BEA Tuxedo

Tutorials for Developing a
BEA Tuxedo Application

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES

NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and Tuxedo are registered trademarks of BEA Systems, Inc. BEA Builder, BEA
Connect, BEA Manager, BEA MessageQ, BEA Jolt, M3, eSolutions, eLink, WebLogic, and WebLogic Enterprise
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.
Tutorialsfor Developing a BEA Tuxedo Application

Document Edition Date Software Version

7.1 May 2000 BEA Tuxedo Release 7.1

Contents

1. Developing a BEA Tuxedo Application

Before Developing Your BEA Tuxedo Applicationccoeveeeieneececinennne 1-1
Creating aBEA TUXedo CHENt.......c.coiiiecieee e 1-2

ClENE TASKS. ..ttt ettt ettt e se e s e e eneseeneesne 1-2
Creating a BEA TUXEAO SEIVETc..ouiciieeeeceeeeetee ettt s 1-4

S Y B I 1S TSR 1-4
Using Typed Buffersin Your Applicationc.ccoceeeeieneieieincne e 1-6
Using BEA Tuxedo Messaging Paradigmsin Your Application............c......... 1-7
Using the Request/Response Model (Synchronous Calls)cccoecveeeeencnenneee 1-7
Using the Request/Response Model (Asynchronous Cals)........cccocoeeeeeiinnaeee 1-8
USING NESLEA CallS.....oiuiiciecieeceeee ettt ereeens 1-9
Using Forwarded Calls..........coeoiee ettt s 1-10
Using Conversational CommUNICatiON..........ccueeeereiieerieineesesseesresseesraeseesreenns 1-11
Using Unsolicited NOtifiCation..........ccceceeciiecceesie it 1-13
Using Event-based COMMUNICALION..........ccceiieieeiiieeeeiee e et eraene e 1-14
Using Queue-based COMMUNICALIONccceieeieeeiieieeecee et et 1-15
USING TranSACLIONS.....ccueiecrietiectiesieeteetes e st se e e e e e sessrestesseesraeste et aenseeneanes 1-18

2. Tutorial for simpapp, a Simple C Application

What |S SIMPBPP -eeeveeerieeieeeeeeeie e et e ieeesseese st s e e sbe s e benee see e ambeseesesneeneseens 2-1
Preparing simpapp Files and RESOUICES..........ccooiereieerene e 2-2
BEfOre YOU BEGIN.....coiiieeeeeeee et 2-2
ADOUL THiS TULOFTELecee ettt e e 2-3
What YOU Will LEAIMN ...ttt e e s 2-3
Step 1: How to Copy the SImpapp FileS.......ccoe i 2-3
Step 2: Examining and Compiling the Client...........cccooooviiinnieie e 2-5
How to Examinethe ClIentccoeiiiiiieee s 2-5

Tutorialsfor Developing a BEA Tuxedo Application iii

iv

How to Compilethe Client....... ..o 2-7

Step 3: Examining and Compiling the Server ... 2-8
HOW t0 EXamine the SErVEScoe i 2-8
How to Compile the SEIVES ..o e 2-10

Step 4: Editing and Loading the Configuration File...........cccccoviiiiiiiineennne 2-11
How to Edit the Configuration File...........cooo i, 2-11
How to Load the Configuration Filecocoiiiioiiiiiecceceeeeceeee s 2-13

Step 5: How to Boot the AppliCation...........coeveriree i 2-13

Step 6: How to Execute the Run-time Applicationcccccoeeieeevencienenee 2-14

Step 7: How to Monitor the Run-time Applicationccccooeereeevienciesene 2-15

Step 8: How to Shut Down the Applicationcccceiiieiinncene e 2-16

Tutorial for bankapp, a Full C Application

What [SDANKEPP -ttt ettt e 31
ADOUL THIS TULOTTELecveceireceict ettt 31
Familiarizing Y ourself with bankappccovrioiinni e 3-2
Learning About the bankapp Files..........coooii i 3-3
Exploring the Banking Application Files..........cccooviieiiniiiie e 3-3
Examining the bankapp ClIENtS...........ooiiiirie e 3-7
What Isthe bankclt.C File.........couiiiiieiee e 3-7
How ud(1) IsUsed in bankapp.......ccceeeeeeeeenneee e 3-10
A Request/Response Client: audit.Cc.oeveeeiereeneeie e 311
A Conversational Client: aUditCON.C........c.orreririerenene e 3-12
A Client that Monitors Events. bankmgr.C........cccooeeeveiecieie e 3-13
Examining the bankapp Servers and ServiCes.........ocooeurreneinenienescriesenens 3-14
bankapp REQUESH/RESPONSE SENVESSc.ccuiiiireee et 3-15
bankapp Conversational SErVEcoceirreiienirene e 3-16
DANKEPD SEIVICES....c.eetieee et e e e 3-16
Utilities Incorporated iNt0 SEIVErS.........cuveeerererieie e 3-24
Alternative Way t0 COOE SEIVICESccovveieeceerie ettt 3-24
Preparing bankapp Files and RESOUICES..........cocceerireerieie s 3-26
Step 1: How to Set the Environment Variables..........cooooveiiinnieieiinnneee 3-27
Step 2: Building Serversin bankappccccoeeerenene e 3-32
HOW tO BUIIA ACCT SEIVES ..ot 3-32
How to BUild the BAL SEIVEN ... e 3-34

Tutorials for Developing a BEA Tuxedo Application

How to BUild the BTADD SEIVENccoceeeeeeeee et 3-35

HOw t0 BUIld the TLR SEIVEN ..o e 3-35
How to Build the XFER SEIVET.......cccooiiiiieiereeee e 3-36
Servers Built in the bankapp.mk File ... 3-37
Step 3: Editing the bankapp Makefile ... 3-37
How to Edit the TUXDIR Parameterccooieienenene e 3-37
How to Edit the APPDIR Parameterccooooiiiiineie e 3-38
How to Set the Resource Manager Parameters.........cooceevevecevcnececnenen, 3-38
How to Run the bankapp.mK File..........ccoooiiii e 3-39
Step 4: Creating the bankapp Database.........cccoeeveereeiereieeeiee e 3-39
How to Create the Databasein SHM Mode.........ccccceiineeieiiiinicce e 3-40
How to Create the Database in MP MOdE.........ccooeiiinniieninene e 3-40
Step 5: Preparing for an XA-Compliant Resource Managerccceeeeeeeenee. 341
How to Changethe bankvar File............cccoeiieiiiiiciiiieccce e 341
How to Change the bankapp ServiCes.........cooovieirninie e 3-42
How to Change the bankapp.mk File.........cocooiiiiiiiii e 3-42
How to Change crbank and crbankdbcceoveiiiiiiiiniccccee e 3-42
How to Change the Configuration File.........cccccoveviiie e 3-44
How to Integrate bankapp with Oracle 8 (XA RM) for aWindows NT
PLALF O e e e e 3-44
Step 6: How to Edit the Configuration File............cocooiieiiniiniiecneee 3-50
Steps 7 and 8: Creating a Binary Configuration File and Transaction
[0 1 = SRS 3-55
Before Creating the Binary Configuration File..........ccccoeveiiecececcenen, 3-55
How to Load the Configuration File.........ccccveiecieie e 3-55
How to Create the Transaction Log (TLOG) File........cccoeeveiececcecienen, 3-56
Step 9: How to Create a Remote Service Connection on Each Machine........ 3-57
How to Stop the Listener Process (tHsten)coecveceveieeceiveececcee e 3-57
Sample tlisten Error MESSAgES.......cccvevvivreeiee et 3-58
RUNNING DANKBPP.......eevieieceeeie e st e st st e 3-60
Step 1: HOw tO Prepare t0 BOOL.......ccccveveiieiciecsiie et 3-60
Step 2: How t0 BOOt hankapp.......cceevveieeieieieeieccteese et s 3-62
Step 3: How to Populate the Databasecccceevveveveeece s 3-63
Step 4: How to Test bankapp SErVICES.......covevviviere et 3-64
Step 5: How to Shut Down bankappccceeeveevreeiecie e e 3-65

Tutorialsfor Developing a BEA Tuxedo Application %

Vi

4. Tutorial for CSIMPAPP, a Simple COBOL Application

WhaE IS CSIMPAPP ...ttt b e
Preparing CSIMPAPP Files and RESOUICESccccvereeieereeeie e
BefOre YOU BEGIN....c.viieeieeeeee et
What Y OU Will LEAIMN ..ottt
Step 1: How to Copy the CSIMPAPP FleS ..o
Step 2: Examining and Compiling the Client ... iiiceen
How to Examine the CHent ... s
How to Compilethe Client..........cocooi e
Step 3: Examining and Compiling the Server ... vncecnee
How to EXamine the SErVer ... iierece s
How to Compile the SEIVEr ...t
Step 4: Editing and Loading the Configuration File...........ccccooee e
How to Edit the Configuration File...........cccoviviiiiie i
How to Load the Configuration Filec.ccoevviiiviiccviece e
Step 5: How to Boot the AppliCation...........ccoeeevereneve e
Step 6: How to Test the Run-time Applicationcccoceveveneievesennnnne
Step 7: How to Monitor the Run-time Applicationcccccoevnieee e
Step 8: How to Shut Down the Applicationc.ccoeveieiiiniece e

5. Tutorial for STOCKAPP, a Full COBOL Application

What 1S STOCKAPRP ...ttt st e
Familiarizing Y ourself with STOCKAPP ...
Learning About the STOCKAPP Fil€s.......ccoiiiiiiiinie e
Exploring the Stock Application FIles.........cocoeiiiieiecinncee e
Examining the STOCKAPP Clients.........cccoeeieie e
System Client Programs...........coooeveeeeieeeneeneeisece e e s
TYPEA BUFFEIS. ..ot e e e
A Request/Response Client: BUY.ChI ..o
BUIlAING CHENLS.......oceiieiiie ettt st e
Examining the STOCKAPP SEIVErS ..ottt
STOCKAPP SEIVICES ...ttt ettt ettt
Preparing STOCKAPP Files and RESOUICES..........ccvererereereeneieseeseenenes
Step 1: How to Set Environment Variables..........ccoeoeiriciiininic e
Additional ReqQUIrEMENES........ccoiriiie e e e

Tutorials for Developing a BEA Tuxedo Application

Step 2: Building Servers in STOCKAPP ... 5-14

How to Build the BUY SELL SErVEr......ccoooeiiieeieie e 5-15
Servers Built in STOCKAPP.IMKoiiiiirere e 5-16
Step 3: Editing the STOCKAPP.MK File ..o 5-16
How to Edit the TUXDIR Parametercccooieeenenene e 5-17
How to Edit the APPDIR Parameter ... 5-17
How to Run the STOCKAPP.MK File........ccocoiiiiiiie e 5-17
Step 4: How to Edit the Configuration File............cocooiieiininiiiceee 5-18
Step 5: Creating aBinary Configuration File...........coocoviiiiiiniciecireee 5-21
Before Creating the Binary Configuration File...........ccccoeeecieciececenen, 5-21
How to Load the Configuration File.........ccccoveie e 5-21
RUNNING STOCKAPRP.....c et sraenne 5-23
Step 1: HOW t0 Prepare to BOOLcviieeie et s 5-23
Step 2: HOW t0 BOOt STOCKAPRP......coiieiee it 5-25
Step 3: How to Test STOCKAPP SEIVICES......coiiiieeiereeeee et 5-26
Step 4: How to Shut DOWN STOCKAPP ..o 5-26

Tutorialsfor Developing a BEA Tuxedo Application Vii

Viii Tutorials for Developing a BEA Tuxedo Application

CHAPTER

1 Developing a BEA
Tuxedo Application

m Before Developing Your BEA Tuxedo Application

m Creating a BEA Tuxedo Client

m Creating a BEA Tuxedo Server

m Using Typed Buffersin Your Application

m Using BEA Tuxedo Messaging Paradigms in Your Application

Before Developing Your BEA Tuxedo
Application

Before you begin developing your BEA Tuxedo application, it may be helpful to
review the various conceptsrelated to its design and the tool s that are available to you.
These concepts include identifying clients or the various ways input from the outside
world is gathered and presented to your business for processing, and identifying
serversor the programs containing the business logic that processtheinput data. Also
important is reviewing the concept of typed buffers or how a client program allocates
amemory area before sending data to another program. Another concept worth
reviewing is that of the BEA Tuxedo messaging paradigms. Client programs access
the BEA Tuxedo system by calling the ATMI library. Most callsin the ATMI library

Tutorialsfor Developing a BEA Tuxedo Application 1-1

1 Developing a BEA Tuxedo Application

support these different communication styles available to programmers, such as
reguest/response and conversational. These are the building blocks of every BEA
Tuxedo application.

For more information on concepts, such as application queues, event-based
communication, and using ATMI, and on the tools available to you, refer to “BEA
Tuxedo System Architecture” on page 2-1ritroducing the BEA Tuxedo System. For
information on programming an application, refePt@gramming a BEA Tuxedo
Application Using C andProgramming a BEA Tuxedo Application Using COBOL.

Creating a BEA Tuxedo Client

Creating a BEA Tuxedo client is just like creating any other program in the C or C++
programming language. The BEA Tuxedo system provides you with a C-based
programming interface known as the BEA Tuxedo Application to Transaction Monitor
Interface or ATMI. The ATMI is an easy-to-use interface that enables the rapid
development of BEA Tuxedo clients and servers.

Note: The BEA Tuxedo system also supports a COBOL interface. (The examples
shown here illustrate the C/C++ API.)

Client Tasks

1-2

Clients perform the following basic tasks:

m Clients may need to calbchkaut h() to determine the level of security
required to join an application. Possible responses are: no security enabled,
application password enabled, application authentication enabled, access contro
lists enabled, link-level encryption, public key encryption, auditing. (This is
optional depending on whether you are using security levels.)

m Clients callt pi ni t () to connect to a BEA Tuxedo application. Any required
security information is passed to the application as argumentsifort () .

m Clients perform service requests.

m Clients callt pt er () to disconnect from a BEA Tuxedo application.

Tutorials for Developing a BEA Tuxedo Application

Creating a BEA Tuxedo Client

Figure1-1 Tasksa Client Performs

ATMI
main ()
{
tpchkauthi); Checks security level
tpinit); ————— Connects to the BEA
do service call; TUXEDO application
tptermi J; .

Disconnects from the BEA

} TUXEDO application

See Also

m “Writing Clients” on page 4-1 ifPfrogramming a BEA Tuxedo Application Using
C

m “Administering Security” on page 2-1 losing BEA Tuxedo Security
m “Using BEA Tuxedo Messaging Paradigms in Your Application” on page 1-7
m “What Are Typed Buffers” on page 2-24 lintroducing the BEA Tuxedo System

m “What You Can Do Using the ATMI” on page 2-4lintroducing the BEA
Tuxedo System

m “Setting Up Security” on page 3-32 introducing the BEA Tuxedo System

Tutorialsfor Developing a BEA Tuxedo Application 1-3

1 Developing a BEA Tuxedo Application

Creating a BEA Tuxedo Server

Developers use the ATMI programming interface to create a BEA Tuxedo client and
server. However, BEA Tuxedo servers are not written by application developers as
complete programs (that is, with a standard mai n). Instead, application developers
write a set of specific business functions (known as services) that are compiled along
with the BEA Tuxedo binaries to produce a server executable.

When aBEA Tuxedo server isbooted, it continues running until it receives ashutdown
message. A typical BEA Tuxedo server may perform thousands of service callsbefore
being shut down and rebooted.

Server Tasks

m Application developers write the code and the BEA Tuxedo system servers
invokethet psvrini t () function only when the BEA Tuxedo server is booted.
Programmers use this function to open an application resource (such asa
database) for later use.

m Application developers write the code and the BEA Tuxedo system servers
invokethet psvrdone() function only when the BEA Tuxedo server is shut
down. Programmers use this function to close any application resources opened
by tpsvrinit().

m Application developers write the code and the BEA Tuxedo system servers
reguest named application services that process client requests. BEA Tuxedo
clients do not call serversby name; they call services. A BEA Tuxedo client
does not “know” the location of the server processing its request.

m Servers call thepreturn() function to end a service request and return a
buffer, if required, to the calling client.

1-4 Tutorials for Developing a BEA Tuxedo Application

Creating a BEA Tuxedo Server

Figure1-2 Tasksa Server Performs

ATMI

tpsvrinit{) { . Performed when
server is hooted

Senm:e1 (

du work;

tpreturn
p 0 Sen.rit:e routines

Service 2 (

{

do work;
tpreturny):

}

tpsvrdone() {...}

Performed when server
shuts down

See Also

m “Writing Servers” on page 5-1 iRrogramming a BEA Tuxedo Application
Using C

m “Using BEA Tuxedo Messaging Paradigms in Your Application” on page 1-7
m “What Are Typed Buffers” on page 2-24 lintroducing the BEA Tuxedo System

m “What You Can Do Using the ATMI” on page 2-4lintroducing the BEA
Tuxedo System

Tutorialsfor Developing a BEA Tuxedo Application 1-5

1 Developing a BEA Tuxedo Application

Using Typed Buffers in Your Application

See Also

All communication in the BEA Tuxedo system is transmitted through typed buffers.
The BEA Tuxedo system offers application developers the choice of many different
buffer types to facilitate this communication. All buffers passed through the BEA
Tuxedo system have specia headers, and must be allocated and freed through the BEA
Tuxedo ATMI (tpal | oc(),tprealloc(),andtpfree()).

Figure 1-3 Different Types of Buffers

Client — Buffer | Server
/NN
WIEWY FhiL CARRAN
STRING [C structure) (fielded) [hinary) FL

CUSTOM- DEFINED

Thetyped buffers facility allows for generic well-defined processing to be
implemented once a buffer typeis shared across any type of network and protocol and
any type of CPU architecture and operating system supported by the BEA Tuxedo
system. The advantage of typed buffersin adistributed environment isthat they relieve
your clients and servers from the details of preparing data to be transferred between
heterogeneous computers linked by various communications networks. Thisaffordsan
application programmer time to concentrate on their businesslogic, instead of focusing
attention on writing this facility into their own programs.

m “What Are Typed Buffers” on page 2-24 lintroducing the BEA Tuxedo System

1-6 Tutorials for Developing a BEA Tuxedo Application

Using BEA Tuxedo Messaging Paradigms in Your Application

Using BEA Tuxedo Messaging Paradigms in
Your Application

The BEA Tuxedo system offers several communication models that you can usein
your application:

m Using the Request/Response Model (Synchronous Calls)
m Using the Request/Response Model (Asynchronous Calls)
m Using Nested Calls

m Using Forwarded Calls

m Using Conversational Communication

m Using Unsolicited Notification

m Using Event-based Communication

m Using Queue-based Communication

m Using Transactions

Using the Request/Response Model
(Synchronous Calls)

To make asynchronous call, aBEA Tuxedo client usesthe ATMI functiont pcal | ()

to send arequest to aBEA Tuxedo server. Thefunction doesnot invokeaBEA Tuxedo
server by name; instead, it invokes a specified service, which isprovided by any server
that offers the service and is avail able. The client then waits for the requested service
request to be performed. Until it receives areply to itsrequest, the client is not
available for any other work. In other words, the client “blocks” until it receives a

reply.

Tutorialsfor Developing a BEA Tuxedo Application 1-7

1 Developing a BEA Tuxedo Application

Figure 1-4 Using the Synchronous Request/Response M odel

ATMI

CLIENT SERVER
main())
{ {
tpinit . . .); do work;
tpeall("X™ ...); «— | tpretumni...);
tpterm();
} }

See Also

m “What Is Synchronous Messaging” on page 2-1Eitroducing the BEA Tuxedo
System

Using the Request/Response Model
(Asynchronous Calls)

To make an asynchronous call, a client calls two ATMI functionst heal | (3c)
function, to request a service, and tipget r pl y(3c) function, to retrieve the reply.
This method is commonly used when a client has tasks it can do between issuing a
request and receiving a reply.

1-8 Tutorials for Developing a BEA Tuxedo Application

Using Nested Calls

Figure1-5 Using Asynchronous Calls

ATMI

CLIENT SERVER
maini) X(...)
{ {
tpinit{ . . .);
tpacall{"X" . _); do work;
:lpng:;u:;l;l;y“; Hﬂ_f_,tpreturn[. .
tptermi);
} }

See Also

m “What Is Asynchronous Messaging” on page 2-1éninoducing the BEA
Tuxedo System

Using Nested Calls

Services can act as BEA Tuxedo clients and call other BEA Tuxedo services. In other
words, you can request a service that, in turn, requests other services. For example,
suppose a BEA Tuxedo client cadisvice X and waits for a replyService X then calls
serviceY and also waits for a reply. Wheervice X receives a reply, it returns the reply

to the calling client. This method is efficient becass®ice X can take the reply from
service Y, do more work on it, and modify the return buffer before sending a final reply
back to the client.

Tutorialsfor Developing a BEA Tuxedo Application 1-9

1 Developing a BEA Tuxedo Application

Figure1-6 Using Nested Calls

ATMI
CLIENT SERVER 1 SERVER ?
main() X() Yi)
{ { {
tpinit(); do work: do work:
tpcall("X™. . .); tpeall("™™",. ..) tpreturni . . .);

tptermi }; tpreturni);

} } }

See Also

m “Nested Requests” on page 2-181itroducing the BEA Tuxedo System

Using Forwarded Calls

With call forwarding, a nested service can return a reply directly to a client without
going through the first service that was called, thereby freeing the first service to
handle other requests. This capability is useful when the first service is acting strictly
as a delivery agent, without adding data to the reply returned by the nested service.

To facilitate call forwarding, a service called by a client uses giher war d(3c)
function to pass the request to another service Y. This is the only situation in which :
BEA Tuxedo service can end a service call without catligiget ur n(3c) .

1-10 Tutoriasfor Developing a BEA Tuxedo Application

Using Conversational Communication

Call forwardingistransparent to the client. In other words, the sameclient codeisvalid
for service requests handled by one service and reguests handled by more than one
service.

Figure1-7 Using Forwarded Calls

ATMI

CLIENT SERVER 1 SERVER 2
main() X() i)
{ { {
tpinit(); do work; do work;
tpeall{"X™ 7. .); tpforward ("Y"); tpreturn{);
tptermi);
} } H

See Also

m “Forwarded Requests” on page 2-2Qritroducing the BEA Tuxedo System

Using Conversational Communication

If multiple buffers need to be sent between a BEA Tuxedo client and a BEA Tuxedo
service in a stateful manner, then the BEA Tuxedo conversation may be a suitable

option.

Tutorialsfor Developing a BEA Tuxedo Application -1

1 Developing a BEA Tuxedo Application

Use BEA Tuxedo conversations judiciously because a server engaged in a
conversation is unavailable until the conversation has ended. To implement a
conversation, incorporate the following stepsin your code.

1
2.

Figure 1-8 Using Conversations

See Also

ATMI
CLIENT SERVER
maini } X(...)
{ {
tpinit(};
tpconnect("X"); loop {
loop { tprecvireply . . .);

tpsend(data . ‘_]__f—; tpsendidata . . .

tprecvireply . =)

]

tpreturn (... J;

tprecvireply . . .)

tpterm();
} i

The BEA Tuxedo client starts the conversation with thet pconnect () function.

The BEA Tuxedo client and the conversational server exchange buffers using the
t psend() andt precv() functions. A specia flag is set in the service callsto
indicate which participant has control of the conversation.

The conversation ends in normal conditions, when the server callst pr et ur n()
or thet pdi scon() function.

m “What Is Conversational Communication” on page 2-thinoducing the BEA

Tuxedo System

1-12 Tutoriasfor Developing a BEA Tuxedo Application

Using Unsolicited Notification

Using Unsolicited Notification

To enable unsolicited naotification, aBEA Tuxedo client creates an unsolicited
message handle using the t pset unsol () function. To send an unsolicited message,
aBEA Tuxedo client or server can use either the t pnot i f y() function, to send a
message to asingle client, or thet pbr oadcast () function, to send a message to
multiple clients at the same time. When a client receives amessage, the BEA Tuxedo
system calls the client’s unsolicited handler function.

In a signal-based system, a client does not have to poll for unsolicited messages.
However, in a non-signal based system, a client must check for unsolicited messages
using thet pchkunsol () function. Whenever a client makes a service request,

t pchkunsol () is called implicitly.

Figure1-9 Handling Unsolicited Notification

ATMI

CLIENT SERVER
main()
{ X(...)
tpinit(); {
tpsetunsol{“func"); tpnotify(msg);
tpterm(); tpreturn(. . .);
: }
func(.. J{
i]mce&s msgy;

Note: If you callt pnoti fy() with thet pack flag bit set, you will receive an
acknowledgement of your request.

Tutorialsfor Developing aBEA Tuxedo Application 1-13

1 Developing a BEA Tuxedo Application

See Also

m “What Is Unsolicited Communication” on page 2-17rtroducing the BEA
Tuxedo System

Using Event-based Communication

In event-based communication, events can also be posted to application queues, lo
files, and system commands. Any BEA Tuxedo client can subscribe to a user-define
event using thepsubscri be() function and receive an unsolicited message
whenever a BEA Tuxedo service or client issugsgmst () function. Clients can also
subscribe to system-defined events that are triggered whenever the BEA Tuxedo
system detects the event. When a server dies, for examplgydlser.ver Di ed event

is posted. No application server is needed to post this event, because it is performed
the BEA Tuxedo system.

1-14 Tutoriasfor Developing a BEA Tuxedo Application

Using Queue-based Communication

Figure1-10 Using Event-based Communication

ATMI

CLIENT SERVER
main

0 X(...)
{
tpinit(); {
tpsetunsol(“func"]; EventBroker LS
tpsubscribe("a"); — tppost(*a’);
tpt ;
pterm() tpreturn| . . . J;
}
funci ...} }
{
process msy;
i

See Also

m “How the EventBroker Works” on page 2-10limroducing the BEA Tuxedo
System

Using Queue-based Communication

To interface with the /Q system, a BEA Tuxedo client uses two ATMI functions:
t penqueue(), to put messages into the queue spacet pelqueue() , to take
messages out of the queue space.

