docs26/interoptux/tuxintro.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxyservices.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxyservices.html
http://e-docs.bea.com/alsb/docs26/consolehelp/businessServices.html
http://e-docs.bea.com/alsb/docs26/consolehelp/businessServices.html

Data Se rv ices P la t fo rm (DSP)

AquaLogic Service Bus User Guide 7-19

Data Services Platform (DSP)
AquaLogic Service Bus provides optimized transport for 1-way or 2-way communication for
invoking services on AquaLogic Data Services Platform Data using a native Data Services
Platform (DSP) transport. You access the AquaLogic Data Services Platform from AquaLogic
Service Bus thus allowing an AquaLogic Service Bus client to make full use of data services. For
detailed information on accessing AquaLogic Data Services Platform from AquaLogic Service
Bus, see http://edocs.bea.com/alsb/docs26/aldsp_transport_for_alsb2_6.pdf.

You can select the DSP transport protocol when you configure SOAP or XML business service
types. To learn more, see “Adding a Business Service” in Using the AquaLogic Service Bus
Console.

If you create a proxy service from a DSP transport business service, AquaLogic Service Bus will
switch the transport type of the proxy service to HTTP. This is because the DSP transport cannot
be used for proxy services. You can then change the transport type of the proxy service to any
other available transport.

To learn more, see “Adding a Proxy Service” in Using the AquaLogic Service Bus Console.

http://e-docs.bea.com/alsb/docs26/consolehelp/businessServices.html
http://e-docs.bea.com/alsb/docs26/aldsp_transport_for_alsb2_6.pdf
http://e-docs.bea.com/alsb/docs26/consolehelp/proxyservices.html

Transpo r ts

7-20 AquaLogic Service Bus User Guide

AquaLogic Service Bus User Guide 8-1

C H A P T E R 8

Local Transport

This chapter provides information about the AquaLogic Service Bus local transport. It includes
the following topics:

“Introduction” on page 8-1

“Features and Characteristics of Local Transport Proxy Services” on page 8-2

“Usage of Local Transport Proxy Services” on page 8-3

“Limitations” on page 8-4

Introduction
Commonly, service bus architectures include complex message flows, in which messages are
routed through multiple proxy services that are organized into larger multiple proxy service
flows. Individual proxy services in these multiple proxy service scenarios route, publish, or
callout to the next proxy service in the flow. The reason for a multiple proxy services design is to
support modularity and compartmentalization of the various components of the end-to-end
message flow. The individual proxy services in a multiple proxy service flows need to:

Communicate efficiently and securely.

Allow transactions and transactional behavior to be propagated

Allow security context to be propagated so that the identity can be propagated end-to-end.
The security context propagation also allows the client of the first proxy service in a
multiple service flow to be authorized by the proxy services that are subsequently invoked

Loca l T ranspo r t

8-2 AquaLogic Service Bus User Guide

in the flow—thus supporting fine-grained access control generic headers in the local
transport.
Using the local transport for proxy services ensures support for these capabilities.

Features and Characteristics of Local Transport Proxy
Services

Local transport-based proxy services can only be invoked by other proxy service, not by other
clients. The invocation is optimized by AquaLogic Service Bus. Local proxy services do not have
an URI. However, there are no constraints on the service and interface types supported by local
transport proxy services. The one exception is that SAML is only supported in a pass through
scenario.

If the quality of service (QoS) for an invoking proxy service is defined as Exactly Once, the
transaction of that service is propagated to the local transport proxy service.

In other words, the invoked local transport proxy service inherits the transactional behavior of the
invoking proxy service. A proxy service can authenticate at the transport level or the message
level. If it is enabled, the effective client is the message-level authenticated client. If the
message-level authenticated client is not enabled, then the transport-level authenticated client is
the effective client (if that is enabled). If neither the message-level nor the transport-level
authenticated client is enabled, the anonymous client becomes the effective client.

When a proxy service invokes a local transport proxy service, the effective client of the invoking
proxy service becomes the transport-level client of the invoked local proxy service. A local
transport proxy service can authorize this client for access with an access control policy. In this
way, it is possible to propagate the client of the first proxy service to all the subsequent proxy
services in the overall end-to-end message flow.

Local transport proxy services support user-defined transport headers. Consider a scenario in
which a proxy service uses the HTTP transport; it routes to a local proxy service and the HTTP
proxy service passes headers to the local proxy service using the Transport Header action. In this
scenario, if the HTTP proxy service received the Content-Type header, this header is available as
a user header in the local transport and is therefore accessible through the standard user header,
instead of as a typed transport header.

You can invoke a local transport proxy service from the AquaLogic Service Bus test browser.
Metrics are collected for a local transport proxy service in the same way as they are any other
service. However, local transport proxy services cannot be published to UDDI.

Usage o f Loca l T ranspor t P roxy Se rv ices

AquaLogic Service Bus User Guide 8-3

Usage of Local Transport Proxy Services
A common scenario that can be supported using local transport proxy services is one in which a
proxy service needs to be invoked using different transports. This can be achieved by putting a
set of front-end proxy services (one service per transport) in front of a local transport proxy
service in the path of the message flow. These front-end proxy services simply route messages to
the local transport proxy service. The following figure illustrates this scenario.

Figure 8-1 Using Local Transport to Implement Convergence

Another common scenario is one in which an Any SOAP or XML type proxy service acts as a
front-end to different enterprise systems. This front-end proxy service can receive messages in a
variety of formats and uses a technique common to all these messages (for example, a
WS-Addressing SOAP header) to route the messages to an appropriate local transport proxy
service. In this scenario, the front-end proxy service is acting as a generic router with little
knowledge of the enterprise systems or the message formats and semantics. To further abstract
the knowledge of the routing rules at design time, the front-end proxy service can use dynamic
routing to route messages to the local transport proxy services. For an example of how dynamic
routing is used in the proxy services, see “Using Dynamic Routing” on page 2-44 in the users
guide.

Each of the local transport proxy services to which messages are routed from the front-end
service in turn acts as a front-end proxy service for a specific business service. The local transport
proxy services are aware of the message format required by the business services to which they
route. In this scenario, these local transport proxy services act as functional proxy services. The

Loca l T ranspo r t

8-4 AquaLogic Service Bus User Guide

roles of a functional proxy services are to enforce access control for invoking a particular
business service, and to perform any transformation of the messages required to invoke the target
business service correctly. The following figure illustrates this scenario.

Figure 8-2 Using Local Transport to Access Multiple Business Services

Limitations
The limitations of the local transport are:

You can invoke the proxy service using the local transport only from another proxy
service.

The proxy services using the local transport cannot be published to the UDDI.

A local transport proxy service cannot process inbound WS-Security SAML tokens.

AquaLogic Service Bus User Guide 9-1

C H A P T E R 9

Extensibility Using Java Callouts and
POJOs

To allow you to extend the capabilities of AquaLogic Service Bus in your organization, you can
invoke custom Java code from within proxy services. AquaLogic Service Bus supports a Java
exit mechanism via a Java Callout action that allows you to call out to a Plain Old Java Object
(POJO). Static methods can be accessed from any POJO. The POJO and its parameters are visible
in the AquaLogic Service Bus Console at design time; the parameters can be mapped to message
context variables.

