
Using BEA Jolt

B E A J o l t R e l e a s e 1 . 2 . 1
D o c u m e n t E d i t i o n 1 . 2 . 1

M a y 2 0 0 0

BEA Jolt

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and Tuxedo are registered trademarks of BEA Systems, Inc. BEA Builder, BEA
Connect, BEA Manager, BEA MessageQ, BEA Jolt, M3, eSolutions, eLink, WebLogic, and WebLogic Enterprise
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

Using BEA Jolt

Document Edition Date Software Version

1.2.1 May 2000 BEA Jolt 1.2.1

.. 1-2

.. 1-3

... 1-4

. 1-5

.. 1-7

. 1-8

.. 1-9

-10

1-10

1-11

-12

1-13

-14

.. 2-2

2-2

. 2-2

. 2-3

.. 2-4

. 2-4

2-5

. 2-6

. 2-8

.. 2-9

2-10
Contents

1. Introducing BEA Jolt
What Is BEA Jolt? ...

Jolt Components...

Key Features ...

How BEA Jolt Works...

Jolt Servers ..

Jolt Class Library ..

JoltBeans ..

ASP Connectivity for BEA Tuxedo ... 1

Jolt Server and Jolt Client Communication..

Jolt Repository..

Jolt Repository Editor ... 1

Jolt Internet Relay ..

Creating a Jolt Client to Access BEA Tuxedo Applications 1

2. Bulk Loading BEA Tuxedo Services
Using the Bulk Loader...

Activating the Bulk Loader ..

Command Line Options ..

The Bulk Load File ...

Syntax of the Bulk Loader Data Files ...

Guidelines for Using Keywords ..

Keyword Order in the Bulk Loader Data File..

Using Service-Level Keywords and Values..

Using Parameter-Level Keywords and Values ...

Troubleshooting...

Sample Bulk Load Data...
Using BEA Jolt iii

.. 3-2

3-2

. 3-3

. 3-3

.. 3-3

3-4

3-4

3-5

3-5

. 3-6

-8

. 3-9

3-10

-11

-11

-11

3-13

3-13

3-14

3-14

. 3-15

3-15

3-16

3-19

. 3-20

3-21

-22

-22

. 3-22

-23

-23

26

-27
3. Configuring the BEA Jolt System
Quick Configuration ..

Editing the UBBCONFIG File ...

Configuring the Jolt Repository ..

In the Groups Section:..

In the Servers Section:...

Initializing Services That Use BEA Tuxedo and the Repository Editor

Getting Started with the Repository Editor ...

Starting the Repository Editor Using the Java Applet Viewer............

Starting the Repository Editor Using Your Web Browser..................

Logging on to the Repository Editor ...

Repository Editor Logon Window Description 3

Exiting the Repository Editor ..

Configuring the BEA Tuxedo TMUSREVT Server for Event
Subscription ..

Configuring Jolt Relay ...3

On UNIX ... 3

On UNIX and NT.. 3

Jolt Background Information...

Jolt Server ..

Starting the JSL ..

Shutting Down the JSL...

Restarting the JSL..

Configuring the JSL ...

JSL Command-Line Options..

Security and Encryption ...

Jolt Relay ..

Jolt Relay Failover..

Jolt Client to JRLY Connection Failover .. 3

JRLY to JRAD Adapter Connection Failover 3

Jolt Relay Process..

Starting the JRLY on UNIX.. 3

JRLY Command-Line Options for NT... 3

JRLY Command-Line Option for UNIX ... 3-

JRLY Configuration File.. 3
iv Using BEA Jolt

3-29

-29

3-30

3-31

-31

3-32

3-32

3-33

34

3-35

-35

6

-36

-37

-38

3-38

-38

-39

-40

3-41

3-42

3-43

3-43

3-45

-47

3-48

3-49

. 4-2

4-2

4-4
Jolt Relay Adapter ..

JRAD Configuration .. 3

Network Address Configurations...

 Jolt Repository..

Configuring the Jolt Repository .. 3

GROUPS Section..

SERVERS Section ..

Repository File ..

Initializing Services By Using BEA Tuxedo and the Repository Editor . 3-

Event Subscription...

Configuring for Event Subscription ... 3

Filtering BEA Tuxedo FML or VIEW Buffers.. 3-3

Buffer Types ... 3

FML Buffer Example.. 3

BEA Tuxedo Background Information ... 3

Configuration File ..

Creating the UBBCONFIG File ... 3

Configuration File Format .. 3

MACHINES Section... 3

GROUPS Section..

SERVERS Section ..

Parameters Usable With JSL...

Optional Parameters..

Run-time Parameters...

Parameters Associated with RESTART ... 3

Entering Parameters ..

Sample Applications in BEA Jolt Online Resources

4. Using the Jolt Repository Editor
Introduction to the Repository Editor...

Repository Editor Window...

Repository Editor Window Description...
Using BEA Jolt v

... 4-5

4-5

4-6

4-6

. 4-6

. 4-7

-9

. 4-9

4-11

-11

. 4-13

4-15

-15

.4-16

-17

-17

4-18

-19

..4-19

4-20

. 4-20

-22

4-22

-24

-25

26

.4-27

-28

-29

-29

. 4-31

-33

-33
Getting Started..

Starting the Repository Editor Using the Java Applet Viewer...................

Starting the Repository Editor From Your Web Browser..........................

To start from a local file:...

To start from a Web server:..

Logging on to the Repository Editor ...

Repository Editor Logon Window Description 4

Exiting the Repository Editor ..

Main Components of the Repository Editor ..

Repository Editor Flow .. 4

What Is a Package?..

Packages Window Description..

Instructions for Viewing a Package ..4

What Is a Service? ...

Services Window Description... 4

Instructions for Viewing a Service ... 4

Working With Parameters ..

Instructions for Viewing a Parameter ... 4

Setting Up Packages and Services...

Saving Your Work..

Adding a Package..

Instructions for Adding a Package .. 4

Adding a Service ..

Adding a Service Window Description... 4

Instructions for Adding a Service ... 4

Selecting CARRAY or STRING as a Service Buffer Type.............. 4-

Adding a Parameter ...

Adding a Parameter Window Description .. 4

Instructions for Adding a Parameter .. 4

Selecting CARRAY or STRING as a Parameter Data Type 4

Grouping Services Using the Package Organizer...

Package Organizer Window Description .. 4

Instructions for Grouping Services with the Package Organizer 4
vi Using BEA Jolt

. 4-35

4-35

-37

4-37

-38

.. 4-39

4-39

4-40

4-40

-41

4-41

4-43

. 4-44

-45

-47

4-48

4-48

-49

4-50

. 4-52

5-2

.. 5-2

.. 5-3

. 5-3

. 5-4

.. 5-7

. 5-8

. 5-8

.. 5-8

. 5-9
Modifying Packages, Services, and Parameters ...

Editing a Service ..

Instructions for Editing a Service ... 4

Editing a Parameter ..

Instructions for Editing a Parameter .. 4

Deleting Parameters, Services, and Packages ..

Deleting a Parameter ...

Deleting a Service ...

Deleting a Package..

Making a Service Available to the Jolt Client... 4

Exporting and Unexporting Services ...

Reviewing the Exported and Unexported Status......................................

TTesting a Service..

Jolt Repository Editor Service Test Window... 4

Service Test Window Description .. 4

Testing a Service ...

Test Service Process Flow ..

Instructions for Testing a Service ... 4

Repository Editor Troubleshooting ...

Repository Enhancements for Jolt..

5. Using the Jolt Class Library
Class Library Functionality Overview ..

Java Applications vs. Java Applets ..

Jolt Class Library Features ...

Error and Exception Handling...

Jolt Client/Server Relationship..

Jolt Object Relationships...

Jolt Class Library Walk-through ..

Logon and Logoff..

Synchronous Service Calling ...

Transaction Begin, Commit, and Rollback ...
Using BEA Jolt vii

-14

-15

-15

-17

-19

-19

-22

-23

-24

-25

-25

5-28

-30

30

-33

34

5-35

5-37

5-37

5-38

-38

-38

5-39

5-39

5-43

. 5-43

-44

5-45

-45

-46

5-46

-46

-47

-48
Using BEA Tuxedo Buffer Types with Jolt .. 5

Using the STRING Buffer Type... 5

Define TOUPPER in the Repository Editor......................................5

ToUpper.java Client Code... 5

Using the CARRAY Buffer Type ..5

Define the Tuxedo Service in the Repository Editor 5

tryOnCARRAY.java Client Code... 5

Using the FML Buffer Type... 5

tryOnFml.java Client Code ... 5

FML Field Definitions .. 5

Define PASSFML in the Repository Editor......................................5

tryOnFml.c Server Code ...

Using the VIEW Buffer Type...5

Define VIEW in the Repository Editor ... 5-

simpview.java Client Code ... 5

VIEW Field Definitions .. 5-

simpview.c Server Code..

Multithreaded Applications ...

Threads of Control..

Preemptive Threading ...

Non-preemptive Threading ... 5

Using Jolt with Non-Preemptive Threading... 5

Using Threads for Asynchronous Behavior ...

Using Threads with Jolt..

Event Subscription and Notifications ..

Event Subscription Classes..

Notification Event Handler... 5

Connection Modes..

Notification Data Buffers ... 5

BEA Tuxedo Event Subscription ... 5

Supported Subscription Types ..

Subscribing to Notifications.. 5

Unsubscribing from Notifications... 5

Using the Jolt API to Receive BEA Tuxedo Notifications 5
viii Using BEA Jolt

. 5-49

. 5-51

-55

5-55

5-56

5-56

-57

.. 6-2

.. 6-3

6-4

.. 6-5

... 6-5

... 6-6

-6

.... 6-7

.. 6-8

... 6-9

6-10

6-11

6-11

6-12

6-12

6-12

6-13

6-13

6-14

6-16

6-18

6-18
Clearing Parameter Values ...

Reusing Objects..

Deploying and Localizing Jolt Applets ... 5

Deploying a Jolt Applet..

Client Considerations ...

Web Server Considerations..

Localizing a Jolt Applet ... 5

6. Using JoltBeans
Overview of Jolt Beans ...

JoltBeans Terms ...

Adding JoltBeans to Your Java Development Environment

Using Development and Run-time JoltBeans ..

Basic Steps For Using JoltBeans..

JavaBeans Events and BEA Tuxedo Events ..

Using BEA Tuxedo Event Subscription and Notification with JoltBeans. 6

How JoltBeans Use JavaBeans Events..

The JoltBeans Toolkit..

JoltSessionBean...

JoltServiceBean..

JoltUserEventBean ...

Jolt-Aware GUI Beans ..

JoltTextField...

JoltLabel ...

JoltList ..

JoltCheckbox..

JoltChoice...

Using the Property List and the Property Editor to Modify the JoltBeans
Properties..

JoltBeans Class Library Walkthrough...

Building the Sample Form ...

Placing JoltBeans onto the Form Designer
Using BEA Jolt ix

6-25

6-27

6-30

-34

-37

-39

-42

-43

-44

6-44

.6-49

6-49

-50

... 7-2

. 7-3

.. 7-3

. 7-4

.. 7-5

7-5

.. 7-5

. 7-6

7-6

.. 7-8

. 7-8

7-8

7-10

-10

-10

-11
Wiring the JoltBeans Together...

Step 1: Wire the JoltSessionBean Logon ..

Step 2: Wire JoltSessionBean to JoltServiceBean Using Property
Change ...

Step 3: Wire the accountID JoltTextField as Input to the
JoltServiceBean Using JoltInputEvent....................................... 6

Step 4: Wire Button to JoltServiceBean using JoltAction6

Step 5: Wire JoltServiceBean to the Balance JoltTextField Using
JoltOutputEvent ... 6

Step 6: Wire the JoltSessionBean Logoff ... 6

Step 7: Compile the Applet ... 6

Running the Sample Application .. 6

Using the Jolt Repository and Setting the Property Values.............................

JoltBeans Programming Tasks ...

Using Transactions with JoltBeans ..

Using Custom GUI Elements with the JoltService Bean 6

7. Using Servlet Connectivity for BEA Tuxedo
What Is a Servlet?...

How Servlets Work with Jolt..

The Jolt Servlet Connectivity Classes ..

Writing and Registering HTTP Servlets...

Jolt Servlet Connectivity Sample ..

Viewing the Sample Servlet Applications..

SimpApp Sample..

Requirements for Running the Simpapp Sample

Installing the SimpApp Sample...

BankApp Sample..

Requirements for Running the Bankapp Sample

Installation Instructions ...

Admin Sample ..

Requirements for Running the Admin Sample7

Installation Instructions ... 7

Additional Information on Servlets ... 7
x Using BEA Jolt

... 8-2

.. 8-2

8-4

8-6

8-6

8-7

.. 8-8

8-10

8-11

8-11

-13

. 8-16

8-19

. A-2

....B-2

.B-12

B-14

.B-15

B-16

B-22

-27
8. Using Jolt ASP Connectivity for BEA Tuxedo
Key Features ...

ASP Connectivity Enhancements for Jolt ...

How Jolt ASP Connectivity for BEA Tuxedo Works

ASP Connectivity for BEA Tuxedo Toolkit ...

Jolt ASP Connectivity for BEA Tuxedo Walkthrough

Overview of the ASP for BEA Tuxedo Walkthrough.......................................

Getting Started Checklist...

Overview of the TRANSFER Service...

TRANSFER Request Walkthrough...

Initializing the Jolt Session Pool Manager...

Submitting a TRANSFER Request from the Client................................. 8

Processing the Request..

Returning the Results to the Client ..

A. BEA Tuxedo Errors
BEA Tuxedo Errors...

B. System Messages
Jolt System Messages ..

Repository Messages ..

FML Error Messages...

Information Messages ..

Jolt Relay Adapter (JRAD) Messages ...

Jolt Relay (JRLY) Messages ...

Bulk Loader Utility Messages ...B

Glossary

Index
Using BEA Jolt xi

xii Using BEA Jolt

CHAPTER

do
er on

nd

nt

do
rs,
1 Introducing BEA Jolt

BEA Jolt is a Java-based interface to the BEA Tuxedo system that extends the
functionality of existing BEA Tuxedo applications to include Intranet- and
Internet-wide availability. Using Jolt, you can now easily transform any BEA Tuxe
application so that its services are available to customers using an ordinary brows
the Internet. Jolt interfaces with existing and new BEA Tuxedo applications and
services to allow secure, scalable, Intranet/Internet transactions between client a
server. Jolt enables you to build client applications and applets that can remotely
invoke existing BEA Tuxedo services, such as application messaging, compone
management, and distributed transaction processing.

Because you develop your applications with the Jolt API and the Jolt Repository
Editor, which use BEA Tuxedo and the Java programming language, the Jolt
documentation is written with the assumption that you are familiar with BEA Tuxe
and Java programming. This documentation is intended for system administrato
network administrators, and developers.
Using BEA Jolt 1-1

1 Introducing BEA Jolt

 and
 “Introducing BEA Jolt” covers the following topics:

� What Is BEA Jolt?

� Key Features

� How BEA Jolt Works

z Jolt Servers

z Jolt Class Library

z JoltBeans

z ASP Connectivity for BEA Tuxedo

z Jolt Server and Jolt Client Communication

z Jolt Repository

z Jolt Internet Relay

� Creating a Jolt Client to Access BEA Tuxedo Applications

What Is BEA Jolt?

BEA Jolt is a Java class library and API that provides an interface to BEA Tuxedo
BEAWebLogic Enterprise (WLE) from remote Java clients.
1-2 Using BEA Jolt

What Is BEA Jolt?

s that

s,
s

ss

ed
lt

,
t of

EA
ort

the

dler
un
he
Jolt Components

 BEA Jolt consists of several components for creating Java-based client program
access BEA Tuxedo services. These Jolt components are as follows:

� Jolt Servers—One or more Jolt servers listen for network connections from
clients, translate Jolt messages, multiplex multiple clients into a single proces
and submit and retrieve requests to and from BEA Tuxedo-based application
running on one or more BEA Tuxedo servers.

� Jolt Class Library—The Jolt class library is a Java package containing the cla
files that implement the Jolt API. These classes enable Java applications and
applets to invoke BEA Tuxedo services. The Jolt class library includes
functionality to set, retrieve, manage, and invoke communication attributes,
notifications, network connections, transactions, and services.

� JoltBeans—BEA JoltBeans provides a JavaBeans-compliant interface to BEA
Jolt. JoltBeans are Beans components that you can use in JavaBeans-enabl
integrated development environments (IDEs) to construct BEA Jolt clients. Jo
Beans consists of two sets of Java Beans: JoltBeans toolkit (a
JavaBeans-compliant interface to BEA Jolt that includes the JoltServiceBean
JoltSessionBean, and JoltUserEventBean) and Jolt GUI beans, which consis
Jolt-aware Abstract Window Toolkit (AWT) and Swing-based beans.

� Jolt Repository—A central repository contains definitions of BEA Tuxedo
services. These repository definitions are used by Jolt at run time to access B
Tuxedo services. You can export services to a Jolt client application or unexp
services by hiding the definitions from the Jolt client. Using the Repository
Editor, you can test new and existing BEA Tuxedo services independently of
client applications.

� Jolt Internet Relay—The Jolt Internet Relay is a component that routes
messages from a Jolt client to a Jolt Server Listener (JSL) or Jolt Server Han
(JSH). This component eliminates the need for the JSH and BEA Tuxedo to r
on the same machine as the Web server. The Jolt Internet Relay consists of t
Jolt Relay (JRLY) and the Jolt Relay Adapter (JRAD).
Using BEA Jolt 1-3

1 Introducing BEA Jolt

ust,
et.

.

at

 to
va.

ting

o

ort
y.

n
Key Features

With BEA Jolt, you can leverage existing BEA Tuxedo services and extend your
transaction environment to the corporate intranet or world-wide Internet. The key
feature of Jolt architecture is its simplicity. You can build, deploy, and maintain rob
modular, and scalable electronic commerce systems that operate over the Intern

BEA Jolt includes the following features:

� Java-based API for simplified development—With its Java-based API, BEA
Jolt simplifies application design by providing well-designed object interfaces
Jolt supports the Java Development Kit (JDK) 1.2 and is fully compatible with
Java threads. Jolt enables Java programmers to build graphical front-ends th
use the BEA Tuxedo application and transaction services without having to
understand detailed transactional semantics or rewrite existing BEA Tuxedo
applications.

� Pure Java client development—Using Jolt, you can build a pure Java client
that runs in any Java-enabled browser. Jolt automatically converts from Java
native BEA Tuxedo data types and buffers, and from BEA Tuxedo back to Ja
As a pure Java client, your applet or application does not need resident
client-side libraries or installation; thus, you can download client applications
from the network.

� Easy access to BEA Tuxedo services through Jolt Repository—The BEA Jolt
Repository facilitates Java application development by managing and presen
BEA Tuxedo service definitions that you can use in your Java client. A Jolt
Repository bulk loading utility lets you quickly integrate your existing BEA
Tuxedo services into the Jolt development environment. Jolt and BEA Tuxed
simplify network and application scalability, while encouraging the reuse of
application components.

� GUI-Based maintenance and distribution of BEA Tuxedo services—The Jolt
Repository Editor lets you manage BEA Tuxedo service definitions such as
service names, inputs and outputs. The Jolt Repository Editor provides supp
for different input and output names for services defined in the Jolt Repositor

� Encryption for secure transaction processing—BEA Jolt allows you to
encrypt data transmitted between Jolt clients and the JSL/JSH. Jolt encryptio
helps ensure secure Internet transaction processing.
1-4 Using BEA Jolt

How BEA Jolt Works

s
 a

nt

do
ing

re”
� Added security through Internet Relay—Network administrators can use the
BEA Jolt Internet Relay component to separate their Web server and BEA
Tuxedo application server. Web servers are generally considered insecure
because they often exist outside a corporate firewall. Using the Jolt Internet
Relay, you can locate your BEA Tuxedo server in a secure location or
environment on your network, yet still handle transactions from Jolt clients on
the Internet.

� Event Subscription Support—Jolt Event Subscription enables you to receive
event notifications from BEA Tuxedo services and BEA Tuxedo clients. Jolt
Event Subscription lets you subscribe to two types of BEA Tuxedo application
events:

z Unsolicited Event Notifications. A Jolt client can receive these notification
when a BEA Tuxedo client or service subscribes to unsolicited events and
BEA Tuxedo client issues a broadcast or a directly targeted message.

z Brokered Event Notifications. The Jolt client receives these notifications
through the BEA Tuxedo Event Broker. The Jolt client receives these
notifications only when it subscribes to an event and any BEA Tuxedo clie
or server posts an event.

How BEA Jolt Works

BEA Jolt connects Java clients to applications that are built using the BEA Tuxe
system. The BEA Tuxedo system provides a set of modular services, each offer
specific functionality related to the application as a whole.

The end-to-end view of the BEA Jolt architecture, as well as related BEA Tuxedo
components and their interactions, is illustrated in the figure “BEA Jolt Architectu
on page 1-6.
Using BEA Jolt 1-5

1 Introducing BEA Jolt

 such
ts
ssing

tion
 as a
he
 into
Using this figure as an example, a simple banking application might have services
as INQUIRY, WITHDRAW, TRANSFER, and DEPOSIT. Typically, service reques
are implemented in C or COBOL as a sequence of calls to a program library. Acce
a library from a native program means installing the library for the specific
combination of CPU and operating system release on the client machine, a situa
that Java was expressly designed to avoid. The Jolt Server implementation acts
proxy for the Jolt client, invoking the BEA Tuxedo service on behalf of the client. T
BEA Jolt Server accepts requests from the Jolt clients and maps those requests
BEA Tuxedo service requests.

Figure 1-1 BEA Jolt Architecture

BEA Jolt
Class Library

Jolt BEA Jolt
Connectivity
Module

%($ -ROW 6HUYHU

Java-enabled
Web Browser Application Server

Jolt Server Listener
Jolt Server Handler

BEA Tuxedo

Java Virtual Machine

HTML, Applet, and
Jolt Code

 Applet/Application

Access Services
Legacy

DEPOSIT Service

INQUIRY Service

%($ 7X[HGR

,QWHUQHW

CLIENT

BEA Jolt
Transaction Protocol..........

Repository Server

BEA Jolt
Repositor y

State Manager

Repository
Service
Definitions

databases

Legacy Host
Applications

SERVER
1-6 Using BEA Jolt

How BEA Jolt Works

n

the

f of
s

s
Jolt Servers

The following Jolt Server components act in concert to pass Jolt client transactio
processing requests to the BEA Tuxedo application.

� Jolt Server Listener (JSL)

The JSL handles the initial Jolt client connection, and assigns a Jolt client to
Jolt Server Handler.

� Jolt Server Handler (JSH)

The JSH manages network connectivity, executes service requests on behal
the client and translates BEA Tuxedo buffer data into the Jolt buffer, as well a
Jolt buffer data into the Tuxedo buffer.

� Jolt Repository Server (JREPSVR)

The JREPSVR retrieves Jolt service definitions from the Jolt Repository and
returns the service definitions to the JSH. The JREPSVR also updates or add
Jolt service definitions.

The following figure illustrates the Jolt Server and Jolt Repository components.

Figure 1-2 Jolt Server and Repository Components

Repository

BEA Tuxedo
/T

Jolt Server and Repository

Jolt Server
Handler
(JSH)

Jolt Server
Listener
(JSL)

Jolt Repository
Server

(JREPSVR)

BEA Tuxedo
Services

on
Application

Server
Using BEA Jolt 1-7

1 Introducing BEA Jolt

ation
led

s that
ory.
, you
 in
he

ts are
is no
ices

A
 the
Jolt Class Library

The BEA Jolt Class Library is a set of classes that you can use in your Java applic
or applet to make service requests to the BEA Tuxedo system from a Java-enab
client. You access BEA Tuxedo transaction services by using Jolt class objects.

When developing a Jolt client application, you only need to know about the classe
Jolt provides and the BEA Tuxedo services that are exported by the Jolt Reposit
Jolt hides the underlying application details. To use Jolt and the Jolt Class Library
do not need to understand: the underlying transactional semantics, the language
which the services were coded, buffer manipulation, the location of services, or t
names of databases used.

The Jolt API is a Java class library and has the benefits that Java provides: apple
downloaded dynamically and are only resident during runtime. As a result, there
need for client installation, administration, management, or version control. If serv
are changed, the client application notes the changes at the next call to the Jolt
Repository.

The following figure shows the flow of activity from a Jolt client to and from the BE
Tuxedo system. The call-out numbers correspond to descriptions of the activity in
table “Using the Jolt Class Library” on page 1-9.

Figure 1-3 Using the Jolt Class Library to access BEA Tuxedo Services

 4, 5

JAVA-Enabled

CLIENT

Jolt

Web Browser

1, 2

6

Web Server HOST

connection/request
reply

connection

request
Server

Run-Time

Application Server

BEA Tuxedo

BEA Jolt
Repository

contains BEA Tuxedo
service definitions

BEA Tuxedo Environment

Jolt
Class Library

Application
Code

JAVA VM 3 connection
1-8 Using BEA Jolt

How BEA Jolt Works

sing

ents.
antec

d

the

s
sed

the

e
va
The following table briefly describes the flow of activity involved in using the Jolt
Class Library to access BEA Tuxedo services, as shown in the previous figure “U
the Jolt Class Library to access BEA Tuxedo Services.”

JoltBeans

BEA Jolt now includes JoltBeans, Java beans components that you use in a
Java-enabled integrated development environment (IDE) to construct BEA Jolt cli
Using JoltBeans, and popular JavaBeans-enabled development tools such as Sym
Visual Café, you can graphically create client applications.

Table 1-1 Using the Jolt Class Library

Process Step Action

Connection 1 A Java-enabled Web browser uses HTTP protocol to downloa
an HTML page.

... 2 A Jolt applet is downloaded and executed in the Java Virtual
Machine on the client.

... 3 The first Java applet task is to open a separate connection to
Jolt Server.

Request 4 The Jolt client now knows the signature of the service (such a
name, parameters, types); can build a service request object ba
on Jolt class definitions; and make a method call.

... 5 The request is sent to the Jolt Server, which translates the
Java-based request into a BEA Tuxedo request and forwards
request to the BEA Tuxedo environment.

Reply 6 The BEA Tuxedo system processes the request and returns th
information to the Jolt Server, which translates it back to the Ja
applet.
Using BEA Jolt 1-9

1 Introducing BEA Jolt

 you
g

ion
ou
stener

he
Jolt

a
rver,

ace
w to

client
r and

 a

 data
s.

ice
BEA JoltBeans provide a JavaBeans-compliant interface to BEA Jolt that enables
to develop a fully functional BEA Jolt client without writing any code. You can dra
and drop JoltBeans from the component palette of a development tool and posit
them on the Java form (or forms) of the Jolt client application you are creating. Y
can populate the properties of the beans and graphically establish event source-li
relationships between various beans of the application or applet. Typically, the
development tool is used to generate the event hook-up code, or you can code t
hook-up manually. Client development with JoltBeans is integrated with the BEA
Repository, which provides easy access to available BEA Tuxedo functions.

ASP Connectivity for BEA Tuxedo

The Jolt ASP Connectivity for BEA Tuxedo Toolkit is an extension to the Jolt Jav
class library. The Toolkit allows the Jolt client class library to be used in a Web se
such as the Microsoft Internet Information Server (IIS), to provide an interface
between HTML clients or browsers, and BEA Tuxedo services.

The Jolt ASP Connectivity for BEA Tuxedo Toolkit provides an easy-to-use interf
for processing and generating dynamic HTML pages. You do not need to learn ho
write Common Gateway Interface (CGI) transactional programs to access BEA
Tuxedo services.

Jolt Server and Jolt Client Communication

The Jolt system handles all communication between the Jolt Server and the Jolt
using the BEA Jolt Protocol. The communication process between the Jolt Serve
the Jolt client applet or applications functions as follows:

1. BEA Tuxedo service requests and associated parameters are packaged into
message buffer and delivered over the network to the Jolt Server.

2. The Jolt Server unpacks the data from the message and performs necessary
conversions, such as numeric format conversions or character set conversion

3. The Jolt Server makes the appropriate service request to the application serv
requested by the Jolt client.
1-10 Using BEA Jolt

How BEA Jolt Works

tly

ults

ient

 as
 as a
sting
edo

s the

BEA
nt and

ces
ver,
ice
4. Once a service request enters the BEA Tuxedo system, it is executed in exac
the same manner as requests issued by any other BEA Tuxedo client.

5. The results are then returned to the BEA Jolt Server, which packages the res
and any error information into a message that is sent to the Jolt client.

6. The Jolt client then maps the contents of the message into the various Jolt cl
interface objects, completing the request.

Jolt Repository

The Jolt Repository is a database where BEA Tuxedo services are defined, such
name, number, type, parameter size, and permissions. The repository functions
central database of definitions for BEA Tuxedo services and permits new and exi
BEA Tuxedo services to be made available to Jolt client applications. A BEA Tux
application can have many services or service definitions, such as
ADD_CUSTOMER, GET_ACCOUNTBALANCE, CHANGE_LOCATION, and
GET_STATUS. All or only a few of these definitions can be exported to the Jolt
Repository. Within the Jolt Repository, the developer or system administrator use
Jolt Repository Editor to export these services to the Jolt client application.

All Repository services that are exported to one client are exported to all clients.
Tuxedo handles the cases where subsets of services may be needed for one clie
not others.

The following figure illustrates how the Jolt Repository brokers BEA Tuxedo servi
to multiple Jolt client applications. (Four BEA Tuxedo services are shown; howe
the WITHDRAW service is not defined in the repository and the TRANSFER serv
is defined but not exported.)
Using BEA Jolt 1-11

1 Introducing BEA Jolt

s.

 Jolt
 for

ble to
Figure 1-4 Distributing BEA Tuxedo Services through Jolt

Jolt Repository Editor

The Jolt Repository Editor is a Java-based GUI administration tool that gives the
application administrator access to individual BEA Tuxedo services. You use the
Editor to define, test, and export services to Jolt clients.

Note: The Jolt Repository Editor only controls services for Jolt client application
You cannot use it to make changes to the BEA Tuxedo application.

The Jolt Repository Editor lets you extend and distribute BEA Tuxedo services to
clients without having to modify many lines of code. You can modify parameters
BEA Tuxedo services, logically group BEA Tuxedo services into packages, and
remove services from created packages. You can also make the services availa
browser-based Jolt applets or Jolt applications by exporting the services.

Jolt Client
ApplicationBEA Tuxedo

Application
Jolt Repository

Services
INQUIRY

Services

WITHDRAW

Jolt Client
Application

...

DEPOSIT

TRANSFER

DEPOSIT

TRANSFER
INQUIRY

DEPOSIT, INQUIRY

DEPOSIT, INQUIRY
1-12 Using BEA Jolt

How BEA Jolt Works

 the

olt
k
 run

o
 the

RAD,
AD
Jolt Internet Relay

The Jolt Internet Relay is a component that routes messages from a Jolt client to
Jolt Server. The Jolt Internet Relay consists of the Jolt Relay (JRLY) and the Jolt
Relay Adapter (JRAD). JRLY is a stand-alone software component that routes J
messages to the Jolt Relay Adapter. Requiring only minimal configuration to wor
with Jolt clients, the Jolt Relay eliminates the need for the BEA Tuxedo system to
on the same machine as the Web server.

The JRAD is a BEA Tuxedo system server, but does not include any BEA Tuxed
services. It requires command-line arguments to allow it to work with the JSH and
BEA Tuxedo system. JRAD receives client requests from JRLY, and forwards the
request to the appropriate JSH. Replies from the JSH are forwarded back to the J
which sends the response back to the JRLY. A single Jolt Internet Relay (JRLY/JR
pair) handles multiple clients concurrently.
Using BEA Jolt 1-13

1 Introducing BEA Jolt

ing

ge

on
Creating a Jolt Client to Access BEA Tuxedo
Applications

The main steps for creating and deploying a Jolt client, are described in the follow
procedure and in the figure “Creating a Jolt Application” on page 1-15.

1. Make sure you have created a BEA Tuxedo system application.

For information about installing BEA Tuxedo and creating a BEA Tuxedo
application, refer to Installing the BEA Tuxedo System and Setting Up a BEA
Tuxedo Application.

2. Install the Jolt system.

Refer to Installing the BEA Tuxedo System.

3. Use the Bulk Loader utility to load Tuxedo services into the Jolt Repository
Database.

For information on using this utility, see “Bulk Loading Tuxedo Services.”

4. Configure and define services by using the Jolt Repository Editor.

For information about configuring the Jolt Repository Editor and making BEA
Tuxedo services available to Jolt, see “Using the Jolt Repository Editor” on pa
4-1.

5. Create a client application by using the Jolt Class Library.

The following documentation shows you how to program your client applicati
using the Jolt Class Library:

z "Using the Jolt Class Library"

z API Reference in Javadoc

6. Run the Jolt-based client applet or application.
1-14 Using BEA Jolt

Creating a Jolt Client to Access BEA Tuxedo Applications
Figure 1-5 Creating a Jolt Application

BEA Tuxedo Application Is
Installed

Design Your Application
Services

Write/Deploy Your Application and
BEA Tuxedo Services

Install Jolt

Export Services

Program Client by Using
Jolt Class Library

Make Jolt Classes Available
(for example, through the Web)

Have an Existing BEA Tuxedo
Application?

Creating a new BEA Tuxedo
Application?

Start BEA Tuxedo Application

Run Your Jolt Application

Decide Which BEA Tuxedo Services
to Make Available to Jolt

Use Repository Editor to Define
Services Available from Jolt

Test Each Service
Using BEA Jolt 1-15

1 Introducing BEA Jolt
1-16 Using BEA Jolt

CHAPTER

ith
ory
 that

ds
in one
 and
2 Bulk Loading BEA
Tuxedo Services

As a systems administrator, you may have an existing BEA Tuxedo application w
multiple BEA Tuxedo services. Manually creating these definitions in the reposit
database may take hours to complete. The Jolt Bulk Loader is a command utility
allows you to load multiple, previously defined BEA Tuxedo services to the Jolt
Repository database in a single step. Using the jbld program, the Bulk Loader utility
reads the BEA Tuxedo service definitions from the specified text file and bulk loa
them into the Jolt Repository. The services are loaded to the repository database
“bulk load.” After the services populate the Jolt Repository, you can create, edit,
group services with the Jolt Repository Editor.

“Bulk Loading BEA Tuxedo Services” covers the following topics:

� Using the Bulk Loader

� Syntax of the Bulk Loader Data Files

� Troubleshooting

� Sample Bulk Load Data
Using BEA Jolt 2-1

2 Bulk Loading BEA Tuxedo Services

the

Jolt

n the

Using the Bulk Loader

The jbld program is a Java application. Before running the jbld command, set the
CLASSPATH environment variable (or its equivalent) to point to the directory where
Jolt class directory (that is, jolt.jar and joltadmin.jar) is located. If the
CLASSPATH variable is not set, the Java Virtual Machine (JVM) cannot locate any
classes.

For security reasons, jbld does not use command-line arguments to specify user
authentication information (user password or application password). Depending o
server’s security level, jbld automatically prompts the user for passwords.

The Bulk Loader utility gets its input from command-line arguments and from the
input file.

Activating the Bulk Loader

1. Type the following at the prompt (with the correct options):

java bea.jolt.admin.jbld [-n][-p package][-u usrname][-r
usrrole] //host:port filename

2. Use the following table to correctly specify the command-line options.

Command Line Options

Table 2-1 Bulk Loader Command-line Options

Option Description

-u usrname Specifies the user name (default is your account
name). (Mandatory if required by security.)

-r usrrole Specifies the user role (default is admin). (Mandatory
if required by security.)

-n Validates input file against the current repository; no
updates are made to the repository. (Optional.)
2-2 Using BEA Jolt

Using the Bulk Loader

ers.

ther

 from

bulk
ices
 4-1
The Bulk Load File

The bulk load file is a text file that defines services and their associated paramet
The Bulk Loader loads the services defined in the bulk loader file into the Jolt
Repository using the package name “BULKPKG” by default. The -p command
overrides the default and you can give the package any name you choose. If ano
load is performed from a bulk loader file with the same -p option, all the services in
the original package are deleted and a new package is created with the services
the new bulk loader file.

If a service exists in a package other than the package you name that uses the -p
option, the Bulk Loader reports the conflict and does not load a service from the
loader file into the repository. Use the Repository Editor to remove duplicate serv
and load the bulk loader file again. See “Using the Jolt Repository Editor” on page
for additional information.

-p package Repository package name (default: BULKPKG)

//host:port Specifies the JRLY or JSL address (host name and IP
port number). (Mandatory)

filename Specifies the file containing the service definitions.
(Mandatory)

Table 2-1 Bulk Loader Command-line Options (Continued)

Option Description
Using BEA Jolt 2-3

2 Bulk Loading BEA Tuxedo Services

 set
 a

rds,
Syntax of the Bulk Loader Data Files

Each service definition consists of service properties and parameters that have a
number of parameter properties. Each property is represented by a keyword and
value.

Keywords are divided into two levels:

� Service-level

� Parameter-level

Guidelines for Using Keywords

The jbld program reads the service definitions from a text file. To use the keywo
observe the guidelines in the following table.

Table 2-2 Guidelines for Using Keywords

Guideline Example

Each keyword must be followed
by an equal sign (=) and the
value.

Correct: type=string

Incorrect: type

Only one keyword is allowed on
each line.

Correct: type=string

Incorrect: type=string access=out

Any lines not having an equal
sign (=) are ignored.

Correct: type=string

Incorrect: type string

Certain keywords only accept a
well-defined set of values.

The keyword access accepts only these values: in,
out, inout, noaccess
2-4 Using BEA Jolt

Syntax of the Bulk Loader Data Files

nsfer

irst
.

ith the
Keyword Order in the Bulk Loader Data File

Keyword order must be maintained within the data files to ensure an error-free tra
during the bulk load.

The first keyword definition in the bulk loader data text file must be the initial
service=<NAME> keyword definition (shown in the listing “Keyword Hierarchical
Order in a Data File”). Following the service=<NAME> keyword, all remaining
service keywords that apply to the named service must be specified before the f
param=<NAME> definition. These remaining service keywords can be in any order

All parameters associated with the service must be specified. Following each
param=<NAME> keywords are all the parameter keywords that apply to the named
parameter until the next occurrence of a parameter definition. These remaining
parameter keywords can be in any order. When all the parameters associated w
first service are defined, specify a new service=<NAME> keyword definition.

The input file can contain
multiple service definitions.

service=INQUIRY
<service keywords and values>
service=DEPOSIT
<service keywords and values>
service=WITHDRAWAL
<service keywords and values>
service=TRANSFER
<service keywords and values>

Each service definition consists
of multiple keywords and
values.

service=DEPOSIT
export=true
inbuf=VIEW32
outbuf=VIEW32
inview=INVIEW
outview=OUTVIEW

Table 2-2 Guidelines for Using Keywords

Guideline Example
Using BEA Jolt 2-5

2 Bulk Loading BEA Tuxedo Services

 The

 and
Listing 2-1 Keyword Hierarchical Order in a Data File

service =<NAME>
<service keyword>=<value>
<service keyword>=<value>
<service keyword>=<value>
param =<NAME>
<parameter keyword>=<value>
<parameter keyword>=<value>
param =<NAME>
<parameter keyword>=<value>
<parameter keyword>=<value>

Using Service-Level Keywords and Values

A service definition must begin with the service=<NAME> keyword. Services using
CARRAY or STRING buffer types should only have one parameter in the service.
recommended parameter name for a service that uses a CARRAY buffer type is CARRAY
with carray as the data type. For a service that uses a STRING buffer type, the
recommended parameter name is STRING with string as the data type.

The following table contains the guidelines for use of the service-level keywords
acceptable values for each.

Table 2-3 Service-Level Keywords and Values

Keyword Value

service Any BEA Tuxedo service name

export true or false (default is false)
2-6 Using BEA Jolt

Syntax of the Bulk Loader Data Files
inbuf/outbuf Select one of these buffer types:

FML
FML32
VIEW
VIEW32
STRING
CARRAY

X_OCTET

X_COMMON

X_C_TYPE

inview Any view name for input parameters

(This keyword is optional only if one of the
following buffer types is used: VIEW, VIEW32,
X_COMMON, X_C_TYPE.)

outview Any view name for output parameters (optional)

Table 2-3 Service-Level Keywords and Values

Keyword Value
Using BEA Jolt 2-7

2 Bulk Loading BEA Tuxedo Services

rds
Using Parameter-Level Keywords and Values

A parameter begins with the param=<NAME> keyword followed by a number of
parameter keywords. It ends when another param or service keyword, or end-of-file
is encountered. The parameters can be in any order after the param=<NAME> keyword.

The following table contains the guidelines for use of the parameter-level keywo
and acceptable values for each.

Table 2-4 Parameter-Level Keywords and Values

Keyword Values

param Any parameter name

type byte
short
integer
float
double
string
carray

access in
out
inout
noaccess

count Maximum number of occurrences (default is 1). The
value for unlimited occurrences is 0. Used only by the
Repository Editor to format test screens.
2-8 Using BEA Jolt

Troubleshooting

le.
tem

in

ata
Troubleshooting

If you encounter problems using the Bulk Loader utility, refer to the following tab
For a complete list of Bulk Loader utility error messages and solutions, see “Sys
Messages.”

Table 2-5 Bulk Loader Troubleshooting Table

If . . . Then . . .

The data file is not found Check to ensure that the path is correct

The keyword is invalid Check to ensure that the keyword is valid for the
package, service, or parameter

The value of the keyword is null Type a value for the keyword

The value is invalid Check to ensure that the value of a parameter is with
the allocated range for that parameter

The data type is invalid Check to ensure that the parameter is using a valid d
type
Using BEA Jolt 2-9

2 Bulk Loading BEA Tuxedo Services

IX
Sample Bulk Load Data

The following listing contains a sample data file in the correct format using the UN
command cat servicefile . This sample loads TRANSFER, LOGIN, and PAYROLL
service definitions to the BULKPKG.

