%%,

7 hea
BEA Tuxedo

Introducing the
BEA Tuxedo System

Copyright
Copyright © 2000 BEA Sygtens, Inc. All Rights Reseved.

Restricted Rights Legend

This sdftware and docunentation is subject to and mack aveilable anly pursuant to theterms d the BEA Systems
License Agreement and may be used or copied orly in acordance with theterms d that agreement. It is ajaingt
thelawto caopy the oftware except as specifically allowedin the ayreemen. This daument maynot, in whde o
in part, be copied photocopied, reproduced, trarslated, or reduced to any eledronic medium or machine readale
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by te U.S Government is aubject to restrictions setforth in the BEA Systems
License Agreemert ard in stbparagraph (c)(1) of the Commercial Computer Sdtware-Restricted Rights Clause
at FAR 52227-19; subparagraph (c)(1)(ii) of the Rights in Technical Daa and Compuer Software dause &
DFARS 252.227-7013, subparagraph (d) of the Comnercial Computer Software--Licersing dauseat NASA FAR
supplement 16-52.227-86; or their equivalert.

Informationin this document is subject to change without notice and does not represent a mmmitmert onthe pat
of BEA Systems. THE SOFTWAREAND DOCUMENTATION ARE PROVIDED'AS IS' WITHOUT
WARRANTY OF ANY KIND INC LUDING WITHOUT LIMITA TION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FAQR A PARTICULAR PURPOSE FURTHER, BEA Sytems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENATIONS REGARONG THE USE OR THE
RESULTS OF THE USE, OF THE SOFTWARE @ WRITTEN MATERIAL IN TERMS OF CORRECTNESS
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, ard Tuxedo are regstered trademaks of BEA Systems, Inc. BEA Builder, BEA
Connect, BEA Manager, BEA MessageQ BEA Jolt, M3, eSdutions, eLink, WebLogic, and WebLogic Enterprise
are trademarks of BEA Systems, Inc.

All other company names mg be trademarks oftheregedive conpanies with which they are asociated.
Introducing the BEA Tuxedo System

Document Edition Date Software Version

7.1 May 2000 BEA Tuxedo Release 7.1

Contents

1. BEA Tuxedo System Fundamentals

FOr More Information..........cccoceiieece et 1-1
What 1sthe BEA TUXEdO SYSIEM.....ccccuiiiiieeeiiriir et e 1-2
Features of the BEA TUXedO SyStemcc.ceeiiieinenee e 1-3
Anatomy of the Client/Server Model ... 1-5
Characteristics of Client/Server Architecturecccoecevveevevie e cvvenie e 1-5
Differences Between 2-Tier and 3-Tier Client/Server Architectures......... 1-6
Client/Server Variationsto Suit Your Needs...........ccccoecvveiecceiecveecieeenn, 1-8
How the BEA Tuxedo System Fitsinto the Client/Server Model..................... 1-9
What Are Clients, Servers, and Servicesin a BEA Tuxedo Environment...... 1-11
What IsaBEA Tuxedo CHent.........cceoecieieceeseccecceeeeeee st 1-11
What |SaBEA TUXEAO SEIVETocveieeisee ettt s 1-12
What Are BEA TUXEAO SEINVICESccveieciieieceeie et sreneee s 1-12
Services Provided by the BEA Tuxedo Systemccceeeveeiececvie e e 1-12
AdMINISratiVe SEIVICEScc.viiiceieeeee ettt 1-12
Application ProCessing SErVICES.......cceierireeiririeee et seeseeieee e 1-13
BEA Family of ProdUCEScoveie et sttt 1-14
2. BEA Tuxedo System Architecture
Basic Architecture of the BEA Tuxedo Systemcccceeeieveeneeiesenesiesinenas 2-1
What You Can Do USINg the ATM ... e 2-4
What Are the BEA Tuxedo Messaging Paradigms..........ccoceeeeeveeieienenneeeneene 2-8
What |'s Conversational CommUNiCatioN..........cccccveueeieiuecreeiesieeseee s 2-9
How the EVENtBIOKEr WOIKScucoecieieciee ettt st s 2-10
What Types of Events Are REPOIEd..........ccoovrereiineiereenee e 2-11
How Are Events REPOMEX.........cccoeeuiriree e e e 2-12
What |'s Queue-based COmMMUNICEEION..........cceeveeveeie et 2-13

Introducing the BEA Tuxedo System iii

iv

Using Application QUEUES.coeuereerueiereeneenieeee e eeesees e see e s es 2-13

What |s Request/Reply CommuniCatioNocooeeereereeneieeseeneeieee e 2-14
What IS Synchronous MeSSagingccceeverueriererreeneerie e e eeerie e eie e seens 2-15
What |S Asynchronous MeSSagingcceeueeuereereeneeirserneeeeeesiese e seeseens 2-16

What 1sUnsolicited COMMUNICALTONc.ooeeverieriieriieeiiesee e 2-17

What Are Nested and Forwarded Service REQUESES.......ccueveveeeeereniceiesecnene 2-18
NESEEA REQUESES.......ceeeeieie et ettt e s es b sne e e 2-18
FOrwarded REQUESEScouire ettt e eeea 2-20

How the BEA Tuxedo System Processes MeSSagescocuveerernerueseereennenens 2-21
What Are the Benefits of Service Request Processing..........ccoceeeeeneeneass 2-24

What Are TYPed BUFFErScuoee et 2-24
Characteristics of BUFfer TYPES......ccoveireriererireeree et 2-25

USINGThEIMIB ...ttt e sra s 2-29

TYPES Of MIB USEN'S ...ttt e e e st e e 2-30

Classes, Attributes, and Statesin the MIBcoooeeieieneincereeereeeeeenens 2-30

BEA Tuxedo Application Processing ServiCesScououereneiinenneniesiereesenens 2-31

What |S Data COMPIESSIONc.ueieeeenieeierereeieetesiese e seeseeseeseeseesessesseseasessessens 2-31

What |s Data-dependent ROULTINGccooieeeieriene e 2-32
Uses of Data-dependent ROULING.........ccoeiiiieieiinene e 2-33
Example of Data-dependent Routing with a Horizontally Partitioned

DALADASEeveeeeie et 2-34
Example of Data-dependent Routing with Rule-based Servers............... 2-35
Example of Data-dependent Routing with Distributed Application 2-36

What Are Encoding and Decoding of Data.........cccccceeevveiveviesiesesiesiieie e 2-37

What |S Data ENCIYPLIONc.eueieieiieiierer ettt et s sre e 2-38

What IsDataMarshalling..........ccoeceiieiiiiiceceeeecee s 2-38

What ISLoad BalanCingcccccueevieeiieie et sr e sre s snaennes 2-39
Assigning aLoad Factor...........ccccieieiiiieic e 2-40

What IS Message Prioriti Zation...........c.coeeeeiiecieie e sveeanes 2-41

What IsMeant BY Naming.........ccoecieiieiiiiieieceeeseeecesse et st sraeaee e 2-42
NAMING SEIVICES.....ccuviieeieie ettt st e e e 2-42
AQVETISING SEIVICES.....eo ittt st et 2-43
NaMING EVENES ...t sttt aenaeere e 2-44

BEA Tuxedo AdmiNiStrative SErVIiCESccvverrevre vttt 2-44

Introducing the BEA Tuxedo System

3. Three Ways of Viewing the BEA Tuxedo System

Infrastructure
Basic BEA Tuxedo System INfrastructurecoccooeveeene e seenece e 31
Management View: Using Administrative TOOIS..........ccooerveiereieienenceeinene 32
Available BEA Tuxedo System MIBS.......ccccuiiiieiiiinenee e 3-3
Using the BEA Administration CONSOIEccccevvievieeveeciieie e e 34
Browser REQUIFEMENEScoi et eieeees e e s enene 34
Benefits of Using the BEA Administration Console..........cccccurevneeeeirencneenen. 3-5
Exploring the Main Menu of the BEA Administration Console..........c..cccec..... 3-6
Using the Configuration TOOlccccceviiienieie e 37
What 1SThe TIER ...ttt e e 3-8
USING thE POWES Bloovieieieciece et sr e e 39
Managing OperationsUsSing the MIB ..o 3-10
TYPES Of MIB USEI'S ...ttt ettt st s e bbb e 311
Classes, Attributes, and StateSin the MIB ... 311
Using Command-Ling ULIlItIESccoveiceeviieieesieere e e 3-12
Configuring Y our Application Using Command-line Utilities....................... 3-12
Operating Y our Application Using Command-line Utilities..........ccccoeeueneneee 3-14
Managing System Events Using EventBrokercccoccevvve e cie e 3-14
WHhat 1S @N EVENL ..ottt st e b e b 3-15
SUbSCIibING 10 AN EVENL......ooiieeee e s 3-16
TYPES Of EVENES ...ttt sttt st e s e enes 3-17
Differences between System and Application-specific Events................ 3-18
BEA Tuxedo AdMINiStrative SErVICESooveiererieneie e 3-19
Managing Application QUELIES............coeiueieireeieiie ettt e e 3-20
Using gmadmin to Administer Application QUEUES..........cccevereereeuenuen. 3-20
Using tmconfig to Modify Your Configurationccccceevvecvenecceesiennen. 321
Managing Y our Configurationccccceeiieieeieesieesececee s st 3-22
Creating the Configuration File..........ccoociiiiviiiiice e 3-22
Making Permanent Configuration Changes.........ccccevveveveeiececie e 3-24
Managing Y our Configuration Dynamically.........cccccevevviie e cie e, 3-25
Performing Dynamic Operations Using tmadmin(l)cccceeveeevecveveennnn 3-26
Commonly Used tmadmin Commands............ccceeveieeecieneesieeieeseeenee e 3-26
Sample Output from the tmadmin Command............cccccovevecieiecveeienen, 3-27

Introducing the BEA Tuxedo System %

Managing a Distributed Application Centrallyccooerineiiiiiinencieene 3-28

MaNAGING SECUNTYev ettt ettt s en s e eneee e 3-30
Selecting SecUrity OPtiONScc..oiiiiee et s e 3-31
SEttiNg UP SECUNTY ...ttt s 3-32
Starting Up and Shutting Down your Applicationcccceerrieiencnienennne 3-33
Managing TranSACLIONS.........cccecveiecieie et e e st st sre st s e et st ereeneens 3-34
Coordinating Operations with a Transaction Manager Server (TMS).....3-35
Tracking Participants with a Transaction Log (TLOG)ccceveereieenens 3-35
Managing WOrKSLatiONS..........cccuecieeiieeiece sttt s sreenaes 3-36
Development View: What You Can Do Usingthe ATMIccviiicciininene. 3-37
Run-Time System View: Using Toolsin Different Configurations................ 341
Run-Time System Capabilities.........c.ccooririniiie i 3-42
What Is a Single-machine Configurationccceeceeveieeieiecie e eseseeeenn 3-43
What |s a Multiple-machine (Distributed) Configuration............ccccocceeerenene 3-45
What |saMultiple-domain Configurationc..cccoevereieneneeisennese s 3-49
Features of a Multiple-domain Configurationcccoeeereniene e seenee s 3-53
What IsaBEA Tuxedo BRIDGE...........ccooooiiiiiiiie i 3-53
What Isthe Role of the Bulletin Board and Bulletin Board Liaison............... 3-55
What Are ClientS and SEIVEXScocuiiiireee et s 3-56
What Isthe Distinguished Bulletin Board Liaison (DBBL).........cccccccoveveneee 3-57
What Are the Domains Administrative TOOIS........cccoeererieieninenee e 3-57
What Are IPC MeSSage QUELIESccuecuveiieeeieee et seeeteesteesee st staesaesraeseesreens 3-59
When to Use Single Server, Single Queues (SSSQ)ccveverreerveereennenne. 3-60
When to Use Multiple Server, Single Queue (MSSQ) Sets......ccccveuvenen. 3-60
What Are the Workstation Handler and Workstation Listenercccoeeee 3-62
How aWorkstation Client Connects to an Applicationcccceeveneene. 3-63
What Isthe User LOG (ULOG) ...cueiceiieiicee ettt sne s 3-64
HOW 1Sthe ULOG Created........ccooeveeeeeiierece et 3-64
Example of aULOG MESSAGE.......cccoviieireeiee sttt sttt ee e 3-64
Wherethe ULOG RESIHES........cooeiiieieiicie et 3-66

4. Integrating the BEA Tuxedo Product Family in an Enterprise

System
BEA Product INtegrationcoeeeieieee et eiesee e e see e e s 4-2
BEA ProdUCT SUITEcevieeiiieeeieeiee e e e e e 4-2

Vi Introducing the BEA Tuxedo System

Mainframe Connectivity: Using BEA €LinK........ccocooiiiiiiiniiinirie e 4-4

Components of the BEA eLink Product SUite...........ccceoeiereiein e 4-5
BEA eLink for Mainframe - TCP/IP for MV S (for IMS and CICS) 4-6
BEA eLink for Mainframe - SNA ... e 4-7
BEA eLink for Mainframe - OS| TP.......ccoooiiiiieie e 4-8

Internet Access: USINGg BEA JOIt ...t 4-9

Components Of BEA JOIt........cociieieieieee et se e 4-10

Developing and Managing Applications: Using BEA Managerc.ccc...... 4-11
BEA Manager COMPONENLSc..oeeeueeeeiereereesieaseessesssessesssessesseesanennens 4-12

Components of the BEA Tuxedo Productcocoeenrieeeienene e 4-12

Online Transaction Processing: Using the Core BEA Tuxedo System........... 4-13

Enabling Scalability: Using BEA Tuxedo Domains..........cccceevveeeveiinieennnnns 4-15
Features of BEA Tuxedo DOMAINScceuerreeiriniene e 4-17

What 1S @DOMEIN.......coiiieitireie ettt e e e s e e enes 4-18

What 1S aD0omMaiNS GalBWaYccceeerverriereieriesieerieeeerieie e ees e e seesee s e ees 4-18

What Are Domain GateWay TYPES.......ceereeueerrereeeseesesiesisseereeneeseeseenessessens 4-19

BEA Tuxedo Domains COMPONENEScccuurerierie e seerieie s reee e sesseeseenes 4-20

Storing Messages and Service Requests: Using BEA Tuxedo /Q................... 4-21
Using the Message QUEUING SEIVETccoeiueevieieeieeeieeseeereesreeraesaesraeane s 4-22
Storing and Forwarding MESSagES.........cveveeeveeieseeie e 4-23
BEA Tuxedo /Q Capabilities..........ccoerireieierneeiee e e e 4-25

Workstation Connectivity: Using BEA Tuxedo Workstation.............cccceu...... 4-26

Workstation COMPONENES........coeriiiirieieiie ettt e e e s enes 4-27

Developing Client-Server Architecture Using WebL ogic Enterprise............. 4-28

Developing and Managing Distributed Java-based Applications. Using BEA
WEDL OGIC SEIVEN ...ttt sttt sttt ettt e e 4-30
WebL ogic Server Implementations...........coeveerieeienineniee e 4-31
Advantages of Using BEA WebL OgIC SEIVEYcceevenerieieeneeieieneneas 4-31

Introducing the BEA Tuxedo System Vii

Viii Introducing the BEA Tuxedo System

CHAPTER

1 BEA Tuxedo System
Fundamentals

What |sthe BEA Tuxedo System

Anatomy of the Client/Server Model

How the BEA Tuxedo System Fitsinto the Client/Server Model

What Are Clients, Servers, and Servicesin a BEA Tuxedo Environment
Services Provided by the BEA Tuxedo System

BEA Family of Products

For More Information

Many resources are available to help you understand the BEA Tuxedo system. The
following books, white papers, and presentations provide information about
client/server architecture, building and managing distributed business applications,
and using the BEA Tuxedo system to build and manage enterprise applications:

Andrade, Juan, M. Carges, T. Dwyer, and S. Felts, The Tuxedo System - Software
for Constructing and Managing Distributed Business Applications. Reading,
Massachusetts: Addison-Wesley Publishing, 1996.

Edwards, Jeri, with D. DeVoe, 3-Tier Client/Server at Work. New York: John
Wiley & Sons, Inc., April 1997.

Edwards, Jeri, D. Harkey, R. Orfali, The Essential Client/Server Survival Guide.
New York: John Wiley & Sons, Inc., May 1997.

Introducing the BEA Tuxedo System 1-1

1 BEA Tuxedo System Fundamentals

m Hall, Carl, Building Client/Server Applications Using Tuxedo - Designing and
Building Cost-Effective, High Performance Client/Server Applications Using
Tuxedo. Wiley Computer Publishing.

m Lee, Rich, BEA Tuxedo Essentials. Presented at the BEA User’s Conference in
New Orleans, La., February, 1999.

m MacBlane, RandyWanaging your BEA Tuxedo Applications Even Over the
Internet. Presented at the BEA User’s Conference in San Jose, Ca., May 1997.

m MacBlane, RandyTuxedo’s Management Information BaBeesented at the
BEA User’s Conference in San Francisco, Ca., February 1996.

m BEA Tuxedo: The Programming Model (White Paper)
m BEA Tuxedo and the Component Software Model (White Paper)

m Inter-Application Transaction Processing with BEA Tuxedo Domains (White
Paper)

m Reliable Queuing Using BEA Tuxedo (White Paper)

What Is the BEA Tuxedo System

1-2

The BEA Tuxedo system israiddleware product that distributes applications across
multiple platforms, databases, and operating systems using message-based
communications and, if desired, distributed transaction processing.

Middleware is used with client/server applications to distribute processing among
multiple servers, manage distributed transactions, and integrate multiple database
platforms. Middleware systems are sometimes known as “on-line transaction
processing” or “OLTP” systems.

The BEA Tuxedo system is a mature product based on over 15 years of developme
from a diverse group of technology companies including AT&T, UNIX System
Laboratories (USL), Novell, and BEA Systems, Inc. It is both a development platform
and an execution platform. The BEA Tuxedo system serves as an extension to the
operating system.

Introducing the BEA Tuxedo System

What Is the BEA Tuxedo System

The BEA Tuxedo system provides the following:

An industry standard for the creation and central administration of distributed
on-line transaction applications in a heterogeneous client/server environment.

Ease of use for application developers, who do not need to know all the details
about server locations, routing, or platforms used. In a BEA Tuxedo application,
these aspects of aprogram are transparent.

The fundamenta underpinnings for creating, managing, and maintaining reliable,
high performance, easily managed distributed systems.

Features of the BEA Tuxedo System

The BEA Tuxedo system offers many features to accommodate the needs of the
administrator, architect, and programmer of an application.

Administrative Features

Password security and access control security—Password security allows
application designers to control access by requiring passwords at initialization
time (authentication). Further control is available through authorization, a means
of restricting access to certain application services to clients that have been
given explicit permission and that have authenticated identities.

System events notification—The BEA Tuxedo system provides details about
system events, such as servers dying and network failures. When an event is
posted by clients or servers, the EventBroker looks up all the subscribers to that
event and takes appropriate actions, as determined by each subscription.

The MIB (Management I nformation Base)—An administrative interface that

enables you to monitor, configure, and tune your application through your own
programs. It is an implementation-independent management database defined as
a set ofFML attributes, which allows you to query or change information.

Web-based administration—A graphical user interface, available through the
World Wide Web, for the configuration and control of BEA Tuxedo applications.

Introducing the BEA Tuxedo System 1-3

1 BEA Tuxedo System Fundamentals

Architectural Features

Distributed services—Allow transparent access to application and/or system
services located on different hardware platforms.

Fast, connectionless communications—Clients connect to a bulletin board rather
than to servers, thus improving system performance.

Scalability—You can quickly scale your application to match varying system
load demands because services and servers can be replicated and distributed
easily. You can set thresholds programmatically to enable the BEA Tuxedo
system to spawn new servers or to shut down servers automatically.

Server transparency—T he directory of services on the bulletin board maps
service names to servers; clients do not need to be aware of server identity.

Programming Features

See Also

1-4

Communication techniques— The Application Programming Interface (API) for
the BEA Tuxedo system is a superset of X/Open’s XATMI interface called the
Application to Transaction Monitor Interface or ATMI. The BEA Tuxedo ATMI
is a rich set of communication techniques for writing distributed applications.

Distributed Transaction Processing (DTP)—Allows work being done throughout
a distributed application to be atomically completed—an essential characteristic
of any OLTP system.

Typed buffers—Provide transparent handling of application data across
heterogeneous platforms.

X/Open TX compliance—The BEA Tuxedo system conforms to the X/Open
interface standard for transaction demarcation.

X/Open XA compliance—The BEA Tuxedo system conforms to the X/Open
interface standard for transaction database systems (called resource managers)
As a result, you can mix and match databases within one application while
maintaining data integrity.

“Services Provided by the BEA Tuxedo System” on page 1-12

“BEA Family of Products” on page 1-14

Introducing the BEA Tuxedo System

Anatomy of the Client/Server Model

Anatomy of the Client/Server Model

In client/server architecture, clients, or programs that represent users who need
services, and servers, or programs that provide services, are separate logical objects
that communicate over anetwork to perform taskstogether. A client makes a request
for aservice and receives areply to that request; a server receives and processes a
request, and sends back the required response.

Characteristics of Client/Server Architecture

m Asymmetrical protocols—There is a many-to-one relationship between clients
and a server. Clients always initiate a dialog by requesting a service. Servers
wait passively for requests from clients.

m Encapsulation of services—The server is a specialist: when given a message
requesting a service, it determines how to get the job done. Servers can be
upgraded without affecting clients as long as the published message interface
used by both is unchanged.

m Integrity—The code and data for a server are centrally maintained, which results
in cheaper maintenance and the protection of shared data integrity. At the same
time, clients remain personal and independent.

m Location transparency—The server is a process that can reside on the same
machine as a client or on a different machine across a network. Client/server
software usually hides the location of a server from clients by redirecting service
requests. A program can be a client, a server, or both.

m Message-based exchanges—Clients and servers are loosely-coupled processes
that can exchange service requests and replies using messages.

m Modular, extensible design—The modular design of a client/server application
enables that application to be fault-tolerant. In a fault-tolerant system, failures
may occur without causing a shutdown of the entire application. In a
fault-tolerant client/server application, one or more servers may fail without
stopping the whole system as long as the services offered on the failed servers
are available on servers that are still active. Another advantage of modularity is
that a client/server application can respond automatically to increasing or
decreasing system loads by adding or shutting down one or more services or
servers.

Introducing the BEA Tuxedo System 1-5

1 BEA Tuxedo System Fundamentals

m Platform independence—The ideal client/server software is independent of
hardware or operating system platforms, allowing you to mix client and server
platforms. Clients and servers can be deployed on different hardware using
different operating systems, optimizing the type of work each performs.

m Reusable code—Service programs can be used on multiple servers.

m Scalability—Client/server systems can be scaled horizontally or vertically.
Horizontal scaling means adding or removing client workstations with only a
slight performance impact. Vertical scaling means migrating to a larger and
faster server machine or adding server machines.

m Separation of Client/Server Functionality—Client/server is a relationship
between processes running on the same or separate machines. A server proces
is a provider of services. A client is a consumer of services. Client/server
provides a clean separation of functions.

m Shared resources—One server can provide services for many clients at the same
time, and regulate their access to shared resources.

Differences Between 2-Tier and 3-Tier Client/Server
Architectures

Every client/server application contains three functional units:
m Presentation logic or user interface (for example, ATM machines)

m Business logic (for example software that enables a customer to request an
account balance)

m Data (for example, records of customer accounts)

These functional units can reside on either the client or on one or more servers in yo!
application. Which of the many possible variations you choose depends on how you
split the application and which middleware you use to communicate between the tier

In 2-tier client/server applications, the business logic is buried inside the user interfac
on the client or within the database on the server in the form of stored procedures.
Alternatively, the business logic can be divided between the client and server. File
servers and database servers with stored procedures are examples of 2-tier architect

1-6 Introducing the BEA Tuxedo System

Anatomy of the Client/Server Model

In 3-tier client/server applications, the business logic residesin the middletier,
separate from the data and user interface. In this way, processes can be managed and
deployed separately from the user interface and the database. Also, 3-tier systems can
integrate data from multiple sources.

Figurel-1 2-Tier and 3-Tier Client/Server Models

Clients Clients
% =
-Presentation logic
-Business logic
-Database access (SOL)
Business Logic Middlewara
Borvica A
Borvies B
Barvica € |
RDBMS]
Server
Business logic in the
form of stored
rocedures
P RDBMS
Server
Z2-TIER CLIENT/SERVER 3-TIER CLIENT/SERVER
Two or more operating systems Multiple operating 55"5“3_""3
One or more programming One or more programming
languages languages
Local and remote databases Local and remote databases
Hetworking/communication issues Hetworking/communication issues
Inter-program communications Inter-program communications

Message routing

Introducing the BEA Tuxedo System 1-7

1 BEA Tuxedo System Fundamentals

Client/Server Variations to Suit Your Needs

1-8

Client/server architecture can accommodate the needs of each of the following
situations:

m Small shopsand laptops—The client, the middleware software, and most of the

business services operate on the same machine. We recommend this approach
for one-person businesses such as a dentist’s office, a home office, and a
business traveler who frequently works on a laptop computer.

Small businesses and corporate departments—A LAN-based single-server
application is required. Users of this type of application include small
businesses, such as a medical practice with several doctors, a multi-department
corporation, or a bank with several branch offices. In this type of application,
multiple clients talk to a local server. Administration is simple: security is
implemented at the machine level and failures are detected easily.

Large enterprises—Multiple servers that offer diverse functionality are required.
Multiple servers can reside on the Internet, intranets, and corporate networks, all
of which are highly scalable. Servers can be partitioned by function, resources,
or databases, and can be replicated for increased fault tolerance or enhanced
performance. This model provides a great amount of power and flexibility. How
well you architect your application is critical to this client/server model. You

may need to partition work among servers, or design servers to delegate work to
other servers.

Introducing the BEA Tuxedo System

How the BEA Tuxedo System Fits into the Client/Server Model

How th

e BEA Tuxedo System Fits into the

Client/Server Model

Cash
Machines

Request
Deposit

Cash
Machines

Request
Withddrawwal

Bank
Tellers

Reguest
Balance
Incyuiry

The BEA Tuxedo system fits into the middle of the client/server model. In a BEA
Tuxedo application, clients log in and request services offered by an application. The
BEA Tuxedo system offers these services through a transparent bulletin board. The
bulletin board contains a directory advertising services. In a banking application, for
example, the bulletin board might advertise deposit, withdrawal, and inquiry services.
The BEA Tuxedo system then finds a server (for example, at the appropriate branch or
district office) that can provide the requested services.