For information about configuring a Java Callout to a POJO, see “Java Callout” in Proxy
Services: Actions in Using the AquaLogic Service Bus Console.

Usage Guidelines
The scenarios in which you can use Java Callouts to POJOs in AquaLogic Service Bus include
the following:

Custom validation—Examples of custom validation include validation against a DTD, or
doing cross-field semantic validation in Java.

Custom transformation—Examples of custom transformations can include converting a
binary document to base64Binary, or vice versa, or using a custom Java transformation
class.

Custom authentication and authorization—Examples of custom authentication and
authorizations include scenarios in which a custom token in a message needs to be
authenticated and authorized. However, the authenticated user’s identity cannot be

http://e-docs.bea.com/alsb/docs26/consolehelp/proxyactions.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxyactions.html

Extens ib i l i t y Us ing Java Ca l louts and POJOs

9-2 AquaLogic Service Bus User Guide

propagated by AquaLogic Service Bus to the services or POJOs subsequently invoked by
the proxy service.

Lookups for message enrichment—For example, a file or Java table can be used to look up
any piece of data that can enrich a message.

Binary data access—You can use a Java Callout to a POJO to sniff the first few bytes of a
binary document to deduce the MFL type. The MFL type returned is used for a subsequent
NonXML-to-XML transformation using the MFL Transform action.

Implementing custom routing rules or rules engines.

Note: The input and return types for Java Callouts are limited to primitives and XmlObject.

Enterprise JavaBeans (EJBs) also provide a Java exit mechanism. The use of EJBs is
recommended over the use of POJOs in the following cases:

When you already have an EJB implementation.

When you require read access to a JDBC database—Although POJOs can be used for this
purpose, EJBs were specifically designed for this and provide better support for
management of, and connectivity to, JDBC resources.

When you require write access to a JDBC database or other J2EE transactional resource—
EJBs were specifically designed for transactional business logic and they provide better
support for proper handling of failures. However, transaction and security context
propagation is supported with POJOs and they can be used for this purpose.

For outbound messaging, BEA recommends that you write a custom transport instead of using
POJOs or EJBs.

Best Practices
POJOs are registered as JAR resources in AquaLogic Service Bus. For information about JAR
resources, see JARs in Using the AquaLogic Service Bus Console.

In general, BEA recommends that the JARs are small and simple—any large bodies of code that
a JAR invokes or large frameworks that are made use of are best included in the system classpath.
Note that if you make a change to the system classpath, you must reboot the server.

BEA recommends that you put dependent and overlapping classes in the same JAR resource; put
them in different JARS if they are naturally distinct. Any change to a JAR causes all the services
that reference it to be redeployed—this can be time consuming for your AquaLogic Service Bus

http://e-docs.bea.com/alsb/docs26/consolehelp/proxyactions.html
http://e-docs.bea.com/alsb/docs26/consolehelp/jars.html

Best P ract ices

AquaLogic Service Bus User Guide 9-3

system. The same class can be located in multiple JAR resources without causing conflicts. The
JARs are dynamically class loaded when they are first referenced.

A single POJO can be invoked by one or more proxy services. All the threads in the proxy
services invoke the same POJO. Therefore, the POJO must be thread safe. A class or method on
a POJO can be synchronized, in which case it serializes access across all threads in all of the
invoking proxy services. Any finer-grained concurrency (for example, to control access to a DB
read results cache and implement stale cache entry handling) must be implemented by the POJO
code.

It is generally a bad practice for POJOs to create threads.

Extens ib i l i t y Us ing Java Ca l louts and POJOs

9-4 AquaLogic Service Bus User Guide

AquaLogic Service Bus User Guide 10-1

C H A P T E R 10

XQuery Implementation

AquaLogic Service Bus uses the BEA AquaLogic Data Services Platform implementation of the
XQuery engine which fully supports all of the language features that are described in the World
Wide Web (W3C) specification for XQuery with one exception: modules. For more information
about the XQuery 1.0 and XPath 2.0 functions and operators (W3C Working Draft 23 July 2004),
see the following URL:

http://www.w3.org/TR/2004/WD-xpath-functions-20040723/

AquaLogic Service Bus supports the following XQuery functions:

A robust subset of the XQuery functions that are described in W3C specification. For a list
of the supported functions and a description of each function, see BEA XQuery
Implementation in the XQuery Developer's Guide.

The function extensions and language keywords that BEA AquaLogic Data Services
Platform provides—with a small number of exceptions. For information about those
exceptions, see “Supported Function Extensions from AquaLogic Data Services Platform”
on page 10-2.

AquaLogic Service Bus-specific function extensions. See “Function Extensions from
AquaLogic Service Bus” on page 10-2.

Note: All of the BEA function extensions use the following function prefix fn-bea: In other
words, the full XQuery notation for an extended function is of this format:
fn-bea: function_name.

http://edocs.bea.com/aldsp/docs21/index.html
http://edocs.bea.com/aldsp/docs21/xquery/extensions.html
http://edocs.bea.com/aldsp/docs21/xquery/extensions.html
http://www.w3.org/TR/2004/WD-xpath-functions-20040723/

XQuery Implementat i on

10-2 AquaLogic Service Bus User Guide

Supported Function Extensions from AquaLogic Data
Services Platform

AquaLogic Service Bus supports all function extensions that BEA AquaLogic Data Services
Platform provides except for the following:

fn-bea:is-access-allowed

fn-bea:is-user-in-group

fn-bea:is-user-in-role

fn-bea:userid

fn-bea:async

fn-bea:timeout

fn-bea:get-property

fn-bea:execute-sql()

BEA recommends that you do not use the following functions in AquaLogic Service Bus—they
are better covered by other language features:

fn-bea:if-then-else

fn-bea:QName-from-string

fn-bea:sql-like

For a list of all AquaLogic Data Services Platform function extensions and a description of each
function, see BEA XQuery Implementation in the XQuery Developer's Guide.

Function Extensions from AquaLogic Service Bus
AquaLogic Service Bus provides the following XQuery functions:

fn-bea:lookupBasicCredentials

fn-bea: uuid()

fn-bea:execute-sql()

fn-bea:serialize()

http://edocs.bea.com/aldsp/docs21/xquery/extensions.html

Funct ion Ex tens ions f rom AquaLog ic Serv i ce Bus

AquaLogic Service Bus User Guide 10-3

fn-bea:lookupBasicCredentials
The fn-bea:lookupBasicCredentials function returns the user name and unencrypted
password from a specified service account. You can specify any type of service account (static,
pass-through, or user-mapping). See Service Account in Using the AquaLogic Service Bus
Console.

Use the fn-bea:lookupBasicCredentials function as part of a larger set of XQuery functions
that you use to encode a user name and password in a custom transport header or in an
application-specific location within the SOAP envelope. You do not need to use this function if
you only need user names and passwords to be located in HTTP Authentication headers or as
WS-Security user name tokens. AquaLogic Service Bus already retrieves user names and
passwords from service accounts and encodes them in HTTP Authentication headers or as
WS-Security user name tokens when required.

The function has the following signature:

fn-bea:lookupBasicCredentials($service-account as xs:string) as

UsernamePasswordCredential

where $service-account is the path and name of a service account in the following form:

project-name[/folder[...]]/service-account-name

The return value is an XML element of this form:

<UsernamePasswordCredential
xmlns="http://www.bea.com/wli/sb/services/security/config">
<username>name</username>
<password>unencrypted-password</password>

</UsernamePasswordCredential>

You can store the returned element in a user-defined variable and retrieve the user name and
password values from this variable when you need them.

