
Using Security

B E A T u x e d o 8 . 0
D o c u m e n t E d i t i o n 8 . 0

J u n e 2 0 0 1

BEA Tuxedo

in CORBA Applications

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebLogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA Weblogic
Commerce Server, BEA WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic
Collaborate, BEA WebLogic Enterprise, and BEA WebLogic Server are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

Using Security in CORBA Applications

Document Edition Date Software Version

8.0 June 2001 BEA Tuxedo 8.0

Contents

About This Document
What You Need to Know ..x

e-docs Web Site ... xi

How to Print the Document... xi

Documentation Conventions .. xii

Part I. Security Concepts

1. Overview of the CORBA Security Features
The CORBA Security Features ... 1-2

The CORBA Security Environment.. 1-4

Single Sign-on in the CORBA Security Environment 1-7

BEA Tuxedo Security SPIs ... 1-9

2. Introduction to the SSL Technology
The SSL Protocol .. 2-2

Digital Certificates... 2-5

Certificate Authority.. 2-6

Certificate Repositories ... 2-7

A Public Key Infrastructure... 2-7

PKCS-5 and PKCS-8 Compliance .. 2-9

Supported Public Key Algorithms... 2-9

Supported Symmetric Key Algorithms ... 2-10

Supported Message Digest Algorithms... 2-11

Supported Cipher Suites .. 2-11

Standards for Digital Certificates .. 2-12
Using Security in CORBA Applications iii

3. Fundamentals of CORBA Security
Link-Level Encryption .. 3-1

How LLE Works .. 3-2

Encryption Key Size Negotiation... 3-3

WSL/WSH Connection Timeout During Initialization 3-5

Development Process ... 3-5

Password Authentication ... 3-6

How Password Authentication Works.. 3-7

Development Process for Password Authentication................................... 3-8

The SSL Protocol... 3-10

How the SSL Protocol Works .. 3-10

Requirements for Using the SSL Protocol ... 3-11

Development Process for the SSL Protocol ... 3-12

Certificate Authentication.. 3-14

How Certificate Authentication Works .. 3-15

Development Process for Certificate Authentication 3-17

Using an Authentication Plug-in ... 3-21

Authorization ... 3-22

Auditing ... 3-22

Single Sign-on ... 3-24

PKI Plug-ins .. 3-25

Commonly Asked Questions About the CORBA Security Features 3-27

Do I Have to Change the Security in an Existing CORBA Application? 3-27

Can I Use the SSL Protocol in an Existing CORBA Application? 3-27

When Should I Use Certificate Authentication? 3-29

Part II. Security Adminstration

4. Managing Public Key Security
Requirements for Using Public Key Security.. 4-1

Who Needs Digital Certificates and Private/Private Key Pairs? 4-2

Requesting a Digital Certificate .. 4-2

Publishing Certificates in the LDAP Directory Service 4-3

Editing the LDAP Search Filter File ... 4-5

Storing the Private Keys in a Common Location .. 4-6
iv Using Security in CORBA Applications

Defining the Trusted Certificate Authorities ... 4-7

Creating a Peer Rules File ... 4-9

5. Configuring Link-Level Encryption
Understanding min and max Values.. 5-1

Verifying the Installed Version of LLE... 5-2

Configuring LLE on CORBA Application Links ... 5-2

6. Configuring the SSL Protocol
Setting Parameters for the SSL Protocol ... 6-2

Defining a Port for SSL Network Connections... 6-2

Enabling Host Matching.. 6-3

Setting the Encryption Strength... 6-4

Setting the Interval for Session Renegotiation .. 6-6

Defining Security Parameters for the IIOP Listener/Handler 6-7

Example of Setting Parameters on the ISL System Process.............................. 6-9

Example of Setting Command-line Options on the CORBA C++ ORB 6-9

7. Configuring Authentication
Configuring the Authentication Server ... 7-2

Defining Authorized Users.. 7-3

Defining a Security Level.. 7-6

Configuring Application Password Security ... 7-8

Configuring Password Authentication .. 7-8

Sample UBBCONFIG File for Password Authentication 7-9

Configuring Certificate Authentication... 7-11

Sample UBBCONFIG File for Certificate Authentication 7-13

Configuring Access Control .. 7-15

Configuring Optional ACL Security .. 7-16

Configuring Mandatory ACL Security .. 7-17

Setting ACL Policy Between CORBA Applications 7-18

Configuring Security to Interoperate with Older WebLogic Enterprise Client
Applications ... 7-20

8. Configuring Single Sign-on
Single Sign-on with Password Authentication .. 8-1
Using Security in CORBA Applications v

Single Sign-on with Password Authentication and the SSL Protocol 8-2

Single Sign-on with the SSL Protocol and Certificate Authentication 8-4

9. Configuring Security Plug-ins
Registering the Security Plug-ins (SPIs) ... 9-1

Part III. Security Programming

10. Writing a CORBA Application That Implements Security
Using the Bootstrapping Mechanism .. 10-1

Using the Host and Port Address Format ... 10-4

Using the corbaloc URL Address Format .. 10-4

Using the corbalocs URL Address Format... 10-5

Using Password Authentication... 10-6

The Security Sample Application... 10-6

Writing the Client Application ... 10-7

Using Certificate Authentication ... 10-15

The Secure Simpapp Sample Application.. 10-16

Writing the CORBA Client Application .. 10-17

Using the Interoperable Naming Service Mechanism................................... 10-20

Using the Invocations_Options_Required() Method..................................... 10-21

11. Building and Running the CORBA Sample Applications
Building and Running the Security Sample Application................................. 11-2

Building and Running the Secure Simpapp Sample Application.................... 11-2

Step 1: Copy the Files for the Secure Simpapp Sample Application into a
Work Directory ... 11-3

Step 2: Change the Protection Attribute on the Files for the Secure
Simpapp Sample Application.. 11-4

Step 3: Verify the Settings of the Environment Variables 11-5

Step 4: Execute the runme Command .. 11-7

Using the Secure Simpapp Sample Application..................................... 11-11

12. Troubleshooting
Using ULOGS and ORB Tracing .. 12-1

CORBA::ORB_init Problems.. 12-3
vi Using Security in CORBA Applications

Password Authentication Problems... 12-4

Certificate Authentication Problems ... 12-5

Tobj::Bootstrap::
resolve_initial_references Problems .. 12-6

IIOP Listener/Handler Startup Problems... 12-7

Configuration Problems... 12-8

Problems with Using Callbacks Objects with the SSL Protocol..................... 12-9

Troubleshooting Tips for Digital Certificates ... 12-9

Part IV. Security Reference

13. CORBA Security APIs
The CORBA Security Model .. 13-2

Authentication of Principals... 13-2

Controlling Access to Objects .. 13-3

Administrative Control... 13-3

Functional Components of the CORBA Security Environment...................... 13-3

The Principal Authenticator Object... 13-4

Using the Principal Authenticator Object with Certificate
Authentication ... 13-5

BEA Tuxedo Extensions to the Principal Authenticator Object 13-6

The Credentials Object .. 13-7

The SecurityCurrent Object... 13-9

14. Security Modules
CORBA Module... 14-2

TimeBase Module .. 14-2

Security Module ... 14-4

Security Level 1 Module .. 14-6

Security Level 2 Module .. 14-7

Tobj Module... 14-8

15. C++ Security Reference
SecurityLevel1::Current::get_attributes .. 15-2

SecurityLevel2::PrincipalAuthenticator::authenticate 15-3

SecurityLevel2::Current::set_credentials.. 15-6
Using Security in CORBA Applications vii

SecurityLevel2::Current::get_credentials.. 15-7

SecurityLevel2::Current::principal_authenticator............................. 15-8

SecurityLevel2::Credentials ... 15-9

SecurityLevel2::Credentials::get_attributes 15-11

SecurityLevel2::Credentials::invocation_options_supported 15-12

SecurityLevel2::Credentials::invocation_options_required............ 15-14

SecurityLevel2::Credentials::is_valid ... 15-16

SecurityLevel2::PrincipalAuthenticator ... 15-17

SecurityLevel2::PrincipalAuthenticator::continue_authentication . 15-19

Tobj::PrincipalAuthenticator::get_auth_type.................................. 15-20

Tobj::PrincipalAuthenticator::logon ... 15-21

Tobj::PrincipalAuthenticator::logoff... 15-23

Tobj::PrincipalAuthenticator::build_auth_data............................... 15-24

16. Java Security Reference

17. Automation Security Reference
Method Descriptions.. 17-2

DISecurityLevel2_Current ... 17-2

DISecurityLevel2_Current.get_attributes ... 17-3

DISecurityLevel2_Current.set_credentials 17-4

DISecurityLevel2_Current.get_credentials....................................... 17-5

DISecurityLevel2_Current.principal_authenticator 17-6

DITobj_PrincipalAuthenticator .. 17-7

DITobj_PrincipalAuthenticator.authenticate 17-8

DITobj_PrincipalAuthenticator.build_auth_data 17-10

DITobj_PrincipalAuthenticator.continue_authentication 17-12

DITobj_PrincipalAuthenticator.get_auth_type 17-13

DITobj_PrincipalAuthenticator.logon... 17-15

DITobj_PrincipalAuthenticator.logoff .. 17-17

DISecurityLevel2_Credentials ... 17-17

DISecurityLevel2_Credentials.get_attributes 17-18

DISecurityLevel2_Credentials.is_valid .. 17-19

Programming Example .. 17-20

Index
viii Using Security in CORBA Applications

About This Document

This document provides an introduction to concepts associated with the BEA
Tuxedo® security features, a description of how to secure your CORBA applications
using the security features, and a guide to the use of the application programming
interfaces (APIs) in the CORBA Security Service.

Note: Release 8.0 of the BEA Tuxedo product includes environments that allow you
to build both Application-to-Transaction Monitor Interfaces (ATMI) and
CORBA applications. This topic explains how to implement security in a
CORBA application. For information about implementing security in an
ATMI application, see Using Security in ATMI Applications.

This document includes the following topics:

n Chapter 1, “Overview of the CORBA Security Features,” presents an overview
of the security features for CORBA in the BEA Tuxedo product.

n Chapter 2, “Introduction to the SSL Technology,” introduces the concepts
associated with a Public Key Infrastructure (PKI).

n Chapter 3, “Fundamentals of CORBA Security,” presents an indepth discussion
of the features in the CORBA Security Service and describes the development
and administration processes needed to implement the features.

n Chapter 4, “Managing Public Key Security,” describes how to set up a public
key infrastructure to interact with CORBA applications that use the Secure
Sockets Layer (SSL) protocol and certificate authentication.

n Chapter 5, “Configuring Link-Level Encryption,” describes setting parameters in
the UBBCONFIG file for Link-Level Encryption (LLE).

n Chapter 6, “Configuring the SSL Protocol,” describes configuring the IIOP
Listener/Handler or the CORBA C++ ORB so that it can be used with the
Secure Sockets Layer (SSL) protocol and certificate authentication.
Using Security in CORBA Applications ix

n Chapter 7, “Configuring Authentication,” explains the configuration tasks
required when using authentication in a CORBA application.

n Chapter 8, “Configuring Single Sign-on,” explains the configuration tasks
required when using trusted connection pools in a CORBA application.

n Chapter 9, “Configuring Security Plug-ins,” explains how to register Security
Plug-Ins in the CORBA environment.

n Chapter 10, “Writing a CORBA Application that Implements Security,” explains
how the bootstrapping options work and describes implementing password
authentication and certificate authentication in CORBA applications.

n Chapter 11, “Building and Running the CORBA Sample Applications,”
describes how to build and run the Security and Secure Simpapp sample
applications.

n Chapter 12, “Troubleshooting,” provides troubleshooting tips that can be used
when solving problems that occur with the security portion of a CORBA
application.

n Chapter 13, “CORBA Security APIs,” introduces the security model in CORBA
applications and the functional components of the security model.

n Chapter 14, “Security Modules,” includes the Object Management Group
(OMG) Interface Definition Language (IDL) for the modules used by the
CORBA Security service.

n Chapter 15, “C++ Security Reference,” includes the C++ method descriptions.

n Chapter 16, “Java Security Reference,” includes the Java method descriptions.

n Chapter 17, “Automation Security Reference,” includes the Automation method
descriptions.

What You Need to Know

This document is intended for programmers who want to incorporate security into their
CORBA applications and system administrators who are responsible for setting up and
maintaining the security infrastructure in an enterprise.
x Using Security in CORBA Applications

e-docs Web Site
e-docs Web Site

The BEA Tuxedo product documentation is available on the BEA Systems, Inc.
corporate Web site. From the BEA Home page, click the Product Documentation
button or go directly to the “e-docs” Product Documentation page at
http://e-docs.beasys.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the BEA Tuxedo documentation Home
page on the e-docs Web site (and also on the documentation CD). You can open the
PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in book
format. To access the PDFs, open the BEA Tuxedo documentation Home page, click
the PDF Files button, and select the document you want to print.

If you do not have Adobe Acrobat Reader installed, you can download it for free from
the Adobe Web site at http://www.adobe.com/.

Related Information

For more information about CORBA, BEA Tuxedo, distributed object computing,
transaction processing, C++ and Java programming, see the CORBA Bibliography in
the BEA Tuxedo online documentation.
Using Security in CORBA Applications xi

Contact Us!

Your feedback on the BEA Tuxedo documentation is important to us. Send us e-mail
at docsupport@beasys.com if you have questions or comments. Your comments will
be reviewed directly by the BEA professionals who create and update the BEA Tuxedo
documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA Tuxedo 8.0 release.

If you have any questions about this version of BEA Tuxedo, or if you have problems
installing and running BEA Tuxedo, contact BEA Customer Support through BEA
WebSUPPORT at www.beasys.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in
the product package.