Tutorialsfor Developing aBEA Tuxedo Application 1-15

1 Developing a BEA Tuxedo Application

Thefollowing model represents peer-to-peer asynchronous messaging. Here, a client
engueues amessageto aservice using t penqueue() . Optionally, the names of areply
gueue and afailure queue can be included in the call to t penqueue() . The client can
also specify a correlation identifier value to accompany the message. Thisvalueis
persistent across queues so that any reply or failure message associated with the
gueued message can be identified when it is read from the reply or the failure queue.

The client can use the default queue ordering (for example, atime after which the
message should be dequeued), or can specify an override of the default queue ordering
(asking, for example, that this message be put at the top of the queue or ahead of
another message on the queue). The call tot penqueue() sends the message to the
TMQUEUE server, the message is queued to stable storage, and an acknowledgment is
sent to the client. The acknowledgment is not seen directly by the client, but can be
assumed when theclient getsasuccessful return. (A failurereturnincludesinformation
about the nature of thefailure.) A messageidentifier assigned by the queue manager is
returned to the application. The identifier can be used to dequeue a specific message.
It can aso be used in another t penqueue() to identify a message on the queue ahead
of the next message to be enqueued.

Before an enqueued message is made available for dequeuing, the transaction in which
the message is enqueued must be committed successfully. A client usest pdequeue()
to dequeue messages from the queue.

Figure1-11 Peer-to-Peer Asynchronous M essaging M odel

ATMI
CLIENT CLIENT
do work do work
do work tpengqueve()——» ——» tpdequeue() do work
tpdequeue() —— «—-—— tpenqueue()
do work do work

1-16 Tutoriasfor Developing a BEA Tuxedo Application

Using Queue-based Communication

In the following graphic, forwarding a message to another server isillustrated.

The client enqueues a message intended for service X on the server. The service
receives this message when it is active and when the handling instructions for the
message are met (for exampl e, the message can be encoded to be activated on Friday
at 6 PM). Once the service is completed, it returns the reply to the queue space, from
which it can be retrieved by the client.

This system of queuing istransparent to services. In other words, the same application
codeisused for aservice, regardless of whether the serviceisinvoked through queuing
or direct serviceinvocation using t p(a) cal | .

Figure1-12 Using Queue Forwarding for Queue-based Service Invocation

ATMI

CLIENT SERVER

main() X(.)

{ TMQFORWARD {

tpinit(J;

tpenquene("’); 4 ——»tpdequeue(T> do work;
tpdequeelreply) «——— .« tpenqueue| L_t_E'caII[rf;tpreturn[5

tpterm();

See Also

m “What Is Queue-based Communication” on page 2-18tioducing the BEA
Tuxedo System

Tutorialsfor Developing aBEA Tuxedo Application 1-17

1 Developing a BEA Tuxedo Application

Using Transactions

To implement transactions, an application programmer uses three ATMI functions:
m tpbegi n() to start the transaction

m tpconnit () to start the 2-phase commit process

m tpabort() toimmediately cancel the transaction.

Any code placed outside the begin and commit/abort sequence is not included in the
transaction.

Inthe following example, aclient begins atransaction, requeststwo services, and then
commitsthe transaction. Because the service requests are made between the beginning
and the commitment of the transaction, both services join the transaction.

Figure 1-13 Using Transactions

ATMI
CLIENT SERVERS DATABASES
main() Xi...)
{
{ doDBwork; _ | DB
tpreturn(); <«——— (Oracle)
tpinit(); 1
tphegin();
tpcall("X™ 7.);
tpcall(™™ ...}
tpcommit(J; \
Yi...)
tptermi J; {
do DB work; __ | DBZI
} tpreturn{); «— (Informix)

Tutorials for Developing a BEA Tuxedo Application

Using Transactions

See Also

m “Managing Transactions” on page 3-34lintroducing the BEA Tuxedo System
m “Tutorial for bankapp, a Full C Application” on page 3-1

m “Tutorial for CSIMPAPP, a Simple COBOL Application” on page 4-1

m “Tutorial for simpapp, a Simple C Application” on page 2-1

m “Tutorial for STOCKAPP, a Full COBOL Application” on page 5-1

Tutorialsfor Developing aBEA Tuxedo Application 1-19

1 Developing a BEA Tuxedo Application

1-20 Tutoriasfor Developing a BEA Tuxedo Application

CHAPTER

2 Tutorial for simpapp, a
Simple C Application

m What Is simpapp

m Preparing simpapp Files and Resources

Step 1:
Step 2:
Step 3:
Step 4:
Step 5:
Step 6:
Step 7:
Step 8:

How to Copy the simpapp Files

Examining and Compiling the Client
Examining and Compiling the Server
Editing and Loading the Configuration File
How to Boot the Application

How to Execute the Run-time Application
How to Monitor the Run-time Application

How to Shut Down the Application

What Is simpapp

si npapp is asample application that includes one client and one server. This

applicationisdistributed with the BEA Tuxedo software. The server performsonly one
service: it accepts alower case alphabetic string from the client and returns the same
string in upper case.

Tutorialsfor Developing a BEA Tuxedo Application

2-1

2 Tutorial for simpapp, a Simple C Application

Preparing simpapp Files and Resources

Thistopicisatutoria that leads you, step by step, through the process of devel oping
and running a sample BEA Tuxedo application. The following flowchart summarizes
the process. Click on each task for instructions on completing that task.

Figure2-1 simpapp Development Process
Step 1. Copy simpapp
files

|
Step 2. Examine and
compile the client

|
Step 3. Examine and
compile the server

|
Step 4. Editand load the
configuration file

|
Step 5. Bootthe
application

|
Step B, Execute the run-
time application

|
Step 7. Monitor the run-
time application

|
Step 8. Shut down the
application

Before You Begin

2-2

Before you can runthistutorial, the BEA Tuxedo software must be installed so that the
files and commands referred to are available. If theinstallation has already been done
by someone else, you need to know the path name of the directory in which the
softwareisinstalled (TUXDI R). Y ou also need to have read and write permissions on
the directories and filesin the BEA Tuxedo directory structure so you can copy

si mpapp files and execute BEA Tuxedo commands.

Tutorials for Developing a BEA Tuxedo Application

Step 1: How to Copy the simpapp Files

About This Tutorial

Theinstructionsfor the si npapp tutorial are based on aUNIX system platform. While
specific platform instructions for the UNIX operating system environment remain
relatively the same, instructions (for example, how to copy si npapp files, set
environment variables), for other non-UNIX platforms (such asWindowsNT) may be
different. Examples used may vary significantly depending on your platform.

What You Will Learn

After you complete this tutorial, you will be able to understand the tasks clients and
servers can perform, edit a configuration file for your own environment, and invoke

t madmi n to check on the activity of your application. Y ou will understand the basic
elements of all BEA Tuxedo applications—client processes, server processes, and a
configuration file—and you will know how to use BEA Tuxedo system commands to
manage your application.

Step 1: How to Copy the simpapp Files

Note: The following instructions are based on a UNIX system platform.
Instruction for non-UNIX platforms, such as Windows NT, may be
different. Examples used in the sample applications may vary
significantly, depending on the specific platform.

1. Make a directory fosi npapp andcd to it.

nkdir sinpdir
cd sinpdir

Note: This step is suggested so you can seeithpapp files you have at the start
and the additional files you create along the way. Use the standard shell
(/ bi n/ sh) or the Korn shell; do not usah.

2. Set and export environment variables.

TUXDI R=pat hname of the BEA Tuxedo system root directory
TUXCONFI G=pat hname of your present working directory/tuxconfig

Tutorialsfor Developing a BEA Tuxedo Application 2-3

2 Tutorial for simpapp, a Simple C Application

PATH=$PATH: $TUXDI R/ bi n
LD LI BRARY_PATH=SLD LI BRARY_PATH $TUXDI R/ | i b
export TUXDI R TUXCONFI G PATH LD LI BRARY_PATH

You need TUXDI R and PATH to be able to accessfiles in the BEA Tuxedo system
directory structure and to execute BEA Tuxedo system commands. On

Sun Solaris, / usr/ 5bi n must be the first directory in your PATH. With AIX on
the RS/6000, use LI BPATH instead of LD LI BRARY_PATH. On HP-UX on the
HP 9000, use SHLI B_PATH instead of LD LI BRARY_PATH.

You need to set TUXCONFI Gto be able to load the configuration file, described in
“Step 4: Editing and Loading the Configuration File” on page 2-11.

3. Copy thesi npapp files.
cp $TUXDI R/ sanpl es/ at m / si npapp/ * .

Note: Itis bestto begin with a copy of the files rather than the originals delivered
with the software because you will edit some of the files to make them
executable.

4. List the files.
$1s
READVE env si npapp.nt ubbnp wsi npcl
README. as400 setenv.cnd sinpcl.c ubbsi npl e

README. nt si nmpapp. nk si npserv.c ubbws
$

Note: Except for theREADME files, the other files are variations ©fnp*. * and
ubb* files for non-UNIX system platforms. THREADVE files provide
explanations of the other files.

The three files that are central to the application are:
e sinpcl . c—the source code for the client program
e sinpserv. c—the source code for the server program

e ubbsi npl e—the text form of the configuration file for the application.

See Also

m “What Is simpapp” on page 2-1

2-4 Tutorials for Developing a BEA Tuxedo Application

Step 2: Examining and Compiling the Client

Step 2: Examining and Compiling the Client

How to Examine the Client

Review the client program source code.
$ nore sinpcl.c

The output is shown in the following list.

Listing 2-1 Source Code of simpcl.c

1 #include <stdio. h>

2 #include "atm . h" /* TUXEDO */

3

4

5

6

7 #ifdef __STDC _

8 mai n(int argc, char *argv[])

9

10 #el se

11

12 mai n(argc, argv)

13 int argc;

14 char *argv[];

15 #endi f

16

17 {

18

19 char *sendbuf, *rcvbuf;

20 int sendlen, rcvlen;

21 int ret;

22

23 if(argc !'=2) {

24 fprintf(stderr, "Usage: sinpcl string\n");
25 exit(1);

26 }

27 /* Attach to BEA TUXEDO as a O ient Process */
28 if (tpinit((TPINIT *) NULL) == -1) {

29 fprintf(stderr, "Tpinit failed\n");
30 exit(1);

Tutorialsfor Developing a BEA Tuxedo Application 2-5

Tutorial for simpapp, a Simple C Application

2-6

}

sendl en =

i f((sendbuf

}
if((rcvbu

strlen(argv[1]);

= (char *)tpalloc("STRING', NULL, sendl en+1l))== NULL){
fprintf(stderr,"Error allocating send buffer\n");
tpterm();
exit(1);
f = (char *)tpalloc("STRING', NULL, sendl en+l))== NULL){

fprintf(stderr,"Error allocating receive buffer\n");
t pfree(sendbuf);

tptern();
exit(1);
}
strcpy(sendbuf, argv[1]);
ret = tpcall ("TOUPPER', sendbuf, NULL, &rcvbuf, & cvlen, 0);
if(ret == -1) {
fprintf(stderr, "Can’t send request to service TOUPPER n");
fprintf(stderr, "Tperrno = %, %\n", tperrno,
tmensgs[tperrno]);
t pfree(sendbuf);
tpfree(rcvbuf);
tptern();
exit(1);
printf("Returned string is: %\n", rcvbuf);

/* Free Buffers & Detach from BEA TUXEDO */

tpfree(se
tpfree(rc
tpterm();

ndbuf);
vbuf);

Table2-1 Si

gnificant Linesin the simpcl.c Source Code

Line(s) File/lFunction Purpose

2 atm . h Header file required whenever BEA Tuxedo ATMI
functions are used.

28 tpinit() The ATMI function used by a client program to join an

application.

Tutorials for Developi

ng a BEA Tuxedo Application

Step 2: Examining and Compiling the Client

Line(s) File/Function

Purpose

33 tpal | oc()

The ATMI function used to allocate a typed buffer.

STRI NGis one of the five basic BEA Tuxedo buffer
types; NULL indicates there is no subtype argument. The
remaining argument, sendl en + 1, specifiesthelength
of the buffer plus 1 for the null character that ends the
string.

38 tpal l oc()

Allocates another buffer for the return message.

45 tpcall ()

Sends the message buffer to the TOUPPER service
specified in the first argument. Also includes the address
of the return buffer. t pcal | () waitsfor areturn

message.

35,41,52,60 tpterm()

The ATMI function used to exit an application. A cal to
t pt er n() isusedto exit the application beforeexitingin
response to an error condition (lines 36, 42, and 53). The
final call tot pt er n{) (line 60) isissued after the
message has been printed.

40, 50, 51, tpfree()
58, 59

Frees allocated buffers. t pf r ee() isthe functional
opposite of t pal | oc() .

55 printf()

The successful conclusion of the program. It prints out the
message returned from the server.

How to Compile the Client

1. Runbuil dcli ent to compilethe client program.

buildclient -0 sinmpcl -f sinpcl.c

The output fileis si npcl and the input source fileissi npcl . c.

2. Check theresults.

$1s -l
total 97
-rwxr-x--x 1 usrid
STW-r----- 1 usrid
STW-r----- 1 usrid
STW-r----- 1 usrid

grpid 313091 May 28 15:41 sinpcl
grpid 1064 May 28 07:51 sinpcl.c
grpid 275 May 28 08:57 sinpserv.c
grpid 392 May 28 07:51 ubbsinple

As can be seen, we now have an executable module called si

si npcl may vary.

npcl . The size of

Tutorialsfor Developing a BEA Tuxedo Application 2-7

2 Tutorial for simpapp, a Simple C Application

See Also

m “What Is simpapp” on page 2-1
m buildclient (1) in BEA Tuxedo Command Reference

m BEA Tuxedo C Function Reference

Step 3: Examining and Compiling the Server

How to Examine the Server

Review the server program source code.

$ nore sinpserv.c

Listing 2-2 Source Code of simpserv.c

*/

* #ident" @#) apps/sinpapp/sinpserv.c$Revision: 1.1 $" */
#i ncl ude <stdio. h>
#i ncl ude <ctype. h>
#include <atm . h>/* TUXEDO Header File */
#i ncl ude <userl og. h>/* TUXEDO Header File */
/* tpsvrinit is executed when a server is booted, before it begins
processing requests. |t is not necessary to have this function.
Also available is tpsvrdone (not used in this exanple), which is
called at server shutdown tine.

OO WNEFE ™

9 */
10 #if defined(__STDC) || defined(__cpl uspl us)

12 tpsvrinit(int argc, char *argv[])
13 #el se

14 tpsvrinit(argc, argv)

15int argc;

16 char **argv;

17 #endif

2-8 Tutorials for Developing a BEA Tuxedo Application

Step 3: Examining and Compiling the Server

/* Some conpilers warn if argc and argv aren’t used.
*/

argc = argc;

argv = argv;

/* userlog wites to the central TUXEDO nessage | og */
userl og(" Wl cone to the sinple server");

return(0);

/* This function perforns the actual service requested by the client.
Its argunent is a structure contai ning, anong other things, a pointer
to the data buffer, and the length of the data buffer.

*/

#i fdef _ cpl uspl us

extern "C'

#endi f

voi d

#i f defined(__STDC) ||

TOUPPER(TPSVCI NFO *rqgst)

#el se

TOUPPER(r gst)

TPSVCI NFO *rgst;

defined(__cpl uspl us)

40 #endi f

41
42
43
44
45
46
47
48

{

int i;

for(i =0; i <rqgst->len-1; i++)
rgst->data[i] = toupper(rqgst->datali]);
/* Return the transforned buffer to the requestor. */
tpreturn(TPSUCCESS, 0, rgst->data, OL, 0);
}

Tutorialsfor Developing a BEA Tuxedo Application 2-9

2 Tutorial for simpapp, a Simple C Application

Table 2-2 Significant Parts of the simpserv.c Source Code

Li

ne(s) File/lFunction Purpose

wholefile A BEA Tuxedo server does not containamai n() . The

mai n() isprovided by the BEA Tuxedo system when the
server is built.

12

tpsvrinit() Thissubroutineiscaled during server initiaization, that is,
before the server begins processing service requests. A
default subroutine (provided by the BEA Tuxedo system)
writes a message to USERL OGindicating that the server has
been booted. user | og(3c) isalog used by the BEA
Tuxedo system and can be used by applications.

TOUPPER() The declaration of a service (the only one offered by
si npser v). The sole argument expected by the serviceis
apointer to a TPSVCI NFO structure, which contains the
data string to be converted to uppercase.

for |oop Converts the input to uppercase by repeated callsto
t oupper .

49

tpreturn() Returns the converted string to the client with the
TPSUCCESS flag set.

How to Compile the Server

1

2-10 Tutorias for

Run bui | dser ver to compilethe server program.
bui | dserver -o sinpserv -f sinpserv.c -s TOUPPER

The executable file to be created isnamed si npser v and si npser v. c isthe
input source file. The-s TOUPPER option specifies the service to be advertised
when the server is booted.

Developing a BEA Tuxedo Application

Step 4: Editing and Loading the Configuration File

2. Check theresults.

$1s -1l

total 97

-rwWxr-x--x 1 usrid grpid 313091 May 28 15:41 si npcl
STWI----- 1 wusrid grpid 1064 May 28 07:51 sinpcl.c
-rwWxr-x--x 1 usrid grpid 358369 May 29 09: 00 sinpserv
STWTr----- 1 wusrid grpid 275 May 28 08:57 sinpserv.c
STWI----- 1 wusrid grpid 392 May 28 07:51 ubbsinple

Y ou now have an executable module called si npser v.

See Also

m “What Is simpapp” on page 2-1
®m buil dserver (1) in BEA Tuxedo Command Reference

m BEA Tuxedo C Function Reference

Step 4: Editing and Loading the
Configuration File

How to Edit the Configuration File

1. In atext editor, familiarize yourself witlbbsi npl e, which is the configuration
file for si npapp.

Listing 2-3 Thesimpapp Configuration File

1$

2

3 #Skel eton UBBCONFI G file for the BEA Tuxedo Sinple Application.
4 #Repl ace the <bracketed> itens with the appropriate val ues.

5 RESOURCES

Tutorialsfor Developing aBEA Tuxedo Application 2-11

2 Tutorial for simpapp, a Simple C Application

6 | PCKEY <Repl ace with valid | PC Key greater than 32, 768>
7

8 #Exanpl e:

9

10 #1 PCKEY 62345

11

12 MASTER sinpl e

13 MAXACCESSERS 5

14 MAXSERVERS 5

15 MAXSERVI CES 10

16 MODEL SHM

17 LDBAL N

18

19 *MACHI NES

20

21 DEFAULT:

22

23 APPDI R="<Repl ace with the current pathname>"
24 TUXCONFI G="<Repl ace wi th TUXCONFI G Pat hnanme>"
25 TUXDI R="<Root directory of Tuxedo (not /)>"
26 #Exanpl e:

27 # APPDI R="/ usr/ e/ sinmpdir"

28 # TUXCONFI G="/ usr/ e/ si npdi r/ tuxconfi g"

29 # TUXDI R="/ usr/t uxedo"”

30

31 <Machi ne-name> LM D=sinple

32 #Exanpl e:

33 #tuxnmach LM D=si npl e

34 *GROUPS

35 GROUP1

36 LM D=si npl e GRPNO=1 OPENI NFO=NONE
37

38 *SERVERS

39 DEFAULT:

40 CLOPT="- A"

41 sinpserv SRVCGRP=GROUP1 SRVI D=1
42 * SERVI CES
43 TOUPPER

2. For each <st ri ng> (that is, for each string shown between angle brackets),
substitute an appropriate value.

2-12 Tutorialsfor Developing a BEA Tuxedo Application

Step 5: How to Boot the Application

How to Load the Configuration File

1. Runtm oadcf toload the configuration file.

$ tnl oadcf ubbsinple

Initialize TUXCONFI G file: /usr/me/sinpdir/tuxconfig [y, q] ?vVy

$

2. Check theresults.
$1s -1l
total 216
-rwWxr-x--x 1 usrid grpid 313091
STWIr----- 1 usrid grpid 1064
-rwWxr-x--x 1 usrid grpid 358369
STWI----- 1 usrid grpid 275
STWIr----- 1 usrid grpid 106496
STWI----- 1 usrid grpid 382

si npcl
sinmpcl.c
si npserv
sinpserv.c
tuxconfig
ubbsi npl e

Y ou now have afile called TUXCONFI G. The TUXCONFI Gfileis anew file under the

control of the BEA Tuxedo system.

See Also

m “What Is simpapp” on page 2-1

m tm oadcf (1) in BEA Tuxedo Command Reference

m UBBCONFI § 5) in BEA Tuxedo File Formats and Data Descriptions Reference

Step 5: How to Boot the Application

1. Execute mboot to bring up the application.

$ tnboot

Boot all admin and server processes? (y/n):

Booting all admin and server processes in

/usr/ me/ sinmpdir/tuxconfig
Booting all admin processes ...

y

Tutorialsfor Developing aBEA Tuxedo Application 2-13

2 Tutorial for simpapp, a Simple C Application

exec BBL -A:
process id=24223 ... Started.

Booting server processes ...

exec sinpserv -A
process id=24257 ... Started.
2 processes started.

$

The BBL is the administrative process that monitors the shared memory structures in
the application. si npser v isthe si npapp server that runs continuously, awaiting
requests.

m “What Is simpapp” on page 2-1
m tmboot (1) in BEA Tuxedo Command Reference

m “How to Boot the Application” on page 1-9 Administering a BEA Tuxedo
Application at Run Time

Step 6: How to Execute the Run-time
Application

To execute yousi npapp, have the client submit a request.

$ sinpcl “hello, world”
Returned string is: HELLO, WORLD

See Also

m “What Is simpapp” on page 2-1

2-14 Tutorialsfor Developing a BEA Tuxedo Application

Step 7: How to Monitor the Run-time Application

Step 7: How to Monitor the Run-time
Application

Asthe administrator, you can use the t madni n command interpreter to check an
application and make dynamic changes. To run t madni n, you must have the
TUXCONFI G environment variable set.

t madmi n can interpret and run over 50 commands. For acomplete list, see
t madmi n(1) . Here we use two of the t madni n commands.

1. Enter the following command.
$ tmadmin
The following lines are displayed.

tmadm n - Copyright (c) 1999 BEA Systens, Inc. Al rights
reserved.
>

Note: The greater-than sign (>) isthet nadmi n prompt.

2. Entertheprintserver(psr) command to display information about servers.

> psr

a.out Nane Queue Name G p Nane |ID RqDone Load Done Current Service
BBL 531993 si npl e 0 0
si npserv 00001. 00001 GROUP1 1 0
>

3. Entertheprintservi ce(psc) command to display information about the
services:

> psc
Servi ce Nanme Routine Nanme a.out Name G p Nane | D Machi ne # Done Status

TOUPPER TOUPPER si npserv GROUP1 1 sinple - AVAI L
>

Tutorialsfor Developing aBEA Tuxedo Application 2-15

2 Tutorial for simpapp, a Simple C Application

See Also

m “What Is simpapp” on page 2-1

® trmadni n(1) in BEA Tuxedo Command Reference

Step 8: How to Shut Down the Application

1. Runt nshut down to bring down the application.

$ t nshut down

Shut down all adm n and server processes? (y/n): vy
Shutting down all adm n and server processes in
/usr/ e/ sinpdir/tuxconfig

Shutti ng down server processes ...

Server I|d =1 Goup Id = GROUPL Machine = sinple: shut down
succeeded.
Shut ti ng down adm n processes ...

Server |d = 0 Goup Id = sinple Machine = sinple: shut down
succeeded.
2 processes stopped.

$
2. Check theuLoG

$ cat ULO&

$

113837. t uxmach! t m oadcf. 10261: CMDTUX CAT: 879: Anewfil e system
has been created. (size = 32 4096-byte bl ocks)

113842. t uxmach! t m oadcf. 10261: CVDTUX_CAT: 871: TUXCONFIG file
/usr/ e/ sinpdir/tuxconfig has been created

113908. t uxmach! BBL. 10768: LI BTUX CAT: 262: std nmain starting
113913. t uxmach! si npserv. 10925: LI BTUX CAT: 262: std main starting
113913. t uxmach! si npserv. 10925: Wl conme to the sinple server
114009. t uxmach! si npserv. 10925: LI BTUX CAT: 522: Defaul t
tpsvrdone() function used.

114012. t uxmach! BBL. 10768: CVDTUX CAT: 26: Exiting system

2-16 Tutorialsfor Developing a BEA Tuxedo Application

Step 8: How to Shut Down the Application

See Also

m “What Is simpapp” on page 2-1
m tnshut down(1) in BEA Tuxedo Command Reference
m userl og(3c) in BEA Tuxedo C Function Reference

m “How to Shut Down Your Application” on page 1-11Administering a BEA
Tuxedo Application at Run Time

m “What Is the User Log (ULOG)"” on page 2-17Administering a BEA Tuxedo
Application at Run Time

Tutorialsfor Developing aBEA Tuxedo Application 2-17

2 Tutorial for simpapp, a Simple C Application

2-18 Tutoriasfor Developing a BEA Tuxedo Application

CHAPTER

3 Tutorial for bankapp, a
Full C Application

m What Is bankapp
m Familiarizing Yourself with bankapp
m Preparing bankapp Files and Resources

m Running bankapp

What Is bankapp

bankapp is asample banking application that is provided with the BEA Tuxedo
software. The application performs the following banking functions: opens and closes
accounts, retrieves account balances, deposits or withdraws money from an account,
and transfers monies from one account to another.

About This Tutorial

Thistutorial leads you, step by step, through the procedure you must perform to
develop the bankapp application. Once you have “developéginkapp through this
tutorial, you will be ready to start developing applications of your own.

Tutorialsfor Developing a BEA Tuxedo Application 31

3 Tutorial for bankapp, a Full C Application

The bankapp tutorial is presented in three sections:
m Familiarizing Yourself with bankapp

m Preparing bankapp Files and Resources

m Running bankapp

Note: Thisinformation has been written for UNIX and Windows NT system users
with some experience in application development, administration, or system
programming. We assume some familiarity with the BEA Tuxedo software.