For example, your AquaLogic Service Bus project is named myProject. You create a static
service account named myServiceAccount in a folder named myFolder1/myFolder2. In the
service account, you save the user name of pat with a password of patspassword.

To get the user name and password from your service account, invoke the following function:

fn-bea:lookupBasicCredentials(

myProject/myFolder1/myFolder2/myServiceAccount)

http://e-docs.bea.com/alsb/docs26/consolehelp/serviceAccounts.html

XQuery Implementat i on

10-4 AquaLogic Service Bus User Guide

The function returns the following element:
<UsernamePasswordCredential

xmlns="http://www.bea.com/wli/sb/services/security/config">
<username>pat</username>
<password>patspassword</password>

</UsernamePasswordCredential>

fn-bea: uuid()
The function fn-bea:uuid() returns a universally unique identifier. The function has the
following signature:

fn-bea:uuid() as xs:string

You can use this function in the proxy pipeline to generate a unique identifier. You can insert the
generated unique identifier into an XML document as an element. You cannot generate a unique
identifier to the system variable. You can use this to modify a message payload.

For example, suppose you want to generate a unique identifier to add to a message for tracking
purposes. You could use this function to generate a unique identifier. The function returns a string
that you can add it to the SOAP header.

fn-bea:execute-sql()
The fn-bea:execute-sql() function provides low-level database access from XQuery within
AquaLogic Service Bus message flows--see “Accessing Databases Using XQuery” on page 2-48.
The query returns a sequence of flat row elements with typed data.

The function has the following signature:
fn-bea:execute-sql($datasource as xs:string, $rowElemName as xs:QName,
$sql as xs:string, $param1, ..., $paramk) as element()*

where

$datasource is the JNDI name of the datasource

$rowElemName is the name of the row element—specify $rowElemName as whatever
QName you want each element of the resulting element sequence to have

$sql is the SQL statement

$param1, ..., $paramk are 1 to k parameters

element()* represents the sequence of elements returned

Funct ion Ex tens ions f rom AquaLog ic Serv i ce Bus

AquaLogic Service Bus User Guide 10-5

The return value is a sequence of flat row elements with typed data and automatically translates
values between SQL/JDBC and XQuery data models. Data Type mappings that the XQuery
engine generates or supports for the supported databases can be found in the “XQuery-SQL
Mapping Reference” on page A-1.

When you execute the fn-bea:execute-sql() function from an AquaLogic Service Bus
message flow, you can store the returned element in a user-defined variable.

Use the following examples to understand the use of the fn-bea:execute sql() function in
AquaLogic Service Bus:

“Example 1: Retrieving the URI from a Database for Dynamic Routing” on page 10-5

“Example 2: Getting XMLType Data from a Database” on page 10-7

Example 1: Retrieving the URI from a Database for Dynamic Routing
AquaLogic Service Bus proxy services support specification of the URI to which messages are
to be routed at run time (dynamically)—see “Using Dynamic Routing” on page 2-44. The
following listing is an example use of the fn-bea:execute-sql() function to retrieve the URI
from a database in a dynamic routing scenario.

Listing 10-1 Get the URI for a Business Service from a Database

<ctx:route><ctx:service>

{

fn-bea:execute-sql(

'ds.myJDBCDataSource',

xs:QName('customer'),

'SELECT targetService FROM DISPATCH_MAPPING WHERE customer_priority=?',

xs:string($body/m:Request/m:customer_pri/text())

)/TARGETSERVICE/text()

}

</ctx:service></ctx:route>

XQuery Implementat i on

10-6 AquaLogic Service Bus User Guide

In the preceding example:

ds.myJDBCDataSource is the JNDI name to the data source

xs:string($body/m:Request/m:customer_pri/text()) interrogates the request
message and populates customer_priority=? with the value of customer_pri in the
message

/TARGETSERVICE/text()is the path applied to the result of the SQL statement, which
results in the string (CDATA) contents of that element being returned

<ctx:route><ctx:service> ... </ctx:service></ctx:route> are required
elements of the XQuery statement for a dynamic routing scenario

The following is the table definition for DISPATCH_MAPPING:

create table DISPATCH_MAPPING

(

customer_priority varchar2(256),

targetService varchar2(256),

soapPayload varchar2(1024)

);

The DISPATCH_MAPPING table is populated as follows:

Listing 10-2 DISPATCH_MAPPING Table

INSERT INTO DISPATCH_MAPPING (customer_priority, targetService,

soapPayload)

VALUES ('0001', 'system/UCGetURI4DynamicRouting_proxy1', '<something/>');

INSERT INTO DISPATCH_MAPPING (customer_priority, targetService,

soapPayload)

VALUES ('0002', 'system/UCGetURI4DynamicRouting_proxy2', '<something/>');

Note: The third column in the table (soapPayload) is not used in this scenario.

Funct ion Ex tens ions f rom AquaLog ic Serv i ce Bus

AquaLogic Service Bus User Guide 10-7

Executing the fn-bea:execute-sql for Example 3

If the XQuery in Listing 10-1 is executed as a result of a proxy service receiving the request
message in Listing 10-3 (note that the value of <customer_pri> in the request message is
0001), the URI returned for the dynamic route scenario is

system/UCGetURI4DynamicRouting_proxy1

(See also Listing 10-2.)

Listing 10-3 Example Request Message $body

<m:Request xmlns:m="http://www.bea.com/alsb/example">

<m:customer_pri>0001</m:customer_pri>

</m:Request>

Example 2: Getting XMLType Data from a Database
Data Type mappings that the XQuery engine generates or supports for the supported databases
can be found in the “XQuery-SQL Mapping Reference” on page A-1. Note that the XMLType
column type in SQL is not supported. However, you can access the data in an XMLType column
by using the getStringVal() method of the XMLType object to convert it to a String value.

The following scenario outlines a procedure you can use to select data from an XMLType column
in an Oracle database.

1. Use an Assign action in a proxy service message flow to assign the results of the following
XQuery to a variable ($result).

Listing 10-4 Get XMLType Data from a Database

fn-bea:execute-sql(

'ds.myJDBCDataSource',

'Rec',

'SELECT a.purchase_order.getStringVal() purchase_order from datatypes

a'

XQuery Implementat i on

10-8 AquaLogic Service Bus User Guide

)

where:

– ds.myJDBCDataSource is the JNDI name to the data source

– Rec is the $rowElemName—therefore, Rec is the QName given to each element of the
resulting element sequence

– select a.purchase_order.getStringVal() ... is the SQL statement that uses
the getStringVal() method of the XMLType object to convert it to a String value

– datatypes is the table from which the value of the XML is read (the datatypes table
in this case contains one row)

Note: The following is the table definition for the dataty.pes table:

create table datatypes

(

purchase_order xmltype

);

2. Use a Replace action to replace the node contents of $body with the results of the
fn-bea:execute-sql() query (assigned to $result in the preceding step):

Replace [node contents] of [undefined XPath] in [body] with
[$result/purchase_order/text()]

The following listing shows $body after the replacement.

Note: The datatypes table contains one row (with the purchase order data); the row contains
the XML represented in Listing 10-5.