Listing 2-2 Sample Bulk Load Data

service=TRANSFER
export=true
inbuf=FML
outbuf=FML
param=ACCOUNT_ID
type=integer
access=in
count=2
param=SAMOUNT
type=string
access=in
param=SBALANCE
type=string
access=out
count=2
param=STATLIN
type=string
access=out

service=LOGIN
inbuf=VIEW
inview=LOGINS
outview=LOGINR
export=true
param=user
type=string
access=in
param=passwd
type=string
access=in
param=token
type=integer
access=out
2-10 Using BEA Jolt

Sample Bulk Load Data
service=PAYROLL
inbuf=FML
outbuf=FML
param=EMPLOYEE_NUM
type=integer
access=in
param=SALARY
type=float
access=inout
param=HIRE_DATE
type=string
access=inout
Using BEA Jolt 2-11

2 Bulk Loading BEA Tuxedo Services
2-12 Using BEA Jolt

CHAPTER

 is

forms
3 Configuring the BEA
Jolt System

The following sections describe how to configure BEA Jolt. “Quick Configuration”
for users who are familiar with Jolt. The other sections provide more detailed
information. It is presumed that readers are system administrators or application
developers who have experience with the operating systems and workstation plat
on which they are configuring BEA Jolt.

“Configuring the BEA Jolt System” covers the following topics:

� Quick Configuration

� Jolt Background Information

� Jolt Relay

� Jolt Relay Adapter

� Jolt Repository

� Event Subscription

� BEA Tuxedo Background Information

� Sample Applications in BEA Jolt Online Resources
Using BEA Jolt 3-1

3 Configuring the BEA Jolt System

Jolt,

er
Quick Configuration

If you are already familiar with BEA Jolt and BEA Tuxedo, “Quick Configuration”
provides efficient guidelines for the configuration procedure. If you have not used
refer to “Jolt Background Information” on page 3-13 before you begin any
configuration procedures.

Quick Configuration contains the information you need to configure the Jolt Serv
Listener (JSL) on BEA Tuxedo and covers the following procedures:

z Editing the UBBCONFIG File

z Configuring the Jolt Repository

z Initializing Services That Use BEA Tuxedo and the Repository Editor

z Logging on to the Repository Editor

z Exiting the Repository Editor

z Configuring the BEA Tuxedo TMUSREVT Server for Event Subscription

z Configuring Jolt Relay

Editing the UBBCONFIG File

1. In the MACHINES section, specify MAXWSCLIENTS=number (Required).

Note: If MAXWSCLIENTS is not set, JSL does not boot.

2. In the GROUPS section, set GROUPNAME required parameters [optional

parameters].

3. Set the SERVERS section (Required).

Lines within this section have the form:

JSL required parameters [optional parameters]

where JSL specifies the file (string_value) to be executed by tmboot(1) .
3-2 Using BEA Jolt

Quick Configuration

g

4. Set the required parameters for JSL.

Required parameters are:

SVRGRP=string_value

SRVID=number

CLOPT=”-A ...-n ...// host port”

5. Set other parameters for JSL.

You can use the following parameters with the JSL, but you need to
understand how doing so affects your application. Refer to “Parameters
Usable With JSL” on page 3-43 for additional information.

MAX # of JSHs

MIN # of JSHs

Configuring the Jolt Repository

In the Groups Section:

1. Specify the same identifiers given as the value of the LMID parameter in the
MACHINES section.

2. Specify the value of the GRPNO, between 1 and 30,000.

In the Servers Section:

The BEA Jolt Repository Server (JREPSVR) contains services for accessing and editin
the Repository. Multiple JREPSVR instances share repository information through a
shared file. Include JREPSVR in the SERVERS section of the UBBCONFIG file.

1. Indicate a new server identification with the SRVID parameter.

2. Specify the -W flag for one (and only one) JREPSVR to ensure that you can edit
the repository. (Without this flag, the repository is read-only.)

3. Type the -P flag to specify the path of the repository file. (An error message is
displayed in the BEA Tuxedo ULOG file if the argument for the -P flag is not
entered.)
Using BEA Jolt 3-3

3 Configuring the BEA Jolt System

ake

f the
4. Add the file pathname of the Repository file (for example, /app/jrepository).

5. Boot the BEA Tuxedo system by using the tmloadcf and tmboot commands.

Initializing Services That Use BEA Tuxedo and the
Repository Editor

Define the BEA Tuxedo services that use BEA Tuxedo and BEA Jolt in order to m
the Jolt services available to the client.

1. Build the BEA Tuxedo server that contains the service.

2. Access the BEA Jolt Repository Editor.

Getting Started with the Repository Editor

Before you start the Repository Editor, make certain that you have installed all o
necessary BEA Jolt software.

Note: You cannot use the Repository Editor until JREPSVR and JSL are running.

To use the Repository Editor, you must:

1. Start the Repository Editor.

You can start the Repository Editor from either the JavaSoft appletviewer or
from your Web browser. Both of these methods are detailed in the following
sections.

2. Log on to the Repository Editor.
3-4 Using BEA Jolt

Quick Configuration

b
Starting the Repository Editor Using the Java Applet Viewer

1. Set the CLASSPATH to include the Jolt class directory or the directory where the
*.jar files reside.

2. If loading the applet from a local disk, type the following at the URL location:

appletviewer full-pathname /RE.html

If loading the applet from the Web server, type the following at the URL
location:

http:// www.server / URL path /RE.html

3. Press Enter.

The window is displayed as shown in the figure “BEA Jolt Repository Editor
Logon Window” on page 3-7.

Starting the Repository Editor Using Your Web Browser

Use one of the following procedures to start the Repository Editor from your We
browser.

To start the Repository Editor from a local file:

1. Set the CLASSPATH to include the Jolt class directory.

2. Type the following:

file: full-pathname /RE.html

3. Press Enter.

The window is displayed as shown in the figure “BEA Jolt Repository Editor
Logon Window” on page 3-7.
Using BEA Jolt 3-5

3 Configuring the BEA Jolt System

 as

A

ing

used

.

To start from a Web server:

1. Ensure that the CLASSPATH does not include the Jolt class directory.

2. Remove the Jolt clases from CLASSPATH.

3. Type the following:

http:// www.server / URL path /RE.html

Note: If jolt.jar and admin.jar are in the same directory as RE.html , the
Web server provides the classes. If they are not in the same directory
RE.html , modify the applet code base.

4. Press Enter.

The Repository Editor Logon window is displayed as shown in the figure “BE
Jolt Repository Editor Logon Window” on page 3-7.

Logging on to the Repository Editor

After starting the Jolt Repository Editor, follow these directions to log on:

Note: The “BEA Jolt Repository Editor Logon Window” on page 3-7 must be
displayed before you log on. Refer to this figure as you perform the follow
procedure.

1. In the logon window, type the name of the Server machine designated as the
“access point” to the BEA Tuxedo application and press Tab.

2. Type the Port Number and press Enter.

The system validates the server and port information.

Note: Unless you are logging on through Jolt Relay, the same port number is
to configure the Jolt Listener. Refer to your UBBCONFIG file for additional
information.

3. Type the BEA Tuxedo Application Password and press Enter.

Depending upon the authentication level, complete Steps 5 and 6 as required

4. Type the BEA Tuxedo User Name and press Tab.
3-6 Using BEA Jolt

Quick Configuration

ils
5. Type the BEA Tuxedo User Password and press Enter.

The Packages and Services command buttons are enabled.

Note: The BEA Jolt 1.2.1 Repository Editor uses the hardcoded joltadmin for
the User Role value.

Figure 3-1 BEA Jolt Repository Editor Logon Window

The following table, “Repository Editor Logon Window Description,” contains deta
about each of the fields and buttons.
Using BEA Jolt 3-7

3 Configuring the BEA Jolt System

Repository Editor Logon Window Description

Table 3-1 Repository Editor Logon Window Description

Option Description

Server The server name.

Port Number The port number in decimal value.

Note: After the Server Name and Port Number are entered,
the User Name and Password fields are activated.
Activation is based on the authentication level of the
BEA Tuxedo application.

User Role BEA Tuxedo user role. Required only if BEA Tuxedo
authentication level is USER_AUTH or higher.

Application
Password

BEA Tuxedo administrative password text entry.

User Name BEA Tuxedo user identification text entry. The first
character must be an alpha character.

User Password BEA Tuxedo password text entry.

Packages Accesses the Packages window. (Enabled after the logon.)

Services Accesses the Services window. (Enabled after the logon.)

Log Off Terminates the connection with the server.
3-8 Using BEA Jolt

Quick Configuration

wn in

l
Exiting the Repository Editor

Exit the Repository Editor when you finish adding, editing, testing, or deleting
packages, services, and parameters. Prior to exit, the window is displayed as sho
the figure “BEA Jolt Repository Editor Logon Window Prior to Exit” on page 3-9.

Figure 3-2 BEA Jolt Repository Editor Logon Window Prior to Exit
.

Note that only the Packages, Services, and Log Off command buttons are enabled. Al
of the text entry fields are disabled.
Using BEA Jolt 3-9

3 Configuring the BEA Jolt System

ices
Follow the steps below to exit the Repository Editor.

1. Click Back in a previous window to return to the Repository Editor Logon
window.

2. Click Log Off to terminate the connection with the server.

The Repository Editor Logon window shows disabled fields.

3. Click Close from your browser menu to close the window.

Configuring the BEA Tuxedo TMUSREVT Server for Event
Subscription

Jolt Event Subscription receives event notifications from either BEA Tuxedo serv
or other BEA Tuxedo clients. Configure the BEA Tuxedo TMUSREVT server and
modify the application UBBCONFIG file. The following listing, “TMUSREVT
Parameters in the UBBCONFIG File,” shows the relevant TMUSREVT parameters in the
UBBCONFIG file:

Listing 3-1 TMUSREVT Parameters in the UBBCONFIG File

TMUSREVT SRVGRP=EVBGRP1 SRVID=40 GRACE=3600

 ENVFILE="/usr/tuxedo/bankapp/TMUSREVT.ENV"

 CLOPT="-e tmusrevt.out -o tmusrevt.out -A --

 -f /usr/tuxedo/bankapp/tmusrevt.dat"

 SEQUENCE=11

In the SERVERS sections of the UBBCONFIG file, specify the SRVGRP and SRVID.
3-10 Using BEA Jolt

Quick Configuration

sage

of
Configuring Jolt Relay

On UNIX

Start the JRLY process on UNIX by typing the following command at the system
prompt:

jrly -f <config_file_path>

If the configuration file does not exist or cannot be opened, the JRLY writes a mes
to standard error, attempts to log the startup failure in the error log, then exits.

On UNIX and NT

The format of the configuration file is a TAG=VALUE format. Blank lines or
lines starting with a “#” are ignored. The following listing, “Formal
Configuration File Specifications,” is an example of the formal specifications
the configuration file.

Listing 3-2 Formal Configuration File Specifications

LOGDIR=<LOG_DIRECTORY_PATH>
ACCESS_LOG=<ACCESS_FILE_NAME in LOGDIR>
ERROR_LOG=<ERROR_FILE_NAME in LOGDIR>
LISTEN=<IP:Port combination where JRLY will accept
comma-separated connections>
CONNECT=<IP:Port1, IP:Port2...IP:PortN:Port(List of IP:Port
combinations associated with JRADs: can be 1...N)>
Using BEA Jolt 3-11

3 Configuring the BEA Jolt System

rk

rvice

tem.
\). If
On NT only (optional):

SOCKETTIMEOUT is the time in seconds for which JRLY NT service blocks for netwo
activity (new connections, data to be read, closed connections). SOCKETTIMEOUT also
affects the Service Control Manager (SCM). When the SCM requests the NT se
to stop, the SCM must wait for at least SOCKETTIMEOUT seconds before quitting.

Note: The format for directory and file names is determined by the operating sys
UNIX systems use the forward slash (/). NT systems use the backslash (
any files specified in LOGDIR, ACCESS_LOG, or ERROR_LOG cannot be opened
for writing, JRLY prints an error message on stderr and exits.

The formats for the host names and the port numbers are shown in the
following table

.

 Start the Jolt Relay Adapter (JRAD)

1. Type tmloadcf -y <UBBFILE>.

2. Type tmboot.

Table 3-2 Host Name and Port Number Formats

Host Name/Port
Number

Description

//Hostname:Port Hostname is a string; Port is a decimal number.

IP:Port
IP is a dotted notation IP address; Port is a decimal
number.
3-12 Using BEA Jolt

Jolt Background Information

edo

er
with
em.
iption

Configure the JRAD

A single JRAD process can only be connected to a single JRLY. A JRAD can be
configured to communicate with only one JSL and its associated JSH. However,
multiple JRADs can be configured to communicate with one JSL. The CLOPT
parameter for BEA Tuxedo services must be included in the UBBCONFIG file.

1. Type -l hexadecimal format (The JSL port to which the JRLY connects on
behalf of the client.)

2. Type -c hexadecimal format (The address of the corresponding JSL to
which JRAD connects.)

Note: The format is 0x0002PPPNNN, or, in dot notation, 100.100.10.100.

3. Configure networked components.

Jolt is now configured.

Jolt Background Information

This section contains additional information on Jolt components.

Jolt Server

The Jolt Server is a listener that supports one or more handlers.

Jolt Server Listener (JSL). The JSL is configured to support clients on an IP/port
combination.The JSL works with the Jolt Server Handler (JSH) to provide client
connectivity to the backend of the BEA Jolt system. The JSL runs as a BEA Tux
server.

Jolt Server Handler (JSH). The JSH is a program that runs on a BEA Tuxedo serv
machine to provide a network connection point for remote clients. The JSH works
the JSL to provide client connectivity residing on the backend of the BEA Jolt syst
More than one JSH can be available to the JSL, up to 32,767. (Refer to the descr
of the -M command-line option in “JSL Command-Line Options” on page 3-16 for
additional information.)
Using BEA Jolt 3-13

3 Configuring the BEA Jolt System

 to

e

and:

e is
System Administrator Responsibilities. The system administrator’s responsibilities
for the server components of BEA Jolt include:

� Determining the JSL network address.

� Determining the number of Jolt clients to be serviced. (The number of clients
be serviced is limited by MAXWSCLIENTS in UBB.)

� Determining the minimum and maximum number of JSHs.

Starting the JSL

To start all administrative and server processes in the UBBCONFIG file:

1. Type tmloadcf.

This command parses the configuration file and loads the binary version of th
configuration file.

2. Type tmboot -y .

This command activates the application specified in the configuration file.

If you do not enter any options, a prompt asks you if you really want to
overwrite your TUXCONFIG file.

See Administering a BEA Tuxedo Application at Run Time or the BEA Tuxedo
Command Reference for information about tmloadcf and tmboot .

Shutting Down the JSL

All shutdown requests to the Jolt servers are initiated by the BEA Tuxedo comm

 tmshutdown -y

During shutdown:

� No new client connections are accepted.

� All current client connections are terminated. BEA Tuxedo rolls back in-flight
transactions. Each client receives an error message indicating that the servic
unavailable.
3-14 Using BEA Jolt

Jolt Background Information

ting

s

g
st be
Restarting the JSL

BEA Tuxedo monitors the JSL and restarts it in the event of a failure. When BEA
Tuxedo restarts the listener process, the following events occur:

� Clients attempting a listener connection must try to reconnect. Clients attemp
a handler connection receive a timeout or a time delay.

� Clients currently connected to a handler are disconnected (JSH exits when it
corresponding JSL exits normally).

Configuring the JSL

The Jolt Server Listener (JSL) is a BEA Tuxedo server responsible for distributin
connection requests from Jolt to the Jolt Server Handler (JSH). BEA Tuxedo mu
running on the host machine where the JSL and JREPSVR are located.
Using BEA Jolt 3-15

3 Configuring the BEA Jolt System

faults
.

JSL Command-Line Options

The server may need to obtain information from the command line. The CLOPT
parameter allows you to specify command-line options that can change some de
in the server. The JSL command-line options are described in the following table

Table 3-3 JSL Command-Line Options

Option Description

[-c
compression_threshold]

Enables application data sent between a Jolt client and a Jolt
server (JSH) to be compressed during transmission over the
network.

compression_threshold is a number that you specify
between 0 and 2,147,483,647 bytes. Any messages that are
larger than the specified compression threshold are
compressed before transmission.

The default is no compression; that is, if no compression
threshold is specified, BEA Jolt does not compress messages
on client or server.

Note: The previous -c connection-mode option has
been replaced with the -j connection-mode
option.

[-d device_name] The device for platforms using the Transport Layer
Interface. There is no default. Required. (Optional for
sockets)
3-16 Using BEA Jolt

Jolt Background Information
Option Description

[-H external netaddr] external netaddr is the network address Jolt clients use
to connect to the application. The JSL process uses this
address to listen for clients attempting to connect at this
address. If the address is 0x0002MMMMdddddddd and JSH
network address is 0x00021111ffffffff , the known
network address is 0x00021111dddd dddd . If the
address starts with "//" network address, the type is IP based
and the TCP/IP port number of JSH network address is
copied into the address to form the combined network
address.

The IP address must be specified in the following form:

-H //external ip address:MMMM

(Optional for JSL in BEA Tuxedo 6.4 and 6.5)

[-I init-timeout] The time (in seconds) that a Jolt client is allowed to complete
initialization through the JSH before it is timed out by the
JSL. Default is 60 seconds. (Optional)

[-j connection_mode] The following connection modes from clients are allowed:

RETAINED—The network connection is retained for the
full duration of a session.

RECONNECT—The client establishes and brings down a
connection when an idle timeout is reached, reconnecting for
multiple requests within a session.

ANY—The server allows a client to request either a
RETAINED or RECONNECT type of connection for a
session.

The default is ANY. That is, if no option is specified, the
server allows a client to request either a RETAINED or
RECONNECT type of connection. (Optional)

Note: This option has been changed in this release from
-c [connection_mode] to -j
[connection_mode] .

[-m minh] The minimum number of JSHs that are available in
conjunction with the JSL at one time. The range of this
parameter is from 0 through 255. Default is 0. (Optional)

Table 3-3 JSL Command-Line Options (Continued)
Using BEA Jolt 3-17

3 Configuring the BEA Jolt System
Option Description

[-M maxh] The maximum number of JSHs that are available in
conjunction with the JSL at one time. If this option is not
specified, the parameter defaults to MAXWSCLIENTS
divided by the rounded-up -x multiplexing factor (MPX). If
specified, the -M option takes a value from 1 to 32,767.
(Optional)

[-n netaddr] Network address used by the BEA Jolt listener with BEA
Tuxedo 6.4 and 6.5, and WLE 4.2.

TCP/IP addresses may be specified in the following formats:

"// host.name:port_number "

"// #.#.#.#:port_number "

In the first format, the domain finds an address for
hostname by using the local name resolution facilities
(usually DNS). hostname must be the local machine, and
the local name resolution facilities must unambiguously
resolve hostname to the address of the local machine.

In the second example, the “#.#.#.#” is in dotted decimal
format. In dotted decimal format, each # should be a number
from 0 to 255. This dotted decimal number represents the IP
address of the local machine.In both of the above formats,
port_number is the TCP port number at which the domain
process listens for incoming requests. port_number can
either be a number between 0 and 65535 or a name.

[-T Client-timeout] The time (in minutes) allowed for a client to stay idle. If a
client does not make any requests during this time, the JSH
disconnects the client and the session is terminated. If an
argument is not supplied, the session does not timeout.

When the -j ANY or -j RECONNECT option is used,
always specify -T with an idle timeout value. If -T is not
specified and the connection is suspended, JSH does not
automatically terminate the session. The session never
terminates if a client abnormally ends the session.

If a parameter is not specified, the default is no time out.
(Optional)

[-w JSH] This command line option indicates the Jolt Server Handler.
Default is JSH. (Optional)

Table 3-3 JSL Command-Line Options (Continued)
3-18 Using BEA Jolt

Jolt Background Information

L/JSH
ing
 with

ts
al
Security and Encryption

Authentication and key exchange data are transmitted between Jolt clients and the JS
using the Diffie-Hellman key exchange. All subsequent exchanges are encrypted us
RC4 encryption. International packages use a DES key exchange and a 128-bit key,
56 bits encrypted and 88 bits exposed.

Programs using the 128-bit encryption cannot be exported outside the United States
without proper approval from the United States government. Customers with intrane
extending beyond the United States cannot use this mode of encryption if any intern
clients are outside the United States.

Option Description

[-x mpx-factor] This is the number of clients that one JSH can service. Use
this parameter to control the degree of multiplexing within
each JSH process. If specified, this parameter takes a value
from 1 to 32767 for UNIX and NT. Default value is 10.
(Optional)

[-Z 0|56|128] When a network link between a Jolt client and the JSH is
being established, this option allows encryption up to the
specified level.The initial 0 means no DH nodes, no RC4.
The numbers 56 and 128 specify the length (in bits) of the
encryption key. The DH key exchange is needed to generate
keys. Session keys are not transmitted over the network. The
default value is 0.

Table 3-3 JSL Command-Line Options (Continued)
Using BEA Jolt 3-19

3 Configuring the BEA Jolt System

from
do to
cure).
net

nts

 can
y to
Jolt Relay

The combination of the Jolt Relay (JRLY) and its associated Jolt Relay Adapter
(JRAD) is typically referred to as the Internet Relay. Jolt Relay routes messages
a Jolt client to a JSL or JSH. This eliminates the need for the JSH and BEA Tuxe
run on the same machine as the Web server (which is generally considered inse
The Jolt Relay consists of the two components illustrated in the figure “Jolt Inter
Relay Path” on page 3-21.

� Jolt Relay (JRLY)

The JRLY is the Jolt Relay front-end. It is not a BEA Tuxedo client or server
and is not dependent on the BEA Tuxedo version. It is a stand-alone software
component. It requires only minimal configuration to allow it to work with Jolt
clients.

� Jolt Relay Adapter (JRAD)

The JRAD is the Jolt Relay back-end. It is a BEA Tuxedo system server, but
does not include any BEA Tuxedo services. It requires command line argume
to allow it to work with the JSL and the BEA Tuxedo system.

Note: The Jolt Relay is transparent to Jolt clients and Jolt servers. A Jolt server
simultaneously connect to intranet clients directly, or through the Jolt Rela
Internet clients.
3-20 Using BEA Jolt

Jolt Relay

n the
o the
Figure 3-3 Jolt Internet Relay Path

This figure illustrates how a browser connects to the Web server software and
downloads the BEA Jolt applets. The Jolt applet or client connects to the JRLY o
Web server machine. The JRLY forwards the Jolt messages across the firewall t
JRAD. The JRAD selectively forwards messages to the JSL or appropriate JSH.

Jolt Relay Failover

There are two points of failovers associated with JRLY:

� Jolt Client to JRLY connection failover

� JRLY to JRAD connection failover

Firewall

JRAD

JSL

JSH

Web server

JRLY

Insecure
environment

Secure
environment

client
BEA Tuxedo

software

Browser
Using BEA Jolt 3-21

3 Configuring the BEA Jolt System

n
d in
le

n file.
u to

acts,
That

e.

s to

rted.
nect
 the
file.
Jolt Client to JRLY Connection Failover

If one server address does not result in a successful session, the failover functio
allows the Jolt Client API to connect to the next free (unconnected) JRLY specifie
the argument list of the API. To enable this failover in an NT environment, multip
NT JRLY services can be executed. In a non-NT environment, multiple JRLY
processes are executed. Each JRLY (service or process) has its own configuratio
This type of failover is handled by Jolt 1.2.1 client API new features that allow yo
specify a list of Jolt server addresses (JSL or JRLY).

JRLY to JRAD Adapter Connection Failover

Each JRLY configuration file has a list of JRAD addresses. When a JRAD is
unavailable, JRLY tries to connect to the next free (unconnected) JRAD, in a
round-robin fashion. Two JRLYs cannot connect to the same JRAD. Given these f
you can make the connection efficient by giving different JRAD address orders.
is, if you make one extra JRAD available on standby, the first JRLY that loses its
JRAD connects to the extra JRAD. This type of failover is handled by JRLY alon

If any of the listed JRADs are not executing when JRLY is started, the initial
connection fails. When a Jolt client tries to connect to JRLY, the JRLY again trie
connect to the JRAD.

To accommodate the failover functionality, you have to boot multiple JRADs by
configuring them in the UBBCONFIG file.

Jolt Relay Process

The JRLY (front-end relay) process can be started before or after the JRAD is sta
If the JRAD is not available when the JRLY is started, the JRLY attempts to con
to the JRAD when it receives a client request. If JRLY is still unable to connect to
JRAD, the client is denied access and a warning is written to the JRLY error log
3-22 Using BEA Jolt

Jolt Relay

rror
lay

to log

on of
Starting the JRLY on UNIX

Start the JRLY process by typing the command name at a system prompt.

jrly -f config_file_path

If the configuration file does not exist or cannot be opened, the JRLY prints an e
message. Refer to Appendix B, “System Messages,” for details about the Jolt Re
error messages.

If the JRLY is unable to start, it writes a message to standard error and attempts
the startup failure in the error log, then exits.

JRLY Command-Line Options for NT

This section describes command-line options that are available from the NT versi
JRLY.exe . Note the following:

� JRLY as an NT service is available only for Microsoft Windows NT.

� When the display suffix is optional (when [display_suffix] is shown), all
operations are performed on the default JRLY NT service instance.

� For manually installed, additional JRLY services, a suffix (any string) is
required. Also, you can install the default service manually by omitting the
optional string suffix.

� Each instance of JRLY NT service uses the same binary executable file.

� A new process is started for each instance of JRLY NT service.

� The syntax for these options is: jrly -command.

� Text specified within brackets ([]) is optional.

� All commands in the following list of command options except -start and
-stop require that you have write access to Windows NT Registry.

� The -start and -stop commands require that you have NT Service control
access. These requirements are based on NT user restrictions.
Using BEA Jolt 3-23

3 Configuring the BEA Jolt System

The JRLY command line options are detailed in the following table “JRLY
Command-Line Options for NT.”

Table 3-4 JRLY Command-Line Options for NT

Option Description

jrly -install
[display_suffix]

Install jrly as an NT service.

Example 1:

jrly -install

In this example, the default JRLY is installed as an NT
Service and is displayed in the Service Control Manager
(SCM) as Jolt Relay.

Example 2:

jrly -install MASTER

In this case, an instance of JRLY is installed as an NT
Service and is displayed in the SCM as Jolt
Relay_MASTER. The suffix, MASTER, does not have
any significance; it is only used to uniquely identify
various instances of JRLYs.

At this point, this instance of JRLY is not ready to
start. It must be assigned the configuration file (see
the set command discussion) that specifies the
listening TCP/IP port, JSH connection TCP/IP port,
log files, and sockettimeout. This file should not be
shared between various instances of JRLY.
3-24 Using BEA Jolt

Jolt Relay

jrly -remove
[display_suffix] |
-all

Remove one or all instances of JRLY from NT service.

If [display_suffix] is specified, this command
removes the specified JRLY service.

If [display_suffix] is not specified, this command
removes the default JRLY from being an NT Service.

If the -all option is specified, all JRLY NT Services are
removed. Related NT registry entries under

HKEY_LOCAL_MACHINE\System\CurrentControl
Set\Services

and

HKEY_LOCAL_MACHINE\Software\BEA\Jolt\1.2
.1

are removed.

jrly -set
[-d display_suffix] -f
config_file

Update the registry with the full path of a new
configuration file.

Example 1:
jrly -set -f
c:\tux71\udataobj\jolt\jrly.con

In this example, the default JRLY NT Service (Jolt Relay)
is assigned a configuration file called jrly.con that is
located in: c:\tux71\udataobj\jolt directory.

Example 2:

jrly -set -d MASTER -f
c:\tux71\udataobj\jolt\master.con

Here, the JRLY NT Service instance, called Jolt
Relay_MASTER is assigned a configuration file called
jrly_master.con that is located in
c:\tux71\udataobj\jolt directory.

jrly -manual
[display_suffix]

Set the start/stop to manual.

This command sets the specified JRLY instance to be
manually controlled, using either the command-line
options or the SCM.

Table 3-4 JRLY Command-Line Options for NT (Continued)

Option Description
Using BEA Jolt 3-25

3 Configuring the BEA Jolt System

d

or

r
JRLY Command-Line Option for UNIX

There is only one JRLY command-line option for UNIX:

jrly -auto
[display_suffix]

Set the start/stop to automatic.

This command sets all the operations for specified NT
Service to be automatically started when the OS boots an
stopped when the OS shuts down.

jrly -start
[display_suffix]

Start the specified JRLY.

jrly -stop
[display_suffix]

Stop the specified JRLY.

jryl -version Print the current version of JRLY binary.

jrly -help Print command-line options with brief descriptions.

Table 3-4 JRLY Command-Line Options for NT (Continued)

Option Description

Table 3-5 JRLY Command-Line Option for UNIX

Option Description

jrly -f
config_file_path

Start the JRLY process.

This option starts the JRLY process. If the configuration file
does not exist or cannot be opened, the JRLY prints an err
message. If the JRLY cannot start, it writes a message to
standard error, attempts to log the startup failure in the erro
log, then exits.
3-26 Using BEA Jolt

Jolt Relay

al

vity
 NT
JRLY Configuration File

The format of the configuration file is a TAG=VALUE format. Blank lines or lines
starting with a “#” are ignored. The following listing contains an example of the form
specifications of the configuration file.

Listing 3-3 Specification of Configuration File

LOGDIR=<LOG_DIRECTORY_PATH>

ACCESS_LOG=<ACCESS_FILE_NAME in LOGDIR>

ERROR_LOG=<ERROR_FILE_NAME in LOGDIR>

LISTEN=<IP:Port combination where JRLY will accept connections>

CONNECT=<IP:Port combination associated with JRAD>

SOCKETTIMEOUT=<Seconds for socket accept()function>

Note: SOCKETTIMEOUT is the duration (in seconds) of which the relay NT service
blocks the establishment of new socket connections to allow network acti
(new connections, data to be read, closed connections). It is valid only on
machines.

SOCKETTIMEOUT also affects the SCM. When the SCM requests that the
service stop, the SCM needs to wait at least SOCKETTIMEOUT seconds before
doing so.
Using BEA Jolt 3-27

3 Configuring the BEA Jolt System

NIX
The following listing shows an example of the JRLY configuration file. The
CONNECT line specifies the IP address and port number of JRAD machine.

Listing 3-4 Example of JRLY Configuration File

LOGDIR=/usr/log/relay

ACCESS_LOG=access_log

ERROR_LOG=errorlog

jrly will listen on port 4444

LISTEN=200.100.10.100:4444

CONNECT=200.100.20.200:4444, 200.100.20.200:5555,...

SOCKETTIMEOUT=30 //See text under listing

The format for directory and file names is determined by the operating system. U
systems use the forward slash (/). NT systems use the backslash (\). If any file
specified in LOGDIR, ACCESS_LOG or ERROR_LOG cannot be opened for writing, the
JRLY prints an error message on stderr and exits.

The formats for host names and port numbers are shown in the following table.

Table 3-6 Host Name and Port Number Formats

Host Name/Port Number Descriptions

Hostname:Port Hostname is a string, Port is a decimal number

// Hostname:Port Hostname is a string, Port is a decimal number

IP:Port IP is a dotted notation IP address, Port is a decimal
number
3-28 Using BEA Jolt

Jolt Relay Adapter

lt
do
er is

er,

e”
Jolt Relay Adapter

The Jolt Relay Adapter (back-end relay) is a BEA Tuxedo system server. The Jo
Relay Adapter (JRAD) server may or may not be located on the same BEA Tuxe
host machine in single host mode (SHM) and server group to which the JSL serv
connected.

The JRAD can be started independently of its associated JRLY. JRAD tracks its
startup and shutdown activity in the BEA Tuxedo log file.

JRAD Configuration

A single JRAD process can only be connected to a single JRLY. A JRAD can be
configured to communicate with only one JSL and its associated JSHes. Howev
multiple JRADs can be configured to communicate with one JSL. The CLOPT
parameter for the BEA Tuxedo servers must be included in the UBBCONFIG file. A
sample of the file is shown in the listing “Sample JRAD Entry in UBBCONFIG Fil
on page 3-30.

The following table contains additional information about the CLOPT parameters.

Note: The format is 0x0002PPPPNNN. Refer to the BEA Jolt 1.2.1 Release Notes for
additional information on JRAD.

Table 3-7 JRAD CLOPT Parameter Descriptions

CLOPT Parameter Description

-l hexadecimal format Port to listen for the JRLY to connect
on behalf of the client.

-c hexadecimal format The address of the corresponding
JSL to which JRAD connects.

-H hexadecimal format Used when there is a network address
translation performed for JRLY listen
address.
Using BEA Jolt 3-29

3 Configuring the BEA Jolt System

ork
rd
Listing 3-5 Sample JRAD Entry in UBBCONFIG File

JRAD host 200.100.100.10 listens at port 2000, connects to JSL

port 8000 on the same host

JRAD SRVGRP=JSLGRP SRVID=60

 CLOPT="-A -- -l 0x000207D0C864640A –c 0x00021f40C864640A"

Network Address Configurations

A Jolt Internet Relay configuration requires that several networked components w
together. Prior to configuration, review the criteria in the following table and reco
the information to minimize the possibility of misconfiguration.

Table 3-8 Jolt Internet Relay Network Address Configuration Criteria

JRLY JRAD JSL

LISTEN: Location
where the clients
connect

CONNECT: Location
of your JRAD . Must
match the -l parameter of
JRAD

-l : Location where
the listener
connects to the JRLY

-c : Location of JSL .
Must match -n parameter of
JSL

-n : Location of JSL.
Must match -c parameter of
JRAD
3-30 Using BEA Jolt

Jolt Repository

s to
tion
tory

g
 Jolt Repository

The Jolt Repository contains BEA Tuxedo service definitions that allow Jolt client
access BEA Tuxedo services. The Jolt Repository files included with the installa
contain service definitions used internally by BEA Jolt. See “Using the Jolt Reposi
Editor” on page 4-1 for detailed instructions on how to add definitions to the
application services.

Configuring the Jolt Repository

To configure the BEA Jolt Repository, modify the application UBBCONFIG file. The
UBBCONFIG file is an ASCII version of the BEA Tuxedo configuration file. Create a
new UBBCONFIG file for each application. See the BEA Tuxedo Command Reference
for information regarding the syntax of the entries for the file. The following listin
shows relevant portions of the UBBCONFIG file.

Listing 3-6 Sample UBBCONFIG File

*GROUPS

JREPGRP GRPNO=94 LMID=SITE1

*SERVERS

JREPSVR SRVGRP=JREPGRP SRVID=98

RESTART=Y GRACE=0 CLOPT="-A -- -W -P /app/jrepository"

JREPSVR SRVGRP=JREPGRP SRVID=97

RESTART=Y RQADDR=JREPQ GRACE=0 CLOPT="-A -- -P /app/jrepository"

JREPSVR SRVGRP=JREPGRP SRVID=96

RESTART=Y RQADDR=JREPQ REPLYQ=Y GRACE=0 CLOPT="-A -- -P

/app/jrepository"

Note: For UNIX systems, use the slash (/) when setting the path to the jrepository
file (for example, app/repository). For NT systems, use the backslash (\)
and specify the drive name (for example, c:\app\repository).
Using BEA Jolt 3-31

3 Configuring the BEA Jolt System

he

e
ed

Change the sections of the UBBCONFIG file as indicated in the following table:

GROUPS Section

A GROUPS entry is required for the group that includes the BEA Jolt Repository. T
group name parameter is a name selected by the application.

1. Specify the same identifiers given as the value of the LMID parameter in the
MACHINES section.

2. Specify the value of the GRPNO between 1 and 30,000 in the GROUPS section.

SERVERS Section

The Jolt Repository Server, JREPSVR, contains services for accessing and editing th
repository. Multiple JREPSVR instances share repository information through a shar
file. Include JREPSVR in the SERVERS section of the UBBCONFIG file.

1. Indicate a new server identification (for example, 98) with the SRVID parameter.

2. Specify the -W flag for one JREPSVR to ensure that you can edit the Repository.
The Repository is read-only without this flag.

Note: You must install only one writable JREPSVR (that is, only one JREPSVR
with the -W flag). Multiple read-only JREPSVRs can be installed on the
same host.

3. Type the -P flag to specify the path of the repository file. An error message is
displayed in the BEA Tuxedo ULOG file if the argument for the -P flag is not
entered.

Table 3-9 UBBCONFIG File

Section Parameters to be specified

GROUPS LMID, GRPNO

SERVERS SRVGRP, SRVID
3-32 Using BEA Jolt

Jolt Repository

te

If

lt

se

rity
ges

g
4. Add the file pathname of the repository file (for example, /app/jrepository).

5. Boot the BEA Tuxedo system using the tmloadcf command (for example,
tmloadcf -y ubbconfig) and tmboot command. See Administering a BEA
Tuxedo Application at Run Time for information about tmloadcf and tmboot .

Repository File

A Repository file, jrepository , is available with BEA Jolt. This file includes
bankapp services and the repository services that you can modify, test, and dele
using the Repository Editor.

Note: The Jolt 1.2.1 Repository file is different from the Jolt 1.1 Repository file.
you are using Jolt 1.1, you must make applicable changes.

 Inside the jrepository file, the service definitions for the services in the Jo
Repository Server (JREPSVR) have FML32 as their buffer types. During
installation, the new service definitions for Jolt 1.2.1 JREPSVR should be
appended to the existing jrepository file as part of the upgrade.

Start with the jrepository file provided with the installation, even if you are not
going to test the bankapp application with BEA Jolt. Delete the bankapp packages or
services that you do not need.

The pathname of the file must match the argument of the -P option.

Warning: Do not modify the repository files manually or you will not be able to u
the Repository Editor. Although the jrepository file can be modified
and read with any text editor, the BEA Jolt system does not have integ
checks to ensure that the file is in the proper format. Any manual chan
to the jrepository file might not be detected until run time. See “Usin
the Jolt Repository Editor” on page 4-1 for additional information.
Using BEA Jolt 3-33

3 Configuring the BEA Jolt System

”
Initializing Services By Using BEA Tuxedo and the
Repository Editor

Define the BEA Tuxedo services by using BEA Tuxedo and BEA Jolt Repository
Editor in order to make the Jolt services available to the client.

1. Build the BEA Tuxedo server containing the service. See Administering a BEA
Tuxedo Application at Run Time or Programming a BEA Tuxedo Application Using
C for additional information on the following:

z Building the BEA Tuxedo application server

z Editing the UBBCONFIG file

z Updating the TUXCONFIG file

z Administering the tmboot command

2. Access the BEA Jolt Repository Editor. See “Using the Jolt Repository Editor
on page 4-1 for additional information. on the following:

z Adding a Service

z Saving Your Work

z Testing a Service

z Exporting and Unexporting Services
3-34 Using BEA Jolt

Event Subscription

ices

lt

e
nts

Event Subscription

Jolt Event Subscription receives event notifications from either BEA Tuxedo serv
or other BEA Tuxedo clients:

Unsolicited Event Notifications. A Jolt client receives these notifications as a resu
of a BEA Tuxedo client or service subscribing to unsolicited events, and a BEA
Tuxedo client issuing a broadcast (using either a tpbroadcast() or a directly targeted
message via a tpnotify() ATMI call). Unsolicited event notifications do not need
the TMUSREVT server.

Brokered Event Notifications. A Jolt client receives these notifications through th
BEA Tuxedo Event Broker. The notifications are only received when both Jolt clie
subscribe to an event and any BEA Tuxedo client or server posts an event using
tppost() . Brokered event notifications require the TMUSREVT server.

Configuring for Event Subscription

Configure the BEA Tuxedo TMUSREVT server and modify the application UBBCONFIG
file. The following listing shows the relevant sections of TMUSREVT parameters in the
UBBCONFIG file. See Programming a BEA Tuxedo Application Using C for
information about the syntax of the entries for the file.

Listing 3-7 UBBCONFIG File

TMUSREVT SRVGRP=EVBGRP1 SRVID=40 GRACE=3600

 ENVFILE="/usr/tuxedo/bankapp/TMUSREVT.ENV"

 CLOPT="-e tmusrevt.out -o tmusrevt.out -A --

 -f /usr/tuxedo/bankapp/tmusrevt.dat"

 SEQUENCE=11

In the SERVERS section of the UBBCONFIG file, modify the SRVGRP and SRVID
parameters as needed.
Using BEA Jolt 3-35

3 Configuring the BEA Jolt System

, or

e
Filtering BEA Tuxedo FML or VIEW Buffers

Filtering is a process that allows you to customize a subscription. If you require
additional information about the BEA Tuxedo Event Broker, subscribing to events
filtering, refer to Programming a BEA Tuxedo Application Using C.

In order to filter BEA Tuxedo FML or VIEW buffers, the field definition file must b
available to BEA Tuxedo at run time.

Note: There are no special requirements for filtering STRING buffers.

Buffer Types

Table 3-10 BEA Tuxedo Buffer Types

Buffer Type Description

FML Attribute, value pair. Explicit.

VIEW C structure. Very precise offsetting. Implicit.

STRING Length and offset are different values. All readable.

CARRAY Character array. BLOB of binary data. Only client
and server know - JSL doesn’t.

X_C_TYPE Equivalent to VIEW.

X_COMMON Equivalent to VIEW, but used for both COBOL and
C.

X_OCTET Equivalent to CARRAY.
3-36 Using BEA Jolt

Event Subscription

s
ble

,
FML Buffer Example

The listing “FIELDTBLS Variable in the TMUSREVT.ENV File” on page 3-37 show
an example that uses the FML buffer. The FML field definition table is made availa
to BEA Tuxedo by setting the FIELDTBLS and FLDTBLDIR variables.

To filter a field found in the my.flds file:

1. Copy the my.flds file to /usr/me/bankapp directory.

2. Add my.flds to the FIELDTBLS variable in the TMUSREVT.ENV file as shown in
the following listing:

Listing 3-8 FIELDTBLS Variable in the TMUSREVT.ENV File

FIELDTBLS=Usysflds,bank.flds,credit.flds,event.flds,my.flds

FLDTBLDIR=/usr/tuxedo/me/T6.2/udataobj:/usr/me/bankapp

If ENVFILE="/usr/me/bankapp/TMUSREVT.ENV" is included in the definition of the
UBBCONFIG file (shown in the listing “UBBCONFIG File” on page 3-35), the
FIELDTBLS and FLDTBLDIR definitions are taken from the TMUSREVT.ENV file and
not from your environment variable settings.

