
Introducing the

B E A T u x e d o R e l e a s e 7 . 1
D o c u m e n t E d i t i o n 7 . 1

M a y 2 0 0 0

BEA Tuxedo System

BEA Tuxedo

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INC LUDING WITHOUT LIMITA TION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIAB ILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and Tuxedo are registered trademarks of BEA Systems, Inc. BEA Builder, BEA
Connect, BEA Manager, BEA MessageQ, BEA Jolt, M3, eSolutions, eLink, WebLogic, and WebLogic Enterprise
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

Introducing the BEA Tuxedo System

Document Edition Date Software Version

7.1 May 2000 BEA Tuxedo Release 7.1

Contents

1. BEA Tuxedo System Fundamentals
For More Information... 1-1

What Is the BEA Tuxedo System.. 1-2

Features of the BEA Tuxedo System ... 1-3

Anatomy of the Client/Server Model .. 1-5

Characteristics of Client/Server Architecture .. 1-5

Differences Between 2-Tier and 3-Tier Client/Server Architectures......... 1-6

Client/Server Variations to Suit Your Needs ... 1-8

How the BEA Tuxedo System Fits into the Client/Server Model..................... 1-9

What Are Clients, Servers, and Services in a BEA Tuxedo Environment...... 1-11

What Is a BEA Tuxedo Client.. 1-11

What Is a BEA Tuxedo Server ... 1-12

What Are BEA Tuxedo Services ... 1-12

Services Provided by the BEA Tuxedo System .. 1-12

Administrative Services ... 1-12

Application Processing Services .. 1-13

BEA Family of Products ... 1-14

2. BEA Tuxedo System Architecture
Basic Architecture of the BEA Tuxedo System .. 2-1

What You Can Do Using the ATMI.. 2-4

What Are the BEA Tuxedo Messaging Paradigms ... 2-8

What Is Conversational Communication... 2-9

How the EventBroker Works .. 2-10

What Types of Events Are Reported... 2-11

How Are Events Reported... 2-12

What Is Queue-based Communication .. 2-13
Introducing the BEA Tuxedo System iii

Using Application Queues.. 2-13

What Is Request/Reply Communication ... 2-14

What Is Synchronous Messaging ... 2-15

What Is Asynchronous Messaging ... 2-16

What Is Unsolicited Communication .. 2-17

What Are Nested and Forwarded Service Requests .. 2-18

Nested Requests.. 2-18

Forwarded Requests ... 2-20

How the BEA Tuxedo System Processes Messages 2-21

What Are the Benefits of Service Request Processing............................. 2-24

What Are Typed Buffers ... 2-24

Characteristics of Buffer Types.. 2-25

Using the MIB ... 2-29

Types of MIB Users .. 2-30

Classes, Attributes, and States in the MIB .. 2-30

BEA Tuxedo Application Processing Services ... 2-31

What Is Data Compression .. 2-31

What Is Data-dependent Routing .. 2-32

Uses of Data-dependent Routing.. 2-33

Example of Data-dependent Routing with a Horizontally Partitioned
Database .. 2-34

Example of Data-dependent Routing with Rule-based Servers 2-35

Example of Data-dependent Routing with Distributed Application 2-36

What Are Encoding and Decoding of Data ... 2-37

What Is Data Encryption ... 2-38

What Is Data Marshalling.. 2-38

What Is Load Balancing .. 2-39

Assigning a Load Factor... 2-40

What Is Message Prioritization.. 2-41

What Is Meant by Naming... 2-42

Naming Services... 2-42

Advertising Services... 2-43

Naming Events ... 2-44

BEA Tuxedo Administrative Services .. 2-44
iv Introducing the BEA Tuxedo System

3. Three Ways of Viewing the BEA Tuxedo System
Infrastructure

Basic BEA Tuxedo System Infrastructure .. 3-1

Management View: Using Administrative Tools.. 3-2

Available BEA Tuxedo System MIBs ... 3-3

Using the BEA Administration Console ... 3-4

Browser Requirements ... 3-4

Benefits of Using the BEA Administration Console... 3-5

Exploring the Main Menu of the BEA Administration Console....................... 3-6

Using the Configuration Tool .. 3-7

What Is the Tree ... 3-8

Using the Power Bar .. 3-9

Managing Operations Using the MIB ... 3-10

Types of MIB Users .. 3-11

Classes, Attributes, and States in the MIB .. 3-11

Using Command-Line Utilities ... 3-12

Configuring Your Application Using Command-line Utilities 3-12

Operating Your Application Using Command-line Utilities........................... 3-14

Managing System Events Using EventBroker .. 3-14

What Is an Event ... 3-15

Subscribing to an Event... 3-16

Types of Events ... 3-17

Differences between System and Application-specific Events................ 3-18

BEA Tuxedo Administrative Services .. 3-19

Managing Application Queues .. 3-20

Using qmadmin to Administer Application Queues 3-20

Using tmconfig to Modify Your Configuration 3-21

Managing Your Configuration .. 3-22

Creating the Configuration File... 3-22

Making Permanent Configuration Changes .. 3-24

Managing Your Configuration Dynamically... 3-25

Performing Dynamic Operations Using tmadmin(1) 3-26

Commonly Used tmadmin Commands .. 3-26

Sample Output from the tmadmin Command .. 3-27
Introducing the BEA Tuxedo System v

Managing a Distributed Application Centrally ... 3-28

Managing Security... 3-30

Selecting Security Options .. 3-31

Setting Up Security.. 3-32

Starting Up and Shutting Down your Application .. 3-33

Managing Transactions.. 3-34

Coordinating Operations with a Transaction Manager Server (TMS) 3-35

Tracking Participants with a Transaction Log (TLOG) 3-35

Managing Workstations... 3-36

Development View: What You Can Do Using the ATMI 3-37

Run-Time System View: Using Tools in Different Configurations................ 3-41

Run-Time System Capabilities... 3-42

What Is a Single-machine Configuration .. 3-43

What Is a Multiple-machine (Distributed) Configuration 3-45

What Is a Multiple-domain Configuration .. 3-49

Features of a Multiple-domain Configuration ... 3-53

What Is a BEA Tuxedo BRIDGE.. 3-53

What Is the Role of the Bulletin Board and Bulletin Board Liaison 3-55

What Are Clients and Servers ... 3-56

What Is the Distinguished Bulletin Board Liaison (DBBL)............................ 3-57

What Are the Domains Administrative Tools ... 3-57

What Are IPC Message Queues .. 3-59

When to Use Single Server, Single Queues (SSSQ) 3-60

When to Use Multiple Server, Single Queue (MSSQ) Sets 3-60

What Are the Workstation Handler and Workstation Listener 3-62

How a Workstation Client Connects to an Application 3-63

What Is the User Log (ULOG) .. 3-64

How Is the ULOG Created ... 3-64

Example of a ULOG Message.. 3-64

Where the ULOG Resides .. 3-66

4. Integrating the BEA Tuxedo Product Family in an Enterprise
System

BEA Product Integration ... 4-2

BEA Product Suite ... 4-2
vi Introducing the BEA Tuxedo System

Mainframe Connectivity: Using BEA eLink... 4-4

Components of the BEA eLink Product Suite... 4-5

BEA eLink for Mainframe - TCP/IP for MVS (for IMS and CICS) 4-6

BEA eLink for Mainframe - SNA.. 4-7

BEA eLink for Mainframe - OSI TP.. 4-8

Internet Access: Using BEA Jolt ... 4-9

Components of BEA Jolt... 4-10

Developing and Managing Applications: Using BEA Manager 4-11

BEA Manager Components ... 4-12

Components of the BEA Tuxedo Product ... 4-12

Online Transaction Processing: Using the Core BEA Tuxedo System........... 4-13

Enabling Scalability: Using BEA Tuxedo Domains 4-15

Features of BEA Tuxedo Domains .. 4-17

What Is a Domain .. 4-18

What Is a Domains Gateway ... 4-18

What Are Domain Gateway Types.. 4-19

BEA Tuxedo Domains Components ... 4-20

Storing Messages and Service Requests: Using BEA Tuxedo /Q................... 4-21

Using the Message Queuing Server ... 4-22

Storing and Forwarding Messages ... 4-23

BEA Tuxedo /Q Capabilities.. 4-25

Workstation Connectivity: Using BEA Tuxedo Workstation 4-26

Workstation Components .. 4-27

Developing Client-Server Architecture Using WebLogic Enterprise 4-28

Developing and Managing Distributed Java-based Applications: Using BEA
WebLogic Server.. 4-30

WebLogic Server Implementations.. 4-31

Advantages of Using BEA WebLogic Server.. 4-31
Introducing the BEA Tuxedo System vii

viii Introducing the BEA Tuxedo System

CHAPTER
1 BEA Tuxedo System
Fundamentals

n What Is the BEA Tuxedo System

n Anatomy of the Client/Server Model

n How the BEA Tuxedo System Fits into the Client/Server Model

n What Are Clients, Servers, and Services in a BEA Tuxedo Environment

n Services Provided by the BEA Tuxedo System

n BEA Family of Products

For More Information

Many resources are available to help you understand the BEA Tuxedo system. The
following books, white papers, and presentations provide information about
client/server architecture, building and managing distributed business applications,
and using the BEA Tuxedo system to build and manage enterprise applications:

n Andrade, Juan, M. Carges, T. Dwyer, and S. Felts, The Tuxedo System - Software
for Constructing and Managing Distributed Business Applications. Reading,
Massachusetts: Addison-Wesley Publishing, 1996.

n Edwards, Jeri, with D. DeVoe, 3-Tier Client/Server at Work. New York: John
Wiley & Sons, Inc., April 1997.

n Edwards, Jeri, D. Harkey, R. Orfali, The Essential Client/Server Survival Guide.
New York: John Wiley & Sons, Inc., May 1997.
Introducing the BEA Tuxedo System 1-1

1 BEA Tuxedo System Fundamentals

7.

s

g
se

ment

orm
he
n Hall, Carl, Building Client/Server Applications Using Tuxedo - Designing and
Building Cost-Effective, High Performance Client/Server Applications Using
Tuxedo. Wiley Computer Publishing.

n Lee, Rich, BEA Tuxedo Essentials. Presented at the BEA User’s Conference in
New Orleans, La., February, 1999.

n MacBlane, Randy, Managing your BEA Tuxedo Applications Even Over the
Internet. Presented at the BEA User’s Conference in San Jose, Ca., May 199

n MacBlane, Randy, Tuxedo’s Management Information Base. Presented at the
BEA User’s Conference in San Francisco, Ca., February 1996.

n BEA Tuxedo: The Programming Model (White Paper)

n BEA Tuxedo and the Component Software Model (White Paper)

n Inter-Application Transaction Processing with BEA Tuxedo Domains (White
Paper)

n Reliable Queuing Using BEA Tuxedo (White Paper)

What Is the BEA Tuxedo System

The BEA Tuxedo system is a middleware product that distributes applications acros
multiple platforms, databases, and operating systems using message-based
communications and, if desired, distributed transaction processing.

Middleware is used with client/server applications to distribute processing amon
multiple servers, manage distributed transactions, and integrate multiple databa
platforms. Middleware systems are sometimes known as “on-line transaction
processing” or “OLTP” systems.

The BEA Tuxedo system is a mature product based on over 15 years of develop
from a diverse group of technology companies including AT&T, UNIX System
Laboratories (USL), Novell, and BEA Systems, Inc. It is both a development platf
and an execution platform. The BEA Tuxedo system serves as an extension to t
operating system.
1-2 Introducing the BEA Tuxedo System

What Is the BEA Tuxedo System

n
ans

hat

n
d as

s.
The BEA Tuxedo system provides the following:

n An industry standard for the creation and central administration of distributed
on-line transaction applications in a heterogeneous client/server environment.

n Ease of use for application developers, who do not need to know all the details
about server locations, routing, or platforms used. In a BEA Tuxedo application,
these aspects of a program are transparent.

n The fundamental underpinnings for creating, managing, and maintaining reliable,
high performance, easily managed distributed systems.

Features of the BEA Tuxedo System

The BEA Tuxedo system offers many features to accommodate the needs of the
administrator, architect, and programmer of an application.

Administrative Features

n Password security and access control security—Password security allows
application designers to control access by requiring passwords at initializatio
time (authentication). Further control is available through authorization, a me
of restricting access to certain application services to clients that have been
given explicit permission and that have authenticated identities.

n System events notification—The BEA Tuxedo system provides details about
system events, such as servers dying and network failures. When an event is
posted by clients or servers, the EventBroker looks up all the subscribers to t
event and takes appropriate actions, as determined by each subscription.

n The MIB (Management Information Base)—An administrative interface that
enables you to monitor, configure, and tune your application through your ow
programs. It is an implementation-independent management database define
a set of FML attributes, which allows you to query or change information.

n Web-based administration—A graphical user interface, available through the
World Wide Web, for the configuration and control of BEA Tuxedo application
Introducing the BEA Tuxedo System 1-3

1 BEA Tuxedo System Fundamentals

d

tic

rs).
Architectural Features

n Distributed services—Allow transparent access to application and/or system
services located on different hardware platforms.

n Fast, connectionless communications—Clients connect to a bulletin board rather
than to servers, thus improving system performance.

n Scalability—You can quickly scale your application to match varying system
load demands because services and servers can be replicated and distribute
easily. You can set thresholds programmatically to enable the BEA Tuxedo
system to spawn new servers or to shut down servers automatically.

n Server transparency—The directory of services on the bulletin board maps
service names to servers; clients do not need to be aware of server identity.

Programming Features

n Communication techniques— The Application Programming Interface (API) for
the BEA Tuxedo system is a superset of X/Open’s XATMI interface called the
Application to Transaction Monitor Interface or ATMI. The BEA Tuxedo ATMI
is a rich set of communication techniques for writing distributed applications.

n Distributed Transaction Processing (DTP)—Allows work being done throughout
a distributed application to be atomically completed—an essential characteris
of any OLTP system.

n Typed buffers—Provide transparent handling of application data across
heterogeneous platforms.

n X/Open TX compliance—The BEA Tuxedo system conforms to the X/Open
interface standard for transaction demarcation.

n X/Open XA compliance—The BEA Tuxedo system conforms to the X/Open
interface standard for transaction database systems (called resource manage
As a result, you can mix and match databases within one application while
maintaining data integrity.

See Also
n “Services Provided by the BEA Tuxedo System” on page 1-12

n “BEA Family of Products” on page 1-14
1-4 Introducing the BEA Tuxedo System

Anatomy of the Client/Server Model

e

ults
me

ice

rs
 is

Anatomy of the Client/Server Model
In client/server architecture, clients, or programs that represent users who need
services, and servers, or programs that provide services, are separate logical objects
that communicate over a network to perform tasks together. A client makes a request
for a service and receives a reply to that request; a server receives and processes a
request, and sends back the required response.

Characteristics of Client/Server Architecture

n Asymmetrical protocols—There is a many-to-one relationship between clients
and a server. Clients always initiate a dialog by requesting a service. Servers
wait passively for requests from clients.

n Encapsulation of services—The server is a specialist: when given a message
requesting a service, it determines how to get the job done. Servers can be
upgraded without affecting clients as long as the published message interfac
used by both is unchanged.

n Integrity—The code and data for a server are centrally maintained, which res
in cheaper maintenance and the protection of shared data integrity. At the sa
time, clients remain personal and independent.

n Location transparency—The server is a process that can reside on the same
machine as a client or on a different machine across a network. Client/server
software usually hides the location of a server from clients by redirecting serv
requests. A program can be a client, a server, or both.

n Message-based exchanges—Clients and servers are loosely-coupled processes
that can exchange service requests and replies using messages.

n Modular, extensible design—The modular design of a client/server application
enables that application to be fault-tolerant. In a fault-tolerant system, failures
may occur without causing a shutdown of the entire application. In a
fault-tolerant client/server application, one or more servers may fail without
stopping the whole system as long as the services offered on the failed serve
are available on servers that are still active. Another advantage of modularity
that a client/server application can respond automatically to increasing or
decreasing system loads by adding or shutting down one or more services or
servers.
Introducing the BEA Tuxedo System 1-5

1 BEA Tuxedo System Fundamentals

r

cess

e

 your
you
 tiers.

rface
s.

ile
tecture.
n Platform independence—The ideal client/server software is independent of
hardware or operating system platforms, allowing you to mix client and serve
platforms. Clients and servers can be deployed on different hardware using
different operating systems, optimizing the type of work each performs.

n Reusable code—Service programs can be used on multiple servers.

n Scalability—Client/server systems can be scaled horizontally or vertically.
Horizontal scaling means adding or removing client workstations with only a
slight performance impact. Vertical scaling means migrating to a larger and
faster server machine or adding server machines.

n Separation of Client/Server Functionality—Client/server is a relationship
between processes running on the same or separate machines. A server pro
is a provider of services. A client is a consumer of services. Client/server
provides a clean separation of functions.

n Shared resources—One server can provide services for many clients at the sam
time, and regulate their access to shared resources.

Differences Between 2-Tier and 3-Tier Client/Server
Architectures

Every client/server application contains three functional units:

n Presentation logic or user interface (for example, ATM machines)

n Business logic (for example software that enables a customer to request an
account balance)

n Data (for example, records of customer accounts)

These functional units can reside on either the client or on one or more servers in
application. Which of the many possible variations you choose depends on how
split the application and which middleware you use to communicate between the

In 2-tier client/server applications, the business logic is buried inside the user inte
on the client or within the database on the server in the form of stored procedure
Alternatively, the business logic can be divided between the client and server. F
servers and database servers with stored procedures are examples of 2-tier archi
1-6 Introducing the BEA Tuxedo System

Anatomy of the Client/Server Model
In 3-tier client/server applications, the business logic resides in the middle tier,
separate from the data and user interface. In this way, processes can be managed and
deployed separately from the user interface and the database. Also, 3-tier systems can
integrate data from multiple sources.

Figure 1-1 2-Tier and 3-Tier Client/Server Models
Introducing the BEA Tuxedo System 1-7

1 BEA Tuxedo System Fundamentals

ch

ent

d.
, all
s,

d
w

k to
Client/Server Variations to Suit Your Needs

Client/server architecture can accommodate the needs of each of the following
situations:

n Small shops and laptops—The client, the middleware software, and most of the
business services operate on the same machine. We recommend this approa
for one-person businesses such as a dentist’s office, a home office, and a
business traveler who frequently works on a laptop computer.

n Small businesses and corporate departments—A LAN-based single-server
application is required. Users of this type of application include small
businesses, such as a medical practice with several doctors, a multi-departm
corporation, or a bank with several branch offices. In this type of application,
multiple clients talk to a local server. Administration is simple: security is
implemented at the machine level and failures are detected easily.

n Large enterprises—Multiple servers that offer diverse functionality are require
Multiple servers can reside on the Internet, intranets, and corporate networks
of which are highly scalable. Servers can be partitioned by function, resource
or databases, and can be replicated for increased fault tolerance or enhance
performance. This model provides a great amount of power and flexibility. Ho
well you architect your application is critical to this client/server model. You
may need to partition work among servers, or design servers to delegate wor
other servers.
1-8 Introducing the BEA Tuxedo System

How the BEA Tuxedo System Fits into the Client/Server Model

EA
ivers
How the BEA Tuxedo System Fits into the
Client/Server Model

The BEA Tuxedo system fits into the middle of the client/server model. In a BEA
Tuxedo application, clients log in and request services offered by an application. The
BEA Tuxedo system offers these services through a transparent bulletin board. The
bulletin board contains a directory advertising services. In a banking application, for
example, the bulletin board might advertise deposit, withdrawal, and inquiry services.
The BEA Tuxedo system then finds a server (for example, at the appropriate branch or
district office) that can provide the requested services.

Figure 1-2 Clients and Servers in a Sample Banking Application

The preceding figure shows the primary building blocks of a BEA Tuxedo application:

n Clients—programs that collect input from users, sends requests through the B
Tuxedo system to servers, and then collects the replies from servers and del
them to the users.
Introducing the BEA Tuxedo System 1-9

1 BEA Tuxedo System Fundamentals

that

nt to
e

 and
 over
e

llers)

uch
 calls
ce, and
n Servers—programs that encapsulate the business logic into a set of services
define the application.

n Middleware—comprises all the distributed software needed to support
interactions between clients and servers. It is the medium that enables a clie
obtain a service from a server. Middleware includes: API functions used by th
client (to issue requests and receive replies) and the server (to issue replies)
messaging paradigms used to transmit client requests and server responses
a network. Middleware does not include any of the following: the user interfac
on the client, application logic, and services provided by servers.

In this sample BEA Tuxedo application at a bank, clients (cash machines and te
make requests, and servers (at branch and district offices) provide services and
responses. For example, a customer may use a cash machine to find out how m
money is available in his personal checking account. The cash machine (a client)
the server to get the balance. The server receives the request, retrieves the balan
sends the information to the cash machine.

See Also

n “Anatomy of the Client/Server Model” on page 1-5

n “What Are Clients, Servers, and Services in a BEA Tuxedo Environment” on
page 1-11
1-10 Introducing the BEA Tuxedo System

What Are Clients, Servers, and Services in a BEA Tuxedo Environment
What Are Clients, Servers, and Services in a
BEA Tuxedo Environment

This topic describes a client, server, and services in a BEA Tuxedo environment.

What Is a BEA Tuxedo Client

A client is a program that collects a request from a user and passes that request to a
server capable of fulfilling it. It can reside on a PC or workstation as part of the front
end of an application. It can also be embedded in software that reads a communication
device such as an ATM machine from which data is collected and formatted before
being processed by BEA Tuxedo servers.

To be a client, a program must be able to invoke the BEA Tuxedo libraries of functions
and procedures known collectively as the Application to Transaction Monitor
Interface, or ATMI. The ATMI is supported in several language bindings.

A client joins a BEA Tuxedo application by calling the ATMI client initialization
routine. Once it has joined an application, a client can define transaction boundaries
and call ATMI functions that enable it to communicate with other programs in your
application. The client leaves the BEA Tuxedo application by issuing an ATMI
termination function. By joining an application only when necessary and leaving it
once the appropriate task is complete, a client frees BEA Tuxedo system resources for
use by other clients and servers.