Figure1-2 Clientsand Serversin a Sample Banking Application

Branch
Server
Replies Feature: Deposit
Distributed Wity
Services MLty
Middleware
Replies Requests
Bulletin Board Directony
of Services Featre:
CLIENTS 'I.-'Vrth_draw Branch SERVERS
ImEuiry Branch
IrEuiry Diztrict o
Transfer District District
) Server
Replies Reguests
Tranzfer
Ircuiry
Feature:

Service Transparency-no
knowledge of senser
location

The preceding figure showsthe primary building blocks of aBEA Tuxedo application:

m Clients—programs that collect input from users, sends requests through the BEA
Tuxedo system to servers, and then collects the replies from servers and delivers

them to the users.

Introducing the BEA Tuxedo System 1-9

1 BEA Tuxedo System Fundamentals

m Servers—programs that encapsulate the business logic into a set of services that
define the application.

m Middleware—comprises all the distributed software needed to support
interactions between clients and servers. It is the medium that enables a client tc
obtain a service from a server. Middleware includes: API functions used by the
client (to issue requests and receive replies) and the server (to issue replies) anc
messaging paradigms used to transmit client requests and server responses ove
a network. Middleware does not include any of the following: the user interface
on the client, application logic, and services provided by servers.

In this sample BEA Tuxedo application at a bank, clients (cash machines and tellers
make requests, and servers (at branch and district offices) provide services and
responses. For example, a customer may use a cash machine to find out how muck
money is available in his personal checking account. The cash machine (a client) cal
the server to get the balance. The server receives the request, retrieves the balance,
sends the information to the cash machine.

See Also

m “Anatomy of the Client/Server Model” on page 1-5

m “What Are Clients, Servers, and Services in a BEA Tuxedo Environment” on
page 1-11

1-10 Introducing the BEA Tuxedo System

What Are Clients, Servers, and Services in a BEA Tuxedo Environment

What Are Clients, Servers, and Services in a
BEA Tuxedo Environment

Thistopic describes a client, server, and servicesin a BEA Tuxedo environment.

What Is a BEA Tuxedo Client

A client isa program that collects a request from a user and passes that request to a
server capable of fulfilling it. It can reside on a PC or workstation as part of the front
end of an application. It can al so be embedded in software that reads acommunication
device such as an ATM machine from which datais collected and formatted before
being processed by BEA Tuxedo servers.

Tobeaclient, aprogram must be able to invokethe BEA Tuxedo libraries of functions
and procedures known collectively as the Application to Transaction Monitor
Interface, or ATMI. The ATMI is supported in several language bindings.

A client joins a BEA Tuxedo application by calling the ATMI client initialization
routine. Once it hasjoined an application, a client can define transaction boundaries
and call ATMI functions that enable it to communicate with other programsin your
application. The client leaves the BEA Tuxedo application by issuing an ATMI
termination function. By joining an application only when necessary and leaving it
oncethe appropriate task is complete, aclient frees BEA Tuxedo system resources for
use by other clients and servers.

When building a distributed application, you must determine how information is
gathered and presented to your business for processing. Y ou have complete control
over where and whento call ATMI functions, depending upon your business logic and
rules. Y our program can join one BEA Tuxedo application, perform some tasks and
leave, and then join adifferent BEA Tuxedo application to perform another task. I f you
are using amulticontexted application, your client can perform tasksin more than one
application without leaving any of them.

Introducing the BEA Tuxedo System -1

1 BEA Tuxedo System Fundamentals

What Is a BEA Tuxedo Server

A BEA Tuxedo server isa process that oversees a set of services, dispatching them
automatically for clients that request them. A service, in turn, isafunction within a
server program that performs a particular task needed by a business. A bank, for
example, might have one servicethat accepts deposits and another that reports account
balances. A server at this bank might receive requests from clientsfor both services. It
is the server’s job to dispatch each request to the appropriate service.

Service functions implement business logic through calls to database interfaces suc
as SQL and, possibly, calls to the ATMI to access additional services, queues, and
other resources. The servers on which these services reside then reply to the clients
forward client requests to a new service.

What Are BEA Tuxedo Services

A service is a module of application code that performs a task. Services are compile
and link edited to form executable servers.

Services Provided by the BEA Tuxedo System

The BEA Tuxedo system offers many services to help you streamline and administe
your application.

Administrative Services

The BEA Tuxedo system provides services for the following administrative tasks:
m Application queue management
m Centralized application configuration

m Distributed application management

1-12 Introducing the BEA Tuxedo System

Services Provided by the BEA Tuxedo System

Dynamic application reconfiguration

Event management

Security management

Startup and shutdown of an application

Transaction management

Workstation management

Application Processing Services

The BEA Tuxedo system provides servicesthat enable you to implement thefollowing

functionality in your application:

Data compression
Data-dependent routing
Dataencoding

Data encryption

Data marshalling

Load balancing
Message prioritization

Service and event naming

Introducing the BEA Tuxedo System

1-13

1 BEA Tuxedo System Fundamentals

BEA Family of Products

1-14

BEA offers the following family of products.

This Product Provides

BEA eLink A suite of connectivity products that allow you to seamlessly
integrate BEA Tuxedo distributed applicationswith enterprise
applications

BEA Jolt A BEA Tuxedo client API in Java

BEA Manager A package of administrative tools for aBEA Tuxedo or

WebL ogic Server application

The BEA Tuxedo system
consists of four
components:

m Core BEA Tuxedo
system

m Domans

m /Q
m Workstation

m The core BEA Tuxedo product—enables you to build
high-performance, mission-critical, and reliable
distributed applications. It provides the framework for
building scalable 3-tier client-server applications in
heterogeneous, distributed environments.

m Domains—extends the BEA Tuxedo client/server model
to provide transaction interoperability across separately
administered BEA Tuxedo applications.

m /Q—allowsrdiable queueing of requests.

m Workstation—offers full client support for awide variety
of operating systems allowing applications to use remote
clients that do not need a full BEA Tuxedo
implementation.

BEA WebL ogic Enterprise

A leading application server family of products providing
businesses and organizations that depend on mission-critical
applications with the advantages of Common Object Request
Broker Architecture (CORBA)-compliant and Enterprise Java
Beans (EJB) programming models, combined with the power,
robustness, and proven reliability of the BEA Tuxedo system.

BEA WebL ogic Server

A Java-application server for developing, integrating,
deploying, and managing large-scale, distributed Web,
network, and database applications

Introducing the BEA Tuxedo System

CHAPTER

2 BEA Tuxedo System
Architecture

m Basic Architecture of the BEA Tuxedo System

m What Are the BEA Tuxedo Messaging Paradigms
m How the BEA Tuxedo System Processes M essages
m BEA Tuxedo Application Processing Services

m BEA Tuxedo Administrative Services

Basic Architecture of the BEA Tuxedo System

The following figure illustrates the basic architectural elements of a BEA Tuxedo
system: external interfaces to the system, the ATMI layer, the MIB, BEA Tuxedo
system services, and the system’s interface with standards-compliant resource
managers.

Introducing the BEA Tuxedo System 2-1

2 BEA Tuxedo System Architecture

Development

Figure2-1 The BEA Tuxedo System Basic Architecture

Toals far App Applications that 3rd Party BEA Administration | External
use BEATUXEDC Management Tools Console Interface Layer
AT (Application to Transaction Monitor Interface) 4-| ATMI Layer
T e T TMiBs(ACL, Core, Events, |
Messaging Paradigms 10, Warkstation)
Administrative
Data compression services
Data-dependentrouting Centralized application BEA TUXEDO
Data encoding .ﬂ.pphcafmn carfiguration % System Services
Data encryption processing Distributed application management I ayer
Data marshalling senvices Cynamic reconfiguration
Load halancing Event ranagerment
Messane prioritization Security management
Maming services Starting up and shutting down
Transaction management Wiorkstation management

XA Open Pratocol

2-2

Interface with any

Resource Manager

standards-hased
Resource Manager

Asshown in thisillustration, the BEA Tuxedo system contains the following parts.

Architectural Part

Description

Externa interface layer

Thislayer consists of interfaces between the user and the system.
It includes both tools for application devel opment, such as
Simple Network Management Protocol (SNMP) agents,
and tools for administration, such as the BEA
Administration Console. The BEA Administration Console
and SNMP agents can interact with standard management
consoles. Thus a user can manage a BEA Tuxedo system and a
network configuration from one console. In addition, application
architects and developers can build their own administrativetool s
or application- or market-specific tools on top of the M B.

Introducing the BEA Tuxedo System

Basic Architecture of the BEA Tuxedo System

Architectural Part

Description

ATMI (Application to
Transaction Monitor
Interface)

The interface between an application and the BEA Tuxedo
system. The ATMI and the BEA Tuxedo system implement the
X/Open DTP model of transaction processing. An abstract
environment, the ATMI supports|ocation transparency and hides
implementation details. As aresult, programmers are free to
configure and deploy BEA Tuxedo applications to multiple
platforms without modifying the application code.

M essaging paradigms

Different models of transferring messages between aclient and a
server. Examplesinclude request/response mode, conversational
mode, events and unsolicited notification.

M B (Management
Information Base)

The Management Information Base (MIB) is an interface that
enables users to program and administer a BEA Tuxedo system
easily. MIB operations enable you to perform all management
tasks (monitoring, configuring, tuning, and so on). TheM B

allows you to perform one task to one object at atime or to build
tool kits with which you can batch tasks and/or objects. (For
information about available MIBs, see “Available BEA Tuxedo
System MIBs” on page 3-3.)

BEA Tuxedo Services
(administrative services
andapplication
processing servicgs

Services and/or capabilities provided by the BEA Tuxedo system
infrastructure for developing and administering applications. The
application processing services available to developers include:
data compression, data-dependent routing, data encoding, load
balancing, and transaction management. The administrative
services include: centralized application configuration,
distributed application management, domains partitioning,
dynamic reconfiguration, event and fault management, IPC
message queues, and workstation management. (For information
on administrative services, see the topic titled: “Three Ways of
Viewing the BEA Tuxedo System Infrastructure” on page 3-1.)

Resource Manager

A software product in which data is stored and available for
retrieval through application-based queries. The resource
manager (RM) interacts with the BEA Tuxedo system and
implements the XA standard interfaces. The most common
example of a resource manager is a database. Resource managers
provide transaction capabilities and permanence of actions; they
are the entities accessed and controlled within a global
transaction.

Introducing the BEA Tuxedo System 2-3

2 BEA Tuxedo System Architecture

See Also

m “BEA Tuxedo Administrative Services” on page 2-44

m “BEA Tuxedo Application Processing Services” on page 2-31

What You Can Do Using the ATMI

The Application to Transaction Monitor Interface (ATMI), the BEA Tuxedo AP, is
an interface for communications, transactions, and management of data buffers that
works in all environments supported by the BEA Tuxedo system. It provides the
connection between application programs and the BEA Tuxedo system. The ATMI is
a simple interface for a comprehensive set of capabilities. It implements the X/Open
DTP model of transaction processing.

Figure2-2 Usingthe ATMI

Tools Languages (C, C++ COBOL, Java)
AThI
BEATUSEDD Clientt Mame Management Distributed ATEIE
And Connectivity Transaction 1B

Server Server Manager

Administration Processing

Systerm-Level (Hardware, Operating Systerm, Metwoark)

The ATMI supports the following tasks:
-Client initialization

-Zerver naming

-System messaging

-Managing transactions

-Dizpatching of services

-Managing buffers

The ATMI library offers you a variety of functions for defining and controlling global
transactions in a BEA Tuxedo application. Global transactions enable you to manag
exclusive units of work spanning multiple programs and resource managers in your

2-4 Introducing the BEA Tuxedo System

What You Can Do Using the ATMI

distributed application. All work in a single transaction is treated as alogical unit, so
that if any one program cannot completeitstask successfully, no work is performed by
programsin the transaction. Most ATMI functions support different communication
styles. These functions knit together distributed programs by enabling them to send
and receive data. All ATMI functions send or receive datain typed buffers. Following
isalist of ATMI functions (for C and COBOL bindings), and the tasks they perform.
The functions are grouped by task.

Table2-1 Usingthe ATMI Functions

For a Task
Related to

Use This C Function

Or ThisCOBOL
Function

To

Client membership

t pchkaut h(3c)

TPCHKAUTH(3cbl)

Check whether authenticationis
required

tpi nit(3c) TPI NI TI ALI ZE(3cbl) Haveaclient join an application
t ptern(3c) TPTERM 3cbl) Have aclient leave an
application
Buffer tpal | oc(3c) N A Create a message buffer
management
tpreal | oc(3c) N A Resize a message buffer
t pfree(3c) N A Free a message buffer
t pt ypes(3c) N A Get a message type and subtype
M essage priority t pgpri o(3c) TPGPRI (3cbl) Get the priority of the last
request
t psprio(3c) TPSPRI O(3cbl) Set the priority of the next
request
Request/Response t pcal | (3c) TPCALL(3chbl) Initiate a synchronous
communications request/response to a service
t pacal I (3c) TPACALL(3cbl) Initiate an asynchronous

request (fanout)

t pgetrpl y(3c)

TPGETRPLY(3cbl)

Receive an asynchronous
response

t pcancel (3c)

TPCANCEL(3cbl)

Cancel an asynchronous request

Introducing the BEA Tuxedo System 2-5

2 BEA Tuxedo System Architecture

For aTask
Related to

Use This C Function

Or ThisCOBOL
Function

To

Conversational
communications

t pconnect (3c)

TPCONNECT(3chl)

Begin a conversation with a
service

t pdi scon(3c)

TPDI SCON(3cbl)

Abnormally terminate a
conversation

t psend(3c)

TPSEND(3cbl)

Send amessagein a
conversation

tprecv(3c)

TPRECV(3chl)

Receive amessagein a

conversation
Reliable queuing t penqueue(3c) TPENQUEUE(3chbl) Enqueue a message to a
message queue
t pdequeue(3c) TPDEQUEUE(3chbl) Dequeue a message from a
message queue
Event-based tpnotify(3c) TPNOTI FY(3cbl) Send an unsolicited message to

communications

aclient

t pbr oadcast (3c)

TPBROADCAST(3chl)

Send messages to severa
clients

t pset unsol (3c)

TPSETUNSCL(3cbl)

Set unsolicited message
call-back

t pchkunsol (3c)

TPCHKUNSCOL (3chl)

Check the arrival of unsolicited
messages

N A

TPGETUNSOL(3cbl)

Get an unsolicited message

t ppost (3c)

TPPCST(3chl)

Post an event message

t psubscri be(3c)

TPSUBSCRI BE(3chl)

Subscribe to event messages

t punsubscri be(3c)

TPUNSUBSCRI BE(3cbl)

Unsubscribe to event messages

2-6 Introducing the BEA Tuxedo System

What You Can Do Using the ATMI

For a Task Use ThisC Function Or ThisCOBOL To

Related to Function

Transaction t pbegi n(3c) TPBEAQ N(3chl) Begin atransaction
management

t pcommit (3c)

TPCOWMM T(3cbhl)

Commit the current transaction

t pabort (3c)

TPABORT(3cbl)

Roll back the current
transaction

t pgetl ev(3c)

TPGETLEV(3cbl)

Check whether in transaction
mode

t psuspend(3c)

TPSUSPEND(3cbl)

Suspend the current transaction

t presune(3c)

TPRESUME(3cbl)

Resume a transaction

Service entry and
return

tpsvrinit(3c)

TPSVRI NI T(3cbl)

Initialize a server

t psvrdone(3c)

TPSVRDONE(3cbl)

Terminate a server

t pservice(3c)

N A

Prototype for a service entry
point

N A

TPSVCSTART(3chl)

Get service information

t preturn(3c)

TPRETURN(3cbl)

End a service function

t pf orwar d(3c)

TPFORMAR(3cbl)

Forward request

Dynamic t padverti se(3c) TPADVERTI SE(3cbl) Advertise a service name
advertisement

t punadvertise(3c) TPUNADVERTI SE(3chl) Unadvertise a service name
Resource t popen(3c) TPOPEN(3chl) Open a resource manager
management

t pcl ose(3c) TPCLOSE(3cbl) Close a resource manager

Note: The use of ATMI transaction management functions is optional.
See Also

m “Using the ATMI to Handle System and Application Errors” on page 2-28 in
Administering a BEA Tuxedo Application at Run Time

Introducing the BEA Tuxedo System 2-7

2 BEA Tuxedo System Architecture

What Are the BEA Tuxedo Messaging

Paradigms

The following table describes the BEA Tuxedo messaging paradigms available to

application devel opers.

Table 2-2 BEA Tuxedo M essaging Paradigms

BEA Tuxedo M essaging
Paradigm

Description

Conversational communication

Service request mode involving multiple 2-way
interactions between a client and a dedicated server

Event-based communication

Publish/subscribe mode

Queue-based communication

Guaranteed delivery mode

Request/reply communication

Service request modethat can be synchronous (processing
waits until the requester receives the response) or
asynchronous (processing continues while the requester
waits for the response)

Unsolicited messaging

Communication from any client or server to any clients
that were not requested or expected by those clients

2-8 Introducing the BEA Tuxedo System

What Is Conversational Communication

See Also

m “What Is Conversational Communication” on page 2-9
m “How the EventBroker Works” on page 2-10

m “What Is Queue-based Communication” on page 2-13
m “What Is Request/Reply Communication” on page 2-14
m “What Is Unsolicited Communication” on page 2-17

m “What Are Nested and Forwarded Service Requests” on page 2-18

What Is Conversational Communication

Conversational communication is the BEA Tuxedo system implementation of a
human-like paradigm for exchanging messages between clients and servers. In this
form of communication, a virtual connection is maintained between the client and
server. Just as in a conversation between two people, a number of messages pass back
and forth between the two entities until a conclusion is reached. Over the course of the
communication, both sides “remember” the point (or state) of the conversation so that
relatively long operations, such as ad hoc queries, reports, and file transfers, can be
supported. Conversational servers are available by default, but more can be spawned
automatically if needed.

The BEA Tuxedo system provides an Application Programming Interface (API) that
can be used to create conversations in applications; specifically to connect clients to
servers, to send and receive messages, and to end the conversation.

Conversations can be nested but performance may be degraded as a result of doing so.
Conversations may contain either transactions or service requests as appropriate.
Although a conversational service can make service calls and establish conversations,
those service calls and conversations cannot be forwarded. A conversation can be
within the scope of, and controlled by a transaction.

Introducing the BEA Tuxedo System 2-9

2 BEA Tuxedo System Architecture

Figure 2-3 Conversational Communication

SERWER

CLIENT

|- =1 TpConnmect|)
E—| tpsend()

tprecw()

'AFYY}

See Also

m “Using Conversational Communication” on page 1-1Tiitorials for
Developing a BEA Tuxedo Application

How the EventBroker Works

The BEA Tuxedo EventBroker provides a communication paradigm in which an
arbitrary number of suppliers can post messages for an arbitrary number of subscribe!
Because client and server processes that use the EventBroker communicate with ot
another based on a setsobscriptions, this paradigm is known as

publish-and-subscribe communication. The EventBroker acts like a newspaper
delivery person who delivers newspapers only to customers who have paid for a
subscription.

2-10 Introducing the BEA Tuxedo System

What Types of Events Are Reported

Figure2-4 Posting and Subscribing to an Event

Event Event
Subscription Posting ;
Client or Server —————» Bvent 1~ Client or Server
Broker
Event
Hotification

Event generators (either clients or servers) inform the EventBroker of changes and
problems asthey occur. This processis called posting an event. The EventBroker then
matches the name of the event to an event name associated with alist of subscribers,
and notifies each subscriber on the list of the event.

See Also

m “What Types of Events Are Reported” on page 2-11
m “How Are Events Reported” on page 2-12

m “Using Event-based Communication” on page 1-14itorials for Devel oping
a BEA Tuxedo Application

What Types of Events Are Reported

The BEA Tuxedo system supports two different types of event reports:

m System Event reports—provide details about BEA Tuxedo system events, such
as servers dying, and network failures. When an event is posted by clients or
servers, EventBroker matches the posted event's name to subscriber’s of the
same events and takes appropriate action determined by each subscription.

m Reports of User Events or Application Defined Events—allow application
programs to post events when certain criteria are met. A banking application, for
example, might post an event for withdrawals over a certain limit.

Introducing the BEA Tuxedo System 2-11

2 BEA Tuxedo System Architecture

How Are Events Reported

The EventBroker provides publish-and-subscribe functionality. A process registers a
subscription with the EventBroker, indicating interest in a particular event.
Subsequently, whenever the EventBroker is notified by another process that the
specified event has occurred, the EventBroker reports the occurrence to any process
that has subscribed for this event.

Figure2-5 Event-based Messaging

EventBroker

AR
tpsubscribe ()
/

Motify a
client Witite 10
userlog

Inwoke a service | Engueue Execute a
to queue command

tppost()

The EventBroker uses several mechanisms for publishing (that is, issuing notices of)
events:

m Disk-based queuing

m Asynchronous service calls
m Userlog entries

m Unsolicited messages

m System commands

2-12 Introducing the BEA Tuxedo System

What Is Queue-based Communication

What Is Queue-based Communication

The BEA Tuxedo system offers a queue-based architecture known as/Q for
applicationsthat require persistent storage of data. The/Q component allowsany client
Or server to store messages or service requestsin queues and guaranteesthat any stored
request is sent through the transaction protocol to ensure safe storage.

BEA Tuxedo system queues can be ordered asLast In First Out (LIFO) or First InFirst
Out (FIFO), or on the basis of time or priority. A collection of queuesis administered
and referred to as a single entity known as a queue space.

Figure 2-6 Queue-based M essaging

CLIENT - SERVER
. e |
L
- |(1F]
‘\Tﬁ_,
tpengquele |) = =
tpdequens ()
QLEUE

Using Application Queues

Application queues are appropriate if you must communicate in a time-independent
fashion. Time-independence isa characteristic of programsthat operate independently
from one another and do not need to synchronize their communications
simultaneously. Time-independent programs synchronize by leaving messages for
each other in application queues. M essages can be dequeued in any of several ordering
schemes, such as first-in, first-out (FIFO) order, priority order, or time-based order.
BEA Tuxedo client and server programs can enqueue messages and dequeue messages
from queues. More than one client and server can access the same queue.

Introducing the BEA Tuxedo System 2-13

2 BEA Tuxedo System Architecture

To use an application queue, your program must name the queue to be accessed and
the queue space in which it resides. Y our application can use more than one queue
space and each space can contain more than one message queue.

Because application queues reside on a disk, the availability of stored messagesis
guaranteed even after machine failures. To determine when the use of application
queuesisappropriate, you need to determine when time-independent synchronization
occursinyour business, for example, infilling orders. Orders can be enqueued to disk
and depending on specific order criteria, such asitems or shipment location, placed in
different queue spaces. Within each queue space, you can determine additional criteria,
such as cost, state, and so on.

See Also

m “Using Queue-based Communication” on page 1-THitorials for Developing
a BEA Tuxedo Application

What Is Request/Reply Communication

To implement request/reply communication, the BEA Tuxedo system uses IPC
message queues. Queues are the key to connectionless communication. Each serve
assigned an Inter-Process Communication (IPC) message queue called a request qu
and each client is assigned a reply queue. Therefore, rather than establishing and
maintaining a connection with a server, a client application can send requests to the
server by putting those requests on the server’s queue, and then check and retrieve
messages from the server by pulling messages from its own reply queue.

The request/reply model is used for both synchronous and asynchronous service
requests as described in the following topics.

2-14 Introducing the BEA Tuxedo System

What Is Request/Reply Communication

What Is Synchronous Messaging

Inasynchronouscall, aclient sendsarequest to aserver, which performsthe requested
action while the client waits. The server then sends the reply to the client, which
receives the reply.

Figure 2-7 Synchronous Request/Reply Communication

CLIENT SERVER
-

——
|- == | tpcall() “Hlnm

Introducing the BEA Tuxedo System 2-15

2 BEA Tuxedo System Architecture

What Is Asynchronous Messaging

In an asynchronous call, the BEA Tuxedo client does not wait for a service request it
has submitted to finish before undertaking other tasks. Instead, after issuing arequest,
the client performs additional tasks (which may include issuing more requests). When
areply to thefirst request is available, the client retrieves it.

Figure2-8 Asynchronous Request/Reply Communication

& SERVER
CLIENT - SERVER
= SERVER

-
tpacallil) Hlﬂmm
tpgetreply () e [

See Also

m “Using the Request/Response Model (Synchronous Calls)” on page 1-7 in
Tutorials for Developing a BEA Tuxedo Application

2-16 Introducing the BEA Tuxedo System

What Is Unsolicited Communication

What Is Unsolicited Communication

The BEA Tuxedo system offers a powerful communication paradigm called
unsolicited notification. When unsolicited notification occurs, a BEA Tuxedo client
receives a message that it has never requested. This capability makes it possible for
application clients to receive notification of application-specific events as they occur,
without having to request notification explicitly in real time.

Unsolicited messages can be sent to client processes by name (t pbr oadcast) or by an
identifier received with a previously processed message (t pnot i f y). Messages sent
viat pbr oadcast can originate either in a service or in another client. Y ou can target
anarrow or wide audience. Y ou can send a message with or without guaranteed
delivery to an individual client through point-to-point notification (t pnot i f y), or you
can send information to agroup of clients (t pbr oadcast). For example, aserver may
alert asingle client that the account about which the client isinquiring has been closed.
Or, aserver may send amessageto all the clients on amachine to remind the users that
the machine will be shut down for maintenance at a specific time.

Any process that wantsto be notified about a particular event (such asamachinebeing
shut down for maintenance) can register arequest, with the system, to be notified
automatically. Once registered, aclient or server isinformed whenever the specified
event occurs. Thistype of automatic communication about an event is called
unsolicited notification.

Becausethereisno limit to the number of clients and serversthat may generate events
and receive unsolicited notification about such events, the task of managing this
category of communication can become complex. The BEA Tuxedo system offersa
tool for managing unsolicited notification called the EventBroker.