Familiarizing Yourself with bankapp

Instructionsin this sample application are automated for your convenience through
shell scripts that work ina UNIX or Windows NT environment: RUNVE. sh and
RUNME. cnd. The associated r eadne files discuss how to run these files. Go through
these files to understand the procedure more thoroughly and then follow these
step-by-step instructions to help you set up and manage a distributed application.

bankapp usesademo relational database delivered with the software that enablesyou
to use the sampl e application. Various commands and SQL code within the sample
application (included for demo purposes only) provide access to the database.

This documentation provides atour of the files, client, and services that make up the
bankapp application. Click on any of the following activities for more information
about that part of the tour.

Learning aboutthe
hankapp files

Examining the hankapp
clients

Examining the hankapp
SEIVErs

3-2 Tutorials for Developing a BEA Tuxedo Application

Learning About the bankapp Files

Learning About the bankapp Files

The files that make up the bankapp application are delivered in a directory called
bankapp, which is positioned as follows.

samples/
a\mi

haLkappf sim|L:e.|ppar

Exploring the Banking Application Files

The bankapp directory contains the following files:

Five source files for service subroutines using embedded SQL statements
Eight C sourcefiles

One request/response client program (audi t)

One conversational server (AUDI T)

One conversational client (audi t con)

Three servers (or files associated with servers)

Two files that generate data or transactions for the application
Miscellaneous files

Generic BEA Tuxedo application files (that is, files needed in any BEA Tuxedo
application)

Makefile for various add-ons

Files provided to facilitate the use of bankapp as an example

Tutorialsfor Developing a BEA Tuxedo Application 3-3

3 Tutorial for bankapp, a Full C Application

Thefollowing table lists the files of the banking application. Thetable liststhe source
files delivered with the BEA Tuxedo software, filesthat are generated when the
bankapp. nk isrun, and a summary of the contents of each file.

Table 3-1 Description of the Banking Application Files

Source File Generated File Contents

ACCT. ec ACCT. ¢, ACCT.o, ACCT Containstwo services; OPEN_ACCT and CLOSE_ACCT to
open and close accounts.

ACCTMGR. ¢ ACCTMGR A server that subscribesto events and logs notifications.
Contains WATCHDOG and Q OPENACCT _LOG services.

AUDI TC. ¢ AUDI TC Contains a conversational server that handles service requests
from the client audi t con.

BAL. ec BAL.c, BAL.o, BAL Contains a set of services: ABAL, TBAL, ABAL_BI D, and
TBAL_BI Dthat allow the audit client to obtain bank-wide or
branch-wide account or teller balances.

BALC. ec BALC. c, BALC. o0, BALC Containstwo services: ABALC BI D, and TBALC Bl D. These
services are the same as TBAL_BI Dand ABAL_ Bl D, except
that TPSUCCESS is returned when a branch ID is not found,
which allows audi t con to continue running.

bankngr. c banknygr A client program that subscribes to events of special interest.

BTADD. ec BTADD. ¢, BTADD. o, Contains two services. BR_ADD and TLR_ADD for adding

BTADD branches and tellers to the database.
cracl .sh - A shell script that creates Access Control Liststo demonstrate

the Access Control security level.

crqueue. sh

A shell script that creates application queues for use in event
notification.

crusers. sh

A shell script that creates groups and usersto demonstrate the
authentication security level.

event.flds

A fidld table file used in the event feature.

FI LES

A descriptive list of all thefilesin bankapp.

34

Tutorials for Developing a BEA Tuxedo Application

Learning About the bankapp Files

SourceFile Generated File Contents

README - Installation and boot procedures for dl platforms except
Windows NT.

README. nt - Installation and boot procedures for the Windows NT
platform.

READIVEZ - Documentation of additionsto bankapp that demonstrate
new features. Thefileislocated in the
sanpl es/ at m / bankapp directory.

README2. nt - Documentation of additionsto bankapp that demonstrate
new features for the WindowsNT platform. Thefileislocated
inthe sanpl es\ at m \ bankapp directory.

RUNME. cnd An interactive script to build, configure, boot, and shut down
the application for Windows NT.

RUNME. sh - An interactive script to build, configure, boot, and shut down
the application for UNIX.

showg. sh! - A shell script that displaysthe status and contents of amessage
queue.

TLR. ec TLR ¢, TLR o, Contains three services: W THDRAWAL,, DEPCSI T, and

| NQUI RY.

usrevtf.sh

A shell script that creates an ENVFI LE for the BEA Tuxedo
server TMUSREVT.

XFER c XFER. 0, XFER Contains TRANSFER service.

aud. v aud. V, aud.h An FML view used to define the structure passed between the
audit client and the BAL server.

appinit.c appinit.o Contains customized versionsof t psvrinit() and
t psvrdone() for al serversother than TLR.

audit.c audit. o, A client that obtains bank-wide or branch-wide account and
teller balances viathe ABAL, TBAL, ABAL_BI D, and
TBAL_BI D services.

audi tcon. c audi tcon Aninteractiveversion of audit that uses conversations and four

services: ABAL, TBAL, ABALC BI D, and TBALC BI D.

Tutorialsfor Developing a BEA Tuxedo Application 3-5

3 Tutorial for bankapp, a Full C Application

Source File Generated File Contents

bankapp. mk - An application makefile for UNIX.

bankapp. nt - An application makefile for Windows NT.

bank. fl ds bank. fl ds. h A field tablefile containing bank database fields and auxiliary
FML fields used by servers.

bank. h - Contains data definitions pertinent to multiple C programsin
the application.

bankvar - Contains some environment variables for bankapp. Other
environment variables are defined in ENVFI LE, but because
ENVFI LE is set from within bankvar , you can control the
entire environment for your application through bankvar .

cr bank. sh cr bank A shell script that creates databases for all banks when
bankapp isrunin SHM mode.

crbankdb. sh cr bankdb A shell script that creates a database for one server group.

crtlog. sh crtlog, TLOG A shell script that createsa UDL and aTLOG on the master site
and a UDL on the non-master sites.
driver.sh driver A shell script that drivesthe application by piping FML buffers

with transaction requests through ud(1) .

envfile.sh

envfile, ENVFILE

A shell script that creates ENVFI LE for use by t nl oadcf.

gendata.c

gendat a

A program that generates ud-readable requests to add ten
branches, thirty tellers, and two hundred accounts.

gentran.c

gentran

A program that generates ud-readable transaction requests
fromfour services: DEPCSI T, W THDRAWAL, TRANSFER, and

| NQUI RY.

popul at e. sh

popul at e

A shell script that populates the database by piping FML
buffers with requests to add branches, tellers, and accounts
through ud(1) .

ubbnmp

TUXCONFI G

A sample UBBCONFI Gfile for usein an MP-mode
configuration.

3-6 Tutorials for Developing a BEA Tuxedo Application

Examining the bankapp Clients

Sour ce File Generated File Contents

ubbshm TUXCONFI G A sample UBBCONFI Gfile for use in a SHVtmode
configuration.

util.c util.o A set of functions, such asget str (), that are commonly
used by services.

bankcl t.c bankcl t Client for bankapp.

See Also

m “Familiarizing Yourself with bankapp” on page 3-2

Examining the bankapp Clients

What Is the bankclt.c File

The bankcl t file contains the client program that requests BEA Tuxedo services from
thebankapp application. This client program is text-based and provides the following
options:

m Balance Inquiry
m Withdrawal

m Deposit

m Transfer

m Open Account
m Close Account

m Exit Application

Tutorialsfor Developing a BEA Tuxedo Application 3-7

3 Tutorial for bankapp, a Full C Application

Each of these options, except Exit Application, calls a subroutine that performs the
following tasks:

1. Obtainsthe user input from the keyboard using the get _account (),
get _anount (), get _socsec(), get _phone(), andtheget val () functions.

2. Putsthevauesinto agloba FML buffer (*f bf r). (Some functions add more
fields than others. Thisis dependent on the information needed by the servers.)

3. Enables routines that make a request to the BEA Tuxedo system through the
do_t pcal I () function to invoke the required service. The following table lists
the functions and the services they invoke.

Table 3-2 Services Called by Function

Function Name Input FML Fields Output FML Fields Service Name

BALANCE() ACCOUNT_| D SBALANCE | NQUI RY

W THDRAWAL () ACCOUNT_I D SBALANCE W THDRAWAL
SAMOUNT

DEPGCSI T() ACCOUNT_I D SBALANCE DEPCSI T
SAMOUNT

TRANSFER() ACCOUNT | D (0)1 SBALANCE (0) TRANSFER
ACCOUNT I D (1) SBALANCE (1)
SAMOUNT

OPEN_ACCT() LAST_NAMVE ACCOUNT_I D OPEN_ACCT
FI RST_NAME SBALANCE
MDINT
SSN
ADDRESS
PHONE
ACCT_TYPE
BRANCH_| D
SAMOUNT

CLOSE_ACCT() ACCOUNT_| D SBALANCE CLOSE_ACCT

The number in parentheses is the FML occurrence number for that field.

3-8 Tutorials for Developing a BEA Tuxedo Application

Examining the bankapp Clients

4. After the call completes successfully, each function gets the fields it needs from
the returned FML buffer and prints the results.

Thedo_t pcal | () function (that begins on line 447 in bankcl t . ¢) follows:

Listing3-1 do_tpcal I () inbankclt.c

/*
* This function does the tpcall to Tuxedo.
*/

static int

do_tpcal |l (char *service)

{

long len;
char *server_status;
/* Begin a G obal transaction */
if (tpbegin(30, 0) == -1) {
(void)fprintf(stderr, "ERROR tpbegin failed (%)\n",
tpstrerror(tperrno));
return(-1);
}
/* Request the service with the user data */
if (tpcall(service, (char *)fbfr, 0, (char **)&f bfr, & en,
0 ==-1) {
if(tperrno== TPESVCFAIL && fbfr !'= NULL &&
(server_status=Ffind(fbfr, STATLIN,0,0)) != 0) {
/* Server returned failure */
(void)fprintf(stderr, "% returns failure
(%s)\n",
servi ce, server _stat us);

}
el se {
(void)fprintf(stderr,
"ERROR 9% failed (%)\n", service,
tpstrerror(tperrno));
}

/* Abort the transaction */
(void) tpabort(0);
return(-1);
}
/* Commit the transaction */
if(tpcommt(0) < 0) {
(void)fprintf(stderr, "ERROR tpconmt failed
(%)\n",
tpstrerror(tperrno));

Tutorialsfor Developing a BEA Tuxedo Application 39

3 Tutorial for bankapp, a Full C Application

return(-1);

return(0);

Thedo_t pcal I () function performs the following tasks:

Beginsaglobal transaction by calling t pbegi n() , which ensuresthat all work is
done as a single unit.

Callst pcal | () with the requested service name (char *servi ce) and the
supplied FML buffer (the global *f bf r pointer).

If t pcal I () failswith a server-indicated failure (TPSVCERR), it printsthe
message from the server in the STATLI N FML field. The transaction isrolled
back with t pabort () and it returns-1.

If t pcal I () failswith any other error, it prints the error message and rolls back
the transaction with t pabor t () and returns -1.

If t pcal | () succeeds, it commits the transaction using t pconmmi t () and returns
0.

Note: Theunsol fcn() function isinvoked if thereisan unsolicited message to the

client. It only supports STRI NG buffer types and prints the message.

How ud(1) Is Used in bankapp

bankapp uses the BEA Tuxedo program ud(1) , which allows fielded buffersto be
read from standard input and sent to aservice. In the sample application, ud is used by
both the populate and driver programs:

In populate, a program called gendat a passes service requests to ud with
customer account information to be entered in the bankapp database.

In driver, the data flow is similar, but the program is gent r an and the purpose is
to pass transactions to the application to simulate an active system.

3-10 Tutorialsfor Developing a BEA Tuxedo Application

Examining the bankapp Clients

A Request/Response Client: audit.c

audi t isarequest/response client program that makes branch-wide or bank-wide
balance inquiries, using the services: ABAL, TBAL, ABAL_BI D, and TBAL_BI D. You can
invoke it in two ways:

m audit [-a | -t]—Prints the bank-wide total value of all accounts, or
bank-wide cash supply of all tellers. Optioa or -t must be specified to
indicate whether account balances or teller balances are to be tallied.

m audit [-a | -t] branch_I D —Prints the branch-wide total value of all
accounts, or branch-wide cash supply of all tellers, for branch denoted by
branch_I D. Option- a or -t must be specified to indicate whether account
balances or teller balances are to be tallied.

The source code for audit contains two major pattsh() and a subroutine called

sum bal (). BEA Tuxedo ATMI functions are used in both parts. The program uses a
VI Ewtyped buffer and a structure that is defined indhé. h header file. The source
code for the structure can be found in the view descriptiorafile, v .

The following pseudo-code shows the algorithm for the program.

Listing 3-2 audit Pseudo-code

mai n()

Par se command-1ine options with getopt();
Join application with tpinit();
Begin gl obal transaction with tpbegin();
If (branch_I D specified) {
Al l ocate buffer for service requests with tpalloc();
Pl ace branch_ID into the aud structure;
Do tpcall () to "ABAL_BID' or "TBAL_BID";
Print balance for branch_ID;
Free buffer with tpfree();

else /* branch_I D not specified */

call subroutine sumbal ();
Commit gl obal transaction with tpcommt();
Leave application with tptern();

sum bal ()

}

Tutorialsfor Developing aBEA Tuxedo Application 3-11

3 Tutorial for bankapp, a Full C Application

Al locate buffer for service requests with tpalloc();
For (each of several representative branch |ID s,

one for each site)

Do tpacall () to "ABAL" or "TBAL";
For (each representative branch_ID) {

Do tpgetrply() with TPGETANY flag set

to retrieve replies;
Add bal ance to total;
Print total bal ance;

}
Free buffer with tpfree();

Following is a summary of the two main parts of the audi t source code.
In the programs mai n() :

1 /* Join application */

2 [* Start global transaction */

3 [* Create buffer and set data pointer */
4. [* Dotpcall */

5 /* Commit global transaction */

6 [* Leave application /*

In the subroutine sum bal :

1. /* Create buffer and set data pointer */
2. [* Dotpacall */

3. /* Dot pgetrply to retrieve answers to questions */

A Conversational Client: auditcon.c

audi t con isaconversational version of the audi t program. The source code for
audi t con usesthe ATMI functionsfor conversational communication: t pconnect ()
to establish the connection between the client and service, t psend() to send a
message, and t pr ecv() to receive a message.

3-12 Tutorialsfor Developing a BEA Tuxedo Application

Examining the bankapp Clients

The following pseudo-code shows the algorithm for the program.

Listing 3-3 auditcon Pseudo-code

mai n()
{
Join the application
Begin a transaction
Qpen a connection to conversational service AUDI TC
Do until user says to quit: {
Query user for input
Send service request
Recei ve response
Print response on user’s term nal
Pronpt for further input
}
Commit transaction
Leave the application
}

A Client that Monitors Events: bankmgt.c

bankmgr isincluded with bankapp asan example of aclient that is designed to run
constantly. It subscribes to application-defined events of special interest, such as the
opening of a new account or awithdrawal above $10,000. (The bankngr . ¢ client is
more fully described in the READVE2 file of bankapp and in the bankngr . ¢ code
itself.)

Tutorialsfor Developing aBEA Tuxedo Application 3-13

3 Tutorial for bankapp, a Full C Application

See Also

“Familiarizing Yourself with bankapp” on page 3-2

“What You Can Do Using the ATMI” on page 2-4lintroducing the BEA
Tuxedo System

“What Are the BEA Tuxedo Messaging Paradigms” on page 2H&tiaducing
the BEA Tuxedo System

“What Is bankapp” on page 3-1

“What Are Typed Buffers” on page 2-24 lintroducing the BEA Tuxedo System
“Using Event-based Communication” on page 1-14

BEA Tuxedo Command Reference

BEA Tuxedo C Function Reference

Examining the bankapp Servers and

Services

This topic provides the following information:

A description of the servers and services delivered wattkapp
A description of how the services are link-edited into servers

Pseudo-code for each service that is either accessed by the BEA Tuxedo
bankcl t. ¢, or the application clienudi t . c

Descriptions of the relationships betweentibekapp services and servers

Descriptions of théui | dserver (1) command options used to compile and
build each server with theai n() defined by the BEA Tuxedo system

An alternative method for structuring servers

3-14 Tutoriasfor Developing a BEA Tuxedo Application

Examining the bankapp Servers and Services

Servers are executable processes that offer one or more services. In the BEA Tuxedo

system, they continually accept requests (from processes acting as clients) and

dispatch them to the appropriate services. Services are subroutines of C language code

written specifically for an application. BEA Tuxedo’s applications are written to make
services available and capable of accessing resource managers. Service routines must
be written by BEA Tuxedo application programmers.

All bankapp services are coded in C with embedded SQL except fOrRNESFER
service, which does not interact directly with the databaseTRASFER service is
offered by thexFER server and is a C program (that is, its source file isfde rather
than a ec file).

All bankapp services obankapp use functions provided in the Application
Transaction Management Interface (ATMI) for performing the following tasks:

m Managing typed buffers

m Communicating synchronously or asynchronously with other services
m Defining global transactions

m Generically accessing a resource manager

m Sending replies back to clients

bankapp Request/Response Servers

Five bankapp servers operate in request/response mode. Four of the five use
embedded SQL statements to access a resource manager; the names of the source files
for these servers (located in thenkapp sample application subdirectory), include a

. ec filename extension.

The fifth serverXrFER, for transfer, makes no calls to the resource manager itself; it
calls thew THDRAWAL andDEPGCSI T services (offered by theLR server) to transfer
funds between accounts. The source fileeER is a. c file, becaus&FER makes no
resource manager calls and contains no embedded SQL statements.

This Server Provides this Functionality
BTADD. ec Allows branch and teller records to be added to the appropriate
database from any site.

Tutorialsfor Developing aBEA Tuxedo Application 3-15

3 Tutorial for bankapp, a Full C Application

This Server Providesthis Functionality

ACCT. ec Provides customer representative services, namely the opening
and closing of accounts (OPEN_ACCT and CLOSE_ACCT).

TLR. ec Providesteller services, namely W THDRAWAL, DEPOSI T, and
I NQUI RY. Each TLR process identifies itself asan actual teller
inthe TELLER file, viathe user-defined - T option on the
server's command line.

XFER ¢ Provides fund transfers for accounts anywhere in the database.

BAL. ec Calculates the account for all branches of the database or for a
specified branch.

bankapp Conversational Server

AUDI TCisan example of aconversational server. It offers one service, which is aso
called AUDI TC. The conversational client, audi t con, establishes a connection to
AUDI TC and sends it requests for auditing information.

AUDI TCevaluatesrequestsand callsan appropriate service (ABAL, TBAL, ABAL_BI D, or
TBAL_BI D) to get the appropriate information. When areply is received from the
servicecalled, AUDI TCsendsit back toaudi t con. A servicein aconversational server
can make calls to request/response services. It can aso initiate connections to other
conversational servers, but this functionality is not provided by AuDI TC.

bankapp Services

3-16

bankapp offers 12 request/response services. The name of each bankapp service
matches the name of a C function in the source code of a server.

ThisService Offeredby With Thislnput PerformsthisFunction
this Server

BR_ADD BTADD FML buffer m Adds a new branch record

Tutorials for Developing a BEA Tuxedo Application

Examining the bankapp Servers and Services

ThisService

Offered by ~ With Thislnput PerformsthisFunction
this Server

TLR_ADD

BTADD FML buffer Adds anew teller record

OPEN_ACCT

ACCT FML buffer m Insertsarecord into the
ACCOUNT file and calls
DEPQCSI T to add the initial
balance

m Chooses an ACCOUNT | D

for anew account based on
the BRANCH | Dof theteller
involved

CLOSE_ACCT

ACCT FML buffer m Deletes an ACCOUNT record
m Validates ACCOUNT I D

m CallsW THDRAWAL to
remove the fina baance

W THDRAWAL

TLR FML buffer m Subtractsan amount fromthe
specified branch, teller, and
account balance

m Validatesthe ACCOUNT | D
and SAMOUNT fields

m Checksthat funds are
available from account and
tell

DEPCSI T

TLR FML buffer m Addsan amount to specified
branch, teller, and account
balances

m Validatesthe ACCOUNT | D
and SAMOUNT fields

| NQUI RY

TLR FML buffer m Retrieves an account balance
m Validates ACCOUNT I D

TRANSFER

XFER FML buffer m |ssuesatpcall ()
requesting W THDRAWAL
followed by one requesting
DEPOSI T

Tutorialsfor Developing aBEA Tuxedo Application 3-17

3 Tutorial for bankapp, a Full C Application

ThisService Offeredby With Thislnput PerformsthisFunction

this Server
ABAL BAL VI Ewbuffer of m Calculates account balances
aud.v for al branches on agiven
site
TBAL BAL VI Ewbuffer of m Caculatestheteller balances
aud.v as input for @l branches on a given
site
ABAL_BI D BAL VI Ewbuffer of m Cadculates the account
aud. v asinput balances for a specific
BRANCH_| D
TBAL_BI D BAL VI Ewbuffer of m Caculatestheteller balances
aud. v asinput for aspecific BRANCH_I D

Algorithms of bankapp Services

Thefollowing listings show pseudo-code for the algorithms used for the bankapp
services: BR_ADD, TLR_ADD, OPEN_ACCT, CLOSE_ACCT, W THDRAWAL , DEPCSI T,

| NQUI RY, TRANSFER, ABAL, TBAL, ABAL_BI D, and TBAL_BI D. Y ou can use them as
road maps through the source code of the bankapp servers.

Listing 3-4 BR_ADD Pseudo-code

void BR_ADD (TPSVCI NFO *transb)
{
-set pointer to TPSVCINFO data buffer;
-get all values for service request fromfield buffer;
-insert record i nt o BRANCH;
-tpreturn() with success;

3-18 Tutorialsfor Developing a BEA Tuxedo Application

Examining the bankapp Servers and Services

Listing3-5 TLR_ADD Pseudo-code

voi d TLR_ADD (TPSVCI NFO *transb)
{
-set pointer to TPSVCI NFO data buffer;
-get all values for service request fromfielded buffer;
-get TELLER I D by readi ng branch’s LAST_ACCT;
-insert teller record;
-update BRANCH wi t h new LAST TELLER;
-tpreturn() wth success;

Listing3-6 OPEN_ACCT Pseudo-code

voi d OPEN_ACCT(TPSVCI NFO *tr ansb)

{

-Extract all values for service request fromfiel ded buffer using Fget()
and Fvall ();

-Check that initial deposit is positive anount and tpreturn() wth
failure if not;

-Check that branch IDis a legal value and tpreturn() with failure if it
is not;

-Set transaction consistency level to read/wite;

-Retri eve BRANCH record to choose new account based on branch’s LAST_ACCT
field;

-Insert new account record i nto ACCOUNT fil e;

- Updat e BRANCH record wi th new val ue for LAST_ACCT;

-Create deposit request buffer with tpalloc(); initialize it for FML with
Finit();

-Fill deposit buffer with values for DEPOSI T service request;

-Increase priority of coming DEPCSIT request since call is froma service;

-Do tpcall () to DEPCSIT service to add ampunt of initial bal ance;

-Prepare return buffer with necessary infornmation;

-Free deposit request buffer with tpfree();
tpreturn() with success;

}

Tutorialsfor Developing aBEA Tuxedo Application 3-19

3 Tutorial for bankapp, a Full C Application

Listing3-7 CLOSE_ACCT Pseudo-code

voi d CLOSE_ACCT(TPSVCI NFO *tr ansb)

{
-Extract account ID fromfielded buffer using Fvall();
-Check that account IDis a legal value and tpreturn() with failure if it
is not;
-Set transaction consistency level to read/wite;
-Retrieve ACCOUNT record to determ ne anbunt of final w thdrawal;
-Create withdrawal request buffer with tpalloc(); initialize it for FM.
with Finit();
-Fill withdrawal buffer with values for WTHDRAWAL servi ce request;
-Increase priority of conm ng WTHDRAWAL request since call is from
a service;
-Do tpcall () to WTHDRAWAL service to wi thdraw bal ance of account;
- Del et e ACCOUNT record;
-Prepare return buffer with necessary infornation;
-Free withdrawal request buffer with tpfree();
tpreturn with success;
}

Listing 3-8 WITHDRAWAL Pseudo-code

voi d W THDRAWAL(TPSVCI NFO *t r ansb)
{
-Extract account id and anount fromfiel ded buffer using Fvall () and Fget();
- Check that account idis alegal value and tpreturn() with failure if not;
- Check that wi t hdrawanount (ant) i s positiveandtpreturn() withfailure
if not;
-Set transaction consistency level to read/wite;
-Retrieve ACCOUNT record to get account bal ance;
- Check that ampunt of w thdrawal does not exceed ACCOUNT bal ance;
-Retrieve TELLER record to get teller’s bal ance and branch id;
- Check that ampunt of w thdrawal does not exceed TELLER bal ance;
-Retri eve BRANCH record to get branch bal ance;
- Check that ampunt of w thdrawal does not exceed BRANCH bal ance;
-Subtract ant to obtain new account bal ance;
- Updat e ACCOUNT record with new account bal ance;
-Subtract ant to obtain new teller bal ance;
-Update TELLER record with new teller bal ance;
-Subtract ant to obtain new branch bal ance;
- Updat e BRANCH record wi th new branch bal ance;
-Insert new H STORY record with transaction i nformation;
-Prepare return buffer with necessary infornation;
tpreturn with success;

