
Client for UNIX

B E A M e s s a g e Q f o r U N I X V e r s i o n 5 . 0
D o c u m e n t E d i t i o n 3 . 0

O c t o b e r 1 9 9 8

BEA MessageQ

User’s Guide

ystems
 against
hole or
eadable

ms
Clause
 at
 FAR

the part

S,

d.
Copyright

Copyright © 1998 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA S
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is
the law to copy the software except as specifically allowed in the agreement. This document may not, in w
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine r
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Syste
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNES
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Builder, BEA Connect, BEA Jolt, BEA Manager, and BEA MessageQ are trademarks of BEA
Systems, Inc. BEA ObjectBroker is a registered trademark of BEA Systems, Inc. TUXEDO is a registered
trademark in the U.S. and other countries.

All other company names may be trademarks of the respective companies with which they are associate

SNMP Agent Connection Reference Guide

Document Edition Date Software Version

3.0 October 1998 MessageQ Client for UNIX,
Verison 5.0

Table of Contents

Preface
Purpose of This Document .. ix

Who Should Read This Document... ix

How This Document Is Organized... ix

How to Use This Document ..x

Opening the Document in a Web Browser...x

Printing from a Web Browser .. xi

Documentation Conventions ... xii

Related Documentation ... xiv

MessageQ Documentation ... xiv

Contact Information...xv

Documentation Support..xv

Customer Support...xv

1. Introduction
What is the MessageQ Client? .. 1-1

Benefits of Using the MessageQ Client .. 1-3

Architectural Overview ... 1-4

The Client Library Server .. 1-5

How the MessageQ Client and CLS Work Together 1-6

2. Installing the MessageQ Client
Preinstallation Requirements... 2-1

Software Requirements .. 2-2

Disk Space Requirements... 2-2

Backing Up Your System Disk .. 2-3
BEA MessageQ Client for UNIX User’s Guide v

Choosing Installation Options ... 2-3

Installing the MessageQ Client for UNIX Software.. 2-4

Recovering from Errors During the Installation.. 2-9

Adding the Initialization File Directory to Your PATH.................................. 2-10

3. Configuring the MessageQ Client
Configuring the Server Connection ... 3-4

Default Server... 3-4

Automatic Failover Server ... 3-6

Configuring Logging ... 3-8

Configuring Message Recovery Services .. 3-9

Configuring Tracing .. 3-12

Testing the Configuration Using the Test Utility .. 3-13

4. Using the MessageQ Client for UNIX
Overview of the MessageQ Client Utilities... 4-1

Developing Your MessageQ Client Application ... 4-2

MessageQ API Support .. 4-3

MessageQ Client Function Parameter Limits... 4-4

Include Files for C and C++ ... 4-5

MessageQ Client Return Codes.. 4-6

Byte Order Considerations for Application Developers 4-7

Sample Programs.. 4-8

Running Your Application .. 4-9

Run-time Files .. 4-10

Managing Your Application .. 4-10

MRS Utility .. 4-11
vi BEA MessageQ Client for UNIX User’s Guide

5. Troubleshooting
Determining the Version Number of the Client .. 5-1

Identifying Run-time Errors .. 5-2

Logging an Error Event ... 5-2

Failing to Connect to the CLS ... 5-3

Identifying Network Errors ... 5-3

Tracing PAMS API Activity ... 5-4

Tracing Client Library Activity... 5-4

Recovering from Client Crashes ... 5-5
BEA MessageQ Client for UNIX User’s Guide vii

viii BEA MessageQ Client for UNIX User’s Guide

Preface

Purpose of This Document

This document provides instructions on installing, configuring, and using the
MessageQ Client to run MessageQ applications. The MessageQ Client provides
applications with the full support of MessageQ features, while using significantly
fewer resources than a full message server. .

Who Should Read This Document

This document is intended for the following audiences:

t system installers who will install BEA MessageQ on supported platforms

t system administrators who will configure, manage, and troubleshoot BEA
MessageQ on supported platforms

t applications designers and developers who will design, develop, build, and run
BEA MessageQ applications

How This Document Is Organized

BEA MessageQ Client for UNIX User’s Guide is organized as follows:

t Chapter 1, “Introduction,” describes the MessageQ Client for UNIX, including
benefits and an architectural overview.
BEA MessageQ Client for UNIX User’s Guide xiii

e

,

ou
tation
to

lick
 with

t
t Chapter 2, “Installing the MessageQ Client,” describes how to install the
MessageQ Client for UNIX software, including requirements, installation
procedure, and postinstallation tasks.

t Chapter 3, “Configuring the MessageQ Client,” describes how to configure th
MessageQ Client for UNIX, including information on configuring servers,
automatic failover, logging, message recovery services, and tracing.

t Chapter 4, “Using the MessageQ Client for UNIX,” describes how to develop
run, and manage MessageQ Client applications.

t Chapter 5, “Troubleshooting,” describes how to identify and correct problems
while running your MessageQ client applications, including information on
identifying errors, logging, tracing, and recovery.

How to Use This Document

This document is designed primarily as an online, hypertext document. If you are
reading this as a paper publication, note that to get full use from this document y
should access it as an online document via the BEA MessageQ Online Documen
CD. The following sections explain how to view this document online, and how
print a copy of this document.

Opening the Document in a Web Browser

To access the online version of this document, open the index.htm file in the top-level
directory of the BEA MessageQ Online Documentation CD. On the main menu, c
the Introduction to Message Queuing button. Figure 1 shows the online document
the clickable navigation bar and table of contents.

Note: The online documentation requires a Web browser that supports HTML
version 3.0. Netscape Navigator version 3.0 or later, or Microsoft Interne
Explorer version 3.0 or later are recommended.
xiv BEA MessageQ Client for UNIX User’s Guide

Figure 1 Online Document Displayed in a Netscape Web Browser

Printing from a Web Browser

You can print a copy of this document, one file at a time, from the Web browser.
Before you print, make sure that the chapter or appendix you want is displayed and
selected in your browser.

To select a chapter or appendix, click anywhere inside the chapter or appendix you
want to print. If your browser offers a Print Preview feature, you can use the feature to
verify which chapter or appendix you are about to print. If your browser offers a Print
Frames feature, you can use the feature to select the frame containing the chapter or
appendix you want to print. For example:
BEA MessageQ Client for UNIX User’s Guide xiii

The BEA MessageQ Online Documentation CD also includes Adobe Acrobat PDF
files of all of the online documents. You can use the Adobe Acrobat Reader to print all
or a portion of each document.

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.
xiv BEA MessageQ Client for UNIX User’s Guide

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

Convention Item
BEA MessageQ Client for UNIX User’s Guide xiii

Related Documentation

The following sections list the documentation provided with the MessageQ software,
related BEA publications, and other publications related to the technology.

MessageQ Documentation

The MessageQ information set consists of the following documents:

BEA MessageQ Introduction to Message Queuing

BEA MessageQ Installation and Configuration Guide for UNIX

BEA MessageQ Installation and Configuration Guide for Windows NT

BEA MessageQ Programmer’s Guide

BEA MessageQ System Messages

BEA MessageQ Client for Windows User’s Guide

... Indicates one of the following in a command line:

t That an argument can be repeated several times in a command line

t That the statement omits additional optional arguments

t That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
xiv BEA MessageQ Client for UNIX User’s Guide

BEA MessageQ FML Programmer’s Guide

BEA MessageQ Reference Manual

Note: The BEA MessageQ Online Documentation CD also includes Adobe Acrobat
PDF files of all of the online documents. You can use the Adobe Acrobat
Reader to print all or a portion of each document.

Contact Information

The following sections provide information about how to obtain support for the
documentation and software.

Documentation Support

If you have questions or comments on the documentation, you can contact the BEA
Information Engineering Group by e-mail at docsupport@beasys.com. (For
information about how to contact Customer Support, refer to the following section.)

Customer Support

If you have any questions about this version of ProductName, or if you have problems
installing and running ProductName, contact BEA Customer Support through BEA
WebSupport at www.beasys.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in
the product package.

When contacting Customer Support, be prepared to provide the following information:

t Your name, e-mail address, phone number, and fax number

t Your company name and company address

t Your machine type and authorization codes
BEA MessageQ Client for UNIX User’s Guide xiii

t The name and version of the product you are using

t A description of the problem and the content of pertinent error messages
xiv BEA MessageQ Client for UNIX User’s Guide

CHAPTER

tem
n a

ork
e
f the
ageQ
 CLS

ll

ost
2B)
1 Introduction

What is the MessageQ Client?

The MessageQ Client is a client implementation of the MessageQ Application
Programming Interface (API). It provides message queuing support for distributed
network applications using a MessageQ Server to provide reliable message queuing
for distributed multi-platform network applications. The MessageQ Client is referred
to as a “light-weight” implementation of MessageQ because it requires fewer sys
resources (disk space and memory) and less configuration and management tha
MessageQ Server.

The MessageQ Client is connected to the message queuing bus through a netw
connection with a Client Library Server (CLS) on a remote MessageQ Server. Th
CLS acts as a remote agent to perform message queuing operations on behalf o
MessageQ Client. The CLS runs as a background server to handle multiple Mess
Client connections. The MessageQ Client establishes a network connection to the
when an application attaches to the message queuing bus. The CLS performs a
communication with the client application until the application detaches from the
message queuing bus. The network connection to the CLS is closed when the
application detaches from the message queuing bus.

MessageQ Clients are available for Windows 95, Windows NT, Windows 3.1, m
popular UNIX systems, OpenVMS (MessageQ V4.0A), and MVS (MessageQ V3.
systems.

See Figure 1-1 for a diagram of the MessageQ Client and Server components.
BEA MessageQ Client for UNIX User’s Guide 1-1

1 INTRODUCTION
Figure 1-1 MessageQ Client and Server Components

The MessageQ Client allows multiple applications to connect to separate queues on the
message queuing bus. A separate network connection to the CLS is maintained for
each MessageQ Client application. The message queuing operations and network
activities of each client are isolated from other clients. The total number of applications
that can connect to the message queuing bus is limited by the number of TCP/IP
sessions. To provide robust network connections, a backup CLS can be configured for
automatic failover if the primary CLS becomes unavailable. The MessageQ Client can
also automatically reconnect to the CLS following a network failure.

When the connection to the CLS is unavailable, the MessageQ Client provides
recoverable messaging using a local store-and-forward (SAF) journal to store
recoverable messages. When the connection to the CLS is re-established, all messages
in the SAF journal are sent before new messages are processed.

The MessageQ Client supports a variety of popular application development
environments and languages including C/C++, Visual Basic, PowerBuilder, and
others. In addition, it includes several utility programs to monitor and test applications.
Example programs in C and Visual Basic demonstrate the use of various features of
the MessageQ API. On Windows systems, the MessageQ Client Custom Controls
offer additional support for Visual Basic developers by providing a simple yet
powerful means for integrating MessageQ software into Windows applications.
1-2 BEA MessageQ Client for UNIX User’s Guide

BENEFITS OF USING THE MESSAGEQ CLIENT
Benefits of Using the MessageQ Client

The MessageQ Client provides the following benefits:

t Reduces system resource load

t Reduces system management overhead

t Provides network protocol independence

The MessageQ Client provides message queuing capabilities for MessageQ
applications using fewer system resources (shared memory and semaphores) and
running fewer processes than a MessageQ Server. Therefore, the MessageQ Client
enables distributed MessageQ applications to run on smaller, less powerful systems
than the systems required to run a MessageQ Server.