Introducing the BEA Tuxedo System 2-17

2 BEA Tuxedo System Architecture

Figure2-9 Unsolicited Notification M essaging

CLENT 2

- E_EE| tpnotify ()
Thbroadcasti()

See Also

m “Using Unsolicited Notification” on page 1-13 Trutorials for Developing a
BEA Tuxedo Application

What Are Nested and Forwarded Service
Requests

Nested Requests

A powerful feature of the BEA Tuxedo system is that it allows services to act as client:
and call other services. Nesting is limited to two levels, which works particularly well
in a 3-tier client/server architecture, that is, a system that comprises a presentation
logic layer, a business logic layer, and a database layer. In such a system, the
presentation layer is used to formulate a request for a particular business function th
involves one or more queries to a database. Because nesting is limited to two levels,
does not degrade performance.

2-18 Introducing the BEA Tuxedo System

What Are Nested and Forwarded Service Requests

Figure2-10 Nested Service Requests

SERVER

CLIENT

[]

Benefit of Nested Requests

One benefit of using nested requests is that doing so enables you to keep your code
small and reusable, such that each piece performs alimited task. However, if the
servicesin your system are distributed across several servers, nested requests can lead
to poor performance. While a nested request is being processed, the original service
(that is, the service that issued the nested request) must wait for a response before
continuing. Until aresponseis received, the original service cannot process another
request. Asaresult, messages can get backed up in the request queuefor the server on
which this service resides.

Example of a Nested Service Request

A customer uses a cash machine to transfer money from her savings account to her
checking account. A BEA Tuxedo application performs the work necessary to transfer
the money. First, on behalf of the customer, the client issues a request for a service
called TRANSFER, and the request is placed on a queue for a server that provides that

Introducing the BEA Tuxedo System 2-19

2 BEA Tuxedo System Architecture

service. Next, the TRANSFER service requests two other services, W THDRAWand

DEPOSI T, which are processed by a second server. The W THDRAWand DEPCSI T
servicesreturn responsesto the TRANSFERService. Finally, TRANSFER sends aresponse

to the client’s response queue. When the client retrieves the response from the quet
the system displays a message on the screen of the cash machine, notifying the
customer that the transfer is complete.

Forwarded Requests

One alternative to nesting service requests is called request forwarding. Instead of
processing a client’s request, a service can pass the request to another service. The
second service, also, can either process the request or pass it to another service.

Figure2-11 Forwarded Service Requests

SERVER

CLIENT
=
D tpforward()l
|' E—E-ll SERVER

2-20 Introducing the BEA Tuxedo System

How the BEA Tuxedo System Processes Messages

Thereis no limit to the number of times arequest can be forwarded. Because aservice
that forwards arequest does not need to wait for areply from the service receiving the
request, forwarding, unlike nesting requests, does not block servers. Forwarding,
however, is not supported by the X/OPEN protocol X/ATMI, which may be aproblem
in some applications.

See Also

m “Using Forwarded Calls” on page 1-10Tuatorials for Developing a BEA
Tuxedo Application

m “Using Nested Calls” on page 1-9Tatorials for Developing a BEA Tuxedo
Application

How the BEA Tuxedo System Processes
Messages

All communication within the BEA Tuxedo system is accomplished by transferring
messages. The BEA Tuxedo system passes service request messages between clients
and servers through operating system Inter-Process Communications (IPC) message
gueues. System messages and data are passed between operating system-supported
memory-based queues of clients and servebsfiiers. In the BEA Tuxedo system,
messages are packagedyiped buffers, buffers that contain both message data and

data identifying the types of message data being sent.

Introducing the BEA Tuxedo System 2-21

2 BEA Tuxedo System Architecture

Figure2-12 Processing a Request

ATIH
TYPESWIS!
SYSTEM SOFTWARE

CLIENT Reply Gueue Request Queue SERVER
K?Gfi-"L_‘OCf{ﬁ} i T i TUXEDO main receiving
i butfer
tocalifs)
decompress
SEFVICE processing:
- decode
-NAME Magpping . -
-type validation . pos recen.re.
-zervice prioritization dispatch service
-routef) tpsenvice!3)
-load balancing tareturni3)
presendr) presendf)
encode/decode | encdec) encode/decode (encdec)
compress data compress data
send : zend
postsend(] postsend(]

A client usesan ATMI function to request aservice by name. A naming facility isused
to check the M 1B to determine whether the specified serviceis currently available. The
BEA Tuxedo system uses an automatic routing option to map messages that meet
specific criteria (message value) to a specific server. Thisis caled data-dependent
routing. If messages use data-dependent routing, the system usesthe datain the buffer
for the routing algorithm. This algorithm provides a method of selecting a group of
servers that can process the service request. To avoid burdening a few servers with
many requests while leaving other serversthat advertise the same servicesidle, the
BEA Tuxedo system maintainsaset of metricsinthe MIB that hel pit distribute service
requests evenly across all servers. This practice is called load balancing.

A local service request may be prepared for a selected server and enqueued on that
server's queue with a predefined priority. This practice is catedce prioritization.
Once the service request is on the server, the run-time system retrieves the messag

priority order. The message is dispatched to the appropriate service and processed.
Then the results are returned to the client queue.

BEA Tuxedo system-provided software offers features that an application can
automatically and routinely use during message processing. These features include:
data encoding and decoding, data compression and decompression, transactional

2-22 Introducing the BEA Tuxedo System

How the BEA Tuxedo System Processes Messages

context setting, and security processing, to name afew. In addition, the BEA Tuxedo
system software invokes application business logic by dispatching a service function
and passing it to the appropriately preprocessed buffer.

The serviceroutine is executed and returns areply (also atyped buffer). The run-time
system prepares the reply for the client by encoding the message automatically: it
packages the datain such away that it can be transmitted between machines on which
different types of byte ordering are used, allowing datato cross network and platform
boundaries. The system then sends the message to the client. This processis called
data encoding. The run-time system on the client retrieves the reply message, decodes
itif necessary, and deliversthe FM. buffers (or buffers of another message buffer type)
to package the application data. Type validation, encoding, routing, and load balancing
are performed as required. Service requests can be performed synchronously or
asynchronously.

Remote requests travel through the local BRI DGE to the remote machine, where the
remote BRI DGE simply acts as aclient and the request is processed asif the client and
server were on the same machine. The BRI DGE provides standard data
encoding/decoding and uses standard network transports to communicate. BRI DGEs
look like ordinary local serversto clients and servers.

Introducing the BEA Tuxedo System 2-23

2 BEA Tuxedo System Architecture

What Are the Benefits of Service Request Processing

See Also

m Connectionless processing—This processing, coupled with direct client/server
communication, reduces the overhead associated with establishing a connection

m Reduced network traffic—Service requests invoke potentially complex services
on remote machines, sending only the minimum data required and receiving
minimal results.

m “What Are the BEA Tuxedo Messaging Paradigms” on page 2-8

m “What Are Typed Buffers” on page 2-24

What Are Typed Buffers

All ATMI functions send or receive data using typed buffers. The BEA Tuxedo system
handles translations and data conversions between dissimilar machines. By using
buffers, BEA Tuxedo programs avoid the need to translate data that crosses differer
platforms with different data representations.

A buffer is a memory area that serves as a logical container for data. When a buffer
contains no metadata (that is, no information about itself), then itistgwed buffer.

When a buffer includes metadata such as information that can be stored in it (for
example, a type and subtype, or string names that characterize a buffer), then it is a
typed buffer.

Typed buffers can be transmitted over any network, on any operating system, with an
protocol supported by the BEA Tuxedo system. They can also be used on platforms
with different data representations. As a result, the use of typed buffers facilitates th
tasks of translation and data conversion between dissimilar machines.

2-24 Introducing the BEA Tuxedo System

What Are Typed Buffers

The BEA Tuxedo system supports five sorts of typed buffers:
m STRING

m VIEW

m CARRAY

® FM.

m XM

Y ou assign buffer typesin the ENVFI LE parameter defined in the MACHI NES section of
the configuration file. Assigning or overriding them in the ENVFI LE parameter in the
SERVERS section of the configuration file can make them unavailable to processes that
require them.

Definitions of the various types of message buffers are provided in the description of
tm typeswint uxt ypes(5) in BEA Tuxedo File Formats and Data Descriptions
Reference. It isto your advantageto changet m t ypeswsoit containsonly buffer types
specifically needed by agiven server.

Characteristics of Buffer Types

When you use ATMI communication functions, your application must first use

t pal I oc to get a buffer from the system, specifying its size, type, and optionally
subtype. The BEA Tuxedo system recognizes and processes the buffer type, so that
your dataistransmitted over any type of network, protocol, and operating system
supported by the BEA Tuxedo system. The following table describes the different
types of buffers available in aBEA Tuxedo environment.

Introducing the BEA Tuxedo System 2-25

2 BEA Tuxedo System Architecture

Table 2-3 Buffer Types Characteristics

ThisTyped IsDefined As Follows And IsUsed for
Buffer
CARRAY Character array typeisacollection of charactersthat is handled Data that will not be
opaquely: interpreted by the BEA
m Characters are not interpreted in any way. Tuxedo system and for
- which data-dependent
= No subtypes are specified. - .
routing, encoding, or
= Your application must specify the buffer length for CARRAY decoding is not
message buffers used asinput to ATMI functions. required.
2-26 Introducing the BEA Tuxedo System

What Are Typed Buffers

ThisTyped
Buffer

s Defined As Follows And IsUsed for

FML

Field Manipulation Language (FM.) is a data structure that stores m Communications
tagged values. Values aretyped, may be specified morethanonce, and g Creating,

vary in length. modifying,

The FML buffer is an abstract data type used in operations to create, deleting, or
modify, delete, or accessfields. In your program, you access or update accessing fields
afield in the fielded buffer by referencing the identifier, and the FML during operations
function provides for a run-time translation of the field's location and

data type, and performs the operation.

One interface t&-M_ uses 16 bitsRM_16) for field identifiers and
lengths of fields; the other uses 32 bREM(32).

m The 16-bit version allows for up to approximately 8000 unique
fields, character strings, and arrays of up to 64,000 bytes, and
similar lengths for the entire buffer.

m The 32-bit interface allows for millions of unique fields and buffer
lengths of up to two billion bytes.

The functionality of the two interfaces is identical. The poweFMf

is in its flexibility. The size of the buffer can vary, depending on the
needs of the application for each message. Character fields may also
vary in length, so wasted space is avoided.

Fielded buffers offer data independence to the application. When
writing an application, you do not need to know how or where the data
is stored within a fielded buffeFEM. provides associative field access,
so you simply specify a field by nhame and its value is retuffidd.

also contains conversion functions, so that you can store or retrieve a
field in a particular data format, regardless of the underlying storage
type.

FML buffers also support storage of more than one value for a field. The
variable length format of fielded buffers allows for multiple field
occurrences to be stored and retrieved.

Fielded buffers provide a convenient way to transfer a collection of
fields, perhaps different with each message, from a client to a server
and back, or to store fields in an application queue. We recommend
usingFM_, particularly if the interface between clients and servers may
change.

STRI NG

A set of non-null characters ending with a null character. The data tgperograms
is character and the length is determined by counting characters in the
buffer until reaching the null character. No subtype is specified.

Introducing the BEA Tuxedo System 2-27

2 BEA Tuxedo System Architecture

ThisTyped
Buffer

| s Defined As Follows

And IsUsed for

VI EW

A VI EWissimply a C structure or a COBOL record that has an
associated definition of which fields and their types appear in the
record in which order. This buffer is used for fixed collections of data
elements, or structures or records; its subtype is used to specify the
record format name.

VI EWrecords are flat data structures. They do not support structures
within other structures, nor do they allow arrays of structures or
pointers. They support integral data types such aslong integer,
character, and decimal.

VI EWS are provided as away to use C structures and COBOL records
with the BEA Tuxedo system. The BEA Tuxedo run-time system
understandsthe record format based on the view description read at run
time. When allocating a VI EW your application specifies abuffer type
of VI EWand asubtype that matchesthe name of the view. Therun-time
system can do the following:

m Determine how much space is needed, based on structure size, so
the application need not specify buffer length

= Compute how much datato send in arequest or response, and
handle encoding and decoding when a message is transferred
between different machine types

C structures and
COBOL records used
with a BEA Tuxedo
application

XML

(Extensib
| e Mar kup
Language)

XML buffers enable BEA Tuxedo applicationsto use XML for
exchanging data within and between applications. BEA Tuxedo
applications can send and receive simple XML buffers, and route those
buffers to the appropriate servers. All logic for dealing with the XML
documents, including parsing, residesin the application. An XML
document consists of: a sequence of characters that encode the text of
adocument and alogica structure of the document and
meta-information related to the structure.

The XML parser inthe BEA Tuxedo system performs autodetection of
character encodings, character code conversion, detection of element
content and attribute values, and data type conversion.

Data-dependent routing is supported for XML buffers.

m XM documents

and datagrams

m Datainterchange

between humans
and machines,
such asfroma
Web server toa
user’s browser

m Data exchange

between
applications, or
from machine to
machine

2-28 Introducing the BEA Tuxedo System

Using the MIB

See Also

“Customizing a Buffer” on page 3-28 Rrogramming a BEA Tuxedo
Application Using C

Using the MIB

See Also

The MIB programming interface enables you to manage operations in the BEA
Tuxedo system easily. Specifically, it allows you to monitor, configure, and tune your
application through your own programs. The MIB can be defined as:

An implementation-independent management database defined as BMet of
attributes

A programming interface that enables you to query the BEA Tuxedo system
(that is, to obtain information from the system througjeta operation) or to
update the BEA Tuxedo system (that is, to change information in the system
through aset operation) at any time using a set of ATMI functions. Examples of
these functions includepal | oc, t preal | oc,tpgetrply,tpcall,tpacall,

t penqueue, andt pdequeue.

MIB(5) in BEA Tuxedo File Formats and Data Descriptions Reference
“Types of MIB Users” on page 2-30

“Classes, Attributes, and States in the MIB” on page 2-30

Introducing the BEA Tuxedo System 2-29

2 BEA Tuxedo System Architecture

Types of MIB Users

The MIB defines three types of users: system administrators, system operators, and
others. The following table describes each type.

Type of User Characteristics

Application administrator ~ Person responsible for keeping an application running
successfully. The administrator is authorized to use all
administrative tools and all MIB administrative capabilities.
The administrator configures, manages, and modifiesarunning
production application.

System operator Monitors and reacts to the daily operation of a production
application. The operator monitors statistics about a running
application, sometimes reacting to events and alerts by taking
actions such as booting servers or shutting down machines. An
operator does not reconfigure an application, add servers or
machines, or delete machines.

Other People or processes (such as custom programs) that may need
to read the MIB but are not authorized to change the
application.

Classes, Attributes, and States in the MIB

Classes are the types of entities, such as servers and machines, that make up a BEA
Tuxedo application. Attributes are characteristics of the objectsin a class: identity,
state, configuration parameters, run-time statistics, and so on. There are a number of
attributes that are common to MIB operations and replies, and common to individual
classes. Every class has a state attribute that indicates the state of the object. The state
of an object iseither return to the user or new, changed state, if you areinvoking an
operation on the MIB to change an object’s state.

2-30 Introducing the BEA Tuxedo System

BEA Tuxedo Application Processing Services

Independent of classesis a set of common attributes that are defined in the MIB(5)
reference page. These attributes control the input operations, communicate to the M1B
what the user istrying to do, and/or identify to the programmer some of the
characteristics of the output buffer that are independent of a particular class.

BEA Tuxedo Application Processing Services

The BEA Tuxedo system offers the following application processing services:
m Datacompression

m Data-dependent routing

m Dataencoding

m Dataencryption

m Datamarshaling

m Load balancing

m Message prioritization

m Service and event naming

What Is Data Compression

Data compression is the process of shrinking an application buffer so it can be
transmitted more quickly across a network or to aremote domain. By setting a
maximum size for an application buffer, you can make sure that compression is
triggered automatically for application buffers that match or exceed a specified size.
When the buffer arrives at its destination, its data is decompressed, that is, restored to
itsoriginal size.

Data compression, performed before files are shipped between machines, improves
network performance.

Introducing the BEA Tuxedo System 2-31

2 BEA Tuxedo System Architecture

The process of compression enhances security slightly because it involves scrambling
the data.

Note: Datacompression also occurs frequently during encryption.

Figure2-13 Data Compression

Compress Decompress

What Is Data-dependent Routing

The BEA Tuxedo system uses an operation called data-dependent routing to enable a
client to send requests for the same service to multiple copies of that service. Which
copy of the service eventually accepts and processes the request is determined by the
datain the request message. Once an administrator has set up data-dependent routing
for an application, client requests can be routed automatically to servers based on the
datain the requests.

When an application includes multiple copies of the same service, each copy is

assigned a unigque purpose, just as thefirst volume of a multivolume encyclopedia

contains entries that begin withe the letter “A.” A list of all copies of the service, along
with identifying information about the purpose of each, is kept in a set of routing tables
in the BEA Tuxedo bulletin board. When the system receives a client request, it find:
an identifying string in the request message and searches the routing tables in the
bulletin board for the same string. On the basis of this match, the system identifies th
appropriate server to which it can forward the client request.

Note: The bulletin board routing tables can be modified as necessary.

2-32 Introducing the BEA Tuxedo System

What Is Data-dependent Routing

Uses of Data-dependent Routing

Data-dependent routing is useful when clients issue service requests to:
m Horizontally partitioned databases

m Rule-based servers

m Distributed Application

A horizontally partitioned database is an information repository that has been divided
into segments, each of which is used to store a different category of information. This
arrangement issimilar to alibrary in which each shelf of abookcase holds books for a
different category (for example, biography, fiction, and so on).

A rule-based server is a server that determines whether service requests meet certain,
application-specific criteria before forwarding them to service routines. Rule-based
serversare useful when you want to handle requeststhat are almost identical by taking
dlightly different actions for business reasons.

A distributed application consists of one or more local or remote clients that
communicate with one or more servers on several machineslinked through anetwork.
A client (or server acting as a client) issues arequest for a particular service. The
address of the request is determined by data (carried in the same buffer that conveys
the request), identifying the server that can fulfill the request. More than one server
may be ableto do so. The BEA Tuxedo system selects a server to receive the request
by matching the data to the routing criteria provided in the bulletin board.

Introducing the BEA Tuxedo System 2-33

2 BEA Tuxedo System Architecture

Example of Data-dependent Routing with a Horizontally
Partitioned Database

Suppose two clients in a banking application issue requests for the current balancein
two accounts: Account 3 and Account 17. If data-dependent routing is being used in
the application, then the BEA Tuxedo system performs the following actions:

1. Getsthe account numbers for the two service requests (3 and 17).

2. Checksthe routing tables on the BEA TUXEXDO bulletin board that show
which servers handle which range of data. (In this example, server 1 handles all
reguests for accounts 1 through 10; server 2 handles all requests for accounts 11
through 20.)

3. Sends each request to the appropriate server. Specifically, the system forwards
the request about Account 3 to server 1, and the request about account 17 to
server 2.

Thefollowing figureillustrates this process.

Figure2-14 Data-dependent Routing with a Horizontally Partitioned Database

Machine
Server 1 | Server 2
Databasze Databasze
scct1-10 ™ Service & 0 Service & ™ acct11-20
Ireake Irvake
Acct=5 Acct=1T
Cliert or

Server

2-34 Introducing the BEA Tuxedo System

What Is Data-dependent Routing

Example of Data-dependent Routing with Rule-based
Servers

A banking application includes the following rules:
m Customers can withdraw up to $500 without entering a special password.
m Customers must enter a special password to withdraw more than $500.

Two clients issue withdrawal requests: one for $100 and one for $800. If
data-dependent routing is enabled to support the withdrawal rules, then the BEA
Tuxedo system performs the following actions:

1. Getsthe amount specified for withdrawal in the two service requests ($100 and
$800).

2. Checks the routing tables on the BEA Tuxedo bulletin board that show which
servers handle request for the amount being requested. (In this example, server 1
handles all requests to withdraw amounts up to $500; server 2 handles all
requests to withdraw amount over $500.)

3. Sends each request to the appropriate server. Specifically, the system forwards
the request for $100 to server 1 and the request for $800 to server 2.

The following figure illustrates this process.

Figure2-15 Data-dependent Routing with Rule-Based Servers

Machine
Server 1 @ Serwer 2
Databasze Databasze
Acctz =F3a00 Accts =H500
wyithiout - Service & | | Service A * password-
pazsword required
Withelrawy 5100 Withdraw $300
Client or
Server

Introducing the BEA Tuxedo System 2-35

2 BEA Tuxedo System Architecture

Example of Data-dependent Routing with Distributed
Application

Thefollowing diagram shows how client requests are routed to servers. In this
exampl e, abanking application called bankapp uses data-dependent routing. bankapp
hasthree server groups (BANK1, BANK2, and BANK3) and two routing criteria (Account

I Dand Branch | D). The services W THDRAW DEPCSI T, and | NQUI RY are routed using
the Account _I Dfield; the services OPEN and CLGOSE are routed using the Br anch_1 D

field.
Figure2-16 Sample Banking Application Using Routing Criteria

bankapp - Sampie Banking Application

Bank? - Branch_ID: 57

Bank1 - Branch_ID: 14
Account_ID: 50000-79999

Account_ID: 10000-49999

DBBL BBL BBL
Client server Client Server
Application BB TUE,:(EEJEI;D Application BB BEA
Code Servers ATHMI Code Servers TuxepO
ATHI Services ’ ATl Servi AThI
BEA Wfithd raw BEA ernices Withdraw
TUXEDD Deposit TUXEDD Deposit
Inquiry Inquiny
Bridge Bridge
Network
Bank3 - Branch_ID: §-10
Account_ID: 80000-109999
BBL
Bridge
. BB
Client Server
Servers BEA
Application :
B e Sendices | 1yuxgpo
AT ATl
BEA Withdralw
TUXEDD Epesit
Inquiry

2-36 Introducing the BEA Tuxedo System

What Are Encoding and Decoding of Data

In the preceding diagram, requests are routed as indicated in the following table.

Withdrawals, Deposits, Inquiries, and AreRouted to...
Openings or Closings of the Following

Accounts. ..

Numbers 10000—49999 for branches 1—4 Bank1
Numbers 50000—79999 for branches 5—7 Bank2
Numbers 80000—109999 for branches 8—10 Bank3

What Are Encoding and Decoding of Data

Encoding and decoding enable messages with different data representations (for
example, byte ordering or character sets) to be transferred between machines. The
BEA Tuxedo system accomplishes this by encoding and decoding data to a
machine-independent representation for transmission. It employs, by default, the XDR
algorithm, which can be customized by replacing the BEA Tuxedo system functions
with user-written functions. Encoding and decoding are used only between machines
and only when a remote machine uses a data representation other than the one used on
the local machine. Encoding and decoding allow machines with different data
architectures to operate within a heterogeneous BEA Tuxedo system. Programmers
can manage data in representations natural to their own environments.

The BEA Tuxedo system uses buffer typesto determinethe type of fields contained in
amessage, and to perform the mapping required for coding tasks. This mapping is not
performed by unstructured buffer types such as X_OCTET and CARRAY. Thus,
developers using X_OCTET and CARRAY buffers are free to deploy in mixed-machine
environments.

Introducing the BEA Tuxedo System 2-37

2 BEA Tuxedo System Architecture

What Is Data Encryption

Encryption isthe act of converting a message into a coded format that isunintelligible
to users. When an encrypted message arrives at its destination, it is decrypted, that is,
converted back to its original format.

Figure2-17 Data Encryption

Client or Server 1 Client or Server 2
"hedl" "hella"

Encrypt " Decrypt
"hella" = "ifnmp" "ifimp" = "hella”

Encryption does not increase the number of bitsin the data, but it adds processing time
to the task of sending a message. Because data is compressed during encryption,
however, lost processing time may be bought back, since less datais being sent across
the network. When data is compressed, there is also a moderate boost to security,
because the data is somewhat scrambled during compression.

What Is Data Marshalling

Data marshalling is amethod of handling information through the language-based
TXRPC (X/Open-TxRPC) offered by the BEA Tuxedo system. TXRPC is a set of
protocols for remote procedure calls that supports global transactions. Though a
TXRPC call looks like aloca procedure call, when aC function is called, the
arguments passed to the function are packaged so they can be sent to a server that
performs the work of the called function. This argument packaging iscalled
marshalling. A function’s arguments araarshalled or packaged in a way that allows
them to cross network and platform boundaries, anduhemarshalled at their
destination before being passed to the invoked remote procedure, ready for use.

2-38 Introducing the BEA Tuxedo System

What Is Load Balancing

Thisprocessistransparent to the client (the calling program) and the server (theremote
procedure). The marshalling and unmarshalling routines are generated automatically
by the BEA Tuxedo Interface Definition Language (IDL) compiler. An IDL compiler
takes a description of a set of RPCs and generates routines, called stubs, for the client
and server programs. These stubs contain marshalling and unmarshalling logic, aswell
as the communication logic that allows a client and server to exchange marshalled
data

Figure 2-18 Data Marshalling

Client or Server
mm/dd oy

mmiddinny = date
date = dd.mm.aany

Client or Server
mm/dd/yyyy

What Is Load Balancing

Load balancing is atechnique used by the BEA Tuxedo system for distributing service
requests evenly among servers that offer the same service. Thisavoids overburdening
some servers while leaving othersidle or infrequently used. Before sending arequest
to aservice routine, the system identifies all servers capable of handling the request
and selects the one most appropriate for maintaining a balanced load across all the
serversin the configuration.

Introducing the BEA Tuxedo System 2-39

2 BEA Tuxedo System Architecture

Assigning a Load Factor

2-40

Load refers to a number assigned to a service request based on the amount of time
required to executethat service. Loads are assigned to services so that the BEA Tuxedo
system can understand the relationship between requests. To keep track of the amount
of work, or total load, being performed by each server in a configuration, the
administrator assigns aload factor to every service and service request. A load factor
isanumber indicating the amount of time needed to execute a service or arequest. On
the basis of these numbers, statistics are generated for each server and maintained on
the bulletin board on each machine. Each bulletin board keeps track of the cumulative
load associated with each server, so that when all servers are busy, the BEA Tuxedo
system can select the one with the lightest |oad.

Y ou can control whether aload-balancing algorithmis used on the system asawhole.
Such as algorithm should be used only when necessary, that is, only when a serviceis
offered by serversthat use more than one queue. Services offered by only one server,
or by multiple serversin an MSSQ (multiple server single queue) do not need |oad
balancing. The LDBAL parameter for these services should be set to N. In other cases,
you may want to set LDBAL to Y.