Listing 10-5 $body After XML Content is Replaced with Result of fn-bea:execute-sql()

<soap-env:Body>

<openuri:orders xmlns:openuri="http://openuri.com/">

<openuri:order>

<openuri:customerID>123</openuri:customerID>

<openuri:orderID>123A</openuri:orderID>

Funct ion Ex tens ions f rom AquaLog ic Serv i ce Bus

AquaLogic Service Bus User Guide 10-9

</openuri:order>

<openuri:order>

<openuri:customerID>345</openuri:customerID>

<openuri:orderID>345B</openuri:orderID>

</openuri:order>

<openuri:order>

<openuri:customerID>789</openuri:customerID>

<openuri:orderID>789C</openuri:orderID>

</openuri:order>

</openuri:orders>

</soap-env:Body>

fn-bea:serialize()
You can use the fn-bea:serialize() function if you need to represent an XML Document as
a string instead of as an XML element. For example, you may want to exchange an XML
document through an EJB interface and the EJB method takes String as argument. The function
has the following signature:
fn-bea:serialize($input as item()) as xs:string

XQuery Implementat i on

10-10 AquaLogic Service Bus User Guide

AquaLogic Service Bus User Guide A-1

A P P E N D I X A

XQuery-SQL Mapping Reference

This appendix provides information about the native RDBMS Data Type support and XQuery
mappings that the BEA XQuery engine generates or supports. It includes the following topics:

Core RDBMS Data Type Mapping:

– IBM DB2/NT 8

– Microsoft SQL Server

– Oracle 8.1.x

– Oracle 9.x, 10.x

– Pointbase 4.4 (and higher)

– Sybase 12.5.2 (and higher)

Base (Generic) RDBMS Data Type Mapping

For information about using these mappings in AquaLogic Service Bus XQueries, see
“Accessing Databases Using XQuery” on page 2-48.

For complete information about database and JDBC drivers support in AquaLogic Service Bus,
see Supported Database Configurations in Supported Configurations for AquaLogic Service Bus.

../../../platform/suppconfigs/configs_al26/26_over/supported_db.html

XQuery-SQL Mapping Refe rence

A-2 AquaLogic Service Bus User Guide

IBM DB2/NT 8
This section identifies the data type mappings that the XQuery engine generates or supports for
IBM DB2/NT 8.

Table A-1 IBM DB2 Data Type Mappings

DB2 Data Type XQuery Type

BIGINT xs:long

BLOB xs:hexBinary

CHAR xs:string

CHAR() FOR BIT DATA xs:hexBinary

CLOB1

1. Pushed down in project list only.

xs:string

DATE xs:date

DOUBLE xs:double

DECIMAL(p,s)2 (NUMERIC)

2. Where p is precision (total number of digits, both to the right and left of decimal point)
and s is scale (total number of digits to the right of decimal point).

xs:decimal (if s > 0), xs:integer (if s = 0)

INTEGER xs:int

LONG VARCHAR1 xs:string

LONG VARCHAR FOR BIT DATA xs:hexBinary

REAL xs:float

SMALLINT xs:short

TIME3 xs:time4

TIMESTAMP5 xs:dateTime4

VARCHAR xs:string4

VARCHAR() FOR BIT DATA xs:hexBinary

Mic rosof t SQL Serve r

AquaLogic Service Bus User Guide A-3

Microsoft SQL Server
This section identifies the data type mappings that the XQuery engine generates or supports for
Microsoft SQL Server.

3. Accurate to 1 second.
4. Values converted to local time zone (timezone information removed) due to TIME and
TIMESTAMP limitations. See “XQuery-SQL Data Type Mappings” in XQuery Engine
and SQL in the XQuery Developer's Guide for more information.
5. Precision limited to milliseconds.

Table A-2 SQL Server 2000 Data Type Mapping

SQL Data Type XQuery Type

BIGINT xs:long

BINARY xs:hexBinary

BIT xs:boolean

CHAR xs:string

DATETIME1 xs:dateTime2

DECIMAL(p,s)3
(NUMERIC)

xs:decimal (if s > 0), xs:integer (if s = 0)

FLOAT xs:double

IMAGE xs:hexBinary

INTEGER xs:int

MONEY xs:decimal

NCHAR xs:string

NTEXT4 xs:string

NVARCHAR xs:string

REAL xs:float

http://edocs.bea.com/aldsp/docs25/xquery/sql_pushdown.html

XQuery-SQL Mapping Refe rence

A-4 AquaLogic Service Bus User Guide

Oracle 8.1.x
This section identifies the data types that the XQuery engine generates or supports for Oracle
8.1.x (Oracle 8i).

SMALLDATETIME5 xs:dateTime

SMALLINT xs:short

SMALLMONEY xs:decimal

SQL_VARIANT xs:string

TEXT4 xs:string

TIMESTAMP xs:hexBinary

TINYINT xs:short

VARBINARY xs:hexBinary

VARCHAR xs:string

UNIQUIDENTIFIER xs:string

1. Fractional-second-precision up to 3 digits (milliseconds). No timezone.
2. Values converted to local time zone (timezone information removed) and fractional
seconds truncated to milliseconds due to DATETIME limitations. See “XQuery-SQL Data
Type Mappings” in XQuery Engine and SQL in the XQuery Developer's Guide for more
information.
3. Where p is precision (total number of digits, both to the right and left of decimal point)
and s is scale (total number of digits to the right of decimal point).
4. Pushed down in project list only.
5. Accuracy of 1 minute.

Table A-2 SQL Server 2000 Data Type Mapping

Table A-3 Oracle 8.1.x Data Type Mapping

Oracle 8 Data Type XQuery Type

BFILE not supported

BLOB xs:hexBinary

http://edocs.bea.com/aldsp/docs25/xquery/sql_pushdown.html
http://edocs.bea.com/aldsp/docs25/xquery/sql_pushdown.html

Orac le 8 .1 . x

AquaLogic Service Bus User Guide A-5

CHAR xs:string

CLOB1 xs:string

DATE2 xs:dateTime

FLOAT xs:double

LONG1 xs:string

LONG RAW xs:hexBinary

NCHAR xs:string

NCLOB1 xs:string

NUMBER xs:double

NUMBER(p,s)3 xs:decimal (if s > 0), xs:integer (if s <=0)

NVARCHAR2 xs:string

RAW xs:hexBinary

ROWID xs:string

UROWID xs:string

1. Pushed down in project list only.
2. Does not support fractional seconds.
3. Where p is precision (total number of digits, both to the right and left of decimal point)
and s is scale (total number of digits to the right of decimal point).

Table A-3 Oracle 8.1.x Data Type Mapping

XQuery-SQL Mapping Refe rence

A-6 AquaLogic Service Bus User Guide

Oracle 9.x, 10.x
This section identifies the data type and other mappings that the XQuery engine generates or
supports for Oracle 9.x (Oracle 9i) and Oracle 10.x (Oracle 10g). Note that Oracle treats empty
strings as NULLs, which deviates from XQuery semantics and may lead to unexpected results for
expressions that are pushed down.