3-20 Tutorialsfor Developing a BEA Tuxedo Application

Examining the bankapp Servers and Services

Listing3-9 DEPOSIT Pseudo-code

voi d DEPGCSI T(TPSVCI NFO *t r ansb)
{
-Extract account id and anpunt fromfi el ded buffer using Fvall () and Fget();
-Check that account IDis alegal value and tpreturn() with failure if not;
- Check that deposit ampunt (ant) is positive and tpreturn() with failure if
not ;
-Set transaction consistency level to read/wite;
-Retrieve ACCOUNT record to get account bal ance;
-Retrieve TELLER record to get teller’s balance and branch |ID;
-Retrieve BRANCH record to get branch bal ance;
-Add amt to obtain new account bal ance;
- Updat e ACCOUNT record wi th new account bal ance;
-Add amt to obtain new teller bal ance;
-Update TELLER record with new teller bal ance;
-Add amt to obtain new branch bal ance;
-Update BRANCH record with new branch bal ance;
-l nsert new HI STORY record with transaction i nformation;
-Prepare return buffer with necessary information;
tpreturn() with success;

Listing 3-10 INQUIRY Pseudo-code

voi d | NQUI RY(TPSVCI NFO *tr ansb)
{
-Extract account ID fromfielded buffer using Fvall();
-Check that account IDis alegal value and tpreturn() with failure if not;
-Set transaction consistency |level to read only;
-Retrieve ACCOUNT record to get account bal ance;
-Prepare return buffer with necessary information;
tpreturn() wth success;

Tutorialsfor Developing aBEA Tuxedo Application 3-21

3 Tutorial for bankapp, a Full C Application

Listing 3-11 TRANSFER Pseudo-code

voi d TRANSFER(TPSVCI NFO *t r ansb)

{

-Extract account IDs and anmount fromfielded buffer using Fvall()
and Fget ();

-Check that both account IDs are | egal values and tpreturn() wth
failure if not;

-Check that transfer amount is positive and tpreturn() with failure if
it is not;

-Create withdrawal request buffer with tpalloc(); initialize it for
FM. with
Finit();

-Fil'l wthdrawal request buffer with values for WTHDRAWAL servi ce request;

-Increase priority of conm ng WTHDRAWAL request since call is from
a service;

-Do tpcall () to WTHDRAWAL servi ce;

-Cet information fromreturned request buffer;

-Reinitialize withdrawal request buffer for use as deposit request buffer

with Finit();

-Fill deposit request buffer with values for DEPCSI T service request;

-Increase priority of com ng DEPOSIT request;

-Do tpcall () to DEPCSIT service;

-Prepare return buffer with necessary infornation;

-Free withdrawal /deposit request buffer with tpfree();

tpreturn() with success;

}

Listing 3-12 ABAL Pseudo-code

voi d ABAL(TPSVCI NFO *transb)

{
-Set transaction consistency level to read only;
-Retrieve sumof all ACCOUNT file BALANCE val ues for the
dat abase of this server group (A single ESQ
statement is sufficient);
-Place suminto return buffer data structure;
tpreturn() with success;
}

3-22 Tutoriasfor Developing a BEA Tuxedo Application

Examining the bankapp Servers and Services

Listing 3-13 TBAL Pseudo-code

voi d TBAL(TPSVCI NFO *transh)
{
-Set transaction consistency |level to read only;
-Retrieve sumof all TELLER file BALANCE val ues for the
dat abase of this server group (A single ESQ
statement is sufficient);
-Place suminto return buffer data structure;
tpreturn() with success;

Listing 3-14 ABAL_BID Pseudo-code

voi d ABAL_BI D(TPSVCI NFO *transhb)

{
-Set transaction consistency |level to read only;
-Set branch_|I D based on transb buffer;
-Retrieve sumof all ACCOUNT file BALANCE val ues for records
havi ng BRANCH | D = branch_I D (A single ESQ
statement is sufficient);
-Place suminto return buffer data structure;
tpreturn() with success;
}

Listing 3-15 TBAL_BID Pseudo-code

voi d TBAL_BI D(TPSVCI NFO *transh)

{
-Set transaction consistency |level to read only;
-Set branch_|I D based on transb buffer;
-Retrieve sumof all TELLER file BALANCE val ues for records
havi ng BRANCH | D = branch_I D (A single ESQ
statement is sufficient);
-Place suminto return buffer data structure;
tpreturn() with success;
}

Tutorialsfor Developing aBEA Tuxedo Application 3-23

3 Tutorial for bankapp, a Full C Application

Utilities Incorporated into Servers

Two C subroutines are included among the source filesfor bankapp: appi ni t . ¢ and
util.c:

m appi ni t. ¢ contains application-specific versions of the t psvrini t () and
t psvrdone() subroutines. t psvrinit() andtpsvrdone() are subroutines
included in the standard BEA Tuxedo system nai n() . The default version of
tpsvrinit() calstwo functions: t popen() , to open the resource manager, and
user | og() , to post a message that the server has started. The default version of
t psvrdone() also callstwo functions: t pcl ose() , to close the resource
manager, and user | og() , to post a message that the server is about to shut
down. Any application subroutines named t psvri ni t () andt psvrdone() can
be used in place of the default subroutines, thus enabling an application to
provide initialization and pre-shutdown procedures of its own.

m util.c containsasubroutine called getstr (), whichisused inbankapp to
process SQL error messages.

Alternative Way to Code Services

In the bankapp source files all the services were incorporated into files that are
referred to as the source code for servers. These files have the same names as the
bankapp servers, but are not really servers because they do not contain a mai n()
section. A standard mai n() is provided by the BEA Tuxedo system at bui | dser ver
time.

An dternative organization for a BEA Tuxedo system application isto keep each
service subroutine in a separate file. Suppose, for example, that you want to use this
alternative structure for the TLR server. The TLR. ec file contains three services that
you maintain in three separate .ec files: | NQUI RY. ec, W THDRAW ec, and

DEPOSI T. ec. Follow these steps.

1. Compileeach .ec fileinto a .o file.

2. Runthebui | dserver command specifying each .o file with a separate
invocation of the-f option.

bui | dserver -r TUXEDO SQL \
-s DEPCSIT -s W THDRAWAL -s | NQUIRY \

3-24 Tutoriasfor Developing a BEA Tuxedo Application

Examining the bankapp Servers and Services

See Also

-0 TLR\
-f DEPCSIT.0 -f WTHDRAW O -f INQU RY.0 \
-f util.o -f -Im
Note: The backslash in the preceding command-line entry is a documentation
convention that indicates aline break for presentation purposes only. Y ou
should enter the command and options on one line

Asthisexampleillustrates, you do not need to code all the service functionsinasingle
source file. In other words, a server does not need to exist as a source program file at
all. It can be derived from various source files and exist as a server executable through
the files specified on the bui | dser ver command line. This can give you greater
flexibility in building servers.

m “Familiarizing Yourself with bankapp” on page 3-2

m “What You Can Do Using the ATMI” on page 2-4lintroducing the BEA
Tuxedo System

m buil dserver (1) in BEA Tuxedo Command Reference

m BEA Tuxedo Command Reference

Tutorialsfor Developing aBEA Tuxedo Application 3-25

3 Tutorial for bankapp, a Full C Application

Preparing bankapp Files and Resources

This documentation leads you through the procedures you must complete to create the
files and other resources you need to run bankapp.

Click on each task for instructions on completing that task.

Step 1. Set environment variables
in bankwar
|

Step 2. Build the semvers
|

Step 3. Edit the makefile
|

Step 4. Create the bankapp datahase
|

Step 5. Prepare for an #A-compliant
resource manager
|

Step 6. Edit the configuration file
|

Step 7. Create a binary configuration
file and a transaction log file
|

Step 8. Create a transaction log
|

Step 9. Create a remote service
connectioh on each machine

3-26 Tutorialsfor Developing a BEA Tuxedo Application

Step 1: How to Set the Environment Variables

Step 1: How to Set the Environment
Variables

The environment variables are defined in the bankvar file. Thefileislarge
(approximately 185 lines) because it includes extensive comments.

1

In atext editor, familiarize yourself with the bankvar file.

e Thefirst key line checks whether TUXDI Ris set. If it isnot set, execution of
the file fails with the following message.

TUXDI R paraneter null or not set

Set TUXDI Rto the root directory of your BEA Tuxedo system directory structure,
and export it.

Another linein bankvar sets APPDI R to the directory

${ TUXDI R}/ sanpl es/ at m / bankapp, which is the directory where bankapp
source files are located. APPDI Ris adirectory where the BEA Tuxedo system
looks for your application-specific files. You may prefer to copy the bankapp
files to a different directory to safeguard the original sourcefiles. If you do, enter
the directory there. It does not have to be under TUXDI R.

Set avalue for DI PCKEY. Thisisan | PCKEY for a BEA Tuxedo system database.
The vaue of DI PCKEY must be different from the value of the BEA Tuxedo
system | PCKEY specified in the UBBCONFI Gfile.

Note: Other variables specified in bankvar play various rolesin the sample
application; you need to be aware of them when you are developing your
own application. By including them all in bankvar , we provide you with

a “template” that you may want to adapt at a later time for use with a real

application.

When you have made all the required changeartkvar, executébankvar as
follows:

./ bankvar

Tutorialsfor Developing aBEA Tuxedo Application 3-27

3 Tutorial for bankapp, a Full C Application

Listing 3-16 bankvar: Environment Variables for bankapp

Copyright (c) 1997, 1996 BEA Systens, |nc.

Copyright (c) 1995, 1994 Novell, Inc.

Copyright (c) 1993, 1992, 1991, 1990 Unix System Laboratories, Inc.
Al rights reserved

This file sets all the environment variables needed by the TUXEDO software
to run the bankapp

This directory contains all the TUXEDO software
System adm ni strator nust set this variable

HHHHHHHHHHHR

if [-z "${TUXDR"] ; then
if [! -z "${ROOTDIR}"] ; then
TUXDI R=$ROOTDI R
export TUXDI R
fi
fi
TUXDI R=${ TUXDI R ?}
#
Reset LANG if necessary
#
if [! -d ${TUXDIR}/locale/C -a -d ${TUXDI R}/l ocal e/ english_us] ; then
export LANG
LANG=engl i sh_us. asci i
fi
#
This directory contains all the user witten code
#
Contains the full path name of the directory that the application
generator should place the files it creates
#
APPDI R=${ TUXDI R}/ apps/ bankapp
#
This path contains the shared objects that are dynamically |inked at
runtime in certain environnents, e.g., SVR4.

ﬁD_Ll BRARY_PATH=${ TUXDI R}/ | i b: ${ LD LI BRARY_PATH}
z Set the path to shared objects in HP-UX

ZHLI B_PATH=${ TUXDI R}/ | i b: ${ SHLI B_PATH}

z Set the path to shared objects in A X

fl BPATH=${ TUXDI R}/ | i b: / usr/1i b: ${ LI BPATH}

#

3-28 Tutorialsfor Developing a BEA Tuxedo Application

Step 1: How to Set the Environment Variables

Logi cal block size; Database Admi nistrator nmust set this variable
ELKSI ZE=512

z Set default nanme of the database to be used by database utilities
and dat abase creation scripts

gBNAl\/E=bankdb

z I ndi cat e whet her database is to be opened in share or private node
EBPRI VATE=no

z Set Ipc Key for the database; this MIST differ fromthe UBBCONFI G
*RESOURCES | PCKEY par anet er

E PCKEY=80953

z Environment file to be used by tm oadcf

ENVFI LE=${ APPDI R} / ENVFI LE

z List of field table files to be used by nt, viewc, tm oadcf, etc.
Iﬁl ELDTBLS=Usysf | ds, bankf | ds, credi tfl ds, eventfl ds

Iﬁl ELDTBLS32=Usysf| 32, evt _ni b, t padm

z List of directories to search to find field table files

IﬁLDTBLDI R=${ TUXDI R} / udat aobj : ${ APPDI R}

IﬁLDTBLDI R32=${ TUXDI R}/ udat aobj : ${ APPDI R}

z Uni versal Device List for database

ﬁSCONFl G=${ APPDI R}/ bankdl 1

z Net wor k address, used in MENU scri pt

EADDR=

#

Network device nane

EDEVI CE=

#

Network |istener address, used in MENU scri pt

ELSADDR=

Tutorialsfor Developing aBEA Tuxedo Application 3-29

3 Tutorial for bankapp, a Full C Application

#

Make sure TERMis set

#

TERM-${ TERM ?}

#

Set device for the transaction log; this should match the TLOGDEVI CE
paraneter under this site’s LMD in the *MACH NES section of the
UBBCONFIG file

#

TLOGDEVI CE=${ APPDI R}/ TLOG

#

Device for binary file that gives the BEA Tuxedo systemall its information
#

TUXCONFI G=${ APPDI R}/ t uxconfi g

#

Set the prefix of the file which is to contain the central user |og;
this should match the ULOGPFX paraneter under this site’s LMD in the
*MACHI NES section of the UBBCONFIG file

#

ULOGPFX=${ APPDI R} / ULOG

#

System nanme, used by RUNME. sh

#

UNANMVE=

#

List of viewfiles to be used by viewc, tm oadcf, etc.

#

VI EWFI LES=aud. V

#

VI EWFl LES32=mi b_vi ews, tm b_vi ews

#

List of directories to search to find view files

#

VI EWDI R=${ TUXDI R}/ udat aobj : ${ APPDI R}

#

VI EWDI R32=${ TUXDI R} / udat aobj : ${ APPDI R}

#

Specify the Q device (if events included in deno)

#

QVCONFI G=${ APPDI R}/ qdevi ce

#

Export all variables just set

#

export TUXDI R APPDI R BLKSI ZE DBNAME DBPRI VATE DI PCKEY ENVFI LE
export LD_LI BRARY_PATH SHLI B_PATH LI BPATH

export FIELDTBLS FLDTBLDI R FSCONFI G MASKPATH OKXACTS TERM
export FI ELDTBLS32 FLDTBLDI R32

export TLOGDEVI CE TUXCONFI G ULOGPFX

export VI EWDI R VI EWFI LES

3-30 Tutorialsfor Developing a BEA Tuxedo Application

Step 1: How to Set the Environment Variables

export VI EWDI R32 VI EWFI LES32
export QVCONFI G
#
Add TUXDIR/'bin to PATH if not already there
#
a="'echo $PATH | grep ${TUXDI R}/ bin'"
if [x"$%a" = x]
then
PATH=${ TUXDI R} / bi n: ${ PATH}
export PATH
f
#
Add APPDIR to PATH if not already there
#
a="'echo $PATH | grep ${APPDI R}"'
if [x"$a" = x]
then
PATH=${ PATH} : ${ APPDI R}
export PATH
f

#

Check for other machine types bin directories

#

for DIRin /usr/5bin /usr/ccs/bin /opt/SUNWpro/bin
do

if [-d ${DR] ; then
PATH="${ DI R} : ${ PATH} "
f

done
Note: If your operating system is Sun Solaris, you must do two things: use/ bi n/ sh
rather than csh for your shell place; and specify / usr/ 5bi n at the beginning
of your PATH, as follows.
PATH=/ usr/ 5bi n: $PATH; export PATH
See Also

m “Preparing bankapp Files and Resources” on page 3-26

Tutorialsfor Developing aBEA Tuxedo Application 3-31

3 Tutorial for bankapp, a Full C Application

Step 2: Building Servers in bankapp

bui | dser ver (1) putstogether an executable server built on the BEA Tuxedo systems
mai n() . Options identify the names of the output file, the input files provided by the
application, and various libraries that permit you to run aBEA Tuxedo system
application in avariety of ways.

bui | dser ver invokesthe cc command. The environment variables CC and CFLAGS
can be set to name an alternative compile command and to set flagsfor the compile and
link edit phases. The bui | dser ver command is used in bankapp. mk to compile and
build each server in the banking application. The following sections describe the six
bankapp servers:

m How to Build ACCT Server

m How to Build the BAL Server

m How to Build the BTADD Server

m How to Build the TLR Server

m How to Build the XFER Server

m Step 3: Editing the bankapp Makefile

How to Build ACCT Server

The ACCT server is derived from afile called ACCT. ec that contains the code for the
OPEN_ACCT and CLOSE_ACCT functions. It is created in two steps. ACCT. ec isfirst
compiled to an ACCT. o file, which isthen specified to the bui | dser ver command so
that any compile-time errors can be identified and resolved.

1. Createthe ACCT. o file (performed for you in bankapp. nmk):
e The. c fileisgenerated as follows: esql ACCT. ec
e The. ofileisgenerated asfollows: cc -1 $TUXDI R/include -c ACCT.c

e The ACCT server is created by running the following bui | dser ver command
line.

3-32 Tutorialsfor Developing a BEA Tuxedo Application

Step 2: Building Servers in bankapp

bui | dserver -r TUXEDO SQ \
-s OPEN_ACCT -s CLOSE_ACCT \
-0 ACCT \
-f ACCT.o -f appinit.o -f util.o

Note: The backslash in the preceding command-line entry is a documentation
convention that indicates aline break for presentation purposes only. Y ou
should enter the command and options on one line.

Following is an explanation of the bui | dser ver command-line options:

m The-r optionis used to specify which resource manager access libraries should
belink edited with the executable server. The choice is specified with the string
TUXEDQ SQL.

m The-s optionis used to specify the names of the servicesin the server that are
available to be advertised when the server is booted. If the name of a function
that performs a service is different from the corresponding service name, the
function name becomes part of the argument to the - s option.

In bankapp, the function name is always the same as the name of the
corresponding service so only the service names themselves need to be specified.
It is our convention to spell all service namesin all uppercase. For example, the
OPEN_ACCT serviceis processed by the function OPEN_ACCT() . However, the - s
option to bui | dser ver does allow you to specify an arbitrary name for the
processing function for a service within aserver. Refer to the bui | dser ver (1)
reference page for details. It is aso possible for an administrator to specify that
only a subset of the services used to create the server with the bui | dser ver
command is to be available when the server is booted.

m The- o option is used to assign a name to the executable output file. If no name
is provided, the file is named SERVER.

m The-f option specifiesthefilesthat are used in the link-edit phase. (For related
information, see the description of the -1 option on the bui | dser ver (1)
reference page.) The order in which the files are listed depends on function
references and the libraries in which those references are resolved. Source
modules should be listed before libraries that might be used to resolve their
references. If these are . ¢ files, they are first compiled. (In the example above,
appinit.oandutil. o havebeen aready compiled.) Object files can be either
separate . o files or groups of filesin archive (. a) files. If more than one
filename is given as an argument to the - f option, the list must be enclosed in
double quotation marks. Although the - f option takes only one file or one list

Tutorialsfor Developing aBEA Tuxedo Application 3-33

3 Tutorial for bankapp, a Full C Application

of files (enclosed in double quotation marks) as an argument, you can include
the - f option as many times as necessary on a single command line.

To summarize, the options specified onthebui | dser ver command line used to create
the ACCT server performed the following functions:

m The-r option specifies the BEA Tuxedo system SQL resource manager.

m The- s option names the OPEN_ACCT and CLOSE_ACCT services (which are
defined by functions of the same name in the ACCT. ec fil€) to be the services
that make up the ACCT server.

m The-o option assigns the name ACCT to the executable output file.

m The-f option specifiesthat the ACCT. o, appinit.o,and util .o filesareto be
used in the link-edit phase of the build.

Note: Theappi ni t. c file containsthe system-supplied t psvrinit () and
t psvrdone() . (Refer tot pser vi ce(3c) reference pages for an
explanation of how these routines are used.)

How to Build the BAL Server

TheBAL server isderived from afilecalled BAL. ec that containsthe codefor the ABAL,
TBAL, ABAL_BI D, and TBAL_BI D functions. Aswith ACCT. ec, the BAL. ec isfirst
compiled to aBAL. o file before being supplied to the bui | dser ver command so that
any compile-time errors can be identified and resolved.

1. Modify the bui | dser ver command used to create the BAL server as follows.

bui | dserver -r TUXEDO SQL \

-s ABAL -s TBAL -s ABAL_BID -s TBAL_BI D\
-0 BAL \
-f BAL.o -f appinit.o

Note: The backslash in the preceding command-line entry is a documentation
convention that indicates aline break for presentation purposes only. Y ou
should enter the command and options on one line.

e Usethe-r option to specify the BEA Tuxedo system SQL resource manager.

¢ Usethe-s option to namethe ABAL, TBAL, ABAL_BI D, TBAL_BI D services
that make up the BAL server. The functionsin the BAL. ec file that define
these services have identical names.

3-34 Tutoriasfor Developing a BEA Tuxedo Application

Step 2: Building Servers in bankapp

¢ Usethe- o option to assign the name BAL to the executable server.

e Usethe-f option to specify that the BAL. o and theappi ni t . o filesareto
be used in the link-edit phase.

How to Build the BTADD Server

The BTADDserver isderived from afile called BTADD. ec that contains the codefor the
BR_ADD and TLR_ADD functions. The BTADD. ec is compiled to a BTADD. o file before
being supplied to the bui | dser ver command.

1. Modify the bui | dser ver command used to create the BTADD server as follows:

bui | dserver -r TUXEDO SQ \
-s BR.ADD -s TLR_ADD \
-0 BTADD \
-f BTADD.o -f appinit.o

Note: The backslash in the preceding command-line entry is a documentation
convention that indicates aline break for presentation purposes only. Y ou
should enter the command and options on one line.

e Usethe -r option to specify the BEA Tuxedo system SQL resource
manager.

e Usethe-s option to name the BR_ADD and TLR_ADD services that make up
the BTADD server. The functionsin the BTADD. ec file that define these
services have identical names.

¢ Usethe- o option to assign the name BTADD to the executable server.

e Usethe-f option to specify that the BTADD. o and appi ni t . o filesare to be
used in the link-edit phase.

How to Build the TLR Server

The TLR server isderived from afile called TLR. ec that contains the code for the
DEPGCSI T, W THDRAWAL, and | NQUI RY functions. The TLR. ec is also compiled to a
TLR. o file before being supplied to the bui | dser ver command.

Tutorialsfor Developing aBEA Tuxedo Application 3-35

3 Tutorial for bankapp, a Full C Application

1. Modify the bui | dser ver command used to create the TLR server as follows:

bui | dserver -r TUXEDO SQL \
-s DEPCSIT -s W THDRAWAL -s | NQUIRY \
-0 TLR\
-f TLRo -f util.o -f -Im

Note: Thebackslash in the preceding command-line entry is a documentation
convention that indicates aline break for presentation purposes only. Y ou
should enter the command and options on one line.

e Usethe-r option to specify the BEA Tuxedo system SQL resource
manager.

e Usethe- s option to name the DEPCSI T, W THDRAWAL, and | NQUI RY services
that make up the TLR server. The functionsin the TLR. ec file that define
these services have identical names.

¢ Usethe- o option to assign the name TLRto the executable server.

e Usethe-f option to specify that the TLR. o and theuti | . o filesareto be
used in the link-edit phase.

Note: Inthisexample, the-f option is used to pass an option (- | m) to thecc
command, which isinvoked by bui | dserver. The -1 margument to - f
causes the math libraries to be linked in at compile time.

(Refer to cc (1) in the UNIX System V User’s Reference Manual for a complete list of
compile-time options.)

How to Build the XFER Server

The XFER server is derived from afile called XFER. ¢ that contains the code for the
TRANSFER function. The XFER. ¢ isalso compiled to an XFER o file before being
supplied to the bui | dser ver command.

1. Modify the bui | dser ver command used to create the XFER server as follows:

bui | dserver -r TUXEDO SQL \
-s TRANSFER \
-0 XFER\
-f XFER.o -f appinit.o

3-36 Tutorialsfor Developing a BEA Tuxedo Application

Step 3: Editing the bankapp Makefile

Note: The backslash in the preceding command-line entry is a documentation
convention that indicates aline break for presentation purposes only. Y ou
should enter the command and options on one line.

¢ Usethe-r option to specify the BEA Tuxedo system SQL resource manage.

¢ Usethe-s option to name the TRANSFER service that makes up the XFER
server. The function in the XFER. ¢ file that defines the TRANSFER service has
the identical name.

e Usethe- o option to assign the name XFER to the executable server.

e Usethe-f option to specify that the XFER. o and the appi ni t. o filesareto
be used in the link-edit phase.

Servers Built in the bankapp.mk File

The topics on creating the bankapp servers are important to your understanding of
how the bui | dser ver command is specified. However, in actual practice you are apt
to incorporate the build into a makefile; that is the way it is done in bankapp.

Step 3: Editing the bankapp Makefile

bankapp includes a makefile that makes all scripts executable, converts the view
description file to binary format, and does all the precompiles, compiles, and builds
necessary to create application servers. It can also be used to clean up when you want
to make afresh start.

Asbankapp. nk isdelivered, there are afew fields you may want to edit, and some
others that may benefit from some explanation.

How to Edit the TUXDIR Parameter

1. Review bankapp. nk, about 40 linesinto thefile, where you cometo thefollowing
comment and the TUXDI R parameter:

Tutorialsfor Developing aBEA Tuxedo Application 3-37

3 Tutorial for bankapp, a Full C Application

#

Root directory of TUXEDO System This file nust either be edited to set
this value correctly, or the correct value nust be passed via "nmake -f
bankapp. nk TUXDI R=/correct/tuxdir", or the build of bankapp will fail.
#

TUXDIR=. . /..

2. Set the TUXDI R parameter to the absolute path name of the root directory of your
BEA Tuxedo system installation.

How to Edit the APPDIR Parameter

1. Review the setting of the APPDI R parameter. As bankapp is delivered, APPDI Ris
set to the directory in which the bankapp filesare located, relativeto TUXDI R. The
following section of bankapp. nk defines and describes the setting of APPDI R.

Directory where the bankapp applicati on source and execut abl es reside.
This file nust either be edited to set this value correctly, or the
correct value nust be passed via "nmake -f bankapp. nk

APPDI R=/ correct/appdir", or the build of bankapp will fail.

HHHFHHH

APPDI R=$(TUXDI R) / sanpl es/ at m / bankapp
#

2. If you copied the files to another directory, as suggested in the README file, you
should set APPDI Rto the name of the directory to which you copied the files.
When you run the makefile, the application is built in this directory.

How to Set the Resource Manager Parameters

By default, bankapp is set up to use the BEA Tuxedo/SQL as the database resource
manager. This arrangement is based on the assumption that you have the BEA Tuxedo
system database on your system. If thisis not the case, you should set the RM
parameter to the name of your resource manager aslisted in TUXDI R/ udat aobj / RM

#

Resource Manager
#

RVETUXEDO' SQL

#

3-38 Tutorialsfor Developing a BEA Tuxedo Application

Step 4: Creating the bankapp Database

Note: The BEA Tuxedo SQL resource manager is included for demonstration
purposes only.