To determine how to assign load factors (in the SERVI CES section of UBBCONFI G), run
an application for along period of time and note the average time it takes to perform
each service. Assign a LOAD value of 50 (LOAD=50) to any service that takes roughly
the average amount of time. Any service taking longer than average should have a
LQAD>50; any service taking less than the average should have a LOAD<50.

Introducing the BEA Tuxedo System

What Is Message Prioritization

Figure2-19 L oad Balancing

Bulletin Board Site 1
Current Load
Client Server 1 Load = 300
client applicstion Server 2 Load = 400
hufier Load Factors Server 1 SErver 2

Deposit Add 50
AThI 'l.-“-.l'rtﬁdraw Add 7S Service A Service A

MEming Deposit Deposit
type validation Witk s Withlrase
data-dependent routing

load balancing
data marzhalling Bridue
zend message 4

Hetwork

What Is Message Prioritization

Priorities determine the order in which service requests are dequeued by a server.
Priority isassigned by aclient toindividual servicesand can rangefrom 1t0100, where
100 represents the highest priority.

All services are assigned a starting priority of 50. A server’s starting priority can be
changed during application configuration. Once you have defined your set of services,
you can assign the appropriate priorities to them. For example, your business may
require that some services have a relatively high priority of 70, which means those
services are dequeued before those with the lower priority of 50. In the following
illustration, a server offers services A (with a priority of 50, B (with a priority of 50),
and C (with a priority of 70).

Introducing the BEA Tuxedo System 2-41

2 BEA Tuxedo System Architecture

Figure2-20 Prioritization of M essages

P is hg a4t
'______, ____;: ______ H j i

clalc "éln|"fﬂ;"
70 |sa | 7o sn|sn

Server

Clignt ar
Saerver

A request for service Cisalwaysdequeued beforearequest for A or B duetothe higher
priority of C. Requestsfor A and B have equal priority. Thisfeature isuseful in
applications in which not all requests are equally urgent or important.

A “starvation prevention” mechanism prevents low-priority messages from waiting
endlessly on the queue. Every tenth message is dequeued in FIFO (first in first out)
order regardless of priority; the first through the ninth messages are dequeued in ord
of priority.

What Is Meant by Naming

The BEA Tuxedo system uses three naming devices: service names, message quel
names, and event names. Names can be any words or alphanumeric strings, as long
they do not begin with a period (“."). Because administrative servers use the BEA
Tuxedo system infrastructure, system and application resources must be clearly

distinguished.

Naming Services

When services are named, an application component can locate another componen
through a name. Names can be simple words (such as “deposit”) or alphanumeric
strings (such as “deposit2”). Names should be selected on the basis of the scope of t

2-42 Introducing the BEA Tuxedo System

What Is Meant by Naming

application and a map that contains the global picture of the relationships among
application components. These maps or services are like the pagesin atel ephone book
for application components.

When aBEA Tuxedo system server is activated, the bulletin board (the dynamic part

of the MIB) advertises the names of its services. Service names are associated with a

server's physical address so that requests can be routed to that server. Names that
programmers use in their applications are completely location transparent. When a
client program asks for a service by name, the BEA Tuxedo system consults its name
registry in the bulletin board. The name registry provides the information necessary to
convert the string name (for exampleCKET) to a machine name and the physical
address of a server that advertises that service. The BEA Tuxedo system then sends the
request to the appropriate server.

Figure2-21 Locating a Service by Name

Looks up name (Maming Service

J Gets name

Client or Server

- Sepvice A
Invakes a =ervice

Advertising Services

The BEA Tuxedo system uses two administrative servers to coordinate the distribution
of information on the bulletin board to all active machines in the application:

m DBBL—The Distinguished Bulletin Board Liaison server propagates global
changes to the MIB and maintains the static part of the MIB. The DBBL
coordinates the state of different machines involved in an application. Only one
DBBL exists for an entire application. It can be migrated to other machines for
fault resiliency.

m BBL—The Bulletin Board Liaison server maintains the bulletin board. A BBL
resides on every active machine in an application. The BBL coordinates changes
to the local MIB and verifies the integrity of application programs active on its
machine.

Introducing the BEA Tuxedo System 2-43

2 BEA Tuxedo System Architecture

Naming Events

The BEA Tuxedo system offers a publish-and-subscribe mechanism: clients and
servers can dynamically register or unregister a standing request to receive alerts (or
messages) when a particular event occurs. Other clients and servers post user-defined
or system events as they occur in the application. When aclient or server no longer
needsto be notified about a particular event, the relevant subscription can be cancelled.

See Also

m “How the EventBroker Works” on page 2-10

BEA Tuxedo Administrative Services

A set of system servers provides the following administrative services needed by the
BEA Tuxedo system:

m Application queue management

m Centralized application configuration

m Distributed application management

m Dynamic application reconfiguration

m Event management

m Security management

m Startup and shutdown of an application
m Transaction management

m Workstation management

Note: For information on administrative services, see the topic, “Three Ways of
Viewing the BEA Tuxedo System Infrastructure” on page 3-1

2-44 Introducing the BEA Tuxedo System

CHAPTER

3 Three Ways of Viewing

theBEATuxedo System
Infrastructure

m Basic BEA Tuxedo System Infrastructure

m Management View: Using Administrative Tools

m BEA Tuxedo Administrative Services

m Development View: What You Can Do Using the ATMI

m Run-Time System View: Using Tools in Different Configurations

Basic BEA Tuxedo System Infrastructure

The BEA Tuxedo system provides an infrastructure for the efficient routing,
dispatching, and management of application service requests, event postings and
notification, and application queues. This infrastructure can be explored from three
perspectives:

m Administrative or management per spective—Encompasses a variety of tools
available to manage your application.

m Development (using the ATMI) per spective—Encompasses those tasks you can
perform using the ATMI. Clients request services through the ATMI. Server

Introducing the BEA Tuxedo System 31

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure

programs group several services, which are invoked according to the rules
defined by the ATMI. Application designers construct client and server programs
by linking the BEA Tuxedo run-time system with their application code.

BEA Tuxedo run-time system view—Encompasses single, distributed, and
multiple domain configurations.

Management View: Using Administrative
Tools

3-2

The BEA Tuxedo System MIB contains all the information necessary for the operatior
of an application. The MIB is designed to be programmable, so that you can write
custom administrative programs. Administrative tools are constructed around the MIE
and provide different types of interfaces to it. These tools include the following:

BEA Administration Console—a Web-based tool used to monitor an application,
and to dynamically configure it.

BEA Tuxedo administrative servers—servers that automate most of the
management tasks for a distributed application, such as naming services and
events, starting up and shutting down an application, dynamically reconfiguring
an application, and so on.

BEA Tuxedo MIB Application Programming Interface—a set of functions for
accessing and modifying information in the MIB.

Command-line utilities—a set of commands used to activate, deactivate,
configure, and manage an application (thatisoot , t mshut down, t nconfi g,
andt madni n, respectively). (SeBEA Tuxedo Command Reference.)

EventBroker—a mechanism that informs administrators of faults or exceptional
happenings.

Introducing the BEA Tuxedo System

Management View: Using Administrative Tools

Figure3-1 Toolsto Administer Your Application

¥

Command-Line || Administration
Ltilities Console

| | I | ’_l

rIE Events

TLOG Board

BU*E“H LG

MIB AP EventBroker

Available BEA Tuxedo System MIBs

The Management Information Base comprises a core MIB, which is common to all
applications, and several component MIBs, which are optional. The core MIB, called
TM_MIB, defines the parts of an application that are required in every BEA Tuxedo
application. It isalso used to administer those parts of an application. TM_MIB defines
aBEA Tuxedo system application as a set of classes (for example, servers, groups,
machines, domains), each of which is made up of objects that are characterized by
various attributes (for example, identity and state).

Each of the component M1Bs describes a subsystem of the BEA Tuxedo system. The
following components are currently avail able:

ACL_MIB—used to administer Access Control Lists
APPQ_MIB—used to administer application stable-storage queues

EVENT_MIB—used to control event notification and the subscription request
database

WS _MIB—used to manage Workstation groups and processes associated with
them

Introducing the BEA Tuxedo System 3-3

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure

Using the BEA Administration Console

The BEA Administration Console is a graphical user interface to the BEA Tuxedo
system, specifically to the MIB. It is accessed through the World Wide Web. The BEA
Administration Console makes common administrative functions avail able through a
browser. It allows any user with the currently available browser to administer aBEA
Tuxedo application.

To use the BEA Administration Console, perform the following tasks:

1. Pointyour browser to the URL for amachinein your domain on which the Console
server components reside.

2. Initiate a download of Java applets. The applets implement the Console and
establish communication with the server.

Browser Requirements

Each release of the BEA Tuxedo system supports the currently available browsers.
Consult the following BEA Web site for information about browsers currently
supported by the BEA Administration Console.

See Also

m “Benefits of Using the BEA Administration Console” on page 3-5
m “Exploring the Main Menu of the BEA Administration Console” on page 3-6

m “Ways to Monitor Your Application” on page 2-2 Administering a BEA
Tuxedo Application at Run Time

3-4 Introducing the BEA Tuxedo System

Benefits of Using the BEA Administration Console

Benefits of Using the BEA Administration
Console

m Authentication—The BEA Administration Console forces users to identify
themselves. It prompts the administrator for a user name and password. This
information is communicated in an encrypted fashion between the browser and
the server, where the user’s identity is then verified. (Much of the server setup is
done during installation, when server components of the Console are installed
and made available to the Web server.)

m Context-sensitive help—Context-sensitive help is available for all Console
screens and tools. You can request information about any field or area of a
screen simply by dragging a question mark icon to that field or any area and
clicking.

m Encryption—The data transferred between the server side and the browser is
compressed (56-bit or 128-bit encryption) so that no one can read it. This makes
the system resistant to anyone trying to inject false administrative protocol
messages into the stream.

m Firewall readiness—The port on which the BEA Administration Console server
listens and interacts with the browser is well defined and configurable; you can
configure it to match ports that you want to allow through your firewall. This
capability enables you to do Console-based administration through your firewall,
if necessary.

m Icons— The icons used in the BEA Administration Console connote state (for
example hot active) or represent particular objects in the application, for
example, machines or servers.

m Java-capable browser—The Java browser supports the Java virtual machine that
runs the applets and enables communication.

m No client-side installation—No installation is required on your machine. Point
your browser to the URL for a machine in your domain on which the Console
server components reside. Then initiate a download of Java applets. The applets
implement the Console and establish communication with the server.

m Universal secure access— From any Java-capable browser, you can access the
system from anywhere in the world with confidence that security mechanisms
are already in place.

Introducing the BEA Tuxedo System 3-5

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure

Exploring the Main Menu of the BEA
Administration Console

When you first bring up the Web and invoke the BEA Administration Console, the
main window is displayed. The main window is divided into four major sections:

m MENU BAR—A row of frequently used menus.

m POWER BAR—A row of buttons that provide shortcuts to frequently used tools,
such as Help.

m TREE—A hierarchical representation of the administrative class objects (such as
servers and clients) in a BEA Tuxedo system domain.

m CONFIGURATION TOOL—A set of tabbed folders on which you can display,
define, and modify the attributes of objects, such as the name of a machine.

3-6 Introducing the BEA Tuxedo System

Exploring the Main Menu of the BEA Administration Console

Figure3-2 Main Menu of the Administration Console

[EiBEA Administration Console

MENU BAR—» ['omain Settings Tools Help
| Iy | B =] il g | ?
oWER BAR =G| m | - N
Fiefresh Search Activate [eact Migrate Log file Ewent Stats Settings CS Help
= Configuration Tool — T_DOkAIN
General | security | Limits 1 | Lirits 2 | Timers | >
4
Domain 1D: i
L3S Handlers Y (- ;
D_Ejﬁmups aster, Backup Machine:
- servers Merrory Model: ISingIe Machine vl
B simps. exe [GROUP1/2] m
B simpser.exe [BROUPT /4] PeKey. |

T BBL eve [SITETA0]

Ohject State:
B 5L e [GROUPA]

TREE AREA

}QTMFFNAME.ERE [GROUP2/2]
}@'TMFFNAME.ERE [GROUP2/3]

License Components:
License Expiration Date:

License Maximum Users:

-0 TMSYSEYT eve [GROUF2A]
T-TT servvicky.exe [RROUFT /5]
1T simplactorys [GROUPT /3]

License Serial Mumber:

b
E
E-BF TMFFNAME ve [GROUPZ/4]
E
E
I

N G- .?2 .Ehange] Cancel] New...] Delete]
=8| |JavaApplet Window / ‘\
TABBED F/OLDERS CONFIGURATION TOOL BUTTONS

Note: The Power Bar buttons and some menu items are not fully displayed unless
you are connected to adomain.

Using the Configuration Tool

Assoon asyou start using the Configuration Tool, the right-hand column dedicated to
that tool is populated with tabbed folders in which you enter information needed for
configuration.

Thetabbed foldersin the Configuration Tool areaare €l ectronic formsthat display and
solicit information about the attributes of an administrative object. A set of foldersis
provided for each administrative class of objects (such as machines and servers). The

Introducing the BEA Tuxedo System 3-7

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure

number of attributes associated with a class varies greatly, depending on the class.
Therefore, you may find anywhere from one to eight folders displayed when you
invoke the tabbed folders for a sel ected object.

When the Configuration Tool areais populated, another row of buttonsisdisplayedin
the main window, below the tabbed folders. These four buttons allow you to control
the configuration work done in the folders.

What Is the Tree

The Tree, which appears in the left-hand column of the main BEA Administration
Console window, isa hierarchical representation of the administrative objects that
make up a single BEA Tuxedo system domain. The BEA Administration Console
graphically depictsthe relationship between each object and the others by showing its
nesting level and parent objects. Y ou can choose to view a complete Tree (comprising
all configurable objects of all typesin the domain) or asubset of objects.

After you have set up and activated adomain, the Treeis populated with labeled icons,
representing the administrative class objectsin your domain.

What Is an Administrative Object

3-8

The Tree consists of alist of classes. Under each class nhame, the Tree provides alist
of the objectsincluded in that class. For example, suppose your domain includes two
machines (both at SITE1) named r omeo and j ul i et . Both machines are listed in the
Tree below the name of the class to which they belong: Machines. Thus they will be
listed as follows:

Machi nes
SI TE1/ r oneo
SITEL juliet

The name of each object in the Tree is preceded by an icon. Each machine, for
example, isrepresented by a computer; each client, by a human figure.

Introducing the BEA Tuxedo System

Exploring the Main Menu of the BEA Administration Console

Using the Power Bar

The Power Bar appearsnear thetop of themain BEA Administration Consolewindow,
immediately below the Menu Bar. The Power Bar isarow of 12 buttonsthat allow you
to invoke tools for frequently performed administrative operations. They are labeled
with both icons and names. The following table explains the purpose of each button.

Press To

St op Interrupt the current operation and return control to the
administrator (who can then request a new operation).

Ref resh Redraw the current window to clarify text and graphics.

Sear ch Look for a particular object class or object in the Tree.

Activate Begin the entire BEA Tuxedo system configuration or a

selected part of it.

Deacti vat e

Terminate the entire BEA Tuxedo system configuration or a
selected part of it.

Mgrate Move a server group or machine to an aternative location, or
swap the MASTER and BACKUP machines.

Logfile Display the ULOGfile from a particular machine in the active
domain.

Event Tool M onitor system events.

Stats View agraphical representation of BEA Tuxedo system
activity.

Opt i ons Assign parameters for your administrative BEA
Administration Console session: (a) specify the location of
online documentation; (b) have objects sorted by nameor class;
and (c) specify view-only or edit mode as your default working
mode.

CS Hel p Get context-sensitive help. Click on adesignated areain aBEA

Administration Console window. A help window opens,
displaying text about the selected topic.

Introducing the BEA Tuxedo System 39

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure

Press To

Hel p Go to the beginning of the Administration topics, so you can

choose information that will be most helpful to you.

Managing Operations Using the MIB

See Also

The AdminAPI is an application programming interface (API) for directly accessing
and manipulating system settingsin the BEA Tuxedo Management Information Bases
(MIBs). You can use the AdminAPI to automate administrative tasks, such as
monitoring log files and dynamically reconfiguring an application, thus eliminating
the need for human intervention. This advantage can be crucially important in
mission-critical, real-time applications. Using the MIB programming interface, you
can manage operations in the BEA Tuxedo system easily. Specifically, you can
monitor, configure, and tune your application through your own programs. The MI1B
can be defined as:

An implementation-independent management database defined as a set of FM.
attributes

A programming interface that enables you to query the BEA Tuxedo system
(that is, to obtain information from the system through aget operation) or to
update the BEA Tuxedo system (that is, to change information in the system
through aset operation) at any time using a set of ATMI functions. Examples of
these functionsincludet pal | oc, t preal | oc, tpgetrply,tpcall,tpacall,

t penqueue, and t pdequeue.

M B(5) in BEA Tuxedo File Formats and Data Descriptions Reference
“Types of MIB Users” on page 3-11

“Classes, Attributes, and States in the MIB” on page 3-11

3-10 Introducing the BEA Tuxedo System

Types of MIB Users

Types of MIB Users

The MIB defines three types of users. system administrators, system operators, and
others. The following table describes each type.

Type of User

Characteristics

Application administrator

Person responsible for keeping an application running
successfully. The administrator is authorized to use all
administrative tools and al MIB administrative capabilities.
Theadministrator configures, manages, and modifiesarunning
production application.

System operator

Person responsible for monitoring and reacting to the daily
operation of a production application. An operator monitors
statistics about a running application, sometimes reacting to
events and derts by taking actions such as booting servers or
shutting down machines. An operator does not reconfigure an
application, add servers or machines, or delete machines.

Other

People or processes (such as custom programs) that may need
to read the MIB but are not authorized to change the
application.

Classes, Attributes, and States in the MIB

Classes are the types of entities such as servers and machines that make up a BEA
Tuxedo application. Attributes are characteristics of the objectsin a class: identity,
state, configuration parameters, run-time statistics, and so on. There are a number of
attributes that are common to MIB operations and replies and common to individual
classes. Every class has a state attribute that indicates the state of the object. The state
of an object is either return to the user or new, changed state, if you are invoking an
operation on the MIB to change an object’s state.

Introducing the BEA Tuxedo System 31

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure

Independent of classesis a set of common attributes that are defined in the MIB(5)
reference page. These attributes control theinput operations, communicate to the MI1B
what the user istrying to do, and/or identify to the programmer some of the
characteristics of the output buffer that are independent of aparticular class.

Using Command-Line Utilities

The BEA Tuxedo system provides a set of commands for managing different parts of
the system. The commands enable you to access common administrative utilities.
These utilities can be used for the following tasks:

m Configuring your application using command-line utilities
m Operating your application using command-line utilities

m Monitoring your application using command-line utilities

Configuring Your Application Using
Command-line Utilities

3-12

Y ou can configure your application by using command-lineutilitiessuch asthevi text
editor. Specifically, you can use command-line utilitiesto write the configuration file,
UBBCONFI G, and trandlate the file from atext format (UBBCONFI G) to abinary format
(TUXCONFI G), by running thet m oadcf command. Then you are ready to boot your
application.

Y ou can dynamically administer your configuration by adding servers or machines,
deleting machines, and so forth. Updating TUXCONFI G (the binary file version),
however, does not update the UBBCONFI G (the text file version). To synchronize both
files, you need to back them up. To do this, you translate the binary file back to text by
running the t munl oadcf command.

Introducing the BEA Tuxedo System

Configuring Your Application Using Command-line Utilities

See Also

Note: The UBBCONFI Gisgenerated and stored by the application administrator in the
application directory (APPDI R).

Following is alist of common command-line utilities that you can use to configure
your application.

m tnconfi g—a command that enables you to update some configuration file
parameters, avl B attributes, and add records to SOMECONFI G sections
while the BEA Tuxedo system application is running.

m tnl oadcf —a command that allows you to load the binaUXCONFI G
configuration file.

m tnunl oadcf —a command that allows you to translate the binary configuration
file back to a text version, so thaBCONFI G andTUXCONFI G can be
synchronized.

m tpacl add,t pacl cvt,t pacl del , andt pacl mod—a set of commands that allow

you to create or manage access control lists for applications. These commands

enable the use of security-related authorization features.

m tpgrpadd,tpgrpdel ,tpgr pnrod—a set of commands that allow you to create
and manage user groups by using access control lists to authorize access to
services, queues, and events.

m tpusradd,tpusrdel,tpusr nod—a set of commands that allow you to create
and manage a user database for authorization purposes.

m UBBCONFI § 5) in BEA Tuxedo File Formats and Data Descriptions Reference
m “Creating the Configuration File” on page 3-22

m “Making Permanent Configuration Changes” on page 3-24

Introducing the BEA Tuxedo System 3-13

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure

Operating Your Application Using
Command-line Utilities

Once you have configured your application successfully, you can use the following
command-line utilities to operate your application.

m t madni n—a command that allows you to configure, monitor, and tune a
distributed application

®m t nboot —a command that allows you to centrally start up your application
servers for a distributed application.

m t nshut down—a command that allows you to centrally shut down an application
program across a distributed application.

Managing System Events Using EventBroker

The BEA Tuxedo EventBroker performs the following tasks:

m Monitors events and notifies subscribers when events are postagpbuiat (3¢).
m Keeps an administrator informed of changes in an application by tracking events
m Enhances event monitoring by providing a system-wide summary of events.

m Provides a mechanism through which an event can trigger a variety of
notification activities.

The EventBroker recognizes over 100 meaningful state transitions in a MIB object a:
system events. The postings for system events include the current MIB representatic
of the object on which the event has occurred, and some event-specific fields that
identify the event that occurred. For example, if a machine is partitioned, an event is
posted with the following information:

m The name of anachine class object (T_MACHI NE), with all the attributes of that
machine

3-14 Introducing the BEA Tuxedo System

What Is an Event

m Some event attributes identifying the event as machine partitioned

Y ou can use the EventBroker simply by subscribing to system events. Then, instead of
having to query for MIB records, you can be informed automatically when events
occur inthe MIB by receiving FM. data buffers representing MIB objects.

See Also

m “What Is an Event” on page 3-15
m “Subscribing to an Event” on page 3-16
m “Types of Events” on page 3-17

m “Using Event-based Communication” on page 1-14itorials for Devel oping
a BEA Tuxedo Application

What Is an Event

An event is a state change or other occurrence in a running application that may
warrant special attention from an operator, an administrator, or the software. In the
EventBroker, events are assigned one of three severity levels:

m FError, for example, a server has died or a network connection has been dropped

m Informational, for example, a state change has occurred as a result of a process
or the detection of a configuration change

m \Warning, for example, a client has not been allowed to join the application after
failing authentication

Introducing the BEA Tuxedo System 3-15

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure

Subscribing to an Event

3-16

As the administrator for your BEA Tuxedo application, you can enter subscription
reguestson behalf of aclient or server processthrough callsto the EVENT_M B(5). Y ou
uset psubscr i be to subscribe to an event using the EventBroker. You may want to
subscribe to Events A, B, and C and request to be informed when they occur.

Each subscription specifies one of the following notification methods:

m Client notification—The EventBroker keeps track of the client’s interest in these
events and a client is notified in the form of unsolicited notification. Some
events are anonymously posted. A client can join an application, independent of
whether anyone else has subscribed, and post events to the EventBroker. The
EventBroker matches these events against its database of subscriptions and ser
an unsolicited notification to the appropriate clients.

m Service calls—If the subscriber wants event notifications to go to service calls,
then thect | parameter must point to a vali#EVCTL structure.

m Message enqueuing to stable-storage queues—For subscriptions to stable-stora
gueues, the queue space, queue hame, and correlation identifier are used, in
addition toevent expr andfil t er, when determining matches. The correlation
identifier can be used to differentiate among several subscriptions for the same
event expression and filter rule, destined for the same queue.

m Placing messages on the0G—Using theT_EVENT_USERLOG class of
EVENT_M B, subscribers can write systeJ8ERLOG messages. When events are
detected and matched, they are written toOUSERLOG

m Command-line utilities—Using the_EVENT_COMVAND class ofEVENT_M B, the
EventBroker tracks and matches events. When a match is found, it is passed to
the command used when subscribing to the event.

Note: Notification methods are determined by the subscriber process type and th
arguments passed tpsubscri be.

Introducing the BEA Tuxedo System

Types of Events

Figure 3-3 Subscribing to an Event

Event Fvent
Subscription Posting ;
Client or Server —————» Bvent 1~ Client or Server
Broker
B
Event
Hotification

See Also

m EVENT_M B(5) in BEA Tuxedo File Formats and Data Descriptions Reference

m tpsubscribe(3c) in BEA Tuxedo C Function Reference

Types of Events

The BEA Tuxedo system supports two event types:

m System Events—provide details about BEA Tuxedo system events, such as
servers dying, and network failures. When an event is posted by clients or
servers, the EventBroker matches the posted event's name to a list of subscribers
for that event and takes appropriate action, as determined by each subscription.

m User Events or Application-specific Events—allow application programs to post
events when certain criteria are met. An example is a banking application that
posts an event for withdrawals over a certain limit.

Introducing the BEA Tuxedo System 3-17

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure

Differences between System and Application-specific

Events

Thefollowing tableidentifiesthe differences between system and application-specific

events.

Table 3-1 Differences between System and Application-specific Events

Area

Differences

Events

System events are defined in advance by the BEA Tuxedo system code.
For an application, designers decide which application events should be
monitored. Application programs are written to: (a) detect when an event
of interest has occurred, and (b) post the event to the EventBroker through
t ppost .

Event List

A list of the application event subscriptionsis made availableto interested
usersjust as the BEA Tuxedo system provides alist of system events
availableto users with EVENTS(5). System event names begin with a dot
(.); application-specific event names may not begin with adot (.).

Subscriptions

Subscribing to an event in an application-specific event broker is similar
to subscribing to the BEA Tuxedo System EventBroker. Y ou subscribe by
making callstot psubscr i be using the published list of events for the
application. EVENTS(5) lists the notification message generated by an
event as well asthe event name (used as an argument whent ppost is
called). Subscriberscan usethewild card capability of regular expressions
to makeasinglecall tot psubscr i be that covers awhole category of
events.