When building a distributed application, you must determine how information is
gathered and presented to your business for processing. You have complete control
over where and when to call ATMI functions, depending upon your business logic and
rules. Your program can join one BEA Tuxedo application, perform some tasks and
leave, and then join a different BEA Tuxedo application to perform another task. If you
are using a multicontexted application, your client can perform tasks in more than one
application without leaving any of them.
Introducing the BEA Tuxedo System 1-11

1 BEA Tuxedo System Fundamentals

such
nd
nts or

piled

ister

:

What Is a BEA Tuxedo Server

A BEA Tuxedo server is a process that oversees a set of services, dispatching them
automatically for clients that request them. A service, in turn, is a function within a
server program that performs a particular task needed by a business. A bank, for
example, might have one service that accepts deposits and another that reports account
balances. A server at this bank might receive requests from clients for both services. It
is the server’s job to dispatch each request to the appropriate service.

Service functions implement business logic through calls to database interfaces
as SQL and, possibly, calls to the ATMI to access additional services, queues, a
other resources. The servers on which these services reside then reply to the clie
forward client requests to a new service.

What Are BEA Tuxedo Services

A service is a module of application code that performs a task. Services are com
and link edited to form executable servers.

Services Provided by the BEA Tuxedo System

The BEA Tuxedo system offers many services to help you streamline and admin
your application.

Administrative Services

The BEA Tuxedo system provides services for the following administrative tasks

n Application queue management

n Centralized application configuration

n Distributed application management
1-12 Introducing the BEA Tuxedo System

Services Provided by the BEA Tuxedo System
n Dynamic application reconfiguration

n Event management

n Security management

n Startup and shutdown of an application

n Transaction management

n Workstation management

Application Processing Services

The BEA Tuxedo system provides services that enable you to implement the following
functionality in your application:

n Data compression

n Data-dependent routing

n Data encoding

n Data encryption

n Data marshalling

n Load balancing

n Message prioritization

n Service and event naming
Introducing the BEA Tuxedo System 1-13

1 BEA Tuxedo System Fundamentals
BEA Family of Products

BEA offers the following family of products.

This Product Provides

BEA eLink A suite of connectivity products that allow you to seamlessly
integrate BEA Tuxedo distributed applications with enterprise
applications

BEA Jolt A BEA Tuxedo client API in Java

BEA Manager A package of administrative tools for a BEA Tuxedo or
WebLogic Server application

The BEA Tuxedo system
consists of four
components:

n Core BEA Tuxedo
system

n Domains

n /Q

n Workstation

n The core BEA Tuxedo product—enables you to build
high-performance, mission-critical, and reliable
distributed applications. It provides the framework for
building scalable 3-tier client-server applications in
heterogeneous, distributed environments.

n Domains—extends the BEA Tuxedo client/server model
to provide transaction interoperability across separately
administered BEA Tuxedo applications.

n /Q—allows reliable queueing of requests.

n Workstation—offers full client support for a wide variety
of operating systems allowing applications to use remote
clients that do not need a full BEA Tuxedo
implementation.

BEA WebLogic Enterprise A leading application server family of products providing
businesses and organizations that depend on mission-critical
applications with the advantages of Common Object Request
Broker Architecture (CORBA)-compliant and Enterprise Java
Beans (EJB) programming models, combined with the power,
robustness, and proven reliability of the BEA Tuxedo system.

BEA WebLogic Server A Java-application server for developing, integrating,
deploying, and managing large-scale, distributed Web,
network, and database applications
1-14 Introducing the BEA Tuxedo System

CHAPTER
2 BEA Tuxedo System
Architecture

n Basic Architecture of the BEA Tuxedo System

n What Are the BEA Tuxedo Messaging Paradigms

n How the BEA Tuxedo System Processes Messages

n BEA Tuxedo Application Processing Services

n BEA Tuxedo Administrative Services

Basic Architecture of the BEA Tuxedo System

The following figure illustrates the basic architectural elements of a BEA Tuxedo
system: external interfaces to the system, the ATMI layer, the MIB, BEA Tuxedo
system services, and the system’s interface with standards-compliant resource
managers.
Introducing the BEA Tuxedo System 2-1

2 BEA Tuxedo System Architecture
Figure 2-1 The BEA Tuxedo System Basic Architecture

As shown in this illustration, the BEA Tuxedo system contains the following parts.

Architectural Part Description

External interface layer This layer consists of interfaces between the user and the system.
It includes both tools for application development, such as
Simple Network Management Protocol (SNMP) agents,
and tools for administration, such as the BEA
Administration Console. The BEA Administration Console
and SNMP agents can interact with standard management
consoles. Thus a user can manage a BEA Tuxedo system and a
network configuration from one console. In addition, application
architects and developers can build their own administrative tools
or application- or market-specific tools on top of the MIB.
2-2 Introducing the BEA Tuxedo System

Basic Architecture of the BEA Tuxedo System

m
e
:
d

ion

gers
ey
ATMI (Application to
Transaction Monitor
Interface)

The interface between an application and the BEA Tuxedo
system. The ATMI and the BEA Tuxedo system implement the
X/Open DTP model of transaction processing. An abstract
environment, the ATMI supports location transparency and hides
implementation details. As a result, programmers are free to
configure and deploy BEA Tuxedo applications to multiple
platforms without modifying the application code.

Messaging paradigms Different models of transferring messages between a client and a
server. Examples include request/response mode, conversational
mode, events and unsolicited notification.

MIB (Management
Information Base)

The Management Information Base (MIB) is an interface that
enables users to program and administer a BEA Tuxedo system
easily. MIB operations enable you to perform all management
tasks (monitoring, configuring, tuning, and so on). The MIB
allows you to perform one task to one object at a time or to build
tool kits with which you can batch tasks and/or objects. (For
information about available MIBs, see “Available BEA Tuxedo
System MIBs” on page 3-3.)

BEA Tuxedo Services
(administrative services
and application
processing services)

Services and/or capabilities provided by the BEA Tuxedo syste
infrastructure for developing and administering applications. Th
application processing services available to developers include
data compression, data-dependent routing, data encoding, loa
balancing, and transaction management. The administrative
services include: centralized application configuration,
distributed application management, domains partitioning,
dynamic reconfiguration, event and fault management, IPC
message queues, and workstation management. (For informat
on administrative services, see the topic titled: “Three Ways of
Viewing the BEA Tuxedo System Infrastructure” on page 3-1.)

Resource Manager A software product in which data is stored and available for
retrieval through application-based queries. The resource
manager (RM) interacts with the BEA Tuxedo system and
implements the XA standard interfaces. The most common
example of a resource manager is a database. Resource mana
provide transaction capabilities and permanence of actions; th
are the entities accessed and controlled within a global
transaction.

Architectural Part Description
Introducing the BEA Tuxedo System 2-3

2 BEA Tuxedo System Architecture

that

I is
pen

al
nage
our
See Also

n “BEA Tuxedo Administrative Services” on page 2-44

n “BEA Tuxedo Application Processing Services” on page 2-31

What You Can Do Using the ATMI

The Application to Transaction Monitor Interface (ATMI), the BEA Tuxedo API, is
an interface for communications, transactions, and management of data buffers
works in all environments supported by the BEA Tuxedo system. It provides the
connection between application programs and the BEA Tuxedo system. The ATM
a simple interface for a comprehensive set of capabilities. It implements the X/O
DTP model of transaction processing.

Figure 2-2 Using the ATMI

The ATMI library offers you a variety of functions for defining and controlling glob
transactions in a BEA Tuxedo application. Global transactions enable you to ma
exclusive units of work spanning multiple programs and resource managers in y
2-4 Introducing the BEA Tuxedo System

What You Can Do Using the ATMI
distributed application. All work in a single transaction is treated as a logical unit, so
that if any one program cannot complete its task successfully, no work is performed by
programs in the transaction. Most ATMI functions support different communication
styles. These functions knit together distributed programs by enabling them to send
and receive data. All ATMI functions send or receive data in typed buffers. Following
is a list of ATMI functions (for C and COBOL bindings), and the tasks they perform.
The functions are grouped by task.

Table 2-1 Using the ATMI Functions

For a Task
Related to

Use This C Function Or This COBOL
Function

To

Client membership tpchkauth(3c) TPCHKAUTH(3cbl) Check whether authentication is
required

tpinit(3c) TPINITIALIZE(3cbl) Have a client join an application

tpterm(3c) TPTERM(3cbl) Have a client leave an
application

Buffer
management

tpalloc(3c) N/A Create a message buffer

tprealloc(3c) N/A Resize a message buffer

tpfree(3c) N/A Free a message buffer

tptypes(3c) N/A Get a message type and subtype

Message priority tpgprio(3c) TPGPRIO(3cbl) Get the priority of the last
request

tpsprio(3c) TPSPRIO(3cbl) Set the priority of the next
request

Request/Response
communications

tpcall(3c) TPCALL(3cbl) Initiate a synchronous
request/response to a service

tpacall(3c) TPACALL(3cbl) Initiate an asynchronous
request (fanout)

tpgetrply(3c) TPGETRPLY(3cbl) Receive an asynchronous
response

tpcancel(3c) TPCANCEL(3cbl) Cancel an asynchronous request
Introducing the BEA Tuxedo System 2-5

2 BEA Tuxedo System Architecture
Conversational
communications

tpconnect(3c) TPCONNECT(3cbl) Begin a conversation with a
service

tpdiscon(3c) TPDISCON(3cbl) Abnormally terminate a
conversation

tpsend(3c) TPSEND(3cbl) Send a message in a
conversation

tprecv(3c) TPRECV(3cbl) Receive a message in a
conversation

Reliable queuing tpenqueue(3c) TPENQUEUE(3cbl) Enqueue a message to a
message queue

tpdequeue(3c) TPDEQUEUE(3cbl) Dequeue a message from a
message queue

Event-based
communications

tpnotify(3c) TPNOTIFY(3cbl) Send an unsolicited message to
a client

tpbroadcast(3c) TPBROADCAST(3cbl) Send messages to several
clients

tpsetunsol(3c) TPSETUNSOL(3cbl) Set unsolicited message
call-back

tpchkunsol(3c) TPCHKUNSOL(3cbl) Check the arrival of unsolicited
messages

N/A TPGETUNSOL(3cbl) Get an unsolicited message

tppost(3c) TPPOST(3cbl) Post an event message

tpsubscribe(3c) TPSUBSCRIBE(3cbl) Subscribe to event messages

tpunsubscribe(3c) TPUNSUBSCRIBE(3cbl) Unsubscribe to event messages

For a Task
Related to

Use This C Function Or This COBOL
Function

To
2-6 Introducing the BEA Tuxedo System

What You Can Do Using the ATMI
Note: The use of ATMI transaction management functions is optional.

See Also

n “Using the ATMI to Handle System and Application Errors” on page 2-28 in
Administering a BEA Tuxedo Application at Run Time

Transaction
management

tpbegin(3c) TPBEGIN(3cbl) Begin a transaction

tpcommit(3c) TPCOMMIT(3cbl) Commit the current transaction

tpabort(3c) TPABORT(3cbl) Roll back the current
transaction

tpgetlev(3c) TPGETLEV(3cbl) Check whether in transaction
mode

tpsuspend(3c) TPSUSPEND(3cbl) Suspend the current transaction

tpresume(3c) TPRESUME(3cbl) Resume a transaction

Service entry and
return

tpsvrinit(3c) TPSVRINIT(3cbl) Initialize a server

tpsvrdone(3c) TPSVRDONE(3cbl) Terminate a server

tpservice(3c) N/A Prototype for a service entry
point

N/A TPSVCSTART(3cbl) Get service information

tpreturn(3c) TPRETURN(3cbl) End a service function

tpforward(3c) TPFORWAR(3cbl) Forward request

Dynamic
advertisement

tpadvertise(3c) TPADVERTISE(3cbl) Advertise a service name

tpunadvertise(3c) TPUNADVERTISE(3cbl) Unadvertise a service name

Resource
management

tpopen(3c) TPOPEN(3cbl) Open a resource manager

tpclose(3c) TPCLOSE(3cbl) Close a resource manager

For a Task
Related to

Use This C Function Or This COBOL
Function

To
Introducing the BEA Tuxedo System 2-7

2 BEA Tuxedo System Architecture
What Are the BEA Tuxedo Messaging
Paradigms

The following table describes the BEA Tuxedo messaging paradigms available to
application developers.

Table 2-2 BEA Tuxedo Messaging Paradigms

BEA Tuxedo Messaging
Paradigm

Description

Conversational communication Service request mode involving multiple 2-way
interactions between a client and a dedicated server

Event-based communication Publish/subscribe mode

Queue-based communication Guaranteed delivery mode

Request/reply communication Service request mode that can be synchronous (processing
waits until the requester receives the response) or
asynchronous (processing continues while the requester
waits for the response)

Unsolicited messaging Communication from any client or server to any clients
that were not requested or expected by those clients
2-8 Introducing the BEA Tuxedo System

What Is Conversational Communication

this
d
ss back
of the
 that
 be
wned

hat
ts to

ing so.
e.
tions,
be
See Also

n “What Is Conversational Communication” on page 2-9

n “How the EventBroker Works” on page 2-10

n “What Is Queue-based Communication” on page 2-13

n “What Is Request/Reply Communication” on page 2-14

n “What Is Unsolicited Communication” on page 2-17

n “What Are Nested and Forwarded Service Requests” on page 2-18

What Is Conversational Communication

Conversational communication is the BEA Tuxedo system implementation of a
human-like paradigm for exchanging messages between clients and servers. In
form of communication, a virtual connection is maintained between the client an
server. Just as in a conversation between two people, a number of messages pa
and forth between the two entities until a conclusion is reached. Over the course
communication, both sides “remember” the point (or state) of the conversation so
relatively long operations, such as ad hoc queries, reports, and file transfers, can
supported. Conversational servers are available by default, but more can be spa
automatically if needed.

The BEA Tuxedo system provides an Application Programming Interface (API) t
can be used to create conversations in applications; specifically to connect clien
servers, to send and receive messages, and to end the conversation.

Conversations can be nested but performance may be degraded as a result of do
Conversations may contain either transactions or service requests as appropriat
Although a conversational service can make service calls and establish conversa
those service calls and conversations cannot be forwarded. A conversation can
within the scope of, and controlled by a transaction.
Introducing the BEA Tuxedo System 2-9

2 BEA Tuxedo System Architecture

ribers.
h one

Figure 2-3 Conversational Communication

See Also

n “Using Conversational Communication” on page 1-11 in Tutorials for
Developing a BEA Tuxedo Application

How the EventBroker Works

The BEA Tuxedo EventBroker provides a communication paradigm in which an
arbitrary number of suppliers can post messages for an arbitrary number of subsc
Because client and server processes that use the EventBroker communicate wit
another based on a set of subscriptions, this paradigm is known as
publish-and-subscribe communication. The EventBroker acts like a newspaper
delivery person who delivers newspapers only to customers who have paid for a
subscription.
2-10 Introducing the BEA Tuxedo System

What Types of Events Are Reported

ch

 for
Figure 2-4 Posting and Subscribing to an Event

Event generators (either clients or servers) inform the EventBroker of changes and
problems as they occur. This process is called posting an event. The EventBroker then
matches the name of the event to an event name associated with a list of subscribers,
and notifies each subscriber on the list of the event.

See Also

n “What Types of Events Are Reported” on page 2-11

n “How Are Events Reported” on page 2-12

n “Using Event-based Communication” on page 1-14 in Tutorials for Developing
a BEA Tuxedo Application

What Types of Events Are Reported

The BEA Tuxedo system supports two different types of event reports:

n System Event reports—provide details about BEA Tuxedo system events, su
as servers dying, and network failures. When an event is posted by clients or
servers, EventBroker matches the posted event’s name to subscriber’s of the
same events and takes appropriate action determined by each subscription.

n Reports of User Events or Application Defined Events—allow application
programs to post events when certain criteria are met. A banking application,
example, might post an event for withdrawals over a certain limit.
Introducing the BEA Tuxedo System 2-11

2 BEA Tuxedo System Architecture
How Are Events Reported

The EventBroker provides publish-and-subscribe functionality. A process registers a
subscription with the EventBroker, indicating interest in a particular event.
Subsequently, whenever the EventBroker is notified by another process that the
specified event has occurred, the EventBroker reports the occurrence to any process
that has subscribed for this event.

Figure 2-5 Event-based Messaging

The EventBroker uses several mechanisms for publishing (that is, issuing notices of)
events:

n Disk-based queuing

n Asynchronous service calls

n Userlog entries

n Unsolicited messages

n System commands
2-12 Introducing the BEA Tuxedo System

What Is Queue-based Communication
What Is Queue-based Communication

The BEA Tuxedo system offers a queue-based architecture known as /Q for
applications that require persistent storage of data. The /Q component allows any client
or server to store messages or service requests in queues and guarantees that any stored
request is sent through the transaction protocol to ensure safe storage.

BEA Tuxedo system queues can be ordered as Last In First Out (LIFO) or First In First
Out (FIFO), or on the basis of time or priority. A collection of queues is administered
and referred to as a single entity known as a queue space.

Figure 2-6 Queue-based Messaging

Using Application Queues

Application queues are appropriate if you must communicate in a time-independent
fashion. Time-independence is a characteristic of programs that operate independently
from one another and do not need to synchronize their communications
simultaneously. Time-independent programs synchronize by leaving messages for
each other in application queues. Messages can be dequeued in any of several ordering
schemes, such as first-in, first-out (FIFO) order, priority order, or time-based order.
BEA Tuxedo client and server programs can enqueue messages and dequeue messages
from queues. More than one client and server can access the same queue.
Introducing the BEA Tuxedo System 2-13

2 BEA Tuxedo System Architecture

erver is
t queue
d
 the
ieve

e
To use an application queue, your program must name the queue to be accessed and
the queue space in which it resides. Your application can use more than one queue
space and each space can contain more than one message queue.

Because application queues reside on a disk, the availability of stored messages is
guaranteed even after machine failures. To determine when the use of application
queues is appropriate, you need to determine when time-independent synchronization
occurs in your business, for example, in filling orders. Orders can be enqueued to disk
and depending on specific order criteria, such as items or shipment location, placed in
different queue spaces. Within each queue space, you can determine additional criteria,
such as cost, state, and so on.

See Also

n “Using Queue-based Communication” on page 1-15 in Tutorials for Developing
a BEA Tuxedo Application

What Is Request/Reply Communication

To implement request/reply communication, the BEA Tuxedo system uses IPC
message queues. Queues are the key to connectionless communication. Each s
assigned an Inter-Process Communication (IPC) message queue called a reques
and each client is assigned a reply queue. Therefore, rather than establishing an
maintaining a connection with a server, a client application can send requests to
server by putting those requests on the server’s queue, and then check and retr
messages from the server by pulling messages from its own reply queue.

The request/reply model is used for both synchronous and asynchronous servic
requests as described in the following topics.
2-14 Introducing the BEA Tuxedo System

What Is Request/Reply Communication
What Is Synchronous Messaging

In a synchronous call, a client sends a request to a server, which performs the requested
action while the client waits. The server then sends the reply to the client, which
receives the reply.

Figure 2-7 Synchronous Request/Reply Communication
Introducing the BEA Tuxedo System 2-15

2 BEA Tuxedo System Architecture
What Is Asynchronous Messaging

In an asynchronous call, the BEA Tuxedo client does not wait for a service request it
has submitted to finish before undertaking other tasks. Instead, after issuing a request,
the client performs additional tasks (which may include issuing more requests). When
a reply to the first request is available, the client retrieves it.

Figure 2-8 Asynchronous Request/Reply Communication

See Also

n “Using the Request/Response Model (Synchronous Calls)” on page 1-7 in
Tutorials for Developing a BEA Tuxedo Application
2-16 Introducing the BEA Tuxedo System

What Is Unsolicited Communication
What Is Unsolicited Communication

The BEA Tuxedo system offers a powerful communication paradigm called
unsolicited notification. When unsolicited notification occurs, a BEA Tuxedo client
receives a message that it has never requested. This capability makes it possible for
application clients to receive notification of application-specific events as they occur,
without having to request notification explicitly in real time.

Unsolicited messages can be sent to client processes by name (tpbroadcast) or by an
identifier received with a previously processed message (tpnotify). Messages sent
via tpbroadcast can originate either in a service or in another client. You can target
a narrow or wide audience. You can send a message with or without guaranteed
delivery to an individual client through point-to-point notification (tpnotify), or you
can send information to a group of clients (tpbroadcast). For example, a server may
alert a single client that the account about which the client is inquiring has been closed.
Or, a server may send a message to all the clients on a machine to remind the users that
the machine will be shut down for maintenance at a specific time.

Any process that wants to be notified about a particular event (such as a machine being
shut down for maintenance) can register a request, with the system, to be notified
automatically. Once registered, a client or server is informed whenever the specified
event occurs. This type of automatic communication about an event is called
unsolicited notification.

Because there is no limit to the number of clients and servers that may generate events
and receive unsolicited notification about such events, the task of managing this
category of communication can become complex. The BEA Tuxedo system offers a
tool for managing unsolicited notification called the EventBroker.
Introducing the BEA Tuxedo System 2-17

2 BEA Tuxedo System Architecture

ents
ell

ion

n that
els, it
Figure 2-9 Unsolicited Notification Messaging

See Also

n “Using Unsolicited Notification” on page 1-13 in Tutorials for Developing a
BEA Tuxedo Application

What Are Nested and Forwarded Service
Requests

Nested Requests

A powerful feature of the BEA Tuxedo system is that it allows services to act as cli
and call other services. Nesting is limited to two levels, which works particularly w
in a 3-tier client/server architecture, that is, a system that comprises a presentat
logic layer, a business logic layer, and a database layer. In such a system, the
presentation layer is used to formulate a request for a particular business functio
involves one or more queries to a database. Because nesting is limited to two lev
does not degrade performance.
2-18 Introducing the BEA Tuxedo System

What Are Nested and Forwarded Service Requests
Figure 2-10 Nested Service Requests

Benefit of Nested Requests

One benefit of using nested requests is that doing so enables you to keep your code
small and reusable, such that each piece performs a limited task. However, if the
services in your system are distributed across several servers, nested requests can lead
to poor performance. While a nested request is being processed, the original service
(that is, the service that issued the nested request) must wait for a response before
continuing. Until a response is received, the original service cannot process another
request. As a result, messages can get backed up in the request queue for the server on
which this service resides.

Example of a Nested Service Request

A customer uses a cash machine to transfer money from her savings account to her
checking account. A BEA Tuxedo application performs the work necessary to transfer
the money. First, on behalf of the customer, the client issues a request for a service
called TRANSFER, and the request is placed on a queue for a server that provides that
Introducing the BEA Tuxedo System 2-19

2 BEA Tuxedo System Architecture

ueue,

 of
 The
.

service. Next, the TRANSFER service requests two other services, WITHDRAW and
DEPOSIT, which are processed by a second server. The WITHDRAW and DEPOSIT
services return responses to the TRANSFER service. Finally, TRANSFER sends a response
to the client’s response queue. When the client retrieves the response from the q
the system displays a message on the screen of the cash machine, notifying the
customer that the transfer is complete.