If you remove the ENVFILE="/usr/me/bankapp/TMUSREVT.ENV" definition, the
FIELDTBLS and FLDTBLDIR definitions are taken from your environment variable
settings. The FIELDTBLS and FLDTBLDIR definitions must be set to the appropriate
value prior to booting the BEA Tuxedo system.

For additional information on event subscriptions and the BEA Jolt Class Library
refer to “Using the Jolt Class Library” on page 5-1.
Using BEA Jolt 3-37

3 Configuring the BEA Jolt System

n if

II

BEA Tuxedo Background Information

The following sections provide detailed configuration information. Skip this sectio
you are familiar with BEA Tuxedo.

Configuration File

The BEA Tuxedo configuration file for your application exists in two forms, the ASC
file, UBBCONFIG, and a compiled version called TUXCONFIG. Once you create a
TUXCONFIG, consider your UBBCONFIG as a backup.

You can make changes to the UBBCONFIG file with your preferred NT editor. Then, at
a time when your application is not running, and when you are logged in to your
MASTER machine, you can recompile your TUXCONFIG by running tmloadcf (1).
System/T prompts you to make sure you really want to overwrite your existing
TUXCONFIG file. (If you enter the command with the -y option, the prompt is
suppressed.)

Creating the UBBCONFIG File

A binary configuration file called the TUXCONFIG file contains information used by
tmboot(1) to start the servers and initialize the bulletin board of a BEA Tuxedo
system in an orderly sequence. The binary TUXCONFIG file cannot be created directly.
Initially, you must create a UBBCONFIG file. That file is parsed and loaded into the
TUXCONFIG using tmloadcf (1). Then tmadmin (1) uses the configuration file or a copy
of it in its monitoring activity. tmshutdown (1) references the configuration file for
information needed to shut down the application.
3-38 Using BEA Jolt

BEA Tuxedo Background Information

ng
ne

t

e
ecify
Configuration File Format

The UBBCONFIG file can consist of up to nine specification sections. Lines beginni
with an asterisk (*) indicate the beginning of a specification section. Each such li
contains the name of the section immediately following the *. Allowable section
names are: RESOURCES, MACHINES, GROUPS, NETGROUPS, NETWORK, SERVERS,

SERVICES, INTERFACES, and ROUTING .

Note: The RESOURCES (if used) and MACHINES sections must be the first two
sections, in that order; the GROUPS section must be ahead of SERVERS,
SERVICES, and ROUTING.

To configure the JSL, you must modify the UBBCONFIG file. For further information
about BEA Tuxedo configuration, refer to Administering a BEA Tuxedo Application a
Run Time.

The following listing shows relevant portions of the UBBCONFIG file.

Listing 3-9 UBBCONFIG File

*MACHINES

MACH1 LMID=SITE1

MAXWSCLIENTS=40

*GROUPS

JSLGRP GRPNO=95 LMID=SITE1

*SERVERS

JSL SRVGRP=JSLGRP SRVID=30 CLOPT= “ -- -n 0x0002PPPPNNNNNNNN -d

/dev/tcp -m2 -M4 -x10”

The parameters shown in the following table are the only parameters that must b
designated for the Jolt Server groups and Jolt Servers. You are not required to sp
any other parameters.
Using BEA Jolt 3-39

3 Configuring the BEA Jolt System

n.

ced

e

 be
be

Change the sections of the UBBCONFIG file shown in the following table.

MACHINES Section

The MACHINES section specifies the logical names for physical machines for the
configuration. It also specifies parameters specific to a given machine. The MACHINES
section must contain an entry for each physical processor used by the applicatio
Entries have the form:

ADDRESS or NAME required parameters [optional parameters]

where ADDRESS is the physical name of the processor, for example, the value produ
by the UNIX system uname -n command.

LMID=string_value

This parameter specifies that the string_value is to be used in other sections as th
symbolic name for ADDRESS. This name cannot contain a comma, and must be 30
characters or less. This parameter is required. There must be an LMID line for every
machine used in a configuration.

MAXWSCLIENTS=number

The MAXWSCLIENTS parameter is required in the MACHINES section of the
configuration file. It specifies the number of accesser entries on this processor to
reserved for Jolt and Workstation clients only. The value of this parameter must
between 0 and 32,768, inclusive.

The Jolt Server and Workstation use MAXWSCLIENTS in the same way. For example, if
200 slots are configured for MAXWSCLIENTS, this number configures BEA Tuxedo for
the total number of remote clients used by Jolt and Workstation.

Table 3-11 UBBCONFIG File Sections

Section Parameters to be specified

MACHINES MAXWSCLIENTS

GROUPS GRPNO, LMID

SERVERS SRVGRP, SRVID, CLOPT
3-40 Using BEA Jolt

BEA Tuxedo Background Information

ne
tion

of the

base).

p

or

L).

l

 you
Be sure to specify MAXWSCLIENTS in the configuration file. If it is not specified, the
default is 0.

Note: If MAXWSCLIENTS is not set, the JSL does not boot.

GROUPS Section

This section provides information about server groups, and must have at least o
server group defined in it. A server group entry provides a logical name for a collec
of servers and/or services on a machine. The logical name is used as the value
SRVGRP parameter in the SERVERS section to identify a server as part of this group.
SRVGRP is also used in the SERVICES section to identify a particular instance of a
service with its occurrences in the group. Other GROUPS parameters associate this
group with a specific resource manager instance (for example, the employee data
Lines within the GROUPS section have the form:

GROUPNAME required parameters [optional parameters]

where GROUPNAME specifies the logical name (string_value) of the group. The grou
name must be unique within all group names in the GROUPS section and LMID values
in the MACHINES section. The group name cannot contain an asterisk(*), comma,
colon, and must be 30 characters or less.

A GROUPS entry is required for the group that includes the Jolt Server Listener (JS
Make the GROUPS entry as follows:

1. The group name is selected by the application, for example: JSLGRP and JREPGRP.

2. Specify the same identifiers given as the value of the LMID parameter in the
MACHINES section.

3. Specify the value of the GRPNO between 1 and 30,000 in the *GROUPS section.

Note: Make sure that Resource Managers are not assigned as a default value for al
groups in the GROUPS section of your UBBCONFIG file. Making Resource
Managers the default value assigns a Resource Manager to the JSL and
receive an error during tmboot . In the SERVERS section, default values for
RESTART, MAXGEN, etc., are acceptable defaults for the JSL.
Using BEA Jolt 3-41

3 Configuring the BEA Jolt System

e
erver

e
 need

mote
r not

he

er is

o the
 JSL

clients

 the
by the

 at the
re are
d 8003.

.

SERVERS Section

This section provides information on the initial conditions for servers started in th
system. The notion of a server as a process that continually runs and waits for a s
group’s service requests to process may or may not apply to a particular remote
environment. For many environments, the operating system, or perhaps a remot
gateway, is the sole dispatcher of services. When either of these is the case, you
only specify SERVICE entry points for remote program entry points, and not SERVER
table entries. BEA Tuxedo system gateway servers would advertise and queue re
domain service requests. Host-specific reference pages must indicate whether o
UBBCONFIG server table entries apply in their particular environments, and if so, t
corresponding semantics. Lines within the SERVERS section have the form:

AOUT required parameters [optional parameters]

where AOUT specifies the file (string_value) to be executed by tmboot (1). tmboot
executes AOUT on the machine specified for the server group to which the server
belongs. tmboot searches for the AOUT file on its target machine, thus, AOUT must exist
in a file system on that machine. (Of course, the path to AOUT can include RFS
connections to file systems on other machines.) If a relative pathname for a serv
given, the search for AOUT is done sequentially in APPDIR, TUXDIR/bin , /bin , and
then in path , where <path> is the value of the last PATH= line appearing in the
machine environment file, if one exists. The values for APPDIR and TUXDIR are taken
from the appropriate machine entry in the TUXCONFIG file.

Clients connect to BEA Jolt applications through the Jolt Server Listener (JSL).
Services are accessed through the Jolt Server Handler (JSH). The JSL supports
multiple clients and acts as a single point of contact for all the clients to connect t
application at the network address that is specified on the JSL command line. The
schedules work for handler processes. A handler process acts as a substitute for
on remote workstations within the administrative domain of the application. The
handler uses a multiplexing scheme to support multiple clients on one port
concurrently.

The network address specified for the JSL designates a TCP/IP address for both
JSL and any JSH processes associated with that JSL. The port number identified
network address specifies the port number on which the JSL accepts new client
connections. Each JSH associated with the JSL uses consecutive port numbers
same TCP/IP address. For example, if the initial JSL port number is 8000 and the
a maximum of three JSH processes, the JSH processes use ports 8001, 8002, an

Note: Misconfiguration of the subsequent JSL results in a port number collision
3-42 Using BEA Jolt

BEA Tuxedo Background Information

ing so

un.

try in

d. All

at
ntry,
ired,

d

er
que
t
Parameters Usable With JSL

In addition to the parameters specified in the previous sections, the following
parameters can be used with the JSL, although you need to understand how do
would affect your application.

SVRGRP=string_value

This parameter specifies the group name for the group in which the server is to r
string_value must be the logical name associated with a server group in the
*GROUPS section, and must be 30 characters or less. This association with an en
the *GROUPS section means that AOUT is executed on the machine with the LMID
specified for the server group. This association also specifies the GRPNO for the server
group and parameters to pass when the associated resource manager is opene
server entries must have a server group parameter specified.

SRVID=number

This parameter specifies an identifier, an integer between 1 and 30,00, inclusive, th
identifies this server within its group. This parameter is required on every server e
even if the group has only one server. If multiple occurrences of servers are des
do not use consecutive numbers for SRVIDs; leave enough room for the system to
assign additional SRVIDs up to MAX.

Optional Parameters

The optional parameters of the SERVERS section are divided into boot parameters an
run-time parameters.

Boot Parameters

 Boot parameters are used by tmboot when it executes a server. Once running, a serv
reads its entry from the configuration file to determine its runtime options. The uni
server identification number is used to find the right entry. The following are boo
parameters.

CLOPT=string_value

The CLOPT parameter specifies a string of command line options to be passed to AOUT
when booted.The servopts (5) page in the BEA Tuxedo File Formats and Data
Descriptions Reference lists the valid parameters.
Using BEA Jolt 3-43

3 Configuring the BEA Jolt System

e

d

mbers
rom
ted in

e
 server,

boot

bers

 to
Some of the available options apply primarily to servers under development. For
example, the -r option directs the server to write a record to its standard error fil
each time a service request begins or ends.

Other command line options can be used to direct the server’s standard out (stdout)
and standard error (stderr) to specific files, or to start the server so that it initially
advertises a limited set of its available services.

The default value for the CLOPT parameter is -A , which means that the server is starte
with all available services advertised.

The maximum length of the CLOPT parameter value is 256 characters; it must be
enclosed in double quotes.

SEQUENCE=number

This parameter specifies when to shut down or boot relative to other servers. If
SEQUENCE is not specified, servers are booted in the order found in the SERVERS
section (and shut down in the reverse order). If some servers have sequence nu
specified and others do not, all servers with sequence numbers are booted first f
low to high sequence number, then all servers without sequence numbers are boo
the order in which they appear in the configuration file. Sequence numbers rang
between 1 and 9999. If the same sequence number is assigned to more than one
tmboot may boot those servers in parallel.

MIN=number

The MIN parameter specifies the minimum number of occurrences of the server to
by tmboot . If an RQADDR is specified, and MIN is greater than 1, the servers form a
multiple servers single queue (MSSQ) set. The identifiers for the servers are SRVID up
to (SRVID + (MAX -1)). All occurrences of the server have the same sequence num
as well as any other server parameters. The value range for MIN is 0 to 1000. If MIN is
not specified, the default value is 1.

MAX=number

The MAX parameter sets the maximum number of occurrences of the server to be
booted. Initially, tmboot boots MIN servers, and additional servers can be booted up
MAX occurrences using the -i option of tmboot to specify the associated server
identifier. The value range for MAX is 0 to 1000. If no value is specified for MAX, the
default is the same as for MIN, or 1.

� tmboot starts MIN occurrences unless you explicitly call for more with the -i
SRVID option of tmboot.
3-44 Using BEA Jolt

BEA Tuxedo Background Information

ned

ure

t
s
ne

can
ith a
� If RQADDR is specified and MIN is greater than one, an MSSQ set is formed

� If MIN is not specified, the default is 1.

� If MAX is not specified, the default is MIN.

� MAX is especially important for conversational servers because they are spaw
automatically as needed.

Run-time Parameters

The server uses run-time parameters after it is started by tmboot . As indicated
previously, tmboot uses the values found in the TUXDIR, APPDIR and ENVFILE
parameters for the MACHINES section when booting the server. It also sets the PATH for
the server to:

“APPDIR:TUXDIR/bin:/bin: path ”

where path is the value of the last PATH= line appearing in the ENVFILE file. The
following parameters are runtime parameters.

ENVFILE=string_value

You can use the ENVFILE parameter for a server to add values to the environment
established by tmboot during initialization of the server. You can optionally set
variables specified in the file named in the SERVERS ENVFILE parameter after you set
those in the MACHINES ENVFILE used by tmboot . These files cannot be used to
override TUXDIR, APDIR, TUXCONFIG , or TUSOFFSET. The best policy is to include
in the server’s ENVFILE only those variable assignments known to be needed to ens
proper running of the application.

On the server, the ENVFILE file is processed after the server starts. Therefore, it canno
be used to set the pathnames used to find executable or dynamically loaded file
needed to execute the server. If you need to perform these tasks, use the machi
ENVFILE instead.

Within ENVFILE only lines of the form
VARIABLE = string

are allowed. VARIABLE must start with an underscore or alphabetic character and
contain only underscore or alphanumeric characters. If the server is associated w
server group that can be migrated to a second machine, the ENVFILE must be in the
same location on both machines.

CONV={Y | N}
Using BEA Jolt 3-45

3 Configuring the BEA Jolt System

 either

 are

al

e
 an

 for

by
f
n the

st
n
an
erver

 for
r that

e set
CONV specifies whether the server is a conversational server. CONV takes a Y value if
a conversational server is being defined. Connections can only be made to
conversational servers, and rpc requests (via tpacall(3c) or tpcall(3c)) can only
be made to non-conversational servers. For a request/response server, you can
set CONV=N, which is the default, or omit the parameter.

RQADDR=string_value

RQADDR assigns a symbolic name to the request queue of this server. MSSQ sets
established by using the same symbolic name for more than one server (or by
specifying MIN greater than 1). All members of an MSSQ set must offer an identic
set of services and must be in the same server group.

If RQADDR is not specified, the system assigns a unique key to serve as the queu
address for this server. However, tmadmin commands that take a queue address as
argument are easier to use if queues are given symbolic names.

RQPERM=number

Use the RQPERM parameter to assign UNIX-style permissions to the request queue
this server. The value of number can be between 0001 and 0777, inclusive. If no
parameter is specified, the permissions value of the bulletin board, as specified
PERM in the RESOURCES section, is used. If no value is specified there, the default o
0666 is used (the default exposes your application to possible use by any login o
system, so consider this carefully).

REPLYQ={ Y | N }

The REPLYQ parameter specifies whether a reply queue, separate from the reque
queue, should be established for AOUT. If N is specified, the reply queue is created o
the same LMID as the AOUT. If only one server is using the request queue, replies c
be retrieved from the request queue without causing problems. However, if the s
is a member of an MSSQ set and contains services programmed to receive reply
messages, REPLYQ should be set to Y so that an individual reply queue is created for
this server. If set to N, the reply is sent to the request queue shared by all servers
the MSSQ set, and you cannot ensure that the reply will be picked up by the serve
is waiting for it.

It should be standard practice for all member servers of an MSSQ set to specify
REPLYQ=Y if replies are anticipated. Servers in an MSSQ set are required to have
identical offerings of services, so it is reasonable to expect that if one server in th
expects replies, any server in the set can also expect replies.

RPPERM=number
3-46 Using BEA Jolt

BEA Tuxedo Background Information

en
.
e

t is
ld be
 set

ction.

uted
 the

the

r.

ith
file

Use the RPPERM parameter to assign permissions to the reply queue. number is
specified in the usual UNIX fashion (for example, 0600); the value can be betwe
0001 and 0777, inclusive. If RPPERM is not specified, the default value 0666 is used
This parameter is useful only when REPLYQ=Y. If requests and replies are read from th
same queue, only RQPERM is needed; RPPERM is ignored.

RESTART={ Y | N }

The RESTART parameter takes a Y or N to indicate whether AOUT is restartable. The
default is N. If the server is in a group that can be migrated, RESTART must be Y. A
server started with a SIGTERM signal cannot be restarted; it must be rebooted.

An application’s policy on restarting servers might vary according to whether the
server is in production or not. During the test phase of application development i
reasonable to expect that a server might fail repeatedly, but server failures shou
rare events once the application has been put into production. You might want to
more stringent parameters for restarting servers once the application is in produ

Parameters Associated with RESTART

RCMD=string_value

If AOUT is restartable, this parameter specifies the command that should be exec
when AOUT abnormally terminates. The string, up to the first space or tab, must be
name of an executable UNIX file, either a full pathname or relative to APPDIR. (Do
not attempt to set a shell variable at the beginning of the command.) Optionally,
command name can be followed by command-line arguments. Two additional
arguments are appended to the command line: the GRPNO and SRVID associated with
the restarting server. string_value is executed in parallel with restarting the serve

You can use the RCMD parameter to specify a command to be executed in parallel w
the restarting of the server. The command must be an executable UNIX system
residing in a directory on the server’s PATH. An example is a command that sends a
customized message to the userlog to mark the restarting of the server.
Using BEA Jolt 3-47

3 Configuring the BEA Jolt System

d
be

e
an 68

r of

e

ne
MAXGEN=number

If AOUT is restartable, this parameter specifies that it can be restarted at most (number
- 1) times within the period specified by GRACE. The value must be greater than 0 an
less than 256. If not specified, the default is 1 (which means that the server can
started once, but not restarted). If the server is to be restartable, MAXGEN must be equal
to or greater than 2. RESTART must be Y or MAXGEN is ignored.

GRACE=number

If RESTART is Y, the GRACE parameter specifies the time period (in seconds) during
which this server can be restarted, (MAXGEN - 1) times. The number assigned must b
equal to or greater than 0, and less than 2,147,483,648 seconds (or a little more th
years). If GRACE is not specified the default is 86,400 seconds (24 hours). Setting
GRACE to 0 removes all limitations; the server can be restarted an unlimited numbe
times.

Entering Parameters

You can use BEA Tuxedo parameters, including RESTART, RQADDR, and REPLYQ,
with the JSL. (See Administering a BEA Tuxedo Application at Run Time for additional
information regarding runtime parameters.) Enter the following parameters:

1. To identify the SRVGRP parameter, type the previously defined group name valu
from the GROUPS section.

2. To indicate the SRVID, type a number between 1 and 30,000 that identifies the
server within its group.

3. Verify that the syntax for the CLOPT parameter is as follows:

CLOPT= “-- -n 0x0002PPPPNNNNNNNN -d /dev/tcp -m2 -M4 -x10”

Note: The CLOPT parameters may vary. Refer to the table “JSL Command-Li
Options” on page 3-16 for pertinent command-line information.

4. If necessary, type the optional parameters:

z Type the SEQUENCE parameter to determine the order that the servers are
booted.

z Specify Y to permit release of the RESTART parameter.

z Type 0 to permit an infinite number of server restarts using the GRACE
parameter.
3-48 Using BEA Jolt

Sample Applications in BEA Jolt Online Resources

 the

ast
Sample Applications in BEA Jolt Online
Resources

You can access sample code that can be modified for use with BEA Jolt through
BEA Jolt product Web page at:

http://www.beasys.com/products/jolt/index.htm

These samples demonstrate and utilize BEA Jolt features and functionality.

Other Web sites with Java-related information include:

� Javasoft Home Page (http://www.java.sun.com/)

� Newsgroups in the comp.lang.java hierarchy. These groups contain lists of p
articles and communications regarding Java, and are a valuable source of
archival material.
Using BEA Jolt 3-49

3 Configuring the BEA Jolt System
3-50 Using BEA Jolt

CHAPTER

do
he

rs.
4 Using the Jolt
Repository Editor

Use the Jolt Repository Editor to add, modify, test, export, and delete BEA Tuxe
service definitions from the Repository based on the information available from t
BEA Tuxedo configuration file. The Jolt Repository Editor accepts BEA Tuxedo
service definitions, including the names of the packages, services, and paramete

“Using the Jolt Repository Editor” covers the following topics:

� Introduction to the Repository Editor

� Getting Started

� Main Components of the Repository Editor

� Instructions for Viewing a Parameter

� Grouping Services Using the Package Organizer

� Modifying Packages, Services, and Parameters

� Making a Service Available to the Jolt Client

� TTesting a Service

� Repository Editor Troubleshooting

� Repository Enhancements for Jolt
Using BEA Jolt 4-1

4 Using the Jolt Repository Editor

EA
plet.
 Jolt

ons,
 4-3
n
Introduction to the Repository Editor

The Jolt Repository is used internally by Jolt to translate Java parameters to a B
Tuxedo type buffer. The Repository Editor is available as a downloadable Java ap
When a BEA Tuxedo service is added to the repository, it must be exported to the
server to ensure that the client requests can be made from a Jolt client.

Repository Editor Window

Repository Editor windows contain entry fields, scrollable displays, command butt
status, and radio buttons. The figure “Sample Repository Editor Window” on page
illustrates the parts of the window. The table “Repository Editor Window Parts” o
page 4-4 contains details about each part.
4-2 Using BEA Jolt

Introduction to the Repository Editor
Figure 4-1 Sample Repository Editor Window
Using BEA Jolt 4-3

4 Using the Jolt Repository Editor

e

list

w,
e,

ns
ly
Repository Editor Window Description

The following table details the parts of the Repository Editor window shown in th
previous figure.

Table 4-1 Repository Editor Window Parts

Part Function

1 Text boxes Enter text, numbers, or alphanumeric characters such as
“Service Name,” “Input View Name,” server names, or port
numbers. In the previous figure, “Service Name.”

2 Drop-down arrow View lists that extend beyond the display using an arrow
button. In the previous figure, “Input Buffer Type” or “Output
Buffer Type.”

3 Display list Select from a list of predefined items such as the Parameters
or select from a list of items that have been defined.

4 Command buttons Activate an operation such as displaying the Packages windo
Services window, or Package Organizer. In the previous figur
command buttons include: “Save Service,” “Test,” “Back,”
“New,” “Edit,” “Delete.”

5 Radio buttons Select one of a number of options. Only one of the radio butto
can be activated at a time. For example, Export Status can on
be “Unexport” or “Export.”
4-4 Using BEA Jolt

Getting Started
Getting Started

Before starting the Repository Editor, make sure that you install the minimally
required components, the Jolt Server and the Jolt Client.

To use the Repository Editor:

1. Start the Repository Editor.

You can start the Repository Editor from either the JavaSoft appletviewer or
from your Web browser. Both of these methods are detailed in the following
sections.

2. Log on to the Repository Editor.

Note: For information about exiting the Repository Editor after you enter
information, refer to “Exiting the Repository Editor” on page 4-9.

Starting the Repository Editor Using the Java Applet
Viewer

1. Set the CLASSPATH to include the Jolt class directory.

2. If loading the applet from a local disk, type the following at the URL location:

appletviewer <full-pathname>/RE.html

If loading the applet from the Web server, type the following at the URL
location:

appletviewer http://<www.server>/<URL path>/RE.html

3. Press Enter.

The window is displayed as shown in the figure “BEA Jolt Repository Editor
Logon Window” on page 4-8.
Using BEA Jolt 4-5

4 Using the Jolt Repository Editor

b
Starting the Repository Editor From Your Web Browser

Use one of the following procedures to start the Repository Editor from your We
Browser.

To start from a local file:

1. Set the CLASSPATH to include the Jolt class directory.

2. Type the following:

file:<full-pathname>/RE.html

3. Press Enter.

The editor is displayed as shown in “BEA Jolt Repository Editor Logon
Window” on page 4-8.

To start from a Web server:

1. Ensure that the CLASSPATH does not include the Jolt class directory

2. Unset the CLASSPATH.

3. Type the following:

http://<www.server>/<URL path>/RE.html

Note: Before opening the file, modify the applet codebase parameter in
RE.html to match your Jolt Java classes directory.

4. Press Enter.

The editor is displayed as shown in the “BEA Jolt Repository Editor Logon
Window” on page 4-8.
4-6 Using BEA Jolt

Getting Started

 BEA

er is

.

Logging on to the Repository Editor

1. Complete the appropriate steps to start the Repository Editor.

The “BEA Jolt Repository Editor Logon Window” on page 4-8 must be
displayed before you continue with Step 2. Refer to this figure as you perform
the following procedure.

2. Type the name of the Server machine designated as the “access point” to the
Tuxedo application and press Tab.

3. Type the Port Number and press Enter.

The system validates the server and port information.

Note: Unless you are logging on through the Jolt Relay, the same port numb
used to configure the Jolt Listener. Refer to your UBBCONFIG file for
additional information.

4. Type the BEA Tuxedo Application Password and press Enter.

Depending upon the authentication level, complete Steps 5 and 6 as required

5. Type the BEA Tuxedo User Name and press Tab.

6. Type the BEA Tuxedo User Password and press Enter.

The Packages and Services command buttons are enabled.

Note: See the JoltSessionClass for additional information.
Using BEA Jolt 4-7

4 Using the Jolt Repository Editor
Figure 4-2 BEA Jolt Repository Editor Logon Window

The following table, “Repository Editor Logon Window Description,” describes
Repository Editor logon window elements.
4-8 Using BEA Jolt

Getting Started

wn in
.
Repository Editor Logon Window Description

Table 4-2 Repository Editor Logon Window Description

Exiting the Repository Editor

Exit the Repository Editor when you finish adding, editing, testing, or deleting
packages, services, and parameters. Prior to exit, the window is displayed as sho
the figure “BEA Jolt Repository Editor Logon Window Prior to Exit” on page 4-10

Option Description

Server Server name.

Port Number Port number in decimal value.

Note: After the Server Name and Port Number are entered, the
User Name and Password fields are activated. Activation
is based on the authentication level of the BEA Tuxedo
application.

User Role BEA Tuxedo user role. Required only if BEA Tuxedo
authentication level is USER_AUTH or higher.

Application
Password

BEA Tuxedo administrative password text entry.

User Name BEA Tuxedo user identification text entry. The first
character must be an alpha character.

User Password BEA Tuxedo password text entry.

Packages Accesses the Packages window. (Enabled after the logon.)

Services Accesses the Services window. (Enabled after the logon.)

Log Off Terminates the connection with the server.
Using BEA Jolt 4-9

4 Using the Jolt Repository Editor

l

Figure 4-3 BEA Jolt Repository Editor Logon Window Prior to Exit
.

Note that only the Packages, Services, and Log Off command buttons are enabled. Al
of the text entry fields are disabled.

Follow the steps below to exit the Repository Editor.

1. Click Back to return to the Repository Editor Logon window.

2. Click Log Off to terminate the connection with the server.

The Repository Editor Logon window continues to be displayed with disabled
fields.

3. Select Close from your browser menu to close the window.
4-10 Using BEA Jolt

Main Components of the Repository Editor
Main Components of the Repository Editor

The Repository Editor allows you to add, modify, or delete any of the following
components:

� Packages

� Services

You can also test and group services.

� Parameters

Repository Editor Flow

After you log on to the Repository Editor, two buttons are enabled, Packages and
Services.

The following figure illustrates the Repository Editor flow to help you determine
which of these two buttons to select.
Using BEA Jolt 4-11

4 Using the Jolt Repository Editor

s:
Figure 4-4 Repository Editor Flow Diagram

Select Packages to open the Packages window and perform the following function

� View packages and services

z Make a service available using Export or Unexport

z Select a package to delete

� Access the Package Organizer to:

z Move services from one package to another

z Create a new package
4-12 Using BEA Jolt

Main Components of the Repository Editor

tion.
t, rate,

e

Refer to “What Is a Package?” on page 4-13 for complete details.

Use Services to open the Services window and perform the following functions:

� Create, add, edit, or delete service definitions

� Create, add, edit, or delete parameters

� Test the services and parameters

Refer to “What Is a Service?” on page 4-16 for complete details.

What Is a Package?

Packages provide a convenient method for grouping services for Jolt administra
(A service consists of parameters, such as pin number, account number, paymen
term, age, or Social Security number.)

You use the Packages window to perform the following:

� View packages and services

� Export or unexport services

� Delete packages

� Access Package Organizer to:

z Move services

z Create a new package

Click the Packages button in the Jolt Repository Editor logon window to display th
available packages. When you select a specific package from the display list, its
services within that package are displayed.

The following figure contains a sample Packages window. The BANKAPP package is
selected, and the services within the BANKAPP package is displayed.
Using BEA Jolt 4-13

4 Using the Jolt Repository Editor
Figure 4-5 Sample Packages Window
4-14 Using BEA Jolt

Main Components of the Repository Editor

n

is

the
Packages Window Description

Instructions for Viewing a Package

1. Click Packages in the Repository Editor Logon window.

The Packages window opens and displays the list of available packages.

In the figure “Sample Packages Window” on page 4-14, BANKAPP, BULKPKG, and
SIMPSERV are the available packages.

2. Refer to “Instructions for Viewing a Parameter” on page 4-19 for additional
information.

Table 4-3 Packages Window Description

Option Description

Packages Lists available packages.

Services Lists available services within the selected package.

Package Organizer Accesses the Package Organizer window to review available
packages and services. Use this window to move the services
among the packages or add a new package.

Export Makes the most current services available to the client. This optio
is enabled when a package is selected.

Unexport Select this option before testing an existing service. This option
enabled when a package is selected.

Delete Deletes a package. This option is enabled when a package is
selected and the package is empty (no services contained within
package).

Back Returns the user to the previous window.
Using BEA Jolt 4-15

4 Using the Jolt Repository Editor

diting

ge
What Is a Service?

A service is a definition of an available BEA Tuxedo service. Services include
parameters such as pin number, account number, payment, and rate. Adding or e
a Jolt service does not affect an existing BEA Tuxedo service.

You use the Services Window to add, edit, or delete services.

The following figure is an example of a Services window with the BANKAPP package
selected, and the display list of services and parameters available for this packa
(parameters are detailed later).

Figure 4-6 Sample Services Window
4-16 Using BEA Jolt

Main Components of the Repository Editor

ice.

n
Services Window Description

Instructions for Viewing a Service

1. Select Services from the Repository Editor Logon window.

The Services window opens and displays the list of available packages.

2. Select a package.

The list of available services for the selected package is displayed.

In the figure “Sample Services Window” on page 4-16, BANKAPP is the selected
package. DEPOSIT, INQUIRY, TRANSFER, and WITHDRAWAL are the available
services for BANKAPP.

3. Refer to “Instructions for Viewing a Parameter” on page 4-19 for additional
information.

Table 4-4 Services Window Description

Option Description

Packages Lists the available packages.

Services Lists the services in the selected package, which you can edit or
delete. Selecting a service displays the parameters within the serv

Parameters Displays the parameters of the selected service.

New Displays the Edit Services window for adding a new service.

Edit Displays the Edit Services window for editing an existing service.
This button is enabled only if a service has been selected.

Delete Deletes a service. This button is only enabled if a service has bee
selected.

Back Returns the user to the previous window.
Using BEA Jolt 4-17

4 Using the Jolt Repository Editor

ment,
s

Working With Parameters

A service contains parameters, which may be a pin number, account number, pay
rate, term, age, or Social Security number. The following figure shows a Service
window displaying a selected service and its parameters.

Note: Adding or editing a parameter does not modify or change an existing BEA
Tuxedo Service.

Figure 4-7 Sample Services Window with Parameters List
4-18 Using BEA Jolt

Setting Up Packages and Services

es:
Instructions for Viewing a Parameter

1. Select Services from the Repository Editor Logon window.

 The Services window opens and displays the list of available packages.

2. Select a package.

The list of available services for the selected package is displayed.

 In the preceeding figure, BANKAPP is the selected package.

3. Select a service.

The list of available parameters for the selected service is displayed.

In the preceeding figure, INQUIRY is the selected service.

4. View the parameters for a selected service in the Parameters display list.

In the preceeding figure, ACCOUNT_ID, FORMNAM, SBALANCE, and STATLIN are
the available parameters for the INQUIRY service.

5. Refer to “Adding a Parameter” on page 4-27 for additional information.

Setting Up Packages and Services

This section includes the necessary steps for setting up a package and its servic

� Saving Your Work

� Adding a Package

� Adding a Service

� Adding a Parameter
Using BEA Jolt 4-19

4 Using the Jolt Repository Editor

o

ow,

 the

re
wing
Saving Your Work

As you create and edit services and parameters, it is important to regularly save
information to avoid losing input. Clicking Save Service in the Edit Services window
can prevent the need to re-enter information in the event of a system failure.

Caution: When you add or edit the parameters of a service, you must select Add
before choosing Back from the Edit Parameters window and returning t
the Edit Services window.

If adding a new service or modifying an existing service in the Edit Services wind
be sure to select Save Service before choosing Back. If you select Back before you
save the modified information, a warning is briefly displayed on the status line at
bottom of the window.

Adding a Package

When you need to add a new group of services, you create a new package befo
adding the services. The “Package Organizer Window” on page 4-21 and the follo
procedure show how to add a new package, BALANCE, to the Packages listing.
4-20 Using BEA Jolt

Setting Up Packages and Services
Figure 4-8 Package Organizer Window
Using BEA Jolt 4-21

4 Using the Jolt Repository Editor

s

t of a
.

is, all
st not
Instructions for Adding a Package

1. Click Packages in the Repository Editor Logon window to display the Package
window.

2. Select Package Organizer to display the Package Organizer window, similar to
that shown in the figure “Package Organizer Window” on page 4-21.

For a description of contents of this window, see “Package Organizer Window
Description” on page 4-33.

3. Click the New Package button in the Package Organizer window.

The text field is activated.

4. Type the name of the new package (not to exceed 32 characters) and press Enter.

The new name (shown in the preceeding figure as BALANCE) is displayed on the
Packages list in random order.

Adding a Service

Services are definitions of available BEA Tuxedo services and can only be a par
Jolt package.You must create the service as a part of a new or existing package

The Repository Editor accepts the new service name exactly as it is typed (that
uppercase letters, abbreviations, misspellings are accepted). Service names mu
exceed 30 characters.

The following figure shows the Edit New Services window for adding a service.
4-22 Using BEA Jolt

Setting Up Packages and Services
Figure 4-9 Edit Services Window: Add a New Service to a Package
Using BEA Jolt 4-23

4 Using the Jolt Repository Editor

kage

t

Adding a Service Window Description

The following table describes the options for adding services to a package in a pac
window.

Option Description

Edit Services
Selections

Service Name Name of the new service to be added to the Jolt Repository.

Input Buffer
Type/Output
Buffer Type

VIEW— C-structure and 16-bit integer field. Contains subtypes tha
have a particular structure. X_C_TYPE and X_COMMON are
equivalent. X_COMMON is used for COBOL and C.

VIEW32—Similar to VIEW, except 32-bit field identifiers are
associated with VIEW32 structure elements.

CARRAY—Array of uninterrupted binary data that is neither
encoded nor decoded during transmission; it may contain null
characters. X_OCTET is equivalent.

FML—Type in which each field carries its own definition.

FML32—Similar to FML except the ID field and length field are 32
bits long.

STRING—Character array terminated by a null character that is
encoded or decoded.

Input View
Name/Output
View Name

Unique name assigned to the Input View Buffer and Output View
Buffer types. These fields are only enabled if VIEW or VIEW32 are
the selected buffer types.

Export Status Unexport
Export

Radio button with current status of the service. EXPORT or
UNEXPORT status is checked. UNEXPORT is the default.

Service Level
Actions

Save Service Saves the newly created service in the Repository.

Test Tests the service. This command button is disabled until a new
service is created or edits to an existing service are saved.

Back Returns you to the previous window.

Parameter Parameters List of service parameters to edit or delete.
4-24 Using BEA Jolt

Setting Up Packages and Services

the
g

on.)

ed
Instructions for Adding a Service

1. Select Services from the Repository Editor Logon window.

The Services window opens, similar to the figure shown in “Sample Services
Window” on page 4-16.

2. Select the package to which you will add the service.

If you later decide that another package should contain the new service, use
Package Organizer to move the service to a different package. (See “Groupin
Services Using the Package Organizer” on page 4-31 for additional informati

3. From the Services window, select New to display the Edit Services window, as
shown in “Edit Services Window: Add a New Service to a Package” on page
4-23.

4. Select the Service Name text field to activate it.

5. Type the name of the new service you want to add.

6. Select the input buffer type.

Although the same buffer type selected for the Input Buffer is automatically
selected for the Output Buffer, you can select a different Output Buffer type.

z If VIEW or VIEW32 is selected, you must type the Input View Name and
Output View Name in the associated text fields.

z If another buffer type is selected, the Input View Name and Output View
Name text fields are disabled.

z If CARRAY or STRING is selected, refer to “Selecting CARRAY or STRING
as a Service Buffer Type” on page 4-26 for additional instructions.

7. Select Save Service to save the newly created service.

Parameter Level
Actions

New Adds new parameters to the service.

Edit Used to edit an existing parameter. This command button is disabl
until a new parameter is selected.

Delete Deletes a parameter. This option is disabled until a parameter is
selected.
Using BEA Jolt 4-25

4 Using the Jolt Repository Editor

so

he
Selecting CARRAY or STRING as a Service Buffer Type

If CARRAY or STRING is selected as the buffer type for a new service, only CARRAY or
STRING can be added as the data type for the accompanying parameters. See al
“Adding a Parameter” on page 4-27 and “Selecting CARRAY or STRING as a
Parameter Data Type” on page 4-29. For additional information, refer to “Using t
Jolt Class Library” on page 5-1.

The following figure shows an example Edit Services window with STRING selected
as the buffer type for the service SIMPAPP.

Figure 4-10 Edit Services Window: Select STRING Buffer Type
4-26 Using BEA Jolt

Setting Up Packages and Services

e.
Adding a Parameter

Clicking New under the label Parameter level actions in the Edit Services window is
displayed the Edit Parameters window. Review the features in the following figur
Use this window to enter the parameter and screen information for a service.

Figure 4-11 Edit Parameters Window: Add a Parameter
Using BEA Jolt 4-27

4 Using the Jolt Repository Editor

r

en
Adding a Parameter Window Description

Option Description

Field Name Adds the field name (for example, asset, inventory).

Data Type Lists data type choices:

byte - 8-bit

short - 16-bit

integer - 32-bit

float - 32-bit

double - 64-bit

string - null-terminated character array

carray - variable length 8-bit character array

Direction Radio button choices for direction of information:

Input - Information is directed from the client to the server.

Output - Information is directed from the server to the client.

Both - Information is directed from the client to the server, and from
the server to the client.

Occurrence(s) Number of times that an identical field name can be used. If 0, the
field name can be used an unlimited number of times. Occurrences
are used by Jolt to build test screens; not to limit information sent o
retrieved by BEA Tuxedo.

Screen
Information

This button is disabled when the window is launched.

Clear Clears the fields of the window.

Change Is disabled while new parameters are added.

Add Adds new parameters to the service. The parameters are saved wh
the service is saved.

Back Returns the user to the previous window.
4-28 Using BEA Jolt

Setting Up Packages and Services

f

 or

the

AY
efer

the
Instructions for Adding a Parameter

1. Select Field Name to activate the field, and type the field name.

Note: If the buffer type is FML or VIEW, the field name must match the
corresponding parameter field name in FML or VIEW.

2. Select the data type.

3. Specify a direction by selecting the input , output, or both radio buttons.

4. Select the Occurrences text field to activate it, and then enter the number of
occurrences.

5. Select Add to append the information. Add does not save the parameter.

6. In the Edit Services window, click Save Service to save the parameter as a part o
the service.

Warning: If you do not click Save Service before you click Back, the parameters
are not saved as part of the service.

7. Click Back to return to the Edit Services window.

Selecting CARRAY or STRING as a Parameter Data Type

If CARRAY or STRING is the selected buffer type for a new service, only carray
string can be added as the data type for the accompanying parameters.

In this case, only one parameter can be added. It is recommended that you use
parameter name “CARRAY” for a CARRAY buffer type, and the parameter name
“STRING” for a STRING buffer type.

See also “Instructions for Adding a Service” on page 4-25 and “Selecting CARR
or STRING as a Service Buffer Type” on page 4-26. For additional information, r
to “Using the Jolt Class Library” on page 5-1.

The following figure is an example of the Edit Parameters window with string as
selected data type for the parameter. The Data Type defaults to string and does not
allow you to modify that particular data type. The Field Name can be any name.
Using BEA Jolt 4-29

4 Using the Jolt Repository Editor
Figure 4-12 Edit Parameters Window: string Data Type
4-30 Using BEA Jolt

Grouping Services Using the Package Organizer

roup
rted

to

hin a

e
Grouping Services Using the Package
Organizer

The Package Organizer moves services between packages. You may want to g
related services in a package (for example, WITHDRAWAL services that are expo
only at a certain time of the day can be grouped together in a package).

Use the Package Organizer arrow buttons to move a service from one package
another. These buttons are useful if you have several services to move between
packages. The packages and services display listings to help track a service wit
particular package.

The following figure is an example of a Package Organizer window with a servic
selected for transfer to another package.
Using BEA Jolt 4-31

4 Using the Jolt Repository Editor
Figure 4-13 Package Organizer Window
4-32 Using BEA Jolt

Grouping Services Using the Package Organizer

s to

dow.

age.

d

ou
Package Organizer Window Description

Instructions for Grouping Services with the Package Organizer

1. In the Packages window, click Package Organizer.

2. In the Package Organizer window, select the package containing the service
be moved from the Packages left display window.

3. Select the service to be moved from the Services left display window.

In the previous figure, INQUIRY is the selected service in the BANKAPP package.

4. Select the package to receive the service from the Packages right display win

The previous figure shows the selected service, INQUIRY, and the selected
package, BANK, to which the INQUIRY service will be moved.

Option Description

Packages (left display list) Lists packages containing services in the selected pack

Packages (right display list) Lists packages available as destinations for the selecte
service.

Services (left display list) Lists available services for the selected package.

Services (right display list) Lists available services of the highlighted package that y
moved.