3-18 Introducing the BEA Tuxedo System

BEA Tuxedo Administrative Services

BEA Tuxedo Administrative Services

A set of system servers provides the following administrative services needed by the
BEA Tuxedo system:

m Application queue management

m Centralized application configuration
m Distributed application management

m Dynamic application reconfiguration

m Event management

m Security management

m Startup and shutdown of an application
m Transaction management

m Workstation management

Introducing the BEA Tuxedo System 3-19

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure

Managing Application Queues

Queueing enables programmers to write applications that communicate by accessing
one or more gqueues. Because of the location transparency of queues, administrators
can move queues from one machine to another without requiring any programming
changes.

The MIB consists of a queue device, queue spaces, and queues (required by an
application), and the BEA Tuxedo system servers that enqueue and dequeue messages
from a queue space. Administrators can use the BEA Administration Console or
command line utilities to define the queue spaces, queues, and administrative servers
inthe MIB.

Using gmadmin to Administer Application Queues

The command-line utility gmadni n allowsyou to perform all administration functions
for the application queuesin aconfiguration, that is, setting up the universal devicelist
(UDL) and volumetable of contents (VTOC) that will contain aqueue, defining queue
spaces within a queue device, and so on. gmadni n enables you to manipulate the file
system. Using some run-time monitoring capabilities, you can see how many messages
are in queues or how many headers are in messages. Y ou can also change
characteristics of queues or messages on queues, delete messages on queues, change
the size of devices, and so on. In an application you can have multiple application
gueue devices, and run application queues on multiple machines. Each machine hasits
own gueue device, so you can run gnadni n to monitor and manage a particular
application queue device on each machine.

Utility

Description

gqmadm n

Provides for the creation, inspection and modification of message queues. The name of the
device (file) on which the universal device list resides (or will reside) for the queue space may
either be specified as a command line argument or through the environment variable
QVICONFI G If both are specified, the command option is used.

3-20 Introducing the BEA Tuxedo System

Managing Application Queues

Using tmconfig to Modify Your Configuration

Thet nconfi g command enables you to browse and modify the TUXCONFI G file and
its associated entities, and to add new components (such as machines and servers)
while your application is running.

When you modify your configuration file (TUXCONFI G on the MASTER machine), the
t nconfi g command:

m Updates the TUXCONFI Gfile on al machinesin the application that are currently
booted.

m Propagates the TUXCONFI Gfile automatically to new machines asthey are
booted.

m RunsasaBEA Tuxedo system client.

Note: Refertothetnconfig, wntonfig(1l) and TM M B(5) in BEA Tuxedo
Command Reference and BEA Tuxedo File Formats and Data Descriptions
Reference for information on the semantics, range values, and validation of
configuration parameters.

Introducing the BEA Tuxedo System 3-21

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure

Managing Your Configuration

The configuration of any application is primarily controlled by the creation and
maintenance of a configuration file, or UBBCONFI Gfile. Managing your configuration
involves the following tasks:

m Creating the configuration file to suit your application needs
m Making permanent configuration changes by updating the UBBCONFI Gfile

m Changing your configuration while the application is running

Creating the Configuration File

3-22

Application configuration data is maintained in the UBBCONFI G, an ordinary text file
on the MASTER machine. The configuration file (UBBCONFI G) is arepository that
contains all the information necessary to boot an application, such as lists of its
resources, machines, groups, servers, available services, and so on. Once written, the
UBBCONFI Gfileis compiled into a binary file, TUXCONFI G. (If you are developing a
multi-domain application, you must provide aconfiguration file for each domainin the
application.) An application cannot run without a configuration file.

The UBBCONFI Gfile consists of eight sections, five of which are required for all
configurations: RESOURCES, MACHI NES, GROUPS, SERVERS, and SERVI CES. The
RESOURCES and MACHI NES sections must be the first and second sections, respectively
(asillustrated in the following diagram). GROUPS must be ahead of SERVERS and
SERVI CES.

Introducing the BEA Tuxedo System

Creating the Configuration File

See Also

Figure3-4 UBBCONFIG File

*RESOURCES (applicaton-wide information)

*MACHIHES {machine-wide information)
*GROUPS (group-wide information)

*HETWORK (networking

information) *SERVERS

SErver-
*HETGROUPS (network epecific
groups information) information

specific
information

m RESOURCES—(required) contains system-wide parameters that describe the
application as a whole

m MACH NES—(required) contains logical names and types of physical machines
m GROUPS—(required) associates servers with resource managers and machines
m SERVERS—identifies each server in the application

m SERVI CES—identifies each service, and specifies priority, loading, and so on

m NETWORK—contains configuration data for LAN environments

® ROUTI NG—contains data-dependent routing tables

m NETGROUPS—allows for multipleBRI DGES per machine

Your particular configuration determines which sections ofUBRCONFI Gfile are
required. Once you have written yduBBCONFI G file, you must compile it into a
binary file calledTUXCONFI G You can generate yoTUXCONFI G file by running the
thet m oadcf (1) command or by using the BEA Administration Console.

m “How to Create a Configuration File” on page 3-Zatting Up a BEA Tuxedo
Application

Introducing the BEA Tuxedo System 3-23

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure

Making Permanent Configuration Changes

3-24

To make permanent configuration changes, the administrator can use a text editor to
update the configuration parameters in the UBBCONFI Gfile, and use thet ml oadcf
utility to load the text file into the binary TUXCONFI G file used by the BEA Tuxedo
system. When the application isstarted, t nboot loads TUXCONFI Ginto shared memory
to establish the bulletin board, propagating the changes to remote machines if
necessary.

Figure 3-5 Configuration Management

" twloadcf creates TUXCONFIG
file from UBECONFIG file.

* twhoot [0ads and starts bulletin

hoard and servers from hinary

CONFIG file.

*RESCURCES
*MACHINES 5 BB
"GROUPS ervers f
“§ERVERS Senices Site
*BERVICES
*NETORK BBL
*ROUTING
*HETGROUPS DBBL Client
UBBCONFIG TUXCONFIG o Server
BBL Application BB BEA
. Goda Servers TUXEDD
Client Server ATMI Senvices AT
Application EBEA Comains BEA Withdraw
Soda TUXEDO processes TUXEDD Inquiry
ATHH ATHH
EEA Withdraw _ Bri Domains
ridge
TUXEDO Inquiry Bndgs\ 4 processes
Metwork

Introducing the BEA Tuxedo System

Managing Your Configuration Dynamically

Managing Your Configuration Dynamically

See Also

Administrators can use the BEA Administration Console or the BEA Tuxedo system
command-line utilities to reconfigure applications dynamically, adjusting parameters
to respond to varying system loads while the system isrunning. A revised TUXCONFI G
fileis propagated automatically to all machinesin the system asit is updated.
However, many RESOURCES parameters cannot be changed while the system is
running.

Examples of tasks you can do dynamically include: adding servers or machines,
deleting machines, and so forth. To ensure that the text and binary versions of your
configuration file (UBBCONFI G and TUXCONFI G, respectively) always match, you need
to back them up and synchronize them by using t munl oadcf . This command
tranglates the binary file to atext version.

Y ou can change most el ements of the system dynamically. Y ou can, for example,
spawn new servers, add new machines, or change time-out parameters. There are,
however, afew things you cannot change while a system is running:

m Any parameter in the configuration file that affects the size and shape of the
bulletin board cannot be changed. Many such parameters are named with the
prefix “MAX,” such as the/AXGTT parameter, which specifies the maximum
number of in-flight transactions allowed within the BEA Tuxedo system at any
time.

m The processor name of a machine within a particular application cannot be
changed. (You can add new machines with different names but you cannot
change the name of an existing machine.)

m The values of server executables, assigned to raASTER andBACKUP
machines, cannot be changed.

m “Performing Dynamic Operations Using tmadmin(1)” on page 3-26

Introducing the BEA Tuxedo System 3-25

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure

Performing Dynamic Operations Using
tmadmin(1)

Using the t madni n(1) command, you can perform any of the following operations to
arunning application:

m Monitor performance by checking statistics on groups, servers, and services
(bbst at s, bbpar ms)

m Modify server and service parameters such as those that change load values
(changel oad), suspend and resume services (suspend and r esune), advertise
and unadvertise services (adver ti se and unadver ti se), and change the
AUTOTRAN time-out value (changet r ant i me)

m Boot (boot), cleanup (pcl ean), and migration (i gr at emach, m gr at egr oup)

Commonly Used tmadmin Commands

t madm n provides subcommands that enable you to monitor your run-time system,
tune your application, and dynamically configure your application. Followingisalist
of the most commonly used t madni n commands. (For a comprehensive list of the
t madm n commands, refer to thet madmi n(1) in BEA Tuxedo Command Reference.)

m hel p - providesyou with alist of subcommands, their abbreviation, arguments,
and descriptions.

m printserver (psr)—prints information for application and administrative
servers.

m printservice (psc)—prints information for application and administrative
services.

m printclient (pclt)— prints information for the specified set of client
processes. If no arguments or defaults are set, then information on all clients is
printed.

3-26 Introducing the BEA Tuxedo System

Performing Dynamic Operations Using tmadmin(1)

Sample Output from the tmadmin Command

Following is sample output from thet madni n pri nt server (psr) command, which
provides information about application and administrative servers.

Figure3-6 Sample Output from thetmadmin printserver Command

>psr

Prog Nanme Queue Nane G p Nane | D RgDone Load Done Current Service
BBL 83108 SI TE1 0 1 50 (IDLE)
AUDI TC auditc BANKB1 1 0 0 (IDLE)
XFER 00001. 00101 BANKB1 101 1 30 (TRANSFER)
TMS_SQL BANKB1_TMS BANKB1 30001 0 0 (IDLE)
ACCT 00001. 00102 BANKB1 102 0 0 (IDLE)
TMS_SQL BANKB1_TMS BANKB1 30002 0 0 (IDLE)

BAL 00001. 00103 BANKB1 103 6 7 (IDLE)
BTADD 00001. 00104 BANKB1 104 0 0 (IDLE)
BALC 00001. 00105 BANKB1 105 0 0 (IDLE)
TLR thrl BANKB1 111 0 0 (IDLE)
TLR thrl BANKB1 112 3 110 (W THDRAWAL)
TLR tlhrl BANKB1 113 0 0 (IDLE)
TLR tlhrl BANKB1 114 0 0 (IDLE)
TLR thrl BANKB1 115 0 0 (IDLE)
TLR thrl BANKB1 116 9 100 (IDLE)
TLR thrl BANKB1 117 20 2048 (IDLE)
TLR thrl BANKB1 118 30 600 (IDLE)
TLR thrl BANKB1 119 0 0 (IDLE)
TLR thrl BANKB1 120 0 0 (IDLE)

>

See Also

m “How a tmadmin Session Works” on page 2-13dministering a BEA Tuxedo
Application at Run Time

m “Using Command-line Utilities to Monitor Your Application” on page 2-10 in
Administering a BEA Tuxedo Application at Run Time

Introducing the BEA Tuxedo System 3-27

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure

Managing a Distributed Application
Centrally

Even if your BEA Tuxedo application is large and complex, you can perform all
run-time administrative functions from one MASTER machine. Y ou can do so using the
BEA Tuxedo system-supplied command-line utilities, or the BEA Administration
Console, or through your third-party administration tool s used with the BEA Manager
product.

From the MASTER machine, you can configure your application, initiate start-up and
shutdown, and perform administrative tasks during runtime. All other machines can
query the MASTER machine. From the MASTER machine, you have control over
configuration, fault management, security, monitoring, and performance.

Y ou can use the following two methods to make changes to your system whileit is
running:

m TheBEA Administration Console—a graphical user interface (GUI) to the
commands that perform administrative tasks, including dynamic system
modification

m The tmadmin commarda shell-level meta-command that enables you to run 50
subcommands for performing various administrative tasks, including dynamic
system modification

Because it is a graphical user interface, the BEA Administration Console is simpler tc
use than themadm n command interpreter. If you prefer using a GUI, bring the BEA
Administration Console up on your screen as soon as you are ready to begin an
administrative task. Graphics and online help provided with the BEA Administration
Console guide you through any task you need to perform. The following illustration
shows how you can use theadni n command or the BEA Administration Console to
control a run-time application. All operations can be performed fronvkSgER

machine. The utilities directly affect the bulletin board onMR&TER machine, and
updates are distributed to other bulletin boards automatically.

3-28 Introducing the BEA Tuxedo System

Managing a Distributed Application Centrally

Figure3-7 Centralized Control of a Distributed Application

Master Site 2
DBBL BBL BBL
Client Server Client Server
BB Applicati BB BEA
Application BEA pplication
Code S‘S:nr:g'rass TUXEDD Code Servers TUXEDD
ATMI AT AT Services AT
BEA With draw BEA Wifithd rau
TUXEDD Inquiry TUXEDO Ingquiry
Lomains - T
- omain:s
Mcaesses i
p Bridge /Brldge -
Network
Site 3 \

i BBL
£ Bridge
Using tmadwin orthe BEA DT
Administration Console: processes
v Btarfstop servers BB
* Suspendiresume senices Client Servers Server
* Adverise/unadverise senices | application Senvices BE&
' Query statistics Coda TUAEDRD
AT AT
EEA Wiithd raw
TUXEDD Inquing

See Also

m “Using the BEA Administration Console” on page 3-4

m “Performing Dynamic Operations Using tmadmin(1)” on page 3-26

Introducing the BEA Tuxedo System 3-29

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure

Managing Security

See Also

Administrators can configure applicationswith appropriatelevels of security provided
by the BEA Tuxedo system. Incremental level s of authentication and authorization can
be used to define access to an application. Levels can vary from no authentication for
highly secure environments, to a password or an access control list (ACL) that filters
who can use services, post an event, and enqueue or dequeue a message on a queue.

Withan ACL, not only is a user authenticated when joining an application, but
permissions are checked automatically when attempts are made to access application
entities, such as services. When an ACL is created for aresource, users not included
on the list are denied access to the resource. Resources unprotected by an ACL are
accessible by any client who successfully joins the application. Resources unprotected
by an ACL with the MANDATORY_ACL security option specified, are denied for any
client who joins the application.

An application can be configured so that all servers (except AUTHSVR, the BEA Tuxedo
administration server) have restricted access to shared resources, such as shared
memory and message queues. When a client joins an application, AUTHSVR provides
an authentication service that verifies whether the user has the correct authentication
level (inthe MIB). Thisserviceis transparent to the programmer.

m “Selecting Security Options” on page 3-31

m “Setting Up Security” on page 3-32

m “Administering Security” on page 2-1 ldsing BEA Tuxedo Security
m “Programming Security” on page 3-1lising BEA Tuxedo Security

3-30 Introducing the BEA Tuxedo System

Selecting Security Options

Selecting Security Options

The following are the security options provided by the BEA Tuxedo system:

No authentication—Clients do not have to be verified before joining an
application.

Application Password—A single password is defined for an entire application
and clients must provide the password to join the application.

User-level Authentication—In addition to an application password, each client
must provide a valid user name and application-specific data such as a password
to join the application.

Optional Access Control List (ACL)—Clients must provide an application
password, a user hame, and a user password. If there is no ACL associated with
a user name, permission is granted. This practice enables an administrator to
configure access for only those resources that need more security; ACLs need
not be configured for services, queues, or events that are open to everyone.

Mandatory Access Control List (ACL)—Clients must provide an application
password, a user hame, and a user password. This level is similar to optional
ACL, but an access control list must be configured for every entity (such as a
service, queue, or event) that users can access. If mandatory ACLs are being
used and there is no ACL for a particular entity, permission for that entity is
denied.

Link-Level Encryption—Users of BEA Tuxedo System Security can establish
data privacy for messages moving over the network links that connect the
machines in a BEA Tuxedo application. The BEA Tuxedo system encrypts data
before sending it over a network link and decrypts it as it comes off the link.
Three levels of security are offered: 0-bit (no encryption), 56-bit (international),
or 128-bit (US and Canada).

Public key encryption—Consists of message-based encryption and
message-based digital signature. Message-based encryption reveals user data
only to designated recipients. With message-based digital signature, a sending
process must prove its identity, and bind that proof to a specific message buffer.
Any third party can verify the signature’s authenticity. Undetected tampering is
impossible because a digital signature contains a cryptographically secure

Introducing the BEA Tuxedo System 3-31

Three Ways of Viewing the BEA Tuxedo System Infrastructure

checksum computed on the entire contents of a buffer. A digital signature aso
contains a tamper-proof stamp based on the originating machine’s local clock.

m Auditing—Collects, stores, and distributes information about operating requests
and their outcomes.

Setting Up Security

3-32

The type of administrative work and/or programming you must do to set up security
for your application depends upon the security options that you choose.
Administratively, you need to configure the MIBs using either the BEA
Administration Console or the command-line utilities.

You can also build your own security mechanisms. To do so, set the application
security level tdJser-Level Authentication and specify an application service that
performs authentication in the BEA Tuxedo MIB.

To enable authentication and authorization, administrators must configure the
following in the MIB:

B AUTHSVR server
m Identity and passwords of authorized users

m Access control lists used on services, queues, and/or events

Introducing the BEA Tuxedo System

Starting Up and Shutting Down your Application

Starting Up and Shutting Down your
Application

To start an application, you need to perform the following tasks as stated in
Administering a BEA Tuxedo Application at Run Time.

1

6.

Set the environment variables as described in “How to Set Your Environment” on
page 1-2

Create the tuxconfig file as described in “How to Create the TUXCONFIG File”
on page 1-4

Propagate the BEA Tuxedo software as described in “How to Propagate the BEA
Tuxedo System Software” on page 1-5

Create &L0G device, (if required) as described in “How to Create a TLOG
Device” on page 1-6

Startt | i st en at all sites (MP environments) as described in “How to Start tlisten
at All Sites” on page 1-7

Boot the application as described in “How to Boot the Application” on page 1-9

To shut down an application, you need to perform the following task.

Runt mshut down on theMASTER machine as described in “How to Shut Down Your
Application” on page 1-11

Introducing the BEA Tuxedo System 3-33

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure

Managing Transactions

A powerful feature of the BEA Tuxedo system isthe ability to manage transactions for
database applications that support the X A-interface. Transactions simplify the writing
of distributed applications. They allow your application to cope more easily with a
large set of problemsthat can occur in distributed environments, such as machine,
program, and network failures.

In adistributed architecture, alocal machineinvolved in a transaction can
communicate with aremote machine which may, in turn, communicate with another
remote machine. The communication and the work done by the remote machinesis
part of the transaction, and integrity must be maintained. Keeping track of distributed
transaction processing (DTP) can be acomplex task because the system must maintain
enough information about a transaction to be ableto roll it back (that is, to undo it) at
any moment.

Figure 3-8 Transaction Management

Yes X4 Mo
(oY TOG)ﬁ/

Transaction T i
v oor M7 ransaction ¥ or M7
Manager :—I'Dr hi= Manager LI e s

M \%
Commit the Yes Roll Back the

Transaction Transaction

Yes

To keep track of the participants in atransaction, the BEA Tuxedo system creates a
transaction log. To maintain the state of an application as represented by the contents

of the computer's memory, the BEA Tuxedo system uses one or more Resource
Managers (a collection of information and processes for accessing it, such as a
database management system). To coordinate all the operations performed and all t
modules affected by a transaction, the BEA Tuxedo system uses a Transaction
Manager (TM), which directs the actions of the RMs. Together, TMs and RMs
maintain the atomicity of a distributed transaction.

3-34 Introducing the BEA Tuxedo System

Managing Transactions

Coordinating Operations with a Transaction Manager
Server (TMS)

The BEA Tuxedo Transaction Manager (TM) is responsible for coordinating global
transactions involving system-wide resources. Local resource managers (RMs) are
responsible for individual resources. The transaction manager server (TMVs) begins,
commits, and aborts transactions involving multiple resources. The server uses an
embedded SQL interface to the RM to read and update the database accessed by the
server group. The TMs and RMs use the X A interface to perform all or none of the
resource work in a global transaction.

Tracking Participants with a Transaction Log (TLOG)

A global transaction islogged in the transaction log (TLOG) only when it isin the
process of being committed. The TLOG records the reply from the global transaction
participants at the end of the first phase of a 2-phase-commit protocol. A TLOG record
indicates that a global transaction should be committed; no TLOG record iswritten for
those transactions that are to be rolled back. In the first phase, or pre-commit, each
Resource Manager must commit to performing the transaction request. Once all parties
commit, transaction management commits and completes the transaction. If either
tasks fails because of an application or system failure, both tasks fail and the work
performed is undone or “rolled back” to its initial state.

The T™ms that coordinates global transactions use§tlas file. Each machine should
have its ownTLOG.

Note: Customers using the Domains feature should note that the Domains gateway
performs the functions of thievs in Domains groups. However, Domains uses
its own transaction log containing information similar to that inTth@s, in
addition to Domains-specific information.

See Also

m “Using Transactions” on page 1-187Tuntorials for Developing a BEA Tuxedo
Application

m “Configuring Your Application to Use Transactions” on page 5-%tting Up a
BEA Tuxedo Application

Introducing the BEA Tuxedo System 3-35

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure

Managing Workstations

Workstation clients need enough of the BEA Tuxedo system software to package the
information associated with arequest. They can then send that information to asystem
that supports all the BEA Tuxedo system software, including ATMI functions and
networking software.

The administrator configures one or more Workstation Listeners (WSLSs) to be ready

for connection requests from Workstation clients. Each WSL uses one or more

associated Workstation Handlers (WSHs) to handle the client’'s workload. Each WSH
manages multiple workstations, multiplexes all communication with a particular
workstation over a single connection.

Figure3-9 Handling Workstation Clients

BEA Tuxedo Application Site 1

LIME Workstation BBL
Mative
Warkstation Cligrt .
Cliert il Server 1
Board -
Workstation
Cliert
BRIDGE
’ Mative
Cliert
Site 2
MT Workstation BRIDGE BEL .
Workstation T !
Cligrit Bulletin
Board | — Server 2

Wiorkstation

WeEH
WEH el

A machine can then handle thousands of workstation clients. An administrator can
define several WSLs in a domain to distribute and balance the workstation
communication load across multiple machines.

3-36 Introducing the BEA Tuxedo System

Development View: What You Can Do Using the ATMI

From a programming perspective, all client ATMI programming interfaces are
supported for workstation client devel opment.

Development View: What You Can Do Using
the ATMI

The Application to Transaction Monitor Interface (ATMI), the BEA Tuxedo AP,
provides an interface for communications, transactions, and management of data
buffersthat worksin all environments supported by the BEA Tuxedo system. It defines
the interface between application programs and the BEA Tuxedo system. The ATMI
offersasimple interface for a comprehensive set of capabilities. It implements the
X/Open DTP model of transaction processing.

Figure3-10 Usingthe ATMI

Tools Languages (C, C++ COBOL, Java)
AT
BEATUSEDD Clientt Mame Management - Distributed ATEIE
i i And Connectivity . Transaction W 1B
Administration Processing g

Systerm-Level (Hardware, Operating Systerm, Metwoark)

The ATMI supports the following tasks:
-Client initialization

-Zerver naming

-System messaging

-Managing transactions

-Dizpatching of services

-Managing buffers

The ATMI library offersyou avariety of functionsfor defining and controlling global
transactionsin a BEA Tuxedo application. Globa transactions enable you to manage
exclusive units of work spanning multiple programs and resource managersin a

distributed application. All the work in asingle transaction is treated as alogical unit,

Introducing the BEA Tuxedo System 3-37

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure

so that if any one program cannot completeitstask successfully, no work is performed
by any programs in the transaction. Most ATMI functions support different
communication styles. These functions knit together distributed programs by enabling
them to exchange data. All ATMI functions send or receive datain typed buffers.
Following isalist of ATMI functions (for C and COBOL bindings), grouped by the

type of task they perform.

Table 3-2 Usingthe ATMI Functions

For aTask
Related to

Use This C Function

Or ThisCOBOL
Function

To

Client membership

t pchkaut h(3c)

TPCHKAUTH(3cbl)

Check whether authenticationis
required

tpinit(3c) TPI NI TI ALI ZE(3chl) Haveaclientjoin an application
tpternm 3c) TPTERM 3cbl) Have aclient leave an
application
Buffer tpal | oc(3c) N A Create a message buffer
management
tpreall oc(3c) N A Resize a message buffer
t pfree(3c) N A Free a message buffer
t ptypes(3c) N A Get amessage type and subtype
Message priority t pgprio(3c) TPGPRI O 3cbl) Get the priority of the last
request
t psprio(3c) TPSPRI O(3cbl) Set the priority of the next
request
Reguest/Response tpcal | (3c) TPCALL(3cbl) Initiate a synchronous
communications request/response to a service
tpacal | (3c) TPACALL(3cbl) Initiate an asynchronous

request (fanout)

tpgetrply(3c)

TPGETRPLY(3chbl)

Receive an asynchronous
response

tpcancel (3c)

TPCANCEL (3cbl)

Cancel an asynchronous request

3-38

Introducing the BEA Tuxedo System

Development View: What You Can Do Using the ATMI

For a Task
Related to

Use This C Function

Or ThisCOBOL
Function

To

Conversational
communications

t pconnect (3c)

TPCONNECT(3cbl)

Begin a conversation with a
service

t pdi scon(3c)

TPDI SCON(3cbhl)

Abnormally terminate a
conversation

t psend(3c)

TPSEND(3chl)

Send amessagein a
conversation

t precv(3c)

TPRECV(3chl)

Recelve amessage in a

conversation
Reliable queuing t penqueue(3c) TPENQUEUE(3cbl) Engueue a message to a
message queue
t pdequeue(3c) TPDEQUEUE(3chbl) Dequeue a message from a
message queue
Event-based t pnoti fy(3c) TPNOTI FY(3cbl) Send an unsolicited message to

communications

aclient

t pbr oadcast (3c)

TPBROADCAST(3chl)

Send messages to several
clients

t psetunsol (3c)

TPSETUNSOL(3chl)

Set unsolicited message
call-back

t pchkunsol (3c)

TPCHKUNSOL(3chl)

Check the arrival of unsolicited
messages

N A

TPGETUNSOL(3chl)

Get an unsolicited message

t ppost (3c¢)

TPPOST(3chl)

Post an event message

t psubscri be(3c)

TPSUBSCRI BE(3chl)

Subscribe to event messages

t punsubscri be(3c)

TPUNSUBSCR! BE(3cbl)

Unsubscribe to event messages

Introducing the BEA Tuxedo System 3-39

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure

For aTask Use ThisC Function Or ThisCOBOL To

Related to Function

Transaction t pbegi n(3c) TPBEAQ N(3chl) Begin atransaction
management

tpconm t (3c)

TPCOMM T(3chl)

Commit the current transaction

t pabort (3c)

TPABORT(3cbhl)

Roll back the current
transaction

tpgetlev(3c)

TPGETLEV(3chl)

Check whether in transaction
mode

t psuspend(3c)

TPSUSPEND(3chl)

Suspend the current transaction

t presunme(3c)

TPRESUVE(3cbl)

Resume a transaction

Service entry and
return

tpsvrinit(3c)

TPSVRI NI T(3chl)

Initialize aserver

t psvrdone(3c)

TPSVRDONE(3chl)

Terminate a server

t pservi ce(3c)

N A

Prototype for a service entry
point

N A

TPSVCSTART(3cbl)

Get service information

tpreturn(3c)

TPRETURN(3cbl)

End a service function

t pf orwar d(3c)

TPFORWAR(3chl)

Forward request

Dynamic t padverti se(3c) TPADVERTI SE(3chbl) Advertise a service name
adverti sement

t punadvertise(3c) TPUNADVERTI SE(3cbl) Unadvertise a service name
Resource t popen(3c) TPOPEN(3cbl) Open aresource manager
management

t pcl ose(3c)

TPCLOSE(3cbhl)

Close a resource manager

3-40 Introducing the BEA Tuxedo System

Note: Theuse of ATMI transaction management functions is optional .

