ov,
2
P [4

7 hea
BEA Jolt

Using BEA Jolt

BEA Jolt Release 1.2.1
Documen t Edition 1.2.1
May 2000

Copyright
Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES

NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and Tuxedo are registered trademarks of BEA Systems, Inc. BEA Builder, BEA
Connect, BEA Manager, BEA MessageQ, BEA Jolt, M3, eSolutions, eLink, WebLogic, and WebLogic Enterprise
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.
Using BEA Jolt

Document Edition Date Software Version

121 May 2000 BEA Jolt 1.2.1

Contents

1.

Introducing BEA Jolt

What 1S BEA JOI? ...ttt e e e 1-2
JOIt COMPONENTS ...ttt 1-3

KBY FRAIUIES ...ttt 1-4

HOW BEA JOI WOTKS ..ottt e 1-5
JOIE SEIVEIS ettt 1-7
JOIE ClaSS LIDFAIY ..ceoiiieiie ittt 1-8
JOIBEANS ...t e 1-9
ASP Connectivity for BEA TUXEAOuvviiiiiiiiiieiiee e 1-10
Jolt Server and Jolt Client CommuNICatioN............ccovviviiiiiiee e 1-10
JOIE REPOSITONY ...ttt ettt bbb eeee e 1-11

JOlt REPOSITOrY EQItOrcciiveiiiiiiiiiiii ettt 1-12

JOIt INErNEt REIAY ..ot 1-13

Creating a Jolt Client to Access BEA Tuxedo Applications...........ccccccevueee. 1-14

Bulk Loading BEA Tuxedo Services

USING the BUIK LOAAET.......ccooiuiiiiiiiiiie ettt e 2-2
Activating the Bulk LOAErcooiiiiiieiiiiiiii e 2-2
Command LiNe OPLIONSeviiiiiiiie ettt 2-2
The BUlK LOAd Fileoeiiiiieiiie e 2-3
Syntax of the Bulk Loader Data Files ... 2-4
Guidelines for Using KeYWOrdSoocuueeiriiiiiineiiiiee e 2-4
Keyword Order in the Bulk Loader Data File............ccccoveeviniiiiieniiieeeee 2-5
Using Service-Level Keywords and Values............cccoovveieeiniiieie e 2-6
Using Parameter-Level Keywords and Valuescccooviiieiniinieenine 2-8
TroUDIESNOOTING.eeiiiieiee et 2-9
Sample BUlK LOAA Dat@.........ceeeiiiiiiiiiiiiii ettt 2-10

Using BEA Jolt iii

iv

3. Configuring the BEA Jolt System

QUICK CONFIGUIALIONeiiiiiiiiiis ettt 3-
Editing the UBBCONFIG Fileccoiuiiiiiiiiiiieiiiee e 3-2
Configuring the Jolt REPOSItOrYevieiiiiiie it 3-3

IN the GroUPS SECHON:ccciiiiiiiii e 3-
IN the SErvers SECLION ...t 3-
Initializing Services That Use BEA Tuxedo and the Repository Editor.... 3-4
Getting Started with the Repository Editor...........ccccoevvieeeniieee i 3-4
Starting the Repository Editor Using the Java Applet Viewer............ 3-5
Starting the Repository Editor Using Your Web Browser.................. 3-5
Logging on to the Repository EAItOr ... 3-€
Repository Editor Logon Window Descriptionccccovvveeeiineenens 3-8
EXiting the Repository EditOr..........cocoiieiiiiiiiiiiie e 3-C
Configuring the BEA Tuxedo TMUSREVT Server for Event
SUDSCIIPLION i e 3-1(
Configuring JOIt REIAYueviiiiiiiiiii e 3-11
ON UNIX ot e 3-11
ON UNIX @NA NT oot 3-11

Jolt Background INfOrmationoooiiiiiiiiiiiiie e 3-1:
JOIE SEIVET <.t 3-1
STArtNG The JSL ..o 3-1
Shutting DOWN the JSL....c..viiiiiiiiiii et 3-1
Restarting the JSL........cooiiii e 3-1
ConfigUIING the JSLoeiiiiiiiie e 3-1!
JSL Command-Line OPtioNScooiiiiiiiiiiiiie ettt 3-1¢
Security and ENCryptioncoooiiiiiii i 3-1¢

JOIE REIAY ... e 3-2
Jolt Relay FalOVET..........uoiiiiiiiii e 3-2

Jolt Client to JRLY Connection Failover..........cccoocuvviiiiniiiieiniiieen, 3-22

JRLY to JRAD Adapter Connection Failoverccccccvviinninns 3-22
JOIt REIAY PrOCESS.....eiiiiiitiiiie et 3-2

Starting the JRLY 0n UNIX ... 3-23
JRLY Command-Line Options for NT.......c.coeeiiiiiieiiiiiieiee e 3-23
JRLY Command-Line Option for UNIXccccoiiiiiiiiniiiieeniee e, 3-26
JRLY Configuration Fileccoiiiiiiiii e 3-27

Using BEA Jolt

JOIt RelAY AQAPLET ... 3-29
JRAD CONfIQUIALIONeviiiiiiiiiie ettt 3-29
Network Address ConfigurationS............ceceiiiiiiriiiiieeenie e 3-30

JOIE REPOSIEOIY ...ttt et 3-31
Configuring the JOIt REPOSILOYcoovvvvieiiiiiiiiiiiiee e 3-31

GROUPS SECHONciiiiiiiiieiiiit ettt et 3-32

SERVERS SECHON ...occiiiiiiiii ittt 3-32

REPOSILONY File .. .eeiiii it 3-33
Initializing Services By Using BEA Tuxedo and the Repository Editor. 3-34

EVENt SUDSCIIPLION. ... e 3-35
Configuring for Event SUDSCHPLIONcoiiiiiiiiiiie e 3-35
Filtering BEA Tuxedo FML or VIEW BuUffers.........cccccve i 3-36

BUFFEI TYPES ..ottt 3-36
FML Buffer EXamPle........oooiiieiee e 3-37

BEA Tuxedo Background Informationc.ccceeeiiiiiininiiiiiiiiee e 3-38
Configuration Fileoooiiiiie e 3-38
Creating the UBBCONFIG File..........cooiiiiiiiiieiiiee e 3-38

Configuration File FOrmMatc.ueeiiiiiiiiiiiiiiee e 3-39
MACHINES SECHONeiiiiiiiiiieiiiii ittt 3-40
GROUPS SECHONciiiiiiiiiieitiit ettt et 3-41
SERVERS SECHON ...ccoiiiiiiiii ittt 3-42
Parameters Usable With JSL..........ccco i 3-43
Optional Parameters..........oooiiiiieiiiiiiies e 3-43
RUN-tIME Parameters.........coooiiiiiiiiie e 3-45
Parameters Associated with RESTARTuovveiiiiiiiiiiiiieee e 3-47
Entering Parametersc..oooiiiiiiiiiieee e 3-48

Sample Applications in BEA Jolt Online RESOUICESccceevveiiiiieieeniiieeenne 3-49

Using the Jolt Repository Editor

Introduction to the Repository EditOr.... ... e 4-2
Repository Eitor WINAOW...........ceeeiiiiiiie it 4-2
Repository Editor Window DesCriptioncoccvieeriiiiieiiiiieie e 4-4

Using BEA Jolt %

Vi

GetliNg STAMEUeeiii it e 4

Starting the Repository Editor Using the Java Applet Viewer................... 4-5
Starting the Repository Editor From Your Web Browser.............ccccceenne. 4-6
To start from a local file:........oooiiiiii e 4-6
To start from a Web SErVer: ... 4-¢
Logging on to the Repository EdItOr ... 4-7
Repository Editor Logon Window Descriptionccccceceeennne 4-9
EXiting the Repository EditOr..........coccieiiiiiiiiie e 4-C
Main Components of the Repository Editor ..., 4-1
RepOoSitory EAItOr FIOWc.ceiiiiiiiiii it 4-11
What IS @ PACKAGE?cei ittt 4-
Packages WIindow DesCriptioN...........coouiviiiiiiiiie e 4-1F
Instructions for Viewing a Packageccccccveiiiiiiiiiiiiiecniieee s 4-15
WHhAL IS @ SEIVICE? ..ttt 4-1
Services Window DeSCrPLONcc.uuvveeriiiiieiiiiiies e 4-17
Instructions for Viewing a ServiCecccieiiiieieiiiiiee e 4-17
Working With Parameterscceeiiiiiiiie e 4-1
Instructions for Viewing a Parametercccocovveeriiiiieiiiiieeen e, 4-19
Setting Up Packages and SEIVICES........cciiiiiiiiiiiiiiieniiie et 4-
SAVING YOUI WOTK. ettt 4-2(
AddING @ PACKAGEeieiiiiiiiii ittt 4-2
Instructions for Adding a Packageccocceviiiiiiiiiniiiccnee e, 4-272
AAAING 8 SEIVICE ...t e 4-2.
Adding a Service Window DesCription...........ccocoveeiiiiieieeeniiieee e 4-24
Instructions for Adding & SEerviCecccviiiiiiiiiiiiieie e 4-25
Selecting CARRAY or STRING as a Service Buffer Type.............. 4-26
AddINg @ PArameterc.iuiiiiiiiiie et 4-2
Adding a Parameter Window DeSCriptioncccccvveeeniineeeininnnnn. 4-28
Instructions for Adding a Parametercccoccvveeniiiiieeininiieiee e, 4-2¢
Selecting CARRAY or STRING as a Parameter Data Type 4-29
Grouping Services Using the Package Organizer..........cccocoveeiiiiieeininiineeenns 4-;
Package Organizer Window DescCriptioncccvveeriiiiieniiiiiee e, 4-33
Instructions for Grouping Services with the Package Organizer 4-33

Using BEA Jolt

Modifying Packages, Services, and Parameters............ccccoooeeiveiiiieie e, 4-35

EdItiNg 8 SEIVICE ...ooiiiiiiiiee ettt 4-35
Instructions for Editing @ ServiCeccccccviiiiiiniinie e 4-37
Editing @ Parameter 4-37
Instructions for Editing a Parameterccccovieiiiiiiiiiiiniee e 4-38
Deleting Parameters, Services, and Packages............cccccccevviiniciiinene 4-39
Deleting @ Parameter..........oooueiiiiiiiiiien et 4-39
DeletiNng @ SEIVICE ...coii ittt 4-40
Deleting @ PaCKAJEueeviiiiiiie ettt 4-40
Making a Service Available to the Jolt Client............ccccooviiiiiin e 4-41
Exporting and Unexporting SErvICESccceviiiiiiieniiiiie et 4-41
Reviewing the Exported and Unexported Status............occceeeeviieeiiinienenne 4-43
TTESHNG @ SEIVICE ...eeiiiiitiie ittt et e s sen e ee s 4-44
Jolt Repository Editor Service Test WiNdOW...........ccccoviiiiiiciiiniiieens 4-45
Service Test WIindow DeSCriptionevviiieiiieniiieee e 4-47
TESHNG @ SEIVICE ..ottt 4-48
Test Service Process FIOWcoooiiiiiiiiiiiieiiee e 4-48
Instructions for TeStiNg @ SEIVICEceeviiiiieiiiiiie e 4-49
Repository Editor TroubleShOotingcoiiiiiiiiiiiiie e 4-50
Repository Enhancements for JOIt.... ... 4-52

Using the Jolt Class Library

Class Library Functionality OVEIVIEWcceeieiiiiiiieniiice e 5-2
Java Applications vs. Java ApPIetsS ..ot 5-2
Jolt Class Library FEAUrESccoiiiiiiiiiiiii et 5-3
Error and Exception Handling.........c..euveoiiiiin e 5-3
Jolt Client/Server RelationShip.........c.cuviiiiiiiii e 5-4

Jolt Object RelatioNShIPSccoviiiii i 5-7

Jolt Class Library Walk-through ... 5-8
Logon and LOGOff.........ooiiiiiiiiie e 5-8
Synchronous Service Callingcoooiiiiiiiiiii e 5-8
Transaction Begin, Commit, and Rollbackccccoovieiiiiiiieiiniieeene 5-9

Using BEA Jolt Vi

Using BEA Tuxedo Buffer Types with JOItccoooiiiiiiiiiiiie s 5-14

Using the STRING BUffer TYPe......oouiiiiiiiiie e 5-15
Define TOUPPER in the Repository EditOr...........ccoocieniiiieecnnne. 5-15
ToUpper.java Client COUe.........covuiiiiiiiiiiiiiiieee e 5-17

Using the CARRAY BUFfer TYPeoooiiiiiiiieee e 5-19
Define the Tuxedo Service in the Repository Editorc......... 5-19
tryONnCARRAY .java Client COde..........ccuveiiiiiiiiiiiiiiieeie e 5-22

Using the FML BUFfer TYPE....ooi it 5-23
tryOnFml.java Client Codeccoviiiiiiiiiiiiieiieee e 5-24
FML Field DefiNitioNSccooiiiiii it 5-25
Define PASSFML in the Repository Editor...........cccceevvieeeiiiiiiennnn. 5-25
tryONFMI.C SErver COUEoeiiiiiiiiie i 5-2¢

Using the VIEW BUffer TYPe.......ooiiiiiiii e 5-30
Define VIEW in the Repository Editor...........cccovoiieiiiiiiieieiiiiieeens 5-30
simpview.java Client COAEuuiiiiiiiiiieiiet e 5-33
VIEW Field Definitionsccovieiiiiiie e 5-34
SIMPVIEW.C SEIVEr COR.....coiiiiiiiiiiiii et 5-3!

Multithreaded APPIICALIONScoiiiiieiiiiie e 5-31

Threads Of CONIOL.......coo i 5-3
Preemptive Threading ... 5-3
Non-preemptive Threadingcoocvuiieriiiiieiiiie e 5-3€

Using Jolt with Non-Preemptive Threading..........cccceveeiiiiieiniiiiien e, 5-38

Using Threads for Asynchronous Behaviorccccccoviieiniicienienen, 5-3¢

Using Threads With JOIt.............cooiiiiiiiii e 5-3¢

Event Subscription and Notifications ..o, 5-4:

Event SUDSCIIPLION ClIaSSES........cuiiiiiiiiiiiiiiiie et 5-4

Notification Event Handler.............cccooiiiiiiii e 5-44

CONNECHION MOUES ...ttt 5-4

Notification Data BUfErsScevieiiiiiiiiii e 5-45

BEA Tuxedo Event SUDSCHPLIONcoocuviieiiiiie e 5-4¢€
Supported SUbSCHPION TYPES ..ccoviiiiiiiieiiiii e 5-4¢
Subscribing to NOtIficationS..........coooviiiiiiii e 5-46
Unsubscribing from Notifications............cccceiviiiiiniiieee e, 5-47

Using the Jolt API to Receive BEA Tuxedo Notifications 5-48

viii Using BEA Jolt

Clearing Parameter ValUesc.ccooiiiiiiiiiiiiiee e 5-49

REUSING ODJECESciiiiieit et 5-51
Deploying and Localizing Jolt APPIEtSevviiiiiiie e 5-55
Deploying @ JOIt APPIEL.......ooii it 5-55
Client Considerationscccooeeviiiii i 5-56
Web Server Considerations.............coovviviiiiieiieiieie e 5-56
Localizing @ JOIt APPIELveeeiie e 5-57
Using JoltBeans
Overview Of JOIE BEANSccoiiiieie e s 6-2
JORBEANS TEIMS ..ttt et e e ettt e ee et aannes 6-3
Adding JoltBeans to Your Java Development Environment 6-4
Using Development and Run-time JoltBeanscccoceveeeiiiiiieiiiiien e 6-5
Basic Steps For Using JOIBEANScoiuiiiiiiiiiiir e 6-5
JavaBeans Events and BEA Tuxedo EVENLScccceviiiiieieiiiiiceiiiee e 6-6
Using BEA Tuxedo Event Subscription and Notification with JoltBeans. 6-6
How JoltBeans Use JavaBeans EVENtS..........cooviiiiiiiiiiiie e 6-7
The JoItBEANS TOOIKIt........viiiie e s 6-8
JOISESSIONBEAN... ... 6-9
JOISENVICEBEAN ... e 6-10
JORUSEIEVENIBEAN ..o s 6-11
JOI-AWAIE GUI BEANSveiveiieiiitiit e et e s e e e e e e e e e e e e e eeeee e e e aee e aee e veeaens 6-11
JORTEXIFIEI.o e e e e e e ae e 6-12
JORLADEL ... e e 6-12
O Lo] | 1 PP PP PTROURUPUUUPROPPPPRt 6-12
JOICECKDOX ... 6-13
JORCRNOICE ... e 6-13
Using the Property List and the Property Editor to Modify the JoltBeans
[0] 0= 4 (1= PSS 6-14
JoltBeans Class Library Walkthrough............cccooiiiiiiiiiee e 6-16
Building the Sample FOrM ... 6-18
Placing JoltBeans onto the Form Designer.........ccccccccvveeeeeiinvininneenn 6-18

Using BEA Jolt iX

Wiring the JoltBeans TOgether ... 6-2!

Step 1: Wire the JoltSessionBean LOgoncccceeeeviiieeiniiieeecninns 6-2°

Step 2: Wire JoltSessionBean to JoltServiceBean Using Property
CRANGE ..o 6-3(

Step 3: Wire the accountID JoltTextField as Input to the

JoltServiceBean Using JoltinputEvent............cccccvveieevieeniinneenn, 6-34
Step 4: Wire Button to JoltServiceBean using JoltAction 6-37

Step 5: Wire JoltServiceBean to the Balance JoltTextField Using
JOIOULPULEVENTeeiiiiiiii et 6-39
Step 6: Wire the JoltSessionBean LOgoffcccceeviiiiieiiiinninns 6-42
Step 7: Compile the Applet........oooiii 6-43
Running the Sample AppliCationcccvoeiiiiieeiiiiie e 6-44
Using the Jolt Repository and Setting the Property Values...........c.ccccceeenee. 6-4
JoltBeans Programming TASKSuuueiiiiiiiiiiiiiie et 6-
Using Transactions with JOIBEANScooceiieiiiiiieiiiiii e, 6-4
Using Custom GUI Elements with the JoltService Beancccec....... 6-5C

7. Using Servlet Connectivity for BEA Tuxedo

WHAL IS @ SEIVIEL? ... e 7
How Servlets Work With JOIt..........ccueeiriiii e 7-:
The Jolt Servlet Connectivity ClaSSeScuviiiiiiiieiiiiiie e 7-
Writing and Registering HTTP Servlets. ... 7-
Jolt Servliet Connectivity SAmMPIEoooiiiiiiiiiiie e 7-
Viewing the Sample Servlet Applications..........cccoeeviiiieiiinee e 7-5
SIMPAPP SAMPIE .. 7-
Requirements for Running the Simpapp Samplec.occeeeiviieenne 7-
Installing the SIMPAPP SamPple........ovviiiiiiii e 7-6
BanKAPD SAmMPIE....ooiiiiiiie e 7-
Requirements for Running the Bankapp Sampleoccccoeeviieeens 7-
Installation INStIUCHIONScooiviiiii i 7-8

AdMIN SAMPIE e 7-1
Requirements for Running the Admin Sampleccccccoeiiiiinns 7-10
INstallation INStIUCHIONScooiviiiiiiii e 7-10
Additional Information on SErVIEtScccuiiiiiiiiiiii e 7-11

Using BEA Jolt

8. Using Jolt ASP Connectivity for BEA Tuxedo

KEY FRAIUIES ...ttt 8-2
ASP Connectivity Enhancements for JOltoccccciiiiiiiiiiie e, 8-2
How Jolt ASP Connectivity for BEA Tuxedo WOrkS.........ccccevviiieeniiicieninee 8-4
ASP Connectivity for BEA Tuxedo TOOIKitcccvuiieriiiieriiiiiiie e 8-6
Jolt ASP Connectivity for BEA Tuxedo Walkthroughcccooieiiiiiinns 8-6
Overview of the ASP for BEA Tuxedo Walkthrough............cccccoiiiiiiinnincen, 8-7
Getting Started CheckKIiSt.... ... 8-8
Overview of the TRANSFER SErVICe.......cccouiiiiiiiiiiiiiieiie e 8-10
TRANSFER Request Walkthrough.............oooiiiii e 8-11
Initializing the Jolt Session Pool Manager.........cccovvveeriieeeiniiieies i 8-11
Submitting a TRANSFER Request from the Client..............ccccoeeieeeennee 8-13
Processing the REQUEST.........cc.eviiiiii e 8-16
Returning the Results to the Clientccco v 8-19
A. BEA Tuxedo Errors
BEA TUXEUAO EFTOIS....uiiiiiiiitiie ettt ettt A-2

B. System Messages

JOIt SYSIEM MESSAGES ..ccecutiiiie ettt ettt ettt e e e ab e ae e s B-2
REPOSILONY MESSAGESeeiiiuitiitie ettt ettt et bbb e e b e e eae e B-12
FML Error MESSA0ESo e B-14
INFOrMALION MESSAUESuveiiieitieiie ettt et B-15
Jolt Relay Adapter (JRAD) MESSAQESccceiiurrieiiiieieie ettt et ee et B-16
Jolt Relay (JRLY) MESSAGESuveetiiiiiiie ettt sttt e B-22
Bulk Loader ULility MESSA0EScutiiiiiiiieeiiiie ettt et B-27

Glossary

Index

Using BEA Jolt Xi

Xii Using BEA Jolt

CHAPTER

1

Introducing BEA Jolt

BEA Jolt is a Java-based interface to the BEA Tuxedo system that extends the
functionality of existing BEA Tuxedo applications to include Intranet- and
Internet-wide availability. Using Jolt, you can now easily transform any BEA Tuxedo
application so that its services are available to customers using an ordinary browser on
the Internet. Jolt interfaces with existing and new BEA Tuxedo applications and
services to allow secure, scalable, Intranet/Internet transactions between client and
server. Jolt enables you to build client applications and applets that can remotely
invoke existing BEA Tuxedo services, such as application messaging, component
management, and distributed transaction processing.

Because you develop your applications with the Jolt APl and the Jolt Repository
Editor, which use BEA Tuxedo and the Java programming language, the Jolt
documentation is written with the assumption that you are familiar with BEA Tuxedo
and Java programming. This documentation is intended for system administrators,
network administrators, and developers.

Using BEA Jolt 1-1

1 Introducing BEA Jolt

“Introducing BEA Jolt” covers the following topics:

= What Is BEA Jolt?

m Key Features

= How BEA Jolt Works

m Creating a Jolt Client to Access BEA Tuxedo Applications

Jolt Servers

Jolt Class Library

JoltBeans

ASP Connectivity for BEA Tuxedo

Jolt Server and Jolt Client Communication
Jolt Repository

Jolt Internet Relay

What Is BEA Jolt?

BEA Joltis a Java class library and API that provides an interface to BEA Tuxedo anc
BEAWebLogic Enterprise (WLE) from remote Java clients.

1-2 Using BEA Jolt

What Is BEA Jolt?

Jolt Components

BEA Jolt consists of several components for creating Java-based client programs that
access BEA Tuxedo services. These Jolt components are as follows:

m Jolt Servers—One or more Jolt servers listen for network connections from
clients, translate Jolt messages, multiplex multiple clients into a single process,
and submit and retrieve requests to and from BEA Tuxedo-based applications
running on one or more BEA Tuxedo servers.

m Jolt Class Library—The Jolt class library is a Java package containing the class
files that implement the Jolt API. These classes enable Java applications and
applets to invoke BEA Tuxedo services. The Jolt class library includes
functionality to set, retrieve, manage, and invoke communication attributes,
notifications, network connections, transactions, and services.

m JoltBeans—BEA JoltBeans provides a JavaBeans-compliant interface to BEA
Jolt. JoltBeans are Beans components that you can use in JavaBeans-enabled
integrated development environments (IDESs) to construct BEA Jolt clients. Jolt
Beans consists of two sets of Java Beans: JoltBeans toolkit (a
JavaBeans-compliant interface to BEA Jolt that includes the JoltServiceBean,
JoltSessionBean, and JoltUserEventBean) and Jolt GUI beans, which consist of
Jolt-aware Abstract Window Toolkit (AWT) and Swing-based beans.

m Jolt Repository—A central repository contains definitions of BEA Tuxedo
services. These repository definitions are used by Jolt at run time to access BEA
Tuxedo services. You can export services to a Jolt client application or unexport
services by hiding the definitions from the Jolt client. Using the Repository
Editor, you can test new and existing BEA Tuxedo services independently of the
client applications.

m Jolt Internet Relay—The Jolt Internet Relay is a component that routes
messages from a Jolt client to a Jolt Server Listener (JSL) or Jolt Server Handler
(JSH). This component eliminates the need for the JSH and BEA Tuxedo to run
on the same machine as the Web server. The Jolt Internet Relay consists of the
Jolt Relay (JRLY) and the Jolt Relay Adapter (JRAD).

Using BEA Jolt 1-3

1

Introducing BEA Jolt

Key Features

1-4

With BEA Jolt, you can leverage existing BEA Tuxedo services and extend your
transaction environment to the corporate intranet or world-wide Internet. The key
feature of Jolt architecture is its simplicity. You can build, deploy, and maintain robust,
modular, and scalable electronic commerce systems that operate over the Internet.

BEA Jolt includes the following features:

Java-based API for simplified development—ith its Java-based API, BEA

Jolt simplifies application design by providing well-designed object interfaces.
Jolt supports the Java Development Kit (JDK) 1.2 and is fully compatible with
Java threads. Jolt enables Java programmers to build graphical front-ends that
use the BEA Tuxedo application and transaction services without having to
understand detailed transactional semantics or rewrite existing BEA Tuxedo
applications.

Pure Java client development—dsing Jolt, you can build a pure Java client

that runs in any Java-enabled browser. Jolt automatically converts from Java to
native BEA Tuxedo data types and buffers, and from BEA Tuxedo back to Java.
As a pure Java client, your applet or application does not need resident
client-side libraries or installation; thus, you can download client applications
from the network.

Easy access to BEA Tuxedo services through Jolt RepositoryFhe BEA Jolt
Repository facilitates Java application development by managing and presenting
BEA Tuxedo service definitions that you can use in your Java client. A Jolt
Repository bulk loading utility lets you quickly integrate your existing BEA
Tuxedo services into the Jolt development environment. Jolt and BEA Tuxedo
simplify network and application scalability, while encouraging the reuse of
application components.

GUI-Based maintenance and distribution of BEA Tuxedo servicesFhe Jolt
Repository Editor lets you manage BEA Tuxedo service definitions such as
service names, inputs and outputs. The Jolt Repository Editor provides support
for different input and output names for services defined in the Jolt Repository.

Encryption for secure transaction processing—BEA Jolt allows you to
encrypt data transmitted between Jolt clients and the JSL/JSH. Jolt encryption
helps ensure secure Internet transaction processing.

Using BEA Jolt

How BEA Jolt Works

m Added security through Internet Relay—Network administrators can use the
BEA Jolt Internet Relay component to separate their Web server and BEA
Tuxedo application server. Web servers are generally considered insecure
because they often exist outside a corporate firewall. Using the Jolt Internet
Relay, you can locate your BEA Tuxedo server in a secure location or
environment on your network, yet still handle transactions from Jolt clients on
the Internet.

m Event Subscription Support—Jolt Event Subscription enables you to receive
event notifications from BEA Tuxedo services and BEA Tuxedo clients. Jolt
Event Subscription lets you subscribe to two types of BEA Tuxedo application
events:

e Unsolicited Event Notifications. A Jolt client can receive these notifications
when a BEA Tuxedo client or service subscribes to unsolicited events and a
BEA Tuxedo client issues a broadcast or a directly targeted message.

e Brokered Event Notifications. The Jolt client receives these notifications
through the BEA Tuxedo Event Broker. The Jolt client receives these
notifications only when it subscribes to an event and any BEA Tuxedo client
or server posts an event.

How BEA Jolt Works

BEA Jolt connects Java clients to applications that are built using the BEA Tuxedo
system. The BEA Tuxedo system provides a set of modular services, each offering
specific functionality related to the application as a whole.

The end-to-end view of the BEA Jolt architecture, as well as related BEA Tuxedo
components and their interactions, is illustrated in the figure “BEA Jolt Architecture”
on page 1-6.

Using BEA Jolt 1-5

1 Introducing BEA Jolt

Using this figure as an example, a simple banking application might have services suc
as INQUIRY, WITHDRAW, TRANSFER, and DEPOSIT. Typically, service requests
are implemented in C or COBOL as a sequence of calls to a program library. Accessin
a library from a native program means installing the library for the specific
combination of CPU and operating system release on the client machine, a situatior
that Java was expressly designed to avoid. The Jolt Server implementation acts as
proxy for the Jolt client, invoking the BEA Tuxedo service on behalf of the client. The
BEA Jolt Server accepts requests from the Jolt clients and maps those requests intc
BEA Tuxedo service requests.

Figure 1-1 BEA Jolt Architecture

CLIENT SERVER
‘@3&’8’5?&5'&‘? A Internet Application Server
HTML, Applet, and BEA Jolt BEA Tuxedo
Jolt Code Transaction Protocol _—

INQUIRY Service

Java Virtual Machine

BEA Jolt Server DEPOSIT Service

Jolt Server Listener

Jolt Server Handler
Repository Server

BEA Tuxedo
State Manager

BEA Jolt BEA Jolt
Class Library Repositor y

Legacy
Access Services

Jolt BEA Jolt
\pplet/Application

databases

=]

Legacy Host
Applications

Service
Definitions

1-6 Using BEA Jolt

How BEA Jolt Works

Jolt Servers

The following Jolt Server components act in concert to pass Jolt client transaction
processing requests to the BEA Tuxedo application.

Jolt Server Listener (JSL)

The JSL handles the initial Jolt client connection, and assigns a Jolt client to the
Jolt Server Handler.

Jolt Server Handler (JSH)

The JSH manages network connectivity, executes service requests on behalf of
the client and translates BEA Tuxedo buffer data into the Jolt buffer, as well as
Jolt buffer data into the Tuxedo buffer.

Jolt Repository Server (JREPSVR)

The JREPSVR retrieves Jolt service definitions from the Jolt Repository and
returns the service definitions to the JSH. The JREPSVR also updates or adds
Jolt service definitions.

The following figure illustrates the Jolt Server and Jolt Repository components.

Figure 1-2 Jolt Server and Repository Components

Jolt Server and Repository BEA Tuxedo
IT
Jolt Server Repository BEA Tuxedo
(JSH) | Services
on
Application
| - Server
Jolt Server Jolt Repository
Listener Server
(JSL) (JREPSVR)

Using BEA Jolt 1-7

1

Introducing BEA Jolt

Jolt Class Library

The BEA Jolt Class Library is a set of classes that you can use in your Java applicatic
or applet to make service requests to the BEA Tuxedo system from a Java-enabled
client. You access BEA Tuxedo transaction services by using Jolt class objects.

When developing a Jolt client application, you only need to know about the classes th:
Jolt provides and the BEA Tuxedo services that are exported by the Jolt Repository.
Jolt hides the underlying application details. To use Jolt and the Jolt Class Library, yo
do not need to understand: the underlying transactional semantics, the language in
which the services were coded, buffer manipulation, the location of services, or the
names of databases used.

The Jolt API is a Java class library and has the benefits that Java provides: applets ¢
downloaded dynamically and are only resident during runtime. As a result, there is n
need for client installation, administration, management, or version control. If services
are changed, the client application notes the changes at the next call to the Jolt
Repository.

The following figure shows the flow of activity from a Jolt client to and from the BEA
Tuxedo system. The call-out numbers correspond to descriptions of the activity in the
table “Using the Jolt Class Library” on page 1-9.

Figure 1-3 Using the Jolt Class Library to access BEA Tuxedo Services

JAVA-Enabled BEA Tuxedo Environment
Web Browser

JAVAVM -a
6
Application connection/request Jolt request BEA Tuxedo
Code 4.5 Server g reply :
Jolt

Class Library

connection
- 12 p \Web Server HOST

i Application Server
3 connection

BEA Jolt
Repository

contains BEA Tuxeg
service definitions

1-8

Using BEA Jolt

How BEA Jolt Works

The following table briefly describes the flow of activity involved in using the Jolt
Class Library to access BEA Tuxedo services, as shown in the previous figure “Using
the Jolt Class Library to access BEA Tuxedo Services.”

Table 1-1 Using the Jolt Class Library

Process Step Action

Connection 1 A Java-enabled Web browser uses HTTP protocol to download
an HTML page.

2 A Jolt applet is downloaded and executed in the Java Virtual
Machine on the client.

3 The first Java applet task is to open a separate connection to the
Jolt Server.
Request 4 The Jolt client now knows the signature of the service (such as

name, parameters, types); can build a service request object based
on Jolt class definitions; and make a method call.

S) The request is sent to the Jolt Server, which translates the
Java-based request into a BEA Tuxedo request and forwards the
request to the BEA Tuxedo environment.

Reply 6 The BEA Tuxedo system processes the request and returns the
information to the Jolt Server, which translates it back to the Java
applet.

JoltBeans

BEA Jolt now includes JoltBeans, Java beans components that you use in a
Java-enabled integrated development environment (IDE) to construct BEA Jolt clients.
Using JoltBeans, and popular JavaBeans-enabled development tools such as Symantec
Visual Café, you can graphically create client applications.

Using BEA Jolt 1-9

1

Introducing BEA Jolt

BEA JoltBeans provide a JavaBeans-compliant interface to BEA Jolt that enables yo
to develop a fully functional BEA Jolt client without writing any code. You can drag
and drop JoltBeans from the component palette of a development tool and position
them on the Java form (or forms) of the Jolt client application you are creating. You
can populate the properties of the beans and graphically establish event source-lister
relationships between various beans of the application or applet. Typically, the
development tool is used to generate the event hook-up code, or you can code the
hook-up manually. Client development with JoltBeans is integrated with the BEA Jolt
Repository, which provides easy access to available BEA Tuxedo functions.

ASP Connectivity for BEA Tuxedo

The Jolt ASP Connectivity for BEA Tuxedo Toolkit is an extension to the Jolt Java
class library. The Toolkit allows the Jolt client class library to be used in a Web server
such as the Microsoft Internet Information Server (II1S), to provide an interface
between HTML clients or browsers, and BEA Tuxedo services.

The Jolt ASP Connectivity for BEA Tuxedo Toolkit provides an easy-to-use interface
for processing and generating dynamic HTML pages. You do not need to learn how t
write Common Gateway Interface (CGI) transactional programs to access BEA
Tuxedo services.

Jolt Server and Jolt Client Communication

1-10

The Jolt system handles all communication between the Jolt Server and the Jolt clie
using the BEA Jolt Protocol. The communication process between the Jolt Server an
the Jolt client applet or applications functions as follows:

1. BEA Tuxedo service requests and associated parameters are packaged into a
message buffer and delivered over the network to the Jolt Server.

2. The Jolt Server unpacks the data from the message and performs necessary dal
conversions, such as numeric format conversions or character set conversions.

3. The Jolt Server makes the appropriate service request to the application service
requested by the Jolt client.

Using BEA Jolt

How BEA Jolt Works

4. Once a service request enters the BEA Tuxedo system, it is executed in exactly
the same manner as requests issued by any other BEA Tuxedo client.

5. The results are then returned to the BEA Jolt Server, which packages the results
and any error information into a message that is sent to the Jolt client.

6. The Jolt client then maps the contents of the message into the various Jolt client
interface objects, completing the request.

Jolt Repository

The Jolt Repository is a database where BEA Tuxedo services are defined, such as
name, number, type, parameter size, and permissions. The repository functions as a
central database of definitions for BEA Tuxedo services and permits new and existing
BEA Tuxedo services to be made available to Jolt client applications. A BEA Tuxedo
application can have many services or service definitions, such as
ADD_CUSTOMER, GET_ACCOUNTBALANCE, CHANGE_LOCATION, and
GET_STATUS. All or only a few of these definitions can be exported to the Jolt
Repository. Within the Jolt Repository, the developer or system administrator uses the
Jolt Repository Editor to export these services to the Jolt client application.

All Repository services that are exported to one client are exported to all clients. BEA
Tuxedo handles the cases where subsets of services may be needed for one client and
not others.

The following figure illustrates how the Jolt Repository brokers BEA Tuxedo services
to multiple Jolt client applications. (Four BEA Tuxedo services are shown; however,
the WITHDRAW service is not defined in the repository and the TRANSFER service
is defined but not exported.)

Using BEA Jolt 1-11

1

Introducing BEA Jolt

Figure 1-4 Distributing BEA Tuxedo Services through Jolt

BEA Tuxedo

Application
Services

WITHDRAW
TRANSFER

Jolt Repository
Services

DEPOSIT
INQUIRY
TRANSFER

Jolt Client
Application
DEPOSIT, INQUIRY

Jolt Client
Application

DEPOSIT, INQUIRY

Jolt Repository Editor

1-12

The Jolt Repository Editor is a Java-based GUI administration tool that gives the
application administrator access to individual BEA Tuxedo services. You use the
Editor to define, test, and export services to Jolt clients.

Note: The Jolt Repository Editor only controls services for Jolt client applications.

You cannot use it to make changes to the BEA Tuxedo application.

The Jolt Repository Editor lets you extend and distribute BEA Tuxedo services to Jol
clients without having to modify many lines of code. You can modify parameters for
BEA Tuxedo services, logically group BEA Tuxedo services into packages, and

remove services from created packages. You can also make the services available |

browser-based Jolt applets or Jolt applications by exporting the services.

Using BEA Jolt

How BEA Jolt Works

Jolt Internet Relay

The Jolt Internet Relay is a component that routes messages from a Jolt client to the
Jolt Server. The Jolt Internet Relay consists ofittieRelay (JRLY) and thelolt

Relay Adapter (JRAD). JRLY is a stand-alone software component that routes Jolt
messages to the Jolt Relay Adapter. Requiring only minimal configuration to work
with Jolt clients, the Jolt Relay eliminates the need for the BEA Tuxedo system to run
on the same machine as the Web server.

The JRAD is a BEA Tuxedo system server, but does not include any BEA Tuxedo
services. It requires command-line arguments to allow it to work with the JSH and the
BEA Tuxedo system. JRAEeceives client requests from JRLY, and forwards the
request to the appropriate JSH. Replies from the JSH are forwarded back to the JRAD,
which sends the response back to the JRLY. A single Jolt Internet Relay (JRLY/JRAD
pair) handles multiple clients concurrently.

Using BEA Jolt 1-13

1

Introducing BEA Jolt

Creating a Jolt Client to Access BEA Tuxedo
Applications

1-14

The main steps for creating and deploying a Jolt client, are described in the following
procedure and in the figure “Creating a Jolt Application” on page 1-15.

1.

Make sure you have created a BEA Tuxedo system application.

For information about installing BEA Tuxedo and creating a BEA Tuxedo
application, refer ténstalling the BEA Tuxedo SystemdSetting Up a BEA
Tuxedo Application

Install the Jolt system.

Refer tolnstalling the BEA Tuxedo System

. Use the Bulk Loader utility to load Tuxedo services into the Jolt Repository

Database.

For information on using this utility, see “Bulk Loading Tuxedo Services.”

Configure and define services by using the Jolt Repository Editor.

For information about configuring the Jolt Repository Editor and making BEA
Tuxedo services available to Jolt, see “Using the Jolt Repository Editor” on page
4-1.

Create a client application by using the Jolt Class Library.

The following documentation shows you how to program your client application
using the Jolt Class Library:

e "Using the Jolt Class Library"

e API Reference in Javadoc

Run the Jolt-based client applet or application.

Using BEA Jolt

Creating a Jolt Client to Access BEA Tuxedo Applications

Figure 1-5 Creating a Jolt Application

Creating a new BEA Tuxedo o
Have an Existing BEA Tuxedo

Application? i
F '™ BB BB BB N Application?
| Design Your Application | 1 .
1 Services 1 BEA Tuxedo Application Is 1
i Installed
| |

| Write/Deploy Your Application and |
] BEA Tuxedo Services I@

C Install Jolt)

|
< Start BEA Tuxedo Application

J L
Decide Which BEA Tuxedo Services
to Make Available to Jolt
J L

Use Repository Editor to Define
Services Available from Jolt

Program Client by Using
(Test Each Service ’ Jolt Class Library

C

Make Jolt Classes Available
Export Services (for example, through the Web)

N

Run Your Jolt Application I

Using BEA Jolt 1-15

1 Introducing BEA Jolt

1-16 Using BEA Jolt

CHAPTER

2

Bulk Loading BEA
Tuxedo Services

As a systems administrator, you may have an existing BEA Tuxedo application with
multiple BEA Tuxedo services. Manually creating these definitions in the repository
database may take hours to complete. The Jolt Bulk Loader is a command utility that
allows you to load multiple, previously defined BEA Tuxedo services to the Jolt
Repository database in a single step. Usingbthie program, the Bulk Loader utility

reads the BEA Tuxedo service definitions from the specified text file and bulk loads
them into the Jolt Repository. The services are loaded to the repository database in one
“bulk load.” After the services populate the Jolt Repository, you can create, edit, and
group services with the Jolt Repository Editor.

“Bulk Loading BEA Tuxedo Services” covers the following topics:
m Using the Bulk Loader

m Syntax of the Bulk Loader Data Files

m Troubleshooting

m Sample Bulk Load Data

Using BEA Jolt 2-1

2

Bulk Loading BEA Tuxedo Services

Using the Bulk Loader

Thejbld program is a Java application. Before runningjthe command, set the
CLASSPATHenvironment variable (or its equivalent) to point to the directory where the
Jolt class directory (that iglt.jar andjoltadmin.jar) is located. If the
CLASSPATHariable is not set, the Java Virtual Machine (JVM) cannot locate any Jolt
classes.

For security reasonghld does not use command-line arguments to specify user
authentication information (user password or application password). Depending on th
server's security levejpld automatically prompts the user for passwords.

The Bulk Loader utility gets its input from command-line arguments and from the
input file.

Activating the Bulk Loader

1. Type the following at the prompt (with the correct options):

java bea.jolt.admin.jbld [-n][-p package |[-u usrname][-r
usrrole] //host:port filename

2. Use the following table to correctly specify the command-line options.

Command Line Options

2-2

Table 2-1 Bulk Loader Command-line Options

Option Description

-u usrname Specifies the user name (default is your account
name). (Mandatory if required by security.)

-r usrrole Specifies the user role (defaultigmin). (Mandatory
if required by security.)

-n Validates input file against the current repository; no
updates are made to the repository. (Optional.)

Using BEA Jolt

Using the Bulk Loader

Table 2-1 Bulk Loader Command-line Options (Continued)

Option Description

-p package Repository package name (default: BULKPKG)

//host:port Specifies the JRLY or JSL address (host name and IP
port number). (Mandatory)

filename Specifies the file containing the service definitions.
(Mandatory)

The Bulk Load File

The bulk load file is a text file that defines services and their associated parameters.
The Bulk Loader loads the services defined in the bulk loader file into the Jolt
Repository using the package name “BULKPKG” by default. pheommand

overrides the default and you can give the package any name you choose. If another
load is performed from a bulk loader file with the sameoption, all the services in

the original package are deleted and a new package is created with the services from
the new bulk loader file.

If a service exists in a package other than the package you name that uses the
option, the Bulk Loader reports the conflict and does not load a service from the bulk
loader file into the repository. Use the Repository Editor to remove duplicate services
and load the bulk loader file again. See “Using the Jolt Repository Editor” on page 4-1
for additional information.

Using BEA Jolt 2-3

2

Bulk Loading BEA Tuxedo Services

Syntax of the Bulk Loader Data Files

Each service definition consists of service properties and parameters that have a se
number of parameter properties. Each property is represented by a keyword and a
value.

Keywords are divided into two levels:
m Service-level

m Parameter-level

Guidelines for Using Keywords

2-4

Thejbld program reads the service definitions from a text file. To use the keywords,
observe the guidelines in the following table.

Table 2-2 Guidelines for Using Keywords

Guideline Example

Each keyword must be followed Correct: type=string

by an equal sign (=) and the |hcorrect: type
value.

Only one keyword is allowed on Correct: type=string
each line. Incorrect: type=string access=out

Any lines not having an equal Correct: type=string
sign (=) are ignored. Incorrect: type string

Certain keywords only accept a The keywordaccessaccepts only these valuds;
well-defined set of values. out, inout, noaccess

Using BEA Jolt

Syntax of the Bulk Loader Data Files

Table 2-2 Guidelines for Using Keywords

Guideline Example
The input file can contain service=INQUIRY
multiple service definitions. <service keywords and values>

service=DEPOSIT

<service keywords and values>
service=WITHDRAWAL
<service keywords and values>
service=TRANSFER

<service keywords and values>

Each service definition consists service=DEPOSIT

of multiple keywords and export=true

values. inbuf=VIEW32
outbuf=VIEW32
inview=INVIEW

outview=OUTVIEW

Keyword Order in the Bulk Loader Data File

Keyword order must be maintained within the data files to ensure an error-free transfer
during the bulk load.

The first keyword definition in the bulk loader data text file must be the initial
service=<NAME> keyword definition (shown in the listing “Keyword Hierarchical
Order in a Data File”). Following theervice=<NAME> keyword, all remaining

service keywords that apply to the named service must be specified before the first
param=<NAME>definition. These remaining service keywords can be in any order.