When contacting Customer Support, be prepared to provide the following information:

n Your name, e-mail address, phone number, and fax number

n Your company name and company address

n Your machine type and authorization codes

n The name and version of the product you are using

n A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.
xii Using Security in CORBA Applications

Documentation Conventions
italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

Convention Item
Using Security in CORBA Applications xiii

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

n That an argument can be repeated several times in a command line

n That the statement omits additional optional arguments

n That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
xiv Using Security in CORBA Applications

Part I Security
Concepts
 Chapter 1. Overview of the CORBA Security Features

 Chapter 2. Introduction to the SSL Technology

 Chapter 3. Fundamentals of CORBA Security

CHAPTER
1 Overview of the
CORBA Security
Features

This topic includes the following sections:

n The CORBA Security Features

n The CORBA Security Environment

n Single Sign-on in the CORBA Security Environment

n BEA Tuxedo Security SPIs

Note: Release 8.0 of the BEA Tuxedo product includes environments that allow you
to build both Application-to-Transaction Monitor Interfaces (ATMI) and
CORBA applications. This topic explains how to implement security in a
CORBA application. For information about implementing security in an
ATMI application, see Using Security in ATMI Applications.
Using Security in CORBA Applications 1-1

1 Overview of the CORBA Security Features
The CORBA Security Features

Security refers to techniques for ensuring that data stored in a computer or passed
between computers is not compromised. Most security measures involve proof
material and data encryption, where the proof material is a secret word or phrase that
gives a user access to a particular program or system, and data encryption is the
translation of data into a form that cannot be interpreted.

Distributed applications such as those used for electronic commerce (e-commerce)
offer many access points for malicious people to intercept data, disrupt operations, or
generate fraudulent input; the more distributed a business becomes, the more
vulnerable it is to attack. Thus, the distributed computing software, or middleware,
upon which such applications are built must provide security.

The CORBA security features of the BEA Tuxedo product lets you establish secure
connections between client and server applications. It has the following features:

n Authentication of CORBA C++ and Java client applications to the BEA Tuxedo
domain. Authentication can be accomplished using a standard
username/password combination or the identity inside of the X.509 digital
certificate provided to the server applications.

n Data integrity and confidentiality through Link-Level Encryption (LLE) or the
Secure Sockets Layer (SSL) protocol. CORBA C++ and Java client applications
can establish SSL sessions with a BEA Tuxedo domain. BEA Tuxedo client
applications can use LLE to protect network traffic between bridges and
domains.

n A single sign-on environment between the BEA WebLogic Server™ and
CORBA environments using WebLogic Enterprise Connectivity. This feature
allows the propagation of security information about the requesting WebLogic
Server User to the BEA Tuxedo domain over network connections that are part
of a trusted connection pool.

n Security Service Provider Interfaces (SPIs) that can be used to integrate security
mechanisms that provide authentication, authorization, auditing, and public key
security features. Security vendors can use the SPIs to integrate third-party
security offerings into the CORBA environment.
1-2 Using Security in CORBA Applications

The CORBA Security Features
n A Public Key Infrastructure (PKI) that uses the SSL protocol and X.509 digital
certificates to provide data privacy for messages sent over network links. In
addition, a set of PKI SPIs are provided.

To access the full security features of the CORBA environment, you need to install a
license that enable the use of the SSL protocol, LLE, and PKI. For information about
installing the license for the security features, see the Installing the BEA Tuxedo
System.

Note: Using Security in CORBA Applications describes the security features of the
CORBA environment in the BEA Tuxedo product. For a complete description
of using the security features in the ATMI environment in the BEA Tuxedo
product, see Using Security in ATMI Applications.

Table 1-1 summarizes the features in the CORBA security features in the BEA Tuxedo
product.

.

Table 1-1 CORBA Security Features

Security Features Description Service Provider
Interface (SPI)

Default Implementation

Authentication Proves the stated identity of
users or system processes;
safely remembers and
transports identity information;
and makes identity information
available when needed.

Implemented as a
single interface

Provides security at three
levels: no authentication,
application password, and
certificate authentication.

Authorization Controls access to resources
based on identity or other
information.

Implemented as a
single interface

N/A

Auditing Safely collects, stores, and
distributes information about
operating requests and their
outcomes.

Implemented as a
single interface

Default auditing security is
implemented via the features
of the user log (ULOG).

Link-Level Encryption Uses symmetric key encryption
to establish data privacy for
messages moving over the
network links that connect the
machines in a CORBA
application.

N/A RC4 symmetric key
encryption.
Using Security in CORBA Applications 1-3

1 Overview of the CORBA Security Features
The CORBA Security Environment

Direct end-to-end mutual authentication in a distributed enterprise middleware
environment such as the BEA Tuxedo CORBA environment can be prohibitively
expensive, especially when accomplished through security mechanisms optimized for
long duration connections. It is not efficient for principals to establish direct network

The Secure Sockets
Layer (SSL) protocol

Uses asymmetric encryption to
establish data privacy for
messages moving over network
links between BEA Tuxedo
domains.

N/A The SSL version 3.0
protocol.

Single Sign-On Propagates the security identity
of a WebLogic Server User
identity to a BEA Tuxedo
domain.

N/A N/A

Public key security Uses public key (or asymmetric
key) encryption to establish
data privacy for messages
moving over the network links
between remote client
applications and the IIOP
Listener/Handler. Complies
with SSL version 3.0 allowing
mutual authentication based on
X.509 digital certificates.

Implemented as the
following
interfaces:

n Public key
initialization

n Key
management

n Certificate
lookup

n Certificate
parsing

n Certificate
validation

n Proof material
mapping

Default public key security
supports the following
algorithms:

n RSA for key exchange.

n DES and its variants RC2
and RC4 for bulk
encryption.

n MD5 and SHA for
message digests.

Table 1-1 CORBA Security Features (Continued)

Security Features Description Service Provider
Interface (SPI)

Default Implementation
1-4 Using Security in CORBA Applications

The CORBA Security Environment
connections with each server application, nor is it practical to exchange and verify
multiple authentication messages as part of processing each service request. Instead,
CORBA applications in a BEA Tuxedo product implements a delegated trust
authentication model as shown in Figure 1-1.

Figure 1-1 Delegated Trust Model

In a delegated trust model, principals (generally users of client applications)
authenticate to a trusted system gateway process. In the case of the CORBA
applications, the trusted system gateway process is the IIOP Listener/Handler. As part
of successful authentication, security tokens are assigned to the initiating principal. A
security token is an opaque data structure suitable for transfer between processes.

When a request from an authenticated principal reaches the IIOP Listener/Handler, the
IIOP Listener/Handler attaches the principal’s security tokens to the request and
delivers the request to the target server application for authorization and auditing
purposes.
Using Security in CORBA Applications 1-5

1 Overview of the CORBA Security Features
In a delegated trust authentication model, the IIOP Listener/Handler trusts that the
authentication software in the BEA Tuxedo domain will verify the identity of the
principal and generates the appropriate security tokens. Server applications, in turn,
trust that the IIOP Listener/Handler will attach the correct security tokens. Server
applications also trust that any other server applications involved in the process of a
request from a principal will safely deliver the security tokens.

A session is established between the initiating client application and the IIOP
Listener/Handler in the following way:

1. When a client application wants to access an object within a BEA Tuxedo domain,
the client application uses either a username and password or a X.509 digital
certificate to authenticate over the connection with the IIOP Listener/Handler.

2. A security association called a security context is established between a principal
and the IIOP Listener/Handler. This security context is used to control access to
objects in the BEA Tuxedo domain.

The IIOP Listener/Handler retrieves the authorization and auditing tokens from
the security context. Together, the authorization and auditing tokens represent
the principal’s identity associated with the security context.

3. Once the authentication process is complete, the principal invokes an object in
the BEA Tuxedo domain. The request is packaged into an IIOP request and
forwarded to the IIOP Listener/Handler. The IIOP Listener/Handler associates the
request with the previously established security context.

4. The IIOP Listener/Handler receives the request from the initiating principal.

The protection of messages between the client application and the IIOP
Listener/Handler is dependent on the security technology used in the CORBA
application. The default behavior of the BEA Tuxedo product is to encrypt the
authentication information but not to protect the message sent between the client
application and the BEA Tuxedo domain. The message is sent in clear text. The
SSL protocol can be used to protect the message. If the SSL protocol is
configured to protect messages for integrity and confidentiality, the request is
digitally signed and sealed (encrypted) before it is sent to the IIOP
Listener/Handler.

5. The IIOP Listener/Handler forwards the request along with the authorization and
auditing tokens of the initiating principal to the appropriate server application.
1-6 Using Security in CORBA Applications

Single Sign-on in the CORBA Security Environment
6. When the request is received by the server application, the BEA Tuxedo system
interrogates the forwarded tokens of the requesting principal to determine if the
request should be processed or denied. The CORBA security features will, based
on the decision of the authorization implementation, deny the processing of any
request on an object for which the requesting principal has no permission to
access.

Single Sign-on in the CORBA Security
Environment

A WebLogic Server security realm and a BEA Tuxedo domain are considered separate
scopes of security definitions. Each contains it own security database of users and
access control. However, by using WebLogic Enterprise Connectivity (WLEC), the
identity of a principal authenticated in a WebLogic Server security realm can be
presented and used to form the identity of an authenticated principal in a BEA Tuxedo
domain over a connection that is part of a trusted pool of connections.

Note: The single sign-on functionality in the CORBA security environment of the
BEA Tuxedo product is unidirectional. You can only propagate a principal’s
identity from the WebLogic Server security realm to the BEA Tuxedo domain.

Figure 1-2 illustrates how single sign-on works in the CORBA security environment.
Using Security in CORBA Applications 1-7

1 Overview of the CORBA Security Features
Figure 1-2 Single Sign-on in the CORBA Security Environment

When using single sign-on, the security identity of a WebLogic Server User is
propagated as part of the service context of a IIOP request sent to a CORBA object in
a BEA Tuxedo domain over a network connection that is part of a trusted connection
pool. Each network connection in a trusted connection pool has been authenticated
using a defined principal identity. Both password and certificate authentication can be
used to establish a trusted connection pool.

The propagated security identity is used by the IIOP Listener/Handler to impersonate
a principal identity in the BEA Tuxedo domain. The impersonated identity is
represented as a pair of tokens: one for authorization and one for auditing. These
tokens are propagated to the target CORBA object in the BEA Tuxedo domain where
they are used for authorization and auditing purposes.

To facilitate the mapping of principal identities, the IIOP Listener/Handler uses an
authentication plug-in. This plug-in is responsible for mapping the principal identity
into the authorization and auditing tokens. These tokens are propagated as part of the
request being forwarded to the target CORBA object. The target CORBA object can
then use these tokens to determine information about the initiator of the request,
including the identity of the principal.
1-8 Using Security in CORBA Applications

BEA Tuxedo Security SPIs
The SSL protocol can be used to protect the confidentiality and integrity of the request
from the WebLogic Server realm. SSL encryption is provided for IIOP requests to
CORBA objects in the BEA Tuxedo domain. In order to protect the request, both
WebLogic Connectivity and the CORBA application must be configured to use the
SSL protocol.

For information about implementing single sign-on, see Chapter 8, “Configuring
Single Sign-on.”

BEA Tuxedo Security SPIs

As shown in Figure 1-3, the authentication, authorization, auditing, and public key
security features available with the BEA Tuxedo product are implemented through a
plug-in interface, which allows security plug-ins to be integrated into the CORBA
environment. A security plug-in is a code module that implements a particular security
feature.
Using Security in CORBA Applications 1-9

1 Overview of the CORBA Security Features
Figure 1-3 Architecture for the BEA Tuxedo Security Service Provider
Interfaces
1-10 Using Security in CORBA Applications

BEA Tuxedo Security SPIs
The BEA Tuxedo product provides interfaces for the types of security plug-ins listed
in Table 1-2.

Table 1-2 The BEA Tuxedo Security Plug-Ins

Plug-In Description

Authentication Allows communicating processes to mutually
prove identification.

Authorization Allows system administrators to control access to
CORBA applications. Specifically, an
administrator can use authorization to allow or
disallow principals to use resources or services
provided by a CORBA application.

Auditing Provides a means to collect, store, and distribute
information about operating requests and their
outcomes. Audit-trail records may be used to
determine which principals performed, or
attempted to perform, actions that violated the
configured security policies of a CORBA
application. They may also be used to determine
which operations were attempted, which ones
failed, and which ones successfully completed.

Public key initialization Allows public key software to open public and
private keys. For example, gateway processes may
need to have access to a specific private key in
order to decrypt messages before routing them.

Key management Allows public key software to manage and use
public and private keys. Note that message digests
and session keys are encrypted and decrypted
using this interface, but no bulk data encryption is
performed using public key cryptography. Bulk
data encryption is performed using symmetric key
cryptography.

Certificate lookup Allows public key software to retrieve X.509v3
digital certificates for a given principal. Digital
certificates may be stored using any appropriate
certificate repository, such as Lightweight
Directory Access Protocol (LDAP).
Using Security in CORBA Applications 1-11

1 Overview of the CORBA Security Features
The specifications for the SPIs are currently only available to third-party security
vendors who have entered into a special agreement with BEA Systems, Inc. Customers
who want to customize a security feature must contact one of these vendors or BEA
Professional Services. For example, a BEA customer who wants a custom
implementation of public key security must contact a third-party vendor who can
provide the appropriate security plug-in or BEA Professional Services.

For more information about security plug-ins, including installation and configuration
procedures, see your BEA account executive.

Certificate parsing Allows public key software to associate a simple
principal name with an X.509v3 digital certificate.
The parser analyzes a digital certificate to generate
a principal name to be associated with the digital
certificate.

Certificate validation Allows public key software to validate an X.509v3
digital certificate in accordance with specific
business logic.

Proof material mapping Allows public key software to access the proof
materials needed to open keys, provide
authorization tokens, and provide auditing tokens.

Table 1-2 The BEA Tuxedo Security Plug-Ins (Continued)

Plug-In Description
1-12 Using Security in CORBA Applications

CHAPTER
2 Introduction to the SSL
Technology

This topic includes the following sections:

n The SSL Protocol

n Digital Certificates

n Certificate Authority

n Certificate Repositories

n A Public Key Infrastructure

n PKCS-5 and PKCS-8 Compliance

n Supported Public Key Algorithms

n Supported Symmetric Key Algorithms

n Supported Message Digest Algorithms

n Supported Cipher Suites

n Standards for Digital Certificates
Using Security in CORBA Applications 2-1

2 Introduction to the SSL Technology
The SSL Protocol

The Secure Sockets Layer (SSL) protocol allows you to integrate these essential
features into your CORBA application:

n Confidentiality

Confidentiality is the ability to keep communications secret from parties other
than the intended recipient. It is achieved by encrypting data with strong
algorithms. The SSL protocol provides a secure mechanism that enables two
communicating parties to negotiate the strongest algorithm they both support and
to agree on the keys with which to encrypt the data.

n Integrity

Integrity is a guarantee that the data being transferred has not been modified in
transit. The same handshake mechanism which allows the two parties to agree
on algorithms and keys also allows the two ends of an SSL connection to
establish shared data integrity secrets which are used to ensure that when data is
received any modifications will be detected.

n Authentication

Authentication is the ability to ascertain with whom you are speaking. By using
digital certificates and public key security, CORBA client and server
applications can each be authenticated to the other. This allows the two parties to
be certain they are communicating with someone they trust. The SSL protocol
provides a mechanism that can be used to authenticate principals to a BEA
Tuxedo domain using X.509 digital certificates. The use of certificate
authentication can be used as an alternative to password authentication.