How to Run the bankapp.mkK File

1. When you have completed the changes you wish to make to bankapp. nk, run it
with the following command line:

nohup make -f bankapp.nk &
2. Check the nohup. out fileto make sure the process completed successfully.

Note: bankvar setsanumber of parameters that are referenced when
bankapp. nk isrun.

See Also

m “Preparing bankapp Files and Resources” on page 3-26

Step 4: Creating the bankapp Database

This documentation describes the interface betweekapp and a resource manager,
typically a database management system and how to create the databaskesfjop.
bankapp is designed to use the BEA Tuxedo/SQL facilities of the BEA Tuxedo system
database, which is an XA-compliant resource manager.

Note: The BEA Tuxedo SQL resource manager is included for demonstration
purposes only.

How you create theankapp database depends on whether you bring up the

application on a single processor (SHM mode) or on a network of more than one
processor (MP mode).

Tutorialsfor Developing aBEA Tuxedo Application 3-39

3 Tutorial for bankapp, a Full C Application

How to Create the Database in SHM Mode

1. Set the environment by typing the following:
./ bankvar

2. Execute cr bank. crbank calls cr bankdb three times, changing some
environment variables each time, so that you end up with three database fileson a
single machine. As aresult, you can simulate the multi-machine environment of
the BEA Tuxedo system without a network of machines.

How to Create the Database in MP Mode

1. Set the environment by typing the following:

. I bankvar

Note: You may have already set your environment variables. For detailed
instructions, see “How to Set Environment Variables.”

2. Runcrbankdb to create the database for this site.

3. On each additional machine in your BEA Tuxedo system network, edit
bankvar to provide the path name for tRBCONFI G variable that is used for that
site in the configuration fileyobnp. Then repeat Steps 1 and 2.

See Also

m “Preparing bankapp Files and Resources” on page 3-26

3-40 Tutorialsfor Developing a BEA Tuxedo Application

Step 5: Preparing for an XA-Compliant Resource Manager

Step 5: Preparing for an XA-Compliant
Resource Manager

To run bankapp with an alternative X A-compliant resource manager, you must
modify various files. This section describes the following:

m How to Change the bankvar File

m How to Change the bankapp Services
m How to Change the bankapp.mk File

m How to Change crbank and crbankdb

m How to Change the Configuration File

How to Change the bankvar File

1. Review the following environment variables that are assigned the values shown
here, by default, to create the BEA Tuxedo system database.

BLKSI ZE=512

DBNAME=bankdb

DBPRI VATE=no

DI PCKEY=80953

FSCONFI G=%${ APPDI R}/ bankdI 1

Note: These environment variables pertain to the BEA Tuxedo system only; you
may need to set different environment variables or other mechanisms
depending on your specific database management system requirements.

2. Changethe value of these variables as needed to create the database for your
resource manager.

Tutorialsfor Developing aBEA Tuxedo Application 3-41

3 Tutorial for bankapp, a Full C Application

How to Change the bankapp Services

Because all database accessin bankapp isperformed with embedded SQL statements,
if your new resource manager supports SQL, you should have no problem. The utility
appi ni t. cincludescallstotpopen() andt pcl ose().

How to Change the bankapp.mk File

1. Edit the RM parameter in bankapp. mk to name the new resource manager.
2. Ensurethat the following entry isin the RM file.
$TUXDI R/ udat aobj / RM

3. If necessary, change the name of the SQL compiler and its options. The name of
the source file may or may not include .ec. You may have to specify a
non-default for compiling the resulting . c file.

How to Change crbank and crbankdb

1. crbank may beignored by your alternate resource manager. Its only functions are
to reset variables and to run cr bankdb three times.

2. crbankdb, on the other hand, requires close attention. The following code listing
isthe beginning of the cr bankdb script. It is followed by an explanation of parts
of the code that do not work with a resource manager that is not supplied with the
BEA Tuxedo system.

Listing 3-17 Excerpt from the crbankdb Script

#Copyri ght (c) BEA Systens, Inc.
#Al'l rights reserved

#

Create device |ist

#

dbadm n<<!

echo

3-42 Tutorialsfor Developing a BEA Tuxedo Application

Step 5: Preparing for an XA-Compliant Resource Manager

crdl

Replace the following line with your device zero entry

${ FSCONFI G 0 2560

!

#

Create database files, fields, and secondary indices

#

sql <<!

echo

create dat abase ${DBNAMVE} wi th (DEVNAVE=' ${ FSCONFI G ',
| PCKEY=${ DI PCKEY}, LOGBLOCKI NG=0, MAXDEV=1,

NBLKTBL=200, NBLOCKS=2048, NBUF=70, NFI ELDS=80,
NFI LES=20, NFLDNAMES=60, NFREEPART=40, NLCKTBL=200,
NLI NKS=80, NPREDS=10, NPRCCTBL=20, NSKEYS=20,
NSWAP=50, NTABLES=20, NTRANTBL=20, PERME’ 0666° ,

STATI STI CS=" n’

create table BRANCH (

BRANCH_ | D integer not null,
BALANCE real ,
LAST_ACCT i nteger,
LAST TELLER i nteger,
PHONE char (14),
ADDRESS char (60),
primary key(BRANCH I D)
) with (
FI LETYPE=' hash’, ICF="PI", Fl ELDED=" FM_' ,
BLOCKLEN=${ BLKSI ZE} , DBLKS=8, OVBLKS=2

Thefirst 40 lines give you an idea of what needs to be changed and what may be kept
unchanged. Asyou can see, cr bankdb ismade up of two documentsthat provideinput
to thedbadni n and sql shell commands. The first her e file is passed to the BEA
Tuxedo system command dbadni n to create adevice list for the database.

This command does not work with non-BEA Tuxedo resource managers. Other
commands may be needed to create table spaces and/or grant the correct privileges.

Tutorialsfor Developing aBEA Tuxedo Application 3-43

3 Tutorial for bankapp, a Full C Application

How to Change the Configuration File

In the GROUPS section, specify appropriate values (that is, values that are recognized
by your resource manager) for the TMSNAME and OPENI NFO parameters.

How to Integrate bankapp with Oracle 8 (XA
RM) for a Windows NT Platform

1. Edit thent\ bankvar. cnd and supply suitable values for the following
environment variables.

TUXDIR : Root directory for the BEA TUXEDO systeminstal |l ation

APPDIR : Application directory in which bankapp files are
| ocat ed

ORACLE_ HOMVE : Root directory of the Oracle8 installation
ORACLE SID : Oracle SystemID
BLK SI ZE: Logi cal bl ock size

DBNAME: default nane of the database to be used by database
utilities and database creation scripts

DBPRI VATE: i ndi cat es whet her dat abase is to be opened i n share
or private node (yes or no)

FSCONFI G Uni versal Device List for database

PATH=%TUXDI R4 bi n; %rUXDI R% i ncl ude; %r'UXDI RoA | i b; %ORACLE_HOME
% bi n; “PATH%

| NCLUDE=%0ORACLE_HOVE% r dbns 80\ xa;
YORACLE_HOVE% pr 080\ c\'i ncl ude; % ncl ude%

NLSPATH=%IUXDI R% | ocal e\ C
PLATFORMEI nwnt 40

LI B=99UXDI R | i b; %ORACLE_HOVE% pro80\ I i b\ msvc;
YORACLE _HOVE% r dbns80\ xa; % i b%

3-44 Tutorialsfor Developing a BEA Tuxedo Application

How to Integrate bankapp with Oracle 8 (XA RM) for a Windows NT Platform

. Run the script to set up the environment.

>bankvar

. Edit the TUXDI R\ udat aobj \ RMfile as follows.

e Append the following line to the $TUXDI R\ udat aobj \ RMfile:

O acl e_XA; xaosw; %0RACLE _HOVE% pro80\ I i b\msvc\sqgl | i b80.1ib
Y%ORACLE_HOVE% RDBMS80\ XA\ xa80. i b

or if Oracle exists over the network:
e Map the machineto adrive, for example, F
e Append the following line to the $TUXDI R\ udat aobj \ RMfile.

O acl e_XA; xaosw; f:\orant\ pro80\Iib\nmsvc\sqgllib80.lib
f:\orant\ RDBMS80\ XA\ xa80. li b

¢ Remove any previous entry of Oracle XA in the RMfile

. Build the Transaction Manager Server for Oracle8.

cd $APPDI R
buildtnms -r Oracle_XA -0 TMS_ORA

. Edit the nt\ bankapp. mak file asindicated in the following table.

Task

Value

Specify values for the following TUXDI R=Root directory for the BEA Tuxedo system installation
environment variables.

APPDI R=Application directory in which bankapp files are |ocated

RMEOr acl e XA

ORACLE_LI BS=$(ORACLE_HOVE) \ PROBO\ LI B

RWMNAME=Cr acl e XA

SQLPUBLI C=$(ORACLE_HOVE) \ PROSO\ C\ | NCLUDE

CFLAGS=$(HOST) - DNOWHAT=1 $(CGFLAGS) $(DFM.32)

CGFLAGS=- DW N32 -WB - MD -nol ogo

ORACLE_Di R=$(ORACLE_HOVE) \ bi n

Tutorialsfor Developing aBEA Tuxedo Application 3-45

3 Tutorial for bankapp, a Full C Application

Task Value

I NCDI R=$(TUXDI R) \'i ncl ude

CC=cl
In the .ec.c section, Edit rules for set TUXDI R=$(TUXDIR) & $(ORACLE_DI R)\ proc80
creating C programs from embedded nmode=ansi rel ease_cursor=yes
QL programs, (use the proc compiler), i ncl ude=$(SQLPUBLI C) i ncl ude=$(1 NCDI R)
set the following val ues. $(SQL_PLATFORM I NC) -c inane=$*. ec

Inthe. c. obj section, Editrulefor $(CCO -c¢ $(CFLAGS) $(SQLPUBLIC) $(!NCLUDE) $*.c
creating object filesfrom C
programs, set the following values.

6. Updatethe*. ec files. Use Oracle SQL commands.

7. Runthemakefile.

copy nt\bankapp. mak t o %APPDI R%
nmake -f bankapp. mak

8. Edit nt\ ubbshmas follows:

USER | D=0

GROUP_| D=0

UNAME_SI TEl=nodenane returned by hostnane
TUXDI R=sanme as specified in bankvar

APPDI R=sane as specified in bankvar

9. Inthe GROUPS section of the configuration file, enter the following changes.

TVBNAMVE=TNMS_CRA
BANKB1 GRPNO=1
OPENI NFO="0Or acl e_XA: Oracl e_XA+Acc=P/ user 1/ PaSsWi1+Ses Tm=0+LogDi
r=."
[
Oracle XA +
required fields:
Acc=P/ oracl e_user _id/oracle_password +
SesTneSession_time_|imt (mexinmumtinme a transaction can be
i nactive) +
optional fields:
LogDir=logdir (where XA library trace file is |located) +
MaxCur =maxi mum #_of _open cursors +
Sgl Net =connect_string (if Oracle exists over the network)
(eg. Sqgl Net=hgfi n@NEWDB i ndi cates the database wi th si d=NEWDB

3-46 Tutorialsfor Developing a BEA Tuxedo Application

How to Integrate bankapp with Oracle 8 (XA RM) for a Windows NT Platform

accessed at host hgfin by TCP/IP)

]

BANKB2 GRPNO=2

OPEN NFO="Cr acl e_XA: Or acl e_XA+Acc=P/ user 2/ PaSsWi2+SesTm=0+LogDi
r=."

BANKB3 GRPNO=3

OPEN NFO="COr acl e_XA: Or acl e_XA+Acc=P/ user 3/ PaSsWi3+SesTm=0+LogDi

r=."

10. Create the BEA Tuxedo configuration binary file.

tm oadcf -y nt/ubbshm

11. Create the device list and the TLOG device on the master machine.

crtlog -m

12. Start up the Oracle database instance if not already started.

13. Boot the BEA Tuxedo system servers.

tnboot -y

14. Ensure that the view v$XATRANS$exists on the database. (The view
V$XATRANS$ should have been created during the XA library installation.)

15. If the v$XATRANSS$View has not been created, create it as follows:

Ensure that the environment variables ORACLE_HOVE and ORACLE_SI D are
Set.

Log in to the database as user SYS.

Execute the sql script
${ ORACLE_HQOVE} / RDBMS80/ ADM N XAVI EW sql

Grant select privileges to thisview for all Oracle account applications that
will usethe XA library.

16. Create the bankapp database and database objects for Oracle RM:

Log into any of the Oracle utilities SQL* plus or SQL* DBA as any Oracle
user.

not epad cr bank- or a8. sql

When Oracle 8 isinstalled, a sample database is created. You can use this
database for the bankapp application. The sql script provided, creates a new
tablespace in the database to hold al the database objects of bankapp.The

Tutorialsfor Developing aBEA Tuxedo Application 3-47

3 Tutorial for bankapp, a Full C Application

script prompts for the Oracle system user password as well as afull path
name of afile to use as the new tablespace.

e Edit crbank-ora8. sql asfollows:

WHENEVER OSERROR EXI T ;
/*Cbtain the password for user "systenm */
PROVPT
PROVPT
PROWPT -- Sone of the operations require "systenl' user privileges
PROWPT -- Pl ease specify the Oracle "systent user password
PROVPT
ACCEPT syspw CHAR PROWPT ' system passwd: ' HI DE ;
CONNECT system &syspw ;
SHOW user ;
PROVPT
/* Create a new tablespace in the default DB for use with "bankapp" */
DROP TABLESPACE bank1
I NCLUDI NG CONTENTS
CASCADE CONSTRAI NTS;

PROVPT

PROVPT

PROWT -- WII| create a 3MB tabl espace for bankapp ;

PROWPT -------- Pl ease specify full pathnanme below for Datafile ;
PROWT -------- Ex: %ORACLE _HOVE% dbs/ bankapp. dbf

PROVPT

ACCEPT datafile CHAR PROVPT 'Datafile:’ ;

CREATE TABLESPACE bankl
DATAFI LE ' &dat afile’ Sl ZE 3M REUSE
DEFAULT STORAGE (INITIAL 10K NEXT 50K
M NEXTENTS 1 MAXEXTENTS 120
PCTI NCREASE 5)
ONLI NE;

/***************** O—eate a user Called "userl" ***************/

DROP USER user 1 CASCADE;

PROWPT Creating user "userl"

CREATE USER user1 | DENTIFI ED by PaSsWwil
DEFAULT TABLESPACE bank1
QUOTA UNLI M TED ON bank1 ;

GRANT CREATE SESSI ON TO user1 ;
GRANT CREATE TABLE TO user1l ;

CONNECT user 1/ PaSsWi1 ;
SHOW user ;

3-48 Tutorialsfor Developing a BEA Tuxedo Application

How to Integrate bankapp with Oracle 8 (XA RM) for a Windows NT Platform

PROWPT Creating database objects for user "userl"

PROWPT Creating table "br

CREATE TABLE branch (
branch_id
bal ance
| ast _acct
last _teller
phoneCHAR(14),
addr ess

STORAGE

anch" ;

NUMBER NOT NULL PRI MARY KEY
NUMBER,
NUMBER,
NUMBER,

CHAR(60)

(INITIAL 5K NEXT 2K
M NEXTENTS 1 MAXEXTENTS 5 PCTI NCREASE 5) ;

PROWPT Creating table "account" ;

CREATE TABLE account
account _id
branch_id
ssn
bal ance
acct _type
| ast _nane
first_name
md_init
phoneCHAR(14),
addr ess

STORAGE

(
NUMBER NOT NULL PRI MARY KEY,

NUVBER NOT NULL,
CHAR(12) NOT NULL,
NUVBER,

CHAR,

CHAR(20),

CHAR(20),

CHAR,

CHAR(60)

(I'NI'TI AL 50K NEXT 25K
M NEXTENTS 1 MAXEXTENTS 50 PCTI NCREASE 5)

PROWPT Creating table "teller" ;

CREATE TABLE teller
teller_id
branch_id
bal ance
| ast _name
first_name
md_init
STORAGE

PROWPT Creating table "hi

CREATE TABLE hi story
account _id

teller_id
branch_id
anmount

(
NUMBER NOT NULL PRI MARY KEY,

NUVBER NOT NULL,
NUVBER,

CHAR(20) ,

CHAR(20),

CHAR

(INI'TI AL 5K NEXT 2K

M NEXTENTS 1 MAXEXTENTS 5 PCTI NCREASE 5)
story" ;

(

NUVBER NOT NULL

NUVBER NOT NULL

NUVBER NOT NULL

NUVBER

Tutorialsfor Developing a BEA Tuxedo Application

3-49

3 Tutorial for bankapp, a Full C Application

STORAGE (I'NITIAL 400K NEXT 200K
M NEXTENTS 1 MAXEXTENTS 5 PCTI NCREASE 5)

17. Write the code to create user2 and user3 with passwords PaSswWd2 and PaSswWd3,
respectively, following the method described in the above steps.

SQ*pl us> start $APPDI R/ crbank-ora8. sql
18. Populate the database.

nt\ popul ate
19. Generate transactions against the database.

driver
20. Run the bankapp client.

run

21. Shut down the application.

t mshut down -y

See Also

m “Preparing bankapp Files and Resources” on page 3-26

Step 6: How to Edit the Configuration File

A configuration file defines how an application rubankapp is delivered with two
configuration files in the text format describedJBBCONFI (5): ubbshm which
defines an application on a single computer, @tthp, which defines a networked
application.

Initialization scripts are provided in the sample applications. In addition, you can
generate completed configuration files by .sh for any number up to 10 for your
configuration and machines.

3-50 Tutorialsfor Developing a BEA Tuxedo Application

Step 6: How to Edit the Configuration File

001
002

003
004
005

006

007

1. Inatext editor, familiarize yourself with the ubbshmand ubbnp configuration files
for bankapp.

Listing 3-18 ubbmp Configuration File

#Copyright (c) 1999 BEA Systens,

I nc.

#A |l rights reserved

* RESOURCES

| PCKEY 80952

u D <user id fromid(1l)>
G D <group id fromid(1)>
PERM 0660
MAXACCESSERS 40
MAXSERVERS 35

MAXSERVI CES 75

MAXCONV 10

MAXGTT 20

MASTER SI TE1, SI TE2
SCANUNI T 10

SANI TYSCAN 12

BBLQUERY 180

BLOCKTI ME 30

DBBLWAI T 6

OPTI ONS LAN, M GRATE
MODEL MP

LDBAL Y

##SECURI TY ACL

#

* MACHI NES

<SI TE1's unanme> LM D=SITEl

<SI TE2' s unhane>

TUXDI R=" <TUXDI R>"

APPDI R=" <APPDI R>"

ENVFI LE=" <APPDI R>/ ENVFI LE"
TLOGDEVI CE="<APPDI R>/ TLCG'
TLOGNAME=TLOG

TUXCONFI G=" <APPDI R>/ t uxconfi g"
TYPE="<machi ne type>"
ULOGPFX="<APPDI R>/ ULOG'

LM D=SI TE2

TUXDI R=" <TUXDI R>"

APPDI R=" <APPDI R>"

ENVFI LE=" <APPDI R>/ ENVFI LE"
TLOGDEVI CE="<APPDI R>/ TLCG'
TLOGNAME=TLOG

TUXCONFI G=" <APPDI R>/ t uxconfi g"

Tutorialsfor Developing aBEA Tuxedo Application 3-51

3 Tutorial for bankapp, a Full C Application

TYPE="<nachi ne type>"
ULOGPFX=" <APPDI R>/ ULOG'

#
* GROUPS
#
Group for Authentication Servers
#
G oup for Application Queue (/Q Servers
#
##QCGRP1 LM D=SI TE1 GRP=102
#it TVSNAME=TMS_QM TMSCOUNT=2
OPENINFO="TUXEDO/QM:<APPDIR>/qdevice:QSP_BANKAPP"
#
Group for Event Broker Servers
#

##EVBGRP1 LMID=SITE1l GRPNO=104

DEFAULT: TMSNAME=TMS_SQL TMSCOUNT=2
BANKB1 LMID=SITE1 GRPNO=1

008 OPENINFO="TUXEDO/SQL:<APPDIR>/bankdl1l:bankdb:readwrite"
BANKB2 LMID=SITE2 GRPNO=2
OPENINFO="TUXEDO/SQL:<APPDIR>/bankdI2:bankdb:readwrite"
*NETWORK

009 SITE1l NADDR="<network address of SITE1>"

010 NLSADDR="<network listener address of SITE1>"

011 SITE2 NADDR="<network address of SITE2>"

012 NLSADDR="<network listener address of SITE2>"

2. To enable the application password feature, add the following line to the
RESOURCESection of ubbshm or ubbmp:

SECURITY APP_PW

3. In both configuration files, you may notice that the values of some parameters are
enclosed in angle brackets (< >). Values shown in angle brackets are generic; you
need to replace them with values that pertain to your installation. All of these
fields occur within the RESOURCESMACHINES and GROUPSections in both files.
In ubbmp, the NETWOREection also has values you must replace. The following
table shows the ubbmp through the NETWORRection and illustrates all the
changes you need to make in the RESOURCESVACHINESand GROUPSections if
you are bringing up a single-machine application.

3-52 Tutorialsfor Developing a BEA Tuxedo Application

Step 6: How to Edit the Configuration File

Table 3-3 Explanation of Values

Line

String to Be
Replaced

Description

001

u D

The effective user ID (UID) for the owner of the bulletin
board | PC structures. In amultiprocessor configuration, the
value must be the same on all machines. To avoid
problems, use the same UID as that of the owner of the
BEA Tuxedo system software.

002

The effective group ID (GID) for the owner of the bulletin
board | PC structures. In amultiprocessor configuration, the
value must be the same on all machines. Users of the
application should share this group ID.

003

S| TE1 name

The name of the machine. (For UNIX platforms, use the
value produced by the UNIX command: unanme - n)

004

TUXDI R

The absolute path name of the root directory for the BEA
Tuxedo software. Replace all occurrencesof <TUXDI R>in
the file with the specified path name.

005

APPDI R

The absolute path name of the directory in which the
application runs. Make this aglobal change so that all
occurrences of <APPDI R> in the file are replaced by the
specified path name.

006

machine type

An identifying string used in networked applications that
include machines of different types. The BEA Tuxedo
system checks the value of machine type for each machine
communicating with another. If the system identifies two
machines with different machine types trying to
communicate, it invokes the message encode and decode
routines to convert the data being transmitted to aform
recognizable by both machines.

007

SI TE2 name

The name of the second machine. (For UNIX platforms,
use the value produced by the UNIX command: unamne

_n)

Tutorialsfor Developing aBEA Tuxedo Application 3-53

3 Tutorial for bankapp, a Full C Application

Line StringtoBe Description
Replaced
008 OPENI NFO The statement here and in the following entry arein a
format understood by BEA Tuxedo system resource
managers. They need to be changed (or removed) to meet
the requirements of other resource managers.
009 Network addressof ~ The full address of the network listener for the BRI DGE
SI TE1 process on this machine.
010 Network listener The address of the network listener for thet 1 i st en
address of SI TEL process on this machine.
011 Network addressof ~ The full address of the network listener for the BRI DGE
SI TE2 process on this machine. This value must be different on
each machine.
012 Network listener The address of the network listener for thet 1 i st en

address of Sl TE2

process on this machine.

See Also

m “Preparing bankapp Files and Resources” on page 3-26

m UBBCONFI §(5) in BEA Tuxedo File Formats and Data Descriptions Reference

m “What Is the Configuration File” on page 2-13etting Up a BEA Tuxedo
Application

3-54

Tutorials for Developing a BEA Tuxedo Application

Steps 7 and 8: Creating a Binary Configuration File and Transaction Log File

Steps 7 and 8: Creating a Binary
Configuration File and Transaction Log File

Before Creating the Binary Configuration File

Before creating the binary configuration file, you need to be in the directory in which
your bankapp files are located and you must set the environment variables. Complete
the following tasks.

1. Gotothedirectory in which your bankapp files are located.

2. Set the environment variables by entering

. ./bankvar

Note: If you bring up bankapp in SHVmode, you do not haveto createthet | i st en
process or create a transaction log on another machine.

How to Load the Configuration File

Once you have finished editing the configuration file, you must load it into a binary
fileon your MASTER machine. The name of the binary configuration fileis TUXCONFI G,
its path name is defined in the TUXCONFI G environment variable. The file should be
created by aperson with the effective user ID and group I D of the BEA Tuxedo system
administrator, which should be the same asthe U Dand G D valuesin your
configuration file. If this requirement is not met, you may have permission problems
in running bankapp.

1. To create TUXCONFI G enter the following command.
t m oadcf ubbnp

While the configuration file is being loaded, you are prompted several timesto
confirm that you want to install this configuration, even if doing so means an
existing configuration file must be overwritten. If you want to suppress such
prompts, include the - y option on the command line.

Tutorialsfor Developing aBEA Tuxedo Application 3-55

3 Tutorial for bankapp, a Full C Application

2. If you want the amount of | PC resources needed by your application to be
calculated by the BEA Tuxedo system, include the - ¢ option on the command
line.

TUXCONFI G can be installed only on the MASTER machine; it is propagated to other
machines by t nboot when the application is booted.

If you have specified SECURI TY asan option for the configuration, t M oadcf prompts
you to enter an application password. The password you select can be up to 30
characterslong. Client processes joining the application are required to supply the
password.

t m oadcf parsesthe text configuration file (UBBCONFI G) for syntax errors before it
loads it, soif there are errorsin thefile, the job fails.

How to Create the Transaction Log (TLOG) File

See Also

The TLOGis the transaction log used by the BEA Tuxedo system in the management
of global transactions. Before an application can be booted, an entry for the TLOG must
be created in every file on every machinein the application, and afile for thelog itself
must be created on the MASTER machine.

bankapp providesascript called cr t | og that creates adevicelist and aTLOGfor you.
Thedevicelist is created using the TLOGDEVI CE variable from bankvar .