Run-time configuration of the MessageQ Client is extremely simple. A minimal
configuration requires only the name of the server system, the network endpoint to be
used by the CLS, and the desired network transport. Running the MessageQ Client
makes it unnecessary to install and configure a MessageQ Server on each system in the
network. Instead, a distributed MessageQ environment can consist of a single system
running a MessageQ UNIX or Windows NT Server and one or more systems running
MessageQ Clients.

For example, suppose a small business has 10 networked workstations that need to run
a MessageQ application. Prior to MessageQ Version 4.0, it would be necessary to
install, configure, and manage a message queuing group on each workstation. Now, by
using the MessageQ Client, a MessageQ Server need only be installed and configured
on a single workstation. Installing the MessageQ Client on the remaining nine
workstations provides message queuing support for all other MessageQ applications in
the distributed network.

In this example, only one workstation needs to be sized and configured to optimize
performance, reducing the burden of system management to a single machine. System
management and configuration for the remaining systems is drastically simplified
because managing the MessageQ Client consists mainly of identifying the MessageQ
Server that provides full message queuing support. The MessageQ Client can be
reconfigured quickly and easily and multiple clients can share the same configuration
settings to further reduce system management overhead.
BEA MessageQ Client for UNIX User’s Guide 1-3

1 INTRODUCTION
The MessageQ Client performs all network operations for client applications making
it unnecessary for a client program to be concerned about the underlying network
protocol. The MessageQ Client enhances the portability of applications enabling them
to be ported to a different operating system and network environment supported by
MessageQ with no change to the application code.

Architectural Overview

The MessageQ Client for UNIX provides an archive library supporting MessageQ
enabled applications. The MessageQ Client is available for many platforms including
Digital UNIX (Alpha), AIX, HP-UX, and Solaris. Figure 1-2 shows the MessageQ
Client for UNIX architecture.

Figure 1-2 MessageQ Client for UNIX Architecture

The MessageQ Client allows multiple applications to connect to separate queues on the
message queuing bus. A separate network connection to the CLS is created for each
client application. The total number of applications that can connect to the message
queuing bus is limited by the number of TCP/IP sessions. On Windows systems, the
Client DLL uses the Windows Sockets API for network services.

If the network connection to the CLS is lost or unavailable, the MessageQ Client
optionally stores messages in a local journal file for later retransmission.
1-4 BEA MessageQ Client for UNIX User’s Guide

ARCHITECTURAL OVERVIEW
The Client Library Server

The Client Library Server (CLS) is a MessageQ application that runs as a background
server. The CLS performs all communication with the MessageQ Client for each
client application until the application detaches from the message queuing bus. The
message queuing operations and network activity of each client is isolated from other
clients.

The CLS supports multiple client connections using the following techniques:

t On Windows NT Server systems, the CLS is multi-threaded.

t On UNIX Server systems, the CLS uses a separate process to handle each
MessageQ Client connection.

t On OpenVMS Server systems (MessageQ V4.0A), the CLS can operate in two
modes:

When the CLS starts, it initializes a listener process (or thread) that establishes a
network endpoint and waits for connections from a client application. The endpoint
on which the CLS listens is set by the command-line arguments used to start the CLS.

MessageQ Client applications attempt to connect to the CLS when they initiate an
attach queue operation. The MessageQ Client uses configuration information in the
Registry (on Windows NT and Windows 95) or the dmq.ini configuration file (on
Windows 3.1, UNIX, and OpenVMS) to identify the location of the CLS. The CLS
creates a server subprocess (or server thread) for each new client connection. The
server subprocess terminates when the client detaches from the bus, or the network
connection is closed.

The CLS can use a security file (located on the server system) to control client access
to the message bus. Client access can be restricted to specific queues or CLS endpoints.

Single-client mode A separate CLS process is created to support each remote client.

Multi-client mode A single CLS process supports multiple clients using asynchronous
message queuing operations.
BEA MessageQ Client for UNIX User’s Guide 1-5

1 INTRODUCTION
How the MessageQ Client and CLS Work Together

The MessageQ Client uses a request/response protocol to communicate with a Client
Library Server (CLS) running on a MessageQ server system. The MessageQ Client is
called a light-weight client connection to the MessageQ message queuing bus because
it relies on a MessageQ Server for the following:

t Message queues for all MessageQ Client applications are implemented on a
remote system running a MessageQ Server group.

t Message delivery to target queues is provided by the Queuing Engine, a server
process that runs on a MessageQ Server.

t Message routing and cross-group transport among multiple MessageQ Server
systems and other MessageQ Client applications is provided by the MessageQ
Server group.

t Guaranteed message delivery is provided by the MRS capability of the
MessageQ Server group. The MessageQ Client provides a local
store-and-forward (SAF) journal for temporarily storing recoverable messages
when the connection to the CLS is not available.

Figure 1-3 shows the relationship of the MessageQ Client and CLS to the MessageQ
message queuing bus.
1-6 BEA MessageQ Client for UNIX User’s Guide

ARCHITECTURAL OVERVIEW
Figure 1-3 MessageQ Client and CLS Architecture

All MessageQ Client API functions supported by the CLS are processed using the
following sequence of events as shown in Figure 1-4.

1. The client application makes a MessageQ function call to the MessageQ Client.

2. The MessageQ Client verifies the function call arguments and sends them in a
request to the CLS, which is waiting to receive client requests.

3. When a request arrives, the CLS makes the corresponding MessageQ function
call in the MessageQ Server group.

4. The MessageQ function completes, and returns the results to the CLS.

5. The CLS sends the return parameters and function status in a response back to the
MessageQ Client that initiated the request.

6. The MessageQ Client function call returns to the application with the return
arguments and function status.
BEA MessageQ Client for UNIX User’s Guide 1-7

1 INTRODUCTION
Figure 1-4 How Client Application Requests are Processed
1-8 BEA MessageQ Client for UNIX User’s Guide

CHAPTER
2 Installing the
MessageQ Client

This chapter describes how to install the MessageQ Client for UNIX software. It
includes the following topics:

t Preinstallation Requirements

t Installation Procedures for UNIX systems

Preinstallation Requirements

To successfully install MessageQ Client for UNIX software on your client machine,
you must ensure that your environment meets the following installation requirements:

t Software

t Disk space

t System disk backup

Refer to the BEA MessageQ Release Notes for specific hardware and software
environments that are supported by this product.

You may need to be able to log in as root (superuser) on the system where you are
installing MessageQ if your system requires you to mount the cdrom drive as root.
Otherwise, unless you need to uninstall a version of MessageQ prior to V5.0, or you
want your new MessageQ installation to be owned by root, there is no need to be
logged in as root to install MessageQ.
BEA MessageQ Client for UNIX User’s Guide 2-1

2 INSTALLING THE MESSAGEQ CLIENT
Any installation of BEA MessageQ with a version less than 5.0 must be uninstalled
prior to using BEA MessageQ 5.0 or later. Prior to V5.0, only one version of BEA
MessageQ was allowed to be installed on any single machine at a time, and the
installation procedure symbolically linked files into the /usr/bin, /usr/lib,
/usr/man, etc. directories. Starting with V5.0, installation files are no longer placed
in any subdirectory of /usr, and multiple versions may be installed one a single
machine as long as they are all V5.0 or later. If you do not uninstall MessageQ
installations with versions less than 5.0 before you attempt to use V5.0 or later
installations of MessageQ, you may experience serious operational problems. See the
BEA MessageQ Installation and Configuration Guide for UNIX for instructions on
uninstalling older versions of MessageQ.

Software Requirements

Your environment must meet the following software requirements to run install the
MessageQ Client for UNIX software:

1. You must install MessageQ Server software on a UNIX or Windows NT system. In
addition, a minimum of one message queuing bus and one message queuing group
must be configured. The group must also be configured to run the MessageQ Client
Library Server (CLS).

For information on how to install and configure MessageQ Server software, refer
to the installation and configuration guide for the platform that you are using.

2. Network software must be installed and running. TCP/IP networking is supported
on all platforms.

3. If you intend to develop client applications, you must have a program
development environment that allows you to compile and link your applications.

Disk Space Requirements

MessageQ Client for UNIX systems requires approximately 2 megabytes of free disk
space to store the MessageQ Client installation files.
2-2 BEA MessageQ Client for UNIX User’s Guide

CHOOSING INSTALLATION OPTIONS

ns.

.

Backing Up Your System Disk

We recommend that you back up your system disk before installing any software. For
details on performing a system disk backup, see the system documentation for your
server platform.

Choosing Installation Options

The MessageQ for UNIX installation dialogue displays a list of options that let you
choose installation options. If you choose a package or option and then decide you
don’t want to install it, you can cancel your selection and redisplay the list of optio
The installation options include:

t installing the MessageQ product or the MessageQ online documentation

t installing with or without BEA TUXEDOor BEA M3

t installing the client and server, or just the client

Table 2-1 describes the installation packages.

Table 2-2 describes the installation options for connecttivity with BEA TUXEDO.

Table 2-1 MessageQ Packages

Installation Subset Description

MessageQ MessageQ software for UNIX platforms.

MessageQ Online
Documentation

MessageQ Online Documentation in HTML format.

Table 2-2 MessageQ Connectivity Options

Installation Subset Description

BEA TUXEDO 6.4 Install MessageQ over an existing BEA TUXEDO V6.4 installation.

BEA M3 2.1 Install MessageQ over an existing BEA M3 V2.1 installation
BEA MessageQ Client for UNIX User’s Guide 2-3

2 INSTALLING THE MESSAGEQ CLIENT
Table 2-3 describes the installation options.

Installing the MessageQ Client for UNIX
Software

The following describes how to install MessageQ Client for UNIX software on UNIX
systems from supported vendors. You can stop the installation procedure at any time
by using the -q option or the terminal interrupt key sequence for your UNIX system
(see your UNIX system documentation for a description of the terminal interrupt key
sequence). If you stop the installation, files created up to that point are not
automatically deleted. You must delete these files manually.

The steps to install the MessageQ Client for UNIX are as follows:

1. Mount the CD-ROM media.

None Install MessageQ as a standalone product, with no BEA TUXEDO or BEA M3
connectivity.

Table 2-2 MessageQ Connectivity Options

Installation Subset Description

Table 2-3 MessageQ Installation Options

Installation Subset Description

Both client and server Installed on licensed systems used for developing or running MessageQ
applications. This option includes the Client Library Server, include files, and
examples. The programming examples that illustrate how applications can use
interprocess message queuing to exchange information. For more information
about the programming examples, refer to the Programmer’s Guide.