The SSL protocol provides secure connections by allowing two applications
connecting over a network connection to authenticate the other’s identity and by
encrypting the data exchanged between the applications. When using the SSL
protocol, the target always authenticates itself to the initiator. Optionally, if the target
requests it, the initiator can authenticate itself to the target. Encryption makes data
transmitted over the network intelligible only to the intended recipient. An SSL
connection begins with a handshake during which the applications exchange digital
certificates, agree on the encryption algorithms to use, and generate encryption keys
used for the remainder of the session.
2-2 Using Security in CORBA Applications

The SSL Protocol
The SSL protocol uses public key encryption for authentication. With public key
encryption, a pair of asymmetric keys are generated for a principal or other entity such
as the IIOP Listener/Handler or an application server. The keys are related such that
the data encrypted with the public key can only be decrypted using the corresponding
private key. Conversely, data encrypted with the private key can be decrypted only
with the public key. The private key is carefully protected so that only the owner can
decrypt messages. The public key, however, is distributed freely so that anyone can
encrypt messages intended for the owner.

Figure 2-1 illustrates how the SSL protocol works in the CORBA security
environment.
Using Security in CORBA Applications 2-3

2 Introduction to the SSL Technology
Figure 2-1 The SSL Protocol in the CORBA Security Environment

When using the SSL protocol in the CORBA security environment, the IIOP
Listener/Handler authenticates itself to initiating principals. The IIOP
Listener/Handler presents its digital certificate to the initiating principal. To
successfully negotiate a SSL connection, the client application must then authenticate
the IIOP Listener/Handler but the IIOP Listener/Handler will accept any client
application into the SSL connection. This type of authentication is referred to as server
authentication.
2-4 Using Security in CORBA Applications

Digital Certificates
When using server authentication, the initiating client application is required to have
digital certificates for certificate authorities that are to be trusted. The IIOP
Listener/Handler must have a private key and digital certificates that represents its
identity. Server authentication is common on the Internet where customers want to
create secure connections before they share personal data. In this case, the client
application has a similar role to that of a Web browser.

With SSL version 3.0, principals can also authenticate to the IIOP Listener/Handler.
This type of authentication is referred to as mutual authentication. In mutual
authentication, principals present their digital certificates to the IIOP Listener/Handler.
When using mutual authentication, both the IIOP Listener/Handler and the principal
need private keys and digital certificates that represent their identity. This type of
authentication is useful when you must restrict access to trusted principals only.

The SSL protocol and the infrastructure needed to use digital certificates is available
in the BEA Tuxedo product by installing a license available in the product installation.
For more information, see Installing the BEA Tuxedo System.

Digital Certificates

Digital certificates are electronic documents used to uniquely identify principals and
entities over networks such as the Internet. A digital certificate securely binds the
identity of a principal or entity, as verified by a trusted third party known as a
certificate authority (CA), to a particular public key. The combination of the public key
and the private key provides a unique identity to the owner of the digital certificate.

Digital certificates allow verification of the claim that a specific public key does in fact
belong to a specific principal or entity. A recipient of a digital certificate can use the
public key contained in the digital certificate to verify that a digital signature was
created with the corresponding private key. If such verification is successful, this chain
of reasoning provides assurance that the corresponding private key is held by the
subject named in the digital certificate, and that the digital signature was created by
that particular subject.

A digital certificate typically includes a variety of information, such as:

n The name of the subject (holder, owner) and other identification information
required to uniquely identify the subject, such as the URL of the Web server
using the digital certificate, or an individual’s e-mail address.
Using Security in CORBA Applications 2-5

2 Introduction to the SSL Technology
n The subject’s public key.

n The name of the certificate authority that issued the digital certificate.

n A serial number.

n The validity period (or lifetime) of the digital certificate (defined by a start date
and an end date).

The most widely accepted format for digital certificates is defined by the ITU-T X.509
international standard. Thus, digital certificates can be read or written by any
application complying with X.509. The PKI in the CORBA security environment
recognizes digital certificates that comply with X.509 version 3, or X.509v3.

Certificate Authority

Digital certificates are issued by a certificate authority. Any trusted third-party
organization or company that is willing to vouch for the identities of those to whom it
issues digital certificates and public keys can be a certificate authority. When a
certificate authority creates a digital certificate, the certificate authority signs it with its
private key, to ensure the detection of tampering. The certificate authority then returns
the signed digital certificate to the requesting subject.

The subject can verify the digital signature of the issuing certificate authority by using
the public key of the certificate authority. The certificate authority makes its public key
available by providing a digital certificate issued from a higher-level certificate
authority attesting to the validity of the public key of the lower-level certificate
authority. The second solution gives rise to hierarchies of certificate authorities. This
hierarchy is terminated by a self-signed digital certificate known as the root key.

The recipient of an encrypted message can develop trust in the private key of a
certificate authority recursively, if the recipient has a digital certificate containing the
public key of the certificate authority signed by a superior certificate authority whom
the recipient already trusts. In this sense, a digital certificate is a stepping stone in
digital trust. Ultimately, it is necessary to trust only the public keys of a small number
of top-level certificate authorities. Through a chain of digital certificates, trust in a
large number of users’ digital signatures can be established.
2-6 Using Security in CORBA Applications

Certificate Repositories
Thus, digital signatures establish the identities of communicating entities, but a digital
signature can be trusted only to the extent that the public key for verifying the digital
signature can be trusted.

Certificate Repositories

To make a public key and its identification with a specific subject readily available for
use in verification, the digital certificate may be published in a repository or made
available by other means. Certificate repositories are databases of digital certificates
and other information available for retrieval and use in verifying digital signatures.
Retrieval can be accomplished automatically by directly requesting digital certificates
from the repository as needed.

In the CORBA security environment, Lightweight Directory Access Protocol (LDAP)
is used as a certificate repository. BEA Systems, Inc. does not provide or recommend
any specific LDAP server. The LDAP server you choose should support the X.500
scheme definition and the LDAP version 2 or 3 protocol.

A Public Key Infrastructure

A Public Key Infrastructure (PKI) consists of protocols, services, and standards
supporting applications of public key cryptography. Because the technology is still
relatively new, the term PKI is somewhat loosely defined: sometimes PKI simply
refers to a trust hierarchy based on public key digital certificates; in other contexts, it
embraces digital signature and encryption services provided to end-user applications
as well.

There is no single standard public key infrastructure today, though efforts are
underway to define one. It is not yet clear whether a standard will be established or
multiple independent PKIs will evolve with varying degrees of interoperability. In this
sense, the state of PKI technology today can be viewed as similar to local and wide area
(WAN) network technology in the 1980s, before there was widespread connectivity
via the Internet.
Using Security in CORBA Applications 2-7

2 Introduction to the SSL Technology
The following services are likely to be found in a PKI:

n Key registration for issuing a new digital certificate for a public key.

n Certificate revocation for canceling a previously-issued digital certificate and
private key.

n Key selection for obtaining a party’s public key.

n Trust evaluation for determining whether a digital certificate is valid and which
operations it authorizes.

Figure 2-2 shows the PKI process flow.

Figure 2-2 PKI Process Flow

1. The subject applies to a certificate authority for digital certificate.

2. The certificate authority verifies the identity of subject and issues a digital
certificate.

3. The certificate authority or the subject publishes the digital certificate in a
certificate repository such as LDAP.

4. The subject digitally signs an electronic message with the associated private key
to ensure sender authenticity, message integrity, and nonrepudiation, and then
sends message to recipient.

5. The recipient retrieves the sender’s certificate from the certificate repository and
then retrieves the public key from the certificate.

The BEA Tuxedo product does not provide the tools necessary to be a certificate
authority. BEA Systems, Inc. recommends using a third-party certificate authority
such as VeriSign or Entrust. By offering a Public Key SPI, BEA Systems, Inc. extends

Subject

Certificate
Authority

Recipient

Repository

1

3

4

2 5 6
2-8 Using Security in CORBA Applications

PKCS-5 and PKCS-8 Compliance
the opportunity to all BEA Tuxedo customers to use a PKI security solution with the
PKI software from their vendor of choice. See “Single Sign-on” on page 3-24 for more
information.

PKCS-5 and PKCS-8 Compliance

Informal but recognized industry standards for public key software have been issued
by a group of leading communications companies, led by RSA Laboratories. These
standards are called “Public-Key Cryptography Standards,” or PKCS. The BEA
Tuxedo product uses PKCS-5 and PKCS-8 to protect the private keys used with the
SSL protocol.

n PKCS-5 is a specification of a format for using password-based encryption that
uses DES to protect data.

n PKCS-8 is a specification of a format for storing private keys, including the
ability to encrypt them with PKCS-5.

Supported Public Key Algorithms

Public key (or asymmetric key) algorithms are implemented through a pair of different
but mathematically related keys:

n A public key (which is distributed widely) for verifying a digital signature or
transforming data into a seemingly unintelligible form.

n A private key (which is always kept secret) for creating a digital signature or
returning the data to its original form.

The public key security in the CORBA security environment also supports digital
signature algorithms. Digital signature algorithms are simply public key algorithms
used to provide digital signatures.
Using Security in CORBA Applications 2-9

2 Introduction to the SSL Technology
The BEA Tuxedo product supports the Rivest, Shamir, and Adelman (RSA) algorithm,
the Diffie-Hellman algorithm, and Digital Signature Algorithm (DSA). With the
exception of DSA, digital signature algorithms can be used for digital signatures and
encryption. DSA can be used for digital signatures but not for encryption.

Supported Symmetric Key Algorithms

In symmetric key algorithms, the same key is used to encrypt and decrypt a message.
The public key encryption system uses symmetric key encryption to encrypt a message
sent between two communicating entities. Symmetric key encryption operates at least
1000 times faster than public key cryptography.

A block cipher is a type of symmetric key algorithm that transforms a fixed-length
block of plaintext (unencrypted text) data into a block of ciphertext (encrypted text)
data of the same length. This transformation takes place in accordance with the value
of a randomly generated session key. The fixed length is called the block size.

The Public key security feature in the CORBA security environment supports the
following symmetric key algorithms:

n DES-CBC (Data Encryption Standard for Cipher Block Chaining)

DES-CBC is a 64-bit block cipher run in Cipher Block Chaining (CBC) mode. It
provides 56-bit keys (8 parity bits are stripped from the full 64-bit key).

n Two-key triple-DES (Data Encryption Standard)

Two-key triple-DES is a 128-bit block cipher run in Encrypt-Decrypt-Encrypt
(EDE) mode. Two-key triple-DES provides two 56-bit keys (in effect, a 112-bit
key).

For some time it has been common practice to protect and transport a key for
DES encryption with triple-DES, which means that the input data (in this case
the single-DES key) is encrypted, decrypted, and then encrypted again (an
encrypt-decrypt-encrypt process). The same key is used for the two encryption
operations.

n RC2 (Rivest’s Cipher 2)

RC2 is a variable key-size block cipher.
2-10 Using Security in CORBA Applications

Supported Message Digest Algorithms
n RC4 (Rivest’s Cipher 4)

RC4 is a variable key-size block cipher with a key size range of 40 to 128 bits. It
is faster than DES and is exportable with a key size of 40 bits. A 56-bit key size
is allowed for foreign subsidiaries and overseas offices of United States
companies. In the United States, RC4 can be used with keys of virtually
unlimited length, although the public key security in the CORBA security
environment restricts the key length to 128 bits.

Customers of the BEA Tuxedo product cannot expand or modify this list of algorithms.

Supported Message Digest Algorithms

The CORBA security environment supports the MD5 and SHA-1 (Secure Hash
Algorithm 1) message digest algorithms. Both MD5 and SHA-1 are well known,
one-way hash algorithms. A one-way hash algorithm takes a message and converts it
into a fixed string of digits, which is referred to as a message digest or hash value.

MD5 is a high-speed, 128-bit hash; it is intended for use with 32-bit machines. SHA-1
offers more security by using a 160-bit hash, but is slower than MD5.

Supported Cipher Suites

A cipher suite is a SSL encryption method that includes the key exchange algorithm,
the symmetric encryption algorithm, and the secure hash algorithm used to protect the
integrity of the communication. For example, the cipher suite
RSA_WITH_RC4_128_MD5 uses RSA for key exchange, RC4 with a 128-bit key for
bulk encryption, and MD5 for message digest.
Using Security in CORBA Applications 2-11

2 Introduction to the SSL Technology
The CORBA security environment supports the cipher suites described in Table 2-1.

Standards for Digital Certificates

The CORBA security environment supports the digital certificates that conform to the
X.509v3 standard. The X.509v3 standard specifies the format of digital certificates.
BEA recommends obtaining certificates from a certificate authority such as Verisign
or Entrust.

Table 2-1 SSL Cipher Suites Supported by the CORBA Security Environment

Cipher Suite Key
Exchange
Type

Symmetric
Key
Strength

SSL_RSA_WITH_RC4_128_SHA RSA 128

SSL_RSA_WITH_RC4_128_MD5 RSA 128

SSL_RSA_WITH_DES_CDC_SHA RSA 56

SSL_RSA_EXPORT_WITH_RC4_40_MD5 RSA 40

SSL_RSA_EXPORT_WITH_DES40_CBC_SHA RSA 40

SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 RSA 40

SSL_DH_DSS_EXPORT_WITH_DES40_CBC_SHA Diffie-
Hellman

40

SSL_DH_RSA_EXPORT_WITH_DES40_CBC_SHA Diffie-
Hellman

40

SSL_RSA_WITH_3DES_EDE_CBC_SHA RSA 112

SSL_RSA_WITH_NULL_SHA RSA 0

SSL_RSA_WITH_NULL_MD5 RSA 0
2-12 Using Security in CORBA Applications

CHAPTER
3 Fundamentals of
CORBA Security

This topic includes the following sections:

n Link-Level Encryption

n Password Authentication

n The SSL Protocol

n Certificate Authentication

n Using an Authentication Plug-in

n Authorization

n Auditing

n Single Sign-on

n PKI Plug-ins

n Commonly Asked Questions About the CORBA Security Features

Link-Level Encryption

Link-Level Encryption (LLE) establishes data privacy for messages moving over the
network links. The objective of LLE is to ensure confidentiality so that a
network-based eavesdropper cannot learn the content of BEA Tuxedo system
Using Security in CORBA Applications 3-1

3 Fundamentals of CORBA Security
messages or CORBA application-generated messages. It employs the symmetric key
encryption technique (specifically, RC4), which uses the same key for encryption and
decryption.