1. Tocreate your TLOG and device list, enter the command on the MASTER machine as
follows.

crtlog -m

Note: Inaproduction environment, the device list may be the same as that used
for the database.

2. On all other machines, do not specify - m when the system is booted; the BBL on
each non-MASTER machine creates the log.

If you are using a non-X A resource manager, you do not need a transaction log.

m “Preparing bankapp Files and Resources” on page 3-26

3-56 Tutorialsfor Developing a BEA Tuxedo Application

Step 9: How to Create a Remote Service Connection on Each Machine

Step 9: How to Create a Remote Service
Connection on Each Machine

t1i st enisthelistener processthat providesaremote service connection for processes
such ast mboot between machinesin a BEA Tuxedo application. It must beinstalled
on al the machines in your network as defined in the NETWORK section of the
configuration file.

Instructions for startingt | i st en are provided in the “Starting the tlisten Process on a
UNIX System” on page 6-1ih Installing the BEA Tuxedo System.

1. We recommend starting a sepatdtest en process fobankapp. To do so, enter
the following command.

tlisten -1 nl saddr

Thenl saddr value must be the same as that specified fortisaDDR

parameter for this machine in your configuration file. Because this value changes
from one machine to another, it is important that ydurst en argument agrees

with your configuration file specification.

Note: Detection of an error in this specification is not easy.oadcf does not
check for agreement between your configuration file and ybiust en
command. If the two addresses do not match, then the application will
probably fail to boot on the machine with the mismatched value of
nl saddr or on which tha I i st en process has not been started.

The logdfile used byl i st en is separate from all other BEA Tuxedo system log files,
but one log can be used by more thantwriest en process. The default filename is
TUXDI R/ udat aobj /t | og.

How to Stop the Listener Process (tlisten)

t1isten is designed to run as a daemon process. For suggestions about incorporating
it in startup scripts or running it as a cron job, skiest en(1) in theBEA Tuxedo
Reference Manual.

Tutorialsfor Developing aBEA Tuxedo Application 3-57

Tutorial for bankapp, a Full C Application

For bankapp, you may prefer simply to start it and bring it down asyou need it. To
bring it down, send it a SI GTERMsignal such as the following.

kill -15 pi d

Note: Inan NT environment, you can start and stop the listener processin two
ways: using thet | i st en on the command line or using the Control Panel.

Sample tlisten Error Messages

If noremotet | i st en isrunning, the boot sequenceis displayed on your screen as
follows.

Booti ng adm n processes
exec DBBL -A:
on MASTER -> process id=17160Started.
exec BBL -A:
on MASTER -> process id=17161Started.
exec BBL -A :
on NONVAST2 -> CMDTUX CAT: 814: cannot propagate TUXCONFIG file
tnboot: WARNING No BBL avail abl e on site NONVAST2.
WIl not attenpt to boot server processes on that site.
exec BBL -A:
on NONVAST1 -> CMDTUX_CAT: 814: cannot propagate TUXCONFIG file
tnboot: WARNING No BBL avail abl e on site NONVASTL.
WIIl not attenpt to boot server processes on that site.
2 processes started.
and nessages such as these will be in the ULOG
133757. mach1! DBBL. 17160: LI BTUX CAT: 262: std main starting
133800. machl1! BBL. 17161: LI BTUX CAT: 262: std nmain starting
133804. machl! BRI DGE. 17162: LI BTUX CAT: 262: std main starting
133805. machl! t mboot . 17159: LI BTUX CAT: 278: Coul d not contact NLS on NONMAST2
133805. machl! t mboot . 17159: LI BTUX CAT: 276: No NLS available for renote
machi ne NONVAST2
133806. machl! t mboot . 17159: LI BTUX CAT: 276: No NLS available for renote
machi ne NONVAST2
133806. machl! t mboot . 17159: CMDTUX CAT: 850: Error sendi ng TUXCONFI G
propagati on request to TAGENT on NONVAST2
133806. machl! t mhoot . 17159: WARNI NG No BBL avail abl e on site NONVAST2.
WIIl not attenpt to boot server processes on that site.
133806. machl! t mboot . 17159: LI BTUX CAT: 278: Coul d not contact NLS on NONMAST1
133806. machl! t mboot . 17159: LI BTUX CAT: 276: No NLS avail able for
renot e machi ne NONMAST1
133806. machl! t mboot . 17159: LI BTUX CAT: 276: No NLS avail abl e for
renote machi ne NONMAST1

Tutorials for Developing a BEA Tuxedo Application

Step 9: How to Create a Remote Service Connection on Each Machine

133806. machl! t mboot . 17159: CMDTUX CAT: 850: Error sendi ng TUXCONFI G
propagati on request to TAGENT on NONVAST1
133806. machl! t mboot. 17159: WARNI NG No BBL avail able on site NONMASTL.
WIl not attenpt to boot server processes on that site.
If tlisten is started with the wong machi ne address, the follow ng nessages
appear in the tlisten |og.

Mon Aug 26 10:51:56 1991; 14240; BEA TUXEDO System Li stener Process Started

Mon Aug 26 10:51:56 1991; 14240; Could not establish |istening endpoint
Mon Aug 26 10:51:56 1991; 14240; Term nating listener process, SIGIERM

See Also

m “Preparing bankapp Files and Resources” on page 3-26
m tlisten(l)
m tmadmn(1l)

m tnm oadcf (1)

Tutorialsfor Developing aBEA Tuxedo Application 3-59

3 Tutorial for bankapp, a Full C Application

Running bankapp

This documentation leads you through the procedures for booting bankapp, testing it
by running various client programs and transactions, and shutting it down when you
have finished. Click on any of the following tasks for instructions on completing that
task.

Step 1. Prepare to hoot
|

Step 2. Boot bankapp
|

Step 3. Populate the database
|

Step 4. Testhankapp services
|
Step . Shut down hankapp

Step 1: How to Prepare to Boot

3-60

1. Before booting bankapp, verify that your machine has enough IPC resources to
support your application. To generate areport on |PC resources, run the t nboot
command with the - ¢ option.

Note: Becauseinsufficient IPC resources may lead to aboot failure, it is
imperative that you ensure you have appropriate val ues specified for your
configuration.

Tutorials for Developing a BEA Tuxedo Application

Step 1: How to Prepare to Boot

Listing 3-19 |IPC Report

Ipc sizing (mMnimum/T val ues only)

SHW N: 1
SHVALL: 1

Fi xed M ni muns Per Processor

SEMVAP: SEMWNI

Vari abl e M ninuns Per Processor

SEMUME, A SHWVIVAX
SEMWINU, * *
Node SEMWS SEMVEL SEMVBL SEMWI MSGWNI MSGVAP SHVSEG
sf pup 60 1 60 A+ 1 10 20 76K
sfsup 63 5 63 A+ 1 11 22 76K
where 1 <= A<= 8
. Add the number of application clients used per processor to each MSGWNI value.
VBGVAP should be twice MSGWNI .
. Compare the minimum IPC requirements to the parameters set for your machine.
The location of these parameter settings is platform-dependent:
e Onmany UNIX system platforms, machine parameters are defined in
/etc/conf/cf.d/ntune.
e OnWindows NT platforms, machine parameters are set and displayed
through a control panel.
See Also

“Running bankapp” on page 3-60

Tutorialsfor Developing aBEA Tuxedo Application 3-61

3 Tutorial for bankapp, a Full C Application

Step 2: How to Boot bankapp

1. Set the environment.

./ bankvar

2. Boot the application by entering the following:
t mboot
Thefollowing prompt is displayed.
Boot all admin and server processes? (y/n): vy
A running report such as the following is displayed.

Booting all admin and server processes in
/usr/ mel/ appdi r/tuxconfig
Booting all adm n processes
exec BBL -A:
process id=24223 Started.

Thereport continues until all serversin the configuration have been started. It ends
with a count of the number of servers started.

If you prefer, you can boot only a portion of the configuration. For example, to boot
only administrative servers, include the - A option. If no options are specified, the
entire application is booted.

In addition to reporting on the number of servers booted, t mboot also sends messages
to the ULCG.

See Also

m “Running bankapp” on page 3-60

3-62 Tutorialsfor Developing a BEA Tuxedo Application

Step 3: How to Populate the Database

Step 3:

See Also

How to Populate the Database

The popul at e. sh script is provided to put records into the database so you can run
bankapp and test its functionality. popul at e isaone line script that pipes records
from a program called gendat a to the system server, ud. The gendat a program
creates records for 10 branches, 30 tellers, and 200 accounts. A record of the files
created iskept in pop. out , S0 you can use values in the database when forming your
sample service requests.

To run the script, enter popul at e.

Note: The output file that was created by the populate script, pop. out , can be used
to provide account numbers, branch I1Ds, and other fields you can specify, so
your service requests produce some output.

m “Running bankapp” on page 3-60

m tnboot (1) in BEA Tuxedo Command Reference

m ud, wud(1) in BEA Tuxedo Command Reference

m userl og(3c) in BEA Tuxedo C Function Reference

m “What Is the User Log (ULOG)"” on page 2-17Administering a BEA Tuxedo
Application at Run Time

m “How to Boot the Application” on page 1-9 Administering a BEA Tuxedo
Application at Run Time

m “How to Shut Down Your Application” on page 1-11Administering a BEA
Tuxedo Application at Run Time

Tutorialsfor Developing aBEA Tuxedo Application 3-63

3 Tutorial for bankapp, a Full C Application

Step 4: How to Test bankapp Services

1. If you arelogging in cold to arunning system, you must set your environment for
bankapp. To do so, enter the following command.

./ bankvar

2. Runtheaudi t client program. To execute the audi t client program, enter the
following command.

audit {-a | -t} [branch_id]

specifying either - a for account balances or -t for teller balances. If you specify
abranch_i d, the report is limited to the branch specified; if you do not, the
report includes data for all branches. For sample account numbers, branch IDs,
and other values that you can provide asinput to audit, use values listed in

pop. out , the output of the populate program.

3. Runaudi t con. To start the conversational version of the audit program, enter the
following command.

audi t con
The program displays the following message on your terminal.

to request a TELLER or ACCOUNT bal ance for a branch,
type the letter t or a, followed by the branch id,

foll owed by <return>

for ALL TELLER or ACCOUNT bal ances, type t or a <return>
q <return> quits the program

When you have typed your request and pressed return, the requested information
isdisplayed on your terminal followed by the following message.

anot her bal ance request ??
4. The program continues to offer you this service until you enter a g.

5. Usethe driver program. By default, the driver program generates 300
transactions. You can change that number with the - n option, asin the following
example. The command

driver -nl1000
specifies that the program should run for 1,000 loops.

3-64 Tutorialsfor Developing a BEA Tuxedo Application

Step 5: How to Shut Down bankapp

dri ver isascript that generates a series of transactions to simulate activity on
the system. It isincluded as part of bankapp So you can get realistic-looking
statistics by running t madmi n commands.

See Also

m “Running bankapp” on page 3-60

Step 5: How to Shut Down bankapp

To bring downbankapp, enter the mshut down(1) command with no arguments,
from theMASTER machine, as follows:

$ tnshut down

Shutdown all server processes? (y/n): y

Shutting down all server processes in /usr/nme/ BANKAPP/ TUXCONFI G
Shutting down server processes ...

Server I|d =1 Goup Id = BANKBL Machine = Sitel: shutdown succeeded.

Running this command (or the shutdown commarnichetini n) causes the following
results:

m All application servers, gateway servers, TMS's, and administrative servers, are
shut down.

m All associated IPC resources are removed.

See Also

m “Running bankapp” on page 3-60
® tmadmi n(1) in BEA Tuxedo Command Reference

m “Performing Dynamic Operations Using tmadmin(1)” on page 3-26 in
Introducing the BEA Tuxedo System

m tnshut down(1) in BEA Tuxedo Command Reference

Tutorialsfor Developing aBEA Tuxedo Application 3-65

3 Tutorial for bankapp, a Full C Application

3-66 Tutorialsfor Developing a BEA Tuxedo Application

CHAPTER

4 Tutorial for CSIMPAPP,

a Simple COBOL
Application

m What IsCSIMPAPP

m Preparing CSIMPAPP Files and Resources

Step 1:
Step 2:
Step 3:
Step 4:
Step 5:
Step 6:
Step 7:
Step 8:

How to Copy the CSIMPAPP Files
Examining and Compiling the Client
Examining and Compiling the Server
Editing and Loading the Configuration File
How to Boot the Application

How to Test the Run-time Application
How to Monitor the Run-time Application

How to Shut Down the Application

Tutorialsfor Developing a BEA Tuxedo Application

4 Tutorial for CSIMPAPP, a Simple COBOL Application

What Is CSIMPAPP

CSI MPAPP isabasic sample application delivered with the BEA Tuxedo system. While
instructions are written for the Microfocus COBOL compiler, these may vary
depending on your specific compiler. To find out which COBOL platforms are
supported by the BEA Tuxedo system, consult the Platform Data Sheetsin Installing
the BEA Tuxedo System.

CSI MPAPP includes one client and one server. The server performsonly one service: it
accepts a string from the client and returns the same string in upper case.

4-2 Tutorials for Developing a BEA Tuxedo Application

Preparing CSIMPAPP Files and Resources

Preparing CSIMPAPP Files and Resources

Thistopic leads you through the procedures you must complete to develop CSI MPAPP.
The following flow chart summarizes this procedure.

Click on each task for instructions on completing that task.

Figure4-1 CSIMPAPP Development Process

Step 1. Copy CSIMPAPF
file=

Step 2. Examine and
compile the client

Step 3. Examine and
coampile the server

Step 4. Edit and load the
configuratian file

Step 5. Boot the
application

Step 6. Test the run-tirmea
application

Step ¥. Monitar the run-
time application

Step 3. shut dowwn the
application

Tutorialsfor Developing a BEA Tuxedo Application 4-3

4 Tutorial for CSIMPAPP, a Simple COBOL Application

Before You Begin

Beforeyou can runthistutorial, the BEA Tuxedo system software must beinstalled so
that the files and commands referred to are available. If you are responsible for
installing the BEA Tuxedo system software, refer to the Installing the BEA Tuxedo
System Guidefor installationsinstructions. If theinstallation has already been done by
someoneelse, you need to find out the path name of the directory inwhich the software
isinstalled (TUXDI R). You also need to have read and execute permissions on the
directories and filesin the BEA Tuxedo system directory structure so you can copy
CSI MPAPP files and execute BEA Tuxedo system commands.

What You Will Learn

After you complete this procedure, you will be able to understand the tasks clientsand
servers can perform, edit a configuration file for your own environment, and invoke

t madmi n to check on the activity of your application. In short, you will understand the
basic elements of al BEA Tuxedo applications—client processes, server processes,
and a configuration file—and you will know how to use BEA Tuxedo system
commands to manage your application.

Step 1: How to Copy the CSIMPAPP Files

1. Make a directory fo€sl MPAPP and change the directory to it.

nmkdi r CSI MPDI R
cd CSI MPDI R

Note: This step is suggested so you can se€sh&PAPP files you have at the start
and the additional files you create along the way. Use the standard shell
(/ bi n/ sh) or the Korn shell; do not usah.

2. Set and export environment variables.
TUXDI R=<pat hnane of the BEA Tuxedo System root directory>

APPDI R=<pat hname of your present working directory>
TUXCONFI G=$APPDI R/ TUXCONFI G

4-4 Tutorials for Developing a BEA Tuxedo Application

Step 1: How to Copy the CSIMPAPP Files

COBDI R=<pat hnane of the COBQA. conpil er directory>

COBCPY=$TUXDI R/ cobi ncl ude

COBOPT="- C ANS85 - C ALI G\=8 - C NO BMCOWP - C TRUNC=ANSI - C CSEXT=chl "
CFLAGS="-1$TUXDI R/ i ncl ude"

PATH=$TUXDI R/ bi n: $APPDI R: $PATH

LD _LI BRARY_PATH=$COBDI R/ cobl i b: ${LD_LI BRARY_PATH}

export TUXDI R APPDI R TUXCONFI G UBBCONFI G COBDI R COBCPY

export COBCPT CFLAGS PATH LD LI BRARY_PATH

You need TUXDI R and PATH to be able to access files in the BEA Tuxedo
directory structure and to execute BEA Tuxedo commands:

e On Sun Solaris, / usr/ 5bi n must be the first directory in your PATH.

e OnanAlX platform on the RS/6000, use LI BPATH instead of
LD_LI BRARY_PATH.

e Onan HP-UX platform on the HP 9000, use SHLI B_PATH instead of
LD _LI BRARY_PATH. You need to set TUXCONFI Gto be able to load the
configuration file as shown in Step 4.

3. Copy the CsI MPAPP files.
cp TUXDI R sanpl es/ at m / CSI MPAPP/ * .

Note: Later, you will edit some files and make them executable, so we
recommend using copies of the files rather than the originals delivered
with the software.

4. Listthefiles.

$1s

CSI MPCL. cbl
CSI MPSRV. chl
READVE

TPSVRI NI T. cbl
UBBCSI MPLE
WUBBCSI MPLE
envfile

ws

$
The files that make up the application are:

e CSI MPCL. cbl —the source code for the client program
e CSI MPSRV. cbl —the source code for the server program

e TPSVRI NI T. chl —the source code for the server initialization program

Tutorialsfor Developing a BEA Tuxedo Application 4-5

4 Tutorial for CSIMPAPP, a Simple COBOL Application

e UBBCSI MPLE—the text form of the configuration file for the application
e \WUBBCSI MPLE—the configuration file for the Workstation example

¢ ws—a directory with MAK files for client programs for three workstation
platforms

Step 2: Examining and Compiling the Client

How to Examine the Client

Review the client program source code.
$ nore CSI MPCL. cbl

The output is shown in the following list.

Listing 4-1 Source Codefor CSIMPCL .chl

1 I DENTI FI CATI ON DI VI SI ON.

2 PROGRAM | D. CSI MPCL.

3 AUTHOR. Tuxedo DEVELOPMENT.
4 ENVI RONMENT DI VI SI ON

5 CONFI GURATI ON SECTI ON.

6 WORKI NG- STORAGE SECTI ON.

7

LR R R R R R Rk O R R R R R R R O R

8 * Tuxedo definitions
9 LR SRR SRS S EEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES

10 01 TPTYPE- REC.
11 COPY TPTYPE.

12 =~

13 01 TPSTATUS- REC.
14 COPY TPSTATUS.
15 *

16 01 TPSVCDEF- REC.
17 COPY TPSVCDEF.
18 *

19 01 TPI NFDEF- REC VALUE LOW VALUES.
20 COPY TPI NFDEF.

21 LR Rk Rk kR R R I R R R R R kR

22 * Log nmessages definitions
23 LR R R R R R R

24 01 LOGMSG

4-6 Tutorials for Developing a BEA Tuxedo Application

Step 2: Examining and Compiling the Client

05 FILLER PIC X(8) VALUE "CSI MPCL: ".

05 LOGMBG TEXT PIC X(50).

01 LOGVSG LEN PIC S9(9) COWP-5.
*
01 USER- DATA-REC PIC X(75).
01 SEND- STRI NG PI C X(100) VALUE SPACES.
01 RECV- STRI NG PI C X(100) VALUE SPACES.

LR R R R R R R R R R R R R R R R R R R

* Command |ine argunents

LR R R R R R R R R R R R R R R R R R

* Start programw th command |ine args

LR R R R Rk b Ik kR R kR R R R R R R R ko

PROCEDURE
START- CSI MPCL.
MOVE LENGIH OF LOGVBG TO LOGVSG LEN.
ACCEPT SEND- STRI NG FROM COVVAND- LI NE.
DISPLAY “SEND-STRING:” SEND-STRING.

MOVE “Started” TO LOGMSG-TEXT.
PERFORM DO-TPINIT.

PERFORM DO-TPCALL.

DISPLAY “RECV-STRING:” RECV-STRING.
PERFORM DO-TPTERM.

PERFORM EXIT-PROGRAM.

* Now register the client with the system.

DO-TPINIT.

MOVE SPACES TO USRNAME.
MOVE SPACES TO CLTNAME.
MOVE SPACES TO PASSWD.
MOVE SPACES TO GRPNAME.
MOVE ZERO TO DATALEN.
SET TPU-DIP TO TRUE.

CALL "TPINITIALIZE" USING TPINFDEF-REC
USER-DATA-REC
TPSTATUS-REC.

IF NOT TPOK
MOVE "TPINITIALIZE Failed" TO LOGMSG-TEXT
PERFORM DO-USERLOG
PERFORM EXIT-PROGRAM

END-IF.

* |ssue a TPCALL

Tutorialsfor Developing a BEA Tuxedo Application

4-7

4

Tutorial for CSIMPAPP, a Simple COBOL Application

74
75
76

114
115
116
117
118
119
120

DO- TPCALL.
MOVE 100 to LEN.
MOVE " STRING' TO REC- TYPE.
MOVE " CSI MPSRV" TO SERVI CE- NAME.
SET TPBLOCK TO TRUE.
SET TPNOTRAN TO TRUE.
SET TPNOTI ME TO TRUE.
SET TPSI GRSTRT TO TRUE.
SET TPCHANGE TO TRUE.

CALL "TPCALL" USI NG TPSVCDEF- REC
TPTYPE- REC
SEND- STRI NG
TPTYPE- REC
RECV- STRI NG
TPSTATUS- REC.

I F NOT TPCK
MOVE " TPCALL Fail ed" TO LOGVSG TEXT
PERFORM DO- USERLOG

END- | F.

khkkhkkhhkhhhdhhdhhdhdhhrhdddrhddrdddhdddhddhdddddddrdrddrddixx

* Leave Tuxedo
RS R SR RS EEE RS EEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEES
DO TPTERM
CALL "TPTERM' USI NG TPSTATUS- REC.
I F NOT TPOK
MOVE " TPTERM Fai | ed" TO LOGVEG TEXT
PERFORM DO USERLOG
END- | F.

EIR R R R S S R R R R R R R R R R Rk kR O O O O

* Log nessages to the userlog
EE R I I R R I
DO USERLOG
CALL "USERLOG' USI NG LOGVEG
LOGVSG LEN
TPSTATUS- REC.

EIR R S R S R R R R S R R R R R R R R R R S O O

*Leave Application
EIR R S R S R R R R R R R R R Rk Sk R O O R O
EXI T- PROGRAM

MOVE "Ended" TO LOGVBG TEXT.

PERFORM DO USERLCG.

STOP RUN.

Tutorials for Developing a BEA Tuxedo Application

Step 2: Examining and Compiling the Client

Table4-1 Significant Linesin the CSIMPCL .cbl Source Code

Line(s) File/Function

Purpose

11,14,17,20 COPY

Command used to replicate files needed whenever
BEA Tuxedo ATMI functions are used.

61 TPI NI Tl ALI ZE

The ATMI function used by aclient program to join
an application.

84 TPCALL

The ATMI function used to send the message record
totheservicespecifiedin SERVI CE- NAME. TPCALL
waits for areturn message. STRI NGis one of the
three basic BEA Tuxedo record types. An argument,
LEN I N TPTYPE- REC, specifiesthe length of the
record in USER- DATA- REC.

100 TPTERM

The ATMI function used to leave an application. A
call to TPTERMis used to exit an application before
performing a STOP RUN.

110 USERLOG

Thefunction that displaysthe message returned from
the server, the successful conclusion of t pcal | .

How to Compile the Client

1. Runbuil dcli ent to compilethe client program.

buildclient -C -o CSIMPCL -f CSI MPCL. chl

The output file is CSI MPCL and the input sourcefileis CSI MPCL. cbl .

2. Check theresults.

$ |'s CSI MPCL*
CSI MPCL CSI MPCL. cbl

CSI MPCL. i dy

CSI MPCL. i nt CSIMPCL. o

You now have an executable module called CSI MPCL.

Tutorialsfor Developing a BEA Tuxedo Application 4-9

4 Tutorial for CSIMPAPP, a Simple COBOL Application

See Also

m buildclient (1) in BEA Tuxedo Command Reference

m TPI NI TIALI ZE(3cbl) in BEA Tuxedo COBOL Function Reference
m TPTERM 3cbl) in BEA Tuxedo COBOL Function Reference

m TPCALL(3chl) in BEA Tuxedo COBOL Function Reference

m USERLOG 3chl) in BEA Tuxedo COBOL Function Reference

Step 3: Examining and Compiling the Server

How to Examine the Server

1. Review the source code from the CSI MPSRV server program.

$ nore CSI MPSRV. cb

Listing 4-2 Source Codefor CSIMPSRV .cbl

1 | DENTI FI CATI ON DI VI SI ON.

2 PROGRAM | D. CSI MPSRV.

3 AUTHCOR. BEA Tuxedo DEVELOPMENT.
4 ENVI RONMENT DI VI SI ON

5 CONFI GURATI ON SECTI ON.

6 WORKI NG- STORAGE SECTI ON.

7

LR R R R R Rk kR S R R R R R R R Ik O

8 * Tuxedo definitions
9 RS RS RS S SRS EESEEE R SRS R R EREEEEEREEEEEEEEEEEEEEEEEEEEEEES]

10 01 TPSVCRET- REC.
11 COPY TPSVCRET.
12 =~

13 01 TPTYPE- REC.
14 COPY TPTYPE.

15 *

16 01 TPSTATUS- REC.

4-10 Tutoriads for Developing a BEA Tuxedo Application

Step 3: Examining and Compiling the Server

COPY TPSTATUS.

01 TPSVCDEF- REC.
COPY TPSVCDEF.

LR R R R Rk kR R O R R R R R R R R R R

* Log nmessage definitions
LR R R R R

01 LOGVBG
05 FILLER PI C X(10) VALUE
"CSI MPSRV :".
05 LOGVBG TEXT PIC X(50).
01 LOGVSG LEN PIC S9(9) COWP-5.

LR R IR R R R kR R O R R R R R R R kR kO

* User defined data records

RS R SRS S EEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEIEEEEEEEEEEEEEES
01 RECV- STRI NG PI C X(100).
01 SEND- STRI NG PI C X(100).