Left arrow Moves services (one service at a time) to the package
highlighted on the left.

Right arrow Moves services (one service at a time) to the package
highlighted on the right.

New Package Adds the name of a new package.

Back Returns user to the previous window.
Using BEA Jolt 4-33

4 Using the Jolt Repository Editor

.

ed)

a

lists.
Figure 4-14 Example of a Moved Service

5. To move the service between the packages, select the left arrowor right arrow

These keys are activated only when both packages (left and right are display
and a service are selected. The keys are only active in the direction of the
package where the service is to be moved. The previous figure, “Example of
Moved Service,” shows that the INQUIRY service has been moved to the BANK
package on the right.

Note: You cannot select the same package in both the left and right display
4-34 Using BEA Jolt

Modifying Packages, Services, and Parameters

w to
s
g
Modifying Packages, Services, and
Parameters

You can make the following changes to packages, services, and parameters:

� Edit a service

� Edit a parameter

� Delete a parameter, service, or package

Editing a Service

You can edit an existing service name or service information, or access the windo
add new parameters to an existing service. For a description of the Edit Service
window, see “Adding a Service Window Description” on page 4-24. The followin
figure is an example of the Edit Services window.
Using BEA Jolt 4-35

4 Using the Jolt Repository Editor
Figure 4-15 Edit Services Window
4-36 Using BEA Jolt

Modifying Packages, Services, and Parameters

uires

e.
Instructions for Editing a Service

Follow these instructions to edit a service:

1. From the Services window, select the package containing the service that req
editing.

The services available for the selected package are displayed.

2. Select the service to edit.

The parameters available for the selected service are displayed.

3. Click Edit to display the Edit Services window, as shown in the previous figur

4. Type or select the new information, and click Save Service.

Editing a Parameter

All parameter elements can be changed, including the name of the parameter.

Warning: If you create a new parameter using an existing name, the system
overwrites the existing parameter.

The following figure is an example of the Edit Parameters window.
Using BEA Jolt 4-37

4 Using the Jolt Repository Editor

”),
e.

lick
Figure 4-16 Edit Parameters Window
.

Instructions for Editing a Parameter

To change a parameter, follow these instructions:

1. In the Services window (see “Sample Services Window with Parameters List
select the package and service that contain the parameter you want to chang

2. Click Edit to display the Edit Services window.

3. Select the Parameter you want to edit from the Parameters display list and c
Edit .

The Edit Parameters Window is displayed as shown in the previous figure.
4-38 Using BEA Jolt

Modifying Packages, Services, and Parameters

e

led to

meter
4. Type the new information and click Change.

5. Click Back to return to the previous window.

Deleting Parameters, Services, and Packages

This section describe how to delete a package. Before deleting a package, all th
services must be deleted from the package. The Delete option is not enabled until all
components of the package or service are deleted.

Warning: The system does not display a prompt to confirm that items are to be
deleted. Be certain that the parameter, service, or package is schedu
be deleted or has been moved to another location before selecting Delete.

Deleting a Parameter

Determine which parameters to delete and follow these instructions.

1. In the logon window, click Services to display the Services window.

2. In the Services window, select the package and service that contain the para
you want to delete.

3. Click Edit to display the Edit Services window.

4. Select the parameter you want to delete from the Parameters display list.

5. Under Parameter Level Actions, click Delete.
Using BEA Jolt 4-39

4 Using the Jolt Repository Editor

l
ore
Deleting a Service

Determine which services to delete and follow these instructions.

Note: Make certain that all parameters within this service are deleted before
selecting this option.

1. Select the package containing the service you want to delete.

2. Select the service you want to delete.

Delete is enabled.

3. Click Delete. The service is deleted.

Deleting a Package

Determine which packages to delete and follow these instructions. Make sure al
services contained in this package are deleted or moved to another package bef
selecting this option.

1. In the Repository Editor Logon window, click Packages to display the Packages
window.

2. Select a package.

3. Click Delete.

The package is deleted.
4-40 Using BEA Jolt

Making a Service Available to the Jolt Client

ge
g the

ent.
ervice

port
Making a Service Available to the Jolt Client

To make a service available to a Jolt client, you export it. All services in a packa
must be exported or unexported as a group. A service is made available by usin
Export and Unexport radio buttons.

“Making a Service Available to the Jolt Client” covers the following topics:

� Exporting and Unexporting Services

� Reviewing the Exported and Unexported Status

Exporting and Unexporting Services

Determine which services are being made available or unavailable to the Jolt cli
Services are exported to ensure that the Jolt client can access the most current s
definitions from the Jolt server.

The following figure shows the Packages window, where you can export and unex
services.
Using BEA Jolt 4-41

4 Using the Jolt Repository Editor

he
Figure 4-17 Packages Window: Export and Unexport Buttons

Follow the instructions to export or unexport a service:

1. From the Repository Editor Logon window, select Packages to display the
Packages window.

2. Select a package.

The Export and Unexport buttons are enabled.

3. To make the services in the selected package available, click Export .

To make the services in the selected package unavailable, select Unexport.

Caution: The system does not display a confirmation message indicating that t
service is exported or unexported. See “Reviewing the Exported and
Unexported Status” for additional information.
4-42 Using BEA Jolt

Making a Service Available to the Jolt Client

it
Reviewing the Exported and Unexported Status

When a service is exported or unexported, you can review its status from the Ed
Services window.

The following figure displays the Export radio button as active, for Export Status;
therefore, the current status for the service TRANSFER is exported.

Figure 4-18 Export Status
Using BEA Jolt 4-43

4 Using the Jolt Repository Editor
To review the current exported or unexported status of a service, follow these
instructions:

1. From the Repository Editor Logon window, select Services to display the Services
window shown in the “Sample Services Window” on page 4-16.

2. Select a package from the Package display list.

The Services display list of available services for the selected package is
displayed.

3. Select the service you want to review.

4. Click Edit .

The Edit Services window is displayed as shown in the figure “Edit Services
Window” on page 4-36.

One of the radio buttons (Unexport or Expor t) next to the Export Status label
will be active, indicating the current status of the service.

Testing a Service

Test a service and its parameters before you make them available to Jolt clients. You
can test currently available services without making changes to the services and
parameters.

Note: The Jolt Repository Editor allows you to test an existing BEA Tuxedo service
with Jolt, without writing a line of Java code.

An exported or unexported service can be tested; if you need to change a service and
its parameters, unexport the service prior to editing.

 “TTesting a Service” covers the following main topics:

� Jolt Repository Editor Service Test Window

� Testing a Service
4-44 Using BEA Jolt

TTesting a Service

s
ver is

 are

6 for

nce

nd
Jolt Repository Editor Service Test Window

Use the Run button to test the service to ensure that the parameter information i
accurate. A service can only be tested when the corresponding BEA Tuxedo ser
running for the service being tested.

Althouth the Test button in the Edit Services window is enabled when parameters
not added to the service, the Service Test window displays unused in the parameter
fields, and they are disabled. Refer to “Sample Service Test Window” on page 4-4
an example of unused parameter fields.

Note: The Service Test window displays up to 20 items of any multiple-occurre
parameters. All items that follow the twentieth occurrence of a parameter
cannot be tested.

The following figure is an example of a Service Test window with both writable a
read-only text fields.
Using BEA Jolt 4-45

4 Using the Jolt Repository Editor
Figure 4-19 Sample Service Test Window
4-46 Using BEA Jolt

TTesting a Service

yte
Service Test Window Description

The following table describes the Service Test window options.

Note: You can enter a two-digit hexadecimal character (0-9, a-f, A-F) for each b
in the CARRAY data field. For example, the hexadecimal value for 1234
decimal is 0422.

Option Description

Service Displays the name of the tested service (read-only).

Parameters
displayed

Tracks the parameters displayed in the window (read-only).

Parameter text fieldsThe parameter information text entry field. These fields are
writable or read-only. Disabled if read-only.

RUN Runs the test with the data entered.

Clear Clears the text entry field.

Next Lists additional parameter fields, if applicable.

Prev Lists previous parameter fields, if applicable.

Back Returns to the Edit Services window.
Using BEA Jolt 4-47

4 Using the Jolt Repository Editor

You
Testing a Service

You can test a service without making changes to the service or its parameters.
can also test a service after editing the service or its parameters.

Test Service Process Flow

The following figure shows a typical Repository Editor service flow test.

Figure 4-20 Test Service Flow
4-48 Using BEA Jolt

TTesting a Service

he
Instructions for Testing a Service

Follow these instructions to test a service. For troubleshooting information, see t
first two entries in the Repository Editor Troubleshooting table.

1. Select Services from the Repository Editor Logon window.

The Services window is displayed.

2. Select the package and the service to test.

3. Click Edit to access the Edit Services window.

4. Click Test to access the Service Test window.

5. Enter data in the Service test window parameter text fields.

6. Click RUN.

The status line displays the outcome as follows:

z If the test passed: “Run Completed OK ”

z If the test failed: “Call Failed ”

See “Repository Editor Troubleshooting” on page 4-50 for additional
Repository Editor troubleshooting information.

If Edits are Required After Testing

Follow these instructions if editing is required to pass the test.

1. Return to the Repository Editor Logon window and click Packages.

2. Select the package with the services to be retested.

3. Click Unexport.

4. Click Back to return to the Repository Editor Logon window.

5. Click Services to display the Services window.

6. Select the package and the service that requires editing and click Edit .

7. In the Edit Services window, edit the service.

8. Save the service, click Test, and repeat steps 5 and 6 of the “Instructions for
Testing a Service” section.
Using BEA Jolt 4-49

4 Using the Jolt Repository Editor

 not

).

s

b
To
at
RL
Repository Editor Troubleshooting

Consult the following table if you encounter problems while using the Repository
Editor.

Table 4-5 Repository Editor Troubleshooting

If... Then...

A parameter is incorrect Edit the service.

The Jolt server is down Check the server. The BEA Tuxedo service is down. You do
need to edit the service.

You receive any error Make sure the browser you are running is Java-enabled:

� For Netscape browsers, make sure that Enable Java and
Enable JavaScript are checked under
Edit→Preferences→Advanced. Then select

Communicator→Tools→Java Console. If the Java Console
does not exist on the menu, the browser probably does not
support Java.

� For Internet Explorer, make sure the version is 3.0 (or later

� If running Netscape Navigator, check the Java Console for
error messages.

� If running appletviewer , check the system console (or the
window where you started the appletviewer).

You cannot connect to
the Jolt Server (after
entering Server and
Port Number)

Make sure that:

� Your Server name is correct (and accessible from your
machine). Check that the port number is the correct port. A
JSL or JRLY must be configured to listen on that port.

� The Jolt Server is up and running. If any authentication is
enabled, check that you are entering the correct user name
and passwords.

� If the applet was loaded through http,make sure that the We
server, JRLY and the Jolt server are on the same machine (
do this, enter the server name into the Repository Editor th
refers to the same machine name as the one used in the U
to download the applet).
4-50 Using BEA Jolt

Repository Editor Troubleshooting

e

r
k).

.

You cannot start the
Repository Editor

If you are running the editor in a browser and downloading the
Repository Editor applet through http, make sure that:

� The browser is Java-enabled.

� The Web server is running and accessible.

� The RE.html file is available to the Web server.

� The RE.html file contains the correct <codebase>
parameter. Codebase identifies where the Jolt class files ar
located.

If running the editor in a browser (or appletviewer) and
loading the applet from disk, make sure that:

� The browser is Java-enabled.

� The RE.html file exists and is readable.

� The RE.html file is Java-enabled.

� The RE.html file contains the correct <codebase> paramete
(this is where the Jolt class files are installed on the local dis

� CLASSPATH is set and points to the Jolt class directory.

You cannot display
Packages or Services
even though you are sure
they exist

� Make sure that the Jolt Repository Server is running
(JREPSVR).

� Make sure that the JREPSVR can access the repository file

� Make sure that the configuration of JREPSVR: verify CLOPT
parameters and verify that jrep.f16 (FML definition file) is
installed and accessible (follow installation documentation)

You cannot save changes
in the Repository Editor

Check permissions on the repository file. The file must be
writable by the user who starts JREPSVR.

Table 4-5 Repository Editor Troubleshooting (Continued)

If... Then...
Using BEA Jolt 4-51

4 Using the Jolt Repository Editor

ffer

I

e

t

s.
Repository Enhancements for Jolt

The Jolt Repository uses the FML32 buffer type, which increases the internal bu
size beyond 64K bytes.

Additionally, the JREPSVR and the Jolt Server (JSH) support the following XATM
buffer types:

� X_OCTET

� X_C_TYPE

� X_COMMON

You cannot test services� Check that the service is available.

� Verify the service definition matches the service.

� If BEA Tuxedo authentication is enabled, check that you hav
the required permissions to execute the service.

� Check if the application file (FML or VIEW) is specified
correctly in the variables (FIELDTBLS or VIEWFILES) in
the ENVFILE. All applications FML field tables or VIEW
files must be specified in the FIELDTBLS and VIEWFILES
environment variables in the ENVFILE. If these files are no
specified, the JSH cannot process data conversion and you
receive the message “ServiceException: TPEJOLT data
conversion failed.”

� Check the ULOG file for any additional diagnostic message

Table 4-5 Repository Editor Troubleshooting (Continued)

If... Then...
4-52 Using BEA Jolt

CHAPTER

a
 the

Class

ith
 the
5 Using the Jolt Class
Library

The BEA Jolt Class Library provides developers with a set of object-oriented Jav
language classes for accessing BEA Tuxedo services. The class library contains
class files that implement the Jolt API. Using these classes, you can extend
applications for Internet and intranet transaction processing. You can use the Jolt
Library to customize access to BEA Tuxedo services from Java applets.

“Using the Jolt Class Library” covers the following topics:

� Class Library Functionality Overview

� Jolt Object Relationships

� Jolt Class Library Walk-through

� Using BEA Tuxedo Buffer Types with Jolt

� Multithreaded Applications

� Event Subscription and Notifications

� Clearing Parameter Values

� Reusing Objects

� Deploying and Localizing Jolt Applets

To use the information in the following sections, you need to be generally familiar w
the Java programming language and object-oriented programming concepts. All
programming examples are in Java code.
Using BEA Jolt 5-1

5 Using the Jolt Class Library

s.
m

ns or

is

o

plet

ur

t the
of the
Note: All program examples are only fragments used to illustrate Jolt capabilitie
They are not intended to be compiled and run as provided. These progra
examples require additional code to be fully executable.

Class Library Functionality Overview

The Jolt Class Library gives the BEA Tuxedo application developer the tools to
develop client-side applications or applets that run as independent Java applicatio
in a Java-enabled Web browser. The bea.jolt package contains the Jolt Class
Library. To use the Jolt Class Library, the client program or applet must import th
package. For an example of how to import the bea.jolt package, refer to the listing
“Jolt Transfer of Funds Example (SimXfer.java)” on page 5-12.

Java Applications vs. Java Applets

Java programs that run in a browser are called applets. Applets are small, easily
downloaded parts of an overall application that perform specific functions. Many
popular browsers impose limitations on the capabilities of Java applets in order t
provide a high degree of security for the users of the browser. Applets have the
following restrictions:

� An applet ordinarily cannot read or write files on any host system.

� An applet cannot start any program on the host (client) that is executing the
applet.

� An applet can make a network connection only to the host from which the ap
originated; it cannot make other network connections, not even to the client
machine.

Programming workarounds exist for most restrictions on Java applets. Check yo
browser’s Web site (for example, www.netscape.com or www.microsoft.com) or
developer documentation for specific information about the applet capabilities tha
browser supports or restricts. You can also use Jolt Relay to work around some
network connection restrictions.
5-2 Using BEA Jolt

Class Library Functionality Overview

icted
on the

ed to
much
y
t

g,

sed

the
ns the
A Java application, however, is not run in the context of a browser and is not restr
in the same ways. For example, a Java application can start another application
host machine where it is executing. While an applet relies on the windowing
environment of a browser or appletviewer for much of its user interface, a Java
application requires that you create your own user interface. An applet is design
be small and highly portable. A Java application, on the other hand, can operate
like any other non-Java program. The security restrictions for applets imposed b
various browsers and the scope of the two program types are the most importan
differences between a Java application and a Java applet.

Jolt Class Library Features

The Jolt Class Library has the following characteristics:

� Features fully thread-safe classes.

� Encapsulates typical transaction functions such as logon, synchronous callin
transaction begin, commit, rollback, and logoffs as Java objects.

� Contains methods that allow you to set idle time-outs for continuous and
intermittent client network connections.

� Features methods that allow a Jolt client to subscribe to and receive event-ba
notifications.

Error and Exception Handling

The Jolt Class Library returns both Jolt interpreter and BEA Tuxedo errors as
exceptions. The Jolt Class Library Reference contains the Jolt classes and lists
errors or exceptions thrown for each class. The API Reference in Javadoc contai
Error and Exception Class Reference.
Using BEA Jolt 5-3

5 Using the Jolt Class Library

ts to

am

do
.
uests
ests
ver the

EA
ge,
or
uxedo
Jolt Client/Server Relationship

BEA Jolt works in a distributed client/server environment and connects Java clien
BEA Tuxedo based applications.

The following figure illustrates the client/server relationship between a Jolt progr
and the Jolt Server.

Figure 5-1 Jolt Client/Server Relationship
.

As illustrated in the figure, the Jolt Server acts as a proxy for a native BEA Tuxe
client, implementing functionality available through the native BEA Tuxedo client
The BEA Jolt Server accepts requests from BEA Jolt clients and maps those req
into BEA Tuxedo service requests through the BEA Tuxedo ATMI interface. Requ
and associated parameters are packaged into a message buffer and delivered o
network to the BEA Jolt Server. The BEA Jolt Connection Manager handles all
communication between the BEA Jolt Server and the BEA Jolt applet using the B
Jolt Transaction Protocol. The BEA Jolt Server unpacks the data from the messa
performs any necessary data conversions, such as numeric format conversions
character set conversions, and makes the appropriate service request to BEA T
as specified by the message.

Client

GUI Application

Jolt Class Library

Connection
Manager

ATMI
Protocol Translator

Connection

Jolt Server

TCP/IP

BEA Tuxedo
Application

Application Protocol

Jolt Transaction Protocol

Jolt Network Protocol
Manager
5-4 Using BEA Jolt

Class Library Functionality Overview

 the
gh the

lt
rface

Class
e

s in a

Once a service request enters the BEA Tuxedo system, it is executed in exactly
same manner as any other BEA Tuxedo request. The results are returned throu
ATMI interface to the BEA Jolt Server, which packages the results and any error
information into a message that is sent to the BEA Jolt client applet. The BEA Jo
client then maps the contents of the message into the various BEA Jolt client inte
objects, completing the request.

On the client side, the user program contains the client application code. The Jolt
Library packages a JoltSession and JoltTransaction, which in turn handle servic
requests.

The following table describes the client-side requests and Jolt Server-side action
simple example program.

Table 5-1 Jolt Client/Server Interaction

Jolt Client Jolt Server

1 attr=new JoltSessionAttributes();

attr.setString(attr.APPADDRESS,
“//myhost:8000”);

Binds the client to the BEA
Tuxedo environment

2 session=new JoltSession(attr, username,
userRole, userPassword, appPassword);

Logs the client onto BEA
Tuxedo

3 withdrawal=new JoltRemoteService(
servname, session);

Looks up the service
attributes in the Repository

4 withdrawal.addString(“accountnumber”,
“123”);

withdrawal.addFloat(“amount”, (float)
100.00);

Populates variables in the
client (no Jolt Server
activity)

5 trans=new JoltTransaction(time-out,
session);

Begins a new Tuxedo
transaction

6 withdrawal.call(trans); Executes the BEA Tuxedo
service

7 trans.commit() or trans.rollback(); Completes or rolls back
transaction

8 balance=withdrawal.getFloatDef(“balance,”
(float) 0.0);

Retrieves the results (no Jolt
Server activity)
Using BEA Jolt 5-5

5 Using the Jolt Class Library

es.
ote

The following tasks summarize the interaction shown in the previous table, “Jolt
Client/Server Interaction.”

1. Bind the client to the BEA Tuxedo environment using the
JoltSessionAttributes class.

2. Establish a session.

3. Set variables.

4. Perform the necessary transaction processing.

5. Log the client off of the BEA Tuxedo system.

Each of these activities is handled through the use of the Jolt Class Library class
These classes include methods for setting and clearing data and for handling rem
service actions. “Jolt Object Relationships” on page 5-7 describes the Jolt Class
Library classes in more detail.

9 session.endSession(); Logs the client off of BEA
Tuxedo

Table 5-1 Jolt Client/Server Interaction

Jolt Client Jolt Server
5-6 Using BEA Jolt

Jolt Object Relationships

f the

e

r

bject

st and
Jolt Object Relationships

The following figure illustrates the relationship between the instantiated objects o
Jolt Class Library classes.

Figure 5-2 Jolt Object Relationships

As objects, the Jolt classes interact in various relationships with each other. In th
previous figure, the relationships are divided into three basic categories:

Contains-a relationship. At the class level an object can contain other objects. Fo
example, a JoltTransaction stores (or contains) a JoltSession object.

Is-a relationship. The is-a relationship usually occurs at the class instance or sub-o
level and denotes that the object is an instance of a particular object.

Uses-a relationship. An object can use another object without containing it. For
example, a JoltSession can use the JoltSessionAttributes object to obtain the ho
port information.

JoltUserEvent

JoltTransaction uses-a

uses-a

contains-a

JoltSession

JoltRemoteService

JoltSessionAttributes

contains-a

call(transaction) contains-a

JoltReply

JoltMessage

contains-a

uses-a
Using BEA Jolt 5-7

5 Using the Jolt Class Library

/log

.

fine

ng
s

BEA
ablish
ass.
ssion
lling

ce.
Jolt Class Library Walk-through

Use Jolt classes to perform the basic functions of transaction processing: log on
off; synchronous service calling; transaction begin, commit, and rollback. The
following sections describe how Jolt classes are used to perform these functions

� Logon and Logoff

� Synchronous Service Calling

� Transaction Begin, Commit, and Rollback

You can also use the Jolt class library to develop multithreaded applications, de
Tuxedo buffer types, and subscribe to events and unsolicited messages. These
functions are discussed in later sections.

Logon and Logoff

The client application must log on to the BEA Tuxedo environment prior to initiati
any transaction activity. The Jolt Class Library provides the JoltSessionAttribute
class and JoltSession class to establish a connection to a BEA Tuxedo system.

The JoltSessionAttributes class will contain the connection properties of Jolt and
Tuxedo systems as well as various other properties of the two systems. To est
a connection, the client application must create an instance of the JoltSession cl
This instance is the JoltSession object. After the developer instantiates a Jolt Se
and BEA Tuxedo object, the Jolt and BEA Tuxedo logon capability is enabled. Ca
the endSession method ends the session and allows the user to log off.

Synchronous Service Calling

Transaction activities such as requests and replies are handled through a
JoltRemoteService object (an instance of the JoltRemoteService class). Each
JoltRemoteService object refers to an exported BEA Tuxedo request/reply servi
You must provide a service name and a JoltSession object to instantiate a
JoltRemoteService object before it can be used.
5-8 Using BEA Jolt

Jolt Class Library Walk-through

st

le
ility.

e
ject is

 The
Jolt
lt does
ssion.

n
e
ses.

AL

is
To use a JoltRemoteService object:

1. Set the input parameters.

2. Invoke the service.

3. Examine the output parameters.

For efficiency, Jolt does not make a copy of any input parameter object; only the
references to the object (for example, string and byte array) are saved. Because
JoltRemoteService object is a stateful object, its input parameters and the reque
attributes are retained throughout the life of the object. You can use the clear()
method to reset the attributes and input parameters before reusing the
JoltRemoteService object.

Because Jolt is designed for a multithreaded environment, you can invoke multip
JoltRemoteService objects simultaneously by using the Java multithreading capab
Refer to “Multithreaded Applications” on page 5-37 for additional information.

Transaction Begin, Commit, and Rollback

In Jolt, a transaction is represented as an object of the class JoltTransaction. Th
transaction begins when the transaction object is instantiated. The transaction ob
created with a time out and JoltSession object parameter:

trans = new JoltTransaction(timeout, session)

Jolt uses an explicit transaction model for any services involved in a transaction.
transaction service invocation requires a JoltTransaction object as a parameter.
also requires that the service and the transaction belong to the same session. Jo
not allow you to use services and transactions that are not bound to the same se

The sample code in the listing “Jolt Transfer of Funds Example (SimXfer.java)” o
page 5-12 describes how to use the Jolt Class Library and includes the use of th
JoltSessionAttributes, JoltSession, JoltRemoteService, and JoltTransaction clas

The same sample combines two user-defined BEA Tuxedo services (WITHDRAW
and DEPOSIT) to perform a simulated TRANSFER transaction. If the
WITHDRAWAL operation fails, a rollback is performed. Otherwise, a DEPOSIT
performed and a commit completes the transaction.
Using BEA Jolt 5-9

5 Using the Jolt Class Library

2:

 key

n.

 as
The following programming steps describe the transaction process shown in the
sample code listing “Jolt Transfer of Funds Example (SimXfer.java)” on page 5-1

1. Set the connection attributes like hostnam e and portnumber in the
JoltSessionAttribute object.

Refer to this line in the following code listing:

sattr = new JoltSessionAttributes();

2. The sattr.checkAuthenticationLevel() allows the application to determine
the level of security required to log on to the server.

Refer to this line in the following code listing:

switch (sattr.checkAuthenticationLevel())

3. The logon is accomplished by instantiating a JoltSession object.

Refer to these lines in the following code listing:

session = new JoltSession (sattr, userName , userRole ,
userPassword , appPassword);

This example does not explicitly catch SessionException errors.

4. All JoltRemoteService calls require a service to be specified and the session
returned from JoltSession() .

Refer to these lines in the following code listing:

withdrawal = new JoltRemoteService(“WITHDRAWAL”, session);

deposit = new JoltRemoteService(“DEPOSIT”, session);

These calls bind the service definition of both the WITHDRAWAL and
DEPOSIT services, which are stored in the Jolt Repository, to the withdrawal
and deposit objects, respectively. The services WITHDRAWAL and DEPOSIT
must be defined in the Jolt Repository; otherwise a ServiceException is throw
This example does not explicitly catch ServiceException errors.

5. Once the service definitions are returned, the application-specific fields such
account number ACCOUNT_ID and withdrawal amount SAMOUNT are
automatically populated.

Refer to these lines in the following code listing:

withdrawal.addInt(“ACCOUNT_ID”, 100000);

withdrawal.addString(“SAMOUNT”, “100.00”);
5-10 Using BEA Jolt

Jolt Class Library Walk-through

es

ed.
The add*() methods can throw IllegalAccessError or NoSuchFieldError
exceptions.

6. The JoltTransaction call allows a timeout to be specified if the transaction do
not complete within the specified time.

Refer to this line in the following code listing:

trans = new JoltTransaction(5,session);

7. Once the withdrawal service definition is automatically populated, the
withdrawal service is invoked by calling the withdrawal.call(trans)
method.

Refer to this line in the following code listing:

withdrawal.call(trans);

8. A failed WITHDRAWAL can be rolled back.

Refer to this line in the following code listing:

trans.rollback();

9. Otherwise, once the DEPOSIT is performed, all the transactions are committ
Refer to these lines in the following code listing:

deposit.call(trans);

trans.commit();
Using BEA Jolt 5-11

5 Using the Jolt Class Library

The following listing shows an example of a simple application for the transfer of
funds using the Jolt classes.

Listing 5-1 Jolt Transfer of Funds Example (SimXfer.java)

/* Copyright 1999 BEA Systems, Inc. All Rights Reserved */
import bea.jolt.*;
public class SimXfer
{
 public static void main (String[] args)
 {
 JoltSession session;
 JoltSessionAttributes sattr;
 JoltRemoteService withdrawal;
 JoltRemoteService deposit;
 JoltTransaction trans;
 String userName=null;
 String userPassword=null;
 String appPassword=null;
 String userRole=”myapp”;

 sattr = new JoltSessionAttributes();
 sattr.setString(sattr.APPADDRESS, “//bluefish:8501”);

 switch (sattr.checkAuthenticationLevel())
 {
 case JoltSessionAttributes.NOAUTH:
 System.out.println(“NOAUTH\n”);
 break;
 case JoltSessionAttributes.APPASSWORD:
 appPassword = “appPassword”;
 break;
 case JoltSessionAttributes.USRPASSWORD:
 userName = “myname”;
 userPassword = “mysecret”;
 appPassword = “appPassword”;
 break;
 }
 sattr.setInt(sattr.IDLETIMEOUT, 300);
 session = new JoltSession(sattr, userName, userRole,
 userPassword, appPassword);
 // Simulate a transfer
 withdrawal = new JoltRemoteService(“WITHDRAWAL”, session);
 deposit = new JoltRemoteService(“DEPOSIT”, session);

 withdrawal.addInt(“ACCOUNT_ID”, 100000);
 withdrawal.addString(“SAMOUNT”, “100.00”);
5-12 Using BEA Jolt

Jolt Class Library Walk-through
 // Begin the transaction w/ a 5 sec timeout
 trans = new JoltTransaction(5, session);
 try
 {
 withdrawal.call(trans);
 }

 catch (ApplicationException e)
 {
 e.printStackTrace();
 // This service uses the STATLIN field to report errors
 // back to the client application.
 System.err.println(withdrawal.getStringDef(“STATLIN”,”NO
 STATLIN”));
 System.exit(1);
 }

 String wbal = withdrawal.getStringDef(“SBALANCE”, “$-1.0”);

 // remove leading “$” before converting string to float
 float w = Float.valueOf(wbal.substring(1)).floatValue();
 if (w < 0.0)
 {
 System.err.println(“Insufficient funds”);
 trans.rollback();
 System.exit(1);
 }
 else // now attempt to deposit/transfer the funds
 {
 deposit.addInt(“ACCOUNT_ID”, 100001);
 deposit.addString(“SAMOUNT”, “100.00”);

 deposit.call(trans);
 String dbal = deposit.getStringDef(“SBALANCE”, “-1.0”);
 trans.commit();

 System.out.println(“Successful withdrawal”);
 System.out.println(“New balance is: “ + wbal);

 System.out.println(“Successful deposit”);
 System.out.println(“New balance is: “ + dbal);
 }

 session.endSession();
 System.exit(0);
 } // end main
 } // end SimXfer
Using BEA Jolt 5-13

5 Using the Jolt Class Library

pes,

be
G
ple,

 sets
sent
hine
, the
.

Using BEA Tuxedo Buffer Types with Jolt

Jolt supports the following built-in BEA Tuxedo buffer types:

� FML, FML32

� VIEW, VIEW32

� X_COMMON

� X_C_TYPE

� CARRAY

� X_OCTET

� STRING

Note: X_OCTET is used identically to CARRAY.
X_COMMON and X_C_TYPE are used identically to VIEW.

For information about all the BEA Tuxedo typed buffers, data types, and buffer ty
refer to the following documents:

z Programming a BEA Tuxedo Application Using C

z BEA Tuxedo C Function Reference

z BEA Tuxedo FML Function Reference

z BEA Tuxedo File Formats and Data Descriptions Reference

Of the BEA Tuxedo built-in buffer types, the Jolt application programmer should
particularly aware of how Jolt handles the CARRAY (character array) and STRIN
built-in buffer types. The CARRAY type is used to handle data opaquely (for exam
the characters of a CARRAY data type are not interpreted in any way). No data
conversion is performed between a Jolt client and BEA Tuxedo service.

For example, if a BEA Tuxedo service uses a CARRAY buffer type and the user
a 32-bit integer (in Java the integer is in big-endian byte order), then the data is
unmodified to the BEA Tuxedo service. If the BEA Tuxedo service is run on a mac
whose processor uses little-endian byte-ordering (for example, Intel processors)
BEA Tuxedo service must convert the data properly before the data can be used
5-14 Using BEA Jolt

Using BEA Tuxedo Buffer Types with Jolt

ull

a

ffer
do

on
Using the STRING Buffer Type

The STRING buffer type is a collection of characters. STRING consists of non-n
characters and is terminated by a null character. The STRING data type is character
and, unlike CARRAY, you can determine its transmission length by counting the
number of characters in the buffer until reaching the null character.

Note: During the data conversion from Jolt to STRING, the null terminator is
automatically appended to the end of the STRING buffers because a Jav
string is not null-terminated.

Using the STRING buffer type requires two main steps:

1. Define the Tuxedo service that you will be using with the buffer type.

2. Write the code that uses the STRING buffer type.

The next two sections provide examples that demonstrate these steps.

The ToUpper code fragment shown in the listing “Use of the STRING buffer type
(ToUpper.java)” on page 5-18 illustrates how Jolt works with a service whose bu
type is STRING. The TOUPPER BEA Tuxedo Service is available in the BEA Tuxe
simpapp example.

Define TOUPPER in the Repository Editor

Before running the ToUpper.java example, you need to define the TOUPPER service
through the Jolt Repository Editor.

Note: Refer to “Using the Jolt Repository Editor” on page 4-1 for more informati
about defining your services and adding new parameters.

1. In the Jolt Repository Editor Logon window, click Services.

2. In the Services window, locate the TOUPPER service in the SIMPSERV
package.

3. Click Edit .
Using BEA Jolt 5-15

5 Using the Jolt Class Library

r
Figure 5-3 Add a TOUPPER Service

4. In the Edit Services window, define an input buffer type of STRING and an
output buffer type of STRING. Refer to the figure “Set Input and Output Buffe
Types to STRING” on page 5-17.)

5. For the TOUPPER service, define only one parameter for the TOUPPER service
named STRING that is both an input and an output parameter.
5-16 Using BEA Jolt

Using BEA Tuxedo Buffer Types with Jolt

ient
take
 the
iated.
Figure 5-4 Set Input and Output Buffer Types to STRING

ToUpper.java Client Code

The ToUpper.java Java code fragment in the following listing illustrates how Jolt
works with a service with a buffer type of STRING. The example shows a Jolt cl
using a STRING buffer to pass data to a server. The BEA Tuxedo server would
the buffer, convert the string to all uppercase letters, and pass the string back to
client. The following example assumes that a session object was already instant
Using BEA Jolt 5-17

5 Using the Jolt Class Library
5-18 Using BEA Jolt

Listing 5-2 Use of the STRING buffer type (ToUpper.java)

/* Copyright 1996 BEA Systems, Inc. All Rights Reserved */
import bea.jolt.*;
public class ToUpper
 {
 public static void main (String[] args)
 {
 JoltSession session;
 JoltSessionAttributes sattr;
 JoltRemoteService toupper;
 JoltTransaction trans;
 String userName=null;
 String userPassword=null;
 String appPassword=null;
 String userRole=”myapp”;
 String outstr;

 sattr = new JoltSessionAttributes();
 sattr.setString(sattr.APPADDRESS, “//myhost:8501”);

 switch (sattr.checkAuthenticationLevel())
 {
 case JoltSessionAttributes.NOAUTH:
 break;
 case JoltSessionAttributes.APPASSWORD:
 appPassword = “appPassword”;
 break;
 case JoltSessionAttributes.USRPASSWORD:
 userName = “myname”;
 userPassword = “mysecret”;
 appPassword = “appPassword”;
 break;
 }
 sattr.setInt(sattr.IDLETIMEOUT, 300);
 session = new JoltSession(sattr, userName, userRole,
 userPassword, appPassword);
 toupper = new JoltRemoteService (“TOUPPER”, session);
 toupper.setString(“STRING”, “hello world”);
 toupper.call(null);
 outstr = toupper.getStringDef(“STRING”, null);
 if (outstr != null)
 System.out.println(outstr);

 session.endSession();
 System.exit(0);
 } // end main
 } // end ToUpper

Using BEA Tuxedo Buffer Types with Jolt

the
e data
ngth
ing

 be
t two

e
in the
Using the CARRAY Buffer Type

The CARRAY buffer type is a simple character array buffer type that is built into
BEA Tuxedo system. Because the system does not interpret the data (although th
type is known) when you use the CARRAY buffer type, you must specify a data le
in the Jolt client application. The Jolt client must specify a datalength when pass
this buffer type.

To use the CARRAY buffer type, you first define the Tuxedo service that you will
using with the buffer type. Then, write the code that uses the buffer type. The nex
sections demonstrate these steps.

Note: X_OCTET is used identically to CARRAY.

Define the Tuxedo Service in the Repository Editor

Before running the example shown in the figure “Add a TOUPPER Service” on page
5-16, you must write and boot an ECHO BEA Tuxedo service. The ECHO servic
takes a buffer and passes it back to the Jolt client. You define the ECHO service
Jolt Repository Editor.
Using BEA Jolt 5-19

5 Using the Jolt Class Library

or

th
Figure 5-5 Repository Editor: Add the ECHO Service

Use the Repository Editor to add the ECHO service as follows:

1. In the Repository Editor, add a service called ECHO. Refer to “Instructions f
Adding a Service” and “Instructions for Adding a Parameter”.

2. Define the input buffer type and output buffer type as CARRAY for the ECHO
service.

3. Define the ECHO service with only one parameter named CARRAY that is bo
an input and output parameter.

Note: If using the X_OCTET buffer type, you must change the Input Buffer Type
and Output Buffer Type fields to X_OCTET.
5-20 Using BEA Jolt

Using BEA Tuxedo Buffer Types with Jolt
Figure 5-6 Repository Editor: Edit ECHO Service
Using BEA Jolt 5-21

5 Using the Jolt Class Library

fer
 the
t and

tryOnCARRAY.java Client Code

The code in the following listing illustrates how Jolt works with a service with a buf
type of CARRAY. Because Jolt does not look into the CARRAY data stream, it is
programmer's responsibility to ensure that the data formats between the Jolt clien
the CARRAY service match. The example in the following listing assumes that a
session object was already instantiated.

Listing 5-3 CARRAY Buffer Type Example

/* Copyright 1996 BEA Systems, Inc. All Rights Reserved */

 /* This code fragment illustrates how Jolt works with a service
 * whose buffer type is CARRAY.
 */

import java.io.*;
import bea.jolt.*;
class ...
{
 ...
 public void tryOnCARRAY()
 {
 byte data[];
 JoltRemoteService csvc;
 DataInputStream din;
 DataOutputStream dout;
 ByteArrayInputStream bin;
 ByteArrayOutputStream bout;
 /*
 * Use java.io.DataOutputStream to put data into a byte array
 */
 bout = new ByteArrayOutputStream(512);
 dout = new DataOutputStream(bout);
 dout.writeInt(100);
 dout.writeFloat((float) 300.00);
 dout.writeUTF("Hello World");
 dout.writeShort((short) 88);
 /*
 * Copy the byte array into a new byte array "data". Then
 * issue the Jolt remote service call.
 */
 data = bout.toByteArray();
 csvc = new JoltRemoteService("ECHO", session);
 csvc.setBytes("CARRAY", data, data.length);
 csvc.call(null);
5-22 Using BEA Jolt

Using BEA Tuxedo Buffer Types with Jolt

as a
le in
stract

ow
cess

e can
ave
r can

 takes
ck to

 a
 /*
 * Get the result from JoltRemoteService object and use
 * java.io.DataInputStream to extract each individual value
 * from the byte array.
 */
 data = csvc.getBytesDef("CARRAY", null);
 if (data != null)
 {
 bin = new ByteArrayInputStream(data);
 din = new DataInputStream(bin);
 System.out.println(din.readInt());
 System.out.println(din.readFloat());
 System.out.println(din.readUTF());
 System.out.println(din.readShort());
 }
 }
}

Using the FML Buffer Type

FML (Field Manipulation Language) is a flexible data structure that can be used
typed buffer. The FML data structure stores tagged values that are typed, variab
length, and may have multiple occurrences. The typed buffer is treated as an ab
data type in FML.

FML gives you the ability to access and update data values without having to kn
how the data is structured and stored. In your application program, you simply ac
or update a field in the fielded buffer by referencing its identifier. To perform the
operation, the FML run time determines the field location and data type.

FML is especially suited for use with Jolt clients because the client and server cod
be in two languages (for example, Java and C); the client/server platforms can h
different data type specifications; or the interface between the client and the serve
change frequently.

The following tryOnFml examples illustrate the use of the FML buffer type. The
examples show a Jolt client using FML buffers to pass data to a server. The server
the buffer, creates a new FML buffer to store the data, and passes that buffer ba
the Jolt client. The examples consist of the following components.

� The “tryOnFml.java Code Example” on page 5-24 is a Jolt client that contains
PASSFML service.
Using BEA Jolt 5-23

5 Using the Jolt Class Library

t

lt
t a
� The “tryOnFml.f16 Field Definitions” on page 5-25 is a BEA Tuxedo FML field
definitions table used by the PASSFML service.

� The “tryOnFml.c Code Example” on page 5-28 is a server code fragment tha
contains the server side C code for handling the data sent by the Jolt client.

tryOnFml.java Client Code

The tryOnFml.java Java code fragment in the following listing illustrates how Jo
works with a service whose buffer type is FML. In this exampl, it is assumed tha
session object was already instantiated.

Listing 5-4 tryOnFml.java Code Example

/* Copyright 1997 BEA Systems, Inc. All Rights Reserved */

import bea.jolt.*;
class ...
{
 ...
 public void tryOnFml ()
 {
 JoltRemoteService passFml;
 String outputString;
 int outputInt;
 float outputFloat;
 ...
 passFml = new JoltRemoteService("PASSFML",session);
 passFml.setString("INPUTSTRING", "John");
 passFml.setInt("INPUTINT", 67);
 passFml.setFloat("INPUTFLOAT", (float)12.0);
 passFml.call(null);
 outputString = passFml.getStringDef("OUTPUTSTRING", null);
 outputInt = passFml.getIntDef("OUTPUTINT", -1);
 outputFloat = passFml.getFloatDef("OUTPUTFLOAT", (float)-1.0);
 System.out.print("String =" + outputString);
 System.out.print(" Int =" + outputInt);
 System.out.println(" Float =" + outputFloat);
 }
}

5-24 Using BEA Jolt

Using BEA Tuxedo Buffer Types with Jolt

on

L
FML Field Definitions

The entries in the following listing,“tryOnFml.f16 Field Definitions,” show the FML
field definitions for the previous listing, “tryOnFml.java Code Example.”

