
Using the BEA Tuxedo

B E A T u x e d o R e l e a s e 8 . 0
D o c u m e n t E d i t i o n 8 . 0

J u n e 2 0 0 1

Domains Component

BEA Tuxedo

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebLogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic
Collaborate, BEA WebLogic Enterprise, and BEA WebLogic Server are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

Using the BEA Tuxedo Domains Component

Document Edition Date Software Version

8.0 June 2001 BEA Tuxedo Release 8.0

Contents

About This Document
 What You Need to Know ... vii

e-docs Web Site ... viii

How to Print the Document... viii

Related Information... viii

Contact Us! .. ix

Documentation Conventions ...x

1. About Domains
What Is the BEA Tuxedo Domains Component?.. 1-1

Business Operations Interoperating with Each Other 1-2

Building a Multiple-domain Configuration... 1-3

Tools to Set Up and Maintain a Multiple-domain Application.................. 1-4

Types of Domain Gateways ... 1-6

Functionality Supported by Domain Gateways ... 1-7

Example of an Application Using Domain Gateways....................................... 1-9

Messaging Paradigms Supported by Domain Gateways................................. 1-11

Request/Response Communication Between Local and Remote
Services ... 1-11

Conversational Communication Between Local and Remote Services ... 1-13

Queued Messaging for Data Storage.. 1-13

Typed Buffers to Package Data ... 1-14

Defining Transaction and Blocking Timeouts in Domains............................. 1-15

Specifying How Your Domains Connect .. 1-16

Determining the Availability of Remote Services with the Dynamic
Status Feature .. 1-17

How Your Connection Policy Affects Dynamic Status 1-18
Using the BEA Tuxedo Domains Component iii

What Is the Domains Configuration File? ... 1-19

Descriptions of Sections of the DMCONFIG File 1-19

Domains Terminology Improvements.. 1-20

Converting the Domains Configuration File ... 1-21

Converting DMCONFIG to a Binary File.. 1-21

Converting the BDMCONFIG File to a Text File.................................... 1-22

Features of BEA Tuxedo System Domains ... 1-23

2. Planning and Configuring ATMI Domains
Planning to Build Domains from Multiple BEA Tuxedo Applications 2-2

Option 1: Reconfigure the Applications .. 2-4

Configuration File for Combining the Sample Applications 2-5

Limitations of Option 1 .. 2-8

Option 2: Redefine the Applications as Separate BEA Tuxedo Domains......... 2-9

Modifying the Application Configuration Files ... 2-9

Adding DMCONFIG Files ... 2-12

Sample Domains Application: creditapp ... 2-13

The creditapp README File ... 2-14

Configuring a Domains Environment.. 2-18

Configuring a Sample Domains Application (simpapp) 2-19

Configuration Tasks ... 2-20

How to Set Environment Variables for lapp ... 2-21

Example.. 2-21

How to Define the Domains Environment for lapp (in the ubbconfig File).... 2-22

Server Definitions... 2-22

Example of an Application Configuration File for lapp........................... 2-23

How to Define Domains Parameters for lapp (in the DMCONFIG File)........ 2-24

Example of a Domain Gateway Configuration File for lapp 2-25

How to Compile Application and Domains Gateway Configuration Files
for lapp.. 2-26

How to Set Environment Variables for rapp ... 2-27

Example.. 2-27

How to Define the Domains Environment for rapp (in the UBBCONFIG
File)... 2-28

Example of an Application Configuration File for rapp 2-29
iv Using the BEA Tuxedo Domains Component

How to Define Domains Parameters for rapp (in the DMCONFIG File) 2-30

Example of a Domain Gateway Configuration File for rapp 2-30

How to Compile Application and Domain Gateway Configuration Files
for rapp ... 2-31

How to Compress Data Between Domains ... 2-32

How to Route Service Requests to Remote Domains 2-32

Setting Up Security in Domains .. 2-35

Impact of BEA Tuxedo Application Security on Domains Security 2-36

Domains Security Mechanisms.. 2-37

How to Create a Domains Access Control List (ACL) 2-39

Using Standard BEA Tuxedo Access Control Lists with Imported Remote
Services ... 2-39

Setting the ACL Policy for a Remote Domain... 2-40

Setting the Credential Policy for a Remote Domain 2-41

How to Set Up Domains Authentication ... 2-42

T_DM_PASSWORDS MIB Class Definitions.. 2-43

Setting Domains Passwords ... 2-43

Examples of Coding Security Between Domains ... 2-44

Example 1: Setting Security to NONE... 2-44

Example 2: Setting Security to APP_PW .. 2-47

Configuring the Connections Between Your Domains 2-49

How to Request Connections at Boot Time (ON_STARTUP Policy)..... 2-49

How to Request Connections for Client Demands (ON_DEMAND
Policy) ... 2-50

How to Limit Connections to Incoming Messages Only
(INCOMING_ONLY Policy) ... 2-51

How to Configure the Connection Retry Interval for ON_STARTUP
Only... 2-52

Controlling the Connections Between Domains ... 2-55

How to Establish Connections Between Domains................................... 2-55

How to Break Connections Between Domains .. 2-55

How to Report on Connection Status ... 2-56

Configuring Failover and Failback in a Domains Environment 2-57

How to Configure Domains to Support Link-level Failover.................... 2-57

Configuring Domains-level Failover and Failback 2-58
Using the BEA Tuxedo Domains Component v

3. Planning and Configuring CORBA Domains
Overview of Multiple CORBA Domains ... 3-1

Interdomain Communication.. 3-2

Functions of Multiple-domain Configuration Elements............................. 3-4

Configuring Multiple CORBA Domains... 3-5

The Configuration File ... 3-6

The Domain Configuration (DMCONFIG) File .. 3-7

The factory_finder.ini File.. 3-15

Local Factories ... 3-20

Types of CORBA Domain Configurations ... 3-21

Directly Connected Domains ... 3-21

Indirectly Connected Domains ... 3-21

Examples: Configuring Multiple CORBA Domains....................................... 3-23

Sample UBBCONFIG Files ... 3-23

4. Administering Domains
Using Domains Run-time Administrative Commands...................................... 4-1

How to Migrate DMADM and a Domain Gateway Group........................ 4-4

Using the Administrative Interface, dmadmin(1).. 4-5

Using the Domains Administrative Server, DMADM(5) 4-6

Using the Gateway Administrative Server, GWADM(5).................................. 4-7

Using the Gateway Process ... 4-8

Managing Transactions in a Domains Environment ... 4-9

Transaction Management Capabilities ... 4-10

Using the TMS Capability Across Domains ... 4-10

How Gateways Coordinate Transactions Across Domains...................... 4-10

Using GTRID Mapping in Transactions ... 4-13

Defining Tightly-coupled and Loosely-coupled Relationships................ 4-13

Global Transactions Across Domains .. 4-14

Using Logging to Track Transactions ... 4-20

How Logging Works .. 4-21

Recovering Failed Transactions .. 4-23
vi Using the BEA Tuxedo Domains Component

About This Document

This document explains how to configure and administer BEA Tuxedo® domains, for
either an data-dependent BEA Tuxedo ATMI environment or an object-oriented BEA
Tuxedo CORBA environment.

This document covers the following topics:

n Chapter 1, “About Domains,” provides an overview of the BEA Tuxedo
Domains component.

n Chapter 2, “Planning and Configuring ATMI Domains,” explains how to plan
and configure a domain for a BEA Tuxedo ATMI environment.

n Chapter 3, “Planning and Configuring CORBA Domains,” explains how to
configure a domain for a BEA Tuxedo CORBA environment.

n Chapter 4, “Administering Domains,” explains how to administer BEA Tuxedo
domains.

 What You Need to Know

This document is intended mainly for administrators who configure operational
parameters that support mission-critical the BEA Tuxedo systems. It assumes a
familiarity with the BEA Tuxedo platform.
Using the BEA Tuxedo Domains Component vii

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “e-docs”
Product Documentation page at http://e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the BEA Tuxedo documentation Home
page on the e-docs Web site (and also on the documentation CD). You can open the
PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in book
format. To access the PDFs, open the BEA Tuxedo documentation Home page, click
the PDF files button and select the document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/.

Related Information

The following documents provide related information about BEA Tuxedo software.

n Installing the BEA Tuxedo System—paper copy distributed with the CD

n BEA Tuxedo Release Notes—paper copy distributed with the CD

n Setting Up a BEA Tuxedo Application—available through the BEA Tuxedo
Online Documentation CD, this guide describes how to set up and administer the
BEA Tuxedo system.
viii Using the BEA Tuxedo Domains Component

n Administering a BEA Tuxedo Application at Run Time—available through the
BEA Tuxedo Online Documentation CD, this guide describes how to administer
BEA Tuxedo applications at run time.

n Scaling, Distributing, and Tuning CORBA Applications—available through the
BEA Tuxedo Online Documentation CD, this guide describes how to tune and
scale CORBA applications that run in the BEA Tuxedo CORBA environment.

For more information about configuring and administering BEA Tuxedo ATMI and
BEA Tuxedo CORBA environments, refer to the CORBA Bibliography at
http://edocs.bea.com/.

Contact Us!

Your feedback on the BEA Tuxedo documentation is important to us. Send us e-mail
at docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the BEA Tuxedo
documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA Tuxedo 8.0 release.

If you have any questions about this version of BEA Tuxedo, or if you have problems
installing and running BEA Tuxedo, contact BEA Customer Support through BEA
WebSupport at www.bea.com. You can also contact Customer Support by using the
contact information provided on the Customer Support Card, which is included in the
product package.

When contacting Customer Support, be prepared to provide the following information:

n Your name, e-mail address, phone number, and fax number

n Your company name and company address

n Your machine type and authorization codes

n The name and version of the product you are using

n A description of the problem and the content of pertinent error messages
Using the BEA Tuxedo Domains Component ix

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR
x Using the BEA Tuxedo Domains Component

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

n That an argument can be repeated several times in a command line

n That the statement omits additional optional arguments

n That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
Using the BEA Tuxedo Domains Component xi

xii Using the BEA Tuxedo Domains Component

CHAPTER
1 About Domains

This topic includes the following sections:

n What Is the BEA Tuxedo Domains Component?

n Building a Multiple-domain Configuration

n Example of an Application Using Domain Gateways

n Messaging Paradigms Supported by Domain Gateways

n Defining Transaction and Blocking Timeouts in Domains

n Specifying How Your Domains Connect

n What Is the Domains Configuration File?

n Converting the Domains Configuration File

n Features of BEA Tuxedo System Domains

What Is the BEA Tuxedo Domains
Component?

The BEA Tuxedo application programming framework simplifies the development of
open online transaction processing (OLTP) distributed applications by hiding the
complexity associated with the distribution of application processing. The framework
consists of the following:
Using the BEA Tuxedo Domains Component 1-1

1 About Domains
n An extended client/server model that hides the heterogeneity of different
computers and application programs, as well as the location of application
programs.

n A centralized administration system that allows application administrators to
control all cooperating machines as a single application.

As a business grows, application developers may need to organize different segments
of the business by sets of functionality that require administrative autonomy but allow
sharing of services and data. It may not be appropriate to structure a group of
applications as a single distributed application because of the functionality,
geographical location, confidentiality requirements, and potential growth of each.
Also, an enterprise may want to expand business by cooperating with other
organizations that provide OLTP services under the control of different transaction
processing monitors, such as BEA’s TOP END, Transarc’s Encina, IBM’s CICS,
Bull’s TDS, Bull’s TP8, ICL’s TPMS, and so forth.

Each set of functionality defines an application that spans one or more computers, and
is administered independently from other applications. Such a functionally distinct
application is referred to as a domain; in practice, the organization often uses the
domain’s functionality as part of its name so you find applications with names like the
“accounting” domain or the “order entry” domain. A BEA Tuxedo domain is a single
computer or network of computers controlled by a single BEA Tuxedo configuration
file.

Business Operations Interoperating with Each Other

The BEA Tuxedo System Domains feature provides a framework for interoperability
among the domains of a business that continues the BEA Tuxedo enhanced
client/server model. Interoperability means more than merely the capability of
communicating from one domain to another. By transparently making access to
services of a remote domain available to users of the local domain (or accepting local
service requests from users of a remote domain), Domains, in effect, break down the
walls between the business applications of an organization. Application programmers
can use the ATMI interface to access the services provided by remote domains, or to
define services that can be executed by a remote domain.
1-2 Using the BEA Tuxedo Domains Component

Building a Multiple-domain Configuration
The Domains feature also enables BEA Tuxedo applications to cooperate with dozens
of applications running in other administrative domains. The BEA Tuxedo system
provides a common framework for controlling very large applications that may include
domains running other transaction processing systems.

Building a Multiple-domain Configuration

To build a multiple-domain configuration, you need to consider the following tasks:

n Integrate your existing BEA Tuxedo application with other domains

n Ensure interoperability across domains

n Preserve or restrict access to services across domains

n Accept or deny service requests across domains

Domains achieve these tasks through a highly asynchronous, multitasking,
multithreaded gateway. A domain gateway (DGW) is a BEA Tuxedo-supplied server
that handles requests to remote domains and from remote domains. Any request can be
processed within a transaction. The following figure illustrates how one BEA Tuxedo
domain communicates with another domain via a domain gateway.
Using the BEA Tuxedo Domains Component 1-3

1 About Domains
Figure 1-1 Two-way Communication Through a Gateway

In this illustration, the gateway processes outgoing credit card authorization requests
to another domain. The gateway also handles incoming authorization responses.

Domain gateways manage all the communication between domains. The gateway
processes include a gateway administrative server (GWADM) that enables run-time
administration of the domain gateway group and a Domains administrative server
(DMADM) that enables run-time administration of the BEA Tuxedo application-wide
Domains configuration information.

Tools to Set Up and Maintain a Multiple-domain
Application

The following illustration shows the tools provided by the BEA Tuxedo system for
setting up and maintaining a multiple-domain configuration.
1-4 Using the BEA Tuxedo Domains Component

Building a Multiple-domain Configuration
Figure 1-2 Domains Administrative Tools

Domains
Administrative Tool Description

dmadmin(1) A command that allows you to configure, monitor, and tune
domain gateway groups dynamically. Use this command to
update the BDMCONFIG file while an application is running.
The command acts as a front-end process that translates
administrative commands. These commands send requests to
the DMADMIN service, a generic administrative service
advertised by the DMADM server. DMADMIN invokes functions
that validate, retrieve, or update information in the BDMCONFIG
file.

DMCONFIG(5)
BDMCONFIG

DMCONFIG is the text version of the configuration file for a
multiple-domain configuration; BDMCONFIG is the binary
version.

dmloadcf(1) and
dmunloadcf(1)

dmloadcf—reads the DMCONFIG file, checks the syntax, and
optionally loads a binary BDMCONFIG configuration file.

dmunloadcf—translates the BDMCONFIG configuration file
from binary to text format.
Using the BEA Tuxedo Domains Component 1-5

1 About Domains
Types of Domain Gateways

The BEA Tuxedo system provides different types of gateways to accommodate
various network transport protocols used to communicate with remote domains.
Access to remote domains that use the same communication and transaction
commitment protocol is provided through a group of gateways that implement the
configuration defined for a particular local domain. Following are the different types
of domain gateways:

n BEA Tuxedo Domains (TDomains) gateway (that is, the GWTDOMAIN gateway)—
provides interoperability between two or more BEA Tuxedo applications through
a specially designed TP protocol that flows over network transport protocols
such as TCP/IP.

DMADM(5) An administrative server that enables you to manage a Domains
configuration at run time. DMADM provides a registration service
for gateway groups. This service is requested by GWADM servers
as part of their initialization procedure. The registration service
downloads the configuration information required by the
requesting gateway group. The DMADM server maintains a list of
registered gateway groups, and propagates to these groups any
changes made to the configuration file (BDMCONFIG).

GWADM(5) An administrative server that supports run-time administration
of a specific gateway group. This server registers with the
DMADM server to obtain the configuration information used by
the corresponding gateway group. GWADM accepts requests from
DMADMIN for run-time statistics or changes in the run-time
options of the specified gateway group. Periodically, GWADM
sends an “I-am-alive” message to the DMADM server. If no reply
is received from DMADM, GWADM registers again. This process
ensures the GWADM server always has the current information
about the Domains configuration for its group.

GWTDOMAIN(5) A gateway process that receives and forwards messages from
clients and servers in all connected domains (for BEA Tuxedo
Domains).

Domains
Administrative Tool Description (Continued)
1-6 Using the BEA Tuxedo Domains Component

Building a Multiple-domain Configuration
Note: GWTDOMAIN gateways should not be specified as members of an MSSQ set.
They should not have a reply queue (REPLYQ=N should be specified).
GWTDOMAIN gateways are recommended to be restartable.

n BEA eLink OSI TP gateway—provides interoperability between BEA Tuxedo
applications and other transaction processing applications that use the OSI TP
standard. OSI TP is a protocol for distributed transaction processing defined by
the International Standards Organization (ISO).

n BEA eLink Adapter for Mainframe SNA gateway—provides interoperability
between clients and servers in a BEA Tuxedo domain, and clients and servers in
an MVS/CICS or MVS/IMS environment in a remote SNA domain. It also
supports communication with multiple SNA networks.

n BEA eLink Adapter for Mainframe TCP:

l For CICS gateway—makes it possible for non-transactional tasks within
BEA Tuxedo regions to access services provided by CICS application
programs and vice-versa. It enables a BEA Tuxedo domain to communicate,
via the TCP/IP network transport protocol, with a CICS environment.

l For IMS gateway—provides transparent communications between client and
server transactions in an IMS system and a BEA Tuxedo domain, a CICS
system, or another IMS system.

n BEA TOP END Domain Gateway (TEDG)—provides interoperability between
TOP END systems and BEA Tuxedo domains.

Functionality Supported by Domain Gateways

Domain gateways support the following functionality:

n Administration—gateways can be booted or shut down exactly as any other
BEA Tuxedo server. Run-time administration is provided through an
administrative server, DMADM. Using DMADM, application administrators can make
changes to a domains configuration file, and tune the performance of a gateway
group. (The DMADM administrative server should be booted before gateway
groups.)

n ATMI—gateways can access the programming interface between a domain and
the BEA Tuxedo system ensuring access to the following messaging models:
Using the BEA Tuxedo Domains Component 1-7

1 About Domains
l Request/Response Model—application programs using the BEA Tuxedo
system can request services from applications running in other domains.
Also, remote applications can request services from local servers. (No
changes are required to the application program to accommodate this
interdomain functionality.)

l Conversational Model—application programs can establish conversations
with programs running in other domains. Remote domains can establish
conversations with conversational services offered by local servers. (No
changes are required to the application program to accommodate this
interdomain functionality.)

l Queuing Model—application programs using the BEA Tuxedo system can
store data on queues. Any client or server can store messages or service
requests in a queue in a remote domain and all stored requests are sent
through the transaction protocol to ensure safe storage. (No changes are
required to the application program to accommodate this interdomain
functionality.)

n Multidomain Interaction—gateways can communicate with multiple domains.

n Multinetwork Support—gateways can communicate with other domains via a
variety of network protocols, such as TCP/IP, IPX/SPX, and others. However, a
gateway is limited by the capabilities of the networking library to which it is
linked. In other words, a gateway typically supports a single type of network
protocol.

n Transaction Management—application programs can interoperate with other
domains within a transaction. The gateway coordinates the commitment or
rollback of transactions running across domains.

n Typed Buffer Support—gateways can perform encoding and decoding operations
for all the types of buffers defined by the application.

See Also

n “What Is a Multiple-domain Configuration?” on page 3-47 in Introducing BEA
Tuxedo ATMI

n “Example of an Application Using Domain Gateways” on page 1-9

n “Messaging Paradigms Supported by Domain Gateways” on page 1-11
1-8 Using the BEA Tuxedo Domains Component

Example of an Application Using Domain Gateways
Example of an Application Using Domain
Gateways

The following figure shows a BEA Tuxedo application that requires services (in this
case, credit card authorizations) from a remote domain.

Figure 1-3 High-level View of Two Communicating Domains

The application also accepts service requests (for example, balance inquiries) from
remote domains. The gateway process provides bidirectional transaction control, and
administrative tools for configuring a local domain to interoperate with other domains.
BDMCONFIG, the configuration file for a multiple-domain application, identifies
exported services, imported services, addressing, and any access control lists to be
used. The following figure shows a more detailed view of a sample Domains
environment.
Using the BEA Tuxedo Domains Component 1-9

1 About Domains
Figure 1-4 Example Domains Environment

The example shows a credit card authorization center running under the control of the
BEA Tuxedo system. The authorization center has two gateway groups: bankgw1
(which uses the TCP/IP protocol) and bankgw2 (which uses the OSI TP protocol).
bankgw1 provides access to two remote BEA Tuxedo domains (Bank ABC and Bank
CBA); bankgw2 provides access to one remote domain (Bank XYZ) using the OSI TP
protocol.

In this example, Bank ABC generates service requests to the credit card authorization
center. These requests are received by a gateway running within group bankgw1. This
gateway issues a service request, on behalf of the remote domain, to the credit card
authorization service provided by a local server. The server processes the request and
sends the reply to the gateway, and the gateway forwards the reply to Bank ABC.

The credit card authorization center may also issue service requests. For example, the
authorization center may send balance inquiries to Bank XYZ. Domains makes this
possible by providing a gateway that acts like a local server that advertises services
available in other domains as if they were local services.
1-10 Using the BEA Tuxedo Domains Component

Messaging Paradigms Supported by Domain Gateways
Domains provides the notion of a local domain that controls incoming requests and
provides a generic addressing framework for the application. Local domains help to
provide partial views of an application, that is, a subset of the local services available
to a set of remote domains. Each local domain is always represented by a single
gateway server group.

Messaging Paradigms Supported by Domain
Gateways

The functions of the BEA Tuxedo client/server model are supported by the following
messaging paradigms in domain gateways:

n “Request/Response Communication Between Local and Remote Services” on
page 1-11

n “Conversational Communication Between Local and Remote Services” on page
1-13

n “Queued Messaging for Data Storage” on page 1-13

Request/Response Communication Between Local and
Remote Services

Domain gateways provide support for the request/response model of communication
defined by the ATMI interface. A BEA Tuxedo application can request remote
services exactly as if they were offered locally.
Using the BEA Tuxedo Domains Component 1-11

1 About Domains
Support for ATMI Functions

The following BEA Tuxedo ATMI functions are logically limited to use within a
single application and are not supported across domains:

n tpinit(3c)/tpterm(3c)—BEA Tuxedo applications do not attach to the
environment of a remote domain; they use Domain gateways to access a remote
domain. Therefore, an extra tpinit()/tpterm() sequence is not needed for
remote applications.

n tpadvertise(3c) and tpunadvertise(3c)—cannot be used across domains.
Domain gateways do not support dynamic service advertisements across
domains.

n tpnotify(3c) and tpbroadcast(3c)—Domains does not support the
unsolicited communication paradigm provided by these primitives.

n Event posting (tppost(3c)) and notification of events (tpsubscribe(3c))—
Domains does not support these functions across domains.

Support for tpforward(3c) is provided to preserve application portability.
Forwarded requests are interpreted by domain gateways as simple service requests.
This process is shown in the following diagram, which illustrates the simple scenario
of a service using tpforward to send a request to a remote service.

Figure 1-5 Using tpforward to Send a Request to a Remote Service
1-12 Using the BEA Tuxedo Domains Component

Messaging Paradigms Supported by Domain Gateways
Conversational Communication Between Local and
Remote Services

The ATMI is a connection-oriented interface that enables clients to establish and
maintain conversations with services programmed in the conversational paradigm.

BEA Tuxedo applications use tpconnect(3c) to open a conversation with a remote
service, tpsend(3c) and tprecv(3c) to communicate with this service, and
tpdiscon(3c) to end the conversation. Domain gateways maintain the conversation
with the remote service, and support the same semantics for returns (that is, tpreturn
with TPSUCCESS or TPFAIL) and disconnects that are defined for BEA Tuxedo
conversational services.

Note: The ATMI connection-oriented functions provide half-duplex conversations;
tpforward(3c) is not allowed within a conversational service.

Application administrators indicate that a remote service is conversational by
specifying CONV=Y in the DM_REMOTE_SERVICES section of the DMCONFIG file.

Queued Messaging for Data Storage

The BEA Tuxedo system enables messages to be queued to persistent storage (disk) or
to non-persistent storage (memory) for later processing or retrieval. ATMI provides
primitives that allow messages to be added (that is, tpenqueue) or read (that is,
tpdequeue) from queues. Reply messages and error messages can be queued for later
return to clients. An administrative command interpreter (that is, qmadmin) is provided
for creating, listing, and modifying queues. Servers are provided to accept requests to
enqueue and dequeue messages (that is, TMQUEUE server), to forward messages from
the queue for processing (that is, TMQFORWARD server), and to manage the transactions
that involve queues (that is, TMS_QM server).

Domain gateways extend support for queued messaging services across domains.
Using the BEA Tuxedo Domains Component 1-13

1 About Domains
See Also

n “What Is Request/Reply Communication?” on page 2-14 in Introducing BEA
Tuxedo ATMI

n “What Is Conversational Communication?” on page 2-9 in Introducing BEA
Tuxedo ATMI

n “What Is Queue-based Communication?” on page 2-13 in Introducing BEA
Tuxedo ATMI

Typed Buffers to Package Data

In BEA Tuxedo applications, typed buffers are used to send data between clients and
servers. The typed buffer mechanism allows application programmers to transfer data
without needing to know which data representation scheme is used by the machines on
which the application’s clients and servers are running.