Run-Time System View: Using Tools in Different Configurations

See Also

m “Using the ATMI to Handle System and Application Errors” on page 2-28 in
Administering a BEA Tuxedo Application at Run Time

m “Creating a BEA Tuxedo Client” on page 1-2Tuatorialsfor Developing a BEA
Tuxedo Application

m “Creating a BEA Tuxedo Server” on page 1-4Titorialsfor Developing a BEA
Tuxedo Application

m “Using Typed Buffers in Your Application” on page 1-6Tuatorials for
Developing a BEA Tuxedo Application

m “What Are the BEA Tuxedo Messaging Paradigms” on page 2-8
m “What Is Meant by Naming” on page 2-42

Run-Time System View: Using Tools in
Different Configurations

The BEA Tuxedo system provides tools to create, monitor, and manage both processes
and the communication that occurs between processes in a given application. You can
use the basic processes and messaging paradigms in many different configurations.
Each configuration falls into one of the following run-time categories:

m Single machine applicatierOne or more local or remote clients communicate
with one or more servers residing on the same machine.

m Distributed application across multiple machieé3ne or more local or remote
clients communicate with one or more servers residing on several machines in
one domain.

m Multiple-domain applicatior-Two or more domains communicate with each
other.

Introducing the BEA Tuxedo System 3-41

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure

Run-Time System Capabilities

Thefollowing table lists the BEA Tuxedo system functionality availablein a
single-machine application, a distributed application, and a multiple-domain

application.

Table 3-3 Functionality Availablein Different Types of Configurations

Available Functionality

Single-machine Multiple-machine
Configuration (Distributed)
Configuration

Multiple-domain
Configuration

ATMI X X X
Messaging paradigms X X X
Administrative Parts:

Bulletin Board (BB),Bulletin Board

Liaison (BBL), TLOG, UBBCONFI G, X X X
ULOG, TUXCONFI G

Distinguished Bulletin Board Liaison

(DBBL) X X
Bridges X X
Domains processes:

DVADM GWADM GWIDOMAI N (for

TDomains), dm oadcf , dmunl oadcf,

and DMCONFI G, DMTLOG and X
BDMCONFI G

Application processes: clients, servers,and X X X
services

Queuing X X X
Transaction management X X X
Event management X X

Security management X X X

3-42

Introducing the BEA Tuxedo System

What Is a Single-machine Configuration

What Is a Single-machine Configuration

A single-machine configuration consists of one or more local or remote clients that
communicate with one or more servers residing on a single machine running one or
more business applications. Even though it may include multiple applications, this
type of configuration is considered a single domain because it is administered as a
single entity. All the managed elements (services, servers, and so on) of all the
applicationsin this configuration are defined in and controlled from one BEA Tuxedo
configuration file. The basic parts of a single-machine configuration when installed
and running on a single machine areillustrated in the following diagram.

Figure3-11 A Single-machine BEA Tuxedo Configuration

ULOG

Client

Application
Code
AT

BEA TUXEDROD

Replies

Bulletin Board
Liaison

Bulletin Board
Directory of Services

Wiithdraw
Inguiry Server

Requests BE& TUXEDD

1 ATMI
W ithd raw
Inquiry
Mo testation Wol:kstatlc-n -
Listener
Handler

Introducing the BEA Tuxedo System 3-43

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure

Table 3-4 Parts of a Single-machine Configuration

Single-machine Part

Description

Bulletin Board (BB)

A shared memory segment that holds configuration and
dynamic information for the system. It is availableto all BEA
Tuxedo processes.

Bulletin Board Liaison

A BEA Tuxedo administrative process that monitors both the

(BBL) data stored in the bulletin board (including any changes made
toit) and all application programs.

Clients Executable programsthat periodically request servicesthrough
the BEA Tuxedo system. (Client programs are normally
written by customers.)

Message queues Communication between clients and serversis performed

through operating-system supported, memory-based message
queues.

Messaging paradigms

Different model s of transferring messages between aclient and
a server. Examples include request/response mode,
conversational mode, events, and unsolicited communication.

Servers

Executable programs that offer named services through the
BEA Tuxedo system. (Server programs are normally written
by customers.)

Workstation Handler
(WSH)

A multi-contexted gateway process on a server that manages
service requests from Workstation clients (that is, client
processes running on remote sites).

Workstation Listener
(W8L)

A server process running on an application site that listensfor
and distributes connections from Workstation clients (client
process running on aremote site).

ULOG (User Log)

A filein which error messages are stored.

See Also

m “How to Create a Configuration File” on page 3-Zatting Up a BEA Tuxedo

Application

3-44 Introducing the BEA Tuxedo System

What Is a Multiple-machine (Distributed) Configuration

What Is a Multiple-machine (Distributed)
Configuration

A distributed-domain (or multiple-machine) configuration consists of one or more
business applications running on multiple machines. Although it includes multiple
machines, thistype of configuration is considered a single domain becauseit is
administered centrally as asingle entity. In other words, all the elements (services,
servers, machines, and so on) of al the applications on all the machinesin this
configuration are defined in, and controlled from, one BEA Tuxedo configuration file.

Asabusiness grows, application devel opers may need to organize different segments
of the business by sets of functionality that require administrative autonomy but allow
sharing of services and data. Each functionality set defines an application that may
span one or more machines, and that is administered independently from other
applications. Such afunctionally distinct application is referred to as adomain.

The names of domains frequently reflect the functionality provided. When domains
have names such as “marketing” and “research and development,” it is easy for
customers to find the applications they need.

Introducing the BEA Tuxedo System 3-45

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure

The basic parts of a configuration distributed across multiple machines areillustrated
in the following diagram.

Figure3-12 Distributed Application

Machine 1 (Master) Machine 2
DBBL BBL BBL
Client Server Client Server
Applicat BB Applizath BB BEA
prlicatian BEA pplization
Coda g::nfggss TUXEDD Coda Servers TUXEDD
AT ATMI ATMI Services ATMI
BEA Withd mw EEA Withdraw
TUHEDD IMquiny TUXEDD Inquiny
Bridge Bridge
Network
Machine 3 \A
BBL
Bridge
) BB
Client Servers Server
Application Services BEA
Code TUXEDD
ATl ATHI
BEA Wiithdraw
TUXEDD [
Table 3-5 Partsof a Distributed Configuration
Multiple Machine Description
Part
BRIDGES BEA Tuxedo system-supplied servers within a domain that send

and receive service requests between machines, and route
requeststo local servers (literally, to local server queues).

3-46 Introducing the BEA Tuxedo System

What Is a Multiple-machine (Distributed) Configuration

Multiple M achine
Part

Description

Bulletin Board (BB)

A shared memory segment that holds configuration and dynamic
information for the system. It isavailable to all BEA Tuxedo
processes.

Bulletin Board Liaison
(BBL)

A BEA Tuxedo administrative process that monitors both the
data stored in the bulletin board (including any changes made to
it), and all application programs.

Clients

Executable programs that periodically request services through
the BEA Tuxedo system. (Client programs are usually by
customers.)

Distinguished Bulletin
Board Liaison (DBBL)

A process dedi cated to making sure that the BBL server on each
machine is alive and functioning correctly. This server runson
the Master machine of adomain and communicates directly with
all administration facilities.

M essage queues

Communication between clients and serversis performed
through operating-system supported, memory-based message
queues.

M essaging paradigms

Different models of transferring messages between aclient and a
server. Examplesinclude request/response mode, conversational
mode, events, and unsolicited communication.

Servers

Executabl e programs that offer named servicesthrough the BEA
Tuxedo system. (Server programs are normally written by
customers.)

Workstation Handler
(WSH)

A multi-contexted gateway process on a server that manages
service requests from Workstation clients (that is, client
processes running on remote sites).

Workstation Listener
(WSL)

A server process running on an application site that listensfor and
distributes connections from Workstation clients (client
processes running on remote sites).

ULOG (User Log)

A filein which error messages are stored.

Introducing the BEA Tuxedo System 3-47

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure

See Also

A configuration that runs on more than one machine requires platform interoperability
and server transparency.

Platform interoperability means that your application can rely on intermachine
communi cations even when different machines are running different operating
systems, without code customization.

Server transparency means that a client can access a server without specifying
its location. The locations of servers are recorded in the bulletin board and
accessed as needed. As aresult, servers can be moved, dropped, or added to an
application dynamically, without needing to change the application itself.

The DBBL and BRI DGE servers support these requirements of a distributed-domain
configuration.

“How to Create the Configuration File for a Multiple-machine (Distributed)
Application” on page 3-3 igetting Up a BEA Tuxedo Application

“Distributing Applications Across a Network” on page 6-1Satting Up a BEA
Tuxedo Application

“Creating the Configuration File for a Distributed Application” on page 7-1 in
Setting Up a BEA Tuxedo Application

“Setting Up the Network for a Distributed Application” on page 8-$dtting
Up a BEA Tuxedo Application

“Managing the Network in a Distributed Application” on page 4-1 in
Administering a BEA Tuxedo Application at Run Time

3-48 Introducing the BEA Tuxedo System

What Is a Multiple-domain Configuration

What Is a Multiple-domain Configuration

A multiple-domain configuration consists of two or more domains that communicate
with each other. Each domain may be either a single-machine configuration or a
multi ple-machine configuration. Inter-domain communication is achieved through a
highly asynchronous multitasking gateway that processes outgoing and incoming
service requests to or from all domains. Multiple BEA Tuxedo domains can be
connected, allowing clients in one domain transparent access to services physically
located in remote domains. Each domain can share services and data, but is
administered separately.

The BEA Tuxedo system provides different types of gateways to accommodate
various network transport protocols. Following are the different types of Domains
gateways.

m The BEA Tuxedo Domains (TDomains) gateway provides interoperability
between two or more BEA Tuxedo applications through a specially designed TP
protocol that flows over network transport protocols such as TCP/IP.

m TheBEA elLink for Mainframe-OS| TP gateways provides interoperability
between BEA Tuxedo applications and other transaction processing applications
that use the OS| TP standard. OSI TP is a protocol for distributed transaction
processing defined by the International Standards Organization (1SO).

m TheBEA elLink for Mainframe-SNA gateway provides interoperability between
clients and serversin a BEA Tuxedo domain and clients and serversin an
MV S/CICS or MV S/IMS environment in remote SNA domains. It also connects
aloca BEA Tuxedo domain to multiple SNA networks.

m TheBEA elLink for Mainframe-TCP for CICS is a gateway connectivity feature
that makesit possible for non-transactional tasks within BEA Tuxedo regionsto
access services provided by CICS application programs and vice-versa. It
enables a BEA Tuxedo domain to communicate viathe TCP/IP network
transport protocol to a CICS environment.

The BEA eLink for Mainframe-TCP for IMSisa gateway connectivity feature
that provides transparent communications between client and server transactions
inan IMS system and a BEA Tuxedo domain, a CICS system, or another IMS
system.

m The TOP END Domain Gateway (TEDG) provides interoperability between
BEA TOP END systems and BEA Tuxedo domains.

Introducing the BEA Tuxedo System 3-49

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure

The basic parts of a multiple-domain configuration are illustrated in the following

diagram.

Figure 3-13 Multiple-domain Configuration

BEA TUXEDO Dornain [Dormain 1)

tachine 1 [Master)

OEEL EEL
Cliert
Application EE
Code Servers
ATMI Services
BEA
TUXEDD Eridge
Metweork
Machine 2 f > Eridge
BEL Eridge .
Clizrt Servear arver
Application BE BEA BEA
Code Servers TUXEDRD TUXEDO
ATMI Services ATMI .ATMI
BEA Withdraw Lt
TUXEDD Inquin Inguiny
EEA TUXEDO Domain (Domain 2)
t=aching 1 [Master)
OEEL EEBL
Cliert Server
Application EE BEA
Code Servers TUXEDO
AT sarvices ATHI
BEA Withdraw s
TUXEDD Bridge Inquiry TU?(TE%D
AThi
Hetvor k Niith drave
Machine 2 121 Inquiny
EEL Eridge Eridge
Client Server
Application EE BEA EE
Code Servers TUXEDRO Servers
ATH Services ATMI Services
BEA With draw
TUWXEDRD Inquing

EEA TUXEDO Domain (Domain 3)

Domains

& atewvay Group
G b

Administrative
& ateway

Domains Db AL

TLoG | GUTROMAIN ;
BDMCONFIG

3-50

Introducing the BEA Tuxedo System

Server
BEA
TUXEDD
AT
With draws
i tachine 3
Client
Application EE EEL
Code Servers
ATMI Services
BEA
TUXEDD Domains
& atewway Group Administrative
S
Do‘r'n:;———b DA
GUITDOMAIN |
TLOG BOMCONFIS
tachine 3
Client L
Application EEL
Code
AT
BEA
TUxXEDRD .
Domains
& atewway Group Administrative
offiom | Catuasy
Comains RMADH]
GUTLOMAIN
TLOG BDMCENFIG

What Is a Multiple-domain Configuration

Table 3-6 Parts of a Multiple-domain Configuration

M ultiple-domain Part

Description

BRIDGES

BEA Tuxedo system-supplied servers within a domain that
send and recei ve service requests between machines, and route
requeststo local servers (literally, to local server queues).

Bulletin Board (BB)

A shared memory segment that holds configuration and
dynamic information for the system. It isavailableto all BEA
Tuxedo processes.

Bulletin Board Liaison
(BBL)

A BEA Tuxedo administrative process that monitors both the
data stored in the bulletin board (including any changes made
toit), and all application programs.

Clients

Executable programsthat periodically request servicesthrough

the BEA Tuxedo system. (Client programs are normally
written by customers.)

Distinguished Bulletin
Board Liaison (DBBL)

Ensures that the BBL servers on each machine are dive and

functioning correctly. This server runs on the Master machine
of an application and communicates directly with any
administration facility.

Domains tools: DMADM
GWADM GWIDOVAI N,
dm oadcf,

dmunl oadcf, and
DMCONFI G

= DMADMthe Domains administrative server

= GWMADMthe gateway group administrative server that
registers with the DMADMserver to obtain configuration
information used by the gateway group

= GAMDOMAI N-the gateway process that provides
connectivity to remote gateway processes (for TDomains)

m dnl oadcf -translates the DMCONFI Gfileto abinary
BDMCONFI G configuration file

m dnunl oadcf -trand ates the BDMCONFI G configuration
file from the binary representation into ASCII

m DMCONFI Gthe Domains configuration file

M essage queues

Communication between clients and serversis performed
through operating-system supported, memory-based message
queues.

Introducing the BEA Tuxedo System 3-51

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure

Multiple-domain Part

Description

Messaging paradigms

Different model s of transferring messages between aclient and
a server. Examples include request/response mode,
conversational mode, events, and unsolicited communication.

Servers

Executable programs that offer named services through the
BEA Tuxedo system. (Server programs are normally written
by customers.)

Workstation Handler
(WSH)

A multi-contexted gateway process on a server that manages
service requests from Workstation clients (that is, client
processes running on remote sites).

Workstation Listener
(WSL)

A server process running on an application site that listensfor
and distributes connections from Workstation clients (client
processes running on remote sites).

ULOG (User Log)

A filein which error messages are stored.

See Also

3-52

m “What Is a Single-machine Configuration” on page 3-43

m “What Are the Domains Administrative Tools” on page 3-57

m “How to Create the Configuration File for a Multiple-domain Application” on
page 3-4 irBetting Up a BEA Tuxedo Application

Introducing the BEA Tuxedo System

Features of a Multiple-domain Configuration

Features of a Multiple-domain
Configuration

A configuration that includes more than one domain requires platform interoperability
and server transparency:

m Platforminteroperability meansthat your application can rely on intermachine
communications even when different machines are running different operating
systems, without code customization.

m Server transparency meansthat a client can access a server without specifying
its location. The locations of servers are recorded in the bulletin board and
accessed as needed. Asaresult, servers can be moved, dropped, or added to an
application dynamically, without needing to change the application itself.

What Is a BEA Tuxedo BRIDGE

A BEA Tuxedo BRI DGE isa server, provided by the BEA Tuxedo system, for sending
and receiving service requests between machines, and routing requeststo local server
queues.

Each BRI DGE enables a network connection to be created with every other BRI DGEin
the system. Network connections are established as needed and then maintained
indefinitely. BRI DGEs are hidden servers, that is, they are started and stopped
automatically, as needed, without an explicit configuration entry. Messages are
asynchronously sent across these persistent network connections. No network
connection overhead isincurred for individual messages.

Introducing the BEA Tuxedo System 3-53

Three Ways of Viewing the BEA Tuxedo System Infrastructure

Figure3-14 Using BRIDGEsin a Multiple-machine (Distributed) Application

Master Site 2
DBBL BBL BBL
Client Server
Client BB Server Application EB BEA
Application Servers BE& Code SE[\!’ETS TUXEDD
Code Servi TUXEDRD AT Services ATHI
ATMI BniCes AT BEA Wifithd raw
BEA, Wiithdraw TUXEDD Inquiny
TWAELO Inguiny
Damdins Brid Domains
i ridge
processes Bridge / q plocesses
Network
Site 3 X
i BBL
Cramains B"dge
processes
] BB
Client Servers Server
Application Services BEA
Coda TUXEDD
ATHI AT
EEA Wirithdraw
TUXED Inquiry

See Also

m “Setting Up the Network for a Distributed Application” on page 8- $4itting
Up a BEA Tuxedo Application

m “Creating the Configuration File for a Distributed Application” on page 7-1 in
Setting Up a BEA Tuxedo Application

3-54 Introducing the BEA Tuxedo System

What Is the Role of the Bulletin Board and Bulletin Board Liaison

What Is the Role of the Bulletin Board and
Bulletin Board Liaison

The bulletin board (BB) isamemory segment in which all the application
configuration and dynamic processing information is held at run time. It provides the
following functionality:

m Assigns service requests to specific servers. When a service is called, the
bulletin board looks up servers that offer the requested service. Based on this
information, and any data-dependent routing criteria, the bulletin board places
the request data on the reguest queue of avalid server.

m Maintains dynamic information about the state of an application, such as how
many requests are waiting on a given server’s queue and how many requests
have been processed.

m Provides server location transparency, allowing an application to be developed
independently of deployment. Therefore, development and deployment costs are
minimized.

m Supports service name aliases, allowing multiple names to be assigned to the
same service. This capability is useful for constructing interpreters, such as
gateways.

Thebulletinboard liaison (BBL) is a BEA Tuxedo server that performs periodic health
checks of the bulletin board and coordinates functions of all parts of the system.

Introducing the BEA Tuxedo System 3-55

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure

Figure 3-15 Bulletin Board and Bulletin Board Liaison

Bulletin Board
Liaison

ULOG Bulletin Board
Directony of Services

Withdraw
Client Inguiry Server
Application Replies Requests BE& TUXEDD
Code | ATHI
ATHI T withdraw
BEA TUXEDD Inquiry

Wonkstation
Handler

Mo testation
Listener

What Are Clients and Servers

m Clients—A client is a program that collects a request from a user and passes tha
request to a server capable of fulfilling it. It can reside on a PC or workstation as
part of the front end of an application gathering input from users. It can also be
embedded in software that reads a communication device such as an ATM
machine from which data is collected and formatted before being processed by
BEA Tuxedo servers.

m Servers—A BEA Tuxedo server is a process that oversees a set of services and
dispatches services automatically for clients that request them. A service, in turn
is a function within the server program that performs a particular task needed by
a business. A bank, for example, might have one service that accepts deposits
and another that reports account balances. A server at this bank might receive
requests from clients for both services. It is the server’s job to dispatch each
request to the appropriate service.

3-56 Introducing the BEA Tuxedo System

What Is the Distinguished Bulletin Board Liaison (DBBL)

What Is the Distinguished Bulletin Board
Liaison (DBBL)

The Distinguished Bulletin Board Liaison (DBBL) isthe server that makes it possible
to distribute an application across multiple machines. The DBBL ensuresthat the
bulletin board liaison (BBL) server on each machineis alive and functioning correctly.
The DBBL runs on the MASTER machine of an application and communicates directly
with all administration facilities.

The DBBL ensuresthat configuration and service addressing information isreplicated
to the bulletin board on each machine in the configuration. Servers located on remote
machines are accessed through the BRI DGE on the local machine. Servers on the local
machine are accessed directly. All local communications are performed through high
performance operating system message queues. Remote communications are
performed in two phases. First, service requests are forwarded to a remote machine
through the (local) BRI DGE. Second, when arequest reaches the remote machine,
operating system messages are used to send the request to the appropriate server.

What Are the Domains Administrative Tools

To build a multiple-domain configuration, you need to integrate your existing BEA
Tuxedo application with other domains. Y ou need to ensure interoperability across
domains, preserve access to services on all domains, and accept service requests from
all domains. Y ou can perform these functions through a highly asynchronous
multitasking gateway that processes outgoing and incoming service requeststo or from
all domains. To usethe gateway, you must add entries for domain gateway groups and
gateway serversto the TUXCONFI Gfile. The following illustration shows the tools
provided by the BEA Tuxedo system for setting up and maintaining amultiple-domain
configuration.

Introducing the BEA Tuxedo System 3-57

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure

Figure3-16 Domains Administrative Tools

Client Server
& .
o Bridge
&
SR ¢ e
o T Tl
& s
Domains
Administrative
Gateway Group o
T, T T Y
T " DraDM
D GINTDOMAN
/" \ BOMCOMNFIS
Diormain Dotmain
Domains Tool Description
dmadmi n(1) A command that allows you to configure, monitor, and tune

domain gateway groups dynamically. Use this command to
update the BDMCONFI G file while an application is running.
The command acts as a front-end process that trand ates

admini strative commands to service requests to the DVADM N
service, a generic administrative service advertised by the
DMvADMserver. The DMADM N service invokes the validation,
retrieval, or update functions provided by the DMADMserver to
maintain the BDMCONFI Gfile.

DMCONFI G(5), All Domains configuration information is stored in a binary
BDMCONFI G filecalled the BDMCONFI Gfile. Y ou can create and edit the text
version of the Domains gateway configuration file,
DMCONFI G, with any text editor. Y ou can update the compiled
BDMCONFI Gfile while the system is running.

dm oadcf and dm oadcf —reads th&©MCONFI Gfile, checks the syntax, and
drmunl oadcf optionally loads a binarBDMCONFI G configuration file

dmunl oadcf —translates th8DMCONFI G configuration file
from binary to text format

3-58 Introducing the BEA Tuxedo System

What Are IPC Message Queues

Domains T ool Description

DVADM5) A Domains administrative server that enables you to managea
Domains configuration at run time. DMADM provides a
registration service for gateway groups. This service is
requested by GAADM servers as part of their initialization
procedure. The registration service downloads the
configuration information required by the requesting gateway
group. The DMADMserver maintainsalist of registered gateway
groups, and propagates to these groups any changes made to
the configuration.

GWADM5) A gateway administrative server that supports run-time
administration of a specific gateway group. This server
registers with the DMADMserver to obtain the configuration
information used by the corresponding gateway group. GAADM
accepts requests from DMADM Nto obtain run-time statisticsor
to change the run-time options of the specified gateway group.
Periodically, GAMADMsends an “l-am-alive” message to the
DVADMserver. If no reply is received froBvVADM GAADM
registers again. This process ensuresMEMserver always
has the current copy of the Domains configuration for its

group.

GATDOVAI N(5) A gateway process that receives and forwards messages from
clients and servers in all connected domains (for TDomains).

BDMCONFI G The binary version of the configuration file for a
multiple-domain configuration.

What Are IPC Message Queues

The BEA Tuxedo system uses |PC message queues to support communication
between processes that are executed on a particular machine. |PC message queues are
transient memory areas, typically provided by the underlying operating system, used
for communication between clients and servers. By default, each server hasits own

I PC message queue on which to receive requests and replies, referred to asa Single
Server, Single Queue (SSSQ). If you prefer, however, you can override the default and

Introducing the BEA Tuxedo System 3-59

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure

assign multiple serversto read from the same queue. Thisarrangement isreferred to as
Multiple Servers, Single Queue (MSSQ). Y ou can use both SSSQ and MSSQ setsin
the same application. Servers can be assigned to either type of queue.

When to Use Single Server, Single Queues (SS5SQ)

To understand how SSSQ sets work, consider an analogy that can be found in your
supermarket, where there may be several checkout lines. Each line is like a separate
gueue in which customerswait for aclerk at oneregister, who determines how fast that
lineis serviced. If adelay isintroduced by one person, each subsequent personis aso
delayed onthat line, but the delay has no effect on other lines. This scheme can be used
to load balance and throttle work across several servers offering different kinds of
services. Customerswith relatively small requests can be processed by a server with a
separate queue, thus speeding throughput by guaranteeing available cycles or registers
for small requests.

When to Use Multiple Server, Single Queue (MSSQ) Sets

3-60

The MSSQ scheme offers additional load bal ancing through IPC messaging, whichis
offered by the operating system. One queue is accommodated by severa servers
offering identical services at al times. If the server queue to which arequest is sent is
part of an MSSQ set, the message is dequeued to the first available server. Thus load
balancing is provided at the individua queue level.