Listing 5-5 tryOnFml.f16 Field Definitions

#
FML field definition table
#
*base 4100
INPUTSTRING 1 string
INPUTINT 2 long
INPUTFLOAT 3 float
OUTPUTSTRING 4 string
OUTPUTINT 5 long
OUTPUTFLOAT 6 float

Define PASSFML in the Repository Editor

The BULKPKG package contains the PASSFML service, which is used with the
tryOnFml.java and tryOnFml.c code. Before running the tryOnFml.java
example, you need to modify the PASSFML service through the Jolt Repository
Editor.

Note: Refer to “Using the Jolt Repository Editor” on page 4-1 for more informati
about defining a service.

1. In the Edit Services window of the Jolt Repository Editor, define the PASSFM
service with an input buffer type of FML and an output buffer type of FML.

The figure “Repository Editor Window: Edit Services (PASSFML)” on page
5-26 illustrates the PASSFML service, and Input Buffer and Output Buffer of
FML.
Using BEA Jolt 5-25

5 Using the Jolt Class Library
Figure 5-7 Repository Editor Window: Edit Services (PASSFML)

2. Select the input buffer type and output buffer type as FML for the PASSFML
service.

3. Click Edit to display the Edit Parameters window as shown in the following
figure.
5-26 Using BEA Jolt

Using BEA Tuxedo Buffer Types with Jolt
Figure 5-8 Edit the PASSFML Parameters

4. Define the parameter for the PASSFML service.

5. Repeat steps 2 - 4 for each parameter in the PASSFML service.
Using BEA Jolt 5-27

5 Using the Jolt Class Library

he
tryOnFml.c Server Code

The following listing illustrates the server side code for using the FML buffer type. T
PASSFML service reads in an input FML buffer and outputs a FML buffer.

Listing 5-6 tryOnFml.c Code Example

/*

 * tryOnFml.c
 *
 * Copyright (c) 1997 BEA Systems, Inc. All rights reserved
 *
 * Contains the PASSFML BEA Tuxedo server.
 *
 */
#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <sys/stat.h>
#include <malloc.h>
#include <math.h>
#include <string.h>
#include <fml.h>
#include <fml32.h>
#include <Usysflds.h>
#include <atmi.h>
#include <userlog.h>
#include "tryOnFml.f16.h"
/*
 * PASSFML service reads in a input fml buffer and outputs a fml buffer.
 */
void
PASSFML(TPSVCINFO *rqst)
{
FLDLENlen;
FBFR*svcinfo = (FBFR *) rqst->data;
charinputString[256];
longinputInt;
floatinputFloat;
FBFR*fml_ptr;
intrt;
if (Fget(svcinfo, INPUTSTRING, 0, inputString, &len) < 0) {
5-28 Using BEA Jolt

Using BEA Tuxedo Buffer Types with Jolt
(void)userlog("Fget of INPUTSTRING failed %s",
Fstrerror(Ferror));
tpreturn(TPFAIL, 0, rqst->data, 0L, 0);
}
if (Fget(svcinfo, INPUTINT, 0, (char *) &inputInt, &len) < 0) {
(void)userlog("Fget of INPUTINT failed %s",Fstrerror(Ferror));
tpreturn(TPFAIL, 0, rqst->data, 0L, 0);
}
if (Fget(svcinfo, INPUTFLOAT, 0, (char *) &inputFloat, &len) < 0) {
(void)userlog("Fget of INPUTFLOAT failed %s",
Fstrerror(Ferror));
tpreturn(TPFAIL, 0, rqst->data, 0L, 0);
}
/* We could just pass the FML buffer back as is, put lets*/
/* store it into another FML buffer and pass it back.*/
if ((fml_ptr = (FBFR *)tpalloc("FML",NULL,rqst->len))==(FBFR *)NULL) {
(void)userlog("tpalloc failed in PASSFML %s",
tpstrerror(tperrno));
tpreturn(TPFAIL, 0, rqst->data, 0L, 0);
}
if(Fadd(fml_ptr, OUTPUTSTRING, inputString, (FLDLEN)0) == -1) {
userlog("Fadd failed with error: %s", Fstrerror(Ferror));
tpfree((char *)fml_ptr);
tpreturn(TPFAIL, 0, NULL, 0L, 0);
 }
if(Fadd(fml_ptr, OUTPUTINT, (char *)&inputInt, (FLDLEN)0) == -1) {
userlog("Fadd failed with error: %s", Fstrerror(Ferror));
tpfree((char *)fml_ptr);
tpreturn(TPFAIL, 0, NULL, 0L, 0);
 }
if(Fadd(fml_ptr, OUTPUTFLOAT, (char *)&inputFloat, (FLDLEN)0) == -1) {
userlog("Fadd failed with error: %d\n", Fstrerror(Ferror));
tpfree((char *)fml_ptr);
tpreturn(TPFAIL, 0, NULL, 0L, 0);
 }
tpreturn(TPSUCCESS, 0, (char *)fml_ptr, 0L, 0);
}

Using BEA Jolt 5-29

5 Using the Jolt Class Library

se

time.

ype
 file).
xedo
our

est or
een

nd

ns

de

line

on
Using the VIEW Buffer Type

VIEW is a built-in BEA Tuxedo typed buffer. The VIEW buffer provides a way to u
C structures and COBOL records with the BEA Tuxedo system. The VIEW typed
buffer enables the BEA Tuxedo run-time system to understand the format of C
structures and COBOL records based on the view description that is read at run

When allocating a VIEW, your application specifies a VIEW buffer type and a subt
that matches the name of the view (the name that appears in the view description
The parameter name must match the field name in that view. Because the BEA Tu
run-time system can determine the space needed based on the structure size, y
application need not provide a buffer length. The run-time system can also
automatically handle such things as computing how much data to send in a requ
response, and handle encoding and decoding when the message transfers betw
different machine types.

The following examples show the use of the VIEW buffer type with a Jolt client a
its server-side application.

� The “simpview.java Code Example” on page 5-33 is the Jolt client that contai
the code used to connect to BEA Tuxedo and uses the VIEW buffer type.

� The listing “simpview.v16 Field Definitions” on page 5-34 contains the BEA
Tuxedo VIEW field definitions.

� The “simpview.c Code Example” on page 5-35 contains the server side C co
for handling the input from the Jolt client.

The Jolt client treats a null character in a VIEW buffer string format as an end-of-
character and truncates any part of the string that follows the null.

Define VIEW in the Repository Editor

 Before running the simpview.java and simpview.c examples, you need to define
the VIEW service through the Jolt Repository Editor.

Note: Refer to “Using the Jolt Repository Editor” on page 4-1 for more informati
about defining a service.
5-30 Using BEA Jolt

Using BEA Tuxedo Buffer Types with Jolt

ut
Figure 5-9 Repository Editor: Add SIMPVIEW Service

In the Repository Editor add the VIEW service as follows:

1. Add a SIMPVIEW service for the SIMPSERV package.

2. Define the SIMPVIEW service with an input buffer type of VIEW and an outp
buffer type of VIEW.
Using BEA Jolt 5-31

5 Using the Jolt Class Library
Figure 5-10 Repository Editor: Edit SIMPVIEW Service

3. Define the parameters for the VIEW service.

In this example the parameters are: inInt , inString , outFloat , outInt ,
outString .

Note: If using the X_COMMON or X_C_TYPE buffer types, you must put the
correct buffer type in the Input Buffer Type and Output Buffer Type fields.
Additionally, you must choose the corresponding Input View Name and
Output View Name fields.
5-32 Using BEA Jolt

Using BEA Tuxedo Buffer Types with Jolt

s
sed

 all

ot.
iate

ice

,

simpview.java Client Code

The listing “simpview.java Code Example” on page 5-33 illustrates how Jolt work
with a service whose buffer type is VIEW. The client code is identical to the code u
for accessing an FML service.

Note: The code in the following listing does not catch any exceptions. Because
Jolt exceptions are derived from java.lang.RunTimeException , the Java
Virtual Machine (JVM) catches these exceptions if the application does n
(A well-written application would catch these exceptions, and take appropr
actions.)

Before running the example in the following listing, you need to add the VIEW serv
to the SIMPAPP package using the Jolt Repository Editor and write the simpview.c
BEA Tuxedo application. This service takes the data from the client VIEW buffer
creates a new buffer and passes it back to the client as a new VIEW buffer. The
following example assumes that a session object has already been instantiated.

Listing 5-7 simpview.java Code Example

/* Copyright 1997 BEA Systems, Inc. All Rights Reserved */
/*
 * This code fragment illustrates how Jolt works with a service whose buffer
 * type is VIEW.
 */
import bea.jolt.*;
class ...
{
...
public void simpview ()
{
JoltRemoteService ViewSvc;
String outString;
int outInt;
float outFloat;
// Create a Jolt Service for the BEA Tuxedo service "SIMPVIEW"
ViewSvc = new JoltRemoteService("SIMPVIEW",session);
// Set the input parametes required for SIMPVIEW
ViewSvc.setString("inString", "John");
ViewSvc.setInt("inInt", 10);
ViewSvc.setFloat("inFloat", (float)10.0);
// Call the service. No transaction required, so pass
// a "null" parameter
ViewSvc.call(null);
Using BEA Jolt 5-33

5 Using the Jolt Class Library

.

// Process the results
outString = ViewSvc.getStringDef("outString", null);
outInt = ViewSvc.getIntDef("outInt", -1);
outFloat = ViewSvc.getFloatDef("outFloat", (float)-1.0);
// And display them...
System.out.print("outString=" + outString + ",");
System.out.print("outInt=" + outInt + ",");
System.out.println("outFloat=" + outFloat);
}
}

VIEW Field Definitions

The “simpview.v16 Field Definitions” listing shows the BEA Tuxedo VIEW field
definitions for the simpview.java example that were shown in the previous listing

Listing 5-8 simpview.v16 Field Definitions

#
VIEW for SIMPVIEW. This view is used for both input and output. The
service could also have used separate input and output views.
The first 3 params are input params, the second 3 are outputs.
#
VIEW SimpView
$
#type cname fbname count flag size null
string inString - 1 - 32 -
long inInt - 1 - - -
float inFloat - 1 - - -
string outString - 1 - 32 -
long outInt - 1 - - -
float outFloat - 1 - - -
END
5-34 Using BEA Jolt

Using BEA Tuxedo Buffer Types with Jolt

 the
simpview.c Server Code

In the following listing, the input and output buffers are VIEW. The code accepts
VIEW buffer data as input and outputs the same data as VIEW.

Listing 5-9 simpview.c Code Example

/*
 * SIMPVIEW.c
 *
 * Copyright (c) 1997 BEA Systems, Inc. All rights reserved
 *
 * Contains the SIMPVIEW BEA Tuxedo server.
 *
 */
#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <sys/stat.h>
#include <malloc.h>
#include <math.h>
#include <string.h>
#include <fml.h>
#include <fml32.h>
#include <Usysflds.h>
#include <atmi.h>
#include <userlog.h>
#include "simpview.h"
/*
 * Contents of simpview.h.
 *
 *struct SimpView {
 *
 *charinString[32];
 *longinInt;
 *floatinFloat;
 *charoutString[32];
 *longoutInt;
 *floatoutFloat;
 *};
 */
/*
 * service reads in a input view buffer and outputs a view buffer.
Using BEA Jolt 5-35

5 Using the Jolt Class Library
 */
void
SIMPVIEW(TPSVCINFO *rqst)
{
/*
 * get the structure (VIEWSVC) from the TPSVCINFO structure
 */
struct SimpView*svcinfo = (struct SimpView *) rqst->data;
/*
 * print the input params to the UserLog. Note there is
 * no error checking here. Normally a SERVER would perform
 * some validation of input and return TPFAIL if the input
 * is not correct.
 */
(void)userlog("SIMPVIEW: InString=%s,InInt=%d,InFloat=%f",
svcinfo->inString, svcinfo->inInt, svcinfo->inFloat);
/*
 * Populate the output fields and send them back to the caller
 */

strcpy (svcinfo->outString, "Return from SIMPVIEW");
svcinfo->outInt = 100;
svcinfo->outFloat = (float) 100.00;
/*
 * If there was an error, return TPFAIL
 * tpreturn(TPFAIL, ErrorCode, (char *)svcinfo, sizeof (*svcinfo), 0);
 */
tpreturn(TPSUCCESS, 0, (char *)svcinfo, sizeof (*svcinfo), 0);
}

5-36 Using BEA Jolt

Multithreaded Applications

er,
age

ns or

nt
olt

ive
ent

 exist
D.

e

nt

in
Multithreaded Applications

As a Java-based set of classes, Jolt supports multithreaded applications; howev
various implementations of the Java language differ with respect to certain langu
and environment features. Jolt programmers need to be aware of the following:

� The use of preemptive and non-preemptive threads when creating applicatio
applets with the Jolt Class Library.

� The use of threads to get asynchronous behavior similar to the tpacall()
function in BEA Tuxedo.

“Threads of Control” describes the issues arising from using threads with differe
Java implementations and is followed by an example of the use of threads in a J
program.

Note: Most Java implementations provide preemptive rather than non-preempt
threads. The difference between these two models can lead to very differ
performance and programming requirements.

Threads of Control

Each concurrently operating task in the Java virtual machine is a thread. Threads
in various states, the important ones being RUNNING, RUNNABLE, or BLOCKE

� A RUNNING thread is a currently executing thread.

� A RUNNABLE thread can be run once the current thread has relinquished
control of the CPU. There can be many threads in the RUNNABLE state, but
only one can be in the RUNNING state. Running a thread means changing th
state of a thread from RUNNABLE to RUNNING, and causing the thread to
have control of the Java Virtual Machine (VM).

� A BLOCKED thread is a thread that is waiting on the availability of some eve
or resource.

Note: The Java VM schedules threads of the same priority to run in a round-rob
mode.
Using BEA Jolt 5-37

5 Using the Jolt Class Library

ling a

cally.

ntrol
age
ted

n the

l

 or

et
Preemptive Threading

The main performance difference between the two threading models arises in tel
running thread to relinquish control of the Java VM. In a preemptive threading
environment, the usual procedure is to set a hardware timer that goes off periodi
When the timer goes off, the current thread is moved from the RUNNING to the
RUNNABLE state, and another thread is chosen to run.

Non-preemptive Threading

In a non-preemptive threading environment, a thread must volunteer to give up co
of the CPU and move to the RUNNABLE state. Many methods in the Java langu
classes contain code that volunteers to give up control, and are typically associa
with actions that might take a long time. For example, reading from the network
generally causes a thread to wait for a packet to arrive. A thread that is waiting o
availability of some event or resource is in the BLOCKED state. When the event
occurs or the resource becomes available, the thread becomes RUNNABLE.

Using Jolt with Non-Preemptive Threading

If your Jolt-based Java program is running on a non-preemptive threading Virtua
Machine (such as Sun Solaris), the program must either:

� Occasionally call a method that blocks the thread, or

� Explicitly give up control of the CPU using the Thread.yield() method

The typical usage is to make the following call in all long-running code segments
potentially time-consuming loops:

Thread.currentThread.yield();

Without sending this message, the threads used by the Jolt Library may never g
scheduled and, as such, the Jolt operation is impaired.
5-38 Using BEA Jolt

Multithreaded Applications

. If

ption
ther

e

olt is
ds a

read
e Jolt
ads

ded
The only virtual machine known to use non-preemptive threading is the Java
Developer’s Kit (JDK version 1.0, 1.0.1, 1.0.2) machine running on a Sun platform
you want your applet to work on JDK 1.0, you must make sure to send the yield
messages. As mentioned earlier, some methods contain yields. An important exce
is the System.in.read method. This method does not cause a thread switch. Ra
than rely on these messages, we suggest using yields explicitly.

Using Threads for Asynchronous Behavior

You can use threads in Jolt to get asynchronous behavior that is analogous to th
tpacall() function in BEA Tuxedo. With this capability, you do not need an
asynchronous service request function. You can get this functionality because J
thread-safe. For example, the Jolt client application can start one thread that sen
request to a BEA Tuxedo service function and then immediately start another th
that sends another request to a BEA Tuxedo service function. So even though th
tpacall() is synchronous, the application is asynchronous because the two thre
are running at the same time.

Using Threads with Jolt

A Jolt client-side program or applet is fully thread-safe. Jolt support of multithrea
applications includes the following client characteristics:

� Multiple sessions per client

� Multithreaded within a session

� Client application manages threads, not asynchronous calls

� Performs synchronous calls

The following listing illustrates the use of two threads in a Jolt application.
Using BEA Jolt 5-39

5 Using the Jolt Class Library
Listing 5-10 Using Multiple Threads with Jolt (ThreadBank.java)

/* Copyright 1996 BEA Systems, Inc. All Rights Reserved */
import bea.jolt.*;
public class ThreadBank
{
 public static void main (String [] args)
 {
 JoltSession session;
 try
 {
 JoltSessionAttributes dattr;
 String userName = null;
 String userPasswd = null;
 String appPasswd = null;
 String userRole = null;

 // fill in attributes required
 dattr = new JoltSessionAttributes();
 dattr.setString(dattr.APPADDRESS,”//bluefish:8501”);

 // instantiate domain
 // check authentication level
 switch (dattr.checkAuthenticationLevel())
 {

 case JoltSessionAttributes.NOAUTH:
 System.out.println(“NOAUTH\n”);
 break;
 case JoltSessionAttributes.APPASSWORD:
 appPasswd = “myAppPasswd”;
 break;
 case JoltSessionAttributes.USRPASSWORD:
 userName = “myName”;
 userPasswd = “mySecret”;
 appPasswd = “myAppPasswd”;
 break;
 }
 dattr.setInt(dattr.IDLETIMEOUT, 60);
 session = new JoltSession (dattr, userName, userRole,
 userPasswd, appPasswd);
 T1 t1 = new T1 (session);
 T2 t2 = new T2 (session);

 t1.start();
 t2.start();

 Thread.currentThread().yield();
 try
5-40 Using BEA Jolt

Multithreaded Applications
 {
 while (t1.isAlive() && t2.isAlive())
 {
 Thread.currentThread().sleep(1000);

 }
 }
 catch (InterruptedException e)
 {
 System.err.println(e);
 if (t2.isAlive())
 {
 System.out.println(“job 2 is still alive”);
 try
 {
 Thread.currentThread().sleep(1000);
 }
 catch (InterruptedException e1)
 {
 System.err.println(e1);
 }
 }
 else if (t1.isAlive())
 { System.out.println(“job1 is still alive”);
 try
 {
 Thread.currentThread().sleep(1000);
 }
 catch (InterruptedException e1)
 {
 System.err.println(e1);
 }
 }
 }
 session.endSession();
 }
 catch (SessionException e)
 {
 System.err.println(e);
 }
 finally
 {
 System.out.println(“normal ThreadBank term”);
 }
 }
}

class T1 extends Thread
{

Using BEA Jolt 5-41

5 Using the Jolt Class Library
 JoltSession j_session;
 JoltRemoteService j_withdrawal;

 public T1 (JoltSession session)
 {
 j_session=session;
 j_withdrawal= new JoltRemoteService(“WITHDRAWAL”,j_session);
 }
 public void run()
 {
 j_withdrawal.addInt(“ACCOUNT_ID”,10001);
 j_withdrawal.addString(“SAMOUNT”,”100.00”);
 try
 {
 System.out.println(“Initiating Withdrawal from account
10001”);
 j_withdrawal.call(null);
 String W = j_withdrawal.getStringDef(“SBALANCE”,”-1.0”);
 System.out.println(“-->Withdrawal Balance: “ + W);
 }
 catch (ApplicationException e)
 {
 e.printStackTrace();
 System.err.println(e);
 }
 }
}

class T2 extends Thread
{
 JoltSession j_session;
 JoltRemoteService j_deposit;

 public T2 (JoltSession session)
 {
 j_session=session;
 j_deposit= new JoltRemoteService(“DEPOSIT”,j_session);
 }
 public void run()
 {
 j_deposit.addInt(“ACCOUNT_ID”,10000);
 j_deposit.addString(“SAMOUNT”,”100.00”);
 try
 {
 System.out.println(“Initiating Deposit from account 10000”);
 j_deposit.call(null);
 String D = j_deposit.getStringDef(“SBALANCE”,”-1.0”);
 System.out.println(“-->Deposit Balance: “ + D);
 }
5-42 Using BEA Jolt

Event Subscription and Notifications

ons
ary

ing

 catch (ApplicationException e)
 {
 e.printStackTrace();
 System.err.println(e);
 }
 }
}

Event Subscription and Notifications

Programmers developing client applications with Jolt can receive event notificati
from either BEA Tuxedo Services or other BEA Tuxedo clients. The Jolt Class Libr
contains classes that support the following types of BEA Tuxedo notifications for
handling event-based communication:

� Unsolicited Event Notifications. These are notifications that a Jolt client
receives as a result of a BEA Tuxedo client or service issuing a broadcast us
either a tpbroadcast() or a directly targeted message via a tpnotify()
ATMI call.

� Brokered Event Notifications. These notifications are received by a Jolt client
through the BEA Tuxedo Event Broker. The notifications are only received
when the Jolt client subscribes to an event and any BEA Tuxedo client or server
issues a system-posted event or tppost() call.

Event Subscription Classes

The Jolt Class Library provides four classes that implement the asynchronous
notification mechanism for Jolt client applications:

� JoltSession. The JoltSession class includes an onReply() method for receiving
notifications and notification messages.

� JoltReply. The JoltReply class gives the client application access to any
messages received with an event or notification.
Using BEA Jolt 5-43

5 Using the Jolt Class Library

ited

adoc.

t

ons,
ot

 for
d
e
ser
arded

s and

ed

lt

ingle

cation

ously.
� JoltMessage. The JoltMessage class provides get() methods for obtaining
information about the notification or event.

� JoltUserEvent. The JoltUserEvent class supports subscription to both unsolic
and event notification types.

For additional information about these classes refer to the API Reference in Jav

Notification Event Handler

For both unsolicited notifications and a brokered event notification, the Jolt clien
application requires an event handler routine that is invoked upon receipt of a
notification. Jolt only supports a single handler per session. In BEA Tuxedo versi
you cannot determine which event generated a notification. Therefore, you cann
invoke an event-specific handler based on a particular event.

The client application must provide a single handler (by overriding the onReply()
method) per session that will be invoked for all notifications received by that client
that session. The single handler call-back function is used for both unsolicited an
event notification types. It is up to the (user-supplied) handler routine to determin
what event caused the handler invocation and to take appropriate action. If the u
does not override the session handler, then notification messages are silently disc
by the default handler.

The Jolt client provides the call back function by subclassing the JoltSession clas
overriding the onReply() method with a user-defined onReply() method.

In BEA Tuxedo/ATMI clients, processing in the handler call-back function is limit
to a subset of ATMI calls. This restriction does not apply to Jolt clients. Separate
threads are used to monitor notifications and run the event handler method. A Jo
client can perform all Jolt-supported functionality from within the handler. All the
rules that apply to a normal Jolt client program apply to the handler, such as a s
transaction per session at any time.

Each invocation of the handler method takes place in a separate thread. The appli
developer should ensure that the onReply() method is either synchronized or written
thread-safe, because separate threads could be executing the method simultane
5-44 Using BEA Jolt

Event Subscription and Notifications

ibes
cited
lso

 or

ile
n the
he

All

olt

, the

uffer
r)

Jolt uses an implicit model for enabling the handler routine. When a client subscr
to an event, Jolt internally enables the handler for that client, thus enabling unsoli
notifications as well. A Jolt client cannot subscribe to event notifications without a
receiving unsolicited notifications. In addition, a single onReply() method is invoked
for both types of notifications.

Connection Modes

Jolt supports notification receipts for clients working in either connection-retained
connection-less modes of operation. Connection-retained clients receive all
notifications. Jolt clients working in connection-less mode receive notifications wh
they have an active network connection to the Jolt Session Handler (JSH). Whe
network connection is closed, the JSH logs and drops notifications destined for t
client. Jolt clients operating in a connection-less mode do not receive unsolicited
messages or notifications while they do not have an active network connection.
messages received during this time are logged and discarded by the JSH.

Connection mode notification handling includes acknowledged notifications for J
clients in the BEA Tuxedo environment. If a JSH receives an acknowledged
notification for a client and the client does not have an active network connection
JSH logs an error and returns a failure acknowledgment to the notification.

Notification Data Buffers

When a client receives notification, it is accompanied by a data buffer. The data b
can be of any BEA Tuxedo data buffer type. Jolt clients (for example, the handle
receive these buffers as a JoltMessage object and should use the appropriate
JoltMessage class get*() methods to retrieve the data from this object.

The Jolt Repository does not need to have the definition of the buffers used for
notification. However, the Jolt client application programmer needs to know field
names.

The Jolt system does not provide functionality equivalent to tptypes() in BEA
Tuxedo. For FML and VIEW buffers, the data is accessed using the get*() methods
with the appropriate field name, for example:

getIntDef ("ACCOUNT_ID", -1);
Using BEA Jolt 5-45

5 Using the Jolt Class Library

he

nts

xedo

ther
 can

 a
tion is

bles
t
s a
For STRING and CARRAY buffers, the data is accessed by the same name as t
buffer type:

getStringDef ("STRING", null);
getBytesDef ("CARRAY", null);

STRING and CARRAY buffers contain only a single data element. This complete
element is returned by the preceding get*() methods.

BEA Tuxedo Event Subscription

BEA Tuxedo brokered event notification allows BEA Tuxedo programs to post eve
without knowing what other programs are supposed to receive notification of an
event’s occurrence. The Jolt event notification allows Jolt client applications to
subscribe to BEA Tuxedo events that are broadcast or posted using the BEA Tu
tpnotify() or tpbroadcast() calls.

Jolt clients can only subscribe to events and notifications that are generated by o
components in BEA Tuxedo (such as a BEA Tuxedo service or client). Jolt clients
not send events or notifications.

Supported Subscription Types

Jolt only supports notification types of subscriptions. The Jolt onReply() method is
called when a subscription is fulfilled. The Jolt API does not support dispatching
service routine or enqueueing a message to an application queue when a notifica
received.

Subscribing to Notifications

If a Jolt client subscribes to a single event notification, the client receives both
unsolicited messages and event notification. Subscribing to an event implicitly ena
unsolicited notification. This means that if the application creates a JoltUserEven
object for Event "X", the client automatically receives notifications directed to it a
result of tpnotify() or tpbroadcast() .
5-46 Using BEA Jolt

Event Subscription and Notifications

to use
with
s

and
tion

ake
Note: Subscribing to single event notification is not the recommended method for
enabling unsolicited notification. If you want unsolicited notification, the
application should explicitly subscribe to unsolicited notifications (as
described in the JoltUserEvent class). The next section is about unsubscribing
from notifications.

Unsubscribing from Notifications

To stop subscribing to event notifications and/or unsolicited messages, you need
the JoltUserEvent unsubscribe method. In Jolt, disabling unsolicited notifications
an unsubscribe method does not turn off all subscription notifications. This differ
from BEA Tuxedo. In BEA Tuxedo the use of tpsetunsol() with a NULL handler
turns off all subscription notifications.

When unsubscribing, the following considerations apply:

� If a client is subscribed to a single event, unsubscribing from notification
disables both event notification and unsolicited messages.

� If a client has multiple subscriptions, then unsubscribing from any single
subscription disables only that single subscription. Unsolicited notifications
continue. Only the last subscription to be unsubscribed causes unsolicited
notification to stop.

� If a client subscribes to both unsolicited and event notifications, then
unsubscribing to only the unsolicited notification will not stop either type of
notification from continuing. In addition, this unsubscribe does not throw an
exception. However, the Jolt API notes that an unsubscribe has taken place,
a subsequent unsubscribe to the remaining event disables both event notifica
and unsolicited messages.

If you want to stop unsolicited messages in your client application, you need to m
sure that you have unsubscribed to all events.
Using BEA Jolt 5-47

5 Using the Jolt Class Library

for
Using the Jolt API to Receive BEA Tuxedo Notifications

The “Asynchronous Notification” listing shows how to use the Jolt Class Library
receiving notifications and includes the use of the JoltSession , JoltReply ,
JoltMessage and JoltUserEvent classes.

Listing 5-11 Asynchronous Notification

class EventSession extends JoltSession
{
 public EventSession(JoltSessionAttributes attr, String user,
 String role, String upass, String apass)
 {
 super(attr, user, role, upass, apass);
 }
 /**
 * Override the default unsolicited message handler.
 * @param reply a place holder for the unsolicited message
 * @see bea.jolt.JoltReply
 */
 public void onReply (JoltReply reply)
 {
 // Print out the STRING buffer type message which contains
 // only one field; the field name must be "STRING". If the
 // message uses CARRAY buffer type, the field name must be
 // "CARRAY". Otherwise, the field names must conform to the
 // elements in FML or VIEW.

 JoltMessage msg = (JoltMessage) reply.getMessage();
 System.out.println(msg.getStringDef("STRING", "No Msg"));
 }
 public static void main(Strings args[])
 {
 JoltUserEvent unsolEvent;
 JoltUserEvent helloEvent;
 EventSession session;
 ...

 // Instantiate my session object which can print out the
 // unsolicited messages. Then subscribe to HELLO event
 // and Unsolicited Notification which both use STRING
 // buffer type for the unsolicited messages.

 session = new EventSession(...);
5-48 Using BEA Jolt

Clearing Parameter Values

ct.

meter
 helloEvent = new JoltUserEvent("HELLO", null, session);
 unsolEvent = new JoltUserEvent(JoltUserEvent.UNSOLMSG, null,
 session);
 ...
 // Unsubscribe the HELLO event and unsolicited notification.
 helloEvent. unsubscribe ();
 unsolEvent.unsubscribe();
 }
}

Clearing Parameter Values

The Jolt Class Library contains the clear() method, which allows you to remove
existing attributes from an object and, in effect, provides for the reuse of the obje
The “Jolt Object Reuse (reuseSample.java)” listing illustrates how to use the clear()
method to clear parameter values and how to reuse the JoltRemoteService para
values; you do not have to destroy the service to reuse it. Instead, the svc.clear() ;
statement is used to discard the existing input parameters before reusing the
addString() method.

Listing 5-12 Jolt Object Reuse (reuseSample.java)

/* Copyright 1999 BEA Systems, Inc. All Rights Reserved */
import java.net.*;
import java.io.*;
import bea.jolt.*;
/*
 * This is a Jolt sample program that illustrates how to reuse the
 * JoltRemoteService after each invocation.
 */
class reuseSample
{
 private static JoltSession s_session;
 static void init(String host, short port)
 {
 /* Prepare to connect to the Tuxedo domain. */
 JoltSessionAttributes attr = new JoltSessionAttributes();
 attr.setString(attr.APPADDRESS,”//”+ host+”:” + port);
Using BEA Jolt 5-49

5 Using the Jolt Class Library
 String username = null;
 String userrole = “sw-developer”;
 String applpasswd = null;
 String userpasswd = null;

 /* Check what authentication level has been set. */
 switch (attr.checkAuthenticationLevel())
 {
 case JoltSessionAttributes.NOAUTH:
 break;
 case JoltSessionAttributes.APPASSWORD:
 applpasswd = “secret8”;
 break;
 case JoltSessionAttributes.USRPASSWORD:
 username = “myName”;
 userpasswd = “BEA#1”;
 applpasswd = “secret8”;
 break;
 }

 /* Logon now without any idle timeout (0). */
 /* The network connection is retained until logoff. */
 attr.setInt(attr.IDLETIMEOUT, 0);
 s_session = new JoltSession(attr, username, userrole,
 userpasswd, applpasswd);
 }

 public static void main(String args[])
 {
 String host;
 short port;
 JoltRemoteService svc;

 if (args.length != 2)
 {
 System.err.println(“Usage: reuseSample host port”);
 System.exit(1);
 }

 /* Get the host name and port number for initialization. */
 host = args[0];
 port = (short)Integer.parseInt(args[1]);

 init(host, port);

 /* Get the object reference to the DELREC service. This
 * service has no output parameters, but has only one input
 * parameter.
 */
 svc = new JoltRemoteService(“DELREC”, s_session);
5-50 Using BEA Jolt

Reusing Objects

e
eature

 code
 try
 {
 /* Set input parameter REPNAME. */
 svc.addString(“REPNAME”, “Record1”);
 svc.call(null);
 /* Change the input parameter before reusing it */
 svc.setString(“REPNAME”, “Record2”);
 svc.call(null);

 /* Simply discard all input parameters */
 svc.clear();
 svc.addString(“REPNAME”, “Record3”);
 svc.call(null);
 }
 catch (ApplicationException e)
 {
 System.err.println(“Service DELREC failed: “+
 e.getMessage()+” “+ svc.getStringDef(“MESSAGE”, null));
 }

 /* Logoff now and get rid of the object. */
 s_session.endSession();
 }
}

Reusing Objects

The following listing, “Extending Jolt Remote Service (extendSample.java),”
illustrates one way to subclass the JoltRemoteService class. In this case, a
TransferService class is created by subclassing the JoltRemoteService class. Th
TransferService class extends the JoltRemoteService class, adding a Transfer f
that makes use of the BEA Tuxedo BANKAPP funds TRANSFER service.

The following listing uses the extends keyword from the Java language. The
extends keyword is used in Java to subclass a base (parent) class. The following
shows one of many ways to extend from JoltRemoteService.
Using BEA Jolt 5-51

5 Using the Jolt Class Library
Listing 5-13 Extending Jolt Remote Service (extendSample.java)

/* Copyright 1999 BEA Systems, Inc. All Rights Reserved */

import java.net.*;
import java.io.*;
import bea.jolt.*;

/*
 * This Jolt sample code fragment illustrates how to customize
 * JoltRemoteService. It uses the Java language “extends” mechanism
 */
class TransferService extends JoltRemoteService
{
 public String fromBal;
 public String toBal;

 public TransferService(JoltSession session)
 {
 super(“TRANSFER”, session);
 }

 public String doxfer(int fromAcctNum, int toAcctNum, String
amount)
 {
 /* Clear any previous input parameters */
 this.clear();

 /* Set the input parameters */
 this.setIntItem(“ACCOUNT_ID”, 0, fromAcctNum);
 this.setIntItem(“ACCOUNT_ID”, 1, toAcctNum);
 this.setString(“SAMOUNT”, amount);

 try
 {
 /* Invoke the transfer service. */
 this.call(null);

 /* Get the output parameters */
 fromBal = this.getStringItemDef(“SBALANCE”, 0, null);
 if (fromBal == null)
 return “No balance from Account “ +
 fromAcctNum;
 toBal = this.getStringItemDef(“SBALANCE”, 1, null);
 if (toBal == null)
 return “No balance from Account “ + toAcctNum;
 return null;
 }
 catch (ApplicationException e)
5-52 Using BEA Jolt

Reusing Objects
 {
 /* The transaction failed, return the reason */
 return this.getStringDef(“STATLIN”, “Unknown reason”);
 }
 }
}

class extendSample
{
 public static void main(String args[])
 {
 JoltSession s_session;
 String host;
 short port;
 TransferService xfer;
 String failure;

 if (args.length != 2)
 {
 System.err.println(“Usage: reuseSample host port”);
 System.exit(1);
 }

 /* Get the host name and port number for initialization. */
 host = args[0];
 port = (short)Integer.parseInt(args[1]);

 /* Prepare to connect to the Tuxedo domain. */
 JoltSessionAttributes attr = new JoltSessionAttributes();
 attr.setString(attr.APPADDRESS,”//”+ host+”:” + port);

 String username = null;
 String userrole = “sw-developer”;
 String applpasswd = null;
 String userpasswd = null;

 /* Check what authentication level has been set. */
 switch (attr.checkAuthenticationLevel())
 {
 case JoltSessionAttributes.NOAUTH:
 break;
 case JoltSessionAttributes.APPASSWORD:
 applpasswd = “secret8”;
 break;
 case JoltSessionAttributes.USRPASSWORD:
 username = “myName”;
 userpasswd = “BEA#1”;
 applpasswd = “secret8”;
 break;
 }
Using BEA Jolt 5-53

5 Using the Jolt Class Library
 /* Logon now without any idle timeout (0). */
 /* The network connection is retained until logoff. */
 attr.setInt(attr.IDLETIMEOUT, 0);
 s_session = new JoltSession(attr, username, userrole,
 userpasswd, applpasswd);

 /*
 * TransferService extends from JoltRemoteService and uses the
 * standard BEA Tuxedo BankApp TRANSFER service. We invoke
this
 * service twice with different parameters. Note, we assume
 * that “s_session” is initialized somewhere before.
 */

 xfer = new TransferService(s_session);
 if ((failure = xfer.doxfer(10000, 10001, “500.00”)) != null)
 System.err.println(“Tranasaction failed: “ + failure);
 else
 {
 System.out.println(“Transaction is done.”);
 System.out.println(“From Acct Balance: “+xfer.fromBal);
 System.out.println(“ To Acct Balance: “+xfer.toBal);
 }

 if ((failure = xfer.doxfer(51334, 40343, “$123.25”)) != null)
 System.err.println(“Tranasaction failed: “ + failure);
 else
 {
 System.out.println(“Transaction is done.”);
 System.out.println(“From Acct Balance: “+xfer.fromBal);
 System.out.println(“ To Acct Balance: “+xfer.toBal);
 }

 }
}

5-54 Using BEA Jolt

Deploying and Localizing Jolt Applets

ithin

lt

olt
Deploying and Localizing Jolt Applets

Using the Jolt Class Library, you can build Java applications that execute from w
a client Web browser. For these types of applications, perform the following
application development tasks:

� Deploy your Jolt applet in an HTML page.

� Localize your Jolt applets for different languages and character sets.

The following sections describe these application development considerations.

Deploying a Jolt Applet

When you deploy a Jolt applet, consider the following:

� Installation and configuration requirements for the BEA Tuxedo server and Jo
Server

� Client-side execution of the applet

� Requirements for the Web server that downloads the Java applet

Information for configuring the BEA Tuxedo server and Jolt server to work with J
is available in Installing the BEA Tuxedo System. The following sections describe
common client and Web server considerations for deploying Jolt applets.
Using BEA Jolt 5-55

5 Using the Jolt Class Library

st as
TML

 the
ded,

eout,
, but

sical
applet

 is

same
 Relay

TML
tain

cess,
ly
made
Client Considerations

When you write a Java applet that incorporates Jolt classes, the applet works ju
any other Java applet in an HTML page. A Jolt applet can be embedded in an H
page using the HTML applet tag:

<applet code=“applet_name.class”> </applet>

If the Jolt applet is embedded in an HTML page, the applet is downloaded when
HTML page loads. You can code the applet to run immediately after it is downloa
or you can include code that sets the applet to run based upon a user action, a tim
or a set interval. You can also create an applet that downloads in the HTML page
opens in another window or, for instance, simply plays a series of sounds or mu
tunes at intervals. The programmer has a large degree of freedom in coding the
initialization procedure.

Note: If the user loads a new HTML page into the browser, the applet execution
stopped.

Web Server Considerations

When you use the Jolt classes in a Java applet, the Jolt Server must run on the
machine as the Web server that downloads the Java applet unless you install Jolt
on the Web server.

When a webmaster sets up a Web server, a directory is specified to store all the H
files. Within that directory, a subdirectory named “classes” must be created to con
all Java class files and packages. For example:

<html-dir>/classes/bea/jolt

Or, you can set the CLASSPATH to include the jolt.jar file that contains all the Jolt
classes.

Note: You can place the Jolt classes subdirectory anywhere. For convenient ac
you may want to place it in the same directory as the HTML files. The on
requirement for the Jolt classes subdirectory is that the classes must be
available to the Web server.
5-56 Using BEA Jolt

Deploying and Localizing Jolt Applets

from
wser

ava
ters to
er set.

es,
The HTML file for the Jolt applet should refer the codebase to the jolt.jar file or
the classes directory. For example:

 /export/html/
 |___ classes/
 | |_____ bea/
 | | |______ jolt/
 | | |_____ JoltSessionAttributes.class
 | | |_____ JoltRemoteServices.class
 | | |_____ ...
 | |_____ mycompany/
 | |________ app.class
 |___ ex1.html
 |___ ex2.html

The webmaster may specify the “app” applet in ex1.html as:

<applet codebase=“classes” code=mycompany.app.class width=400
height=200>

Localizing a Jolt Applet

If your Jolt application is intended for international use, you must address certain
localization issues. Localization considerations apply to applications that execute
a client Web browser and applications that are designed to run outside a Web bro
environment. Localization tasks can be divided into two categories:

� Adapting an application from its original language to a target language.

� Translating strings from one language to another. This sometimes requires
specifying a different alphabet or a character set from the one used in the
original language.

For localization, the Jolt Class Library package relies on the conventions of the J
language and the BEA Tuxedo system. Jolt transfers Java 16-bit Unicode charac
the JSH. The JSH provides a mechanism to convert Unicode to the local charact

For information about the Java implementation for Unicode and character escap
refer to your Java Development Kit (JDK) documentation.
Using BEA Jolt 5-57

5 Using the Jolt Class Library
5-58 Using BEA Jolt

CHAPTER

asy to
ent
ment

p a
6 Using JoltBeans

Formerly available as an add on, JoltBeans are included in BEA Jolt and are as e
use as JavaBeans. They are JavaBeans components you use in Java developm
environments to construct Jolt clients. You can use popular Java-enabled develop
tools such as Symantec Visual Café to graphically construct client applications.
JoltBeans provide a JavaBeans-compliant interface to BEA Jolt. You can develo
fully functional BEA Jolt client without writing any code.

“Using JoltBeans” covers the following topics:

� Overview of Jolt Beans

� Basic Steps For Using JoltBeans

� JavaBeans Events and BEA Tuxedo Events

� How JoltBeans Use JavaBeans Events

� The JoltBeans Toolkit

� Jolt-Aware GUI Beans

� Using the Property List and the Property Editor to Modify the JoltBeans
Properties

� JoltBeans Class Library Walkthrough

� Using the Jolt Repository and Setting the Property Values

� JoltBeans Programming Tasks
Using BEA Jolt 6-1

6 Using JoltBeans

, is a
de

e a
, and

 tool
re
event

u can
h the

A
r

gh in
 steps
Overview of Jolt Beans

JoltBeans consists of two sets of Java Beans. The first set, the JoltBeans toolkit
beans version of the Jolt API. The second set consists of GUI beans, which inclu
Jolt-aware AWT beans and Jolt-aware Swing beans. These GUI components ar
“Jolt-enabled” version of some of the standard Java AWT and Swing components
help you build a Jolt client GUI with minimal or no coding.