Table A-4 Oracle 9.x, 10.x Data Type Mapping

Oracle 9 Data Type XQuery Type

BFILE not supported

BLOB xs:hexBinary

CHAR xs:string

CLOB1 xs:string

DATE xs:dateTime2

FLOAT xs:double

INTERVAL DAY TO SECOND xdt:dayTimeDuration

INTERVAL YEAR TO MONTH xdt:yearMonthDuration

LONG1 xs:string

LONG RAW xs:hexBinary

NCHAR xs:string

NCLOB1 xs:string

NUMBER xs:double

NUMBER(p,s) xs:decimal (if s > 0), xs:integer (if s <=0)

NVARCHAR2 xs:string

RAW xs:hexBinary

ROWID xs:string

Sybase 12 .5 .2 (and h igher)

AquaLogic Service Bus User Guide A-7

Sybase 12.5.2 (and higher)
This section identifies the data types that the XQuery engine generates or supports for Sybase
12.5.2 (and higher).

Note: Sybase deviates from XQuery semantics (which ignores empty strings) and treats empty
strings as a single-space string.

TIMESTAMP xs:dateTime3

TIMESTAMP WITH LOCAL
TIMEZONE

xs:dateTime

TIMESTAMP WITH
TIMEZONE

xs:dateTime

VARCHAR2 xs:string

UROWID xs:string

1. Pushed down in project list only.
2. When SDO stores xs:dateTime value in Oracle DATE type, it is converted to local
time zone and fractional seconds are truncated due to DATE limitations. See
“XQuery-SQL Data Type Mappings” in XQuery Engine and SQL in the XQuery
Developer's Guide for more information.
3. XQuery engine maps XQuery xs:dateTime to either TIMESTAMP or TIMESTAMP
WITH TIMEZONE data type, depending on presence of timezone information. Storing
xs:dateTime using SDO may result in loss of precision for fractional seconds,
depending on the SQL type definition.

Table A-4 Oracle 9.x, 10.x Data Type Mapping

Table A-5 Sybase 12.5.2 Data Type Mapping

Sybase Data Type XQuery Type

BINARY xs:hexBinary

BIT xs:boolean

CHAR xs:string

DATE xs:date

http://edocs.bea.com/aldsp/docs25/xquery/sql_pushdown.html

XQuery-SQL Mapping Refe rence

A-8 AquaLogic Service Bus User Guide

DATETIME1 xs:dateTime2

DECIMAL(p,s)3 (NUMERIC) xs:decimal (if s > 0), xs:integer (if s == 0)

DOUBLE PRECISION xs:double

FLOAT xs:double

IMAGE xs:hexBinary

INT (INTEGER) xs:int

MONEY xs:decimal

NCHAR xs:string

NVARCHAR xs:string

REAL xs:float

SMALLDATETIME4 xs:dateTime

SMALLINT xs:short

SMALLMONEY xs:decimal

SYSNAME xs:string

TEXT5 xs:string

TIME xs:time

TINYINT xs:short

VARBINARY xs:hexBinary

VARCHAR xs:string

1. Supports fractional seconds up to 3 digits (milliseconds) precision; no timezone
information.
2. When SDO stores xs:dateTime value in Oracle DATE type, it is converted to local time
zone and fractional seconds are truncated due to DATE limitations. See “XQuery-SQL
Data Type Mappings” in XQuery Engine and SQL in the XQuery Developer's Guide for
more information.

Table A-5 Sybase 12.5.2 Data Type Mapping

http://edocs.bea.com/aldsp/docs25/xquery/sql_pushdown.html
http://edocs.bea.com/aldsp/docs25/xquery/sql_pushdown.html

Po intbase 4 .4 (and h igher)

AquaLogic Service Bus User Guide A-9

Pointbase 4.4 (and higher)
This section identifies the data types that the XQuery engine generates or supports for Pointbase.

3. Where p is precision (total number of digits, both to the right and left of decimal point)
and s is scale (total number of digits to the right of decimal point).
4. Accurate to 1 minute.
5. Expressions returning text are pushed down in the project list only.

Table A-6 Pointbase 4.4 Data Type Mapping

Pointbase Data Type XQuery Type

BIGINT xs:long

BLOB xs:hexBinary

BOOLEAN xs:boolean

CHAR (CHARACTER) xs:string

CLOB xs:string

DATE xs:date

DECIMAL(p,s)1
(NUMERIC)

1. Where p is precision (total number of digits, both to the right and left of decimal point) and
s is scale (total number of digits to the right of decimal point).

xs:decimal (if s > 0), xs:integer (if s == 0)

DOUBLE PRECISION xs:double

FLOAT xs:double

INTEGER (INT) xs:int

SMALLINT xs:short

REAL xs:float

TIME xs:time

TIMESTAMP xs:dateTime

VARCHAR xs:string

XQuery-SQL Mapping Refe rence

A-10 AquaLogic Service Bus User Guide

Base (Generic) RDBMS Data Type Mapping
When mapping SQL to XQuery data types, the XQuery engine first checks the JDBC typecode.
If the typecode has a corresponding XQuery type, the XQuery engine uses the matching native
type name. If no matching typecode or type name is available, the column is ignored. Table A-7
shows this mapping.

Table A-7 Base Platform Data Type Mapping (JDBC<–>XQuery Equivalents)

JDBC Data Type Typecode XQuery Data Type

BIGINT -5 xs:long

BINARY -2 xs:string

BIT -7 xs:boolean

BLOB 2004 xs:hexBinary

BOOLEAN 16 xs:boolean

CHAR 1 xs:string

CLOB1 2005 xs:string

DATE 91 xs:date2

DECIMAL (p,s)3 3 xs:decimal (if s > 0), xs:integer (if s =0)

DOUBLE 8 xs:double

FLOAT 6 xs:double

INTEGER 4 xs:int

LONGVARBINARY -4 xs:hexBinary

LONGVARCHAR1 -1 xs:string

NUMERIC (p,s)3 2 xs:decimal (if s > 0), xs:integer (if s =0)

REAL 7 xs:float

SMALLINT 5 xs:short

Base (Gene r i c) RDBMS Data Type Mapping

AquaLogic Service Bus User Guide A-11

Related Topics
“Accessing Databases Using XQuery” on page 2-48

“fn-bea:execute-sql()” on page 10-4

TIME4 92 xs:time4

TIMESTAMP4 93 xs:dateTime2

TINYINT -6 xs:short

VARBINARY -3 xs:hexBinary

VARCHAR 12 xs:string

OTHER 1111 BEA AquaLogic Service Bus uses native data
type name to map to an appropriate XQuery
data type.Other vendor-specific JDBC type codes

1. Pushed down in project list only.
2. Values converted to local time zone (timezone information removed) due to DATE
limitations. See “XQuery-SQL Data Type Mappings” in XQuery Engine and SQL in the XQuery
Developer's Guide for more information.
3. Where p is precision (total number of digits, both to the right and left of decimal point) and s
is scale (total number of digits to the right of decimal point).
4. Precision of underlying RDBMS determines the precision of TIME data type and how much
truncation, if any, will occur in translating xs:time to TIME.

Table A-7 Base Platform Data Type Mapping (JDBC<–>XQuery Equivalents)

JDBC Data Type Typecode XQuery Data Type

http://edocs.bea.com/aldsp/docs25/xquery/sql_pushdown.html

XQuery-SQL Mapping Refe rence

A-12 AquaLogic Service Bus User Guide

AquaLogic Service Bus User Guide A-1

A P P E N D I X A

Tuning AquaLogic Service Bus

This section provides AquaLogic Service Bus tuning tips.