A domain gateway can receive and process service requests sent from workstations,
BEA Tuxedo machines, and remote domains with different machine representations.
A typed buffer switch decodes the data sent with the service request. The administrator
must define the typed buffer switch appropriate for the application.

Data-dependent routing depends upon matching specified criteria to fields within data.
If data is encoded, however, there is no way to determine the contents of that data in
order to route that data accurately. In addition, a domain gateway needs access to the
contents for the following reasons:

n The gateway may have to apply data-dependent routing to select the appropriate
remote domain for the service requested. (Data-dependent routing criteria for
remote domains are defined in the Domains configuration file.)

n Different data formats may be used within different domains, depending on the
networking protocols implemented or used in each domain.

Therefore a domain gateway always tries to decode any service request that is received
encoded.
1-14 Using the BEA Tuxedo Domains Component

Defining Transaction and Blocking Timeouts in Domains
OSI terminology provides a useful distinction between abstract syntax (that is, the
structure of the data) and transfer syntax (that is, the particular encoding used to
transfer the data). Each typed buffer implicitly defines a particular data structure (that
is, its abstract syntax) and the encoding rules (or typed buffer operations) required to
map the data structure to a particular transfer syntax (for example, XDR).

The BEA Tuxedo system provides a set of predefined buffer types (STRING, CARRAY,
FML, FML32, VIEW, VIEW32, X_C_TYPE, X_OCTET, X_COMMON, and XML) and the
encoding rules required to map these types to the XDR transfer syntax.

Note: A programmer can supply a custom buffer type by adding an instance to the
tm_typesw array in TUXDIR/lib/tmtypesw.c (see tuxtypes(5) and
typesw(5)), and supplying routines for the new type (see buffer(3c)).

See Also

n “What Are Typed Buffers?” on page 2-24 in Introducing BEA Tuxedo ATMI

n “Customizing a Buffer” on page 3-28 in Programming BEA Tuxedo ATMI
Applications Using C

n tuxtypes(5) in the File Formats, Data Descriptions, MIBs, and System
Processes Reference

n typesw(5) in the File Formats, Data Descriptions, MIBs, and System Processes
Reference

Defining Transaction and Blocking Timeouts
in Domains

The BEA Tuxedo system provides two timeout mechanisms: a transaction timeout
mechanism and a blocking timeout mechanism. The transaction timeout is used to
define the duration of a transaction, which may involve several service requests. The
Using the BEA Tuxedo Domains Component 1-15

1 About Domains
timeout value is defined when the transaction is started (with tpbegin(3c)). The
blocking timeout is used to define the duration of individual service requests, that is,
how long the application is willing to wait for a reply to one service request.

The BEA Tuxedo transaction timeout mechanism is used unchanged in the Domains
framework. Use of the same transaction timeout mechanism is necessary because
domain gateways implement the TMS functionality and therefore are required to
handle the TMS_TIMEOUT messages generated by the Bulletin Board Liaison (BBL).

Domain gateways, however, cannot use the BEA Tuxedo blocking timeout
mechanism. The blocking timeout mechanism uses information stored in the registry
slot assigned to each client or server. (Information in the registry slot is used by the
local BBL to detect requesters that have been blocked for a time greater than
BLOCKTIME.) Domain gateways, however, are multitasking servers that can process
several service requests at a time, which means they cannot use the registry slot
mechanism. When a blocking timeout condition arises, the domain gateway sends an
error/failure reply message to the requester, and cleans any context associated with the
service request.

Specifying How Your Domains Connect

You can specify the conditions under which a local domain gateway tries to establish
a connection to a remote domain by selecting one of the following connection policies:

n Connect at boot time (ON_STARTUP)

n Connect when a client program requests a remote service (ON_DEMAND)

n Accept incoming connections but do not initiate a connection automatically
(INCOMING_ONLY)
1-16 Using the BEA Tuxedo Domains Component

Specifying How Your Domains Connect
Determining the Availability of Remote Services with
the Dynamic Status Feature

The gateway process (GWTDOMAIN) advertises those services that are imported from
one or more remote domains in the bulletin board. These services typically remain
advertised regardless of whether the remote service is reachable.

The capability of the BEA Tuxedo domain gateways known as Dynamic Status reports
the status (as determined by the BEA Tuxedo system) of remote services.

When Dynamic Status is in effect, the status of a remote service depends on the status
of the network connection between the local and remote gateways. Remote services are
considered available whenever a connection to the domain on which they reside is
available. When a network connection to a remote domain is not available, services in
that domain are considered unavailable. This policy is invoked when the connection
policy is ON_STARTUP (that is, when a local domain gateway tries to establish a
connection to a remote domain at boot time) or INCOMING_ONLY (that is, when a local
domain gateway does not try to establish a connection to remote domains upon
starting).

For each service, the gateway keeps track, not only of the remote domains from which
the service is imported, but also of which remote domains are available. In this way,
the gateway provides intelligent load balancing of requests to remote domains. If all
the remote domains from which a service is imported become unreachable, the service
is suspended in the bulletin board.

For example, suppose a service called RSVC is imported from two remote domains, as
specified by the following entries in the DM_REMOTE_SERVICES section of the
configuration file:

RSVC RDOM=R1
RSVC RDOM=R2

When connections to both R1 and R2 are up, the gateway load balances requests for the
RSVC service. If the connection to R1 goes down, the gateway sends all requests for
RSVC to R2. If both connections go down, the gateway suspends RSVC in the bulletin
board. Subsequent requests for RSVC are either routed to a local service or another
gateway, or fail with TPENOENT.
Using the BEA Tuxedo Domains Component 1-17

1 About Domains
Note: When the connection policy is ON_DEMAND, a connection is attempted only
when either a client requests a remote service or an administrative “connect”
command is run.

How Your Connection Policy Affects Dynamic Status

Dynamic Status is not available in all Domains configurations; whether it is available
depends on which connection policy you establish between your domains. The
following table describes how each connection policy affects Dynamic Status.

Table 1-1 Availability of Dynamic Status

Under This
Policy... Dynamic Status Is..

ON_STARTUP On.

Services imported from a remote domain are advertised as long as a
connection to that remote domain is active. A connection can be
established in any of the following ways:

n Automatically

n Manual through the dmadmin command

n Through an incoming connection

ON_DEMAND Off.

Services imported from remote domains are continually advertised.
Ways in which a connection can be established are:

n Client request

n Manually through the dmadmin command

n Through an incoming connection

INCOMING_ONLY On.

Remote services are initially suspended. A domain gateway is
available for incoming connections from remote domains, and remote
services are advertised when the local domain gateway receives an
incoming connection or when a manual connect command is issued.
A connection can be established in the following ways:

n Manually through the dmadmin command

n Through an incoming connection
1-18 Using the BEA Tuxedo Domains Component

What Is the Domains Configuration File?
What Is the Domains Configuration File?

All domains configuration information is stored in a binary file called BDMCONFIG.
You can create and edit a text version of this file, DMCONFIG, with any text editor. You
can update the compiled BDMCONFIG file while the system is running by using the
dmadmin(1) command when using Domains. In a multi-domain application, a
separate BDMCONFIG file must be created for each participating domain.

System access to the BDMCONFIG file is provided through the Domains administrative
server, DMADM(5). When a gateway group is booted, the gateway administrative
server, GWADM(5), requests from the DMADM server, a copy of the configuration file
required by that group. The GWADM and DMADM servers also ensure that run-time
changes to the configuration are reflected in the corresponding domain gateway group.

Descriptions of Sections of the DMCONFIG File

The following table provides a description of each section in the DMCONFIG file.

Table 1-2 DMCONFIG File Sections

Section Purpose

DM_LOCAL_DOMAINS Describes the environment for a particular domain gateway group. It assigns a
logical application name, LDOM, to the subset of local services available to
remote domains. You can use multiple entries in this section to define multiple
gateway groups within a single BEA Tuxedo application. Each gateway group
can provide access to domains of different types.

DM_REMOTE_DOMAINS Identifies the remote domains available to clients and servers of this Domains
application.

DM_LOCAL_SERVICES Describes the local services provided by a local domain (LDOM) in the
DM_LOCAL_DOMAINS section. Specification of services can also be used to
restrict access to local services from remote domains; only services specified are
available to remote domains.
Using the BEA Tuxedo Domains Component 1-19

1 About Domains
Domains Terminology Improvements

For BEA Tuxedo release 7.1 or later, the Domains MIB uses improved class and
attribute terminology to describe the interaction between local and remote domains.
The improved terminology applies to the DM_MIB classes, reference page, and error
messages, the DMCONFIG file syntax, and various DMCONFIG error messages.

For backwards compatibility, aliases are provided between the DMCONFIG terminology
used prior to BEA Tuxedo release 7.1 and the improved Domains MIB terminology.
For BEA Tuxedo release 7.1 or later, DMCONFIG accepts both versions of the
terminology. For details, see “Domains Terminology Improvements” in the
DM_MIB(5) reference page.

DM_REMOTE_SERVICES Describes the set of services provided by remote domains. It also names the local
gateway group (through the LDOM parameter) that provides access to the remote
service.

DM_ROUTING Specifies criteria for data-dependent routing used by gateways to route service
requests to specific remote domains.

DM_ACCESS_CONTROL Specifies an access control list (ACL) that names (via RDOMs) the remote
domains permitted to request local services. The ACL parameter in the
DM_LOCAL_SERVICES section can be used by setting ACL=name_of_list
to restrict access to a particular local service to the listed set of remote domains.

DM_dmtype Defines the parameters required for a particular Domains configuration.
Currently, the value of dmtype can be OSITP, SNAX, TOPEND, or TDOMAIN.
This topic focuses only on TDOMAIN. Consult BEA eLink for Mainframe
documentation for information about OSITP and SNAX. Consult Using the BEA
Tuxedo TOP END Domain Gateway for information about TOPEND. Each
domain type must be specified in a separate section.

In a DM_TDOMAIN section, entries associated with a remote domain can be
specified more than once, with different network addresses, to implement the
mirrored gateway facility. (See DMCONFIG(5) for a description and an
example of a mirrored gateway.)

Section Purpose (Continued)
1-20 Using the BEA Tuxedo Domains Component

Converting the Domains Configuration File
See Also

n “Configuring a Domains Environment” on page 2-18

n DMCONFIG(5) in the File Formats, Data Descriptions, MIBs, and System
Processes Reference

n “Converting the Domains Configuration File” on page 1-21

Converting the Domains Configuration File

This section provides instructions for converting a text version of a Domains
configuration file (DMCONFIG) to a binary version (BDMCONFIG), and vice versa.

Converting DMCONFIG to a Binary File

The dmloadcf(1) command parses DMCONFIG (a text file), and loads the information
about the Domains configuration into a binary file called BDMCONFIG. The command
uses the environment variable BDMCONFIG to point to the directory in which the
configuration should be stored. The BDMCONFIG file can be stored on the same device
as the TUXCONFIG file (or the binary version of the UBBCONFIG file).

Figure 1-6 Relationships Between Configuration Commands and Files
Using the BEA Tuxedo Domains Component 1-21

1 About Domains
The dmloadcf(1) command, through the -c option, also provides an estimate of the
IPC resources needed for each local domain specified in the configuration.

As shown in the preceding figure, the dmloadcf command uses the
$TUXDIR/udataobj/DMTYPE file. It checks the DMTYPE file to verify that the domain
types specified in the configuration file are valid. Each Domains instantiation has a
domain type. The type is used as a tag in the file TUXDIR/udataobj/DMTYPE. Each
line in this file has the following format:

dmtype:access_module_lib:comm_libs:tm_typesw_lib:gw_typesw_lib

The file has the following entry for TDOMAIN:

TDOMAIN:-lgwt:-lnwi -lnws -lnwi::

Converting the BDMCONFIG File to a Text File

To unload a binary version of a Domains configuration file (that is, to convert it from
binary to text format), run the dmunloadcf(1)command.
1-22 Using the BEA Tuxedo Domains Component

Features of BEA Tuxedo System Domains
Features of BEA Tuxedo System Domains

n Aliasing capability—allows you to define map service names between local and
remote applications, allowing for easy integration of applications that use
different naming schemes.

n Availability—allows you to specify alternate destinations to handle failure
conditions.

n Scalability and modular growth—programmers can structure their applications
for modularity, isolation of failures, and independent growth. Interoperation with
other transaction processing applications is achieved easily by adding to the
Domains configuration the description of services used by a remote application.

n Security—an access control list (ACL) facility is provided to restrict access to
local resources from a particular set of remote domains. Domains also provides
encryption and password verification.

n Transparency and independence—application programmers need no knowledge
of how services are distributed. A service may be available on the same machine
as a client, on another machine in the local domain, or on a remote domain.
Client application programmers do not need to know the implementation
changes made to a service, the location of a service, network addresses, and so
on.

n Transaction management and reliability—this Domains feature is integrated with
the BEA Tuxedo transaction management capabilities.
Using the BEA Tuxedo Domains Component 1-23

1 About Domains
1-24 Using the BEA Tuxedo Domains Component

CHAPTER
2 Planning and
Configuring ATMI
Domains

This chapter describes how to plan and configure domains in a BEA Tuxedo ATMI
environment. For information about configuring domains in a BEA Tuxedo CORBA
environment, refer to Chapter 3, “Configuring CORBA Domains.”

This topic includes the following sections:

n Planning to Build Domains from Multiple BEA Tuxedo Applications

n Sample Domains Application: creditapp

n Configuring a Domains Environment

n How to Compress Data Between Domains

n How to Route Service Requests to Remote Domains

n Setting Up Security in Domains

n Configuring the Connections Between Your Domains

n Configuring Failover and Failback in a Domains Environment
Using the BEA Tuxedo Domains Component 2-1

2 Planning and Configuring ATMI Domains
Planning to Build Domains from Multiple
BEA Tuxedo Applications

Suppose a bank has developed the two BEA Tuxedo applications shown in the
following figure: bankapp and a credit card authorization center.

Figure 2-1 Two BEA Tuxedo Applications

The bankapp application connects ATMs at various bank branches to the central bank
office. The Credit Card Authorization Center processes applications for credit cards.
Over time, the bank realizes that their customers would be better served if the bankapp
application could communicate directly with the credit card authorization application.
In this way, they could offer instant credit cards to anyone opening a new account.

bankapp is distributed as a sample application with the BEA Tuxedo software. The
credit card authorization application is a hypothetical extension of bankapp.

Take a look at the configuration file (represented in the following sample code) to see
how to implement bankapp as a multiple-machine application:
TUXDIR/apps/bankapp/ubbmp.
2-2 Using the BEA Tuxedo Domains Component

Planning to Build Domains from Multiple BEA Tuxedo Applications
You have the following options:

n “Option 1: Reconfigure the Applications” on page 2-4

n “Option 2: Redefine the Applications as Separate BEA Tuxedo Domains” on
page 2-9
Using the BEA Tuxedo Domains Component 2-3

2 Planning and Configuring ATMI Domains
Option 1: Reconfigure the Applications

One solution is to combine two BEA Tuxedo applications into one, as shown in the
following figure.

Figure 2-2 Combining Two BEA Tuxedo System Applications

In the process of combining the two applications into a single configuration, the
following changes are made:

n OPTION=LAN is specified and a NETWORK section is included.

n Server migration is enabled by specifying OPTION=MIGRATE; at the same time a
backup master site is defined.

n The gateway server is redefined as three other servers: TLRA, ACCTA, and CRDT.

n Credit Authorization services are added.
2-4 Using the BEA Tuxedo Domains Component

Option 1: Reconfigure the Applications
Configuration File for Combining the Sample
Applications

The following code shows a possible configuration file for the combined applications.

Listing 2-1 Sample Configuration File for the Combined Application

*RESOURCES
IPCKEY 76666
UID 0000
GID 000
PERM 0660
MAXACCESSERS 40
MAXSERVERS 35
MAXSERVICES 75
MAXCONV 10
MASTER SITE1,SITE2
SCANUNIT 10
MODEL MP
LDBAL Y
OPTIONS LAN,MIGRATE
MAXGTT 100
MAXBUFTYPE 16
SCANUNIT 10
SANITYSCAN 5
DBBLWAIT 6
BBLQUERY 50
BLOCKTIME 2

#
*MACHINES
#
mach1 LMID=SITE1
 TUXDIR=“/home/mylogin/tuxroot”
 APPDIR=“/home/mylogin/bankapp”
 ENVFILE=“/home/mylogin/bankapp/ENVFILE”
 TLOGDEVICE=“/home/mylogin/bankapp/TLOG”
 TLOGNAME=TLOG
 TUXCONFIG=“/home/mylogin/bankapp/tuxconfig”
 ULOGPFX=“/home/mylogin/bankapp/ULOG”
 TYPE=“type1”
#
mach2 LMID=SITE2
 TUXDIR=“/home/mylogin/tuxroot”
Using the BEA Tuxedo Domains Component 2-5

2 Planning and Configuring ATMI Domains
 APPDIR=“/home/mylogin/bankapp”
 ENVFILE=“/home/mylogin/bankapp/ENVFILE”
 TLOGDEVICE=“/home/mylogin/bankapp/TLOG”
 TLOGNAME=TLOG
 TUXCONFIG=“/home/mylogin/bankapp/tuxconfig”
 ULOGPFX=“/home/mylogin/bankapp/ULOG”
 TYPE=“type2”
#
mach3 LMID=SITE3
 TUXDIR=“/home/mylogin/tuxroot”
 APPDIR=“/home/mylogin/bankapp”
 ENVFILE=“/home/mylogin/bankapp/ENVFILE”
 TLOGDEVICE=“/home/mylogin/bankapp/TLOG”
 TLOGNAME=TLOG
 TUXCONFIG=“/home/mylogin/bankapp/tuxconfig”
 ULOGPFX=“/home/mylogin/bankapp/ULOG”
 TYPE=“type2”
#
mach4 LMID=SITE4
 TUXDIR=“/home/mylogin/tuxroot”
 APPDIR=“/home/mylogin/bankapp”
 ENVFILE=“/home/mylogin/bankapp/ENVFILE”
 TLOGDEVICE=“/home/mylogin/bankapp/TLOG”
 TLOGNAME=TLOG
 TUXCONFIG=“/home/mylogin/bankapp/tuxconfig”
 ULOGPFX=“/home/mylogin/bankapp/ULOG”
 TYPE=“type1”
#
*GROUPS
#
DEFAULT: TMSNAME=TMS_SQL TMSCOUNT=2
BANKB1 LMID=SITE1 GRPNO=1
OPENINFO=“TUXEDO/SQL:/home/mylogin/bankapp/bankdl1:bankdb:readwrite”
BANKB2 LMID=SITE2 GRPNO=2
OPENINFO=“TUXEDO/SQL:/home/mylogin/bankapp/bankdl2:bankdb:readwrite”
BANKB3 LMID=SITE3 GRPNO=3
OPENINFO=“TUXEDO/SQL:/home/mylogin/bankapp/bankdl3:bankdb:readwrite”
BANKB4 LMID=SITE4 GRPNO=4
OPENINFO=“TUXEDO/SQL:/home/mylogin/bankapp/bankdl4:bankdb:readwrite”
#
#
*NETWORK
#
SITE1 NADDR=“<network address of SITE1>”
 BRIDGE=“<device of provider1>”
 NLSADDR=“<network listener address of SITE1>”
SITE2 NADDR=“<network address of SITE2>”
 BRIDGE=“<device of provider2>”
 NLSADDR=“<network listener address of SITE2>”
2-6 Using the BEA Tuxedo Domains Component

Option 1: Reconfigure the Applications
SITE3 NADDR=“<network address of SITE3>”
 BRIDGE=“<device of provider3>”
 NLSADDR=“<network listener address of SITE3>”
SITE4 NADDR=“<network address of SITE4>”
 BRIDGE=“<device of provider4>”
 NLSADDR=“<network listener address of SITE4>”
#
*SERVERS
#
DEFAULT: RESTART=Y MAXGEN=5 REPLYQ=Y CLOPT=“-A”
Servers for the bankapp part
TLR SRVGRP=BANKB1 SRVID=2
TLR SRVGRP=BANKB2 SRVID=3 RQADDR=tlr2 CLOPT=“-A -- -T 600”
TLR SRVGRP=BANKB3 SRVID=4
XFER SRVGRP=BANKB1 SRVID=10
XFER SRVGRP=BANKB2 SRVID=6
XFER SRVGRP=BANKB3 SRVID=8
ACCT SRVGRP=BANKB1 SRVID=11
ACCT SRVGRP=BANKB2 SRVID=7
ACCT SRVGRP=BANKB3 SRVID=13
BTADD SRVGRP=BANKB1 SRVID=12
BTADD SRVGRP=BANKB2 SRVID=14
BTADD SRVGRP=BANKB3 SRVID=16
Servers for the Credit Authorization Part
TLRA SRVGRP=BANKB4 SRVID=5 CLOPT=“-A -- -T 600”
ACCTA SRVGRP=BANKB4 SRVID=9
CRDT SRVGRP=BANKB4 SRVID=15
#
#
*SERVICES
#
DEFAULT: LOAD=50 AUTOTRAN=N
Services for the bankapp part
BR_ADD PRIO=20 ROUTING=BRANCH_ID
TLR_ADD PRIO=20 ROUTING=BRANCH_ID
WITHDRAWAL PRIO=50 ROUTING=ACCOUNT_ID
DEPOSIT PRIO=50 ROUTING=ACCOUNT_ID
TRANSFER PRIO=50 ROUTING=ACCOUNT_ID
INQUIRY PRIO=50 ROUTING=ACCOUNT_ID
CLOSE_ACCT PRIO=40 ROUTING=ACCOUNT_ID
OPEN_ACCT PRIO=40 ROUTING=BRANCH_ID
Services for the Credit Authorization part
WITHDRAWALA PRIO=50
INQUIRYA PRIO=50
OPENCA PRIO=40
CLOSECA PRIO=40
DEPOSITA PRIO=50
OPEN_ACCT2 PRIO=40
OPENC PRIO=40
Using the BEA Tuxedo Domains Component 2-7

2 Planning and Configuring ATMI Domains
#
#
*ROUTING
#
ACCOUNT_ID FIELD=ACCOUNT_ID
 BUFTYPE=“FML”
 RANGES=“10000-39999:BANKB1,
 40000-69999:BANKB2,
 70000-109999:BANKB3,
 :”
BRANCH_ID FIELD=BRANCH_ID
 BUFTYPE=“FML”
 RANGES=“1-3:BANKB1,
 4-6:BANKB2,
 7-10:BANKB3,
 :”
#

Limitations of Option 1

n Administering a single large application can be more cumbersome than
administering two smaller ones; each smaller one has its own administrative
interface.

n Booting a networked application can be more costly because of the time required
to boot each server and because of the need to propagate bulletin boards across
the network. Smaller, separate applications can be booted simultaneously.
2-8 Using the BEA Tuxedo Domains Component

Option 2: Redefine the Applications as Separate BEA Tuxedo Domains
Option 2: Redefine the Applications as
Separate BEA Tuxedo Domains

The following figure shows the combined application reconfigured as four BEA
Tuxedo domains (TDomains). (Three of the domains are in the left-hand box.)

Figure 2-3 Domains Configuration

Modifying the Application Configuration Files

To reconfigure the combined application as TDomains, make the following changes to
the UBBCONFIG files:

n Change MODEL to SHM.

n Remove the NETWORK section.

Note: You can use MP mode and also write the NETWORK section in a multiple
domain environment depending on your specific application needs.

n Add domain-specific servers, for example DMADM, GWADM, and GWTDOMAIN, to the
SERVERS section.
Using the BEA Tuxedo Domains Component 2-9

2 Planning and Configuring ATMI Domains
The following code shows a sample converted UBBCONFIG file.

Listing 2-2 Converted UBBCONFIG File

*RESOURCES
IPCKEY 76666
UID 7901
GID 601
PERM 0660
MAXACCESSERS 40
MAXSERVERS 35
MAXSERVICES 75
MAXCONV 10
MASTER SITE1
SCANUNIT 10
MODEL SHM
LDBAL Y
MAXGTT 100
MAXBUFTYPE 16
SCANUNIT 10
SANITYSCAN 5
BBLQUERY 50
BLOCKTIME 2
#
*MACHINES
sfexpz LMID=SITE1
 TUXDIR=“/home/mylogin/tuxroot”
 APPDIR=“/home/mylogin/creditapp”
 ENVFILE=“/home/mylogin/creditapp/ENVFILE”
 TLOGDEVICE=“/home/mylogin/creditapp/TLOG”
 TLOGNAME=TLOG
 TUXCONFIG=“/home/mylogin/creditapp/tuxconfig”
 ULOGPFX=“/home/mylogin/creditapp/ULOG”
 TYPE=“type1”
#
#
#
*GROUPS
DEFAULT: LMID=SITE1
BANKB1 GRPNO=1 TMSNAME=TMS_SQL TMSCOUNT=2
OPENINFO=“TUXEDO/SQL:/home/mylogin/creditapp/crdtdl1:bankdb:readwrite”
BANKB2 GRPNO=2
BANKB3 GRPNO=3
BANKB4 GRPNO=4
DMADMGRP LMID=mach1 GRPNO=5
#
#

2-10 Using the BEA Tuxedo Domains Component

Option 2: Redefine the Applications as Separate BEA Tuxedo Domains
#
*SERVERS
#
DEFAULT: RESTART=Y MAXGEN=5 REPLYQ=Y CLOPT=“-A”
GWADM SRVGRP=BANKB2 SRVID=30
 REPLYQ = N RESTART = Y GRACE = 0
GWTDOMAIN SRVGRP=BANKB2 SRVID=31
 REPLYQ = N RESTART = Y GRACE = 0
GWADM SRVGRP=BANKB3 SRVID=24
 REPLYQ = N RESTART = Y GRACE = 0
GWTDOMAIN SRVGRP=BANKB3 SRVID=25
 REPLYQ = N RESTART = Y GRACE = 0
GWADM SRVGRP=BANKB4 SRVID=20
 REPLYQ = N RESTART = Y GRACE = 0
GWTDOMAIN SRVGRP=BANKB4 SRVID=21
 REPLYQ = N RESTART = Y GRACE = 0
DMADM SRVGRP=“DMADMGRP” SRVID=50
 REPLYQ = N RESTART = Y GRACE = 0
TLRA SRVGRP=BANKB1 SRVID=2 CLOPT=“-A -- -T 100”
BTADD SRVGRP=BANKB1 SRVID=3
ACCTA SRVGRP=BANKB1 SRVID=4
CRDT SRVGRP=BANKB1 SRVID=5
CRDTA SRVGRP=BANKB1 SRVID=6
*SERVICES
DEFAULT: LOAD=50
INQUIRYA PRIO=50
WITHDRAWALA PRIO=50
OPEN_ACCT2 PRIO=40
OPENC PRIO=40
OPENCA PRIO=40
CLOSECA PRIO=40
BR_ADD PRIO=20
TLR_ADD PRIO=20
Using the BEA Tuxedo Domains Component 2-11

2 Planning and Configuring ATMI Domains
Adding DMCONFIG Files

You also need to create four DMCONFIG files, as shown in the following sample.