All parameters associated with the service must be specified. Following each
param=<NAME>keywords are all the parameter keywords that apply to the named
parameter until the next occurrence of a parameter definition. These remaining
parameter keywords can be in any order. When all the parameters associated with the
first service are defined, specify a negwice=<NAME> keyword definition.

Using BEA Jolt 2-5

2

Bulk Loading BEA Tuxedo Services

Listing 2-1 Keyword Hierarchical Order in a Data File

service =<NAME>

<service keyword>=<value>
<service keyword>=<value>
<service keyword>=<value>
param =<NAME>

<parameter keyword>=<value>
<parameter keyword>=<value>
param =<NAME>

<parameter keyword>=<value>
<parameter keyword>=<value>

Using Service-Level Keywords and Values

2-6

A service definition must begin with tlervice=<NAME> keyword. Services using
CARRAY or STRING buffer types should only have one parameter in the service. The
recommended parameter name for a service that &RRAYOUffer type iICARRAY

with carray as the data type. For a service that us€sRaNG buffer type, the
recommended parameter namsTRINGwith string as the data type.

The following table contains the guidelines for use of the service-level keywords anc
acceptable values for each.

Table 2-3 Service-Level Keywords and Values

Keyword Value
service Any BEA Tuxedo service name
export true or false (default is false)

Using BEA Jolt

Syntax of the Bulk Loader Data Files

Table 2-3 Service-Level Keywords and Values

Keyword Value

inbuf/outbuf Select one of these buffer types:
FML
FML32
VIEW
VIEW32
STRING
CARRAY
X_OCTET
X_COMMON
X_C_TYPE

inview Any view name for input parameters

(This keyword is optionadnly if one of the
following buffer types is used/IEW, VIEW32,
X_COMMQN_C_TYPE)

outview Any view name for output parameters (optional)

Using BEA Jolt 2-7

2 Bulk Loading BEA Tuxedo Services

Using Parameter-Level Keywords and Values

A parameter begins with thparam=<NAME>keyword followed by a number of
parameter keywords. It ends when anotieesm orservice keyword, or end-of-file
is encountered. The parameters can be in any order afiearéine=<NAME>keyword.

The following table contains the guidelines for use of the parameter-level keywords
and acceptable values for each.

Table 2-4 Parameter-Level Keywords and Values

Keyword Values

param Any parameter name

type byte
short
integer
float
double
string
carray

access in
out
inout
noaccess

count Maximum number of occurrences (default is 1). The
value for unlimited occurrences is 0. Used only by the
Repository Editor to format test screens.

2-8 Using BEA Jolt

Troubleshooting

Troubleshooting

If you encounter problems using the Bulk Loader utility, refer to the following table.
For a complete list of Bulk Loader utility error messages and solutions, see “System
Messages.”

Table 2-5 Bulk Loader Troubleshooting Table

If... Then . ..

The data file is not found Check to ensure that the path is correct

The keyword is invalid Check to ensure that the keyword is valid for the
package, service, or parameter

The value of the keyword is null Type a value for the keyword

The value is invalid Check to ensure that the value of a parameter is within

the allocated range for that parameter

The data type is invalid Check to ensure that the parameter is using a valid data
type

Using BEA Jolt 2-9

2 Bulk Loading BEA Tuxedo Services

Sample Bulk Load Data

The following listing contains a sample data file in the correct format using the UNIX
commanctat servicefile . This sample loadsRANSFER,LOGIN, andPAYROLL
service definitions to thBULKPKG

Listing 2-2 Sample Bulk Load Data

service=TRANSFER
export=true
inbuf=FML
outbuf=FML
param=ACCOUNT_ID
type=integer
access=in

count=2
param=SAMOUNT
type=string
access=in
param=SBALANCE
type=string
access=out

count=2
param=STATLIN
type=string
access=out

service=LOGIN
inbuf=VIEW
inview=LOGINS
outview=LOGINR
export=true
param=user
type=string
access=in
param=passwd
type=string
access=in
param=token
type=integer
access=out

2-10 Using BEA Jolt

Sample Bulk Load Data

service=PAYROLL
inbuf=FML
outbuf=FML
param=EMPLOYEE_NUM
type=integer
access=in
param=SALARY
type=float
access=inout
param=HIRE_DATE
type=string
access=inout

Using BEA Jolt 2-11

2 Bulk Loading BEA Tuxedo Services

2-12 Using BEA Jolt

CHAPTER

3

Configuring the BEA
Jolt System

The following sections describe how to configure BEA Jolt. “Quick Configuration” is
for users who are familiar with Jolt. The other sections provide more detailed
information. It is presumed that readers are system administrators or application
developers who have experience with the operating systems and workstation platforms
on which they are configuring BEA Jolt.

“Configuring the BEA Jolt System” covers the following topics:

Quick Configuration

Jolt Background Information

Jolt Relay

Jolt Relay Adapter

Jolt Repository

Event Subscription

BEA Tuxedo Background Information

Sample Applications in BEA Jolt Online Resources

Using BEA Jolt

3-1

3 Configuring the BEA Jolt System

Quick Configuration

If you are already familiar with BEA Jolt and BEA Tuxedo, “Quick Configuration”
provides efficient guidelines for the configuration procedure. If you have not used Jolt
refer to “Jolt Background Information” on page 3-13 before you begin any
configuration procedures.

Quick Configuration contains the information you need to configure the Jolt Server
Listener (JSL) on BEA Tuxedo and covers the following procedures:

e Editing the UBBCONFIG File

e Configuring the Jolt Repository

e Initializing Services That Use BEA Tuxedo and the Repository Editor

e Logging on to the Repository Editor

e Exiting the Repository Editor

e Configuring the BEA Tuxedo TMUSREVT Server for Event Subscription
e Configuring Jolt Relay

Editing the UBBCONFIG File

3-2

1. In theMACHINESsection, speciffAXWSCLIENTSsumber (Required).
Note: If MAXWSCLIENT$ not set, JSL does not boot.

2. In theGROUPSection, seGROUPNAMquired parameters [optional
parameters |.

3. Set thesERVERSsection (Required).
Lines within this section have the form:
JSL required parameters [optional parameters]

whereJSL specifies the filedtring value) to be executed bynboot(1)

Using BEA Jolt

Quick Configuration

4. Set the required parameters JeL .
Required parameters are:

SVRGRPstring_value
SRVID=number

CLOPT="-A..-n ../l host port
5. Set other parameters fisL.

You can use the following parameters with the JSL, but you need to
understand how doing so affects your application. Refer to “Parameters
Usable With JSL” on page 3-43 for additional information.

MAX # of JSHs
MIN # of JSHs

Configuring the Jolt Repository

In the Groups Section:

1. Specify the same identifiers given as the value ofthe parameter in the
MACHINESsection.

2. Specify the value of theRPNO,between 1 and 30,000.

In the Servers Section:

The BEA Jolt Repository ServelREPSVR contains services for accessing and editing
the Repository. Multipl@aREPSVRinstances share repository information through a
shared file. IncludeREPSVRIn the SERVERSsection of theJBBCONFIdile.

1. Indicate a new server identification with thRVID parameter.

2. Specify thew flag for one (and only ongREPSVRto ensure that you can edit
the repository. (Without this flag, the repository is read-only.)

3. Type theP flag to specify the path of the repository file. (An error message is
displayed in the BEA TuxedoLOGfile if the argument for theP flag is not
entered.)

Using BEA Jolt 3-3

3 Configuring the BEA Jolt System

4. Add the file pathname of the Repository file (for examfplen/jrepository).

5. Boot the BEA Tuxedo system by using tipadcf andtmboot commands.

Initializing Services That Use BEA Tuxedo and the
Repository Editor

Define the BEA Tuxedo services that use BEA Tuxedo and BEA Jolt in order to make
the Jolt services available to the client.

1. Build the BEA Tuxedo server that contains the service.

2. Access the BEA Jolt Repository Editor.

Getting Started with the Repository Editor

Before you start the Repository Editor, make certain that you have installed all of the
necessary BEA Jolt software.

Note: You cannot use the Repository Editor unREPSVRandJSL are running.

To use the Repository Editor, you must:

1. Start the Repository Editor.

You can start the Repository Editor from either the Javafppfétviewer or
from your Web browser. Both of these methods are detailed in the following
sections.

2. Log on to the Repository Editor.

3-4 Using BEA Jolt

Quick Configuration

Starting the Repository Editor Using the Java Applet Viewer

1. Set theCLASSPATHoO include the Jolt class directory or the directory where the
*jar files reside.

2. If loading the applet from a local disk, type the following at the URL location:

appletviewer full-pathname /RE.html

If loading the applet from the Web server, type the following at the URL
location:

http:// www.server | URL path /RE.html

3. Pres<Enter.
The window is displayed as shown in the figure “BEA Jolt Repository Editor

Logon Window” on page 3-7.
Starting the Repository Editor Using Your Web Browser
Use one of the following procedures to start the Repository Editor from your Web
browser.
To start the Repository Editor from a local file:
1. SettheCLASSPATHO include the Jolt class directory.

2. Type the following:
file: full-pathname IRE.html
3. Pres<Enter.

The window is displayed as shown in the figure “BEA Jolt Repository Editor
Logon Window” on page 3-7.

Using BEA Jolt 3-5

3 Configuring the BEA Jolt System

To start from a Web server:

1.
2.

Ensure that theLASSPATHIoes not include the Jolt class directory.
Remove the Jolt clases fralhASSPATH

Type the following:
http:// www.server | URL path IRE.html

Note: If jolt.jar andadmin.jar are in the same directory RE.html , the
Web server provides the classes. If they are not in the same directory as
RE.html , modify the applet code base.

Pres€nter.

The Repository Editor Logon window is displayed as shown in the figure “BEA
Jolt Repository Editor Logon Window” on page 3-7.

Logging on to the Repository Editor

3-6

After starting the Jolt Repository Editor, follow these directions to log on:

Note: The “BEA Jolt Repository Editor Logon Window” on page 3-7 must be

=

displayed before you log on. Refer to this figure as you perform the following
procedure.

In the logon window, type the name of the Server machine designated as the
“access point” to the BEA Tuxedo application and preds

Type the Port Number and présster.
The system validates the server and port information.

Note: Unless you are logging on through Jolt Relay, the same port number is use
to configure the Jolt Listener. Refer to yatBBCONFIdile for additional
information.

Type the BEA Tuxedo Application Password and pEggsr.
Depending upon the authentication level, complete Steps 5 and 6 as required.

Type the BEA Tuxedo User Name and press.

Using BEA Jolt

Quick Configuration

5. Type the BEA Tuxedo User Password and pEggsr.
The PackagesandServicescommand buttons are enabled.

Note: The BEA Jolt 1.2.1 Repository Editor uses the hardcqdestimin for
the User Role value.

Figure 3-1 BEA Jolt Repository Editor Logon Window

[Z3 Applet Viewer: bea jolt. admin RE class
Applet

BEA Jolt Repository Editor

Saerver: skywalker
Faort Mumber: 85557
User Role: joltadmin

Application Passwaord:

User MName:

User Password:

Eackanes | SEmices e |l i

The following table, “Repository Editor Logon Window Description,” contains details
about each of the fields and buttons.

Using BEA Jolt 3-7

3 Configuring the BEA Jolt System

Repository Editor Logon Window Description

Table 3-1 Repository Editor Logon Window Description

Option

Description

Server

The server name.

Port Number

The port number in decimal value.

Note: After the Server Name and Port Number are entered,
the User Name and Password fields are activated.
Activation is based on the authentication level of the
BEA Tuxedo application.

User Role BEA Tuxedo user role. Required only if BEA Tuxedo
authentication level is USER_AUTH or higher.

Application BEA Tuxedo administrative password text entry.

Password

User Name BEA Tuxedo user identification text entry. The first

character must be an alpha character.

User Password

BEA Tuxedo password text entry.

Packages Accesses the Packages window. (Enabled after the logon.)
Services Accesses the Services window. (Enabled after the logon.)
Log Off Terminates the connection with the server.

Using BEA Jolt

Quick Configuration

Exiting the Repository Editor

Exit the Repository Editor when you finish adding, editing, testing, or deleting
packages, services, and parameters. Prior to exit, the window is displayed as shown in
the figure “BEA Jolt Repository Editor Logon Window Prior to Exit’ on page 3-9.

Figure 3-2 BEA Jolt Repository Editor Logon Window Prior to Exit

[Z3 Applet Viewer: bea jolt. admin RE class
Applet

BEA Jolt Repository Editor

Saerver: skywalker
Faort Mumber: 85557
User Role: joltadmin

Application Passwaord:

User MName:

User Password:

Fackages | Services Log Off

Note that only thé€ackagesServices andLog Off command buttons are enabled. All
of the text entry fields are disabled.

Using BEA Jolt 3-9

3 Configuring the BEA Jolt System

Follow the steps below to exit the Repository Editor.

1. Click Backin a previous window to return to the Repository Editor Logon
window.

2. Click Log Off to terminate the connection with the server.
The Repository Editor Logon window shows disabled fields.

3. Click Closefrom your browser menu to close the window.

Configuring the BEA Tuxedo TMUSREVT Server for Event
Subscription

3-10

Jolt Event Subscription receives event notifications from either BEA Tuxedo services
or other BEA Tuxedo clients. Configure the BEA Tux@d@JSREVBerver and

modify the applicatiowBBCONFIdile. The following listing, “TMUSREVT

Parameters in the UBBCONFIG File,” shows the releTaiSREVPparameters in the
UBBCONFIdile:

Listing 3-1 TMUSREVT Parameters in the UBBCONFIG File

TMUSREVT SRVGRP=EVBGRP1 SRVID=40 GRACE=3600
ENVFILE="/usr/tuxedo/bankapp/TMUSREVT.ENV"
CLOPT="-e tmusrevt.out -0 tmusrevt.out -A --

-f Jusrituxedo/bankapp/tmusrevt.dat"
SEQUENCE=11

In the SERVERSsections of th&/BBCONFIJile, specify theSRVGRP and SRVID.

Using BEA Jolt

Quick Configuration

Configuring Jolt Relay

On UNIX
Start the JRLY process on UNIX by typing the following command at the system
prompt:
jrly -f <config_file_path>
If the configuration file does not exist or cannot be opened, the JRLY writes a message
to standard error, attempts to log the startup failure in the error log, then exits.
On UNIX and NT

The format of the configuration file is a TAG=VALUE format. Blank lines or
lines starting with a “#” are ignored. The following listing, “Formal
Configuration File Specifications,” is an example of the formal specifications of
the configuration file.

Listing 3-2 Formal Configuration File Specifications

LOGDIR=<LOG_DIRECTORY_PATH>
ACCESS_LOG=<ACCESS_FILE_NAME in LOGDIR>
ERROR_LOG=<ERROR_FILE_NAME in LOGDIR>
LISTEN=<IP:Port combination where JRLY will accept
comma-separated connections>

CONNECT=<IP:Portl, IP:Port2...IP:PortN:Port(List of IP:Port
combinations associated with JRADs: can be 1...N)>

Using BEA Jolt 3-11

3 Configuring the BEA Jolt System

On NT only (optional):

SOCKETTIMEOUTS the time in seconds for which JRLY NT service blocks for network
activity (new connections, data to be read, closed connect®@SKETTIMEOU®ISO
affects the Service Control Manager (SCM). When the SCM requests the NT service
to stop, the SCM must wait for at le@&ICKETTIMEOUBeconds before quitting.

Note: The format for directory and file names is determined by the operating system
UNIX systems use the forward slash (/). NT systems use the backslash (\). If
any files specified ihOGDIR ACCESS_LOGor ERROR_LO®annot be opened
for writing, JRLY prints an error messagesiterr and exits.

The formats for the host names and the port numbers are shown in the
following table

Table 3-2 Host Name and Port Number Formats

Host Name/Port Description
Number
//Hostname:Port Hogtname is a stringPort is a decimal number.
. IP is a dotted notation IP addre®st is a decimal
IP:Port
number.

Start the Jolt Relay Adapter (JRAD)
1. Typetmloadcf -y <UBBFILE>.

2. Typetmboot.

3-12 Using BEA Jolt

Jolt Background Information

Configure the JRAD

A single JRAD process can only be connected to a single JRLY. A JRAD can be
configured to communicate with only one JSL and its associated JSH. However,
multiple JRADs can be configured to communicate with one JSLCTbeT
parameter for BEA Tuxedo services must be included iwBBCONFIJile.

1. Type-l hexadecimal format (The JSL port to which the JRLY connects on
behalf of the client.)

2. Type-c hexadecimal format (The address of the corresponding JSL to
which JRAD connects.)

Note: The format is 0xXO002PPPNNN, or, in dot notation, 100.100.10.100.

3. Configure networked components.

Jolt is now configured.

Jolt Background Information

This section contains additional information on Jolt components.

Jolt Server

The Jolt Server is a listener that supports one or more handlers.

Jolt Server Listener (JSL). The JSL is configured to support clients on an IP/port
combination.The JSL works with the Jolt Server Handler (JSH) to provide client
connectivity to the backend of the BEA Jolt system. The JSL runs as a BEA Tuxedo
server.

Jolt Server Handler (JSH). The JSH is a program that runs on a BEA Tuxedo server
machine to provide a network connection point for remote clients. The JSH works with
the JSL to provide client connectivity residing on the backend of the BEA Jolt system.
More than one JSH can be available to the JSL, up to 32,767. (Refer to the description
of the-M command-line option in “JSL Command-Line Options” on page 3-16 for
additional information.)

Using BEA Jolt 3-13

3 Configuring the BEA Jolt System

System Administrator Responsibilities.The system administrator’s responsibilities
for the server components of BEA Jolt include:

m Determining the JSL network address.

m Determining the number of Jolt clients to be serviced. (The number of clients to
be serviced is limited by)AXWSCLIENT$ UBB)

m Determining the minimum and maximum number of JSHSs.

Starting the JSL

To start all administrative and server processes iWHBCONFIdile:

1. Typetmloadcf.

This command parses the configuration file and loads the binary version of the
configuration file.

2. Typetmboot -y .
This command activates the application specified in the configuration file.

If you do not enter any options, a prompt asks you if you really want to
overwrite yourTUXCONFIGile.

SeeAdministering a BEA Tuxedo Application at Run Tan¢heBEA Tuxedo
Command Referender information aboutmloadcf andtmboot .

Shutting Down the JSL

All shutdown requests to the Jolt servers are initiated by the BEA Tuxedo command

tmshutdown -y
During shutdown:
m No new client connections are accepted.

m All current client connections are terminated. BEA Tuxedo rolls back in-flight
transactions. Each client receives an error message indicating that the service is
unavailable.

3-14 Using BEA Jolt

Jolt Background Information

Restarting the JSL

BEA Tuxedo monitors the JSL and restarts it in the event of a failure. When BEA
Tuxedo restarts the listener process, the following events occur:

m Clients attempting a listener connection must try to reconnect. Clients attempting
a handler connection receive a timeout or a time delay.

m Clients currently connected to a handler are disconnected (JSH exits when its
corresponding JSL exits normally).

Configuring the JSL

The Jolt Server Listener (JSL) is a BEA Tuxedo server responsible for distributing
connection requests from Jolt to the Jolt Server Handler (JSH). BEA Tuxedo must be
running on the host machine where the JSL and JREPSVR are located.

Using BEA Jolt 3-15

3 Configuring the BEA Jolt System

JSL Command-Line Options

The server may need to obtain information from the command line. The CLOPT
parameter allows you to specify command-line options that can change some defaul
in the server. The JSL command-line options are described in the following table.

Table 3-3 JSL Command-Line Options

Option Description
[-c Enables application data sent between a Jolt client and a Jolt
compression_threshold | server (JSH) to be compressed during transmission over the
network.
compression_threshold is a number that you specify

between 0 and 2,147,483,647 bytes. Any messages that are
larger than the specified compression threshold are
compressed before transmission.

The default is no compression; that is, if no compression
threshold is specified, BEA Jolt does not compress messages
on client or server.

Note: The previousc connection-mode option has
been replaced with th¢ connection-mode
option.

[-d device_name] The device for platforms using the Transport Layer
Interface. There is no default. Required. (Optional for
sockets)

3-16 Using BEA Jolt

Jolt Background Information

Table 3-3 JSL Command-Line Options (Continued)

Option

Description

[-H external netaddr

[l init-timeout |

[connection_mode

[-m minh]

]

]

externalnetaddr is the network address Jolt clients use
to connect to the application. The JSL process uses this
address to listen for clients attempting to connect at this
address. If the address0s0002MMMMddddddddand JSH
network address i@x0002111 1ffffffff , the known
network address i8x00021111dddd dddd . If the

address starts with "//" network address, the type is IP based
and the TCP/IP port number of JSH network address is
copied into the address to form the combined network
address.

The IP address must be specified in the following form:
-H //external ip address:MMMM

(Optional for JSL in BEA Tuxedo 6.4 and 6.5)

The time (in seconds) that a Jolt client is allowed to complete
initialization through the JSH before it is timed out by the
JSL. Default is 60 seconds. (Optional)

The following connection modes from clients are allowed:

RETAINED—The network connection is retained for the
full duration of a session.

RECONNECT—The client establishes and brings down a
connection when an idle timeout is reached, reconnecting for
multiple requests within a session.

ANY—The server allows a client to request either a
RETAINED or RECONNECT type of connection for a
session.

The default is ANY. That is, if no option is specified, the
server allows a client to request either a RETAINED or
RECONNECT type of connection. (Optional)

Note: This option has been changed in this release from
-c [connection_mode] to-j
[connection_mode]

The minimum number of JSHs that are available in
conjunction with the JSL at one time. The range of this
parameter is from 0 through 255. Default is 0. (Optional)

Using BEA Jolt 3-17

3 Configuring the BEA Jolt System

3-18

Table 3-3 JSL Command-Line Options (Continued)

Option

Description

[-M maxH]

[-n netaddr]

[-T Client-timeout

[w JSH

Using BEA Jolt

]

The maximum number of JSHs that are available in
conjunction with the JSL at one time. If this option is not
specified, the parameter defaultsMAXWSCLIENTS
divided by the rounded-u multiplexing factor (MPX). If
specified, theM option takes a value from 1 to 32,767.
(Optional)

Network address used by the BEA Jolt listener with BEA
Tuxedo 6.4 and 6.5, and WLE 4.2.

TCP/IP addresses may be specified in the following formats:

"Il host.name:port_number
"Il #.AH#H#:port_number "

In the first format, the domain finds an address for
hostname by using the local name resolution facilities
(usually DNS).hostname must be the local machine, and
the local name resolution facilities must unambiguously
resolve hostname to the address of the local machine.

In the second example, the “#.#.#.#" is in dotted decimal
format. In dotted decimal format, each # should be a number
from O to 255. This dotted decimal number represents the IP
address of the local machine.In both of the above formats,
port_number is the TCP port number at which the domain
process listens for incoming requegtstt_number can
either be a number between 0 and 65535 or a name.

The time (in minutes) allowed for a client to stay idle. If a
client does not make any requests during this time, the JSH
disconnects the client and the session is terminated. If an
argument is not supplied, the session does not timeout.

When thej ANY or-j RECONNECT option is used,
always specifyT with an idle timeout value. HT is not
specified and the connection is suspended, JSH does not
automatically terminate the session. The session never
terminates if a client abnormally ends the session.

If a parameter is not specified, the default is no time out.
(Optional)

This command line option indicates the Jolt Server Handler.
Default is JSH. (Optional)

Jolt Background Information

Table 3-3 JSL Command-Line Options (Continued)

Option Description

[-x mpx-factor] This is the number of clients that one JSH can service. Use
this parameter to control the degree of multiplexing within
each JSH process. If specified, this parameter takes a value
from 1 to 32767 for UNIX and NT. Default value is 10.
(Optional)

[-Z 0]56|128] When a network link between a Jolt client and the JSH is
being established, this option allows encryption up to the
specified level.The initial 0 means no DH nodes, no RC4.
The numbers 56 and 128 specify the length (in bits) of the
encryption key. The DH key exchange is needed to generate
keys. Session keys are not transmitted over the network. The
default value is 0.

Security and Encryption

Authentication and key exchange data are transmitted between Jolt clients and the JSL/JSFH
using the Diffie-Hellman key exchange. All subsequent exchanges are encrypted using
RC4 encryption. International packages use a DES key exchange and a 128-bit key, with
56 bits encrypted and 88 bits exposed.

Programs using the 128-bit encryption cannot be exported outside the United States
without proper approval from the United States government. Customers with intranets
extending beyond the United States cannot use this mode of encryption if any internal
clients are outside the United States.

Using BEA Jolt 3-19

3 Configuring the BEA Jolt System

Jolt Relay

The combination of the Jolt Relay (JRLY) and its associated Jolt Relay Adapter
(JRAD) is typically referred to as the Internet Relay. Jolt Relay routes messages fror
a Jolt clientto a JSL or JSH. This eliminates the need for the JSH and BEA Tuxedo t
run on the same machine as the Web server (which is generally considered insecure
The Jolt Relay consists of the two components illustrated in the figure “Jolt Internet
Relay Path” on page 3-21.

m Jolt Relay (JRLY)

The JRLY is the Jolt Relay front-end. It is not a BEA Tuxedo client or server
and is not dependent on the BEA Tuxedo version. It is a stand-alone software
component. It requires only minimal configuration to allow it to work with Jolt
clients.

m Jolt Relay Adapter (JRAD)

The JRAD is the Jolt Relay back-end. It is a BEA Tuxedo system server, but
does not include any BEA Tuxedo services. It requires command line arguments
to allow it to work with the JSL and the BEA Tuxedo system.

Note: The Jolt Relay is transparent to Jolt clients and Jolt servers. A Jolt server cal

simultaneously connect to intranet clients directly, or through the Jolt Relay to
Internet clients.

3-20 Using BEA Jolt

Jolt Relay

Figure 3-3 Jolt Internet Relay Path

Firewall

Browser =

W
N BEA Tuxedo
JRLY <y JRAD

Insecure Secure
environment [| environment

This figure illustrates how a browser connects to the Web server software and
downloads the BEA Jolt applets. The Jolt applet or client connects to the JRLY on the
Web server machine. The JRLY forwards the Jolt messages across the firewall to the
JRAD. The JRAD selectively forwards messages to the JSL or appropriate JSH.

Jolt Relay Failover

There are two points of failovers associated with JRLY:
m Jolt Client to JRLY connection failover

m JRLY to JRAD connection failover

Using BEA Jolt 3-21

3 Configuring the BEA Jolt System

Jolt Client to JRLY Connection Failover

If one server address does not result in a successful session, the failover function
allows the Jolt Client API to connect to the next free (unconnected) JRLY specified in
the argument list of the API. To enable this failover in an NT environment, multiple
NT JRLY services can be executed. In a non-NT environment, multiple JRLY
processes are executed. Each JRLY (service or process) has its own configuration fil
This type of failover is handled by Jolt 1.2.1 client APl new features that allow you to
specify a list of Jolt server addresses (JSL or JRLY).

JRLY to JRAD Adapter Connection Failover

Each JRLY configuration file has a list of JRAD addresses. When a JRAD is
unavailable, JRLY tries to connect to the next free (unconnected) JRAD, in a
round-robin fashion. Two JRLYs cannot connect to the same JRAD. Given these fact:
you can make the connection efficient by giving different JRAD address orders. Tha
is, if you make one extra JRAD available on standby, the first JRLY that loses its
JRAD connects to the extra JRAD. This type of failover is handled by JRLY alone.

If any of the listed JRADs are not executing when JRLY is started, the initial
connection fails. When a Jolt client tries to connect to JRLY, the JRLY again tries to
connect to the JRAD.

To accommodate the failover functionality, you have to boot multiple JRADs by
configuring them in th&/BBCONFIdile.

Jolt Relay Process

3-22

The JRLY (front-end relay) process can be started before or after the JRAD is starte
If the JRAD is not available when the JRLY is started, the JRLY attempts to connec
to the JRAD when it receives a client request. If JRLY is still unable to connect to the
JRAD, the client is denied access and a warning is written to the JRLY error log file.

Using BEA Jolt

Jolt Relay

Starting the JRLY on UNIX

Start the JRLY process by typing the command name at a system prompt.
jrly -f config_file_path

If the configuration file does not exist or cannot be opened, the JRLY prints an error
message. Refer to Appendix B, “System Messages,” for details about the Jolt Relay
error messages.

If the JRLY is unable to start, it writes a message to standard error and attempts to log
the startup failure in the error log, then exits.

JRLY Command-Line Options for NT

This section describes command-line options that are available from the NT version of
JRLY.exe . Note the following:

m JRLY as an NT service is available only for Microsoft Windows NT.

m When the display suffix is optional (wheaisplay_suffix] is shown), all
operations are performed on the default JRLY NT service instance.

m For manually installed, additional JRLY services, a suffix (any string) is
required. Also, you can install the default service manually by omitting the
optional string suffix.

m Each instance of JRLY NT service uses the same binary executable file.
m A new process is started for each instance of JRLY NT service.

m The syntax for these options jgy -command.

m Text specified within brackets ([]) is optional.

m All commands in the following list of command options excepit and
-stop require that you have write access to Windows NT Registry.

m The-start and-stop commands require that you have NT Service control
access. These requirements are based on NT user restrictions.

Using BEA Jolt 3-23

3 Configuring the BEA Jolt System

3-24

The JRLY command line options are detailed in the following table “JRLY
Command-Line Options for NT.”

Table 3-4 JRLY Command-Line Options for NT

Option

Description

jrly -install
[display _suffix]

Installjrly as an NT service.

Example 1:
jrly -install
In this example, the default JRLY is installed as an NT

Service and is displayed in the Service Control Manager
(SCM) asJolt Relay.

Example 2:
jrly -install MASTER

In this case, an instance of JRLY is installed as an NT
Service and is displayed in the SCMJadt
Relay_MASTER. The suffix, MASTER, does not have
any significance; it is only used to uniquely identify
various instances of JRLYs.

At this point, this instance of JRLY is not ready to
start. It must be assigned the configuration file (see
theset command discussion) that specifies the
listening TCP/IP port, JSH connection TCP/IP port,
log files, and sockettimeout. This file should not be
shared between various instances of JRLY.

Using BEA Jolt

Jolt Relay

Table 3-4 JRLY Command-Line Options for NT (Continued)

Option

Description

jrly -remove
[display _suffix
-all

11

Remove one or all instances of JRLY from NT service.
If [display_suffix] is specified, this command
removes the specified JRLY service.

If [display_suffix] is not specified, this command
removes the default JRLY from being an NT Service.

If the-all option is specified, all JRLY NT Services are
removed. Related NT registry entries under
HKEY_LOCAL_MACHINE\System\CurrentControl
Set\Services

and

HKEY_LOCAL_MACHINE\Software\BEA\Jolt\1.2

1

are removed.

jrly -set
[-d display_suffix
config_file

IEi

Update the registry with the full path of a new
configuration file.

Example &

jrly -set -f

c:\tux71\udataobj\jolt\jrly.con

In this example, the default JRLY NT Service (Jolt Relay)
is assigned a configuration file callgly.con that is
located in:c:\tux71\udataobj\jolt directory.

Example 2
jrly -set -d MASTER -f
c:\tux71l\udataobj\jolt\master.con

Here, the JRLY NT Service instance, callsdt
Relay_MASTER is assigned a configuration file called
jrly_master.con that is located in
c:\tux71\udataobj\jolt directory.

jrly -manual
[display _suffix

]

Set the start/stop to manual.

This command sets the specified JRLY instance to be
manually controlled, using either the command-line
options or the SCM.

Using BEA Jolt 3-25

3 Configuring the BEA Jolt System

Table 3-4 JRLY Command-Line Options for NT (Continued)

Option Description

jrly -auto Set the start/stop to automatic.

[display_suffix] This command sets all the operations for specified NT

Service to be automatically started when the OS boots and
stopped when the OS shuts down.

jrly -start Start the specified JRLY.
[display _suffix]

jrly -stop Stop the specified JRLY.
[display _suffix]

jryl -version Print the current version of JRLY binary.

jrly -help Print command-line options with brief descriptions.

JRLY Command-Line Option for UNIX

There is only one JRLY command-line option for UNIX:

Table 3-5 JRLY Command-Line Option for UNIX

Option Description

jrly -f Start the JRLY process.

config_file_path This option starts the JRLY process. If the configuration file

does not exist or cannot be opened, the JRLY prints an error
message. If the JRLY cannot start, it writes a message to
standard error, attempts to log the startup failure in the error
log, then exits.

3-26 Using BEA Jolt

Jolt Relay

JRLY Configuration File

The format of the configuration file is a TAG=VALUE format. Blank lines or lines
starting with a #” are ignored. The following listing contains an example of the formal
specifications of the configuration file.

Listing 3-3 Specification of Configuration File

LOGDIR=<LOG_DIRECTORY_PATH>
ACCESS_LOG=<ACCESS_FILE_NAME in LOGDIR>
ERROR_LOG=<ERROR_FILE_NAME in LOGDIR>
LISTEN=<IP:Port combination where JRLY will accept connections>
CONNECT=<IP:Port combination associated with JRAD>
SOCKETTIMEOUT=<Seconds for socket accept()function>

Note: SOCKETTIMEOUTS the duration (in seconds) of which the relay NT service
blocks the establishment of new socket connections to allow network activity
(new connections, data to be read, closed connections). It is valid only on NT
machines.

SOCKETTIMEOUBIso affects the SCM. When the SCM requests that the
service stop, the SCM needs to wait at IS®StKETTIMEOUSeconds before
doing so.

Using BEA Jolt 3-27

3 Configuring the BEA Jolt System

3-28

The following listing shows an example of the JRLY configuration file. The
CONNECT line specifies the IP address and port number of JRAD machine.

Listing 3-4 Example of JRLY Configuration File

LOGDIR=/usr/log/relay

ACCESS_LOG=access_log

ERROR_LOG=errorlog

jrly will listen on port 4444
LISTEN=200.100.10.100:4444
CONNECT=200.100.20.200:4444, 200.100.20.200:5555,...
SOCKETTIMEOUT=30 //See text under listing

The format for directory and file names is determined by the operating system. UNIX
systems use the forward slash (/). NT systems use the backslash (\). If any file
specified iNLOGDIR ACCESS_LO®r ERROR_LO®annot be opened for writing, the

JRLY prints an error message stderr and exits.

The formats for host names and port numbers are shown in the following table.

Table 3-6 Host Name and Port Number Formats

Host Name/Port Number Descriptions

Hostname:Port Hostname is a stringPort is a decimal number

/I Hostname:Port Hostname is a stringPort is a decimal number

IP:Port IP is a dotted notation IP addrefgrt is a decimal
number

Using BEA Jolt

Jolt Relay Adapter

Jolt Relay Adapter

The Jolt Relay Adapter (back-end relay) is a BEA Tuxedo system server. The Jolt
Relay Adapter (JRAD) server may or may not be located on the same BEA Tuxedo
host machine in single host mode (SHM) and server group to which the JSL server is
connected.

The JRAD can be started independently of its associated JRLY. JRAD tracks its
startup and shutdown activity in the BEA Tuxedo log file.

JRAD Configuration

A single JRAD process can only be connected to a single JRLY. A JRAD can be
configured to communicate with only one JSL and its associated JSHes. However,
multiple JRADs can be configured to communicate with one JSLCTbeT

parameter for the BEA Tuxedo servers must be included inBBEONFIdile. A
sample of the file is shown in the listing “Sample JRAD Entry in UBBCONFIG File”
on page 3-30.

The following table contains additional information about¢hepPTparameters.

Table 3-7 JRAD CLOPT Parameter Descriptions

CLOPT Parameter Description

-l hexadecimal format Port to listen for the JRLY to connect
on behalf of the client.

-Cc hexadecimal format Theaddress of the corresponding
JSL to which JRAD connects.

-H hexadecimal format Used when there is a network address
translation performed for JRLY listen
address.

Note: The format i90x0002PPPPNNN Refer to theBEA Jolt 1.2.1 Release Noties
additional information on JRAD.

Using BEA Jolt 3-29

3 Configuring the BEA Jolt System

Listing 3-5 Sample JRAD Entry in UBBCONFIG File

JRAD host 200.100.100.10 listens at port 2000, connects to JSL
port 8000 on the same host

JRAD SRVGRP=JSLGRP SRVID=60
CLOPT="-A -- -| 0x000207D0C864640A —c 0x00021f40C864640A"

Network Address Configurations

A Jolt Internet Relay configuration requires that several networked components wor}
together. Prior to configuration, review the criteria in the following table and record
the information to minimize the possibility of misconfiguration.

Table 3-8 Jolt Internet Relay Network Address Configuration Criteria

JRLY JRAD JSL

LISTEN: Location -I : Location where -n : Location of JSL.

where the clients the listener Must matchc parameter of
connect connects to the JRLY JRAD

CONNECT:Location -c : Location of JSL

of your JRAD . Must Must matchn parameter of

match thel parameter of JSL

JRAD

3-30 Using BEA Jolt

Jolt Repository

Jolt Repository

The Jolt Repository contains BEA Tuxedo service definitions that allow Jolt clients to
access BEA Tuxedo services. The Jolt Repository files included with the installation
contain service definitions used internally by BEA Jolt. See “Using the Jolt Repository
Editor” on page 4-1 for detailed instructions on how to add definitions to the
application services.

Configuring the Jolt Repository

To configure the BEA Jolt Repository, modify the applicati@BCONFIGile. The
UBBCONFIdile is an ASCII version of the BEA Tuxedo configuration file. Create a
new UBBCONFIdile for each application. See tB&A Tuxedo Command Reference
for information regarding the syntax of the entries for the file. The following listing
shows relevant portions of ttuBBCONFIdile.

Listing 3-6 Sample UBBCONFIG File

*GROUPS

JREPGRP GRPNO=94 LMID=SITE1

*SERVERS

JREPSVR SRVGRP=JREPGRP SRVID=98

RESTART=Y GRACE=0 CLOPT="-A -- -W -P /app/jrepository"

JREPSVR SRVGRP=JREPGRP SRVID=97

RESTART=Y RQADDR=JREPQ GRACE=0 CLOPT="-A -- -P /app/jrepository"
JREPSVR SRVGRP=JREPGRP SRVID=96

RESTART=Y RQADDR=JREPQ REPLYQ=Y GRACE=0 CLOPT="-A -- -P
lappl/jrepository"

Note: For UNIX systems, use the slagh (hen setting the path to thepository
file (for example app/repository). For NT systems, use the backslash (
and specify the drive name (for exampilgapp\repository).

Using BEA Jolt 3-31

Configuring the BEA Jolt System

Change the sections of tk8BCONFIdile as indicated in the following table:

Table 3-9 UBBCONFIG File

Section Parameters to be specified
GROUPS LMID, GRPNO
SERVERS SRVGRP, SRVID

GROUPS Section

A GROUP®ntry is required for the group that includes the BEA Jolt Repository. The
group name parameter is a name selected by the application.

1. Specify the same identifiers given as the value of.khe parameter in the
MACHINESsection.

2. Specify the value of theRPNdetween 1 and 30,000 in tB®OUPSsection.

SERVERS Section

3-32

The Jolt Repository ServelREPSVR contains services for accessing and editing the
repository. MultipleJREPSVRinstances share repository information through a shared
file. IncludeJREPSVRIn theSERVERSsection of theJBBCONFIile.

1. Indicate a new server identification (for exampk), with theSRVID parameter.

2. Specify thew flag for oneJREPSVRto ensure that you can edit the Repository.
The Repository is read-only without this flag.

Note: You must install only one writab[REPSVR (that is, only on@REPSVR
with the-w flag). Multiple read-onl\JREPSVR can be installed on the
same host.

3. Type theP flag to specify the path of the repository file. An error message is
displayed in the BEA TuxeddLOGfile if the argument for theP flag is not
entered.

Using BEA Jolt

Jolt Repository

4. Add the file pathname of the repository file (for examfagy/jrepository).

5. Boot the BEA Tuxedo system using theoadcf command (for example,
tmloadcf -y ubbconfig) andtmboot command. SeAdministering a BEA
Tuxedo Application at Run Tinfier information aboutmlioadcf andtmboot .

Repository File

A Repository file jrepository , is available with BEA Jolt. This file includes
bankapp services and the repository services that you can modify, test, and delete
using the Repository Editor.

Note: The Jolt 1.2.1 Repository file is different from the Jolt 1.1 Repository file. If
you are using Jolt 1.1, you must make applicable changes.

Inside thgrepository file, the service definitions for the services in the Jolt
Repository ServerJREPSVR have FML32 as their buffer types. During
installation, the new service definitions for Jolt 1.2REPSVRshould be
appended to the existingpository file as part of the upgrade.

Start with thgrepository file provided with the installation, even if you are not
going to test theankapp application with BEA Jolt. Delete thankapp packages or
services that you do not need.

The pathname of the file must match the argument ofthaption.

@ Warning: Do not modify the repository files manually or you will not be able to use
the Repository Editor. Although thepository file can be modified
and read with any text editor, the BEA Jolt system does not have integrity
checks to ensure that the file is in the proper format. Any manual changes
to thejrepository file might not be detected until run time. See “Using
the Jolt Repository Editor” on page 4-1 for additional information.

Using BEA Jolt 3-33

3 Configuring the BEA Jolt System

Initializing Services By Using BEA Tuxedo and the
Repository Editor

Define the BEA Tuxedo services by using BEA Tuxedo and BEA Jolt Repository
Editor in order to make the Jolt services available to the client.

1. Build the BEA Tuxedo server containing the service./Sdministering a BEA
Tuxedo Application at Run TineeProgramming a BEA Tuxedo Application Using
C for additional information on the following:

e Building the BEA Tuxedo application server
e Editing theUBBCONFIJile
e Updating theTUXCONFIGfile

e Administering thamboot command

2. Access the BEA Jolt Repository Editor. See “Using the Jolt Repository Editor”
on page 4-1 for additional information. on the following:

e Adding a Service
e Saving Your Work
e Testing a Service

e Exporting and Unexporting Services

3-34 Using BEA Jolt

Event Subscription

Event Subscription

Jolt Event Subscription receives event notifications from either BEA Tuxedo services
or other BEA Tuxedo clients:

Unsolicited Event Notifications A Jolt client receives these notifications as a result
of a BEA Tuxedo client or service subscribing to unsolicited events, and a BEA
Tuxedo client issuing a broadcast (using eithpb@adcast() or a directly targeted
message Vvia @notify() ATMI call). Unsolicited event notifications do not need
the TMUSREVBerver.

Brokered Event Notifications. A Jolt client receives these notifications through the
BEA Tuxedo Event Broker. The notifications are only received when both Jolt clients
subscribe to an event and any BEA Tuxedo client or server posts an event using
tppost() . Brokered event notifications require thRdUSREVTserver.

Configuring for Event Subscription

Configure the BEA TuxedoMUSREVBerver and modify the applicatiQiBBCONFIG
file. The following listing shows the relevant sectiong&USREVPparameters in the
UBBCONFIdile. SeeProgramming a BEA Tuxedo Application Usindd®
information about the syntax of the entries for the file.

Listing 3-7 UBBCONFIG File

TMUSREVT SRVGRP=EVBGRP1 SRVID=40 GRACE=3600
ENVFILE="/usr/tuxedo/bankapp/TMUSREVT.ENV"
CLOPT="-e tmusrevt.out -0 tmusrevt.out -A --

-f Jusr/tuxedo/bankapp/tmusrevt.dat"
SEQUENCE=11

In the SERVERSsection of theJBBCONFIGile, modify theSRVGRRaNdSRVID
parameters as needed.

Using BEA Jolt 3-35

3 Configuring the BEA Jolt System

Filtering BEA Tuxedo FML or VIEW Buffers

Filtering is a process that allows you to customize a subscription. If you require
additional information about the BEA Tuxedo Event Broker, subscribing to events, or
filtering, refer toProgramming a BEA Tuxedo Application Using C

In order to filter BEA Tuxedo FML or VIEW buffers, the field definition file must be
available to BEA Tuxedo at run time.

Note: There are no special requirements for filtering STRING buffers.

Buffer Types

Table 3-10 BEA Tuxedo Buffer Types

Buffer Type Description

FML Attribute, value pair. Explicit.

VIEW C structure. Very precise offsetting. Implicit.

STRING Length and offset are different values. All readable.

CARRAY Character array. BLOB of binary data. Only client
and server know - JSL doesn't.

X_C_TYPE Equivalent to VIEW.

X_COMMON Equivalent to VIEW, but used for both COBOL and
C.

X _OCTET Equivalent to CARRAY.

3-36 Using BEA Jolt

Event Subscription

FML Buffer Example

The listing “FIELDTBLS Variable in the TMUSREVT.ENV File” on page 3-37 shows
an example that uses the FML buffer. The FML field definition table is made available
to BEA Tuxedo by setting thELDTBLS andFLDTBLDIR variables.

To filter a field found in theny.fids file:
1. Copy theamy.flds file to/usr/me/bankapp directory.