Forwarded Requests

One alternative to nesting service requests is called request forwarding. Instead
processing a client’s request, a service can pass the request to another service.
second service, also, can either process the request or pass it to another service

Figure 2-11 Forwarded Service Requests
2-20 Introducing the BEA Tuxedo System

How the BEA Tuxedo System Processes Messages

g
 clients
sage

ported

There is no limit to the number of times a request can be forwarded. Because a service
that forwards a request does not need to wait for a reply from the service receiving the
request, forwarding, unlike nesting requests, does not block servers. Forwarding,
however, is not supported by the X/OPEN protocol X/ATMI, which may be a problem
in some applications.

See Also

n “Using Forwarded Calls” on page 1-10 in Tutorials for Developing a BEA
Tuxedo Application

n “Using Nested Calls” on page 1-9 in Tutorials for Developing a BEA Tuxedo
Application

How the BEA Tuxedo System Processes
Messages

All communication within the BEA Tuxedo system is accomplished by transferrin
messages. The BEA Tuxedo system passes service request messages between
and servers through operating system Inter-Process Communications (IPC) mes
queues. System messages and data are passed between operating system-sup
memory-based queues of clients and servers in buffers. In the BEA Tuxedo system,
messages are packaged in typed buffers, buffers that contain both message data and
data identifying the types of message data being sent.
Introducing the BEA Tuxedo System 2-21

2 BEA Tuxedo System Architecture

age in
ed.

ude:
al
Figure 2-12 Processing a Request

A client uses an ATMI function to request a service by name. A naming facility is used
to check the MIB to determine whether the specified service is currently available. The
BEA Tuxedo system uses an automatic routing option to map messages that meet
specific criteria (message value) to a specific server. This is called data-dependent
routing. If messages use data-dependent routing, the system uses the data in the buffer
for the routing algorithm. This algorithm provides a method of selecting a group of
servers that can process the service request. To avoid burdening a few servers with
many requests while leaving other servers that advertise the same services idle, the
BEA Tuxedo system maintains a set of metrics in the MIB that help it distribute service
requests evenly across all servers. This practice is called load balancing.

A local service request may be prepared for a selected server and enqueued on that
server’s queue with a predefined priority. This practice is called service prioritization.
Once the service request is on the server, the run-time system retrieves the mess
priority order. The message is dispatched to the appropriate service and process
Then the results are returned to the client queue.

BEA Tuxedo system-provided software offers features that an application can
automatically and routinely use during message processing. These features incl
data encoding and decoding, data compression and decompression, transaction
2-22 Introducing the BEA Tuxedo System

How the BEA Tuxedo System Processes Messages
context setting, and security processing, to name a few. In addition, the BEA Tuxedo
system software invokes application business logic by dispatching a service function
and passing it to the appropriately preprocessed buffer.

The service routine is executed and returns a reply (also a typed buffer). The run-time
system prepares the reply for the client by encoding the message automatically: it
packages the data in such a way that it can be transmitted between machines on which
different types of byte ordering are used, allowing data to cross network and platform
boundaries. The system then sends the message to the client. This process is called
data encoding. The run-time system on the client retrieves the reply message, decodes
it if necessary, and delivers the FML buffers (or buffers of another message buffer type)
to package the application data. Type validation, encoding, routing, and load balancing
are performed as required. Service requests can be performed synchronously or
asynchronously.

Remote requests travel through the local BRIDGE to the remote machine, where the
remote BRIDGE simply acts as a client and the request is processed as if the client and
server were on the same machine. The BRIDGE provides standard data
encoding/decoding and uses standard network transports to communicate. BRIDGEs
look like ordinary local servers to clients and servers.
Introducing the BEA Tuxedo System 2-23

2 BEA Tuxedo System Architecture

r
tion.

es

tem
g
erent

ffer

r
 is a

 any
rms
s the
What Are the Benefits of Service Request Processing

n Connectionless processing—This processing, coupled with direct client/serve
communication, reduces the overhead associated with establishing a connec

n Reduced network traffic—Service requests invoke potentially complex servic
on remote machines, sending only the minimum data required and receiving
minimal results.

See Also

n “What Are the BEA Tuxedo Messaging Paradigms” on page 2-8

n “What Are Typed Buffers” on page 2-24

What Are Typed Buffers

All ATMI functions send or receive data using typed buffers. The BEA Tuxedo sys
handles translations and data conversions between dissimilar machines. By usin
buffers, BEA Tuxedo programs avoid the need to translate data that crosses diff
platforms with different data representations.

A buffer is a memory area that serves as a logical container for data. When a bu
contains no metadata (that is, no information about itself), then it is an untyped buffer.
When a buffer includes metadata such as information that can be stored in it (fo
example, a type and subtype, or string names that characterize a buffer), then it
typed buffer.

Typed buffers can be transmitted over any network, on any operating system, with
protocol supported by the BEA Tuxedo system. They can also be used on platfo
with different data representations. As a result, the use of typed buffers facilitate
tasks of translation and data conversion between dissimilar machines.
2-24 Introducing the BEA Tuxedo System

What Are Typed Buffers
The BEA Tuxedo system supports five sorts of typed buffers:

n STRING

n VIEW

n CARRAY

n FML

n XML

You assign buffer types in the ENVFILE parameter defined in the MACHINES section of
the configuration file. Assigning or overriding them in the ENVFILE parameter in the
SERVERS section of the configuration file can make them unavailable to processes that
require them.

Definitions of the various types of message buffers are provided in the description of
tm_typesw in tuxtypes(5) in BEA Tuxedo File Formats and Data Descriptions
Reference. It is to your advantage to change tm_typesw so it contains only buffer types
specifically needed by a given server.

Characteristics of Buffer Types

When you use ATMI communication functions, your application must first use
tpalloc to get a buffer from the system, specifying its size, type, and optionally
subtype. The BEA Tuxedo system recognizes and processes the buffer type, so that
your data is transmitted over any type of network, protocol, and operating system
supported by the BEA Tuxedo system. The following table describes the different
types of buffers available in a BEA Tuxedo environment.
Introducing the BEA Tuxedo System 2-25

2 BEA Tuxedo System Architecture
Table 2-3 Buffer Types Characteristics

This Typed
Buffer

Is Defined As Follows And Is Used for

CARRAY Character array type is a collection of characters that is handled
opaquely:

n Characters are not interpreted in any way.

n No subtypes are specified.

n Your application must specify the buffer length for CARRAY
message buffers used as input to ATMI functions.

Data that will not be
interpreted by the BEA
Tuxedo system and for
which data-dependent
routing, encoding, or
decoding is not
required.
2-26 Introducing the BEA Tuxedo System

What Are Typed Buffers
FML Field Manipulation Language (FML) is a data structure that stores
tagged values. Values are typed, may be specified more than once, and
vary in length.

The FML buffer is an abstract data type used in operations to create,
modify, delete, or access fields. In your program, you access or update
a field in the fielded buffer by referencing the identifier, and the FML
function provides for a run-time translation of the field’s location and
data type, and performs the operation.

One interface to FML uses 16 bits (FML16) for field identifiers and
lengths of fields; the other uses 32 bits (FML32).

n The 16-bit version allows for up to approximately 8000 unique
fields, character strings, and arrays of up to 64,000 bytes, and
similar lengths for the entire buffer.

n The 32-bit interface allows for millions of unique fields and buffer
lengths of up to two billion bytes.

The functionality of the two interfaces is identical. The power of FML
is in its flexibility. The size of the buffer can vary, depending on the
needs of the application for each message. Character fields may also
vary in length, so wasted space is avoided.

Fielded buffers offer data independence to the application. When
writing an application, you do not need to know how or where the data
is stored within a fielded buffer. FML provides associative field access,
so you simply specify a field by name and its value is returned. FML
also contains conversion functions, so that you can store or retrieve a
field in a particular data format, regardless of the underlying storage
type.

FML buffers also support storage of more than one value for a field. The
variable length format of fielded buffers allows for multiple field
occurrences to be stored and retrieved.

Fielded buffers provide a convenient way to transfer a collection of
fields, perhaps different with each message, from a client to a server
and back, or to store fields in an application queue. We recommend
using FML, particularly if the interface between clients and servers may
change.

n Communications

n Creating,
modifying,
deleting, or
accessing fields
during operations

STRING A set of non-null characters ending with a null character. The data type
is character and the length is determined by counting characters in the
buffer until reaching the null character. No subtype is specified.

C programs

This Typed
Buffer

Is Defined As Follows And Is Used for
Introducing the BEA Tuxedo System 2-27

2 BEA Tuxedo System Architecture
VIEW A VIEW is simply a C structure or a COBOL record that has an
associated definition of which fields and their types appear in the
record in which order. This buffer is used for fixed collections of data
elements, or structures or records; its subtype is used to specify the
record format name.

VIEW records are flat data structures. They do not support structures
within other structures, nor do they allow arrays of structures or
pointers. They support integral data types such as long integer,
character, and decimal.

VIEWS are provided as a way to use C structures and COBOL records
with the BEA Tuxedo system. The BEA Tuxedo run-time system
understands the record format based on the view description read at run
time. When allocating a VIEW, your application specifies a buffer type
of VIEW and a subtype that matches the name of the view. The run-time
system can do the following:

n Determine how much space is needed, based on structure size, so
the application need not specify buffer length

n Compute how much data to send in a request or response, and
handle encoding and decoding when a message is transferred
between different machine types

C structures and
COBOL records used
with a BEA Tuxedo
application

XML
(Extensib
le Markup
Language)

XML buffers enable BEA Tuxedo applications to use XML for
exchanging data within and between applications. BEA Tuxedo
applications can send and receive simple XML buffers, and route those
buffers to the appropriate servers. All logic for dealing with the XML
documents, including parsing, resides in the application. An XML
document consists of: a sequence of characters that encode the text of
a document and a logical structure of the document and
meta-information related to the structure.

The XML parser in the BEA Tuxedo system performs autodetection of
character encodings, character code conversion, detection of element
content and attribute values, and data type conversion.

Data-dependent routing is supported for XML buffers.

n XML documents
and datagrams

n Data interchange
between humans
and machines,
such as from a
Web server to a
user’s browser

n Data exchange
between
applications, or
from machine to
machine

This Typed
Buffer

Is Defined As Follows And Is Used for
2-28 Introducing the BEA Tuxedo System

Using the MIB

our

of
See Also

n “Customizing a Buffer” on page 3-28 in Programming a BEA Tuxedo
Application Using C

Using the MIB

The MIB programming interface enables you to manage operations in the BEA
Tuxedo system easily. Specifically, it allows you to monitor, configure, and tune y
application through your own programs. The MIB can be defined as:

n An implementation-independent management database defined as a set of FML
attributes

n A programming interface that enables you to query the BEA Tuxedo system
(that is, to obtain information from the system through a get operation) or to
update the BEA Tuxedo system (that is, to change information in the system
through a set operation) at any time using a set of ATMI functions. Examples
these functions include tpalloc, tprealloc, tpgetrply, tpcall, tpacall,
tpenqueue, and tpdequeue.

See Also

n MIB(5) in BEA Tuxedo File Formats and Data Descriptions Reference

n “Types of MIB Users” on page 2-30

n “Classes, Attributes, and States in the MIB” on page 2-30
Introducing the BEA Tuxedo System 2-29

2 BEA Tuxedo System Architecture
Types of MIB Users

The MIB defines three types of users: system administrators, system operators, and
others. The following table describes each type.

Classes, Attributes, and States in the MIB

Classes are the types of entities, such as servers and machines, that make up a BEA
Tuxedo application. Attributes are characteristics of the objects in a class: identity,
state, configuration parameters, run-time statistics, and so on. There are a number of
attributes that are common to MIB operations and replies, and common to individual
classes. Every class has a state attribute that indicates the state of the object. The state
of an object is either return to the user or new, changed state, if you are invoking an
operation on the MIB to change an object’s state.

Type of User Characteristics

Application administrator Person responsible for keeping an application running
successfully. The administrator is authorized to use all
administrative tools and all MIB administrative capabilities.
The administrator configures, manages, and modifies a running
production application.

System operator Monitors and reacts to the daily operation of a production
application. The operator monitors statistics about a running
application, sometimes reacting to events and alerts by taking
actions such as booting servers or shutting down machines. An
operator does not reconfigure an application, add servers or
machines, or delete machines.

Other People or processes (such as custom programs) that may need
to read the MIB but are not authorized to change the
application.
2-30 Introducing the BEA Tuxedo System

BEA Tuxedo Application Processing Services
Independent of classes is a set of common attributes that are defined in the MIB(5)
reference page. These attributes control the input operations, communicate to the MIB
what the user is trying to do, and/or identify to the programmer some of the
characteristics of the output buffer that are independent of a particular class.

BEA Tuxedo Application Processing Services

The BEA Tuxedo system offers the following application processing services:

n Data compression

n Data-dependent routing

n Data encoding

n Data encryption

n Data marshalling

n Load balancing

n Message prioritization

n Service and event naming

What Is Data Compression

Data compression is the process of shrinking an application buffer so it can be
transmitted more quickly across a network or to a remote domain. By setting a
maximum size for an application buffer, you can make sure that compression is
triggered automatically for application buffers that match or exceed a specified size.
When the buffer arrives at its destination, its data is decompressed, that is, restored to
its original size.

Data compression, performed before files are shipped between machines, improves
network performance.
Introducing the BEA Tuxedo System 2-31

2 BEA Tuxedo System Architecture

ong
bles
inds
e
s the
The process of compression enhances security slightly because it involves scrambling
the data.

Note: Data compression also occurs frequently during encryption.

Figure 2-13 Data Compression

What Is Data-dependent Routing

The BEA Tuxedo system uses an operation called data-dependent routing to enable a
client to send requests for the same service to multiple copies of that service. Which
copy of the service eventually accepts and processes the request is determined by the
data in the request message. Once an administrator has set up data-dependent routing
for an application, client requests can be routed automatically to servers based on the
data in the requests.

When an application includes multiple copies of the same service, each copy is
assigned a unique purpose, just as the first volume of a multivolume encyclopedia
contains entries that begin withe the letter “A.” A list of all copies of the service, al
with identifying information about the purpose of each, is kept in a set of routing ta
in the BEA Tuxedo bulletin board. When the system receives a client request, it f
an identifying string in the request message and searches the routing tables in th
bulletin board for the same string. On the basis of this match, the system identifie
appropriate server to which it can forward the client request.

Note: The bulletin board routing tables can be modified as necessary.
2-32 Introducing the BEA Tuxedo System

What Is Data-dependent Routing
Uses of Data-dependent Routing

Data-dependent routing is useful when clients issue service requests to:

n Horizontally partitioned databases

n Rule-based servers

n Distributed Application

A horizontally partitioned database is an information repository that has been divided
into segments, each of which is used to store a different category of information. This
arrangement is similar to a library in which each shelf of a bookcase holds books for a
different category (for example, biography, fiction, and so on).

A rule-based server is a server that determines whether service requests meet certain,
application-specific criteria before forwarding them to service routines. Rule-based
servers are useful when you want to handle requests that are almost identical by taking
slightly different actions for business reasons.

A distributed application consists of one or more local or remote clients that
communicate with one or more servers on several machines linked through a network.
A client (or server acting as a client) issues a request for a particular service. The
address of the request is determined by data (carried in the same buffer that conveys
the request), identifying the server that can fulfill the request. More than one server
may be able to do so. The BEA Tuxedo system selects a server to receive the request
by matching the data to the routing criteria provided in the bulletin board.
Introducing the BEA Tuxedo System 2-33

2 BEA Tuxedo System Architecture
Example of Data-dependent Routing with a Horizontally
Partitioned Database

Suppose two clients in a banking application issue requests for the current balance in
two accounts: Account 3 and Account 17. If data-dependent routing is being used in
the application, then the BEA Tuxedo system performs the following actions:

1. Gets the account numbers for the two service requests (3 and 17).

2. Checks the routing tables on the BEA TUXEXDO bulletin board that show
which servers handle which range of data. (In this example, server 1 handles all
requests for accounts 1 through 10; server 2 handles all requests for accounts 11
through 20.)

3. Sends each request to the appropriate server. Specifically, the system forwards
the request about Account 3 to server 1, and the request about account 17 to
server 2.

The following figure illustrates this process.

Figure 2-14 Data-dependent Routing with a Horizontally Partitioned Database
2-34 Introducing the BEA Tuxedo System

What Is Data-dependent Routing
Example of Data-dependent Routing with Rule-based
Servers

A banking application includes the following rules:

n Customers can withdraw up to $500 without entering a special password.

n Customers must enter a special password to withdraw more than $500.

Two clients issue withdrawal requests: one for $100 and one for $800. If
data-dependent routing is enabled to support the withdrawal rules, then the BEA
Tuxedo system performs the following actions:

1. Gets the amount specified for withdrawal in the two service requests ($100 and
$800).

2. Checks the routing tables on the BEA Tuxedo bulletin board that show which
servers handle request for the amount being requested. (In this example, server 1
handles all requests to withdraw amounts up to $500; server 2 handles all
requests to withdraw amount over $500.)

3. Sends each request to the appropriate server. Specifically, the system forwards
the request for $100 to server 1 and the request for $800 to server 2.

The following figure illustrates this process.

Figure 2-15 Data-dependent Routing with Rule-Based Servers
Introducing the BEA Tuxedo System 2-35

2 BEA Tuxedo System Architecture
Example of Data-dependent Routing with Distributed
Application

The following diagram shows how client requests are routed to servers. In this
example, a banking application called bankapp uses data-dependent routing. bankapp
has three server groups (BANK1, BANK2, and BANK3) and two routing criteria (Account
ID and Branch ID). The services WITHDRAW, DEPOSIT, and INQUIRY are routed using
the Account_ID field; the services OPEN and CLOSE are routed using the Branch_ID
field.

Figure 2-16 Sample Banking Application Using Routing Criteria
2-36 Introducing the BEA Tuxedo System

What Are Encoding and Decoding of Data
In the preceding diagram, requests are routed as indicated in the following table.

What Are Encoding and Decoding of Data

Encoding and decoding enable messages with different data representations (for
example, byte ordering or character sets) to be transferred between machines. The
BEA Tuxedo system accomplishes this by encoding and decoding data to a
machine-independent representation for transmission. It employs, by default, the XDR
algorithm, which can be customized by replacing the BEA Tuxedo system functions
with user-written functions. Encoding and decoding are used only between machines
and only when a remote machine uses a data representation other than the one used on
the local machine. Encoding and decoding allow machines with different data
architectures to operate within a heterogeneous BEA Tuxedo system. Programmers
can manage data in representations natural to their own environments.

The BEA Tuxedo system uses buffer types to determine the type of fields contained in
a message, and to perform the mapping required for coding tasks. This mapping is not
performed by unstructured buffer types such as X_OCTET and CARRAY. Thus,
developers using X_OCTET and CARRAY buffers are free to deploy in mixed-machine
environments.

Withdrawals, Deposits, Inquiries, and
Openings or Closings of the Following
Accounts . . .

Are Routed to . . .

Numbers 10000—49999 for branches 1—4 Bank1

Numbers 50000—79999 for branches 5—7 Bank2

Numbers 80000—109999 for branches 8—10 Bank3
Introducing the BEA Tuxedo System 2-37

2 BEA Tuxedo System Architecture

.
What Is Data Encryption

Encryption is the act of converting a message into a coded format that is unintelligible
to users. When an encrypted message arrives at its destination, it is decrypted, that is,
converted back to its original format.

Figure 2-17 Data Encryption

Encryption does not increase the number of bits in the data, but it adds processing time
to the task of sending a message. Because data is compressed during encryption,
however, lost processing time may be bought back, since less data is being sent across
the network. When data is compressed, there is also a moderate boost to security,
because the data is somewhat scrambled during compression.

What Is Data Marshalling

Data marshalling is a method of handling information through the language-based
TxRPC (X/Open-TxRPC) offered by the BEA Tuxedo system. TxRPC is a set of
protocols for remote procedure calls that supports global transactions. Though a
TxRPC call looks like a local procedure call, when a C function is called, the
arguments passed to the function are packaged so they can be sent to a server that
performs the work of the called function. This argument packaging is called
marshalling. A function’s arguments are marshalled or packaged in a way that allows
them to cross network and platform boundaries, and then unmarshalled at their
destination before being passed to the invoked remote procedure, ready for use
2-38 Introducing the BEA Tuxedo System

What Is Load Balancing
This process is transparent to the client (the calling program) and the server (the remote
procedure). The marshalling and unmarshalling routines are generated automatically
by the BEA Tuxedo Interface Definition Language (IDL) compiler. An IDL compiler
takes a description of a set of RPCs and generates routines, called stubs, for the client
and server programs. These stubs contain marshalling and unmarshalling logic, as well
as the communication logic that allows a client and server to exchange marshalled
data.

Figure 2-18 Data Marshalling

What Is Load Balancing

Load balancing is a technique used by the BEA Tuxedo system for distributing service
requests evenly among servers that offer the same service. This avoids overburdening
some servers while leaving others idle or infrequently used. Before sending a request
to a service routine, the system identifies all servers capable of handling the request
and selects the one most appropriate for maintaining a balanced load across all the
servers in the configuration.
Introducing the BEA Tuxedo System 2-39

2 BEA Tuxedo System Architecture
Assigning a Load Factor

Load refers to a number assigned to a service request based on the amount of time
required to execute that service. Loads are assigned to services so that the BEA Tuxedo
system can understand the relationship between requests. To keep track of the amount
of work, or total load, being performed by each server in a configuration, the
administrator assigns a load factor to every service and service request. A load factor
is a number indicating the amount of time needed to execute a service or a request. On
the basis of these numbers, statistics are generated for each server and maintained on
the bulletin board on each machine. Each bulletin board keeps track of the cumulative
load associated with each server, so that when all servers are busy, the BEA Tuxedo
system can select the one with the lightest load.

You can control whether a load-balancing algorithm is used on the system as a whole.
Such as algorithm should be used only when necessary, that is, only when a service is
offered by servers that use more than one queue. Services offered by only one server,
or by multiple servers in an MSSQ (multiple server single queue) do not need load
balancing. The LDBAL parameter for these services should be set to N. In other cases,
you may want to set LDBAL to Y.