Listing 2-3 Sample DMCONFIG File

#
#
*DM_LOCAL_DOMAINS
#
#
QDOM1 GWGRP=BANKB2
 TYPE=TDOMAIN
 DOMAINID=QDOM1
 BLOCKTIME=10
 MAXDATALEN=56
 MAXRDOM=89
 DMTLOGDEV=“/home/mylogin/creditapp/DMTLOG”
 AUDITLOG=“/home/mylogin/creditapp/AUDITLOG”

QDOM2 GWGRP=BANKB3
 TYPE=TDOMAIN
 DOMAINID=QDOM2
 BLOCKTIME=10
 MAXDATALEN=56
 MAXRDOM=89
 DMTLOGDEV=“/home/mylogin/creditapp/DMTLOG”
 AUDITLOG=“/home/mylogin/creditapp/AUDITLOG”
 DMTLOGNAME=“DMTLOG_TDOM2”
QDOM3 GWGRP=BANKB4
 TYPE=TDOMAIN
 DOMAINID=QDOM3
 BLOCKTIME=10
 MAXDATALEN=56
 MAXRDOM=89
 DMTLOGDEV=“/home/mylogin/creditapp/DMTLOG”
 AUDITLOG=“/home/mylogin/creditapp/AUDITLOG”
 DMTLOGNAME=“DMTLOG_TDOM3”
#
*DM_REMOTE_DOMAINS
#
#
TDOM1 TYPE=TDOMAIN
 DOMAINID=TDOM1
2-12 Using the BEA Tuxedo Domains Component

Sample Domains Application: creditapp
TDOM2 TYPE=TDOMAIN
 DOMAINID=TDOM2

TDOM3 TYPE=TDOMAIN
 DOMAINID=TDOM3
#
#
*DM_TDOMAIN
#
QDOM1 NWADDR=“0x0002DEEF93026927”
 NWDEVICE=“/dev/tcp”
QDOM2 NWADDR=“0x0002BEEF93026927”
 NWDEVICE=“/dev/tcp”
QDOM3 NWADDR=“0x0002CEEF93026927”
 NWDEVICE=“/dev/tcp”
TDOM1 NWADDR=“0x0002DEEF93026947”
 NWDEVICE=“/dev/null”
TDOM2 NWADDR=“0x0002BEEF9302691D”
 NWDEVICE=“/dev/tcp”
TDOM3 NWADDR=“0x0002CEEF9302690E”
 NWDEVICE=“/dev/tcp”
#
#
#
*DM_LOCAL_SERVICES
#
#
WITHDRAWALA
INQUIRYA
OPENCA
CLOSECA

Sample Domains Application: creditapp

A sample application, creditapp, is distributed with the BEA Tuxedo system.
creditapp is a runnable version of the hypothetical application that was the basis for
separating bankapp and the credit card application into domains, as discussed earlier
in this topic.

The application is located in TUXDIR/apps/creditapp and includes the following
files.
Using the BEA Tuxedo Domains Component 2-13

2 Planning and Configuring ATMI Domains
Listing 2-4 creditapp Files

ACCT.ec ACCTA.ec AUDITC.c BAL.ec BALANCE.m
BALANCEA.m BALC.ec BTADD.ec CBALANCE.m CCLOSE.m
CDEPOSIT.m CLOSE.m COPEN.m CRDT.ec CRDTA.ec
CRMENU.m CRMENU2.m CTRANSFER.m CWITHDRAW.m DEPOSIT.m
DEPOSITA.m FILES HCBALANCE.m HCCLOSE.m HCLOSE.m
HCOPEN.m HCWITHDRAW.m HELP.m HOPEN.m OPEN.m
README RUNME RUNME.sh SETUP.sh TLR.ec
TLR1.ec TLR2.ec TLR3.ec TLRA.ec TRANSFER.m
WITHDRAW.m WITHDRAWA.m XFER.c appinit.c aud.h
aud.v audit.c auditcon.c bank.flds bank.flds.h
bank.h cleanup.sh crbank.sh crbankdb.sh crdt_app.mk
crdt_app2.mk crdt_app3.mk crdt_app4.mk crdt_flds.h crdtvar
crdtvar2 credit.flds crtlog.sh crtlog2 crtlog2.sh
domcon1 domcon2 domcon3 domcon4 driver.sh
envfile.sh gendata.c gentran.c hostmk listnr
populate.sh run.sh setenv ubbdom1 ubbdom2
ubbdom3 ubbdom4 util.c

The creditapp README File

The following README file is from the creditapp directory. The README file
documents a script that installs and runs creditapp. It has been edited to include a
few things that were not included in the original script.

Listing 2-5 README File for creditapp

SIMPLE BUILD PROCEDURE

The creditapp application is an enhancement of the
bankapp and hostapp applications.

The creditapp application is designed to be a four domain application,
so the software must be built on four machines. The RUNME.sh
script will lead you through the necessary steps.

Step 1: Copy the Software for creditapp.

Make a new directory under your $HOME directory and copy all of
the source files from <TUXDIR>/apps/creditapp into that directory.
2-14 Using the BEA Tuxedo Domains Component

Sample Domains Application: creditapp
TUXDIR is the root directory under which your BEA TUXEDO System
software is installed. We call the new directory
$HOME /creditapp. The rest of the steps in this procedure are
done in the directory $HOME/creditapp.

Step 2: On each of the remaining three machines:

Make a directory creditapp in a directory that can be used for the application.

We call this directory $HOME/creditapp.

Make a note of the full directory path for $HOME/creditapp and TUXDIR
for each machine. These will be needed by the RUNME.sh script.

Step 3: On the “master site” execute the “RUNME.sh” script.

The shell script “RUNME.sh” is an interactive program designed to
lead you through initialization, booting, shutdown and cleanup
of the four domain creditapp application. The shell is interactive
and requires no command line arguments. All you need in the directory
is the source from the TUXDIR/apps/creditapp directory that you
copied in Step 1.

You will be prompted to enter values for RSH and RCP
environment variables, or accept the defaults.

IT IS VERY IMPORTANT THAT VALUES FOR RSH AND RCP BE ENTERED AS THEY ARE
USED TO REMOTE COPY AND EXECUTE THE NECESSARY SCRIPTS.

The following environment variables are important. The script picks up
the values for TUXDIR and APPDIR from your environment and
prompts you (in OPTION 4) for BLKSIZE:

TUXDIR Root directory of the BEA TUXEDO System where you have
 installed the software.

APPDIR Directory in which the creditapp application resides.
 crdtvar.dm1 initially is set to allow this to default
 to the current working directory, which agrees with
 our intention to use $HOME/creditapp. This is the
 directory into which you copied the creditapp files in
 Step 1.

BLKSIZE Logical blocksize for the database in bytes.
 Must be an integral multiple of the physical
 page size of the computer (for example, 512 bytes or 4096 bytes).

When you invoke RUNME.sh you are shown a menu with 10 options (11 counting “quit”).
Here is the list of choices:
Using the BEA Tuxedo Domains Component 2-15

2 Planning and Configuring ATMI Domains
 1) Initialize configuration files and makefiles.
 2) Copy files to remote sites.
 3) Build crdtapp clients and servers.
 4) Create databases.
 5) Generate binary tuxconfig and bdmconfig files.
 6) Create Transaction Log file.
 7) Boot the application.
 8) Populate the database.
 9) Shutdown the application.
 10) Cleanup IPC Resources, database files and log files.
 q) Quit.

To go through the complete process of building and running the sample
application, start with choice No. 1. When the script completes a step,
the menu is displayed for your next choice.

OPTION 1. Initialize configuration files and makefiles.
 This option sets up makefiles, UBBCONFIG and DMCONFIG files that are
 necessary for the application.

 All questions must be answered.

 ENTER the system name: enter uname for machines you are using
 beginning with the current machine you are on.

 ENTER TUXDIR for each machine.

 ENTER APPDIR for each machine.

 Continue to answer all queries.

 An example of 4 hexadecimal digits may be (beef, cfff, 6774, aeef).
NOTE: EACH MACHINE MUST HAVE A UNIQUE HEX SEQUENCE.

OPTION 2. Copies the files to the other domains in the configuration.

OPTION 3. Builds clients and servers on all machines.

 NOTE: CAREFULLY CHECK THAT THE BUILDS ARE COMPLETED SUCCESSFULLY ON
 EACH SITE. IF NECESSARY YOU MAY RUN THE BUILD YOURSELF.

 ON THE SPECIFIC SITE ENTER
 nohup make -f CRDT{$MACH}.mk2
2-16 Using the BEA Tuxedo Domains Component

Sample Domains Application: creditapp
 where ${MACH} is the uname for the machine you are building on.
 For example,

 nohup make -f CRDTtux1.mk2

OPTION 4. Builds the databases on each site.

 NOTE: ON EACH SITE MAKE SURE THE BLKSIZE VALUE IN files

 crdt${MACH}.dm1 for the primary site

 or crdt${MACH}.dm2 for the remote sites

 where ${MACH} is the uname for the machine you are building on

 ARE CORRECT FOR THAT SPECIFIC MACHINE

OPTION 5. Generates the tuxconfig and bdmconfig files.

All other options are similar to bankapp.

After OPTION 8 : Populate the database

 Enter q to Quit the menu.

RUNNING CREDITAPP.

 On each machine a script run.sh exists.

 Execute run.sh.

 run
At the response :

 Is this machine the Credit Card Authorization Center(y/n)?

 If machine is the primary machine answer y .
 If machine is any other answer n.

On the primary machine a different menu will be seen than the other 3 machines.

All Credit accounts exist on primary machine and all machines can access any
account.

 ACCOUNTS 10000000 - 120000000
Using the BEA Tuxedo Domains Component 2-17

2 Planning and Configuring ATMI Domains
Machines 2,3,4 are the enhanced bankapp application.

 ACCOUNTS 10000 - 39999 exist on machine 2
 ACCOUNTS 40000 - 79999 exist on machine 3
 ACCOUNTS 80000 - 109999 exist on machine 4

All processing is done using the /DOMAIN software.

A tail -f of the ULOG###### will show the actual processing of the requests.

On the machine that will process the request enter :

 tail -f ULOG###### where ###### is today’s date.

Configuring a Domains Environment

To configure a Domains environment, an administrator needs to specify all the
information a BEA Tuxedo domain needs to know about other domains. This
information includes services imported from other domains, addressing and security
parameters for contacting remote domains, access control lists, services exported to
these domains, whether data-dependent routing is used, and parameters for controlling
access to exported services. This information is defined in the UBBCONFIG
configuration file and in the DMCONFIG configuration file.
2-18 Using the BEA Tuxedo Domains Component

Configuring a Domains Environment
Configuring a Sample Domains Application (simpapp)

The Domains example illustrated in the following figure consists of two applications:
lapp, a local application, and rapp, a remote application. Both are based on the
simpapp example provided with the BEA Tuxedo system. lapp is configured to allow
its clients to access a service called TOUPPER, which is advertised in rapp.

Figure 2-4 Local and Remote Applications in simpapp
Using the BEA Tuxedo Domains Component 2-19

2 Planning and Configuring ATMI Domains
Configuration Tasks

The following tasks are required to configure the simpapp domain consisting of two
applications: lapp (the local application) and rapp (the remote application).
2-20 Using the BEA Tuxedo Domains Component

How to Set Environment Variables for lapp
How to Set Environment Variables for lapp

You need to set the following environment variables for the application to be
configured successfully:

n TUXDIR—the BEA Tuxedo system root directory (for example, /opt/tuxedo)

n TUXCONFIG—the application configuration file (for example, lapp.tux)

n BDMCONFIG—the domain gateway configuration file (for example, lapp.bdm)

n PATH—must include TUXDIR/bin

n LD_LIBRARY_PATH—must include TUXDIR/lib (this pathname varies,
depending on your operating system)

Example

$ TUXDIR=/opt/tuxedo
$ TUXCONFIG=/home/lapp/lapp.tux
$ BDMCONFIG=/home/lapp/lapp.dom
$ PATH=$TUXDIR/bin:$PATH
$ LD_LIBRARY_PATH=$TUXDIR/lib:$LD_LIBRARY_PATH
$ export TUXDIR TUXCONFIG BDMCONFIG PATH LD_LIBRARY_PATH
Using the BEA Tuxedo Domains Component 2-21

2 Planning and Configuring ATMI Domains
How to Define the Domains Environment
for lapp (in the ubbconfig File)

For the sample local application configuration file, lapp.ubb, only the required
parameters are defined. Default settings are used for the other parameters.

Two server groups are defined:

n The first group contains the Domains administrative server (DMADM).

n The second group contains the gateway administrative server (GWADM) and the
domain gateway (GWTDOMAIN).

Note: For a gateway type other than GWTDOMAIN, an executable other than
GWTDOMAIN must be used. Refer to the BEA eLink for Mainframe
documentation and Using the BEA Tuxedo TOP END Domain Gateway for
additional information.

Server Definitions

n DMADM—the Domains administrative server enables run-time modification of the
configuration information, required by domain gateway groups, that resides in
the binary Domains configuration file. DMADM supports a list of registered
gateway groups. There must be only one instance of DMADM per Domains
application.

n GWADM—the gateway administrative server enables run-time administration of a
particular domain gateway group. This server gets Domains configuration
information from the DMADM server. It also provides administrative functionality
and transaction logging for the gateway group.

n GWTDOMAIN—the Domains gateway server enables access to and from remote
Domains, allowing interoperability of two or more BEA Tuxedo domains.
Information about the local and remote services it needs to export and import is
included in the Domains configuration file. The Domains gateway server should
always be configured with REPLYQ=N.
2-22 Using the BEA Tuxedo Domains Component

How to Define the Domains Environment for lapp (in the ubbconfig File)
Example of an Application Configuration File for lapp

Listing 2-6 Example of an Application Configuration File (lapp.ubb)

lapp.ubb
#
*RESOURCES
IPCKEY 111111

MASTER LAPP
MODEL SHM

*MACHINES
giselle

 LMID=LAPP
 TUXDIR=”/opt/tuxedo”
 APPDIR=”/home/lapp”
 TUXCONFIG=”/home/lapp/lapp.tux”

*GROUPS

LDMGRP GRPNO=1 LMID=LAPP
LGWGRP GRPNO=2 LMID=LAPP

*SERVERS

DMADM SRVGRP=LDMGRP SRVID=1
GWADM SRVGRP=LGWGRP SRVID=1
GWTDOMAIN SRVGRP=LGWGRP SRVID=2 REPLYQ=N

*SERVICES
Using the BEA Tuxedo Domains Component 2-23

2 Planning and Configuring ATMI Domains
How to Define Domains Parameters for lapp
(in the DMCONFIG File)

For the sample local Domain gateway configuration file, lapp.dom, only the required
parameters are defined. Default settings are used for optional parameters.

The DM_LOCAL_DOMAIN section identifies the local domains and their associated
gateway groups. This section has one entry, LAPP, and specifies the following
parameters required for the domain gateway processes in that group:

n GWGRP specifies the name of the gateway server group as specified in the
application.

n TYPE of TDOMAIN indicates that the local domain will be communicating with
another BEA Tuxedo domain. This parameter indicates the protocol used by the
gateways. Other options include SNA, OSI TP, TOP END Domain gateway,
TCP for CICS, and TCP for IMS.

n DOMAINID identifies the name of the domain gateway and must be unique across
all domains.

The DM_REMOTE_DOMAINS section identifies the known set of remote domains and
their characteristics. This section has one entry (RAPP). TYPE is used to classify the type
of domains. DOMAINSID is a unique domain identifier.

The DM_TDOMAIN section defines the addressing information required by the BEA
Tuxedo Domains component. Following are entries in the section for each local and
remote domain specified in this configuration file:

n NWADDR specifies either the network address at which connections will be
accepted from other BEA Tuxedo domains (local domain entry), or the network
address at which connections to other BEA Tuxedo domains will be made
(remote domain entry).

The DM_LOCAL_SERVICES section provides information about the services that are
exported. This section of our sample file has no entries because no services are being
exported.
2-24 Using the BEA Tuxedo Domains Component

How to Define Domains Parameters for lapp (in the DMCONFIG File)
The DM_REMOTE_SERVICES section provides information about the services that are
imported. The TOUPPER service is imported so that it can be accessed by clients in the
local domain.

Example of a Domain Gateway Configuration File for
lapp

Listing 2-7 Example of a Domain Gateway Configuration File (lapp.dom)

#
lapp.dom
#
*DM_LOCAL_DOMAINS

LAPP GWGRP=LGWGRP
 TYPE=TDOMAIN
 DOMAINID=”111111"

*DM_REMOTE_DOMAINS

RAPP TYPE=TDOMAIN
 DOMAINID=”222222"

*DM_TDOMAIN

LAPP NWADDR=”//mach1:5000"

RAPP NWADDR=”//mach2:5000"

*DM_LOCAL_SERVICES

*DM_REMOTE_SERVICES

TOUPPER
Using the BEA Tuxedo Domains Component 2-25

2 Planning and Configuring ATMI Domains
How to Compile Application and Domains
Gateway Configuration Files for lapp

The local application configuration file (lapp.ubb) contains the information
necessary to boot the local application. You must compile this file into a binary data
file (lapp.tux) by running tmloadcf(1).

The local domain gateway configuration file (lapp.dom) contains the information
used by the domain gateway for one domain for communication with other domains.
You must compile this file into a binary data file (lapp.bdm) by running
dmloadcf(1).

To compile both configuration files, complete the procedure shown in the following
sample session.

$ cd /home/lapp
$ TUXCONFIG=/home/lapp/lapp.tux; export TUXCONFIG
$ tmloadcf -y lapp.ubb
$ BDMCONFIG=/home/lapp/lapp.dom; export BDMCONFIG
$ dmloadcf -y lapp.dom

Once you create both the local and remote domains, you can then boot the application
using tmboot(1). The order in which the two domains are booted does not matter.
Monitor the applications with dmadmin(1). Once both applications are booted, a client
in the local application can call the TOUPPER service residing in the remote application.

$ tmboot -y
2-26 Using the BEA Tuxedo Domains Component

How to Set Environment Variables for rapp
How to Set Environment Variables for rapp

You must set the following environment variables for an application to be configured
successfully:

n TUXDIR—the BEA Tuxedo system root directory (for example, /opt/tuxedo)

n TUXCONFIG—the full path name of the application configuration file (for
example, rapp.tux)

n BDMCONFIG—the full path name of the domain gateway configuration file (for
example, rapp.bdm)

n PATH—must include TUXDIR/bin

n LD_LIBRARY_PATH—must include TUXDIR/lib (this pathname varies,
depending on your operating system)

Example

$ TUXDIR=/opt/tuxedo
$ TUXCONFIG=/home/rapp/rapp.tux
$ BDMCONFIG=/home/rapp/rapp.dom
$ PATH=$TUXDIR/bin:$PATH
$ LD_LIBRARY_PATH=$TUXDIR/lib:$LD_LIBRARY_PATH
$ export TUXDIR PATH LD_LIBRARY_PATH TUXCONFIG BDMCONFIG
Using the BEA Tuxedo Domains Component 2-27

2 Planning and Configuring ATMI Domains
How to Define the Domains Environment
for rapp (in the UBBCONFIG File)

For the sample remote application configuration file, rapp.ubb, only the required
parameters are defined. Default settings are used for optional parameters.

The following three server groups are defined:

n The first server group (SRVGP=RDMGRP) contains the Domains administrative
server (DMADM).

n The second server group (SRVGP=RGWGRP) contains the gateway administrative
server, GWADM, and the domain gateway, GWTDOMAIN.

n The third server group (SRVGP=APPGRP) contains the application server
simpserv.

The following four servers are defined:

n DMADM—Domains administrative server

n GWADM—gateway administrative server

n GWTDOMAIN—Domains gateway server

n simpserv—application server for simpapp that advertises the TOUPPER service,
which converts strings from lowercase to uppercase characters
2-28 Using the BEA Tuxedo Domains Component

How to Define the Domains Environment for rapp (in the UBBCONFIG File)
Example of an Application Configuration File for rapp

Listing 2-8 Example of an Application Configuration File (rapp.ubb)

rapp.ubb
#
*RESOURCES
IPCKEY 222222

MASTER RAPP

MODEL SHM

*MACHINES

juliet

 LMID=RAPP
 TUXDIR=”/opt/tuxedo”
 APPDIR=”/home/rapp”
 TUXCONFIG=”/home/rapp/rapp.tux”

*GROUPS

RDMGRP GRPNO=1 LMID=RAPP
RGWGRP GRPNO=2 LMID=RAPP
APPGRP GRPNO=3 LMID=RAPP

*SERVERS

DMADM SRVGRP=RDMGRP SRVID=1
GWADM SRVGRP=RGWGRP SRVID=1
GWTDOMAIN SRVGRP=RGWGRP SRVID=2 REPLYQ=N
simpserv SRVGRP=APPGRP SRVID=1

*SERVICES
TOUPPER
Using the BEA Tuxedo Domains Component 2-29

2 Planning and Configuring ATMI Domains
How to Define Domains Parameters for rapp
(in the DMCONFIG File)

For the sample remote Domain gateway configuration file, rapp.dom, only the
required parameters are defined. Default settings are used for optional parameters.

This configuration file is similar to the local Domains gateway configuration file. The
difference is that the two files list different services to be exported and imported.

The DM_LOCAL_SERVICES section provides information about the services exported
by each local domain. In this example, the TOUPPER service is exported and included
in the DM_LOCAL_SERVICES section. No service is imported so there are no entries in
the DM_REMOTE_SERVICES section of our sample file.

Example of a Domain Gateway Configuration File for
rapp

Listing 2-9 Example of a Domain Gateway Configuration File (rapp.dom)

rapp.dom
#

*DM_LOCAL_DOMAINS

RAPP GWGRP=RGWGRP
 TYPE=TDOMAIN
 DOMAINID=”222222"

*DM_REMOTE_DOMAINS

LAPP TYPE=TDOMAIN
 DOMAINID=”111111"

*DM_TDOMAIN

RAPP NWADDR=”//mach2:5000"

LAPP NWADDR=”//mach1:5000"
2-30 Using the BEA Tuxedo Domains Component

How to Compile Application and Domain Gateway Configuration Files for rapp
*DM_LOCAL_SERVICES
TOUPPER
*DM_REMOTE_SERVICES

How to Compile Application and Domain
Gateway Configuration Files for rapp

The remote application configuration file (rapp.ubb) contains the information used
by the domain gateway for one domain, for communication with other domains. You
must compile this file into a binary data file (rapp.tux).

The remote domain gateway configuration file (rapp.dom) contains the information
used by domain gateways to initialize the context required for communications with
other domains. This configuration file is similar to the local domain gateway
configuration file. The difference is that the two files list different services to be
exported and imported. You must compile this file into a binary data file (rapp.bdm).

$ cd /home/rapp
$ TUXCONFIG=/home/rapp/rapp.tux; export TUXCONFIG
$ tmloadcf -y rapp.ubb
$ BDMCONFIG=/home/rapp/rapp.dom; export BDMCONFIG
$ dmloadcf -y rapp.dom

Once you create both the local and remote domains, you can then boot the application
using tmboot(1). The order in which the two domains are booted does not matter.
Monitor the applications with dmadmin(1). Once both applications are booted, a client
in the local application can call the TOUPPER service residing in the remote application.

$ tmboot -y

See Also

n “What Is the Domains Configuration File?” on page 1-19

n “How to Compress Data Between Domains” on page 2-32

n “How to Route Service Requests to Remote Domains” on page 2-32
Using the BEA Tuxedo Domains Component 2-31

2 Planning and Configuring ATMI Domains
n “Converting the Domains Configuration File” on page 1-21

n DMCONFIG(5) in the File Formats, Data Descriptions, MIBs, and System
Processes Reference

n UBBCONFIG(5) in the File Formats, Data Descriptions, MIBs, and System
Processes Reference

How to Compress Data Between Domains

 Data sent between domains can be compressed for faster performance. To configure
compression, set the CMPLIMIT parameter in DMCONFIG.