When LLE is being used, the BEA Tuxedo system encrypts data before sending it over
a network link and decrypts it as it comes off the link. The system repeats this
encryption/decryption process at every link through which the data passes. For this
reason, LLE is referred to as a point-to-point facility.

LLE can be used to encrypt communication between machines and/or domains in a
CORBA application..

Note: LLE cannot be used to protect connections between remote CORBA client
applications and the IIOP Listener/Handler.

There are three levels of LLE security: 0-bit (no encryption), 56-bit (Export), and
128-bit (Domestic). The Export LLE version allows 0-bit and 56-bit encryption. The
Domestic LLE version allows 0, 56, and 128-bit encryption.

How LLE Works

LLE works in the following way:

1. The system administrator sets parameters for any processes that want to use LLE
to control the encryption strength.

l The first configuration parameter is the minimum encryption level that a
process will accept. It is expressed as a key length: 0, 56, or 128 bits.

l The second configuration parameter is the maximum encryption level a
process can support. It also is expressed as a key length: 0, 56, or 128 bits.

For convenience, the two parameters are denoted as (min, max). For example,
the values (56, 128) for a process mean that the process accepts at least 56-bit
encryption but can support up to 128-bit encryption.

2. An initiator process begins the communication session.

3. A target process receives the initial connection and starts to negotiate the
encryption level to be used by the two processes to communicate.

4. The two processes agree on the largest common key size supported by both.
3-2 Using Security in CORBA Applications

Link-Level Encryption
5. The configured maximum key size parameter is reduced to agree with the
installed software’s capabilities. This step must be done at link negotiation time,
because at configuration time it may not be possible to verify a particular
machine’s installed encryption package.

6. The processes exchange messages using the negotiated encryption level.

Figure 3-1 illustrates these steps.

Figure 3-1 How LLE Works

Encryption Key Size Negotiation

When two processes at the opposite ends of a network link need to communicate, they
must first agree on the size of the key to be used for encryption. This agreement is
resolved through a two-step process of negotiation.

1. Each process identifies its own min-max values.

2. Together, the two processes find the largest key size supported by both.
Using Security in CORBA Applications 3-3

3 Fundamentals of CORBA Security
Determining min-max Values

When either of the two processes starts up, the BEA Tuxedo system (1) checks the
bit-encryption capability of the installed LLE version by checking the LLE licensing
information in the lic.txt file and (2) checks the LLE min-max values for the
particular link type as specified in the two configuration files. The BEA Tuxedo
system then proceeds as follows:

n If the configured min-max values accommodate the installed LLE version, then
the local software assigns those values as the min-max values for the process.

n If the configured min-max values do not accommodate the installed LLE version,
for example, if the Export LLE version is installed but the configured min-max
values are (0, 128), then the local software issues a run-time error; link-level
encryption is not possible at this point.

n If there are no min-max values specified in the configurations for a particular
link type, then the local software assigns 0 as the minimum value and assigns the
highest bit-encryption rate possible for the installed LLE versions as the
maximum value, that is, (0, 128) for the Domestic LLE version.

Finding a Common Key Size

After the min-max values are determined for the two processes, the negotiation of key
size begins. The negotiation process need not be encrypted or hidden. Once a key size
is agreed upon, it remains in effect for the lifetime of the network connection.

Table 3-1 shows which key size, if any, is agreed upon by two processes when all
possible combinations of min-max values are negotiated. The header row holds the
min-max values for one process; the far left column holds the min-max values for the
other.

Table 3-1 Interprocess Negotiation Results

(0, 0) (0, 56) (0, 128) (56, 56) (56, 128) (128, 128)

(0, 0) 0 0 0 ERROR ERROR ERROR

(0, 56) 0 56 56 56 56 ERROR

(0, 128) 0 56 128 56 128 128
3-4 Using Security in CORBA Applications

Link-Level Encryption
WSL/WSH Connection Timeout During Initialization

The length of time a Workstation client can take for initialization is limited. By default,
this interval is 30 seconds in an application not using LLE, and 60 seconds in an
application using LLE. The 60-second interval includes the time needed to negotiate
an encrypted link. This time limit can be changed when LLE is configured by changing
the value of the MAXINITTIME parameter for the Workstation Listener (WSL) server
in the UBBCONFIG file, or the value of the TA_MAXINITTIME attribute in the T_WSL
class of the WS_MIB(5).

Development Process

To use LLE in a CORBA application, you need to install a license that enables the use
of LLE. For information about installing the license, see Installing the BEA Tuxedo
System.

The implementation of LLE is an administrative task. The system administrators for
each CORBA application set min-max values in the UBBCONFIG file that control
encryption strength. When the two CORBA applications establish communication,
they negotiate what level of encryption to use to exchange messages. Once an
encryption level is negotiated, it remains in effect for the lifetime of the network
connection.

(56, 56) ERROR 56 56 56 56 ERROR

(56, 128) ERROR 56 128 56 128 128

(128, 128) ERROR ERROR 128 ERROR 128 128

Table 3-1 Interprocess Negotiation Results (Continued)

(0, 0) (0, 56) (0, 128) (56, 56) (56, 128) (128, 128)
Using Security in CORBA Applications 3-5

3 Fundamentals of CORBA Security
Password Authentication

The CORBA security environment supports a password mechanism to provide
authentication to existing CORBA applications and to new CORBA applications that
are not prepared to deploy a full Public Key Infrastructure (PKI). When using
password authentication, the applications that initiate invocations on CORBA objects
authenticate themselves to the BEA Tuxedo domain using a defined username and
password.

The following levels of password authentication are provided:

n None—indicates that no password or access checking is performed in the
CORBA application.

n Application Password—indicates that users are required to supply a domain
password in order to access the CORBA application.

n User Authentication—indicates that users are required to supply an application
password as well as the domain password in order to access the CORBA
application.

n ACL—indicates that authorization is used in the CORBA application and access
control checks are performed on interfaces, queue names, and event names. If an
associated ALC is not found for a user, it is assumed that access is granted.

n Mandatory ACL—indicates that authorization is used in the CORBA application
and access control checks are performed on interfaces, queue names, and event
names. The value of Mandatory ACL is similar to ACL, but permission is
denied if an associated ACL is not found for the user.

When using Password authentication, you have the option of using the
Tobj::PrincipalAuthenticator::logon() or the
SecurityLevel2::PrincipalAuthenticator::authenticate() methods in
your client application.

If you use password authentication, the SSL protocol can be used to provide
confidentiality and integrity to communication between applications. For more
information, see “The SSL Protocol” on page 3-10.
3-6 Using Security in CORBA Applications

Password Authentication
How Password Authentication Works

Password authentication works in the following way:

1. The initiating application accesses the BEA Tuxedo domain in one of the following
ways:

l Through the CORBA Interoperable Naming Service (INS) Bootstrapping
mechanism. Use this mechanism if you are using a client ORB from another
vendor. For more information about using CORBA INS, see the CORBA
Programming Reference in the BEA Tuxedo online documentation

l The BEA Bootstrapping mechanism. Use this mechanism if you are using
BEA CORBA client applications.

2. The initiating application obtains credentials for the user. The initiating
application must provide proof material to be used by the BEA Tuxedo domain to
authenticate the user. This proof material consists of the name of the user and a
password.

l The initiating application creates the security context using a
PrincipalAuthenticator object. The request for authentication is sent to
the IIOP Listener/Handler. The proof material in the authentication request is
securely relayed to the authentication server, which verifies the supplied
information.

l If the verification succeeds, the BEA Tuxedo system constructs a
Credentials object that is used by all future invocations. The
Credentials object for the user is associated with the Current object that
represents the security context.

3. The initiating application invokes a CORBA object in the BEA Tuxedo domain
using an object reference. The request is packaged into an IIOP request and is
forwarded to the IIOP Listener/Handler that associates the request with the
previously established security context.

4. The IIOP Listener/Handler receives the request from the initiating application.

5. The IIOP Listener/Handler forwards the request, along with the credentials of the
initiating application, to the appropriate CORBA object.

Figure 3-2 illustrates these steps.
Using Security in CORBA Applications 3-7

3 Fundamentals of CORBA Security
Figure 3-2 How Password Authentication Works

Development Process for Password Authentication

Defining password authentication for a CORBA application includes administration
and programming steps. Table 3-2 and Table 3-3 list the administration and
programming steps for password authentication. For a detailed description of the
administration steps for password authentication, see “Configuring Authentication” on
page 7-1. For a complete description of the programming steps, see “Writing a
CORBA Application That Implements Security” on page 10-1.

Table 3-2 Administration Steps for Password Authentication

Step Description

1 Set the SECURITY parameter in the UBBCONFIG file to APP_PW, USER_AUTH,
ACL, or MANDATORY_ACL.
3-8 Using Security in CORBA Applications

Password Authentication
2 If you defined the SECURITY parameter as USER_AUTH, ACL, or
MANDATORY_ACL, configure the authentication server (AUTHSRV) in the
UBBCONFIG file.

3 Use the tpusradd and tpgrpadd commands to define lists of authorized users
and groups including the IIOP Listener/Handler.

4 Use the tmloadcf command to load the UBBCONFIG file. When the UBBCONFIG
file is loaded, the system administrator is prompted for a password. The password
entered at this time becomes the password for the CORBA application.

Table 3-3 Programming Steps for Password Authentication

Step Description

1 Write application code that uses the Bootstrap object to obtain a reference to the
SecurityCurrent object or CORBA INS to obtain a reference to a
PrincipalAuthenticator object in the BEA Tuxedo domain.

2 Write application code that obtains the PrincipalAuthenticator object from the
SecurityCurrent object.

3 Write application code that uses the
Tobj::PrincipalAuthenticator::logon() or
SecurityLevel2::PrincipalAuthenticator::authenticate()
operation to establish a security context with the BEA Tuxedo domain.

4 Write application code that prompts the user for the password defined when the
UBBCONFIG file is loaded.

Table 3-2 Administration Steps for Password Authentication (Continued)

Step Description
Using Security in CORBA Applications 3-9

3 Fundamentals of CORBA Security
The SSL Protocol

The BEA Tuxedo product provides the industry-standard SSL protocol to establish
secure communications between client and server applications. When using the SSL
protocol, principals use digital certificates to prove their identity to a peer.

The default behavior of the SSL protocol in the CORBA security environment is to
have the IIOP Listener/Handler prove its identity to the principal who initiated the SSL
connection using digital certificates. The digital certificates are verified to ensure that
each of the digital certificates has not been tampered with or expired. If there is a
problem with any of the digital certificates in the chain, the SSL connection is
terminated. In addition, the issuer of a digital certificate is compared against a list of
trusted certificate authorities to verify the digital certificate received from the IIOP
Listener/Handler has been signed by a certificate authority that is trusted by the BEA
Tuxedo domain.

Like LLE, the SSL protocol can be used with password authentication to provide
confidentiality and integrity to communication between the client application and the
BEA Tuxedo domain. When using the SSL protocol with password authentication, you
are prompted for the password of the IIOP Listener/Handler defined by the
SEC_PRINCIPAL_NAME parameter when you enter the tmloadcf command.

How the SSL Protocol Works

The SSL protocol works in the following manner:

1. The IIOP Listener/Handler presents its digital certificate to the initiating
application.

2. The initiating application compares the digital certificate of the IIOP
Listener/Handler against its list of trusted certificate authorities.

3. If the initiating application validates the digital certificate of the IIOP
Listener/Handler, the application and the IIOP Listener/Handler establish an SSL
connection.

The initiating application can then use either password or certificate
authentication to authenticate itself to the BEA Tuxedo domain.
3-10 Using Security in CORBA Applications

The SSL Protocol
Figure 3-3 illustrates how the SSL protocol works.

Figure 3-3 How the SSL Protocol Works in a CORBA Application

Requirements for Using the SSL Protocol

To use the SSL protocol in a CORBA application, you need to install a license that
enables the use of the SSL protocol and PKI. For information about installing the
license for the security features, see Installing the BEA Tuxedo System.

The implementation of the SSL protocol is flexible enough to fit into most public key
infrastructures. The BEA Tuxedo product requires that digital certificates are stored in
an LDAP-enabled directory. You can choose any LDAP-enabled directory service.
You also need to choose the certificate authority from which to obtain digital
certificates and private keys used in a CORBA application. You must have an
LDAP-enabled directory service and a certificate authority in place before using the
SSL protocol in a CORBA application.
Using Security in CORBA Applications 3-11

3 Fundamentals of CORBA Security
Development Process for the SSL Protocol

Using the SSL protocol in a CORBA application is primarily an administration
process. Table 3-5 lists the administration steps required to set up the infrastructure
required to use the SSL protocol and configure the IIOP Listener/Handler for the SSL
protocol. For a detailed description of the administration steps, see “Managing Public
Key Security” on page 4-1 and “Configuring the SSL Protocol” on page 6-1.

Once the administration steps are complete, you can use either password
authentication or certificate authentication in your CORBA application. For more
information, see “Writing a CORBA Application That Implements Security” on
page 10-1.

Note: If you are using the BEA CORBA C++ ORB as a server application, the ORB
can also be configured to use the SSL protocol. For more information, see
“Configuring the SSL Protocol” on page 6-1.

Table 3-4 Administration Steps for the SSL Protocol

Step Description

1 Set up an LDAP-enabled directory service. You will be prompted for the name of
the LDAP server during the installation of the BEA Tuxedo product.

2 Install the license for the SSL protocol.

3 Obtain a digital certificate and private key for the IIOP Listener/Handler from a
certificate authority.

4 Publish the digital certificates for the IIOP Listener/Handler and the certificate
authority in the LDAP-enabled directory service.

5 Define the SEC_PRINCIPAL_NAME, SEC_PRINCIPAL_LOCATION, and
SEC_PRINCIPAL_PASSVAR parameters for the ISL server process in the
UBBCONFIG file.

6 Set the SECURITY parameter in the UBBCONFIG file to NONE.

7 Define a port for secure communication on the IIOP Listener/Handler using the -S
option of the ISL command.

8 Create a Trusted Certificate Authority file (trust_ca.cer) that defines the
certificate authorities trusted by the IIOP Listener/Handler.
3-12 Using Security in CORBA Applications

The SSL Protocol
If you use the SSL protocol with password authentication, you need to set the
SECURITY parameter in the UBBCONFIG file to desired level of authentication and if
appropriate, configure the Authentication Server (AUTHSRV). For information about the
administration steps for password authentication, see “Password Authentication” on
page 3-6.