Client Library Provides remote client applications access to message queuing using MessageQ
for UNIX. This option also installs the MessageQ include files.
2-4 BEA MessageQ Client for UNIX User’s Guide

INSTALLING THE MESSAGEQ CLIENT FOR UNIX SOFTWARE
Place the CD-ROM media in the CD-ROM tray and close the door. If your
system automatically mounts your CD-ROM media when the door is closed, you
may proceed to the next step.

Depending on your system, you may have to manually mount the CD-ROM
media. You may have to do this logged in as root (superuser). If you must log
in as root to mount the CD-ROM media, do so now.

If you do not have a standard procedure or tool for mounting CD-ROM media,
use the following table of platform specific syntax information::

Note: When installing the MessageQ Client for UNIX on Solaris systems, ensure
that the lsocket and lnsl libraries are present on the system. These libraries are
required when compiling.

2. Run the installation script.

Note that it is not necessary to be logged in as root (superuser) to install
MessageQ as long as you have permission to write to the directory where you
direct the installation script to install MessageQ.

Before you run the installation script, move to the directory where the CD-ROM
media is mounted. Assuming you mounted the CD-ROM media on directory
/cdrom, you would issue the following command:

%cd /cdrom

AIX mount -v cdrfs -r device directory

Digital UNIX mount -t cdfs -r device directory

HP-UX mount -F cdfs -r device directory

NCR MP-RAS mount -F cdfs -r device directory

SCO Unixware mount -r device directory

SCO OpenServer mount -r device directory

Sequent DYNIX mount -r device directory

Solaris mount -t hsfs -r device directory
BEA MessageQ Client for UNIX User’s Guide 2-5

2 INSTALLING THE MESSAGEQ CLIENT
(If your CD-ROM media was automatically mounted, or you used a different
tool or process than outlined in the previous step, you may have to move to a
subdirectory of the mount point in order to successfully install MessageQ.)

After you have moved to the appropriate directory, determine the case of the
installation script name. This depends on what options or tools you used to
mount your CD-ROM media. You are looking for a file named install.sh or
INSTALL.SH. Issue the following command to determine whether the script
name is lower case or upper case:

%ls

If the script name is in lower case letters, issue the following command:

% sh ./install.sh

otherwise, issue the command like this:

% sh ./INSTALL.SH

A list of supported platforms (operating system and machine or processor type)
is displayed.

01) aix41/rs6000 02) aix42/rs6000 03) aix43/rs6000
04) dux/alpha 05) dynix/i386 06) hpux10/hppa
07) hpux11/hppa 08) mpras/x86 09) sco/x86
10) sco_uw/x86 11) sol251/sparc 12) sol26/sparc

The following table provides detailed platform information:

aix41/rs6000 IBM AIX 4.1.4, RS/6000 SP2

aix42/rs6000 IBM AIX 4.2.1, RS/6000 SP2

aix43/rs6000 IBM AIX 4.3, RS/6000 SP2

dux/alpha Digital UNIX 4.0, Alpha

dynix/i386 Sequent DYNIX ptx 4.4.1, Intel 386

hpux10/hppa HP HP-UX 10.2, HPPA

hpux11/hppa HP HP-UX 11, HPPA

mpras/x86 NCR MP-RAS 3.01 or 3.02, Intel x86

sco/x86 SCO OpenServer 5, Intel x86
2-6 BEA MessageQ Client for UNIX User’s Guide

INSTALLING THE MESSAGEQ CLIENT FOR UNIX SOFTWARE
3. Enter the number next to the selected installation platform:

Install which platform’s files? [01- 12, q to quit, l for list]: 4

** You have chosen to install from dux/alpha **

4. Confirm your choice of platform:

BEA MessageQ 5.0

This directory contains the BEA MessageQ Core System for

Digital Unix 4.0 on DEC Alpha.

Is this correct? [y,n,q]: y

The following MessageQ packages are listed.

 1 msgq BEA MessageQ

 2 msgqdoc BEA MessageQ Online Documentation

5. Select the packages you wish to install:

Select the package(s) you wish to install (or ’all’ to install

all packages) (default: all) [?,??,q]: 1

Copyright and trademark information is displayed:

BEA MessageQ

(alpha) Release 5.0

Copyright (c) 1998 BEA Systems, Inc.

Portions * Copyright 1986-1998 RSA Data Security, Inc.

All Rights Reserved.

Distributed under license by BEA Systems, Inc.

MessageQ is a registered trademark of BEA Systems, Inc.

TUXEDO is a registered trademark.

6. Select one of the following connectivity options in respect to BEA TUXEDO:

The following connectivity options are available:

sco_uw/x86 SCO UnixWare 2.1, Intel x86

sol251/sparc Sun Solaris 2.5.1, SPARC

sol26/sparc Sun Solaris 2.6, SPARC
BEA MessageQ Client for UNIX User’s Guide 2-7

2 INSTALLING THE MESSAGEQ CLIENT
 1 tux64 Install On Top Of BEA TUXEDO v6.4

 2 tux65 Install On Top Of BEA TUXEDO v6.5

 3 none Install Without BEA TUXEDO

Select an option (default: none) [?,??,q]: 3

7. Select one of the following connectivity options in respect to other BEA Systems
products:

The following connectivity options are available:

 1 tux64 Install On Top Of BEA TUXEDO v6.4

 2 m3_21 Install On Top Of BEA M3 v2.1

 3 none Install Without BEA TUXEDO

Select an option (default: none) [?,??,q]: 2

Note: The BEA M3 V2.1 installation option is only available on platforms where
BEA M3 V2.1 is supported.

8. Select one of the following installation options with respect to client and server
environments:

The following installation options are available:

 1 both Server and client

 2 client Client only

Select an option (default: both) [?,??,q]: 2

9. Specify the directory where MessageQ files are to be installed:

Directory where MessageQ files are to be installed [?,q]:

/opt/messageq

Creating /opt/messageq

The system determines if sufficient space is available in the installation
directory, unloads the files for the selected installation options, and sets file
permissions:

Determining if sufficient space is available ...

2000 blocks are required

1361008 blocks are available to /opt/messageq

Using /opt/messageq as the MessageQ base directory
2-8 BEA MessageQ Client for UNIX User’s Guide

RECOVERING FROM ERRORS DURING THE INSTALLATION
.

.

.

Changing file permissions...

.. finished

Installation of BEA MessageQ was successful

Please don’t forget to fill out and send in your registration card

Before you unmount your CD-ROM media, don’t forget to move out of the
/cdrom directory or you will get a message that the /cdrom device is busy:

% cd /

% umount /cdrom

Once MessageQ software is installed, see the Postinstallation Tasks topic in the
MessageQ for UNIX Installation and Configuration Guide.

Recovering from Errors During the
Installation

If errors occur during the MessageQ Client installation procedure, recheck your
preinstallation steps to ensure that the correct versions of prerequisite software have
been installed. Errors can occur during the installation if the following conditions
exist:

t The operating system version is not supported by MessageQ Client.

t Sufficient disk space is not available.

t TCP/IP or networking software is not installed or configured (if you are
installing over the network).

t You do not have write privileges to the directory into which you attempted to
install MessageQ
BEA MessageQ Client for UNIX User’s Guide 2-9

2 INSTALLING THE MESSAGEQ CLIENT

nt”
For descriptions of the error messages generated by these conditions, see the system
management documentation for the UNIX system that you are using. If an error occurs
while installing MessageQ and you believe the error is caused by a problem with the
MessageQ Client for UNIX software, call BEA Technical Support at the number
provided in the Preface.

Adding the Initialization File Directory to
Your PATH

The dmq.ini template file is installed in the /templates subdirectory.

Copy the template to a local directory or a directory shared by multiple users, then add
that directory to your PATH. Refer to Chapter 3, “Configuring the MessageQ Clie
for instructions on using the configuration utility to specify dmq.ini options.
2-10 BEA MessageQ Client for UNIX User’s Guide

CHAPTER
3 Configuring the
MessageQ Client

This chapter describes how to configure the MessageQ Client for UNIX. Refer to
Table 3-1 for the configuration options for the MessageQ Client for UNIX.

To configure the MessageQ Client for UNIX, use the Client for UNIX Configuration
Utility, dmqclconf. The configuration utility is started from the command line using
the following command line format:

dmqclconf [-f file] [-l] [-v] [-h]

Table 3-1 MessageQ Client for UNIX Configuration Options

Option Description Required?

Server Default Server

Network transport, server host name, and endpoint definition

Yes

Failover Automatic Failover Server

Network transport, server host name, and endpoint definition for
the failover server

No

MRS Settings for enabling the local store-and-forward (SAF) message
journal and configuring the local journal files

No

Tracing Settings to enable runtime trace information about the API calls
and Client library activity

No
BEA MessageQ Client for UNIX User’s Guide 3-1

3 CONFIGURING THE MESSAGEQ CLIENT
Refer to Table 3-2 for the command-line parameters.

See Listing 3-1 for the MessageQ Client for UNIX Configuration Utility Main Menu.

Listing 3-1 MessageQ Client for UNIX Configuration Utility Main Menu

Main Menu (file: /usr/jones/messageq/dmq.ini)

 1 Open

 2 Configure

 3 List

 4 Save

 5 Exit

Enter Selection:

Refer to Table 3-3 for a description of the Main Menu options.

Table 3-2 MessageQ UNIX Command Line Parameters

Option Description

-f file Specifies the dmq.ini file path. The default file is ./dmq.ini.

If this option is not used, dmqclconf searches the directories specified by the
PATH environment variable, and opens the first dmq.ini file that it finds.

-l Lists the current configuration settings (if used with the -f file options), or
the default configuration settings

-v Displays the MessageQ Client for UNIX Configuration Utility version number

-h Displays a brief help message that describes the options for this command

Table 3-3 MessageQ Client for UNIX Main Menu Options

Option Description

Open Opens a specific dmq.ini file

Configure Configure the MessageQ Client for UNIX
3-2 BEA MessageQ Client for UNIX User’s Guide

The Configuration Utility updates an initialization file, dmq.ini, that is used at run
time by the MessageQ Client for UNIX library. The dmq.ini file can be shared by
multiple MessageQ-enabled applications using the same general configuration.
Individual copies of dmq.ini can be used to tailor the configuration for individual
applications. The dmq.ini file can be stored in any of the following directories:

t Default working directory where the application is running

t Directory identified by the PATH environment variable

The location of the dmq.ini file determines whether the same configuration is shared
by multiple applications. When the application attempts to attach to the MessageQ
message queuing bus, the client library searches the directories in the order listed for
a copy of the dmq.ini file. The dmq.ini file can be modified using any text editor;
however, we recommend using the MessageQ Client for UNIX Configuration Utility.

To begin configuring the MessageQ Client for UNIX, select item 2, Configure, from
the Main Menu. See Listing 3-2 for the MessageQ Client for UNIX Configure Menu.