2. Addmy.flds to theFIELDTBLS variable in therMUSREVT.ENVfile as shown in
the following listing:

Listing 3-8 FIELDTBLS Variable in the TMUSREVT.ENV File

FIELDTBLS=Usysflds,bank.flds,credit.flds,event.flds,my.flds
FLDTBLDIR=/usr/tuxedo/me/T6.2/udataobj:/usr/me/bankapp

If ENVFILE="/usr/me/bankapp/TMUSREVT.ENV" is included in the definition of the
UBBCONFIdile (shown in the listing “UBBCONFIG File” on page 3-35), the
FIELDTBLS andFLDTBLDIR definitions are taken from theMUSREVT.ENVfile and
not from your environment variable settings.

If you remove theENVFILE="/usr/me/bankapp/TMUSREVT.ENV" definition, the
FIELDTBLS andFLDTBLDIR definitions are taken from your environment variable
settings. TheIELDTBLS andFLDTBLDIR definitions must be set to the appropriate
value prior to booting the BEA Tuxedo system.

For additional information on event subscriptions and the BEA Jolt Class Library,
refer to “Using the Jolt Class Library” on page 5-1.

Using BEA Jolt 3-37

3 Configuring the BEA Jolt System

BEA Tuxedo Background Information

The following sections provide detailed configuration information. Skip this section if
you are familiar with BEA Tuxedo.

Configuration File

The BEA Tuxedo configuration file for your application exists in two forms, the ASCII
file, UBBCONFIGand a compiled version call@ddXCONFIG Once you create a
TUXCONFIG consider youUBBCONFIGS a backup.

You can make changes to thBBCONFIdile with your preferred NT editor. Then, at
a time when your application is not running, and when you are logged in to your
MASTER machine, you can recompile yolwXCONFIGbY runningtmloadcf (1).
System/T prompts you to make sure you really want to overwrite your existing
TUXCONFIGle. (If you enter the command with the option, the prompt is
suppressed.)

Creating the UBBCONFIG File

3-38

A binary configuration file called theUXCONFIGile contains information used by
tmboot(1) to start the servers and initialize the bulletin board of a BEA Tuxedo
system in an orderly sequence. The bimauCONFIGfile cannot be created directly.
Initially, you must create 8BBCONFIGile. That file is parsed and loaded into the
TUXCONFIQusingtmloadcf (1). Thentmadmin (1) uses the configuration file or a copy
of it in its monitoring activitytmshutdown (1) references the configuration file for
information needed to shut down the application.

Using BEA Jolt

BEA Tuxedo Background Information

Configuration File Format

The UBBCONFIdile can consist of up to nine specification sections. Lines beginning
with an asterisk (*) indicate the beginning of a specification section. Each such line
contains the name of the section immediately following the *. Allowable section
names areRESOURCES, MACHINES, GROUPS, NETGROUPS, NETWORK, SERVERS,
SERVICES, INTERFACES, and ROUTING .

Note: TheRESOURCE(f used) andMACHINES sectionsnustbe the first two
sections, in that order; tltBROUPSsection must be ahead SERVERS
SERVICES andROUTING

To configure the JSL, you must modify tiBBCONFIdile. For further information
aboutBEA Tuxedo configuration, refer tddministering a BEA Tuxedo Application at
Run Time

The following listing shows relevant portions of thBBCONFIdile.

Listing 3-9 UBBCONFIG File

*MACHINES
MACH1 LMID=SITE1
MAXWSCLIENTS=40
*GROUPS
JSLGRP GRPNO=95 LMID=SITE1
*SERVERS
JSL SRVGRP=JSLGRP SRVID=30 CLOPT= " -- -n 0x0002PPPPNNNNNNNN -d
/devi/tcp -m2 -M4 -x10”

The parameters shown in the following table are the only parameters that must be
designated for the Jolt Server groups and Jolt Servers. You are not required to specify
any other parameters.

Using BEA Jolt 3-39

Configuring the BEA Jolt System

Change the sections of t@BCONFIdile shown in the following table.

Table 3-11 UBBCONFIG File Sections

Section Parameters to be specified

MACHINES MAXWSCLIENTS

GROUPS GRPNO, LMID

SERVERS SRVGRPSRVID, CLOPT
MACHINES Section

3-40

The MACHINESsection specifies the logical names for physical machines for the
configuration. It also specifies parameters specific to a given machin®AGHINES
section must contain an entry for each physical processor used by the application.
Entries have the form:

ADDRES®r NAMEr required parameters [optional parameters]

whereADDRES$s the physical name of the processor, for example, the value producec
by the UNIX systenuname -n command.

LMID=string_value

This parameter specifies that titeng_value is to be used in other sections as the
symbolic name foADDRESSThis name cannot contain a comma, and must be 30
characters or less. This parameter is required. There mustiwaline for every
machine used in a configuration.

MAXWSCLIENTSnumber

The MAXWSCLIENTparameter is required in theACHINESsection of the

configuration file. It specifies the number of accesser entries on this processor to be
reserved for Jolt and Workstation clients only. The value of this parameter must be
between 0 and 32,768, inclusive.

The Jolt Server and Workstation us&aXWSCLIENT# the same way. For example, if
200 slots are configured fefAXWSCLIENTShis number configures BEA Tuxedo for
the total number of remote clients used by Jolt and Workstation.

Using BEA Jolt

BEA Tuxedo Background Information

Be sure to specifIAXWSCLIENT$n the configuration file. If it is not specified, the
default is 0.

Note: If MAXWSCLIENT$s not set, the JSL does not boot.

GROUPS Section

This section provides information about server groups, and must have at least one
server group defined in it. A server group entry provides a logical name for a collection
of servers and/or services on a machine. The logical name is used as the value of the
SRVGRRparameter in thBERVERSsection to identify a server as part of this group.
SRVGRHS also used in thBERVICESsection to identify a particular instance of a

service with its occurrences in the group. OtaROUP$arameters associate this

group with a specific resource manager instance (for example, the employee database).
Lines within theGROUPSection have the form:

GROUPNAMEequired parameters [optional parameters]

whereGROUPNAMEpecifies the logical name (string_value) of the group. The group
name must be unigue within all group names inGR®UPSection andMID values

in theMACHINESsection. The group name cannot contain an asterisk(*), comma, or
colon, and must be 30 characters or less.

A GROUP®nNtry is required for the group that includes the Jolt Server Listener (JSL).
Make theGROUP®ntry as follows:

1. The group name is selected by the application, for exangileRPandJREPGRP.

2. Specify the same identifiers given as the value ofthe parameter in the
MACHINESsection.

3. Specify the value of theRPNetween 1 and 30,000 in theROUPSsection.

Note: Make sure that Resource Managersratassigned as a default value for all
groups in thesROUPSection of youtUBBCONFIGile. Making Resource
Managers the default value assigns a Resource Manager to the JSL and you
receive an error duringnboot . In theSERVERSsection, default values for
RESTART MAXGENetc., are acceptable defaults for the JSL.

Using BEA Jolt 3-41

3 Configuring the BEA Jolt System

SERVERS Section

3-42

This section provides information on the initial conditions for servers started in the
system. The notion of a server as a process that continually runs and waits for a serv
group’s service requests to process may or may not apply to a particular remote
environment. For many environments, the operating system, or perhaps a remote
gateway, is the sole dispatcher of services. When either of these is the case, you ne
only specifySERVICEentry points for remote program entry points, andSERVER

table entries. BEA Tuxedo system gateway servers would advertise and queue rema
domain service requests. Host-specific reference pages must indicate whether or nc
UBBCONFIGserver table entries apply in their particular environments, and if so, the
corresponding semantics. Lines within 88RVERSsection have the form:

AOUTrequired parameters [optional parameters]

whereAOUTspecifies the filesfring_value) to be executed bynboot (1).tmboot
executessouTon the machine specified for the server group to which the server
belongstmboot searches for theouTfile on its target machine, thusQuTmust exist

in a file system on that machine. (Of course, the pattotorcan include RFS
connections to file systems on other machines.) If a relative pathname for a server i
given, the search foxOUTis done sequentially iIAPPDIR, TUXDIR/bin , /bin , and

then inpath , where<path> is the value of the lagtATH= line appearing in the

machine environment file, if one exists. The valuesARPDIR andTUXDIR are taken

from the appropriate machine entry in tieXCONFIGile.

Clients connect to BEA Jolt applications through the Jolt Server Listener (JSL).
Services are accessed through the Jolt Server Handler (JSH). The JSL supports
multiple clients and acts as a single point of contact for all the clients to connect to thi
application at the network address that is specified on the JSL command line. The JS
schedules work for handler processes. A handler process acts as a substitute for clie
on remote workstations within the administrative domain of the application. The
handler uses a multiplexing scheme to support multiple clients on one port
concurrently.

The network address specified for the JSL designates a TCP/IP address for both the
JSL and any JSH processes associated with that JSL. The port number identified by t
network address specifies the port number on which the JSL accepts new client

connections. Each JSH associated with the JSL uses consecutive port numbers at t
same TCP/IP address. For example, if the initial JSL port number is 8000 and there a
a maximum of three JSH processes, the JSH processes use ports 8001, 8002, and 8

Note: Misconfiguration of the subsequent JSL results in a port number collision.

Using BEA Jolt

BEA Tuxedo Background Information

Parameters Usable With JSL

In addition to the parameters specified in the previous sections, the following
parameters can be used with the JSL, although you need to understand how doing so
would affect your application.

SVRGRPstring_value

This parameter specifies the group name for the group in which the server is to run.
string_value ~ must be the logical name associated with a server group in the
*GROUPSsection, and must be 30 characters or less. This association with an entry in
the *GROUPSection means thaDUTis executed on the machine with theD

specified for the server group. This association also specifieRiRdor the server
group and parameters to pass when the associated resource manager is opened. All
server entries must have a server group parameter specified.

SRVID=number

This parameter specifies @entifier, an integer between 1 and 30,00, inclusive, that
identifies this server within its group. This parameter is required on every server entry,
even if the group has only one server. If multiple occurrences of servers are desired,
do not use consecutive numbers$®vIDs; leave enough room for the system to
assign additionadRVIDs up toMAX

Optional Parameters

The optional parameters of tBERVERSsection are divided into boot parameters and
run-time parameters.

Boot Parameters

Boot parameters are usedtimpoot when it executes a server. Once running, a server
reads its entry from the configuration file to determine its runtime options. The unique
server identification number is used to find the right entry. The following are boot
parameters.

CLOPTsstring_value

TheCLOPTparameter specifies a string of command line options to be passedto
when booted.Theervopts (5) page in th&EA Tuxedo File Formats and Data
Descriptions Referendests the valid parameters.

Using BEA Jolt 3-43

3 Configuring the BEA Jolt System

3-44

Some of the available options apply primarily to servers under development. For
example, ther option directs the server to write a record to its standard error file
each time a service request begins or ends.

Other command line options can be used to direct the server’s standasdioutt §
and standard errostflerr) to specific files, or to start the server so that it initially
advertises a limited set of its available services.

The default value for theLOPTparameter isA, which means that the server is started
with all available services advertised.

The maximum length of theLOPTparameter value is 256 characters; it must be
enclosed in double quotes.

SEQUENCEmumber

This parameter specifies when to shut down or boot relative to other servers. If
SEQUENCIHS not specified, servers are booted in the order found iBER¥ERS

section (and shut down in the reverse order). If some servers have sequence numb
specified and others do not, all servers with sequence numbers are booted first from
low to high sequence number, then all servers without sequence numbers are booted
the order in which they appear in the configuration file. Sequence numbers range
between 1 and 9999. If the same sequence number is assigned to more than one sen
tmboot may boot those servers in parallel.

MIN=number

TheMIN parameter specifies the minimum number of occurrences of the server to boo
by tmboot . If an RQADDRs specified, antMIN is greater than 1, the servers form a
multiple servers single queue (MSSQ) set. The identifiers for the servar\areup

to (SRVID + (MAX-1)). All occurrences of the server have the same sequence number:
as well as any other server parameters. The value rangé\fés 0 to 1000. IMIN is

not specified, the default value is 1.

MAX=number

TheMAXparameter sets the maximum number of occurrences of the server to be
booted. Initially tmboot bootsMIN servers, and additional servers can be booted up to
MAXoccurrences using thie option oftmboot to specify the associated server
identifier. The value range farAXis 0 to 1000. If no value is specified fianXx the
default is the same as fliN, or 1.

®m tmboot startsMIN occurrences unless you explicitly call for more with-the
SRVID option oftmboot.

Using BEA Jolt

BEA Tuxedo Background Information

m |If RQADDRs specified antIN is greater than one, an MSSQ set is formed
m If MIN is not specified, the default is 1.
m If MAXis not specified, the default igiN.

m MAXis especially important for conversational servers because they are spawned
automatically as needed.

Run-time Parameters

The server uses run-time parameters after it is starteddogt . As indicated
previously,tmboot uses the values found in tMEXDIR, APPDIR andENVFILE
parameters for thACHINESsection when booting the server. It also setpaT@ for
the server to:

“APPDIR:TUXDIR/bin:/bin: path "

wherepath is the value of the lastATH=line appearing in thENVFILE file. The
following parameters are runtime parameters.

ENVFILE=string_value

You can use thENVFILE parameter for a server to add values to the environment
established bymboot during initialization of the server. You can optionally set
variables specified in the file named in 82RVERS ENVFILE parameter after you set
those in thenACHINESENVFILE used bytmboot . These files cannot be used to
overrideTUXDIR, APDIR, TUXCONFIG , or TUSOFFSET The best policy is to include

in the server'&NVFILE only those variable assignments known to be needed to ensure
proper running of the application.

On the server, thENVFILE file is processedyfter the server starts. Therefore, it cannot
be used to set the pathnames used to find executable or dynamically loaded files
needed to execute the server. If you need to perform these tasks, use the machine
ENVFILE instead.

Within ENVFILE only lines of the form
VARIABLE = string

are allowedVARIABLE must start with an underscore or alphabetic character and can
contain only underscore or alphanumeric characters. If the server is associated with a
server group that can be migrated to a second machine\NttLE must be in the

same location on both machines.

CONV={Y | N}

Using BEA Jolt 3-45

3 Configuring the BEA Jolt System

3-46

CONvVspecifies whether the server is a conversational sex@@lv takes ar value if

a conversational server is being defined. Connections can only be made to
conversational servers, and rpc requeststgeizll(3c) ortpcall(3c)) can only

be made to non-conversational servers. For a request/response server, you can eitt
setCONV=Nwhich is the default, or omit the parameter.

RQADDRSstring_value

RQADDRassigns a symbolic name to the request queue of this server. MSSQ sets are
established by using the same symbolic name for more than one server (or by
specifyingMIN greater than 1). All members of an MSSQ set must offer an identical
set of services and must be in the same server group.

If RQADDRs not specified, the system assigns a unique key to serve as the queue
address for this server. Howevetadmin commands that take a queue address as an
argument are easier to use if queues are given symbolic names.

RQPERM1umber

Use theRQPERNparameter to assign UNIX-style permissions to the request queue for
this server. The value ofumbercan be between 0001 and 0777, inclusive. If no
parameter is specified, the permissions value of the bulletin board, as specified by
PERMN theRESOURCESection, is used. If no value is specified there, the default of
0666 is used (the default exposes your application to possible use by any login on th
system, so consider this carefully).

REPLYQ={ Y |N}

TheREPLYQparameter specifies whether a reply queue, separate from the request
queue, should be established A@UT If Nis specified, the reply queue is created on
the samaMID as theAOUT If only one server is using the request queue, replies can
be retrieved from the request queue without causing problems. However, if the serve
is a member of an MSSQ set and contains services programmed to receive reply
messageREPLYQshould be set tg so that an individual reply queue is created for
this server. If set to, the reply is sent to the request queue shared by all servers for
the MSSQ set, and you cannot ensure that the reply will be picked up by the server th
is waiting for it.

It should be standard practice for all member servers of an MSSQ set to specify
REPLYQ=Yif replies are anticipated. Servers in an MSSQ set are required to have
identical offerings of services, so it is reasonable to expect that if one server in the s
expects replies, any server in the set can also expect replies.

RPPERMaumber

Using BEA Jolt

BEA Tuxedo Background Information

Use theRPPERNMparameter to assign permissions to the reply queueher is

specified in the usual UNIX fashion (for example, 0600); the value can be between
0001 and 0777, inclusive. RPPERNS not specified, the default value 0666 is used.
This parameter is useful only whRBPLYQ=Y If requests and replies are read from the
same queue, oOnRQPERNs neededRPPERMS ignored.

RESTART={Y | N}

TheRESTARTparameter takesyor N to indicate whethekOUT is restartable. The
default isN. If the server is in a group that can be migraRESTARTmMuUSt bey. A
server started with &IGTERMsignal cannot be restarted; it must be rebooted.

An application’s policy on restarting servers might vary according to whether the
server is in production or not. During the test phase of application development it is
reasonable to expect that a server might fail repeatedly, but server failures should be
rare events once the application has been put into production. You might want to set
more stringent parameters for restarting servers once the application is in production.

Parameters Associated with RESTART

RCMDstring_value

If AOUTISs restartable, this parameter specifies the command that should be executed
whenAOUTabnormally terminates. The string, up to the first space or tab, must be the
name of an executable UNIX file, either a full pathname or relativ®RDIR. (Do

not attempt to set a shell variable at the beginning of the command.) Optionally, the
command name can be followed by command-line arguments. Two additional
arguments are appended to the command lineSRRNGINASRVID associated with

the restarting servestring_value is executed in parallel with restarting the server.

You can use theCMIparameter to specify a command to be executed in parallel with
the restarting of the server. The command must be an executable UNIX system file
residing in a directory on the servePaTH An example is a command that sends a
customized message to the userlog to mark the restarting of the server.

Using BEA Jolt 3-47

3 Configuring the BEA Jolt System

MAXGENRumber

If AOUTIs restartable, this parameter specifies that it can be restarted at maosgter (

- 1) times within the period specified BRACEThe value must be greater than 0 and
less than 256. If not specified, the default is 1 (which means that the server can be
started once, but not restarted). If the server is to be restanaeENNUSt be equal

to or greater than RESTARTMust bey or MAXGENS ignored.

GRACEnumber

If RESTARTIS Y, theGRACHErarameter specifies the time period (in seconds) during
which this server can be restarteddAKGEN 1) times. The number assigned must be
equal to or greater than 0, and less than 2,147,483,648 seconds (or a little more than
years). IfGRACHs not specified the default is 86,400 seconds (24 hours). Setting
GRACHO 0 removes all limitations; the server can be restarted an unlimited number of
times.

Entering Parameters

You can use BEA Tuxedo parameters, includE$TART, RQADDR andREPLYQ
with the JSL. (SeAdministering a BEA Tuxedo Application at Run Tioreadditional
information regarding runtime parameters.) Enter the following parameters:

1. To identify theSRVGRRparameter, type the previously defined group name value
from theGROUPSection.

2. To indicate thesRVID, type a number between 1 and 30,000 that identifies the
server within its group.

3. Verify that the syntax for theLOPTparameter is as follows:
CLOPT= “-- -n 0x0002PPPPNNNNNNNN -d /dev/tcp -m2 -M4 -x10”

Note: ThecCLOPTparameters may vary. Refer to the table “JSL Command-Line
Options” on page 3-16 for pertinent command-line information.

4. If necessary, type the optional parameters:

e Type theSEQUENCPparameter to determine the order that the servers are
booted.

e SpecifyY to permit release of tHRESTARTparameter.

e TypeoO to permit an infinite number of server restarts using3lRACE
parameter.

3-48 Using BEA Jolt

Sample Applications in BEA Jolt Online Resources

Sample Applications in BEA Jolt Online
Resources

You can access sample code that can be modified for use with BEA Jolt through the
BEA Jolt product Web page at:

http://www.beasys.com/products/jolt/index.htm

These samples demonstrate and utilize BEA Jolt features and functionality.
Other Web sites with Java-related information include:

m Javasoft Home Pagat{p://www.java.sun.com/)

m Newsgroups in the comp.lang.java hierarchy. These groups contain lists of past
articles and communications regarding Java, and are a valuable source of
archival material.

Using BEA Jolt 3-49

3 Configuring the BEA Jolt System

3-50 Using BEA Jolt

CHAPTER

A

Using the Jolt
Repository Editor

Use the Jolt Repository Editor to add, modify, test, export, and delete BEA Tuxedo
service definitions from the Repository based on the information available from the
BEA Tuxedo configuration file. The Jolt Repository Editor accepts BEA Tuxedo

service definitions, including the names of the packages, services, and parameters.

“Using the Jolt Repository Editor” covers the following topics:

Introduction to the Repository Editor

Getting Started

Main Components of the Repository Editor
Instructions for Viewing a Parameter

Grouping Services Using the Package Organizer
Modifying Packages, Services, and Parameters
Making a Service Available to the Jolt Client
TTesting a Service

Repository Editor Troubleshooting

Repository Enhancements for Jolt

Using BEA Jolt

4-1

4 Using the Jolt Repository Editor

Introduction to the Repository Editor

The Jolt Repository is used internally by Jolt to translate Java parameters to a BEA
Tuxedo type buffer. The Repository Editor is available as a downloadable Java apple
When a BEA Tuxedo service is added to the repository, it must be exported to the Jo
server to ensure that the client requests can be made from a Jolt client.

Repository Editor Window

Repository Editor windows contain entry fields, scrollable displays, command buttons
status, and radio buttons. The figure “Sample Repository Editor Window” on page 4-:
illustrates the parts of the window. The table “Repository Editor Window Parts” on
page 4-4 contains details about each part.

4-2 Using BEA Jolt

Introduction to the Repository Editor

Figure 4-1 Sample Repository Editor Window

i Applet Viewer: bea jolt. admin RE class
Applet

Edit Services
Editing existing service in package: BANKAPP
Service Mame m FParameters
Input Buffer Type Fhil - 2 DUMT_ID

Input View FMame EERTEJHLTST

Qutput Buffer Type |FhiL ~ SEALAMCE

Cutput Wiew Barme STATLIM

Export Status " Unexport & Export

Service level actions FParameter level actions
Save Service | Test | Back | ey | Edit... | Delete |

Using BEA Jolt

4-3

4 Using the Jolt Repository Editor

Repository Editor Window Description

The following table details the parts of the Repository Editor window shown in the
previous figure.

Table 4-1 Repository Editor Window Parts

Part Function

1 Text boxes Enter text, numbers, or alphanumeric characters such as
“Service Name,” “Input View Name,” server names, or port
numbers. In the previous figure, “Service Name.”

2 Drop-down arrow View lists that extend beyond the display using an arrow
button. In the previous figure, “Input Buffer Type” or “Output
Buffer Type.”

3 Display list Select from a list of predefined items such as the Parameters list

or select from a list of items that have been defined.

4 Command buttons Activate an operation such as displaying the Packages window,
Services window, or Package Organizer. In the previous figure,
command buttons include: “Save Service,” “Test,” “Back,”
“New,” “Edit,” “Delete.”

5 Radio buttons Select one of a number of options. Only one of the radio buttons
can be activated at a time. For example, Export Status can only
be “Unexport” or “Export.”

4-4 Using BEA Jolt

Getting Started

Getting Started

Before starting the Repository Editor, make sure that you install the minimally
required components, the Jolt Server and the Jolt Client.

To use the Repository Editor:

1. Start the Repository Editor.

You can start the Repository Editor from either the Javappfétviewer or
from your Web browser. Both of these methods are detailed in the following
sections.

2. Log on to the Repository Editor.

Note: For information about exiting the Repository Editor after you enter
information, refer to “Exiting the Repository Editor” on page 4-9.

Starting the Repository Editor Using the Java Applet
Viewer

1. SettheCLASSPATHO include the Jolt class directory.
2. If loading the applet from a local disk, type the following at the URL location:

appletviewer <full-pathname>/RE.html

If loading the applet from the Web server, type the following at the URL
location:

appletviewer http://<www.server>/<URL path>/RE.html
3. Pres<Enter.

The window is displayed as shown in the figure “BEA Jolt Repository Editor
Logon Window” on page 4-8.

Using BEA Jolt 4-5

4 Using the Jolt Repository Editor

Starting the Repository Editor From Your Web Browser

Use one of the following procedures to start the Repository Editor from your Web
Browser.

To start from a local file:
1. SettheCLASSPATHoO include the Jolt class directory.

2. Type the following:
file:<full-pathname>/RE.html
3. Pres<Enter.

The editor is displayed as shown in “BEA Jolt Repository Editor Logon
Window” on page 4-8.

To start from a Web server:
1. Ensure that theLASSPATH]oes not include the Jolt class directory
2. Unset theCLASSPATH

3. Type the following:
http://<www.server>/<URL path>/RE.html
Note: Before opening the file, modify thepplet codebase parameter in
RE.html to match your Jolt Java classes directory.
4. PresEnter.

The editor is displayed as shown in the “BEA Jolt Repository Editor Logon
Window” on page 4-8.

4-6 Using BEA Jolt

Getting Started

Logging on to the Repository Editor

1. Complete the appropriate steps to start the Repository Editor.

The “BEA Jolt Repository Editor Logon Window” on page 4-8 must be
displayed before you continue with Step 2. Refer to this figure as you perform
the following procedure.

2. Type the name of the Server machine designated as the “access point” to the BEA
Tuxedo application and pre$ab.

3. Type the Port Number and prdsster.
The system validates the server and port information.

Note: Unless you are logging on through the Jolt Relay, the same port number is
used to configure the Jolt Listener. Refer to yoBBCONFIGile for
additional information.

4. Type the BEA Tuxedo Application Password and pEsgsr.

Depending upon the authentication level, complete Steps 5 and 6 as required.
5. Type the BEA Tuxedo User Name and prEas.
6. Type the BEA Tuxedo User Password and pEggsr.

The PackagesandServicescommand buttons are enabled.

Note: See theloltSessionClass for additional information.

Using BEA Jolt 4-7

4 Using the Jolt Repository Editor

Figure 4-2 BEA Jolt Repository Editor Logon Window

[Z3 Applet Viewer: bea jolt. admin RE class
Applet

BEA Jolt Repository Editor

Saerver: skywalker
Faort Mumber: 85557
User Role: joltadmin

Application Passwaord:

User MName:

User Password:

Eackanes | SEmices e |l i

The following table, “Repository Editor Logon Window Description,” describes
Repository Editor logon window elements.

4-8 Using BEA Jolt

Getting Started

Repository Editor Logon Window Description

Table 4-2 Repository Editor Logon Window Description

Option

Description

Server

Server name.

Port Number

Port number in decimal value.

Note: After the Server Name and Port Number are entered, the
User Name and Password fields are activated. Activation
is based on the authentication level of the BEA Tuxedo

application.
User Role BEA Tuxedo user role. Required only if BEA Tuxedo
authentication level is USER_AUTH or higher.
Application BEA Tuxedo administrative password text entry.
Password
User Name BEA Tuxedo user identification text entry. The first

character must be an alpha character.

User Password

BEA Tuxedo password text entry.

Packages Accesses the Packages window. (Enabled after the logon.)
Services Accesses the Services window. (Enabled after the logon.)
Log Off Terminates the connection with the server.

Exiting the Repository Editor

Exit the Repository Editor when you finish adding, editing, testing, or deleting

packages, services, and parameters. Prior to exit, the window is displayed as shown in

the figure “BEA Jolt Repository Editor Logon Window Prior to Exit’ on page 4-10.

Using BEA Jolt 4-9

4 Using the Jolt Repository Editor

Figure 4-3 BEA Jolt Repository Editor Logon Window Prior to Exit

[Z3 Applet Viewer: bea jolt. admin RE class
Applet

BEA Jolt Repository Editor

Saerver: skywalker
Faort Mumber: 85557
User Role: joltadmin

Application Passwaord:

User MName:

User Password:

Fackages | Services Log Off

Note that only th&ackagesServices andLog Off command buttons are enabled. All
of the text entry fields are disabled.

Follow the steps below to exit the Repository Editor.
1. Click Back to return to the Repository Editor Logon window.

2. Click Log Off to terminate the connection with the server.

The Repository Editor Logon window continues to be displayed with disabled
fields.

3. SelectClosefrom your browser menu to close the window.

4-10 Using BEA Jolt

Main Components of the Repository Editor

Main Components of the Repository Editor

The Repository Editor allows you to add, modify, or delete any of the following
components:

m Packages

m Services

You can also test and group services.

m Parameters

Repository Editor Flow

After you log on to the Repository Editor, two buttons are enaBladkagesand
Services

The following figure illustrates the Repository Editor flow to help you determine
which of these two buttons to select.

Using BEA Jolt 4-11

4 Using the Jolt Repository Editor

Figure 4-4 Repository Editor Flow Diagram

W Packages
View
Fackage

& Services

Logon to the Repository < Move

Editar.
Determine
which
tasks to
complete.

Service or
Parameter

SelectPackagedo open the Packages window and perform the following functions:
m View packages and services

¢ Make a service available usikport or Unexport

e Select a package to delete
m Access the Package Organizer to:

e Move services from one package to another

e Create a new package

4-12 Using BEA Jolt

Main Components of the Repository Editor

Refer to “What Is a Package?” on page 4-13 for complete details.
UseServicesto open the Services window and perform the following functions:
m Create, add, edit, or delete service definitions

m Create, add, edit, or delete parameters

m Test the services and parameters

Refer to “What Is a Service?” on page 4-16 for complete details.

What Is a Package?

Packages provide a convenient method for grouping services for Jolt administration.
(A service consists of parameters, such as pin number, account number, payment, rate,
term, age, or Social Security number.)

You use thé?ackageswindow to perform the following:
m View packages and services

m Export or unexport services

m Delete packages

m Access Package Organizer to:
¢ Move services

e Create a new package

Click thePackagesbutton in the Jolt Repository Editor logon window to display the
available packages. When you select a specific package from the display list, its
services within that package are displayed.

The following figure contains a sample Packages window .BRnNKAPPpackage is
selected, and the services within BxNKAPPpackage is displayed.

Using BEA Jolt 4-13

4 Using the Jolt Repository Editor

4-14

Figure 4-5 Sample Packages Window

[Z3 Applet Viewer: bea jolt. admin RE class

Applet
Packages
Fackanes Services
DEPOQSIT
BULKFKG IMGLIRY
SIMPSERY TRAMNSFER
W THD RAAL

Fackage Organizer | Export | Lnexpart | [elete | Back |

Using BEA Jolt

Main Components of the Repository Editor

Packages Window Description

Table 4-3 Packages Window Description

Option Description
Packages Lists available packages.
Services Lists available services within the selected package.

Package Organizer Accesses the Package Organizer window to review available
packages and services. Use this window to move the services
among the packages or add a new package.

Export Makes the most current services available to the client. This option
is enabled when a package is selected.

Unexport Select this option before testing an existing service. This option is
enabled when a package is selected.

Delete Deletes a package. This option is enabled when a package is
selected and the package is empty (no services contained within the
package).

Back Returns the user to the previous window.

Instructions for Viewing a Package
1. Click Packagesn the Repository Editor Logon window.

The Packages window opens and displays the list of available packages.

In the figure “Sample Packages Window” on page 4BRMKAPPBULKPKG and
SIMPSERVare the available packages.

2. Refer to “Instructions for Viewing a Parameter” on page 4-19 for additional
information.

Using BEA Jolt 4-15

4 Using the Jolt Repository Editor

What Is a Service?

A service is a definition of an available BEA Tuxedo service. Services include
parameters such as pin number, account number, payment, and rate. Adding or editil
a Jolt service does not affect an existing BEA Tuxedo service.

You use the Services Window to add, edit, or delete services.

The following figure is an example of a Services window withBthigKAPPpackage
selected, and the display list of services and parameters available for this package
(parameters are detailed later).

Figure 4-6 Sample Services Window

ke Applet Viewer: bea jolt. admin RE . class
A App |

Applet
Services

Fackages

BLULKPEG

SIMPSERY

Senvices Farameters
ACCOURNT_ID
FORMMAM
SBEALAMCE
STATLIM

New.. | Edit. | Deete | Back|

4-16 Using BEA Jolt

Main Components of the Repository Editor

Services Window Description

Table 4-4 Services Window Description

Option Description
Packages Lists the available packages.
Services Lists the services in the selected package, which you can edit or

delete. Selecting a service displays the parameters within the service.

Parameters Displays the parameters of the selected service.
New Displays the Edit Services window for adding a new service.
Edit Displays the Edit Services window for editing an existing service.

This button is enabled only if a service has been selected.

Delete Deletes a service. This button is only enabled if a service has been
selected.
Back Returns the user to the previous window.

Instructions for Viewing a Service

1. SelectServicesfrom the Repository Editor Logon window.

The Services window opens and displays the list of available packages.

2. Select a package.
The list of available services for the selected package is displayed.

In the figure “Sample Services Window” on page 4-88\JKAPRSs the selected
packageDEPOSIT, INQUIRY, TRANSFER,andWITHDRAWAA&re the available
services foBANKAPP

3. Refer to “Instructions for Viewing a Parameter” on page 4-19 for additional
information.

Using BEA Jolt 4-17

4 Using the Jolt Repository Editor

Working With Parameters

A service contains parameters, which may be a pin number, account number, paymei
rate, term, age, or Social Security number. The following figure shows a Services
window displaying a selected service and its parameters.

Note: Adding or editing a parameter does not modify or change an existing BEA
Tuxedo Service.

Figure 4-7 Sample Services Window with Parameters List

ke Applet Viewer: bea jolt. admin RE . class
A App |

Applet
Services

Fackages

BAMKAPP

BLULKPEG

SIMPSERY

Senvices Farameters
ACCOURNT_ID
FORMMAM
SBEALAMCE
STATLIM

New.. | Edit. | Deete | Back|

4-18 Using BEA Jolt

Setting Up Packages and Services

Instructions for Viewing a Parameter

1. SelectServicesfrom the Repository Editor Logon window.

The Services window opens and displays the list of available packages.

2. Select a package.
The list of available services for the selected package is displayed.

In the preceeding figur@ANKAPRS the selected package.

3. Select a service.
The list of available parameters for the selected service is displayed.

In the preceeding figuré\QUIRY is the selected service.

4. View the parameters for a selected service in the Parameters display list.

In the preceeding figuréCCOUNT_ID FORMNAMSBALANCE, andSTATLIN are
the available parameters for thNQUIRY service.

5. Refer to “Adding a Parameter” on page 4-27 for additional information.

Setting Up Packages and Services

This section includes the necessary steps for setting up a package and its services:
m Saving Your Work

m Adding a Package

m Adding a Service

m Adding a Parameter

Using BEA Jolt 4-19

4 Using the Jolt Repository Editor

Saving Your Work

As you create and edit services and parameters, it is important to regularly save
information to avoid losing input. ClickinGave Servicen the Edit Services window
can prevent the need to re-enter information in the event of a system failure.

Caution: When you add or edit the parameters of a service, you must Adtkct
before choosin®ack from the Edit Parameters window and returning to
the Edit Services window.

If adding a new service or modifying an existing service in the Edit Services window,
be sure to sele@ave Servicehefore choosingack. If you selecBack before you

save the modified information, a warning is briefly displayed on the status line at the
bottom of the window.

Adding a Package

4-20

When you need to add a new group of services, you create a new package before
adding the services. The “Package Organizer Window” on page 4-21 and the followin
procedure show how to add a new packageANCE to the Packages listing.

Using BEA Jolt

Setting Up Packages and Services

Figure 4-8 Package Organizer Window

[Zi Applet Viewer: bea joltadmin RE class

Applet

Fackages
BAMGAPP
BLULKPKG

SIMPSERY

Semvices

Package Organizer

DERPOSIT
INQUIRY
TRAMSFER
W THDRAWAL

Fackanes

BAMEAPF
BULKFKG
BALANCE

SIMPSERY

Semnvices
Zeeee IPASSFML

e R

TOUFPER

Mew Package I

Back |

Using BEA Jolt 4-21

4 Using the Jolt Repository Editor

Instructions for Adding a Package

1. Click Packagesn the Repository Editor Logon window to display the Packages
window.

2. SelectPackage Organizerto display the Package Organizer window, similar to
that shown in the figure “Package Organizer Window” on page 4-21.

For a description of contents of this window, see “Package Organizer Window
Description” on page 4-33.

3. Click theNew Packagebutton in the Package Organizer window.
The text field is activated.
4. Type the name of the new package (not to exceed 32 characters) arfkEhpgess

The new name (shown in the preceeding figurBAAANCE is displayed on the
Packages list in random order.

Adding a Service

4-22

Services are definitions of available BEA Tuxedo services and can only be a part of
Jolt package.You must create the service as a part of a new or existing package.

The Repository Editor accepts the new service name exactly as it is typed (that is, a
uppercase letters, abbreviations, misspellings are accepted). Service hames must n
exceed 30 characters.

The following figure shows the Edit New Services window for adding a service.

Using BEA Jolt

Setting Up Packages and Services

Figure 4-9 Edit Services Window: Add a New Service to a Package

[Z3 Applet Viewer: bea jolt. admin RE class

Applet

Edit Services
Adding new service to packsgs BAMNEARPP
Service Mame Farameters
Input Buffer Type FhiL j

Input View Mame

Dutput Butfer Type FmL -

Output Yiew Mame

Export Status ® Unexport € Export
Service level actions Farameter level actions
Save Service | TEST | Back | ey | Edlit:.. | el et |

Using BEA Jolt 4-23

4 Using the Jolt Repository Editor

Adding a Service Window Description

The following table describes the options for adding services to a package in a packag

window.
Option Description
Edit Services Service Name Name of the new service to be added to the Jolt Repository.
Selections
Input Buffer VIEW— C-structure and 16-bit integer field. Contains subtypes that
Type/Output have a particular structure. X_C_TYPE and X_COMMON are
Buffer Type equivalent. X_COMMON is used for COBOL and C.
VIEW32—Similar to VIEW, except 32-bit field identifiers are
associated with VIEW32 structure elements.
CARRAY—Array of uninterrupted binary data that is neither
encoded nor decoded during transmission; it may contain null
characters. X_OCTET is equivalent.
FML—Type in which each field carries its own definition.
FML32—Similar to FML except the ID field and length field are 32
bits long.
STRING—Character array terminated by a null character that is
encoded or decoded.
Input View Unigue name assigned to the Input View Buffer and Output View
Name/Output Buffer types. These fields are only enabled if VIEW or VIEW32 are
View Name the selected buffer types.
Export Status Unexport Radio button with current status of the service. EXPORT or
Export UNEXPORT status is checked. UNEXPORT is the default.
Service Level Save Service Saves the newly created service in the Repository.
Actions
Test Tests the service. This command button is disabled until a new
service is created or edits to an existing service are saved.
Back Returns you to the previous window.
Parameter Parameters List of service parameters to edit or delete.

4-24 Using BEA Jolt

Setting Up Packages and Services

Parameter Level
Actions

New Adds new parameters to the service.

Edit Used to edit an existing parameter. This command button is disabled
until a new parameter is selected.

Delete Deletes a parameter. This option is disabled until a parameter is
selected.

Instructions for Adding a Service

1.

SelectServicesfrom the Repository Editor Logon window.

The Services window opens, similar to the figure shown in “Sample Services
Window” on page 4-16.

Select the package to which you will add the service.

If you later decide that another package should contain the new service, use the
Package Organizer to move the service to a different package. (See “Grouping
Services Using the Package Organizer” on page 4-31 for additional information.)

From the Services window, sel&btw to display the Edit Services window, as
shown in “Edit Services Window: Add a New Service to a Package” on page
4-23.

Select th&Service Nametext field to activate it.
Type the name of the new service you want to add.

Select the input buffer type.

Although the same buffer type selected for the Input Buffer is automatically
selected for the Output Buffer, you can select a different Output Buffer type.

e If VIEWorVIEW32 is selected, you must type the Input View Name and
Output View Name in the associated text fields.

e If another buffer type is selected, the Input View Name and Output View
Name text fields are disabled.

e If CARRAYOr STRING s selected, refer to “Selecting CARRAY or STRING
as a Service Buffer Type” on page 4-26 for additional instructions.

SelectSave Servicdo save the newly created service.

Using BEA Jolt 4-25

4 Using the Jolt Repository Editor

Selecting CARRAY or STRING as a Service Buffer Type

If CARRAYOr STRINGIs selected as the buffer type for a new service, OABRAYor
STRING can be added as the data type for the accompanying parameters. See also
“Adding a Parameter” on page 4-27 and “Selecting CARRAY or STRING as a
Parameter Data Type” on page 4-29. For additional information, refer to “Using the
Jolt Class Library” on page 5-1.

The following figure shows an example Edit Services window @TRING selected
as the buffer type for the serviseMPAPP.

Figure 4-10 Edit Services Window: Select STRING Buffer Type

[Z3 Applet Viewer: bea jolt. admin RE class
Applet

Edit Services
Adding new service to package: SIMPSERY

Sernice Mame I SIMPAFPP Farameters

Input Buffer Type

Input View Mame

Dutput Butfer Type STRIMG "l

Output Yiew Mame

Export Status ® Unexport € Export
Service level actions Farameter level actions
Save Service | TEST | Back | ey | Edlit:.. | el et |

4-26 Using BEA Jolt

Setting Up Packages and Services

Adding a Parameter

Clicking New under the labegParameter level actionsn the Edit Services window is
displayed the Edit Parameters window. Review the features in the following figure.
Use this window to enter the parameter and screen information for a service.

Figure 4-11 Edit Parameters Window: Add a Parameter

[Z3 Applet Viewer: bea jolt. admin RE class
Applet

Edit Parameters
Adding newy parameter to package: SIMPSERY service: SIMPAFPF

Farameter Information Screen Information

Field Mame Screen Label I
Data Type string v|

Direction ¢ input ¢ output (8 poth
Qccurrenceis) I
Clearl 2)] | = | Add | Elackl Erreety IRTarrratiE

Using BEA Jolt 4-27

4 Using the Jolt Repository Editor

Adding a Parameter Window Description

Option Description

Field Name Adds the field name (for example, asset, inventory).

Data Type Lists data type choices:
byte - 8-bit
short - 16-bit
integer - 32-bit
float - 32-bit
double - 64-bit
string - null-terminated character array
carray - variable length 8-bit character array

Direction Radio button choices for direction of information:
Input - Information is directed from the client to the server.
Output - Information is directed from the server to the client.

Both - Information is directed from the client to the server, and from
the server to the client.

Occurrence(s) Number of times that an identical field name can be used. If 0, the
field name can be used an unlimited number of times. Occurrences
are used by Jolt to build test screens; not to limit information sent or
retrieved by BEA Tuxedo.

Screen This button is disabled when the window is launched.

Information

Clear Clears the fields of the window.

Change Is disabled while new parameters are added.

Add Adds new parameters to the service. The parameters are saved when

the service is saved.

Back Returns the user to the previous window.

4-28 Using BEA Jolt

Setting Up Packages and Services

Instructions for Adding a Parameter

@

1. SelectField Nameto activate the field, and type the field name.

Note: If the buffer type is FML or VIEW, the field name must match the
corresponding parameter field name in FML or VIEW.

2. Select the data type.
3. Specify a direction by selecting thmput, output, or both radio buttons.

4. Select th®ccurrencestextfield to activate it, and then enter the number of
occurrences.

5. SelectAdd to append the informatioAdd does not save the parameter.

6. Inthe Edit Services window, clikave Servicdo save the parameter as a part of
the service.

Warning: If you do not clickSave Servicéefore you clickBack, the parameters
are not saved as part of the service.

7. Click Back to return to the Edit Services window.

Selecting CARRAY or STRING as a Parameter Data Type

If CARRAY or STRING is the selected buffer type for a new service, only carray or
string can be added as the data type for the accompanying parameters.

In this case, only one parameter can be added. It is recommended that you use the
parameter name “CARRAY” for a CARRAY buffer type, and the parameter name
“STRING” for a STRING buffer type.

See also “Instructions for Adding a Service” on page 4-25 and “Selecting CARRAY
or STRING as a Service Buffer Type” on page 4-26. For additional information, refer
to “Using the Jolt Class Library” on page 5-1.

The following figure is an example of the Edit Parameters window with string as the
selected data type for the parameter. Daga Type defaults to string and does not
allow you to modify that particular data type. THield Namecan be any name.

Using BEA Jolt 4-29

Using the Jolt Repository Editor

4-30

Figure 4-12 Edit Parameters Window: string Data Type

[Z3 Applet Viewer: bea jolt. admin RE class

Applet

Edit Parameters

Adding newy parameter to package: SIMPSERY service: SIMPAFPF

Parameter Information Screen Information

Field Nare INPUT ScreenLabel [
Data Type m

Direction

¢ input ¢ output (8 poth

Qccurrenceis) I 1

Clearl 2)] | = |

Elackl Sereen nfermaticn

adding INPUT parameter

Using BEA Jolt

Grouping Services Using the Package Organizer

Grouping Services Using the Package
Organizer

The Package Organizer moves services between packages. You may want to group
related services in a package (for example, WITHDRAWAL services that are exported
only at a certain time of the day can be grouped together in a package).

Use the Package Organizer arrow buttons to move a service from one package to
another. These buttons are useful if you have several services to move between
packages. The packages and services display listings to help track a service within a
particular package.

The following figure is an example of a Package Organizer window with a service
selected for transfer to another package.