Figure 3-4 illustrates the configuration of a CORBA application that uses the SSL
protocol.

9 Use the tmloadcf command to load the UBBCONFIG file.

10 Optionally, create a Peer Rules file (peer_val.rul) for the IIOP
Listener/Handler.

11 Optionally, modify the LDAP Search filter file to reflect the directory hierarchy in
place in your enterprise.

Table 3-4 Administration Steps for the SSL Protocol (Continued)

Step Description
Using Security in CORBA Applications 3-13

3 Fundamentals of CORBA Security
Figure 3-4 Configuration for Using the SSL Protocol in a CORBA Application

Certificate Authentication

Certificate authentication requires that each side of an SSL connection proves its
identity to the other side of the connection. In the CORBA security environment, the
IIOP Listener/Handler presents its digital certificate to the principal who initiated the
SSL connection. The initiator then provides a chain of digital certificates that are used
by the IIOP Listener/Handler to verify the identity of the initiator.
3-14 Using Security in CORBA Applications

Certificate Authentication
Once a chain of digital certificates is successfully verified, the IIOP Listener/Handler
retrieves the value of the distinguished name from the subject of the digital certificate.
The CORBA security environment uses the e-mail address element of the subject’s
distinguished name as the identity of the principal. The IIOP Listener/Handler uses the
identity of the principal to impersonate the principal and establish a security context
between the initiating application and the BEA Tuxedo domain.

Once the principal has been authenticated, the principal that initiated the request and
the IIOP Listener/Handler agree on a cipher suite that represents the type and strength
of encryption that they both support. They also agree on the encryption key and
synchronize to start encrypting all subsequent messages.

Figure 3-5 provides a conceptual overview of the certificate authentication.

Figure 3-5 Certificate Authentication

How Certificate Authentication Works

Certificate authentication works in the following manner:

1. The initiating application accesses the BEA Tuxedo domain in one of the following
ways:

l Through the CORBA INS Bootstrapping mechanism. Use this mechanism if
you are using a client ORB from another vendor. For more information about
Using Security in CORBA Applications 3-15

3 Fundamentals of CORBA Security
using CORBA INS, see CORBA Programming Reference in the BEA Tuxedo
online documentation.

l The BEA Bootstrapping mechanism. Use this mechanism if you are using the
BEA client ORB.

2. The initiating application instantiates the Bootstrap object with a URL in the
form of corbaloc://host:port or corbalocs://host:port and controls the
requirement for protection by setting attributes on the
SecurityLevel2::Credentials object returned as a result of the
SecurityLevel2::PrincipalAuthenticator::authenticate operation.

Note: You can also use the SecurityLevel2::Current::authenticate()
method to secure the bootstrapping process and specify that certificate
authentication is to be used.

3. The initiating application obtains the digital certificates and the private key of the
principal. Retrieval of this information may require proof material to be supplied
to gain access to the principal’s private key and certificate. The proof material
typically is a pass phrase rather than a password.

 The security context is established as result of a
SecurityLevel2::PrincipalAuthenticator::authenticate() method.

The IIOP Listener/Handler receives and validates the application’s digital
certificate as part of the authentication process.

4. If the verification succeeds, the BEA Tuxedo system constructs a Credentials
object. The Credentials object for the principal represents the security context
for the current thread of execution.

5. The initiating application invokes a CORBA object in the BEA Tuxedo domain
using an object reference.

6. The request is packaged into an IIOP request and is forwarded to the IIOP
Listener/Handler that associates the request with the established security context.

7. The request is digitally signed and encrypted before it is sent to the IIOP
Listener/Handler. The BEA Tuxedo system performs the signing and sealing of
requests.

8. The IIOP Listener/Handler receives the request from the initiating application.
The request is decrypted.
3-16 Using Security in CORBA Applications

Certificate Authentication
9. The IIOP Listener/Handler retrieves the e-mail component of the subjectDN of
the principal’s and uses that as the identity of the user.

10. The IIOP Listener/Handler forwards the request, along with the associated tokens
of the principal, to the appropriate CORBA object.

Figure 3-6 How Certificate Authentication Works

Development Process for Certificate Authentication

To use certificate authentication in a CORBA application, you need to install a license
that enables the use of the SSL protocol and PKI. For information about installing the
license, see Installing the BEA Tuxedo System.
Using Security in CORBA Applications 3-17

3 Fundamentals of CORBA Security
Using certificate authentication in a CORBA application includes administration and
programming steps. Table 3-5 and Table 3-6 list the administration and programming
steps for certificate authentication. For a detailed description of the administration
steps, see “Managing Public Key Security” on page 4-1 and “Configuring the SSL
Protocol” on page 6-1.

Table 3-5 Administration Steps for Certificate Authentication

Step Description

1 Set up an LDAP-enabled directory service. You will be prompted for the name of
the LDAP server during the installation of the BEA Tuxedo product.

2 Install the license for the SSL protocol.

3 Obtain a digital certificate and private key for the IIOP Listener/Handler from a
certificate authority.

4 Obtain digital certificates and private keys for the CORBA client applications from
a certificate authority.

5 Store the private key files for the CORBA client applications and the IIOP
Listener/Handler in the Home directory of the user or in
$TUXDIR/udataobj/security/keys.

6 Publish the digital certificates for the IIOP Listener/Handler, the CORBA
applications, and the certificate authority in the LDAP-enabled directory service.

7 Define the SEC_PRINCIPAL_NAME, SEC_PRINCIPAL_LOCATION, and
SEC_PRINCIPAL_PASSVAR for the ISL server process in the UBBCONFIG file.

8 Set the SECURITY parameter in the UBBCONFIG file to USER_AUTH, ACL, or
MANDATORY_ACL.

9 Configure the Authentication Server (AUTHSRV) in the UBBCONFIG file.

10 Use the tpusradd and tpgrpadd commands to define the authorized Users and
Groups of your CORBA application.

11 Define a port for SSL communication on the IIOP Listener/Handler using the -S
option of the ISL command.

12 Enable certificate authentication in the IIOP Listener/Handler using the -a option
of the ISL command.
3-18 Using Security in CORBA Applications

Certificate Authentication
Figure 3-7 illustrates the configuration of a CORBA application that uses certificate
authentication.

13 Create a Trusted Certificate Authority file (trust_ca.cer) that defines the
certificate authorities trusted by the IIOP Listener/Handler.

12 Create a Trusted Certificate Authority file (trust_ca.cer) that defines the
certificate authorities trusted by the CORBA client application.

13 Use the tmloadcf command to load the UBBCONFIG file. You will be prompted
for the password of the IIOP Listener/Handler defined in the
SEC_PRINCIPAL_NAME parameter.

14 Optionally, create a Peer Rules file (peer_val.rul) for both the CORBA client
application and the IIOP Listener/Handler.

15 Optionally, modify the LDAP Search filter file to reflect the directory hierarchy in
place in your enterprise.

Table 3-5 Administration Steps for Certificate Authentication (Continued)

Step Description
Using Security in CORBA Applications 3-19

3 Fundamentals of CORBA Security
Figure 3-7 Configuration for Using Certificate Authentication in a CORBA
Application

Table 3-6 lists the programming steps for using certificate authentication in a CORBA
application. For more information, see “Writing a CORBA Application That
Implements Security” on page 10-1.
3-20 Using Security in CORBA Applications

Using an Authentication Plug-in
Using an Authentication Plug-in

The BEA Tuxedo product allows the integration of authentication plug-ins into a
CORBA application. The BEA Tuxedo product can accommodate authentication
plug-ins using various authentication technologies, including shared-secret password,
one-time password, challenge-response, and Kerberos. The authentication interface is
based on the generic security service (GSS) application programming interface (API)
where applicable and assumes authentication plug-ins have been written to the
GSSAPI.

If you chose to use an authentication plug-in, you must configure the authentication
plug-in in the registry of the BEA Tuxedo system. For more detail about the registry,
see “Configuring Security Plug-ins” on page 9-1.

For more information about an authentication plug-ins, including installation and
configuration procedures, see your BEA account executive.

Table 3-6 Programming Steps for Certificate Authentication

Step Description

1 Write application code that uses the corbaloc or corbalocs URL address
formats of the Bootstrap object. Note that the CommonName in the Distinguished
Name of the certificate of the IIOP Listener/Handler must match exactly the host
name provided in the URL address format. For more information on the URL
address formats, see “Using the Bootstrapping Mechanism” on page 10-1.

You can also use the CORBA INS bootstrap mechanism to object a reference to a
PrincipalAuthenticator object in the BEA Tuxedo domain. For more information
about using CORBA INS, see the CORBA Programming Reference.

2 Write application code that uses the authenticate() method of the
SecurityLevel2::PrincipalAuthenticator interface to perform
authentication. Specify Tobj::CertificateBased for the method argument
and the pass phrase for the private key as the auth_data argument for
Security::Opaque.
Using Security in CORBA Applications 3-21

3 Fundamentals of CORBA Security
Authorization

Authorization allows system administrators to control access to CORBA applications.
Specifically, an administrator can use authorization to allow or disallow principals to
use resources or services provided by a CORBA application.

The CORBA security environment supports the integration of authorization plug-ins.
Authorization decisions are based in part on the user identity represented by an
authorization token. Authorization tokens are generated during the authentication
process so coordination between the authentication plug-in and the authorization
plug-in is required.

If you chose to use an authorization plug-in, you must configure the authorization
plug-in the registry of the BEA Tuxedo system. For more detail about the registry, see
“Configuring Security Plug-ins” on page 9-1.

For more information about authorization plug-ins, including installation and
configuration procedures, see your BEA account executive.

Auditing

Auditing provides a means to collect, store, and distribute information about operating
requests and their outcomes. Audit-trail records may be used to determine which
principals performed, or attempted to perform, actions that violated the configured
security policies of a CORBA application. They may also be used to determine which
operations were attempted, which ones failed, and which ones successfully completed.

The current implementation of the auditing feature supports the recording of logon
failures, impersonation failures, and disallowed operations into the ULOG file. In the
case of disallowed operations, the value of the parameters to the operation are not
provided because there is no way to know the order and data types of the parameter for
an arbitrary operation. Audit entries for logon and impersonation include the identity
of the principal attempting to be authenticated. For information about setting up the
ULOG file, see Setting Up a BEA Tuxedo Application.
3-22 Using Security in CORBA Applications

Auditing
You can enhance the auditing capabilities of your CORBA application by using an
auditing plug-in. The BEA Tuxedo system will invoke the auditing plug-in at
predefined execution points, usually before an operation is attempted and then when
potential security violations are detected or when operations are successfully
completed. The actions taken to collect, process, protect, and distribute auditing
information depend on the capabilities of the auditing plug-in. Care should be taken
with the performance impact of audit information collection, especially successful
operation audits, which may occur at a high rate.

Auditing decisions are based partly on user identity, which is stored in an auditing
token. Because auditing tokens are generated by the authentication plug-in, providers
of authentication and auditing plug-ins need to ensure that these plug-ins work
together.

The purpose of an auditing request is to record an event. Each auditing plug-in returns
one of two responses: success (the audit succeeded and the event was logged) or
failure (the audit failed and the event was not logged the event). An auditing plug-in
is called once before the operation is performed and once after the operation
completes.

n The preoperation audit allows the auditing of both attempts to call an operation,
and also allows storage of input data for the postoperation check.

n The postoperation audit reports the status of the completion of an operation. For
failure status, the postoperation audit is called to report a potential security
violation. Usually this type of report is issued when a preoperation or
postoperation authorization check fails or when some other potential security
attack is detected.

Multiple implementations of the auditing plug-in can be used in a CORBA application.
Using multiple authorization plug-ins causes more than one preoperation and
postoperation auditing operation to be performed.

When using multiple auditing plug-ins, all the plug-ins are placed under a single
master auditing plug-in. Each subordinate authorization plug-in returns SUCCESS or
FAILURE. If any plug-in fails the operation, the auditing master plug-in determines the
outcome to be FAILURE. Other error returns are also considered FAILURE. Otherwise,
SUCCESS is the outcome.
Using Security in CORBA Applications 3-23

3 Fundamentals of CORBA Security
In addition, a BEA Tuxedo system process may call an auditing plug-in when a
potential security violation occurs. (Suspicion of a security violation arises when a
preoperation or postoperation authorization check fails or when an attack on security
is detected.) In response, the auditing plug-in performs a postoperation audit and
returns whether the audit succeeded.

The auditing process is somewhat different for users of the auditing feature provided
by the BEA Tuxedo product and users of auditing plug-ins. The default auditing
feature does not support preoperation audits. If the default auditing feature receives a
preoperation audit request, it returns immediately and does nothing.

If you chose to use an auditing plug-in other than the default auditing plug-in, you must
configure the auditing plug-in the registry of the BEA Tuxedo system. For more detail
about the registry, see “Configuring Security Plug-ins” on page 9-1.

For more information about auditing plug-ins, including installation and configuration
procedures, see your BEA account executive.

Single Sign-on

Single sign-on allows authenticated WebLogic Server Users in a WebLogic Server
security realm to make secure requests on CORBA objects in a BEA Tuxedo domain.
Single sign-on is only supported over the connection pool provided by WebLogic
Enterprise Connectivity and only if the connection pool has established a trust
relationship with the CORBA environment. The trust relationship of the pool can be
established in one of the following ways:

n With password authentication. In this scenario, the WebLogic Server User is
authenticated but the request between the WebLogic Server realm and the BEA
Tuxedo domain is unprotected.

n With password authentication and the SSL protocol. In this scenario, the SSL
protocol is used to protect the integrity and confidentiality of the request.

n With the SSL protocol and certificate authentication. This is the most secure
scenario, however, it requires that both WebLogic Server and the CORBA
application implement public key security.
3-24 Using Security in CORBA Applications

PKI Plug-ins
“Configuring Single Sign-on” on page 8-1 describes how to implement each of the
Single sign-on options.

PKI Plug-ins

The BEA Tuxedo product provides a PKI environment which includes the SSL
protocol and the infrastructure needed to use digital certificates in a CORBA
application. However, you can use the PKI interfaces to integrate a PKI plug-in that
supplies custom message-based digital signature and message-based encryption to
your CORBA applications. Table 3-7 describes the PKI interfaces.