When aserver is part of an MSSQ set, it must be configured with its own reply queue.
When the server makes requests to other servers, the replies must be returned to the
original requesting server; they must not be dequeued by other serversin the MSSQ
set.

In many applications, Multiple Server, Single Queue (MSSQ) sets can play an
important role. They areideal when you need to minimize the total waiting time for
services. If it isunacceptable for a service request to wait while a server capable of
fulfilling that request remainsidle, M SSQ sets should be used.

Introducing the BEA Tuxedo System

What Are IPC Message Queues

Example

We recommend using an MSSQ set in the following situations:

m Service turnaround timeis paramount.

m You have areasonable number of servers (between 2 and 12).

m Servers offer identical sets of services.

m The messages involved are reasonably sized (less than 75% of the queue size).

m You can configure MSSQ sets to be dynamic so they automatically spawn and
reduce servers based upon a queue load.

Note: For fault tolerance, you should always use M SSQ sets with two or more
servers.

An MSSQ set isinappropriate when long messages are being passed to services. Long
messages can cause a queue to be exhausted. When a queue is exhausted, either
nonblocking sends fail or blocking sends block.

We recommend against using an MSSQ set in the following situations:
m Buffer sizesare large enough to exhaust one queue.

m You have alarge number of servers. (You can compromise by using afew

MSSQ sets.)

m Each server offersdifferent services.

To consider how M SSQ setswork, consider an anal ogy that can befound inyour bank,
where several tellers performing identical services handle asingle line of customers.
The next avail able teller always takes the next person in line. In this scenario, each
teller must be able to perform all customer services. In a BEA Tuxedo environment,
all servers set up to share a single queue must offer the identical set of services at all
times. The advantage of M SSQ sets is that they offer a second form of load balancing
at the individual queue level.

Introducing the BEA Tuxedo System 3-61

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure

What Are the Workstation Handler and
Workstation Listener

The Workstation component extends the availability of a native BEA Tuxedo
application to clients that reside on workstations. With this component, workstations
need not be within the administrative domain of the application.

The following figure shows an application with two Workstation clients (WSC). One
client isrunning on a UNIX system workstation, while the other client is running on
an NT workstation. Both WSCs are communicating with the application through the
Workstation Handler (WSH) process. Initially, both joined by communicating with the
Workstation Listener (WSL). The Workstation defines an environment in which
clients can access the services of an application through a surrogate handler process.

Figure3-17 BEA Tuxedo Application with the Workstation Component

BEA Tuxedo Application Site 1

UMK Workstation BBL
Mative
i Cliert
orkstation \ Bulletin S
Board - Erer
Workstation
Cliert
BRIDGE
’ Mative
Client
Site 2
MT YWorkstation BRIDGE BEL DBBL
Wwinrkstation T |
Cliert Bulletin
Board — Server 2

Warkstation

WeEH
WEH s

3-62 Introducing the BEA Tuxedo System

What Are the Workstation Handler and Workstation Listener

The programming environment on a Workstation is determined by the operating
system of the machine. A Local Area Network (LAN) provides a connection to the
administrative domain of the application, affording greater flexibility in the choice of
hardware and software platforms on which you can deliver application services.

How a Workstation Client Connects to an Application

A workstation client connectsto an application in the following way.

Figure 3-18 WSC Connecting to an Application

Workstation Client
calls tpinit () or
tpchkauth ()

Client connects to
WWSL using knawn
network addrass

|
WWSL assigns
appropriate WWSH
for client

|
YWSL returns
address of a WSH
to the client

1
WL connects to
WWEH

|
tpinici) ar
tpchkauth()
returns control to
application

Initiated with
tpchkauth ()
or tpinic i)

Performed by
BEA Tuxedo
systern on behalf
of the application

All communication
between the ¥W3L and
the application takes
place through the YW3H

Introducing the BEA Tuxedo System 3-63

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure

What Is the User Log (ULOG)

The user log (ULOG) is afile to which all messages generated by the BEA Tuxedo
system—error messages, warning messages, information messages, and debuggin
messages—are written. Application clients and servers can also write to the user loc
A new log is created every day and there can be a different log on each machine.
However, aJL0G can be shared by multiple machines when a remote file system is
being used.

The ULOG provides an administrator with a record of system events from which the
causes of most BEA Tuxedo system and application failures can be determined. Yol
can view theJLOG, a text file, with any text editor. Th& OG also contains messages
generated by thel i st en process. Thel i st en process provides remote service
connections for other machines. Each machine, including the master machine, shou
have a i st en process running on it.

How Is the ULOG Created

A ULGCGIs created by the BEA Tuxedo system whenever one of the following activities
occurs:

m A new configuration file is loaded.

m An application is booted.

Example of a ULOG Message

3-64

The following is an example ofld.0G message.
121449. gunby! si npserv. 27190. 1. 0: LI BTUX CAT: 262: std nmain starting

A ULOG message consists of two parts: a tag and text.

Introducing the BEA Tuxedo System

What Is the User Log (ULOG)

The tag consists of the following:

m A 6-digit string (hhnmmss) representing the time of day (in terms of hour, minute,
and second)

m The name of the machine (asreturned, on UNIX systems, by the unane - n
command)

m The name and processidentifier of the processthat islogging the message. (This
process |D can optionally include a transaction 1D.) Also included is athread ID
(1) and acontext ID (0).

Note: Placeholders are printed inthet hr ead_I D and cont ext _I Dfield of entries
for single-threaded applications. (Whether an application is multithreaded is
not apparent until more than one thread is used.)

Thetext consists of the following:

m The name of the message catalog
m The message number

m The BEA Tuxedo system message

The Tag Indicates The Text Indicates
m The message was written into the log at m The message came from the LI BTUX catalog.
approximately 12:15 P.M. m Thenumber of the message is

The machine on which the error occurred was m Themessageitself readsasfollows st d mai n

The message was logged by the si npser v starting.
process, which has a process |D of 27190.

Thethread ID is 1.
The context ID isO.

Note: For more information about a message, note its catalog name and number.
With thisinformation, you can look up the message in the appropriate catal og.

Introducing the BEA Tuxedo System 3-65

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure

Where the ULOG Resides

By default, the user log is called ULOG. nmddyy (where nmddyy represents the date in
terms of month, day, and year) and it is created in the $APPDI R directory. Y ou can
place thisfile in any location, however, by setting the ULOGPFX parameter in the
MACHI NES section of the UBBCONFI Gfile.

3-66 Introducing the BEA Tuxedo System

CHAPTER

A4

Integrating the BEA

Tuxedo Product Family

in an Enterprise
System

m BEA Product Integration

m Mainframe Connectivity: Using BEA eLink

m Internet Access: Using BEA Jolt

m Developing and Managing Applications: Using BEA Manager

m Online Transaction Processing: Using the Core BEA Tuxedo System
m Enabling Scalability: Using BEA Tuxedo Domains

m Storing Messages and Service Requests: Using BEA Tuxedo /Q

m Workstation Connectivity: Using BEA Tuxedo Workstation

m Developing Client-Server Architecture Using WebL ogic Enterprise

m Developing and Managing Distributed Java-based Applications: Using BEA
WebL ogic Server

Introducing the BEA Tuxedo System

4-1

4

Integrating the BEA Tuxedo Product Family in an Enterprise System

BEA Product Integration

The BEA product family facilitates end-to-end integration of heterogeneous hardware
and software environments allowing businesses to create enterprise-wide transaction
processing systems. BEA products enable companies to enjoy the benefits of robust

mission-critical applicationswith theflexibility of distributed client/server computing.

Compliant with all leading industry standards, BEA products enable devel opers to
build, deploy, manage, and connect enterprise-wide applications on more than 70
platforms. These products also provide complete integration with market-leading
application development tools, systems management solutions, and legacy
applications.

Among open middleware vendors, BEA provides the only complete, end-to-end
enterprise middleware solution that includes leading transaction processing
components, a Web application server, and messaging products.

BEA Product Suite

4-2

The BEA product suite includes the following:

BEA el ink—is a family of connectivity products that seamlessly integrate BEA
Tuxedo distributed applications with mainframe applications.

BEA Jolt—provides Internet access and complete JAVA development support.
Jolt takes requests from JAVA-enabled clients and translates them into BEA
Tuxedo application calls.

BEA Manage+—provides tools for administration.

BEA Tuxedo system comprises four components:

e BEA Tuxedo core produetThe most widely deployed transaction
middleware for building high-performance, mission-critical, and reliable
distributed applications. It provides the industry leading middleware
framework for building scalable 3-tier client-server applications in
heterogeneous, distributed environments.

Introducing the BEA Tuxedo System

BEA Product Integration

e BEA Tuxedo Workstation—provides full support for clients on Windows,
0S/2, Mac, UNIX, and other platforms, allowing applications to use remote
clients that do not need a full BEA Tuxedo implementation.

¢ BEA Tuxedo Domains-extends the BEA Tuxedo client/server model to
provide transaction interoperability across domains.

e BEA Tuxedo /@—allows clients and servers to store messages or service
requests for guaranteed processing.

m BEA WebLogic Enterprise-enables you to build, deploy, and manage
component-based solutions on a proven platform. Based on the power,
robustness, and demonstrated reliability of the BEA Tuxedo system, BEA
WebLogic Enterprise brings together the best of industry standards, such as
Common Object Request Broker Architecture (CORBA) and Enterprise Java
Beans (EJB). With the power of component-based programming, these tools
enable you to create a complete production-ready enterprise solution.

m BEA WebLogic Serveris a Java-application server that enables you to
develop, integrate, deploy, and manage large-scale, distributed Web, network,
and database applications.

Introducing the BEA Tuxedo System 4-3

4 Integrating the BEA Tuxedo Product Family in an Enterprise System

Figure4-1 Integration of BEA Products

BEA WebL ogic Enterprise

BEA, f,-f' R
] Webl ogic The BEA TUXEDO System Ll:l |
] Server -
BEA
we?h::ﬁ;uer TUZEDO Databases -
Workstation
Databases
F— |
BEA TUXEDO /) "
BEA eLink =
BEA Jolt ; \
7 —
Internet Web BEA Manager -
Browsers
L ‘ ’
==
Presentation Layer Business [ayer L egacy Layer

Mainframe Connectivity: Using BEA eLink

The BEA eLink family of products offers seamless transactional
application-to-application interoperability between BEA Tuxedo applications and
IBM CICS and IMS applications, as well as OSI transaction monitors.

This interoperability istransparent to both end users and application programmers.
Native APIsand TP monitors are used on both sides of the interfaces.

See Also

m “Components of the BEA eLink Product Suite” on page 4-5

4-4 Introducing the BEA Tuxedo System

Components of the BEA eLink Product Suite

Components of the BEA eLink Product Suite

m BEA elink for Mainframe - TCP/IP for MVS (for IMS and CICS)
m BEA elLink for Mainframe - SNA
m BEA eLink for Mainframe- OS| TP

Introducing the BEA Tuxedo System 4-5

4

Integrating the BEA Tuxedo Product Family in an Enterprise System

BEA elLink for Mainframe - TCP/IP for MVS (for IMS and

CICs)

4-6

TheBEA eLink for Mainframe - TCP/IP gateway runson the BEA Tuxedo system and
advertises services that are available on the IBM system, either in CICS regions or

under IMS.

On the mainframe, the TCP/IP for MV S communications stack is used by either the
BEA eLink for Mainframe - TCP/IP for CICS or the BEA eLink for Mainframe -
TCP/IP for IMS gateways to read requests from the BEA Tuxedo system and forward

them to local routines.

Buffer datarepresentation conversions and buffer layout mappings are configurable at

the BEA eLink gateway. This gateway is unidirectional and nontransactional.

Figure4-2 BEA eLink for Mainframe- TCP/IP

4

BEA TUXEDOQ CLIENT

CICS Transaction - BEA eLink for Mainf}'ame - TCPAP for CICS|

T || cics / W
c Application 5
F BEA, Exec CICS... &
tpeal() BE eLink s eLink DB Access M
TPS for | ||[Bockets | [TCRap
tpacall() | | BEA F for CIcs | |Exec Clcs
TUXED .
0 IMSTM L
R | [BEA eLirk | |ins Application DEZ
TCPIP for | [msg U Dista
b | M5 Tlauveue |- hass
\;' DB call e
! ISET et
SICE ILICY asE
' A MVSISA or 057390

Example of an IMS transaction using BEA
eLink for Mainframe - TCPAP for IMS

Introducing the BEA Tuxedo System

Components of the BEA eLink Product Suite

BEA eLink for Mainframe - SNA

With BEA eLink for Mainframe - SNA, agateway on the BEA Tuxedo system maps
ATMI protocolsto LU6.2/PU2.1 protocols. This mapping allows routines on the
mainframe to use CPIC or APPC functions to receive data from the BEA Tuxedo
system and forward that datato local routines, or to initiate requests to servicesin the
BEA Tuxedo system.

Buffer datarepresentation conversionsand buffer layout mappings are configurable at
the BEA elLink gateway. BEA el ink for Mainframe - SNA is fully transactional and
bidirectional.

Figure4-3 BEA elLink for Mainframe- SNA

BEA TUXEDO CLIEHNT CICS Transaction using EXEC CICS APPC
tpcall) B Exec CICS Receive
tpacalll) o R i A C |
tpacallreply) * p I T [|F I M |[DB2 access]
togetreply() A1 X aflefle s e o
thoancel() Iﬂ c B mMo|{c S weC &
tpcannect -
tEsend() 0 I M M gm:ﬁ?
tprecy() W CMDEAL
tpdlisconi) 'IS' 5 e
theervice() R
tpreturni) g- L CMSND
tatarward() v T,

/ /-ﬂ [.a'atabase access)

I§RT WMWS/ESAS or
BEA eLink for Mainframe - Shln/ Q=080
1 SHA Stack

Brixton PU 2. f :
Example of 4n IMS transactio

implicit interface
Any CPIC-program,
CICS, IMS, or other

Introducing the BEA Tuxedo System 4-7

4 Integrating the BEA Tuxedo Product Family in an Enterprise System

BEA eLink for Mainframe - OSI TP

The BEA eLink for Mainframe - OSI TP product is similar to the BEA eLink for
Mainframe - SNA product.

Both are built on the BEA Tuxedo Domains architecture, and provide transparent
transactional bidirectional accessthrough gateway processes, which translate between
the XATMI protocol and the protocol of the foreign TP system which, in this case, is
Osl TP.

Figure4-4 BEA eLink for Mainframe- OS|I TP

BEA TUXEDQ CLIENT

L

tpcall() 0
tpacall])
tpacallireply)
tpoetreply()
tpcancel(
tpconnect()
tpzend()
tprecy)
tpdizcon)
tpzervicel)
tpreturni)
tptorvard()

=

= T O 4
™ -

T Foreign TP Monitor supporting
the O5I-TP protocol, operating
in itz own environment.

B SR N]

BEA eLink for

Mainframe - O5I-TP OSLTP Stack

4-8 Introducing the BEA Tuxedo System

Internet Access: Using BEA Jolt

Internet Access: Using BEA Jolt

BEA Jolt allows BEA Tuxedo clients to be written in the Javalanguage, thus making
such clients available through the Internet or intranets. The product consists of two

main components: the Jolt Class Library and the Jolt Repository. Both componentscan
be used with BEA Tuxedo applicationsthat are not writtenin Java. With BEA Jolt, you
can create secure, scalable transactions, over the Internet, between clients and severs.

Figure4-5 BEA Jolt

HT BEA TUXEDQ
fcation
e -
2t |kzrhhw mwmw mwm x| Service B
w (lava Virtual Service &) -
liachine hittpr Pratocal -q&_,_
Joit Applet " wWeb Server
Internet
Jokt AP for Java
Joit Server
Cached Jot s ‘/
Service “onnection Jolt Protocaol Jolt &P for Java
Cefinitions Manager \:‘ Jott
Joit Client ! service
Connection Connection
MManager Manager

See Also

m “Components of BEA Jolt” on page 4-10

Introducing the BEA Tuxedo System

4-9

4

Integrating the BEA Tuxedo Product Family in an Enterprise System

Components of BEA Jolt

4-10

BEA Jolt consists of aJavaClass Library and an APl between Javaclientsand the BEA
Tuxedo system. It provides several components for creating Java-based client
programs that access BEA Tuxedo services and for enabling secure, reliable accessto
servers inside corporate firewalls:

Jolt Server—One or more Jolt servers listen for network connections from
clients, translate Jolt messages, multiplex multiple clients into a single process,
and submit and retrieve requests to and from BEA Tuxedo applications running
on one or more BEA Tuxedo servers.

Jolt Class Library for Java—The Jolt Class Library consists of Java class files
that implement the Jolt API. These classes enable Java applications and applets
to invoke BEA Tuxedo services. The Jolt Class Library provides functions for
managing, retrieving, and invoking communication attributes, notifications,
network connections, transactions, and services.

Jolt Repository—A central Jolt Repository contains definitions of BEA Tuxedo
system services. These Repository definitions are used by Jolt at runtime to
access BEA Tuxedo services. Using the Repository Editor, you can test new and
existing BEA Tuxedo services independently of the client applications. You can
export services to a Jolt client application or unexport services by hiding the
definitions from the Jolt client.

Jolt Internet Relay—The Jolt Internet Relay is a component that routes messages
from a Jolt client to a Jolt Server Listener (JSL) or Jolt Server Handler (JSH).
This tool eliminates the need for the JSH and the BEA Tuxedo system to run on
the same machine as the Web server. The Jolt Internet Relay consists of the Jolt
Relay (JRLY) and the Jolt Relay Adapter (JRAD).

The separation of BEA Jolt into these components permits the transactional and
Internet components of client/server applications to be implemented separately with
the security and scalability required for large-scale Internet and intranet services.

Introducing the BEA Tuxedo System

Developing and Managing Applications: Using BEA Manager

Developing and Managing Applications:
Using BEA Manager

BEA Manager is an integrated set of software products that provides a complete
environment for devel oping, managing, integrating, and deploying BEA Tuxedo
applications using industry standard SNM P technology.

Figure4-6 BEA Manager

Standard SHMP BEA Manacer
Management Console Agert Developer Kit
MANAGED NODE Manager agent MAMNAGED MODE Manager agent
Intecratar / Integratar \
Manager agent Marager agent | aesjicati
05 Sub-agent . DBMS 0% Sub-agert . PRiIcEton
: Connection Sub-agert # Cl:nnne;lan Syb-adert
Cperating BE& TLXEDS DEMS Cperating BEA, TIUHEDO EIEA_TU}_{EDO
System System A pplication
SYSLOG ULOG LOiSS SYSLOG LG LOGS
\ BE.ﬂ Manager . Desktup
Log Central ptabagy Computer

Introducing the BEA Tuxedo System 4-11

4 Integrating the BEA Tuxedo Product Family in an Enterprise System

BEA Manager Components

Table 4-1 Purpose of BEA Manager Components

BEA Manager
Component

Purpose

BEA Manager Agent
Connection

Exposes the BEA Tuxedo Management Information Base
(TMIB) to a standard SNM P Management Console (for
example, OpenView, NetView, Tivoli, BMC). Information can
then be viewed and managed easily through the console as a
consolidated picture of the enterprise environment.

BEA Manager Agent
Integrator

Solves the problem caused by running multiple SNMP agents
on the same managed machine. It allows multiple SNMP
agents and subagents from any vendor to operate on the same
machine and to appear as asingle SNM P agent to the SNMP
Management Console.

BEA Manager Agent
Development Kit

Enablesdevel opersto build their own SNM P agents to monitor
and control BEA Tuxedo (and non-Tuxedo) applications, and
any other specialized software or hardware.

BEA Manager Log Central

A centralized log management system that consolidates log
messages from distributed machines to a single machine for
viewing, filtering, and managing. Y ou can select the events to
be sent to an SMNP Management Console.

Components of the BEA Tuxedo Product

m BEA Tuxedo core product

m BEA Tuxedo Domains

m BEA Tuxedo /Q

m BEA Tuxedo Workstation

4-12 Introducing the BEA Tuxedo System

Online Transaction Processing: Using the Core BEA Tuxedo System

Online Transaction Processing: Using the
Core BEA Tuxedo System

The BEA Tuxedo system is adevelopment platform that enables you to create
applicationsthat mix and match hardware platforms, databases, and operating systems
to fit your business needs. The BEA Tuxedo system provides a foundation for
client/server architecture, request/response and conversational communications
interfaces, transaction support, and administration for a distributed application.

The BEA Tuxedo system provides all the features and benefits of a high-end Online
Transaction Processing (OL TP) system, including scalability, high performance,
mission-critical reliability, and standards support.

Figure 4-7 Architecture of a Basic BEA Tuxedo System

Toals far App Applications that 3rd Party BEA Administration | External
Development use BEATUXEDO Management Tools Console Interface I ayer
AT (Application to Transaction Monitor Interface) <-| ATMI Layer

T e~ T MiBs (ACL, Core, Events, |

Messaging Paradigms 10, Warkstation)

Administrative

Data compression services

Data-dependentrouting Centralized application BEA TUXEDO

Data encoding Apphcafran canfiguration & System Services

Data encryption processing Distributed application managernent L ayer

Data marshalling sendces Dynarmic reconfiguration

Load balancing Event ranagement

Message prioritization Security management

Maming senices Starting up and shutting down

Transaction management Warkstation management

XA Open Profocol

-« Interface with any
standards-based
Resource Manager Resource Manager

Asshown in thisillustration, the BEA Tuxedo system contains the following parts.

Introducing the BEA Tuxedo System 4-13

4

Integrating the BEA Tuxedo Product Family in an Enterprise System

4-14

Architectural Part

Description

Externa interface layer

Thislayer consists of interfaces between the user and the system.
It includes both tools for application devel opment, such as
Simple Network Management Protocol (SNMP) agents,
and tools for administration, such as the BEA
Administration Console. The BEA Administration Console
and SNMP agents can interact with standard management
consoles. Thus a user can manage a BEA Tuxedo system and a
network configuration from one console. In addition, application
architects and devel opers can build their own administrativetool s
or application- or market-specific tools on top of the M B.

M B (Management
Information Base)

The Management Information Base (MIB) is an interface that
enables users to program and administer aBEA Tuxedo system
easily.MIB operations enable you to perform all management
tasks (monitor, configure, tune, and so on). The M B allowsyou
to perform one task to one object at atime or to build tool kits
with which you can batch tasks and/or objects. (For information
regarding the different parts of the MIB, see “Available BEA
Tuxedo System MIBs” on page 3-3.)

Administration Console

A Web-based graphical user interface for managing BEA Tuxedo
applications. The interface allows you to enter and modify data in
the MIB. The BEA Administration Console makes these tools
available through a Web browser. The server-side components of
the BEA Administration Console reside on one of the machines
in your BEA Tuxedo domain. To use the Console, you must enter
the URL of the server and download a set of Java applets, which
implement the Console. The Console enables any user with a
supported browser to administer the BEA Tuxedo system.

ATMI (Application to
Transaction Monitor
Interface)

The interface between an application program and the BEA
Tuxedo system. The ATMI and the BEA Tuxedo system
implement the X/Open DTP model of transaction processing. An
abstract environment, the ATMI supports location transparency
and hides the details of implementation. As a result,
programmers are free to configure and deploy BEA Tuxedo
applications without modifying the application code.

Introducing the BEA Tuxedo System

Enabling Scalability: Using BEA Tuxedo Domains

Architectural Part Description

BEA Tuxedo Services Servicesand/or capabilities common to the BEA Tuxedo system
(administrative services infrastructure for devel oping and administering applications. The

and application application processing services available to devel opers include:
processing services) transactions, messaging paradigms, type validation, load

balancing, data-dependent routing, service prioritization, data
encoding, marshalling, and compression, and reliable queueing,
The administrative servicesinclude: distributed transaction
processing, security management, service naming, distributed
application administration, centralized application configuration,
dynamic reconfiguration, and domains partitioning.

Resource Manager A software product in which datais stored and available for
retrieval through application-based queries. The resource
manager (RM) interacts with the BEA Tuxedo system and
implements the XA standard interfaces. The most common
exampleof aresource manager is adatabase. Resource managers
provide transaction capabilities and permanence of actions; they
are the entities accessed and controlled within a global
transaction.

See Also

m “BEA Tuxedo System Architecture” on page 2-1

Enabling Scalability: Using BEA Tuxedo
Domains

Domains extends the BEA Tuxedo system client/server model to provide transaction
interoperability across TP domains. This extension preserves the client/server model
and the ATMI interface by making access to services on a remote domain (and service
requests from a remote domain) transparent to both the application programmer and
the user. Domains makes this possible through a highly asynchronous multitasking
gateway that processes service requests to and from remote domains.

Introducing the BEA Tuxedo System 4-15

4

Integrating the BEA Tuxedo Product Family in an Enterprise System

Figure4-8 Multiple-domains Environment

BEA TUXEDO Domain [Domain 1]
t=chine 1 [Master)

DEEL BEL
Client Serwer
Application EE BEA
Code Servers TUXEDO
ATHI Services AT
BEA ithdraw
Erid Inqui
TS A= R Machine 3
Client
Hetwork Application EE EEL
5
Machine 2 I./I 2 Bridge Eode S:rr:igass
AT
Bridge BEA
BEL s)
Client Server SrVEr L TUXEDD Domains
Applicatian EE BEA BEA G ateway Group Administrative
TUXEDRO
Code g:;;g:s TUXEDD it DM Gateway
AThil AT e e S
A Ufith draw Domains A0
BEA rithdraw ' SUNTDOMAIN i
TUXEDD Inquiny Inquiry TLOG BDRCONFIG
BEA TUXEDD Domain [Domain 2]
tachine 1 [Master]
DEEL BEL
Client Server
Application . EE BEA
Code srvers TU<EDO Machine 3
AT Services ATMI i L
BEA, Wiith drav B ElnSimt
TUXEDD Bridge Ingui EER ST EEL
o s TUXEDD Code
ATMI ATMI
Hetwar Withdraw BEA
Machine 2 L(ﬂ Inguiry LUZEDD Cromains
BEL Eridge Bridge Gateway Group Administrative
Client Server Gi{ﬁ____m-—___—_i G ateway
Application EE BEA EE o ; —— ™ DMAD
Code Servers | TUxEDD Servers 2N T DOMAIN L
ATHI Services ATMI Services TLOG BOMCOMNFIE
BEA ithdraw
TUXEDO Inquiny

4-16

BEA TUXEDO Domain [Domain 3]

Gateway Group Demainz
Administrative
A0 5 ateway
Lomains DhAAD M
TLOs EWTDORMAIN
BOMCOMNFIG
Netwaork
Eridge Eridge

Introducing the BEA Tuxedo System

Enabling Scalability: Using BEA Tuxedo Domains

Features of BEA Tuxedo Domains

See Also

BEA Tuxedo Domains provides the following features:

Aliasing capability—An administrator can map the service names used by a
remote application to the service names used by a local application, allowing
easy integration of applications that use different naming schemes.