You can drag and drop JoltBeans from the component palette of a development
and position them on the Java form (or forms) of the Jolt client application you a
creating. You can populate the properties of the beans and graphically establish
source-listener relationships between various beans of the application or applet.
Typically, the development tool is used to generate the event hook-up code, or yo
code the hook-up manually. Client development using JoltBeans is integrated wit
BEA Jolt Repository, providing easy access to available BEA Tuxedo services.

Note: Currently, Symantec Visual Café 3.0 is the only IDE that is certified by BE
for use with JoltBeans. However, JoltBeans are also compatible with othe
Java development environments such as Visual Age.

To use the JoltBeans toolkit, it is recommended that you be familiar with
JavaBeans-enabled, integrated development environments (IDEs). The walkthrou
this chapter is based on Symantec’s Visual Café 3.0 IDE and illustrates the basic
of building a sample applet.
6-2 Using BEA Jolt

Overview of Jolt Beans

d by

, or
eans

el,

d as a
JoltBeans Terms

You will encounter the following terms as you work with JoltBeans:

JavaBeans
Portable, platform-independent, reusable software components that are
graphically displayed in a development environment.

JoltBeans
Two sets of Java Beans: JoltBeans toolkit and Jolt aware GUI beans.

Custom GUI element
A Java GUI class that communicates with JoltBeans. The means of
communication can be JavaBeans events, methods, or properties offere
JoltBeans.

Jolt-Aware Bean
A bean that is the source of JoltInputEvents, listener of JoltOutputEvents
both. Jolt-aware beans are a subset of Custom GUI elements that follow b
guidelines.

Jolt-Aware GUI Beans
Two packages of GUI components Abstract Window Toolkit (AWT) and
Swing, both containing the JoltList, JoltCheckBox, JoltTextField, JoltLab
and JoltChoice components.

JoltBeans Toolkit
A JavaBeans-compliant interface to BEA Jolt, which includes the
JoltServiceBean, JoltSessionBean, and JoltUserEventBean.

Wiring
The process of connecting beans together so that one bean is registere
listener of events from another bean.
Using BEA Jolt 6-3

6 Using JoltBeans

lude

nt.

 are
c

ns
ctly

ns
the

 to
n for

ment
Adding JoltBeans to Your Java Development
Environment

Before you can use JoltBeans, set up your Java development environment to inc
JoltBeans:

z Set the class path in your development environment to include all Jolt
classes.

z Add JoltBeans to the Component Library of your development environme

The method of setting the CLASSPATH can vary, depending on the development
environment you use.

JoltBeans includes a set of .jar files containing all of the JoltBeans. You can add
these .jar files to your preferred Java development environment so that JoltBeans
available in the component library of your Java tool. For example, using Symante
Visual Café, you can set the CLASSPATH so that the .jar files are visible in the
Component Library window of Visual Café. You only need to set the CLASSPATH of
these .jar files in your development environment once. After you place these .jar
files in the CLASSPATH of your development environment, you can then add JoltBea
to the Component Library. Then you can simply drag and drop any JoltBean dire
onto the Java form on which you are developing your Jolt client application.

To set the CLASSPATH in your Java development environment, follow the instructio
in the product documentation for your development environment. Navigate from
IDE of your development tool to the directory where the jolt.jar file resides. The
jolt.jar file is typically found in the directory called %TUXDIR%\udatadoj\jolt .
The jolt.jar file contains the main Jolt classes. Set the CLASSPATH to include these
classes. The JoltBean .jar files do not need to be added to the CLASSPATH. To use
them, you only need to add them as components in your IDE.

After you have set the CLASSPATH to include the Jolt classes, you can add JoltBeans
the Component Library of your development environment. See the documentatio
your particular development environment for instructions on populating the
Component Library.

When you are ready to add JoltBeans to the Component Library of your develop
environment, add only the development version of JoltBeans. Refer to “Using
Development and Run-time JoltBeans” for complete details.
6-4 Using BEA Jolt

Basic Steps For Using JoltBeans

ds
s

 a
on”)
nt.

u do
-time

led
e

ava

Using Development and Run-time JoltBeans

The .jar files containing JoltBeans contain two versions of each JoltBean, a
development version and a run-time version. The development version of each
JoltBean name ends with the suffix Dev. The run-time version of each class name en
with the suffix Rt . For example, the development version of the class, JoltBean, i
JoltBeanDev , while the run-time version of the same class is JoltBeanRt .

Use the development version of JoltBeans during the development process. The
development JoltBeans have additional properties that enhance development in
graphic IDE. For example, the JoltBeans have graphic properties (“bean informati
that allow you to work with them as graphic icons in your development environme

The run-time version of JoltBeans does not have these additional properties. Yo
not need the additional development properties of the beans at run-time. The run
beans are simply a pared down version of the development JoltBeans.

When you compile your application in your development environment, it is compi
using the development beans. However, if you want to run it from a command lin
outside of your development environment, it is recommended that you set the
CLASSPATH so that the run-time beans are used when compiling your application.

Basic Steps For Using JoltBeans

The basic steps for using JoltBeans are as follows:

1. Add the development version of JoltBeans to the Component Library of your J
development environment, as described in “Adding JoltBeans to Your Java
Development Environment.”

2. Drag the beans from the JoltBeans component palette of your development
environment to the Java form-designer for a Jolt client application or applet.

3. Populate the properties of the beans and set up the event-source listener
relationships between the beans of the application or applet (“wire” the beans
together). The development tool generates the event hook-up code.

4. Add the application logic to the event callbacks.
Using BEA Jolt 6-5

6 Using JoltBeans

rough

, an
tion.

 this

ns

on

ds a
These steps are explained in more detail in later sections. The JoltBeans walkth
demonstrates each of these steps with an example.

JavaBeans Events and BEA Tuxedo Events

JavaBeans communicate through events. An event in a BEA Tuxedo system is
different from an event in a JavaBeans environment. In a BEA Tuxedo application
event is raised from one part of an application to another part of the same applica
JoltBeans events are communicated between beans.

Using BEA Tuxedo Event Subscription and Notification
with JoltBeans

BEA Tuxedo supports brokered and unsolicited event notification. Jolt provides a
mechanism for Jolt clients to receive BEA Tuxedo events. JoltBeans also include
capability.

Note: BEA Tuxedo event subscription and notification is different from JavaBea
events.

The following procedure illustrates how the BEA Tuxedo asynchronous notificati
mechanism is used in JoltBeans applications.

1. Use the setEventName() and setFilter() methods of the JoltUserEventBean
to specify the BEA Tuxedo event to which you want to subscribe.

2. The component that receives the event notifications registers itself as a
JoltOutputListener to the JoltSessionBean.

3. The subscribe() method is called on JoltUserEventBean.

4. When the actual BEA Tuxedo event notification arrives, JoltSessionBean sen
JoltOutputEvent to its listeners by calling serviceReturned() on them. The
JoltOutputEvent object contains the data of the BEA Tuxedo event.
6-6 Using BEA Jolt

How JoltBeans Use JavaBeans Events

f

en

 or

eans

ent
l
l. The
ding
When the client no longer needs to receive the event, it calls unsubscribe() on the
JoltUserEventBean.

Note: If the client will only subscribe to unsolicited events, use setEventName

("\\.UNSOLMSG") , which can be set using the property sheet. EventName
and Filter are properties of the JoltUserEventBean.

How JoltBeans Use JavaBeans Events

A Jolt client applet or application that is built using JoltBeans typically consists o
Jolt-aware GUI beans, such as JoltTextField or JoltList, and JoltBeans, such as
JoltServiceBean and JoltSessionBean. The main mode of communication betwe
Beans is by JavaBeans events.

Jolt-aware beans are sources of JoltInputEvents or listeners of JoltOutputEvents
both. JoltServiceBeans are sources of JoltOutputEvents and listeners of
JoltInputEvents.

The Jolt-aware GUI Beans expose properties and methods so you can link the b
directly to the parameters of a BEA Tuxedo service (represented by a
JoltServiceBean). Jolt-aware beans notify the JoltServiceBean via a JoltInputEv
when their content changes. The JoltServiceBean sends a JoltOutputEvent to al
registered Jolt-aware beans when the reply data is available after the service cal
Jolt-aware GUI Beans contain logic that updates their contents with the correspon
output parameter of the service.

The following figure represents the possible relationships among the JoltBeans.
Using BEA Jolt 6-7

6 Using JoltBeans

ents,
c

eans
Figure 6-1 Possible Interrelationships Among JoltBeans

The JoltBeans Toolkit

The JoltBeans Toolkit includes the following beans:

� JoltSessionBean

� JoltServiceBean

� JoltUserEventBean

These components transform the complete Jolt Class Library into beans compon
with all of the features of any typical JavaBean, including easy reuse and graphi
development.

Refer to the online API Reference in Javadoc for specific descriptions of the JoltB
classes, constructors, and methods.

The following sections provide information about the properties of each bean.
6-8 Using BEA Jolt

The JoltBeans Toolkit

 the
es.
ibutes,
en and

sion is

ange

 the
on is

 Jolt

red.

d

JoltSessionBean

The JoltSessionBean, which represents the BEA Tuxedo session, encapsulates
functionality of the JoltSession, JoltSessionAttributes, and JoltTransaction class
The JoltSessionBean has properties that you use to set session and security attr
such as sending a timeout or a BEA Tuxedo user name, as well as methods to op
close a BEA Tuxedo session.

The JoltSessionBean sends a PropertyChange event when the BEA Tuxedo ses
established or closed. PropertyChange is a standard bean event defined in the
java.beans package. The purpose of this event is to signal other beans about a ch
of the value of a property in the source bean. In this case, the source is the
JoltSessionBean; the targets are JoltServiceBeans or JoltUserEventBeans; and
property changing is the LoggedOn property of the JoltSessionBean. When a log
successful and a session is established, LoggedOn is set to true . After the logoff is
successful and the session is closed, the LoggedOn property is set to false .

The JoltSessionBean provides methods to control transactions, including
beginTransaction() , commitTransaction() , and rollbackTransaction() .

The following table shows the JoltSessionBean properties and descriptions.

Table 6-1 JoltSessionBean Properties and Descriptions

Property Description

AppAddress Set the IP address (host name) and port number of the JSL or the
Relay. The format is //host:port number
 (for example, myhost:7000).

AppPassword Set the BEA Tuxedo application password used at logon, if requi

IdleTimeOut Set the IDLETIMEOUT value.

inTransaction Indicate true or false depending if a transaction has been starte
and not committed or aborted.

LoggedOn Indicate true or false if a BEA Tuxedo session does or does not
exist.

ReceiveTimeOut Set the RECVTIMEOUT value.

SendTimeOut Set the SENDTIMEOUT value.
Using BEA Jolt 6-9

6 Using JoltBeans

to
fers
rce
a

r of
ccess

ss to

tion
JoltServiceBean

The JoltServiceBean represents a remote BEA Tuxedo service. The name of the
service is set as a property of the JoltServiceBean. The JoltServiceBean listens
JoltInputEvents from other beans to populate its input buffer. JoltServiceBean of
the callService() method to invoke the service. JoltServiceBean is an event sou
for JoltOutputEvents that carry information about the output of the service. After
successful callService() , listener beans are notified via a JoltOutputEvent that
carries the reply message.

Although the primary way of changing and querying the underlying message buffe
the JoltServiceBean is via events, the JoltServiceBean also provides methods to a
the underlying message buffer directly (setInputValue(…) , getOutputValue(…)).

The following table shows the JoltServiceBean properties and descriptions.

SessionTimeOut Set the SESSIONTIMEOUT value.

UserName Indicate the BEA Tuxedo user name, if required.

UserPassword Indicate the BEA Tuxedo user password, if required.

UserRole Indicate the BEA Tuxedo user role, if required.

Table 6-1 JoltSessionBean Properties and Descriptions (Continued)

Property Description

Table 6-2 JoltServiceBean Properties and Descriptions

Property Description

ServiceName The name of the BEA Tuxedo service represented by this
JoltServiceBean.

Session The JoltSessionBean associated with the bean that allows acce
the BEA Tuxedo client session.

Transactional Set to true if this JoltServiceBean is to be included in the transac
that was started by its JoltSessionBean.
6-10 Using BEA Jolt

Jolt-Aware GUI Beans

BEA

n is

e

ans

ss to
JoltUserEventBean

The JoltUserEventBean provides access to BEA Tuxedo events. You define the
Tuxedo event to which you subscribe or unsubscribe by setting the appropriate
properties of this bean (event name and event filter). The actual event notificatio
delivered in the form of a JoltOutputEvent from the JoltSessionBean.

The following table shows the JoltUserEventBean properties and descriptions.

Jolt-Aware GUI Beans

The Jolt-aware GUI Beans consist of Java AWTbeans and Swing beans, and ar
inherited from the Java Abstract Windowing Toolkit. They include:

� JoltTextField

� JoltLabel

� JoltList

� JoltCheckbox

� JoltChoice

Note: To avoid errors when compiling, it is recommended that you use only the
AWT beans together, or the Swing beans together, rather than mixing be
from these two packages.

Table 6-3 JoltUserEventBean Properties and Descriptions

Property Description

EventName Set the name of the user event represented by the bean.

Filter Set the event filter.

Session The JoltSessionBean associated with the bean that allows acce
the BEA Tuxedo client session.
Using BEA Jolt 6-11

6 Using JoltBeans

n to
ers

he

ld
by

he

he
 to
ted

n
lated

es
JoltTextField

This is a Jolt-aware extension of java.awt.TextField and Swing JTextfield.
JoltTextField contains parts of the input for a service. A JoltServiceBean can liste
events raised by a JoltTextField. JoltTextField sends JoltInputEvents to its listen
(typically JoltServiceBeans) when its contents changes.

JoltTextField displays output from a service. In this case, JoltTextField listens to
JoltOutputEvents from JoltServiceBeans and updates its contents according to t
occurrence of the field to which it is linked.

JoltLabel

This is a Jolt-aware extension of java.awt.Label and Swing JLabel that is linked
to a specific field in the Jolt output buffer by its JoltFieldName property. If the fie
occurs multiple times, the occurrence to which this textfield is linked is specified
the occurrenceIndex property of this bean. JoltLabel can be connected with
JoltServiceBeans to display output from a service. A JoltLabel listens to
JoltOutputEvents from JoltServiceBeans and updates its contents according to t
occurrence of the field to which it is linked.

JoltList

This is a Jolt-aware extension of java.awt.List and Swing Jlist that is linked to a
specific Jolt field in the Jolt input or output buffer by its JoltFieldName property. If t
field occurs multiple times in the Jolt input buffer, the occurrence this list is linked
is specified by the occurrenceIndex property of this bean. JoltList can be connec
with JoltServiceBeans in two ways:

� JoltList contains parts of the input for a service. A JoltServiceBean listens to
events raised by a JoltList. JoltList sends JoltInputEvents to its listeners whe
the selection in the listbox changes. The JoltInputEvent, in this case, is popu
with the single value of the selected item.

� JoltList displays output from a service. When used to display the output of a
service, JoltList listens to JoltOutputEvents from JoltServiceBeans and updat
its contents accordingly with all occurrences of the field to which it is linked.
6-12 Using BEA Jolt

Jolt-Aware GUI Beans

e
 is

ut for
kbox
tion

ty.

r a
e
tion
ingle

c.
JoltCheckbox

JoltCheckbox is a Jolt-aware extension of java.awt.Checkbox and Swing
JCheckBox that is linked to a specific field in the Jolt input buffer by its JoltFieldNam
property. If the field occurs multiple times, the occurrence to which this checkbox
linked is specified by the occurrenceIndex property of this bean.

JoltCheckbox can be connected with JoltServiceBeans to contain parts of the inp
a service. A JoltServiceBean listens to events raised by a JoltCheckbox. JoltChec
sends JoltInputEvents to its listeners (typically JoltServiceBeans) when the selec
in the checkbox changes. The JoltInputEvent in this case is populated with the
TrueValue property of data type String (if the box is selected) or FalseValue (if the
box is unselected).

JoltChoice

JoltChoice provides a Jolt-aware extension of java.awt.Choice and Swing JChoice
that is linked to a specific field in the Jolt input buffer by its JoltFieldName proper
If the field occurs multiple times, the occurrence to which this choice is linked is
specified by the occurrenceIndex property of this bean.

JoltChoice can be connected to JoltServiceBeans to contain parts of the input fo
service. A JoltServiceBean can listen to events raised by a JoltChoice. JoltChoic
sends JoltInputEvents to its listeners (typically JoltServiceBeans) when the selec
in the choicebox changes. The JoltInputEvent in this case is populated with the s
value of the selected item.

Note: For a detailed description of these classes, see API Reference in Javado
Using BEA Jolt 6-13

6 Using JoltBeans

umn
sual

es
itors

he

re
Using the Property List and the Property
Editor to Modify the JoltBeans Properties

The values of most JoltBeans properties can be modified by editing the right col
of the Property List in your integrated development environment (IDE), such as Vi
Café, as shown in the following figure “Property List: Ellipsis Button.”

Custom property editors are provided for some properties of JoltBeans.

The custom property editors, accessed from the Property List, include dialog box
that you use to modify the property values. You can invoke the custom property ed
from the Property List by clicking the button with the ellipsis (“...”) that is next to t
value of the corresponding property value.

Figure 6-2 Property List: Ellipsis Button

When you click the ellipsis button, the Property Editor shown in the following figu
is displayed.
6-14 Using BEA Jolt

Using the Property List and the Property Editor to Modify the JoltBeans Properties

ime,
r

sing
Figure 6-3 Custom Property Editor Dialog Box
.

The Custom Property Editor of JoltBeans reads cached information. Initially, no
cached information is available, so when the Property Editor is used for the first t
the dialog box is empty. Log on to the Jolt Repository and load the property edito
cache from the repository.

For details about the logon and using the Property List and Property Editor, see “U
the Jolt Repository and Setting the Property Values” on page 6-44.
Using BEA Jolt 6-15

6 Using JoltBeans

 of

JoltBeans Class Library Walkthrough

This walkthrough describes how to build an applet that you use to:

� Enter an account ID

� Click on the Inquiry button

� Display the balance of the account (shown in the following figure).

The following figure shows an example of a completed Java form containing
JoltBeans. The applet implements the client functionality for the INQUIRY service
the BANKAPP sample that is included with BEA Tuxedo. To run this sample, the
BEA Tuxedo server must be running.

Figure 6-4 Sample Inquiry Applet
6-16 Using BEA Jolt

JoltBeans Class Library Walkthrough

 of
Refer to the figure “Visual Café 3.0 Form Designer” on page 6-20 for an example
each item required by the Java form. Each item in that figure is described in the
following table “Required Form Elements”.

Table 6-4 Required Form Elements

Element Purpose

Applet (or JApplet, if JFC
applet is chosen)

A form used to paint the beans in your development
environment.

JoltSessionBean Logs on to a BEA Tuxedo session.

JoltTextField Gets input from the user (in this case, ACCOUNT_ID).

JoltTextField Displays the result (in this case, SBALANCE).

JoltServiceBean Accesses a BEA Tuxedo service. (In this case, INQUIRY
from BANKAPP).

Button Initiates an action.

Label Describes the field on the applet.
Using BEA Jolt 6-17

6 Using JoltBeans

, in
t that
w the

rop

ok
ion
er

g
Building the Sample Form

The sample form is created using an integrated development environment (IDE)
this example, Visual Café 3.0. The example demonstrates how to build an apple
allows you to enter an account ID and use a BEA Tuxedo service to get and sho
account balance.

Follow the basic steps below to create this sample.

1. In Visual Café, choose File→New Project and select either JFC Applet or AWT
application. This step provides you with the basic form designer on which you d
the JoltBeans.

2. Drag and drop all of the JoltBeans you want to use in your applet from the
Component Library onto the form designer.

3. Modify or customize each bean using the property list or the custom property
editor.

4. Wire the beans together using the Interaction Wizard.

5. Compile the applet.

These steps are described in detail in the following sections.

Note: The graphic interface of previous versions of Visual Café differ from the lo
of Visual Café 3.0. You can complete this sample applet in a previous vers
of Visual Café; however, the steps executed in the Interaction Wizard diff
slightly from this example.

Placing JoltBeans onto the Form Designer

1. Choose File→New Project, and choose JFC Applet.

2. Drag and drop the beans from the Component Library (shown in the followin
figure) onto the palette of the form designer.
6-18 Using BEA Jolt

JoltBeans Class Library Walkthrough
Figure 6-5 JoltBeans and the Form Designer in Visual Café

The following figure “Visual Café 3.0 Form Designer” illustrates how JoltBeans
appear when they are placed on the palette of the Form Designer.
Using BEA Jolt 6-19

6 Using JoltBeans

r

ty

 of

es”
Figure 6-6 Visual Café 3.0 Form Designer

3. Set the properties of each bean. To modify or customize the buttons, labels o
fields, use the property list. Some JoltBeans use a Custom Property Editor.

The following figure,“Example of JoltTextField Property List and Custom
Property Editor,” shows how selecting the JoltFieldName of the button proper
list displays the Custom Property Editor.

4. Set the properties of the beans (for example, set the JoltFieldName property
the JoltTextField to ACCOUNT_ID).

Note: For complete information on setting and modifying the properties of the
JoltBeans, refer to “Using the Jolt Repository and Setting the Property Valu
on page 6-44.
6-20 Using BEA Jolt

JoltBeans Class Library Walkthrough

rty
The following table specifies the property values that should be set. Values
specified in bold and italic text are required, and those in plain text are
recommended.

Note: In this walkthrough, the default occurrenceIndex of 0 works for both
JoltTextFields.

Refer to the following figure “Example of JoltTextField Property List and
Custom Property Editor”and “Using the Jolt Repository and Setting the Prope
Values” on page 6-44 for general guidelines about JoltBean properties.

Table 6-5 Required and Recommended Property Values

Bean Property Value

label1 Text Account ID

label2 Text Balance

JoltTextField1 Name accountId

JoltTextField1 JoltFieldName ACCOUNT_ID

JoltTextField2 Name balance

JoltTextField2 JoltFieldName SBALANCE

JoltSessionBean1 AppAddress //tuxserv:2010

JoltServiceBean1 Name inquiry

JoltServiceBean1 ServiceName INQUIRY

button1 Label Inquiry
Using BEA Jolt 6-21

6 Using JoltBeans

n of

k

rty
Figure 6-7 Example of JoltTextField Property List and Custom Property Editor

5. To change the value of the JoltFieldName property, click on the ellipsis butto
the JoltFieldName in the Property List.

The Custom Property Editor is displayed.

6. Select or type the new field name (in this example, “ACCOUNT_ID”) and clic
OK .

The change is reflected in the Property List shown in the following figure
“Revised JoltFieldName in the JoltTextField Property List”and on the text field
shown on the figure “Example of JoltBeans on the Form Designer with Prope
Changes” on page 6-24.
6-22 Using BEA Jolt

JoltBeans Class Library Walkthrough

resh

Note: The properties that are visible in the Custom Property Editor are cached

locally; therefore, if the source database is modified you must use the Ref
button to see the current, available properties.

Figure 6-8 Revised JoltFieldName in the JoltTextField Property List

The following figure “Example of JoltBeans on the Form Designer with
Property Changes” illustrates how the text on the button and the textfield
changes after the text is added to the property list fields for these beans.
Using BEA Jolt 6-23

6 Using JoltBeans

d
fine
Figure 6-9 Example of JoltBeans on the Form Designer with Property Changes

7. After you set the properties to the right values (refer to the table “Required an
Recommended Property Values” on page 6-21 for additional information), de
how the beans will interact by wiring them together using the Visual Café
Interaction Wizard. Refer to “Wiring the JoltBeans Together” for details.
6-24 Using BEA Jolt

JoltBeans Class Library Walkthrough

ust
h
e

een

r to
 steps
Wiring the JoltBeans Together

After all the beans are positioned on your form and the properties are set, you m
wire the beans and their events together. The following figure “Sequence in whic
JoltBeans Are Wired” illustrates an example of the flow to help you determine th
correct order in which to wire the beans.

Wiring the beans allows you to establish event source-listener relationships betw
various beans on the form. For example, the JoltServiceBean is a listener of
ActionEvents from the button and invokes callService() when the event is
received. Use the Visual Café Interaction Wizard to wire the beans together.

The following figure shows the sequence in which you will wire the beans togethe
create this sample applet. The numbers in this figure correspond to the numbered
that follow.

Figure 6-10 Sequence in which JoltBeans Are Wired

�

�
�

�

�

�

Using BEA Jolt 6-25

6 Using JoltBeans

ich
s that

t

The steps below correspond to the callouts shown on the figure “Sequence in wh
JoltBeans Are Wired” on page 6-25. Each of steps below is detailed in the section
follow.

Step 1: Wire the JoltSessionBean Logon

Step 2: Wire JoltSessionBean to JoltServiceBean Using PropertyChange

Step 3: Wire the accountID JoltTextField as Input to the JoltServiceBean Using
JoltInputEvent

Step 4: Wire Button to JoltServiceBean using JoltAction

Step 5: Wire JoltServiceBean to the Balance JoltTextField Using JoltOutputEven

Step 6: Wire the JoltSessionBean Logoff

Step 7: Compile the Applet (not shown as a callout)
6-26 Using BEA Jolt

JoltBeans Class Library Walkthrough

n the
Step 1: Wire the JoltSessionBean Logon

1. In the Form Designer window, click the Interaction Wizard button.

2. Click in the applet window and drag a line to the JoltSessionBean as shown i
following figure.

Figure 6-11 Wire the Applet to the Jolt Session Bean

The Interaction Wizard window is displayed as shown in the figure “Select
ComponentShown Event” on page 6-28, with the prompt:

What event in JApplet1 do you want to start the interaction?

Drag
here
Using BEA Jolt 6-27

6 Using JoltBeans
3. Select ComponentShown in the Interaction Wizard window as the event with
which you want to start the interaction, as shown in the following figure.

Figure 6-12 Select ComponentShown Event

4. Click Next.

The Interaction Wizard window is displayed, as shown in the figure “Select
Logon to the Tuxedo System Action” on page 6-29, with the prompt:

What do you want to happen when Japplet1 fires componentShown event?
6-28 Using BEA Jolt

JoltBeans Class Library Walkthrough

own)
5. With the Perform an action radio button enabled, select the action Logon to the
Tuxedo system, as shown in the following figure.

Figure 6-13 Select Logon to the Tuxedo System Action

6. Click Finish.

Completing “Step 1: Wire the JoltSessionBean Logon” enables the logon() method
of the JoltSessionBean to be triggered by an applet (for example, ComponentSh
that is sent when the applet is opened for the first time.
Using BEA Jolt 6-29

6 Using JoltBeans

r

n in
Step 2: Wire JoltSessionBean to JoltServiceBean Using PropertyChange

1. Click the Interaction Tool icon in the toolbar of the Visual Café Form Designe
window to display the bean components.

2. Click on the JoltSessionBean and drag a line to the JoltServiceBean, as show
the following figure.

Figure 6-14 Wire the JoltSessionBean to the JoltServiceBean

The Interaction Wizard window is displayed as shown in the figure “Select
propertyChange Event” on page 6-31, with the prompt:

 What event in joltSessionBean1 do you want to start the interaction?
6-30 Using BEA Jolt

JoltBeans Class Library Walkthrough

3. Select propertyChange as the event that starts the interaction, as shown in the
following figure.

Figure 6-15 Select propertyChange Event

4. Click Next.

The Interaction Wizard window is displayed as shown in the figure “Select
Handle a Jolt property change event” on page 6-32, with the prompt:

What do you want to happen when joltSessionBean1 fires propertyChange
event?
Using BEA Jolt 6-31

6 Using JoltBeans
5. Select Handle a Jolt property change event as the method, as shown in the
following figure.

Figure 6-16 Select Handle a Jolt property change event
S

6. Click Next.

The Interaction Wizard window is displayed as shown in the figure “Select
joltSesssionBean1” on page 6-33, with the prompt:

How do you want to supply the parameter to this method?

and a list of available objects and actions from which to choose.
6-32 Using BEA Jolt

JoltBeans Class Library Walkthrough

when
ervice
7. Select joltSessionBean1 as the object that supplies the action, as shown in the
following figure.

8. Select Get the current Property Change Event object as the action, also as
shown in the following figure.

Figure 6-17 Select joltSesssionBean1

9. Click Finish.

Completing “Step 2: Wire JoltSessionBean to JoltServiceBean Using
PropertyChange”enables the JoltSessionBean to send a propertyChange event
logon() completes. The JoltServiceBean listens to this event and associates its s
with this session.
Using BEA Jolt 6-33

6 Using JoltBeans

.

Step 3: Wire the accountID JoltTextField as Input to the JoltServiceBean Using
JoltInputEvent

1. Click the Interaction Wizard icon in the Visual Café Form Designer window.

2. Select the accountID JoltTextField bean and drag a line to the JoltServiceBean

The Interaction Wizard window is displayed, as shown in the following figure,
with the prompt:

What event in accountId do you want to start the interaction?

3. Select dataChanged as the event, as shown in the following figure.

Figure 6-18 Select dataChanged Event

4. Click Next.

The Interaction Wizard window is displayed as shown in the figure “Select
inquiry Object and Handle a Jolt input event Action” on page 6-35, with the
prompt:
6-34 Using BEA Jolt

JoltBeans Class Library Walkthrough
What do you want to happen when accountId fires dataChanged event?

5. Select the joltServiceBean inquiry as the object supplying the parameter, as
shown in the following figure.

6. Select Handle a jolt input event as the action, also as shown in the following
figure.

Figure 6-19 Select inquiry Object and Handle a Jolt input event Action

7. Click Next.

The Interaction Wizard window is displayed as shown in “Select accountId
Object and Get the current Jolt Input Event Action” on page 6-36, with the
prompt:

How do you want to supply the parameter to this method?

and a list of available objects and actions from which to choose.
Using BEA Jolt 6-35

6 Using JoltBeans

ean
ld.

ox.)
 field.
8. Select accountId as the object, as shown in the following figure.

9. Select get the current Jolt Input Event as the action, also as shown in the
following figure.

Figure 6-20 Select accountId Object and Get the current Jolt Input Event Action

10. Click Finish.

Completing “Step 3: Wire the accountID JoltTextField as Input to the JoltServiceB
Using JoltInputEvent” enables you to type the account number in the first text fie
The JoltFieldName property of this JoltTextField is set to “ACCOUNT_ID”.
Whenever the text inside this text box changes, it sends a JoltInputEvent to the
JoltServiceBean. (The JoltServiceBean listens to JoltInputEvents from this textb
The JoltInputEvent object contains the name, value, and occurrence index of the
6-36 Using BEA Jolt

JoltBeans Class Library Walkthrough

Step 4: Wire Button to JoltServiceBean using JoltAction

1. Click the Interaction Wizard icon in the Visual Café Form Designer window.

2. Click the Inquiry Button and drag a line to the JoltServiceBean.

The Interaction Wizard window is displayed as shown in the following figure,
with the prompt:

What event in button1 do you want to start the interaction?

3. Select actionPerformed as the event, as shown in the following figure.

Figure 6-21 Select action Performed Event

4. Click Next.

The Interaction Wizard window is displayed, as shown in the figure “Select
inquiry Object and Invoke the TUXEDO Service... Action” on page 6-38, with
the prompt:

What do you want to happen when button1 fires actionPerformed event?
Using BEA Jolt 6-37

6 Using JoltBeans

e
t
5. Select inquiry as the object, as shown in the following figure.

6. Select Invoke the TUXEDO Service represented by this Bean as the action,
also as shown in the following figure.

Figure 6-22 Select inquiry Object and Invoke the TUXEDO Service... Action

7. Click Finish.

Completing “Step 4: Wire Button to JoltServiceBean using JoltAction” enables th
callService() method of the JoltServiceBean to be triggered by an ActionEven
from the Inquiry button.
6-38 Using BEA Jolt

JoltBeans Class Library Walkthrough

ith
Step 5: Wire JoltServiceBean to the Balance JoltTextField Using
JoltOutputEvent

1. Click the Interaction Wizard icon in the Visual Café Form Designer window.

2. Select the JoltServiceBean and drag a line to the AmountJoltTextField bean.

The Interaction Wizard is displayed, as shown in the following figure, with the
prompt:

What event in inquiry do you want to start the interaction?

3. Select serviceReturned as the event, as shown in the following figure.

Figure 6-23 Select ServiceReturned Event

4. Click Next.

The Interaction Wizard window is displayed, as shown in the figure “Select
balance Object and Handle a service returned event Action” on page 6-40, w
the prompt:
Using BEA Jolt 6-39

6 Using JoltBeans

6-40 Using BEA Jolt

What do you want to happen when inquiry fires serviceReturned event?

5. Select balance as the object, as shown in the following figure.

6. Select Handle a service returned event... as the action, also as shown in the
following figure.

Figure 6-24 Select balance Object and Handle a service returned event Action

7. Click Next.

The Interaction Wizard window is displayed, as shown in the figure “Select
inquiry Object and Get the JoltOutputEvent object Action” on page 6-41, with
the prompt:

How do you want to supply the parameter to this method?

JoltBeans Class Library Walkthrough

s
lt of
8. Select inquiry as the object, as shown in the following figure.

9. Select Get the JoltOutputEvent object as the action, also as shown in the
following figure.

Figure 6-25 Select inquiry Object and Get the JoltOutputEvent object Action

10. Click Finish.

Completing “Step 5: Wire JoltServiceBean to the Balance JoltTextField Using
JoltOutputEvent”allows the JoltServiceBean to send a JoltOutputEvent when it
receives reply data from the remote service. The JoltOutputEvent object contain
methods to access fields in the output buffer. The JoltTextField displays the resu
the INQUIRY service.
Using BEA Jolt 6-41

6 Using JoltBeans

e
Step 6: Wire the JoltSessionBean Logoff

1. Click the Interaction Wizard icon in the Visual Café Form Designer window.

2. Click in the applet window (not on another bean) and drag a line to the
JoltSessionBean.

The Interaction Wizard is displayed, as shown in the following figure, with the
prompt:

What event in JApplet1 do you want to start the interaction?

3. Select componentHidden as the event, as shown in the following figure.

Figure 6-26 Select componentHidden Event

4. Click Next.

The Interaction Wizard window is displayed, as shown in the figure “Select
joltSessionBean1 Object and Logoff from the Tuxedo System Action” on pag
6-43, with the prompt:
6-42 Using BEA Jolt

JoltBeans Class Library Walkthrough

den)

hat
 any
Using BEA Jolt 6-43

What do you want to happen when JApplet1 fires componentHidden event?

5. Select joltSessionBean1 as the object, as shown in the following figure.

6. Select Logoff from the TUXEDO system as the action, also as shown in the
following figure.

Figure 6-27 Select joltSessionBean1 Object and Logoff from the Tuxedo System
Action

7. Click Finish.

Completing “Step 6: Wire the JoltSessionBean Logoff” enables the logoff() method
of the JoltSessionBean to be triggered by an applet (for example, componentHid
that is sent when the applet gets hidden.

Step 7: Compile the Applet

After wiring the JoltBeans together, compile the applet. It is also recommended t
you fill in the empty catch blocks for exceptions. Check the message window for
compilation errors and exceptions.

6 Using JoltBeans

d
” on

hen
ount
ount

 are
 List

e
For additional information see the following section “Using the Jolt Repository an
Setting the Property Values.” Also refer to the table “JoltBean Specific Properties
page 6-45 and the figure “JoltServiceBean Property Editor” on page 6-46.

Running the Sample Application

To run the sample application, you must have the BEA Tuxedo server running. T
enter an account number in the Account ID textfield. You can use any of the acc
numbers included in the BANKAPP database. Following are two examples of acc
numbers you can use to test the sample application:

� 80001

� 50050

Using the Jolt Repository and Setting the
Property Values

Custom Property Editors are provided for the following properties:

� JoltFieldName (Jolt-aware AWT beans)

� serviceName (JoltServiceBean)

The Property Editor, accessed from the Property List, includes dialog boxes that
used to add or modify the properties. You can invoke the boxes from the Property
by selecting the button with the ellipsis (...) that is next to the value of the
corresponding property value.

Some JoltBeans require input to the Property List field. The beans are listed in th
following table.
6-44 Using BEA Jolt

Using the Jolt Repository and Setting the Property Values

es of
ame

”

.

e
The property editor reads cached information from the repository and returns nam
the available services and data elements in a list box. An example of the ServiceN
property editor is shown in the following figure “JoltServiceBean Property Editor.

To add or modify a property bean, follow these steps:

1. Select the service name by clicking on the ellipsis in the ServiceName field shown
in the following figure.

Table 6-6 JoltBean Specific Properties

JoltBean Property Input Description

JoltSessionBean appAddress

userName, Password or
AppPassword

e.g., //host:port

Type your BEA Tuxedo user name
and passwords.

JoltServiceBean serviceName

isTransactional

INQUIRY, for example.

Set to true if the service needs to be
executed within a transaction. Set
isTransactional to false if the
service does not require a transaction

JoltUserEventBean eventName

filter

Refer to the BEA Tuxedo
tpsubscribe calls.

All Jolt-aware GUI
beans

joltFieldName

occurrenceIndex

ACCOUNT_ID, for example

Multiple fields of the same name.
Index starts at 0.

JoltCheckbox TrueValue and FalseValue The field value corresponding to th
state of the checkbox.
Using BEA Jolt 6-45

6 Using JoltBeans

the
Figure 6-28 JoltServiceBean Property Editor

The Custom Property Editor for ServiceName shown in the following figure is
displayed.

Figure 6-29 Custom Property Editor for ServiceName

Note: If you cannot or do not want to connect to the Repository database, type
service name in the text box and skip to Step 7.

2. If you are not logged on, make sure the Jolt Server is running and select Logon.

 The JoltBeans Repository Logon shown in the following figure is displayed.
6-46 Using BEA Jolt

Using the Jolt Repository and Setting the Property Values

yed,

ing
Figure 6-30 JoltBeans Repository Log On

3. Type the BEA Tuxedo or Jolt Relay Machine name in the Server field and the
JSL or Jolt Relay in the Port number field.

4. Type the password and user name information (if required) and click Logon.

The Custom Property Editor loads its cache from the repository and is displa
as shown in the following figure “Property Editor with Selected Service.”

5. Select the appropriate service name from the list box, as shown in the follow
figure.

6. Enter the property value (service or field name) directly.

A text box is provided.

7. Click OK in the Custom Property Editor dialog.

The bean property is set with the contents of the textbox.
Using BEA Jolt 6-47

6 Using JoltBeans
Figure 6-31 Property Editor with Selected Service

8. Click OK in the Custom Property Editor dialog again.
6-48 Using BEA Jolt

JoltBeans Programming Tasks

ple,

f
ot
JoltBeans Programming Tasks

Additional programming tasks include:

� Using Transactions with JoltBeans

� Using Custom GUI Elements with the JoltService Bean

Using Transactions with JoltBeans

Your BEA Tuxedo application services may have functionality that updates your
database. If so, you can use transactions with JoltBeans (for example, in the sam
BANKAPP, the services TRANSFER and WITHDRAWAL update the database o
BANKAPP). If your application service is read-only (such as INQUIRY), you do n
need to use transactions.

The following example shows how to use transactions with JoltBeans.

1. The setTransactional (true) method is called on the JoltServiceBean.
(isTransactional is a boolean property of the JoltServiceBean.)

2. The beginTransaction() method is called on the JoltSessionBean.

3. The callService() method is called on the JoltServiceBean.

4. Depending on the outcome of the service call, the commitTransaction() or
rollbackTransaction() method is called on the JoltSessionBean.
Using BEA Jolt 6-49

6 Using JoltBeans

use
k

t

 as

d the

rvice

ese
the
Using Custom GUI Elements with the JoltService Bean

JoltBeans provides a limited set of Jolt-enabled GUI components. You can also
controls that are not Jolt-enabled together with the JoltServiceBean. You can lin
controls to the JoltServiceBean that display output information of the service
represented by the JoltServiceBean. You can also link controls that display inpu
information.

For example, a GUI element that uses an adapter class to implement the
JoltOutputListener interface can listen to JoltOutputEvents. The JoltServiceBean
the event source for JoltOutputEvents calls the serviceReturned() method of the
adapter class when it sends a JoltOutputEvent. Inside serviceReturned() , the
control’s internal data is updated using information from the event object.

The development tool generates the adapter class when the JoltServiceBean an
GUI element are wired together.

As another example, a GUI element can call the setInputTextValue() method on
the JoltServiceBean. The GUI element contains input data for the BEA Tuxedo se
represented by the JoltServiceBean.

As a third example, a GUI element can implement the required methods
(addJoltInputListener() and removeJoltInputListener()) to act as event
sources for JoltInputEvents. The JoltServiceBean acts as an event listener for th
events. The control sends a JoltInputEvent when its own state changes to keep
JoltServiceBean updated with the input information.
6-50 Using BEA Jolt

CHAPTER

side
the
let
o any
d by a
tion.

tly

lt
A

ake
rver

ts
7 Using Servlet
Connectivity for BEA
Tuxedo

With BEA Jolt servlet connectivity, you can use HTTP servlets to perform server-
Java tasks in response to HTTP requests. Jolt certifies servlet connectivity with
Java Web Server versions 1.1.3 and up, and supports most other standard serv
engines. Using the Jolt session pool classes, a simple HTML client can connect t
Web server that supports generic servlets. Thus, all Jolt transactions are handle
servlet on the Web server rather than being handled by a client applet or applica

This capability enables HTML clients to invoke BEA Tuxedo services without direc
connecting to BEA Tuxedo. HTML clients can instead connect to a Web server,
through HTTP, where the BEA Tuxedo service request is executed by a generic
servlet. Using a Jolt session, the servlet on the Web server administers the BEA
Tuxedo service request by connecting to the BEA Tuxedo Server through the Jo
Server Handler (JSH) or the Jolt Server Listener (JSL), which then makes the BE
Tuxedo service request. This capability allows many types of HTML clients to m
remote BEA Tuxedo service requests. All Jolt transactions are handled on the se
side without requiring any change to the original HTML client. Thus, HTML clien
are allowed to be very simple and require little maintenance.

“Using Servlet Connectivity for BEA Tuxedo” covers the following topics:

� What Is a Servlet?