See Also

n DMCONFIG(5) in the File Formats, Data Descriptions, MIBs, and System
Processes Reference

n “Compressing Data Over a Network” on page 4-2 in Administering a BEA
Tuxedo Application at Run Time

How to Route Service Requests to Remote
Domains

Data-dependent routing information used by gateways to send service requests to
specific remote domains is provided in the DM_ROUTING section of the DMCONFIG file.
The FML32, VIEW32, FML, VIEW, X_C_TYPE, and X_COMMON typed buffers are
supported.

To create a routing table for a domain, specify the following:

n Buffer type for which the routing entry is valid
2-32 Using the BEA Tuxedo Domains Component

How to Route Service Requests to Remote Domains
n Name of the routing entry and field

n Ranges and associated remote domain names of the routing field.

The following table describes these fields.

Routing
Table Field Description

Buffer type A list of types and subtypes of data buffers for which this routing entry is valid. The
types may be included: FML32, VIEW32, FML, VIEW, X_C_TYPE, and X_COMMON.
No subtype can be specified for type FML; subtypes are required for the other types.
The * (or wildcard) value is not allowed. Duplicate type/subtype pairs cannot be
specified for the same routing criteria name; one criteria name can be specified in
multiple routing entries as long as the type/subtype pairs are unique. If multiple
buffer types are specified for a single routing entry, the data types of the routing field
for all buffer types must be the same.

Valid values for type are:
[:subtype1[,subtype2 . . .]]
[;type2[:subtype3[,subtype4 . . .]]] . . .

The maximum total length of 32 type/subtype combinations is 256 characters.

Valid values for subtype may not include semicolons, colons, commas, or asterisks.

Example: FML

Domain
routing
criteria

The name (identifier) of the routing entry.

A valid value is any string of 1-15 characters, inclusive.

Example: ROUTTAB1

Routing field
name

The name of the routing field. It is assumed that the value of this field is a name
identified in an FML field table (for FML buffers) or an FML VIEW table (for VIEW,
X_C_TYPE, or X_COMMON buffers).

A valid value is an identifier string that is 1-30 characters, inclusive.

Example: FIELD1
Using the BEA Tuxedo Domains Component 2-33

2 Planning and Configuring ATMI Domains
Ranges A value comprised of a set of numbers (that must have numeric values) and an
alphanumeric string (that must have string values) associated with remote domain
names (RDOM) for the routing field. The routing field can be of any data type supported
in FML.

String range values for string, carray, and character field types must meet the
following criteria:

n Placed inside a pair of single quotes and not preceded by a sign.

n Short and long integer values are a string of digits, optionally preceded by a plus
or minus sign.

n Floating point numbers are of the form accepted by the C compiler or atof()as
follows: an optional sign, then a string of digits optionally containing a decimal
point, then an optional e or E followed by an optional sign or space, followed by
an integer.

When a field value matches a range, the associated RDOM value specifies the remote
domains to which the request should be routed. An RDOM value of * indicates that the
request can go to any remote domain known by the gateway group.

Valid values for this field are a comma-separated ordered list of range/RDOM pairs
where a range is one of two types: (a) a single value (signed numeric value or
character string in single quotes); or (b) a range of the form lower-upper (where
lower and upper are both signed numeric values or character strings in single
quotes). Note that lower must be less than or equal to upper.

Within a range/RDOM pair, the range is separated from the RDOM by a colon (:). MIN
can be used to indicate the minimum value for the data type of the associated FIELD:

n For strings and carrays, it is the null string

n For character fields, it is 0

n For numeric values, it is the minimum numeric value that can be stored in the field.

MAX can be used to indicate the maximum value for the data type of the associated
FIELD:

n For strings and carrays, it is an unlimited string of octal-255 characters

n For a character field, it is a single octal-255 character

n For numeric values, it is the maximum numeric value that can be stored in the field.

Thus, MIN - -5 is all numbers less than or equal to -5; and 6 - MAX is the set of all
numbers greater than or equal to 6. The metacharacter * (wildcard) in the range
position indicates any values not covered by other ranges previously seen in the entry;
one wildcard range is allowed per entry, which should be listed last in the field (ranges
following it are ignored).

Example: 1-100:REMDOM3

Routing
Table Field Description (Continued)
2-34 Using the BEA Tuxedo Domains Component

Setting Up Security in Domains
Setting Up Security in Domains

The BEA Tuxedo ATMI environment provides the following application security
mechanisms:

n Authentication—proves the stated identity of users or system processes; safely
remembers and transports identity information; and makes identity information
available when needed. The default authentication plug-in provides security at
three levels: no authentication (NONE), application password (AP_PW), and
user-level authentication (USER_AUTH).

n Authorization—controls access to resources based on identity or other
information. The default authorization plug-in provides security at two levels:
optional access control lists (ACL) and mandatory access control lists
(MANDATORY_ACL).

n Auditing—safely collects, stores, and distributes information about operating
requests and their outcomes. Default auditing security is implemented by the
BEA Tuxedo EventBroker and userlog (ULOG) features.

n Encryption—security mechanisms to convert data to coded format that is
unintelligible to users. The default encryption is RC4 symmetric key encryption.

n Security Plug-in Interface—allows installation of third-party security systems
such as custom authentication, authorization, and auditing. The plug-in interface
is available to applications running BEA Tuxedo release 7.1 or later software.
For information on setting up security in domains using the security plug-in
interface, see “Establishing a Link Between Domains” on page 2-24 in Using
Security in ATMI Applications.
Using the BEA Tuxedo Domains Component 2-35

2 Planning and Configuring ATMI Domains
Impact of BEA Tuxedo Application Security on Domains
Security

The BEA Tuxedo security mechanisms provided for individual applications and those
provided for Domains configurations are relatively independent but compatible:

n The BEA Tuxedo ATMI environment provides the following security
mechanisms for Domains configurations:

l authentication of remote domains

l access control on exported local services for remote domains

l encryption mechanisms to protect interdomain communication

n If BEA Tuxedo application security is set to USER_AUTH or above, and the
ACL_POLICY and CREDENTIAL_POLICY parameters are set to GLOBAL in the
DM_REMOTE_DOMAINS section of the DMCONFIG, then user IDs flow across
domains with requests. ACL checking is performed on the user IDs.

n If BEA Tuxedo application security is set to USER_AUTH or above, and the
ACL_POLICY and CREDENTIAL_POLICY parameters are set to LOCAL in the
DM_REMOTE_DOMAINS section of the DMCONFIG, then user IDs do not flow across
domains with requests. ACL checking is handled via the Domain ID of the
requesting domain.

n Even if you assign a security level of NONE to your BEA Tuxedo application,
you can still set the Domains connection security to DM_PW. Note, however, that
in order to use an application password in a Domains configuration, you must
have already set a value of APP_PW (or higher: USER_AUTH, ACL, or
MANDATORY_ACL) for the security level in each participating application.
2-36 Using the BEA Tuxedo Domains Component

Setting Up Security in Domains
Domains Security Mechanisms

Because distinct domains may exist under different ownership, the native BEA Tuxedo
application password scheme may not, of itself, provide sufficient security. Domains,
therefore, provides additional security mechanisms:

n Access Control Lists—restricts availability of resources in a local domain to a
list of selected remote domains. You configure this security level in the
DM_ACCESS_CONTROL section of DMCONFIG.

n Domains Authentication—techniques are required to ensure the proper identity
of each remote domain. Domains provides three levels of password security:
NONE specifies no authentication; APP_PW is authentication using the application
password, which must match on the two domains; and DM_PW, which is
authentication using specific passwords per local/remote domain pair. Each of
these is selected by setting the SECURITY parameter in the DM_LOCAL_DOMAINS
section for the local domain access point involved to the required level (NONE,
APP_PW, DM_PW).

n Link-Level Encryption—you can use encryption across domains to ensure data
privacy. In this way, a network-based eavesdropper cannot learn the content of
BEA Tuxedo messages or application-generated messages flowing from one
domain gateway to another. You configure this security mechanism by setting
the MINENCRYPTBITS and MAXENCRYPTBITS parameters in the DMCONFIG file.

n Local Domains Access—restricts local services to remote domains. If a service
is not exported to remote domains, it is simply unavailable to them. A service is
exported by placing an entry in the DM_LOCAL_SERVICES section of the
DMCONFIG file for the service.

n User Identity Mapping to Mainframes—provides a mechanism whereby user
identities within a domain can be mapped to and from external user identities.
This mechanism is currently used by BEA eLink for Mainframe-SNA to map to
and from RACF (remote access control facility) user names on IBM LU6.2
mainframes. To use this mechanism, refer to the following dmadmin
configuration commands:

l addumap—add local user mappings to remote user mappings for a
local/remote domain pair. Mappings are defined to be inbound, outbound, or
both.
Using the BEA Tuxedo Domains Component 2-37

2 Planning and Configuring ATMI Domains
l addusr—add remote usernames and passwords to the remote user and
password tables of a remote domain.

l delumap—delete local to remote user mappings for a local/remote domain
pair.

l delusr—delete remote usernames and passwords from the remote user and
password tables of a remote domain.

l modusr—change remote passwords in the password tables of a remote
domain.

See Also

n “How to Create a Domains Access Control List (ACL)” on page 2-39

n “How to Set Up Domains Authentication” on page 2-42

n “Examples of Coding Security Between Domains” on page 2-44

n dmadmin(1)in the BEA Tuxedo Command Reference
2-38 Using the BEA Tuxedo Domains Component

How to Create a Domains Access Control List (ACL)
How to Create a Domains Access Control List
(ACL)

To create a domain ACL, you must specify the name of the domain ACL and a list of
the remote domains that are part of the list (the Domain Import VIEW List) in the
DM_ACCESS_CONTROL section of the DMCONFIG file. The following table describes
these two fields.

Using Standard BEA Tuxedo Access Control Lists with
Imported Remote Services

A remote service imported from a remote domain is viewed simply as a service within
a BEA Tuxedo domain. The standard BEA Tuxedo ACL mechanism then, can be used
to restrict access to this service by particular groups of users.

For information on using BEA Tuxedo access control lists, refer to the following
entries in the BEA Tuxedo Command Reference: tpacladd(1), tpaclmod(1),
tpacldel(1), tpusradd(1), tpusrmod(1), tpusrdel(1), tpgrpadd(1),
tpgrpmod(1), and tpgrpdel(1).

Domain ACL Field Description

Domain ACL name The name of this ACL.

A valid name consists of a string of 1-30 characters, inclusive. It
must be printable and it may not include a colon, a pound sign, or
a newline character.

Example: ACLGRP1

Remote Domain list The list of remote domains that are granted access in this access
control list.

A valid value in this field is a set of one or more comma-separated
remote domain names.

Examples: REMDOM1,REMDOM2,REMDOM3
Using the BEA Tuxedo Domains Component 2-39

2 Planning and Configuring ATMI Domains
Setting the ACL Policy for a Remote Domain

As the administrator, you can use the following configuration parameters to set and
control the access control list (ACL) policy for remote domains running BEA Tuxedo
release 7.1 or later software.

Parameter Name Description Setting

ACL_POLICY in
DMCONFIG
(TA_DMACLPOLICY
in DM_MIB)

May appear in the
DM_REMOTE_DOMAINS section
of the DMCONFIG file for each
remote domain access point. Its
value for a particular remote
domain access point determines
whether or not the local domain
gateway modifies the identity of
service requests received from
the remote domain.*

LOCAL or GLOBAL.
Default is LOCAL.

LOCAL means that the local domain modifies the
identity of service requests received from this
remote domain to the principal name specified in
the LOCAL_PRINCIPAL_NAME parameter for this
remote domain. GLOBAL means that the local
domain uses any credential it might receive from the
remote domain on inbound service requests. If no
credential is received from the remote domain then
the service request will be forwarded to the service
without credentials (which will usually fail).

Note: This parameter controls whether or not the
local domain accepts a credential from a
remote domain. A parameter related to this
one is CREDENTIAL_POLICY, which
controls whether or not a local domain
sends credentials to the remote domain.

LOCAL_PRINCIPAL_
NAME in DMCONFIG
(TA_DMLOCALPRINC
IPALNAME in
DM_MIB)

May appear in the
DM_REMOTE_DOMAINS section
of the DMCONFIG file for each
remote domain access point. If
the ACL_POLICY parameter is
set (or defaulted) to LOCAL for a
particular remote domain access
point, the local domain gateway
modifies the identify of service
requests received from the
remote domain to the principal
name specified in
LOCAL_PRINCIPAL_NAME.

1 - 511 characters. If not specified, the principal
name defaults to the DOMAINID string for the
remote domain access point.

* A remote domain access point is also known as an RDOM (pronounced “are dom”) or simply remote domain.
2-40 Using the BEA Tuxedo Domains Component

How to Create a Domains Access Control List (ACL)
For more information about ACL Policy, refer to Chapter 2, “Administering Security,”
in Using Security in ATMI Applications.

Setting the Credential Policy for a Remote Domain

As the administrator, you can use the following configuration parameters to set and
control the credential policy for remote domains running BEA Tuxedo release 8.0 or
later software.

For more information about Credential Policy, refer to Chapter 2, “Administering
Security,” in Using Security in ATMI Applications.

Parameter Name Description Setting

CREDENTIAL_POLICY in
DMCONFIG
(TA_DMCREDENTIAL
POLICY in DM_MIB)

May appear in the
DM_REMOTE_DOMAINS section of
the DMCONFIG file for each remote
domain access point. Its value for a
particular remote domain access point
determines whether or not the local
domain gateway modifies the identity
of service requests received from the
remote domain.*

LOCAL or GLOBAL.
Default is LOCAL.

If the policy is LOCAL then the domain
will not attach the credentials of the user
that originated a request with the
invocation to the remote domain.

If the policy is GLOBAL then the domain
will attach the credentials of the user that
originated a request with the invocation
to the remote domain.

Note: This parameter controls
whether or not user credentials
are sent to a remote domain. A
parameter related to this one is
ACL_POLICY, which controls
whether or not incoming
credentials are accepted by a
domain.

* A remote domain access point is also known as an RDOM (pronounced “are dom”) or simply remote domain.
Using the BEA Tuxedo Domains Component 2-41

2 Planning and Configuring ATMI Domains
How to Set Up Domains Authentication

Domain gateways can be made to authenticate incoming connections requested by
remote domains and outgoing connections requested by local domains. The
authentication mechanism is optional and compatible with the BEA Tuxedo
mechanism specified in the TUXCONFIG file.

Application administrators can define when security should be enforced for incoming
connections from remote domains. You can specify the level of security used by a
particular local domain by setting the SECURITY parameter in the DM_LOCAL_DOMAINS
section of the DMCONFIG file. There are three levels of password security:

n No Security (using the NONE option)—incoming connections from remote
domains are not authenticated.

n Application Password (using the APP_PW option)— incoming connections from
remote domains are authenticated using the application password defined in the
TUXCONFIG file. The BEA Tuxedo application password is administered with
tmloadcf(1), which prompts for the password when the SECURITY option is
enabled in the TUXCONFIG file. The password is automatically propagated with
the TUXCONFIG file to the other machines in the configuration. You can update
the password dynamically using the tmadmin command.

n Remote Domains Password (using the DM_PW option)—BEA Tuxedo Domains
uses this feature to enforce security between two or more BEA Tuxedo domains.
Connections between the local and remote domains are authenticated using
passwords defined in the DM_PASSWORDS section of the BDMCONFIG file. These
passwords are added to the binary configuration file after dmloadcf has been
run, using the passwd subcommand of the dmadmin(1) command. Each entry
contains the password used by a remote domain to access a particular local
domain and the password required by the local domain, in turn, to access the
remote domain.

If the SECURITY parameter is not set in TUXCONFIG (that is, if it defaults to NONE or if
it is set explicitly to NONE), the Domains configuration can still require the Domain
gateways to enforce security at the DM_PW level. If the DM_PW option is selected, then
each remote domain must have a password defined in the DM_PASSWORDS section of
the BDMCONFIG file. In other words, incoming connections from remote domains
without a password are rejected by domain gateways.
2-42 Using the BEA Tuxedo Domains Component

How to Set Up Domains Authentication
T_DM_PASSWORDS MIB Class Definitions

The T_DM_PASSWORDS class represents configuration information for inter-domain
authentication through local and remote access points of type TDOMAIN. The
T_DM_PASSWORDS class contains the following entries for each remote domain.

n TA_DMLACCESSPOINT—the name of the local domain access point to which the
password applies.

n TA_DMRACCESSPOINT—the name of the remote domain access point to which
the password applies.

n TA_DMLPWD—the local password used to authenticate connections between the
local domain access point (identified by TA_DMLACCESSPOINT) and the remote
domain access point (identified by TA_DMRACCESSPOINT).

n TA_DMRPWD—the remote password used to authenticate connections between the
remote domain access point (identified by TA_DMRACCESSPOINT) and the local
domain access point (identified by TA_DMLACCESSPOINT).

Note: Passwords are stored securely in encrypted format.

Setting Domains Passwords

BEA Tuxedo Domains passwords (DM_PW) are set using the dmadmin(1) command,
as follows:

 passwd [-r] local_domain_name remote_domain_name

This command prompts the administrator for new passwords for the specified local and
remote domains.

See Also

n “Examples of Coding Security Between Domains” on page 2-44

n dmadmin(1) in the BEA Tuxedo Command Reference
Using the BEA Tuxedo Domains Component 2-43

2 Planning and Configuring ATMI Domains
n DMCONFIG(5) in the File Formats, Data Descriptions, MIBs, and System
Processes Reference

n DM_MIB(5) in the File Formats, Data Descriptions, MIBs, and System Processes
Reference

Examples of Coding Security Between
Domains

The SECURITY parameter in the DM_LOCAL_DOMAINS section of the DMCONFIG file
specifies the security type of a local domain. If authentication is required, it is done
every time a connection is established between the local domain and a remote domain.
If the security types of the two domains are incompatible, or if the passwords do not
match, the connection fails.

Example 1: Setting Security to NONE

If SECURITY is set to NONE for a local domain, incoming connection attempts are not
authenticated. Even with SECURITY set to NONE, a local domain can still connect to
remote domains that have SECURITY set to DM_PW, but before such a connection can be
established, you must define the passwords on both sides by running dmadmin(1) or
by using DM_MIB(5).

Listing 2-10 Setting Security to NONE for Both Application and Domains

DOM1: SECURITY in UBBCONFIG set to NONE
 SECURITY in DMCONFIG set to NONE

DOM2: SECURITY in UBBCONFIG set to NONE
 SECURITY in DMCONFIG set to DM_PW
2-44 Using the BEA Tuxedo Domains Component

Examples of Coding Security Between Domains
In this example, DOM1 is not enforcing any security but DOM2 is enforcing DM_PW
security. On the initiator side, the pertinent attributes in UBBCONFIG and DMCONFIG are
set as follows:

UBBCONFIG
 SECURITY=NONE

DMCONFIG
 *DM_LOCAL_DOMAINS
DOM1
 DOMAINID=DOM1
 SECURITY=NONE

 *DM_REMOTE_DOMAINS
DOM2 DOMAINID=“DOM2”

On the responder side, the pertinent attributes in UBBCONFIG and DMCONFIG are set as
follows:

UBBCONFIG
 SECURITY=NONE

DMCONFIG
 *DM_LOCAL_DOMAINS
DOM2
 DOMAINID=DOM2
 SECURITY=DM_PW

 *DM_REMOTE_DOMAINS
DOM1 DOMAINID=“DOM1”

After the required attributes have been set in the TUXCONFIG and BDMCONFIG files,
boot the applications on DOM1 and DOM2.

On DOM1:
 dmadmin
 passwd DOM1 DOM2
 Enter Local Domain Password:foo1
 Reenter Local Domain Password:foo1
 Enter Remote Domain Password:foo2
 Reenter Remote Domain Password:foo2

On DOM2:
 dmadmin
 passwd DOM2 DOM1
 Enter Local Domain Password:foo2
 Reenter Local Domain Password:foo2
 Enter Remote Domain Password:foo1
 Reenter Remote Domain Password:foo1
Using the BEA Tuxedo Domains Component 2-45

2 Planning and Configuring ATMI Domains
Once passwords have been created on both domains, a connection can be established
and services can be invoked on the remote domain.

Listing 2-11 Setting Application Security to NONE and Domains Security to
DM_PW

On the initiator side, the pertinent attributes in UBBCONFIG and DMCONFIG are set as
follows:

UBBCONFIG
 SECURITY=NONE

DMCONFIG
 *DM_LOCAL_DOMAINS
 DOM1
 DOMAINID=DOM1
 SECURITY=DM_PW

 *DM_REMOTE_DOMAINS
 DOM2 DOMAINID=“DOM2”

On the responder side, the pertinent attributes in UBBCONFIG and DMCONFIG are set as
follows:

UBBCONFIG
 SECURITY=NONE

DMCONFIG
 *DM_LOCAL_DOMAINS
 DOM2
 DOMAINID=DOM2
 SECURITY=DM_PW

 *DM_REMOTE_DOMAINS
 DOM1 DOMAINID=“DOM1”

After the required attributes have been set in the TUXCONFIG and BDMCONFIG files,
boot the applications on DOM1 and DOM2:

On DOM1:
 dmadmin
 passwd DOM1 DOM2
 Enter Local Domain Password:foo1
 Reenter Local Domain Password:foo1
 Enter Remote Domain Password:foo2
 Reenter Remote Domain Password:foo2
2-46 Using the BEA Tuxedo Domains Component

Examples of Coding Security Between Domains
On DOM2:
 dmadmin
 passwd DOM2 DOM1
 Enter Local Domain Password:foo2
 Reenter Local Domain Password:foo2
 Enter Remote Domain Password:foo1
 Reenter Remote Domain Password:foo1

Once passwords have been created on both domains, a connection can be established
and services can be invoked on the remote domain.

Example 2: Setting Security to APP_PW

If the SECURITY parameter in the UBBCONFIG is set to APP_PW or higher, then
SECURITY in the DMCONFIG can be set to NONE, APP_PW, or DM_PW. Because you can
define multiple views of a domain in one DMCONFIG file (one view per local domain
definition), you can assign a different type of security mechanism to each of those
views.

Note: If SECURITY is set to APP_PW for a local domain access point in the DMCONFIG,
then SECURITY in the UBBCONFIG must be set to APP_PW or higher.

Listing 2-12 Setting Security to APP_PW for Both Application and Domains

DOM1: SECURITY in UBBCONFIG set to APP_PW
 SECURITY in DMCONFIG set to APP_PW

DOM2: SECURITY in UBBCONFIG set to APP_PW
 SECURITY in DMCONFIG set to APP_PW

In this example, both DOM1 and DOM2 enforce APP_PW security.
Using the BEA Tuxedo Domains Component 2-47

2 Planning and Configuring ATMI Domains
On the initiator side, the pertinent attributes in UBBCONFIG and DMCONFIG are set as
follows:

UBBCONFIG
 SECURITY=APP_PW

DMCONFIG
 *DM_LOCAL_DOMAINS
DOM1
 DOMAINID=DOM1
 SECURITY=APP_PW

 *DM_REMOTE_DOMAINS
DOM2 DOMAINID=“DOM2”

On the responder side, the pertinent attributes in UBBCONFIG and DMCONFIG are set as
follows.

UBBCONFIG
 SECURITY=APP_PW

DMCONFIG
 *DM_LOCAL_DOMAINS
DOM2
 DOMAINID=DOM2
 SECURITY=APP_PW

 *DM_REMOTE_DOMAINS
DOM1 DOMAINID=“DOM1”

After the TUXCONFIG and BDMCONFIG files have been created, boot the applications on
DOM1 and DOM2.
2-48 Using the BEA Tuxedo Domains Component

Configuring the Connections Between Your Domains
Configuring the Connections Between Your
Domains

You can specify the conditions under which a local domain gateway tries to establish
a connection to a remote domain. To specify these conditions, assign a value to the
CONNECTION_POLICY parameter in the Domains configuration file. You can select any
of the following connection policies:

n Connect at boot time (ON_STARTUP)

n Connect when a client program requests a remote service (ON_DEMAND)

n Accept incoming connections but do not initiate a connection automatically
(INCOMING_ONLY)

For connection policies of ON_STARTUP and INCOMING_ONLY, Dynamic Status is
invoked. Dynamic Status is a BEA Tuxedo Domains capability that checks and reports
the status of remote services.

How to Request Connections at Boot Time (ON_STARTUP
Policy)

A policy of ON_STARTUP means that a domain gateway attempts to establish a
connection with its remote domains when the gateway server is initialized. By default,
this connection policy retries failed connections every 60 seconds, but you can specify
a different value for this interval (using the RETRY_INTERVAL parameter). This policy
invokes Dynamic Status.

CONNECTION_POLICY=ON_STARTUP
Using the BEA Tuxedo Domains Component 2-49

2 Planning and Configuring ATMI Domains
The following diagram shows how connections are attempted and made by a gateway
for which the connection policy is ON_STARTUP.

Figure 2-5 Connections Made with an ON_STARTUP Policy

How to Request Connections for Client Demands
(ON_DEMAND Policy)

A connection policy of ON_DEMAND means that a connection is attempted only when
either a client requests a remote service or an administrative “connect” command is
run. The default setting for CONNECTION_POLICY is ON_DEMAND. Connection retry
processing is not allowed when the connection policy is ON_DEMAND. This policy does
not invoke Dynamic Status.
2-50 Using the BEA Tuxedo Domains Component

Configuring the Connections Between Your Domains
CONNECTION_POLICY=ON_DEMAND

The following diagram shows how connections are attempted and made by a gateway
for which the connection policy is ON_DEMAND.