Table 3-7 PKI Interfaces

PKI Interface Description

Public key initialization Allows public key software to open public and
private keys. For example, gateway processes may
need to have access to a specific private key in
order to decrypt messages before routing them.

Key management Allows public key software to manage and use
public and private keys. Note that message digests
and session keys are encrypted and decrypted
using this interface, but no bulk data encryption is
performed using public key cryptography. Bulk
data encryption is performed using symmetric key
cryptography.

Certificate lookup Allows public key software to retrieve X.509v3
digital certificates for a given principal. Digital
certificates may be stored using any appropriate
certificate repository, such as Lightweight
Directory Access Protocol (LDAP).

Certificate parsing Allows public key software to associate a simple
principal name with an X.509v3 digital certificate.
The parser analyzes a digital certificate to generate
a principal name to be associated with the digital
certificate.
Using Security in CORBA Applications 3-25

3 Fundamentals of CORBA Security
The PKI interfaces support the following algorithms:

n Public key algorithms: Rivest, Shamir, and Adelman (RSA) and Digital
Signature Algorithm (DSA)

n Symmetric key algorithms:

l Data Encryption Standard for Cipher Block Chaining (DES-CBC)

l Two-key triple-DES

l Rivest’s Cipher 4 (RC4)

n Message digest algorithms:

l Message Digest 5 (MD5)

l Secure Hash Algorithm 1 (SHA-1)

If you chose to use a PKI plug-in, you must configure the PKI plug-in in the registry
of the BEA Tuxedo system. For more detail about the registry, see “Configuring
Security Plug-ins” on page 9-1.

For more information about PKI plug-ins, including installation and configuration
procedures, see your BEA account executive.

Certificate validation Allows public key software to validate an X.509v3
digital certificate in accordance with specific
business logic.

Proof material mapping Allows public key software to access the proof
materials needed to open keys, provide
authorization tokens, and provide auditing tokens.

Table 3-7 PKI Interfaces (Continued)

PKI Interface Description
3-26 Using Security in CORBA Applications

Commonly Asked Questions About the CORBA Security Features
Commonly Asked Questions About the
CORBA Security Features

The following sections answer some of the commonly asked questions about the
CORBA security features.

Do I Have to Change the Security in an Existing CORBA
Application?

The answer is no. If you are using security interfaces from previous versions of the
WebLogic Enterprise product in your CORBA application there is no requirement for
you to change your CORBA application. You can leave your current security scheme
in place and your existing CORBA application will work with CORBA applications
built with the BEA Tuxedo 8.0 product.

For example, if your CORBA application consists of a set of server applications which
provide general information to all client applications which connect to them, there is
really no need to implement a stronger security scheme. If your CORBA application
has a set of server applications which provide information to client applications on an
internal network which provides enough security to detect sniffers, you do not need to
implement the additional security features.

Can I Use the SSL Protocol in an Existing CORBA
Application?

The answer is yes. You may want to take advantage of the extra security protection
provided by the SSL protocol in your existing CORBA application. For example, if
you have a CORBA server application which provides stock prices to a specific set of
client applications, you can use the SSL protocol to make sure the client applications
are connected to the correct CORBA server application and that they are not being
routed to a fake CORBA server application with incorrect data. A username and
Using Security in CORBA Applications 3-27

3 Fundamentals of CORBA Security
password is sufficient proof material to authenticate the client application. However,
by using the SSL protocol, the message request/reply information can be protected as
an additional level of security.

The SSL protocol offers CORBA applications the following benefits:

n Protection of the entire conversation including the initial bootstrapping process.
The SSL protocol protects against Man-In-The-Middle attacks, replay attacks,
tampering, and sniffing.

n Even if you only use the default settings, the SSL protocol provides signed and
sealed protection since the default encryption settings are a minimum of 56 bits
by default.

n Client verification of the connected IIOP Listener/Handler using the digital
certificate of the IIOP Listener/Handler. The client application can then apply
additional security rules to restrict access to the client application by the IIOP
Listener/Handler. This protection also applies to IIOP Listener/Handlers
connecting to remote server applications when using callback objects.

To use the SSL protocol in a CORBA application, set up the infrastructure to use
digital certificates, change the command-line options on the ISL server process to use
the SSL protocol, and configure a port for secure communications on the IIOP
Listener/Handler. If your existing CORBA application uses password authentication,
you can use that code with the SSL protocol. If your CORBA C++ client application
does not already catch the InvalidDomain exception when resolving initial
references to the Bootstrap object and performing authentication, write code to handle
this exception. For more information, see “Single Sign-on” on page 3-24.

Note: The Java implementation of the
Tobj_Bootstrap::resolve_initial_references() method does not
throw an InvalidDomain exception. When the corbaloc or corbalocs
URL address formats are used, the
Tobj_Bootstrap::resolve_initial_references() method internally
catches the InvalidDomain exception and throws the exception as a
COMM_FAILURE. The method functions this way in order to provide backward
compatibility.
3-28 Using Security in CORBA Applications

Commonly Asked Questions About the CORBA Security Features
When Should I Use Certificate Authentication?

You might be ready to migrate your existing CORBA application to use Internet
connections between the CORBA application and Web browsers and commercial Web
servers. For example, users of your CORBA application might be shopping over the
Internet. The users must be confident that:

n They are in fact communicating with the server at the online store and not an
impostor that mimics the store’s server to get credit card information.

n The data exchanged between the user of the CORBA application and the online
store will be unintelligible to network eavesdroppers.

n The data exchanged with the online store will arrive unaltered. An instruction to
order $500 worth of merchandise must not accidently or maliciously become a
$5000 order.

In these situations, the SSL protocol and certificate authentication offer CORBA
applications the maximum level of protection. In addition to the benefits achieved
through the use of the SSL protocol, certificate authentication offers CORBA
applications:

n IIOP Listener/Handler verification of the client application that initiates a
request using the digital certificate of the client application. In addition, the IIOP
Listener/Handler can apply additional rules which restrict access to the client
application based on the identity established by the digital certificate. A remote
ORB acting as a server application can also be configured to allow mutual
authentication and verify the identity of a client application based on a digital
certificate.

n Inside the BEA Tuxedo domain, the client application can still have a BEA
Tuxedo username and password. The IIOP Listener/Handler maps the identity
defined in a digital certificate to a BEA Tuxedo username and password thus
allowing existing CORBA applications to have an identity in native CORBA
server applications.

 For more information, see “Single Sign-on” on page 3-24.
Using Security in CORBA Applications 3-29

3 Fundamentals of CORBA Security
3-30 Using Security in CORBA Applications

Part II Security
Adminstration
 Chapter 4. Managing Public Key Security

 Chapter 5. Configuring Link-Level Encryption

 Chapter 6. Configuring the SSL Protocol

 Chapter 7. Configuring Authentication

 Chapter 8. Configuring Single Sign-on

 Chapter 9. Configuring Security Plug-ins

CHAPTER
4 Managing Public Key
Security

This topic includes the following sections:

n Requirements for Using Public Key Security

n Who Needs Digital Certificates and Private/Private Key Pairs?

n Requesting a Digital Certificate

n Publishing Certificates in the LDAP Directory Service

n Editing the LDAP Search Filter File

n Storing the Private Keys in a Common Location

n Defining the Trusted Certificate Authorities

n Creating a Peer Rules File

Perform the tasks in this topic only if you are using the SSL protocol, or certificate
authentication in your CORBA application.

Requirements for Using Public Key Security

To use the SSL protocol and public key security to protect communication between
principals and the BEA Tuxedo domain, you need to install a special license. For
information about installing the license, see Installing the BEA Tuxedo System.
Using Security in CORBA Applications 4-1

4 Managing Public Key Security
You also need to choose a Lightweight Directory Access Protocol server and a
certificate authority (either commercial or private) setup for your organization before
implementing Public Key Security.

Who Needs Digital Certificates and
Private/Private Key Pairs?

To use the SSL protocol in the CORBA security environment, you need a private key
and a digitally-signed certificate containing the matching public key. How many
digital certificates and private keys you need depends on how you plan to use the SSL
protocol.

n If the SSL protocol is being used for protection of a network connection between
a remote client and the IIOP Listener/Handler, you need to obtain a digital
certificate and private key for the IIOP Listener/Handler.

n If the SSL protocol is being used with certificate authentication, you need to
obtain a digital certificate and private key for the IIOP Listener/Handler and
each principal that will access the CORBA application.

Any digital certificate that is obtained and used must be issued from a trusted
certificate authority defined in the trusted CA file. For more information, see
“Defining the Trusted Certificate Authorities” on page 4-7.

Requesting a Digital Certificate

To acquire a digital certificate, you need to submit your request for a digital certificate
in a particular format called a certificate signature request (CSR). How you create a
CSR depends on the certificate authority you use. Certificate authorities typically
provide a means to generate a public key, private key, and a CSR which contains your
public key. To create a CSR follow the steps outlined by your chosen certificate
authority.
4-2 Using Security in CORBA Applications

Publishing Certificates in the LDAP Directory Service
When you complete the steps to create a CSR, you receive the following files from the
certificate authority:

To purchase a digital certificate from a certificate authority, you submit the CSR to the
certificate authority according to the enrollment procedure of the certificate authority.
Some commercial certificate authorities allow you to purchase digital certificates
through the Web.

Publishing Certificates in the LDAP Directory
Service

The use of a global directory service is the most popular way to store digital
certificates. A directory service simplifies the management of information that needs
to be globally available to an ever-growing number of users. An LDAP server provides
access to a variety of directory services.

The CORBA security environment in the BEA Tuxedo product, when configured to
use the SSL protocol, can retrieve digital certificates for principals and certificate
authorities from an LDAP directory service, such as Netscape Directory Service or
Microsoft Active Directory. Before you can use the SSL protocol or certificate
authentication, you need to install an LDAP directory service and configure it for your
organization. BEA Systems does not provide nor recommend any specific LDAP
directory service. However, the LDAP directory service you choose should support the
X.500 scheme definition and the LDAP version 2 or 3 protocol.

File Description

key.der The private key file.

request.pem The CSR file which you submit to the
certificate authority. It contains the same data
as the .dem file but the file is encoded in
ASCII so that you can copy it into e-mail or
paste it into a Web form.
Using Security in CORBA Applications 4-3

4 Managing Public Key Security
LDAP directory services define a hierarchy of object classes. While there are a number
of different object classes, there is a small set associated with digital certificates.
Figure 4-1 illustrates the object classes typically associated with digital certificates.

Figure 4-1 LDAP Directory Structure for Digital Certificates

Once you receive your digital certificates from the certificate authority, store them in
the LDAP directory service as follows:

n Digital certificates for the IIOP Listener/Handler and any principals are stored in
the LDAP directory service with an attribute of userCertificate on an object
class with that attribute defined. Typically, these digital certificates are stored as
an instance of the strongAuthenticationUser object class as defined by
X.500.

n Digital certificates for certificate authorities are stored in LDAP directory
service with an attribute of caCertificate on an object class with that
attribute defined. Typically, these digital certificates are stored as an instance of
the certificateAuthority class as defined by X.500.

If your LDAP scheme requires the use of different classes, you will need to modify the
LDAP search file as described in “Editing the LDAP Search Filter File” on page 4-5.

The BEA Tuxedo product requires that the digital certificates be stored in the directory
service in Privacy Enhanced Mail (PEM) format.

Refer to Installing the BEA Tuxedo System for information about integrating an LDAP
directory service into the CORBA security environment.

root

strongAuthenticationUser

userCertificate

certificationAuthority

caCertificate
4-4 Using Security in CORBA Applications

Editing the LDAP Search Filter File
Editing the LDAP Search Filter File

When configuring a CORBA application to use the SSL protocol or certificate
authentication, you may need to customize the LDAP search filter file to limit the
scope of the search of the directory service or specify the object classes that will be
used to hold the digital certificates. Customizing the LDAP search filter file can result
in significant performance gains. The BEA Tuxedo product ships with the following
LDAP search filters:

n A filter stanza that searches the directory service for digital certificates assigned
to certificate authorities. The filter limits its search to instances of the
certificationAuthority object class.

n A filter stanza that searches the directory service for digital certificates assigned
to principals. The filter limits its search to instances of the
strongAuthenticationUser object class.

If the directory service scheme for your organization is defined to store digital
certificates in object classes other than certificationAuthority and
strongAuthenticationUser, the LDAP search filter file must be modified to
specify those object classes.

You can specify a location of the LDAP search filter file during the installation of the
BEA Tuxedo product. For more information, see Installing the BEA Tuxedo System.

The LDAP search filter file should be owned by the administrator account. BEA
recommends that the file be protected so that only the owner has read and write
privileges for the file and all other users have only read privileges for the file.

To limit the search of the directory service for digital certificates for principals and
certificate authorities, you need to modify the filter stanzas identified by the following
tags in the LDAP search filter file:

n BEA_person_lookup

n BEA_issuer_lookup

These tags identify the stanzas in the LDAP search filter file that contains the filter
expression that will be used when looking up information in the directory service.
These BEA-specific tags allow the stanzas of an LDAP search filter file to be stored in
a common LDAP search filter file with stanzas used by other LDAP-enabled
applications that might be found in your organization.
Using Security in CORBA Applications 4-5

4 Managing Public Key Security
The following is an example of the stanzas of an LDAP search filter file used by the
BEA Tuxedo product for the SSL protocol and certificate authentication:

“BEA_person_lookup”
 “.*” “ “ “(|(objectClass=strongAuthenticationUser) (mail=%v))”
 “e-mail address”
 “(|(objectClass=strongAuthenticationUser) (mail=%v))”
 “start of e-mail address”
“BEA_issuer_lookup”
 “.*” “ ” “(&(objectClass=certificationAuthority)
 (cn=%v)” “exact match cn”
 (sn=%v))” “exact match sn”

n BEA_person_lookup specifies to search the LDAP directory service for
principals by their e-mail addresses.

n BEA_issuer_lookup specifies to search the LDAP directory service for
principals by their common names (cn).

See the documentation for your LDAP-enabled directory service for additional
information about LDAP search file filters.

Storing the Private Keys in a Common
Location

When a principal generates a CSR, they typically get a file with a private key.
Principals need this private key file to verify their identity in the authentication
process. Assign the private key file protections so that only the owner of the private
key file has read privileges and all other users have no privileges to access the file.
Private key files must be stored as PEM-encoded PKCS #8 protected format.