LI NKAGE SECTI ON.

PROCEDURE DI VI SI ON.
*
START- FUNDUPSR.
MOVE LENGTH OF LOGVBG TO LOGVEG LEN.
MOVE "Started" TO LOGVEG TEXT.
PERFORM DO- USERLOG.

LR R R R R kR R R R R R R R R R R kO

* Get the data that was sent by the client
LIRS R SRS S EEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEES
MOVE LENGTH OF RECV- STRI NG TO LEN.
CALL "TPSVCSTART" USI NG TPSVCDEF- REC
TPTYPE- REC
RECV- STRI NG
TPSTATUS- REC.

I'F NOT TPOK
MOVE " TPSVCSTART Fai |l ed" TO LOGVSG TEXT
PERFORM DO- USERLOG
PERFORM EXI T- PROGRAM

END- | F.

| F TPTRUNCATE
MOVE "Data was truncated" TO LOGMSG TEXT
PERFORM DO- USERLOG
PERFORM EXI T- PROGRAM

END- | F.

I NSPECT RECV- STRI NG CONVERTI NG

Tutorialsfor Developing a BEA Tuxedo Application

4 Tutorial for CSIMPAPP, a Simple COBOL Application

67 "abcdef ghi j kl mopqgr st uvwxyz" TO
68 " ABCDEFCHI JKLMNOPQRSTUVWKYZ" .

69 MOVE " Success" TO LOGVSG TEXT.
70 PERFORM DO USERLCG.

71 SET TPSUCCESS TO TRUE.

72 COPY TPRETURN REPLACI NG

73 DATA- REC BY RECV- STRI NG
74

75 LR R kR R R R R R R R R R

76 * Wite out a log err nessages
77 LR R R R R S

78 DO- USERLOG

79 CALL "USERLOG' USI NG LOGVEG
80 LOGVSG LEN
81 TPSTATUS- REC.

82 LR R R Rk kR R R R R R R R R o

83 * EXIT PROGRAM

84 LR I R R Rk R R R R R R R R O Rk O Sk

85 EXI T- PROGRAM

86 MOVE " Fai | ed" TO LOGVSG TEXT.

87 PERFORM DO- USERLOG.

88 SET TPFAIL TO TRUE.

89 COPY TPRETURN REPLACI NG

90 DATA- REC BY RECV- STRI NG,

Table 4-2 Significant Linesin the CSIMPSRV.cbl Source Code

Line(s) Routine Purpose

49 TPSVCSTART Routine used to start this service and to receive the
service’s parameters and data. After a successful call, the
RECV- STRI NG contains the data sent by the client.

66-68 | NSPECT statement Statement that converts the input to uppercase
(Microfocus-specific).

72 COPY TPRETURN Command line that returns the converted string to the
client with TPSUCCESS set.

79 USERLOG Routine that logs messages used by the BEA Tuxedo
system and applications.

4-12 Tutorids for Developing a BEA Tuxedo Application

Step 3: Examining and Compiling the Server

2. During server initialization (that is, before the server starts processing service
requests), the BEA Tuxedo system calls the TPSVRI NI T subroutine. To
familiarize yourself with TPSVRI NI T, page through the source code for it.

$ nore TPSVRI NI T. cbl

Listing 4-3 Source Codefor TPSVRINIT.cbl

1 | DENTI FI CATI ON DI VI SI ON.

2 PROGRAM | D. TPSVRI NI T.

3 ENVI RONVENT DI VI SI ON.

4 CONFI GURATI ON SECTI ON.

5 *

6 DATA DI VI SI ON.

7 WORKI NG STORAGE SECTI ON.

8 *

9 01 LOGVBG

10 05 FILLER PI C X(11) VALUE "TPSVRINIT :".
11 05 LOGVSG TEXT PI C X(50) .

12 01 LOGVBG LEN PI C S9(9) COWP-5.
13 =

14 01 TPSTATUS- REC.

15 COPY TPSTATUS.

16 LR R R R R R R R R R kR R R R R R R R Rk kR kO
17 LI NKAGE SECTI ON.

18 01 CMD- LI NE

19 05 ARGC PIC 9(4) COWP-5.

20 05 ARG

21 10 ARGS PIC X OCCURS 0 TO 9999 DEPENDI NG ON ARGC.

22 %

23 01 SERVER-I NI T- STATUS.

24 COPY TPSTATUS.

25 LR R R R Rk kR R R R R R R R R R R R o O R
26 PROCEDURE DI VI SI ON USI NG CVD- LI NE SERVER- | NI T- STATUS.

27 A-000.

28 MOVE LENGTH OF LOGVBG TO LOGVSG LEN.

29 LR I R R R Rk R R S R R R Rk I R R R Rk R R O O R

30 * There are no conmand line paranmeters in this TPSVRINI T
31 LR R R R Sk kR R R R R R Sk R R R R R R R

32 I F ARG NOT EQUAL TO SPACES

33 MOVE "TPSVRINIT fail ed" TO LOGVSG TEXT

34 CALL "USERLOG' USI NG LOGVSG

35 LOGVSG- LEN

36 TPSTATUS- REC

37 ELSE

38 MOVE "Wl cone to the sinple service" TO LOGVSG TEXT
39 CALL "USERLOG' USI NG LOGVSG

Tutorialsfor Developing aBEA Tuxedo Application 4-13

4 Tutorial for CSIMPAPP, a Simple COBOL Application

40 LOGWSG LEN

41 TPSTATUS- REC

42 END- | F.

43 *

44 SET TPOX I N SERVER-1 NI T- STATUS TO TRUE.
45 *

46 EXIT PROGRAM

A default is provided by the BEA Tuxedo system that writes a message to USERLOG
indicating that the server has been booted.

How to Compile the Server

1. Runbuil dserver asfollowsto compile the server program.

bui | dserver -C -0 CSIMPSRV -f CSI MPSRV.chl -f TPSVRINIT.chl -s CSI MPSRV

The executable file to be created is named CSI MPSRV and CSI MPSRV. cbl and
TPSVRI NI T. cbl aretheinput source files. The service being offered by the
server CSI MPSRV isindicated by - s CSI MPSRV.

2. Check theresults by displaying alist of the filesin your current directory.

$1s

CSI MPCL CSI MPCL. i nt CSI MPSRV. cbl CSI MPSRV. o TPSVRINIT. i nt

CSI MPCL. cbl CSI MPCL. o CSI MPSRV. i dy TPSVRI NI T. cbl TPSVRINIT. o

CSI MPCL. i dy CSI MPSRV CSI MPSRV. i nt TPSVRINI T.idy UBBCSI MPLE
You now have an executable module called CSI MPSRV.

See Also

m buil dserver (1) in BEA Tuxedo Command Reference

B TPSVCSTART(3cbl) in BEA Tuxedo COBOL Function Reference
m TPSVRI N T(3cbl) in BEA Tuxedo COBOL Function Reference
m TPRETURN(3chl) in BEA Tuxedo COBOL Function Reference

m USERLOG 3chl) in BEA Tuxedo COBOL Function Reference

4-14 Tutorids for Developing a BEA Tuxedo Application

Step 4: Editing and Loading the Configuration File

Step 4: Editing and Loading the
Configuration File

How to Edit the Configuration File

1. Inatext editor, familiarize yourself with the configuration file for CSI MPAPP.

Listing4-4 CSIMPAPP Configuration File

#Skel et on UBBCONFI G file for the BEA Tuxedo COBOL Sinple Application.
#Repl ace the <bracketed> items with the appropriate val ues.

* RESOURCES

| PCKEY <Repl ace with a valid | PC Key>

#Exanpl e:

#| PCKEY 123456

DOVAI NI D UBBCSI MPLE

MASTER sinpl e

MAXACCESSERS 5

MAXSERVERS 5

MAXSERVI CES 10

MODEL SHM

LDBAL N

* MACHI NES

DEFAULT:
APPDI R="<Repl ace with t he current pathnanme>"
TUXCONFI G="<Repl ace wi th TUXCONFI G Pat hnane>"
TUXDI R="<Root directory of BEA Tuxedo (not /)>"
ENVFI LE="<pat hnane of file of environnent vars>"

#Exanpl e:

APPDI R="/ hore/ ne/ si npapp"

TUXCONFI G="/ hone/ ne/ si npapp/ TUXCONFI G'

TUXDI R="/usr/ tuxedo"

ENVFILE="/home/me/simpapp/envfile”

<Machine-name> LMID=simple

#Example:

#usltux LMID=simple

Tutorialsfor Developing aBEA Tuxedo Application 4-15

4 Tutorial for CSIMPAPP, a Simple COBOL Application

* CROUPS
GROUP1

* SERVERS
DEFAULT:

CSI MPSRV

*SERVI CES
CSI MPSRV

LM D=si npl e GRPNCO=1 OPENI NFO=NONE

CLOPT="-A"

SRVGRP=GROUP1 SRvI D=1

2. For each st ri ng (that is, for each string shown in italic between angle brackets),
substitute an appropriate value:

Note:

| PCKEY—Use avaue that will not conflict with any other users.
TUXCONFI G—Provide the full path name of the binary TUXCONFI Gfile.
TUXDI R—The full path name of your BEA Tuxedo system root directory.

APPDI R—The full path name of the directory in which you intend to boot the
application; in this case, the current directory.

ENVFI LE—The full path name for the environment file to be used by nt, vi ewc,
t ml oadcf , and so on.

machi ne- name—The machine name as returned by the uname - n command on a
UNIX platform.

The path names faIUXCONFI G andTUXDI R must be identical to those you set
and exported earlier. You must specify actual path names; references to patl
names through environment variables (SUC&&ONFI G) are not

acceptable. Do not forget to remove the angle brackets.

How to Load the Configuration File

1. Runt i oadcf to load the configuration file.

$ tnl oadcf UBBCSI MPLE
Initialize TUXCONFI G file: /usr/me/CSI MPDIR/ TUXCONFIG [y, q] ? Yy

$

4-16 Tutoriads for Developing a BEA Tuxedo Application

Step 5: How to Boot the Application

2. Check the results by displaying alist of the filesin your current directory.

$1s
CSI MPCL CSI MPCL. o CSI MPSRV. i nt TPSVRI NI T. i nt
CSI MPCL. cbl CSI PSRV CSI MPSRV. o TPSVRINI T. o

CSI MPCL. i dy CSI MPSRV. cbl TPSVRI NI T. cbl TUXCONFI G
CSI MPCL. i nt CSI MPSRV.idy TPSVRINT.idy UBBCSI MPLE

We now have afile called TUXCONFI G (a new file system under the control of
the BEA Tuxedo system).

See Also

m tm oadcf (1) in BEA Tuxedo Command Reference

m UBBCONFI G 5) in BEA Tuxedo File Formats and Data Descriptions Reference

Step 5: How to Boot the Application

Execute t nboot to bring up the application.

$ tnboot
Boot all admin and server processes? (y/n): vy
Booting all admn and server processes in /usr/ne/CSlI MPDI R TUXCONFI G

Booting all admin processes ...

exec BBL - A
process id=24223 ... Started.

Booti ng server processes ...

exec CSIMPSRV -A :
process id=24257 ... Started.
2 processes started.

$

The BBL isthe administrative process that monitors the shared memory structuresin
the application. CSI MPSRV isthe CSI MPAPP server that runs continuously, awaiting
requests.

Tutorialsfor Developing aBEA Tuxedo Application 4-17

4 Tutorial for CSIMPAPP, a Simple COBOL Application

See Also

m tmboot (1) in BEA Tuxedo Command Reference

Step 6: How to Test the Run-time
Application

To test CSI MPAPP, have the client submit arequest.

$ CSIMPCL “hell o world”
HELLO WORLD

Step 7: How to Monitor the Run-time
Application

As the administrator, you can use theadni n command interpreter to check an
application and make dynamic changes. Ta auni n, you must set thBUXCONFI G
variable

t madm n can interpret and run over 50 commands. For a complete list, see
t madmi n(1) in BEA Tuxedo Command Reference. Here we demonstrate two of the
manyt madni n commands.

1. Enter the following command.
tmadm n
The following lines are displayed.

tmadm n - Copyright (c) 1999 BEA Systens Inc.; 1991 USL. All
rights reserved.

>

4-18 Tutorids for Developing a BEA Tuxedo Application

Step 8: How to Shut Down the Application

Note: The greater-than sign (>) isthe t madmi n prompt.

2. Entertheprintserver(psr) command to display information about servers.

> psr
a.out Nane Queue Nane Gp Nanme | D RgDone Load Done Current Service

BBL 531993 sinpl e 0 0 0 (IDLE)
CSIMPSRV 00001.00001 GROUPL 1 0 0 (IDLE)
>

3. Entertheprintservi ce(psc) command to display information about services.
> psc

Service Name Routine Nane a.out Name G p Nane |ID Machine # Done Status

CSI PSRV CSI MPSRV CSI VPSRV GROUP1 1 simpl e - AVAI L

4. Leavet madni n by entering a g at the prompt. (You can boot and shut down the
application from within t madni n.)

See Also

m tmadmi n(1) in BEA Tuxedo Command Reference

Step 8: How to Shut Down the Application

1. Runt mshut down to bring down the application.

$ tnshut down
Shutdown all adm n and server processes? (y/n): vy
Shutting down all adm n and server processes in /usr/me/ CSI MPDI R TUXCONFI G

Shutting down server processes ...
Server Id =1 Goup Id = GROJUPL Machi ne = sinple: shutdown succeeded.

Shutting down adm n processes ...

Tutorialsfor Developing aBEA Tuxedo Application 4-19

4 Tutorial for CSIMPAPP, a Simple COBOL Application

Server Id =0 Goup Id = sinple Machine = sinple: shutdown succeeded.
2 processes stopped.

$
2. Check the ULOG

$ cat ULO&

$

140533. usl t ux! BBL. 22964: LI BTUX CAT: 262: std mmin starting

140540. usl t ux! CSI MPSRV. 22965: COBAPI _CAT: 1067: INFO std mmin starting
140542. usl t ux! CSI MPSRV. 22965: TPSVRINI T : Wl cone to the sinple service
140610. usl t ux! ?proc. 22966: CSI MPCL: Start ed

140614. usl t ux! CSI MPSRV. 22965: CSI MPSRV : Start ed

140614. usl t ux! CSI MPSRV. 22965: CSI MPSRV : Success

140614. usl t ux! ?proc. 22966: switch to new log file

/ hone/ usr _nm CSI MPDI R/ ULOG. 112592

140614. usl t ux! ?proc. 22966: CS| MPCL: Ended

Each line of the ULOGfor this session is significant. First look at the format of a
uLoGline:

time (hhmss) . machi ne_unane! process_nane. process_id: | og nessage
Now look at an actud line.
140542. Message from TPSVRINI T in CSI MPSRV

See Also

m tnshut down(1) in BEA Tuxedo Command Reference

m USERLOG 3chl) in BEA Tuxedo COBOL Function Reference

4-20 Tutoriads for Developing a BEA Tuxedo Application

CHAPTER

5 Tutorial for STOCKAPP,

a Full COBOL
Application

m What Is STOCKAPP
m Familiarizing Yourself with STOCKAPP
m Preparing STOCKAPP Files and Resources
e Step 1: How to Set Environment Variables
e Step 2: Building Serversin STOCKAPP
e Step 3: Editing the STOCKAPPmkK File
e Step 4: How to Edit the Configuration File
e Step 5: Creating aBinary Configuration File
m Running STOCKAPP

What Is STOCKAPP

STOCKAPP isasampl e stocks application that is provided with the BEA Tuxedo system
software. The application performsthe following stock brokering functions: validates

and updates a customer’s account information, and executes buy and sell orders for
stocks and/or funds.

Tutorialsfor Developing a BEA Tuxedo Application 5-1

5

Tutorial for STOCKAPP, a Full COBOL Application

This documentation leads you, step by step, through the procedure you must perform
to develop the STOCKAPP application. Once you have “developesi'ocKaPP through
this tutorial, you will be ready to start developing applications of your own.

The STOCKAPP tutorial is presented in three sections:

m “Familiarizing Yourself with STOCKAPP” on page 5-2

m “Preparing STOCKAPP Files and Resources” on page 5-10
m “Running STOCKAPP” on page 5-23

Note: This information is focused on system users with some experience in
application development, administration, or programming. We assume some
familiarity with the BEA Tuxedo system software. A development license is
required to build BEA Tuxedo applications.

Familiarizing Yourself with STOCKAPP

5-2

This documentation provides a tour of the files, client, and services that make up the
STOCKAPP application. Click on any of the following activities for more information
about that part of the tour.

Learning abhout the
STOCKAPP files

Examining the
STOCKARPP clients

Examining the
STOCKARPP servers

Tutorials for Developing a BEA Tuxedo Application

Learning About the STOCKAPP Files

Learning About the STOCKAPP Files

The files that make up the STOCKAPP application are delivered in adirectory called
STOCKAPP, which is positioned as follows.

samples/atmi

csimpapp/ stuclJappf

Exploring the Stock Application Files

The STOCKAPP directory contains the following files:

Eight . cbl files

Four clients: BUY. cbl , SELL. cbl , FUNDPR. cbl and FUNDUP. cbl
One conversational server: FUNDUPSR. cbl

Threefilesthat are servers or are associated with servers

Two servers to generate data or transactions for the application

Files provided to facilitate the use of STOCKAPP as an example

The following table lists the files that make up STOCKAPP. The table lists the source
filesdelivered with the BEA Tuxedo system software, filesthat are generated when the
stock application is built, and asummary of the contents of each file.

Tutorialsfor Developing a BEA Tuxedo Application 5-3

Tutorial for STOCKAPP, a Full COBOL Application

Table5-1 Purpose of the Sock Application Files

Source File Generated File Contents
BUY. chl BUY. o Client
BUY
BUYSR. cbl BUYSR. o Contains BUY service
BUYSR
ENVFI LE ENVFI LE used by t nl oadcf
FI LES Descriptive list of al the filesin STOCKAPP
FUNDPR. cbl FUNDPR. o Client
FUNDPR
FUNDPRSR. cbl FUNDPRSR. 0 Contains PRI CE QUOTE service
FUNDPRSR
FUNDUP. cbl FUNDUP. o Client
FUNDUP
FUNDUPSR. cbl FUNDUPSR. o0 Contains FUND UPDATE service
FUNDUPSR
READVE On-line version of the installation and boot
procedures
SELL. cbl SELL. o0 SELL Client
SELLSR. chl SELLSR. o Contains SELL service
SELLSR
STKVAR Contains variable settings, except for those
within ENVFI LE
STOCKAPP. 1k Application makefile
UBBCBSHM TUXCONFI G Sample UBBCONFI Gfilefor useinaSHM-mode
configuration
cust CUST. cbl View used to definethestructure passed between

cust.V cust.h

the BUY and SELL clients and the BUYSR and
SELLSR servers

Tutorials for Developing a BEA Tuxedo Application

Examining the STOCKAPP Clients

Sour ce File Generated File Contents

quot e QUOTE. chl View used to definethe structure passed between
quote.V the FUNDPR and FUNDUP clients and all the
quote. h servers

See Also

m “Familiarizing Yourself with STOCKAPP” on page 5-2

Examining the STOCKAPP Clients

In the client-server architecture of the BEA Tuxedo system, there are two modes of

communication:

m Request/response mode, which is characterized by the sending of a single
request for a service to be performed by the server and getting back a single

response.

m Conversational mode; in this mode a dedicated connection is established
between a client (or a server acting like a client) and a server. The connection
remains active until terminated. While the connection is active, messages
containing service requests and responses can be sent and received between the

two participating processes.

Tutorialsfor Developing a BEA Tuxedo Application 5-5

S Tutorial for STOCKAPP, a Full COBOL Application

System Client Programs

The following figure shows the hierarchy for STOCKAPP. The user selects one of the
four servicerequests. The oval shapesin theillustration represent application services.

Figure5-1 STOCKAPP Requests

Fequest from senrice screen
to server process in WIEW

record.

ELUY SELL FUMOPR FUNOUP
Aoccount Aecount Aecount Account
FundfStock Fund/Stock FundiStock FundiStock
Amount Amaunt Amaunt Amount
Frice Frice Price Frice

EUYSELL FUNDFR EUNOUF
BU%SR SELLSR FUMDFRSR FUMDUFP SR
confirm get price of update price of
account info stodkfund stodfund

If senvice iz successful,
confirmation is sent bad; if
not, request sent back to
original senvice screen.

Typed Buffers

Typed buffers are an essential part of the BEA Tuxedo system. In the BEA Tuxedo
system, atyped buffer is designed to hold a specific data type. Six types are defined:
VI EW STRI NG, CARRAY, X_OCTET, X_COMVON, and XM_. Applications have the ability
to define additional types.

5-6 Tutorials for Developing a BEA Tuxedo Application

Examining the STOCKAPP Clients

A Request/Response Client: BUY.cbl

BUY is an example of aclient program. It makes account inquiries that call on the
service BUYSR. As an executable, it isinvoked as follows:

BUY

BUY.cbl Source Code

Review the following sections of the BUY. cbl program.

* Now register the client with the system
* |Issue a TPCALL
* Clean up

The indicated sections contain all of the placesin BUY. cbl where the BEA Tuxedo
ATMI functions are used. Similar to csi npl . cbl , BUY. cbl needsto call

TPI NI Tl ALI ZE to join the application; call TPCALL to make an RPC request to a
service; and call TPTERMto leave an application. Note al so that BUY. cbl isan example
of aprogram that uses a VI Ewtyped record and a structure that is defined in the cust
file. The source code for the structure can be found in the view description file,

cust. V.

Building Clients

View description files, of which cust isan example, are processed by the view
compiler, vi ewc(1). Run vi ew(c) to compile the view.

vi ewc-C-n
cust.v

where vi ewc hasthree output files: a COBOL file (CUST. cbl), abinary view
description file (cust . V), and a header file (cust . h).

The client programs, BUY. cbl , FUNDPR. cbl , FUNDUP. cbl , and SELL. cbl , are
processed by bui | dcl i ent (1) to compile them and/or link edit them with the
necessary BEA Tuxedo libraries.

Y ou can use any of these commandsindividually, if you choose, but rulesfor all these
steps are included in STOCKAPP. nk.

Tutorialsfor Developing a BEA Tuxedo Application 5-7

S Tutorial for STOCKAPP, a Full COBOL Application

See Also

m “What You Can Do Using the ATMI” on page 2-4lintroducing the BEA
Tuxedo System

m “What Are Typed Buffers” on page 2-24 lintroducing the BEA Tuxedo System

m ATMI commands and functions BEA Tuxedo Command Reference andBEA
Tuxedo C Function Reference

m “Familiarizing Yourself with STOCKAPP” on page 5-2

Examining the STOCKAPP Servers

This topic provides the following information:
m A description of a service that is part of the stock application
m A description of the relationships between ST@CKAPP services and servers

m Information on thebui | dser ver command options used to compile and build
each server

Servers are executable processes that offer one or more services. In the BEA Tuxe
system, they continually accept requests (from processes acting as clients) and
dispatch them to the appropriate services. Services are subroutines of COBOL
language code written specifically for an application. It is the services accessing a
resource manager that provide the functionality for which your BEA Tuxedo system
transaction processing application is being developed. Service routines are one part
the application that must be written by the BEA Tuxedo system programmer
(user-defined clients being another part).

All STOCKAPP services use functions provided in the Application Transaction
Management Interface (ATMI) for performing the following tasks:

m Communicating synchronously or asynchronously with other services
m Defining global transactions

m Sending replies back to clients

5-8 Tutorials for Developing a BEA Tuxedo Application

Examining the STOCKAPP Servers

STOCKAPP Services

There are four servicesin STOCKAPP. Each STOCKAPP service matches a COBOL
function name in the source code of a server as shown in the following list:

BUYSR
buys a fund/stock record; offered by the BUYSELL server; accepts avl EW
record as input, inserts a CUSTFI LE record

SELLSR
sellsafund/stock record; offered by the BUYSELL server; accepts avi EW
record as input, inserts a CUSTFI LE record

FUNDPRSR
price quote; offered by the PRI CEQUOTE server; accepts a VI Ewrecord as
input

FUNDUPSR
fund update; conversational service; offered by FUNDUPDATE server; accepts
aVl Ewrecord asinput

Tutorialsfor Developing a BEA Tuxedo Application 5-9

S Tutorial for STOCKAPP, a Full COBOL Application

Preparing STOCKAPP Files and Resources

This documentation leads you through the procedures you must complete to create the
files and other resources you need to run STOCKAPP.

Click on each task for instructions on completing that task.

Step 1. Set environment
variahles in STEWAR

I

Step 2. Build the servers
I

Step 3. Editthe makefile

Step 4. Editthe
canfiguratian file

Step 4. Create 3 hinary
configuration file and a
transaction log file

Step 1: How to Set Environment Variables

Environment variables required for STOCKAPP are defined in the STKVARfile. Thefile
islarge (approximately 100 lines) because it includes extensive comments.

1. Inatext editor, familiarize yourself with the STKVAR file. Line 9 ensures that
TUXDI Risset. If itisnot set, execution of thefilefailswith the following message.

TUXDI R: paraneter null or not set

5-10 Tutorialsfor Developing a BEA Tuxedo Application

Step 1: How to Set Environment Variables

2. Set TUXDI Rto theroot directory of your BEA Tuxedo system directory structure,
and export it.

3. Another linein STKVAR sets APPDI R to the directory
{TUXDI R} / sanpl es/ at mi / STOCKAPP which isthe directory where STOCKAPP
source files are located: APPDI Ris a directory where the BEA Tuxedo system
looks for your application-specific files. You might prefer to copy the STOCKAPP
files to a different directory to safeguard the original source files. If you do, then
enter the directory there. It does not have to be under TUXDI R.

Note: Other variables specified in STKVAR play variousroles in the sample
application; you need to be aware of them when you are developing your
own application. By including them in STKVAR, we provide you with a
template that you may want to adapt at a later time for use with areal
application.