Figure 2-6 Connections Made with an ON_DEMAND Policy

How to Limit Connections to Incoming Messages Only
(INCOMING_ONLY Policy)

A connection policy of INCOMING_ONLY means that a domain gateway does not try to
establish a connection to remote domains upon starting. Connection retry processing
is not allowed when the connection policy is INCOMING_ONLY. This policy invokes
Dynamic Status.

To use this policy, enter the following line in your Domains configuration file:

CONNECTION_POLICY=INCOMING_ONLY

Note: You can also establish a connection manually using the dmadmin connect
command.
Using the BEA Tuxedo Domains Component 2-51

2 Planning and Configuring ATMI Domains
The following diagram shows how connections are attempted and made by a gateway
for which the connection policy is INCOMING_ONLY.

Figure 2-7 Connections Made with an INCOMING_ONLY Policy (accept
incoming connections)

How to Configure the Connection Retry Interval for
ON_STARTUP Only

When the CONNECTION_POLICY parameter is set to ON_STARTUP, then the connection
retry capability is available. The connection retry capability enables a domain gateway
to retry, automatically, a failed attempt to connect to a remote domain. As an
administrator, you can control the frequency of automatic connection attempts. To do
so, specify the length (in seconds) of the interval during which the gateway should wait
before trying, again, to establish a connection. You can specify the retry interval by
setting the RETRY_INTERVAL parameter in the DM_LOCAL_DOMAINS section of the
Domains configuration file as follows:

RETRY_INTERVAL=number_of_seconds
2-52 Using the BEA Tuxedo Domains Component

Configuring the Connections Between Your Domains
Note: You can specify between 0 and 2147483647 seconds.

If the connection policy is ON_STARTUP and you do not specify a value for the
RETRY_INTERVAL parameter, a default of 60 is used.

The RETRY_INTERVAL parameter is valid only when the connection policy is
ON_STARTUP. For the other connection policies (ON_DEMAND and INCOMING_ONLY),
retry processing is disabled.

How to Configure the Maximum Retry Number

You indicate the number of times that a domain gateway tries to establish connections
to remote domains before quitting by assigning a value to the MAXRETRY parameter: the
minimum value is 0; the default and maximum value is the value of the MAXLONG
parameter.

n If you set MAXRETRY=0, automatic connection retry processing is turned off. The
server does not attempt to connect to the remote gateways automatically.

n If you set MAXRETRY=number, the gateway tries to establish a connection the
specified number of times before quitting.

Note: The RETRY_INTERVAL is rounded up to a multiple of SCANUNIT.

n If you set MAXRETRY=MAXLONG, retry processing is repeated indefinitely or until a
connection is established.
Using the BEA Tuxedo Domains Component 2-53

2 Planning and Configuring ATMI Domains
The MAXRETRY parameter is valid only when the connection policy is ON_STARTUP. For
the other connection policies (ON_DEMAND and INCOMING_ONLY), retry processing is
disabled.

See Also

n “Controlling the Connections Between Domains” on page 2-55

n “Configuring Domains-level Failover and Failback” on page 2-58

n DMCONFIG(5) in the File Formats, Data Descriptions, MIBs, and System
Processes Reference

Table 2-1 Example Settings of the MAXRETRY and RETRY_INTERVAL
Parameters

If You Set... Then...

CONNECTION_POLICY=ON_STARTUP
RETRY_INTERVAL=30
MAXRETRY=3

The gateway makes 3 attempts to establish a
connection, at 30 seconds intervals, before
quitting.

CONNECTION_POLICY=ON_STARTUP
MAXRETRY=0

The gateway attempts to establish a connection at
initialization time but does not retry if the first
attempt fails.

CONNECTION_POLICY=ON_STARTUP
RETRY_INTERVAL=30

The gateway attempts to establish a connection
every 30 seconds until a connection is established.
2-54 Using the BEA Tuxedo Domains Component

Controlling the Connections Between Domains
Controlling the Connections Between
Domains

As the administrator, you can control the number of connections you want to establish
between domains. You can also break the connections between local and remote
domains.

How to Establish Connections Between Domains

To establish a connection between a local gateway and a remote domain, run the
dmadmin command with the connect (co) subcommand, as follows:

dmadmin co -d local_domain_name

By default, connections are established between the local domain you have specified
and all remote domains configured for the local gateway. If you want to establish a
connection to only one remote domain, specify that domain on the command line with
the -R option, as follows:

dmadmin co -d local_domain_name -R remote_domain_name

If a connection attempt fails and you have configured the domain to try again, repeated
attempts to connect (via automatic connection retry processing) are made.

How to Break Connections Between Domains

To break a connection between a local gateway and a remote domain (making sure that
the gateway does not try to reestablish the connection through automatic connection
retry processing), run the dmadmin command with the disconnect (dco)
subcommand, as follows:

dmadmin dco -d local_domain_name
Using the BEA Tuxedo Domains Component 2-55

2 Planning and Configuring ATMI Domains
By default, all remote domains configured for the local gateway are disconnected. If
you want to end the connection to only one remote domain, specify that domain on the
command line with the -R option as follows:

dmadmin dco -d local_domain_name -R remote_domain_name

Automatic connection retry processing is stopped by this command, regardless of
whether there are any active connections when the command is run.

How to Report on Connection Status

Using the printdomain command, you can generate a report on connection status and
the connections being retried. The connect command reports whether a connection
attempt has succeeded. The printdomain command prints information about the
specified local domain, including a list of remote domains, a list of remote domains to
which it is connected, an a list of remote domains to which it is trying to establish
connections.

The following example shows a dmadmin session in which the printdomain
command is issued (in its abbreviated form, pd) for a local domain called LDOM.

$ dmadmin
dmadmin - Copyright (c) 1996 BEA Systems, Inc.
Portions * Copyright 1986-1997 RSA Data Security, Inc.
All Rights Reserved.
Distributed under license by BEA Systems, Inc.
TUXEDO is a registered trademark.

pd -d LDOM
Local domain :LDOM
 Connected domains:
 Domainid: RDOM1
 Disconnected domains being retried:
 Domainid: RDOM2

 dco -d LDOM -R RDOM1
Operation completed successfully. Use printdomain(pd) to obtain
results.

 dco -d LDOM -R RDOM2
Operation completed successfully. Use printdomain(pd) to obtain
results.
2-56 Using the BEA Tuxedo Domains Component

Configuring Failover and Failback in a Domains Environment
 co -d LDOM -R RDOM3
Operation completed successfully. Use printdomain(pd) to obtain
results.

pd -d LDOM
Local domain :LDOM
 Connected domains:
 Domainid: RDOM3

Configuring Failover and Failback in a
Domains Environment

Two types of failover can be performed in a Domains environment: link-level failover
and Domains-level failover. This section provides instructions for both:

n “How to Configure Domains to Support Link-level Failover” on page 2-57

n “Configuring Domains-level Failover and Failback” on page 2-58

If you want failover and failback functionality in your domain, you must configure
your Domains configuration file to support it.

For details about the Domains configuration file, see the DMCONFIG(5) in the File
Formats, Data Descriptions, MIBs, and System Processes Reference.

How to Configure Domains to Support Link-level
Failover

Link-level failover is a mechanism that ensures that an alternate network link becomes
active when a primary link fails. To use link-level failover, the primary and alternate
gateways must reside on different remote domains (that is, gateway mirroring must be
used). Currently, link-level failover does not support multiple alternate links to the
same gateway.
Using the BEA Tuxedo Domains Component 2-57

2 Planning and Configuring ATMI Domains
To implement link-level failover, specify it in the DM_TDOMAINS section of the
Domains configuration file (DMCONFIG) as follows:

*DM_TDOMAINS
RDOM1 NWADDR=//addr1:0
RDOM1 NWADDR=//addr2:0

The first entry refers to the primary network link for remote domain RDOM1; the second
entry refers to the alternate link.

Link-level failback is a manual procedure. When the primary link is restored, the
administrator must bring down the alternate link manually. This operation may cause
requests that are in progress to fail, and new traffic to be resumed over the primary link.

Note: For more detailed information on gateway mirroring, see DMCONFIG(5) in the
File Formats, Data Descriptions, MIBs, and System Processes Reference.

Configuring Domains-level Failover and Failback

Domains-level failover is a mechanism that transfers requests to alternate remote
domains when a failure is detected with a primary remote domain. It also provides
failback to the primary remote domain when that domain is restored.

This level of failover/failback depends on Dynamic Status. The domain must be
configured with a CONNECTION_POLICY of ON_STARTUP or INCOMING_ONLY to enable
Domains-level failover/failback.

Domains-level failover/failback defines a remote domain as available when a network
connection to the remote domain exists, and unavailable when a network connection
to the remote domain does not exist.

Prerequisite to Using Domains-level Failover and Failback

To use Domains-level failback, you must specify ON_STARTUP or INCOMING_ONLY as
the value of the CONNECTION_POLICY parameter.

A connection policy of ON_DEMAND is unsuitable for Domains-level failback as it
operates on the assumption that the remote domain is always available. If you do not
specify ON_STARTUP or INCOMING_ONLY as your connection policy, your servers
cannot fail over to the alternate remote domains that you have specified with the RDOM
parameter.
2-58 Using the BEA Tuxedo Domains Component

Configuring Failover and Failback in a Domains Environment
Note: A remote domain is available if a network connection to it exists; a remote
domain is unavailable if a network connection to it does not exist.

How to Configure Domains to Support Failover

To support failover, you must specify a list of the remote domains responsible for
executing a particular service in your Domains configuration file. Specifically, you
must specify such a list as the value of the RDOM parameter in the
DM_REMOTE_SERVICES section. You can also specify alternate domains, as follows:

RDOM=identifier_1, identifier_2, identifier_3

Example

Suppose the TOUPPER and TOUPPER2 services are available from three remote
domains: R1 (the primary remote domain), R2, and R3. Include the following entry in
your Domains configuration file:

*DM_REMOTE_SERVICES
DEFAULT: RDOM=R1, R2, R3
TOUPPER
TOUPPER2

How to Configure Domains to Support Failback

Failback occurs when a network connection to the primary remote domain is
reestablished for any of the following reasons:

n Automatic retries (ON_STARTUP only)

n Incoming connections

n Manual dmadmin connect command

Note: For automatic retries, connection retry must be turned on (that is,
MA54ETRY>0).
Using the BEA Tuxedo Domains Component 2-59

2 Planning and Configuring ATMI Domains
2-60 Using the BEA Tuxedo Domains Component

3 Planning and
Configuring CORBA
Domains

Domains in a BEA Tuxedo CORBA environment are an extension of the core ATMI
BEA Tuxedo environment domains. A domain is a construct that is entirely
administrative. There are no programming interfaces that refer to domains. Everything
concerning domains is done by configuration files; only an administrator is aware of
domains.

This topic includes the following sections:

n Configuring Multiple CORBA Domains

n Types of CORBA Domain Configurations

n Examples: Configuring Multiple CORBA Domains

Overview of Multiple CORBA Domains

Since an enterprise can have many different kinds of applications, be geographically
dispersed, and be organized into different areas of responsibility, there might be many
separate domains. Each domain is a separately administered unit. Perhaps it is
organized for geographical considerations (all the machines in a given location).
Perhaps it is organized on departmental grounds within an enterprise (accounting,
manufacturing, shipping, and so on).
Using the BEA Tuxedo Domains Component 3-1

3 Planning and Configuring CORBA Domains
Eventually, an enterprise wants the different applications in those domains to be able
to cooperate. It is often impossible to expand a single domain to encompass the
enterprise. However, the size of an expanded domain in terms of the number of
machines and services would be impractical. Since a single domain must be
administered as a whole, the configuration would rapidly become huge and require
more effort in administering than in developing and implementing applications.

Therefore, to keep a domain relatively compact for administration, there must be a way
to separate applications into multiple domains and still allow applications in one
domain to access services in other domains. This capability for interdomain
communication is what is generically called “BEA Tuxedo domains.”

Interdomain Communication

The following figure shows a simple multiple-domain configuration.

Figure 3-1 Multiple-domain Configuration

The following steps describe single-domain communication between Client X and
Domain A:

1. Client X connects to Domain A using the Bootstrap object. The client application
uses the Bootstrap object to locate a FactoryFinder and then uses the FactoryFinder
to ask for a factory for objects of type Q. (The FactoryFinder call is itself an
invocation on Domain A.)

2. When the FactoryFinder returns a factory, the client then invokes that factory in
Domain A.

text
Client X

Server
for Q

Domain
Gateway

Domain
Gateway

Server
for R

Domain A Domain C
3-2 Using the BEA Tuxedo Domains Component

3. The factory returns a reference to an object of type Q, called Q1.

4. The client now invokes on object Q1 in Domain A.

Note: Throughout all of these steps, the client does not know where any of the
objects are, or which domains they are in. It might not even know that there is
something called a domain. The administrative actions for connecting a client
to Domain A are relatively simple for a client, because the client is a simple
machine and has very little infrastructure; it stands alone for the most part.
Indeed, the connection to a BEA Tuxedo domain is the primary administration
for a client. The actual administrative chore is setting the address of the ISL
that is in Domain A.

For multiple-domain communication, Q1 needs the services of Object R1, which is in
Domain C; therefore, object Q1 must execute operations similar to those described in
steps 1 through 4 above, but across domain boundaries. The actual steps are as follows:

1. Object Q1 uses a Bootstrap object to locate a FactoryFinder and then uses the
FactoryFinder to ask for a factory for objects of type R.

2. When the FactoryFinder returns a reference to a factory in Domain C, Object Q1
invokes that factory.

3. The factory returns a reference to an object of type R, called R1.

4. Object Q1 invokes on Object R1.

Note: As with Client X, there must be some administration to allow Object Q1 to get
at the factories and objects in Domain C. As Figure 3-1 shows, the mechanism
for communication between domains is a domain gateway. A domain gateway
is a system server in a domain.

A system server is different than a user-written server because it is provided
as part of the BEA Tuxedo product; other system servers are the name servers,
FactoryFinders, and ISLs. A domain gateway is somewhat similar in concept
to an ISL because it is the “contact” point for a domain. It is different from an
ISL, however, because a domain gateway connects to another domain
gateway, which is itself a contact point for a domain; that is, a domain
gateway’s job is to connect to another domain gateway. Thus, the pair of
domain gateways cooperate to make sure that invocation on objects that
inhabit different domains are routed to the correct domain.
Using the BEA Tuxedo Domains Component 3-3

3 Planning and Configuring CORBA Domains
For domain gateways to operate in this manner, they must be configured properly. That
configuration is the subject of the following sections.

Functions of Multiple-domain Configuration Elements

The following elements work together to accomplish the configuration of multiple
domains:

n BEA Tuxedo configuration file

The UBBCONFIG file names a domain and identifies the group and service entry
for a domain gateway server. No attributes of domain gateways are specified in
the UBBCONFIG file; all such attributes are in the DMCONFIG file.

n Domain configuration file

The domain configuration file (DMCONFIG) describes the remote domains that are
connected to the local domain. If there is no DMCONFIG file, there are no
connections.

n FactoryFinder domain configuration file

One FactoryFinder domain configuration file (factory_finder.ini) is
required for each domain that is connected to one or more other domains. If a
domain is not connected to another domain, there is no need for this file.

This file specifies which factories can be searched for or found across domain
boundaries. You must carefully coordinate the factory_finder.ini file with
the DMCONFIG so that they both have information about the same connected
domains and provide the same connectivity.

n Invocation of an object in a remote domain

The whole point of the BEA Tuxedo domains feature is for an application in one
CORBA domain to be able to make an invocation on an object in another
CORBA domain, without either the client or server applications being aware that
domains are a factor. Configuration information is intended to allow such
invocations to cross domain boundaries and to hide the fact of those boundaries
from applications.

Being able to make an invocation on a reference for an object in a remote
domain depends on a satisfactory set of three configuration files—the
UBBCONFIG, DMCONFIG, and factory_finder.ini files—for each domain and
3-4 Using the BEA Tuxedo Domains Component

Configuring Multiple CORBA Domains
on the coordination of two of those configuration files—the DMCONFIG and
factory_finder.ini files—between domains. As the number of domains
grows, the coordination effort grows.

n References to objects in a remote domain

Any object reference may specify a local domain or a remote domain. A
reference to a remote domain typically happens when a FactoryFinder returns a
reference to a factory in a remote domain. It also happens when that factory, in
turn, creates and returns a reference to an object in that remote domain
(although, of course, the reference is local to the domain of the factory).

Note: Applications are not aware of the domain of an object reference. Applications
cannot find out what domain an object reference refers to. Thus, invocations
on an object reference for a remote domain are transparent to the application.
This transparency allows administrators the freedom to configure services in
individual domains and to spread resources across multiple domains. If
applications were to include information about domains, changing
configurations would require that the applications be rewritten as well.

n FactoryFinders

For a server in a local domain to obtain an object reference to an object in
another domain, the application uses the same FactoryFinder pattern as it does
for objects in the local domain. The application uses the same pattern because it
is not aware that the factory finder returns a reference to a factory in another
domain. The configuration files hide this fact.

Once an object reference has been obtained via a FactoryFinder or factory, the
object reference can be passed anywhere; that is, passed to objects in the local
domain, returned to a client, or passed to another domain.

Configuring Multiple CORBA Domains

You use the following three configuration files to configure multiple domains:

n The main configuration UBBCONFIG file

n The domain configuration (DMCONFIG) file, and
Using the BEA Tuxedo Domains Component 3-5

3 Planning and Configuring CORBA Domains
n The FactoryFinder domain configuration file (factory_finder.ini).

The Configuration File

You must specify the following parameters in the UBBCONFIG file to configure
multiple domains:

n Domain name

n Gateway group

n Gateway service

Domain Name

Though not required for single domains (that is, standalone domains), a domain that is
connected to another domain must have a DOMAIN ID. You specify this parameter in
the RESOURCES section of the UBBCONFIG file, as follows:

DOMAIN ID = <domain-name>

The <domain-name> must be 1 to13 characters long. For example:

DOMAIN ID = headquarters

<domain-name> is the name that will be referenced in the DM_REMOTE_SERVICES and
DM_LOCAL_SERVICES sections of the related DMCONFIG file. In that file, the
<domain-name> will be referenced as:

"//<domain-name>"

The quotes are part of the reference. The slashes (//) mean that the name applies to
BEA Tuxedo CORBA domains, rather than to BEA Tuxedo ATMI domains. For
example:

"//headquarters"

Note: Every domain in an enterprise must have a unique <domain-name>.
3-6 Using the BEA Tuxedo Domains Component

Configuring Multiple CORBA Domains
Gateway Group and Service

As with every other system service, there must be a group and a service name specified
for a gateway. For example, the GROUPS section might contain:

LGWGRP GRPNO=4 LMID=LDOM

In this example, LGWGRP is a name chosen by a user (perhaps an abbreviation for
“Local Gateway Group”).

The service name for a domain gateway is GWTDOMAIN and must be associated, like
every other group, with a server group and a server ID. You specify the service name
in the SERVERS section associated with the server group name chosen. For example:

GWTDOMAIN SRVGRP=LGWGRP SRVID=1

This tells the BEA Tuxedo CORBA server that a domain gateway is to be used and that
additional information is found in the DMCONFIG file.

The Domain Configuration (DMCONFIG) File

There is one DMCONFIG file per domain. It describes the relationship between the local
domain (the domain in which the DMCONFIG file resides) and remote domains (any
other domains). The DMCONFIG file contains domain information for the core BEA
Tuxedo domains and for BEA Tuxedo CORBA domains.

The sections below concentrate on the information that applies to BEA Tuxedo
CORBA domains. In other documentation for the DMCONFIG file, the communication
between local and remote domains is based on BEA Tuxedo ATMI services, a concept
not used in BEA Tuxedo CORBA environments. For BEA Tuxedo CORBA
environments, the “service” name is the name of another BEA Tuxedo domain that can
service BEA Tuxedo CORBA requests.

The DMCONFIG file consists of up to eight parts, but one part, DM_ROUTING, does not
apply to BEA Tuxedo CORBA environments. The other seven parts refer to BEA
Tuxedo CORBA environments, but many of the BEA Tuxedo ATMI parameters are
not used. Those seven parts are: DM_RESOURCES, DM_LOCAL_DOMAINS,
DM_REMOTE_DOMAINS, DM_LOCAL_SERVICES, DM_REMOTE_SERVICES,
DM_ACCESS_CONTROL, and DM_TDOMAIN.

The following sections refer to the sample DMCONFIG file shown in Listing 3-1.
Using the BEA Tuxedo Domains Component 3-7

3 Planning and Configuring CORBA Domains
Listing 3-1 Sample DMCONFIG File

#
BEA Tuxedo CORBA DOMAIN CONFIGURATION FILE
#
*DM_RESOURCES
VERSION=Experimental8.9

*DM_LOCAL_DOMAINS
LDOM GWGRP=LGWGRP TYPE=TDOMAIN DOMAINID="MUTT"

*DM_REMOTE_DOMAINS
TDOM1 TYPE=TDOMAIN DOMAINID="JEFF"

*DM_TDOMAIN
LDOM NWADDR="//MUTT:2507"
TDOM1 NWADDR="//JEFF:3186"

*DM_LOCAL_SERVICES
"//MUTT"

*DM_REMOTE_SERVICES
"//JEFF" RDOM=TDOM1

DM_RESOURCES

The DM_RESOURCES section can contain a single field, VERSION. It is not checked by
software; it is provided simply as a place where users can enter a string that may have
some documentation value to the application.

*DM_RESOURCES
VERSION=Experimental8.9
3-8 Using the BEA Tuxedo Domains Component

Configuring Multiple CORBA Domains
DM_LOCAL_DOMAINS

The DM_LOCAL_DOMAINS section specifies some attributes for gateways into the local
domain from the outside. The section must have an entry for each gateway group
defined in the UBBCONFIG fle that will provide access to the local domain from other
domains. Each entry specifies the parameters required for the domain gateway
processes running in that group.

Entries have the form:

LDOM required-parameters [optional-parameters]

where LDOM is an identifier used to refer to the gateway to the local domain. LDOM must
be unique among all LDOM and RDOM entries across the enterprise (that is, among the set
of domains connected to each other). Note that LDOM is not the same name as the
<domain-name> or the gateway group that is specified in the UBBCONFIG file. Rather,
LDOM is a name used only within the DMCONFIG file to provide an extra level of
insulation from potential changes in the UBBCONFIG file (changes in UBBCONFIG will
affect only this one part of DMCONFIG).

The following are required parameters:

GWGRP = identifier

This parameter specifies the name of a gateway server group (the name provided
in the UBBCONFIG file) representing this local domain.

TYPE = TDOMAIN

The TYPE parameter is required to specify the use of domains for BEA Tuxedo
CORBA environments.

DOMAINID = string

The DOMAINID parameter is used to identify the local domain for the purposes of
security. The gateway server group in GWGRP uses this string during any security
checks. It has no required relationship to the <domain-name> found in the
RESOURCES section of the UBBCONFIG file. DOMAINID must be unique across
both local and remote domains. The value of string can be a sequence of
characters (for example, “BA.CENTRAL01”), or a sequence of hexadecimal digits
preceded by 0x (for example, “0x0002FF98C0000B9D6”). DOMAINID must be
32 octets or fewer in length. If the value is a string, it must be 32 characters or
fewer (counting the trailing null).
Using the BEA Tuxedo Domains Component 3-9

3 Planning and Configuring CORBA Domains
For example, the lines

*DM_LOCAL_DOMAINS
LDOM GWGRP=LGWGRP TYPE=TDOMAIN DOMAINID="MUTT"

identify LDOM as an access point to the local domain. It is associated with the service
group LGWGRP (as specified in the UBBCONFIG file). If the gateway is ever involved in
a domain-to-domain security check, it goes by the name MUTT.

Optional parameters describe resources and limits used in the operation of domain
gateways. For a description of these parameters, refer the dmconfig(5) reference page
in the File Formats, Data Descriptions, MIBs, and System Processes Reference.

DM_REMOTE_DOMAINS

The DM_REMOTE_DOMAINS section specifies some attributes for gateways to remote
domains. The section has an entry for each UBBCONFIG file-defined gateway group that
will send requests to remote domains. Each entry specifies the parameters required for
the domain gateway processes running in that group.

Entries have the form:

RDOM required-parameters

where RDOM is an identifier used to refer to the gateway providing access to the remote
domain. RDOM must be unique among all LDOM and RDOM entries across the enterprise
(that is, among the set of domains connected to each other). Note that RDOM is not the
same name as the <domain-name> or the gateway group that is specified in the
UBBCONFIG file. Rather, RDOM is a name used only within the DMCONFIG to provide an
extra level of insulation from potential changes in UBBCONFIG (changes in UBBCONFIG
will affect only this one part of DMCONFIG).

The required parameters are:

TYPE = TDOMAIN

The TYPE parameter is required to specify the use of domains for BEA
Tuxedo CORBA environments.