To determine how to assign load factors (in the SERVICES section of UBBCONFIG), run
an application for a long period of time and note the average time it takes to perform
each service. Assign a LOAD value of 50 (LOAD=50) to any service that takes roughly
the average amount of time. Any service taking longer than average should have a
LOAD>50; any service taking less than the average should have a LOAD<50.
2-40 Introducing the BEA Tuxedo System

What Is Message Prioritization

be
ices,
ay
se

),
Figure 2-19 Load Balancing

What Is Message Prioritization

Priorities determine the order in which service requests are dequeued by a server.
Priority is assigned by a client to individual services and can range from 1 to100, where
100 represents the highest priority.

All services are assigned a starting priority of 50. A server’s starting priority can
changed during application configuration. Once you have defined your set of serv
you can assign the appropriate priorities to them. For example, your business m
require that some services have a relatively high priority of 70, which means tho
services are dequeued before those with the lower priority of 50. In the following
illustration, a server offers services A (with a priority of 50, B (with a priority of 50
and C (with a priority of 70).
Introducing the BEA Tuxedo System 2-41

2 BEA Tuxedo System Architecture

g
ut)

 order

ueue
long as

nent
ic
 of the
Figure 2-20 Prioritization of Messages

A request for service C is always dequeued before a request for A or B due to the higher
priority of C. Requests for A and B have equal priority. This feature is useful in
applications in which not all requests are equally urgent or important.

A “starvation prevention” mechanism prevents low-priority messages from waitin
endlessly on the queue. Every tenth message is dequeued in FIFO (first in first o
order regardless of priority; the first through the ninth messages are dequeued in
of priority.

What Is Meant by Naming

The BEA Tuxedo system uses three naming devices: service names, message q
names, and event names. Names can be any words or alphanumeric strings, as
they do not begin with a period (“.”). Because administrative servers use the BEA
Tuxedo system infrastructure, system and application resources must be clearly
distinguished.

Naming Services

When services are named, an application component can locate another compo
through a name. Names can be simple words (such as “deposit”) or alphanumer
strings (such as “deposit2”). Names should be selected on the basis of the scope
2-42 Introducing the BEA Tuxedo System

What Is Meant by Naming

hat
 a
ame
ry to

ds the

ution

ne
r

ges

application and a map that contains the global picture of the relationships among
application components. These maps or services are like the pages in a telephone book
for application components.

When a BEA Tuxedo system server is activated, the bulletin board (the dynamic part
of the MIB) advertises the names of its services. Service names are associated with a
server’s physical address so that requests can be routed to that server. Names t
programmers use in their applications are completely location transparent. When
client program asks for a service by name, the BEA Tuxedo system consults its n
registry in the bulletin board. The name registry provides the information necessa
convert the string name (for example, TICKET) to a machine name and the physical
address of a server that advertises that service. The BEA Tuxedo system then sen
request to the appropriate server.

Figure 2-21 Locating a Service by Name

Advertising Services
The BEA Tuxedo system uses two administrative servers to coordinate the distrib
of information on the bulletin board to all active machines in the application:

n DBBL—The Distinguished Bulletin Board Liaison server propagates global
changes to the MIB and maintains the static part of the MIB. The DBBL
coordinates the state of different machines involved in an application. Only o
DBBL exists for an entire application. It can be migrated to other machines fo
fault resiliency.

n BBL—The Bulletin Board Liaison server maintains the bulletin board. A BBL
resides on every active machine in an application. The BBL coordinates chan
to the local MIB and verifies the integrity of application programs active on its
machine.
Introducing the BEA Tuxedo System 2-43

2 BEA Tuxedo System Architecture

 the

Naming Events

The BEA Tuxedo system offers a publish-and-subscribe mechanism: clients and
servers can dynamically register or unregister a standing request to receive alerts (or
messages) when a particular event occurs. Other clients and servers post user-defined
or system events as they occur in the application. When a client or server no longer
needs to be notified about a particular event, the relevant subscription can be cancelled.

See Also

n “How the EventBroker Works” on page 2-10

BEA Tuxedo Administrative Services

A set of system servers provides the following administrative services needed by
BEA Tuxedo system:

n Application queue management

n Centralized application configuration

n Distributed application management

n Dynamic application reconfiguration

n Event management

n Security management

n Startup and shutdown of an application

n Transaction management

n Workstation management

Note: For information on administrative services, see the topic, “Three Ways of
Viewing the BEA Tuxedo System Infrastructure” on page 3-1
2-44 Introducing the BEA Tuxedo System

CHAPTER
3 Three Ways of Viewing
the BEA Tuxedo System
Infrastructure

n Basic BEA Tuxedo System Infrastructure

n Management View: Using Administrative Tools

n BEA Tuxedo Administrative Services

n Development View: What You Can Do Using the ATMI

n Run-Time System View: Using Tools in Different Configurations

Basic BEA Tuxedo System Infrastructure

The BEA Tuxedo system provides an infrastructure for the efficient routing,
dispatching, and management of application service requests, event postings and
notification, and application queues. This infrastructure can be explored from three
perspectives:

n Administrative or management perspective—Encompasses a variety of tools
available to manage your application.

n Development (using the ATMI) perspective—Encompasses those tasks you can
perform using the ATMI. Clients request services through the ATMI. Server
Introducing the BEA Tuxedo System 3-1

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure

tion
e
 MIB

,

ng

l
programs group several services, which are invoked according to the rules
defined by the ATMI. Application designers construct client and server programs
by linking the BEA Tuxedo run-time system with their application code.

n BEA Tuxedo run-time system view—Encompasses single, distributed, and
multiple domain configurations.

Management View: Using Administrative
Tools

The BEA Tuxedo System MIB contains all the information necessary for the opera
of an application. The MIB is designed to be programmable, so that you can writ
custom administrative programs. Administrative tools are constructed around the
and provide different types of interfaces to it. These tools include the following:

n BEA Administration Console—a Web-based tool used to monitor an application
and to dynamically configure it.

n BEA Tuxedo administrative servers—servers that automate most of the
management tasks for a distributed application, such as naming services and
events, starting up and shutting down an application, dynamically reconfiguri
an application, and so on.

n BEA Tuxedo MIB Application Programming Interface—a set of functions for
accessing and modifying information in the MIB.

n Command-line utilities—a set of commands used to activate, deactivate,
configure, and manage an application (that is, tmboot, tmshutdown, tmconfig,
and tmadmin, respectively). (See BEA Tuxedo Command Reference.)

n EventBroker—a mechanism that informs administrators of faults or exceptiona
happenings.
3-2 Introducing the BEA Tuxedo System

Management View: Using Administrative Tools

h
Figure 3-1 Tools to Administer Your Application

Available BEA Tuxedo System MIBs
The Management Information Base comprises a core MIB, which is common to all
applications, and several component MIBs, which are optional. The core MIB, called
TM_MIB, defines the parts of an application that are required in every BEA Tuxedo
application. It is also used to administer those parts of an application. TM_MIB defines
a BEA Tuxedo system application as a set of classes (for example, servers, groups,
machines, domains), each of which is made up of objects that are characterized by
various attributes (for example, identity and state).

Each of the component MIBs describes a subsystem of the BEA Tuxedo system. The
following components are currently available:

n ACL_MIB—used to administer Access Control Lists

n APPQ_MIB—used to administer application stable-storage queues

n EVENT_MIB—used to control event notification and the subscription request
database

n WS_MIB—used to manage Workstation groups and processes associated wit
them
Introducing the BEA Tuxedo System 3-3

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure
Using the BEA Administration Console

The BEA Administration Console is a graphical user interface to the BEA Tuxedo
system, specifically to the MIB. It is accessed through the World Wide Web. The BEA
Administration Console makes common administrative functions available through a
browser. It allows any user with the currently available browser to administer a BEA
Tuxedo application.

To use the BEA Administration Console, perform the following tasks:

1. Point your browser to the URL for a machine in your domain on which the Console
server components reside.

2. Initiate a download of Java applets. The applets implement the Console and
establish communication with the server.

Browser Requirements

Each release of the BEA Tuxedo system supports the currently available browsers.
Consult the following BEA Web site for information about browsers currently
supported by the BEA Administration Console.

See Also

n “Benefits of Using the BEA Administration Console” on page 3-5

n “Exploring the Main Menu of the BEA Administration Console” on page 3-6

n “Ways to Monitor Your Application” on page 2-2 in Administering a BEA
Tuxedo Application at Run Time
3-4 Introducing the BEA Tuxedo System

Benefits of Using the BEA Administration Console

nd
p is
d

kes

n

all,

at

lets

e

Benefits of Using the BEA Administration
Console

n Authentication—The BEA Administration Console forces users to identify
themselves. It prompts the administrator for a user name and password. This
information is communicated in an encrypted fashion between the browser a
the server, where the user’s identity is then verified. (Much of the server setu
done during installation, when server components of the Console are installe
and made available to the Web server.)

n Context-sensitive help—Context-sensitive help is available for all Console
screens and tools. You can request information about any field or area of a
screen simply by dragging a question mark icon to that field or any area and
clicking.

n Encryption—The data transferred between the server side and the browser is
compressed (56-bit or 128-bit encryption) so that no one can read it. This ma
the system resistant to anyone trying to inject false administrative protocol
messages into the stream.

n Firewall readiness—The port on which the BEA Administration Console server
listens and interacts with the browser is well defined and configurable; you ca
configure it to match ports that you want to allow through your firewall. This
capability enables you to do Console-based administration through your firew
if necessary.

n Icons— The icons used in the BEA Administration Console connote state (for
example, not active) or represent particular objects in the application, for
example, machines or servers.

n Java-capable browser—The Java browser supports the Java virtual machine th
runs the applets and enables communication.

n No client-side installation—No installation is required on your machine. Point
your browser to the URL for a machine in your domain on which the Console
server components reside. Then initiate a download of Java applets. The app
implement the Console and establish communication with the server.

n Universal secure access— From any Java-capable browser, you can access th
system from anywhere in the world with confidence that security mechanisms
are already in place.
Introducing the BEA Tuxedo System 3-5

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure

,

 as
Exploring the Main Menu of the BEA
Administration Console

When you first bring up the Web and invoke the BEA Administration Console, the
main window is displayed. The main window is divided into four major sections:

n MENU BAR—A row of frequently used menus.

n POWER BAR—A row of buttons that provide shortcuts to frequently used tools
such as Help.

n TREE—A hierarchical representation of the administrative class objects (such
servers and clients) in a BEA Tuxedo system domain.

n CONFIGURATION TOOL—A set of tabbed folders on which you can display,
define, and modify the attributes of objects, such as the name of a machine.
3-6 Introducing the BEA Tuxedo System

Exploring the Main Menu of the BEA Administration Console
Figure 3-2 Main Menu of the Administration Console

Note: The Power Bar buttons and some menu items are not fully displayed unless
you are connected to a domain.

Using the Configuration Tool

As soon as you start using the Configuration Tool, the right-hand column dedicated to
that tool is populated with tabbed folders in which you enter information needed for
configuration.

The tabbed folders in the Configuration Tool area are electronic forms that display and
solicit information about the attributes of an administrative object. A set of folders is
provided for each administrative class of objects (such as machines and servers). The
Introducing the BEA Tuxedo System 3-7

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure
number of attributes associated with a class varies greatly, depending on the class.
Therefore, you may find anywhere from one to eight folders displayed when you
invoke the tabbed folders for a selected object.

When the Configuration Tool area is populated, another row of buttons is displayed in
the main window, below the tabbed folders. These four buttons allow you to control
the configuration work done in the folders.

What Is the Tree

The Tree, which appears in the left-hand column of the main BEA Administration
Console window, is a hierarchical representation of the administrative objects that
make up a single BEA Tuxedo system domain. The BEA Administration Console
graphically depicts the relationship between each object and the others by showing its
nesting level and parent objects. You can choose to view a complete Tree (comprising
all configurable objects of all types in the domain) or a subset of objects.

After you have set up and activated a domain, the Tree is populated with labeled icons,
representing the administrative class objects in your domain.

What Is an Administrative Object

The Tree consists of a list of classes. Under each class name, the Tree provides a list
of the objects included in that class. For example, suppose your domain includes two
machines (both at SITE1) named romeo and juliet. Both machines are listed in the
Tree below the name of the class to which they belong: Machines. Thus they will be
listed as follows:

 Machines

 SITE1/romeo

 SITE1/juliet

The name of each object in the Tree is preceded by an icon. Each machine, for
example, is represented by a computer; each client, by a human figure.
3-8 Introducing the BEA Tuxedo System

Exploring the Main Menu of the BEA Administration Console
Using the Power Bar

The Power Bar appears near the top of the main BEA Administration Console window,
immediately below the Menu Bar. The Power Bar is a row of 12 buttons that allow you
to invoke tools for frequently performed administrative operations. They are labeled
with both icons and names. The following table explains the purpose of each button.

Press To

Stop Interrupt the current operation and return control to the
administrator (who can then request a new operation).

Refresh Redraw the current window to clarify text and graphics.

Search Look for a particular object class or object in the Tree.

Activate Begin the entire BEA Tuxedo system configuration or a
selected part of it.

Deactivate Terminate the entire BEA Tuxedo system configuration or a
selected part of it.

Migrate Move a server group or machine to an alternative location, or
swap the MASTER and BACKUP machines.

Logfile Display the ULOG file from a particular machine in the active
domain.

Event Tool Monitor system events.

Stats View a graphical representation of BEA Tuxedo system
activity.

Options Assign parameters for your administrative BEA
Administration Console session: (a) specify the location of
online documentation; (b) have objects sorted by name or class;
and (c) specify view-only or edit mode as your default working
mode.

CS Help Get context-sensitive help. Click on a designated area in a BEA
Administration Console window. A help window opens,
displaying text about the selected topic.
Introducing the BEA Tuxedo System 3-9

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure
Managing Operations Using the MIB

The AdminAPI is an application programming interface (API) for directly accessing
and manipulating system settings in the BEA Tuxedo Management Information Bases
(MIBs). You can use the AdminAPI to automate administrative tasks, such as
monitoring log files and dynamically reconfiguring an application, thus eliminating
the need for human intervention. This advantage can be crucially important in
mission-critical, real-time applications. Using the MIB programming interface, you
can manage operations in the BEA Tuxedo system easily. Specifically, you can
monitor, configure, and tune your application through your own programs. The MIB
can be defined as:

n An implementation-independent management database defined as a set of FML
attributes

n A programming interface that enables you to query the BEA Tuxedo system
(that is, to obtain information from the system through a get operation) or to
update the BEA Tuxedo system (that is, to change information in the system
through a set operation) at any time using a set of ATMI functions. Examples of
these functions include tpalloc, tprealloc, tpgetrply, tpcall, tpacall,
tpenqueue, and tpdequeue.

See Also

n MIB(5) in BEA Tuxedo File Formats and Data Descriptions Reference

n “Types of MIB Users” on page 3-11

n “Classes, Attributes, and States in the MIB” on page 3-11

Help Go to the beginning of the Administration topics, so you can
choose information that will be most helpful to you.

Press To
3-10 Introducing the BEA Tuxedo System

Types of MIB Users
Types of MIB Users

The MIB defines three types of users: system administrators, system operators, and
others. The following table describes each type.

Classes, Attributes, and States in the MIB

Classes are the types of entities such as servers and machines that make up a BEA
Tuxedo application. Attributes are characteristics of the objects in a class: identity,
state, configuration parameters, run-time statistics, and so on. There are a number of
attributes that are common to MIB operations and replies and common to individual
classes. Every class has a state attribute that indicates the state of the object. The state
of an object is either return to the user or new, changed state, if you are invoking an
operation on the MIB to change an object’s state.

Type of User Characteristics

Application administrator Person responsible for keeping an application running
successfully. The administrator is authorized to use all
administrative tools and all MIB administrative capabilities.
The administrator configures, manages, and modifies a running
production application.

System operator Person responsible for monitoring and reacting to the daily
operation of a production application. An operator monitors
statistics about a running application, sometimes reacting to
events and alerts by taking actions such as booting servers or
shutting down machines. An operator does not reconfigure an
application, add servers or machines, or delete machines.

Other People or processes (such as custom programs) that may need
to read the MIB but are not authorized to change the
application.
Introducing the BEA Tuxedo System 3-11

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure
Independent of classes is a set of common attributes that are defined in the MIB(5)
reference page. These attributes control the input operations, communicate to the MIB
what the user is trying to do, and/or identify to the programmer some of the
characteristics of the output buffer that are independent of a particular class.

Using Command-Line Utilities

The BEA Tuxedo system provides a set of commands for managing different parts of
the system. The commands enable you to access common administrative utilities.
These utilities can be used for the following tasks:

n Configuring your application using command-line utilities

n Operating your application using command-line utilities

n Monitoring your application using command-line utilities

Configuring Your Application Using
Command-line Utilities

You can configure your application by using command-line utilities such as the vi text
editor. Specifically, you can use command-line utilities to write the configuration file,
UBBCONFIG, and translate the file from a text format (UBBCONFIG) to a binary format
(TUXCONFIG), by running the tmloadcf command. Then you are ready to boot your
application.

You can dynamically administer your configuration by adding servers or machines,
deleting machines, and so forth. Updating TUXCONFIG (the binary file version),
however, does not update the UBBCONFIG (the text file version). To synchronize both
files, you need to back them up. To do this, you translate the binary file back to text by
running the tmunloadcf command.
3-12 Introducing the BEA Tuxedo System

Configuring Your Application Using Command-line Utilities

ds
Note: The UBBCONFIG is generated and stored by the application administrator in the
application directory (APPDIR).

Following is a list of common command-line utilities that you can use to configure
your application.

n tmconfig—a command that enables you to update some configuration file
parameters, or MIB attributes, and add records to some TUXCONFIG sections
while the BEA Tuxedo system application is running.

n tmloadcf—a command that allows you to load the binary TUXCONFIG
configuration file.

n tmunloadcf—a command that allows you to translate the binary configuration
file back to a text version, so that UBBCONFIG and TUXCONFIG can be
synchronized.

n tpacladd, tpaclcvt, tpacldel, and tpaclmod—a set of commands that allow
you to create or manage access control lists for applications. These comman
enable the use of security-related authorization features.

n tpgrpadd, tpgrpdel, tpgrpmod—a set of commands that allow you to create
and manage user groups by using access control lists to authorize access to
services, queues, and events.

n tpusradd, tpusrdel, tpusrmod—a set of commands that allow you to create
and manage a user database for authorization purposes.

See Also

n UBBCONFIG(5) in BEA Tuxedo File Formats and Data Descriptions Reference

n “Creating the Configuration File” on page 3-22

n “Making Permanent Configuration Changes” on page 3-24
Introducing the BEA Tuxedo System 3-13

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure

n

nts.

ct as
tation
at
nt is
Operating Your Application Using
Command-line Utilities

Once you have configured your application successfully, you can use the following
command-line utilities to operate your application.

n tmadmin—a command that allows you to configure, monitor, and tune a
distributed application.

n tmboot—a command that allows you to centrally start up your application
servers for a distributed application.

n tmshutdown—a command that allows you to centrally shut down an applicatio
program across a distributed application.

Managing System Events Using EventBroker

The BEA Tuxedo EventBroker performs the following tasks:

n Monitors events and notifies subscribers when events are posted via tppost(3c).

n Keeps an administrator informed of changes in an application by tracking eve

n Enhances event monitoring by providing a system-wide summary of events.

n Provides a mechanism through which an event can trigger a variety of
notification activities.

The EventBroker recognizes over 100 meaningful state transitions in a MIB obje
system events. The postings for system events include the current MIB represen
of the object on which the event has occurred, and some event-specific fields th
identify the event that occurred. For example, if a machine is partitioned, an eve
posted with the following information:

n The name of a machine class object (T_MACHINE), with all the attributes of that
machine
3-14 Introducing the BEA Tuxedo System

What Is an Event

he

ped

ss

er
n Some event attributes identifying the event as machine partitioned

You can use the EventBroker simply by subscribing to system events. Then, instead of
having to query for MIB records, you can be informed automatically when events
occur in the MIB by receiving FML data buffers representing MIB objects.

See Also

n “What Is an Event” on page 3-15

n “Subscribing to an Event” on page 3-16

n “Types of Events” on page 3-17

n “Using Event-based Communication” on page 1-14 in Tutorials for Developing
a BEA Tuxedo Application

What Is an Event

An event is a state change or other occurrence in a running application that may
warrant special attention from an operator, an administrator, or the software. In t
EventBroker, events are assigned one of three severity levels:

n Error, for example, a server has died or a network connection has been drop

n Informational, for example, a state change has occurred as a result of a proce
or the detection of a configuration change

n Warning, for example, a client has not been allowed to join the application aft
failing authentication
Introducing the BEA Tuxedo System 3-15

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure

se

t of
e
 sends

s,

torage

e

 to

d the
Subscribing to an Event

As the administrator for your BEA Tuxedo application, you can enter subscription
requests on behalf of a client or server process through calls to the EVENT_MIB(5). You
use tpsubscribe to subscribe to an event using the EventBroker. You may want to
subscribe to Events A, B, and C and request to be informed when they occur.

Each subscription specifies one of the following notification methods:

n Client notification—The EventBroker keeps track of the client’s interest in the
events and a client is notified in the form of unsolicited notification. Some
events are anonymously posted. A client can join an application, independen
whether anyone else has subscribed, and post events to the EventBroker. Th
EventBroker matches these events against its database of subscriptions and
an unsolicited notification to the appropriate clients.

n Service calls—If the subscriber wants event notifications to go to service call
then the ctl parameter must point to a valid TPEVCTL structure.

n Message enqueuing to stable-storage queues—For subscriptions to stable-s
queues, the queue space, queue name, and correlation identifier are used, in
addition to eventexpr and filter, when determining matches. The correlation
identifier can be used to differentiate among several subscriptions for the sam
event expression and filter rule, destined for the same queue.

n Placing messages on the ULOG—Using the T_EVENT_USERLOG class of
EVENT_MIB, subscribers can write system USERLOG messages. When events are
detected and matched, they are written to the USERLOG.

n Command-line utilities—Using the T_EVENT_COMMAND class of EVENT_MIB, the
EventBroker tracks and matches events. When a match is found, it is passed
the command used when subscribing to the event.