Using BEA Jolt 4-31

4 Using the Jolt Repository Editor

4-32

Figure 4-13 Package Organizer Window

[Z3 Applet Viewer: bea jolt. admin RE class

Applet

Package Organizer

Fackages

BULKPKG
SIMPSERY

Semvices

Packanes

BAMNKAPF
BULKPKG
SIMPSERY

Services

e

——

Mew Package I

Added Mew Package: BARNK

Elackl

Using BEA Jolt

Grouping Services Using the Package Organizer

Package Organizer Window Description

Option Description

Packages (left display list) Lists packages containing services in the selected package.

Packages (right display list) Lists packages available as destinations for the selected
service.

Services (left display list) Lists available services for the selected package.

Services (right display list) Lists available services of the highlighted package that you
moved.

Left arrow Moves services (one service at a time) to the package

highlighted on the left.

Right arrow Moves services (one service at a time) to the package
highlighted on the right.

New Package Adds the name of a new package.

Back Returns user to the previous window.

Instructions fo

1.
2.

r Grouping Services with the Package Organizer

In the Packages window, click Package Organizer.

In the Package Organizer window, select the package containing the services to
be moved from the Packages left display window.

Select the service to be moved from the Services left display window.
In the previous figurdNQUIRY is the selected service in tRBNKAPPpackage.
Select the package to receive the service from the Packages right display window.

The previous figure shows the selected servid@UIRY, and the selected
packageBANK to which thdNQUIRY service will be moved.

Using BEA Jolt 4-33

Using the Jolt Repository Editor

4-34

Figure 4-14 Example of a Moved Service

EiApplet Viewer: bea jolt. admin RE class
Applet
Package Organizer
Fackages Packanes
BAME
BAMNEAPP
BULKPKG BULKPKG
SIMPSERY SIMPSERY
Semvices Services
DEFOSIT = fIMQUIRY
TRAMSFER i
WITHDRAWAL
Mew Package I Elackl
Added Mew Package: BARNK

5. To move the service between the packages, select the left arrowor right arrow.

These keys are activated only when both packages (left and right are displayed)
and a service are selected. The keys are only active in the direction of the
package where the service is to be moved. The previous figure, “Example of a
Moved Service,” shows that te@QUIRY service has been moved to #ENK
package on the right.

Note: You cannot select the same package in both the left and right display lists

Using BEA Jolt

Modifying Packages, Services, and Parameters

Modifying Packages, Services, and
Parameters

You can make the following changes to packages, services, and parameters:
m Edit a service
m Edit a parameter

m Delete a parameter, service, or package

Editing a Service

You can edit an existing service name or service information, or access the window to
add new parameters to an existing service. For a description of the Edit Services
window, see “Adding a Service Window Description” on page 4-24. The following
figure is an example of the Edit Services window.

Using BEA Jolt 4-35

4 Using the Jolt Repository Editor

Figure 4-15 Edit Services Window

[Z3 Applet Viewer: bea jolt. admin RE class

Applet

Edit Services
Editing existing service in package: BARNKAPP

Sernice Mame TRAMSFER Farameters
Input Buffer Type FhiL - ACCOUNT_ID
Input View Marme FORMMNAM

SAMOUINT
Dutput Butfer Type FmL j SHRALAMCE
Qutput View Mame STATLIN
Export Status

(" Unexport (& Export

Service level actions Farameter level actions

Save Service | Test | Back | ey | Edlit:.. | el et |

4-36 Using BEA Jolt

Modifying Packages, Services, and Parameters

Instructions for Editing a Service

Follow these instructions to edit a service:

1. From the Services window, select the package containing the service that requires
editing.

The services available for the selected package are displayed.

2. Select the service to edit.

The parameters available for the selected service are displayed.
3. Click Edit to display the Edit Services window, as shown in the previous figure.

4. Type or select the new information, and cl8kve Service

Editing a Parameter

All parameter elements can be changed, including the name of the parameter.

@ Warning: If you create a new parameter using an existing name, the system
overwrites the existing parameter.

The following figure is an example of the Edit Parameters window.

Using BEA Jolt 4-37

4 Using the Jolt Repository Editor

Figure 4-16 Edit Parameters Window

[Z3 Applet Viewer: bea jolt. admin RE class
Applet

Edit Parameters
Changing existing parameter in package: BANKAPP service: TRAMSFER

Farameter Information Screen Information

Field Mame ACCOUNT_ID Screen Lahel I
Data Type integer v|

Direction o input ¢ output € both
Qccurrenceis) 2
Clearl Change | e) | Elackl Erreety IRTarrratiE

Instructions for Editing a Parameter

To change a parameter, follow these instructions:

1. Inthe Services window (see “Sample Services Window with Parameters List”),
select the package and service that contain the parameter you want to change.

2. Click Edit to display the Edit Services window.

3. Select the Parameter you want to edit from the Parameters display list and click
Edit.

The Edit Parameters Window is displayed as shown in the previous figure.

4-38 Using BEA Jolt

Modifying Packages, Services, and Parameters

4.
5.

Type the new information and cli€khange

Click Back to return to the previous window.

Deleting Parameters, Services, and Packages

This section describe how to delete a package. Before deleting a package, all the
services must be deleted from the package.Ddleteoption is not enabled until all
components of the package or service are deleted.

@ Warning: The system does not display a prompt to confirm that items are to be

deleted. Be certain that the parameter, service, or package is scheduled to
be deleted or has been moved to another location before seleetetg

Deleting a Parameter

Determine which parameters to delete and follow these instructions.

1.
2.

In the logon window, click Services to display the Services window.

In the Services window, select the package and service that contain the parameter
you want to delete.

Click Edit to display the Edit Services window.
Select the parameter you want to delete from the Parameters display list.

Under Parameter Level Actions, cliDelete

Using BEA Jolt 4-39

4 Using the Jolt Repository Editor

Deleting a Service
Determine which services to delete and follow these instructions.

Note: Make certain that all parameters within this service are deleted before
selecting this option.

1. Select the package containing the service you want to delete.
2. Select the service you want to delete.
Deleteis enabled.

3. Click Delete The service is deleted.

Deleting a Package

Determine which packages to delete and follow these instructions. Make sure all
services contained in this package are deleted or moved to another package before
selecting this option.

1. In the Repository Editor Logon window, cliBlackagego display the Packages
window.

2. Select a package.

3. Click Delete
The package is deleted.

4-40 Using BEA Jolt

Making a Service Available to the Jolt Client

Making a Service Available to the Jolt Client

To make a service available to a Jolt client, you export it. All services in a package
must be exported or unexported as a group. A service is made available by using the
Export andUnexport radio buttons.

“Making a Service Available to the Jolt Client” covers the following topics:
m Exporting and Unexporting Services

m Reviewing the Exported and Unexported Status

Exporting and Unexporting Services

Determine which services are being made available or unavailable to the Jolt client.
Services are exported to ensure that the Jolt client can access the most current service
definitions from the Jolt server.

The following figure shows the Packages window, where you can export and unexport
services.

Using BEA Jolt 4-41

4 Using the Jolt Repository Editor

Figure 4-17 Packages Window: Export and Unexport Buttons

Egji' Applet Yiewer: bea.jolt.admin.BE_clazs
Applet

Packages

Fackanes Services

BAMEAPF DEFOSIT
SIMPSERY INGLIRY
TRAMNSFER
W THD RAWIAL

Fackage Organizer | Export | Lnexpart | [elete | Back |

Follow the instructions to export or unexport a service:

1. From the Repository Editor Logon window, seleatkagego display the
Packages window.

2. Select a package.
The Export andUnexport buttons are enabled.
3. To make the services in the selected package availableEsipkt.

To make the services in the selected package unavailable, $eéqiort.

Caution: The system does not display a confirmation message indicating that the
service is exported or unexported. See “Reviewing the Exported and
Unexported Status” for additional information.

4-42 Using BEA Jolt

Making a Service Available to the Jolt Client

Reviewing the Exported and Unexported Status

When a service is exported or unexported, you can review its status from the Edit
Services window.

The following figure displays thExport radio button as active, f@xport Status;
therefore, the current status for the serviB&NSFERS exported.

Figure 4-18 Export Status

[Zi Applet Viewer: bea joltadmin RE class

Applet

Edit Services
Editing existing service in package: BAMNIAPP

Sernice Mame TRAMSFER Farameters
Input Buffer Type Fhil - ACCOUNT_ID
Input View Marme FORMMAM

SAMOLIMT
Cutput Buffer Type FhiL - SEALAMCE
Cutput View Mame STATLIM
Export Status

(" Unexport (@ Export

Service level actions Farameter level actions

Save Service | Testl Elackl e | Edit:. | [Welete |

Using BEA Jolt 4-43

4 Using the Jolt Repository Editor

To review the current exported or unexported status of a sevice, follow these
instructions:

1. Fromthe Repository Edtor Logon wirdow, select Se vicesto display the Services
window shown in the “Sample Sevices Window” on page 4-16.

2. Select a package from the Package display list.

The Servicesdisplay list of available services for the sdected package is
displayed.

3. Sdect the service you want to review.

4. Click Edit.

The Edit Senices window is displayed as shown in thefigure “Edit Sewvices
Window” on pege 4-3.

One of tle rado butons (Unexport or Export) next to the Export Status label
will be active, indicating the current status of the service.

Testing a Service

Test aservice and its parameers before you make them available to Jolt clients. You
can test currently available services without making changes to the services and
paameers

Note: The Jolt Repository Editor dlows you to test an existing BEA Tuxedo service
with Jolt, without writing a Ine ofJJavacoce.

An exported or unexported service can be tested; if you need to changea service and
its parameters, unexport the service prior to editing.

“TTesting a Savice” covers thefollowing main topics:
m Jolt Repository Editor Service Test Window

m Testing a Service

4-44 Using BEA Jdt

TTesting a Service

Jolt Repository Editor Service Test Window

Use the Run button to test the service to ensure that the parameter information is
accurate. A service can only be tested when the corresponding BEA Tuxedo server is
running for the service being tested.

Althouth theTestbutton in the Edit Services window is enabled when parameters are
not added to the service, the Service Test window displaysd in the parameter
fields, and they are disabled. Refer to “Sample Service Test Window” on page 4-46 for
an example of unused parameter fields.

Note: The Service Test window displays up to 20 items of any multiple-occurrence
parameters. All items that follow the twentieth occurrence of a parameter
cannot be tested.

The following figure is an example of a Service Test window with both writable and
read-only text fields.

Using BEA Jolt 4-45

4 Using the Jolt Repository Editor

Figure 4-19 Sample Service Test Window

[Z3 Applet Viewer: bea jolt. admin RE class

Applet
Service: INQGUIRY 1-4 of 4 Params
ACCOUNT_IDI integer[32]
FORMN&M' String (ReadOnly
SEIALANCEI String (ReadOnly
STATLINI String (ReadOnly

Unusedl Unused

Unusedl Unused

Unusedl Unused

Unusedl Unused

Unusedl Unused

Unusedl Unused

RUN | clear| wed| Frev| Back|

4-46 Using BEA Jolt

TTesting a Service

Service Test Window Description
The following table describes the Service Test window options.

Note: You can enter a two-digit hexadecimal character (0-9, a-f, A-F) for each byte
in the CARRAY data field. For example, the hexadecimal value for 1234
decimal is 0422.

Option Description

Service Displays the name of the tested service (read-only).
Parameters Tracks the parameters displayed in the window (read-only).
displayed

Parameter text fieldsThe parameter information text entry field. These fields are
writable or read-only. Disabled if read-only.

RUN Runs the test with the data entered.

Clear Clears the text entry field.

Next Lists additional parameter fields, if applicable.
Prev Lists previous parameter fields, if applicable.
Back Returns to the Edit Services window.

Using BEA Jolt 4-47

4 Using the Jolt Repository Editor

Testing a Service

You can test a service without making changes to the service or its parameters. Yol
can also test a service after editing the service or its parameters.

Test Service Process Flow
The following figure shows a typical Repository Editor service flow test.

Figure 4-20 Test Service Flow

(Select Test F

G

4-48 Using BEA Jolt

TTesting a Service

Instructions for Testing a Service

Follow these instructions to test a service. For troubleshooting information, see the
first two entries in the Repository Editor Troubleshooting table.

1.

o g M w0 N

SelectServicesfrom the Repository Editor Logon window.
The Services window is displayed.

Select the package and the service to test.

Click Edit to access the Edit Services window.

Click Testto access the Service Test window.

Enter data in the Service test window parameter text fields.
Click RUN.

The status line displays the outcome as follows:

e |If the test passedRun Completed OK "
e If the test failed: Call Failed "

See “Repository Editor Troubleshooting” on page 4-50 for additional
Repository Editor troubleshooting information.

If Edits are Required After Testing

Follow these instructions if editing is required to pass the test.

© N o g bk~ o d Pk

Return to the Repository Editor Logon window and chelckages

Select the package with the services to be retested.

Click Unexport.

Click Back to return to the Repository Editor Logon window.

Click Servicesto display the Services window.

Select the package and the service that requires editing an&diick

In the Edit Services window, edit the service.

Save the service, click Test, and repeat steps 5 and 6 of the “Instructions for

Testing a Service” section.

Using BEA Jolt 4-49

4 Using the Jolt Repository Editor

Repository Editor Troubleshooting

4-50

Consult the following table if you encounter problems while using the Repository

Editor.

Table 4-5 Repository Editor Troubleshooting

If...

Then...

A parameter is incorrec

Edit the service.

The Jolt server is down

Check the server. The BEA Tuxedo service is down. You do not

need to edit the service.

You receive any error

Make sure the browser you are running is Java-enabled:
For Netscape browsers, make sure that Enable Java and
Enable JavaScript are checked under
Edit— Preferences- Advanced. Then select
Communicator- Tools— Java Console. If the Java Console
does not exist on the menu, the browser probably does not
support Java.
For Internet Explorer, make sure the version is 3.0 (or later).

If running Netscape Navigator, check the Java Console for
error messages.

If runningappletviewer , check the system console (or the
window where you started tlappletviewer).

You cannot connect to
the Jolt Server (after
enteringServer and
Port Number)

Using BEA Jolt

Make sure that:

m Your Server name is correct (and accessible from your

machine). Check that the port number is the correct port. A
JSL or JRLY must be configured to listen on that port.

The Jolt Server is up and running. If any authentication is
enabled, check that you are entering the correct user names
and passwords.

If the applet was loaded through http,make sure that the Web
server, JRLY and the Jolt server are on the same machine (To
do this, enter the server name into the Repository Editor that
refers to the same machine name as the one used in the URL
to download the applet).

Repository Editor Troubleshooting

Table 4-5 Repository

Editor Troubleshooting (Continued)

If...

Then...

You cannot start the
Repository Editor

If you are running the editor in a browser and downloading the
Repository Editor applet through http, make sure that:

m The browser is Java-enabled.

m The Web server is running and accessible.

m TheRE.html file is available to the Web server.
|]

TheRE.html file contains the correct <codebase>
parameter. Codebase identifies where the Jolt class files are
located.

If running the editor in a browser (appletviewer) and
loading the applet from disk, make sure that:

m The browser is Java-enabled.

m TheRE.html file exists and is readable.
m TheRE.html file is Java-enabled.
|]

TheRE.html file contains the correct <codebase> parameter
(this is where the Jolt class files are installed on the local disk).

m CLASSPATH is set and points to the Jolt class directory.

You cannot display
Packagesor Services
even though you are su
they exist

m Make sure that the Jolt Repository Server is running
(JREPSVR).

©m Make sure that the JREPSVR can access the repository file.

Make sure that the configuration of JREPSVR: verify CLOPT
parameters and verify thag¢p.fl16 ~ (FML definition file) is
installed and accessible (follow installation documentation)

You cannot save chang

rCheck permissions on the repository file. The file must be

in the Repository Editor] writable by the user who starts JREPSVR.

Using BEA Jolt 4-51

4 Using the Jolt Repository Editor

Table 4-5 Repository Editor Troubleshooting (Continued)

If... Then...

You cannot test servicesm Check that the service is available.
m Verify the service definition matches the service.

m | BEA Tuxedo authentication is enabled, check that you have
the required permissions to execute the service.

m Check if the application file (FML or VIEW) is specified
correctly in the variables (FIELDTBLS or VIEWFILES) in
the ENVFILE. All applications FML field tables or VIEW
files must be specified in the FIELDTBLS and VIEWFILES
environment variables in the ENVFILE. If these files are not
specified, the JSH cannot process data conversion and you
receive the message “ServiceException: TPEJOLT data
conversion failed.”

m Check the ULOG file for any additional diagnostic messages.

Repository Enhancements for Jolt

The Jolt Repository uses the FML32 buffer type, which increases the internal buffer
size beyond 64K bytes.

Additionally, the JREPSVR and the Jolt Server (JSH) support the following XATMI
buffer types:

m X _OCTET
m X _C_TYPE
= X_COMMON

4-52 Using BEA Jolt

CHAPTER

5

Using the Jolt Class
Library

The BEA Jolt Class Library provides developers with a set of object-oriented Java
language classes for accessing BEA Tuxedo services. The class library contains the
class files that implement the Jolt API. Using these classes, you can extend
applications for Internet and intranet transaction processing. You can use the Jolt Class
Library to customize access to BEA Tuxedo services from Java applets.

“Using the Jolt Class Library” covers the following topics:
m Class Library Functionality Overview

m Jolt Object Relationships

m Jolt Class Library Walk-through

m Using BEA Tuxedo Buffer Types with Jolt

m Multithreaded Applications

m Event Subscription and Notifications

m Clearing Parameter Values

m Reusing Objects

m Deploying and Localizing Jolt Applets

To use the information in the following sections, you need to be generally familiar with
the Java programming language and object-oriented programming concepts. All the
programming examples are in Java code.

Using BEA Jolt 5-1

5 Using the Jolt Class Library

Note: All program examples are only fragments used to illustrate Jolt capabilities.
They are not intended to be compiled and run as provided. These program
examples require additional code to be fully executable.

Class Library Functionality Overview

The Jolt Class Library gives the BEA Tuxedo application developer the tools to
develop client-side applications or applets that run as independent Java applications
in a Java-enabled Web browser. Hee.jolt package contains the Jolt Class
Library. To use the Jolt Class Library, the client program or applet must import this
package. For an example of how to importibejolt package, refer to the listing
“Jolt Transfer of Funds Example (SimXfer.java)” on page 5-12.

Java Applications vs. Java Applets

5-2

Java programs that run in a browser are called applets. Applets are small, easily
downloaded parts of an overall application that perform specific functions. Many
popular browsers impose limitations on the capabilities of Java applets in order to
provide a high degree of security for the users of the browser. Applets have the
following restrictions:

m An applet ordinarily cannot read or write files on any host system.

m An applet cannot start any program on the host (client) that is executing the
applet.

m An applet can make a network connection only to the host from which the applet
originated; it cannot make other network connections, not even to the client
machine.

Programming workarounds exist for most restrictions on Java applets. Check your
browser's Web site (for example, www.netscape.com or www.microsoft.com) or
developer documentation for specific information about the applet capabilities that the
browser supports or restricts. You can also use Jolt Relay to work around some of tf
network connection restrictions.

Using BEA Jolt

Class Library Functionality Overview

A Java application, however, is not run in the context of a browser and is not restricted
in the same ways. For example, a Java application can start another application on the
host machine where it is executing. While an applet relies on the windowing
environment of a browser or appletviewer for much of its user interface, a Java
application requires that you create your own user interface. An applet is designed to
be small and highly portable. A Java application, on the other hand, can operate much
like any other non-Java program. The security restrictions for applets imposed by
various browsers and the scope of the two program types are the most important
differences between a Java application and a Java applet.

Jolt Class Library Features

The Jolt Class Library has the following characteristics:
m Features fully thread-safe classes.

m Encapsulates typical transaction functions such as logon, synchronous calling,
transaction begin, commit, rollback, and logoffs as Java objects.

m Contains methods that allow you to set idle time-outs for continuous and
intermittent client network connections.

m Features methods that allow a Jolt client to subscribe to and receive event-based
notifications.

Error and Exception Handling

The Jolt Class Library returns both Jolt interpreter and BEA Tuxedo errors as
exceptions. The Jolt Class Library Reference contains the Jolt classes and lists the
errors or exceptions thrown for each class. The API Reference in Javadoc contains the
Error and Exception Class Reference.

Using BEA Jolt 5-3

5 Using the Jolt Class Library

Jolt Client/Server Relationship

BEA Jolt works in a distributed client/server environment and connects Java clients t
BEA Tuxedo based applications.

The following figure illustrates the client/server relationship between a Jolt program
and the Jolt Server.

Figure 5-1 Jolt Client/Server Relationship

Client Jolt Server
Application Protocol
GUI Application - - BEA '_I'ux_edo
Application
Jolt Transaction Protocol ATMI

Jolt Class Libral
Y - P Protocol Translator

Connection Jolt Network Protocol Connection
Manager - | Manager
TCP/IP

As illustrated in the figure, the Jolt Server acts as a proxy for a native BEA Tuxedo
client, implementing functionality available through the native BEA Tuxedo client.
The BEA Jolt Server accepts requests from BEA Jolt clients and maps those reques
into BEA Tuxedo service requests through the BEA Tuxedo ATMI interface. Requests
and associated parameters are packaged into a message buffer and delivered over
network to the BEA Jolt Server. The BEA Jolt Connection Manager handles all
communication between the BEA Jolt Server and the BEA Jolt applet using the BEA
Jolt Transaction Protocol. The BEA Jolt Server unpacks the data from the message,
performs any necessary data conversions, such as numeric format conversions or
character set conversions, and makes the appropriate service request to BEA Tuxe
as specified by the message.

5-4 Using BEA Jolt

Class Library Functionality Overview

Once a service request enters the BEA Tuxedo system, it is executed in exactly the
same manner as any other BEA Tuxedo request. The results are returned through the
ATMI interface to the BEA Jolt Server, which packages the results and any error
information into a message that is sent to the BEA Jolt client applet. The BEA Jolt
client then maps the contents of the message into the various BEA Jolt client interface
objects, completing the request.

On the client side, the user program contains the client application code. The Jolt Class
Library packages a JoltSession and JoltTransaction, which in turn handle service
requests.

The following table describes the client-side requests and Jolt Server-side actions in a
simple example program.

Table 5-1 Jolt Client/Server Interaction

Jolt Client

1

attr=new JoltSessionAttributes();

attr.setString(attr APPADDRESS,
“//myhost:8000");

Jolt Server

Binds the client to the BEA
Tuxedo environment

2 session=new JoltSession(attr, username, Logs the client onto BEA
userRole, userPassword, appPassword); Tuxedo
3 withdrawal=new JoltRemoteService(Looks up the service
servhame, session); attributes in the Repository
4 withdrawal.addString(“accountnumber”, Populates variables in the
“123"); client (no Jolt Server
withdrawal.addFloat(*amount”, (float) activity)
100.00);
5 trans=new JoltTransaction(time-out, Begins a new Tuxedo
session); transaction
6 withdrawal.call(trans); Executes the BEA Tuxedo
service
7 trans.commit() or trans.rollback(); Completes or rolls back
transaction
8 balance=withdrawal.getFloatDef(“balance, Retrieves the results (no Jolt

(float) 0.0);

Server activity)

Using BEA Jolt 5-5

5 Using the Jolt Class Library

5-6

Table 5-1 Jolt Client/Server Interaction

Jolt Client Jolt Server
9 session.endSession(); Logs the client off of BEA
Tuxedo

The following tasks summarize the interaction shown in the previous table, “Jolt
Client/Server Interaction.”

1.
2
3.
4

5.

Each of these activities is handled through the use of the Jolt Class Library classes.
These classes include methods for setting and clearing data and for handling remot

Bind the client to the BEA Tuxedo environment using the
JoltSessionAttributes class.

Establish a session.
Set variables.
Perform the necessary transaction processing.

Log the client off of the BEA Tuxedo system.

service actions. “Jolt Object Relationships” on page 5-7 describes the Jolt Class
Library classes in more detail.

Using BEA Jolt

Jolt Object Relationships

Jolt Object Relationships

The following figure illustrates the relationship between the instantiated objects of the
Jolt Class Library classes.

Figure 5-2 Jolt Object Relationships

JoltRemoteService contains-a JoltUserEvent
uses-a
call(transaction) JoltSession contains-a
. contains-a
JoltTransaction ! uses-a #
uses-a
I JoltReply
JoltSessionAttributes
contains-a
JoltMessage

As objects, the Jolt classes interact in various relationships with each other. In the
previous figure, the relationships are divided into three basic categories:

Contains-arelationship. At the class level an object can contain other objects. For
example, a JoltTransaction stores (or contains) a JoltSession object.

Is-arelationship. The is-a relationship usually occurs at the class instance or sub-object
level and denotes that the object is an instance of a particular object.

Uses-arelationship. An object can use another object without containing it. For
example, a JoltSession can use the JoltSessionAttributes object to obtain the host and
port information.

Using BEA Jolt 5-7

5 Using the Jolt Class Library

Jolt Class Library Walk-through

Use Jolt classes to perform the basic functions of transaction processing: log on/log
off; synchronous service calling; transaction begin, commit, and rollback. The
following sections describe how Jolt classes are used to perform these functions.

m Logon and Logoff
m Synchronous Service Calling
m Transaction Begin, Commit, and Rollback

You can also use the Jolt class library to develop multithreaded applications, define
Tuxedo buffer types, and subscribe to events and unsolicited messages. These
functions are discussed in later sections.

Logon and Logoff

The client application must log on to the BEA Tuxedo environment prior to initiating
any transaction activity. The Jolt Class Library provides the JoltSessionAttributes
class and JoltSession class to establish a connection to a BEA Tuxedo system.

The JoltSessionAttributes class will contain the connection properties of Jolt and BE/
Tuxedo systems as well as various other properties of the two systems. To establi
a connection, the client application must create an instance of the JoltSession class
This instance is the JoltSession object. After the developer instantiates a Jolt Sessic
and BEA Tuxedo object, the Jolt and BEA Tuxedo logon capability is enabled. Calling
the endSession method ends the session and allows the user to log off.

Synchronous Service Calling

5-8

Transaction activities such as requests and replies are handled through a
JoltRemoteService object (an instance of the JoltRemoteService class). Each
JoltRemoteService object refers to an exported BEA Tuxedo request/reply service.
You must provide a service name and a JoltSession object to instantiate a
JoltRemoteService object before it can be used.

Using BEA Jolt

Jolt Class Library Walk-through

To use a JoltRemoteService object:
1. Set the input parameters.

2. Invoke the service.

3. Examine the output parameters.

For efficiency, Jolt does not make a copy of any input parameter object; only the
references to the object (for example, string and byte array) are saved. Because
JoltRemoteService object is a stateful object, its input parameters and the request
attributes are retained throughout the life of the object. You can uskedh

method to reset the attributes and input parameters before reusing the
JoltRemoteService object.

Because Jolt is designed for a multithreaded environment, you can invoke multiple
JoltRemoteService objects simultaneously by using the Java multithreading capability.
Refer to “Multithreaded Applications” on page 5-37 for additional information.

Transaction Begin, Commit, and Rollback

In Jolt, a transaction is represented as an object of the class JoltTransaction. The
transaction begins when the transaction object is instantiated. The transaction object is
created with a time out and JoltSession object parameter:

trans = new JoltTransaction(timeout, session)

Jolt uses an explicit transaction model for any services involved in a transaction. The
transaction service invocation requires a JoltTransaction object as a parameter. Jolt
also requires that the service and the transaction belong to the same session. Jolt does
notallow you to use services and transactions that are not bound to the same session.

The sample code in the listing “Jolt Transfer of Funds Example (SimXfer.java)” on
page 5-12 describes how to use the Jolt Class Library and includes the use of the
JoltSessionAttributes, JoltSession, JoltRemoteService, and JoltTransaction classes.

The same sample combines two user-defined BEA Tuxedo services (WITHDRAWAL
and DEPOSIT) to perform a simulated TRANSFER transaction. If the
WITHDRAWAL operation fails, a rollback is performed. Otherwise, a DEPOSIT is
performed and a commit completes the transaction.

Using BEA Jolt 5-9

5 Using the Jolt Class Library

5-10

The following programming steps describe the transaction process shown in the
sample code listing “Jolt Transfer of Funds Example (SimXfer.java)” on page 5-12:

1.

Set the connection attributes likestnam e andportnumber in the
JoltSessionAttribute object.

Refer to this line in the following code listing:
sattr = new JoltSessionAttributes();

Thesattr.checkAuthenticationLevel() allows the application to determine
the level of security required to log on to the server.

Refer to this line in the following code listing:

switch (sattr.checkAuthenticationLevel())

The logon is accomplished by instantiating a JoltSession object.
Refer to these lines in the following code listing:

session = new JoltSession (sattr, userName, userRole
userPassword , appPassword);

This example does not explicitly catBhssionException errors.

All JoltRemoteService calls require a service to be specified and the session key
returned fromJoltSession()

Refer to these lines in the following code listing:
withdrawal = new JoltRemoteService(“WITHDRAWAL”, session);
deposit = new JoltRemoteService("DEPOSIT”, session);

These calls bind the service definition of both the WITHDRAWAL and
DEPOSIT services, which are stored in the Jolt Repository, to the withdrawal
and deposit objects, respectively. The services WITHDRAWAL and DEPOSIT
must be defined in the Jolt Repository; otherwise a ServiceException is thrown.
This example does not explicitly catch ServiceException errors.

Once the service definitions are returned, the application-specific fields such as
account number ACCOUNT _ID and withdrawal amount SAMOUNT are
automatically populated.

Refer to these lines in the following code listing:

withdrawal.addInt(*ACCOUNT_ID”, 100000);
withdrawal.addString(“SAMOUNT”, “100.00");

Using BEA Jolt

Jolt Class Library Walk-through

Theadd*() methods can throvilegalAccessError or NoSuchFieldError
exceptions.

. The JoltTransaction call allows a timeout to be specified if the transaction does
not complete within the specified time.

Refer to this line in the following code listing:
trans = new JoltTransaction(5,session);

. Once the withdrawal service definition is automatically populated, the
withdrawal service is invoked by calling thithdrawal.call(trans)
method.

Refer to this line in the following code listing:

withdrawal.call(trans);

. A failed WITHDRAWAL can be rolled back.

Refer to this line in the following code listing:

trans.rollback();

. Otherwise, once the DEPOSIT is performed, all the transactions are committed.
Refer to these lines in the following code listing:

deposit.call(trans);

trans.commit();

Using BEA Jolt 5-11

5 Using the Jolt Class Library

The following listing shows an example of a simple application for the transfer of

funds using the Jolt classes.

Listing 5-1 Jolt Transfer of Funds Example (SimXfer.java)

[* Copyright 1999 BEA Systems, Inc. All Rights Reserved */
import bea.jolt.*;
public class SimXfer

{

public static void main (String[] args)

{

JoltSession session;
JoltSessionAttributes sattr;
JoltRemoteService withdrawal;
JoltRemoteService deposit;
JoltTransaction trans;

String userName=null;

String userPassword=null;
String appPassword=null;
String userRole="myapp”;

sattr = new JoltSessionAttributes();
sattr.setString(sattr APPADDRESS, “//bluefish:8501");

switch (sattr.checkAuthenticationLevel())

{

case JoltSessionAttributes.NOAUTH:
System.out.printin(“NOAUTH\n");
break;

case JoltSessionAttributes. APPASSWORD:
appPassword = “appPassword”;
break;

case JoltSessionAttributes. USRPASSWORD:
userName = “myname”;
userPassword = “mysecret”;
appPassword = “appPassword”;
break;

sattr.setInt(sattr. DLETIMEOUT, 300);

session = new JoltSession(sattr, userName, userRole,
userPassword, appPassword);

/I Simulate a transfer

withdrawal = new JoltRemoteService(“WITHDRAWAL”, session);

deposit = new JoltRemoteService(“DEPOSIT”, session);

withdrawal.addInt(*ACCOUNT_ID”, 100000);
withdrawal.addString(“SAMOUNT”, “100.00");

5-12 Using BEA Jolt

Jolt Class Library Walk-through

/I Begin the transaction w/ a 5 sec timeout
trans = new JoltTransaction(5, session);
try

withdrawal.call(trans);

}

catch (ApplicationException €)

e.printStackTrace();
/I This service uses the STATLIN field to report errors
/I back to the client application.
System.err.printin(withdrawal.getStringDef(“STATLIN",”"NO
STATLIN));
System.exit(1);

String wbal = withdrawal.getStringDef(*SBALANCE”", “$-1.0");

/I remove leading “$” before converting string to float
float w = Float.valueOf(wbal.substring(1)).floatValue();
if (w < 0.0)
{
System.err.printin(“Insufficient funds”);
trans.rollback();
System.exit(1);

else /I now attempt to deposit/transfer the funds

deposit.addint(*“ACCOUNT_ID”, 100001);
deposit.addString(“SAMOUNT", “100.00");

deposit.call(trans);
String dbal = deposit.getStringDef(*SBALANCE”, “-1.0");
trans.commit();

System.out.printin(“Successful withdrawal”);
System.out.printin(“New balance is: “ + wbal);

System.out.printin(“Successful deposit”);
System.out.printin(“New balance is: “ + dbal);

}

session.endSession();
System.exit(0);
}// end main

} /I end SimXfer

Using BEA Jolt 5-13

5 Using the Jolt Class Library

Using BEA Tuxedo Buffer Types with Jolt

Jolt supports the following built-in BEA Tuxedo buffer types:
m FML, FML32

m VIEW, VIEW32

s X_COMMON

m X C_TYPE

m CARRAY

m X _OCTET

m STRING

Note: X_OCTET is used identically to CARRAY.
X_COMMON and X_C_TYPE are used identically to VIEW.

For information about all the BEA Tuxedo typed buffers, data types, and buffer types
refer to the following documents:

e Programming a BEA Tuxedo Application Using C
e BEA Tuxedo C Function Reference
¢ BEA Tuxedo FML Function Reference

e BEA Tuxedo File Formats and Data Descriptions Reference

Of the BEA Tuxedo built-in buffer types, the Jolt application programmer should be
particularly aware of how Jolt handles the CARRAY (character array) and STRING
built-in buffer types. The CARRAY type is used to handle data opaquely (for example,
the characters of a CARRAY data type are not interpreted in any way). No data
conversion is performed between a Jolt client and BEA Tuxedo service.

For example, if a BEA Tuxedo service uses a CARRAY buffer type and the user set
a 32-bit integer (in Java the integer is in big-endian byte order), then the data is sen
unmodified to the BEA Tuxedo service. If the BEA Tuxedo service is run on a machine
whose processor uses little-endian byte-ordering (for example, Intel processors), the
BEA Tuxedo service must convert the data properly before the data can be used.

5-14 Using BEA Jolt

Using BEA Tuxedo Buffer Types with Jolt

Using the STRING Buffer Type

The STRING buffer type is a collection of characters. STRING consists of non-null
characters and is terminated by a null character. The STRING data tyjpeiser

and, unlike CARRAY, you can determine its transmission length by counting the
number of characters in the buffer until reaching the null character.

Note: During the data conversion from Jolt to STRING, the null terminator is
automatically appended to the end of the STRING buffers because a Java
string is not null-terminated.

Using the STRING buffer type requires two main steps:

1. Define the Tuxedo service that you will be using with the buffer type.
2. Write the code that uses the STRING buffer type.

The next two sections provide examples that demonstrate these steps.

TheToUpper code fragment shown in the listing “Use of the STRING buffer type
(ToUpper.java)” on page 5-18 illustrates how Jolt works with a service whose buffer
type is STRING. The TOUPPER BEA Tuxedo Service is available in the BEA Tuxedo
simpapp example.

Define TOUPPER in the Repository Editor

Before running th@oUpper.java example, you need to define theUPPERservice
through the Jolt Repository Editor.

Note: Refer to “Using the Jolt Repository Editor” on page 4-1 for more information
about defining your services and adding new parameters.

1. In the Jolt Repository Editor Logon window, click Services.

2. In the Services window, locate the TOUPPER service in the SIMPSERV
package.

3. Click Edit.

Using BEA Jolt 5-15

5 Using the Jolt Class Library

Figure 5-3 Add a TOUPPER Service

[Z3 Applet Viewer: bea jolt. admin RE class

Applet

Services

Fackages
BAMKAPP

BULKPKG
SIMPSERY

Senvices Farameters
TOURPFPER

New... | [Edit | Dol | | Back |

4. In the Edit Services window, define an input buffer type of STRING and an
output buffer type of STRING. Refer to the figure “Set Input and Output Buffer
Types to STRING” on page 5-17.)

5. For the TOUPPER service, define only one parameter farabePERservice
named STRING that is both an input and an output parameter.

5-16 Using BEA Jolt

Using BEA Tuxedo Buffer Types with Jolt

Figure 5-4 Set Input and Output Buffer Types to STRING

[Z3 Applet Viewer: bea jolt. admin RE class
Applet

Edit Services

Editing existing service in package: SIMPSERY
Sernice Mame TOUFPFPER Farameters

Input Buffer Type STRIMG vl STRIMG

Input View Mame

Dutput Butfer Type STRIMG "l

Output Yiew Mame

Export Status (" Unexport (& Export
Service level actions Farameter level actions
Save Service | Test | Back | ey | Edlit:.. | el et |

ToUpper.java Client Code

TheToUpper.java Java code fragment in the following listing illustrates how Jolt
works with a service with a buffer type of STRING. The example shows a Jolt client
using a STRING buffer to pass data to a server. The BEA Tuxedo server would take
the buffer, convert the string to all uppercase letters, and pass the string back to the
client. The following example assumes that a session object was already instantiated.

Using BEA Jolt 5-17

5 Using the Jolt Class Library

Listing 5-2 Use of the STRING buffer type (ToUpper.java)

[* Copyright 1996 BEA Systems, Inc. All Rights Reserved */
import bea.jolt.*;
public class ToUpper
{
public static void main (String[] args)
{
JoltSession session;
JoltSessionAttributes sattr;
JoltRemoteService toupper;
JoltTransaction trans;
String userName=null;
String userPassword=null;
String appPassword=null;
String userRole="myapp”;
String outstr;

sattr = new JoltSessionAttributes();
sattr.setString(sattr APPADDRESS, “//myhost:8501”");

switch (sattr.checkAuthenticationLevel())

{

case JoltSessionAttributes.NOAUTH:
break;

case JoltSessionAttributes. APPASSWORD:
appPassword = “appPassword”;
break;

case JoltSessionAttributes. USRPASSWORD:
userName = “myname”;
userPassword = “mysecret”;
appPassword = “appPassword”;
break;

sattr.setInt(sattr. DLETIMEOUT, 300);
session = new JoltSession(sattr, userName, userRole,
userPassword, appPassword);
toupper = new JoltRemoteService (“TOUPPER”, session);
toupper.setString(“STRING”, “hello world”);
toupper.call(null);
outstr = toupper.getStringDef(“STRING”, null);
if (outstr != null)

System.out.printin(outstr);

session.endSession();
System.exit(0);
} /I end main
} /I end ToUpper

5-18 Using BEA Jolt

Using BEA Tuxedo Buffer Types with Jolt

Using the CARRAY Buffer Type

The CARRAY buffer type is a simple character array buffer type that is built into the
BEA Tuxedo system. Because the system does not interpret the data (although the data
type is known) when you use the CARRAY buffer type, you must specify a data length

in the Jolt client application. The Jolt client must specify a datalength when passing
this buffer type.

To use the CARRAY buffer type, you first define the Tuxedo service that you will be
using with the buffer type. Then, write the code that uses the buffer type. The next two
sections demonstrate these steps.

Note: X_OCTET is used identically to CARRAY.

Define the Tuxedo Service in the Repository Editor

Before running the example shown in the figure “Add a TOUPPER &3roh page

5-16, you must write and boot an ECHO BEA Tuxedo service. The ECHO service
takes a buffer and passes it back to the Jolt client. You define the ECHO service in the
Jolt Repository Editor.

Using BEA Jolt 5-19

5 Using the Jolt Class Library

Figure 5-5 Repository Editor: Add the ECHO Service

EiApplet Viewer: bea jolt admin RE_class
Applet

Services
Fackages
|EIANI»<AF'F'
SIMPSERY
Services Farameters
CETRING ;I CARRAY
DATA10DKX30
DISCOMNMECTED |
HR
JCARRAY
JFLLUISH
I EW ;l

Mew.. | Edit..| Delete | Back |

Use the Repository Editor to add the ECHO service as follows:

1. In the Repository Editor, add a service called ECHO. Refer to “Instructions for
Adding a Service” and “Instructions for Adding a Parameter”.

2. Define the input buffer type and output buffer type as CARRAY for the ECHO
service.

3. Define the ECHO service with only one parameter named CARRAY that is both
an input and output parameter.

Note: If using the X_OCTET buffer type, you must changeltiput Buffer Type
andOutput Buffer Type fields to X_OCTET.

5-20 Using BEA Jolt

Using BEA Tuxedo Buffer Types with Jolt

Figure 5-6 Repository Editor: Edit ECHO Service

[Z3 Applet Viewer: bea jolt. admin RE class
Applet

Edit Services
Editing existing service in package: BULKPKG

Sernice Mame ECHO Farameters

Input Buffer Type CARRAY vl CARRAY

Input View Mame

Dutput Butfer Type CARRAY - I

Output Yiew Mame

Export Status (" Unexport (& Export
Service level actions Farameter level actions
Save Service | Test | Back | ey | Edlit:.. | el et |

Using BEA Jolt 5-21

5 Using the Jolt Class Library

tryOnCARRAY.java Client Code

The code in the following listing illustrates how Jolt works with a service with a buffer
type of CARRAY. Because Jolt does not look into the CARRAY data stream, it is the
programmer's responsibility to ensure that the data formats between the Jolt client ar
the CARRAY service match. The example in the following listing assumes that a
session object was already instantiated.

Listing 5-3 CARRAY Buffer Type Example

[* Copyright 1996 BEA Systems, Inc. All Rights Reserved */

/* This code fragment illustrates how Jolt works with a service
* whose buffer type is CARRAY.
*/

import java.io.*;
import bea.jolt.*;
class ...

{

public void tryOnCARRAY()

{
byte data[];
JoltRemoteService csvc;
DatalnputStream din;
DataOutputStream dout;
ByteArraylnputStream bin;
ByteArrayOutputStream bout;
/*

* Use java.io.DataOutputStream to put data into a byte array

*
bout = new ByteArrayOutputStream(512);
dout = new DataOutputStream(bout);
dout.writelnt(100);
dout.writeFloat((float) 300.00);
dout.writeUTF("Hello World");
dout.writeShort((short) 88);
/*
* Copy the byte array into a new byte array "data". Then
* issue the Jolt remote service call.
*
data = bout.toByteArray();
csvc = new JoltRemoteService("ECHQO", session);
csve.setBytes("CARRAY", data, data.length);
csvc.call(null);

5-22 Using BEA Jolt

Using BEA Tuxedo Buffer Types with Jolt

/*

* Get the result from JoltRemoteService object and use

* java.io.DatalnputStream to extract each individual value

* from the byte array.

*

data = csvc.getBytesDef("CARRAY", null);

if (data != null)

{
bin = new ByteArraylnputStream(data);
din = new DatalnputStream(bin);
System.out.printin(din.readint());
System.out.printin(din.readFloat());
System.out.printin(din.readUTF());
System.out.printin(din.readShort());

Using the FML Buffer Type

FML (Field Manipulation Language) is a flexible data structure that can be used as a
typed buffer. The FML data structure stores tagged values that are typed, variable in
length, and may have multiple occurrences. The typed buffer is treated as an abstract

data type in FML.

FML gives you the ability to access and update data values without having to know
how the data is structured and stored. In your application program, you simply access
or update a field in the fielded buffer by referencing its identifier. To perform the
operation, the FML run time determines the field location and data type.

FML is especially suited for use with Jolt clients because the client and server code can
be in two languages (for example, Java and C); the client/server platforms can have
different data type specifications; or the interface between the client and the server can
change frequently.

The followingtryOnFml examples illustrate the use of the FML buffer type. The
examples show a Jolt client using FML buffers to pass data to a server. The server takes
the buffer, creates a new FML buffer to store the data, and passes that buffer back to
the Jolt client. The examples consist of the following components.

m The “tryOnFml.java Code Example” on page 5-24 is a Jolt client that contains a
PASSFML service.

Using BEA Jolt 5-23

Using the Jolt Class Library

m The “tryOnFml.f16 Field Definitions” on page 5-25 is a BEA Tuxedo FML field
definitions table used by the PASSFML service.

m The “tryOnFml.c Code Example” on page 5-28 is a server code fragment that
contains the server side C code for handling the data sent by the Jolt client.

tryOnFml.java Client Code

ThetryOnFmljava Java code fragment in the following listing illustrates how Jolt
works with a service whose buffer type is FML. In this exampl, it is assumed that a

session object was already instantiated.