DOMAINID = string

The DOMAINID parameter is used to identify the remote domain for the
purposes of security. The gateway uses this string during any security checks.
DOMAINID has no required relationship to the <domain-name> found in the
RESOURCES section of the UBBCONFIG file. DOMAINID must be unique across
both local and remote domains. The value of string can be a sequence of
3-10 Using the BEA Tuxedo Domains Component

Configuring Multiple CORBA Domains
characters (for example, “BA.CENTRAL01”), or a sequence of hexadecimal
digits preceded by “0x” (for example, “0x0002FF98C0000B9D6”).
DOMAINID must be 32 octets or fewer in length. If the value is a string, it must
be 32 characters or fewer (counting the trailing null).
Entries associated with a remote domain can be specified more than once. The
first one specified is considered to be the primary address, which means it is
the first one tried when a connection is being attempted to a remote domain.
If a network connection cannot be established using the NWADDR of the
primary entry, the NWADDR associated with the secondary entry is used.
(NWADDR is the physical address; see the DM_TDOMAIN section.)
For example, the lines

*DM_REMOTE_DOMAINS
TDOM1 TYPE=TDOMAIN DOMAINID="JEFF"

identify TDOM1 as the access point name of a gateway. If the gateway is ever
involved in a domain-to-domain security check with a partner gateway, the
gateway expects that partner to go by the name JEFF.

DM_TDOMAIN

The DM_TDOMAIN section defines the network addressing information for gateways
implementing BEA Tuxedo CORBA domains. There should be one entry for each
domain gateway that accepts requests from remote domains, and one entry for each
domain gateway that sends requests to remote domains.

The format of each entry is:

DOM required-parameters [optional-parameters]

where DOM is an identifier value used to identify either a local domain access point
(LDOM in the DM_LOCAL_DOMAINS section) or a remote domain access point (RDOM in
the DM_REMOTE_DOMAINS section).

The following parameter is required:

NWADDR = string

This parameter specifies the network address associated with a local domain
or a remote domain. If the association is with a local domain, the NWADDR is
used to accept connections from other domains. If the association is with a
remote domain, the NWADDR is used to initiate a connection. This parameter
specifies the network address to be used by the process as its listening
address. The listening address for a domain gateway is the means by which it
Using the BEA Tuxedo Domains Component 3-11

3 Planning and Configuring CORBA Domains
is contacted by other gateway processes participating in the application. If
string has the form "0xhex-digits" or "\\xhex-digits", it must
contain an even number of valid hex digits. These forms are translated
internally into a character array containing TCP/IP addresses. The addresses
may also be in either of the following two forms:
"//hostname:port_number"
"//#.#.#.#:port_number"

In the first of these formats, hostname is resolved to a TCP/IP host address
at the time the address is bound, using the locally configured name resolution
facilities accessed via gethostbyname(3c). The "#.#.#.#" is the dotted
decimal format, where each # represents a decimal number in the range 0 to
255.

Port_number is a decimal number in the range 0 to 65535 (the hexadecimal
representations of the string specified). For example:
*DM_TDOMAIN
 LDOM NWADDR="//MUTT:2507"
 TDOM1 NWADDR="//JEFF:3186"

Continuing the example from above, the first entry specifies a gateway with
the domain access name of LDOM (meaning that it corresponds to the local
gateway group LGWGRP, specified in UBBCONFIG). Since LDOM was defined in
DM_LOCAL_DOMAINS, that means the gateway is configured to accept requests
from other domains. It listens on the address "//MUTT:2507". Similarly, the
second entry is for the domain access name TDOM1, which appears in
DM_REMOTE_DOMAINS, transferring requests to a remote domain. In this case,
the gateway associated with TDOM1 sends requests to the address
"//JEFF:3186".

For a description of the optional parameters, refer to the dmconfig(5) reference page
in the File Formats, Data Descriptions, MIBs, and System Processes Reference.

DM_REMOTE_SERVICES

The DM_REMOTE_SERVICES section specifies additional attributes for gateways to
remote domains. The format of each entry is:

service RDOM=<rdom-name>
 [LDOM=<ldom-name>]
 [TRAN_TIME=...]
3-12 Using the BEA Tuxedo Domains Component

Configuring Multiple CORBA Domains
where service is of the form:

"//<domain-name>"

This <domain-name> is the name that occurs RESOURCES section of the UBBCONFIG
file as <domain-name>. Each entry specifies an rdom-name and, optionally, an
ldom-name. The gateway uses the attributes for those entries for establishing a
gateway pair for BEA Tuxedo CORBA domain communication. Gateways operate in
pairs. At boot time, the local domain uses attributes of rdom-name (the address
specified in the DM_TDOMAIN section) to establish a connection to a gateway in the
other domain. If security is used, the other attributes of rdom-name and ldom-name
are used for mutual authentication. At run time, when BEA Tuxedo determines that a
request must travel to domain <domain-name>. It uses the gateway specified by
rdom-name to send the request to another domain.

Most often, <domain-name> is the name of the domain specified in the address of the
rdom-name. In that situation, when the request ends up at the other end of the gateway,
it is served in that domain. For example:

*DM_REMOTE_SERVICES
 "//JEFF" RDOM=TDOM1

In this case, the domain name JEFF is located at the address "//JEFF:3186". That
address might or might not have a UBBCONFIG file that specifies its domain name as
JEFF. If it does, the request can be serviced immediately.

It is possible to have entries that send requests for the specified domain-name to an
intermediary domain that acts as a pass-through for routing purposes.

The remaining optional parameter, TRANTIME = integer, specifies the default
timeout value, in seconds, for a transaction automatically started for the associated
service. The value must be greater than or equal to 0 (zero) and less than 2147483648.
The default is 30 seconds. A value of 0 (zero) implies the maximum timeout value for
the machine.

DM_LOCAL_SERVICES

The DM_LOCAL_SERVICES section specifies additional attributes for gateways that
accept requests into the local domain from the outside.

Lines within this section have the form:
Using the BEA Tuxedo Domains Component 3-13

3 Planning and Configuring CORBA Domains
service [LDOM=<ldom-name>]
 [ACL=...]

where service is of the form:

"//<domain-name>"

This <domain-name> is the name that occurs in the RESOURCES section of the
UBBCONFIG file as <domain-name>. Most likely this is the name of the domain in
which the gateway resides, meaning that this (local) domain accepts BEA Tuxedo
CORBA environment requests from other domains. It is also possible (but not
necessary, except for purposes of security) to have an entry that accepts requests for a
different domain name in the case where the local domain acts as a pass-through for
routing purposes.

Notice that exported services inherit the properties specified for the service in an entry
in the SERVICES section of the TUXCONFIG file, or their defaults. Some of the
properties that may be inherited are LOAD, PRIO, AUTOTRAN, ROUTING, BUFTYPE, and
TRANTIME.

The optional parameter, ACL = identifier, specifies the name of the access control
list (ACL) to be used by the local domain to restrict requests made to this service by
remote domains. The name of the ACL is defined in the DM_ACCESS_CONTROL section.
If this parameter is not specified, access control is not performed for requests to this
service.

For example, the lines:

*DM_LOCAL_SERVICES
"//MUTT"

state that this domain accepts requests destined for the domain with name MUTT.

DM_ACCESS_CONTROL

The DM_ACCESS_CONTROL section specifies the access control lists used by a local
domain. Lines in this section are of the form:

ACL_NAME required parameters

where ACL_NAME is an (identifier) name used to identify a particular access control list;
it must be 15 characters or less in length.
3-14 Using the BEA Tuxedo Domains Component

Configuring Multiple CORBA Domains
The only required parameter is:

ACLIST = identifier [,identifier]

where an ACLIST is composed of one or more remote domain names (RDOM) separated
by commas. The wildcard character (*) can be used to specify that all the remote
domains defined in the DM_REMOTE_DOMAINS section can access a local domain.

Note: The factory_finder.ini and DMCONFIG files must be coordinated; that is,
if the factory_finder.ini file declares another domain to have accessible
factories, there must be a way in DMCONFIG to get to that domain.

The factory_finder.ini File

Administrators are required to identify any factory objects that can be used in the
current (local) /Domain, but that are resident in a different (remote) /Domain. You
identify these factories in a FactoryFinder domain configuration file, also referred to
as the factory_finder.ini file. This is an ASCII file that can be created and
updated using a text editor.

The factory_finder.ini file can be used to identify remote CORBA factories that can be
used in the local domain.

The format of the factory_finder.ini file is modeled after the syntax used to
describe /Domains, and is shown below:

*DM_REMOTE_FACTORIES
 "local_factory_id.factory_kind"
 DOMAINID="domain_id"
 RNAME="remote_factory_id.factory_kind"
 ...

*DM_LOCAL_FACTORIES
 "factory_id.factory_kind"
 ...

Sample syntax for CORBA factory objects is as follows:

*DM_REMOTE_FACTORIES
 "AccountFactory.FactoryKind"
 "DOMAINID="MyAccountFactoryDomain"
 RNAME="MyAccountFactory.FactoryKind
Using the BEA Tuxedo Domains Component 3-15

3 Planning and Configuring CORBA Domains
where: AccountFactory is the name used to register the factory in the local domain’s
FactoryFinder, MyAccountFactoryDomain is the name of the remote domain,
MyAccountFactory is the name used to register the factory in the remote domain’s
FactoryFinder.

The Master NameManager reads the factory_finder.ini file when the process is
started. The reason for starting the Master NameManager affects which portions of the
factory_finder.ini file are processed. If the Master NameManager is being started
as part of booting an application, the initialization mode, the entire contents of the file
is processed. As a result, the information in the DM_REMOTE_FACTORIES section results
in entries being added for the factory objects being imported.

On the other hand, if the Master NameManager is being restarted as a result of a
process failure, only the DM_LOCAL_FACTORIES section of the file is read. This section
of the factory_finder.ini file must be re-read to reload the information that is used
to restrict the exportation of certain factory objects into another domain.

Note: Since the Master NameManager reads the factory_finder.ini file only
when the process is started, there is no way to update the Master
NameManager (for example, when a new domain with factory objects to be
imported needs to be added) without shutting down the Master NameManager.

A factory_finder.ini file applies to the domain in which it resides. It contains two
sections: the DM_REMOTE_FACTORIES section and the DM_LOCAL_FACTORIES section.
Either section can be absent or contain nothing.

The following sections provide more information on how to use the
DM_REMOTE_FACTORIES section and the DM_LOCAL_FACTORIES section.

DM_REMOTE_FACTORIES

The DM_REMOTE_FACTORIES section provides information about the factory objects
that are available in remote domains and that are imported so that applications in the
local domain can use them. Identifiers for remote factory objects are listed in this
section. The identifier, under which the object is registered, including a kind value of
“FactoryInterface”, must be listed in this section. For example, the entry for a
remote factory object to be registered by the TP Framework with the identifier Teller
in domain “Norwest” would be specified as:
3-16 Using the BEA Tuxedo Domains Component

Configuring Multiple CORBA Domains
*DM_REMOTE_FACTORIES
 "Teller.FactoryInterface"
 DOMAINID="Norwest"
 RNAME="BankTeller.FactoryInterface"

If the RNAME is not specified, the factory_kind must be specified in the factory name
and the factory name must be enclosed in quotation marks; otherwise, the
NameManager is not able to locate the appropriate factory. An entry that does not
contain a factory_kind value is not defaulted with a value of
“FactoryInterface”. The following example shows a factory object to be registered
with the identifier Teller in domain “Norwest”. Note the absence of the RNAME
specification, the specification of the factory_kind value, and the quotation marks
around the factory name.

*DM_REMOTE_FACTORIES
 "Teller.FactoryInterface"
 DOMAINID="Norwest"

Because the identities of factories in a multidomain configuration may collide, the
factory identifier and the RNAME parameters allow you to specify alternative identities,
or “aliases,” in the local domain for remote factories. Listing 3-2 shows two examples
of a remote factory that is registered by the TP Framework with the identifier
BankTeller in domain “Norwest”. In both examples, the factory is made available
in local domain with an alias of Teller.

Listing 3-2 Assigning an Alias to a Remote Factory

#EXAMPLE 1:

*DM_REMOTE_FACTORIES
 Teller
 DOMAINID="Norwest"
 RNAME=”BankTeller.FactoryInterface”

#EXAMPLE 2:

*DM_REMOTE_FACTORIES
 "Teller.FactoryInterface"
 DOMAINID="Norwest"
 RNAME="BankTeller.FactoryInterface"
Using the BEA Tuxedo Domains Component 3-17

3 Planning and Configuring CORBA Domains
You can also assign multiple aliases to the same remote factory. In the example shown
in Listing 3-3, the remote factory will be registered in the local domain with two
aliases: Teller and BankTeller.

Listing 3-3 Assigning Multiple Aliases to a Remote Factory

*DM_REMOTE_FACTORIES
 "Teller.FactoryInterface"
 DOMAINID="Norwest"
 RNAME="BankTeller.FactoryInterface"
 "BankTeller.FactoryInterface"
 DOMAINID="Norwest"
 RNAME="BankTeller.FactoryInterface"

Usage Note: In multidomain configurations, factory object identifiers must be unique across
domains in the enterprise.

In a multidomain configuration, two different domains must not have factory objects
with the same factory_id.factory_kind identifier, for example:
"Teller.FactoryInterface".

If the same identifier, or name, is used in two domains, the software’s behavior varies
depending on whether BEA WebLogic Enterprise was used to configure the CORBA
domain environment:

n In releases prior to BEA WebLogic Enterprise 5.1, the software allows the first
server in a domain to register the factory without issuing an error message. If
two factories with the same name are registered in a domain, the Master
NameManager fails.

n In BEA WebLogic Enterprise release 5.1 or later and BEA Tuxedo release 8.0 or
later, the software generates an error and writes it to the ULOG.

Note: In a single domain configuration, a BEA Tuxedo CORBA environment
supports multiple factories objects with the same name. This type of
configuration is allowed so as to achieve load-balancing.

There are two ways to ensure that your identifiers, or names, are unique across
domains and thus avoid this problem:
3-18 Using the BEA Tuxedo Domains Component

Configuring Multiple CORBA Domains
1. Use unique identifiers throughout the enterprise. This may mean keeping a master
list of all identifiers.

2. In the factory_finder.ini file, use the RNAME parameter so that an alias is
used by the local NameManager. (This also means that local clients will have to
be modified to use the alias to access the remote factory object.) Listing 3-2
shows an example of a factory_finder.ini file that uses the RNAME parameter
to create an alias.

DM_LOCAL_FACTORIES

The DM_LOCAL_FACTORIES section specifies factory objects in the local domain that
are available to be exported to other domains. This section can be used in the following
ways:

n If the DM_LOCAL_FACTORIES section does not exist in a factory_finder.ini,
or exists but is empty, all factory objects in the local domain are available to
remote domains. This allows administrators an easy means to make local factory
objects available to remote domains without having to provide an entry for every
factory object in the local domain.

n If the DM_LOCAL_FACTORIES section exists in a factory_finder.ini file but
contains the reserved keyword “NONE”, none of the factory objects in the local
domain are available to remote domains. This allows administrators to restrict
access without having to provide an entry for every factory object in the local
domain.

The identifier, or name, under which the factory object is registered, including a kind
value of “FactoryInterface”, must be listed in this section. For example, the entry
for a factory object to be registered by the TP Framework with the identifier Teller
would be specified as:

*DM_LOCAL_FACTORIES
 "Teller.FactoryInterface"

The factory_kind must be specified for the NameManager to locate the appropriate
factory object. An entry that does not contain a factory_kind value is not defaulted
with a value of “FactoryInterface”. This allows for the use of the CORBA
NamingService.
Using the BEA Tuxedo Domains Component 3-19

3 Planning and Configuring CORBA Domains
The factory_finder.ini file specifies that the process of finding a factory can be
exported to a remote domain by including a section beginning with
“*DM_REMOTE_FACTORIES”. In other words, including this section means that
the local domain can find factories in a remote domain.

An entry into the file for domain A might be:

*DM_REMOTE_FACTORIES
fA.FactoryInterface DOMAINID=B

This means that a request in Domain A to find a factory with the identifier fA can be
satisfied by the FactoryFinder in domain B. Of course, the UBBCONFIG and
DMCONFIG files for the two domains must also be set up so that there are connected
domain gateways between the two domains.)

An alternate form of the entry is:

CDE.FactoryInterface DOMAINID=B RNAME=fA.FactoryInterface

This means that a request in Domain A to find a factory with the identifier “CDE” will
be satisfied by the FactoryFinder in domain B using the ID fA. This is sometimes
called an alias.

Note: The factory ID must have “.FactoryInterface” at the end. For simplicity,
when talking about test configurations, we will leave that off, but it should
appear in the file.

For more information about the factory_finder.ini file, see the description of the
factory_finder.ini file in the File Formats, Data Descriptions, MIBs, and System
Processes Reference.

Local Factories

A domain can specify which of its factories can be accessed by other domains. This is
specified in a section beginning with *DM_LOCAL_FACTORIES. If the
factory_finder.ini file does not exist, or if it exists and this section does not
appear, or is empty, all local factories can be accessed by remote domains. If the
section exists and contains the keyword None, none of the local factories are
exportable; that is, none are allowed to be found by a remote FactoryFinder. If the
section exists, it can contain a list of factories available to remote domains. For
example,
3-20 Using the BEA Tuxedo Domains Component

Types of CORBA Domain Configurations
*DM_LOCAL_FACTORIES
fA.FactoryInterface
fB.FactoryInterface

This specifies that factories fA and fB are findable from other domains. All factories
other than factories explicitly listed are not findable. Unlike remote factories, there is
no provision for an alias with local factories.

Note: The factory_finder.ini and DMCONFIG files must be coordinated, that is,
if the factory_finder.ini file declares another domain to have accessible
factories, there must be a way in DMCONFIG to get to that domain.

Types of CORBA Domain Configurations

When using the multiple domains feature, you can configure two types of
configurations: directly connected domains and indirectly connected domains. You, as
the administrator, configure both types using the domain configuration file, DMCONFIG.

Directly Connected Domains

It is possible for every domain in an enterprise to have a gateway to every other domain
it might use. Such a configuration has the advantage that a request goes directly to the
target domain, with the minimum of delay. Such an “n-way” configuration is quite
reasonable when the number of domains is small, but each new domain requires two
new gateways. At some point, an administrator may consider a different configuration,
giving up speed of delivery for ease of management of domain connections. This is
when the ability to configure indirectly connected domains becomes advantageous.

Indirectly Connected Domains

An administrator should consider what the likely traffic patterns are. Domains that
have only occasional interactions are candidates for gateway removal. Since there will
still be interactions, it must still be possible to reach the other domain. The technique
used is to route the request through an intermediate domain that does have direct access
Using the BEA Tuxedo Domains Component 3-21

3 Planning and Configuring CORBA Domains
to the target domain. For example, we might have three domains, A, B, and C. Domains
A and B are directly connected and Domains B and C are directly connected, but A and
C are not directly connected (see Figure 3-2). For Domains A and C to communicate,
they must use domain B as the intermediary. Therefore, the DMCONFIG file for Domain
A must state that it is possible to connect to domain C by going through Domain B (and
vice versa). That is, the connectivity is:

Domains A <-> B <-> C
Gateways GAB GBA GBC GCB

Domain A has a gateway process, GAB (the Gateway from A to B), that connects to
Domain B. The Domain A DMCONFIG file states that GAB acts as a gateway to two
domains, Domains B and C. The DMCONFIG file for Domain C has a similar
configuration, stating that GCB is connected to B and A. The DMCONFIG file for Domain
B has two gateway processes, one which connects to A (GBA) and one which connects
to C (GBC). This is called an indirect connection.

Given this indirect connection, when a server in A invokes a request on an object in C,
BEA Tuxedo CORBA server knows that it can send the request to gateway GAB. The
BEA Tuxedo gateway does not know that its partner gateway in B cannot service the
request itself, but that is acceptable. Once the request is in domain B, it is routed
through GBC to C, which can service the request. Thus, the request is serviced with one
extra hop.

It is even possible for the two gateways in Domain B to be a single gateway, so that
there is not an extra hop within B. In effect, the same processing occurs in Domain B,
but it all occurs within a single gateway process.

Figure 3-2 Indirectly Connected Domains
3-22 Using the BEA Tuxedo Domains Component

Examples: Configuring Multiple CORBA Domains
Examples: Configuring Multiple CORBA
Domains

The following sections provide examples of how to configure directly connected
domains.

Note: These examples are provided for informational purposes only. If you want to
use these examples, you will have to change the APPDIR, TUXCONFIG, and
TUXDIR variables to match your environment. Also, you will have to substitute
appropriate information wherever text is enclosed by left (<) and right (>)
angle brackets (for example, <App Server Name>) and delete the angle
brackets.

Sample UBBCONFIG Files

Listing 3-4, Listing 3-5, and Listing 3-6 show the UBBCONFIG files for three directly
connected domains: Here, There, and Yonder.

Note: To use these files, you must replace host with the name of the local machine.

Listing 3-4 UBBCONFIG File for the Here Domain

#
Copyright (c) 1999 BEA Systems, Inc.
All rights reserved
#
#
#
RESOURCES
#
*RESOURCES
 IPCKEY 123312
 DOMAINID HereD
 MASTER LAPP
Using the BEA Tuxedo Domains Component 3-23

3 Planning and Configuring CORBA Domains
 MODEL SHM
 LDBAL N

#
MACHINES
#
*MACHINES
 <host>
 LMID=LAPP
 APPDIR="/tst1/wle4.2/test_dom/t07:
 /tst1/wle4.2/dec_unix/wlemdomai"
 TUXCONFIG="/tst1/wle4.2/test_dom/tuxconfig"
 TUXDIR="/lclobb/lc"
 MAXWSCLIENTS=10
#
GROUPS
#
*GROUPS
 DEFAULT: LMID=LAPP
 ICEGRP GRPNO=11 OPENINFO=NONE
 GROUP1 GRPNO=21 OPENINFO=NONE
 LDMGRP GRPNO=3
 LGWGRP GRPNO=4
#
SERVERS
#
*SERVERS
 DEFAULT: CLOPT="-A"
 DMADM SRVGRP=LDMGRP SRVID=1
 GWADM SRVGRP=LGWGRP SRVID=1
 GWTDOMAIN SRVGRP=LGWGRP SRVID=2
 TMSYSEVT SRVGRP=ICEGRP SRVID=1
 TMFFNAME SRVGRP=ICEGRP SRVID=2
 CLOPT="-A -- -N -M -f <FF ini file for Here>"
 TMFFNAME SRVGRP=ICEGRP SRVID=3 CLOPT="-A -- -N"
 TMFFNAME SRVGRP=ICEGRP SRVID=4 CLOPT="-A -- -F"
 <App Server Name> SRVGRP=GROUP1 SRVID=2
 ISL SRVGRP=GROUP1 SRVID=1
 CLOPT="-A -- -d /dev/tcp -n //<host>:<port>"

#
SERVICES
#
*SERVICES
3-24 Using the BEA Tuxedo Domains Component

Examples: Configuring Multiple CORBA Domains
Listing 3-5 UBBCONFIG File for the There Domain

#
Copyright (c) 1999 BEA Systems, Inc.
All rights reserved
#
RESOURCES
#
*RESOURCES
 IPCKEY 133445
 DOMAINID ThereD
 MASTER LAPP1
 MODEL SHM
 LDBAL N
#
MACHINES
#
*MACHINES
 <host>
 LMID=LAPP1
 APPDIR="D:\test_dom\t07;D:\Iceberg\qa\orb\bld\wlemdomain"
 TUXCONFIG="D:\test_dom\tuxconfig"
 TUXDIR="D:\Iceberg"
 MAXWSCLIENTS=10
#
GROUPS
#
*GROUPS
 DEFAULT LMID=LAPP1
 ICEGRP GRPNO=11 OPENINFO=NONE
 GROUP1 GRPNO=21 OPENINFO=NONE
 LDMGRP GRPNO=3
 LGWGRP GRPNO=4
#
SERVERS
#
*SERVERS
 DEFAULT: CLOPT="-A"
 DMADM SRVGRP=LDMGRP SRVID=1
 GWADM SRVGRP=LGWGRP SRVID=1
 GWTDOMAIN SRVGRP=LGWGRP SRVID=2
 TMSYSEV SRVGRP=ICEGRP SRVID=1
 TMFFNAME SRVGRP=ICEGRP SRVID=2
 CLOPT="-A -- -N -M -f <FF ini file for There>"
 TMFFNAME SRVGRP=ICEGRP SRVID=3 CLOPT="-A -- -N"
 TMFFNAME SRVGRP=ICEGRP SRVID=4 CLOPT="-A -- -F"
 <App Server Name> SRVGRP=GROUP1 SRVID=2
 ISL SRVGRP=GROUP1 SRVID=1
Using the BEA Tuxedo Domains Component 3-25

3 Planning and Configuring CORBA Domains
 CLOPT="-A -- -d /dev/tcp -n //<host>:<port>"
#
SERVICES
#
*SERVICES

Listing 3-6 UBBCONFIG File for the Yonder Domain

Copyright (c) 1999 BEA Systems, Inc.
All rights reserved
#
RESOURCES
#
*RESOURCES
 IPCKEY 123334
 DOMAINID YonderD
 MASTER LAPP
 MODEL SHM
 LDBAL N
#
MACHINES
#
*MACHINES
 <host>
 LMID=LAPP
 APPDIR="/tst1/wle4.2/test_dom/t07p:
 /tst1/wle4.2/<host3>/wlemdomain"
 TUXCONFIG="/tst1/wle4.2/test_dom/<host3>/tuxconfig"
 TUXDIR="/lclobb/lc"
 MAXWSCLIENTS=10
#
GROUPS
#
*GROUPS
 DEFAULT: LMID=LAPP
 ICEGRP GRPNO=11 OPENINFO=NONE
 GROUP1 GRPNO=21 OPENINFO=NONE
 LDMGRP GRPNO=3
 LGWGRP GRPNO=4
#
SERVERS
#
*SERVERS
 DEFAULT: CLOPT="-A"
 DMADM SRVGRP=LDMGRP SRVID=1
3-26 Using the BEA Tuxedo Domains Component

Examples: Configuring Multiple CORBA Domains
 GWADM SRVGRP=LGWGRP SRVID=1
 GWTDOMAIN SRVGRP=LGWGRP SRVID=2
 TMSYSEVT SRVGRP=ICEGRP SRVID=1
 TMFFNAME SRVGRP=ICEGRP SRVID=2
 CLOPT="-A -- -N -M"
 TMFFNAME SRVGRP=ICEGRP SRVID=3 CLOPT="-A -- -N"
 TMFFNAME SRVGRP=ICEGRP SRVID=4 CLOPT="-A -- -F"
 <App Server Name> SRVGRP=GROUP1 SRVID=2
 ISL SRVGRP=GROUP1 SRVID=1
 CLOPT="-A -- -d /dev/tcp -n //<host>:<port>"
#
SERVICES
#
*SERVICES

Sample DMCONFIG File

Listing 3-7, Listing 3-8, and Listing 3-9 show the DMCONFIG files for three directly
connected domains: Here, There, and Yonder.