Note: Notification methods are determined by the subscriber process type an
arguments passed to tpsubscribe.
3-16 Introducing the BEA Tuxedo System

Types of Events

ibers
on.

t
Figure 3-3 Subscribing to an Event

See Also

n EVENT_MIB(5) in BEA Tuxedo File Formats and Data Descriptions Reference

n tpsubscribe(3c) in BEA Tuxedo C Function Reference

Types of Events

The BEA Tuxedo system supports two event types:

n System Events—provide details about BEA Tuxedo system events, such as
servers dying, and network failures. When an event is posted by clients or
servers, the EventBroker matches the posted event’s name to a list of subscr
for that event and takes appropriate action, as determined by each subscripti

n User Events or Application-specific Events—allow application programs to post
events when certain criteria are met. An example is a banking application tha
posts an event for withdrawals over a certain limit.
Introducing the BEA Tuxedo System 3-17

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure
Differences between System and Application-specific
Events

The following table identifies the differences between system and application-specific
events.

Table 3-1 Differences between System and Application-specific Events

Area Differences

Events System events are defined in advance by the BEA Tuxedo system code.
For an application, designers decide which application events should be
monitored. Application programs are written to: (a) detect when an event
of interest has occurred, and (b) post the event to the EventBroker through
tppost.

Event List A list of the application event subscriptions is made available to interested
users just as the BEA Tuxedo system provides a list of system events
available to users with EVENTS(5). System event names begin with a dot
(.); application-specific event names may not begin with a dot (.).

Subscriptions Subscribing to an event in an application-specific event broker is similar
to subscribing to the BEA Tuxedo System EventBroker. You subscribe by
making calls to tpsubscribe using the published list of events for the
application. EVENTS(5) lists the notification message generated by an
event as well as the event name (used as an argument when tppost is
called). Subscribers can use the wild card capability of regular expressions
to make a single call to tpsubscribe that covers a whole category of
events.
3-18 Introducing the BEA Tuxedo System

BEA Tuxedo Administrative Services
BEA Tuxedo Administrative Services

A set of system servers provides the following administrative services needed by the
BEA Tuxedo system:

n Application queue management

n Centralized application configuration

n Distributed application management

n Dynamic application reconfiguration

n Event management

n Security management

n Startup and shutdown of an application

n Transaction management

n Workstation management
Introducing the BEA Tuxedo System 3-19

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure
Managing Application Queues

Queueing enables programmers to write applications that communicate by accessing
one or more queues. Because of the location transparency of queues, administrators
can move queues from one machine to another without requiring any programming
changes.

The MIB consists of a queue device, queue spaces, and queues (required by an
application), and the BEA Tuxedo system servers that enqueue and dequeue messages
from a queue space. Administrators can use the BEA Administration Console or
command line utilities to define the queue spaces, queues, and administrative servers
in the MIB.

Using qmadmin to Administer Application Queues

The command-line utility qmadmin allows you to perform all administration functions
for the application queues in a configuration, that is, setting up the universal device list
(UDL) and volume table of contents (VTOC) that will contain a queue, defining queue
spaces within a queue device, and so on. qmadmin enables you to manipulate the file
system. Using some run-time monitoring capabilities, you can see how many messages
are in queues or how many headers are in messages. You can also change
characteristics of queues or messages on queues, delete messages on queues, change
the size of devices, and so on. In an application you can have multiple application
queue devices, and run application queues on multiple machines. Each machine has its
own queue device, so you can run qmadmin to monitor and manage a particular
application queue device on each machine.

Utility Description

qmadmin Provides for the creation, inspection and modification of message queues. The name of the
device (file) on which the universal device list resides (or will reside) for the queue space may
either be specified as a command line argument or through the environment variable
QMCONFIG. If both are specified, the command option is used.
3-20 Introducing the BEA Tuxedo System

Managing Application Queues
Using tmconfig to Modify Your Configuration

The tmconfig command enables you to browse and modify the TUXCONFIG file and
its associated entities, and to add new components (such as machines and servers)
while your application is running.

When you modify your configuration file (TUXCONFIG on the MASTER machine), the
tmconfig command:

n Updates the TUXCONFIG file on all machines in the application that are currently
booted.

n Propagates the TUXCONFIG file automatically to new machines as they are
booted.

n Runs as a BEA Tuxedo system client.

Note: Refer to the tmconfig, wtmconfig(1) and TM_MIB(5) in BEA Tuxedo
Command Reference and BEA Tuxedo File Formats and Data Descriptions
Reference for information on the semantics, range values, and validation of
configuration parameters.
Introducing the BEA Tuxedo System 3-21

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure
Managing Your Configuration

The configuration of any application is primarily controlled by the creation and
maintenance of a configuration file, or UBBCONFIG file. Managing your configuration
involves the following tasks:

n Creating the configuration file to suit your application needs

n Making permanent configuration changes by updating the UBBCONFIG file

n Changing your configuration while the application is running

Creating the Configuration File

Application configuration data is maintained in the UBBCONFIG, an ordinary text file
on the MASTER machine. The configuration file (UBBCONFIG) is a repository that
contains all the information necessary to boot an application, such as lists of its
resources, machines, groups, servers, available services, and so on. Once written, the
UBBCONFIG file is compiled into a binary file, TUXCONFIG. (If you are developing a
multi-domain application, you must provide a configuration file for each domain in the
application.) An application cannot run without a configuration file.

The UBBCONFIG file consists of eight sections, five of which are required for all
configurations: RESOURCES, MACHINES, GROUPS, SERVERS, and SERVICES. The
RESOURCES and MACHINES sections must be the first and second sections, respectively
(as illustrated in the following diagram). GROUPS must be ahead of SERVERS and
SERVICES.
3-22 Introducing the BEA Tuxedo System

Creating the Configuration File

s

Figure 3-4 UBBCONFIG File

n RESOURCES—(required) contains system-wide parameters that describe the
application as a whole

n MACHINES—(required) contains logical names and types of physical machines

n GROUPS—(required) associates servers with resource managers and machine

n SERVERS—identifies each server in the application

n SERVICES—identifies each service, and specifies priority, loading, and so on

n NETWORK—contains configuration data for LAN environments

n ROUTING—contains data-dependent routing tables

n NETGROUPS—allows for multiple BRIDGEs per machine

Your particular configuration determines which sections of the UBBCONFIG file are
required. Once you have written your UBBCONFIG file, you must compile it into a
binary file called TUXCONFIG. You can generate your TUXCONFIG file by running the
the tmloadcf(1) command or by using the BEA Administration Console.

See Also

n “How to Create a Configuration File” on page 3-2 in Setting Up a BEA Tuxedo
Application
Introducing the BEA Tuxedo System 3-23

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure
Making Permanent Configuration Changes

To make permanent configuration changes, the administrator can use a text editor to
update the configuration parameters in the UBBCONFIG file, and use the tmloadcf
utility to load the text file into the binary TUXCONFIG file used by the BEA Tuxedo
system. When the application is started, tmboot loads TUXCONFIG into shared memory
to establish the bulletin board, propagating the changes to remote machines if
necessary.

Figure 3-5 Configuration Management
3-24 Introducing the BEA Tuxedo System

Managing Your Configuration Dynamically

Managing Your Configuration Dynamically

Administrators can use the BEA Administration Console or the BEA Tuxedo system
command-line utilities to reconfigure applications dynamically, adjusting parameters
to respond to varying system loads while the system is running. A revised TUXCONFIG
file is propagated automatically to all machines in the system as it is updated.
However, many RESOURCES parameters cannot be changed while the system is
running.

Examples of tasks you can do dynamically include: adding servers or machines,
deleting machines, and so forth. To ensure that the text and binary versions of your
configuration file (UBBCONFIG and TUXCONFIG, respectively) always match, you need
to back them up and synchronize them by using tmunloadcf. This command
translates the binary file to a text version.

You can change most elements of the system dynamically. You can, for example,
spawn new servers, add new machines, or change time-out parameters. There are,
however, a few things you cannot change while a system is running:

n Any parameter in the configuration file that affects the size and shape of the
bulletin board cannot be changed. Many such parameters are named with the
prefix “MAX,” such as the MAXGTT parameter, which specifies the maximum
number of in-flight transactions allowed within the BEA Tuxedo system at any
time.

n The processor name of a machine within a particular application cannot be
changed. (You can add new machines with different names but you cannot
change the name of an existing machine.)

n The values of server executables, assigned to run on MASTER and BACKUP
machines, cannot be changed.

See Also

n “Performing Dynamic Operations Using tmadmin(1)” on page 3-26
Introducing the BEA Tuxedo System 3-25

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure

 is
Performing Dynamic Operations Using
tmadmin(1)

Using the tmadmin(1) command, you can perform any of the following operations to
a running application:

n Monitor performance by checking statistics on groups, servers, and services
(bbstats, bbparms)

n Modify server and service parameters such as those that change load values
(changeload), suspend and resume services (suspend and resume), advertise
and unadvertise services (advertise and unadvertise), and change the
AUTOTRAN time-out value (changetrantime)

n Boot (boot), cleanup (pclean), and migration (migratemach, migrategroup)

Commonly Used tmadmin Commands

tmadmin provides subcommands that enable you to monitor your run-time system,
tune your application, and dynamically configure your application. Following is a list
of the most commonly used tmadmin commands. (For a comprehensive list of the
tmadmin commands, refer to the tmadmin(1) in BEA Tuxedo Command Reference.)

n help - provides you with a list of subcommands, their abbreviation, arguments,
and descriptions.

n printserver (psr)—prints information for application and administrative
servers.

n printservice (psc)—prints information for application and administrative
services.

n printclient (pclt)— prints information for the specified set of client
processes. If no arguments or defaults are set, then information on all clients
printed.
3-26 Introducing the BEA Tuxedo System

Performing Dynamic Operations Using tmadmin(1)
Sample Output from the tmadmin Command

Following is sample output from the tmadmin printserver (psr) command, which
provides information about application and administrative servers.

Figure 3-6 Sample Output from the tmadmin printserver Command

>psr

Prog Name Queue Name Grp Name ID RqDone Load Done Current Service
--------- ---------- -------- -- ------ --------- ---------------
BBL 83108 SITE1 0 1 50 (IDLE)
AUDITC auditc BANKB1 1 0 0 (IDLE)
XFER 00001.00101 BANKB1 101 1 30 (TRANSFER)
TMS_SQL BANKB1_TMS BANKB1 30001 0 0 (IDLE)
ACCT 00001.00102 BANKB1 102 0 0 (IDLE)
TMS_SQL BANKB1_TMS BANKB1 30002 0 0 (IDLE)
BAL 00001.00103 BANKB1 103 6 7 (IDLE)
BTADD 00001.00104 BANKB1 104 0 0 (IDLE)
BALC 00001.00105 BANKB1 105 0 0 (IDLE)
TLR tlr1 BANKB1 111 0 0 (IDLE)
TLR tlr1 BANKB1 112 3 110 (WITHDRAWAL)
TLR tlr1 BANKB1 113 0 0 (IDLE)
TLR tlr1 BANKB1 114 0 0 (IDLE)
TLR tlr1 BANKB1 115 0 0 (IDLE)
TLR tlr1 BANKB1 116 9 100 (IDLE)
TLR tlr1 BANKB1 117 20 2048 (IDLE)
TLR tlr1 BANKB1 118 30 600 (IDLE)
TLR tlr1 BANKB1 119 0 0 (IDLE)
TLR tlr1 BANKB1 120 0 0 (IDLE)
>

See Also

n “How a tmadmin Session Works” on page 2-13 in Administering a BEA Tuxedo
Application at Run Time

n “Using Command-line Utilities to Monitor Your Application” on page 2-10 in
Administering a BEA Tuxedo Application at Run Time
Introducing the BEA Tuxedo System 3-27

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure

50

er to
A

ion
on

Managing a Distributed Application
Centrally

Even if your BEA Tuxedo application is large and complex, you can perform all
run-time administrative functions from one MASTER machine. You can do so using the
BEA Tuxedo system-supplied command-line utilities, or the BEA Administration
Console, or through your third-party administration tools used with the BEA Manager
product.

From the MASTER machine, you can configure your application, initiate start-up and
shutdown, and perform administrative tasks during runtime. All other machines can
query the MASTER machine. From the MASTER machine, you have control over
configuration, fault management, security, monitoring, and performance.

You can use the following two methods to make changes to your system while it is
running:

n The BEA Administration Console—a graphical user interface (GUI) to the
commands that perform administrative tasks, including dynamic system
modification

n The tmadmin command—a shell-level meta-command that enables you to run
subcommands for performing various administrative tasks, including dynamic
system modification

Because it is a graphical user interface, the BEA Administration Console is simpl
use than the tmadmin command interpreter. If you prefer using a GUI, bring the BE
Administration Console up on your screen as soon as you are ready to begin an
administrative task. Graphics and online help provided with the BEA Administrat
Console guide you through any task you need to perform. The following illustrati
shows how you can use the tmadmin command or the BEA Administration Console to
control a run-time application. All operations can be performed from the MASTER
machine. The utilities directly affect the bulletin board on the MASTER machine, and
updates are distributed to other bulletin boards automatically.
3-28 Introducing the BEA Tuxedo System

Managing a Distributed Application Centrally
Figure 3-7 Centralized Control of a Distributed Application

See Also

n “Using the BEA Administration Console” on page 3-4

n “Performing Dynamic Operations Using tmadmin(1)” on page 3-26
Introducing the BEA Tuxedo System 3-29

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure
Managing Security

Administrators can configure applications with appropriate levels of security provided
by the BEA Tuxedo system. Incremental levels of authentication and authorization can
be used to define access to an application. Levels can vary from no authentication for
highly secure environments, to a password or an access control list (ACL) that filters
who can use services, post an event, and enqueue or dequeue a message on a queue.

With an ACL, not only is a user authenticated when joining an application, but
permissions are checked automatically when attempts are made to access application
entities, such as services. When an ACL is created for a resource, users not included
on the list are denied access to the resource. Resources unprotected by an ACL are
accessible by any client who successfully joins the application. Resources unprotected
by an ACL with the MANDATORY_ACL security option specified, are denied for any
client who joins the application.

An application can be configured so that all servers (except AUTHSVR, the BEA Tuxedo
administration server) have restricted access to shared resources, such as shared
memory and message queues. When a client joins an application, AUTHSVR provides
an authentication service that verifies whether the user has the correct authentication
level (in the MIB). This service is transparent to the programmer.

See Also

n “Selecting Security Options” on page 3-31

n “Setting Up Security” on page 3-32

n “Administering Security” on page 2-1 in Using BEA Tuxedo Security

n “Programming Security” on page 3-1 in Using BEA Tuxedo Security
3-30 Introducing the BEA Tuxedo System

Selecting Security Options

word

with

d

l

ta

l),

ta
g

fer.
s
Selecting Security Options

The following are the security options provided by the BEA Tuxedo system:

n No authentication—Clients do not have to be verified before joining an
application.

n Application Password—A single password is defined for an entire application
and clients must provide the password to join the application.

n User-level Authentication—In addition to an application password, each client
must provide a valid user name and application-specific data such as a pass
to join the application.

n Optional Access Control List (ACL)—Clients must provide an application
password, a user name, and a user password. If there is no ACL associated
a user name, permission is granted. This practice enables an administrator to
configure access for only those resources that need more security; ACLs nee
not be configured for services, queues, or events that are open to everyone.

n Mandatory Access Control List (ACL)—Clients must provide an application
password, a user name, and a user password. This level is similar to optiona
ACL, but an access control list must be configured for every entity (such as a
service, queue, or event) that users can access. If mandatory ACLs are being
used and there is no ACL for a particular entity, permission for that entity is
denied.

n Link-Level Encryption—Users of BEA Tuxedo System Security can establish
data privacy for messages moving over the network links that connect the
machines in a BEA Tuxedo application. The BEA Tuxedo system encrypts da
before sending it over a network link and decrypts it as it comes off the link.
Three levels of security are offered: 0-bit (no encryption), 56-bit (internationa
or 128-bit (US and Canada).

n Public key encryption—Consists of message-based encryption and
message-based digital signature. Message-based encryption reveals user da
only to designated recipients. With message-based digital signature, a sendin
process must prove its identity, and bind that proof to a specific message buf
Any third party can verify the signature’s authenticity. Undetected tampering i
impossible because a digital signature contains a cryptographically secure
Introducing the BEA Tuxedo System 3-31

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure

.

ts

rity

checksum computed on the entire contents of a buffer. A digital signature also
contains a tamper-proof stamp based on the originating machine’s local clock

n Auditing—Collects, stores, and distributes information about operating reques
and their outcomes.

Setting Up Security

The type of administrative work and/or programming you must do to set up secu
for your application depends upon the security options that you choose.
Administratively, you need to configure the MIBs using either the BEA
Administration Console or the command-line utilities.

You can also build your own security mechanisms. To do so, set the application
security level to User-Level Authentication and specify an application service that
performs authentication in the BEA Tuxedo MIB.

To enable authentication and authorization, administrators must configure the
following in the MIB:

n AUTHSVR server

n Identity and passwords of authorized users

n Access control lists used on services, queues, and/or events
3-32 Introducing the BEA Tuxedo System

Starting Up and Shutting Down your Application

” on

e”

BEA

en

-9

r
Starting Up and Shutting Down your
Application

To start an application, you need to perform the following tasks as stated in
Administering a BEA Tuxedo Application at Run Time.

1. Set the environment variables as described in “How to Set Your Environment
page 1-2

2. Create the tuxconfig file as described in “How to Create the TUXCONFIG Fil
on page 1-4

3. Propagate the BEA Tuxedo software as described in “How to Propagate the
Tuxedo System Software” on page 1-5

4. Create a TLOG device, (if required) as described in “How to Create a TLOG
Device” on page 1-6

5. Start tlisten at all sites (MP environments) as described in “How to Start tlist
at All Sites” on page 1-7

6. Boot the application as described in “How to Boot the Application” on page 1

To shut down an application, you need to perform the following task.

Run tmshutdown on the MASTER machine as described in “How to Shut Down You
Application” on page 1-11
Introducing the BEA Tuxedo System 3-33

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure

all the
Managing Transactions

A powerful feature of the BEA Tuxedo system is the ability to manage transactions for
database applications that support the XA-interface. Transactions simplify the writing
of distributed applications. They allow your application to cope more easily with a
large set of problems that can occur in distributed environments, such as machine,
program, and network failures.

In a distributed architecture, a local machine involved in a transaction can
communicate with a remote machine which may, in turn, communicate with another
remote machine. The communication and the work done by the remote machines is
part of the transaction, and integrity must be maintained. Keeping track of distributed
transaction processing (DTP) can be a complex task because the system must maintain
enough information about a transaction to be able to roll it back (that is, to undo it) at
any moment.

Figure 3-8 Transaction Management

To keep track of the participants in a transaction, the BEA Tuxedo system creates a
transaction log. To maintain the state of an application as represented by the contents
of the computer’s memory, the BEA Tuxedo system uses one or more Resource
Managers (a collection of information and processes for accessing it, such as a
database management system). To coordinate all the operations performed and
modules affected by a transaction, the BEA Tuxedo system uses a Transaction
Manager (TM), which directs the actions of the RMs. Together, TMs and RMs
maintain the atomicity of a distributed transaction.
3-34 Introducing the BEA Tuxedo System

Managing Transactions

way
s
Coordinating Operations with a Transaction Manager
Server (TMS)

The BEA Tuxedo Transaction Manager (TM) is responsible for coordinating global
transactions involving system-wide resources. Local resource managers (RMs) are
responsible for individual resources. The transaction manager server (TMS) begins,
commits, and aborts transactions involving multiple resources. The server uses an
embedded SQL interface to the RM to read and update the database accessed by the
server group. The TMS and RMs use the XA interface to perform all or none of the
resource work in a global transaction.

Tracking Participants with a Transaction Log (TLOG)

A global transaction is logged in the transaction log (TLOG) only when it is in the
process of being committed. The TLOG records the reply from the global transaction
participants at the end of the first phase of a 2-phase-commit protocol. A TLOG record
indicates that a global transaction should be committed; no TLOG record is written for
those transactions that are to be rolled back. In the first phase, or pre-commit, each
Resource Manager must commit to performing the transaction request. Once all parties
commit, transaction management commits and completes the transaction. If either
tasks fails because of an application or system failure, both tasks fail and the work
performed is undone or “rolled back” to its initial state.

The TMS that coordinates global transactions uses the TLOG file. Each machine should
have its own TLOG.

Note: Customers using the Domains feature should note that the Domains gate
performs the functions of the TMS in Domains groups. However, Domains use
its own transaction log containing information similar to that in the TLOG, in
addition to Domains-specific information.

See Also
n “Using Transactions” on page 1-18 in Tutorials for Developing a BEA Tuxedo

Application

n “Configuring Your Application to Use Transactions” on page 5-1 in Setting Up a
BEA Tuxedo Application
Introducing the BEA Tuxedo System 3-35

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure

SH

an
Managing Workstations

Workstation clients need enough of the BEA Tuxedo system software to package the
information associated with a request. They can then send that information to a system
that supports all the BEA Tuxedo system software, including ATMI functions and
networking software.

The administrator configures one or more Workstation Listeners (WSLs) to be ready
for connection requests from Workstation clients. Each WSL uses one or more
associated Workstation Handlers (WSHs) to handle the client’s workload. Each W
manages multiple workstations, multiplexes all communication with a particular
workstation over a single connection.

Figure 3-9 Handling Workstation Clients

A machine can then handle thousands of workstation clients. An administrator c
define several WSLs in a domain to distribute and balance the workstation
communication load across multiple machines.
3-36 Introducing the BEA Tuxedo System

Development View: What You Can Do Using the ATMI
From a programming perspective, all client ATMI programming interfaces are
supported for workstation client development.

Development View: What You Can Do Using
the ATMI

The Application to Transaction Monitor Interface (ATMI), the BEA Tuxedo API,
provides an interface for communications, transactions, and management of data
buffers that works in all environments supported by the BEA Tuxedo system. It defines
the interface between application programs and the BEA Tuxedo system. The ATMI
offers a simple interface for a comprehensive set of capabilities. It implements the
X/Open DTP model of transaction processing.

Figure 3-10 Using the ATMI

The ATMI library offers you a variety of functions for defining and controlling global
transactions in a BEA Tuxedo application. Global transactions enable you to manage
exclusive units of work spanning multiple programs and resource managers in a
distributed application. All the work in a single transaction is treated as a logical unit,
Introducing the BEA Tuxedo System 3-37

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure
so that if any one program cannot complete its task successfully, no work is performed
by any programs in the transaction. Most ATMI functions support different
communication styles. These functions knit together distributed programs by enabling
them to exchange data. All ATMI functions send or receive data in typed buffers.
Following is a list of ATMI functions (for C and COBOL bindings), grouped by the
type of task they perform.