Listing 5-4 tryOnFml.java Code Example

[* Copyright 1997 BEA Systems, Inc. All Rights Reserved */

import bea.jolt.*;

class ...
{
public void tryOnFml ()
{

JoltRemoteService passFml;
String outputString;
int outputint;
float outputFloat;
passFml = new JoltRemoteService("PASSFML",session);
passFml.setString("INPUTSTRING", "John");
passFml.setint("INPUTINT", 67);
passFml.setFloat("INPUTFLOAT", (float)12.0);
passFml.call(null);
outputString = passFml.getStringDef("OUTPUTSTRING", null);
outputint = passFml.getintDef("OUTPUTINT", -1);
outputFloat = passFml.getFloatDef("OUTPUTFLOAT", (float)-1.0);
System.out.print("String =" + outputString);
System.out.print(" Int =" + outputint);
System.out.printin(" Float =" + outputFloat);

}

5-24 Using BEA Jolt

Using BEA Tuxedo Buffer Types with Jolt

FML Field Definitions

The entries in the following listing,“tryOnFml.f16 Field Definitions,” show the FML
field definitions for the previous listing, “tryOnFml.java Code Example.”

Listing 5-5 tryOnFml.f16 Field Definitions

#

FML field definition table
#

*base 4100
INPUTSTRING 1 string
INPUTINT 2 long
INPUTFLOAT 3 float
OUTPUTSTRING 4 string
OUTPUTINT 5 long
OUTPUTFLOAT 6 float

Define PASSFML in the Repository Editor

The BULKPKG package contains the PASSFML service, which is used with the
tryOnFmljava andtryOnFml.c code. Before running theyOnFml.java

example, you need to modify the PASSFML service through the Jolt Repository
Editor.

Note: Refer to “Using the Jolt Repository Editor” on page 4-1 for more information
about defining a service.

1. In the Edit Services window of the Jolt Repository Editor, define the PASSFML
service with an input buffer type of FML and an output buffer type of FML.

The figure “Repository Editor Window: Edit Services (PASSFML)” on page
5-26 illustrates the PASSFML service, and Input Buffer and Output Buffer of
FML.

Using BEA Jolt 5-25

5 Using the Jolt Class Library

Figure 5-7 Repository Editor Window: Edit Services (PASSFML)

[Z3 Applet Viewer: bea jolt. admin RE class

Applet

Edit Services
Adding new service to package: BULEPKG

Sernice Mame PASSFML Farameters
Input Buffer Type FhiL - INFUTFLOAT
Input View Marme INPUTINT

INPUTSTRIMG
Dutput Butfer Type FmL i OUTPUTFLOAT
Qutput View Mame OUTPUTINT

QOUTPUTSTIMNG
Export Status

Service level actions Farameter level actions

Save Service | TEST | Back | ey | Edlit:.. | el et |

2. Select the input buffer type and output buffer type as FML for the PASSFML
service.

3. Click Edit to display the Edit Parameters window as shown in the following
figure.

5-26 Using BEA Jolt

Using BEA Tuxedo Buffer Types with Jolt

Figure 5-8 Edit the PASSFML Parameters

[Z3 Applet Viewer: bea jolt. admin RE class
Applet

Edit Parameters
Changing existing parameter in package: BULKPREG service: PASSFML

Farameter Information Screen Information

Field Mame IMPUTETRIMNG Screen Lahel I
Data Type string v|

Direction o input ¢ output € both
Qccurrenceis) I 1
Clearl Change | e) | Elackl Erreety IRTarrratiE

4. Define the parameter for the PASSFML service.

5. Repeat steps 2 - 4 for each parameter in the PASSFML service.

Using BEA Jolt 5-27

5 Using the Jolt Class Library

tryOnFml.c Server Code

The following listing illustrates the server side code for using the FML buffer type. The
PASSFML service reads in an input FML buffer and outputs a FML buffer.

Listing 5-6 tryOnFml.c Code Example

/*

*tryOnFml.c

*

* Copyright (c) 1997 BEA Systems, Inc. All rights reserved
*

* Contains the PASSFML BEA Tuxedo server.
*

*/

#include <stdlib.h>

#include <stdio.h>

#include <ctype.h>

#include <sys/types.h>
#include <sys/ipc.h>

#include <sys/sem.h>

#include <sys/stat.h>

#include <malloc.h>

#include <math.h>

#include <string.h>

#include <fml.h>

#include <fml32.h>

#include <Usysflds.h>

#include <atmi.h>

#include <userlog.h>

#include "tryOnFml.f16.h"

/*

* PASSFML service reads in a input fml buffer and outputs a fml buffer.
*/

void

PASSFML(TPSVCINFO *rgst)

{

FLDLENIen;

FBFR*svcinfo = (FBFR *) rgst->data;

charinputString[256];

longinputint;

floatinputFloat;

FBFR*fml_ptr;

intrt;

if (Fget(svcinfo, INPUTSTRING, 0, inputString, &len) < 0) {

5-28 Using BEA Jolt

Using BEA Tuxedo Buffer Types with Jolt

(void)userlog("Fget of INPUTSTRING failed %s",
Fstrerror(Ferror));
tpreturn(TPFAIL, 0, rgst->data, OL, 0);

}

if (Fget(svcinfo, INPUTINT, 0, (char *) &inputint, &len) < 0) {
(void)userlog("Fget of INPUTINT failed %s",Fstrerror(Ferror));
tpreturn(TPFAIL, 0, rgst->data, OL, 0);

}

if (Fget(svcinfo, INPUTFLOAT, O, (char *) &inputFloat, &len) < 0) {
(void)userlog("Fget of INPUTFLOAT failed %s",

Fstrerror(Ferror));

tpreturn(TPFAIL, 0, rgst->data, OL, 0);

/* We could just pass the FML buffer back as is, put lets*/

[* store it into another FML buffer and pass it back.*/

if (fml_ptr = (FBFR *)tpalloc("FML",NULL,rgst->len))==(FBFR *)NULL) {
(void)userlog(“tpalloc failed in PASSFML %s",

tpstrerror(tperrno));

tpreturn(TPFAIL, 0, rgst->data, OL, 0);

}

if(Fadd(fml_ptr, OUTPUTSTRING, inputString, (FLDLEN)0) == -1) {
userlog("Fadd failed with error: %s", Fstrerror(Ferror));

tpfree((char *)fml_ptr);

tpreturn(TPFAIL, 0, NULL, OL, 0);

}
if(Fadd(fml_ptr, OUTPUTINT, (char *)&inputint, (FLDLEN)O) == -1) {
userlog("Fadd failed with error: %s", Fstrerror(Ferror));
tpfree((char *)fml_ptr);
tpreturn(TPFAIL, 0, NULL, OL, 0);

}
if(Fadd(fml_ptr, OUTPUTFLOAT, (char *)&inputFloat, (FLDLEN)0) == -1) {
userlog("Fadd failed with error: %d\n", Fstrerror(Ferror));
tpfree((char *)fml_ptr);
tpreturn(TPFAIL, 0, NULL, OL, 0);

}
tpreturn(TPSUCCESS, 0, (char *)fml_ptr, OL, 0);
}

Using BEA Jolt 5-29

5 Using the Jolt Class Library

Using the VIEW Buffer Type

VIEW is a built-in BEA Tuxedo typed buffer. The VIEW buffer provides a way to use
C structures and COBOL records with the BEA Tuxedo system. The VIEW typed
buffer enables the BEA Tuxedo run-time system to understand the format of C
structures and COBOL records based on the view description that is read at run time

When allocating a VIEW, your application specifies a VIEW buffer type and a subtype
that matches the name of the view (the name that appears in the view description file
The parameter name must match the field name in that view. Because the BEA Tuxeo
run-time system can determine the space needed based on the structure size, your
application need not provide a buffer length. The run-time system can also
automatically handle such things as computing how much data to send in a request
response, and handle encoding and decoding when the message transfers betweer
different machine types.

The following examples show the use of the VIEW buffer type with a Jolt client and
its server-side application.

m The “simpview.java Code Example” on page 5-33 is the Jolt client that contains
the code used to connect to BEA Tuxedo and uses the VIEW buffer type.

m The listing “simpview.v16 Field Definitions” on page 5-34 contains the BEA
Tuxedo VIEW field definitions.

m The “simpview.c Code Example” on page 5-35 contains the server side C code
for handling the input from the Jolt client.

The Jolt client treats a null character in a VIEW buffer string format as an end-of-line
character and truncates any part of the string that follows the null.

Define VIEW in the Repository Editor

Before running theimpview.java andsimpview.c examples, you need to define
the VIEW service through the Jolt Repository Editor.

Note: Referto “Using the Jolt Repository Editor” on page 4-1 for more information
about defining a service.

5-30 Using BEA Jolt

Using BEA Tuxedo Buffer Types with Jolt

Figure 5-9 Repository Editor: Add SIMPVIEW Service

E& Applet Viewer: bea.jolt. admin.RE.class
Applet

Services

Packages
BAMNEAPF

BULKFEG
SIMPSERY

Services Farameters

inlnt
inString
outFloat
outlnt
outString

New...l Edit...l Deletel EIackI

In the Repository Editor add the VIEW service as follows:
1. Add a SIMPVIEW service for the SIMPSERV package.

2. Define the SIMPVIEW service with an input buffer type of VIEW and an output
buffer type of VIEW.

Using BEA Jolt 5-31

Using the Jolt Class Library

5-32

Figure 5-10 Repository Editor: Edit SIMPVIEW Service

[Z3 Applet Viewer: bea jolt. admin RE class
Applet

Edit Services
Editing existing service in package: SIMPSERY

Sernice Mame SIMPYIEW Farameters
Input Buffer Type WY 'I
Input View Mame inString
outFloat
Output Buffer Type |WIEWY "l autint
Output wiew Mame outString
Export Status ® Unexport € Export
Service level actions Farameter level actions
Save Service | Test | Back | ey | Edit... | Delete |

3. Define the parameters for the VIEW service.

In this example the parameters anéit |, inString , outFloat , outint
outString

Note: If using the X_COMMON or X_C_TYPE buffer types, you must put the
correct buffer type in thinput Buffer Type andOutput Buffer Type fields.
Additionally, you must choose the correspondimgut View Name and
Output View Name fields.

Using BEA Jolt

Using BEA Tuxedo Buffer Types with Jolt

simpview.java Client Code

The listing “simpview.java Code Example” on page 5-33 illustrates how Jolt works
with a service whose buffer type is VIEW. The client code is identical to the code used
for accessing an FML service.

Note: The code in the following listing does not catch any exceptions. Because all
Jolt exceptions are derived frgava.lang.RunTimeException , the Java
Virtual Machine (JVM) catches these exceptions if the application does not.
(A well-written application would catch these exceptions, and take appropriate
actions.)

Before running the example in the following listing, you need to add the VIEW service
to the SIMPAPP package using the Jolt Repository Editor and writinthéew.c

BEA Tuxedo application. This service takes the data from the client VIEW buffer,
creates a new buffer and passes it back to the client as a new VIEW buffer. The
following example assumes that a session object has already been instantiated.

Listing 5-7 simpview.java Code Example

[* Copyright 1997 BEA Systems, Inc. All Rights Reserved */

/*

* This code fragment illustrates how Jolt works with a service whose buffer
* type is VIEW.

*/

import bea.jolt.*;
class ...

{

public void simpview ()

{

JoltRemoteService ViewSvc;

String outString;

int outlnt;

float outFloat;

/I Create a Jolt Service for the BEA Tuxedo service "SIMPVIEW"
ViewSvc = new JoltRemoteService("SIMPVIEW",session);
/I Set the input parametes required for SIMPVIEW
ViewSvc.setString(“inString", "John");
ViewSvc.setint("inint", 10);

ViewSvc.setFloat("inFloat", (float)10.0);

/I Call the service. No transaction required, so pass

/I a "null" parameter

ViewSvc.call(null);

Using BEA Jolt 5-33

5 Using the Jolt Class Library

I/ Process the results

outString = ViewSvc.getStringDef("outString", null);
outint = ViewSvc.getintDef("outInt", -1);

outFloat = ViewSvc.getFloatDef("outFloat", (float)-1.0);
// And display them...

System.out.print(“outString=" + outString + ",");
System.out.print("outint="+ outint + ",");
System.out.printin("outFloat=" + outFloat);

}

}

VIEW Field Definitions

The “simpview.v16 Field Definitions” listing shows the BEA Tuxedo VIEW field

definitions for thesimpview.java

example that were shown in the previous listing.

Listing 5-8 simpview.v16 Field Definitions

#

#VIEW for SIMPVIEW. Thisviewis used for both inputand output. The
service could also have used separate input and output views.
The first 3 params are input params, the second 3 are outputs.

#

VIEW SimpView

$

#type cname foname count flag size null
string inString - 1 - 32 -
long inint - 1 - - R
float inFloat - 1 - - -
string outString - 1 - 32 -
long outint - 1 - - -
float outFloat - 1 - - -
END

5-34 Using BEA Jolt

Using BEA Tuxedo Buffer Types with Jolt

simpview.c Server Code

In the following listing, the input and output buffers are VIEW. The code accepts the
VIEW buffer data as input and outputs the same data as VIEW.

Listing 5-9 simpview.c Code Example

/*
* SIMPVIEW.c

*

* Copyright (c) 1997 BEA Systems, Inc. All rights reserved
*

* Contains the SIMPVIEW BEA Tuxedo server.
*

*/

#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <sys/stat.h>
#include <malloc.h>
#include <math.h>
#include <string.h>
#include <fml.h>
#include <fmli32.h>
#include <Usysflds.h>
#include <atmi.h>
#include <userlog.h>
#include "simpview.h"
/*

* Contents of simpview.h.
*

*struct SimpView {
*

*charinString[32];
*longinint;
*floatinFloat;
*charoutString[32];
*longoutint;
*floatoutFloat;

*1-

i

*/
/*

* service reads in a input view buffer and outputs a view buffer.

Using BEA Jolt 5-35

5 Using the Jolt Class Library

*
void

SIMPVIEW(TPSVCINFO *rgst)
{
/*

* get the structure (VIEWSVC) from the TPSVCINFO structure
*

struct SimpView*svcinfo = (struct SimpView *) rgst->data;

/*

* print the input params to the UserLog. Note there is

* no error checking here. Normally a SERVER would perform
* some validation of input and return TPFAIL if the input

* is not correct.

*

(void)userlog("SIMPVIEW: InString=%s,InInt=%d, InFloat=%f",
svcinfo->inString, svcinfo->inint, svcinfo->inFloat);

/*

* Populate the output fields and send them back to the caller
*

strcpy (sveinfo->outString, "Return from SIMPVIEW");
svcinfo->outint = 100;

svcinfo->outFloat = (float) 100.00;

/*

* |f there was an error, return TPFAIL

* tpreturn(TPFAIL, ErrorCode, (char *)svcinfo, sizeof (*svcinfo), 0);
*

tpreturn(TPSUCCESS, 0, (char *)svcinfo, sizeof (*svcinfo), 0);

}

5-36 Using BEA Jolt

Multithreaded Applications

Multithreaded Applications

As a Java-based set of classes, Jolt supports multithreaded applications; however,
various implementations of the Java language differ with respect to certain language
and environment features. Jolt programmers need to be aware of the following:

m The use of preemptive and non-preemptive threads when creating applications or
applets with the Jolt Class Library.

m The use of threads to get asynchronous behavior similar tpattai()
function in BEA Tuxedo.

“Threads of Control” describes the issues arising from using threads with different
Java implementations and is followed by an example of the use of threads in a Jolt
program.

Note: Most Java implementations provide preemptive rather than non-preemptive
threads. The difference between these two models can lead to very different
performance and programming requirements.

Threads of Control

Each concurrently operating task in the Java virtual machine is a thread. Threads exist
in various states, the important ones being RUNNING, RUNNABLE, or BLOCKED.

m A RUNNING thread is a currently executing thread.

m A RUNNABLE thread can be run once the current thread has relinquished
control of the CPU. There can be many threads in the RUNNABLE state, but
only one can be in the RUNNING state. Running a thread means changing the
state of a thread from RUNNABLE to RUNNING, and causing the thread to
have control of the Java Virtual Machine (VM).

m A BLOCKED thread is a thread that is waiting on the availability of some event
or resource.

Note: The Java VM schedules threads of the same priority to run in a round-robin
mode.

Using BEA Jolt 5-37

5 Using the Jolt Class Library

Preemptive Threading

The main performance difference between the two threading models arises in telling
running thread to relinquish control of the Java VM. In a preemptive threading
environment, the usual procedure is to set a hardware timer that goes off periodicall
When the timer goes off, the current thread is moved from the RUNNING to the
RUNNABLE state, and another thread is chosen to run.

Non-preemptive Threading

In a non-preemptive threading environment, a thread must volunteer to give up contrc
of the CPU and move to the RUNNABLE state. Many methods in the Java language
classes contain code that volunteers to give up control, and are typically associated
with actions that might take a long time. For example, reading from the network
generally causes a thread to wait for a packet to arrive. A thread that is waiting on th
availability of some event or resource is in the BLOCKED state. When the event
occurs or the resource becomes available, the thread becomes RUNNABLE.

Using Jolt with Non-Preemptive Threading

5-38

If your Jolt-based Java program is running on a non-preemptive threading Virtual
Machine (such as Sun Solaris), the program must either:

m Occasionally call a method that blocks the thread, or
m Explicitly give up control of the CPU using th@éread.yield() method

The typical usage is to make the following call in all long-running code segments or
potentially time-consuming loops:

Thread.currentThread.yield();

Without sending this message, the threads used by the Jolt Library may never get
scheduled and, as such, the Jolt operation is impaired.

Using BEA Jolt

Multithreaded Applications

The only virtual machine known to use non-preemptive threading is the Java
Developer’s Kit (JDK version 1.0, 1.0.1, 1.0.2) machine running on a Sun platform. If
you want your applet to work on JDK 1.0, you must make sure to send the yield
messages. As mentioned earlier, some methods contain yields. An important exception
is theSystem.in.read method. This method does not cause a thread switch. Rather
than rely on these messages, we suggest using yields explicitly.

Using Threads for Asynchronous Behavior

You can use threads in Jolt to get asynchronous behavior that is analogous to the
tpacall() function in BEA Tuxedo. With this capability, you do not need an
asynchronous service request function. You can get this functionality because Jolt is
thread-safe. For example, the Jolt client application can start one thread that sends a
request to a BEA Tuxedo service function and then immediately start another thread
that sends another request to a BEA Tuxedo service function. So even though the Jolt
tpacall() is synchronous, the application is asynchronous because the two threads
are running at the same time.

Using Threads with Jolt

A Jolt client-side program or applet is fully thread-safe. Jolt support of multithreaded
applications includes the following client characteristics:

m Multiple sessions per client

m Multithreaded within a session

m Client application manages threads, not asynchronous calls
m Performs synchronous calls

The following listing illustrates the use of two threads in a Jolt application.

Using BEA Jolt 5-39

5 Using the Jolt Class Library

Listing 5-10 Using Multiple Threads with Jolt (ThreadBank.java)

[* Copyright 1996 BEA Systems, Inc. All Rights Reserved */
import bea.jolt.*;
public class ThreadBank
{
public static void main (String [] args)
{
JoltSession session;
try
{

JoltSessionAttributes dattr;
String userName = null;
String userPasswd = null;
String appPasswd = null;
String userRole = null;

/I fill in attributes required
dattr = new JoltSessionAttributes();
dattr.setString(dattr. APPADDRESS,"//bluefish:8501");

/I instantiate domain
/I check authentication level
switch (dattr.checkAuthenticationLevel())

{

case JoltSessionAttributes.NOAUTH:
System.out.printin(“NOAUTH\n");
break;

case JoltSessionAttributes. APPASSWORD:
appPasswd = “myAppPasswd”;
break;

case JoltSessionAttributes. USRPASSWORD:
userName = “myName”;
userPasswd = “mySecret”;
appPasswd = “myAppPasswd”;
break;

dattr.setInt(dattr.IDLETIMEOUT, 60);

session = new JoltSession (dattr, userName, userRole,
userPasswd, appPasswd);

T1tl =new T1 (session);

T2 t2 = new T2 (session);

tl.start();
t2.start();

Thread.currentThread().yield();
try

5-40 Using BEA Jolt

Multithreaded Applications

while (t1.isAlive() && t2.isAlive())

Thread.currentThread().sleep(1000);

}

catch (InterruptedException e)

{

System.err.printin(e);
if (t2.isAlive())

System.out.printin(“job 2 is still alive”);
try
{

Thread.currentThread().sleep(1000);

catch (InterruptedException el)

{
System.err.printin(el);

}

}
else if (t1.isAlive())
{ System.out.printin(“job1 is still alive”);

try
{
Thread.currentThread().sleep(1000);

catch (InterruptedException el)

System.err.printin(el);

}
}
}

session.endSession();

catch (SessionException e)

{

System.err.printin(e);

finally
{

System.out.printin(“normal ThreadBank term”);

}
}
}

class T1 extends Thread

{

Using BEA Jolt 5-41

5 Using the Jolt Class Library

JoltSession j_session;
JoltRemoteService j_withdrawal;

public T1 (JoltSession session)
{
j_session=session;
j_withdrawal= new JoltRemoteService(“WITHDRAWAL”,j_session);

public void run()
{
j_withdrawal.addInt(“ACCOUNT_ID",10001);
j_withdrawal.addString(“"SAMOUNT",”100.00");
try
{
System.out.printin(“Initiating Withdrawal from account
10001");
j_withdrawal.call(null);
String W = j_withdrawal.getStringDef(“SBALANCE”,”-1.0");
System.out.printin(“-->Withdrawal Balance: “ + W);

catch (ApplicationException e)

e.printStackTrace();
System.err.printin(e);

}
}

class T2 extends Thread

{
JoltSession j_session;
JoltRemoteService j_deposit;

public T2 (JoltSession session)
{
j_session=session;
j_deposit= new JoltRemoteService("DEPOSIT",j_session);

public void run()
{
j_deposit.addInt(*ACCOUNT_ID",10000);
j_deposit.addString(“SAMOUNT”,”100.00");
try
{
System.out.printin(“Initiating Deposit from account 10000");
j_deposit.call(null);
String D = j_deposit.getStringDef(“SBALANCE”,”-1.0");
System.out.printin(“-->Deposit Balance: “ + D);

}

5-42 Using BEA Jolt

Event Subscription and Notifications

catch (ApplicationException e)

e.printStackTrace();
System.err.printin(e);

}

Event Subscription and Notifications

Programmers developing client applications with Jolt can receive event notifications
from either BEA Tuxedo Services or other BEA Tuxedo clients. The Jolt Class Library
contains classes that support the following types of BEA Tuxedo notifications for
handling event-based communication:

Unsolicited Event Notifications These are notifications that a Jolt client

receives as a result of a BEA Tuxedo client or service issuing a broadcast using
either atpbroadcast() or a directly targeted message viaratify()

ATMI call.

Brokered Event Notifications. These notifications are received by a Jolt client
through the BEA Tuxedo Event Broker. The notifications are only received
when the Jolt client subscribes to an evantany BEA Tuxedo client or server
issues a system-posted eventpppst() call.

Event Subscription Classes

The Jolt Class Library provides four classes that implement the asynchronous
notification mechanism for Jolt client applications:

JoltSession. The JoltSession class includesBaply() method for receiving
notifications and notification messages.

JoltReply. The JoltReply class gives the client application access to any
messages received with an event or notification.

Using BEA Jolt 5-43

Using the Jolt Class Library

m JoltMessage. The JoltMessage class prowid&#s methods for obtaining
information about the notification or event.

m JoltUserEvent. The JoltUserEvent class supports subscription to both unsolicitec
and event notification types.

For additional information about these classes refer to the APl Reference in Javado

Notification Event Handler

5-44

For both unsolicited notifications and a brokered event notification, the Jolt client
application requires an event handler routine that is invoked upon receipt of a
notification. Jolt only supports a single handler per session. In BEA Tuxedo versions
you cannot determine which event generated a notification. Therefore, you cannot
invoke an event-specific handler based on a patrticular event.

The client application must provide a single handler (by overridingrtReply()

method) per session that will be invoked for all notifications received by that client for
that session. The single handler call-back function is used for both unsolicited and
event notification types. It is up to the (user-supplied) handler routine to determine
what event caused the handler invocation and to take appropriate action. If the user
does not override the session handler, then notification messages are silently discard
by the default handler.

The Jolt client provides the call back function by subclassing the JoltSession class ar
overriding theonReply() method with a user-defineshReply() method.

In BEA Tuxedo/ATMI clients, processing in the handler call-back function is limited
to a subset of ATMI calls. This restriction does not apply to Jolt clients. Separate
threads are used to monitor notifications and run the event handler method. A Jolt
client can perform all Jolt-supported functionality from within the handler. All the
rules that apply to a normal Jolt client program apply to the handler, such as a single
transaction per session at any time.

Each invocation of the handler method takes place in a separate thread. The applicati
developer should ensure that tin®eply() method is either synchronized or written
thread-safe, because separate threads could be executing the method simultaneou:

Using BEA Jolt

Event Subscription and Notifications

Jolt uses an implicit model for enabling the handler routine. When a client subscribes
to an event, Jolt internally enables the handler for that client, thus enabling unsolicited
notifications as well. A Jolt client cannot subscribe to event notifications without also
receiving unsolicited notifications. In addition, a singl@eply() method is invoked

for both types of notifications.

Connection Modes

Jolt supports natification receipts for clients working in either connection-retained or
connection-less modes of operation. Connection-retained clients receive all
notifications. Jolt clients working in connection-less mode receive notifications while
they have an active network connection to the Jolt Session Handler (JSH). When the
network connection is closed, the JSH logs and drops notifications destined for the
client. Jolt clients operating in a connection-less mode do not receive unsolicited
messages or naotifications while they do not have an active network connection. All
messages received during this time are logged and discarded by the JSH.

Connection mode notification handling includes acknowledged notifications for Jolt
clients in the BEA Tuxedo environment. If a JSH receives an acknowledged
notification for a client and the client does not have an active network connection, the
JSH logs an error and returns a failure acknowledgment to the notification.

Notification Data Buffers

When a client receives notification, it is accompanied by a data buffer. The data buffer
can be of any BEA Tuxedo data buffer type. Jolt clients (for example, the handler)
receive these buffers ag@tMessage object and should use the appropriate
JoltMessage classget*() methods to retrieve the data from this object.

The Jolt Repository does not need to have the definition of the buffers used for
notification. However, the Jolt client application programmer needs to know field
names.

The Jolt system does not provide functionality equivalemitypes() in BEA
Tuxedo. For FML and VIEW buffers, the data is accessed usimgetiie methods
with the appropriate field name, for example:

getintDef ("ACCOUNT_ID", -1);

Using BEA Jolt 5-45

5 Using the Jolt Class Library

For STRING and CARRAY buffers, the data is accessed by the same name as the
buffer type:

getStringDef ("STRING", null);
getBytesDef ("CARRAY", null);

STRING and CARRAY buffers contain only a single data element. This complete
element is returned by the precedgegf() methods.

BEA Tuxedo Event Subscription

BEA Tuxedo brokered event notification allows BEA Tuxedo programs to post events
without knowing what other programs are supposed to receive notification of an
event's occurrence. The Jolt event notification allows Jolt client applications to
subscribe to BEA Tuxedo events that are broadcast or posted using the BEA Tuxed
tpnotify() or tpbroadcast() calls.

Jolt clients can only subscribe to events and notifications that are generated by othe
components in BEA Tuxedo (such as a BEA Tuxedo service or client). Jolt clients cal
not send events or notifications.

Supported Subscription Types

Jolt only supports notification types of subscriptions. Theah®ieply() method is
called when a subscription is fulfilled. The Jolt API does not support dispatching a
service routine or engqueueing a message to an application queue when a notification
received.

Subscribing to Notifications

If a Jolt client subscribes to a single event notification, the client receives both
unsolicited messages and event notification. Subscribing to an event implicitly enable
unsolicited notification. This means that if the application creates a JoltUserEvent
object for Event "X", the client automatically receives notifications directed to it as a
result oftpnotify() or tpbroadcast()

5-46 Using BEA Jolt

Event Subscription and Notifications

Note: Subscribing to single event notificationnstthe recommended method for
enabling unsolicited notification. If you want unsolicited notification, the
application should explicitly subscribe to unsolicited notifications (as
described in the JoltUserEvent class). The next section is absuibscribing
from notifications.

Unsubscribing from Notifications

To stop subscribing to event naotifications and/or unsolicited messages, you need to use
the JoltUserEvent unsubscribe method. In Jolt, disabling unsolicited notifications with
an unsubscribe method does not turn off all subscription notifications. This differs
from BEA Tuxedo. In BEA Tuxedo the usetpfetunsol() with a NULL handler

turns off all subscription notifications.

When unsubscribing, the following considerations apply:

m If a client is subscribed to a single event, unsubscribing from notification
disables both event notification and unsolicited messages.

m If a client has multiple subscriptions, then unsubscribing from any single
subscription disables only that single subscription. Unsolicited notifications
continue. Only the last subscription to be unsubscribed causes unsolicited
notification to stop.

m If a client subscribes to both unsolicited and event notifications, then
unsubscribing to only the unsolicited notification will not stop either type of
notification from continuing. In addition, this unsubscribe does not throw an
exception. However, the Jolt API notes that an unsubscribe has taken place, and
a subsequent unsubscribe to the remaining event disables both event notification
and unsolicited messages.

If you want to stop unsolicited messages in your client application, you need to make
sure that you have unsubscribed to all events.

Using BEA Jolt 5-47

5 Using the Jolt Class Library

Using the Jolt API to Receive BEA Tuxedo Notifications

The “Asynchronous Notification” listing shows how to use the Jolt Class Library for
receiving notifications and includes the use of bitSession , JoltReply
JoltMessage andJoltUserEvent classes.

Listing 5-11 Asynchronous Notification

class EventSession extends JoltSession
{
public EventSession(JoltSessionAttributes attr, String user,
String role, String upass, String apass)
{

super(attr, user, role, upass, apass);

/**
* Override the default unsolicited message handler.
* @param reply a place holder for the unsolicited message
* @see bea.jolt.JoltReply
*
public void onReply (JoltReply reply)
{
/I Print out the STRING buffer type message which contains
/I only one field; the field name must be "STRING". If the
/I message uses CARRAY buffer type, the field name must be
/I"CARRAY". Otherwise, the field names must conform to the
/I elements in FML or VIEW.

JoltMessage msg = (JoltMessage) reply.getMessage();
System.out.printin(msg.getStringDef("STRING", "No Msg"));
}

public static void main(Strings args[])

{
JoltUserEvent unsolEvent;
JoltUserEvent helloEvent;
EventSession session;

/I Instantiate my session object which can print out the

/I unsolicited messages. Then subscribe to HELLO event
/I and Unsolicited Notification which both use STRING

/I buffer type for the unsolicited messages.

session = new EventSession(...);

5-48 Using BEA Jolt

Clearing Parameter Values

helloEvent = new JoltUserEvent("HELLO", null, session);
unsolEvent = new JoltUserEvent(JoltUserEvent. UNSOLMSG, null,
session);

/I'Unsubscribe the HELLO event and unsolicited notification.
helloEvent. unsubscribe ();
unsolEvent.unsubscribe();

}
}

Clearing Parameter Values

The Jolt Class Library contains thiear() method, which allows you to remove

existing attributes from an object and, in effect, provides for the reuse of the object.
The “Jolt Object Reuse (reuseSample.java)” listing illustrates how to usledtfe

method to clear parameter values and how to reuse the JoltRemoteService parameter
values; you do not have to destroy the service to reuse it. Insteads.tiear() ;
statement is used to discard the existing input parameters before reusing the
addString() method.

Listing 5-12 Jolt Object Reuse (reuseSample.java)

/* Copyright 1999 BEA Systems, Inc. All Rights Reserved */
import java.net.*;
import java.io.*;
import bea.jolt.*;
/*
* This is a Jolt sample program that illustrates how to reuse the
* JoltRemoteService after each invocation.
*/
class reuseSample
{
private static JoltSession s_session;
static void init(String host, short port)
{
/* Prepare to connect to the Tuxedo domain. */
JoltSessionAttributes attr = new JoltSessionAttributes();
attr.setString(attr APPADDRESS,”//"+ host+":” + port);

Using BEA Jolt 5-49

5 Using the Jolt Class Library

String username = null;

String userrole = “sw-developer”;
String applpasswd = null;

String userpasswd = null;

/* Check what authentication level has been set. */
switch (attr.checkAuthenticationLevel())
{
case JoltSessionAttributes. NOAUTH:
break;
case JoltSessionAttributes. APPASSWORD:
applpasswd = “secret8”;
break;
case JoltSessionAttributes. USRPASSWORD:
username = “myName”;
userpasswd = “BEA#1”;
applpasswd = “secret8”;
break;

}

/* Logon now without any idle timeout (0). */

[* The network connection is retained until logoff. */
attr.setInt(attr.IDLETIMEOUT, 0);

s_session = new JoltSession(attr, username, userrole,
userpasswd, applpasswd);

}

public static void main(String args[])
{

String host;

short port;

JoltRemoteService svc;

if (args.length 1= 2)

System.err.printin(“Usage: reuseSample host port”);
System.exit(1);

/* Get the host name and port number for initialization. */
host = args[0];
port = (short)Integer.parselnt(args[1]);

init(host, port);

/* Get the object reference to the DELREC service. This

* service has no output parameters, but has only one input
* parameter.

*

svc = new JoltRemoteService(“DELREC”, s_session);

5-50 Using BEA Jolt

Reusing Objects

try

/* Set input parameter REPNAME. */
svc.addString(“REPNAME”, “Record1”);
svc.call(null);

/* Change the input parameter before reusing it */
svc.setString(“REPNAME”, “Record2”);
svc.call(null);

/* Simply discard all input parameters */
svc.clear();

svc.addString(“REPNAME”, “Record3”);
svc.call(null);

catch (ApplicationException €)

System.err.printin(“Service DELREC failed: “+
e.getMessage()+” “+ svc.getStringDef(‘"MESSAGE”, null));

}

/* Logoff now and get rid of the object. */
s_session.endSession();

Reusing Objects

The following listing, “Extending Jolt Remote Service (extendSample.java),”

illustrates one way to subclass the JoltRemoteService class. In this case, a
TransferService class is created by subclassing the JoltRemoteService class. The
TransferService class extends the JoltRemoteService class, adding a Transfer feature
that makes use of the BEA Tuxedo BANKAPP funds TRANSFER service.

The following listing uses thextends keyword from the Java language. The
extends keyword is used in Java to subclass a base (parent) class. The following code
shows one of many ways to extend from JoltRemoteService.

Using BEA Jolt 5-51

5 Using the Jolt Class Library

Listing 5-13 Extending Jolt Remote Service (extendSample.java)

[* Copyright 1999 BEA Systems, Inc. All Rights Reserved */

import java.net.*;
import java.io.*;
import bea.jolt.*;

/*

* This Jolt sample code fragment illustrates how to customize
*JoltRemoteService. It usesthe Javalanguage “extends” mechanism
*

class TransferService extends JoltRemoteService

{
public String fromBal;

public String toBal;
public TransferService(JoltSession session)

{
}

public String doxfer(int fromAcctNum, int toAcctNum, String
amount)

{

super(“TRANSFER”, session);

[* Clear any previous input parameters */
this.clear();

[* Set the input parameters */
this.setIntitem(*ACCOUNT_ID", 0, fromAcctNum);
this.setIntitem(*ACCOUNT_ID", 1, toAcctNum);
this.setString(“"SAMOUNT”, amount);

try

{
/* Invoke the transfer service. */
this.call(null);

/* Get the output parameters */
fromBal = this.getStringltemDef(*SBALANCE”, 0, null);
if (fromBal == null)
return “No balance from Account “ +
fromAcctNum;
toBal = this.getStringltemDef(“SBALANCE”, 1, null);
if (toBal == null)
return “No balance from Account “ + toAcctNum;
return null;

catch (ApplicationException €)

5-52 Using BEA Jolt

Reusing Objects

}

/* The transaction failed, return the reason */
return this.getStringDef(“STATLIN", “Unknown reason”);

class extendSample

{

public static void main(String args[])

{

JoltSession s_session;
String host;
short port;
TransferService xfer;
String failure;

if (args.length 1= 2)
{

System.err.printin(“*Usage: reuseSample host port”);
System.exit(1);

/* Get the host name and port number for initialization. */
host = args[0];
port = (short)Integer.parselnt(args[1]);

/* Prepare to connect to the Tuxedo domain. */
JoltSessionAttributes attr = new JoltSessionAttributes();
attr.setString(attr. APPADDRESS,”//"+ host+™:" + port);

String username = null;

String userrole = “sw-developer”;
String applpasswd = null;

String userpasswd = null;

/* Check what authentication level has been set. */
switch (attr.checkAuthenticationLevel())

{
case JoltSessionAttributes. NOAUTH:
break;
case JoltSessionAttributes. APPASSWORD:
applpasswd = “secret8”;
break;
case JoltSessionAttributes. USRPASSWORD:
username = “myName”;
userpasswd = “BEA#1";
applpasswd = “secret8”;
break;
}

Using BEA Jolt 5-53

5 Using the Jolt Class Library

/* Logon now without any idle timeout (0). */

/* The network connection is retained until logoff. */
attr.setInt(attr.IDLETIMEOUT, 0);

s_session = new JoltSession(attr, username, userrole,
userpasswd, applpasswd);

/*
*TransferService extends from JoltRemoteService and uses the
* standard BEA Tuxedo BankApp TRANSFER service. We invoke
this
* service twice with different parameters. Note, we assume
* that “s_session” is initialized somewhere before.
*/

xfer = new TransferService(s_session);
if ((failure = xfer.doxfer(10000, 10001, “500.00")) != null)
System.err.printin(“Tranasaction failed: “ + failure);
else
{
System.out.printin(“Transaction is done.”);
System.out.printin(“From Acct Balance: “+xfer.fromBal);
System.out.printin(* To Acct Balance: “+xfer.toBal);

}

if ((failure = xfer.doxfer(51334, 40343, “$123.25")) = null)
System.err.printin(“Tranasaction failed: “ + failure);
else
{
System.out.printin(“Transaction is done.”);
System.out.printin(“From Acct Balance: “+xfer.fromBal);
System.out.printin(* To Acct Balance: “+xfer.toBal);

5-54 Using BEA Jolt

Deploying and Localizing Jolt Applets

Deploying and Localizing Jolt Applets

Using the Jolt Class Library, you can build Java applications that execute from within
a client Web browser. For these types of applications, perform the following
application development tasks:

m Deploy your Jolt applet in an HTML page.
m Localize your Jolt applets for different languages and character sets.

The following sections describe these application development considerations.

Deploying a Jolt Applet

When you deploy a Jolt applet, consider the following:

m Installation and configuration requirements for the BEA Tuxedo server and Jolt
Server

m Client-side execution of the applet
m Requirements for the Web server that downloads the Java applet

Information for configuring the BEA Tuxedo server and Jolt server to work with Jolt
is available ininstalling the BEA Tuxedo Systefhe following sections describe
common client and Web server considerations for deploying Jolt applets.

Using BEA Jolt 5-55

5 Using the Jolt Class Library

Client Considerations

When you write a Java applet that incorporates Jolt classes, the applet works just a:
any other Java applet in an HTML page. A Jolt applet can be embedded in an HTML
page using the HTML applet tag:

<applet code="applet_name.class”> </applet>

If the Jolt applet is embedded in an HTML page, the applet is downloaded when the
HTML page loads. You can code the applet to run immediately after it is downloaded
or you can include code that sets the applet to run based upon a user action, a timeo
or a set interval. You can also create an applet that downloads in the HTML page, bt
opens in another window or, for instance, simply plays a series of sounds or musica
tunes at intervals. The programmer has a large degree of freedom in coding the app
initialization procedure.

Note: If the user loads a new HTML page into the browser, the applet execution is
stopped.

Web Server Considerations

5-56

When you use the Jolt classes in a Java applet, the Jolt Server must run on the sar
machine as the Web server that downloads the Java applet unless you install Jolt Rel
on the Web server.

When a webmaster sets up a Web server, a directory is specified to store all the HTM
files. Within that directory, a subdirectory named “classes” must be created to contai
all Java class files and packages. For example:

<html-dir>/classes/bea/jolt

Or, you can set theLASSPATHo include theolt.jar file that contains all the Jolt
classes.

Note: You can place the Jolt classes subdirectory anywhere. For convenient acces
you may want to place it in the same directory as the HTML files. The only
requirement for the Jolt classes subdirectory is that the classes must be mac
available to the Web server.

Using BEA Jolt

Deploying and Localizing Jolt Applets

The HTML file for the Jolt applet should refer the codebase tttjer file or
theclasses directory. For example:

lexport/html/

| classes/

| bea/

| jolt/

| | JoltSessionAttributes.class
| | JoltRemoteServices.class

I I

| mycompany/

| app.class

The webmaster may specify the “app” appletsa.html as:

<applet codebase="classes” code=mycompany.app.class width=400
height=200>

Localizing a Jolt Applet

If your Jolt application is intended for international use, you must address certain
localization issues. Localization considerations apply to applications that execute from
a client Web browser and applications that are designed to run outside a Web browser
environment. Localization tasks can be divided into two categories:

m Adapting an application from its original language to a target language.

m Translating strings from one language to another. This sometimes requires
specifying a different alphabet or a character set from the one used in the
original language.

For localization, the Jolt Class Library package relies on the conventions of the Java
language and the BEA Tuxedo system. Jolt transfers Java 16-bit Unicode characters to
the JSH. The JSH provides a mechanism to convert Unicode to the local character set.

For information about the Java implementation for Unicode and character escapes,
refer to your Java Development Kit (JDK) documentation.

Using BEA Jolt 5-57

5 Using the Jolt Class Library

5-58 Using BEA Jolt

CHAPTER

6

Using JoltBeans

Formerly available as an add on, JoltBeans are included in BEA Jolt and are as easy to
use as JavaBeans. They are JavaBeans components you use in Java development
environments to construct Jolt clients. You can use popular Java-enabled development
tools such as Symantec Visual Café to graphically construct client applications.
JoltBeans provide a JavaBeans-compliant interface to BEA Jolt. You can develop a
fully functional BEA Jolt client without writing any code.

“Using JoltBeans” covers the following topics:
m Overview of Jolt Beans

m Basic Steps For Using JoltBeans

m JavaBeans Events and BEA Tuxedo Events
m How JoltBeans Use JavaBeans Events

m The JoltBeans Toolkit

m Jolt-Aware GUI Beans

m Using the Property List and the Property Editor to Modify the JoltBeans
Properties

m JoltBeans Class Library Walkthrough
m Using the Jolt Repository and Setting the Property Values

m JoltBeans Programming Tasks

Using BEA Jolt 6-1

6 Using JoltBeans

Overview of Jolt Beans

6-2

JoltBeans consists of two sets of Java Beans. The first set, the JoltBeans toolkit, is :
beans version of the Jolt API. The second set consists of GUI beans, which include
Jolt-aware AWT beans and Jolt-aware Swing beans. These GUI components are a
“Jolt-enabled” version of some of the standard Java AWT and Swing components, an
help you build a Jolt client GUI with minimal or no coding.

You can drag and drop JoltBeans from the component palette of a development too
and position them on the Java form (or forms) of the Jolt client application you are
creating. You can populate the properties of the beans and graphically establish eve
source-listener relationships between various beans of the application or applet.
Typically, the development tool is used to generate the event hook-up code, or you ce
code the hook-up manually. Client development using JoltBeans is integrated with thi
BEA Jolt Repository, providing easy access to available BEA Tuxedo services.

Note: Currently, Symantec Visual Café 3.0 is the only IDE that is certified by BEA
for use with JoltBeans. However, JoltBeans are also compatible with other
Java development environments such as Visual Age.

To use the JoltBeans toolkit, it is recommended that you be familiar with
JavaBeans-enabled, integrated development environments (IDEs). The walkthrough
this chapter is based on Symantec’s Visual Café 3.0 IDE and illustrates the basic ste
of building a sample applet.

Using BEA Jolt

Overview of Jolt Beans

JoltBeans Terms

You will encounter the following terms as you work with JoltBeans:

JavaBeans
Portable, platform-independent, reusable software components that are
graphically displayed in a development environment.

JoltBeans
Two sets of Java Beans: JoltBeans toolkit and Jolt aware GUI beans.

Custom GUI element
A Java GUI class that communicates with JoltBeans. The means of
communication can be JavaBeans events, methods, or properties offered by
JoltBeans.

Jolt-Aware Bean
A bean that is the source of JoltinputEvents, listener of JoltOutputEvents, or
both. Jolt-aware beans are a subset of Custom GUI elements that follow beans
guidelines.

Jolt-Aware GUI Beans
Two packages of GUI components Abstract Window Toolkit (AWT) and
Swing, both containing the JoltList, JoltCheckBox, JoltTextField, JoltLabel,
and JoltChoice components.

JoltBeans Toolkit
A JavaBeans-compliant interface to BEA Jolt, which includes the
JoltServiceBean, JoltSessionBean, and JoltUserEventBean.

Wiring
The process of connecting beans together so that one bean is registered as a
listener of events from another bean.

Using BEA Jolt 6-3

6 Using JoltBeans

Adding JoltBeans to Your Java Development
Environment

6-4

Before you can use JoltBeans, set up your Java development environment to includ
JoltBeans:

e Set the class path in your development environment to include all Jolt
classes.

e Add JoltBeans to the Component Library of your development environment.