Listing 3-2 MessageQ Client for UNIX Configure Menu Options

Configure Menu (file: /usr/jones/messageq/dmq.ini)

 1 Server

 2 Failover

 3 Logging

 4 MRS

 5 Tracing

 6 Previous Menu

Enter Selection:

List Lists the current (or the default) settings

Save Saves the configuration changes or updates to the dmq.ini file

Exit Exits the MessageQ Client for UNIX Configuration Utility

Table 3-3 MessageQ Client for UNIX Main Menu Options

Option Description
BEA MessageQ Client for UNIX User’s Guide 3-3

3 CONFIGURING THE MESSAGEQ CLIENT
Configuring the Server Connection

Configuring the connection to the MessageQ Client Library Server (CLS) consists of
the following two items:

t Default server (required)

The default server is used for all connections to the message queuing bus. If
automatic reconnection is enabled, applications that are attempting to connect to
a server (or lose a connection to the CLS) attempt to reconnect when the
network connection to the server is available. If you do not enable automatic
reconnect for the default server, you may want to consider configuring the
automatic failover server.

t Automatic failover server (optional)

If the primary default server is not available, the MessageQ Client for UNIX
provides the option of connecting to a failover server to ensure robust client
connections. However, if automatic reconnect to the default server is enabled,
the automatic failover server cannot be used.

Default Server

The default server identifies the MessageQ server system for all connections to the
message queuing bus. If automatic reconnection is enabled, applications that are
attempting to connect to a server (or lose a connection to the CLS), try to reconnect
when the network connection to the server is available. Client applications also
reconnect in the event that the CLS or host server system is stopped and restarted.

During an automatic reconnect event, the MessageQ Client for UNIX attempts to
connect only to the default server. Automatic reconnect does not attempt to use the
failover server.

After a successful reconnect, the application is automatically attached to the message
queuing bus and messaging operations can continue without interruption. All pending
messages in the SAF journal are sent to the CLS before new operations can be
performed. For example, when a pams_get_msg triggers the reconnect threshold and
3-4 BEA MessageQ Client for UNIX User’s Guide

CONFIGURING THE SERVER CONNECTION
a successful automatic reconnect and attach operation completes, the SAF journal is
completely drained before the pams_get_msg function call returns. See Listing 3-3
for the default server configuration options.

Listing 3-3 Default Server Options

Server Configuration

 Network Transport Type (TCP/IP) [TCP/IP]:

 Server Hostname [arches]: dmqsrv

 Server Endpoint [5000]:

 Reconnect Interval (# of messages) [0]:

Refer to Table 3-4 for the default server configuration options.

Table 3-4 Configuring the Default Server

Option Description

Network Transport Type The network-level transport used to send messages to the
MessageQ CLS. MessageQ supports TCP/IP as a network
transport.

Server Hostname The name of the host running the MessageQ CLS. The hostname
must have a corresponding entry in the local hosts file. Refer to
your network documentation for additional information on the
location of these files.
BEA MessageQ Client for UNIX User’s Guide 3-5

3 CONFIGURING THE MESSAGEQ CLIENT
Automatic Failover Server

If the primary (default) server is not available and automatic failover is enabled, the
MessageQ Client for UNIX provides the option of connecting to a failover CLS. The
failover options are ignored if automatic reconnect to the default server is enabled.

By enabling automatic failover, a MessageQ Client for UNIX will transparently try to
attach to the failover server when the CLS on the primary server group is not available.
Attempts to connect to the failover server are made only during a call to
pams_attach_q.

Using the failover capability requires additional planning and work in order for
messages to be sent and received correctly. The message queues used by MessageQ
client for UNIX applications are implemented by the MessageQ server group. The
message queues, and any recoverable message journals, are located on the server
system.

When connecting to the failover group, the queue address used by the MessageQ
Client for UNIX is likely to change (unless the MessageQ group started on the failover
system has the same group ID as the primary server group). Recoverable messages

Server Endpoint The endpoint used by the MessageQ CLS. For more information
about specifying the endpoint, see the CLS section of the
Installation and Configuration Guide for your server platform.

Reconnect Interval The number of message operations that occur before the server
attempts to reconnect. If set to 0, automatic reconnect is not
enabled. If set to greater than 0, automatic reconnect is enabled.

The MessageQ Client for UNIX attempts to reconnect to the
server using the Reconnect Interval option as the threshold for
making a new connection attempt. Any messaging operation call
increments the count used to determine when to attempt another
reconnect. When the number of operations attempted reaches the
Reconnect Interval threshold, a reconnect attempt is made.
Applications can choose to use a higher reconnect value to store
messages in the local journal for forwarding at a later time.

Table 3-4 Configuring the Default Server

Option Description
3-6 BEA MessageQ Client for UNIX User’s Guide

CONFIGURING THE SERVER CONNECTION
sent to the client using the queue address of the primary server group are not delivered
to the client when it reattaches to the failover server in a different MessageQ server
group.

The simplest use of automatic failover is when MessageQ Clients for UNIXs attach to
a temporary queue and use a request/response style of messaging. The client sends
requests to one or more servers that send responses back to the queue address that sent
the request. If failover occurs, the MessageQ Client for UNIX is automatically
reattached to a new temporary queue and request messages are sent and responses
delivered to the new queue address. The application is unaware that a failover event
occurred, except that any pending response is not received.

Automatic failover is not appropriate for all applications. When clients attach to a
specific permanent queue and receive recoverable messages sent to that queue address,
they depend on the message queuing resources of that MessageQ group. Recoverable
messages sent to the queue address while the client is not attached are saved on that
system. If the client reconnects to the same queue name or number, but on a different
(failover) MessageQ group, the recoverable messages on the MessageQ group where
the default CLS is located are not delivered to the new queue address used by the
MessageQ Client for UNIX.

On the other hand, the previous scenario could use failover by making the MessageQ
server group (and all disk-based queuing resources) also fail over to another system so
that messages previously sent to the MessageQ Client for UNIX are received after a
failover transition. See Listing 3-4 for the automatic failover server configuration
options.

Listing 3-4 Automatic Failover Server Options

Failover Configuration

Enable Automatic Failover (yes/no) [no]: y

 Network Transport Type (TCP/IP) [TCP/IP]:

 Server Hostname [oquirh]: dmqbck

 Server Endpoint [5000]:
BEA MessageQ Client for UNIX User’s Guide 3-7

3 CONFIGURING THE MESSAGEQ CLIENT
Refer to Table 3-5 for a description of the automatic failover server configuration
options.

Configuring Logging

The MessageQ Client for UNIX allows you to log error events and messages a log file,
as well as to trace messages and write the output to a trace file. All log files are located
in the current working directory for the application.

Message logging allows you to obtain a complete history of the messaging activity of
your application. Tracing messages to a file is an effective way to monitor the run time
behavior of the application. See Listing 3-5 for the logging configuration options.

Listing 3-5 Logging Options

Logging Configuration

Table 3-5 Configuring the Automatic Failover Server

Option Description

Enable Automatic Failover If checked, automatic failover is enabled.

The failover server is used when the default server is not
available and automatic failover is enabled. The Reconnect
Message Interval option (see Table 3-3) must be greater than 0.

Network Transport Type The network-level transport used to send messages to the
failover server. MessageQ supports TCP/IP as a network
transport.

Server Hostname The name of the host running the MessageQ CLS. The
hostname must have a corresponding entry in the local hosts
file.

Server Endpoint The endpoint used by the MessageQ CLS. For more
information, see the startup information for the CLS in the
MessageQ Installation and Configuration Guide for your
server platform.
3-8 BEA MessageQ Client for UNIX User’s Guide

CONFIGURING MESSAGE RECOVERY SERVICES

e
erable

the

l SAF
 Log Error Events (yes/no) [yes]: y

 Log Messages Sent to Trace File (yes/no) [no]:

 Log Messages Received to Trace File (yes/no) [no]:

Refer to Table 3-6 for the message logging and message tracing configuration options.
Note that you must perform a pams_attach_q operation for any of the “Log
Messages” options to take effect.

Configuring Message Recovery Services

Message Recovery Services (MRS) are the MessageQ services that manage th
automatic redelivery of critical messages. Messages that are sent using a recov
delivery mode are written to the local store-and-forward (SAF) journal when the
connection to the server system is not available.

The MessageQ Client ensures delivery of recoverable messages to the CLS on
MessageQ Server by providing a store-and-forward (SAF) journal (dmqsaf.jrn) to
store recoverable messages when the connection to a CLS is not available. Loca

Table 3-6 Configuring Message Logging

Option Description

Log Error Events If set to yes, logs error events to the file dmqerror.log. The
default behavior is to log error events.

When error event logging is enabled, connection errors to the CLS
also log the full file path of the configuration file used at the time
of the connection attempt. This can help identify problems due to
multiple copies of the configuration file.

Log Messages Sent
To Trace File

If set to yes, sends a copy of MessageQ messages sent by the
application to the dmqtrace.log message log file

Log Messages Received
To Trace File

If set to yes, sends a copy of MessageQ messages received by the
application to the dmqtrace.log message log file
BEA MessageQ Client for UNIX User’s Guide 3-9

3 CONFIGURING THE MESSAGEQ CLIENT
journal processing is available when Message Recovery Services (MRS) are enabled
in the MessageQ Client configuration. The location of the journal file can be set when
configuring MRS.

If MRS is enabled, the message recovery journal is turned on when the client
application first initiates an attach operation. If the CLS is not available at the time of
an attach, the journal file is opened and the attach operation completes with return a
status of PAMS__JOURNAL_ON.

When the journal is on, messages sent using the following reliable delivery modes are
saved to the journal:

t PDEL_MODE_WF_MEM (using PDEL_UMA_SAF)

t PDEL_MODE_WF_DQF

t PDEL_MODE_AK_DQF

t PDEL_MODE_WF_SAF

t PDEL_MODE_AK_SAF

When the connection to the CLS is re-established, all messages in the SAF journal are
sent before new messages are processed. The SAF messages are transmitted in
first-in/first-out (FIFO) order. When the connection to CLS is reestablished, a return
status of PAMS__LINK_UP is used to indicate that journal processing is no longer
active.

Messages are sent from the SAF when one of the following events occurs:

t The connection to the CLS is established successfully and pending messages
exist in the SAF.

t The connection to the CLS is lost and the application continues to send
recoverable messages. Additional message operations trigger an automatic
reconnect to the CLS that is successful, and messages are pending transmission
in the SAF.

The MessageQ Client MRS configuration options allow the SAF journal to be
configured as follows:

t A fixed-size file that does not reuse disk blocks

t A fixed-size file that reuses (cycles) disk blocks

t A dynamic file that grows indefinitely until no more disk blocks are available
3-10 BEA MessageQ Client for UNIX User’s Guide

CONFIGURING MESSAGE RECOVERY SERVICES
These options allow you to determine how disk resources are used for message
journals. Journal files that grow indefinitely periodically allocate an extent of disk
blocks as needed to store messages. When all messages are sent from the SAF and the
journal is empty, the disk blocks used by the journal are freed and the journal file
returns to its original size.

This section is optional if recoverable messaging is not used. See Listing 3-6 for the
MRS configuration options.