Whenever possible, set the logging level to warning. You set the logging level in the
WebLogic Server Administration Console. For more information, see Servers: Logging:
General in the WebLogic Server Administration Console Online Help. The following code
displays the output server config.xml file when the logging level is set to warning. For
more information on logging, see “Log” in Proxy Services: Actions in the Using the
AquaLogic Service Bus Console.

<server>

 <name>AdminServer</name>

 <log>

 <file-min-size>5000</file-min-size>

 <log-file-severity>Warning</log-file-severity>

 <log-file-filter xsi:nil="true"></log-file-filter>

 <stdout-severity>Off</stdout-severity>

 <stdout-filter xsi:nil="true"></stdout-filter>

 <domain-log-broadcast-severity>Error</domain-log-broadcast-severity>

 <domain-log-broadcast-filter
xsi:nil="true"></domain-log-broadcast-filter>

 <memory-buffer-severity>Error</memory-buffer-severity>

 <memory-buffer-filter xsi:nil="true"></memory-buffer-filter>

 </log>

http://e-docs.bea.com/wls/docs92/ConsoleHelp/pagehelp/Corecoreserverserverlogginggeneraltitle.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/pagehelp/Corecoreserverserverlogginggeneraltitle.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxyactions.html

Tun ing AquaLog ic Se rv ice Bus

A-2 AquaLogic Service Bus User Guide

</server>

Group JMS queues on different JMS servers based on message loads. Different JMS
servers use different file stores, which you can distribute to separate disk volumes. For
more information, “Adding a Business Service” in Business Services in the Using the
AquaLogic Service Bus Console and pay particular attention to the JMS configuration
information.

If you are using an Oracle database as a JMS persistent store, it is recommended that you
use a 10g database and ensure that it has sufficient JDBC connections. Create a JDBC store
on a separate schema to use a separate tablespace.

If you do not require monitoring for a proxy or business service, disable the monitoring
capability. For more information, see “Overview of Monitoring” in Monitoring in the
Using the AquaLogic Service Bus Console.

If possible, set the routing data in the JMS message properties. AquaLogic Service Bus
does not deserialize message content until the content is explicitly accessed in the pipeline.
For example, if the content is an XML document, XML parsing does not happen until an
XQuery or XSLT operation happens in the pipeline. For more information about working
with the message context in the message flow, see “Message Context” on page 3-1.

If you need to extract some of the inbound header elements for processing, you should
specify that AquaLogic Service Bus retrieves specific header elements instead of all the
elements.

If you are using an Oracle database as a JMS persistent store BEA recommends that you
should ensure that enough JDBC connections are available. This allows an administrator to
tune the block size based upon the message size. It is also possible to create each
tablespace on a separate datafile and put these datafiles on separate disks. Such an
arrangement allows for greater concurrency at the hardware level when the datafiles are not
stored on a RAID.

Where possible, use the insert action instead of the assign action. The insert action uses
“in-place” modification semantics enhancing the performance compared to the assign
action. For information on configuring actions, see “Adding an Action” in Proxy Services:
Actions in the Using the AquaLogic Service Bus Console.

Use AquaLogic Service Bus clustering and WebSphere MQ clustering to achieve
scalability.

When you are configuring the Accept Backlog parameter in the WebLogic Server BEA
recommends that you should first increase the default value by twenty five percent.If the
‘connection refused, socket exception’ is thrown, then continue increasing the value till the

http://e-docs.bea.com/alsb/docs26/consolehelp/businessServices.html
http://e-docs.bea.com/alsb/docs26/consolehelp/monitoring.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxyactions.html
http://e-docs.bea.com/alsb/docs26/consolehelp/proxyactions.html

AquaLogic Service Bus User Guide A-3

exception is not thrown. For more information on tuning the WebLogic Server see Tuning
WebLogic Server.

If a front-end application invokes AquaLogic Service Bus synchronously, AquaLogic
Service Bus can use the synchronous-asynchronous feature to communicate with
WebSphere MQ synchronously. On the WebSphere MQ side, a request and a response
queue is set up. AquaLogic Service Bus sends a request to the request queue and waits for
a response from the response queue. To achieve improved performance, you can use a
dedicate work manager for the response Message Driven Bean. You configure the dedicate
work manager in the WebLogic Server Administration Console. For more information, see
Work Manager in the WebLogic Server Administration Console Online Help. The
following code displays the output server config.xml file after the dedicate work
manager is configured.

<self-tuning>

 <min-threads-constraint>

 <name>minThreadsConstraint</name>

 <target>AdminServer</target>

 <count>20</count>

 </min-threads-constraint>

 <work-manager>

 <name>MQWorkManager</name>

 <target>AdminServer</target>

 <min-threads-constraint> minThreadsConstraint
</min-threads-constraint>

 <ignore-stuck-threads>false</ignore-stuck-threads>

 </work-manager>

</self-tuning>

AquaLogic Service Bus uses a two-level cache for proxy service run-time data with static
and dynamic sections. The static section is a size-based Least Recently Used (LRU) cache
for proxy services, immune from garbage collection. When a proxy service is bumped from
the static section, it is demoted to the dynamic section. Proxy services in the dynamic
section can continue to be reused but are susceptible to being deleted during a Java garbage
collection cycle.

The cache introduces a performance trade off between memory consumption and
compilation cost. Caching proxy services increases throughput but consume memory
otherwise available for data processing.

http://e-docs.bea.com/wls/docs92/ConsoleHelp/pagehelp/Corecoreworkmanagerstitle.html
http://e-docs.bea.com/wls/docs92/perform/WLSTuning.html
http://e-docs.bea.com/wls/docs92/perform/WLSTuning.html

Tun ing AquaLog ic Se rv ice Bus

A-4 AquaLogic Service Bus User Guide

You can tune the cache by setting its size using the system property
com.bea.wli.sb.pipeline.RouterRuntimeCache.size

The default value is 100. This is the number of proxy services in the static portion of the
cache.

Approximately every minute, a log message will be printed with the following format:
[RuntimeRouterCache] XX hits received: YY hits to main cache, ZZ hits to

soft cache, MM misses

Where:

– XX represents the number of times that the cache was accessed since the last log.

– YY represents the nummer of times (out of XX) that the cache contained the proxy
service.

– ZZ represents the number of times (out of XX) that the cache contained the proxy
service amongst those to be garbaged collected (for example, the cache was able to
reclaim the proxy service before the garbage collector did).

– MM represents the number of times (out of XX) that the cache did not contain the proxy
service and had to recreate it.

You can use these logs to tune the size of the cache. Consider the following guidelines:

– If your AquaLogic Service Bus domain contains a low number of proxy services, BEA
recommends setting the size of the cache greater than that number.

– If your AquaLogic Service Bus domain contains a large number of proxy services,
adjust the size of the cache to decrease the percentage of missed hits and still allow
enough memory for data processing.

AquaLogic Service Bus User Guide B-1

A P P E N D I X B

Debugging AquaLogic Service Bus

This section provides information about enabling debugging for different modules in AquaLogic
Service Bus. You can enable and disable debugging by modifying the corresponding entries in
the wlidebug.xml file, which is located in the root directory of the AquaLogic Service Bus
domain. If the wlidebug.xml file is not in the root directory or if it has been deleted, it is created
again without any contents when the server starts. The following listing provides an example of
the contents of the wlidebug.xml file with debugging disabled for all modules (all entries set to
false).