The method of setting theL ASSPATHcan vary, depending on the development
environment you use.

JoltBeans includes a set @& files containing all of the JoltBeans. You can add
thesejar files to your preferred Java development environment so that JoltBeans are
available in the component library of your Java tool. For example, using Symantec
Visual Café, you can set tlit ASSPATHs0 that thejar files are visible in the
Component Library window of Visual Café. You only need to seCihasSPATHof
thesejar files in your development environment once. After you place thase

files in theCLASSPATHOf your development environment, you can then add JoltBeans
to the Component Library. Then you can simply drag and drop any JoltBean directly
onto the Java form on which you are developing your Jolt client application.

To set theCLASSPATHN your Java development environment, follow the instructions
in the product documentation for your development environment. Navigate from the
IDE of your development tool to the directory wherejtittgar file resides. The
jolt.jar file is typically found in the directory calledTUXDIR%\udatadoj\jolt

Thejolt.jar file contains the main Jolt classes. SetthaSSPATHo include these
classes. The JoltBegar files do not need to be added to HIASSPATHTO use

them, you only need to add them as components in your IDE.

After you have set theLASSPATHo include the Jolt classes, you can add JoltBeans to
the Component Library of your development environment. See the documentation fo
your particular development environment for instructions on populating the
Component Library.

When you are ready to add JoltBeans to the Component Library of your developmer
environment, add only the development version of JoltBeans. Refer to “Using
Development and Run-time JoltBeans” for complete details.

Using BEA Jolt

Basic Steps For Using JoltBeans

Using Development and Run-time JoltBeans

The jar files containing JoltBeans contain two versions of each JoltBean, a
development version and a run-time version. The development version of each
JoltBean name ends with the suffigv. The run-time version of each class hame ends
with the suffixRt. For example, the development version of the class, JoltBean, is
JoltBeanDev , while the run-time version of the same clas®iBeanRt

Use the development version of JoltBeans during the development process. The
development JoltBeans have additional properties that enhance development in a
graphic IDE. For example, the JoltBeans have graphic properties (“bean information”)
that allow you to work with them as graphic icons in your development environment.

The run-time version of JoltBeans does not have these additional properties. You do
not need the additional development properties of the beans at run-time. The run-time
beans are simply a pared down version of the development JoltBeans.

When you compile your application in your development environment, it is compiled
using the development beans. However, if you want to run it from a command line
outside of your development environment, it is recommended that you set the
CLASSPATHso that the run-time beans are used when compiling your application.

Basic Steps For Using JoltBeans

The basic steps for using JoltBeans are as follows:

1. Add the development version of JoltBeans to the Component Library of your Java
development environment, as described in “Adding JoltBeans to Your Java
Development Environment.”

2. Drag the beans from the JoltBeans component palette of your development
environment to the Java form-designer for a Jolt client application or applet.

3. Populate the properties of the beans and set up the event-source listener
relationships between the beans of the application or applet (“wire” the beans
together). The development tool generates the event hook-up code.

4. Add the application logic to the event callbacks.

Using BEA Jolt 6-5

6 Using JoltBeans

These steps are explained in more detail in later sections. The JoltBeans walkthroug
demonstrates each of these steps with an example.

JavaBeans Events and BEA Tuxedo Events

JavaBeans communicate through events. An event in a BEA Tuxedo system is
different from an event in a JavaBeans environment. In a BEA Tuxedo application, at
event is raised from one part of an application to another part of the same applicatior
JoltBeans events are communicated between beans.

Using BEA Tuxedo Event Subscription and Notification
with JoltBeans

6-6

BEA Tuxedo supports brokered and unsolicited event notification. Jolt provides a
mechanism for Jolt clients to receive BEA Tuxedo events. JoltBeans also include thi
capability.

Note: BEA Tuxedo event subscription and notification is different from JavaBeans
events.

The following procedure illustrates how the BEA Tuxedo asynchronous notification
mechanism is used in JoltBeans applications.

1. Use thesetEventName() andsetFilter() methods of the JoltUserEventBean
to specify the BEA Tuxedo event to which you want to subscribe.

2. The component that receives the event notifications registers itself as a
JoltOutputListener to the JoltSessionBean.

3. Thesubscribe() method is called on JoltUserEventBean.

4. When the actual BEA Tuxedo event natification arrives, JoltSessionBean sends
JoltOutputEvent to its listeners by callisgrviceReturned() on them. The
JoltOutputEvent object contains the data of the BEA Tuxedo event.

Using BEA Jolt

How JoltBeans Use JavaBeans Events

When the client no longer needs to receive the event, itwalibscribe() on the
JoltUserEventBean.

Note: If the client will only subscribe to unsolicited events, sstEventName
("WUNSOLMSG") , which can be set using the property sheetntName
andFilter are properties of the JoltUserEventBean.

How JoltBeans Use JavaBeans Events

A Jolt client applet or application that is built using JoltBeans typically consists of
Jolt-aware GUI beans, such as JoltTextField or JoltList, and JoltBeans, such as
JoltServiceBean and JoltSessionBean. The main mode of communication between
Beans is by JavaBeans events.

Jolt-aware beans are sources of JoltinputEvents or listeners of JoltOutputEvents or
both. JoltServiceBeans are sources of JoltOutputEvents and listeners of
JoltinputEvents.

The Jolt-aware GUI Beans expose properties and methods so you can link the beans
directly to the parameters of a BEA Tuxedo service (represented by a
JoltServiceBean). Jolt-aware beans notify the JoltServiceBean via a JoltinputEvent
when their content changes. The JoltServiceBean sends a JoltOutputEvent to all
registered Jolt-aware beans when the reply data is available after the service call. The
Jolt-aware GUI Beans contain logic that updates their contents with the corresponding
output parameter of the service.

The following figure represents the possible relationships among the JoltBeans.

Using BEA Jolt 6-7

6 Using JoltBeans

Figure 6-1 Possible Interrelationships Among JoltBeans

Custamn GUI element

Customn GUI element

Jolt aware AWT bean

Java AWT bean
JoltinputEvent

JoltOutputEvent

Jolt aware AWT hean

Java AWT bean

JoltinputEvent

JoltOutputEvent

Y PropertyChangeEvent

The JoltBeans Toolkit

The JoltBeans Toolkit includes the following beans:

m JoltSessionBean
m JoltServiceBean

m JoltUserEventBean

These components transform the complete Jolt Class Library into beans component
with all of the features of any typical JavaBean, including easy reuse and graphic

development.

Refer to the online API Reference in Javadoc for specific descriptions of the JoltBean

classes, constructors, and methods.

The following sections provide information about the properties of each bean.

6-8 Using BEA Jolt

The JoltBeans Toolkit

JoltSessionBean

The JoltSessionBean, which represents the BEA Tuxedo session, encapsulat
functionality of the JoltSession, JoltSessionAttributes, and JoltTransaction cla
The JoltSessionBean has properties that you use to set session and security
such as sending a timeout or a BEA Tuxedo user name, as well as methods to
close a BEA Tuxedo session.

The JoltSessionBean sends a PropertyChange event when the BEA Tuxedo s
established or closed. PropertyChange is a standard bean event defined in th
java.beans package. The purpose of this event is to signal other beans about a
of the value of a property in the source bean. In this case, the source is the
JoltSessionBean; the targets are JoltServiceBeans or JoltUserEventBeans; al
property changing is the LoggedOn property of the JoltSessionBean. When a |
successful and a session is established, LoggedOn istset toAfter the logoff is
successful and the session is closed, the LoggedOn property igasd to

The JoltSessionBean provides methods to control transactions, including
beginTransaction() , commitTransaction() , androllbackTransaction()

The following table shows the JoltSessionBean properties and descriptions.

Table 6-1 JoltSessionBean Properties and Descriptions

Property Description

AppAddress Set the IP address (host name) and port number of the JSL or
Relay. The format ighost:port number
(for example,myhost:7000).

AppPassword Set the BEA Tuxedo application password used at logon, if rec
IdleTimeOut Set the IDLETIMEOUT value.
inTransaction Indicatgue orfalse depending if a transaction has been stal

and not committed or aborted.

LoggedOn Indicatérue orfalse if a BEA Tuxedo session does or does |
exist.

ReceiveTimeOut Set the RECVTIMEOUT value.

SendTimeOut Set the SENDTIMEOUT value.

Using BEA Jolt 6-9

6 Using JoltBeans

Table 6-1 JoltSessionBean Properties and Descriptions (Continued)

Property Description

SessionTimeOut Set the SESSIONTIMEOUT value.

UserName Indicate the BEA Tuxedo user name, if required.

UserPassword Indicate the BEA Tuxedo user password, if required.

UserRole Indicate the BEA Tuxedo user role, if required.
JoltServiceBean

The JoltServiceBean represents a remote BEA Tuxedo service. The name of the
service is set as a property of the JoltServiceBean. The JoltServiceBean listens to
JoltinputEvents from other beans to populate its input buffer. JoltServiceBean offers
thecallService() method to invoke the service. JoltServiceBean is an event source
for JoltOutputEvents that carry information about the output of the service. After a
successfutallService() , listener beans are notified via a JoltOutputEvent that
carries the reply message.

Although the primary way of changing and querying the underlying message buffer of
the JoltServiceBean is via events, the JoltServiceBean also provides methods to acce
the underlying message buffer directbgt(nputvalue(...) , getOutputValue(...)).

The following table shows the JoltServiceBean properties and descriptions.

Table 6-2 JoltServiceBean Properties and Descriptions

Property Description

ServiceName The name of the BEA Tuxedo service represented by this
JoltServiceBean.

Session The JoltSessionBean associated with the bean that allows access tc

the BEA Tuxedo client session.

Transactional Set to true if this JoltServiceBean is to be included in the transaction
that was started by its JoltSessionBean.

6-10 Using BEA Jolt

Jolt-Aware GUI Beans

JoltUserEventBean

The JoltUserEventBean provides access to BEA Tuxedo events. You define the BEA
Tuxedo event to which you subscribe or unsubscribe by setting the appropriate
properties of this bean (event name and event filter). The actual event notification is
delivered in the form of a JoltOutputEvent from the JoltSessionBean.

The following table shows the JoltUserEventBean properties and descriptions.

Table 6-3 JoltUserEventBean Properties and Descriptions

Property Description

EventName Set the name of the user event represented by the bean.

Filter Set the event filter.

Session The JoltSessionBean associated with the bean that allows access to

the BEA Tuxedo client session.

Jolt-Aware GUI Beans

The Jolt-aware GUI Beans consist of Java AWTbeans and Swing beans, and are
inherited from the Java Abstract Windowing Toolkit. They include:

m JoltTextField

m JoltLabel

m JoltList

m JoltCheckbox

m JoltChoice

Note: To avoid errors when compiling, it is recommended that you use only the

AWT beans together, or the Swing beans together, rather than mixing beans
from these two packages.

Using BEA Jolt 6-11

6 Using JoltBeans

JoltTextField

JoltLabel

JoltList

This is a Jolt-aware extensionjafa.awt. TextField and SwingiTextfield.
JoltTextField contains parts of the input for a service. A JoltServiceBean can listen tc
events raised by a JoltTextField. JoltTextField sends JoltinputEvents to its listeners
(typically JoltServiceBeans) when its contents changes.

JoltTextField displays output from a service. In this case, JoltTextField listens to
JoltOutputEvents from JoltServiceBeans and updates its contents according to the
occurrence of the field to which it is linked.

This is a Jolt-aware extensionjafa.awt.Label and SwinglLabel that is linked

to a specific field in the Jolt output buffer by its JoltFieldName property. If the field
occurs multiple times, the occurrence to which this textfield is linked is specified by
the occurrencelndex property of this bean. JoltLabel can be connected with
JoltServiceBeans to display output from a service. A JoltLabel listens to
JoltOutputEvents from JoltServiceBeans and updates its contents according to the
occurrence of the field to which it is linked.

This is a Jolt-aware extensionjafa.awt.List and Swingllist that is linked to a
specific Jolt field in the Jolt input or output buffer by its JoltFieldName property. If the
field occurs multiple times in the Jolt input buffer, the occurrence this list is linked to
is specified by the occurrencelndex property of this bean. JoltList can be connected
with JoltServiceBeans in two ways:

m JoltList contains parts of the input for a service. A JoltServiceBean listens to
events raised by a JoltList. JoltList sends JoltinputEvents to its listeners when
the selection in the listbox changes. The JoltinputEvent, in this case, is populatet
with the single value of the selected item.

m JoltList displays output from a service. When used to display the output of a
service, JoltList listens to JoltOutputEvents from JoltServiceBeans and updates
its contents accordingly with all occurrences of the field to which it is linked.

6-12 Using BEA Jolt

Jolt-Aware GUI Beans

JoltCheckbox

JoltCheckbox is a Jolt-aware extensiorjavh.awt.Checkbox and Swing

JCheckBox thatis linked to a specific field in the Jolt input buffer by its JoltFieldName
property. If the field occurs multiple times, the occurrence to which this checkbox is
linked is specified by the occurrencelndex property of this bean.

JoltCheckbox can be connected with JoltServiceBeans to contain parts of the input for
a service. A JoltServiceBean listens to events raised by a JoltCheckbox. JoltCheckbox
sends JoltinputEvents to its listeners (typically JoltServiceBeans) when the selection
in the checkbox changes. The JoltinputEvent in this case is populated with the
TrueValue property of data type String (if the box is selectedjatsevalue (if the

box is unselected).

JoltChoice

JoltChoice provides a Jolt-aware extensiojaaf.awt.Choice and SwinglChoice

that is linked to a specific field in the Jolt input buffer by its JoltFieldName property.
If the field occurs multiple times, the occurrence to which this choice is linked is
specified by the occurrencelndex property of this bean.

JoltChoice can be connected to JoltServiceBeans to contain parts of the input for a
service. A JoltServiceBean can listen to events raised by a JoltChoice. JoltChoice
sends JoltinputEvents to its listeners (typically JoltServiceBeans) when the selection
in the choicebox changes. The JoltinputEvent in this case is populated with the single
value of the selected item.

Note: For a detailed description of these classes, see API Reference in Javadoc.

Using BEA Jolt 6-13

6 Using JoltBeans

Using the Property List and the Property
Editor to Modify the JoltBeans Properties

The values of most JoltBeans properties can be modified by editing the right column
of the Property List in your integrated development environment (IDE), such as Visual
Café, as shown in the following figure “Property List: Ellipsis Button.”

Custom property editors are provided for some properties of JoltBeans.

The custom property editors, accessed from the Property List, include dialog boxes
that you use to modify the property values. You can invoke the custom property editor
from the Property List by clicking the button with the ellipsis (“...”) that is next to the
value of the corresponding property value.

Figure 6-2 Property List: Ellipsis Button

& Property List - JoltBeanDev !Em

JoltServiceBean

Class bea.joltbeans. JohtServiceBean
MNarne JoltServiceBean

Session null |
Transactional |false

When you click the ellipsis button, the Property Editor shown in the following figure
is displayed.

6-14 Using BEA Jolt

Using the Property List and the Property Editor to Modify the JoltBeans Properties

Figure 6-3 Custom Property Editor Dialog Box

Custom Property Ed... 1

Semvices:

Logaon | I

The Custom Property Editor of JoltBeans reads cached information. Initially, no
cached information is available, so when the Property Editor is used for the first time,
the dialog box is empty. Log on to the Jolt Repository and load the property editor
cache from the repository.

For details about the logon and using the Property List and Property Editor, see “Using
the Jolt Repository and Setting the Property Values” on page 6-44.

Using BEA Jolt 6-15

6 Using JoltBeans

JoltBeans Class Library Walkthrough

This walkthrough describes how to build an applet that you use to:

m Enter an account ID

m Click on the Inquiry button

m Display the balance of the account (shown in the following figure).

The following figure shows an example of a completed Java form containing
JoltBeans. The applet implements the client functionality for the INQUIRY service of
the BANKAPP sample that is included with BEA Tuxedo. To run this sample, the
BEA Tuxedo server must be running.

Figure 6-4 Sample Inquiry Applet

[=iApplet Viewer: Appleti.class M= E3 '
Applet

Accaunt (D

Balance

Ineyuiry |

6-16 Using BEA Jolt

JoltBeans Class Library Walkthrough

Refer to the figure “Visual Café 3.0 Form Designer” on page 6-20 for an example of
each item required by the Java form. Each item in that figure is described in the
following table “Required Form Elements”.

Table 6-4 Required Form Elements

Element Purpose

Applet (or JApplet, if JFC A form used to paint the beans in your development
applet is chosen) environment.

JoltSessionBean Logs on to a BEA Tuxedo session.

JoltTextField Gets input from the user (in this case, ACCOUNT_ID).
JoltTextField Displays the result (in this case, SBALANCE).
JoltServiceBean Accesses a BEA Tuxedo service. (In this case, INQUIRY

from BANKAPP).

Button Initiates an action.

Label Describes the field on the applet.

Using BEA Jolt 6-17

6 Using JoltBeans

Building the Sample Form

The sample form is created using an integrated development environment (IDE), in
this example, Visual Café 3.0. The example demonstrates how to build an applet th:
allows you to enter an account ID and use a BEA Tuxedo service to get and show th
account balance.

Follow the basic steps below to create this sample.

1. In Visual Café, choose FileNew Project and select either JFC Applet or AWT
application. This step provides you with the basic form designer on which you drop
the JoltBeans.

2. Drag and drop all of the JoltBeans you want to use in your applet from the
Component Library onto the form designer.

3. Modify or customize each bean using the property list or the custom property
editor.

4. Wire the beans together using the Interaction Wizard.
5. Compile the applet.

These steps are described in detail in the following sections.

Note: The graphic interface of previous versions of Visual Café differ from the look
of Visual Café 3.0. You can complete this sample applet in a previous version
of Visual Café; however, the steps executed in the Interaction Wizard differ
slightly from this example.

Placing JoltBeans onto the Form Designer

1. Choose Files New Project, and choose JFC Applet.

2. Drag and drop the beans from the Component Library (shown in the following
figure) onto the palette of the form designer.

6-18 Using BEA Jolt

JoltBeans Class Library Walkthrough

Figure 6-5 JoltBeans and the Form Designer in Visual Café

Form D esigner - JAppletl

(o] Component Library
-] Standard

-2 Utility

i ultimedia

721 Forms

#-[C1 Project Templates
- Menus & kenu tems
-7 dhAWARE
i1 Additional
i Panels
] Shapes

- 2@ JoliUserEventBean
- $8 JohtServiceBean
B9 JaltBeanD et

B2 JolList

-~ JoltCheckbox

- [igg JoltChoice

- JoltTextField

-[Bg JoltLabel

The following figure “Visual Café 3.0 Form Designer” illustrates how JoltBeans
appear when they are placed on the palette of the Form Designer.

Using BEA Jolt

6-19

6 Using JoltBeans

Figure 6-6 Visual Café 3.0Form Designer

JoltTextField JoltSessionBean

label <0 ..l
B A Lo L JoltServiceBean

-~ kumlfff o Aoplet

3. Set the properties of each bean. To modify or customize the buttons, labels or
fields, use the property list. Some JoltBeans use a Custom Property Editor.

The following figure,“Example of JoltTextField Property List and Custom
Property Editor,” shows how selecting the JoltFieldName of the button property
list displays the Custom Property Editor.

4. Set the properties of the beans (for example, set the JoltFieldName property of
the JoltTextField to ACCOUNT_ID).

Note: For complete information on setting and modifying the properties of the
JoltBeans, refer to “Using the Jolt Repository and Setting the Property Values”
on page 6-44.

6-20 Using BEA Jolt

JoltBeans Class Library Walkthrough

The following table specifies the property values that should be set. Values
specified inbold anditalic text are required, and those in plain text are

recommended.

Table 6-5 Required and Recommended Property Values

Bean Property Value

labell Text Account ID
label2 Text Balance
JoltTextFieldl Name accountld
JoltTextFieldl JoltFieldName ACCOUNT_ID
JoltTextField2 Name balance
JoltTextField2 JoltFieldName SBALANCE
JoltSessionBeanl AppAddress [ltuxserv:2010
JoltServiceBeanl Name inquiry
JoltServiceBeanl ServiceName INQUIRY
buttonl Label Inquiry

Note: In this walkthrough, the default occurrencelndex of O works for both

JoltTextFields.

Refer to the following figure “Example of JoltTextField Property List and

Custom Property Editor"and “Using the Jolt Repository and Setting the Property

Values” on page 6-44 for general guidelines about JoltBean properties.

Using BEA Jolt 6-21

6 Using JoltBeans

Figure 6-7 Example of JoltTextField Property List and Custom Property Editor

B Property List - JoltBeanDev_._ [Eizl | gy

I@ accauntiD e |

The Custorn Froperty
Editorispopulated ondy o
the Jolt Repository Jerver

Backoroand [whie (REP) is rusming.
=~ Boundls
e]
[]
it 0 Custom Property Editor E3
“- He ght 10
Closs aeojothears ot ol TexField G
Lolumas J
CLrgar TEXT_ZIREOR
Ediliabile TuE SLRMINAM
Erahbled Tue QQE&LPETE
o Fent — gTATLIN
- Mame Jialog
- Eiza 12
=t Shde
- Bald ‘alse
C Kelic ‘alse
Fereground W black IEEIGEEL I AECOJINT_ID
Inhnr?t iﬂr:kgmu FUR
Inhernt “cnt TUE
Inherit =cregmou rue J
Mo ta: Select frorn the abdve
Marre accountD tist, or type in manmally.
Nrrurrercrlnde]
Tent
Wisihle Tue

5. To change the value of the JoltFieldName property, click on the ellipsis button of
the JoltFieldName in the Property List.

The Custom Property Editor is displayed.

6. Select or type the new field name (in this example, “ACCOUNT _ID") and click

OK.

The change is reflected in the Property List shown in the following figure
“Revised JoltFieldName in the JoltTextField Property List"and on the text field
shown on the figure “Example of JoltBeans on the Form Designer with Property

Changes” on page 6-24.

6-22 Using BEA Jolt

JoltBeans Class Library Walkthrough

Note: The properties that are visible in the Custom Property Editor are cached
locally; therefore, if the source database is modified you must use the Refresh
button to see the current, available properties.

Figure 6-8 Revised JoltFieldName in the JoltTextField Property List

#: Property List - JoltBeanDev... !Em

M accountlD -
Background [white
= Bounds
% 0
N i
- \idth 20
- Height 40
Class heajoltheans.awt. JoltTextField
Calurmns 0
Cursar TEXT_CURSOR
Editahle true
Enahled true
= Font
- Marme Dialog
- Size 12
- Style
. Bald false
L ltalic false
Foreground W black
Inherit Backgrou|true
Inherit Font true
| i true
. EACCOUNT_ID
Marne accountlD
Occurrencelndel 0
Text
YWisihle true

The following figure “Example of JoltBeans on the Form Designer with
Property Changes” illustrates how the text on the button and the textfield
changes after the text is added to the property list fields for these beans.

Using BEA Jolt

6-23

6 Using JoltBeans

Figure 6-9 Example of JoltBeans on the Form Designer with Property Changes

Form Designer - JAppletl _

To]|

[J&pplett Mod [| |

Z

7. After you set the properties to the right values (refer to the table “Required and
Recommended Property Values” on page 6-21 for additional information), define
how the beans will interact by wiring them together using the Visual Café
Interaction Wizard. Refer to “Wiring the JoltBeans Together” for details.

6-24 Using BEA Jolt

JoltBeans Class Library Walkthrough

Wiring the JoltBeans Together

After all the beans are positioned on your form and the properties are set, you must
wire the beans and their events together. The following figure “Sequence in which
JoltBeans Are Wired” illustrates an example of the flow to help you determine the
correct order in which to wire the beans.

Wiring the beans allows you to establish event source-listener relationships between
various beans on the form. For example, the JoltServiceBean is a listener of
ActionEvents from the button and invokesiService() when the event is

received. Use the Visual Café Interaction Wizard to wire the beans together.

The following figure shows the sequence in which you will wire the beans together to
create this sample applet. The numbers in this figure correspond to the numbered steps
that follow.

Figure 6-10 Sequence in which JoltBeans Are Wired

- Balance- - -

| EEEEE | 5 ..

Form Designer - JAppletl =] E3 I

[J&pplett [Mod | 4

Using BEA Jolt 6-25

6 Using JoltBeans

6-26

The steps below correspond to the callouts shown on the figure “Sequence in which
JoltBeans Are Wired” on page 6-25. Each of steps below is detailed in the sections th:
follow.

Step 1: Wire the JoltSessionBean Logon
Step 2: Wire JoltSessionBean to JoltServiceBean Using PropertyChange

Step 3: Wire the accountID JoltTextField as Input to the JoltServiceBean Using
JoltinputEvent

Step 4: Wire Button to JoltServiceBean using JoltAction
Step 5: Wire JoltServiceBean to the Balance JoltTextField Using JoltOutputEvent
Step 6: Wire the JoltSessionBean Logoff

Step 7: Compile the Applet (not shown as a callout)

Using BEA Jolt

JoltBeans Class Library Walkthrough

Step 1: Wire the JoltSessionBean Logon

1. In the Form Designer window, click the Interaction Wizard button.

2. Click in the applet window and drag a line to the JoltSessionBean as shown in the
following figure.

Figure 6-11 Wire the Applet to the Jolt Session Bean

Form Designer - JAppletl [_ (O]

I Drag
................................... here
::::::::Inquir'fl:::::::::::::::::::::

|J&pplet] Mod [[&

The Interaction Wizard window is displayed as shown in the figure “Select
ComponentShown Event” on page 6-28, with the prompt:

What event in JAppletl do you want to start the interaction?

Using BEA Jolt 6-27

6 Using JoltBeans

3. SelectComponentShownin the Interaction Wizard window as the event with
which you want to start the interaction, as shown in the following figure.

Figure 6-12 Select ComponentShown Event

Interaction Wizard

What evert in JApplet1 do you want to start the interaction?

Ewents:

----- componertHidcen d
-componenttoved

-componertResiz
ympanert

[=1- container

----- componertAdded

- componentRemoyved

[=)-focus

----- focusGained

‘.. focusLost

o kevyPressed
-keyReleazed
ke Typed
[Zl-mouse

|

i mouseClicked

IcomponentShown

|v Group everts

= Back | et = | RiRlizi] | Caniel | Heli |

4. Click Next.

The Interaction Wizard window is displayed, as shown in the figure “Select
Logon to the Tuxedo System Action” on page 6-29, with the prompt:

What do you want to happen when Jappletl fires componentShown event?

6-28 Using BEA Jolt

JoltBeans Class Library Walkthrough

5. With thePerform an action radio button enabled, select the actiagon to the
Tuxedo systemas shown in the following figure.

Figure 6-13 Select Logon to the Tuxedo System Action

Interaction Wizard
What do you want to happen when JApplet1 fires componentShown event?
(% Perfarm an action " Call & methad " Set & property

Mvwvailable ohjects: Actions:

Begin & new transaction...
Commit the current transaction
Logoff from the TUXEDD system
ogon tothe TUXE yatem
Rollback the current transaction

|| 8B inepuiry
i accourntld
i balance
(B jottLabelt
(B jottLabel2
= button

[Logon ta the TUXEDD system

= Back | MeEwt = | Finizh | Canicel | Help |

6. Click Finish.

Completing “Step 1: Wire the JoltSessionBean Logon” enabldsdgb) method
of the JoltSessionBean to be triggered by an applet (for example, ComponentShown)
that is sent when the applet is opened for the first time.

Using BEA Jolt 6-29

6 Using JoltBeans

Step 2: Wire JoltSessionBean to JoltServiceBean Using PropertyChange

1. Click the Interaction Tool icon in the toolbar of the Visual Café Form Designer
window to display the bean components.

2. Click on the JoltSessionBean and drag a line to the JoltServiceBean, as shown i
the following figure.

Figure 6-14 Wire the JoltSessionBean to the JoltServiceBean

Form Designer - JAppletl [_ (O]

[J&pplett Mod [| 4

The Interaction Wizard window is displayed as shown in the figure “Select
propertyChange Event” on page 6-31, with the prompt:

What event in joltSessionBeanl do you want to start the interaction?

6-30 Using BEA Jolt

JoltBeans Class Library Walkthrough

3. SelecpropertyChange as the event that starts the interaction, as shown in the
following figure.

Figure 6-15 Select propertyChange Event

Interaction Wizard
What evert in joltSessionBean1 do you wwant to start the interaction?
Ewents:
=- JthSessionElean hound property change
Ipropeerhange
|v Group everts
B | oweas | oFien | cemeet | bew |

4. Click Next.

The Interaction Wizard window is displayed as shown in the figure “Select
Handle a Jolt property change event” on page 6-32, with the prompt:

What do you want to happen when joltSessionBeanl fires propertyChange
event?

Using BEA Jolt 6-31

6 Using JoltBeans

5. SelectHandle a Jolt property change events the method, as shown in the
following figure.

Figure 6-16 Select Handle a Jolt property change event
S
Interaction Wizard
What do you want to happen when jotSessionBeani fires propertyChange event?
" Call & methad

(% Perfarm an action " Set & property

Mvwvailable ohjects: Actions:

Clear the Jot message buffer
Handle a Jolt input event. ..
anclle 2 Jok prop evert...

PF dapplett
93 jotSessionBean

2L inguiry

Invoke the TUXEDC service represented by this Bean

i accourntld o o)

Set 5 specific occurrence of & field inthe input buffer s
F@ IR Set a specific occurrence of a field inthe input buffer in
(B jotiLabett Set all oocurrences of a figld in the input buffer as text...
@joltLabel? Set all oocurrences of & field in the input buffer in native
= button Set the value of & field in the input buffer as text..

Set the walue of a field in the input butfer in native formal

4] |

[Handle a Jolt property change event

= Back | et = | RN | Canicel | Hel |

6. Click Next.

The Interaction Wizard window is displayed as shown in the figure “Select
joltSesssionBeanl1” on page 6-33, with the prompt:

How do you want to supply the parameter to this method?

and a list of available objects and actions from which to choose.

6-32 Using BEA Jolt

JoltBeans Class Library Walkthrough

7. SelecfoltSessionBeanlas the object that supplies the action, as shown in the
following figure.

8. SelectGet the current Property Change Eventobject as the action, also as
shown in the following figure.

Figure 6-17 Select joltSesssionBeanl

Interaction Wizard

[inquiry.proper‘tvthange[PropertyChangeEvent
Howy do you weant to supply the parameter to this methodd?

* Get it from an ohject I Let me enter the expression myself

‘;’;, Available ohjects: Actions:
. ﬁ" Jtppletd 3t the current Property Change Event ohject

88 incuiry
i accountld
i balance
(B jottLabelt
(B jotLabelz
= button

Showe |w Actions [Methads [Yeriabies

[Getthe current Property Change Event ohject

= Back | Mewt = | Finizh | Cancel | Heli |

9. Click Finish.

Completing “Step 2: Wire JoltSessionBean to JoltServiceBean Using
PropertyChange”enables the JoltSessionBean to send a propertyChange event when
logon() completes. The JoltServiceBean listens to this event and associates its service

with this session.

Using BEA Jolt 6-33

6 Using JoltBeans

Step 3: Wire the accountID JoltTextField as Input to the JoltServiceBean Using

JoltinputEvent

1. Click the Interaction Wizard icon in the Visual Café Form Designer window.

2. Select theccountlID JoltTextField bean and drag a line to the JoltServiceBean.

The Interaction Wizard window is displayed, as shown in the following figure,

with the prompt:

What event in accountld do you want to start the interaction?

3. SelecdataChangedas the event, as shown in the following figure.

Figure 6-18 Select dataChanged Event

Interaction Wizard

What event in aceountld do you want to start the interaction?

Events:

[=]--Input data changed
(N st Ch
EI---action
 ioactionPerformed
L::_|---ances10r

----- ancestorAdded
----- ancestorhoved
----- ancestorRemayved
[=houndProperty Change

anges

----- propertyChange -
propertyChange -
propertyChange -
propertyChange -
propertyChange -
propertyChange -

Border

Caret

CaretColar
DisabledTextColar
Dacument
Editable

IdataChanged

v Group events

= Hank | et = | s | Cancel | Help |

4. Click Next.

The Interaction Wizard window is displayed as shown in the figure “Select
inquiry Object and Handle a Jolt input event Action” on page 6-35, with the

prompt:

6-34 Using BEA Jolt

JoltBeans Class Library Walkthrough

What do you want to happen when accountld fires dataChanged event?

5. Select the joltServiceBeamquiry as the object supplying the parameter, as
shown in the following figure.

6. SelectHandle a jolt input eventas the action, also as shown in the following
figure.

Figure 6-19 Select inquiry Object and Handle a Jolt input event Action

Interaction Wizard

What do you want to happen wwhen accountld fires dataChanged event?

% Perform an actian " Call & methiad " Set a property
Available ohjects: Actions:
ﬁf JApplet Clzar the Jott message buffer
'@ joltSessionBeant andle & Joit input evert...

Handle a Jolt property change evert...
Invoke the TUXEDD service represented by this Bean

L ineuiry

I accountld o o)

et & specific occurrence of a field in the input buffer as
@ el Set a specific occurrence of a field in the input buffer in
(B ictL a1 Set all oocurrences of a field in the input butfer as text...
@ joftLabel2 Set all oocurrences of a field in the input buffer in native
3 buttont Set the value of & field in the input buffer as text...

Set the value of a field in the input butfer in native formal

Kl | 2

IHandIe a Jolt input event

= Back | et = | et | Cancel | Hel |

7. Click Next.

The Interaction Wizard window is displayed as shown in “Select accountld
Object and Get the current Jolt Input Event Action” on page 6-36, with the
prompt:

How do you want to supply the parameter to this method?

and a list of available objects and actions from which to choose.

Using BEA Jolt 6-35

6 Using JoltBeans

6-36

8. Seleciaccountld as the object, as shown in the following figure.

9. Selectget the current Jolt Input Event as the action, also as shown in the
following figure.

Figure 6-20 Select accountld Object and Get the current Jolt Input Event Action

Interaction Wizard

Iinquiry.dataChanged(SJoltinputEvent
Howy do you weant to supply the parameter to this methadd?

i+ Get it from an ohiect I Let me enter the expression myself

Available ohjects: Actions:

ﬁf JApplet et the current Jobt Input Evert
{ ‘@ jottSessionBeant

88 incuiry

E accourtid
I balance
(B jottLabe

[Ef iattLabel2
3 buttont

Show: |w) Actions [Methods [T Yeriabies

IGet the current Jok Input Event

= Back | Mgt = | Finizh | Cancel | Heli |

10. ClickFinish.

Completing “Step 3: Wire the accountID JoltTextField as Input to the JoltServiceBean
Using JoltinputEvent” enables you to type the account number in the first text field.
The JoltFieldName property of this JoltTextField is set to “ACCOUNT _ID".
Whenever the text inside this text box changes, it sends a JoltinputEvent to the
JoltServiceBean. (The JoltServiceBean listens to JoltinputEvents from this textbox.)
The JoltinputEvent object contains the name, value, and occurrence index of the fiel

Using BEA Jolt

JoltBeans Class Library Walkthrough

Step 4: Wire Button to JoltServiceBean using JoltAction
1. Click the Interaction Wizard icon in the Visual Café Form Designer window.

2. Click the Inquiry Button and drag a line to the JoltServiceBean.

The Interaction Wizard window is displayed as shown in the following figure,
with the prompt:

What event in buttonl1 do you want to start the interaction?

3. SelectactionPerformed as the event, as shown in the following figure.

Figure 6-21 Select action Performed Event

Interaction Wizard

What event in button1 do you want to start the interaction?

Events:

| v

- companenttioved
- componertResized
(. companentShown
- focus

----- focusGained

- focusLost

~keyPressed
~keyReleased
o keyTyped
[=l-mouze j

IacﬁonPerforrned

|v Group everts

=HGEGE | et = | IR | Cancel | Help |

4. Click Next.

The Interaction Wizard window is displayed, as shown in the figure “Select
inquiry Object and Invoke the TUXEDO Service... Action” on page 6-38, with
the prompt:

What do you want to happen when button1l fires actionPerformed event?

Using BEA Jolt 6-37

6 Using JoltBeans

5. Selectinquiry as the object, as shown in the following figure.

6. Selectinvoke the TUXEDO Service represented by this Beaas the action,
also as shown in the following figure.

Figure 6-22 Select inquiry Object and Invoke the TUXEDO Service... Action

Interaction Wizard
What do you want to happen wwhen buttond fires actionPerformed evert?
(% Perfarm an action " Call & methad " Set & property
Awailable ohjects: Actions:
&f JApplett Clear the Jot message buffer
'@ joltSessionBeant Handle a Jolt input event. ..
B inguiry Hanclle 2 Jokt property change event
F@ B nvoke th il ESES) ean
o Set 5 specific occurrence of & field inthe input buffer as

F@ : Sl Set a specific occurrence of a field inthe input buffer in
(B JotLabelt Set all occurrences of & fisld in the input buffer as tesd. .
[B jottLabel2 Set all oocurrences of & field in the input buffer in native
3 button Set the value of a field in the input butfer as text...

Set the walue of a field in the input butfer in native farmal

4] |

Ilnvoke the TUXEDC service represented by this Bean

= Back | MeExt = | Finizh | Canicel | Help |

7. Click Finish.

Completing “Step 4: Wire Button to JoltServiceBean using JoltAction” enables the
callService() method of the JoltServiceBean to be triggered by an ActionEvent

from the Inquiry button.

6-38 Using BEA Jolt

JoltBeans Class Library Walkthrough

Step 5: Wire JoltServiceBean to the Balance JoltTextField Using

JoltOutputEvent
1. Click the Interaction Wizard icon in the Visual Café Form Designer window.
2. Select the JoltServiceBean and drag a line to the AmountJoltTextField bean.

The Interaction Wizard is displayed, as shown in the following figure, with the
prompt:
What event in inquiry do you want to start the interaction?

3. SelecserviceReturnedas the event, as shown in the following figure.

Figure 6-23 Select ServiceReturned Event

Interaction Wizard
What event in inquiry do you vwant to start the interaction?
Evenits:
(=] joftOutput
riceReturned
IserviceRetumed
v Group events
ot | oweas | oFren | comeet | bew |

4. Click Next.

The Interaction Wizard window is displayed, as shown in the figure “Select
balance Object and Handle a service returned event Action” on page 6-40, with

the prompt:

Using BEA Jolt 6-39

6 Using JoltBeans

What do you want to happen when inquiry fires serviceReturned event?
5. Selectalanceas the object, as shown in the following figure.

6. SelectHandle a service returned event..as the action, also as shown in the
following figure.

Figure 6-24 Select balance Object and Handle a service returned event Action

Interaction Wizard

What do you want to happen wwhen inquiry fires serviceReturned event?

(% Perfarm an action " Call & methad " Set & property
Mvwvailable ohjects: Actions:
&f JApplett Dizable the JoRTextField =
'@ joltSessionBeant Dizahle the Joft TextField on concition....
g ineguiry Enable the Jolt TextField
H accourtld
E CE
(B JotLabelt Request the focus
(B jotLabel2 Selects all the text
3 button Set the Background Color...
Set the Foreground Color ...
Set the Jolt fizld name. ..
Set the JoltTextField's Fort ... [
Set the JokTextFisld's texd. ..
Set the bounds rectangle...
Set the cursor type...
Set the occurence index.. j

[Handle a zervice returned event

= Back | et = | RN | Canicel | Hel |

7. Click Next.

The Interaction Wizard window is displayed, as shown in the figure “Select
inquiry Object and Get the JoltOutputEvent object Action” on page 6-41, with
the prompt:

How do you want to supply the parameter to this method?

6-40 Using BEA Jolt

JoltBeans Class Library Walkthrough

8. Selecinquiry as the object, as shown in the following figure.

9. SeleciGet the JoltOutputEvent object as the action, also as shown in the
following figure.

Figure 6-25 Select inquiry Object and Get the JoltOutputEvent object Action

Interaction Wizard

Ibalance.serviceReturned(SJoltOutputEvent ;
Howy do you weant to supply the parameter to this methadd?

i+ Get it from an ohiect I Let me enter the expression myself

Available ohjects: Actions:

ﬁf JBpplet! et the JotCutputEvert object
4 ‘@ jottSessionBeant
XL inciry

I accountid

I balance

(B jottLabe

[Ef iattLabel2

3 buttont

Show: |w) Actions [Methods [T Yeriabies

IGet the JoltOutputEvent object

= Back | Mgt = | Finizh | Cancel | Heli |

10. Click Finish.

Completing “Step 5: Wire JoltServiceBean to the Balance JoltTextField Using
JoltOutputEvent”allows the JoltServiceBean to send a JoltOutputEvent when it
receives reply data from the remote service. The JoltOutputEvent object contains
methods to access fields in the output buffer. The JoltTextField displays the result of

the INQUIRY service.

Using BEA Jolt 6-41

6 Using JoltBeans

Step 6: Wire the JoltSessionBean Logoff
1. Click the Interaction Wizard icon in the Visual Café Form Designer window.

2. Click in the applet window (not on another bean) and drag a line to the
JoltSessionBean.

The Interaction Wizard is displayed, as shown in the following figure, with the
prompt:

What event in JAppletl do you want to start the interaction?
3. SelecttomponentHiddenas the event, as shown in the following figure.
Figure 6-26 Select componentHidden Event

Interaction Wizard

What event in JApplet1 do you want to start the interaction’?

Events:

[+ component
mponentHicden

-componentioved

-componentResized

-componentShown

[cortainet

E-----component.&dded

E-----c-:-m;:-onen’:Remu:\ferd

[=]-focus

E-----focusGained

. focusLost

[key

‘keyPressed

‘keyReleazed

=key Typed j

|

IcomponentHidden

[v Group everts

= Eak | Mext = | RIRE] | Cancel | Help |

4. Click Next.

The Interaction Wizard window is displayed, as shown in the figure “Select
joltSessionBeanl Object and Logoff from the Tuxedo System Action” on page
6-43, with the prompt:

6-42 Using BEA Jolt

JoltBeans Class Library Walkthrough

What do you want to happen when JAppletl fires componentHidden event?

5. SelecfoltSessionBeanlas the object, as shown in the following figure.

6. SelectLogoff from the TUXEDO systemas the action, also as shown in the

following figure.

Figure 6-27 Select joltSessionBeanl Object and Logoff from the Tuxedo System

Action

Interaction Wizard

What do you want to happen wwhen JApplet1 fires componentHidden event?

& Perfarm an action

Axvailable objects:

" Call & methad

Actions:

" Set a praperty

PE Jopplett
2 jol

3 inejuiry

I accountid

I balance
[B5 jotiLatel

[E5 jottLabel2
3 button

Bedin & newy transaction...
Commit the current transaction

ogoff fram the TUXED o
Logon to the TLXEDC system
Rollack the current transaction

ILogoff from the TUXEDD system

= Back | et = | Finish | Cancel | Help |

7. Click Finish.

Completing “Step 6: Wire the JoltSessionBean Logoff” enablelsgb#) method
of the JoltSessionBean to be triggered by an applet (for example, componentHidden)
that is sent when the applet gets hidden.

Step 7: Compile the Applet

After wiring the JoltBeans together, compile the applet. It is also recommended that
you fill in the empty catch blocks for exceptions. Check the message window for any

compilation errors and exceptions.

Using BEA Jolt 6-43

6 Using JoltBeans

For additional information see the following section “Using the Jolt Repository and
Setting the Property Values.” Also refer to the table “JoltBean Specific Properties” on
page 6-45 and the figure “JoltServiceBean Property Editor” on page 6-46.

Running the Sample Application

To run the sample application, you must have the BEA Tuxedo server running. Ther
enter an account number in the Account ID textfield. You can use any of the accoun
numbers included in the BANKAPP database. Following are two examples of accoun
numbers you can use to test the sample application:

= 80001
m 50050

Using the Jolt Repository and Setting the
Property Values

Custom Property Editors are provided for the following properties:
m JoltFieldName (Jolt-aware AWT beans)
m serviceName (JoltServiceBean)

The Property Editor, accessed from the Property List, includes dialog boxes that are
used to add or modify the properties. You can invoke the boxes from the Property Lis
by selecting the button with the ellipsis (...) that is next to the value of the
corresponding property value.

Some JoltBeans require input to the Property List field. The beans are listed in the
following table.

6-44 Using BEA Jolt

Using the Jolt Repository and Setting the Property Values

Table 6-6 JoltBean Specific Properties

JoltBean Property Input Description
JoltSessionBean appAddress e.g.,//host:port
userName, Password or Type your BEA Tuxedo user name
AppPassword and passwords.
JoltServiceBean serviceName INQUIRY, for example.
isTransactional Set totrue if the service needs to be

executed within a transaction. Set
isTransactional téalse if the
service does not require a transaction.

JoltUserEventBean eventName Refer to the BEA Tuxedo

filter tpsubscribe calls.
All Jolt-aware GUI joltFieldName ACCOUNT_ID, for example
beans occurrencelndex Multiple fields of the same name.

Index starts at 0.

JoltCheckbox TrueValue and FalseValue The field value corresponding to the
state of the checkbox.