Listing 3-6 MRS Configuration Options

MRS Configuration

 MRS Enabled (yes/no) [yes]:

 Journal File Path [./]:

 Journal File Size (bytes) [48000]:

 Cycle Journal File Blocks (yes/no) [yes]: n

 Fixed Size Journal File (yes/no) [yes]:

 Preallocate Journal File (yes/no) [yes]:

Refer to Table 3-7 for the MRS configuration options.

Table 3-7 MRS Configuration Options

Option Description

MRS Enabled When checked, MRS is enabled

Journal File Path Specifies the path where the MessageQ journal file,
dmqsaf.jrn, is located. The default location is the current
working directory.

Journal File Size Initial size, in bytes, of the journal file

Cycle Journal Blocks If set to yes, the journal cycles (reuses) disk blocks when full and
overwrites previous messages. The Cycle Journal Blocks file
automatically sets the Fixed Size allocation option. When Cycle
Journal Blocks is enabled, all read/write operations to the journal
use fixed size journal message blocks.
BEA MessageQ Client for UNIX User’s Guide 3-11

3 CONFIGURING THE MESSAGEQ CLIENT
Configuring Tracing

Tracing can be a useful debugging tool, because it allows you to enable and disable
MessageQ Client for UNIX processing activity trace output. The trace output may
create large output files on your system, and should be used only to monitor specific
application behavior. The trace output log files are located in the default working
directory for the application. See Listing 3-7 for the tracing configuration options.

Listing 3-7 Tracing Configuration Options

Tracing Configuration

 Trace PAMS API Calls (yes/no) [no]: y

 Trace Client Library Activity (yes/no) [yes]: y

Fixed Size Journal File Determines if the journal size is fixed or allowed to grow. If
Cycle Journal Blocks is set to yes, Fixed Size is also enabled.

Note: Journals that do not cycle and are not fixed can grow
until the disk is full.

Preallocate Journal If set to yes, the journal file disk blocks are preallocated when the
journal is initially opened

Journal Message Block
Size

Defines the file I/O block size, in bytes. Used for journal
read/write operations only when Cycle Journal Blocks is enabled.
When calculating this value, add 80 bytes to the largest user
message (because an 80-byte MRS message header is written to
the journal for each user message).

Table 3-7 MRS Configuration Options

Option Description
3-12 BEA MessageQ Client for UNIX User’s Guide

TESTING THE CONFIGURATION USING THE TEST UTILITY
Refer to Table 3-8 for the tracing configuration options.

Testing the Configuration Using the Test
Utility

To test your newly configured MessageQ Client for UNIX, run the MessageQ Test
Utility dmqcltest. The Test Utility is started from the command line using the
following command-line format:

dmqcltest

The Test Utility allows you to interactively select the parameter options for individual
calls to MessageQ. The program also allows you to test various MessageQ message
delivery options and send messages to any process connected to the MessageQ bus.
Use the Test Utility for unit testing applications under development.

To use the Test Utility, you first set the parameters associated with an action, then you
perform the action. For example, to attach to a queue, you set the desired attach
parameters, then execute the attach action.

See Listing 3-8 for the Test Utility main menu options.

Listing 3-8 Test Utility Main Menu

Wed > dmqcltest

Main Menu

Table 3-8 Tracing Configuration Options

Option Description

Trace PAMS API calls If set to yes, logs API call activity to the file dmqcldll.log.
The default is no tracing.

Trace Client library activity If set to yes, traces the internal client library activity to the file
dmqcldll.log. The default is no tracing.
BEA MessageQ Client for UNIX User’s Guide 3-13

3 CONFIGURING THE MESSAGEQ CLIENT
 1 Parameters

 2 Actions

 3 Exit

 Enter Menu Selection >> 1

Refer to Table 3-9 for the Test Utility Parameters and Actions menu Options.

The examples in the following figures show how to use the Test Utility to attach to a
temporary queue and send a message to another queue. The steps shown by the
examples are as follows:

Set the Attach parameters to specify a temporary primary queue (Listing 3-9)

Set the Put parameters for the message (Listing 3-10)

Attach to queue 206 in group 9 (Listing 3-11)

Put the message to queue 1 in group 9 (Listing 3-13)

Detach from the temporary queue (Listing 3-14)

Exit from the Test Utility (Listing 3-15)

Table 3-9 Test Utility Parameters and Actions Menu Options

Parameters Menu Options Actions Menu Options

Attach Parameters Attach Queue

Detach Parameters Detach Queue

Locate Parameters Locate Queue

Put Parameters Put Message

Get Parameters Get Message

Set Timer Parameters Set Timer

Cancel Timer Parameters Cancel Timer

View Current Parameters View Current Parameters

Previous Menu Previous Menu
3-14 BEA MessageQ Client for UNIX User’s Guide

TESTING THE CONFIGURATION USING THE TEST UTILITY
Listing 3-9 Specify a Temporary Queue

Wed > dmqcltest

Main Menu

1 Parameters

2 Actions

3 Exit

Enter Menu Selection >> 1

Parameters Menu

 1 Attach Parameters

 2 Bind Parameters

 3 Detach Parameters

 4 Locate Parameters

 5 Put Parameters

 6 Get Parameters

 7 Set Timer Parameters

 8 Cancel Timer Parameters

 9 View Current Parameters

10 Previous Menu

Enter Menu Selection >> 1

SELECT ATTACH TYPE

1) Attach Primary

2) Attach Secondary

Select attach type [1] ?

SELECT ATTACH_MODE

1) Attach by name

2) Attach by number

3) Attach temporary

Select attach mode [3] ?

Listing 3-10 Set the Put Parameters

Parameters Menu

 1 Attach Parameters

 2 Bind Parameters

 3 Detach Parameters

 4 Locate Parameters

 5 Put Parameters

 6 Get Parameters
BEA MessageQ Client for UNIX User’s Guide 3-15

3 CONFIGURING THE MESSAGEQ CLIENT
 7 Set Timer Parameters

 8 Cancel Timer Parameters

 9 View Current Parameters

10 Previous Menu

Enter Menu Selection >> 5

SELECT PRIORITY

1) Standard Priority

2) High Priority

Select priority [1] ?

SELECT DELIVERY MODE

1) PDEL_MODE_AK_xxx

2) PDEL_MODE_NN_xxx

3) PDEL_MODE_WF_xxx

Select deliver mode [2] ? 3

SELECT DELIVERY MODE

1) PDEL_MODE_xx_ACK

2) PDEL_MODE_xx_CONF

3) PDEL_MODE_xx_DEQ

4) PDEL_MODE_xx_DQF

5) PDEL_MODE_xx_MEM

6) PDEL_MODE_xx_SAF

Select delivery mode [5] ? 5

SELECT UMA

1) PDEL_UMA_DISC

2) PDEL_UMA_RTS

3) PDEL_UMA_SAF

4) PDEL_UMA_DLQ

5) PDEL_UMA_DLJ

Select UMA [1] ? 1

Enter target group [9] ? 9

Enter target queue [205] ?

Enter response queue [0] ?

Enter timeout in seconds [30] ?

Enter message class [1] ? 12

Enter message type [-100] ? 34

Enter message text ? This is a test message.
3-16 BEA MessageQ Client for UNIX User’s Guide

TESTING THE CONFIGURATION USING THE TEST UTILITY
Listing 3-11 Attach to Queue 206 in Group 9

Parameters Menu

 1 Attach Parameters

 2 Bind Parameters

 3 Detach Parameters

 4 Locate Parameters

 5 Put Parameters

 6 Get Parameters

 7 Set Timer Parameters

 8 Cancel Timer Parameters

 9 View Current Parameters

10 Previous Menu

 Enter Menu Selection >> 10

Main Menu

1 Parameters

2 Actions

3 Exit

Enter Menu Selection >> 2

Actions Menu

 1 Attach Queue

 2 Bind Queue

 3 Detach Queue

 4 Locate Queue

 5 Put Message

 6 Get Message

 7 Set Timer

 8 Cancel Timer

 9 View Current Parameters

10 Previous Menu

Enter Menu Selection >> 1

attached to queue 9.206

If the MessageQ Client is properly configured to communicate with the Client Library
Server running on a MessageQ Server, the Test utility returns a success message
indicating that the attached operation was successful. However, if a problem occurs
when the MessageQ Client attempts to attach to the message queuing bus, an error
message is displayed indicating the source of the problem as shown in Listing 3-12.
BEA MessageQ Client for UNIX User’s Guide 3-17

3 CONFIGURING THE MESSAGEQ CLIENT
The PAMS_NETNOLINK return value is a common error condition that occurs when
network communication between the MessageQ Client and the CLS has not been
established.

Listing 3-12 PAMS_NETNOLINK Error

Actions Menu

 1 Attach Queue

 2 Bind Queue

 3 Detach Queue

 4 Locate Queue

 5 Put Message

 6 Get Message

 7 Set Timer

 8 Cancel Timer

 9 View Current Parameters

10 Previous Menu

Enter Menu Selection >> 1

PAMS_NETNOLINK, Communications link could not be established.

The PAMS_NETNOLINK error can be caused by a variety of conditions. Table 3-10
describes the potential causes of this problem and their resolution.

Table 3-10 PAMS_NETNOLINK Error

Condition Resolution

The client configuration is
incorrect.

Check the server configuration information in the dmq.ini
file to make sure that:

t The host name for the CLS is spelled correctly.

t The network endpoint specified is correct.

t The network transport type is correct.
3-18 BEA MessageQ Client for UNIX User’s Guide

TESTING THE CONFIGURATION USING THE TEST UTILITY
The PAMS_NETNOLINK error is only one of the error conditions that can arise when
using the Test utility to test your MessageQ Client configuration. Refer to Chapter 5,
“Troubleshooting” for more troubleshooting information.

Listing 3-13 Put the Message to Queue 1 in Group 9

Actions Menu

 1 Attach Queue

 2 Bind Queue

 3 Detach Queue

 4 Locate Queue

 5 Put Message

 6 Get Message

 7 Set Timer

 8 Cancel Timer

 9 View Current Parameters

10 Previous Menu

Enter Menu Selection >> 5

put message to queue 9.205

Actions Menu

 1 Attach Queue

 2 Bind Queue

 3 Detach Queue

The Client cannot determine the
network address for the CLS.

Check the local hosts file or name server to make sure that
the network address specified for the host system running
the CLS is correct.

The CLS may not be running. Check the MessageQ Server system that is running the
CLS to be sure that:

t A MessageQ group is running.

t The CLS is running.

t The CLS that is running uses the network transport
and endpoint specified in the server configuration
file on the client.