Listing B-1 wlidebug.xml File

<?xml version='1.0' encoding='UTF-8'?>

<java:wli-debug-logger xmlns:java="java:com.bea.wli.debug">

<n1:Name xmlns:n1="java:weblogic.diagnostics.debug">wlidebug</n1:Name>

<java:wli-management-debug>false</java:wli-management-debug>

<java:wli-monitoring-debug>false</java:wli-monitoring-debug>

<java:wli-management-dashboard-debug>false</java:wli-management-dashboard-de
bug>

<java:wli-config-debug>false</java:wli-config-debug>

<java:wli-config-transaction-debug>false</java:wli-config-transaction-debug>

<java:wli-config-deployment-debug>false</java:wli-config-deployment-debug>

Debugg ing AquaLog ic Serv ice Bus

B-2 AquaLogic Service Bus User Guide

<java:wli-config-component-debug>false</java:wli-config-component-debug>

<java:wli-sb-transports-debug>false</java:wli-sb-transports-debug>

<java:wli-sb-pipeline-debug>false</java:wli-sb-pipeline-debug>

<java:wli-alert-manager-debug>false</java:wli-alert-manager-debug>

<java:wli-jms-reporting-provider-debug>false</java:wli-jms-reporting-provide
r-debug>

<java:wli-monitoring-aggregator-debug>false</java:wli-monitoring-aggregator-
debug>

<java:wli-credential-debug >false</java:wli-credential-debug >

<java:wli-management-common-debug >false</java:wli-management-common-debug >

</java:wli-debug-logger>

Although debugging should be disabled during normal AquaLogic Service Bus operation, you
may find it helpful to turn on certain debug flags while you are developing your solution and
experimenting with it for the first time. For example, you may want to turn on the alert debugging
flag when you are developing alerts and would like to investigate how the alert engine works.

Some of the available debug flags are:

wli-config-debug—Provides information on general aspects of AquaLogic Service Bus
configuration.

wli-config-deployment-debug— Provides debug information on session creation,
activation, and distribution of configuration in a cluster.

wli-config-transaction-debug—Provides low level debug information about changes
made to in-memory data structures and files. This alert flag also generates server startup
recovery logs.

wli-config-component-debug—Provides low level debug information about create,
update, delete, and import operations.

wli-sb-transports-debug—Provides transport related debug information, including
transport headers, which is printed per-message.

wli-sb-pipeline-debug—Prints errors that are generated within the pipeline.

wli-alert-manager-debug—Prints an evaluation of alerts.

AquaLogic Service Bus User Guide B-3

All other debug flags are self explanatory.

For all flags, debug information is logged to the server log at
{domaindir}/servers/{servername}/logs/{servername}.log, except for the
wli-monitoring-aggregator-debug flag. The wli-monitoring-aggregator-debug flag
enables debugging for aggregator. This flag logs the aggregated document every minute and
stores the log files in the {domain}\monitoring folder.

Note: Turning the wli-monitoring-aggregator-debug flag on generates large amounts of
debug data. Therefore, you should only use this flag for debugging purposes for short
periods of time.

Debugg ing AquaLog ic Serv ice Bus

B-4 AquaLogic Service Bus User Guide

AquaLogic Service Bus User Guide C-1

A P P E N D I X C

AquaLogic Service Bus APIs

AquaLogic Service Bus exposes APIs to allow customizing resources, provide external access to
monitoring data, and deployment:

Resource Update and Customization

Management and Monitoring

Deployment

Tip: Javadoc for the AquaLogic Service Bus APIs is provided at the following URL:
http://edocs.bea.com/alsb/docs26/javadoc

Resource Update and Customization
A number of APIs are exposed to allow customization of service definitions, WSDLs, schemas,
XQueries and other design-time resources through programmatic interfaces. The supporting APIs
allow loading ZIP files containing resources, in addition to moving, renaming, cloning, or
deleting resources, folders and projects. A typical use case is one in which you have a prototypical
proxy service from which you make a number of copies—each copy can be modified
programmatically in some way.

http://e-docs.bea.com/alsb/docs26/javadoc/

AquaLog ic Se rv i ce Bus AP Is

C-2 AquaLogic Service Bus User Guide

Numerous customization options can be applied during deployment. For example, environment
variables allow you to preserve or tailor settings when moving from one environment to another.

The available APIs include:

ProxyServiceConfigurationMBean—Enable and Disable SLA Alerts and Pipeline Alerts
for proxy service

BusinessServiceConfigurationMBean

– Enable and Disable SLA Alerts

– Synchronize business services imported from UDDI registries

– Detach a collection of Business Services from a UDDI registry

ALSBConfigurationMBean Interface Provides APIs to manage resources in an AquaLogic
Service Bus domain, including:

– Query, export, and import resources

– Obtain validation errors

– Get and set environment values

– Modify references inside resources to new reference

– Move, rename, clone, and delete resources

Customization Class

– Find and replace environment values

– Assign environment values

– Map references found in resources to other references

Management and Monitoring
The JMX Monitoring API in AquaLogic Service Bus provides external access to monitoring data.
Java Management Extensions (JMX) technology was used for the implementation. AquaLogic
Service Bus resources within a domain use Java Management Extensions (JMX) Managed Beans
(MBeans) to expose their management functions. An MBean is a concrete Java class that is
developed according to JMX specifications.

For information, see the JMX Monitoring API Programming Guide.

http://e-docs.bea.com/alsb/docs26/jmx_monitoring/
http://e-docs.bea.com/alsb/docs26/javadoc/com/bea/wli/sb/management/configuration/ProxyServiceConfigurationMBean.html
http://e-docs.bea.com/alsb/docs26/javadoc/com/bea/wli/sb/management/configuration/BusinessServiceConfigurationMBean.html
http://e-docs.bea.com/alsb/docs26/javadoc/com/bea/wli/sb/management/configuration/ALSBConfigurationMBean.html
http://e-docs.bea.com/alsb/docs26/javadoc/com/bea/wli/config/customization/Customization.html

Deployment

AquaLogic Service Bus User Guide C-3

Deployment
You can use the AquaLogic Service Bus MBeans in Java programs and WLST scripts to
automate promotion of AquaLogic Service Bus configurations from development environments
through testing, staging, and finally to production environments.

Numerous customization options can be applied during deployment. For example, an extended
list of environment variables allows you to preserve or tailor settings when moving from one
environment to another.