The BEA Tuxedo system uses the e-mail address of the principal to construct a name
for the private key file as follows:

1. The @ character in the name is replaced by an underscore (_) character.

2. All characters after the dot (.) character are deleted.

3. A .PEM file extension is appended to the file.
4-6 Using Security in CORBA Applications

Defining the Trusted Certificate Authorities
For example, if the name of the principal is milozzi@bigcompany.com the resulting
private key file is milozzi_bigcompany.pem. This naming convention allows an
enterprise to have multiple principals that share a common username but are in
different e-mail domains.

The BEA Tuxedo software looks in the following directories for private key files:

Window 2000

%HOMEDRIVE%\%HOMEPATH%

UNIX

$HOME

The BEA Tuxedo software also looks in the following directory for private key files:

$TUXDIR/udataobj/security/keys

The $TUXDIR/udataobj/security/keys directory should be protected so that only
the owner has read privileges for the directory and all other users do not have privileges
to access the directory.

Listing 4-1 provides an example of a private key file.

Listing 4-1 Example of Private Key File

-----BEGIN ENCRYPTED PRIVATE KEY-----
MIICoDAaBgkqhkiG9w0BBQMwDQQItSFrtYcfKygCAQUEggKAEgrMxo8gYB/MOSXG
...
-----END ENCRYPTED PRIVATE KEY-----

Defining the Trusted Certificate Authorities

When establishing an SSL connection, the CORBA processes (client applications and
the IIOP Listener/Handler) check the identity of the certificate authority and
certificates from the peer’s digital certificate chain against a list of trusted certificate
authorities to ensure the certificate authority is trusted by the organization. This check
is similar to the check done in Web browsers. If the comparison fails, the initiator of
Using Security in CORBA Applications 4-7

4 Managing Public Key Security
the SSL connection refuses to authenticate the target and drops the SSL connection. It
is typically the job of the system administrator to define a list of trusted certificate
authorities.

Retrieve from the LDAP directory service the digital certificates for the certificate
authorities that are to be trusted. Cut and paste the PEM formatted digital certificates
into a file named trust_ca.cer which is stored in
$TUXDIR/udataobj/security/certs. The trust_ca.cer can be edited with any
text editor.

The trust_ca.cer file should be owned by the administrator account. BEA
recommends that the file be protected so that only the owner has read and write
privileges for the file and all other users have only read privileges for the file.

 Listing 4-2 provides an example of a Trusted Certificate Authority file.

Listing 4-2 Example of Trusted Certificate Authority File

-----BEGIN CERTIFICATE----

MIIEuzCCBCSgAwIBAgIQKtZuM5AOzS9dZaIATJxIuDANBgkqhkiG9w0BAQQFADCB
zDEXMBUGA1UEChMOVmVyaVNpZ24sIEluYy4xHzAdBgNVBAsTFlZlcmlTaWduIFRy
dXN0IE5ldHdvcmsxRjBEBgNVBAsTPXd3dy52ZXJpc2lnbi5jb20vcmVwb3NpdG9y
eS9SUEEgSW5jb3JwLiBCeSBSZWYuLExJQUIuTFREKGMpOTgxSDBGBgNVBAMTP1Zl
cmlTaWduIENsYXNzIDEgQ0EgSW5kaXZpZHVhbCBTdWJzY3JpYmVyLVBlcnNvbmEg
...
-----END CERTIFICATE-----

-----BEGIN CERTIFICATE----

MIIEuzCCBCSgAwIBAgIQKtZuM5AOzS9dZaIATJxIuDANBgkqhkiG9w0BAQQFADCB
zDEXMBUGA1UEChMOVmVyaVNpZ24sIEluYy4xHzAdBgNVBAsTFlZlcmlTaWduIFRy
dXN0IE5ldHdvcmsxRjBEBgNVBAsTPXd3dy52ZXJpc2lnbi5jb20vcmVwb3NpdG9y
...
-----END CERTIFICATE-----
4-8 Using Security in CORBA Applications

Creating a Peer Rules File
Creating a Peer Rules File

When communicating across network links, it is important to validate the peer to
which you are connected is the intended or authorized peer. Without this check, it is
possible to make a secure connection, exchange secure messages, and receive a valid
chain of digital certificates but still be vulnerable to a Man-in-the-Middle attack. You
perform peer validation by verifying a set of specified information contained in the
peer digital certificate against a list of information that specifies the rules for validating
peer trust. The system administrator maintains the Peer Rules file.

The Peer Rules are maintained in an ASCII file named peer_val.rul. Store the
peer_val.rul file in the following location in the BEA Tuxedo directory structure:

$TUXDIR/udataobj/security/certs

Listing 4-3 provides an example of a Peer Rules file.

Listing 4-3 Example of Peer Rules File

#
This file contains the list of rules for validating if
a peer is authorized as the target of a secure connection
#
O=Ace Industry
O=”Acme Systems, Inc.”; OU=Central Engineering;L=Herkimer;S=NY
O=”Ball, Corp.”, C=US
o=Ace Industry, ou=QA, cn=www.ace.com

Each rule in the Peer Rules file is comprised of a set of elements that are identified by
a key. The BEA Tuxedo product recognizes the key names listed in Table 4-1.

Table 4-1 Supported Keys for Peer Rules File

Key Attribute

CN CommonName

SN SurName

L LocalityName
Using Security in CORBA Applications 4-9

4 Managing Public Key Security
Each key is followed by an optional white space, the character =, an optional white
space, and finally the value to be compared. The key is not case sensitive. A rule is not
a match unless the subject’s distinguished name contains each of the specified
elements in the rule and the values of those elements match the values specified in the
rule, including case and punctuation.

Each line in the Peer Rules file contains a single rule that is used to determine if a
secure connection is to be established. Rules cannot span lines; the entire rule must
appear on a single line. Each element in the rule can be separated by either a comma
(,) or semicolon (;) character.

Lines beginning with the pound character (#) are comments. Comments cannot appear
on the same line as the name of an organization.

A value must be enclosed in single quotation marks if one of the following cases is
true:

n Strings contain any of the following characters:

, + = "" <CR> < > # ;

n Strings have leading or trailing spaces

n Strings contain consecutive spaces

By default, the BEA Tuxedo product verifies peer information against the Peer Rules
file. If you do not want to perform this check, create an empty Peer Rules file.

S StateOrProvinceName

O OrganizationName

OU OrganizationalUnitName

C CountryName

E EmailAddress

Table 4-1 Supported Keys for Peer Rules File (Continued)

Key Attribute
4-10 Using Security in CORBA Applications

CHAPTER
5 Configuring Link-Level
Encryption

This topic includes the following sections

n Understanding min and max Values

n Verifying the Installed Version of LLE

n Configuring LLE on CORBA Application Links

Understanding min and max Values

Before you can configure LLE for your CORBA application, you need to be familiar
with the LLE notation: (min, max). The defaults for these parameters are:

n For min: 0

n For max: Number of bits that indicates the highest level of encryption possible
for the installed LLE version

For example, the default min and max values for the Domestic LLE version are (0,
128). If you want to change the defaults, you can do so by assigning new values to min
and max in the UBBCONFIG file for your application.
Using Security in CORBA Applications 5-1

5 Configuring Link-Level Encryption
Verifying the Installed Version of LLE

Before setting the min and max values for your CORBA application, you need to
verify what version of LLE is installed on your machine. You can verify the LLE
version installed on a machine by running the tmadmin command in verbose mode
as follows:

tmadmin -v

Key lines from the BEA Tuxedo license file (lic.txt) appear on your computer
screen, similar to information in Listing 5-1. The entry 128-bit Encryption
Package indicates that the Domestic version of LLE is installed.

Listing 5-1 LLE Licence Information

INFO: BEA Engine, Version 2.4
INFO: Serial: 212889588, Expiration 2000-3-15, Maxusers 10000
INFO: Licensed to: ACME CORPORATION
INFO: 128-bit Encryption Package

BEA Tuxedo license files are located in the following directories:

Windows 2000

%TUXDIR%\udataobj\lic.txt

UNIX

$TUXDIR/udataobj/lic.txt

Configuring LLE on CORBA Application Links

To configure LLE in CORBA applications, you need to set the MINENCRYPTBITS and
MAXENCRYPTBITS parameters in the UBBCONFIG file for each CORBA application
participating in the network connection, as follows:
5-2 Using Security in CORBA Applications

Configuring LLE on CORBA Application Links
n The MINENCRYPTBITS parameter specifies that at least the defined number of
bits are meaningful.

n The MAXENCRYPTBITS parameter specifies that encryption should be negotiated
up to the defined level.

The possible values for the MINENCRYPTBITS and MAXENCRYPTBITS parameters are 0,
40, and 128. A value of zero means no encryption is used, while 40 and 128 specify
the number of significant bits in the encryption key.

Load the configuration file by running tmloadcf. The tmloadcf command parses
UBBCONFIG and loads the binary TUXCONFIG file to the location referenced by the
TUXCONFIG variable.
Using Security in CORBA Applications 5-3

5 Configuring Link-Level Encryption
5-4 Using Security in CORBA Applications

CHAPTER
6 Configuring the SSL
Protocol

This topic includes the following sections:

n Setting Parameters for the SSL Protocol

n Defining a Port for SSL Network Connections

n Enabling Host Matching

n Setting the Encryption Strength

n Setting the Interval for Session Renegotiation

n Defining Security Parameters for the IIOP Listener/Handler

n Example of Setting Parameters on the ISL System Process

n Example of Setting Command-line Options on the CORBA C++ ORB
Using Security in CORBA Applications 6-1

6 Configuring the SSL Protocol
Setting Parameters for the SSL Protocol

To use the SSL protocol or certificate authentication with the IIOP Listener/Handler
or the CORBA C++ object request broker (ORB), you need to:

n Specify the secure port on which SSL network connections will be accepted.

n Specify the strength that will be used when encrypting data.

n Optionally, set the interval for session renegotiation (IIOP Listener/Handler
only).

The following sections detail how to use the options of the ISL command or the
command-line options of the CORBA C++ ORB to set these SSL parameters.

Defining a Port for SSL Network
Connections

To define a port for SSL network connections:

n Use the -S option of the ISL command to specify which port of the IIOP
Listener/Handler will listen for secure connections using the SSL protocol. You
can configure the IIOP Listener/Handler to allow only SSL connections by
setting the -S option and -n option of the ISL command to the same value.

n If you are using a remote CORBA C++ ORB, use the -ORBsecurePort
command-line option on the ORB to specify which port of the ORB will listen
for secure connections using the SSL protocol. You should set this
command-line option when using callback objects or the CORBA Notification
Service.

Note: If you are using the SSL protocol with a joint client/server application, you
must specify a port number for SSL network connections. You cannot use the
default.
6-2 Using Security in CORBA Applications

Enabling Host Matching
Defining a secure port for SSL network connections requires the license for the SSL
protocol to be installed. If the -S option or the -ORBsecurePort command-line option
is executed and a license to enable the use of the SSL protocol does not exist, the IIOP
Listener/Handler or CORBA C++ ORB will not start.

Enabling Host Matching

The SSL protocol is capable of encrypting messages for confidentiality; however, the
use of encryption does nothing to prevent a man-in-the-middle attack. During a
man-in-the-middle attack, a principal masquerades as the location from which an
initiating application retrieves the initial object references used in the bootstrapping
process.

To prevent man-in-the-middle attacks, it is necessary to perform a check to ensure that
the digital certificate received during an SSL connection is for the principal for which
the connection was intended. Host Matching is a check that the host specified in the
object reference used to make the SSL connection matches the common name in the
subject in the distinguished name specified in the target’s digital certificate. Host
Matching is performed only by the initiator of an SSL connection, and confirms that
the target of a request is actually located at the same network address specified by the
domain name in the target’s digital certificate. If this comparison fails, the initiator of
the SSL connection refuses to authenticate the target and drops the SSL connection.
Host Matching is not technically part of the SSL protocol and is similar to the same
check done in Web browsers.

The domain name contained in the digital certificate must match exactly the host
information contained in the object reference. Therefore, the use of DNS host names
instead of IP addresses is strongly encouraged.

By default, Host Matching in enabled in the IIOP Listener/Handler and the CORBA
C++ ORB. If you need to enable Host Matching, do one of the following:

n In the IIOP Listener/Handler, specify the -v option of the ISL command.

n In the CORBA C++ ORB, specify the –ORBpeerValidate command-line
option.

The values for the -v option and the -ORBpeerValidate command-line option are
as follows:
Using Security in CORBA Applications 6-3

6 Configuring the SSL Protocol
n none—no host matching is performed.

n detect—if the object reference used to make the SSL connection does not
match the host name in the target’s digital certificate, the IIOP Listener/Handler
or the ORB does not authenticate the target and drops the SSL connection. The
detect value is the default value.

n warn—if the object reference used to make the SSL connection does not match
the host name in the target’s digital certificate, the IIOP Listener/Handler or the
ORB sends a message to the user log and continues processing.

If there is more than one IIOP Listener/Handler in a BEA Tuxedo domain configured
for SSL connections (for example, in the case of fault tolerance), BEA recommends
using DNS alias names for the IIOP Listener/Handlers or creating different digital
certificates for each IIOP Listener/Handler. The –H switch on the IIOP Listener can
be used to specify the DNS alias name so that object references will be created
correctly.

Setting the Encryption Strength

To set the encryption strength:

n Use the -z and -Z options of the ISL command to set the encryption strength
in the IIOP Listener/Handler.

n Use the -ORBminCrypto and -ORBmaxCrypto command-line option on the
ORB to set the encryption strength in the CORBA C++ ORB.

The -z option and the -ORBminCrypto command-line option set the minimum level
of encryption used when an application establishes an SSL connection with the IIOP
Listener/Handler or the CORBA C++ ORB. The valid values are 0, 40, 56, and 128. A
value of 0 means the data is signed but not sealed while 40, 56, and 128 specify the
length (in bits) of the encryption key. If this minimum level of encryption is not met,
the SSL connection fails. The default is 40.

The -Z option and the -ORBmaxCrypto command-line option set the maximum level
of encryption used when an application establishes an SSL connection with the IIOP
Listener/Handler or the CORBA C++ ORB. The valid values are 0, 40, 56, and 128.
6-4 Using Security in CORBA Applications

Setting the Encryption Strength
Zero means that data is signed but not sealed while 40, 56, and 128 specify the length
(in bits) of the encryption key. The default minimum value is 40. The default
maximum value is whatever capability is specified by the license.

The –z or –Z options and the -ORBminCrypto and -ORBmaxCrypto command-line
options are available only if the license for the SSL protocol is installed.