Table 3-10 PAMS_NETNOLINK Error

Condition Resolution
BEA MessageQ Client for UNIX User’s Guide 3-19

3 CONFIGURING THE MESSAGEQ CLIENT
 4 Locate Queue

 5 Put Message

 6 Get Message

 7 Set Timer

 8 Cancel Timer

 9 View Current Parameters

10 Previous Menu

Enter Menu Selection >> 10

Listing 3-14 Detach from the Temporary Queue

Main Menu

1 Parameters

2 Actions

3 Exit

Enter Menu Selection >> 2

Actions Menu

 1 Attach Queue

 2 Bind Queue

 3 Detach Queue

 4 Locate Queue

 5 Put Message

 6 Get Message

 7 Set Timer

 8 Cancel Timer

 9 View Current Parameters

10 Previous Menu

Enter Menu Selection >> 3

detached from queue 9.205

Listing 3-15 Exit from the Test Utility

Actions Menu

 1 Attach Queue

 2 Bind Queue

 3 Detach Queue

 4 Locate Queue

 5 Put Message
3-20 BEA MessageQ Client for UNIX User’s Guide

TESTING THE CONFIGURATION USING THE TEST UTILITY
 6 Get Message

 7 Set Timer

 8 Cancel Timer

 9 View Current Parameters

10 Previous Menu

Enter Menu Selection >> 10

Main Menu

1 Parameters

2 Actions

3 Exit

Enter Menu Selection >> 3
BEA MessageQ Client for UNIX User’s Guide 3-21

3 CONFIGURING THE MESSAGEQ CLIENT
3-22 BEA MessageQ Client for UNIX User’s Guide

CHAPTER
4 Using the MessageQ
Client for UNIX

This chapter describes how to develop, run, and manage MessageQ Client
applications. It contains the following topics:

t Overview of MessageQ Client Utilities

t Developing Your Application

t Building C and C++ Applications

t Running Your Application

t Managing Your Application

Overview of the MessageQ Client Utilities

The MessageQ Client includes several utility programs for testing client applications
and managing the MessageQ Client environment. The default location is in /bin in
the MessageQ installation directory.
BEA MessageQ Client for UNIX User’s Guide 4-1

4 USING THE MESSAGEQ CLIENT FOR UNIX
Refer to Table 4-1 for a list of the MessageQ Client Utilities.

Developing Your MessageQ Client
Application

This section describes the following special considerations for developing applications
to run on the MessageQ Client:

t MessageQ API functions supported by the MessageQ Client

t Limits on API parameter returns imposed by the MessageQ Client

t Contents and location of the MessageQ C/C++ include files

t Considerations for cross-group messaging between systems with different
hardware data formats

t How to access the sample programs that come with the MessageQ Client

Table 4-1 MessageQ Client for UNIX Utility Programs

Utility Program Filename Description

Configuration Editor dmqclconf.exe Defines the run-time configuration options

Test utility dmqcltest.exe An interactive application for sending and
receiving messages

MRS utility dmqclmrsu.exe Displays the contents of the local
store-and-forward (SAF) journal
4-2 BEA MessageQ Client for UNIX User’s Guide

DEVELOPING YOUR MESSAGEQ CLIENT APPLICATION
MessageQ API Support

Table 4-2 shows the API functions supported by the MessageQ Client. A small number
of MessageQ API functions are available only for a specific environment and are not
supported by the MessageQ Client. For example, the pams_get_msga function is
available only on OpenVMS systems. Refer to the MessageQ Programmer’s Guide for
complete information on how to use each API function.

Table 4-2 MessageQ Client API Functions

API Function Description

pams_attach_q Connects a program to the MessageQ bus by attaching it to
a message queue in which it can receive messages

pams_bind_q Binds a queue name to a queue address at runtime

pams_cancel_select Cancels selection of messages using a selection mask

pams_cancel_timer Deletes the specified MessageQ timer

pams_confirm_msg Confirms receipt of a message that requires explicit
confirmation

pams_detach_q Detaches a selected message queue, or all attached queues,
from the message queuing bus

pams_exit Terminates all attachments between the application and
the MessageQ message queuing bus

pams_get_msg Retrieves the next available message from a selected
queue

pams_get_msgw Waits until a message arrives in the selected queue, then
retrieves the message

pams_locate_q Requests the queue address for a specified queue name

pams_put_msg Sends a message to a target queue

pams_set_select Defines a message selection mask

pams_set_timer Creates a timer that sends a message to the application
when the timer expires
BEA MessageQ Client for UNIX User’s Guide 4-3

4 USING THE MESSAGEQ CLIENT FOR UNIX
MessageQ Client Function Parameter Limits

The MessageQ Client sets specific limits on function parameter values that allow very
large arguments on MessageQ Server systems. The limits for the function parameters
reduces the size of network messages exchanged between the MessageQ Client and the
remote Client Library Server. Table 4-3 lists the functions, parameters and their
maximum values on the MessageQ Client.

Note: Messages larger than 32,700 bytes can be sent or received by using the
semantics for FML-based messages (PSYM_MSG_FML) or large messages
(PSYM_MSG_LARGE). Refer to the MessageQ Programmer’s Guide for
information on how to send these kinds of messages.

pams_status_text Receives the severity level and text description of a
user-supplied PAMS API return code

putil_show_pending Requests the number of pending messages for a list of
selected queues

Table 4-2 MessageQ Client API Functions

API Function Description

Table 4-3 API Function Parameter Maximum Values

API Function Parameter Maximum Value

pams_attach_q

pams_locate_q

q_name_len 32

pams_attach_q

pams_locate_q

name_space_list_len 100

pams_put_msg

pams_get_msg

msg_area_size 32,700

(See Note)

pams_detach_q detach_q options 32

pams_set_select num_masks 20

putil_show_pending count 100
4-4 BEA MessageQ Client for UNIX User’s Guide

DEVELOPING YOUR MESSAGEQ CLIENT APPLICATION
Include Files for C and C++

The MessageQ Client provides include files for C and C++ language programs. The
include files contain the MessageQ API function prototype declarations, return status
codes, symbolic constants used for API parameters, and other declarations for using
MessageQ message-based services. Table 4-4 lists the standard MessageQ include
files, which are described in the MessageQ Programmer’s Guide. The default location
for these include files is:

/usr/kits/DMx410/include

Table 4-4 C Language Include Files

Include File Contents

p_entry.h Function prototypes and type declarations for the MessageQ API

p_group.h Constant definitions for MessageQ message-based services

p_msg.h Contains definitions for message-based services

p_proces.h Constant definitions for MessageQ (for OpenVMS) processes

p_return.h Return status values

p_symbol.h Symbolic constants used for function parameters

p_typecl.h Constant definitions of MessageQ message type and class for
message-based services
BEA MessageQ Client for UNIX User’s Guide 4-5

4 USING THE MESSAGEQ CLIENT FOR UNIX
MessageQ Client Return Codes

All MessageQ return codes are defined in the include file, p_return.h. Some of the
return codes are specific to the MessageQ Client and are not returned to server-based
applications. Table 4-5 lists the return codes specific to the MessageQ Client.

There are platform-specific differences in the numeric values for the p_return.h
return codes. The OpenVMS version of p_return.h contains numeric values
different from those used on Windows NT, Windows 95, Windows 3.1, or UNIX.
Client applications do not need to be concerned with these differences because the
MessageQ Client returns status codes as they are defined on the client system,
regardless of the system where the CLS is running.

It is recommended that programs use the symbolic value when testing the return status
codes, rather than a numeric value. For example,

if (status == PAMS__NETNOLINK)

instead of

if (status == -278)

Table 4-5 MessageQ Client Return Codes

Return Code Description

PAMS__JOURNAL_FAIL The MRS service could not add messages to the local journal
because of an operating system I/O error.

PAMS__JOURNAL_FULL The MRS service could not add messages to the local journal
because it is full.

PAMS__JOURNAL_ON The link to the CLS is broken and the MRS service reports
that journaling has begun.

PAMS__LINK_UP The link to the CLS has been reestablished.

PAMS__NETERROR The network connection to the CLS is broken.

PAMS__NETNOLINK The network connection to the CLS is not available.

PAMS__PREVCALLBUSY A previous MessageQ function call is still in progress.
4-6 BEA MessageQ Client for UNIX User’s Guide

DEVELOPING YOUR MESSAGEQ CLIENT APPLICATION
This improves code portability because of the platform-specific differences in the
numeric values listed in p_return.h. It also makes code maintenance easier in the
event that any status code numeric value is changed.

Byte Order Considerations for Application Developers

MessageQ provides the capability to send and receive messages between many
different types of operating systems and CPU architectures. The byte order used by
different CPU architectures is referred to as either little endian (or right-to-left order)
or big endian (left-to-right order). Application designers must take into account the
differences in byte ordering when designing a distributed application with MessageQ.

The byte order used on the MessageQ Client system and the CLS platform may be
different. For example, a Windows PC with an Intel x86 CPU is a little endian
machine and an HP PA-RISC system is a big endian machine. This means that integer
values sent in the message area from the client are represented differently when
received by the application server on the host.

The MessageQ Client and CLS handle differences in byte ordering by using network
byte order when the Client and Server system are based on different representations
(network byte order is big endian.). This ensures that the arguments to the MessageQ
API functions called on the client are passed correctly to CLS platform to initiate the
messaging operation.

Note: The MessageQ Client does not perform byte-swapping on the user data passed
in the message area for pams_put_msg or pams_get_msg calls. Only
MessageQ self-describing messages perform data marshaling between
systems with unlike endian formats. Refer to the MessageQ Programmer’s
Guide for more information about how to use self-describing messages.

There are various techniques for handling the byte order differences in the client or
server application components:

t One approach is to send user data messages containing only character string
data. Integer values are converted to the corresponding character representation
before they are sent in the message.

t Another approach is to design an application-specific interface for sending and
receiving messages that implements marshaling routines for the user data
contained in each message.
BEA MessageQ Client for UNIX User’s Guide 4-7

4 USING THE MESSAGEQ CLIENT FOR UNIX
The data marshaling routines can be implemented as a set of library routines designed
specifically to support data format conversion. These routines are typically written so
that each marshal routine performs one specific record conversion. Standard socket
routines are available to support byte-order conversion. These routines are htonl,
htons, ntohl, and ntohs. For example, htonl means host to network long (32-bit)
conversion.

Sample Programs

The MessageQ Client is distributed with a number of sample application programs that
demonstrate many features of the MessageQ API. If the sample programs were
selected during installation, they will be located in the MessageQ installation directory
tree in /examples in the MessageQ installation directory.

The sample programs consist of C language source modules. The sample programs
are identical to the sample programs distributed with the MessageQ Server products,
which demonstrates the portability of the MessageQ API across all supported
platforms.

The sample programs can be built with the make file provided in /examples
subdirectory. Copy the sample programs to a personal development directory before
modifying any of the files.

The makefile defines a LIBS macro to specify whether the sample programs are built
with the MessageQ server library or the MessageQ Client library. To build with the
MessageQ Client, uncomment the line containing -ldmqcl.

For example,

#LIBS=-ldmq

LIBS=-ldmqcl

The libdmqcl.a provides support for TCP/IP networks. After editing the makefile,
use the make command to build the sample programs.
4-8 BEA MessageQ Client for UNIX User’s Guide

RUNNING YOUR APPLICATION
The MessageQ Client provides the libdmqcl.a archive library for application
development. Client applications must link with the library, as shown in Table 4-6.

Note: When building MessageQ client applications on Digital UNIX systems, you
must link against the library libots.a in addition to the MessageQ Client
library as shown below:

cc myapp.c -ldmqcl -lots -o myapp

Running Your Application

This topic explains how to run your application with MessageQ Client. Before
attempting to run a MessageQ Client application, verify the TCP/IP connection
between the MessageQ Client and Server is properly configured. Use the ping utility
to check the TCP/IP connection (see the documentation for TCP/IP networking for
your system for more information).