4. When you have made all necessary changes to STKVAR, execute STKVAR as
follows.

. | STKVAR

Listing5-1 STKVAR: Environment Variablesfor STOCKAPP

#i dent " @ #) sanpl es/ at m : STOCKAPP/ STKVAR

#

This file sets all the environnent variabl es needed by the TUXEDO sof tware
to run the STOCKAPP

#

This directory contains all the TUXEDO software

System admi ni strator nust set this variable

#

TUXDI R=${ TUXDI R: ?}

#

This directory contains all the user witten code
#

Contains the full path name of the directory that the application
generator should place the files it creates

#

APPDI R=${ HOVE} / STOCKAPP

#

Environnment file to be used by tnioadcf

#

COBDI R=%{ COBDI R: ?}

#

This directory contains the cobol files needed

Tutorialsfor Developing aBEA Tuxedo Application 5-11

S Tutorial for STOCKAPP, a Full COBOL Application

for conpiling and |inking.

fD_LI BRARY PATH=$COBDI R/ cobl i b: ${ LD LI BRARY_PATH}

i Add coblib to LD LI BRARY PATH

EN\/FI LE=${ APPDI R}/ ENVFI LE

z List of field table files to be used by CBLVIEWC, tm oadcf, etc.
Iﬁl ELDTBLS=fi el ds, Usysfl ds

z List of directories to search to find field table files

ﬁLDTBLu R=${ TUXDI R} / udat aobj : ${ APPDI R}

z Set device for the transaction log; this should match the TLOGDEVI CE
paraneter under this site’s LMD in the *MACH NES secti on of the
UBBCBSHM fil e

iL%DEVI CE=${ APPDI R} / TLOG

z Device for the configuration file

ﬁBBCBSHM:$APPDI R/ UBBCBSHM

z Device for binary file that gives /T all its information
EUXCO\IFI G=${ APPDI R} / TUXCONFI G

Set the prefix of the file which is to contain the central user |og;
this should match the ULOGPFX paraneter under this site’s LMD in the
*MACH NES section of the UBBCONFIG file

ﬁLOGPFx:${ APPDI R}/ ULOG

z List of directories to search to find view files

;\#/I EVDI R=${ APPDI R}

z List of viewfiles to be used by CBLVI EWC, tnloadcf, etc.

;\#/I EWFI LES=quot e. V, cust. V

z Set the COBCPY

ZOBCPY=$TUXDI R/ cobi ncl ude

z Set the COBOPT

5-12 Tutorialsfor Developing a BEA Tuxedo Application

Step 1: How to Set Environment Variables

#

COBOPT="-C ANS85 -C ALI GN=8 - C NO BMCOWP - C TRUNC=ANS| -C OSEXT=chl "
#

Set the CFLAGS

#

CFLAGS="-1$TUXDI R/i ncl ude -1$TUXDI R/ sysi ncl ude"
#

Export all variables just set

#

export TUXDI R APPDI R ENVFI LE

export FI ELDTBLS FLDTBLDI R TLOGDEVI CE
export UBBCBSHM TUXCONFI G ULOGPFX LD_LI BRARY_PATH
export VI EMDI R VI EWFI LES COBDI R COBCPY COBOPT CFLAGS
#

Add TUXDIR/'bin to PATH if not already there
#

a="‘'echo $PATH | grep ${TUXDI R}/ bin'"

if [x"$a" = x]

then

PATH=${ TUXDI R} / bi n: ${ PATH}

export PATH

fi

#

Add APPDIR to PATH if not already there
#

a="‘echo $PATH | grep ${APPDIR}"'"

if [x"$a" = x]

then

PATH=${ PATH} : ${ APPDI R}

export PATH

fi

#

Add COBDIR to PATH if not already there
#

a="‘echo $PATH | grep ${COBDI R}" "

if [x"$a" = x]

then

PATH=${ PATH} : ${ COBDI R}

export PATH

fi

Tutorialsfor Developing a BEA Tuxedo Application

5-13

S Tutorial for STOCKAPP, a Full COBOL Application

Additional Requirements

m OnAlIX, set LI BPATHinstead of LD LI BRARY_PATH.
m On HP-UX, set SHLI B_PATHIinstead of LD LI BRARY_PATH.

m If your operating system is Sun Solaris, you need to: put / usr/ 5bi n a the
beginning of your PATH. The following command can be used:

PATH=/ usr / 5bi n: $PATH, export PATH
Use/ bi n/ sh rather than csh for your shell.

See Also

m “Preparing STOCKAPP Files and Resources” on page 5-10

Step 2: Building Servers in STOCKAPP

bui | dser ver is used to put together an executable server. Options identify the name:
of the output file, the input files provided by the application, and various libraries that
permit you to run a BEA Tuxedo system application in a variety of ways.

bui | dser ver with the- C option invokes theobcc command. The environment
variablesAL TCC andALTCFLAGS can be set to name an alternative compile command
and to set flags for the compile and link edit phases. Thekidyiser ver command

line options are illustrated in the examples that follow.

Thebui | dser ver command is used BTOCKAPP. nk to compile and build each server
in the stock application. (Refer to thei | dserver (1) in BEA Tuxedo Command
Reference for complete details.)

5-14 Tutorialsfor Developing a BEA Tuxedo Application

Step 2: Building Servers in STOCKAPP

How to Build the BUYSELL Server

The BUYSELL server is derived from files that contain the code for the BUYSR and
SELLSR functions. The BUYSELL server isfirst compiled to a BUYSELL. o file before
supplying it to the bui | dser ver command so that any compile-time errors can be
clearly identified and dealt with before this step.

1. Createthe BUYSELL. o file (performed for you in STOCKAPP. nk). The
bui | dser ver command that was used to build the BUYSELL server follows:

bui |l dserver -C -v -0 BUYSELL -s SELLSR -f SELLSR cbhl -s BUYSR -f BUYSR cbl
The explanation of the command line options follows:
e The- Coption isused to build servers with COBOL modules.

e The-v option is used to specify the verbose mode. It writes the cc command
to its standard output.

e The- o option is used to assign a name to the executable output file. If no
name is provided, the file is named SERVER.

e The- s option isused to specify the service namesin the server that are
available to be advertised when the server is booted. If the name of the
function that performs a service is different from the service name, the
function name becomes part of the argument of the - s option. In the
STOCKAPP, the function name is the same as the name of the service so only
the service names themsel ves need to be specified. It is our convention to
specify all uppercase for the service name. However, the - s option of
bui | dser ver doesallow you to specify an arbitrary name for the processing
function for a service within a server. Refer to the bui | dserver (1) in BEA
Tuxedo Command Reference for details. It is also possible for the
administrator to specify that only a subset of the services that were used to
create the server with the bui | dser ver command is to be available when
the server is booted. For more information, refer to the Administering a BEA
Tuxedo Application at Run Time and Setting Up a BEA Tuxedo Application.

e The-f option specifies the files that are used in the link-edit phase. Also
refer to the -1 option on the bui | dser ver reference page. For more detail
information on both of these options refer to the “Building Servers” on page
5-32 inProgramming a BEA Tuxedo Application Using COBOL. There is a
significance to the order in which the files are listed. The order is dependent
on function references and in what libraries the references are resolved.

Tutorialsfor Developing aBEA Tuxedo Application 5-15

S Tutorial for STOCKAPP, a Full COBOL Application

Source modules should be listed ahead of libraries that might be used to
resolve their references. If these are . cbl files, they are first compiled.
Object files can be either separate . o files or groups of filesin archive (. a)
files. If more than asingle filenameis given asan argument to a-f , the
syntax callsfor alist enclosed in double quotes. You can use as many - f
options as you need.

e The- s option names the SELLSR and BUYSR servicesto be the services that
comprise the BUYSELL server. The - o option assigns the name BUYSELL to
the executable output file and the - f option specifies that the SELLSR. cbl
and the BUYSR. cbl files areto be used in the link edit phase of the build.

Servers Built in STOCKAPP.mk

See Also

Step 3:

The topics on creating the STOCKAPP servers are important to your understanding of
how the bui | dser ver command is specified. However, in actual practice you are apt
to incorporate the build into a makefile; that isthe way it isdone in STOCKAPP.

m “Familiarizing Yourself with STOCKAPP” on page 5-2

® buil dserver (1)

Editing the STOCKAPP.mK File

STOCKAPP includes arakef i | e that makes all scripts executable, converts the view
description file to binary format, and does all the precompiles, compiles, and builds
necessary to create the application servers. It can also be used to clean up when yc
want to make a fresh start.

As STOCKAPP. nk is delivered, there are a few fields you may want to edit, and some
others that may benefit from some explanation.

5-16 Tutorialsfor Developing a BEA Tuxedo Application

Step 3: Editing the STOCKAPP.mK File

How to Edit the TUXDIR Parameter

Go to the following comment in STOCKAPP. nk and to the TUXDI R parameter:

#

Root directory of TUXEDO System This file nust either be edited to set
this value correctly, or the correct val ue nust be passed via "nmake -f

STOCKAPP. nk TUXDI R=/correct/rootdir", or the build of STOCKAPP will fail.
#

TUXDIR=. . /..

Y ou should set the TUXDI R parameter to the absolute path name of the root directory
of your BEA Tuxedo system installation.

How to Edit the APPDIR Parameter

Y ou may want to give some thought to the setting of the APPDI R parameter. As
STOCKAPP isdelivered, APPDI Ris set to the directory in which the STOCKAPP files are
located, relative to TUXDI R. The following section of STOCKAPP. nk defines and
describes the setting of APPDI R.

Directory where the STOCKAPP application source and executables live.
This file nust either be edited to set this value correctly, or the
correct value nust be passed via "make -f STOCKAPP. nk

APPDI R=/ correct/appdir", or the build of STOCKAPP will fail.

HHHFHHH

APPDI R=$(TUXDI R) / sanpl es/ at m / STOCKAPP

H*

If you have copied the files to another directory, as suggested in the READVE file, you
should set APPDI R to the name of the directory to which you copied the files. When
you run the makef i | e, the application will be built in this directory.

How to Run the STOCKAPP.mk File

1. When you have completed the changes you wish to make to STOCKAPP. nk, run it
with the following command line.

nohup nmake -f STOCKAPP.nk install &

2. Check the nohup. out file to make sure the process completed successfully.

Tutorialsfor Developing aBEA Tuxedo Application 5-17

S Tutorial for STOCKAPP, a Full COBOL Application

See Also

m “Preparing STOCKAPP Files and Resources” on page 5-10

Step 4: How to Edit the Configuration File

TheSTOCKAPP configuration file defines how an application runs on a set of machines.
STOCKAPP is delivered with a configuration file in text format described in
UBBCONFI G(5). UBBCBSHM defines an application on a single computer.

1. In atext editor, familiarize yourself with the configuration file $M0CKAPP.

Listing5-2 UBBCBSHM Configuration File Fieldsto Be Replaced

#Copyright (c) 1992 Unix System Laboratories, |Inc.
#All rights reserved
#Skel et on UBBCONFI G file for the TUXEDO COBOL Sanpl e Application.

* RESOURCES
| PCKEY 5226164
DOVAI NI D STOCKAPP

001 u D <user id fromid(1)>

002 Ganb <group id fromid(1l)>
MASTER SI TE1
PERM 0660
MAXACCESSERS 20
MAXSERVERS 15
MAXSERVI CES 30
MODEL SHM
LDBAL Y
MAXGT T 100
MAXBUFTYPE 16
MAXBUFSTYPE 32
SCANUNI T 10
SANI TYSCAN 12
DBBLWAI T 6
BBLQUERY 180
BLOCKTI ME 10

TAGENT “TAGENT"

#

5-18 Tutorialsfor Developing a BEA Tuxedo Application

Step 4: How to Edit the Configuration File

003
004
005

006

* MACHI NES
<SI TE1's unane> LM D=SI TE1
TUXDI R=" <TUXDI R1>"
APPDI R=" <APPDI R1>"
ENVFI LE=" <APPDI R1>/ ENVFI LE"
TUXCONFI G=" <APPDI R1>/ TUXCONFI G'
TUXOFFSET=0
TYPE="<nmachi ne type>"
ULOGPFX="<APPDI R>/ ULCG'
MAXWSCLI ENTS=5
#
* GROUPS
COBAPI LM D=SI TE1 GRPNO=1
#
#
* SERVERS
FUNDUPSR SRVGRP=COBAPI SRVI D=1 CONV=Y ENVFI LE="<APPDI R1>/ ENVFI LE"
FUNDPRSR SRVGRP=COBAPI SRVI D=2 ENVFI LE=" <APPDI R1>/ ENVFI LE"
BUYSELL SRVGRP=COBAPI SRVI D=3 ENVFI LE=" <APPDI R1>/ ENVFI LE"
#
#
* SERVI CES

2. To enable the application password feature, add the following line to the
RESQURCES section of UBBCBSHM

SECURITY APP_PW

3. You may notice that the values of some parameters are enclosed in angle brackets
(<>). Values shown in angle brackets are generic; you need to replace them with
values that pertain to your installation. All of these fields occur within the
RESOURCES, MACHI NES, and GROUPS sections in the file. The following table
describes the values with which you must replace the angle-bracketed strings. For
each st ri ng, subgtitute an appropriate value.

Tutorialsfor Developing aBEA Tuxedo Application 5-19

S Tutorial for STOCKAPP, a Full COBOL Application

Table 5-2 Explanation of Values

Line StringtoBe Purpose
Replaced

001 u D The effective user 1D for the owner of the bulletin board |PC
structures. In a multiprocessor configuration, the value must be
the same on al machines. Y ou avoid problemsif thisis the same
as the owner of the BEA Tuxedo software.

002 G D The effective group ID for the owner of the bulletin board IPC
structures. In a multiprocessor configuration, the value must be
the same on all machines. Users of the application should share
this group ID.

003 SITEL name The node name of the machine. Use the value produced by the
UNIX command:
unanme -n

004 TUXD R The absolute path name of theroot directory for the BEA Tuxedo
system software. Make thisaglobal changeto put thevaluein all
occurrences of <TUXDI R1> in thefile.

005 APPDI R The absolute path name of the directory where the application
runs. Makethisaglobal changeto put thevauein all occurrences
of <APPDI R1> in thefile.

006 machi ne This parameter isimportant in a networked application where

type machines of different types are present. The BEA Tuxedo system

checks for the value on all communication between machines.
Only if the values are different are the message
encode/ decode routines called to convert the data.

See Also

m “Preparing STOCKAPP Files and Resources” on page 5-10

m UBBCONFI G(5) in BEA Tuxedo File Formats and Data Descriptions Reference

5-20 Tutorialsfor Developing a BEA Tuxedo Application

Step 5: Creating a Binary Configuration File

Step 5: Creating a Binary Configuration File

Before Creating the Binary Configuration File

Before creating the binary configuration file, you need to be in the directory in which
your STOCKAPP filesarelocated and you must set the environment variables. Compl ete
the following tasks.

1. Gotothedirectory in which your STOCKAPP files are |ocated.

2. Set the environment variables by entering

. | STKVAR

How to Load the Configuration File

Once you have finished editing the configuration file, you must load it into a binary
fileon your MASTER machine. The name of the binary configuration fileis TUXCONFI G,
its path name is defined in the TUXCONFI G environment variable. The file should be
created by aperson with the effective user ID and group I D of the BEA Tuxedo system
administrator, which should be the same asthe U Dand G D valuesin your
configuration file. If this requirement is not met, you may have permission problems
in running STOCKAPP.

1. To create TUXCONFI G enter the following command.
t m oadcf UBBCBSHM

While the configuration file is being loaded, you are prompted several timesto
confirm that you want to install this configuration, even if doing so means an
existing configuration file must be overwritten. If you want to suppress such
prompts, include the - y option on the command line.

2. If you want the amount of 1PC resources needed by your application to be
calculated by the BEA Tuxedo system, include the - ¢ option on the command
line.

TUXCONFI G can beinstalled only on the MASTER machine; it is propagated to
other machines by t mboot when the application is booted.

Tutorialsfor Developing aBEA Tuxedo Application 5-21

S Tutorial for STOCKAPP, a Full COBOL Application

If you have specified SECURI TY as an option for the configuration, t m oadcf
prompts you to enter an application password. The password you select can be
up to 30 characters long. Client processes joining the application are required to
supply the password.

t m oadcf parsesthe text configuration file (UBBCONFI G) for syntax errors
beforeit loads it, so if there are errorsin thefile, thejob fails.

See Also

m “Preparing STOCKAPP Files and Resources” on page 5-10

m tmoadcf (1) in BEA Tuxedo Command Reference

5-22 Tutorialsfor Developing a BEA Tuxedo Application

Running STOCKAPP

Running STOCKAPP

Thisdocumentation leads you through the proceduresfor booting STOCKAPP, testing it

by running various client programs and transactions, and shutting it down when you
have finished.

Click on each task for instructions on completing that task.

Step 1. Prepare to boot

Step 2. Boot STOCKARPF

Step 3. Test STOCKAPP
Serices

Step 4. Shut down
STOCKAPP

Step 1: How to Prepare to Boot

1. Beforebooting STOCKAPP, verify that your machine has enough | PC resources to

support your application. To generate areport on |PC resources, run thet mboot
command with the - ¢ option.

Tutorialsfor Developing aBEA Tuxedo Application 5-23

S Tutorial for STOCKAPP, a Full COBOL Application

Listing 5-3 |1PC Report

Ipc sizing (mninum/T val ues only)

SHW N 1
SHVALL: 1

Fi xed M ni nuns Per Processor

SEMVAP: SEMWNI

Variable M ni muns Per Processor

SEMUME, A SHMVAX
SEMWINU, * *
SEMWS SEMVSL SEMMSL SEMVNL MSGWNI MSGVAP SHVBEG
60 1 60 A+ 1 10 20 76K
63 5 63 A+ 1 11 22 76K

where 1 <= A <= 8.

See Also

. You should add the number of application client used per processor to each

MSGWN value. MSGVAP should be twice MSGWNI .

. Compare the minimum | PC requirements to the parameters set for your machine.

Thelocation of these parameter settings is platform-dependent:

e On many UNIX system platforms, machine parameters are defined in
/etc/conf/cf.d/ nmtune.

e On Windows NT platforms, machine parameters are set and displayed
through a control panel.

“Running STOCKAPP” on page 5-23

5-24 Tutorialsfor Developing a BEA Tuxedo Application

Step 2: How to Boot STOCKAPP

Step 2: How to Boot STOCKAPP

See Also

1. Set the environment.

../ STKVAR

2. Boot the application by entering the following.

t nboot
The following prompt is displayed.
Boot all admn and server processes? (y/n): vy

When you enter y after the prompt, arunning report, such asthe following, is
displayed on the screen.

Booting all admin and server processes in
/usr/ me/ appdir/tuxconfig
Booting all admin processes
exec BBL - A
process i d=24223 Started

The report continues until all serversin the configuration have been started. It ends by
reporting the total number of servers started.

If you prefer, you can boot only a portion of the configuration. For example, to boot
only administrative servers, include the - A option. If no options are specified, the
entire application is booted.

In addition to reporting on the number of servers booted, t mboot a so sends messages
to the ULOG.

m “Running STOCKAPP” on page 5-23

t mboot (1) in BEA Tuxedo Command Reference

m USERLOG 3chl) in BEA Tuxedo COBOL Function Reference

Tutorialsfor Developing aBEA Tuxedo Application 5-25

S Tutorial for STOCKAPP, a Full COBOL Application

Step 3: How to Test STOCKAPP Services

1. If you arelogging in cold to arunning system, you must set your environment for
STOCKAPP. To do so, enter the following command.

../ STKVAR

2. Runthe BUY client program. To execute the BUY client program, enter the
following command.

BUY

3. Monitor STOCKAPP. While STOCKAPP is running, run the t madni n subcommands
and try various commands with it to see the kind of status information you can
produce.

See Also

m “Running STOCKAPP” on page 5-23

Step 4: How to Shut Down STOCKAPP

To bring downSTOCKAPP, enter tha nshut down(1) command with no arguments,
from theMASTER machine, as follows.

t mshut down

Running this command (or the shutdown commanichefini n) causes the following
results:

m All application servers, gateway servers, TMS’s, and administrative servers are
shut down.

m All associated IPC resources are removed.

5-26 Tutorialsfor Developing a BEA Tuxedo Application

Step 4: How to Shut Down STOCKAPP

See Also

m “Running STOCKAPP” on page 5-23
m tmadmi n(1) in BEA Tuxedo Command Reference

m tnshut down(1) in BEA Tuxedo Command Reference

Tutorialsfor Developing aBEA Tuxedo Application 5-27

S Tutorial for STOCKAPP, a Full COBOL Application

5-28 Tutorialsfor Developing a BEA Tuxedo Application

	Copyright
	Contents
	1 Developing a BEA Tuxedo Application
	Before Developing Your BEA Tuxedo Application
	Creating a BEA Tuxedo Client
	Client Tasks

	Creating a BEA Tuxedo Server
	Server Tasks

	Using Typed Buffers in Your Application
	Using BEA Tuxedo Messaging Paradigms in Your Application
	Using the Request/Response Model (Synchronous Calls)
	Using the Request/Response Model (Asynchronous Calls)
	Using Nested Calls
	Using Forwarded Calls
	Using Conversational Communication
	Using Unsolicited Notification
	Using Event-based Communication
	Using Queue-based Communication
	Using Transactions

	2 Tutorial for simpapp, a Simple C Application
	What Is simpapp
	Preparing simpapp Files and Resources
	Before You Begin
	About This Tutorial
	What You Will Learn

	Step 1: How to Copy the simpapp Files
	Step 2: Examining and Compiling the Client
	How to Examine the Client
	How to Compile the Client

	Step 3: Examining and Compiling the Server
	How to Examine the Server
	How to Compile the Server

	Step 4: Editing and Loading the Configuration File
	How to Edit the Configuration File
	How to Load the Configuration File

	Step 5: How to Boot the Application
	Step 6: How to Execute the Run-time Application
	Step 7: How to Monitor the Run-time Application
	Step 8: How to Shut Down the Application

	3 Tutorial for bankapp, a Full C Application
	What Is bankapp
	About This Tutorial

	Familiarizing Yourself with bankapp
	Learning About the bankapp Files
	Exploring the Banking Application Files

	Examining the bankapp Clients
	What Is the bankclt.c File
	How ud(1) Is Used in bankapp
	A Request/Response Client: audit.c
	A Conversational Client: auditcon.c
	A Client that Monitors Events: bankmgr.c

	Examining the bankapp Servers and Services
	bankapp Request/Response Servers
	bankapp Conversational Server
	bankapp Services
	Algorithms of bankapp Services

	Utilities Incorporated into Servers
	Alternative Way to Code Services

	Preparing bankapp Files and Resources
	Step 1: How to Set the Environment Variables
	Step 2: Building Servers in bankapp
	How to Build ACCT Server
	How to Build the BAL Server
	How to Build the BTADD Server
	How to Build the TLR Server
	How to Build the XFER Server
	Servers Built in the bankapp.mk File

	Step 3: Editing the bankapp Makefile
	How to Edit the TUXDIR Parameter
	How to Edit the APPDIR Parameter
	How to Set the Resource Manager Parameters
	How to Run the bankapp.mk File

	Step 4: Creating the bankapp Database
	How to Create the Database in SHM Mode
	How to Create the Database in MP Mode

	Step 5: Preparing for an XA-Compliant Resource Manager
	How to Change the bankvar File
	How to Change the bankapp Services
	How to Change the bankapp.mk File
	How to Change crbank and crbankdb
	How to Change the Configuration File

	How to Integrate bankapp with Oracle 8 (XA RM) for a Windows NT Platform
	Step 6: How to Edit the Configuration File
	Steps 7 and 8: Creating a Binary Configuration File and Transaction Log File
	Before Creating the Binary Configuration File
	How to Load the Configuration File
	How to Create the Transaction Log (TLOG) File

	Step 9: How to Create a Remote Service Connection on Each Machine
	How to Stop the Listener Process (tlisten)
	Sample tlisten Error Messages

	Running bankapp
	Step 1: How to Prepare to Boot
	Step 2: How to Boot bankapp
	Step 3: How to Populate the Database
	Step 4: How to Test bankapp Services
	Step 5: How to Shut Down bankapp

	4 Tutorial for CSIMPAPP, a Simple COBOL Application
	What Is CSIMPAPP
	Preparing CSIMPAPP Files and Resources
	Before You Begin
	What You Will Learn

	Step 1: How to Copy the CSIMPAPP Files
	Step 2: Examining and Compiling the Client
	How to Examine the Client
	How to Compile the Client

	Step 3: Examining and Compiling the Server
	How to Examine the Server
	How to Compile the Server

	Step 4: Editing and Loading the Configuration File
	How to Edit the Configuration File
	How to Load the Configuration File

	Step 5: How to Boot the Application
	Step 6: How to Test the Run-time Application
	Step 7: How to Monitor the Run-time Application
	Step 8: How to Shut Down the Application

	5 Tutorial for STOCKAPP, a Full COBOL Application
	What Is STOCKAPP
	Familiarizing Yourself with STOCKAPP
	Learning About the STOCKAPP Files
	Exploring the Stock Application Files

	Examining the STOCKAPP Clients
	System Client Programs
	Typed Buffers
	A Request/Response Client: BUY.cbl
	BUY.cbl Source Code

	Building Clients

	Examining the STOCKAPP Servers
	STOCKAPP Services

	Preparing STOCKAPP Files and Resources
	Step 1: How to Set Environment Variables
	Additional Requirements

	Step 2: Building Servers in STOCKAPP
	How to Build the BUYSELL Server
	Servers Built in STOCKAPP.mk

	Step 3: Editing the STOCKAPP.mk File
	How to Edit the TUXDIR Parameter
	How to Edit the APPDIR Parameter
	How to Run the STOCKAPP.mk File

	Step 4: How to Edit the Configuration File
	Step 5: Creating a Binary Configuration File
	Before Creating the Binary Configuration File
	How to Load the Configuration File

	Running STOCKAPP
	Step 1: How to Prepare to Boot
	Step 2: How to Boot STOCKAPP
	Step 3: How to Test STOCKAPP Services
	Step 4: How to Shut Down STOCKAPP