Table 3-2 Using the ATMI Functions

For a Task
Related to

Use This C Function Or This COBOL
Function

To

Client membership tpchkauth(3c) TPCHKAUTH(3cbl) Check whether authentication is
required

tpinit(3c) TPINITIALIZE(3cbl) Have a client join an application

tpterm(3c) TPTERM(3cbl) Have a client leave an
application

Buffer
management

tpalloc(3c) N/A Create a message buffer

tprealloc(3c) N/A Resize a message buffer

tpfree(3c) N/A Free a message buffer

tptypes(3c) N/A Get a message type and subtype

Message priority tpgprio(3c) TPGPRIO(3cbl) Get the priority of the last
request

tpsprio(3c) TPSPRIO(3cbl) Set the priority of the next
request

Request/Response
communications

tpcall(3c) TPCALL(3cbl) Initiate a synchronous
request/response to a service

tpacall(3c) TPACALL(3cbl) Initiate an asynchronous
request (fanout)

tpgetrply(3c) TPGETRPLY(3cbl) Receive an asynchronous
response

tpcancel(3c) TPCANCEL(3cbl) Cancel an asynchronous request
3-38 Introducing the BEA Tuxedo System

Development View: What You Can Do Using the ATMI
Conversational
communications

tpconnect(3c) TPCONNECT(3cbl) Begin a conversation with a
service

tpdiscon(3c) TPDISCON(3cbl) Abnormally terminate a
conversation

tpsend(3c) TPSEND(3cbl) Send a message in a
conversation

tprecv(3c) TPRECV(3cbl) Receive a message in a
conversation

Reliable queuing tpenqueue(3c) TPENQUEUE(3cbl) Enqueue a message to a
message queue

tpdequeue(3c) TPDEQUEUE(3cbl) Dequeue a message from a
message queue

Event-based
communications

tpnotify(3c) TPNOTIFY(3cbl) Send an unsolicited message to
a client

tpbroadcast(3c) TPBROADCAST(3cbl) Send messages to several
clients

tpsetunsol(3c) TPSETUNSOL(3cbl) Set unsolicited message
call-back

tpchkunsol(3c) TPCHKUNSOL(3cbl) Check the arrival of unsolicited
messages

N/A TPGETUNSOL(3cbl) Get an unsolicited message

tppost(3c) TPPOST(3cbl) Post an event message

tpsubscribe(3c) TPSUBSCRIBE(3cbl) Subscribe to event messages

tpunsubscribe(3c) TPUNSUBSCRIBE(3cbl) Unsubscribe to event messages

For a Task
Related to

Use This C Function Or This COBOL
Function

To
Introducing the BEA Tuxedo System 3-39

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure
Note: The use of ATMI transaction management functions is optional.

Transaction
management

tpbegin(3c) TPBEGIN(3cbl) Begin a transaction

tpcommit(3c) TPCOMMIT(3cbl) Commit the current transaction

tpabort(3c) TPABORT(3cbl) Roll back the current
transaction

tpgetlev(3c) TPGETLEV(3cbl) Check whether in transaction
mode

tpsuspend(3c) TPSUSPEND(3cbl) Suspend the current transaction

tpresume(3c) TPRESUME(3cbl) Resume a transaction

Service entry and
return

tpsvrinit(3c) TPSVRINIT(3cbl) Initialize a server

tpsvrdone(3c) TPSVRDONE(3cbl) Terminate a server

tpservice(3c) N/A Prototype for a service entry
point

N/A TPSVCSTART(3cbl) Get service information

tpreturn(3c) TPRETURN(3cbl) End a service function

tpforward(3c) TPFORWAR(3cbl) Forward request

Dynamic
advertisement

tpadvertise(3c) TPADVERTISE(3cbl) Advertise a service name

tpunadvertise(3c) TPUNADVERTISE(3cbl) Unadvertise a service name

Resource
management

tpopen(3c) TPOPEN(3cbl) Open a resource manager

tpclose(3c) TPCLOSE(3cbl) Close a resource manager

For a Task
Related to

Use This C Function Or This COBOL
Function

To
3-40 Introducing the BEA Tuxedo System

Run-Time System View: Using Tools in Different Configurations

esses
u can
ons.

in
See Also

n “Using the ATMI to Handle System and Application Errors” on page 2-28 in
Administering a BEA Tuxedo Application at Run Time

n “Creating a BEA Tuxedo Client” on page 1-2 in Tutorials for Developing a BEA
Tuxedo Application

n “Creating a BEA Tuxedo Server” on page 1-4 in Tutorials for Developing a BEA
Tuxedo Application

n “Using Typed Buffers in Your Application” on page 1-6 in Tutorials for
Developing a BEA Tuxedo Application

n “What Are the BEA Tuxedo Messaging Paradigms” on page 2-8

n “What Is Meant by Naming” on page 2-42

Run-Time System View: Using Tools in
Different Configurations

The BEA Tuxedo system provides tools to create, monitor, and manage both proc
and the communication that occurs between processes in a given application. Yo
use the basic processes and messaging paradigms in many different configurati
Each configuration falls into one of the following run-time categories:

n Single machine application—One or more local or remote clients communicate
with one or more servers residing on the same machine.

n Distributed application across multiple machines—One or more local or remote
clients communicate with one or more servers residing on several machines
one domain.

n Multiple-domain application—Two or more domains communicate with each
other.
Introducing the BEA Tuxedo System 3-41

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure
Run-Time System Capabilities

The following table lists the BEA Tuxedo system functionality available in a
single-machine application, a distributed application, and a multiple-domain
application.

Table 3-3 Functionality Available in Different Types of Configurations

Available Functionality Single-machine
Configuration

Multiple-machine
(Distributed)
Configuration

Multiple-domain
Configuration

ATMI X X X

Messaging paradigms X X X

Administrative Parts:

Bulletin Board (BB),Bulletin Board
Liaison (BBL), TLOG, UBBCONFIG,
ULOG, TUXCONFIG
Distinguished Bulletin Board Liaison
(DBBL)
Bridges

Domains processes:
DMADM, GWADM, GWTDOMAIN (for
TDomains), dmloadcf, dmunloadcf,
and DMCONFIG, DMTLOG and
BDMCONFIG

X X

X
X

X

X
X

X

Application processes: clients, servers, and
services

X X X

Queuing X X X

Transaction management X X X

Event management X X

Security management X X X
3-42 Introducing the BEA Tuxedo System

What Is a Single-machine Configuration
What Is a Single-machine Configuration

A single-machine configuration consists of one or more local or remote clients that
communicate with one or more servers residing on a single machine running one or
more business applications. Even though it may include multiple applications, this
type of configuration is considered a single domain because it is administered as a
single entity. All the managed elements (services, servers, and so on) of all the
applications in this configuration are defined in and controlled from one BEA Tuxedo
configuration file. The basic parts of a single-machine configuration when installed
and running on a single machine are illustrated in the following diagram.

Figure 3-11 A Single-machine BEA Tuxedo Configuration
Introducing the BEA Tuxedo System 3-43

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure
Table 3-4 Parts of a Single-machine Configuration

See Also

n “How to Create a Configuration File” on page 3-2 in Setting Up a BEA Tuxedo
Application

Single-machine Part Description

Bulletin Board (BB) A shared memory segment that holds configuration and
dynamic information for the system. It is available to all BEA
Tuxedo processes.

Bulletin Board Liaison
(BBL)

A BEA Tuxedo administrative process that monitors both the
data stored in the bulletin board (including any changes made
to it) and all application programs.

Clients Executable programs that periodically request services through
the BEA Tuxedo system. (Client programs are normally
written by customers.)

Message queues Communication between clients and servers is performed
through operating-system supported, memory-based message
queues.

Messaging paradigms Different models of transferring messages between a client and
a server. Examples include request/response mode,
conversational mode, events, and unsolicited communication.

Servers Executable programs that offer named services through the
BEA Tuxedo system. (Server programs are normally written
by customers.)

Workstation Handler
(WSH)

A multi-contexted gateway process on a server that manages
service requests from Workstation clients (that is, client
processes running on remote sites).

Workstation Listener
(WSL)

A server process running on an application site that listens for
and distributes connections from Workstation clients (client
process running on a remote site).

ULOG (User Log) A file in which error messages are stored.
3-44 Introducing the BEA Tuxedo System

What Is a Multiple-machine (Distributed) Configuration
What Is a Multiple-machine (Distributed)
Configuration

A distributed-domain (or multiple-machine) configuration consists of one or more
business applications running on multiple machines. Although it includes multiple
machines, this type of configuration is considered a single domain because it is
administered centrally as a single entity. In other words, all the elements (services,
servers, machines, and so on) of all the applications on all the machines in this
configuration are defined in, and controlled from, one BEA Tuxedo configuration file.

As a business grows, application developers may need to organize different segments
of the business by sets of functionality that require administrative autonomy but allow
sharing of services and data. Each functionality set defines an application that may
span one or more machines, and that is administered independently from other
applications. Such a functionally distinct application is referred to as a domain.

The names of domains frequently reflect the functionality provided. When domains
have names such as “marketing” and “research and development,” it is easy for
customers to find the applications they need.
Introducing the BEA Tuxedo System 3-45

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure
The basic parts of a configuration distributed across multiple machines are illustrated
in the following diagram.

Figure 3-12 Distributed Application

Table 3-5 Parts of a Distributed Configuration

Multiple Machine
Part

Description

BRIDGES BEA Tuxedo system-supplied servers within a domain that send
and receive service requests between machines, and route
requests to local servers (literally, to local server queues).
3-46 Introducing the BEA Tuxedo System

What Is a Multiple-machine (Distributed) Configuration
Bulletin Board (BB) A shared memory segment that holds configuration and dynamic
information for the system. It is available to all BEA Tuxedo
processes.

Bulletin Board Liaison
(BBL)

A BEA Tuxedo administrative process that monitors both the
data stored in the bulletin board (including any changes made to
it), and all application programs.

Clients Executable programs that periodically request services through
the BEA Tuxedo system. (Client programs are usually by
customers.)

Distinguished Bulletin
Board Liaison (DBBL)

A process dedicated to making sure that the BBL server on each
machine is alive and functioning correctly. This server runs on
the Master machine of a domain and communicates directly with
all administration facilities.

Message queues Communication between clients and servers is performed
through operating-system supported, memory-based message
queues.

Messaging paradigms Different models of transferring messages between a client and a
server. Examples include request/response mode, conversational
mode, events, and unsolicited communication.

Servers Executable programs that offer named services through the BEA
Tuxedo system. (Server programs are normally written by
customers.)

Workstation Handler
(WSH)

A multi-contexted gateway process on a server that manages
service requests from Workstation clients (that is, client
processes running on remote sites).

Workstation Listener
(WSL)

A server process running on an application site that listens for and
distributes connections from Workstation clients (client
processes running on remote sites).

ULOG (User Log) A file in which error messages are stored.

Multiple Machine
Part

Description
Introducing the BEA Tuxedo System 3-47

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure
A configuration that runs on more than one machine requires platform interoperability
and server transparency.

n Platform interoperability means that your application can rely on intermachine
communications even when different machines are running different operating
systems, without code customization.

n Server transparency means that a client can access a server without specifying
its location. The locations of servers are recorded in the bulletin board and
accessed as needed. As a result, servers can be moved, dropped, or added to an
application dynamically, without needing to change the application itself.

The DBBL and BRIDGE servers support these requirements of a distributed-domain
configuration.

See Also

n “How to Create the Configuration File for a Multiple-machine (Distributed)
Application” on page 3-3 in Setting Up a BEA Tuxedo Application

n “Distributing Applications Across a Network” on page 6-1 in Setting Up a BEA
Tuxedo Application

n “Creating the Configuration File for a Distributed Application” on page 7-1 in
Setting Up a BEA Tuxedo Application

n “Setting Up the Network for a Distributed Application” on page 8-1 in Setting
Up a BEA Tuxedo Application

n “Managing the Network in a Distributed Application” on page 4-1 in
Administering a BEA Tuxedo Application at Run Time
3-48 Introducing the BEA Tuxedo System

What Is a Multiple-domain Configuration
What Is a Multiple-domain Configuration
A multiple-domain configuration consists of two or more domains that communicate
with each other. Each domain may be either a single-machine configuration or a
multiple-machine configuration. Inter-domain communication is achieved through a
highly asynchronous multitasking gateway that processes outgoing and incoming
service requests to or from all domains. Multiple BEA Tuxedo domains can be
connected, allowing clients in one domain transparent access to services physically
located in remote domains. Each domain can share services and data, but is
administered separately.

The BEA Tuxedo system provides different types of gateways to accommodate
various network transport protocols. Following are the different types of Domains
gateways:

n The BEA Tuxedo Domains (TDomains) gateway provides interoperability
between two or more BEA Tuxedo applications through a specially designed TP
protocol that flows over network transport protocols such as TCP/IP.

n The BEA eLink for Mainframe-OSI TP gateways provides interoperability
between BEA Tuxedo applications and other transaction processing applications
that use the OSI TP standard. OSI TP is a protocol for distributed transaction
processing defined by the International Standards Organization (ISO).

n The BEA eLink for Mainframe-SNA gateway provides interoperability between
clients and servers in a BEA Tuxedo domain and clients and servers in an
MVS/CICS or MVS/IMS environment in remote SNA domains. It also connects
a local BEA Tuxedo domain to multiple SNA networks.

n The BEA eLink for Mainframe-TCP for CICS is a gateway connectivity feature
that makes it possible for non-transactional tasks within BEA Tuxedo regions to
access services provided by CICS application programs and vice-versa. It
enables a BEA Tuxedo domain to communicate via the TCP/IP network
transport protocol to a CICS environment.
The BEA eLink for Mainframe-TCP for IMS is a gateway connectivity feature
that provides transparent communications between client and server transactions
in an IMS system and a BEA Tuxedo domain, a CICS system, or another IMS
system.

n The TOP END Domain Gateway (TEDG) provides interoperability between
BEA TOP END systems and BEA Tuxedo domains.
Introducing the BEA Tuxedo System 3-49

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure
The basic parts of a multiple-domain configuration are illustrated in the following
diagram.

Figure 3-13 Multiple-domain Configuration
3-50 Introducing the BEA Tuxedo System

What Is a Multiple-domain Configuration
Table 3-6 Parts of a Multiple-domain Configuration

Multiple-domain Part Description

BRIDGES BEA Tuxedo system-supplied servers within a domain that
send and receive service requests between machines, and route
requests to local servers (literally, to local server queues).

Bulletin Board (BB) A shared memory segment that holds configuration and
dynamic information for the system. It is available to all BEA
Tuxedo processes.

Bulletin Board Liaison
(BBL)

A BEA Tuxedo administrative process that monitors both the
data stored in the bulletin board (including any changes made
to it), and all application programs.

Clients Executable programs that periodically request services through
the BEA Tuxedo system. (Client programs are normally
written by customers.)

Distinguished Bulletin
Board Liaison (DBBL)

Ensures that the BBL servers on each machine are alive and
functioning correctly. This server runs on the Master machine
of an application and communicates directly with any
administration facility.

Domains tools: DMADM,
GWADM, GWTDOMAIN,
dmloadcf,
dmunloadcf, and
DMCONFIG

n DMADM-the Domains administrative server

n GWADM-the gateway group administrative server that
registers with the DMADM server to obtain configuration
information used by the gateway group

n GWTDOMAIN-the gateway process that provides
connectivity to remote gateway processes (for TDomains)

n dmloadcf -translates the DMCONFIG file to a binary
BDMCONFIG configuration file

n dmunloadcf-translates the BDMCONFIG configuration
file from the binary representation into ASCII

n DMCONFIG-the Domains configuration file

Message queues Communication between clients and servers is performed
through operating-system supported, memory-based message
queues.
Introducing the BEA Tuxedo System 3-51

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure
See Also

n “What Is a Single-machine Configuration” on page 3-43

n “What Are the Domains Administrative Tools” on page 3-57

n “How to Create the Configuration File for a Multiple-domain Application” on
page 3-4 in Setting Up a BEA Tuxedo Application

Messaging paradigms Different models of transferring messages between a client and
a server. Examples include request/response mode,
conversational mode, events, and unsolicited communication.

Servers Executable programs that offer named services through the
BEA Tuxedo system. (Server programs are normally written
by customers.)

Workstation Handler
(WSH)

A multi-contexted gateway process on a server that manages
service requests from Workstation clients (that is, client
processes running on remote sites).

Workstation Listener
(WSL)

A server process running on an application site that listens for
and distributes connections from Workstation clients (client
processes running on remote sites).

ULOG (User Log) A file in which error messages are stored.

Multiple-domain Part Description
3-52 Introducing the BEA Tuxedo System

Features of a Multiple-domain Configuration
Features of a Multiple-domain
Configuration

A configuration that includes more than one domain requires platform interoperability
and server transparency:

n Platform interoperability means that your application can rely on intermachine
communications even when different machines are running different operating
systems, without code customization.

n Server transparency means that a client can access a server without specifying
its location. The locations of servers are recorded in the bulletin board and
accessed as needed. As a result, servers can be moved, dropped, or added to an
application dynamically, without needing to change the application itself.

What Is a BEA Tuxedo BRIDGE

A BEA Tuxedo BRIDGE is a server, provided by the BEA Tuxedo system, for sending
and receiving service requests between machines, and routing requests to local server
queues.

Each BRIDGE enables a network connection to be created with every other BRIDGE in
the system. Network connections are established as needed and then maintained
indefinitely. BRIDGEs are hidden servers, that is, they are started and stopped
automatically, as needed, without an explicit configuration entry. Messages are
asynchronously sent across these persistent network connections. No network
connection overhead is incurred for individual messages.
Introducing the BEA Tuxedo System 3-53

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure
Figure 3-14 Using BRIDGEs in a Multiple-machine (Distributed) Application

See Also

n “Setting Up the Network for a Distributed Application” on page 8-1 in Setting
Up a BEA Tuxedo Application

n “Creating the Configuration File for a Distributed Application” on page 7-1 in
Setting Up a BEA Tuxedo Application
3-54 Introducing the BEA Tuxedo System

What Is the Role of the Bulletin Board and Bulletin Board Liaison

s

d
 are

e

th
What Is the Role of the Bulletin Board and
Bulletin Board Liaison

The bulletin board (BB) is a memory segment in which all the application
configuration and dynamic processing information is held at run time. It provides the
following functionality:

n Assigns service requests to specific servers. When a service is called, the
bulletin board looks up servers that offer the requested service. Based on this
information, and any data-dependent routing criteria, the bulletin board places
the request data on the request queue of a valid server.

n Maintains dynamic information about the state of an application, such as how
many requests are waiting on a given server’s queue and how many request
have been processed.

n Provides server location transparency, allowing an application to be develope
independently of deployment. Therefore, development and deployment costs
minimized.

n Supports service name aliases, allowing multiple names to be assigned to th
same service. This capability is useful for constructing interpreters, such as
gateways.

The bulletin board liaison (BBL) is a BEA Tuxedo server that performs periodic heal
checks of the bulletin board and coordinates functions of all parts of the system.
Introducing the BEA Tuxedo System 3-55

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure

that
 as
e

by

nd
turn,
 by
its
e
Figure 3-15 Bulletin Board and Bulletin Board Liaison

What Are Clients and Servers

n Clients—A client is a program that collects a request from a user and passes
request to a server capable of fulfilling it. It can reside on a PC or workstation
part of the front end of an application gathering input from users. It can also b
embedded in software that reads a communication device such as an ATM
machine from which data is collected and formatted before being processed
BEA Tuxedo servers.

n Servers—A BEA Tuxedo server is a process that oversees a set of services a
dispatches services automatically for clients that request them. A service, in
is a function within the server program that performs a particular task needed
a business. A bank, for example, might have one service that accepts depos
and another that reports account balances. A server at this bank might receiv
requests from clients for both services. It is the server’s job to dispatch each
request to the appropriate service.
3-56 Introducing the BEA Tuxedo System

What Is the Distinguished Bulletin Board Liaison (DBBL)
What Is the Distinguished Bulletin Board
Liaison (DBBL)

The Distinguished Bulletin Board Liaison (DBBL) is the server that makes it possible
to distribute an application across multiple machines. The DBBL ensures that the
bulletin board liaison (BBL) server on each machine is alive and functioning correctly.
The DBBL runs on the MASTER machine of an application and communicates directly
with all administration facilities.

The DBBL ensures that configuration and service addressing information is replicated
to the bulletin board on each machine in the configuration. Servers located on remote
machines are accessed through the BRIDGE on the local machine. Servers on the local
machine are accessed directly. All local communications are performed through high
performance operating system message queues. Remote communications are
performed in two phases. First, service requests are forwarded to a remote machine
through the (local) BRIDGE. Second, when a request reaches the remote machine,
operating system messages are used to send the request to the appropriate server.

What Are the Domains Administrative Tools

To build a multiple-domain configuration, you need to integrate your existing BEA
Tuxedo application with other domains. You need to ensure interoperability across
domains, preserve access to services on all domains, and accept service requests from
all domains. You can perform these functions through a highly asynchronous
multitasking gateway that processes outgoing and incoming service requests to or from
all domains. To use the gateway, you must add entries for domain gateway groups and
gateway servers to the TUXCONFIG file. The following illustration shows the tools
provided by the BEA Tuxedo system for setting up and maintaining a multiple-domain
configuration.
Introducing the BEA Tuxedo System 3-57

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure
Figure 3-16 Domains Administrative Tools

Domains Tool Description

dmadmin(1) A command that allows you to configure, monitor, and tune
domain gateway groups dynamically. Use this command to
update the BDMCONFIG file while an application is running.
The command acts as a front-end process that translates
administrative commands to service requests to the DMADMIN
service, a generic administrative service advertised by the
DMADM server. The DMADMIN service invokes the validation,
retrieval, or update functions provided by the DMADM server to
maintain the BDMCONFIG file.