To use the MessageQ Client, your run-time environment must meet the following
software requirements:

1. The MessageQ for UNIX or MessageQ for Windows NT product must be installed
on a server system. A message queuing group must be configured to support the
requirements of your messaging application environment. The MessageQ Client
applications use messaging resources, including message queues, message buffers,
and system resources on the server system. See the Installation and Configuration
Guide for your MessageQ Server system and review the system resource
requirements for using MessageQ in your environment.

Table 4-6 MessageQ Client for UNIX Link Library

Library Link Option Network Support

libdmqcl.a -ldmqcl Supports TCP/IP only
BEA MessageQ Client for UNIX User’s Guide 4-9

4 USING THE MESSAGEQ CLIENT FOR UNIX
2. If you are planning to use the TCP/IP transport, the host names for the client and
server systems must be properly identified in the hosts files on both the
MessageQ Client and Server. Table 4-7 shows the location of host files on all
MessageQ Servers.

For a complete description of MessageQ Server and TCP/IP transports supported by
the MessageQ Client, see the Read Me First letter supplied as part of your media kit.

Run-time Files

The run-time configuration file, dmq.ini, is required to run a client application. This
file can be located in the application working directory, or in one of the directories
specified by the PATH environment variable.

Managing Your Application

This topic describes the utilities, listed in Table 4-8, that are used to manage MessageQ
Client applications.

Table 4-7 Hosts File Location

Systems Hosts File Location

UNIX /etc/hosts

Windows 95 See your TCP/IP vendor documentation.

Windows NT c:\winnt\system32\drivers\etc\hosts

Table 4-8 Utilities Used to Manage Client Applications

Utility Filename Description

MRS Utility dmqmrsu.exe Message Recovery Services (MRS) utility that allows
you to view the contents of the store-and-forward
(SAF) journals
4-10 BEA MessageQ Client for UNIX User’s Guide

MANAGING YOUR APPLICATION
MRS Utility

The MessageQ Client MRS utility lets you view the contents of local SAF journals.
When a sender program running on the MessageQ Client sends a message marked as
recoverable, it is written to the SAF journal on the client system. In the event that the
recoverable message cannot be delivered to the CLS on the MessageQ Server and
stored by the MessageQ message recovery system, it can be resent at a later time from
the SAF journal on the MessageQ Client using this utility.

The MRS utility is started with the following command:
dmqclmrsu [-h | -v | -d | -l | -n message | -t message] [-f saf_path]

Listing 4-1 shows the MessageQ Client MRS utility using the -l and the -n options.

Listing 4-1 MessageQ Client MRS Utility

/usr/users/smith/dmq > dmqclmrsu -l

SAF journal: dmqsaf.jrn

 Msg Source Target Class Type Pri Size Data...

----- ----------- ----------- ------ ------ --- ------ ------------

 1 0.0 5.300 66 99 0 13 ’first mess’

Table 4-9 MRS Utility Command Line Parameters

Command
Switch

Description

-h Displays a brief help message

-v Display MRS utility version number

-d Display journal file header details

-l Brief display of all messages in the journal

-n message Display detail for the specified message

-t message Transmit the specified message

-f saf_path Specifies the full file path to the desired journal file. The default is
./dmqsaf.jrn
BEA MessageQ Client for UNIX User’s Guide 4-11

4 USING THE MESSAGEQ CLIENT FOR UNIX
 2 0.0 5.300 66 99 0 14 ’second mes’

 3 0.0 5.300 66 99 0 13 ’third mess’

 4 0.0 5.300 66 99 0 14 ’fourth mes’

 5 0.0 5.300 66 99 0 13 ’fifth mess’

 6 0.0 5.300 66 99 0 13 ’sixth mess’

 7 0.0 5.300 66 99 0 15 ’seventh me’

 8 0.0 5.300 66 99 0 14 ’eighth mes’

 9 0.0 5.300 66 99 0 13 ’ninth mess’

 10 0.0 5.300 66 99 0 13 ’tenth mess’

/usr/users/smith/dmq > dmqclmrsu -n 7

SAF journal: dmqsaf.jrn

 Detail of message: 7

 Source: 0.0 Priority: 0 Size: 15 Large_Size: 0

 Target: 5.300 Class: 66 Type: 99

 Resp Q: 0.0 Delivery: 29 UMA: 5 Timeout: 100

 Contents of message buffer:

 XB 73, 65, 76, 65, 6E, 74, 68, 20, 6D, 65 ! ’seventh me’

 XB 73, 73, 61, 67, 65 ! ’ssage’
4-12 BEA MessageQ Client for UNIX User’s Guide

CHAPTER
5 Troubleshooting

This chapter describes how to identify and correct problems while running your
MessageQ client applications. Troubleshooting includes the following topics:

t Determining the Version Number of the Client

t Identifying Run-time Errors

t Logging an Error Event

t Failing to Connect to the CLS

t Identifying Network Errors

t Tracing PAMS API Activity

t Tracing Client Library Activity

t Recovering from Client Crashes

Determining the Version Number of the
Client

To obtain technical support, you must know the version number of the MessageQ
Client software the you are running. To determine the version of the MessageQ Client
for UNIX library, enable tracing of Client Library activity, run your application, and
check the trace file dmqcldll.log for the version number.
BEA MessageQ Client for UNIX User’s Guide 5-1

5 TROUBLESHOOTING
Identifying Run-time Errors

Problems at run time can arise from a variety of error conditions. To identify and solve
problems with the MessageQ Client for UNIX, you can use a variety of tools to track
down the source of the problem. The following list provides some ideas to help you to
help you troubleshoot the source of application problems:

t Check the contents of the dmqerror.log file to get more information about the
problem. Network errors are identified in the error log file.

t Use the trace output capability on the MessageQ Client for UNIX and the Client
Library Server (CLS) to get a detailed flow of the activity that leads up to the
problem. For shorter log files, use the PAMS_TRACE environment variable on
the MessageQ Client for UNIX.

t Use the TELNET Utility to log in to the remote system and run the MessageQ
Monitor Utility. On UNIX systems, use the character-cell program, dmqmonc,
to monitor MessageQ groups remotely.

t Use the netstat TCP/IP Utility to monitor the network connections on the
client. Also, use netstat on the server system to monitor the TCP/IP
connections on the host system where the CLS is running.

t Try to repeat the error using the Test Utility included with the MessageQ Client
for UNIX. Reproducing problems with the Test Utility is an effective way to
isolate application programming errors and provide a convenient way to test
problems.

This chapter summarizes how to find and resolve application problems.

Logging an Error Event

Run time errors detected by the Client library are written to the dmqerror.log file in
the default directory for the application. The errors indicate a run-time problem due to
either a configuration error, an application error, network problem, or unexpected
server response.
5-2 BEA MessageQ Client for UNIX User’s Guide

FAILING TO CONNECT TO THE CLS
Error event logging can be either enabled or disabled by changing the MessageQ Client
for UNIX Configuration Logging option. When error event logging is disabled, the
dmqerror.log file is not used and no information on error conditions is available.
Refer to Configuring Logging in Chapter 3 for more information about trace file
settings.

Failing to Connect to the CLS

The MessageQ Client for UNIX attempts to establish a connection to the CLS in
response to a call to pams_attach_q.

When the connection attempt fails, pams_attach_q returns the following error status:

PAMS__NETNOLINK-278

Check the file dmqerror.log for the full path of the configuration file (dmq.ini)
used, the host name, and the endpoint of the server system with which the MessageQ
Client for UNIX attempted to connect. Refer to for additional information about the
PAMS_NETNOLINK error.

Identifying Network Errors

Network errors result from the Client Library receiving an error when attempting to
read or write on the network link. Occasional network connection problems can occur
due to the state of the TCP/IP protocol stack or the network connection to the host
system. Network errors are identified by the return status from the pams_attach_q
function, such as the following:

PAMS__NETNOLINK-278

Network connection errors might also occur when attempting to execute any of the
MessageQ API functions. For example, the pams_put_msg and pams_get_msg
functions return the following return code when the connection to the server is broken
and MRS is not enabled:

PAMS__NETERROR-276
BEA MessageQ Client for UNIX User’s Guide 5-3

5 TROUBLESHOOTING
The specific steps for clearing the network error depend on how the problem
developed. The following actions will generally clear the problem:

1. Check the error event log file, dmqerror.log, for a description of the error event.

2. Stop and restart the application. In some cases, restarting the application or
simply retrying the attach operation succeeds.

3. Stop and restart the CLS.

Tracing PAMS API Activity

To obtain a time-stamped output file showing the sequence of MessageQ function calls
and return status codes, follow these steps:

1. Invoke the Configuration Utility.

2. Choose Configure from the Main menu, then choose Tracing from the Configure
menu.

3. Set the Trace PAMS API Calls option to yes.

The information from the pams_ function call trace is written to the dmqcldll.log
file in the default directory for the application. The PAMS tracing option can be used
to observe the sequence of message function calls to determine the run-time behavior
of the application.

Tracing Client Library Activity

To obtain detailed, time-stamped traces of the Client Library activity, follow these
steps:

1. Invoke the Configuration Utility.

2. Choose Configure from the Main menu, then choose Tracing from the Configure
menu.
5-4 BEA MessageQ Client for UNIX User’s Guide

RECOVERING FROM CLIENT CRASHES
3. Set the Trace Client Library Activity option to yes.

The information from the library trace might be useful to debug connection problems
between client library applications and the CLS. The library trace output is written to
the log file, dmqcldll.log, in the default directory for the application. Be aware that
the output from tracing option can become very large over a long period of time.

A CLS server trace might be useful to get a detailed time stamped activity of the client
requests and MessageQ message operations performed by the CLS. For more
information about trace output from the CLS, refer to the Installation and
Configuration Guide for your MessageQ server platform.

Recovering from Client Crashes

Occasionally, applications crash (particularly during development) and do not have an
opportunity to close or return resources in use before terminating. Applications using
the MessageQ Client for UNIX that are attached to the message queuing bus and then
crash (or terminate) without calling pams_exit or pams_detach_q, leave many
resources allocated but not available for reuse.

Resources that are in use after a client application crash include:

t Global memory allocated on behalf of the client application

t Network protocol resources, such as sockets

t Network resources on the server system

t Message queue resources used by the CLS on behalf of the client

After the client crashes, the server system still has an open connection to the client and
the CLS remains attached to the primary queue used by the client. The network
protocol keep-alive mechanism does not notify the server that the client has gone away
for a lengthy time period. Typically, you can reboot the client system and the server
still functions as though it has a connection open to the client.