The property editor reads cached information from the repository and returns names of
the available services and data elements in a list box. An example of the ServiceName
property editor is shown in the following figure “JoltServiceBean Property Editor.”

To add or modify a property bean, follow these steps:

1. Select the service name by clicking on the ellipsis irsdrgiceNamefield shown
in the following figure.

Using BEA Jolt 6-45

6 Using JoltBeans

Figure 6-28 JoltServiceBean Property Editor

& Property List - JoltBeanDev !Em

8 JoltServiceBean

Class bea.joltbheans. JoltServiceBean
MName JoltServiceBean

Session null |
Transactional |false

The Custom Property Editor for ServiceName shown in the following figure is
displayed.

Figure 6-29 Custom Property Editor for ServiceName

Custom Property Ed... B4

Semnices:

Logan | | INQUIRY

If you cannot or do not want to connect to the Repository database, type the
service name in the text box and skip to Step 7.

Note:

2. If you are not logged on, make sure the Jolt Server is running andLs¥ject

The JoltBeans Repository Logon shown in the following figure is displayed.

6-46 Using BEA Jolt

Using the Jolt Repository and Setting the Property Values

Figure 6-30 JoltBeans Repository Log On

f=iJoltBeans Repository... E3

Server I

Fart number: I

Application passward:

I—
User name: I—
I—

User password:

Logaon | Cancel |

3. Type the BEA Tuxedo or Jolt Relay Machine name in the Server field and the
JSL or Jolt Relay in the Port number field.

4. Type the password and user name information (if required) and_olizin.

The Custom Property Editor loads its cache from the repository and is displayed,
as shown in the following figure “Property Editor with Selected Service.”

5. Select the appropriate service name from the list box, as shown in the following
figure.

6. Enter the property value (service or field name) directly.
A text box is provided.

7. Click OK in the Custom Property Editor dialog.

The bean property is set with the contents of the textbox.

Using BEA Jolt 6-47

6 Using JoltBeans

Figure 6-31 Property Editor with Selected Service

Custom Property Editor B

Semices:

ml [NauiRy

8. Click OK in the Custom Property Editor dialog again.

6-48 Using BEA Jolt

JoltBeans Programming Tasks

JoltBeans Programming Tasks

Additional programming tasks include:
m Using Transactions with JoltBeans

m Using Custom GUI Elements with the JoltService Bean

Using Transactions with JoltBeans

Your BEA Tuxedo application services may have functionality that updates your
database. If so, you can use transactions with JoltBeans (for example, in the sample,
BANKAPP, the services TRANSFER and WITHDRAWAL update the database of
BANKAPP). If your application service is read-only (such as INQUIRY), you do not
need to use transactions.

The following example shows how to use transactions with JoltBeans.

1. ThesetTransactional (true) method is called on the JoltServiceBean.
(isTransactional is a boolean property of the JoltServiceBean.)

2. ThebeginTransaction() method is called on the JoltSessionBean.
3. ThecallService() method is called on the JoltServiceBean.

4. Depending on the outcome of the service callcthenitTransaction() or
rollback Transaction() method is called on the JoltSessionBean.

Using BEA Jolt 6-49

6 Using JoltBeans

Using Custom GUI Elements with the JoltService Bean

6-50

JoltBeans provides a limited set of Jolt-enabled GUI components. You can also use
controls that are not Jolt-enabled together with the JoltServiceBean. You can link
controls to the JoltServiceBean that display output information of the service
represented by the JoltServiceBean. You can also link controls that display input
information.

For example, a GUI element that uses an adapter class to implement the
JoltOutputListener interface can listen to JoltOutputEvents. The JoltServiceBean as
the event source for JoltOutputEvents callsstireiceReturned() method of the
adapter class when it sends a JoltOutputEvent. IssitdieeReturned() , the

control’'s internal data is updated using information from the event object.

The development tool generates the adapter class when the JoltServiceBean and tt
GUI element are wired together.

As another example, a GUI element can calkthieputTextValue() method on
the JoltServiceBean. The GUI element contains input data for the BEA Tuxedo servic
represented by the JoltServiceBean.

As a third example, a GUI element can implement the required methods
(addJoltinputListener() andremoveJoltinputListener()) to act as event
sources for JoltinputEvents. The JoltServiceBean acts as an event listener for these
events. The control sends a JoltinputEvent when its own state changes to keep the
JoltServiceBean updated with the input information.

Using BEA Jolt

CHAPTER

7

Using Serviet

Connectivity for BEA
Tuxedo

With BEA Jolt servlet connectivity, you can use HTTP servlets to perform server-side
Java tasks in response to HTTP requests. Jolt certifies servlet connectivity with the
Java Web Server versions 1.1.3 and up, and supports most other standard servlet
engines. Using the Jolt session pool classes, a simple HTML client can connect to any
Web server that supports generic servlets. Thus, all Jolt transactions are handled by a
servlet on the Web server rather than being handled by a client applet or application.

This capability enables HTML clients to invoke BEA Tuxedo services without directly
connecting to BEA Tuxedo. HTML clients can instead connect to a Web server,
through HTTP, where the BEA Tuxedo service request is executed by a generic
servlet. Using a Jolt session, the servlet on the Web server administers the BEA
Tuxedo service request by connecting to the BEA Tuxedo Server through the Jolt
Server Handler (JSH) or the Jolt Server Listener (JSL), which then makes the BEA
Tuxedo service request. This capability allows many types of HTML clients to make
remote BEA Tuxedo service requests. All Jolt transactions are handled on the server
side without requiring any change to the original HTML client. Thus, HTML clients
are allowed to be very simple and require little maintenance.

“Using Servlet Connectivity for BEA Tuxedo” covers the following topics:
m What Is a Servlet?
m How Servlets Work with Jolt

m Writing and Registering HTTP Servlets

Using BEA Jolt 7-1

I Using Servlet Connectivity for BEA Tuxedo

m Jolt Servlet Connectivity Sample

m Additional Information on Servlets

What Is a Servlet?

A servlet is any Java class that can be invoked and executed on a server, usually or
behalf of a client. A servlet works on the server, while an applet works on the client.
An HTTP servlet is a Java class that handles an HTTP request and delivers an HTT
response. HTTP servlets reside on an HTTP server and must extend the JavaSoft
javax.servlet.http.Http Servlet Class so that they can run in a generic servlet engine
framework.

Some advantages of using HTTP servlets are:

m They are written in a well-formed, and compiled language (Java), so are more
robust than “interpreted” scripts.

m They are an integral part of the HTTP server that supports them.

m They can be protected by the robust security of the server, unlike some CGI
scripts that are hazardous.

m They interact with the HTTP request through a well-developed programmatic
interface, and so are easier to write and less prone to errors.

7-2 Using BEA Jolt

How Servlets Work with Jolt

How Serviets Work with Jolt

With Jolt servlet connectivity, any generic HTTP servlet allows you to take advantage
of the Jolt features. Jolt servlets handle HTTP requests using the following Jolt classes:

m ServletDataSet

m ServletPoolManagerConfig
m ServletResult

m ServletSessionPool

m ServletSessionPoolManager

The Jolt Servlet Connectivity Classes

Following are descriptions of the Jolt servlet connectivity classes.
ServletDataSet

This class contains data elements that represent the input and output parameters of a
BEA Tuxedo service. It provides a method to import the HTML field names and values
from a javax.servlet.http.HttpServietRequest object.

ServletPoolManagerConfig

This class is the startup class for a Jolt Session Pool Manager and one or more
associated Jolt session pools. It creates the session pool manager if needed and starts a
session pool with a minimum number of sessions. Jolt Session Pool Manager internally
keeps track of one or more named session pools.

This class is derived frofsea.jolt.pool.PoolManagerConfig and allows the
caller to pass a Properties or Hashtable object to thestatip() method to create
a session pool and the stajiSessionPoolManager() method to get the session
pool manager dfea.jolt.pool.servlet.ServletSessionPoolManager class.

ServletResult

This class provides methods to retrieve each field in a ServletResult object as a String.

Using BEA Jolt 7-3

I Using Servlet Connectivity for BEA Tuxedo

ServletSessionPool

This class provides a session pool for use in a Java servlet. A session pool represer
one or more connections (sessions) to a BEA Tuxedo system. This class provides cz
methods that accept input parameters for a BEA Tuxedo service as a
javax.servlet.http.HttpServietRequest object.

ServletSessionPoolManager

This class is a servlet-specific session pool manager. It manages a collection of one
more session pools of classrvietSessionPool . This class provides methods that
are used to create both the ServletSessionPoolManager itself and the session pools t
it contains. These methods are part of the administrative API for a session pool.

Writing and Registering HTTP Servlets

7-4

Before writing and registering HTTP servlets, you must first import the packages tha
support Jolt servlet connectivitjplf.jar , joltjse.jar , servlet.jar). HTTP
servlets must extend javax.servlet.http.HttpServlet. After you write your HTTP
servlets, you register them with a Web server that supports generic servlets. Your
custom servlets are treated exactly like the standard HTTP servlets that provide the
HTTP capabilities.

Each HTTP servlet is registered against a specific URL pattern, so that when a
matching URL is requested, the corresponding servlet is called upon to handle the
request.

Refer to the documentation for your particular Web server for instructions on how to
register servlets.

Using BEA Jolt

Jolt Servlet Connectivity Sample

Jolt Servlet Connectivity Sample

The Jolt software includes three sample applications that demonstrate serviet
connectivity using the Jolt servlet classes. The three samples are:

m SimpApp Sample
m BankApp Sample
m Admin Sample

Refer to these samples in to see code examples of how to use the Jolt servlet classes in
your own servlets.

Viewing the Sample Servlet Applications

To view the code for the Jolt sample applications, you need to install the Jolt API client
classes (usually chosen as an option when installing Jolt). Once the classes are installed
in your directory of choice, navigate to the following directory to see the sample
application files:

<Installation directory>\udataobj\jolt\examples\servlet

To view the sample code, use a text editor such as Microsoft Notepad to open the Java
files for each sample application.

SimpApp Sample

A sample application named “Simpapp” is included with Jolt. The Simpapp
application illustrates how the servlet uses Servlet Connectivity for BEA Tuxedo. The
following servlet tasks are illustrated by the Simpapp sample:

m Using a property file to create a session pool
m Getting the session pool manager

m Retrieving the session pool by name

Using BEA Jolt 7-5

I Using Servlet Connectivity for BEA Tuxedo

m Invoking a BEA Tuxedo service
m Processing the result set

This example demonstrates how a servlet can connect to BEA Tuxedo and call upor
one of its services; it should be invoked from shepapp.html file. The servlet

creates a session pool manager at initialization, which is used to obtain a session wh
thedoPost() method is invoked. This session is used to connect to a service in BEA
Tuxedo with a name described by the posdCNAMEargument. In this example the
service is calledTOUPPER which transposes the postesifRING’ argument text into
uppercase, and returns the result to the client browser within some generated HTML

Note: The WebLogic Server is used in this example.

Requirements for Running the Simpapp Sample

The requirements for running the Simpapp sample are:
m Any Web application server with Servlet JSDK 1.1 or above.
m BEA Tuxedo 7.1 or above with SimpApp sample running.

= Jolt.

Installing the SimpApp Sample

1. Install the Jolt class librarjof.jar) and Servlet Connectivity for BEA Tuxedo
class library jpltjse.jar) on the Web application server. Extract the class files
if it is required by your Web application server.

2. Compile thesimpAppServlet.java . Make sure that you include the standard
JDK 1.1.x classes.zip , JSDK 1.1 classes, Jolt class library, and Servlet
Connectivity for BEA Tuxedo class library in the classpath.

javac -classpath
$(JAVA_HOME)/lib/classes.zip:$(JSDK)/lib/servlet.jar:

$(JOLTHOME)/jolt.jar:$(JOLTHOME)/joltjse.jar:./classes
-d ./classes SimpAppServlet.java

Note: The package name of the SimpAppServlet is
examples.jolt.servlet.simpapp

7-6 Using BEA Jolt

Jolt Servlet Connectivity Sample

3. Put thesimpapp.html andsimpapp.properties files in the public HTML
directory.

4. Modify thesimpapp.properties file. Change thedppaddrlist " and
“failoverlist " with the proper Jolt server hosts and ports. Specify the proper
BEA Tuxedo authentication information if the SimpApp has security turned on.
For example:

#simpapp

#Fri Apr 16 00:43:30 PDT 1999
poolname=simpapp
appaddrlist=//host:7000,//host:8000
failoverlist=//backup:9000
minpoolsize=1

maxpoolsize=3

userrole=tester
apppassword=appPass
username=guest
userpassword=myPass

5. Register “Simpapp” for the SimpAppServlet. Consult your Web application
server for details. If you are using WebLogic, add the following line to the
weblogic.properties file:

weblogic.httpd.register.simpapp=examples.jolt.servlet. SimpAppSe
rviet

6. To access the SimpApp initial pagénipapp.html " type:
http://mywebserver:8080/simpapp.html

Using BEA Jolt 7-7

I Using Servlet Connectivity for BEA Tuxedo

BankApp Sample

The “Bankapp” application illustrates how the servlet is written with
PageCompiledServlet with Servlet Connectivity for BEA Tuxedo. Bankapp illustrates
how to:

m Use a property file to create a session pool
m Get the session pool manager

m Retrieve a session pool by name

m Invoke a BEA Tuxedo service

m Process the result set

Requirements for Running the Bankapp Sample

Following are the requirements for running the Bankapp sample:
m Any Web application server with Servlet JSDK 1.1 or above
m BEA Tuxedo 7.1 with BankApp sample running

= Jolt

Installation Instructions

1. Install the Jolt class librarjof.jar) and Servlet Connectivity for BEA Tuxedo
class library jpltjse.jar) to the Web application server. Extract the class files
if it is required by your Web application server.

2. Copy all HTML, JHTML ancankapp.properties files to the public HTML
directory of the Web application server (for example,
$WEBLOGIC/myserver/public_html for WebLogic):

bankapp.properties
tellerForm.html
inquiryForm.html

depositForm.html

7-8 Using BEA Jolt

Jolt Servlet Connectivity Sample

withdrawalForm.html
transferForm.html
InquiryServlet.jhtml
DepositServlet.jhtml
WithdrawalServlet.jhtml
TransferServlet.jhtml

3. Modify thebankapp.properties file. Change thedppaddrlist " and
“failoverlist " with the proper Jolt server hosts and ports. Specify the proper
BEA Tuxedo authentication information if the BankApp has security turned on.
For example:

#bankapp

#Fri Apr 16 00:43:30 PDT 1999
poolname=bankapp
appaddrlist=//host:8000,//host:7000
failoverlist=//backup:9000
minpoolsize=2
maxpoolsize=10
userrole=teller
apppassword=appPass
username=JaneDoe
userpassword=myPass

4. If applicable, turn on the automatic page compilation for JHTML from your
servlet engine. Consult the user manual of your Web application server for
details.

5. To access BankApp through Servlet Connectivity for BEA Tuxedo, use the
following URL in your favorite browser:

http://mywebserver:8080/tellerForm.html

Using BEA Jolt 7-9

I Using Servlet Connectivity for BEA Tuxedo

Admin Sample

The “Admin” sample application illustrates the following servlet tasks:
m Using the administrative API to control the session pools

m Retrieving the statistics through PageCompiledServlet in Servlet Connectivity
for BEA Tuxedo

Requirements for Running the Admin Sample
Following are the requirements for running the Admin sample:
m Any Web application server with Servlet JSDK 1.1 or above

= Jolt

Installation Instructions

1. Install the Jolt class library and Servlet Connectivity for BEA Tuxedo class library
on the Web application server.

2. Copy all JHTML files to the public HTML directory (for example,
$WEBLOGIC/myserver/public_html for WebLogic):

PoolList.jhtml
PoolAdmin.jhtml

3. To get a list of session pools, use the following URL in your favorite browser:

http://mywebserver:8080/PoolList.jhtml

7-10 Using BEA Jolt

Additional Information on Servlets

Additional Information on Servlets

For more information on writing and using servlets, refer to the following sites:

BEA WebLogic Servlet Documentation

http://www.weblogic.com/docs/classdocs/API_servlet.html

Java Servlets

http://jserv.java.sun.com/products/java-server/documentation/
webserverl.1l/index_developer.html

Servlet Interest Group

servlet-interest@java.sun.com

Using BEA Jolt 7-11

I Using Servlet Connectivity for BEA Tuxedo

7-12 Using BEA Jolt

CHAPTER

8

Using Jolt ASP

Connectivity for BEA
Tuxedo

Jolt Active Server Pages (ASP) Connectivity for BEA Tuxedo provides an easy-to-use
interface for processing and generating dynamic HTML pages. You do not need to
learn how to write Common Gateway Interface (CGl) transactional programs to access
BEA Tuxedo services.

“Using Jolt ASP Connectivity for BEA Tuxedo” covers the following topics:
m Key Features

m ASP Connectivity Enhancements for Jolt

m How Jolt ASP Connectivity for BEA Tuxedo Works

m ASP Connectivity for BEA Tuxedo Toolkit

m Jolt ASP Connectivity for BEA Tuxedo Walkthrough

m Overview of the ASP for BEA Tuxedo Walkthrough

m Getting Started Checklist

m Overview of the TRANSFER Service

m TRANSFER Request Walkthrough

Using BEA Jolt 8-1

8 Using Jolt ASP Connectivity for BEA Tuxedo

Key Features

Jolt ASP Connectivity for BEA Tuxedo, an extension to the Jolt class library, enables
BEA Tuxedo services and transactions to be invoked from a Web server using a
scripting language.

This architecture has several benefits:
m The HTML interface is preserved.

m The need to download Java class files is eliminated along with the delays
associated with the download.

m Session Pooling efficiently utilizes the BEA Tuxedo resources.

m Jolt ASP Connectivity for Tuxedo leverages industry standard HTTP protocol
with encryption, and firewall configuration for the Web server.

Note: Asynchronous notification is not available in the ASP Connectivity for BEA
Tuxedo. It is recommended that Jolt enabled Java clients (applets) be writter
using a retained connection to support asynchronous notification.

ASP Connectivity Enhancements for Jolt

8-2

Jolt includes the following enhancements to ASP Connectivity for BEA Tuxedo:

m The package name for JoltWAS has been changedifeamweb to
bea.jolt.pool

m The package name for BEA Tuxedo-ASP Connectivity has been changed from
JoItWAS for IIS to bea.jolt.pool.asp

m All Java class names for BEA Tuxedo-ASP Connectivity have been renamed
with the prefix ofAsp and have new ActiveX component names (for example,
BEAJOLTPOOL.AspSessionPoolManager) . It is recommended that existing
JoltWAS for IS customers use the new ActiveX component names.

Using BEA Jolt

ASP Connectivity Enhancements for Jolt

m A newAspSessionPool.callEx() method is added. It allows users to call a
service with a container clagspDataSet object for arbitrary data types
instead of the string array in thepSessionPool.call() method.

m New AspPoolManagerConfig ~ andServietPoolManagerConfig classes are
added to simplify the creation of the session pool manager and the session pools.
The session pool uses tjaea.util.Properties class to pass in the
following session pool properties:

e poolname

e appaddrlist

e failoverlist

e minipoolsize
e maxpoolsize
e username

e userpassword
e userrole

e apppassword

Using BEA Jolt 8-3

8 Using Jolt ASP Connectivity for BEA Tuxedo

How Jolt ASP Connectivity for BEA Tuxedo
Works

The Jolt ASP Connectivity for BEA Tuxedo architecture includes three main
components: a session, a session pool, and a session pool marsggsiofobject
represents a connection with the BEA Tuxedo systesesaion poalepresents many
physical connections between the Web server and the BEA Tuxedo system. It also
associates a session with an HTTP request.

Thesession pool managés responsible for maintaining a set of session objects, each
having a unique session identifier.

Jolt ASP Connectivity for Tuxedo works as follows:

1. If the Web application has not been initialized, the Web application initializes the
session pool manager, creates a session pool, and establishes sessions (also kn¢
as connections) with the Jolt Server.

2. When a service request arrives, the Web application gets a session pool object
from the session pool manager. The session pool invokes the service call using
the session that is the “least busy,” based on the number of outstanding call
requests on a given session.

3. If the selected session is terminated by the Jolt Server, the session pool object
restarts a new session or reroutes the request to another session. If the session
pool manager is unable to get any session, a null session object is returned.

A graphical representation of the ASP Connectivity for BEA Tuxedo architecture is
shown in the following figure.

8-4 Using BEA Jolt

How Jolt ASP Connectivity for BEA Tuxedo Works

Figure 8-1 Jolt ASP Connectivity for BEA Tuxedo Architecture

Session
Pool Application
Services
Manager
‘ R Session
_ B ‘*@
Qg, Host 1
)
o
Weh Server
Application
Services
Host2}
TUXEDO Domain

Refer to the online API Reference in Javadoc for additional information about the
SessionPool class andessionPoolManager class.

Using BEA Jolt 8-5

8 Using Jolt ASP Connectivity for BEA Tuxedo

ASP Connectivity for BEA Tuxedo Toolkit

The ASP Connectivity for BEA Tuxedo Toolkit is an extension to the Jolt Class
Library. The Toolkit allows the Jolt Client Class Library to be used in a Web server
(such as Microsoft Active Server) to provide an interface between HTML clients or
browsers, and a BEA Tuxedo application.

Samples delivered with the software support four services: INQUIRY,
WITHDRAWAL, DEPOSIT, and TRANSFER. This section explains the steps you
follow to use an HTML client interface with the TRANSFER service of the BEA
Tuxedo bankapp application. The TRANSFER service illustrates the use of parametel
with multiple occurrences. This walkthrough explains the use of the TRANSFER
service only.

Jolt ASP Connectivity for BEA Tuxedo
Walkthrough

8-6

A complete listing of all examples used in this chapter are distributed with the Jolt
software. In this section, segments of code from these samples are used to illustrate t
use of the Toolkit.

The samples delivered with the software support four services: INQUIRY,
WITHDRAWAL, DEPOSIT, and TRANSFER. This chapter explains the steps you
can follow to use an HTML client interface to the TRANSFER service of the BEA
Tuxedo bankapp application. The TRANSFER service illustrates the use of parametel
with multiple occurrences. This walkthrough explains the use of the TRANSFER
service only.

Note: The walkthrough illustrates the use of the ASP Connectivity For BEA Tuxedo
with Microsoft 1S and VBScript.

To use the information in the following sections, you should be familiar with:

m BEA Tuxedo and the sample BEA Tuxedo application, bankapp

Using BEA Jolt

Overview of the ASP for BEA Tuxedo Walkthrough

m BEA Jolt
m Hypertext Markup Language (HTML)
m Visual Basic (VB) Script

m Object-oriented programming concepts

Overview of the ASP for BEA Tuxedo
Walkthrough

Follow the steps below to complete the ASP Connectivity for BEA Tuxedo
walkthrough.

1. Review the Getting Started Checklist.

2. Review the Overview of the TRANSFER Service.

3. Complete the steps in the TRANSFER Request Walkthrough:
e Initializing the Jolt Session Pool Manager
e Submitting a TRANSFER Request from the Client
e Processing the Request

e Returning the Results to the Client

Using BEA Jolt 8-7

8 Using Jolt ASP Connectivity for BEA Tuxedo

Getting Started Checklist

8-8

Review this checklist before starting the TRANSFER Request Walkthrough.
Note: This checklist applies to Microsoft Active Server Pages only.

1. Ensure that you have a supported browser installed on your client machine. The
client machine must have a network connection to the Web server that is used to
connect to the BEA Tuxedo environment.

2. Configure and boot BEA Tuxedo and the BEA Tuxedo bankapmple.
a. Make sure the TRANSFER service is available.

b. Referto the BEA Tuxedo user documentation for information about completing
this task.

3. Refer talnstalling the BEA Tuxedo Systeamd thelolt Installation Guidefor
information about how to configure a Jolt Server.

a. Note thehostnamendport numberassociated with your Jolt Server Listener
(JSL).

b. Ensure that the TRANSFER service is defined in the Jolt Repository.

c. Testthe TRANSFER service using the Jolt Repository Editor to make sure it is
accessible to Jolt clients.

4. Make sure you have Microsoft 11S 4.0 up and running.

a. Check that script execution permission is enabled in the Web server applicatiol
properties.

b. Refer to the user documentation that accompanies the Microsoft IS server fo
instructions.

5. Install the Jolt ASP Connectivity For BEA Tuxedo classes. These classes are
contained in th¢pltasp.jar file. Be sure these classes are in your class path
and available to your Web server.

6. Install the teller sample application.

Using BEA Jolt

Getting Started Checklist

7. The code samples shown in “TRANSFER Request Walkthrough” on page 8-11
are available from a sample application delivered with the Jolt ASP Connectivity
For BEA Tuxedo software.

The following table, “Sample Bankapp Source Files,” lists the files in the sample
application. These files are a valuable reference for the walkthrough and are
located in<extract_directory>/teller

Table 8-1 Sample Bankapp Source Files

File Name Description

tellerForm.asp Initializes the Jolt Session Pool Manager and displays
available bankapp services.

transferForm.htm Presents an HTML form for user input.

tir.asp Processes the HTML form and returns results as an
HTML page.

web_admin.inc VBScript functions for initializing the Jolt Session Pool
Manager.

web_start.inc VBScript functions for initializing the Jolt Session Pool
Manager.

web_templates.inc VBScript functions for caching HTML templates.

templates/transfer.temp HTML templates used for returning results.

Using BEA Jolt 8-9

8 Using Jolt ASP Connectivity for BEA Tuxedo

Overview of the TRANSFER Service

8-10

The TRANSFER service in bankapp moves funds between two accounts. The servic
takes two account numbers, an input amount, and returns two balances—one for ea
account. In addition, the service returns an error message if there is an application c
system error.

A TRANSFER is a WITHDRAWAL and a DEPOSIT executed as a single transaction.
The transaction is created on the server, so the client does not need to create a
transaction.

The client interface consists of an HTML page with a form used to enter the requirec
data — account numbers and a dollar amount. This data is sent to the Web server a
“POST” request.

In the Web server, this request is processed using a VBScript Active Server Page. Th
program extracts the input data fields from the request, formats them for use with thi
Jolt ASP Connectivity For BEA Tuxedo class library, and dispatches the request to th
TRANSFER service in the bankapp application. The TRANSFER service returns the
results of the transaction. These results are returned to the VBScript program that
merges them into a dynamically created HTML page. This page is returned to the clier
by way of the Web server infrastructure.

In the final part of this walkthrough, run the necessary HTML pages and server-side
VBScript logic to execute a TRANSFER.

Using BEA Jolt

TRANSFER Request Walkthrough

TRANSFER Request Walkthrough

This section explains what happens when you execute a TRANSFER request. Each
step is not include here; only those steps that are necessary, as follows:

m Initializing the Jolt Session Pool Manager
m Submitting a TRANSFER Request from the Client
m Processing the Request

m Returning the Results to the Client

Initializing the Jolt Session Pool Manager

To start the walkthrough, use the browser on your client to connect to the Web server
where the Jolt Asp Connectivity For BEA Tuxedo classes are installed. The first page
to download igellerForm.asp (see the following figure for an example of a
tellerForm.asp page). If the teller sample has been installed as described in Step 6
of the “Getting Started Checklist” on page 8-8 the URL for this page will be:

http://< web-server:port >/teller/tellerForm.asp

Note: The use of the port number is optional, depending on how your Web server is
configured. In most cases, you are not required to add the “:port” in the URL.

Using BEA Jolt 8-11

8 Using Jolt ASP Connectivity for BEA Tuxedo

8-12

Figure 8-2 tellerForm.asp Example

2 Banking Demo - Microsoft Internet Explorer

JEiIe Edit View Go Favorites Help |

e 200N 4M 38 RS

JAddress €] http:Hspider!samples/tellen‘tellerForm.asj JLinks

Please Select One of the Banking
Transactions:

Inquiry |
Deposit |

Withdrawal J

Transfer

Status |

7l

| ’_I_l_lﬁ Local intranet zane

2

The pagetellerForm.asp contains VBScript procedures required to initialize the
Jolt Session Pool Manager. The initialization code is contained in an ASP Script block
This code tells the Web server to execute this block of code on the server, instead o

sending it to the client.

Listing 8-1 tellerForm.asp: Initialize the Jolt Session Pool Manager

<%

'/ Initialize the session manager and cache templates
Call web_initSessionMgr(Null)

Call web_cacheTemplates()

%>

Using BEA Jolt

TRANSFER Request Walkthrough

The VBScript procedungeb_initSessionMgr() calls other VBScript procedures to
establish a pool of Jolt Sessions. A Jolt session is established between the Jolt ASP
Connectivity For BEA Tuxedo in the Web server and the Jolt Servers that reside in
your BEA Tuxedo application. One of the procedures calle@bsstart() . This
procedure (in the fileveb_start.inc) should have been edited as part of the teller
application installation process in Step 6 of “Getting Started Checklist” on page 8-8.

The procedureeb_cacheTemplates() reads various HTML template files into a
memory cache. This step is not required, but it improves performance.

Listing 8-2 tellerForm.asp: Allow the user to choose TRANSFER service

<INPUT TYPE="button" VALUE="Transfer"
onClick="window.location="transferForm.htm"'>

The HTML segment shown in the previous listing displays a button labeled “Transfer.”
When this button is selected, the browser loads the tpagéerForm.htm . This
page presents a form used to enter the data required by the TRANSFER service.

Submitting a TRANSFER Request from the Client

The form in following figure “transferForm.htm Example” is generated by the page
transferForm.htm . This page presents you with a form for input. The page consists
of three text fields (two account numbers and a dollar amount), and a button that, when
pressed, causes the TRANSFER service to be invoked.

Using BEA Jolt 8-13

8 Using Jolt ASP Connectivity for BEA Tuxedo

Figure 8-3 transferForm.htm Example

2 Transfer Fund between Accounts - Microsoft Inter... =l E3d

J File Edit View Go Favorites Help
IRGAGE A0 < NERA N ek RN =la ==
JAddress @h‘spiderfsampIes;‘teIIer!transferForm.htmj JLinks
=l
Enter the Account Numbers and the
Amount:
From Account Number: |10000
To Account Number: |10001
Amount: § [100.00
Transfer I Clearl
[~
|| |EgLocalintanstzone A

8-14 Using BEA Jolt

TRANSFER Request Walkthrough

The code segment in the following listing shows the key HTML elements for this page.
Thehighlighted elements in the following listing correspond to the elements in the
table “Key HTML Elements and Descriptions” on page 8-15.

Listing 8-3 transferForm.htm: TRANSFER Form

<FORM NAME="teller" ACTION="tIr.asp" METHOD="POST">

<TABLE>
<TR><TD ALIGN=RIGHT>From Account Number: </TD>

<TD><INPUT TYPE="text" NAME="ACCOUNT _ID_'®-</TD></TR>
<TR><TD ALIGN=RIGHT>To Account Number: </TD>

<TD><INPUT TYPE="text" NAME="ACCOUNT _ID '"B></TD></TR>
<TR><TD ALIGN=RIGHT>Amount: $</TD>

<TD><INPUT TYPE="text" NAME="SAMOUNX</TD></TR>
</TABLE>
<CENTER>

<INPUT TYPE="hidden" NAME="SVCNAME" VALUE="TRANSFER"
<INPUT TYPE="submit" VALUE="Transfer">

<INPUT TYPE="reset" VALUE="Clear">

</CENTER>

</FORM>

Table 8-2 Key HTML Elements and Descriptions

Element Description

ACTION="tIr.asp” When you click the submit button, the contents of this
form are delivered to a page caltbcasp on the Web
server for processing.

NAME="ACCOUNT _ID_0" Shows the use of a field with multiple occurrences. The
TRANSFER service expects two input account numbers,
both called “ACCOUNT_ID". By appending an
underscoreandoccurrence_numbeie.g., 0, _1) to the
field name, both the name of a field and its occurrence can
be passed to the program on the Web server.

NAME="SAMOUNT" Shows the use of an input field that has a single
occurrence. In this example, nothing is appended to the
name of the field.

Using BEA Jolt 8-15

8 Using Jolt ASP Connectivity for BEA Tuxedo

The HTML form field names used in this example exactly match the BEA Tuxedo
field names expected by the TRANSFER service. This is not required, but doing so
facilitates processing on the server because you do not have to map these inputs to
BEA Tuxedo field names. This is done by the Jolt ASP Connectivity For BEA Tuxedo
classes.

The hidden field SVCNAME is assigned a value of TRANSFER. This field does not
appear on the client form, but it is sent to the Web server as part of the request. The
VBScript program retrieves the value of this field in order to determine which BEA
Tuxedo service is to be called (in this example, the service is TRANSFER).

Complete the field§rom Account Number , To Account Number , andAmount.
(10000 and 10001 are valid bankapp account nurplglisk the Transfer button. The
data entered on the form is sent to the Web server for processing by the program
tirasp as specified in the ACTION field of the form.

Processing the Request

8-16

When the Web server receives the TRANSFER request, it runs the prbgam .

Client requests are turned into a Request object in the Web server. This Request obje
has members containing all the data that was input to the form along with other forn
data, such as hidden fields. The Web server makes the Request object available to t
program being invoked.

The programir.asp contains only VBScript. The first action performed by this
program verifies that the Jolt Session Pool Manager is initialized.

The code example shown in the following listing performs the initialization check and
returns an HTML error page if the pool is not initialized.

Using BEA Jolt

TRANSFER Request Walkthrough

Listing 8-4 tlr.asp: Verify the Jolt Session Pool Manager Is Initialized

<%

If Not IsObject(Application("mgr")) Then

%>
<HTML>
<HEAD><TITLE>Error</TITLE></HEAD>
<BODY><CENTER>
<H2>Session Manager is not initialized</H2>
<P>Make sure that you access the correct HTML
</CENTER></BODY>
</HTML>

<%

End If

%>

If the session pool is initialized, the program continues to process the request. The
program locates a Session from the Session Pool Manager as shown in the following
listing.

Listing 8-5 tlr.asp: Locate a Session

Set pool = Application("mgr").getSessionPool(Null)

Once a valid session is located, the program retrieves an HTML template that is used
to return the results to the client. In this example, these templates were cached in the
initialization section. The template retrieved is identified by the name of the service
being invokedRequest("SVCNAME") as shown in the following listing.

Using BEA Jolt 8-17

8 Using Jolt ASP Connectivity for BEA Tuxedo

8-18

Listing 8-6 tlr.asp: Retrieve a Cached HTML Template

'/l Choose the response template
If ISEmpty(Application("templates”)) Then
Set template = Server.CreateObject("BEAWEB.Template")
Else
Select Case Request("SVCNAME")
Case "INQUIRY"
Set template = Application("templates”)(INQUIRY)
Case "DEPOSIT"
Set template = Application("templates")(DEPOSIT)
Case "WITHDRAWAL"
Set template = Application("templates”)(WITHDRAWAL)
Case "TRANSFER"
Set template = Application("templates")(TRANSFER)
End Select
End If

Next, call the BEA Tuxedo service as shown in the following listing “tir.asp: Invoke
the BEA Tuxedo Service”. In the following listing, the input data from the Request
object is passed to tlall) method of the session. Thall) method uses the
built-in ASP Request object as input. The results ot#ig are stored in the

output object and an arrajpdata

Listing 8-7 tlr.asp: Invoke the BEA Tuxedo Service

Set output = pool.call(Request("SVCNAME"), Null, Nothing)
Set iodata(1) = output

After you invoke the BEA Tuxedo service, thétput object and the second element
of the arrayiodata contain the results of the service call.

Note: In this example, because the initial form specified field names match the BEA
Tuxedo service parameter names, the Request object can be used in the
call) method. If these names do not match, create an input array with
“name=value” elements for each service parameter before invoking the
call) method.

Using BEA Jolt

TRANSFER Request Walkthrough

Returning the Results to the Client

At this stage, no results have been returned to the client. The final step sends an HTML
page containing the results of the service call back to the client. The HTML page
consists of the template merged with the data returned by the service call shown in the
previous listing “tlr.asp: Invoke the BEA Tuxedo Service”.

The template file contains placeholders for variable (call-specific) data. These
placeholders are identified by the specialt&gFNAMEY%*n the code example shown

in the following listing, an index is used to indicate which occurrence of a parameter
name is used. For exampd&,COUNT_ID[0] specifies the first occurrence of the field
ACCOUNT_ID

Listing 8-8 transfer.temp: Placeholders for TRANSFER Results

<TABLE BORDER=1>

<TR><TD></TD><TD ALIGN=CENTER>Account #</TD>
<TD ALIGN=CENTER>Balance</TR>

<TR><TD ALIGN=RIGHT>From:</TD><TD><%= ACCOUNT_ID[0] %></TD>
<TD><%= SBALANCE[0]%></TR>

<TR><TD ALIGN=RIGHT>T0:</TD><TD><%= ACCOUNT_ID[1] %></TD>
<TD><%= SBALANCE[1]%></TR>

</TABLE>

To substitute the placeholders in the template with the actual values of the data
returned from the service call, use tival() method of the Template object shown

in the following listing. This method matches placeholders in the template file with
fields of the same name in the results data and replaces them accordingly. A check for
valid results qutput object) is done as shown in the following listing. If there is no
output object, an error template page is returned.

Using BEA Jolt 8-19

8 Using Jolt ASP Connectivity for BEA Tuxedo

8-20

Listing 8-9 tlr.asp: Template Processing

path = Application("templatedir")
If (Not IsObject(output)) Or (output is Nothing) Then
Call template.evalFile(path & "\nosession.temp", Null)
Elseif output.noError() Then
Call template. eval (iodata)
Elseif output.applicationError() Then
Call template.evalFile(path & "\error.temp", iodata)
Else
'l System error
Dim errdata(0)
Set errdata(0) = Server.CreateObject("BEAWEB.TemplateData")
Call errdata(0).setValue("ERRNQO", output.getError())
Call errdata(0).setValue("ERRMSG", output.getStringError())
Call template.evalFile(path & "\syserror.temp", errdata)
End If

Note: The arrayiodata contains both the input request and the results from the
service call. This is useful if you want the results page to contain data that is
part of the input.

When the template is processed, the resulting HTML is returned to the client as show
in the following figure.

Using BEA Jolt

TRANSFER Request Walkthrough

Figure 8-4 tlr.asp Results Page

<2 CTRANSFER Result - Microsoft Internet Explorer M=l B4

JEiIe Edit View Go Favorites Help |

e 200 38 HRS

JAddress &1 http:/fspider/samples/tellerftir.asp j JLinks
Bl

The Result of the CTRANSFER
Service is:

Account Number: 10000
Cwrrent Balance: $4878.82
Cwrrent Drate: Tue May 12 11:37:44 PDT 1998

Back |

N[B

I_ I_ ’_ {% Local intranet zone

Using BEA Jolt 8-21

8 Using Jolt ASP Connectivity for BEA Tuxedo

8-22 Using BEA Jolt

CHAPTER

A BEA Tuxedo Errors

The “BEA Tuxedo Errors” appendix describes the Jolt Class Library errors and
exceptions. The Jolt Class Library returns both Jolt and BEA Tuxedo errors and
exceptions.

The Jolt Class Library errors and exceptions are listed for each class, constructor, and
method listed in the APl Reference in Javadoc.

BEA Tuxedo errors are briefly described in this appendix. For details about BEA
Tuxedo errors, refer to the appropriate document in the following list:

e BEA Tuxedo Command Reference

e BEA Tuxedo C Function Reference

e BEA Tuxedo COBOL Function Reference
e BEA Tuxedo FML Function Reference

e BEA Tuxedo File Formats and Data Descriptions Reference

Using BEA Jolt A-1

A BEA Tuxedo Errors

BEA Tuxedo Errors

Expanded references to BEA Tuxedo will be available in a future release of the Jolt
product documentation. If you require an immediate, expanded reference for BEA
Tuxedo related errors, refer to the list of documents on the first page of this appendi

Error Description

TPEABORT A transaction could not commit because the work performed by the
initiator, or by one or more of its participants, could not commit.

TPEBADDESC A call descriptor is invalid or is not the descriptor with which a
conversational service was invoked.

TPEBLOCK A blocking condition exists and TPNOBLOCK was specified.

TPEDIAGNOSTIC

TPEEVENT

TPEHAZARD

TPEHEURISTIC

Dequeuing a message from the specified queue failed. The reason for
failure can be determined by the diagnostic value returned through
ctl structure.

An event occurred; the event type is returned in revent.

Due to a failure, the work done on behalf of the transaction m ay have
been heuristically completed.

Due to a heuristic decision, the work done on behalf of the transaction
was partially committed and partially aborted.

TPEINVAL An invalid argument was detected.

TPEITYPE The type and subtype of the input buffer is not one of the types and
subtypes that the service accepts.

TPELIMIT The caller’s request was not sent because the maximum number of
outstanding requests or connections has been reached.

TPEMATCH svcname is already advertised for the server but with a function other
then func.

TPEMIB The administrative request failegutbuf is updated and returned to

Using BEA Jolt

the caller with FML32 fields indicating the cause of the error as is
discussed iMIB(5) andTM_MIB5) .

BEA Tuxedo Errors

Error Description

TPENOENT Cannot send to svc because it does not exist or is not the correct type
of service.

TPEOS An operating system error has occurred.

TPEOTYPE The type and subtype of the reply are not known to the caller.

TPEPERM A client cannot join an application because it does not have permission
to do so or because it has not supplied the correct application
password.

TPEPROTO A library routine was called in an improper context.

TPERELEASE tpadmcall() was called with the TUXCONFIG environment
variable pointing to a different release version configuration file.

TPERMERR A resource manager failed to open or close correctly.

TPESVCERR A service routine encountered an error eithaptiaturn ~ (3) or
tpforward (3). For example, bad arguments were passed.

TPESVCFAIL The service routine sending the caller’s reply called.

TPESYSTEM A System/T error occurred.

TPETIME A time-out occurred.

TPETRAN The caller cannot be placed in transaction mode.

TPGOTSIG A signal was received and TPSIGRSTRT was not specified.

Using BEA Jolt A-3

A BEA Tuxedo Errors

A-4 Using BEA Jolt

CHAPTER

B System Messages

Jolt system messages and code references will be available in a future release of the
Jolt product documentation. If you require an immediate, expanded reference, refer to
BEA Tuxedo System Messages

The “System Messages” appendix covers the following topics:
m Jolt System Messages

m Repository Messages

m FML Error Messages

m Information Messages

m Jolt Relay Adapter (JRAD) Messages

m Jolt Relay (JRLY) Messages

m Bulk Loader Utility Messages

Using BEA Jolt B-1

B system Messages

Jolt System Messages

B-2

Note: You can find error messages numbered 1000 to 1299 BEAeTuxedo
System Messages WSNATIVE Catalog.

1503 ERROR Could not initialize Jolt administration services.
Description Jolt administration services cannot be started.
Action Check the userlog for other messages to determine
the proper course of action.
See Also Setting Up a BEA Tuxedo Application
Administering a BEA Tuxedo Application at Run
Time
1504 ERROR Failed to advertise local Jolt administration service <service
name>.
Description Jolt administration services cannot be started.
Action Check the userlog for other messages to determine
the proper course of action.
See Also Setting Up a BEA Tuxedo Application
Administering a BEA Tuxedo Application at Run
Time
1505 ERROR Failed to advertise global Jolt administration service <service
name>.
Description Jolt administration services cannot be started.
Action Check the userlog for other messages to determine
the proper course of action.
See Also Setting Up a BEA Tuxedo Application

Administering a BEA Tuxedo Application at Run
Time

Using BEA Jolt

Jolt System Messages

1506 ERROR Terminating Jolt administration services in preparation for
shutdown.
Description The JSL has completed its shutdown and is exiting
the system.
Action Informational message, no action required.
See Also Setting Up a BEA Tuxedo Application
Administering a BEA Tuxedo Application at Run
Time
1510 ERROR Received network message with unknown context.
Description BEA Jolt protocol failure. Received a corrupted or
an improper message.
Action Restart Jolt client.
1511 ERROR _tprandkey() failed tperrno = %d, could not generate random
encryption key.
Description BEA Tuxedo internal failure.
Action Restart Jolt servers.
1512 ERROR Sending of reply to challenge call to client failed.
Description JSH was unable to reply to Jolt client due to
network error.
Action Restart client.
1513 ERROR Failed to encrypt ticket information.
Description BEA Tuxedo internal failure.
Action Retry the option. If the problem persists, contact
BEA Customer Support.
1514 ERROR Incorrect ticket value sent by workstation client.
Description BEA Jolt protocol failure.
Action Retry the option. If the problem persists, contact

BEA Customer Support.

Using BEA Jolt B-3

B system Messages

B-4

1515 ERROR Tried to process unexpected message opcode 0x%1Xx.
Description BEA Jolt protocol failure. Client is sending Jolt
messages with unknown opcodes.
Action Retry the option. If the problem persists, contact
BEA Customer Support.
1516 ERROR Unrecognized message format, release %1d.
Description BEA Jolt protocol failure.
Action Make sure the client classes are at the appropriate
version level.
1517 ERROR Commit handle and clientid have no matching requests.
Description Received a copy from BEA Tuxedo that has no
corresponding client.
Action No action required.
1518 ERROR Call handle and clientid have no matching requests.
Description Received a reply from BEA Tuxedo that has no
corresponding client.
Action No action required.
1519 ERROR Application password does not match.
Description Authentication error.
Action Check the application password.
1520 ERROR Init handle and clientid have no matching requests
Description A reply could not be sent to client. (May be due to
client disconnect.)
Action No action required.
1521 ERROR Unrecognized message magic %ld.
Description Inappropriate message is sent to JSH/JSL.
Action Check the client sending erroneous messages.