DMCONFIG(5),
BDMCONFIG

All Domains configuration information is stored in a binary
file called the BDMCONFIG file. You can create and edit the text
version of the Domains gateway configuration file,
DMCONFIG, with any text editor. You can update the compiled
BDMCONFIG file while the system is running.

dmloadcf and
dmunloadcf

dmloadcf—reads the DMCONFIG file, checks the syntax, and
optionally loads a binary BDMCONFIG configuration file

dmunloadcf—translates the BDMCONFIG configuration file
from binary to text format
3-58 Introducing the BEA Tuxedo System

What Are IPC Message Queues

m
What Are IPC Message Queues

The BEA Tuxedo system uses IPC message queues to support communication
between processes that are executed on a particular machine. IPC message queues are
transient memory areas, typically provided by the underlying operating system, used
for communication between clients and servers. By default, each server has its own
IPC message queue on which to receive requests and replies, referred to as a Single
Server, Single Queue (SSSQ). If you prefer, however, you can override the default and

DMADM(5) A Domains administrative server that enables you to manage a
Domains configuration at run time. DMADM provides a
registration service for gateway groups. This service is
requested by GWADM servers as part of their initialization
procedure. The registration service downloads the
configuration information required by the requesting gateway
group. The DMADM server maintains a list of registered gateway
groups, and propagates to these groups any changes made to
the configuration.

GWADM(5) A gateway administrative server that supports run-time
administration of a specific gateway group. This server
registers with the DMADM server to obtain the configuration
information used by the corresponding gateway group. GWADM
accepts requests from DMADMIN to obtain run-time statistics or
to change the run-time options of the specified gateway group.
Periodically, GWADM sends an “I-am-alive” message to the
DMADM server. If no reply is received from DMADM, GWADM
registers again. This process ensures the GWADM server always
has the current copy of the Domains configuration for its
group.

GWTDOMAIN(5) A gateway process that receives and forwards messages fro
clients and servers in all connected domains (for TDomains).

BDMCONFIG The binary version of the configuration file for a
multiple-domain configuration.

Domains Tool Description
Introducing the BEA Tuxedo System 3-59

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure
assign multiple servers to read from the same queue. This arrangement is referred to as
Multiple Servers, Single Queue (MSSQ). You can use both SSSQ and MSSQ sets in
the same application. Servers can be assigned to either type of queue.

When to Use Single Server, Single Queues (SSSQ)

To understand how SSSQ sets work, consider an analogy that can be found in your
supermarket, where there may be several checkout lines. Each line is like a separate
queue in which customers wait for a clerk at one register, who determines how fast that
line is serviced. If a delay is introduced by one person, each subsequent person is also
delayed on that line, but the delay has no effect on other lines. This scheme can be used
to load balance and throttle work across several servers offering different kinds of
services. Customers with relatively small requests can be processed by a server with a
separate queue, thus speeding throughput by guaranteeing available cycles or registers
for small requests.

When to Use Multiple Server, Single Queue (MSSQ) Sets

The MSSQ scheme offers additional load balancing through IPC messaging, which is
offered by the operating system. One queue is accommodated by several servers
offering identical services at all times. If the server queue to which a request is sent is
part of an MSSQ set, the message is dequeued to the first available server. Thus load
balancing is provided at the individual queue level.

When a server is part of an MSSQ set, it must be configured with its own reply queue.
When the server makes requests to other servers, the replies must be returned to the
original requesting server; they must not be dequeued by other servers in the MSSQ
set.

In many applications, Multiple Server, Single Queue (MSSQ) sets can play an
important role. They are ideal when you need to minimize the total waiting time for
services. If it is unacceptable for a service request to wait while a server capable of
fulfilling that request remains idle, MSSQ sets should be used.
3-60 Introducing the BEA Tuxedo System

What Are IPC Message Queues
We recommend using an MSSQ set in the following situations:

n Service turnaround time is paramount.

n You have a reasonable number of servers (between 2 and 12).

n Servers offer identical sets of services.

n The messages involved are reasonably sized (less than 75% of the queue size).

n You can configure MSSQ sets to be dynamic so they automatically spawn and
reduce servers based upon a queue load.

Note: For fault tolerance, you should always use MSSQ sets with two or more
servers.

An MSSQ set is inappropriate when long messages are being passed to services. Long
messages can cause a queue to be exhausted. When a queue is exhausted, either
nonblocking sends fail or blocking sends block.

We recommend against using an MSSQ set in the following situations:

n Buffer sizes are large enough to exhaust one queue.

n You have a large number of servers. (You can compromise by using a few
MSSQ sets.)

n Each server offers different services.

Example

To consider how MSSQ sets work, consider an analogy that can be found in your bank,
where several tellers performing identical services handle a single line of customers.
The next available teller always takes the next person in line. In this scenario, each
teller must be able to perform all customer services. In a BEA Tuxedo environment,
all servers set up to share a single queue must offer the identical set of services at all
times. The advantage of MSSQ sets is that they offer a second form of load balancing
at the individual queue level.
Introducing the BEA Tuxedo System 3-61

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure
What Are the Workstation Handler and
Workstation Listener

The Workstation component extends the availability of a native BEA Tuxedo
application to clients that reside on workstations. With this component, workstations
need not be within the administrative domain of the application.

The following figure shows an application with two Workstation clients (WSC). One
client is running on a UNIX system workstation, while the other client is running on
an NT workstation. Both WSCs are communicating with the application through the
Workstation Handler (WSH) process. Initially, both joined by communicating with the
Workstation Listener (WSL). The Workstation defines an environment in which
clients can access the services of an application through a surrogate handler process.

Figure 3-17 BEA Tuxedo Application with the Workstation Component
3-62 Introducing the BEA Tuxedo System

What Are the Workstation Handler and Workstation Listener
The programming environment on a Workstation is determined by the operating
system of the machine. A Local Area Network (LAN) provides a connection to the
administrative domain of the application, affording greater flexibility in the choice of
hardware and software platforms on which you can deliver application services.

How a Workstation Client Connects to an Application

A workstation client connects to an application in the following way.

Figure 3-18 WSC Connecting to an Application
Introducing the BEA Tuxedo System 3-63

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure

ging
r log.
.
is

e
 You

hould

ties
What Is the User Log (ULOG)

The user log (ULOG) is a file to which all messages generated by the BEA Tuxedo
system—error messages, warning messages, information messages, and debug
messages—are written. Application clients and servers can also write to the use
A new log is created every day and there can be a different log on each machine
However, a ULOG can be shared by multiple machines when a remote file system
being used.

The ULOG provides an administrator with a record of system events from which th
causes of most BEA Tuxedo system and application failures can be determined.
can view the ULOG, a text file, with any text editor. The ULOG also contains messages
generated by the tlisten process. The tlisten process provides remote service
connections for other machines. Each machine, including the master machine, s
have a tlisten process running on it.

How Is the ULOG Created

A ULOG is created by the BEA Tuxedo system whenever one of the following activi
occurs:

n A new configuration file is loaded.

n An application is booted.

Example of a ULOG Message

The following is an example of a ULOG message.

121449.gumby!simpserv.27190.1.0: LIBTUX_CAT:262: std main starting

A ULOG message consists of two parts: a tag and text.
3-64 Introducing the BEA Tuxedo System

What Is the User Log (ULOG)
The tag consists of the following:

n A 6-digit string (hhmmss) representing the time of day (in terms of hour, minute,
and second)

n The name of the machine (as returned, on UNIX systems, by the uname -n
command)

n The name and process identifier of the process that is logging the message. (This
process ID can optionally include a transaction ID.) Also included is a thread ID
(1) and a context ID (0).

Note: Placeholders are printed in the thread_ID and context_ID field of entries
for single-threaded applications. (Whether an application is multithreaded is
not apparent until more than one thread is used.)

The text consists of the following:

n The name of the message catalog

n The message number

n The BEA Tuxedo system message

Note: For more information about a message, note its catalog name and number.
With this information, you can look up the message in the appropriate catalog.

The Tag Indicates The Text Indicates

n The message was written into the log at
approximately 12:15 P.M.

n The machine on which the error occurred was gumby.

n The message was logged by the simpserv
process, which has a process ID of 27190.

n The thread ID is 1.

n The context ID is 0.

n The message came from the LIBTUX catalog.

n The number of the message is 262.

n The message itself reads as follows: std main
starting.
Introducing the BEA Tuxedo System 3-65

3 Three Ways of Viewing the BEA Tuxedo System Infrastructure
Where the ULOG Resides

By default, the user log is called ULOG.mmddyy (where mmddyy represents the date in
terms of month, day, and year) and it is created in the $APPDIR directory. You can
place this file in any location, however, by setting the ULOGPFX parameter in the
MACHINES section of the UBBCONFIG file.
3-66 Introducing the BEA Tuxedo System

CHAPTER
4 Integrating the BEA
Tuxedo Product Family
in an Enterprise
System

n BEA Product Integration

n Mainframe Connectivity: Using BEA eLink

n Internet Access: Using BEA Jolt

n Developing and Managing Applications: Using BEA Manager

n Online Transaction Processing: Using the Core BEA Tuxedo System

n Enabling Scalability: Using BEA Tuxedo Domains

n Storing Messages and Service Requests: Using BEA Tuxedo /Q

n Workstation Connectivity: Using BEA Tuxedo Workstation

n Developing Client-Server Architecture Using WebLogic Enterprise

n Developing and Managing Distributed Java-based Applications: Using BEA
WebLogic Server
Introducing the BEA Tuxedo System 4-1

4 Integrating the BEA Tuxedo Product Family in an Enterprise System

.
BEA Product Integration

The BEA product family facilitates end-to-end integration of heterogeneous hardware
and software environments allowing businesses to create enterprise-wide transaction
processing systems. BEA products enable companies to enjoy the benefits of robust
mission-critical applications with the flexibility of distributed client/server computing.
Compliant with all leading industry standards, BEA products enable developers to
build, deploy, manage, and connect enterprise-wide applications on more than 70
platforms. These products also provide complete integration with market-leading
application development tools, systems management solutions, and legacy
applications.

Among open middleware vendors, BEA provides the only complete, end-to-end
enterprise middleware solution that includes leading transaction processing
components, a Web application server, and messaging products.

BEA Product Suite

The BEA product suite includes the following:

n BEA eLink—is a family of connectivity products that seamlessly integrate BEA
Tuxedo distributed applications with mainframe applications.

n BEA Jolt—provides Internet access and complete JAVA development support
Jolt takes requests from JAVA-enabled clients and translates them into BEA
Tuxedo application calls.

n BEA Manager—provides tools for administration.

n BEA Tuxedo system comprises four components:

l BEA Tuxedo core product—The most widely deployed transaction
middleware for building high-performance, mission-critical, and reliable
distributed applications. It provides the industry leading middleware
framework for building scalable 3-tier client-server applications in
heterogeneous, distributed environments.
4-2 Introducing the BEA Tuxedo System

BEA Product Integration

e

,
l BEA Tuxedo Workstation—provides full support for clients on Windows,
OS/2, Mac, UNIX, and other platforms, allowing applications to use remot
clients that do not need a full BEA Tuxedo implementation.

l BEA Tuxedo Domains—extends the BEA Tuxedo client/server model to
provide transaction interoperability across domains.

l BEA Tuxedo /Q—allows clients and servers to store messages or service
requests for guaranteed processing.

n BEA WebLogic Enterprise—enables you to build, deploy, and manage
component-based solutions on a proven platform. Based on the power,
robustness, and demonstrated reliability of the BEA Tuxedo system, BEA
WebLogic Enterprise brings together the best of industry standards, such as
Common Object Request Broker Architecture (CORBA) and Enterprise Java
Beans (EJB). With the power of component-based programming, these tools
enable you to create a complete production-ready enterprise solution.

n BEA WebLogic Server—is a Java-application server that enables you to
develop, integrate, deploy, and manage large-scale, distributed Web, network
and database applications.
Introducing the BEA Tuxedo System 4-3

4 Integrating the BEA Tuxedo Product Family in an Enterprise System
Figure 4-1 Integration of BEA Products

Mainframe Connectivity: Using BEA eLink

The BEA eLink family of products offers seamless transactional
application-to-application interoperability between BEA Tuxedo applications and
IBM CICS and IMS applications, as well as OSI transaction monitors.

This interoperability is transparent to both end users and application programmers.
Native APIs and TP monitors are used on both sides of the interfaces.

See Also

n “Components of the BEA eLink Product Suite” on page 4-5
4-4 Introducing the BEA Tuxedo System

Components of the BEA eLink Product Suite
Components of the BEA eLink Product Suite

n BEA eLink for Mainframe - TCP/IP for MVS (for IMS and CICS)

n BEA eLink for Mainframe - SNA

n BEA eLink for Mainframe - OSI TP
Introducing the BEA Tuxedo System 4-5

4 Integrating the BEA Tuxedo Product Family in an Enterprise System
BEA eLink for Mainframe - TCP/IP for MVS (for IMS and
CICS)

The BEA eLink for Mainframe - TCP/IP gateway runs on the BEA Tuxedo system and
advertises services that are available on the IBM system, either in CICS regions or
under IMS.

On the mainframe, the TCP/IP for MVS communications stack is used by either the
BEA eLink for Mainframe - TCP/IP for CICS or the BEA eLink for Mainframe -
TCP/IP for IMS gateways to read requests from the BEA Tuxedo system and forward
them to local routines.

Buffer data representation conversions and buffer layout mappings are configurable at
the BEA eLink gateway. This gateway is unidirectional and nontransactional.

Figure 4-2 BEA eLink for Mainframe - TCP/IP
4-6 Introducing the BEA Tuxedo System

Components of the BEA eLink Product Suite
BEA eLink for Mainframe - SNA

With BEA eLink for Mainframe - SNA, a gateway on the BEA Tuxedo system maps
ATMI protocols to LU6.2/PU2.1 protocols. This mapping allows routines on the
mainframe to use CPIC or APPC functions to receive data from the BEA Tuxedo
system and forward that data to local routines, or to initiate requests to services in the
BEA Tuxedo system.

Buffer data representation conversions and buffer layout mappings are configurable at
the BEA eLink gateway. BEA eLink for Mainframe - SNA is fully transactional and
bidirectional.

Figure 4-3 BEA eLink for Mainframe - SNA
Introducing the BEA Tuxedo System 4-7

4 Integrating the BEA Tuxedo Product Family in an Enterprise System
BEA eLink for Mainframe - OSI TP

The BEA eLink for Mainframe - OSI TP product is similar to the BEA eLink for
Mainframe - SNA product.

Both are built on the BEA Tuxedo Domains architecture, and provide transparent
transactional bidirectional access through gateway processes, which translate between
the XATMI protocol and the protocol of the foreign TP system which, in this case, is
OSI TP.

Figure 4-4 BEA eLink for Mainframe - OSI TP
4-8 Introducing the BEA Tuxedo System

Internet Access: Using BEA Jolt
Internet Access: Using BEA Jolt

BEA Jolt allows BEA Tuxedo clients to be written in the Java language, thus making
such clients available through the Internet or intranets. The product consists of two
main components: the Jolt Class Library and the Jolt Repository. Both components can
be used with BEA Tuxedo applications that are not written in Java. With BEA Jolt, you
can create secure, scalable transactions, over the Internet, between clients and severs.

Figure 4-5 BEA Jolt

See Also

n “Components of BEA Jolt” on page 4-10
Introducing the BEA Tuxedo System 4-9

4 Integrating the BEA Tuxedo Product Family in an Enterprise System

s,
ng

lets

and
n

es

 on
Jolt

ith

.

Components of BEA Jolt

BEA Jolt consists of a Java Class Library and an API between Java clients and the BEA
Tuxedo system. It provides several components for creating Java-based client
programs that access BEA Tuxedo services and for enabling secure, reliable access to
servers inside corporate firewalls:

n Jolt Server—One or more Jolt servers listen for network connections from
clients, translate Jolt messages, multiplex multiple clients into a single proces
and submit and retrieve requests to and from BEA Tuxedo applications runni
on one or more BEA Tuxedo servers.

n Jolt Class Library for Java—The Jolt Class Library consists of Java class files
that implement the Jolt API. These classes enable Java applications and app
to invoke BEA Tuxedo services. The Jolt Class Library provides functions for
managing, retrieving, and invoking communication attributes, notifications,
network connections, transactions, and services.

n Jolt Repository—A central Jolt Repository contains definitions of BEA Tuxedo
system services. These Repository definitions are used by Jolt at runtime to
access BEA Tuxedo services. Using the Repository Editor, you can test new
existing BEA Tuxedo services independently of the client applications. You ca
export services to a Jolt client application or unexport services by hiding the
definitions from the Jolt client.

n Jolt Internet Relay—The Jolt Internet Relay is a component that routes messag
from a Jolt client to a Jolt Server Listener (JSL) or Jolt Server Handler (JSH).
This tool eliminates the need for the JSH and the BEA Tuxedo system to run
the same machine as the Web server. The Jolt Internet Relay consists of the
Relay (JRLY) and the Jolt Relay Adapter (JRAD).

The separation of BEA Jolt into these components permits the transactional and
Internet components of client/server applications to be implemented separately w
the security and scalability required for large-scale Internet and intranet services
4-10 Introducing the BEA Tuxedo System

Developing and Managing Applications: Using BEA Manager
Developing and Managing Applications:
Using BEA Manager

BEA Manager is an integrated set of software products that provides a complete
environment for developing, managing, integrating, and deploying BEA Tuxedo
applications using industry standard SNMP technology.

Figure 4-6 BEA Manager
Introducing the BEA Tuxedo System 4-11

4 Integrating the BEA Tuxedo Product Family in an Enterprise System
BEA Manager Components

Table 4-1 Purpose of BEA Manager Components
.

Components of the BEA Tuxedo Product

n BEA Tuxedo core product

n BEA Tuxedo Domains

n BEA Tuxedo /Q

n BEA Tuxedo Workstation

BEA Manager
Component

Purpose

BEA Manager Agent
Connection

Exposes the BEA Tuxedo Management Information Base
(TMIB) to a standard SNMP Management Console (for
example, OpenView, NetView, Tivoli, BMC). Information can
then be viewed and managed easily through the console as a
consolidated picture of the enterprise environment.

BEA Manager Agent
Integrator

Solves the problem caused by running multiple SNMP agents
on the same managed machine. It allows multiple SNMP
agents and subagents from any vendor to operate on the same
machine and to appear as a single SNMP agent to the SNMP
Management Console.

BEA Manager Agent
Development Kit

Enables developers to build their own SNMP agents to monitor
and control BEA Tuxedo (and non-Tuxedo) applications, and
any other specialized software or hardware.

BEA Manager Log Central A centralized log management system that consolidates log
messages from distributed machines to a single machine for
viewing, filtering, and managing. You can select the events to
be sent to an SMNP Management Console.
4-12 Introducing the BEA Tuxedo System

Online Transaction Processing: Using the Core BEA Tuxedo System
Online Transaction Processing: Using the
Core BEA Tuxedo System

The BEA Tuxedo system is a development platform that enables you to create
applications that mix and match hardware platforms, databases, and operating systems
to fit your business needs. The BEA Tuxedo system provides a foundation for
client/server architecture, request/response and conversational communications
interfaces, transaction support, and administration for a distributed application.

The BEA Tuxedo system provides all the features and benefits of a high-end Online
Transaction Processing (OLTP) system, including scalability, high performance,
mission-critical reliability, and standards support.

Figure 4-7 Architecture of a Basic BEA Tuxedo System

As shown in this illustration, the BEA Tuxedo system contains the following parts.
Introducing the BEA Tuxedo System 4-13

4 Integrating the BEA Tuxedo Product Family in an Enterprise System

o
in

 of
s
er
ch

n
y
Architectural Part Description

External interface layer This layer consists of interfaces between the user and the system.
It includes both tools for application development, such as
Simple Network Management Protocol (SNMP) agents,
and tools for administration, such as the BEA
Administration Console. The BEA Administration Console
and SNMP agents can interact with standard management
consoles. Thus a user can manage a BEA Tuxedo system and a
network configuration from one console. In addition, application
architects and developers can build their own administrative tools
or application- or market-specific tools on top of the MIB.

MIB (Management
Information Base)

The Management Information Base (MIB) is an interface that
enables users to program and administer a BEA Tuxedo system
easily.MIB operations enable you to perform all management
tasks (monitor, configure, tune, and so on). The MIB allows you
to perform one task to one object at a time or to build tool kits
with which you can batch tasks and/or objects. (For information
regarding the different parts of the MIB, see “Available BEA
Tuxedo System MIBs” on page 3-3.)

Administration Console A Web-based graphical user interface for managing BEA Tuxed
applications. The interface allows you to enter and modify data
the MIB. The BEA Administration Console makes these tools
available through a Web browser. The server-side components
the BEA Administration Console reside on one of the machine
in your BEA Tuxedo domain. To use the Console, you must ent
the URL of the server and download a set of Java applets, whi
implement the Console. The Console enables any user with a
supported browser to administer the BEA Tuxedo system.

ATMI (Application to
Transaction Monitor
Interface)

The interface between an application program and the BEA
Tuxedo system. The ATMI and the BEA Tuxedo system
implement the X/Open DTP model of transaction processing. A
abstract environment, the ATMI supports location transparenc
and hides the details of implementation. As a result,
programmers are free to configure and deploy BEA Tuxedo
applications without modifying the application code.
4-14 Introducing the BEA Tuxedo System

Enabling Scalability: Using BEA Tuxedo Domains

tion
odel
rvice
 and
ing
See Also

n “BEA Tuxedo System Architecture” on page 2-1

Enabling Scalability: Using BEA Tuxedo
Domains

Domains extends the BEA Tuxedo system client/server model to provide transac
interoperability across TP domains. This extension preserves the client/server m
and the ATMI interface by making access to services on a remote domain (and se
requests from a remote domain) transparent to both the application programmer
the user. Domains makes this possible through a highly asynchronous multitask
gateway that processes service requests to and from remote domains.

BEA Tuxedo Services
(administrative services
and application
processing services)

Services and/or capabilities common to the BEA Tuxedo system
infrastructure for developing and administering applications. The
application processing services available to developers include:
transactions, messaging paradigms, type validation, load
balancing, data-dependent routing, service prioritization, data
encoding, marshalling, and compression, and reliable queueing,
The administrative services include: distributed transaction
processing, security management, service naming, distributed
application administration, centralized application configuration,
dynamic reconfiguration, and domains partitioning.

Resource Manager A software product in which data is stored and available for
retrieval through application-based queries. The resource
manager (RM) interacts with the BEA Tuxedo system and
implements the XA standard interfaces. The most common
example of a resource manager is a database. Resource managers
provide transaction capabilities and permanence of actions; they
are the entities accessed and controlled within a global
transaction.