Restarting the client application usually establishes a new connection to CLS. If
network connect errors occur, follow the troubleshooting procedure described in the
Identifying Network Errors topic. The procedure releases and frees all resources used
by the client.
BEA MessageQ Client for UNIX User’s Guide 5-5

5 TROUBLESHOOTING
If the client application calls pams_attach_q using either ATTACH_BY_NAME or
ATTACH_BY_NUMBER to attach to a specific primary queue, the CLS detects a
client reconnect attempt and automatically terminates the CLS instance (server process
or thread) attached to the same message queue. Reconnecting to the same queue is only
accepted if the client application is attempting to reconnect from the same host as the
previous connection.

If the client application calls pams_attach_q using the ATTACH_TEMPORARY
attach mode, a new instance of the CLS is started to support the client reconnect. The
previous instances of the CLS remains active. For information about terminating CLS
servers, see the CLS topic in the Installation and Configuration Guide for your
MessageQ server platform.
5-6 BEA MessageQ Client for UNIX User’s Guide

A
Automatic reconnect 3-4
B
Building an application

Client for Windows return codes 4-6
sample programs 4-8

Byte-order conversion 4-8
C
C language

include files 4-5
Choosing which subsets to install 2-3
Client

software requirements 4-9
Client for UNIX

configuration 3-1
DLL version info 5-1

Client for Windows
return codes 4-6

Configuration
Default server 3-4
Failover 3-7, 3-8
Message Recovery Services (MRS) 3-11
Tracing 3-12

Configuration file
DMQ.INI file location 3-3

D
Definition files for C and Visual Basic 4-5
DMQ.INI file 3-3

location in PATH 3-3
DMQCLDLL.LOG file 5-5
E
Endian. See Byte order
F
Failover

server 3-4, 3-6
Function calls

processing sequence 1-7

I
ìAutomatic 3-4
ìConfiguration

Default 3-5
Include files

C language 4-5
Installation

preinstallation 2-1
J
Journal file

disk usage 3-11
MRS options 3-9

M
Managing an application

MRS utility 4-11
MessageQ 4-11
P
PAMS_TRACE environment variable 5-4
Pathworks V5

ping utility 4-9
Preinstallation steps 2-2
R
Requirements for installation 2-1
Running an application 4-9

byte order 4-7
S
SAF journal

configuration options 3-10
location 3-10

Sample programs 4-8
for C languages 4-8

Server group
message queues implemented on 1-6
recoverable message journals 3-6

support
technical xv

T
TCP/IP

keep-alive mechanism 5-5
netstat utility 5-2

TCP/IP transport 4-10
U
Utilities

DMQCONF 3-1
DMQTESTW 3-13
MRS 4-11

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks

	Table of Contents
	Preface
	1. Introduction
	What is the MessageQ Client? 1-1
	Benefits of Using the MessageQ Client 1-3
	Architectural Overview 1-4

	2. Installing the MessageQ Client
	Preinstallation Requirements 2-1
	Choosing Installation Options 2-3
	Installing the MessageQ Client for UNIX Software 2-4
	Recovering from Errors During the Installation 2-9
	Adding the Initialization File Directory to Your PATH 2-10

	3. Configuring the MessageQ Client
	Configuring the Server Connection 3-4
	Configuring Logging 3-8
	Configuring Message Recovery Services 3-9
	Configuring Tracing 3-12
	Testing the Configuration Using the Test Utility 3-13

	4. Using the MessageQ Client for UNIX
	Overview of the MessageQ Client Utilities 4-1
	Developing Your MessageQ Client Application 4-2
	Running Your Application 4-9
	Managing Your Application 4-10

	5. Troubleshooting
	Determining the Version Number of the Client 5-1
	Identifying Run-time Errors 5-2
	Logging an Error Event 5-2
	Failing to Connect to the CLS 5-3
	Identifying Network Errors 5-3
	Tracing PAMS API Activity 5-4
	Tracing Client Library Activity 5-4
	Recovering from Client Crashes 5-5

	Preface
	Purpose of This Document
	Who Should Read This Document
	How This Document Is Organized

	How to Use This Document
	Opening the Document in a Web Browser

	Figure 1 Online Document Displayed in a Netscape Web Browser
	Printing from a Web Browser
	Documentation Conventions
	Related Documentation
	MessageQ Documentation

	Contact Information
	Documentation Support
	Customer Support

	1 Introduction
	What is the MessageQ Client?
	Figure 1�1 MessageQ Client and Server Components

	Benefits of Using the MessageQ Client
	Architectural Overview
	Figure 1�2 MessageQ Client for UNIX Architecture
	The Client Library Server
	How the MessageQ Client and CLS Work Together
	Figure 1�3 MessageQ Client and CLS Architecture
	1. The client application makes a MessageQ function call to the MessageQ Client.
	2. The MessageQ Client verifies the function call arguments and sends them in a request to the CL...
	3. When a request arrives, the CLS makes the corresponding MessageQ function call in the MessageQ...
	4. The MessageQ function completes, and returns the results to the CLS.
	5. The CLS sends the return parameters and function status in a response back to the MessageQ Cli...
	6. The MessageQ Client function call returns to the application with the return arguments and fun...

	Figure 1�4 How Client Application Requests are Processed

	2 Installing the MessageQ Client
	Preinstallation Requirements
	Software Requirements
	1. You must install MessageQ Server software on a UNIX or Windows NT system. In addition, a minim...
	2. Network software must be installed and running. TCP/IP networking is supported on all platforms.
	3. If you intend to develop client applications, you must have a program development environment ...

	Disk Space Requirements
	Backing Up Your System Disk

	Choosing Installation Options
	Table 2�1 MessageQ Packages
	Table 2�2 MessageQ Connectivity Options
	Table 2�3 MessageQ Installation Options

	Installing the MessageQ Client for UNIX Software
	1. Mount the CD-ROM media.
	2. Run the installation script.
	3. Enter the number next to the selected installation platform:
	4. Confirm your choice of platform:
	5. Select the packages you wish to install:
	6. Select one of the following connectivity options in respect to BEA TUXEDO:
	7. Select one of the following connectivity options in respect to other BEA Systems products:
	8. Select one of the following installation options with respect to client and server environments:
	9. Specify the directory where MessageQ files are to be installed:

	Recovering from Errors During the Installation
	Adding the Initialization File Directory to Your PATH

	3 Configuring the MessageQ Client
	Table 3�1 MessageQ Client for UNIX Configuration Options
	Table 3�2 MessageQ UNIX Command Line Parameters
	Listing 3-1 MessageQ Client for UNIX Configuration Utility Main Menu
	Table 3�3 MessageQ Client for UNIX Main Menu Options

	Listing 3-2 MessageQ Client for UNIX Configure Menu Options
	Configuring the Server Connection
	Default Server
	Listing 3-3 Default Server Options
	Table 3�4 Configuring the Default Server

	Automatic Failover Server
	Listing 3-4 Automatic Failover Server Options
	Table 3�5 Configuring the Automatic Failover Server

	Configuring Logging
	Listing 3-5 Logging Options
	Table 3�6 Configuring Message Logging

	Configuring Message Recovery Services
	Listing 3-6 MRS Configuration Options
	Table 3�7 MRS Configuration Options

	Configuring Tracing
	Listing 3-7 Tracing Configuration Options
	Table 3�8 Tracing Configuration Options

	Testing the Configuration Using the Test Utility
	Listing 3-8 Test Utility Main Menu
	Table 3�9 Test Utility Parameters and Actions Menu Options

	Listing 3-9 Specify a Temporary Queue
	Listing 3-10 Set the Put Parameters
	Listing 3-11 Attach to Queue 206 in Group 9
	Listing 3-12 PAMS_NETNOLINK Error
	Table 3�10 PAMS_NETNOLINK Error

	Listing 3-13 Put the Message to Queue 1 in Group 9
	Listing 3-14 Detach from the Temporary Queue
	Listing 3-15 Exit from the Test Utility

	4 Using the MessageQ Client for UNIX
	Overview of the MessageQ Client Utilities
	Table 4�1 MessageQ Client for UNIX Utility Programs

	Developing Your MessageQ Client Application
	MessageQ API Support
	Table 4�2 MessageQ Client API Functions

	MessageQ Client Function Parameter Limits
	Table 4�3 API Function Parameter Maximum Values

	Include Files for C and C++
	Table 4�4 C Language Include Files

	MessageQ Client Return Codes
	Table 4�5 MessageQ Client Return Codes

	Byte Order Considerations for Application Developers
	Sample Programs
	Table 4�6 MessageQ Client for UNIX Link Library

	Running Your Application
	1. The MessageQ for UNIX or MessageQ for Windows NT product must be installed on a server system....
	2. If you are planning to use the TCP/IP transport, the host names for the client and server syst...
	Table 4�7 Hosts File Location
	Run-time Files

	Managing Your Application
	Table 4�8 Utilities Used to Manage Client Applications
	MRS Utility
	Table 4�9 MRS Utility Command Line Parameters
	Listing 4-1 MessageQ Client MRS Utility
	/usr/users/smith/dmq > dmqclmrsu -l
	SAF journal: dmqsaf.jrn
	Msg Source Target Class Type Pri Size Data...
	----- ----------- ----------- ------ ------ --- ------ ------------
	1 0.0 5.300 66 99 0 13 'first mess'
	2 0.0 5.300 66 99 0 14 'second mes'
	3 0.0 5.300 66 99 0 13 'third mess'
	4 0.0 5.300 66 99 0 14 'fourth mes'
	5 0.0 5.300 66 99 0 13 'fifth mess'
	6 0.0 5.300 66 99 0 13 'sixth mess'
	7 0.0 5.300 66 99 0 15 'seventh me'
	8 0.0 5.300 66 99 0 14 'eighth mes'
	9 0.0 5.300 66 99 0 13 'ninth mess'
	10 0.0 5.300 66 99 0 13 'tenth mess'
	/usr/users/smith/dmq > dmqclmrsu -n 7
	SAF journal: dmqsaf.jrn
	Detail of message: 7
	Source: 0.0 Priority: 0 Size: 15 Large_Size: 0
	Target: 5.300 Class: 66 Type: 99
	Resp Q: 0.0 Delivery: 29 UMA: 5 Timeout: 100
	Contents of message buffer:
	XB 73, 65, 76, 65, 6E, 74, 68, 20, 6D, 65 ! 'seventh me'
	XB 73, 73, 61, 67, 65 ! 'ssage'

	5 Troubleshooting
	Determining the Version Number of the Client
	Identifying Run-time Errors
	Logging an Error Event
	Failing to Connect to the CLS
	Identifying Network Errors
	1. Check the error event log file, dmqerror.log, for a description of the error event.
	2. Stop and restart the application. In some cases, restarting the application or simply retrying...
	3. Stop and restart the CLS.

	Tracing PAMS API Activity
	1. Invoke the Configuration Utility.
	2. Choose Configure from the Main menu, then choose Tracing from the Configure menu.
	3. Set the Trace PAMS API Calls option to yes.

	Tracing Client Library Activity
	1. Invoke the Configuration Utility.
	2. Choose Configure from the Main menu, then choose Tracing from the Configure menu.
	3. Set the Trace Client Library Activity option to yes.

	Recovering from Client Crashes
	A
	B
	C
	D
	E
	F
	I
	J
	M
	P
	R
	S
	T
	U