Availability—Multiple network addresses can be defined for a remote domain.
An administrator can specify a backup domain for a set of services.

Scalability and modular growth— Application programmers can structure their
applications for modularity, isolation of failures, and independent growth.
Interoperation with other TP applications can be achieved easily by adding a
description of the interfaces (that is, services) between a remote application and
the Domains configuration.

Security—The access control list (ACL) facility restricts access to local services
from a particular set of remote domains. The security feature also provides a
structuring capability for defining different views of the exported services
available to remote domains.

Transparency and independence—Applications are completely unaware of

service distribution. Client application programmers need not know the
implementation changes made to a service, the location of a service, or network
addresses. A service can be available on the same machine as a client, on
another machine in the local domain, or on a remote domain.

“What Is a Domain” on page 4-18
“What Is a Domains Gateway” on page 4-18
“What Are Domain Gateway Types” on page 4-19

“BEA Tuxedo Domains Components” on page 4-20

Introducing the BEA Tuxedo System 4-17

4

Integrating the BEA Tuxedo Product Family in an Enterprise System

What Is a Domain

A domain consists of aBEA Tuxedo application running one or more business
applications. A single domain is defined in one configuration file and is administered
asasingle entity.

What Is a Domains Gateway

4-18

A Domains gateway (GATDOMVAI N) isaserver provided by the BEA Tuxedo system that
enables access to and from remote domains. A Domains gateway runs as a
Multiple-Server, Single-Queue set (MSSQ) in which each gateway uses a common
reguest queue and hasitsown reply queue. | n addition, Domains providestwo gateway
administrative servers. GAADM enables run-time administration of the Domains
gateway group. DMADM, a Domains administrative server, enables run-time
administration of Domains configuration information.

Domains gateways support the following functionality:

m Administration—A gateway can be booted or shut down exactly as any other
BEA Tuxedo server. Run-time administration is provided through an
administrative servebpMADM UsingDMVADM application administrators can
change the domain configuration file and tune the performance of a gateway
group.

m ATMI conversational model—Application programs can establish conversations
with programs running in another domain. Remote domains can establish
conversations with conversational services offered by local servers.

m ATMI request/response model—Application programs using the BEA Tuxedo
system can request services from applications running in another domain. Also,
remote applications can request services from local servers. No changes are
required to the application programs.

m Multi-domain interaction—Gateways can communicate with multiple domains

of the same type.

Introducing the BEA Tuxedo System

What Are Domain Gateway Types

m Multi-networ k support—Gateways can communicate with other domains through
a variety of networks such as Ethernet and Novell. However, a gateway is
limited by the capabilities of the networking library to which it is linked. In
other words, a gateway typically supports a single type of network.

m Transaction management—Application programs can interoperate with other
domains within a transaction. The gateway coordinates the commitment or
rollback of transactions running across domains.

m Typed buffer support—Gateways can perform encoding and decoding operations
for all typed buffers defined by the application.

What Are Domain Gateway Types

Communication among domains is managed through a set of processes called
gateways. The BEA Tuxedo system offers the following types of domain gateways to
accommodate different communication protocols:

m BEA Tuxedo (TDomains)—Domains provides interoperability between two or
more BEA Tuxedo applications through a specially designed TP protocol that
flows over network transport protocols such as TCP/IP.

m BEA elink for Mainframe-OS TP—provides interoperability between BEA
Tuxedo applications and other transaction-processing applications that use the
OSI TP standard. OSI TP is a protocol for distributed transaction processing
defined by the International Standards Organization (ISO).

m BEA elink for Mainframe-SNA—allows BEA Tuxedo clients and servers to
operate with clients and servers in an MVS/CICS or MVS/IMS environment in
remote SNA domains. It also connects to multiple SNA networks from the local
BEA Tuxedo domain.

m BEA elink for Mainframe-TCP/IP for MVS (for CICS)—provides gateway
connectivity that makes it possible for non-transactional tasks within BEA
Tuxedo regions to access services provided by CICS application programs and
vice-versa. It enables a BEA Tuxedo domain to communicate, via the TCP/IP
network transport protocol, to a CICS environment. (A BEA Tuxedo domain is
the BEA Tuxedo application defined in a single configuration file.)

Introducing the BEA Tuxedo System 4-19

Integrating the BEA Tuxedo Product Family in an Enterprise System

m BEA eLink for Mainframe-TCP/IP for MVS (for IMS—provides gateway
connectivity enabling transparent communications between client and server
transactions in an IMS system and a BEA Tuxedo domain, a CICS system, or
another IMS system.

m BEA TOP END Domain Gateway (TEDG)—provides interoperability between
TOP END systems and BEA Tuxedo domains. The TEDG supports fully
transactional bidirectional message passing and queueing between TOP END
and BEA Tuxedo systems.

Figure4-9 Domain Gateway Types

BEA TUXEDD Application

 |BEaelink for| | BEAelink || BE&sLink (1o o
TDomain Mainframe - | |for Mainframe| [for Mainframe

Doimain
OSI-TP SSNALUEZ | - TCISHF.‘Sfor geteway
Anith \ TOP EMD
M er
BEA TUXEDO APPS Gl cics System
Application
IMS AZH400 IS

BEA Tuxedo Domains Components

BEA Tuxedo Domains includes the following components:

m A domain gateway—A BEA Tuxedo system program that enables access to and
from remote domains. There are four gateways:

e TDomains provides interoperability between two or more BEA Tuxedo
applications through a specially designed TP protocol that flows over
network transport protocols such as TCP/IP.

Introducing the BEA Tuxedo System

Storing Messages and Service Requests: Using BEA Tuxedo /Q

e BEAeLink for Mainframe-OSl TP provides interoperability between BEA
Tuxedo applications and other transaction processing applications that use
the OS| TP standard.

e BEA eLink for Mainframe-SNA enables BEA Tuxedo clients and serversto
operate with clients and serversin an MVS/CICS, MV S/IMS, or AS/400
environment in remote SNA domains. It also connects to multiple SNA
networks from the local BEA Tuxedo SNADOM.

e BEA TOP END Domain Gateway (TEDG) provides interoperability between
TOP END systems and BEA Tuxedo domains.

m A gateway administrative server(GWADM(5))—A BEA Tuxedo program that
enables run-time administration of a particular domain gateway group.

m A domain administrative server(DMADM(5))—A BEA Tuxedo program that
enables run-time administration of the configuration information required by
domain gateway groups.

m Anadministrative interface—An interface for the configuration and run-time
administration of the information required by domain gateways for
interoperation with other domains.

Storing Messages and Service Requests:
Using BEA Tuxedo /Q

The BEA Tuxedo /Q extension allows clients and servers to store messages or service
requests for guaranteed processing. The system guarantees requests are sent through
the transaction protocol to ensure safe storage. The administrative functions of BEA
Tuxedo /Q provide the administrator with a great deal of flexibility in establishing and
managing queues, and configuring system servers provided with the queued message
facility.

Introducing the BEA Tuxedo System 4-21

4 Integrating the BEA Tuxedo Product Family in an Enterprise System

Using the Message Queuing Server

A message queuing server (TMQUEUE) allows for transparent enqueueing and
dequeueing of messages. The following illustration shows how TMQUEUE works.

Figure4-10 Queueing Messages Using TMQUEUE

TMQUEUE

R ead}'ll'll'rite

mesjages
CLIENT ‘ SERVER

tpenqueue ('Queuel™ Dueued tpdequend "Quauel]

REFLY

gmadni n(1) is used to create the QUEUE SPACE (a set of queues managed by a queue
manager) with one queue (Queuel). The following flowchart explains how messages
are queued and dequeued.

Figure4-11 Process of Enqueueing and Dequeueing M essages

Client enguedes a request
for Queue1 TPENQUEUE (3c)

THMQUEUE (5) receives the
request and stares it an the
fqueue for Queue’l

Client receives a positive
response

|
Clientissues request far
reply thraugh
TPIEQUEUE (3¢}

|

THMQUEUE (&) receives
request, removes reply
from REPLYQ, and sends
reply to client

4-22 Introducing the BEA Tuxedo System

Storing Messages and Service Requests: Using BEA Tuxedo /Q

Storing and Forwarding Messages

A forwarding server (TMQFORWARD) dequeues messages and forwards them to the

appropriate serversfor processing. This allows transparent processing of enqueued
messages by BEA Tuxedo system servers unaware whether theincoming messagewas
sent asanormal request/response message or through the stable queue. A response by
the server is automatically enqueued to an associated reply queue for each message.
The following illustration shows how the TMQFORWARD server works.

Figure4-12 Storing and Forwarding Messages using TMQFORWARD

TrUELE
v,
all enqqéhes -"'-Rgad.ﬂ\n.-'r'rte
dequeues METFANes
CLIEMT L4

tpenguele (MAueus! ™)
tpdeguens ("REPLY Q™)

TMGEF ORWARD

el

Pall Gueuel fl:n_r,-ré;:quests -"-,Synchronuus call

Put replies or REPLYQ

4 SERVER
B SERVICE Quevel
i
Qlelel tareturnc)
Ciyeue? i
Queues
REPL™(

Introducing the BEA Tuxedo System

4-23

4 Integrating the BEA Tuxedo Product Family in an Enterprise System

gmadni n(1) is used to create the QUEUE SPACE with four queues: Queue 1, Queue2,
Queue3, and REPLY Q. The following flowchart explains how messages are stored
and forwarded.

Figure4-13 Process of Storing and Forwar ding M essages

Client engueues a request
for Queue1 TPENQUEUE (3c)

1
TMQUEUE (4) receives the
request and stares it an the
nuede for Queuel

1
Client receives a positive
response
TMOFORTARD {9} degueues
the request at specified time
and issues aTPCALL (3c)
for Queuel intransaction
moade

1
Queuet returns to
TMQFOEMARD {A) through
TERETURN (3c)

1
trmgfarmard(5) puts regply
on REPLYQ queue

1
Clientissues request for
rephy through
TPDEQUEUE ({3c)

TMOUEUE (4] receives
request and remoaves reply
from reply queuds

1
TMQUEUE (5) sends reply
to client

The TMQFORWARD(5) server is needed only if queued messages require a service call.
For example, aqueue may be used (on aBEA Tuxedo client or server) for interprocess
communication in which one process places the message on the queue and another
removesit. (Thecall tot pdequeue(3c) and the use of areply queueare also optional.)

4-24 Introducing the BEA Tuxedo System

Storing Messages and Service Requests: Using BEA Tuxedo /Q

BEA Tuxedo /Q Capabilities

m /Q makesit possible for an application, within aglobal transaction, to enqueue a
message in a stable storage area for processing at a later time.

m /Q provides administrators of BEA Tuxedo applications with functions for
processing messages on queues. The ATMI interface includes one function,
t penqueue(3c), that allows clients and servers to store messages on a particular
gueue, and another, t pdequeue(3c), that allows clients and serversto retrieve
messages from a particular queue. The gmadni n(1) command provides
administrative control of queues and queued messages.

m Requests can be dequeued on the basis of LI FO, FI FO, or time. Within LI FOand
FI FO, requests can be dequeued by priority.

m The queue spaceis aresource manager that complies with X/Open's XA
interface to ensure data integrity in a distributed environment.

m When the BEA Tuxedo system is used in an environment in which a machine,
Server, or resource is sometimes unavailable or unreliable, asin awide-area
network, /Q can provide continuous processing, storing messages until the
resources necessary to process those messages are available.

m In batch processing of a potentially long-running transaction, you are guaranteed
that a message will be processed eventually so you do not have to wait until the
transaction is completed.

m /Q can be used for work flow provisioning such that each step generates a
queued request to perform the next step in a process. M echanisms such as
data-dependent routing and priority handling are kept intact for queue-based
requests and replies.

m /Q can be combined with BEA Tuxedo Workstation to enqueue and dequeue
messages from Workstation clients. The interface for this combination is
available in both the C and COBOL programming languages.

Introducing the BEA Tuxedo System 4-25

4 Integrating the BEA Tuxedo Product Family in an Enterprise System

Workstation Connectivity: Using BEA Tuxedo
Workstation

See Also

The Workstation component of the BEA Tuxedo system allows application clients to
be located on remote sites that are not part of a BEA Tuxedo domain. These remote
sites do not support an administration server, an application server, or abulletin board.
All communication between such a client and an application takes place over a
network. The following illustration shows a Workstation environment.

Figure4-14 Connecting Clients Using Wor kstation
ﬁi frames
i P :\“ﬂ .

=== =

Workstation extends the benefits of the BEA Tuxedo system to the desktop at run-
time, and for programming and administering BEA Tuxedo applications. Run-time
advantagesinclude: more dynamic connectivity, less administrative overhead, greater
security as it keeps clients off the server systems, greater server utilization asit
offloads CPU cycles and decreases process context switches, and a smaller footprint.

m “Workstation Components” on page 4-27

4-26 Introducing the BEA Tuxedo System

Workstation Components

Workstation Components

The BEA Tuxedo Workstation components are:

m Workstation Clients—Clients use BEA Tuxedo Workstation to connect to the
BEA Tuxedo system. The BEA Tuxedo system supports multiple Workstation
clients running simultaneously on Windows, Windows NT, UNIX, and VMS
platforms. The ATMI is available to clients supported by Workstations.

m Workstation Handler (WSH)—A WSH manages one or more connections
between Workstation clients and native BEA Tuxedo servers, makes surrogate
service requests, manages transactions, and returns replies. WSH processes are
started and stopped by the WSL.

m \Workstation Listener (WSL)—A WSL accepts connection requests from
Workstation clients and assigns connections to a Workstation Handler. It also
manages the pool of Workstation Handler processes, starting and stopping them
in response to load demands.

Figure4-15 Workstation Components

BEA Tuxedo Application Site 1

LINE Yorkstation SoC
Mative
i Clierit
Wiarkstation \ Biletin
Client Board |— Server 1
Warkstation
Clierit
BRIDGE
- Mative
Cliert
Site 2
MT WWarkstation BRIDGE BEL DEBL
Warkstation T !
Clierit Bulletin
WsH Board | — Serwer 2
Workstation .

Introducing the BEA Tuxedo System 4-27

4

Integrating the BEA Tuxedo Product Family in an Enterprise System

Developing Client-Server Architecture Using
WebLogic Enterprise

4-28

WebL ogic Enterprise (WLE) provides businesses and organizations that depend on
mission-critical applications with the advantages of CORBA (Common Object
Request Broker Architecture)-compliant and Enterprise Java Beans (EJB)
programming models combined with the power, robustness, and proven reliability of
the BEA Tuxedo system. The WLE deployment infrastructure, based on the BEA
Tuxedo system, delivers secure, transactional, and distributed applicationsin a
managed environment. Traditional procedural OL TP functions are provided through
the WLE ATMI, which is based on the BEA Tuxedo ATMI.

Figure4-16 WeblL ogic Enterprise

BEA TUXEDO BEA WebLogic
Enterprise =
=
BEA Enterptise Engine &
E
=3
Hardware Platform ¥
BEA Weblogic Enferprise: BEA TUYERD:
-Mission critical, complex, CORBA, -Mission critical, complex, C-based
and Enterprise JavaBeans (EJB) applications
applications -High walume, high rate of
-High volurme, high rate of transactions

transactions
-CIC++HEJB component-hased

applications

BEA WebL ogic Enterprise provides companies with areliable way to develop
e-commerce applications that can be distributed across thousands of local or
geographically dispersed computers. BEA WebL ogic Enterprise delivers advanced
scalability, reliability, and expandability in a standards-based product. In asingle
package, BEA WebL ogic Enterprise offers customers wide flexibility in development
models and programming languages, including CORBA, Java, C++, C, COBOL, Java
2 Enterprise Edition (J2EE), and Enterprise Java Beans (EJBs). WLE also enables
companies to deploy their applications via a server that can scale to reliably support

Introducing the BEA Tuxedo System

Developing Client-Server Architecture Using WebLogic Enterprise

millions of online e-commerce customers. Customers can mix and match CORBA
objects, BEA Tuxedo services, and EJB components in the same application. In
addition, BEA WebL ogic Enterprise provides a platform for end-to-end
Web-to-mainframe integration, hel ping businesses to offer a more competitive set of
products and services by harnessing their I T infrastructures in e-businessinitiatives,
instead of standalone Web sites.

Because BEA WebL ogic Enterpriseisbuilt on aproven, reliable BEA Tuxedo engine,
this product provides all the features necessary to enable companiesto deliver secure
e-commerce solutions rapidly.

Figure4-17 WebL ogic Server and WebL ogic Enterprise

Internet

Weh .

Legacy Systems
server WebLogic S BEA WebLogic Enterprise /g v
Tt e BEA TUXEDO

i e
Presentation Logic Application Logic ~,

Datahases

PowerBuilder

Introducing the BEA Tuxedo System 4-29

4 Integrating the BEA Tuxedo Product Family in an Enterprise System

Developing and Managing Distributed
Java-based Applications: Using BEA
WebLogic Server

BEA WebL ogic Server is a Java application server for developing, integrating,
deploying, and managing large-scale, distributed Web, network, and database
applications. BEA WebL ogic Server makesit possible to build portable, scalable
applications that interoperate seamlessly with other applications and systems.

The principal advantage of BEA WebL ogic Server isthe power it bringsto the

software development cycle. Low-level network services—for example, sockets—are
isolated and handled automatically by higher level BEA WebLogic Server facilities—
such as its RichSockets™ and connection pool design. High-level components such
WebLogic Beans and WebLogic/JDBC provide enhanced JavaBeans and JDBC
development services for the WebLogic environment.

Figure4-18 BEA WebL ogic Server

Diverse Clients Java Application Server Hetwork Resources

Web Browser
ORACLE

N - ETHASC
Business Componenis BaL
BCRVLR
— INFOR ML
nesz
Java Client -+
M RCALTIMC
Application 1—W LATA FLLD
—
n HTTRISSEL
— TGF
B e WebLogic Server Cluster - COM
CORBA
Hetwork = = |

Applicances

Management and Security

4-30 Introducing the BEA Tuxedo System

Developing and Managing Distributed Java-based Applications: Using BEA WebLogic

WebLogic Server Implementations

BEA WebL ogic Server offers the following implementations:

m The BEA WebLogic Server is the heart of a distributed application suite; it can
manage a broad range of software and hardware services within a distributed
computing framework.

m BEA WebL ogic Server/JDBC is a Type 3 implementation of JDBC for use with
Java applets or applications. BEA WebL ogic Server/JDBC provides a subset of
the Enterprise Java Standard services available in the BEA WebL ogic
Application Server. These servicesinclude security, HTTP servlet support for
server-side programming, name services, and access control lists. BEA
WebL ogic Server/JIDBC comes with one of the industry-leading WebL ogic
two-tier IDBC driversfor Oracle, Sybase, or MS SQL Server.

m BEA WebL ogic Server JIDBC Drivers are the most widely used JDBC driversin
the industry. They include: Type 2 (2-tier) JDBC implementations for Oracle,
Sybase, and Microsoft SQL Server databases, and Type 4 implementations for
Microsoft SQL Server and Informix.

Advantages of Using BEA WebLogic Server

m Comprehensive support for the Enterprise Java Standards protects your
investment and makes it possible to build portable, scal able applications that
interoperate seamlessly with other applications and systems.

e Most Enterprise JAVA APIs (10 of 12) are fully implemented.

e The most comprehensive implementation of the Enterprise JavaBeans 1.0
specification, including session and entity beans, is provided.

m The critical front-end Web component of the BEA end-to-end enterprise
middleware solution is provided.

Introducing the BEA Tuxedo System 4-31

4 Integrating the BEA Tuxedo Product Family in an Enterprise System

4-32 Introducing the BEA Tuxedo System

	Copyright
	Contents
	1 BEA Tuxedo System Fundamentals
	For More Information
	What Is the BEA Tuxedo System
	Features of the BEA Tuxedo System
	Administrative Features
	Architectural Features
	Programming Features

	Anatomy of the Client/Server Model
	Characteristics of Client/Server Architecture
	Differences Between 2-Tier and 3-Tier Client/Server Architectures
	Client/Server Variations to Suit Your Needs

	How the BEA Tuxedo System Fits into the Client/Server Model
	What Are Clients, Servers, and Services in a BEA Tuxedo Environment
	What Is a BEA Tuxedo Client
	What Is a BEA Tuxedo Server
	What Are BEA Tuxedo Services

	Services Provided by the BEA Tuxedo System
	Administrative Services
	Application Processing Services

	BEA Family of Products

	2 BEA Tuxedo System Architecture
	Basic Architecture of the BEA Tuxedo System
	What You Can Do Using the ATMI
	What Are the BEA Tuxedo Messaging Paradigms
	What Is Conversational Communication
	How the EventBroker Works
	What Types of Events Are Reported
	How Are Events Reported
	What Is Queue-based Communication
	Using Application Queues

	What Is Request/Reply Communication
	What Is Synchronous Messaging
	What Is Asynchronous Messaging

	What Is Unsolicited Communication
	What Are Nested and Forwarded Service Requests
	Nested Requests
	Benefit of Nested Requests
	Example of a Nested Service Request

	Forwarded Requests

	How the BEA Tuxedo System Processes Messages
	What Are the Benefits of Service Request Processing

	What Are Typed Buffers
	Characteristics of Buffer Types

	Using the MIB
	Types of MIB Users
	Classes, Attributes, and States in the MIB
	BEA Tuxedo Application Processing Services
	What Is Data Compression
	What Is Data-dependent Routing
	Uses of Data-dependent Routing
	Example of Data-dependent Routing with a Horizontally Partitioned Database
	Example of Data-dependent Routing with Rule-based Servers
	Example of Data-dependent Routing with Distributed Application

	What Are Encoding and Decoding of Data
	What Is Data Encryption
	What Is Data Marshalling
	What Is Load Balancing
	Assigning a Load Factor

	What Is Message Prioritization
	What Is Meant by Naming
	Naming Services
	Advertising Services
	Naming Events

	BEA Tuxedo Administrative Services

	3 Three Ways of Viewing the BEA Tuxedo System Infrastructure
	Basic BEA Tuxedo System Infrastructure
	Management View: Using Administrative Tools
	Available BEA Tuxedo System MIBs

	Using the BEA Administration Console
	Browser Requirements

	Benefits of Using the BEA Administration Console
	Exploring the Main Menu of the BEA Administration Console
	Using the Configuration Tool
	What Is the Tree
	What Is an Administrative Object

	Using the Power Bar

	Managing Operations Using the MIB
	Types of MIB Users
	Classes, Attributes, and States in the MIB
	Using Command-Line Utilities
	Configuring Your Application Using Command-line Utilities
	Operating Your Application Using Command-line Utilities
	Managing System Events Using EventBroker
	What Is an Event
	Subscribing to an Event
	Types of Events
	Differences between System and Application-specific Events

	BEA Tuxedo Administrative Services
	Managing Application Queues
	Using qmadmin to Administer Application Queues
	Using tmconfig to Modify Your Configuration

	Managing Your Configuration
	Creating the Configuration File
	Making Permanent Configuration Changes
	Managing Your Configuration Dynamically
	Performing Dynamic Operations Using tmadmin(1)
	Commonly Used tmadmin Commands
	Sample Output from the tmadmin Command

	Managing a Distributed Application Centrally
	Managing Security
	Selecting Security Options
	Setting Up Security
	Starting Up and Shutting Down your Application
	Managing Transactions
	Coordinating Operations with a Transaction Manager Server (TMS)
	Tracking Participants with a Transaction Log (TLOG)

	Managing Workstations
	Development View: What You Can Do Using the ATMI
	Run-Time System View: Using Tools in Different Configurations
	Run-Time System Capabilities

	What Is a Single-machine Configuration
	What Is a Multiple-machine (Distributed) Configuration
	What Is a Multiple-domain Configuration
	Features of a Multiple-domain Configuration
	What Is a BEA Tuxedo BRIDGE
	What Is the Role of the Bulletin Board and Bulletin Board Liaison
	What Are Clients and Servers
	What Is the Distinguished Bulletin Board Liaison (DBBL)
	What Are the Domains Administrative Tools
	What Are IPC Message Queues
	When to Use Single Server, Single Queues (SSSQ)
	When to Use Multiple Server, Single Queue (MSSQ) Sets
	Example

	What Are the Workstation Handler and Workstation Listener
	How a Workstation Client Connects to an Application

	What Is the User Log (ULOG)
	How Is the ULOG Created
	Example of a ULOG Message
	Where the ULOG Resides

	4 Integrating the BEA Tuxedo Product Family in an Enterprise System
	BEA Product Integration
	BEA Product Suite

	Mainframe Connectivity: Using BEA eLink
	Components of the BEA eLink Product Suite
	BEA eLink for Mainframe - TCP/IP for MVS (for IMS and CICS)
	BEA eLink for Mainframe - SNA
	BEA eLink for Mainframe - OSI TP

	Internet Access: Using BEA Jolt
	Components of BEA Jolt
	Developing and Managing Applications: Using BEA Manager
	BEA Manager Components

	Components of the BEA Tuxedo Product
	Online Transaction Processing: Using the Core BEA Tuxedo System
	Enabling Scalability: Using BEA Tuxedo Domains
	Features of BEA Tuxedo Domains

	What Is a Domain
	What Is a Domains Gateway
	What Are Domain Gateway Types
	BEA Tuxedo Domains Components
	Storing Messages and Service Requests: Using BEA Tuxedo /Q
	Using the Message Queuing Server
	Storing and Forwarding Messages
	BEA Tuxedo /Q Capabilities

	Workstation Connectivity: Using BEA Tuxedo Workstation
	Workstation Components
	Developing Client-Server Architecture Using WebLogic Enterprise
	Developing and Managing Distributed Java-based Applications: Using BEA WebLogic Server
	WebLogic Server Implementations
	Advantages of Using BEA WebLogic Server