Architectural Part Description
Introducing the BEA Tuxedo System 4-15

4 Integrating the BEA Tuxedo Product Family in an Enterprise System
Figure 4-8 Multiple-domains Environment
4-16 Introducing the BEA Tuxedo System

Enabling Scalability: Using BEA Tuxedo Domains

.

and

s

ork
Features of BEA Tuxedo Domains

BEA Tuxedo Domains provides the following features:

n Aliasing capability—An administrator can map the service names used by a
remote application to the service names used by a local application, allowing
easy integration of applications that use different naming schemes.

n Availability—Multiple network addresses can be defined for a remote domain
An administrator can specify a backup domain for a set of services.

n Scalability and modular growth— Application programmers can structure their
applications for modularity, isolation of failures, and independent growth.
Interoperation with other TP applications can be achieved easily by adding a
description of the interfaces (that is, services) between a remote application
the Domains configuration.

n Security—The access control list (ACL) facility restricts access to local service
from a particular set of remote domains. The security feature also provides a
structuring capability for defining different views of the exported services
available to remote domains.

n Transparency and independence—Applications are completely unaware of
service distribution. Client application programmers need not know the
implementation changes made to a service, the location of a service, or netw
addresses. A service can be available on the same machine as a client, on
another machine in the local domain, or on a remote domain.

See Also

n “What Is a Domain” on page 4-18

n “What Is a Domains Gateway” on page 4-18

n “What Are Domain Gateway Types” on page 4-19

n “BEA Tuxedo Domains Components” on page 4-20
Introducing the BEA Tuxedo System 4-17

4 Integrating the BEA Tuxedo Product Family in an Enterprise System

so,

What Is a Domain

A domain consists of a BEA Tuxedo application running one or more business
applications. A single domain is defined in one configuration file and is administered
as a single entity.

What Is a Domains Gateway

A Domains gateway (GWTDOMAIN) is a server provided by the BEA Tuxedo system that
enables access to and from remote domains. A Domains gateway runs as a
Multiple-Server, Single-Queue set (MSSQ) in which each gateway uses a common
request queue and has its own reply queue. In addition, Domains provides two gateway
administrative servers. GWADM enables run-time administration of the Domains
gateway group. DMADM, a Domains administrative server, enables run-time
administration of Domains configuration information.

Domains gateways support the following functionality:

n Administration—A gateway can be booted or shut down exactly as any other
BEA Tuxedo server. Run-time administration is provided through an
administrative server, DMADM. Using DMADM, application administrators can
change the domain configuration file and tune the performance of a gateway
group.

n ATMI conversational model—Application programs can establish conversations
with programs running in another domain. Remote domains can establish
conversations with conversational services offered by local servers.

n ATMI request/response model—Application programs using the BEA Tuxedo
system can request services from applications running in another domain. Al
remote applications can request services from local servers. No changes are
required to the application programs.

n Multi-domain interaction—Gateways can communicate with multiple domains
of the same type.
4-18 Introducing the BEA Tuxedo System

What Are Domain Gateway Types

gh

ns

s to

e

al

nd

n Multi-network support—Gateways can communicate with other domains throu
a variety of networks such as Ethernet and Novell. However, a gateway is
limited by the capabilities of the networking library to which it is linked. In
other words, a gateway typically supports a single type of network.

n Transaction management—Application programs can interoperate with other
domains within a transaction. The gateway coordinates the commitment or
rollback of transactions running across domains.

n Typed buffer support—Gateways can perform encoding and decoding operatio
for all typed buffers defined by the application.

What Are Domain Gateway Types

Communication among domains is managed through a set of processes called
gateways. The BEA Tuxedo system offers the following types of domain gateway
accommodate different communication protocols:

n BEA Tuxedo (TDomains)—Domains provides interoperability between two or
more BEA Tuxedo applications through a specially designed TP protocol that
flows over network transport protocols such as TCP/IP.

n BEA eLink for Mainframe-OSI TP—provides interoperability between BEA
Tuxedo applications and other transaction-processing applications that use th
OSI TP standard. OSI TP is a protocol for distributed transaction processing
defined by the International Standards Organization (ISO).

n BEA eLink for Mainframe-SNA—allows BEA Tuxedo clients and servers to
operate with clients and servers in an MVS/CICS or MVS/IMS environment in
remote SNA domains. It also connects to multiple SNA networks from the loc
BEA Tuxedo domain.

n BEA eLink for Mainframe-TCP/IP for MVS (for CICS)—provides gateway
connectivity that makes it possible for non-transactional tasks within BEA
Tuxedo regions to access services provided by CICS application programs a
vice-versa. It enables a BEA Tuxedo domain to communicate, via the TCP/IP
network transport protocol, to a CICS environment. (A BEA Tuxedo domain is
the BEA Tuxedo application defined in a single configuration file.)
Introducing the BEA Tuxedo System 4-19

4 Integrating the BEA Tuxedo Product Family in an Enterprise System

r

D

d
n BEA eLink for Mainframe-TCP/IP for MVS (for IMS)—provides gateway
connectivity enabling transparent communications between client and server
transactions in an IMS system and a BEA Tuxedo domain, a CICS system, o
another IMS system.

n BEA TOP END Domain Gateway (TEDG)—provides interoperability between
TOP END systems and BEA Tuxedo domains. The TEDG supports fully
transactional bidirectional message passing and queueing between TOP EN
and BEA Tuxedo systems.

Figure 4-9 Domain Gateway Types

BEA Tuxedo Domains Components

BEA Tuxedo Domains includes the following components:

n A domain gateway—A BEA Tuxedo system program that enables access to an
from remote domains. There are four gateways:

l TDomains provides interoperability between two or more BEA Tuxedo
applications through a specially designed TP protocol that flows over
network transport protocols such as TCP/IP.
4-20 Introducing the BEA Tuxedo System

Storing Messages and Service Requests: Using BEA Tuxedo /Q

ervice
hrough
EA
nd
ssage
l BEA eLink for Mainframe-OSI TP provides interoperability between BEA
Tuxedo applications and other transaction processing applications that use
the OSI TP standard.

l BEA eLink for Mainframe-SNA enables BEA Tuxedo clients and servers to
operate with clients and servers in an MVS/CICS, MVS/IMS, or AS/400
environment in remote SNA domains. It also connects to multiple SNA
networks from the local BEA Tuxedo SNADOM.

l BEA TOP END Domain Gateway (TEDG) provides interoperability between
TOP END systems and BEA Tuxedo domains.

n A gateway administrative server(GWADM(5))—A BEA Tuxedo program that
enables run-time administration of a particular domain gateway group.

n A domain administrative server(DMADM(5))—A BEA Tuxedo program that
enables run-time administration of the configuration information required by
domain gateway groups.

n An administrative interface—An interface for the configuration and run-time
administration of the information required by domain gateways for
interoperation with other domains.

Storing Messages and Service Requests:
Using BEA Tuxedo /Q

The BEA Tuxedo /Q extension allows clients and servers to store messages or s
requests for guaranteed processing. The system guarantees requests are sent t
the transaction protocol to ensure safe storage. The administrative functions of B
Tuxedo /Q provide the administrator with a great deal of flexibility in establishing a
managing queues, and configuring system servers provided with the queued me
facility.
Introducing the BEA Tuxedo System 4-21

4 Integrating the BEA Tuxedo Product Family in an Enterprise System
Using the Message Queuing Server

A message queuing server (TMQUEUE) allows for transparent enqueueing and
dequeueing of messages. The following illustration shows how TMQUEUE works.

Figure 4-10 Queueing Messages Using TMQUEUE

qmadmin(1) is used to create the QUEUE SPACE (a set of queues managed by a queue
manager) with one queue (Queue1). The following flowchart explains how messages
are queued and dequeued.

Figure 4-11 Process of Enqueueing and Dequeueing Messages
4-22 Introducing the BEA Tuxedo System

Storing Messages and Service Requests: Using BEA Tuxedo /Q
Storing and Forwarding Messages

A forwarding server (TMQFORWARD) dequeues messages and forwards them to the
appropriate servers for processing. This allows transparent processing of enqueued
messages by BEA Tuxedo system servers unaware whether the incoming message was
sent as a normal request/response message or through the stable queue. A response by
the server is automatically enqueued to an associated reply queue for each message.
The following illustration shows how the TMQFORWARD server works.

Figure 4-12 Storing and Forwarding Messages using TMQFORWARD
Introducing the BEA Tuxedo System 4-23

4 Integrating the BEA Tuxedo Product Family in an Enterprise System
qmadmin(1) is used to create the QUEUE SPACE with four queues: Queue 1, Queue2,
Queue3, and REPLYQ. The following flowchart explains how messages are stored
and forwarded.

Figure 4-13 Process of Storing and Forwarding Messages

The TMQFORWARD(5) server is needed only if queued messages require a service call.
For example, a queue may be used (on a BEA Tuxedo client or server) for interprocess
communication in which one process places the message on the queue and another
removes it. (The call to tpdequeue(3c) and the use of a reply queue are also optional.)
4-24 Introducing the BEA Tuxedo System

Storing Messages and Service Requests: Using BEA Tuxedo /Q
BEA Tuxedo /Q Capabilities

n /Q makes it possible for an application, within a global transaction, to enqueue a
message in a stable storage area for processing at a later time.

n /Q provides administrators of BEA Tuxedo applications with functions for
processing messages on queues. The ATMI interface includes one function,
tpenqueue(3c), that allows clients and servers to store messages on a particular
queue, and another, tpdequeue(3c), that allows clients and servers to retrieve
messages from a particular queue. The qmadmin(1) command provides
administrative control of queues and queued messages.

n Requests can be dequeued on the basis of LIFO, FIFO, or time. Within LIFO and
FIFO, requests can be dequeued by priority.

n The queue space is a resource manager that complies with X/Open’s XA
interface to ensure data integrity in a distributed environment.

n When the BEA Tuxedo system is used in an environment in which a machine,
server, or resource is sometimes unavailable or unreliable, as in a wide-area
network, /Q can provide continuous processing, storing messages until the
resources necessary to process those messages are available.

n In batch processing of a potentially long-running transaction, you are guaranteed
that a message will be processed eventually so you do not have to wait until the
transaction is completed.

n /Q can be used for work flow provisioning such that each step generates a
queued request to perform the next step in a process. Mechanisms such as
data-dependent routing and priority handling are kept intact for queue-based
requests and replies.

n /Q can be combined with BEA Tuxedo Workstation to enqueue and dequeue
messages from Workstation clients. The interface for this combination is
available in both the C and COBOL programming languages.
Introducing the BEA Tuxedo System 4-25

4 Integrating the BEA Tuxedo Product Family in an Enterprise System
Workstation Connectivity: Using BEA Tuxedo
Workstation

The Workstation component of the BEA Tuxedo system allows application clients to
be located on remote sites that are not part of a BEA Tuxedo domain. These remote
sites do not support an administration server, an application server, or a bulletin board.
All communication between such a client and an application takes place over a
network. The following illustration shows a Workstation environment.

Figure 4-14 Connecting Clients Using Workstation

Workstation extends the benefits of the BEA Tuxedo system to the desktop at run-
time, and for programming and administering BEA Tuxedo applications. Run-time
advantages include: more dynamic connectivity, less administrative overhead, greater
security as it keeps clients off the server systems, greater server utilization as it
offloads CPU cycles and decreases process context switches, and a smaller footprint.

See Also

n “Workstation Components” on page 4-27
4-26 Introducing the BEA Tuxedo System

Workstation Components

te
s are

em
Workstation Components
The BEA Tuxedo Workstation components are:

n Workstation Clients—Clients use BEA Tuxedo Workstation to connect to the
BEA Tuxedo system. The BEA Tuxedo system supports multiple Workstation
clients running simultaneously on Windows, Windows NT, UNIX, and VMS
platforms. The ATMI is available to clients supported by Workstations.

n Workstation Handler (WSH)—A WSH manages one or more connections
between Workstation clients and native BEA Tuxedo servers, makes surroga
service requests, manages transactions, and returns replies. WSH processe
started and stopped by the WSL.

n Workstation Listener (WSL)—A WSL accepts connection requests from
Workstation clients and assigns connections to a Workstation Handler. It also
manages the pool of Workstation Handler processes, starting and stopping th
in response to load demands.

Figure 4-15 Workstation Components
Introducing the BEA Tuxedo System 4-27

4 Integrating the BEA Tuxedo Product Family in an Enterprise System
Developing Client-Server Architecture Using
WebLogic Enterprise

WebLogic Enterprise (WLE) provides businesses and organizations that depend on
mission-critical applications with the advantages of CORBA (Common Object
Request Broker Architecture)-compliant and Enterprise Java Beans (EJB)
programming models combined with the power, robustness, and proven reliability of
the BEA Tuxedo system. The WLE deployment infrastructure, based on the BEA
Tuxedo system, delivers secure, transactional, and distributed applications in a
managed environment. Traditional procedural OLTP functions are provided through
the WLE ATMI, which is based on the BEA Tuxedo ATMI.

Figure 4-16 WebLogic Enterprise

BEA WebLogic Enterprise provides companies with a reliable way to develop
e-commerce applications that can be distributed across thousands of local or
geographically dispersed computers. BEA WebLogic Enterprise delivers advanced
scalability, reliability, and expandability in a standards-based product. In a single
package, BEA WebLogic Enterprise offers customers wide flexibility in development
models and programming languages, including CORBA, Java, C++, C, COBOL, Java
2 Enterprise Edition (J2EE), and Enterprise Java Beans (EJBs). WLE also enables
companies to deploy their applications via a server that can scale to reliably support
4-28 Introducing the BEA Tuxedo System

Developing Client-Server Architecture Using WebLogic Enterprise
millions of online e-commerce customers. Customers can mix and match CORBA
objects, BEA Tuxedo services, and EJB components in the same application. In
addition, BEA WebLogic Enterprise provides a platform for end-to-end
Web-to-mainframe integration, helping businesses to offer a more competitive set of
products and services by harnessing their IT infrastructures in e-business initiatives,
instead of standalone Web sites.

Because BEA WebLogic Enterprise is built on a proven, reliable BEA Tuxedo engine,
this product provides all the features necessary to enable companies to deliver secure
e-commerce solutions rapidly.

Figure 4-17 WebLogic Server and WebLogic Enterprise
Introducing the BEA Tuxedo System 4-29

4 Integrating the BEA Tuxedo Product Family in an Enterprise System

are
s—
ch as

Developing and Managing Distributed
Java-based Applications: Using BEA
WebLogic Server

BEA WebLogic Server is a Java application server for developing, integrating,
deploying, and managing large-scale, distributed Web, network, and database
applications. BEA WebLogic Server makes it possible to build portable, scalable
applications that interoperate seamlessly with other applications and systems.

The principal advantage of BEA WebLogic Server is the power it brings to the
software development cycle. Low-level network services—for example, sockets—
isolated and handled automatically by higher level BEA WebLogic Server facilitie
such as its RichSockets™ and connection pool design. High-level components su
WebLogic Beans and WebLogic/JDBC provide enhanced JavaBeans and JDBC
development services for the WebLogic environment.

Figure 4-18 BEA WebLogic Server
4-30 Introducing the BEA Tuxedo System

Developing and Managing Distributed Java-based Applications: Using BEA WebLogic
WebLogic Server Implementations

BEA WebLogic Server offers the following implementations:

n The BEA WebLogic Server is the heart of a distributed application suite; it can
manage a broad range of software and hardware services within a distributed
computing framework.

n BEA WebLogic Server/JDBC is a Type 3 implementation of JDBC for use with
Java applets or applications. BEA WebLogic Server/JDBC provides a subset of
the Enterprise Java Standard services available in the BEA WebLogic
Application Server. These services include security, HTTP servlet support for
server-side programming, name services, and access control lists. BEA
WebLogic Server/JDBC comes with one of the industry-leading WebLogic
two-tier JDBC drivers for Oracle, Sybase, or MS SQL Server.

n BEA WebLogic Server JDBC Drivers are the most widely used JDBC drivers in
the industry. They include: Type 2 (2-tier) JDBC implementations for Oracle,
Sybase, and Microsoft SQL Server databases, and Type 4 implementations for
Microsoft SQL Server and Informix.

Advantages of Using BEA WebLogic Server

n Comprehensive support for the Enterprise Java Standards protects your
investment and makes it possible to build portable, scalable applications that
interoperate seamlessly with other applications and systems.

l Most Enterprise JAVA APIs (10 of 12) are fully implemented.

l The most comprehensive implementation of the Enterprise JavaBeans 1.0
specification, including session and entity beans, is provided.

n The critical front-end Web component of the BEA end-to-end enterprise
middleware solution is provided.
Introducing the BEA Tuxedo System 4-31

4 Integrating the BEA Tuxedo Product Family in an Enterprise System
4-32 Introducing the BEA Tuxedo System

	Copyright
	Contents
	1 BEA Tuxedo System Fundamentals
	For More Information
	What Is the BEA Tuxedo System
	Features of the BEA Tuxedo System
	Administrative Features
	Architectural Features
	Programming Features

	Anatomy of the Client/Server Model
	Characteristics of Client/Server Architecture
	Differences Between 2-Tier and 3-Tier Client/Server Architectures
	Client/Server Variations to Suit Your Needs

	How the BEA Tuxedo System Fits into the Client/Server Model
	What Are Clients, Servers, and Services in a BEA Tuxedo Environment
	What Is a BEA Tuxedo Client
	What Is a BEA Tuxedo Server
	What Are BEA Tuxedo Services

	Services Provided by the BEA Tuxedo System
	Administrative Services
	Application Processing Services

	BEA Family of Products

	2 BEA Tuxedo System Architecture
	Basic Architecture of the BEA Tuxedo System
	What You Can Do Using the ATMI
	What Are the BEA Tuxedo Messaging Paradigms
	What Is Conversational Communication
	How the EventBroker Works
	What Types of Events Are Reported
	How Are Events Reported
	What Is Queue-based Communication
	Using Application Queues

	What Is Request/Reply Communication
	What Is Synchronous Messaging
	What Is Asynchronous Messaging

	What Is Unsolicited Communication
	What Are Nested and Forwarded Service Requests
	Nested Requests
	Benefit of Nested Requests
	Example of a Nested Service Request

	Forwarded Requests

	How the BEA Tuxedo System Processes Messages
	What Are the Benefits of Service Request Processing

	What Are Typed Buffers
	Characteristics of Buffer Types

	Using the MIB
	Types of MIB Users
	Classes, Attributes, and States in the MIB
	BEA Tuxedo Application Processing Services
	What Is Data Compression
	What Is Data-dependent Routing
	Uses of Data-dependent Routing
	Example of Data-dependent Routing with a Horizontally Partitioned Database
	Example of Data-dependent Routing with Rule-based Servers
	Example of Data-dependent Routing with Distributed Application

	What Are Encoding and Decoding of Data
	What Is Data Encryption
	What Is Data Marshalling
	What Is Load Balancing
	Assigning a Load Factor

	What Is Message Prioritization
	What Is Meant by Naming
	Naming Services
	Advertising Services
	Naming Events

	BEA Tuxedo Administrative Services

	3 Three Ways of Viewing the BEA Tuxedo System Infrastructure
	Basic BEA Tuxedo System Infrastructure
	Management View: Using Administrative Tools
	Available BEA Tuxedo System MIBs

	Using the BEA Administration Console
	Browser Requirements

	Benefits of Using the BEA Administration Console
	Exploring the Main Menu of the BEA Administration Console
	Using the Configuration Tool
	What Is the Tree
	What Is an Administrative Object

	Using the Power Bar

	Managing Operations Using the MIB
	Types of MIB Users
	Classes, Attributes, and States in the MIB
	Using Command-Line Utilities
	Configuring Your Application Using Command-line Utilities
	Operating Your Application Using Command-line Utilities
	Managing System Events Using EventBroker
	What Is an Event
	Subscribing to an Event
	Types of Events
	Differences between System and Application-specific Events

	BEA Tuxedo Administrative Services
	Managing Application Queues
	Using qmadmin to Administer Application Queues
	Using tmconfig to Modify Your Configuration

	Managing Your Configuration
	Creating the Configuration File
	Making Permanent Configuration Changes
	Managing Your Configuration Dynamically
	Performing Dynamic Operations Using tmadmin(1)
	Commonly Used tmadmin Commands
	Sample Output from the tmadmin Command

	Managing a Distributed Application Centrally
	Managing Security
	Selecting Security Options
	Setting Up Security
	Starting Up and Shutting Down your Application
	Managing Transactions
	Coordinating Operations with a Transaction Manager Server (TMS)
	Tracking Participants with a Transaction Log (TLOG)

	Managing Workstations
	Development View: What You Can Do Using the ATMI
	Run-Time System View: Using Tools in Different Configurations
	Run-Time System Capabilities

	What Is a Single-machine Configuration
	What Is a Multiple-machine (Distributed) Configuration
	What Is a Multiple-domain Configuration
	Features of a Multiple-domain Configuration
	What Is a BEA Tuxedo BRIDGE
	What Is the Role of the Bulletin Board and Bulletin Board Liaison
	What Are Clients and Servers
	What Is the Distinguished Bulletin Board Liaison (DBBL)
	What Are the Domains Administrative Tools
	What Are IPC Message Queues
	When to Use Single Server, Single Queues (SSSQ)
	When to Use Multiple Server, Single Queue (MSSQ) Sets
	Example

	What Are the Workstation Handler and Workstation Listener
	How a Workstation Client Connects to an Application

	What Is the User Log (ULOG)
	How Is the ULOG Created
	Example of a ULOG Message
	Where the ULOG Resides

	4 Integrating the BEA Tuxedo Product Family in an Enterprise System
	BEA Product Integration
	BEA Product Suite

	Mainframe Connectivity: Using BEA eLink
	Components of the BEA eLink Product Suite
	BEA eLink for Mainframe - TCP/IP for MVS (for IMS and CICS)
	BEA eLink for Mainframe - SNA
	BEA eLink for Mainframe - OSI TP

	Internet Access: Using BEA Jolt
	Components of BEA Jolt
	Developing and Managing Applications: Using BEA Manager
	BEA Manager Components

	Components of the BEA Tuxedo Product
	Online Transaction Processing: Using the Core BEA Tuxedo System
	Enabling Scalability: Using BEA Tuxedo Domains
	Features of BEA Tuxedo Domains

	What Is a Domain
	What Is a Domains Gateway
	What Are Domain Gateway Types
	BEA Tuxedo Domains Components
	Storing Messages and Service Requests: Using BEA Tuxedo /Q
	Using the Message Queuing Server
	Storing and Forwarding Messages
	BEA Tuxedo /Q Capabilities

	Workstation Connectivity: Using BEA Tuxedo Workstation
	Workstation Components
	Developing Client-Server Architecture Using WebLogic Enterprise
	Developing and Managing Distributed Java-based Applications: Using BEA WebLogic Server
	WebLogic Server Implementations
	Advantages of Using BEA WebLogic Server