For information, see Using the Deployment APIs in the AquaLogic Service Bus Deployment
Guide.

http://e-docs.bea.com/alsb/docs26/deploy/config_appx.html

AquaLog ic Se rv i ce Bus AP Is

C-4 AquaLogic Service Bus User Guide

	Introduction to AquaLogic Service Bus
	Document Scope and Audience
	Document Organization

	Modeling Message Flow in AquaLogic Service Bus
	About AquaLogic Service Bus Message Flow
	Building a Message Flow
	Message Execution

	Pipelines
	Branching in Message Flows
	Operational Branching
	Conditional Branching

	Performing Transformations
	Transformations and Publish Actions
	Transformations and Route Nodes

	Configuring Single and Multiple Stages in Pipelines
	Communication
	Flow Control
	Message Processing
	Reporting
	Using Multiple Stages

	Constructing Service Callout Messages
	SOAP Document Style Services
	SOAP RPC Style Services
	XML Services
	Messaging Services
	Handling Errors

	Handling Errors
	Generating the Error Message, Reporting, and Replying
	Example of Action Configuration in Error Handlers

	Selecting a Service Type
	Using a WSDL to Define a Service
	SOAP Document Wrapped Web Services
	SOAP Document Style Web Services
	SOAP RPC Web Services
	Binding a Service to a WSDL Port Instead of to a Binding
	Using Any SOAP or Any XML Service Types
	Using the Messaging Service Type

	Viewing Resource Details
	Using Dynamic Routing
	Sample XML File
	Creating an XQuery Resource From the Sample XML
	Creating and Configuring the Proxy Service to Implement Dynamic Routing

	Accessing Databases Using XQuery
	Understanding Message Context
	Message Context Components
	Guidelines for Viewing and Altering Message Context
	Copying JMS Properties From Inbound to Outbound

	Working with Variable Structures
	Using the Inline XQuery Expression Editor
	Using Variable Structures
	Creating Variable Structure Mappings
	Sample WSDL
	Creating the Resources You Need for the Examples
	Save the WSDL as a Resource
	Create a Proxy Service That Uses the Sample WSDL
	Build a Message Flow for the Sample Proxy Service
	Create a Business Service That Uses the Sample WSDL

	Example 1: Selecting a Predefined Variable Structure
	Example 2: Creating a Variable Structure That Maps a Variable to a Type
	Example 3: Creating a Variable Structure that Maps a Variable to an Element
	Example 4: Creating a Variable Structure That Maps a Variable to a Child Element

	Quality of Service
	Delivery Guarantees
	Overriding the Default Element Attribute
	Delivery Guarantee Rules
	Threading Model
	Splitting Proxy Services

	Outbound Message Retries

	Content Types, JMS Type, and Encoding
	Throttling Pattern
	WS-I Compliance
	WS-I Compliance Checks

	Converting Between SOAP 1.1 and SOAP 1.2

	Message Context
	The Message Context Model
	Predefined Context Variables
	Message-Related Variables
	Header Variable
	Body Variable
	Attachments Variable
	Binary Content in the body and attachments Variables

	Inbound and Outbound Variables
	Sub-Elements of the inbound and outbound Variables
	service
	transport
	security

	Operation Variable
	Fault Variable
	Initializing Context Variables
	Initializing the attachments Context Variable
	Initializing the header and body Context Variables
	SOAP Services
	XML Services (Non SOAP)
	Messaging Services

	Performing Operations on Context Variables
	Constructing Messages to Dispatch
	SOAP Services
	XML Services (Non SOAP)
	Messaging Services
	About Sending Binary Content in Email Messages

	Message Context Schema

	Using the Test Console
	Features
	Prerequisites
	Testing Proxy Services
	Direct Calls
	Indirect Calls
	HTTP Requests

	Testing Business Services
	Transport Security

	Recommended Approaches to Testing Proxy and Business Services
	Tracing Proxy Services Using the Test Console
	Example: Testing and Tracing a Proxy Service

	Testing Resources
	MFL
	XSLT
	XQuery

	Performing In-line XQuery Testing
	Testing Services With Web Service Security
	Test Console Transport Settings
	About Security and Transports
	Understanding How the Run Time Uses the Transport Settings in the Test Console

	UDDI
	Overview of BEA AquaLogic Service Bus and UDDI
	Basic Concepts of the UDDI Specification
	Benefits of Using a UDDI Registry with AquaLogic Service Bus
	Introduction to UDDI Entities
	Prerequisites
	Certification
	Features
	What is the BEA AquaLogic Service Registry?
	Sample Business Scenario for AquaLogic Service Bus and UDDI
	Basic Proxy Service Communication with a UDDI Registry
	Cross-Domain Deployment in AquaLogic Service Bus

	Using AquaLogic Service Bus and UDDI
	UDDI Workflow

	Configuring a Registry
	Publishing a Proxy Service to a UDDI Registry
	Using Auto-Publish
	Importing a Service from a Registry
	Using Auto-Import
	Auto-Synchronization of Services With UDDI
	Mapping AquaLogic Service Bus Proxy Services to UDDI Entities
	UDDI Mapping Details for an AquaLogic Service Bus Proxy Service
	Transport Attributes
	Service Type Attributes

	Canonical tModels Supporting AquaLogic Service Bus Services
	Example

	EJB Transport
	Introduction
	Invoking EJBs from AquaLogic Service Bus
	Register a JNDI Provider Resource
	Adding a JNDI Provider

	Register an EJB Client JAR Resource
	Adding a Client or Converter JAR
	Create a Service Account (Optional)
	Locate an EJB in the JNDI Tree

	Create an EJB Business Service
	General Configuration
	EJB Transport-Specific Configuration
	EJB Business Service Interface Configuration

	Invoking EJB Business Services

	Exposing EJBs as Web Services
	Advanced Topics
	Transaction Processing, Retries, and Errors Handling
	Transactions
	Retries and Failover
	Error Handling

	Supported Types and Converter Class
	Converter Classes

	Troubleshooting

	Transports
	E-mail
	Configuring Proxy Services using E-mail Transport Protocol
	Configuring Business Services using E-mail Transport Protocol

	EJB
	File
	Configuring Proxy Services using File Transport Protocol
	Configuring Business Services using File Transport Protocol

	FTP
	Configuring Proxy Services using FTP Transport Protocol
	Configuring Business Services using FTP Transport Protocol

	HTTP
	Configuring Proxy Services using HTTP Transport Protocol
	Configuring Business Services using HTTP Transport Protocol

	HTTP(S)
	Configuring Proxy Services using HTTP(S) Transport Protocol
	Configuring Business Services using HTTP(S) Transport Protocol

	JMS
	Configuring Proxy Services using JMS Transport Protocol
	Configuring Business Services using JMS Transport Protocol

	Local
	Tuxedo
	Data Services Platform (DSP)

	Local Transport
	Introduction
	Features and Characteristics of Local Transport Proxy Services
	Usage of Local Transport Proxy Services
	Limitations

	Extensibility Using Java Callouts and POJOs
	Usage Guidelines
	Best Practices

	XQuery Implementation
	Supported Function Extensions from AquaLogic Data Services Platform
	Function Extensions from AquaLogic Service Bus
	fn-bea:lookupBasicCredentials
	fn-bea: uuid()
	fn-bea:execute-sql()
	Example 1: Retrieving the URI from a Database for Dynamic Routing
	Example 2: Getting XMLType Data from a Database

	fn-bea:serialize()

	XQuery-SQL Mapping Reference
	IBM DB2/NT 8
	Microsoft SQL Server
	Oracle 8.1.x
	Oracle 9.x, 10.x
	Sybase 12.5.2 (and higher)
	Pointbase 4.4 (and higher)
	Base (Generic) RDBMS Data Type Mapping
	Related Topics

	Tuning AquaLogic Service Bus
	Debugging AquaLogic Service Bus
	AquaLogic Service Bus APIs
	Resource Update and Customization
	Management and Monitoring
	Deployment