Using BEA Jolt

Jolt System Messages

1522 ERROR Memory allocation failure.
Description Machine does not have enough memory.
Action Check the machine resources.

1523 ERROR Memory allocation failure.
Description Machine does not have enough memory.
Action Check the machine resources.

1524 ERROR Failed to create encryption/decryption schedule.
Description BEA Tuxedo internal error.
Action Retry the option. If the problem persists, contact

BEA Customer Support.

1525 ERROR Tried to process unexpected message opcode 0x%1x.
Description Received a message with invalid opcode.
Action Check the client.

1526 ERROR Jolt license has expired.
Description License for Jolt use has expired.
Action Contact BEA Customer Support.

1527 ERROR Expected argument to -c option.
Description Option -c needs an argument.
Action Provide a valid argument.

1528 ERROR Request for inappropriate session type.
Description Received a message without valid session

information.

Action Restart the client.

Using BEA Jolt B-5

B system Messages

B-6

1529 ERROR Session type must be RETAINED or TRANSIENT.
Description Server configuration does not match client
request.
Action Check the -c argument of the JSL.
1530 ERROR Received RECONNECT message with invalid context.
Description Client context is cleaned. A -T option is specified
to the JSL.
Action Check the -T option. Check the network errors
also.
1531 ERROR Received invalid RECONNECT request
Description Received a RECONNECT request.
Action Restart client.
1532 ERROR Received J_CLOSE message with invalid context.
Description Timeout in connection.
Action If a request is sent after a timeout that is longer
than the session timeout of the JSL, the JSH
cannot validate the session ID.
1533 ERROR Sending of reply of close protocol failed.
Description BEA Jolt protocol failure.
Action Check the client.
1534 ERROR Sending of reply of reconnect protocol failed.
Description BEA Jolt protocol failed.
Action Check the client.
1535 ERROR Timestamp mismatch in close protocol.
Description BEA Jolt protocol failed.
Action Restart the client.

Using BEA Jolt

Jolt System Messages

1536 ERROR Received J_RECONNECT message with invalid context.
Description BEA Jolt protocol failed. Session timed out before
RECONNECT request arrived.
Action Restart the client.
1537 ERROR Timestamp mismatch in reconnect protocol.
Description BEA Jolt protocol failure.
Action Restart the client.
1538 ERROR Client address mismatch in reconnect protocol.
Description BEA Jolt protocol failure.
Action Restart the client.
1539 ERROR Failed to decrypt reconnect information.
Description BEA Jolt protocol failure.
Action Restart the client.
1540 ERROR Failed to encrypt reconnect information.
Description BEA Jolt protocol failure.
Action Restart the client.
1541 ERROR Received RECONNECT request for nonTRANSIENT client.
Description Improper request from client.
Action Restart the client.
1542 ERROR Unlicensed Jolt server.
Description The JSL is not licensed. The installation is
incomplete, or it failed to burn the license into the
JSL.
Action Reinstall Jolt with a valid Jolt license.

Using BEA Jolt B-7

B system Messages

B-8

1543 ERROR Invalid Jolt license.

Description The license used for the Jolt installation is not for
the Jolt product. The BEA Tuxedo license may
have been used during installation instead of the
Jolt license.

Action Reinstall Jolt with a valid Jolt license.

1547 ERROR Memory allocation failure in JOLT_SUBSCRIBE.

Description Check resources of the machine.

Action Restart BEA Tuxedo after increasing system
resources.

1548 ERROR jolt_tpset_enq failed.

Description Internal system failure.

Action Restart the client. If problem persists, check field
table files and directories and then restart the
servers.

1549 ERROR [JOLT_EVENTS failed to set %s field. Ferror32=%d].

Description Unable to get the field definition for BEA Tuxedo
internal fields.

Action Check BEA Tuxedo installation and restart the
servers.

1550 ERROR JOLT_UNSUBSCRIBE - Invalid Subscription ID.

Description Application error.

Action Check the client and restart the client.

1551 ERROR Memory allocation failure in JOLT_UNSUBSCRIBE.

Description Resources are inadequate.

Action Increase resources and restart BEA Tuxedo.

Using BEA Jolt

Jolt System Messages

1552 WARN Dropping notification message for Transient client %d.
Description Notification arrived when a transient client is not
connected.
Action Information message only; no action required.
1553 WARN Dropping broadcast message for Transient client %d.
Description Notification arrived when a transient client is not
connected.
Action Information message only; no action required.
1554 ERROR Expected numeric argument for -Z option.
Description -Z option expects 0, 56, or 128 as the argument.
Action Check the configuration file and specify a valid
numeric argument for JSL.
1555 ERROR %d - lllegal argument for -Z option.
Description Incorrect argument value is specified.
Action Check the argument for -Z option and correct it.
1556 ERROR %d - lllegal argument for -Z option due to international license.
Description For international release only O or 56 are allowed.
Action Specify correct argument.
1557 ERROR Incorrect number of encrypted bit values from workstation client.
Description BEA Jolt protocol failure.
Action Call BEA Customer Support.
1558 ERROR Expected argument to -E option.
Description An argument is expected feE option.
Action Specify correct option and restart BEA Tuxedo.

Using BEA Jolt B-9

B system Messages

1559 ERROR %s - lllegal argument to -E option.
Description Incorrect value is specified as argumerntio
option.
Action Specify the correct option.
1560 ERROR Cannot initialize the code conversion for local %s.
Description Cannot find function to do the code conversion for
internationalization.
Action Check the shared library.
1561 ERROR TUXDIR is not set.
Description TUXDIR environment variable is not set.
Action Set the variable to BEA Tuxedo directory and
restart BEA Tuxedo.
1562 ERROR Error reading license file.
Description Jolt is not able to open BEA Tuxedo license file in
$TUXDIR/udataobij/lic.txt.
Action Copy the correct license file to
$TUXDIR/udataobij/lic.txt.
1563 INFO Serial Number: <%s>, Expiration Date: <%s>.
Description Serial number and expiration date are displayed.
Action No action required.
1564 INFO Licensee: <%s>.
Description Licensee information is displayed.
Action No action required.
1565 ERROR Call handle and clientid have no matching requests.

Description Received a reply from BEA Tuxedo that has no
corresponding client.

Action No action required.

B-10 Using BEA Jolt

Jolt System Messages

1566 INFO Message received without handle, ignored.

Description A BEA Tuxedo message arrived without an
identifying handle.

Action No action required.

1567 ERROR Expected argument to -j option.
Description -j requires an argument.
Action Specify-j argument

(ANY/RETAINED/RECONNECT) in UBB and
reboot BEA Tuxedo system.

1568 INFO Compression threshold is set to %d.
Description Informative message.
Action No action required.
1569 ERROR No Tuxedo Encryption installed. Cannot use Diffie-Hellman.
Description Cannot find encryption libraries.
Action Contact BEA Tuxedo support.
1570 WARN Jolt Client Connection Request timed out.
Description Jolt client sent connect request for JSH too late.
Action If problem persists, increase the valud obption
in JSL.
1571 WARN A Jolt Client has incorrect APPADDR.
Description A Jolt client has specified JSH address instead of
JSL.
Action Change the client and specify correct address.
1572 WARN A Non Jolt Opcode is sent to JSH.
Description A request received by JSh has non Jolt opcode.
Action Check client's APPADDR.

Using BEA Jolt B-11

B system Messages

Repository Messages

B-12

ERROR Usage: JREPSVR [-W] -P path -W writable repository.
Description An invalid option is specified oP is not
specified properly.
Action Review the Jolt documentation and ensure that the
options are specified correctly.
ERROR Not enough memory
Description Not enough memory; please add more swap space.
Action Configure additional memory. Make sure the
operating system parameters are set correctly for
the amount of memory on the machine and the
amount of memory that can be used by a process.
Reduce the memory usage on the machine or
increase the amount of physical memory on the
machine.
ERROR Not enough disk space for “<repository-file-path>"
Description Ran out of disk space while adding or deleting
Repository entries, or during garbage collection.
Action Configure additional disk space.
ERROR Cannot modify read-only repository “<repository-file-path>"

Description Deniesattempt to add or delete an entry from a
read-only repository.

Action Check the file permission and ensure that the file
is writable.

Using BEA Jolt

Repository Messages

ERROR “<repository-file-path>" is not a valid repository file.

Description The specified file is not valid; a valid repository
file must have the string, “#!JOLT1.0” in the first
line.

Action Extract the file from the Jolt distribution
CD-ROM.

ERROR Can't open <repository-file-path>.

Description Unable to open the repository file.

Action Check to ensure that the file path is valid or its
permission is correct.

ERROR Can't create <repository-file-path>: check permission or path.

Description Unable to create the repository file during garbage
collection.

Action Check the file or directory permission.

ERROR Syntax error: <service definition>.

Description An invalid entry was detected when an attempt
was made to add an entry to the repository. The
entry must have ‘" as a field separator.

Action Contact BEA Customer Support.

ERROR Garbage collection failed: <key> not found.

Description When the writable repository is shutdown, it
performs garbage collection to collapse the
repository file. If it detects an inconsistency, the
garbage collection fails.

Action Contact BEA Customer Support.

Using BEA Jolt B-13

B system Messages

FML Error Messages

B-14

ERROR Fielded buffer not aligned.

Description An FML function was called with a fielded buffer
that is not properly aligned. Most machines
require half-word alignment.

Action UseFalloc to retrieve an allocated, properly
aligned buffer.

See Also BEA Tuxedo FML Function Reference

ERROR Buffer not fielded.

Description A buffer was passed to an FML function that has
not been initialized.

Action UseFinit toinitialize a buffer allocated directly
by the application, or udealloc to allocate and
initialize a fielded buffer.

See Also BEA Tuxedo FML Function Reference

ERROR Invalid argument to function.

Description

An invalid argument (other than an invalid field
buffer, field identifier, or field type) was passed to
an FML function. This can be a parameter where a
non-NULL parameter was expected (for example,
it can be an invalid buffer size, etc.).

Action

See the manual page associated with the error for
the correct parameter values.

See Also

BEA Tuxedo FML Function Reference.

Using BEA Jolt

Information Messages

ERROR

Unknown field number or type.

Description An invalid field number was specified for an FML
function, an invalid field number (0 or greater than
8192) was specified, &imame could not find the
associated field identifier for the specified name.

Action Most of the FML functions return this error; see
the manual page associated with the function that
returned this error. Check your code to make sure
the field specified is valid.

See Also BEA Tuxedo FML Function Reference.

Information Messages

INFO

Repository “<repository-file-path>" (### records) is writable.

Description When a writable Repository server is brought up,
it reports the number of records it found.

Action No action required.

INFO

Repository “<repository-file-path>" (### records) is read-only.

Description When a read-only Repository server is brought up,
it reports the number of records it found.

Action No action required.

Using BEA Jolt B-15

B system Messages

Jolt Relay Adapter (JRAD) Messages

Note: You can find error messages numbered 1000 to 1299 BEAeTuxedo
System Messages WSNATIVE Catalog

1500 ERROR Needs both -I -c options with arguments.
Description Needed options are without arguments.
Action Check and correct configuration file for JRAD
entry.
1501 ERROR Malloc failed.
Description JRAD is not able to allocate dynamic memory.
Action Increase the system resources and restart the
JRAD.
1502 ERROR Memory allocation failed.
Description JRAD is not able to allocate dynamic memory.
Action Increase the system resources and restart the
JRAD.
1503 ERROR Memory allocation failed. Cannot send ESTCON.
Description JRAD is not able to allocate dynamic memory.
Action Increase the system resources and restart the
JRAD.

B-16 Using BEA Jolt

Jolt Relay Adapter (JRAD) Messages

1504 INFO Memory allocation failed. Cannot send ESTCON.
Description JRAD is not able to allocate dynamic memory.
Action Increase the system resources and restart the
JRAD.
1505 ERROR Memory allocation failed. Cannot send ESTCON.
Description JRAD is not able to allocate dynamic memory.
Action Increase the system resources and restart the
JRAD.
1506 ERROR Connection to JSL failed.
Description JSL is not running.
Action Check the address given with optian.
1507 ERROR Sending message to JSL failed.
Description JSL is not running or network connection is down.
Action Restart the JRAD/JSL.
1508 INFO Sending message to JSH failed.
Description Network is down. Connection to the JSH failed.
Action Check the network and restart the JSL.
1509 ERROR Sending CONNECT reply to JRLY.
Description Unable to reach JRLY. Probably problem in the
network.
Action Restart the JRLY and JRAD after check the

network addresses.

Using BEA Jolt B-17

B system Messages

B-18

1510 ERROR Sending SHUTDOWN reply to JRLY.
Description Unable to reach JRLY. Probably problem in the
network.
Action Restart the JRLY and JRAD after check the
network addresses.
1511 ERROR Incorrect Jolt message received from JRLY.
Description A non-Jolt message is sent by JRLY.
Action No action required. JRLY process filters non Jolt
messages already.
1512 ERROR Sending SHUTDOWN to JRLY failed.
Description Unable to send shutdown message to JRLY.
Action No action required.
1513 ERROR Sending CLOSE to JRLY failed for ID <%d>.
Description Unable to send CLOSE message for Relay ID to
JRLY.
Action No action required.
1514 ERROR Sending CLOSE to JRLY failed.
Description Unable to send CLOSE message for Relay ID to
JRLY.
Action No action required.
1515 ERROR Sending CLOSE to JRLY failed for ID <%d>.
Description Unable to send CLOSE message for Relay ID to
JRLY.
Action No action required.
1516 ERROR Sending ESTCON to JRLY failed for ID <%d>.
Description Sending ESTCON message failed.
Action No action required.

Using BEA Jolt

Jolt Relay Adapter (JRAD) Messages

1517 ERROR Invalid Handler 1d. No corresponding address.
Description JRAD received a message without JSH
identification.
Action No action required.
1518 ERROR Cannot connect to JSH with id <%d>.
Description JRAD received a message without JSH
identification.
Action No action required.
1519 ERROR Invalid request from JRLY.
Description JRAD received a message without JSH
identification.
Action No action required.
1521 ERROR JRLY connection is down.
Description JRLY connection is down.
Action No action required.
1522 ERROR JRLY connection is down.
Description JRLY connection is down.
Action No action required.
1523 ERROR JRLY connection is down.
Description JRLY connection is down.
Action No action required.
1525 ERROR JRLY connection is down.
Description JRLY connection is down.
Action No action required.

Using BEA Jolt B-19

B system Messages

1526 INFO JRLY connection is UP.
Description A JRLY-JRAD connection is established.
Action No action required.
1531 ERROR Sending R_CLOSE | R_ACK failed.
Description Failed to send Relay protocol acknowledgment.
Action No action required.
1532 INFO JRLY connection is closed.
Description JRLY connection is down.
Action No action required.
1533 ERROR Bad hex number provided for external jrly address: %s.
Description Invalid-H option value.
Action Check-H option and provide correct value.
1534 ERROR Convert external jrly address to hex format failed: %s.
Description Invalid-H option value.
Action Check-H option and provide correct value.
1535 ERROR Bad hex number provided for connecting address: %s.
Description Invalid-c option value.
Action Check-c option and provide correct value.
1536 ERROR address conversion failed.
Description Invalid-c option value.
Action Check-c option and provide correct value.
1537 WARN Convert listening address to hex format failed: %s.
Description Invalid-I option value
Action Check-l option and provide correct value.

B-20 Using BEA Jolt

Jolt Relay Adapter (JRAD) Messages

1538 WARN Convert connecting address to hex format failed: %s.
Description Invalid -c option value.
Action Check-c option and provide correct value.
1539 WARN Refusing connection to JRAD. JRLY connection exists.
Description A second JRLY is trying to connect to JRAD.
Connection is refused by JRAD.
Action Provide correct CONNECT address for JRLY.
1540 WARN No JRLY process connected.

Description A dubious message arrived for JSL/JSH with no
relay connected.

Action Check the network address in configuration.

Using BEA Jolt B-21

B system Messages

Jolt Relay (JRLY) Messages

ERROR Ignoring syntax error in configuration file line %d

Description The line in question doesn't contain an equal sign
or (in case of the LISTEN and CONNECT tag) is
missing the colon.

Action Verify the syntax of the configuration file at the
specified line.

ERROR Ignoring unknown tag '%s' in configuration file line %d.

Description The line in question is does not contain one of the
valid tags: LOGDIR, ACCESS_LOG,
ERROR_LOG, LISTEN, CONNECT.

Action Verify the syntax of the configuration file at the
specified line.

ERROR MSG_MALLOC: perror().
Description Memory allocation failed. The relay will exit.
Action Make more memory available on the machine on

which the relay is running. Remove other
unnecessary processes that may be running on the
same host as the relay. Restart the relay.

ERROR Client structure != NULL for file descriptor %Id

Description An internal error occurred. The relay will continue
to run, but a client process may have been
disconnected.

Action None. If this message appears repeatedly and can
be reproduced consistently, notify BEA Customer
Support.

B-22 Using BEA Jolt

Jolt Relay (JRLY) Messages

ERROR Invalid file descriptor %ld

Description Aninternal error occurred. The relay will continue
to run, but a client process may have been
disconnected.

Action None. If this message appears repeatedly and can
be reproduced consistently notify BEA Customer
Support.

ERROR Could not open configuration file %s

Description The specified configuration file does not exist or is
not readable. The relay will exit.

Action Check the file name and the permissions on the file
and the directory.

ERROR No log directory specified.

Description LOGDIR was not specified in the configuration
file or no value for it was given.

Action Verify the entry for the tag LOGDIR in the
configuration file. Check that the correct
configuration file is being usedf(parameter).

ERROR No access log file specified.

Description ACCESS_LOG was not specified in the
configuration file or no value for it was given.

Action Verify the entry for the tag ACCESS_LOG in the
configuration file.Check that the correct
configuration file is being usedf(parameter).

ERROR No error log file specified.

Description ERROR_LOG was not specified in the
configuration file or no value for it was given.
Action Verify the entry for the tag ERROR_LOG in the

configuration file. Check that the correct
configuration file is being usedf(parameter).

Using BEA Jolt B-23

B system Messages

B-24

ERROR No JRLY host specified

Description The value for the LISTEN tag does not contain the
host name or IP address or the relay host, e.g.,
LISTEN=host:port.

Action Verify the entry for the tag LISTEN in the
configuration file. Check that the correct
configuration file is being usedf(parameter).

ERROR No JRAD host specified.

Description The value for the CONNECT tag does not contain
the host name or IP address or the JRAD host, for
example, CONNECT=host:port.

Action Verify the entry for the tag CONNECT in the
configuration file. Check that the correct
configuration file is being usedf(parameter).

ERROR No listener port specified or listener port <= 0.

Description The value for the LISTEN tag does not contain a
valid port number on the relay host.

Action Verify the entry for the tag LISTEN in the
configuration file. Check that the correct
configuration file is being usedf(parameter).

ERROR No JRAD port specified or JRAD port <= 0.

Description The value for the CONNECT tag does not contain
a valid port number on the relay host.
Action Verify the entry for the tag CONNECT in the

configuration file.Check that the correct
configuration file is being usedf(parameter).

Using BEA Jolt

Jolt Relay (JRLY) Messages

ERROR

Could not determine IP address of listener host

Description

The relay could not look up the IP address of the
host machine.

Action

If the host was specified as a host name replace it
with the IP address and restart the relay. If it
already was given as IP address make sure that the
IP address is correct and that you're trying to start
the relay on this host. Note that the address
specified must be the address of the host on which
the relay is running.

ERROR

Cannot bind socket

Description

The listener port specified in the configuration file
is already being used by another application or still
in a final wait state from a previous run of jrly.

Action

Either specify a different port number in the
configuration file (and all HTML files containing
the IP address and port number of the relay) or
wait a few minutes. The command "netstat -a"
displays existing connections.

ERROR

Can’t open log file %s

Description

Either the error log file or access log file (or both)
could not be opened for writing.

Action

Check the configuration file for correct spelling of
the LOGDIR. Make sure you have write
permissions on this directory and the files
specified. On Windows NT, the directory
separators must be back slashes, not forward
slashes.

Using BEA Jolt B-25

B system Messages

ERROR WSAStartup failed (NT only)
Description The Winsock driver could not initialize. Possible
causes:

The underlying network subsystem is not ready for
network communication Version 2.0 of Windows
Sockets support is not provided by this particular
Windows Sockets implementation.

Limit on the number of tasks supported by the
Windows Sockets implementation has been
reached.

Action Check the networking software configuration on
your system.

ERROR Couldn't load Winsock Driver version 2.X. (NT only)

Description The relay requires Winsock version 2 or higher,
but could not load it.

Action Check the networking software configuration on
your system. An older version of Windows
Sockets support was detected.

ERROR FATAL ERROR: unknown message code %ld.
Description Internal error. The relay will exit
Action Restart the relay. If this message appears

repeatedly and can be reproduced consistently
notify BEA Customer Support.

ERROR connect: Connection refused
Description The relay could not connect to JRAD.
Action Make sure the relay adapter (JRAD) is running.

Check that the CONNECT tag in the relay
configuration file identifies the correct host and
port on which the JRAD is running.

B-26 Using BEA Jolt

Bulk Loader Utility Messages

ERROR accept(): accept failed, errno: 24, strerror: Too many open files
Description The relay tried to open more files/sockets than the
system limit.
Action The default maximum number of open file

descriptors for a process is 64 on most UNIX
systems. Set this number to at least 1024 (with the
limit or ulimit commands).

Bulk Loader Utility Messages

ERROR File not found: %s
Description The specified file is not found.
Action Check the path again.
ERROR Error on line %d: %s value is null
Description A value is expected for this keyword.
Action Input the value.
ERROR Error on line %d: Invalid keyword: %s=%s
Description Keyword is not recognized.
Action Input the correct keyword value.
ERROR Error on line %d: Invalid number: %s
Description The numeric number is malformed.
Action Input the correct value.
ERROR Error on line %d: Invalid value: %s
Description The value of the parameter is out of range.
Action Input the correct value.

Using BEA Jolt B-27

B system Messages

ERROR Error on line %d: Invalid value: %s
Description The data type of the parameter is invalid.
Action Input the correct value.

B-28 Using BEA Jolt

Glossary

API
Application Programming Interface.

Application Transaction Monitor Interface (ATMI)
The API for BEA Tuxedo.

ATMI
SeeApplication Transaction Monitor Interface

BEA Personality
A middleware programming environment that supports a specific style of distrib-
uted application architecture. For example, BEA Tuxedo is an X/ATMI personal-
ity.

BEA Tuxedo-ASP Connectivity
Formerly JoltWAS for IIS.

BEA Tuxedo Bulletin Board
Bulletin Board that holds the global information of an application domain.

BEA Tuxedo-JSE Connectivity
Formerly JoltWAS for Servlet.

BEA Tuxedo-WebLogic Connectivity

Formerly JoltWAS for WebLogic. A customized version of BEA Tuxedo-JSE
Connectivity for WebLogic.

Custom GUI element

A Java GUI class that communicates with JoltBeans. The means of communica-
tion can be JavaBeans events, methods, or properties offered by JoltBeans.

Using BEA Jolt G-1

Field Manipulation Language (FML)

An interface for maintaining buffers with field/value pairs; specifically, the 16-bit
version of this interface.

FML
SeeField Manipulation Language.

Failover

A failure prevention mechanism that works as follows. If the current Jolt Relay
Adapter (JRAD) fails to respond to a connection request, the Jolt Relay (JRLY) is
enabled to connect to another available JRAD. The Jolt client proves a list of
JRLY addresses to which the JRAD attempts connection in a round-robin fashior

I1OP
Seelnternet Inter-ORB Protocol.

IIOP Listener/Handler

A process that receives the client request, which is sent using the 1IOP, and deli
ers that request to the appropriate server application.

Internet Inter-ORB Protocol (IIOP)

The standard protocol defined by the CORBA specification for interoperation be-
tween Object Request Brokers (ORBS).

JavaBeans

A specification developed by Sun Microsystems that defines how Java objects ir
teract. An object that conforms to this specification is called a JavaBean, and is
similar to an ActiveX control. The JavaBean can be used by any application tha
understands the JavaBeans format. The principal difference between ActiveX
controls and JavaBeans is that ActiveX controls can be developed in any progran
ming language, but executed only on a Windows platform. JavaBeans can be d¢
veloped only in Java, but can run on any platform.

Java DataBase Connect (JDBC)
A facility that allows a program to access a database.

Java naming and directory interface

A specification that describes how applications services should make named re-
sources and file systems known and accessible to all users.

G-2 Using BEA Jolt

JDBC
SeeJava DataBase Connect.

JNDI
SeeJava naming and directory interfadelt-aware AWT bean

A bean that is source of JoltinputEvents, a listener of JoltOutputEvents, or both.
Jolt-aware beans are a subset of Custom GUI elements that follow beans guide-
lines.

JoltBeans

JavaBeans components that are used in Java development environments to con-
struct Jolt clients. JoltBeans consist of two sets of JavaBeans: JoltBeans toolkit
and Jolt-aware AWT beans.

JoltBeans toolkit

A JavaBeans-compliant interface to BEA Jolt. The toolkit includes the JoltServi-
ceBean, JoltSessionBean, and JoltUserEventBean.

Jolt Class Library

A set of Java classes that allows the user to write Java programs to access BEA
Tuxedo services.

Jolt Relay (JRLY)

A standalone program that routes Jolt messages from the Internet to the Jolt Server
Listener (JSL) or Jolt Server Handler (JSH) via the Jolt Relay Adapter (JRAD).
Jolt Relay imnot a BEA Tuxedo server or BEA Tuxedo client.

Jolt Relay Adapter (JRAD)

A BEA Tuxedo application server that does not include any BEA Tuxedo servic-
es. Itrequires command line arguments in order to work with the JSL and the BEA
Tuxedo system. The JRAD may or may not be located on the same BEA Tuxedo
host machine and server group to which the JSL server is connected.

Jolt Repository

A subsystem in Jolt that provides primitive services and storage for the service
definitions.

Using BEA Jolt G-3

Jolt Server Handler (JSH)

A program that runs on a BEA Tuxedo server machine to provide a network con
nection point for remote clients. The JSH works with the Jolt Server Listener
(JSL) to provide client connectivity with the BEA Tuxedo system.

Jolt Server Listener (JSL)

A program that supports clients on an IP/port combination. The JSL works with
the Jolt Server Handler (JSH) to provide client connectivity to the backend of the
Jolt system. The JSL is administered by the same tools used to manage any re-
source within a BEA Tuxedo environment.

Jolt WAS for IIS
Renamed BEA Tuxedo-ASP Connectivity.

Jolt WAS for Servlet
Renamed BEA Tuxedo-JSE Connectivity.

Jolt WAS for WebLogic
Renamed BEA Tuxedo-WebLogic Connectivity.

JRAD
SeeJolt Relay AdaptedREPSVR

A BEA Tuxedo server that provides services to access the Jolt Repository storag
It provides support for the Jolt run-time environment and minimum editing and
query functions.

JRLY
SeelJolt Relay.

JSH
SeelJolt Server Handler.

JSL
SeelJolt Server Listener.

G-4 Using BEA Jolt

NT service

An executable programege) that runs as a background task, and whose lifetime

is controlled by the Service Control Manager (SCM). Services can be run at
startup or started (via the SCM) by the interactive user or by a process that a user
is running.

Personality
SeeBEA Personality.

RECONNECT client

A Jolt client whose network connection can be torn down after being idle for a spe-
cific amount of time, but whose user context in BEA Tuxedo remains active.

SCM
SeeService Control Manager.

Service Control Manager (SCM)

A Windows NT control panel applet that provides an interface for the interactive
user to control NT services.

serviet

An applet that runs on a server. This term usually refers to a Java applet that runs
within a Web server environment. This is analogous to a Java applet that runs
within a Web browser environment.

WebLogic Enterprise
A mission-critical distributed-object application server in a CORBA environment.

WebLogic Express
An implementation of JDBC for use with Java applets or applications.

WebLogic Server

A pure Java application server for assembling, deploying, and managing distrib-
uted Java applications.

wiring
An indication that a bean is registered as a listener of events from another bean.

WLE
SeeWebLogic Enterprise.

Using BEA Jolt G-5

WLS
SeeWebLogic Server.

G-6 Using BEA Jolt

Index

A

applets
client-side execution 5-55
Java 5-1, 5-2, 5-56
Jolt 1-12, 5-4
localizing 5-57
appletview
Repository Editor 4-5
applications
deployment 5-55
localization 5-55
multithreaded 5-37
ASP Connectivity 8-1

BEA TUXEDO
Jolt Repository Editor

initializing services using 3-34

BEA Tuxedo

access 5-1
ATMI interface 5-4
buffer types

using with Jolt 5-14
customizing 5-1
data types

using with Jolt 5-14
distributing services 1-12
logging

off 5-6

on 5-5

server requirements 5-55
services
executing 5-5
requests 5-4
transaction
begin 5-5
complete 5-5
new 5-5
rollback 5-5
buffer type
CARRAY 5-22, 5-33
FML 5-23
STRING 5-15
VIEW 5-30
buffer types
BEA Tuxedo 5-14
STRING 5-15
buffers, filtering 3-36
bulk loader
bulk load file 2-2, 2-3
command line options 2-2
data file syntax 2-4
getting started 2-2
introduction 2-1
keywords 2-4, 2-5, 2-6, 2-8
messages B-27
sample data 2-10
troubleshooting 2-9
using Windows NT 2-2

Using BEA Jolt

C

CARRAY
buffer type 5-17, 5-19, 5-22, 5-24, 5-33
classes 5-6
hierarchy 5-7
Jolt 5-1, 5-6, 5-8
JoltRemoteService 5-8
JoltSession 5-8
JoltSessionAttributes 5-6, 5-8
JoltTransaction 5-9
relationships 5-7
subdirectory 5-56
client
Jolt 5-5
logon/logoff 5-8
command-line options 3-16-3-19
Jolt Relay 3-23
configuration 3-1, 3-32
Event Subscription 3-10, 3-35
Jolt Relay (JRLY) 3-11
Jolt Relay Adapter (JRAD) 3-13, 3-29
Jolt Repository 3-3, 3-31
*GROUPS section 3-32
*SERVERS section 3-32
Jolt Server Listener (JSL) 3-2, 3-15
network address 3-29, 3-30
quick 3-2
Repository File, jrepository 3-33
configuration file 3-38
format 3-39
Jolt Relay 3-27
connection attributes 5-10
hostname 5-10
portnumber 5-10
connection modes
connection-less 5-45
retained 5-45

D
data types

I-2 Using BEA Jolt

BEA Tuxedo 5-14
DES 1-4
Diffie-Hellman (DH) Key Exchange 3-19

E
encryption 1-4, 3-19
errors
Jolt 5-3
Jolt interpreter 5-3
summary of Tuxedo A-2
Tuxedo generated in Jolt 5-3
Event Subscription 5-43
classes for 5-43
supported types 5-46
events
subscribing to 5-43
exceptions
Jolt 5-3
ServiceException 5-10
System.in.read 5-39
exporting services 4-41

F

failover
Jolt Client to JRLY connection 3-22
JRLY to JRAD connection 3-22
FML buffer type 5-23

G

group services
package organizer
how to use 4-33
GROUPS section configuration 3-32

H

HTML
applet tag 5-56
page 5-56

installation 3-1

J

Java
applets 5-1, 5-2, 5-56
class files 5-56
clients 1-8, 5-4
Developer’s Kit (JDK) 1.0 5-39
language classes 5-1
packages 5-56
programs 5-2
Thread.yield() method 5-38
Virtual Machine (VM) 5-37
Jolt
applets 1-12
deploying 5-55
localizing 5-57
architecture 1-4, 1-5, 1-6
bulk loader 2-1
classes 5-1, 5-6, 5-56
functionality 5-8
hierarchy 5-7
relationships 5-7
subdirectory 5-56
client
interface objects 5-5
logon/logoff 5-8
populating variables 5-5
requests 5-5
client/server
interaction 5-5
relationship 5-4
clients
communication with servers 1-10
connection manager 5-4
defined 1-2
features 1-4
international use 5-57
JRAD B-16

JRLY B-22
Repository 5-5
Editor
using4-1
service attributes 5-5
Repository Editor 1-3
server 5-4, 5-5, 5-56
requirements 5-55
servers 1-3
communication with clients 1-10
components 1-7
proxy for Tuxedo client 1-6
Transaction Protocol 1-10, 5-4
using threads with 5-39

Jolt Class Library 1-3, 1-8, 5-2, 5-6, 5-8, 5-10

application development 5-55
errors 5-3
handling 5-3
list of Tuxedo related A-2
exceptions 5-3
handling 5-3
object/class reusability 5-49
Jolt Internet Relay 3-20
Jolt Relay (JRLY)
command-line options for NT 3-23
configuration 3-26
configuration file 3-27
failover 3-21
network address configuration 3-29
starting 3-23
Jolt Relay Adapter (JRAD) 3-29
configuration 3-29
starting 3-29
Jolt Reply 5-43
Jolt Repository 3-31
configuring 3-31
initializing services 3-4
Jolt Repository Editor
initializing services using 3-34
Jolt Repository Server 1-7

Using BEA Jolt 1-3

Jolt server 3-13
shutting down the 3-14
starting the 3-14

Jolt Server Handler 1-7

Jolt Server Listener 1-7

Jolt Server Listener (JSL)
*MACHINES section 3-40
*SERVERS section 3-41
configuration 3-15, 3-42
optional parameters 3-43
parameters usable with 3-43
restarting 3-15
UBBCONFIG file 3-39

JoltBeans 6-1

JoltMessage 5-43

JoltRemoteService 5-9
calls 5-10
class 5-8
object 5-8
resetting parameters 5-9
reusing 5-49

JoltSession 5-5, 5-9, 5-43, 5-48
class 5-8, 5-9, 5-48
object 5-7, 5-8

instantiating 5-10

JoltSessionAttributes 5-6, 5-7, 5-8, 5-9

JoltTransaction 5-5, 5-7, 5-9

class 5-9
JoltUserEvent 5-43
JRAD

messages B-16
jrepository 3-33
JREPSVR
JRLY

messages B-22
JRLY See Jolt Relay
JSH
JSL

I-4 Using BEA Jolt

L
logoff 5-8
logon 5-8
Repository Editor 4-7

M
MACHINES section

Jolt Server Listener (JSL) 3-40

messages
bulk loader B-27
FML B-14
information B-15
Jolt system B-2
JRAD B-16
JRLY B-22
repository B-12
methods
clear() 5-9
Thread.yield() 5-38
multithreaded applications 5-37

N

Netscape Navigator 3-5, 4-6
notifications
brokered event 5-43
data buffers 5-45
event handler for 5-44
unsolicited 5-43
unsubscribing 5-47
using Jolt to receive 5-48

0

objects
relationships 5-7
reusability 5-43
reusing 5-51

P

package organizer
description 4-33
group services
how to 4-33
using 4-31
packages
add a package 4-22
adding 4-20
delete a package 4-39
deleting 4-40
modifying 4-35
package organizer 4-31
Repository Editor 4-13, 4-15
parameters 4-18
associated with RESTART 3-47
boot 3-43
delete a parameter 4-39
deleting 4-39
edit a parameter 4-38
editing 4-37
modifying 4-35
optional for JSL 3-43
runtime 3-45
TUXEDO 3-48
usable with JSL 3-43

R

RC4 1-4

Repository Editor 1-3, 1-11
appletviewer 4-5
exiting the 4-9
introduction 4-2
logon 4-7
main components of 4-11
Netscape Navigator 3-5, 4-6
packages 4-13, 4-15

setting up 4-19

parameters 4-18
process flow 4-11

S

sample applications, online resources 3-49

sample window 4-2
sample window description 4-4
saving your work 4-20
services 4-16

description of 4-17

setting up 4-19

view services 4-17
troubleshooting 4-50

saving your work 4-20
security 1-4, 3-19
server

Jolt 5-5
Tuxedo requirements for 5-55
web 5-56

servers

components 1-7
Jolt 1-3
Jolt Repository 1-7

services

add a parameter 4-27
data type selection 4-29
how to 4-29
window description 4-28
add a service 4-22
buffer type selection 4-26
how to 4-24, 4-25
calling synchronous 5-8
definitions 5-10
delete a service 4-39
deleting 4-40
edit a service 4-35
editing 4-37
export status
reviewing 4-43
exporting 4-41
grouping 4-31
Jolt client

Using BEA Jolt

make service available to 4-41
modifying 4-35
parameters 4-18
service test window 4-45, 4-47
test a service
how to 4-48, 4-49
process flow 4-48
testing 4-44
unexport 4-41
unexport status
reviewing 4-43
using the Repository Editor 4-16
view parameters 4-19
view services 4-17
Servlets 7-1
simpapp, online resources 3-49
STRING buffer type 5-15

T

testing
services 4-44
threads 5-37
BLOCKED 5-37
non-preemptive 5-38
RUNNABLE 5-37
RUNNING 5-37
using Jolt with non-preemptive 5-38
using with Jolt 5-39
TOUPPER
service 5-15
TPEABORT A-2
TPEBADDESC A-2
TPEBLOCK A-2
TPEDIAGNOSTIC A-2
TPEEVENT A-2
TPEHAZARD A-2
TPEHEURISTIC A-2
TPEINVAL A-2
TPEITYPE A-2
TPELIMIT A-2

1-6 Using BEA Jolt

TPEMATCH A-2
TPEMIB A-2
TPENOENT A-2
TPEOS A-2
TPEOTYPE A-2
TPEPERM A-3
TPEPROTO A-3
TPERELEASE A-3
TPERMERR A-3
TPESVCERR A-3
TPESVCFAIL A-3
TPESYSTEM A-3
TPETIME A-3
TPETRAN A-3
TPGOTSIG A-3
Transaction

Protocol 5-4
transaction

begin 5-9

commit 5-9

object 5-9

rollback 5-9
troubleshooting

Repository Editor 4-50
TUXEDO

background information 3-38

parameters, entering 3-48
Tuxedo

errors A-2

U
UBBCONFIG

Jolt Server Listener (JSL) configuration

sample 3-39
UBBCONFIG file 3-38
unexporting services 4-41

vV

VIEW buffer type 5-30
view parameters 4-19

w

web server
considerations 5-56

Using BEA Jolt

-7

	Copyright
	Contents
	1 Introducing BEA Jolt
	What Is BEA Jolt?
	Jolt Components

	Key Features
	How BEA Jolt Works
	Jolt Servers
	Jolt Class Library
	JoltBeans
	ASP Connectivity for BEA Tuxedo
	Jolt Server and Jolt Client Communication
	Jolt Repository
	Jolt Internet Relay

	Creating a Jolt Client to Access BEA Tuxedo Applications

	2 Bulk Loading BEA Tuxedo Services
	Using the Bulk Loader
	Activating the Bulk Loader
	The Bulk Load File

	Syntax of the Bulk Loader Data Files
	Guidelines for Using Keywords
	Keyword Order in the Bulk Loader Data File
	Using Service-Level Keywords and Values
	Using Parameter-Level Keywords and Values

	Troubleshooting
	Sample Bulk Load Data

	3 Configuring the BEA Jolt System
	Quick Configuration
	Editing the UBBCONFIG File
	Configuring the Jolt Repository
	Initializing Services That Use BEA Tuxedo and the Repository Editor
	Logging on to the Repository Editor
	Exiting the Repository Editor
	Configuring the BEA Tuxedo TMUSREVT Server for Event Subscription
	Configuring Jolt Relay

	Jolt Background Information
	Jolt Server
	Starting the JSL
	Shutting Down the JSL
	Restarting the JSL
	Configuring the JSL
	JSL Command-Line Options
	Security and Encryption

	Jolt Relay
	Jolt Relay Failover
	Jolt Relay Process
	JRLY Command-Line Options for NT
	JRLY Command-Line Option for UNIX
	JRLY Configuration File

	Jolt Relay Adapter
	JRAD Configuration
	Network Address Configurations

	Jolt Repository
	Configuring the Jolt Repository
	Initializing Services By Using BEA Tuxedo and the Repository Editor

	Event Subscription
	Configuring for Event Subscription
	Filtering BEA Tuxedo FML or VIEW Buffers

	BEA Tuxedo Background Information
	Configuration File
	Creating the UBBCONFIG File

	Sample Applications in BEA Jolt Online Resources

	4 Using the Jolt Repository Editor
	Introduction to the Repository Editor
	Repository Editor Window
	Repository Editor Window Description

	Getting Started
	Starting the Repository Editor Using the Java Applet Viewer
	Starting the Repository Editor From Your Web Browser
	Logging on to the Repository Editor
	Exiting the Repository Editor

	Main Components of the Repository Editor
	Repository Editor Flow
	What Is a Package?
	What Is a Service?
	Working With Parameters

	Setting Up Packages and Services
	Saving Your Work
	Adding a Package
	Adding a Service
	Adding a Parameter

	Grouping Services Using the Package Organizer
	Modifying Packages, Services, and Parameters
	Editing a Service
	Editing a Parameter
	Deleting Parameters, Services, and Packages

	Making a Service Available to the Jolt Client
	Exporting and Unexporting Services
	Reviewing the Exported and Unexported Status

	T Testing a Service
	Jolt Repository Editor Service Test Window
	Testing a Service

	Repository Editor Troubleshooting
	Repository Enhancements for Jolt

	5 Using the Jolt Class Library
	Class Library Functionality Overview
	Java Applications vs. Java Applets
	Jolt Class Library Features
	Error and Exception Handling
	Jolt Client/Server Relationship

	Jolt Object Relationships
	Jolt Class Library Walk-through
	Logon and Logoff
	Synchronous Service Calling
	Transaction Begin, Commit, and Rollback

	Using BEA Tuxedo Buffer Types with Jolt
	Using the STRING Buffer Type
	Using the CARRAY Buffer Type
	Using the FML Buffer Type
	Using the VIEW Buffer Type

	Multithreaded Applications
	Threads of Control
	Using Jolt with Non-Preemptive Threading
	Using Threads for Asynchronous Behavior
	Using Threads with Jolt

	Event Subscription and Notifications
	Event Subscription Classes
	Notification Event Handler
	Connection Modes
	Notification Data Buffers
	BEA Tuxedo Event Subscription
	Using the Jolt API to Receive BEA Tuxedo Notifications

	Clearing Parameter Values
	Reusing Objects
	Deploying and Localizing Jolt Applets
	Deploying a Jolt Applet
	Client Considerations
	Web Server Considerations
	Localizing a Jolt Applet

	6 Using JoltBeans
	Overview of Jolt Beans
	JoltBeans Terms
	Adding JoltBeans to Your Java Development Environment
	Using Development and Run-time JoltBeans

	Basic Steps For Using JoltBeans
	JavaBeans Events and BEA Tuxedo Events
	Using BEA Tuxedo Event Subscription and Notification with JoltBeans

	How JoltBeans Use JavaBeans Events
	The JoltBeans Toolkit
	JoltSessionBean
	JoltServiceBean
	JoltUserEventBean

	Jolt-Aware GUI Beans
	JoltTextField
	JoltLabel
	JoltList
	JoltCheckbox
	JoltChoice

	Using the Property List and the Property Editor to Modify the JoltBeans Properties
	JoltBeans Class Library Walkthrough
	Building the Sample Form
	Wiring the JoltBeans Together

	Using the Jolt Repository and Setting the Property Values
	JoltBeans Programming Tasks
	Using Transactions with JoltBeans
	Using Custom GUI Elements with the JoltService Bean

	7 Using Servlet Connectivity for BEA Tuxedo
	What Is a Servlet?
	How Servlets Work with Jolt
	The Jolt Servlet Connectivity Classes

	Writing and Registering HTTP Servlets
	Jolt Servlet Connectivity Sample
	Viewing the Sample Servlet Applications
	SimpApp Sample
	BankApp Sample
	Admin Sample

	Additional Information on Servlets

	8 Using Jolt ASP Connectivity for BEA Tuxedo
	Key Features
	ASP Connectivity Enhancements for Jolt
	How Jolt ASP Connectivity for BEA Tuxedo Works
	ASP Connectivity for BEA Tuxedo Toolkit
	Jolt ASP Connectivity for BEA Tuxedo Walkthrough
	Overview of the ASP for BEA Tuxedo Walkthrough
	Getting Started Checklist
	Overview of the TRANSFER Service
	TRANSFER Request Walkthrough
	Initializing the Jolt Session Pool Manager
	Submitting a TRANSFER Request from the Client
	Processing the Request
	Returning the Results to the Client

	A BEA Tuxedo Errors
	BEA Tuxedo Errors

	B System Messages
	Jolt System Messages
	Repository Messages
	FML Error Messages
	Information Messages
	Jolt Relay Adapter (JRAD) Messages
	Jolt Relay (JRLY) Messages
	Bulk Loader Utility Messages

	Glossary
	Index