� How Servlets Work with Jolt

� Writing and Registering HTTP Servlets
Using BEA Jolt 7-1

7 Using Servlet Connectivity for BEA Tuxedo

ly on
nt.
TTP
ft
ine

e

� Jolt Servlet Connectivity Sample

� Additional Information on Servlets

What Is a Servlet?

A servlet is any Java class that can be invoked and executed on a server, usual
behalf of a client. A servlet works on the server, while an applet works on the clie
An HTTP servlet is a Java class that handles an HTTP request and delivers an H
response. HTTP servlets reside on an HTTP server and must extend the JavaSo
javax.servlet.http.Http Servlet Class so that they can run in a generic servlet eng
framework.

Some advantages of using HTTP servlets are:

� They are written in a well-formed, and compiled language (Java), so are mor
robust than “interpreted” scripts.

� They are an integral part of the HTTP server that supports them.

� They can be protected by the robust security of the server, unlike some CGI
scripts that are hazardous.

� They interact with the HTTP request through a well-developed programmatic
interface, and so are easier to write and less prone to errors.
7-2 Using BEA Jolt

How Servlets Work with Jolt

tage
sses:

s of a
lues

starts a
nally

tring.
How Servlets Work with Jolt

With Jolt servlet connectivity, any generic HTTP servlet allows you to take advan
of the Jolt features. Jolt servlets handle HTTP requests using the following Jolt cla

� ServletDataSet

� ServletPoolManagerConfig

� ServletResult

� ServletSessionPool

� ServletSessionPoolManager

The Jolt Servlet Connectivity Classes

Following are descriptions of the Jolt servlet connectivity classes.

ServletDataSet

This class contains data elements that represent the input and output parameter
BEA Tuxedo service. It provides a method to import the HTML field names and va
from a javax.servlet.http.HttpServletRequest object.

ServletPoolManagerConfig

This class is the startup class for a Jolt Session Pool Manager and one or more
associated Jolt session pools. It creates the session pool manager if needed and
session pool with a minimum number of sessions. Jolt Session Pool Manager inter
keeps track of one or more named session pools.

This class is derived from bea.jolt.pool.PoolManagerConfig and allows the
caller to pass a Properties or Hashtable object to the static startup() method to create
a session pool and the static getSessionPoolManager() method to get the session
pool manager of bea.jolt.pool.servlet.ServletSessionPoolManager class.

ServletResult

This class provides methods to retrieve each field in a ServletResult object as a S
Using BEA Jolt 7-3

7 Using Servlet Connectivity for BEA Tuxedo

sents
s call

ne or
t
ols that

 that

ur
 the

he

 to
ServletSessionPool

This class provides a session pool for use in a Java servlet. A session pool repre
one or more connections (sessions) to a BEA Tuxedo system. This class provide
methods that accept input parameters for a BEA Tuxedo service as a
javax.servlet.http.HttpServletRequest object.

ServletSessionPoolManager

This class is a servlet-specific session pool manager. It manages a collection of o
more session pools of class ServletSessionPool . This class provides methods tha
are used to create both the ServletSessionPoolManager itself and the session po
it contains. These methods are part of the administrative API for a session pool.

Writing and Registering HTTP Servlets

Before writing and registering HTTP servlets, you must first import the packages
support Jolt servlet connectivity (jolt.jar , joltjse.jar , servlet.jar). HTTP
servlets must extend javax.servlet.http.HttpServlet. After you write your HTTP
servlets, you register them with a Web server that supports generic servlets. Yo
custom servlets are treated exactly like the standard HTTP servlets that provide
HTTP capabilities.

Each HTTP servlet is registered against a specific URL pattern, so that when a
matching URL is requested, the corresponding servlet is called upon to handle t
request.

Refer to the documentation for your particular Web server for instructions on how
register servlets.
7-4 Using BEA Jolt

Jolt Servlet Connectivity Sample

sses in

lient
stalled

 Java

The
Jolt Servlet Connectivity Sample

The Jolt software includes three sample applications that demonstrate servlet
connectivity using the Jolt servlet classes. The three samples are:

� SimpApp Sample

� BankApp Sample

� Admin Sample

Refer to these samples in to see code examples of how to use the Jolt servlet cla
your own servlets.

Viewing the Sample Servlet Applications

To view the code for the Jolt sample applications, you need to install the Jolt API c
classes (usually chosen as an option when installing Jolt). Once the classes are in
in your directory of choice, navigate to the following directory to see the sample
application files:

<Installation directory>\udataobj\jolt\examples\servlet

To view the sample code, use a text editor such as Microsoft Notepad to open the
files for each sample application.

SimpApp Sample

A sample application named “Simpapp” is included with Jolt. The Simpapp
application illustrates how the servlet uses Servlet Connectivity for BEA Tuxedo.
following servlet tasks are illustrated by the Simpapp sample:

� Using a property file to create a session pool

� Getting the session pool manager

� Retrieving the session pool by name
Using BEA Jolt 7-5

7 Using Servlet Connectivity for BEA Tuxedo

pon

 when
EA

TML.

s
� Invoking a BEA Tuxedo service

� Processing the result set

This example demonstrates how a servlet can connect to BEA Tuxedo and call u
one of its services; it should be invoked from the simpapp.html file. The servlet
creates a session pool manager at initialization, which is used to obtain a session
the doPost() method is invoked. This session is used to connect to a service in B
Tuxedo with a name described by the posted “SVCNAME” argument. In this example the
service is called "TOUPPER", which transposes the posted “STRING” argument text into
uppercase, and returns the result to the client browser within some generated H

Note: The WebLogic Server is used in this example.

Requirements for Running the Simpapp Sample

The requirements for running the Simpapp sample are:

� Any Web application server with Servlet JSDK 1.1 or above.

� BEA Tuxedo 7.1 or above with SimpApp sample running.

� Jolt.

Installing the SimpApp Sample

1. Install the Jolt class library (jolt.jar) and Servlet Connectivity for BEA Tuxedo
class library (joltjse.jar) on the Web application server. Extract the class file
if it is required by your Web application server.

2. Compile the SimpAppServlet.java . Make sure that you include the standard
JDK 1.1.x classes.zip , JSDK 1.1 classes, Jolt class library, and Servlet
Connectivity for BEA Tuxedo class library in the classpath.

javac -classpath
$(JAVA_HOME)/lib/classes.zip:$(JSDK)/lib/servlet.jar:

$(JOLTHOME)/jolt.jar:$(JOLTHOME)/joltjse.jar:./classes

-d ./classes SimpAppServlet.java

Note: The package name of the SimpAppServlet is
examples.jolt.servlet.simpapp .
7-6 Using BEA Jolt

Jolt Servlet Connectivity Sample

r
.
3. Put the simpapp.html and simpapp.properties files in the public HTML
directory.

4. Modify the simpapp.properties file. Change the “appaddrlist ” and
“ failoverlist ” with the proper Jolt server hosts and ports. Specify the prope
BEA Tuxedo authentication information if the SimpApp has security turned on
For example:

#simpapp

#Fri Apr 16 00:43:30 PDT 1999

poolname=simpapp

appaddrlist=//host:7000,//host:8000

failoverlist=//backup:9000

minpoolsize=1

maxpoolsize=3

userrole=tester

apppassword=appPass

username=guest

userpassword=myPass

5. Register “Simpapp” for the SimpAppServlet. Consult your Web application
server for details. If you are using WebLogic, add the following line to the
weblogic.properties file:

weblogic.httpd.register.simpapp=examples.jolt.servlet.SimpAppSe
rvlet

6. To access the SimpApp initial page “simpapp.html ,” type:

http://mywebserver:8080/simpapp.html
Using BEA Jolt 7-7

7 Using Servlet Connectivity for BEA Tuxedo

tes

s
BankApp Sample

The “Bankapp” application illustrates how the servlet is written with
PageCompiledServlet with Servlet Connectivity for BEA Tuxedo. Bankapp illustra
how to:

� Use a property file to create a session pool

� Get the session pool manager

� Retrieve a session pool by name

� Invoke a BEA Tuxedo service

� Process the result set

Requirements for Running the Bankapp Sample

Following are the requirements for running the Bankapp sample:

� Any Web application server with Servlet JSDK 1.1 or above

� BEA Tuxedo 7.1 with BankApp sample running

� Jolt

Installation Instructions

1. Install the Jolt class library (jolt.jar) and Servlet Connectivity for BEA Tuxedo
class library (joltjse.jar) to the Web application server. Extract the class file
if it is required by your Web application server.

2. Copy all HTML, JHTML and bankapp.properties files to the public HTML
directory of the Web application server (for example,
$WEBLOGIC/myserver/public_html for WebLogic):

bankapp.properties

tellerForm.html

inquiryForm.html

depositForm.html
7-8 Using BEA Jolt

Jolt Servlet Connectivity Sample

r
.
withdrawalForm.html

transferForm.html

InquiryServlet.jhtml

DepositServlet.jhtml

WithdrawalServlet.jhtml

TransferServlet.jhtml

3. Modify the bankapp.properties file. Change the “appaddrlist ” and
“ failoverlist ” with the proper Jolt server hosts and ports. Specify the prope
BEA Tuxedo authentication information if the BankApp has security turned on
For example:

#bankapp

#Fri Apr 16 00:43:30 PDT 1999

poolname=bankapp

appaddrlist=//host:8000,//host:7000

failoverlist=//backup:9000

minpoolsize=2

maxpoolsize=10

userrole=teller

apppassword=appPass

username=JaneDoe

userpassword=myPass

4. If applicable, turn on the automatic page compilation for JHTML from your
servlet engine. Consult the user manual of your Web application server for
details.

5. To access BankApp through Servlet Connectivity for BEA Tuxedo, use the
following URL in your favorite browser:

http://mywebserver:8080/tellerForm.html
Using BEA Jolt 7-9

7 Using Servlet Connectivity for BEA Tuxedo

ary
Admin Sample

The “Admin” sample application illustrates the following servlet tasks:

� Using the administrative API to control the session pools

� Retrieving the statistics through PageCompiledServlet in Servlet Connectivity
for BEA Tuxedo

Requirements for Running the Admin Sample

Following are the requirements for running the Admin sample:

� Any Web application server with Servlet JSDK 1.1 or above

� Jolt

Installation Instructions

1. Install the Jolt class library and Servlet Connectivity for BEA Tuxedo class libr
on the Web application server.

2. Copy all JHTML files to the public HTML directory (for example,
$WEBLOGIC/myserver/public_html for WebLogic):

PoolList.jhtml

PoolAdmin.jhtml

3. To get a list of session pools, use the following URL in your favorite browser:

http://mywebserver:8080/PoolList.jhtml
7-10 Using BEA Jolt

Additional Information on Servlets
Additional Information on Servlets

For more information on writing and using servlets, refer to the following sites:

BEA WebLogic Servlet Documentation

http://www.weblogic.com/docs/classdocs/API_servlet.html

Java Servlets

http://jserv.java.sun.com/products/java-server/documentation/
webserver1.1/index_developer.html

Servlet Interest Group

servlet-interest@java.sun.com
Using BEA Jolt 7-11

7 Using Servlet Connectivity for BEA Tuxedo
7-12 Using BEA Jolt

CHAPTER

-use
 to
cess
8 Using Jolt ASP
Connectivity for BEA
Tuxedo

Jolt Active Server Pages (ASP) Connectivity for BEA Tuxedo provides an easy-to
interface for processing and generating dynamic HTML pages. You do not need
learn how to write Common Gateway Interface (CGI) transactional programs to ac
BEA Tuxedo services.

“Using Jolt ASP Connectivity for BEA Tuxedo” covers the following topics:

� Key Features

� ASP Connectivity Enhancements for Jolt

� How Jolt ASP Connectivity for BEA Tuxedo Works

� ASP Connectivity for BEA Tuxedo Toolkit

� Jolt ASP Connectivity for BEA Tuxedo Walkthrough

� Overview of the ASP for BEA Tuxedo Walkthrough

� Getting Started Checklist

� Overview of the TRANSFER Service

� TRANSFER Request Walkthrough
Using BEA Jolt 8-1

8 Using Jolt ASP Connectivity for BEA Tuxedo

bles

A
itten

m

Key Features

Jolt ASP Connectivity for BEA Tuxedo, an extension to the Jolt class library, ena
BEA Tuxedo services and transactions to be invoked from a Web server using a
scripting language.

This architecture has several benefits:

� The HTML interface is preserved.

� The need to download Java class files is eliminated along with the delays
associated with the download.

� Session Pooling efficiently utilizes the BEA Tuxedo resources.

� Jolt ASP Connectivity for Tuxedo leverages industry standard HTTP protocol
with encryption, and firewall configuration for the Web server.

Note: Asynchronous notification is not available in the ASP Connectivity for BE
Tuxedo. It is recommended that Jolt enabled Java clients (applets) be wr
using a retained connection to support asynchronous notification.

ASP Connectivity Enhancements for Jolt

Jolt includes the following enhancements to ASP Connectivity for BEA Tuxedo:

� The package name for JoltWAS has been changed from bea.web to
bea.jolt.pool .

� The package name for BEA Tuxedo-ASP Connectivity has been changed fro
JoltWAS for IIS to bea.jolt.pool.asp .

� All Java class names for BEA Tuxedo-ASP Connectivity have been renamed
with the prefix of Asp and have new ActiveX component names (for example,
BEAJOLTPOOL.AspSessionPoolManager) . It is recommended that existing
JoltWAS for IS customers use the new ActiveX component names.
8-2 Using BEA Jolt

ASP Connectivity Enhancements for Jolt

ools.
� A new AspSessionPool.callEx() method is added. It allows users to call a
service with a container class AspDataSet object for arbitrary data types
instead of the string array in the AspSessionPool.call() method.

� New AspPoolManagerConfig and ServletPoolManagerConfig classes are
added to simplify the creation of the session pool manager and the session p
The session pool uses the java.util.Properties class to pass in the
following session pool properties:

z poolname

z appaddrlist

z failoverlist

z minipoolsize

z maxpoolsize

z username

z userpassword

z userrole

z apppassword
Using BEA Jolt 8-3

8 Using Jolt ASP Connectivity for BEA Tuxedo

lso

ch

the
 known

ct
ng

ct
ion

 is
How Jolt ASP Connectivity for BEA Tuxedo
Works

The Jolt ASP Connectivity for BEA Tuxedo architecture includes three main
components: a session, a session pool, and a session pool manager. A session object
represents a connection with the BEA Tuxedo system. A session pool represents many
physical connections between the Web server and the BEA Tuxedo system. It a
associates a session with an HTTP request.

The session pool manager is responsible for maintaining a set of session objects, ea
having a unique session identifier.

Jolt ASP Connectivity for Tuxedo works as follows:

1. If the Web application has not been initialized, the Web application initializes
session pool manager, creates a session pool, and establishes sessions (also
as connections) with the Jolt Server.

2. When a service request arrives, the Web application gets a session pool obje
from the session pool manager. The session pool invokes the service call usi
the session that is the “least busy,” based on the number of outstanding call
requests on a given session.

3. If the selected session is terminated by the Jolt Server, the session pool obje
restarts a new session or reroutes the request to another session. If the sess
pool manager is unable to get any session, a null session object is returned.

A graphical representation of the ASP Connectivity for BEA Tuxedo architecture
shown in the following figure.
8-4 Using BEA Jolt

How Jolt ASP Connectivity for BEA Tuxedo Works

Figure 8-1 Jolt ASP Connectivity for BEA Tuxedo Architecture

Refer to the online API Reference in Javadoc for additional information about the
SessionPool class and SessionPoolManager class.
Using BEA Jolt 8-5

8 Using Jolt ASP Connectivity for BEA Tuxedo

er
or

eters

lt
te the

u

eters

do
ASP Connectivity for BEA Tuxedo Toolkit

The ASP Connectivity for BEA Tuxedo Toolkit is an extension to the Jolt Class
Library. The Toolkit allows the Jolt Client Class Library to be used in a Web serv
(such as Microsoft Active Server) to provide an interface between HTML clients
browsers, and a BEA Tuxedo application.

Samples delivered with the software support four services: INQUIRY,
WITHDRAWAL, DEPOSIT, and TRANSFER. This section explains the steps you
follow to use an HTML client interface with the TRANSFER service of the BEA
Tuxedo bankapp application. The TRANSFER service illustrates the use of param
with multiple occurrences. This walkthrough explains the use of the TRANSFER
service only.

Jolt ASP Connectivity for BEA Tuxedo
Walkthrough

A complete listing of all examples used in this chapter are distributed with the Jo
software. In this section, segments of code from these samples are used to illustra
use of the Toolkit.

The samples delivered with the software support four services: INQUIRY,
WITHDRAWAL, DEPOSIT, and TRANSFER. This chapter explains the steps yo
can follow to use an HTML client interface to the TRANSFER service of the BEA
Tuxedo bankapp application. The TRANSFER service illustrates the use of param
with multiple occurrences. This walkthrough explains the use of the TRANSFER
service only.

Note: The walkthrough illustrates the use of the ASP Connectivity For BEA Tuxe
with Microsoft IIS and VBScript.

To use the information in the following sections, you should be familiar with:

� BEA Tuxedo and the sample BEA Tuxedo application, bankapp
8-6 Using BEA Jolt

Overview of the ASP for BEA Tuxedo Walkthrough
� BEA Jolt

� Hypertext Markup Language (HTML)

� Visual Basic (VB) Script

� Object-oriented programming concepts

Overview of the ASP for BEA Tuxedo
Walkthrough

Follow the steps below to complete the ASP Connectivity for BEA Tuxedo
walkthrough.

1. Review the Getting Started Checklist.

2. Review the Overview of the TRANSFER Service.

3. Complete the steps in the TRANSFER Request Walkthrough:

z Initializing the Jolt Session Pool Manager

z Submitting a TRANSFER Request from the Client

z Processing the Request

z Returning the Results to the Client
Using BEA Jolt 8-7

8 Using Jolt ASP Connectivity for BEA Tuxedo

he
d to

ting

r

 it is

ation

r for

Getting Started Checklist

Review this checklist before starting the TRANSFER Request Walkthrough.

Note: This checklist applies to Microsoft Active Server Pages only.

1. Ensure that you have a supported browser installed on your client machine. T
client machine must have a network connection to the Web server that is use
connect to the BEA Tuxedo environment.

2. Configure and boot BEA Tuxedo and the BEA Tuxedo bankapp example.

a. Make sure the TRANSFER service is available.

b. Refer to the BEA Tuxedo user documentation for information about comple
this task.

3. Refer to Installing the BEA Tuxedo System and the Jolt Installation Guide for
information about how to configure a Jolt Server.

a. Note the hostname and port number associated with your Jolt Server Listene
(JSL).

b. Ensure that the TRANSFER service is defined in the Jolt Repository.

c. Test the TRANSFER service using the Jolt Repository Editor to make sure
accessible to Jolt clients.

4. Make sure you have Microsoft IIS 4.0 up and running.

a. Check that script execution permission is enabled in the Web server applic
properties.

b. Refer to the user documentation that accompanies the Microsoft IIS serve
instructions.

5. Install the Jolt ASP Connectivity For BEA Tuxedo classes. These classes are
contained in the joltasp.jar file. Be sure these classes are in your class path
and available to your Web server.

6. Install the teller sample application.
8-8 Using BEA Jolt

Getting Started Checklist

1
vity

ple
7. The code samples shown in “TRANSFER Request Walkthrough” on page 8-1
are available from a sample application delivered with the Jolt ASP Connecti
For BEA Tuxedo software.

The following table, “Sample Bankapp Source Files,” lists the files in the sam
application. These files are a valuable reference for the walkthrough and are
located in <extract_directory>/teller .

Table 8-1 Sample Bankapp Source Files

File Name Description

tellerForm.asp Initializes the Jolt Session Pool Manager and displays
available bankapp services.

transferForm.htm Presents an HTML form for user input.

tlr.asp Processes the HTML form and returns results as an
HTML page.

web_admin.inc VBScript functions for initializing the Jolt Session Pool
Manager.

web_start.inc VBScript functions for initializing the Jolt Session Pool
Manager.

web_templates.inc VBScript functions for caching HTML templates.

templates/transfer.temp HTML templates used for returning results.
Using BEA Jolt 8-9

8 Using Jolt ASP Connectivity for BEA Tuxedo

rvice
r each
on or

ion.

ired
r as a

. This
h the
o the
 the
at
lient

ide
Overview of the TRANSFER Service

The TRANSFER service in bankapp moves funds between two accounts. The se
takes two account numbers, an input amount, and returns two balances—one fo
account. In addition, the service returns an error message if there is an applicati
system error.

A TRANSFER is a WITHDRAWAL and a DEPOSIT executed as a single transact
The transaction is created on the server, so the client does not need to create a
transaction.

The client interface consists of an HTML page with a form used to enter the requ
data — account numbers and a dollar amount. This data is sent to the Web serve
“POST” request.

In the Web server, this request is processed using a VBScript Active Server Page
program extracts the input data fields from the request, formats them for use wit
Jolt ASP Connectivity For BEA Tuxedo class library, and dispatches the request t
TRANSFER service in the bankapp application. The TRANSFER service returns
results of the transaction. These results are returned to the VBScript program th
merges them into a dynamically created HTML page. This page is returned to the c
by way of the Web server infrastructure.

In the final part of this walkthrough, run the necessary HTML pages and server-s
VBScript logic to execute a TRANSFER.
8-10 Using BEA Jolt

TRANSFER Request Walkthrough

ach

erver
age

ep 6

er is
RL.
TRANSFER Request Walkthrough

This section explains what happens when you execute a TRANSFER request. E
step is not include here; only those steps that are necessary, as follows:

� Initializing the Jolt Session Pool Manager

� Submitting a TRANSFER Request from the Client

� Processing the Request

� Returning the Results to the Client

Initializing the Jolt Session Pool Manager

To start the walkthrough, use the browser on your client to connect to the Web s
where the Jolt Asp Connectivity For BEA Tuxedo classes are installed. The first p
to download is tellerForm.asp (see the following figure for an example of a
tellerForm.asp page). If the teller sample has been installed as described in St
of the “Getting Started Checklist” on page 8-8 the URL for this page will be:

http://< web-server:port >/teller/tellerForm.asp

Note: The use of the port number is optional, depending on how your Web serv
configured. In most cases, you are not required to add the “:port” in the U
Using BEA Jolt 8-11

8 Using Jolt ASP Connectivity for BEA Tuxedo

lock.
d of
Figure 8-2 tellerForm.asp Example

The page, tellerForm.asp contains VBScript procedures required to initialize the
Jolt Session Pool Manager. The initialization code is contained in an ASP Script b
This code tells the Web server to execute this block of code on the server, instea
sending it to the client.

Listing 8-1 tellerForm.asp: Initialize the Jolt Session Pool Manager

<%
'// Initialize the session manager and cache templates
Call web_initSessionMgr(Null)
Call web_cacheTemplates()
%>
8-12 Using BEA Jolt

TRANSFER Request Walkthrough

SP

 in

-8.

er.”

.

e
ists
when
The VBScript procedure web_initSessionMgr() calls other VBScript procedures to
establish a pool of Jolt Sessions. A Jolt session is established between the Jolt A
Connectivity For BEA Tuxedo in the Web server and the Jolt Servers that reside
your BEA Tuxedo application. One of the procedures called is web_start() . This
procedure (in the file web_start.inc) should have been edited as part of the teller
application installation process in Step 6 of “Getting Started Checklist” on page 8

The procedure web_cacheTemplates() reads various HTML template files into a
memory cache. This step is not required, but it improves performance.

Listing 8-2 tellerForm.asp: Allow the user to choose TRANSFER service

<INPUT TYPE="button" VALUE="Transfer"
 onClick="window.location='transferForm.htm'">

The HTML segment shown in the previous listing displays a button labeled “Transf
When this button is selected, the browser loads the page transferForm.htm . This
page presents a form used to enter the data required by the TRANSFER service

Submitting a TRANSFER Request from the Client

The form in following figure “transferForm.htm Example” is generated by the pag
transferForm.htm . This page presents you with a form for input. The page cons
of three text fields (two account numbers and a dollar amount), and a button that,
pressed, causes the TRANSFER service to be invoked.
Using BEA Jolt 8-13

8 Using Jolt ASP Connectivity for BEA Tuxedo
Figure 8-3 transferForm.htm Example
8-14 Using BEA Jolt

TRANSFER Request Walkthrough

ge.
e

,

n

The code segment in the following listing shows the key HTML elements for this pa
The highlighted elements in the following listing correspond to the elements in th
table “Key HTML Elements and Descriptions” on page 8-15.

Listing 8-3 transferForm.htm: TRANSFER Form

<FORM NAME="teller" ACTION="tlr.asp" METHOD="POST">
<TABLE>
<TR><TD ALIGN=RIGHT>From Account Number: </TD>
 <TD><INPUT TYPE="text" NAME="ACCOUNT_ID_0"></TD></TR>
<TR><TD ALIGN=RIGHT>To Account Number: </TD>
 <TD><INPUT TYPE="text" NAME="ACCOUNT_ID_1"></TD></TR>
<TR><TD ALIGN=RIGHT>Amount: $</TD>
 <TD><INPUT TYPE="text" NAME="SAMOUNT"></TD></TR>
</TABLE>
<CENTER>
<INPUT TYPE="hidden" NAME="SVCNAME" VALUE="TRANSFER">
<INPUT TYPE="submit" VALUE="Transfer">
<INPUT TYPE="reset" VALUE="Clear">
</CENTER>
</FORM>

Table 8-2 Key HTML Elements and Descriptions

Element Description

ACTION=”tlr.asp” When you click the submit button, the contents of this
form are delivered to a page called tlr.asp on the Web
server for processing.

NAME=”ACCOUNT_ID_0” Shows the use of a field with multiple occurrences. The
TRANSFER service expects two input account numbers
both called “ACCOUNT_ID”. By appending an
underscore and occurrence_number (e.g., _0, _1) to the
field name, both the name of a field and its occurrence ca
be passed to the program on the Web server.

NAME="SAMOUNT” Shows the use of an input field that has a single
occurrence. In this example, nothing is appended to the
name of the field.
Using BEA Jolt 8-15

8 Using Jolt ASP Connectivity for BEA Tuxedo

 so
s to
do

not
The
A

object
form
 to the

nd
The HTML form field names used in this example exactly match the BEA Tuxedo
field names expected by the TRANSFER service. This is not required, but doing
facilitates processing on the server because you do not have to map these input
BEA Tuxedo field names. This is done by the Jolt ASP Connectivity For BEA Tuxe
classes.

The hidden field SVCNAME is assigned a value of TRANSFER. This field does
appear on the client form, but it is sent to the Web server as part of the request.
VBScript program retrieves the value of this field in order to determine which BE
Tuxedo service is to be called (in this example, the service is TRANSFER).

Complete the fields From Account Number , To Account Number , and Amount .
(10000 and 10001 are valid bankapp account numbers). Click the Transfer button. The
data entered on the form is sent to the Web server for processing by the program
tlr.asp as specified in the ACTION field of the form.

Processing the Request

When the Web server receives the TRANSFER request, it runs the program tlr.asp .
Client requests are turned into a Request object in the Web server. This Request
has members containing all the data that was input to the form along with other
data, such as hidden fields. The Web server makes the Request object available
program being invoked.

The program tlr.asp contains only VBScript. The first action performed by this
program verifies that the Jolt Session Pool Manager is initialized.

The code example shown in the following listing performs the initialization check a
returns an HTML error page if the pool is not initialized.
8-16 Using BEA Jolt

TRANSFER Request Walkthrough

he
wing

 used
n the
ice
Listing 8-4 tlr.asp: Verify the Jolt Session Pool Manager Is Initialized

<%
If Not IsObject(Application("mgr")) Then
%>
 <HTML>
 <HEAD><TITLE>Error</TITLE></HEAD>
 <BODY><CENTER>
 <H2>Session Manager is not initialized</H2>
 <P>Make sure that you access the correct HTML
 </CENTER></BODY>
 </HTML>
<%
End If
%>

If the session pool is initialized, the program continues to process the request. T
program locates a Session from the Session Pool Manager as shown in the follo
listing.

Listing 8-5 tlr.asp: Locate a Session

Set pool = Application("mgr").getSessionPool(Null)

Once a valid session is located, the program retrieves an HTML template that is
to return the results to the client. In this example, these templates were cached i
initialization section. The template retrieved is identified by the name of the serv
being invoked, Request("SVCNAME") as shown in the following listing.
Using BEA Jolt 8-17

8 Using Jolt ASP Connectivity for BEA Tuxedo

e
t

t

EA

Listing 8-6 tlr.asp: Retrieve a Cached HTML Template

'// Choose the response template
If IsEmpty(Application("templates")) Then
 Set template = Server.CreateObject("BEAWEB.Template")
Else
 Select Case Request("SVCNAME")
 Case "INQUIRY"
 Set template = Application("templates")(INQUIRY)
 Case "DEPOSIT"
 Set template = Application("templates")(DEPOSIT)
 Case "WITHDRAWAL"
 Set template = Application("templates")(WITHDRAWAL)
 Case "TRANSFER"
 Set template = Application("templates")(TRANSFER)
 End Select
End If

Next, call the BEA Tuxedo service as shown in the following listing “tlr.asp: Invok
the BEA Tuxedo Service”. In the following listing, the input data from the Reques
object is passed to the call() method of the session. The call() method uses the
built-in ASP Request object as input. The results of the call() are stored in the
output object and an array, iodata .

Listing 8-7 tlr.asp: Invoke the BEA Tuxedo Service

Set output = pool.call(Request("SVCNAME"), Null, Nothing)
Set iodata(1) = output

After you invoke the BEA Tuxedo service, the output object and the second elemen
of the array iodata contain the results of the service call.

Note: In this example, because the initial form specified field names match the B
Tuxedo service parameter names, the Request object can be used in the
call() method. If these names do not match, create an input array with
“name=value” elements for each service parameter before invoking the
call() method.
8-18 Using BEA Jolt

TRANSFER Request Walkthrough

TML

in the

eter

h
ck for

Returning the Results to the Client

At this stage, no results have been returned to the client. The final step sends an H
page containing the results of the service call back to the client. The HTML page
consists of the template merged with the data returned by the service call shown
previous listing “tlr.asp: Invoke the BEA Tuxedo Service”.

The template file contains placeholders for variable (call-specific) data. These
placeholders are identified by the special tag <%=NAME%>. In the code example shown
in the following listing, an index is used to indicate which occurrence of a param
name is used. For example, ACCOUNT_ID[0] specifies the first occurrence of the field
ACCOUNT_ID.

Listing 8-8 transfer.temp: Placeholders for TRANSFER Results

<TABLE BORDER=1>
<TR><TD></TD><TD ALIGN=CENTER>Account #</TD>
 <TD ALIGN=CENTER>Balance</TR>
<TR><TD ALIGN=RIGHT>From:</TD><TD><%= ACCOUNT_ID[0] %></TD>
 <TD><%= SBALANCE[0]%></TR>
<TR><TD ALIGN=RIGHT>To:</TD><TD><%= ACCOUNT_ID[1] %></TD>
 <TD><%= SBALANCE[1]%></TR>
</TABLE>

To substitute the placeholders in the template with the actual values of the data
returned from the service call, use the eval() method of the Template object shown
in the following listing. This method matches placeholders in the template file wit
fields of the same name in the results data and replaces them accordingly. A che
valid results (output object) is done as shown in the following listing. If there is no
output object, an error template page is returned.
Using BEA Jolt 8-19

8 Using Jolt ASP Connectivity for BEA Tuxedo

t is

own
Listing 8-9 tlr.asp: Template Processing

path = Application("templatedir")
If (Not IsObject(output)) Or (output is Nothing) Then
 Call template.evalFile(path & "\nosession.temp", Null)
Elseif output.noError() Then
 Call template. eval (iodata)
Elseif output.applicationError() Then
 Call template.evalFile(path & "\error.temp", iodata)
Else
 '// System error
 Dim errdata(0)
 Set errdata(0) = Server.CreateObject("BEAWEB.TemplateData")
 Call errdata(0).setValue("ERRNO", output.getError())
 Call errdata(0).setValue("ERRMSG", output.getStringError())
 Call template.evalFile(path & "\syserror.temp", errdata)
End If

Note: The array iodata contains both the input request and the results from the
service call. This is useful if you want the results page to contain data tha
part of the input.

When the template is processed, the resulting HTML is returned to the client as sh
in the following figure.
8-20 Using BEA Jolt

TRANSFER Request Walkthrough
Figure 8-4 tlr.asp Results Page
Using BEA Jolt 8-21

8 Using Jolt ASP Connectivity for BEA Tuxedo
8-22 Using BEA Jolt

CHAPTER

r, and

A BEA Tuxedo Errors

The “BEA Tuxedo Errors” appendix describes the Jolt Class Library errors and
exceptions. The Jolt Class Library returns both Jolt and BEA Tuxedo errors and
exceptions.

The Jolt Class Library errors and exceptions are listed for each class, constructo
method listed in the API Reference in Javadoc.

BEA Tuxedo errors are briefly described in this appendix. For details about BEA
Tuxedo errors, refer to the appropriate document in the following list:

z BEA Tuxedo Command Reference

z BEA Tuxedo C Function Reference

z BEA Tuxedo COBOL Function Reference

z BEA Tuxedo FML Function Reference

z BEA Tuxedo File Formats and Data Descriptions Reference
Using BEA Jolt A-1

A BEA Tuxedo Errors

olt
A
ndix

 for

ve

on

d

f

er
BEA Tuxedo Errors

Expanded references to BEA Tuxedo will be available in a future release of the J
product documentation. If you require an immediate, expanded reference for BE
Tuxedo related errors, refer to the list of documents on the first page of this appe.

Error Description

TPEABORT A transaction could not commit because the work performed by the
initiator, or by one or more of its participants, could not commit.

TPEBADDESC A call descriptor is invalid or is not the descriptor with which a
conversational service was invoked.

TPEBLOCK A blocking condition exists and TPNOBLOCK was specified.

TPEDIAGNOSTIC Dequeuing a message from the specified queue failed. The reason
failure can be determined by the diagnostic value returned through
ctl structure.

TPEEVENT An event occurred; the event type is returned in revent.

TPEHAZARD Due to a failure, the work done on behalf of the transaction m ay ha
been heuristically completed.

TPEHEURISTIC Due to a heuristic decision, the work done on behalf of the transacti
was partially committed and partially aborted.

TPEINVAL An invalid argument was detected.

TPEITYPE The type and subtype of the input buffer is not one of the types an
subtypes that the service accepts.

TPELIMIT The caller’s request was not sent because the maximum number o
outstanding requests or connections has been reached.

TPEMATCH svcname is already advertised for the server but with a function oth
then func.

TPEMIB The administrative request failed. outbuf is updated and returned to
the caller with FML32 fields indicating the cause of the error as is
discussed in MIB(5) and TM_MIB(5) .
A-2 Using BEA Jolt

BEA Tuxedo Errors

ype

ion
TPENOENT Cannot send to svc because it does not exist or is not the correct t
of service.

TPEOS An operating system error has occurred.

TPEOTYPE The type and subtype of the reply are not known to the caller.

TPEPERM A client cannot join an application because it does not have permiss
to do so or because it has not supplied the correct application
password.

TPEPROTO A library routine was called in an improper context.

TPERELEASE tpadmcall() was called with the TUXCONFIG environment
variable pointing to a different release version configuration file.

TPERMERR A resource manager failed to open or close correctly.

TPESVCERR A service routine encountered an error either in tpreturn (3) or
tpforward (3). For example, bad arguments were passed.

TPESVCFAIL The service routine sending the caller’s reply called.

TPESYSTEM A System/T error occurred.

TPETIME A time-out occurred.

TPETRAN The caller cannot be placed in transaction mode.

TPGOTSIG A signal was received and TPSIGRSTRT was not specified.

Error Description
Using BEA Jolt A-3

A BEA Tuxedo Errors
A-4 Using BEA Jolt

CHAPTER

f the
er to
B System Messages

Jolt system messages and code references will be available in a future release o
Jolt product documentation. If you require an immediate, expanded reference, ref
BEA Tuxedo System Messages.

The “System Messages” appendix covers the following topics:

� Jolt System Messages

� Repository Messages

� FML Error Messages

� Information Messages

� Jolt Relay Adapter (JRAD) Messages

� Jolt Relay (JRLY) Messages

� Bulk Loader Utility Messages
Using BEA Jolt B-1

B System Messages

e

e

e
Jolt System Messages

Note: You can find error messages numbered 1000 to 1299 in the BEA Tuxedo
System Messages WSNATIVE Catalog.

1503 ERROR Could not initialize Jolt administration services.

Description Jolt administration services cannot be started.

Action Check the userlog for other messages to determin
the proper course of action.

See Also Setting Up a BEA Tuxedo Application

Administering a BEA Tuxedo Application at Run
Time

1504 ERROR Failed to advertise local Jolt administration service <service
name>.

Description Jolt administration services cannot be started.

Action Check the userlog for other messages to determin
the proper course of action.

See Also Setting Up a BEA Tuxedo Application

Administering a BEA Tuxedo Application at Run
Time

1505 ERROR Failed to advertise global Jolt administration service <service
name>.

Description Jolt administration services cannot be started.

Action Check the userlog for other messages to determin
the proper course of action.

See Also Setting Up a BEA Tuxedo Application

Administering a BEA Tuxedo Application at Run
Time
B-2 Using BEA Jolt

Jolt System Messages

1506 ERROR Terminating Jolt administration services in preparation for
shutdown.

Description The JSL has completed its shutdown and is exiting
the system.

Action Informational message, no action required.

See Also Setting Up a BEA Tuxedo Application

Administering a BEA Tuxedo Application at Run
Time

1510 ERROR Received network message with unknown context.

Description BEA Jolt protocol failure. Received a corrupted or
an improper message.

Action Restart Jolt client.

1511 ERROR _tprandkey() failed tperrno = %d, could not generate random
encryption key.

Description BEA Tuxedo internal failure.

Action Restart Jolt servers.

1512 ERROR Sending of reply to challenge call to client failed.

Description JSH was unable to reply to Jolt client due to
network error.

Action Restart client.

1513 ERROR Failed to encrypt ticket information.

Description BEA Tuxedo internal failure.

Action Retry the option. If the problem persists, contact
BEA Customer Support.

1514 ERROR Incorrect ticket value sent by workstation client.

Description BEA Jolt protocol failure.

Action Retry the option. If the problem persists, contact
BEA Customer Support.
Using BEA Jolt B-3

B System Messages

te

1515 ERROR Tried to process unexpected message opcode 0x%1x.

Description BEA Jolt protocol failure. Client is sending Jolt
messages with unknown opcodes.

Action Retry the option. If the problem persists, contact
BEA Customer Support.

1516 ERROR Unrecognized message format, release %1d.

Description BEA Jolt protocol failure.

Action Make sure the client classes are at the appropria
version level.

1517 ERROR Commit handle and clientid have no matching requests.

Description Received a copy from BEA Tuxedo that has no
corresponding client.

Action No action required.

1518 ERROR Call handle and clientid have no matching requests.

Description Received a reply from BEA Tuxedo that has no
corresponding client.

Action No action required.

1519 ERROR Application password does not match.

Description Authentication error.

Action Check the application password.

1520 ERROR Init handle and clientid have no matching requests

Description A reply could not be sent to client. (May be due to
client disconnect.)

Action No action required.

1521 ERROR Unrecognized message magic %ld.

Description Inappropriate message is sent to JSH/JSL.

Action Check the client sending erroneous messages.
B-4 Using BEA Jolt

Jolt System Messages
1522 ERROR Memory allocation failure.

Description Machine does not have enough memory.

Action Check the machine resources.

1523 ERROR Memory allocation failure.

Description Machine does not have enough memory.

Action Check the machine resources.

1524 ERROR Failed to create encryption/decryption schedule.

Description BEA Tuxedo internal error.

Action Retry the option. If the problem persists, contact
BEA Customer Support.

1525 ERROR Tried to process unexpected message opcode 0x%1x.

Description Received a message with invalid opcode.

Action Check the client.

1526 ERROR Jolt license has expired.

Description License for Jolt use has expired.

Action Contact BEA Customer Support.

1527 ERROR Expected argument to -c option.

Description Option -c needs an argument.

Action Provide a valid argument.

1528 ERROR Request for inappropriate session type.

Description Received a message without valid session
information.

Action Restart the client.
Using BEA Jolt B-5

B System Messages
1529 ERROR Session type must be RETAINED or TRANSIENT.

Description Server configuration does not match client
request.

Action Check the -c argument of the JSL.

1530 ERROR Received RECONNECT message with invalid context.

Description Client context is cleaned. A -T option is specified
to the JSL.

Action Check the -T option. Check the network errors
also.

1531 ERROR Received invalid RECONNECT request

Description Received a RECONNECT request.

Action Restart client.

1532 ERROR Received J_CLOSE message with invalid context.

Description Timeout in connection.

Action If a request is sent after a timeout that is longer
than the session timeout of the JSL, the JSH
cannot validate the session ID.

1533 ERROR Sending of reply of close protocol failed.

Description BEA Jolt protocol failure.

Action Check the client.

1534 ERROR Sending of reply of reconnect protocol failed.

Description BEA Jolt protocol failed.

Action Check the client.

1535 ERROR Timestamp mismatch in close protocol.

Description BEA Jolt protocol failed.

Action Restart the client.
B-6 Using BEA Jolt

Jolt System Messages

1536 ERROR Received J_RECONNECT message with invalid context.

Description BEA Jolt protocol failed. Session timed out before
RECONNECT request arrived.

Action Restart the client.

1537 ERROR Timestamp mismatch in reconnect protocol.

Description BEA Jolt protocol failure.

Action Restart the client.

1538 ERROR Client address mismatch in reconnect protocol.

Description BEA Jolt protocol failure.

Action Restart the client.

1539 ERROR Failed to decrypt reconnect information.

Description BEA Jolt protocol failure.

Action Restart the client.

1540 ERROR Failed to encrypt reconnect information.

Description BEA Jolt protocol failure.

Action Restart the client.

1541 ERROR Received RECONNECT request for nonTRANSIENT client.

Description Improper request from client.

Action Restart the client.

1542 ERROR Unlicensed Jolt server.

Description The JSL is not licensed. The installation is
incomplete, or it failed to burn the license into the
JSL.