Note: To use Listing 3-7 in a multidomain configuration, you must replace host1
with the name of the local machine for the Here domain, replace host2 with
the name of the local machine for the There domain, and replace host3 with
the name of the local machine for the Yonder domain,

Listing 3-7 DMCONFIG File for the Local Machine in the Here Domain in a
Three-Domain Configuration

#
#Copyright (c) 1999 BEA Systems, Inc.
#All rights reserved
#
#
Tuxedo DOMAIN CONFIGURATION FILE
#
*DM_RESOURCES

 VERSION=U22

#
DM_LOCAL_DOMAINS
#
*DM_LOCAL_DOMAINS
Using the BEA Tuxedo Domains Component 3-27

3 Planning and Configuring CORBA Domains
 LDOM1 GWGRP=LGWGRP TYPE=TDOMAIN DOMAINID="HereG"

#
DM_REMOTE_DOMAINS
#
*DM_REMOTE_DOMAINS

 TDOM1 TYPE=TDOMAIN DOMAINID="ThereG"
 TDOM2 TYPE=TDOMAIN DOMAINID="YonderG"

#
DM_TDOMAIN
#
*DM_TDOMAIN

 LDOM1 NWADDR="//<host1>:<tcpport>"
 TDOM1 NWADDR="//<host2>:<tcpport>"
 TDOM2 NWADDR="//<host3>:<tcpport>"
#
DM_LOCAL_SERVICES
#
*DM_LOCAL_SERVICES
 "//HereD"
#
DM_REMOTE_SERVICES
#
*DM_REMOTE_SERVICES

 "//ThereD "RDOM=TDOM1
 "//YonderD "RDOM=TDOM2

Note: To use Listing 3-8 in a multidomain configuration, you must replace host1
with the name of the local machine for the There domain, replace host2 with
the name of the local machine for the Here domain, and replace host3 with
the name of the local machine for the Yonder domain,

Listing 3-8 DMCONFIG File for the There Domain in a Three-Domain
Configuration

#
#Copyright (c) 1999 BEA Systems, Inc.
All rights reserved
3-28 Using the BEA Tuxedo Domains Component

Examples: Configuring Multiple CORBA Domains
#
#
Tuxedo DOMAIN CONFIGURATION FILE
#
*DM_RESOURCES

 VERSION=U22

#
DM_LOCAL_DOMAINS
#
*DM_LOCAL_DOMAINS

 LDOM1 GWGRP=LGWGRP TYPE=TDOMAIN DOMAINID="ThereG"

#
DM_REMOTE_DOMAINS
#
*DM_REMOTE_DOMAINS

 TDOM1 TYPE=TDOMAIN DOMAINID="HereG"
 TDOM2 TYPE=TDOMAIN DOMAINID="YonderG"

#
DM_TDOMAIN
#
*DM_TDOMAIN

 LDOM1 NWADDR="//<host1>:<tcpport>"
 TDOM1 NWADDR="//<host2>:<tcpport>"
 TDOM2 NWADDR="//<host3>:<tcpport>"
#
DM_LOCAL_SERVICES
#
*DM_LOCAL_SERVICES
 "//ThereD"
#
DM_REMOTE_SERVICES
#
*DM_REMOTE_SERVICES

 "//HereD "RDOM=TDOM1
 "//YonderD "RDOM=TDOM2
Using the BEA Tuxedo Domains Component 3-29

3 Planning and Configuring CORBA Domains
Note: To use Listing 3-9 in a multidomain configuration, you must replace host1
with the name of the local machine for the Yonder domain, replace host2 with
the name of the local machine for the Here domain, and replace host3 with
the name of the local machine for the There domain.

Listing 3-9 DMCONFIG File for the Yonder Domain in a Three-Domain
Configuration

#
#Copyright (c) 1999 BEA Systems, Inc.
All rights reserved
#
#
Tuxedo DOMAIN CONFIGURATION FILE
#
*DM_RESOURCES

 VERSION=U22

#
DM_LOCAL_DOMAINS
#
*DM_LOCAL_DOMAINS

 LDOM1 GWGRP=LGWGRP TYPE=TDOMAIN DOMAINID="YonderG"

#
DM_REMOTE_DOMAINS
#
*DM_REMOTE_DOMAINS

 TDOM1 TYPE=TDOMAIN DOMAINID="HereG"
 TDOM2 TYPE=TDOMAIN DOMAINID="ThereG"

#
DM_TDOMAIN
#
*DM_TDOMAIN

 LDOM1 NWADDR="//<host1>:<tcpport>"
 TDOM1 NWADDR="//<host2>:<tcpport>"
 TDOM2 NWADDR="//<host3>:<tcpport>"
#
DM_LOCAL_SERVICES
#
*DM_LOCAL_SERVICES
3-30 Using the BEA Tuxedo Domains Component

Examples: Configuring Multiple CORBA Domains
 "//YonderG"
#
DM_REMOTE_SERVICES
#
*DM_REMOTE_SERVICES

 "//HereD "RDOM=TDOM1
 "//ThereD "RDOM=TDOM2

Sample factory_finder.ini File

This section shows the factory_finder.ini files for the Here and There domains.
The Yonder domain does not require a factory_finder.ini file.

Listing 3-10 factory_finder.ini File for the Here Local Domain

#Copyright (c) 1999 BEA Systems, Inc.
#All rights reserved
#
Factory Finder Initialization file for Domain "Here".
This is the local Domain.
#
DM_LOCAL_FACTORIES
#
*DM_LOCAL_FACTORIES

 "AFactory.FactoryInterface"
#
DM_REMOTE_FACTORIES
#
*DM_REMOTE_FACTORIES
 "AFacYonder.FactoryInterface"
 DOMAINID="YonderD"
 RNAME="AFactory.FactoryInterface"

 "BFactory.FactoryInterface"
 DOMAINID="YonderD"
Using the BEA Tuxedo Domains Component 3-31

3 Planning and Configuring CORBA Domains
Listing 3-11 factory_finder.ini File for the There Remote Domain

#
#Copyright (c) 1999 BEA Systems, Inc.
#All rights reserved
#
Factory Finder Initialization file for Domain "There".
#This is a remote domain.
#
DM_LOCAL_FACTORIES
#
*DM_LOCAL_FACTORIES
 "AFactory.FactoryInterface"
#
DM_REMOTE_FACTORIES
#
*DM_REMOTE_FACTORIES
 "AFacYonder.FactoryInterface"
DOMAINID="YonderD"
RNAME="AFactory.FactoryInterface"
 "BFactory.FactoryInterface"
DOMAINID="YonderD"
3-32 Using the BEA Tuxedo Domains Component

CHAPTER
4 Administering
Domains

This topic includes the following sections:

n Using Domains Run-time Administrative Commands

n Using the Administrative Interface, dmadmin(1)

n Using the Domains Administrative Server, DMADM(5)

n Using the Gateway Administrative Server, GWADM(5)

n Using the Gateway Process

n Managing Transactions in a Domains Environment

Using Domains Run-time Administrative
Commands

To integrate the Domains component with an existing BEA Tuxedo application, add
entries for domain gateway groups and gateway servers to the TUXCONFIG file. You
can use either the tmconfig(1) (see tmconfig, wtmconfig(1)) or tmadmin(1)
command to add a multiple-domain configuration to a running BEA Tuxedo
application. You can also use tmadmin to list the information available in the bulletin
board for Domain gateway groups and individual gateways.
Using the BEA Tuxedo Domains Component 4-1

4 Administering Domains
Once your Domains environment is configured and integrated, you can administer it
dynamically using a set of administrative tools provided by the Domains software. For
example, you can specify and modify the list of services that are accessible across
applications. The Domains software preserves the characteristics of the BEA Tuxedo
programming interface (ATMI) and extends the scope of the ATMI so that clients can
invoke services across domains. This functionality allows programmers to expand or
partition applications without changing any application code.

The following figure shows the relationship between administrative commands and
servers in the Domains administrative subsystem.

Figure 4-1 Domains Run-time Administration

Domains offers the following administrative commands:

n dmadmin(1) command, a generic administrative service—enables administrators
to configure, monitor, and tune domain gateway groups dynamically, and to
update the Domains configuration file (BDMCONFIG) while the BEA Tuxedo
application is running. The command acts as a front-end process that translates
administrative commands into service requests which it then sends to the
DMADMIN service, a generic administrative service advertised by the DMADM
server. The DMADMIN service invokes the validation, retrieval, or update of
functions provided in the DMADM server to maintain the BDMCONFIG file.

n DMADM(5), the gateway group administrative server—provides the administrative
processing required for updating the Domains configuration. This server acts as
a back-end to the dmadmin command. It provides a registration service to
4-2 Using the BEA Tuxedo Domains Component

Using Domains Run-time Administrative Commands
gateway groups. This registration service is requested by GWADM servers as part
of their initialization procedure. The registration service downloads the
configuration information required by the requesting gateway group. The DMADM
server maintains a list of registered gateway groups, and propagates to these
groups any changes made to the configuration.

n GWADM(5), the gateway process—the GWADM server registers with the DMADM
server to obtain the configuration information used by the corresponding
gateway group. The GWADM accepts queries from DMADM to obtain run-time
statistics or to change the run-time options of the corresponding gateway group.
Periodically, the GWADM server sends an “I-am-alive” message to the DMADM
server. If no reply is received from the DMADM server, the GWADM server registers
again. This mechanism makes sure the GWADM server always has the latest copy
of the Domains configuration for its group.

n GWTDOMAIN(5)—the gateway process, GWTDOMAIN, which provides connectivity
to remote gateway processes, focuses on throughput of messages between BEA
Tuxedo domains. Clients and servers send and receive messages across BEA
Tuxedo domains via the GWTDOMAIN process.

Note: For a gateway type other than GWTDOMAIN, an executable other than
GWTDOMAIN must be used. Refer to the BEA eLink Adapter for Mainframe
documentation and Using the BEA Tuxedo TOP END Domain Gateway
with ATMI Applications for additional information.

n BDMCONFIG—the binary version of the Domains configuration file, which
contains all the configuration parameters that the BEA Tuxedo software
interprets to create a viable application.

Note: You can also specify gateway parameters when a gateway group is booted
using the CLOPT parameter, when the GWADM server is defined in the SERVERS
section of the TUXCONFIG file.
Using the BEA Tuxedo Domains Component 4-3

4 Administering Domains
How to Migrate DMADM and a Domain Gateway Group

The migration of DMADM is possible. To migrate DMADM to a new machine, complete the
following steps.

1. Copy DMCONFIG to the new machine and run dmloadcf.

2. Shut down all domain gateway groups (GWADM and a domain gateway, for
example, GWTDOMAIN).

Note: If the domain gateway groups are not shut down, they will continue to
function, but after DMADM has been migrated, all MIB requests for them will
fail.

3. Migrate the DMADM group to the new machine.

The migration of a domain gateway group is possible. However, when transactions are
being used, the domain gateway group can be migrated only across machines of the
same type. To migrate a domain gateway group, complete the following steps.

1. In the DMCONFIG file, add multiple listening addresses, in the following format, to
the DM_TDOMAIN section:

*DM_TDOMAIN
LDOM NWADDR=“//primary:port”
LDOM NWADDR=“//backup:port”

Note: This step is unnecessary if third-party IP failover solutions are used.

2. If you are using transactions, you must copy the Domains transaction log
manually to the backup machine.

3. The DMCONFIG files for the remote domains should include both network
addresses as specified in step 1.

4. Migrate the domain gateway group to the new machine.
4-4 Using the BEA Tuxedo Domains Component

Using the Administrative Interface, dmadmin(1)
Using the Administrative Interface,
dmadmin(1)

dmadmin is an administrative interface to the DMADM and GWADM servers. The
communication between the two servers is done via FML typed buffers.
Administrators can use the dmadmin command in the following ways:

n For the interactive administration of the information stored in the BDMCONFIG
file and the different gateway groups running within a particular BEA Tuxedo
application.

n To obtain statistics or other information gathered by gateway groups.

n To change gateway group parameters.

n To add (or update) information in the BDMCONFIG file.

Note: You can delete information from the BDMCONFIG file at run time only if the
deletions do not involve an active gateway group.

See Also

n dmadmin(1) in the BEA Tuxedo Command Reference
Using the BEA Tuxedo Domains Component 4-5

4 Administering Domains
Using the Domains Administrative Server,
DMADM(5)

The Domains administrative server, DMADM(5), is a BEA Tuxedo-supplied server that
performs the following functions:

n Supports run-time administration of the BDMCONFIG file

n Maintains the BDMCONFIG file

n Supports a list of registered gateway groups

n Propagates run-time configuration changes to the registered gateway groups

The DMADM server advertises two services:

n DMADMIN, which is used by the DMADMIN and the GWADM servers.

n A service called DMADM_svrid, where SRVID is the appropriate server ID for the
service. Registered GWADM servers use DMADM_svrid for specific administrative
functions (for example, to refresh the gateway group configuration information
or to signal that a GWADM is still registered).

The DMADM server must be defined in the SERVERS section of the TUXCONFIG file as a
server running within a group (for example, DMADMGRP). There should be only one
instance of the DMADM server in this group and it must be defined with no reply queue
(REPLYQ=N).

See Also

n DMADM(5) in the File Formats, Data Descriptions, MIBs, and System Processes
Reference
4-6 Using the BEA Tuxedo Domains Component

Using the Gateway Administrative Server, GWADM(5)
Using the Gateway Administrative Server,
GWADM(5)

The gateway administrative server, GWADM(5), is a BEA Tuxedo-supplied server that
provides administrative functions for a Domains gateway group. The main functions
of the GWADM server include the following:

n To get Domains configuration information from the DMADM server, and to accept
queries from dmadmin. The GWADM server gets the gateway group configuration
information by registering with the DMADM server. The GWADM server then makes
the configuration available to gateways by storing the information in shared
memory.

n To provide administrative functionality for a gateway group, for example, to
accept queries from dmadmin for run-time statistics or to change the run-time
parameters of the gateway group.

n To provide transaction logging functionality for a gateway group. The GWADM
server determines which transactions need to be logged by reading information
stored in shared memory. When the GWADM server is booted; scans the log to see
whether any transactions need to be recovered; it then reconstructs the
transaction information in shared memory. The gateway server scans the
information in shared memory and performs recovery for the corresponding
transactions. The recovery procedure is performed asynchronously with new
incoming or outgoing requests received by the gateway group.

The GWADM server advertises a service name based on the local domain name (the value
of the LDOM keyword in the BDMCONFIG). The dmadmin command uses this service to
retrieve information from all active gateway groups or from a specific gateway group.

The GWADM server must be defined in the SERVERS section of the TUXCONFIG file. It
should not be part of the MSSQ used by the gateways associated with the group and it
must not have a reply queue, that is, REPLYQ=N must be specified. It must be the first
server booted within the gateway group; that is, either (a) it must have a SEQUENCE
number, or (b) it must be defined ahead of the gateway servers.

The GWADM server requires the existence of a DMADM server. Specifically, a DMADM
server must be booted before that GWADM is booted.
Using the BEA Tuxedo Domains Component 4-7

4 Administering Domains
The GWADM server must create the shared memory required by the gateway group to
populate the configuration tables with information received from the DMADM server.
The GWADM server uses IPC_PRIVATE with shmget and stores the ipckey returned in
the shmid field of its registry entry in the bulletin board. Gateways can obtain the
ipckey by retrieving the GWADM registry entry and checking the shmid field.

See Also

n GWADM(5) in the File Formats, Data Descriptions, MIBs, and System Processes
Reference

Using the Gateway Process

A gateway process provides connectivity to remote gateway processes, and can
communicate with one or more remote gateways simultaneously. A gateway
advertises the services imported to a BEA Tuxedo application and controls access to
the local services exported by the application. You define your application’s exported
and imported services in the Domains configuration file (DMCONFIG). Use dmadmin to
dynamically configure, monitor, and tune domain gateway groups.

See Also

n “Types of Domain Gateways” on page 1-6
4-8 Using the BEA Tuxedo Domains Component

Managing Transactions in a Domains Environment
Managing Transactions in a Domains
Environment

Application programmers can request the execution of remote services within a
transaction. Also, users of remote domains can request local services to be executed
within a transaction. Domains, therefore, coordinates the mapping of remote
transactions to local transactions, and the sane termination (commitment or rollback)
of these transactions.

The BEA Tuxedo system architecture uses a separate process, the Transaction
Manager Server (TMS), to coordinate the commitment and recovery of transaction
branches accessing a particular group. In a Domains environment, however, this
architecture would require extra messages from the gateway to the TMS server to
process a commitment for an incoming transaction. To simplify the Domains
architecture and to reduce the number of messages, the TMS code is integrated with the
gateway code. Thus, domain gateways can process the transaction protocol used by the
BEA Tuxedo system. The BEA Tuxedo transaction protocol requires that the gateway
group advertise the TMS service, which is done when the first gateway is booted. Once
the TMS service is advertised, any transaction control messages directed to the gateway
group are placed on the gateway’s queue.

Domains gateway groups should be defined in the TUXCONFIG file without the
TMSNAME, TMSCOUNT, OPENINFO, and CLOSEINFO parameters. These four parameters
apply only to groups that use an XA-compliant resource manager, which Domains
gateways do not use.

The commitment protocol across domains is strictly hierarchical. It is not possible to
flatten the transaction tree because the structure of the transaction tree is not fully
known by every domain; a superior knows only its immediately subordinate domains.
Flattening the tree would also require the root domain to be fully connected to all
domains participating in the transaction.
Using the BEA Tuxedo Domains Component 4-9

4 Administering Domains
Transaction Management Capabilities

Domain gateways provide four capabilities that you can use to manage transactions.
These capabilities are described in the following sections:

n “Using the TMS Capability Across Domains” on page 4-10

n “Using GTRID Mapping in Transactions” on page 4-13

n “Using Logging to Track Transactions” on page 4-20

n “Recovering Failed Transactions” on page 4-23

Using the TMS Capability Across Domains

In the BEA Tuxedo system, the TMS is a special server that is implicitly associated with
server groups that use X/Open XA-compliant resource managers. The TMS server
releases application servers from the delays associated with the distributed 2-phase
commitment protocol. TMSs coordinate the commitment of a transaction via special
service requests to the TMS service, which is offered by all TMS servers.

In a Domains environment, GWTDOMAIN gateways are not associated with an
XA-compliant resource manager. The Transaction Processing Working Group (TPWG)
of X/Open has proposed an advanced XA interface. This interface is not used in the
BEA Tuxedo system because the interface does not match the highly asynchronous
and non-blocking model required by the gateway. While Domains gateways do not use
a separate TMS server, they do offer the Transaction Manager Servers (TMS)
capability, which allows gateways to coordinate the 2-phase commitment of
transactions executed across domains.

How Gateways Coordinate Transactions Across Domains

1. Domain gateways advertise the TMS service and perform all operations associated
with that service. Messages sent to this service are placed on the queue used by the
appropriate gateway group, and the gateways manage the transactions associated
with the group.
4-10 Using the BEA Tuxedo Domains Component

Using the TMS Capability Across Domains
2. A gateway can act as a subordinate of transactions coordinated by another group
within the domain. In this case, the gateway is a superior of the transaction
branches executed in other remote domains. When acting as a subordinate of a
transaction coordinated by a remote domain, the gateway also acts as the
coordinator for all groups in the local domain accessed by the transaction. The
gateway, acting as both subordinate and coordinator, is illustrated in the
following figure.

Figure 4-2 The Gateway as Subordinate/Coordinator of Another Domain Group

3. As a coordinator of transactions within the domain, the gateway manages the
commitment of a transaction for a particular client. This is illustrated in the
following figure.
Using the BEA Tuxedo Domains Component 4-11

4 Administering Domains
Figure 4-3 Client Commit Managed by a Gateway

4. Gateways manage transaction commitment for a particular client or for a server
that uses the forwarding service with the AUTOTRAN capability. When this
combination is used, the last server in the forward chain (the Domains gateway)
issues the commit and becomes the coordinator of the transaction. (A domain
gateway always acts as the last server in a forward chain.)

5. Gateways automatically start and terminate transactions for remote services
specified with the AUTOTRAN capability. This capability is required when an the
application administrator wants to enforce reliable network communication with
remote services. Administrators can specify this capability by setting the
AUTOTRAN parameter to Y in the corresponding remote service definition.

For more information, refer to the DM_REMOTE_SERVICES Section of
DMCONFIG(5) in the File Formats, Data Descriptions, MIBs, and System
Processes Reference.

6. Gateways map the BEA Tuxedo system transaction protocol to the networking
transaction protocol used for interoperation with remote domains. How this
mapping is done depends on which instantiation of Domains you are using:
TDomains, SNA, or OSI TP.
4-12 Using the BEA Tuxedo Domains Component

Using GTRID Mapping in Transactions
Using GTRID Mapping in Transactions

In the BEA Tuxedo system, a transaction tree is a 2-level tree where the root is the
gateway group coordinating a global transaction and branches are involved in the
transaction. Each group performs its part of the global transaction independently from
the parts performed by other groups. Each group, therefore, implicitly defines a
transaction branch. The BEA Tuxedo system, through Transaction Manager Servers
(TMSs), coordinates the completion of the global transaction, making sure each branch
is completed.

A GTRID is a Global Transaction Identifier. GTRID mapping defines how to construct
a transaction tree that crosses domain boundaries. You specify GTRIDs using the
MAXGTT parameter in the RESOURCES section of the configuration file.

Defining Tightly-coupled and Loosely-coupled
Relationships

In the X/Open DTP Model, a Transaction Manager Server can construct transaction
trees by defining either tightly-coupled or loosely-coupled relationships with a
resource manager (RM) by the way it interprets the transaction identifiers (XIDs) used
by the XA interface.

A tightly-coupled relationship is one in which a single transaction identifier, XID, is
used by all processes participating in a single global transaction, accessing a single
RM. This relationship maximizes data sharing between processes; XA-compliant RMs
expect to share locks for resources used by processes having the same XID. The BEA
Tuxedo system achieves the tightly-coupled relationship via the group concept; that is,
all work done by a group on behalf of a given global transaction belongs to the same
transaction branch; all the processes executed by the group are given the same XID.

In a loosely-coupled relationship, the TMS generates a transaction branch for each part
of the work in support of the global transaction. The RM handles each transaction
branch separately; there is no sharing of data or of locks between the transaction
branches. Deadlocks between transaction branches can occur and result in the rollback
Using the BEA Tuxedo Domains Component 4-13

4 Administering Domains
of a global transaction. In the BEA Tuxedo application, when different groups
participate in a single global transaction, each group defines a separate transaction
branch, which results in a loosely-coupled relationship.

Global Transactions Across Domains

There are several differences between global transactions in a single BEA Tuxedo
application and global transactions across domains. The first difference is that in the
Domains framework, the transaction tree cannot be flattened to a 2-level tree. There
are two reasons for this:

n The transaction may involve more domains than can be known from the root
domain (where the transaction is controlled), so the structure of the transaction
tree cannot be fully known.

n If a transaction tree is flattened to two levels, the root domain must be connected
directly to all domains in the transaction.

This means that the commitment protocol across domains must be hierarchical. Even
a loopback service request defines a new branch in the transaction tree.

Note: A loopback request goes to another domain and then comes back to be
processed in the original domain. For example, Domain A requests a service
of Domain B. The service in Domain B requests another service in Domain A.
The transaction tree has two branches at the network level: a branch b1 from
A to B and a branch b2 from B to A. Domain A cannot commit the work done
on branch b2 before receiving commit instructions from B.

The structure of a transaction tree for global transactions across domains also depends
on the distributed transaction processing protocol used by a relevant Domains
instantiation. For example, in the OSI TP protocol each dialogue (the OSI TP word for
a service request) is associated with a different transaction branch. In the BEA Tuxedo
system, the OSI TP instantiation uses a dialogue for each service request, so each
service request is mapped to a separate transaction branch. The XAP-TP interface
hides this mapping and provides a mechanism by which an entire OSI TP subtree can
be referenced by a user-defined identifier. (In the BEA Tuxedo implementation, this
identifier is the GTRID.) The GTRID is used to instruct XAP-TP how a transaction tree
must be constructed, that is, which dialogues must be included within a given OSI TP
transaction. Therefore, from the BEA Tuxedo perspective, a whole OSI TP subtree can
be managed as a single transaction branch.
4-14 Using the BEA Tuxedo Domains Component

Using GTRID Mapping in Transactions
This property, however, applies only to outgoing service requests (that is, service
requests sent from the root domain to subordinate domains). It cannot be applied to
incoming service requests. The OSI TP instantiation consequently implements a
loosely-coupled relationship; each incoming service request is mapped to a new BEA
Tuxedo global transaction.