Action Reinstall Jolt with a valid Jolt license.
Using BEA Jolt B-7

B System Messages

1543 ERROR Invalid Jolt license.

Description The license used for the Jolt installation is not for
the Jolt product. The BEA Tuxedo license may
have been used during installation instead of the
Jolt license.

Action Reinstall Jolt with a valid Jolt license.

1547 ERROR Memory allocation failure in JOLT_SUBSCRIBE.

Description Check resources of the machine.

Action Restart BEA Tuxedo after increasing system
resources.

1548 ERROR jolt_tpset_enq failed.

Description Internal system failure.

Action Restart the client. If problem persists, check field
table files and directories and then restart the
servers.

1549 ERROR [JOLT_EVENTS failed to set %s field. Ferror32=%d].

Description Unable to get the field definition for BEA Tuxedo
internal fields.

Action Check BEA Tuxedo installation and restart the
servers.

1550 ERROR JOLT_UNSUBSCRIBE - Invalid Subscription ID.

Description Application error.

Action Check the client and restart the client.

1551 ERROR Memory allocation failure in JOLT_UNSUBSCRIBE.

Description Resources are inadequate.

Action Increase resources and restart BEA Tuxedo.
B-8 Using BEA Jolt

Jolt System Messages

.

1552 WARN Dropping notification message for Transient client %d.

Description Notification arrived when a transient client is not
connected.

Action Information message only; no action required.

1553 WARN Dropping broadcast message for Transient client %d.

Description Notification arrived when a transient client is not
connected.

Action Information message only; no action required.

1554 ERROR Expected numeric argument for -Z option.

Description -Z option expects 0, 56, or 128 as the argument.

Action Check the configuration file and specify a valid
numeric argument for JSL.

1555 ERROR %d - Illegal argument for -Z option.

Description Incorrect argument value is specified.

Action Check the argument for -Z option and correct it.

1556 ERROR %d - Illegal argument for -Z option due to international license.

Description For international release only 0 or 56 are allowed

Action Specify correct argument.

1557 ERROR Incorrect number of encrypted bit values from workstation client.

Description BEA Jolt protocol failure.

Action Call BEA Customer Support.

1558 ERROR Expected argument to -E option.

Description An argument is expected for -E option.

Action Specify correct option and restart BEA Tuxedo.
Using BEA Jolt B-9

B System Messages

1559 ERROR %s - Illegal argument to -E option.

Description Incorrect value is specified as argument to -E
option.

Action Specify the correct option.

1560 ERROR Cannot initialize the code conversion for local %s.

Description Cannot find function to do the code conversion for
internationalization.

Action Check the shared library.

1561 ERROR TUXDIR is not set.

Description TUXDIR environment variable is not set.

Action Set the variable to BEA Tuxedo directory and
restart BEA Tuxedo.

1562 ERROR Error reading license file.

Description Jolt is not able to open BEA Tuxedo license file in
$TUXDIR/udataobj/lic.txt.

Action Copy the correct license file to
$TUXDIR/udataobj/lic.txt.

1563 INFO Serial Number: <%s>, Expiration Date: <%s>.

Description Serial number and expiration date are displayed.

Action No action required.

1564 INFO Licensee: <%s>.

Description Licensee information is displayed.

Action No action required.

1565 ERROR Call handle and clientid have no matching requests.

Description Received a reply from BEA Tuxedo that has no
corresponding client.

Action No action required.
B-10 Using BEA Jolt

Jolt System Messages

f
1566 INFO Message received without handle, ignored.

Description A BEA Tuxedo message arrived without an
identifying handle.

Action No action required.

1567 ERROR Expected argument to -j option.

Description -j requires an argument.

Action Specify -j argument
(ANY/RETAINED/RECONNECT) in UBB and
reboot BEA Tuxedo system.

1568 INFO Compression threshold is set to %d.

Description Informative message.

Action No action required.

1569 ERROR No Tuxedo Encryption installed. Cannot use Diffie-Hellman.

Description Cannot find encryption libraries.

Action Contact BEA Tuxedo support.

1570 WARN Jolt Client Connection Request timed out.

Description Jolt client sent connect request for JSH too late.

Action If problem persists, increase the value of -I option
in JSL.

1571 WARN A Jolt Client has incorrect APPADDR.

Description A Jolt client has specified JSH address instead o
JSL.

Action Change the client and specify correct address.

1572 WARN A Non Jolt Opcode is sent to JSH.

Description A request received by JSh has non Jolt opcode.

Action Check client’s APPADDR.
Using BEA Jolt B-11

B System Messages

e

e.

r

s.

Repository Messages

ERROR Usage: JREPSVR [-W] -P path -W writable repository.

Description An invalid option is specified or -P is not
specified properly.

Action Review the Jolt documentation and ensure that th
options are specified correctly.

ERROR Not enough memory

Description Not enough memory; please add more swap spac

Action Configure additional memory. Make sure the
operating system parameters are set correctly fo
the amount of memory on the machine and the
amount of memory that can be used by a proces
Reduce the memory usage on the machine or
increase the amount of physical memory on the
machine.

 ERROR Not enough disk space for “<repository-file-path>”

Description Ran out of disk space while adding or deleting
Repository entries, or during garbage collection.

Action Configure additional disk space.

ERROR Cannot modify read-only repository “<repository-file-path>”

Description Denies attempt to add or delete an entry from a
read-only repository.

Action Check the file permission and ensure that the file
is writable.
B-12 Using BEA Jolt

Repository Messages

 ERROR “<repository-file-path>” is not a valid repository file.

Description The specified file is not valid; a valid repository
file must have the string, “#!JOLT1.0” in the first
line.

Action Extract the file from the Jolt distribution
CD-ROM.

 ERROR Can’t open <repository-file-path>.

Description Unable to open the repository file.

Action Check to ensure that the file path is valid or its
permission is correct.

 ERROR Can’t create <repository-file-path>: check permission or path.

Description Unable to create the repository file during garbage
collection.

Action Check the file or directory permission.

ERROR Syntax error: <service definition>.

Description An invalid entry was detected when an attempt
was made to add an entry to the repository. The
entry must have ‘:’ as a field separator.

Action Contact BEA Customer Support.

ERROR Garbage collection failed: <key> not found.

Description When the writable repository is shutdown, it
performs garbage collection to collapse the
repository file. If it detects an inconsistency, the
garbage collection fails.

Action Contact BEA Customer Support.
Using BEA Jolt B-13

B System Messages

r
FML Error Messages

 ERROR Fielded buffer not aligned.

Description An FML function was called with a fielded buffer
that is not properly aligned. Most machines
require half-word alignment.

Action Use Falloc to retrieve an allocated, properly
aligned buffer.

See Also BEA Tuxedo FML Function Reference

 ERROR Buffer not fielded.

Description A buffer was passed to an FML function that has
not been initialized.

Action Use Finit to initialize a buffer allocated directly
by the application, or use Falloc to allocate and
initialize a fielded buffer.

See Also BEA Tuxedo FML Function Reference

ERROR Invalid argument to function.

Description An invalid argument (other than an invalid field
buffer, field identifier, or field type) was passed to
an FML function. This can be a parameter where a
non-NULL parameter was expected (for example,
it can be an invalid buffer size, etc.).

Action See the manual page associated with the error fo
the correct parameter values.

See Also BEA Tuxedo FML Function Reference.
B-14 Using BEA Jolt

Information Messages

t

,
Information Messages

ERROR Unknown field number or type.

Description An invalid field number was specified for an FML
function, an invalid field number (0 or greater than
8192) was specified, or Fname could not find the
associated field identifier for the specified name.

Action Most of the FML functions return this error; see
the manual page associated with the function tha
returned this error. Check your code to make sure
the field specified is valid.

See Also BEA Tuxedo FML Function Reference.

 INFO Repository “<repository-file-path>” (### records) is writable.

Description When a writable Repository server is brought up,
it reports the number of records it found.

Action No action required.

 INFO Repository “<repository-file-path>” (### records) is read-only.

Description When a read-only Repository server is brought up
it reports the number of records it found.

Action No action required.
Using BEA Jolt B-15

B System Messages
Jolt Relay Adapter (JRAD) Messages

Note: You can find error messages numbered 1000 to 1299 in the BEA Tuxedo
System Messages WSNATIVE Catalog.

 1500 ERROR Needs both -l -c options with arguments.

Description Needed options are without arguments.

Action Check and correct configuration file for JRAD
entry.

1501 ERROR Malloc failed.

Description JRAD is not able to allocate dynamic memory.

Action Increase the system resources and restart the
JRAD.

1502 ERROR Memory allocation failed.

Description JRAD is not able to allocate dynamic memory.

Action Increase the system resources and restart the
JRAD.

 1503 ERROR Memory allocation failed. Cannot send ESTCON.

Description JRAD is not able to allocate dynamic memory.

Action Increase the system resources and restart the
JRAD.
B-16 Using BEA Jolt

Jolt Relay Adapter (JRAD) Messages

.

1504 INFO Memory allocation failed. Cannot send ESTCON.

Description JRAD is not able to allocate dynamic memory.

Action Increase the system resources and restart the
JRAD.

1505 ERROR Memory allocation failed. Cannot send ESTCON.

Description JRAD is not able to allocate dynamic memory.

Action Increase the system resources and restart the
JRAD.

1506 ERROR Connection to JSL failed.

Description JSL is not running.

Action Check the address given with option -c .

 1507 ERROR Sending message to JSL failed.

Description JSL is not running or network connection is down

Action Restart the JRAD/JSL.

1508 INFO Sending message to JSH failed.

Description Network is down. Connection to the JSH failed.

Action Check the network and restart the JSL.

1509 ERROR Sending CONNECT reply to JRLY.

Description Unable to reach JRLY. Probably problem in the
network.

Action Restart the JRLY and JRAD after check the
network addresses.
Using BEA Jolt B-17

B System Messages
1510 ERROR Sending SHUTDOWN reply to JRLY.

Description Unable to reach JRLY. Probably problem in the
network.

Action Restart the JRLY and JRAD after check the
network addresses.

1511 ERROR Incorrect Jolt message received from JRLY.

Description A non-Jolt message is sent by JRLY.

Action No action required. JRLY process filters non Jolt
messages already.

1512 ERROR Sending SHUTDOWN to JRLY failed.

Description Unable to send shutdown message to JRLY.

Action No action required.

1513 ERROR Sending CLOSE to JRLY failed for ID <%d>.

Description Unable to send CLOSE message for Relay ID to
JRLY.

Action No action required.

1514 ERROR Sending CLOSE to JRLY failed.

Description Unable to send CLOSE message for Relay ID to
JRLY.

Action No action required.

1515 ERROR Sending CLOSE to JRLY failed for ID <%d>.

Description Unable to send CLOSE message for Relay ID to
JRLY.

Action No action required.

1516 ERROR Sending ESTCON to JRLY failed for ID <%d>.

Description Sending ESTCON message failed.

Action No action required.
B-18 Using BEA Jolt

Jolt Relay Adapter (JRAD) Messages
1517 ERROR Invalid Handler Id. No corresponding address.

Description JRAD received a message without JSH
identification.

Action No action required.

1518 ERROR Cannot connect to JSH with id <%d>.

Description JRAD received a message without JSH
identification.

Action No action required.

1519 ERROR Invalid request from JRLY.

Description JRAD received a message without JSH
identification.

Action No action required.

1521 ERROR JRLY connection is down.

Description JRLY connection is down.

Action No action required.

1522 ERROR JRLY connection is down.

Description JRLY connection is down.

Action No action required.

1523 ERROR JRLY connection is down.

Description JRLY connection is down.

Action No action required.

1525 ERROR JRLY connection is down.

Description JRLY connection is down.

Action No action required.
Using BEA Jolt B-19

B System Messages
1526 INFO JRLY connection is UP.

Description A JRLY-JRAD connection is established.

Action No action required.

1531 ERROR Sending R_CLOSE | R_ACK failed.

Description Failed to send Relay protocol acknowledgment.

Action No action required.

1532 INFO JRLY connection is closed.

Description JRLY connection is down.

Action No action required.

1533 ERROR Bad hex number provided for external jrly address: %s.

Description Invalid -H option value.

Action Check -H option and provide correct value.

1534 ERROR Convert external jrly address to hex format failed: %s.

Description Invalid -H option value.

Action Check -H option and provide correct value.

1535 ERROR Bad hex number provided for connecting address: %s.

Description Invalid -c option value.

Action Check -c option and provide correct value.

1536 ERROR address conversion failed.

Description Invalid -c option value.

Action Check -c option and provide correct value.

1537 WARN Convert listening address to hex format failed: %s.

Description Invalid -l option value

Action Check -l option and provide correct value.
B-20 Using BEA Jolt

Jolt Relay Adapter (JRAD) Messages
1538 WARN Convert connecting address to hex format failed: %s.

Description Invalid -c option value.

Action Check -c option and provide correct value.

1539 WARN Refusing connection to JRAD. JRLY connection exists.

Description A second JRLY is trying to connect to JRAD.
Connection is refused by JRAD.

Action Provide correct CONNECT address for JRLY.

1540 WARN No JRLY process connected.

Description A dubious message arrived for JSL/JSH with no
relay connected.

Action Check the network address in configuration.
Using BEA Jolt B-21

B System Messages

e

n

Jolt Relay (JRLY) Messages

 ERROR Ignoring syntax error in configuration file line %d

Description The line in question doesn't contain an equal sign
or (in case of the LISTEN and CONNECT tag) is
missing the colon.

Action Verify the syntax of the configuration file at the
specified line.

ERROR Ignoring unknown tag '%s' in configuration file line %d.

Description The line in question is does not contain one of the
valid tags: LOGDIR, ACCESS_LOG,
ERROR_LOG, LISTEN, CONNECT.

Action Verify the syntax of the configuration file at the
specified line.

ERROR MSG_MALLOC: perror().

Description Memory allocation failed. The relay will exit.

Action Make more memory available on the machine on
which the relay is running. Remove other
unnecessary processes that may be running on th
same host as the relay. Restart the relay.

ERROR Client structure != NULL for file descriptor %ld

Description An internal error occurred. The relay will continue
to run, but a client process may have been
disconnected.

Action None. If this message appears repeatedly and ca
be reproduced consistently, notify BEA Customer
Support.
B-22 Using BEA Jolt

Jolt Relay (JRLY) Messages

n

ERROR Invalid file descriptor %ld

Description An internal error occurred. The relay will continue
to run, but a client process may have been
disconnected.

Action None. If this message appears repeatedly and ca
be reproduced consistently notify BEA Customer
Support.

ERROR Could not open configuration file %s

Description The specified configuration file does not exist or is
not readable. The relay will exit.

Action Check the file name and the permissions on the file
and the directory.

ERROR No log directory specified.

Description LOGDIR was not specified in the configuration
file or no value for it was given.

Action Verify the entry for the tag LOGDIR in the
configuration file. Check that the correct
configuration file is being used (-f parameter).

ERROR No access log file specified.

Description ACCESS_LOG was not specified in the
configuration file or no value for it was given.

Action Verify the entry for the tag ACCESS_LOG in the
configuration file.Check that the correct
configuration file is being used (-f parameter).

ERROR No error log file specified.

Description ERROR_LOG was not specified in the
configuration file or no value for it was given.

Action Verify the entry for the tag ERROR_LOG in the
configuration file. Check that the correct
configuration file is being used (-f parameter).
Using BEA Jolt B-23

B System Messages

r

ERROR No JRLY host specified

Description The value for the LISTEN tag does not contain the
host name or IP address or the relay host, e.g.,
LISTEN=host:port.

Action Verify the entry for the tag LISTEN in the
configuration file. Check that the correct
configuration file is being used (-f parameter).

ERROR No JRAD host specified.

Description The value for the CONNECT tag does not contain
the host name or IP address or the JRAD host, fo
example, CONNECT=host:port.

Action Verify the entry for the tag CONNECT in the
configuration file. Check that the correct
configuration file is being used (-f parameter).

ERROR No listener port specified or listener port <= 0.

Description The value for the LISTEN tag does not contain a
valid port number on the relay host.

Action Verify the entry for the tag LISTEN in the
configuration file. Check that the correct
configuration file is being used (-f parameter).

ERROR No JRAD port specified or JRAD port <= 0.

Description The value for the CONNECT tag does not contain
a valid port number on the relay host.

Action Verify the entry for the tag CONNECT in the
configuration file.Check that the correct
configuration file is being used (-f parameter).
B-24 Using BEA Jolt

Jolt Relay (JRLY) Messages

it

e
t

h

l
ERROR Could not determine IP address of listener host

Description The relay could not look up the IP address of the
host machine.

Action If the host was specified as a host name replace
with the IP address and restart the relay. If it
already was given as IP address make sure that th
IP address is correct and that you're trying to star
the relay on this host. Note that the address
specified must be the address of the host on whic
the relay is running.

ERROR Cannot bind socket

Description The listener port specified in the configuration file
is already being used by another application or stil
in a final wait state from a previous run of jrly.

Action Either specify a different port number in the
configuration file (and all HTML files containing
the IP address and port number of the relay) or
wait a few minutes. The command "netstat -a"
displays existing connections.

ERROR Can’t open log file %s

Description Either the error log file or access log file (or both)
could not be opened for writing.

Action Check the configuration file for correct spelling of
the LOGDIR. Make sure you have write
permissions on this directory and the files
specified. On Windows NT, the directory
separators must be back slashes, not forward
slashes.
Using BEA Jolt B-25

B System Messages

r

ERROR WSAStartup failed (NT only)

Description The Winsock driver could not initialize. Possible
causes:

The underlying network subsystem is not ready fo
network communication Version 2.0 of Windows
Sockets support is not provided by this particular
Windows Sockets implementation.

Limit on the number of tasks supported by the
Windows Sockets implementation has been
reached.

Action Check the networking software configuration on
your system.

ERROR Couldn't load Winsock Driver version 2.X. (NT only)

Description The relay requires Winsock version 2 or higher,
but could not load it.

Action Check the networking software configuration on
your system. An older version of Windows
Sockets support was detected.

ERROR FATAL ERROR: unknown message code %ld.

Description Internal error. The relay will exit

Action Restart the relay. If this message appears
repeatedly and can be reproduced consistently
notify BEA Customer Support.

ERROR connect: Connection refused

Description The relay could not connect to JRAD.

Action Make sure the relay adapter (JRAD) is running.
Check that the CONNECT tag in the relay
configuration file identifies the correct host and
port on which the JRAD is running.
B-26 Using BEA Jolt

Bulk Loader Utility Messages

e
Bulk Loader Utility Messages

ERROR accept(): accept failed, errno: 24, strerror: Too many open files

Description The relay tried to open more files/sockets than the
system limit.

Action The default maximum number of open file
descriptors for a process is 64 on most UNIX
systems. Set this number to at least 1024 (with th
limit or ulimit commands).

ERROR File not found: %s

Description The specified file is not found.

Action Check the path again.

ERROR Error on line %d: %s value is null

Description A value is expected for this keyword.

Action Input the value.

ERROR Error on line %d: Invalid keyword: %s=%s

Description Keyword is not recognized.

Action Input the correct keyword value.

ERROR Error on line %d: Invalid number: %s

Description The numeric number is malformed.

Action Input the correct value.

ERROR Error on line %d: Invalid value: %s

Description The value of the parameter is out of range.

Action Input the correct value.
Using BEA Jolt B-27

B System Messages
ERROR Error on line %d: Invalid value: %s

Description The data type of the parameter is invalid.

Action Input the correct value.
B-28 Using BEA Jolt

trib-
nal-

ica-
Glossary

API

Application Programming Interface.

Application Transaction Monitor Interface (ATMI)

The API for BEA Tuxedo.

ATMI

See Application Transaction Monitor Interface

BEA Personality

A middleware programming environment that supports a specific style of dis
uted application architecture. For example, BEA Tuxedo is an X/ATMI perso
ity.

BEA Tuxedo-ASP Connectivity

Formerly JoltWAS for IIS.

BEA Tuxedo Bulletin Board

Bulletin Board that holds the global information of an application domain.

BEA Tuxedo-JSE Connectivity

Formerly JoltWAS for Servlet.

BEA Tuxedo-WebLogic Connectivity

Formerly JoltWAS for WebLogic. A customized version of BEA Tuxedo-JSE
Connectivity for WebLogic.

Custom GUI element

A Java GUI class that communicates with JoltBeans. The means of commun
tion can be JavaBeans events, methods, or properties offered by JoltBeans.
Using BEA Jolt G-1

it

y
) is

f
hion.

deliv-

 be-

ts in-
d is
 that
X
ram-
e de-

 re-
Field Manipulation Language (FML)

An interface for maintaining buffers with field/value pairs; specifically, the 16-b
version of this interface.

FML

See Field Manipulation Language.

Failover

A failure prevention mechanism that works as follows. If the current Jolt Rela
Adapter (JRAD) fails to respond to a connection request, the Jolt Relay (JRLY
enabled to connect to another available JRAD. The Jolt client proves a list o
JRLY addresses to which the JRAD attempts connection in a round-robin fas

IIOP

See Internet Inter-ORB Protocol.

IIOP Listener/Handler

A process that receives the client request, which is sent using the IIOP, and
ers that request to the appropriate server application.

Internet Inter-ORB Protocol (IIOP)

The standard protocol defined by the CORBA specification for interoperation
tween Object Request Brokers (ORBs).

JavaBeans

A specification developed by Sun Microsystems that defines how Java objec
teract. An object that conforms to this specification is called a JavaBean, an
similar to an ActiveX control. The JavaBean can be used by any application
understands the JavaBeans format. The principal difference between Active
controls and JavaBeans is that ActiveX controls can be developed in any prog
ming language, but executed only on a Windows platform. JavaBeans can b
veloped only in Java, but can run on any platform.

Java DataBase Connect (JDBC)

A facility that allows a program to access a database.

Java naming and directory interface

A specification that describes how applications services should make named
sources and file systems known and accessible to all users.
G-2 Using BEA Jolt

th.
ide-

 con-
lkit

rvi-

BEA

erver
).

vic-
BEA
edo

ce
JDBC

See Java DataBase Connect.

JNDI

See Java naming and directory interface.Jolt-aware AWT bean

A bean that is a source of JoltInputEvents, a listener of JoltOutputEvents, or bo
Jolt-aware beans are a subset of Custom GUI elements that follow beans gu
lines.

JoltBeans

JavaBeans components that are used in Java development environments to
struct Jolt clients. JoltBeans consist of two sets of JavaBeans: JoltBeans too
and Jolt-aware AWT beans.

JoltBeans toolkit

A JavaBeans-compliant interface to BEA Jolt. The toolkit includes the JoltSe
ceBean, JoltSessionBean, and JoltUserEventBean.

Jolt Class Library

A set of Java classes that allows the user to write Java programs to access
Tuxedo services.

Jolt Relay (JRLY)

A standalone program that routes Jolt messages from the Internet to the Jolt S
Listener (JSL) or Jolt Server Handler (JSH) via the Jolt Relay Adapter (JRAD
Jolt Relay is not a BEA Tuxedo server or BEA Tuxedo client.

Jolt Relay Adapter (JRAD)

A BEA Tuxedo application server that does not include any BEA Tuxedo ser
es. It requires command line arguments in order to work with the JSL and the
Tuxedo system. The JRAD may or may not be located on the same BEA Tux
host machine and server group to which the JSL server is connected.

Jolt Repository

A subsystem in Jolt that provides primitive services and storage for the servi
definitions.
Using BEA Jolt G-3

con-

ith
 the
 re-

rage.
d
Jolt Server Handler (JSH)

A program that runs on a BEA Tuxedo server machine to provide a network
nection point for remote clients. The JSH works with the Jolt Server Listener
(JSL) to provide client connectivity with the BEA Tuxedo system.

Jolt Server Listener (JSL)

A program that supports clients on an IP/port combination. The JSL works w
the Jolt Server Handler (JSH) to provide client connectivity to the backend of
Jolt system. The JSL is administered by the same tools used to manage any
source within a BEA Tuxedo environment.

Jolt WAS for IIS

Renamed BEA Tuxedo-ASP Connectivity.

Jolt WAS for Servlet

Renamed BEA Tuxedo-JSE Connectivity.

Jolt WAS for WebLogic

Renamed BEA Tuxedo-WebLogic Connectivity.

JRAD

See Jolt Relay Adapter.JREPSVR

A BEA Tuxedo server that provides services to access the Jolt Repository sto
It provides support for the Jolt run-time environment and minimum editing an
query functions.

JRLY

See Jolt Relay.

JSH

See Jolt Server Handler.

JSL

See Jolt Server Listener.
G-4 Using BEA Jolt

e

 user

spe-

tive

 runs
s

nt.

trib-

ean.
NT service

An executable program (.exe) that runs as a background task, and whose lifetim
is controlled by the Service Control Manager (SCM). Services can be run at
startup or started (via the SCM) by the interactive user or by a process that a
is running.

Personality

See BEA Personality.

RECONNECT client

A Jolt client whose network connection can be torn down after being idle for a
cific amount of time, but whose user context in BEA Tuxedo remains active.

SCM

See Service Control Manager.

Service Control Manager (SCM)

A Windows NT control panel applet that provides an interface for the interac
user to control NT services.

servlet

An applet that runs on a server. This term usually refers to a Java applet that
within a Web server environment. This is analogous to a Java applet that run
within a Web browser environment.

WebLogic Enterprise

A mission-critical distributed-object application server in a CORBA environme

WebLogic Express

An implementation of JDBC for use with Java applets or applications.

WebLogic Server

A pure Java application server for assembling, deploying, and managing dis
uted Java applications.

wiring

An indication that a bean is registered as a listener of events from another b

WLE

See WebLogic Enterprise.
Using BEA Jolt G-5

WLS

See WebLogic Server.
G-6 Using BEA Jolt

Index

A
applets

client-side execution 5-55
Java 5-1, 5-2, 5-56
Jolt 1-12, 5-4
localizing 5-57

appletview
Repository Editor 4-5

applications
deployment 5-55
localization 5-55
multithreaded 5-37

ASP Connectivity 8-1

B
BEA TUXEDO

Jolt Repository Editor
initializing services using 3-34

BEA Tuxedo
access 5-1
ATMI interface 5-4
buffer types

using with Jolt 5-14
customizing 5-1
data types

using with Jolt 5-14
distributing services 1-12
logging

off 5-6
on 5-5

server requirements 5-55
services

executing 5-5
requests 5-4

transaction
begin 5-5
complete 5-5
new 5-5
rollback 5-5

buffer type
CARRAY 5-22, 5-33
FML 5-23
STRING 5-15
VIEW 5-30

buffer types
BEA Tuxedo 5-14
STRING 5-15

buffers, filtering 3-36
bulk loader

bulk load file 2-2, 2-3
command line options 2-2
data file syntax 2-4
getting started 2-2
introduction 2-1
keywords 2-4, 2-5, 2-6, 2-8
messages B-27
sample data 2-10
troubleshooting 2-9
using Windows NT 2-2
Using BEA Jolt I-1

C
CARRAY

buffer type 5-17, 5-19, 5-22, 5-24, 5-33
classes 5-6

hierarchy 5-7
Jolt 5-1, 5-6, 5-8
JoltRemoteService 5-8
JoltSession 5-8
JoltSessionAttributes 5-6, 5-8
JoltTransaction 5-9
relationships 5-7
subdirectory 5-56

client
Jolt 5-5
logon/logoff 5-8

command-line options 3-16–3-19
Jolt Relay 3-23

configuration 3-1, 3-32
Event Subscription 3-10, 3-35
Jolt Relay (JRLY) 3-11
Jolt Relay Adapter (JRAD) 3-13, 3-29
Jolt Repository 3-3, 3-31

*GROUPS section 3-32
*SERVERS section 3-32

Jolt Server Listener (JSL) 3-2, 3-15
network address 3-29, 3-30
quick 3-2
Repository File, jrepository 3-33

configuration file 3-38
format 3-39
Jolt Relay 3-27

connection attributes 5-10
hostname 5-10
portnumber 5-10

connection modes
connection-less 5-45
retained 5-45

D
data types

BEA Tuxedo 5-14
DES 1-4
Diffie-Hellman (DH) Key Exchange 3-19

E
encryption 1-4, 3-19
errors

Jolt 5-3
Jolt interpreter 5-3
summary of Tuxedo A-2
Tuxedo generated in Jolt 5-3

Event Subscription 5-43
classes for 5-43
supported types 5-46

events
subscribing to 5-43

exceptions
Jolt 5-3
ServiceException 5-10
System.in.read 5-39

exporting services 4-41

F
failover

Jolt Client to JRLY connection 3-22
JRLY to JRAD connection 3-22

FML buffer type 5-23

G
group services

package organizer
how to use 4-33

GROUPS section configuration 3-32

H
HTML

applet tag 5-56
page 5-56
I-2 Using BEA Jolt

0

I
installation 3-1

J
Java

applets 5-1, 5-2, 5-56
class files 5-56
clients 1-8, 5-4
Developer’s Kit (JDK) 1.0 5-39
language classes 5-1
packages 5-56
programs 5-2
Thread.yield() method 5-38
Virtual Machine (VM) 5-37

Jolt
applets 1-12

deploying 5-55
localizing 5-57

architecture 1-4, 1-5, 1-6
bulk loader 2-1
classes 5-1, 5-6, 5-56

functionality 5-8
hierarchy 5-7
relationships 5-7
subdirectory 5-56

client
interface objects 5-5
logon/logoff 5-8
populating variables 5-5
requests 5-5

client/server
interaction 5-5
relationship 5-4

clients
communication with servers 1-10

connection manager 5-4
defined 1-2
features 1-4
international use 5-57
JRAD B-16

JRLY B-22
Repository 5-5

Editor
using 4-1

service attributes 5-5
Repository Editor 1-3
server 5-4, 5-5, 5-56

requirements 5-55
servers 1-3

communication with clients 1-10
components 1-7
proxy for Tuxedo client 1-6

Transaction Protocol 1-10, 5-4
using threads with 5-39

Jolt Class Library 1-3, 1-8, 5-2, 5-6, 5-8, 5-1
application development 5-55
errors 5-3

handling 5-3
list of Tuxedo related A-2

exceptions 5-3
handling 5-3

object/class reusability 5-49
Jolt Internet Relay 3-20
Jolt Relay (JRLY)

command-line options for NT 3-23
configuration 3-26
configuration file 3-27
failover 3-21
network address configuration 3-29
starting 3-23

Jolt Relay Adapter (JRAD) 3-29
configuration 3-29
starting 3-29

Jolt Reply 5-43
Jolt Repository 3-31

configuring 3-31
initializing services 3-4

Jolt Repository Editor
initializing services using 3-34

Jolt Repository Server 1-7
Using BEA Jolt I-3

Jolt server 3-13
shutting down the 3-14
starting the 3-14

Jolt Server Handler 1-7
Jolt Server Listener 1-7
Jolt Server Listener (JSL)

*MACHINES section 3-40
*SERVERS section 3-41
configuration 3-15, 3-42
optional parameters 3-43
parameters usable with 3-43
restarting 3-15
UBBCONFIG file 3-39

JoltBeans 6-1
JoltMessage 5-43
JoltRemoteService 5-9

calls 5-10
class 5-8
object 5-8
resetting parameters 5-9
reusing 5-49

JoltSession 5-5, 5-9, 5-43, 5-48
class 5-8, 5-9, 5-48
object 5-7, 5-8

instantiating 5-10
JoltSessionAttributes 5-6, 5-7, 5-8, 5-9
JoltTransaction 5-5, 5-7, 5-9

class 5-9
JoltUserEvent 5-43
JRAD

messages B-16
jrepository 3-33
JREPSVR
JRLY

messages B-22
JRLY See Jolt Relay
JSH
JSL

L
logoff 5-8
logon 5-8

Repository Editor 4-7

M
MACHINES section

Jolt Server Listener (JSL) 3-40
messages

bulk loader B-27
FML B-14
information B-15
Jolt system B-2
JRAD B-16
JRLY B-22
repository B-12

methods
clear() 5-9
Thread.yield() 5-38

multithreaded applications 5-37

N
Netscape Navigator 3-5, 4-6
notifications

brokered event 5-43
data buffers 5-45
event handler for 5-44
unsolicited 5-43
unsubscribing 5-47
using Jolt to receive 5-48

O
objects

relationships 5-7
reusability 5-43
reusing 5-51
I-4 Using BEA Jolt

P
package organizer

description 4-33
group services

how to 4-33
using 4-31

packages
add a package 4-22
adding 4-20
delete a package 4-39
deleting 4-40
modifying 4-35
package organizer 4-31
Repository Editor 4-13, 4-15

parameters 4-18
associated with RESTART 3-47
boot 3-43
delete a parameter 4-39
deleting 4-39
edit a parameter 4-38
editing 4-37
modifying 4-35
optional for JSL 3-43
runtime 3-45
TUXEDO 3-48
usable with JSL 3-43

R
RC4 1-4
Repository Editor 1-3, 1-11

appletviewer 4-5
exiting the 4-9
introduction 4-2
logon 4-7
main components of 4-11
Netscape Navigator 3-5, 4-6
packages 4-13, 4-15

setting up 4-19
parameters 4-18
process flow 4-11

sample window 4-2
sample window description 4-4
saving your work 4-20
services 4-16

description of 4-17
setting up 4-19
view services 4-17

troubleshooting 4-50

S
sample applications, online resources 3-49
saving your work 4-20
security 1-4, 3-19
server

Jolt 5-5
Tuxedo requirements for 5-55
web 5-56

servers
components 1-7
Jolt 1-3
Jolt Repository 1-7

services
add a parameter 4-27

data type selection 4-29
how to 4-29
window description 4-28

add a service 4-22
buffer type selection 4-26
how to 4-24, 4-25

calling synchronous 5-8
definitions 5-10
delete a service 4-39
deleting 4-40
edit a service 4-35
editing 4-37
export status

reviewing 4-43
exporting 4-41
grouping 4-31
Jolt client
Using BEA Jolt I-5

make service available to 4-41
modifying 4-35
parameters 4-18
service test window 4-45, 4-47
test a service

how to 4-48, 4-49
process flow 4-48

testing 4-44
unexport 4-41
unexport status

reviewing 4-43
using the Repository Editor 4-16
view parameters 4-19
view services 4-17

Servlets 7-1
simpapp, online resources 3-49
STRING buffer type 5-15

T
testing

services 4-44
threads 5-37

BLOCKED 5-37
non-preemptive 5-38
RUNNABLE 5-37
RUNNING 5-37
using Jolt with non-preemptive 5-38
using with Jolt 5-39

TOUPPER
service 5-15

TPEABORT A-2
TPEBADDESC A-2
TPEBLOCK A-2
TPEDIAGNOSTIC A-2
TPEEVENT A-2
TPEHAZARD A-2
TPEHEURISTIC A-2
TPEINVAL A-2
TPEITYPE A-2
TPELIMIT A-2

TPEMATCH A-2
TPEMIB A-2
TPENOENT A-2
TPEOS A-2
TPEOTYPE A-2
TPEPERM A-3
TPEPROTO A-3
TPERELEASE A-3
TPERMERR A-3
TPESVCERR A-3
TPESVCFAIL A-3
TPESYSTEM A-3
TPETIME A-3
TPETRAN A-3
TPGOTSIG A-3
Transaction

Protocol 5-4
transaction

begin 5-9
commit 5-9
object 5-9
rollback 5-9

troubleshooting
Repository Editor 4-50

TUXEDO
background information 3-38
parameters, entering 3-48

Tuxedo
errors A-2

U
UBBCONFIG

Jolt Server Listener (JSL) configuration
sample 3-39

UBBCONFIG file 3-38
unexporting services 4-41
I-6 Using BEA Jolt

V
VIEW buffer type 5-30
view parameters 4-19

W
web server

considerations 5-56
Using BEA Jolt I-7

	Copyright
	Contents
	1 Introducing BEA Jolt
	What Is BEA Jolt?
	Jolt Components

	Key Features
	How BEA Jolt Works
	Jolt Servers
	Jolt Class Library
	JoltBeans
	ASP Connectivity for BEA Tuxedo
	Jolt Server and Jolt Client Communication
	Jolt Repository
	Jolt Internet Relay

	Creating a Jolt Client to Access BEA Tuxedo Applications

	2 Bulk Loading BEA Tuxedo Services
	Using the Bulk Loader
	Activating the Bulk Loader
	The Bulk Load File

	Syntax of the Bulk Loader Data Files
	Guidelines for Using Keywords
	Keyword Order in the Bulk Loader Data File
	Using Service-Level Keywords and Values
	Using Parameter-Level Keywords and Values

	Troubleshooting
	Sample Bulk Load Data

	3 Configuring the BEA Jolt System
	Quick Configuration
	Editing the UBBCONFIG File
	Configuring the Jolt Repository
	Initializing Services That Use BEA Tuxedo and the Repository Editor
	Logging on to the Repository Editor
	Exiting the Repository Editor
	Configuring the BEA Tuxedo TMUSREVT Server for Event Subscription
	Configuring Jolt Relay

	Jolt Background Information
	Jolt Server
	Starting the JSL
	Shutting Down the JSL
	Restarting the JSL
	Configuring the JSL
	JSL Command-Line Options
	Security and Encryption

	Jolt Relay
	Jolt Relay Failover
	Jolt Relay Process
	JRLY Command-Line Options for NT
	JRLY Command-Line Option for UNIX
	JRLY Configuration File

	Jolt Relay Adapter
	JRAD Configuration
	Network Address Configurations

	Jolt Repository
	Configuring the Jolt Repository
	Initializing Services By Using BEA Tuxedo and the Repository Editor

	Event Subscription
	Configuring for Event Subscription
	Filtering BEA Tuxedo FML or VIEW Buffers

	BEA Tuxedo Background Information
	Configuration File
	Creating the UBBCONFIG File

	Sample Applications in BEA Jolt Online Resources

	4 Using the Jolt Repository Editor
	Introduction to the Repository Editor
	Repository Editor Window
	Repository Editor Window Description

	Getting Started
	Starting the Repository Editor Using the Java Applet Viewer
	Starting the Repository Editor From Your Web Browser
	Logging on to the Repository Editor
	Exiting the Repository Editor

	Main Components of the Repository Editor
	Repository Editor Flow
	What Is a Package?
	What Is a Service?
	Working With Parameters

	Setting Up Packages and Services
	Saving Your Work
	Adding a Package
	Adding a Service
	Adding a Parameter

	Grouping Services Using the Package Organizer
	Modifying Packages, Services, and Parameters
	Editing a Service
	Editing a Parameter
	Deleting Parameters, Services, and Packages

	Making a Service Available to the Jolt Client
	Exporting and Unexporting Services
	Reviewing the Exported and Unexported Status

	T Testing a Service
	Jolt Repository Editor Service Test Window
	Testing a Service

	Repository Editor Troubleshooting
	Repository Enhancements for Jolt

	5 Using the Jolt Class Library
	Class Library Functionality Overview
	Java Applications vs. Java Applets
	Jolt Class Library Features
	Error and Exception Handling
	Jolt Client/Server Relationship

	Jolt Object Relationships
	Jolt Class Library Walk-through
	Logon and Logoff
	Synchronous Service Calling
	Transaction Begin, Commit, and Rollback

	Using BEA Tuxedo Buffer Types with Jolt
	Using the STRING Buffer Type
	Using the CARRAY Buffer Type
	Using the FML Buffer Type
	Using the VIEW Buffer Type

	Multithreaded Applications
	Threads of Control
	Using Jolt with Non-Preemptive Threading
	Using Threads for Asynchronous Behavior
	Using Threads with Jolt

	Event Subscription and Notifications
	Event Subscription Classes
	Notification Event Handler
	Connection Modes
	Notification Data Buffers
	BEA Tuxedo Event Subscription
	Using the Jolt API to Receive BEA Tuxedo Notifications

	Clearing Parameter Values
	Reusing Objects
	Deploying and Localizing Jolt Applets
	Deploying a Jolt Applet
	Client Considerations
	Web Server Considerations
	Localizing a Jolt Applet

	6 Using JoltBeans
	Overview of Jolt Beans
	JoltBeans Terms
	Adding JoltBeans to Your Java Development Environment
	Using Development and Run-time JoltBeans

	Basic Steps For Using JoltBeans
	JavaBeans Events and BEA Tuxedo Events
	Using BEA Tuxedo Event Subscription and Notification with JoltBeans

	How JoltBeans Use JavaBeans Events
	The JoltBeans Toolkit
	JoltSessionBean
	JoltServiceBean
	JoltUserEventBean

	Jolt-Aware GUI Beans
	JoltTextField
	JoltLabel
	JoltList
	JoltCheckbox
	JoltChoice

	Using the Property List and the Property Editor to Modify the JoltBeans Properties
	JoltBeans Class Library Walkthrough
	Building the Sample Form
	Wiring the JoltBeans Together

	Using the Jolt Repository and Setting the Property Values
	JoltBeans Programming Tasks
	Using Transactions with JoltBeans
	Using Custom GUI Elements with the JoltService Bean

	7 Using Servlet Connectivity for BEA Tuxedo
	What Is a Servlet?
	How Servlets Work with Jolt
	The Jolt Servlet Connectivity Classes

	Writing and Registering HTTP Servlets
	Jolt Servlet Connectivity Sample
	Viewing the Sample Servlet Applications
	SimpApp Sample
	BankApp Sample
	Admin Sample

	Additional Information on Servlets

	8 Using Jolt ASP Connectivity for BEA Tuxedo
	Key Features
	ASP Connectivity Enhancements for Jolt
	How Jolt ASP Connectivity for BEA Tuxedo Works
	ASP Connectivity for BEA Tuxedo Toolkit
	Jolt ASP Connectivity for BEA Tuxedo Walkthrough
	Overview of the ASP for BEA Tuxedo Walkthrough
	Getting Started Checklist
	Overview of the TRANSFER Service
	TRANSFER Request Walkthrough
	Initializing the Jolt Session Pool Manager
	Submitting a TRANSFER Request from the Client
	Processing the Request
	Returning the Results to the Client

	A BEA Tuxedo Errors
	BEA Tuxedo Errors

	B System Messages
	Jolt System Messages
	Repository Messages
	FML Error Messages
	Information Messages
	Jolt Relay Adapter (JRAD) Messages
	Jolt Relay (JRLY) Messages
	Bulk Loader Utility Messages

	Glossary
	Index