The TDomain instantiation tries to optimize GTRID mapping by implementing a
tightly-coupled relationship. In TDomain, multiple service requests issued on behalf
of the same global transaction are mapped to the same network transaction branch.
Therefore, incoming service requests can be mapped to a single BEA Tuxedo
transaction. However, the hierarchical structure of interdomain communication and
the interdomain transaction tree must still be maintained.

The optimization that TDomain introduces applies only to a single domain. When two
or more domains are involved in a transaction, the network transaction tree contains at
least one branch per domain interaction. Hence, across domains, the network
transaction tree remains loosely-coupled. There are as many branches as there are
domains involved in the transaction (even if all the branches access the same resource
manager instance).

Domains gateway groups implement a loosely-coupled relationship because they
generate different transaction branches for interdomain transactions.
Using the BEA Tuxedo Domains Component 4-15

4 Administering Domains
Example of a Service Request Graph Generating Local and Remote Requests

The following figure shows the service request graph for a client that generates three
service requests: one local request (r0) and two remote requests (r2 and r3). Request
r0 goes to a local service (Svc0), which generates another remote service request (r1).
Request r1 goes to remote service Rsvc1, which issues a loopback service request r4
to local service Svc4. Svc0 and Svc4 are executed in different groups (G0 and G4). The
domain gateway is executed within another group (GW), and the remote services Rscv1,
Rsvc2, and Rsvc3 are executed in another domain (Domain B).

Figure 4-4 Service Request Graph
4-16 Using the BEA Tuxedo Domains Component

Using GTRID Mapping in Transactions
Transaction Trees for BEA eLink OSI TP and BEA Tuxedo Domains

The following two figures show the transaction tree for BEA eLink OSI TP and the
transaction tree for BA Tuxedo Domains. It is assumed, in these figures, that both
Domains A and B are BEA Tuxedo system applications.

BEA eLink OSI TP is loosely-coupled because of the OSI TP protocol. The transaction
tree for this instantiation shows group G0 in Domain A coordinating the global
transaction started by the client. Group G0 coordinates group GW. Requests r1, r2, and
r4 are mapped each to an OSI TP dialogue and therefore to an OSI TP transaction
branch. However, OSI TP uses the XAP-TP feature that allows an entire OSI TP
transaction to be referred by a unique identifier (T1) and uses this identifier for requests
r1, r2, and r3. It is up to XAP-TP to generate OSI TP transaction identifiers and to
construct the corresponding OSI TP transaction tree. The only function that must be
performed by the generic Domains software is the mapping of service requests r1, r2,
and r3 to the T1 identifier.

In Domain B, OSI TP uses the rule that new transaction branches must be mapped to
a new BEA Tuxedo transaction. Therefore, OSI TP transaction branches r1, r2, and
r3 get mapped to three different BEA Tuxedo transactions (the corresponding
mapping is represented by identifiers T2, T3, and T4). The graph shows the gateway
group GW in Domain B coordinating three BEA Tuxedo transactions on group G1.

Finally, there is the loopback service request r4 that generates another branch in the
transaction tree. OSI TP maps this request to identifier T2, but XAP-TP generates a
new branch in its transaction tree (r4: B to A’). This is a new transaction branch on
Domain A, and therefore, the gateway generates a new mapping T5 to a new BEA
Tuxedo transaction. Therefore, the transaction graph shows that gateway group GW
on Domain A coordinates group G4.

Notice that the hierarchical nature of the OSI TP protocol is fully enforced by these
mappings. However, because these mappings introduce a loosely-coupled
relationship, the probability of intratransaction deadlock is increased (for example,
there are three BEA Tuxedo transactions accessing the RM represented by group G1).
Using the BEA Tuxedo Domains Component 4-17

4 Administering Domains
Figure 4-5 Transaction Tree for BEA eLink OSI TP Environment
4-18 Using the BEA Tuxedo Domains Component

Using GTRID Mapping in Transactions
The TDomain instantiation provides a tightly-coupled integration that solves this
deadlock problem by minimizing the number of transaction branches required in the
interoperation between two domains. The corresponding transaction tree is shown in
the following figure.

Figure 4-6 Transaction Tree for TDomain Environment

Notice that the gateway still must perform mappings between a BEA Tuxedo system
transaction and a network transaction, and that the hierarchical nature of the
communication between domains must be strictly enforced. The diagram shows that
requests r1, r2, and r3 are mapped to a single TDomain transaction branch. Therefore,
on Domain B only one BEA Tuxedo system transaction needs to be generated; T2
represents this mapping and the graph shows gateway group GW on Domain B
Using the BEA Tuxedo Domains Component 4-19

4 Administering Domains
coordinating group G1. Request r4 is mapped to identifier T2 on Domain B, but
TDomain will generate a new branch in its transaction tree (r4: B to A’). Because this
is a new transaction branch on Domain A, the gateway generates a new mapping, T3,
to a new BEA Tuxedo system transaction. The graph shows that gateway group GW on
Domain A also coordinates group G4. Hence, the hierarchical nature of interdomain
communication is fully enforced with this mapping: group G4 cannot commit before
group G1.

Summary of Domains Transaction Management

Domains transaction management can be summarized as follows:

n Gateways generate mappings from a BEA Tuxedo system transaction to a
network transaction. A new mapping is generated for each BEA Tuxedo system
transaction and each incoming network transaction branch.

n Each instantiation of Domains (TDomains, SNA, or OSI TP) handles its own
representation of the network transaction tree. All instantiations observe the
hierarchical nature of the interdomain communication.

Using Logging to Track Transactions

Logging is used to keep track of the progress of a 2-phase commit protocol. The
information stored in the log is used to make sure a transaction is completed in the
event of a network failure or machine crash.

To ensure completion of transactions across domains, domain gateways log the
mapping between local and remote identifiers. Along with this information, the
Domains transaction management facility records the decisions made during different
phases of the commitment protocol, and any information available about the remote
domains involved in the transaction. In the OSI TP case, the XAP-TP interface logs the
information required for the recovery of the OSI TP protocol machine. The
information is referred to as a blob (binary large object) and is kept in the same log
record as the commit information to make recovery easier.
4-20 Using the BEA Tuxedo Domains Component

Using Logging to Track Transactions
Domains log records have a different structure from the log records stored in the BEA
Tuxedo system TLOG. TLOG records are fixed in size and are stored in a single page.
Domains log records vary in size; more than one page may be required to store the
record. The Domains logging mechanism, DMTLOG, has the capability of storing
variable-size log records.

When a TMS is the superior of a domain gateway group, the BEA Tuxedo TLOG is still
required to coordinate the commitment.

How Logging Works

Logging is performed by the GWADM administrative server. The request for a log write
is made by the GWTDOMAIN process, but the actual log write is performed by the GWADM
process.

You must create a log called DMTLOG for each domain gateway group. The DMTLOG files
are defined in the DM_LOCAL_DOMAINS section of the DMCONFIG file. To create a
DMTLOG file, add an entry for the DMTLOGDEV parameter:

DMTLOGDEV=string

where string is the name of the log file. In addition, you cam set one or both of the
two optional parameters:

n DMTLOGNAME=identifier

n DMTLOGSIZE=numeric

For more information, refer to DMCONFIG(5) in the File Formats, Data Descriptions,
MIBs, and System Processes Reference.

Administrators also have the option of using the run-time administration utility
(dmadmin) to create a DMTLOG. For more information, refer to dmadmin(1) in the BEA
Tuxedo Command Reference.

If a DMTLOG has not been created when a domain gateway group is booted, the gateway
server automatically creates the log, based on information in the BDMCONFIG file.

Until a logging device is specified in the BDMCONFIG file, a Domain gateway group
cannot process requests in transaction mode and the gateway group cannot offer the
TMS service.
Using the BEA Tuxedo Domains Component 4-21

4 Administering Domains
To coordinate the commit protocol, Domains gateways require the following two log
records:

n Ready record—a ready record is a file created by a gateway acting as a leaf or
intermediate machine in a transaction tree. It records information about the
superior and subordinate remote domains involved in the transaction. A ready
record indicates that all subordinates of the domain gateway group logging the
record have been prepared.

n Commit record—a commit record documents that a transaction has been
committed. A domain gateway creates a commit record as the coordinator of a
particular transaction tree.

When a transaction has been committed on all machines, these logs for the transaction
are removed.

When the OSI TP protocol is being used, two types of heuristic records are logged:

n Log Heuristic record—this record holds the details of a heuristic decision in the
domain until the outcome of the relevant transaction is known by the superior.

n Log Damage record—this record is created to indicate one of two conditions for
a transaction branch: (run with tmadmin(1)) a heuristic hazard (when the
outcome of the transaction branch for a subordinate is unknown) or a heuristic
mix (when the transaction subtree has a mixed outcome).

Heuristic log records persist until they are explicitly removed by the administrator.
This persistence is required to provide the correct information during recovery after a
crash, and to provide diagnostic information for administrators.

The administrator uses the forgettran command (run with tmadmin(1)) to remove
heuristic records when they are no longer needed.
4-22 Using the BEA Tuxedo Domains Component

Recovering Failed Transactions
Recovering Failed Transactions

When a domain gateway group is booted, the gateway server performs an automatic
warm-start of the DMTLOG. The warm-start includes scanning the log to see if any
transactions were not completed. If incomplete transactions are found, action is taken
to complete them.

In OSI TP, any blobs stored in the DMTLOG with a transaction record are passed to the
network access module, which uses the blobs to reconstruct its internal state and to
recover any failed connections

In the case of heuristic decisions, if a domain gateway group is a subordinate of a local
TMS and a heuristic decision has been indicated, the TMS generates a TMS_STATUS
message to learn the final decision:

n If a gateway fails, then it cleans up after itself when it is restarted (this is called
a hot-start). The gateway rolls back all undecided transactions in which it was
involved.

n If a communication line failure occurs and the first phase of the commit has not
been completed, the gateway rolls back the transactions associated with that
connection.

n If OSI TP Domains is being used and a transaction fails in the second phase of
the commit, recovery is managed by XAP-TP.
Using the BEA Tuxedo Domains Component 4-23

4 Administering Domains
4-24 Using the BEA Tuxedo Domains Component

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 About Domains
	What Is the BEA Tuxedo Domains Component?
	Business Operations Interoperating with Each Other

	Building a Multiple-domain Configuration
	Figure 1�1 Two-way Communication Through a Gateway
	Tools to Set Up and Maintain a Multiple-domain Application
	Figure 1�2 Domains Administrative Tools

	Types of Domain Gateways
	Functionality Supported by Domain Gateways
	See Also

	Example of an Application Using Domain Gateways
	Figure 1�3 High-level View of Two Communicating Domains
	Figure 1�4 Example Domains Environment

	Messaging Paradigms Supported by Domain Gateways
	Request/Response Communication Between Local and Remote Services
	Support for ATMI Functions
	Figure 1�5 Using tpforward to Send a Request to a Remote Service

	Conversational Communication Between Local and Remote Services
	Queued Messaging for Data Storage
	See Also

	Typed Buffers to Package Data
	See Also

	Defining Transaction and Blocking Timeouts in Domains
	Specifying How Your Domains Connect
	Determining the Availability of Remote Services with the Dynamic Status Feature
	How Your Connection Policy Affects Dynamic Status
	Table 1�1 Availability of Dynamic Status

	What Is the Domains Configuration File?
	Descriptions of Sections of the DMCONFIG File
	Table 1�2 DMCONFIG File Sections

	Domains Terminology Improvements
	See Also

	Converting the Domains Configuration File
	Converting DMCONFIG to a Binary File
	Figure 1�6 Relationships Between Configuration Commands and Files

	Converting the BDMCONFIG File to a Text File

	Features of BEA Tuxedo System Domains

	2 Planning and Configuring ATMI Domains
	Planning to Build Domains from Multiple BEA Tuxedo Applications
	Figure 2�1 Two BEA Tuxedo Applications

	Option 1: Reconfigure the Applications
	Figure 2�2 Combining Two BEA Tuxedo System Applications
	Configuration File for Combining the Sample Applications
	Listing 2-1 Sample Configuration File for the Combined Application
	*RESOURCES IPCKEY 76666 UID 0000 GID 000 PERM 0660 MAXACCESSERS 40 MAXSERVERS 35 MAXSERVICES 75 M...

	Limitations of Option 1

	Option 2: Redefine the Applications as Separate BEA Tuxedo Domains
	Figure 2�3 Domains Configuration
	Modifying the Application Configuration Files
	Listing 2-2 Converted UBBCONFIG File
	*RESOURCES IPCKEY 76666 UID 7901 GID 601 PERM 0660 MAXACCESSERS 40 MAXSERVERS 35 MAXSERVICES 75 M...

	Adding DMCONFIG Files
	Listing 2-3 Sample DMCONFIG File

	Sample Domains Application: creditapp
	Listing 2-4 creditapp Files
	The creditapp README File
	Listing 2-5 README File for creditapp
	SIMPLE BUILD PROCEDURE
	The creditapp application is an enhancement of the bankapp and hostapp applications.
	The creditapp application is designed to be a four domain application, so the software must be bu...
	Step 1: Copy the Software for creditapp.
	Make a new directory under your $HOME directory and copy all of the source files from <TUXDIR>/ap...
	Step 2: On each of the remaining three machines:
	Make a directory creditapp in a directory that can be used for the application.
	We call this directory $HOME/creditapp.
	Make a note of the full directory path for $HOME/creditapp and TUXDIR for each machine. These wil...
	Step 3: On the “master site” execute the “RUNME.sh” script.
	The shell script “RUNME.sh” is an interactive program designed to lead you through initialization...
	You will be prompted to enter values for RSH and RCP environment variables, or accept the defaults.
	IT IS VERY IMPORTANT THAT VALUES FOR RSH AND RCP BE ENTERED AS THEY ARE USED TO REMOTE COPY AND E...
	The following environment variables are important. The script picks up the values for TUXDIR and ...
	TUXDIR Root directory of the BEA TUXEDO System where you have installed the software.
	APPDIR Directory in which the creditapp application resides. crdtvar.dm1 initially is set to allo...
	BLKSIZE Logical blocksize for the database in bytes. Must be an integral multiple of the physical...
	When you invoke RUNME.sh you are shown a menu with 10 options (11 counting “quit”). Here is the l...
	1) Initialize configuration files and makefiles. 2) Copy files to remote sites. 3) Build crdtapp ...
	To go through the complete process of building and running the sample application, start with cho...
	OPTION 1. Initialize configuration files and makefiles. This option sets up makefiles, UBBCONFIG ...
	All questions must be answered.
	ENTER the system name: enter uname for machines you are using beginning with the current machine ...
	ENTER TUXDIR for each machine.
	ENTER APPDIR for each machine.
	Continue to answer all queries.
	An example of 4 hexadecimal digits may be (beef, cfff, 6774, aeef). NOTE: EACH MACHINE MUST HAVE ...
	OPTION 2. Copies the files to the other domains in the configuration.
	OPTION 3. Builds clients and servers on all machines.
	NOTE: CAREFULLY CHECK THAT THE BUILDS ARE COMPLETED SUCCESSFULLY ON EACH SITE. IF NECESSARY YOU M...
	ON THE SPECIFIC SITE ENTER nohup make -f CRDT{$MACH}.mk2
	where ${MACH} is the uname for the machine you are building on. For example,
	nohup make -f CRDTtux1.mk2
	OPTION 4. Builds the databases on each site.
	NOTE: ON EACH SITE MAKE SURE THE BLKSIZE VALUE IN files
	crdt${MACH}.dm1 for the primary site
	or crdt${MACH}.dm2 for the remote sites
	where ${MACH} is the uname for the machine you are building on
	ARE CORRECT FOR THAT SPECIFIC MACHINE
	OPTION 5. Generates the tuxconfig and bdmconfig files.
	All other options are similar to bankapp.
	After OPTION 8 : Populate the database
	Enter q to Quit the menu.
	RUNNING CREDITAPP. __________________
	On each machine a script run.sh exists.
	Execute run.sh.
	run At the response :
	Is this machine the Credit Card Authorization Center(y/n)?
	If machine is the primary machine answer y . If machine is any other answer n.
	On the primary machine a different menu will be seen than the other 3 machines.
	All Credit accounts exist on primary machine and all machines can access any account.
	ACCOUNTS 10000000 - 120000000
	Machines 2,3,4 are the enhanced bankapp application.
	ACCOUNTS 10000 - 39999 exist on machine 2 ACCOUNTS 40000 - 79999 exist on machine 3 ACCOUNTS 8000...
	All processing is done using the /DOMAIN software.
	A tail -f of the ULOG###### will show the actual processing of the requests.
	On the machine that will process the request enter :
	tail -f ULOG###### where ###### is today’s date.

	Configuring a Domains Environment
	Configuring a Sample Domains Application (simpapp)
	Figure 2�4 Local and Remote Applications in simpapp

	Configuration Tasks

	How to Set Environment Variables for lapp
	Example

	How to Define the Domains Environment for lapp (in the ubbconfig File)
	Server Definitions
	Example of an Application Configuration File for lapp
	Listing 2-6 Example of an Application Configuration File (lapp.ubb)

	How to Define Domains Parameters for lapp (in the DMCONFIG File)
	Example of a Domain Gateway Configuration File for lapp
	Listing 2-7 Example of a Domain Gateway Configuration File (lapp.dom)

	How to Compile Application and Domains Gateway Configuration Files for lapp
	How to Set Environment Variables for rapp
	Example

	How to Define the Domains Environment for rapp (in the UBBCONFIG File)
	Example of an Application Configuration File for rapp
	Listing 2-8 Example of an Application Configuration File (rapp.ubb)

	How to Define Domains Parameters for rapp (in the DMCONFIG File)
	Example of a Domain Gateway Configuration File for rapp
	Listing 2-9 Example of a Domain Gateway Configuration File (rapp.dom)

	How to Compile Application and Domain Gateway Configuration Files for rapp
	See Also

	How to Compress Data Between Domains
	See Also

	How to Route Service Requests to Remote Domains
	Setting Up Security in Domains
	Impact of BEA Tuxedo Application Security on Domains Security
	Domains Security Mechanisms
	See Also

	How to Create a Domains Access Control List (ACL)
	Using Standard BEA Tuxedo Access Control Lists with Imported Remote Services
	Setting the ACL Policy for a Remote Domain
	Setting the Credential Policy for a Remote Domain

	How to Set Up Domains Authentication
	T_DM_PASSWORDS MIB Class Definitions
	Setting Domains Passwords
	See Also

	Examples of Coding Security Between Domains
	Example 1: Setting Security to NONE
	Listing 2-10 Setting Security to NONE for Both Application and Domains
	Listing 2-11 Setting Application Security to NONE and Domains Security to DM_PW

	Example 2: Setting Security to APP_PW
	Listing 2-12 Setting Security to APP_PW for Both Application and Domains

	Configuring the Connections Between Your Domains
	How to Request Connections at Boot Time (ON_STARTUP Policy)
	Figure 2�5 Connections Made with an ON_STARTUP Policy

	How to Request Connections for Client Demands (ON_DEMAND Policy)
	Figure 2�6 Connections Made with an ON_DEMAND Policy

	How to Limit Connections to Incoming Messages Only (INCOMING_ONLY Policy)
	Figure 2�7 Connections Made with an INCOMING_ONLY Policy (accept incoming connections)

	How to Configure the Connection Retry Interval for ON_STARTUP Only
	How to Configure the Maximum Retry Number
	Table 2�1 Example Settings of the MAXRETRY and RETRY_INTERVAL Parameters

	See Also

	Controlling the Connections Between Domains
	How to Establish Connections Between Domains
	How to Break Connections Between Domains
	How to Report on Connection Status
	Configuring Failover and Failback in a Domains Environment
	How to Configure Domains to Support Link-level Failover
	Configuring Domains-level Failover and Failback
	Prerequisite to Using Domains-level Failover and Failback
	How to Configure Domains to Support Failover
	Example

	How to Configure Domains to Support Failback

	3 Planning and Configuring CORBA Domains
	Overview of Multiple CORBA Domains
	Interdomain Communication
	Figure 3�1 Multiple-domain Configuration
	1. Client X connects to Domain A using the Bootstrap object. The client application uses the Boot...
	2. When the FactoryFinder returns a factory, the client then invokes that factory in Domain A.
	3. The factory returns a reference to an object of type Q, called Q1.
	4. The client now invokes on object Q1 in Domain A.
	1. Object Q1 uses a Bootstrap object to locate a FactoryFinder and then uses the FactoryFinder to...
	2. When the FactoryFinder returns a reference to a factory in Domain C, Object Q1 invokes that fa...
	3. The factory returns a reference to an object of type R, called R1.
	4. Object Q1 invokes on Object R1.

	Functions of Multiple-domain Configuration Elements
	Configuring Multiple CORBA Domains
	The Configuration File
	Domain Name
	Gateway Group and Service

	The Domain Configuration (DMCONFIG) File
	Listing 3-1 Sample DMCONFIG File
	DM_RESOURCES
	DM_LOCAL_DOMAINS
	DM_REMOTE_DOMAINS
	TYPE = TDOMAIN
	DOMAINID = string

	DM_TDOMAIN
	NWADDR = string

	DM_REMOTE_SERVICES
	DM_LOCAL_SERVICES
	DM_ACCESS_CONTROL

	The factory_finder.ini File
	DM_REMOTE_FACTORIES
	Listing 3-2 Assigning an Alias to a Remote Factory
	Listing 3-3 Assigning Multiple Aliases to a Remote Factory
	Usage Note: In multidomain configurations, factory object identifiers must be unique across domai...
	1. Use unique identifiers throughout the enterprise. This may mean keeping a master list of all i...
	2. In the factory_finder.ini file, use the RNAME parameter so that an alias is used by the local ...

	DM_LOCAL_FACTORIES

	Local Factories

	Types of CORBA Domain Configurations
	Directly Connected Domains
	Indirectly Connected Domains
	Figure 3�2 Indirectly Connected Domains

	Examples: Configuring Multiple CORBA Domains
	Sample UBBCONFIG Files
	Listing 3-4 UBBCONFIG File for the Here Domain
	Listing 3-5 UBBCONFIG File for the There Domain
	Listing 3-6 UBBCONFIG File for the Yonder Domain
	Sample DMCONFIG File
	Listing 3-7 DMCONFIG File for the Local Machine in the Here Domain in a Three-Domain Configuration
	Listing 3-8 DMCONFIG File for the There Domain in a Three-Domain Configuration
	Listing 3-9 DMCONFIG File for the Yonder Domain in a Three-Domain Configuration

	Sample factory_finder.ini File
	Listing 3-10 factory_finder.ini File for the Here Local Domain
	Listing 3-11 factory_finder.ini File for the There Remote Domain

	4 Administering Domains
	Using Domains Run-time Administrative Commands
	Figure 4�1 Domains Run-time Administration
	How to Migrate DMADM and a Domain Gateway Group
	1. Copy DMCONFIG to the new machine and run dmloadcf.
	2. Shut down all domain gateway groups (GWADM and a domain gateway, for example, GWTDOMAIN).
	3. Migrate the DMADM group to the new machine.
	1. In the DMCONFIG file, add multiple listening addresses, in the following format, to the DM_TDO...
	2. If you are using transactions, you must copy the Domains transaction log manually to the backu...
	3. The DMCONFIG files for the remote domains should include both network addresses as specified i...
	4. Migrate the domain gateway group to the new machine.

	Using the Administrative Interface, dmadmin(1)
	See Also

	Using the Domains Administrative Server, DMADM(5)
	See Also

	Using the Gateway Administrative Server, GWADM(5)
	See Also

	Using the Gateway Process
	See Also

	Managing Transactions in a Domains Environment
	Transaction Management Capabilities

	Using the TMS Capability Across Domains
	How Gateways Coordinate Transactions Across Domains
	1. Domain gateways advertise the TMS service and perform all operations associated with that serv...
	2. A gateway can act as a subordinate of transactions coordinated by another group within the dom...
	Figure 4�2 The Gateway as Subordinate/Coordinator of Another Domain Group
	3. As a coordinator of transactions within the domain, the gateway manages the commitment of a tr...

	Figure 4�3 Client Commit Managed by a Gateway
	4. Gateways manage transaction commitment for a particular client or for a server that uses the f...
	5. Gateways automatically start and terminate transactions for remote services specified with the...
	6. Gateways map the BEA Tuxedo system transaction protocol to the networking transaction protocol...

	Using GTRID Mapping in Transactions
	Defining Tightly-coupled and Loosely-coupled Relationships
	Global Transactions Across Domains
	Example of a Service Request Graph Generating Local and Remote Requests
	Figure 4�4 Service Request Graph

	Transaction Trees for BEA eLink OSI TP and BEA Tuxedo Domains
	Figure 4�5 Transaction Tree for BEA eLink OSI TP Environment
	Figure 4�6 Transaction Tree for TDomain Environment

	Summary of Domains Transaction Management

	Using Logging to Track Transactions
	How Logging Works

	Recovering Failed Transactions