To change the strength of encryption currently used in a CORBA application, you need
to shut down the IIOP Listener/Handler or the ORB.

The combination in which you set the encryption values is important. The encryption
values set in the initiator of an SSL connection need to be a subset of the encryption
values set in the target of an SSL connection.

Table 6-1 lists combinations of encryption values and describes the encryption
behavior.

Table 6-1 Combinations of Encryption Values

-z
-ORBminCrypto

-Z
-ORBmaxCrypto

Description

No value specified No value specified If the use of the SSL protocol is specified by
some other command-line option or system
property but no values are specified for
ORBminCrypto and ORBmaxCrypto, these
command-line options or system properties are
assigned their default values.

0 No value specified Maximum encryption defaults to the maximum
value specified in the license. Tamper/replay
detection and privacy protection are negotiated.

No value specified 0 Tamper/replay detection is negotiated. Privacy
protection is not provided.

0 0 Tamper/replay detection is negotiated. Privacy
protection is not provided.

40, 56, 128 No value specified Maximum encryption defaults to the maximum
value specified in the license. Privacy
protection can be negotiated to the maximum
allowed by the SSL license.
Using Security in CORBA Applications 6-5

6 Configuring the SSL Protocol
Note: In all combinations listed in Table 6-1, the value of the SSL license controls
the maximum bit strength. If a bit strength is specified beyond the maximum
licensed value, the IIOP Listener/Handler or ORB will not start and an error
will be generated indicating the bit strength setting is invalid. Stopping the
IIOP Listener/Handler or ORB from starting, instead of lowering the
maximum value and giving only a warning, protects against an incorrectly
configured application running with less protection than was expected.

If a cipher that exceeds the maximum licensed bit strength is somehow
negotiated, the SSL connection is not established.

For a list of cipher suites supported by the CORBA security environment, see
“Supported Cipher Suites” on page 2-11.

Setting the Interval for Session
Renegotiation

Note: You set the interval for session renegotiation only in the IIOP
Listener/Handler.

No value specified 40, 56, 12 Privacy protection can be negotiated to the
value specified by the -Z option as long as it is
less than the maximum allowed by the SSL
license. The -z option defaults to 40.

40, 56, 128 40, 56, 128 Privacy protection can be negotiated between
the values specified by the -z option up to the
value specified by the -Z option as long as the
values are less than the maximum allowed by
the SSL license.

Table 6-1 Combinations of Encryption Values (Continued)

-z
-ORBminCrypto

-Z
-ORBmaxCrypto

Description
6-6 Using Security in CORBA Applications

Defining Security Parameters for the IIOP Listener/Handler
Use the -R option of the ISL command to control the time between session
renegotiations. Periodic renegotiation of an SSL session refreshes the symmetric keys
used to encrypt and decrypt information which limits the time a symmetric key is
exposed. You can keep long-term SSL connections more secure by periodically
changing the symmetric keys used for encryption.

The –R option specifies the renegotiation interval in minutes. If an SSL connection
does renegotiate within the specified interval, the IIOP Listener/Handler will request
the application to renegotiate the SSL session for inbound connections or actually
perform the renegotiation in the case of outbound connections. The default is 0 minutes
which results in no periodic session renegotiations.

You cannot use session renegotiation when enabling certificate authentication using
the -a option of the ISL command.

Defining Security Parameters for the IIOP
Listener/Handler

For the IIOP Listener/Handler to participate in SSL connections, the IIOP
Listener/Handler authenticates itself to the peer that initiated the SSL connection. This
authentication requires a digital certificate. The private key associated with the digital
certificate is used as part of establishing an SSL connection that results in an agreement
between the principal and the peer (in this case a client application and the IIOP
Listener/Handler) on the session key. The session key is a symmetric key (as opposed
to the private-public keys) that is used to encrypt data during an SSL session. You
define the following information for the IIOP Listener/Handler so that it can be
authenticated by peers:

n SEC_PRINCIPAL_NAME

Specifies the identity of the IIOP Listener/Handler.

n SEC_PRINCIPAL_LOCATION

Specifies the location of the private key file. For example,
$TUXDIR/udataobj/security/keys/milozzi.pem.

n SEC_PRINCIPAL_PASSVAR
Using Security in CORBA Applications 6-7

6 Configuring the SSL Protocol
Specifies an environment variable that holds the pass phrase for the private key
of the IIOP Listener/Handler when the tmloadcf command is not run
interactively. Otherwise, you will be prompted for the pass phrase when you
enter the tmloadcf command.

Note: If you define any of the security parameters for the IIOP Listener/Handler
incorrectly, the following errors are reported in the ULOG file:

ISH.28014: LIBPLUGIN_CAT:2008:ERROR:No such file or
directory SEC_PRINCIPAL_LOCATION
ISH.28014:ISNAT_CAT:1552:ERROR:Could not open private key,
erro =-3011
ISH.28104:ISNAT_CAT:1544:ERROR:Could not perform SSL accept
from host/port//IPADDRESS:PORT

To resolve the errors, correct information in the security parameters and reboot
the IIOP Listener/Handler.

These parameters are included in the part of the SERVERS section of the UBBCONFIG
file that defines the ISL system process.

You also need to use the tpusradd command to define the IIOP Listener/Handler as
an authorized user in the BEA Tuxedo domain. You will be prompted for a password
for the IIOP Listener/Handler. Enter the pass phrase you defined for
SEC_PRINCIPAL_PASSVAR.

During initialization, the IIOP Listener/Handler includes its principal name as defined
by SEC_PRINCIPAL_NAME as an argument when calling the authentication plug-in to
acquire its credentials. An IIOP Listener/Handler requires credentials so that it can
authenticate remote client applications that want to interact with the CORBA
application, and get authorization and auditing tokens for remote client applications.

Because the IIOP Listener/Handler must authenticate its own identity to the BEA
Tuxedo domain in order to become a trusted system process, it is necessary to
configure an authentication server when using the default authentication plug-in. See
“Configuring the Authentication Server” on page 7-2 for more information.
6-8 Using Security in CORBA Applications

Example of Setting Parameters on the ISL System Process
Example of Setting Parameters on the ISL
System Process

You set parameters for the SSL protocol in the portion of the SERVERS section of the
UBBCONFIG that defines information for the ISL server process. Listing 6-1 includes
code from a UBBCONFIG file that set parameters to configure the IIOP Listener/Handler
for the SSL protocol and certificate authentication.

Listing 6-1 Using the ISL Command in the UBBCONFIG File

...
ISL

SRVGRP = SYS_GRP
SRVID = 5
CLOPT = “-A -- -a -z40 -Z128 -S3579 -n //ICEPICK:2569
SEC_PRINCIPAL_NAME=”BLOTTO”

 SEC_PRINCIPAL_LOCATION=”BLOTTO.pem”
 SEC_PRINCIPAL_VAR=”AUDIT_PASS”

Example of Setting Command-line Options
on the CORBA C++ ORB

Listing 6-2 contains sample code that illustrates using the command-line options on
the CORBA C++ ORB to configure the ORB for the SSL protocol.

Listing 6-2 Example of Setting the Command-line Options on the CORBA C++
ORB

ChatClient -ORBid BEA_IIOP
-ORBsecurePort 2100
-ORBminCrypto 40
Using Security in CORBA Applications 6-9

6 Configuring the SSL Protocol
-ORBMaxCrypto 128
TechTopics
6-10 Using Security in CORBA Applications

CHAPTER
7 Configuring
Authentication

This topic includes the following sections:

n Configuring the Authentication Server

n Defining Authorized Users

n Defining a Security Level

n Configuring Application Password Security

n Configuring Password Authentication

n Sample UBBCONFIG File for Password Authentication

n Configuring Certificate Authentication

n Sample UBBCONFIG File for Certificate Authentication

n Configuring Access Control

n Configuring Security to Interoperate with Older WebLogic Enterprise Client
Applications
Using Security in CORBA Applications 7-1

7 Configuring Authentication
Configuring the Authentication Server

Note: You only need to configure the authentication server, if you have specified a
value of USER_AUTH or higher for the SECURITY parameter and are using the
default authentication plug-in.

Authentication requires that an authentication server be configured for the purpose of
authenticating users by checking their individual passwords against a file of legal
users. The BEA Tuxedo system uses a default authentication server called AUTHSRV to
perform authentication. AUTHSVR provides a single service, AUTHSVC, which performs
authentication. AUTHSVC is advertised by the AUTHSVR server as AUTHSVC when the
security level is set to ACL or MANDATORY_ACL.

For a CORBA application to authenticate users, the value of the AUTHSVC parameter
in the RESOURCES section of the UBBCONFIG file needs to specify the name of the
process to be used as the authentication server for the CORBA application. The service
must be called AUTHSVC. If the AUTHSVC parameter is specified in the RESOURCES
section of the UBBCONFIG file, the SECURITY parameter must also be specified with a
value of at least USER_AUTH. If the value is not specified, an error will occur when the
system executes the tmloadcf command. If the -m option is configured on the ISL
process in the UBBCONFIG file, the AUTHSVC must be defined in the UBBCONFIG file
before the ISL process.

In addition, you need to define AUTHSVR in the SERVERS section of the UBBCONFIG file.
The SERVERS section contains information about the server processes to be booted in
the CORBA application. To add AUTHSVC to an application, you need to define
AUTHSVC as the authentication service and AUTHSVR as the authentication server in the
UBBCONFIG file. Listing 7-1 contains the portion of the UBBCONFIG file that defines the
authentication server.

Listing 7-1 Parameters for the Authentication Server

*RESOURCES
SECURITY USER_AUTH
AUTHSVC “AUTHSVC”

.

.

.

7-2 Using Security in CORBA Applications

Defining Authorized Users
*SERVERS
AUTHSVR SRVGRP="group_name" SRVID=1 RESTART=Y GRACE=600 MAXGEN=2
CLOPT="-A"

If you omit the parameter-value entry AUTHSVC, the BEA Tuxedo system calls
AUTHSVC by default.

AUTHSVR may be replaced with an authentication server that implements logic specific
to the application. For example, a company may want to develop a custom
authentication server so that it can use the popular Kerberos mechanism for
authentication.

To add a custom authentication service to an application, you need to define your
authentication service and server in the UBBCONFIG file. For example:

*RESOURCES
SECURITY USER_AUTH
AUTHSVC KERBEROS

.

.

.

*SERVERS
KERBEROSSVR SRVGRP="group_name" SRVID=1 RESTART=Y GRACE=600
MAXGEN=2 CLOPT="-A"

Once you configure the default authentication server, the identity of the IIOP
Listener/Handler (as specified in the SEC_PRINCIPAL_NAME parameter in the
UBBCONFIG file) must be specified in the tpusr file. In addition, all the users of the
CORBA application must be specified in the tpusr file. For more information, see
“Defining Authorized Users” on page 7-3.

Defining Authorized Users

As part of configuring security for a CORBA application, you need to define the
principals and groups of principals who have access to the CORBA application.

Authorized users can be defined in the following ways:

n When using password authentication, authorized users are defined using a
username and an associated password.
Using Security in CORBA Applications 7-3

7 Configuring Authentication
n When using certificate authentication, authorized users are identified by their
e-mail address. The e-mail address maps the external identity of a principal
represented by a digital certificate to an identity used by a CORBA application.

You use the tpusradd command to create files containing lists of authorized
principals. The tpusradd command adds a new principal entry to the BEA Tuxedo
security data files. This information is used by the authentication server to authenticate
principals. The file that contains the principals is called tpusr.

The file is a colon-delimited, flat ASCII file, readable only by the system administrator
of the CORBA application. The system file entries have a limit of 512 characters per
line. The file is kept in the application directory, specified by the environment variable
$APPDIR. The environment variable $APPDIR must be set to the pathname of the
CORBA application.

The tpusradd file should be owned by the administrator account. BEA recommends
that the file be protected so that only the owner has read and write privileges for the
file and all other users have only read privileges for the file.

The tpusradd command has the following options:

n -u uid

The user identification number. The UID must be a positive decimal integer
below 128K. The UID must be unique within the list of existing identifiers for
the application. The UID defaults to the next available (unique) identifier greater
than 0.

n -g gid

The group identification number. The GID can be an integer identifier or
character-string name. This option defines the new user’s group membership. It
defaults to the other group (identifier 0).

n -c client_name

A string of printable characters that specifies the name of the principal. The
name may not contain a colon (:). pound sign (#), or a newline (\n). The
principal name must be unique within the list of existing principals for the
CORBA application.

n usrname

A string of printable characters that specifies the new login name of the user.
The name may not contain a colon (:). pound sign (#), or a newline (\n). The
7-4 Using Security in CORBA Applications

Defining Authorized Users
user name must be unique within the list of existing users for the CORBA
application

If you are using the default authentication server, the identity of the IIOP
Listener/Handler (as specified in the SEC_PRINCIPAL_NAME parameter in the
UBBCONFIG file) must be specified in the tpusr file. In addition, all the users of the
CORBA application must be specified in the tpusr file.

If you are using a custom authentication service, define the IIOP Listener/Handler and
the users of the CORBA application in the user registry of the custom authentication
service. In addition, no file called tpusr should appear in $APPDIR. If a file by that
name exists, a CORBA/NO_PERMISSION exception will be raised.

Listing 7-2 includes a sample tpusr file.

Listing 7-2 Sample tpusr File

Usrname Cltname Password Entry Uid GID

milozzi “bar” 2 100 0
smart “ “ 1 1 0
pat “tpsysadmin” 3 0 8192
butler “tpsysadmin” 3 N/A 8192

Note: Use the tpgrpadd command to add groups of principals to the BEA Tuxedo
security data files.

In addition to the tpusradd and tpgrpadd commands, the BEA Tuxedo product
provides the following commands to modify the tpusr and tpgrp files:

n tpusrdel

n tpusrmod

n tpgrpdel

n tpgrpmod

For a complete description of the commands, see the BEA Tuxedo Command Reference
in the BEA Tuxedo online documentation.
Using Security in CORBA Applications 7-5

7 Configuring Authentication
You may already have files containing lists of users and groups on your host system.
You can use them as the user and group files for your CORBA application, but only
after converting them to the format required by the BEA Tuxedo system. To convert
your files, run the tpaclcvt command, as shown in the following sample procedure.
The sample procedure is written for a UNIX host machine.

1. Ensure that you are working on the application MASTER machine and that the
application is inactive.

2. To convert the /etc/password file into the format needed by the BEA Tuxedo
system, enter the following command:

tpaclcvt -u /etc/password

This command creates the tpusr file and stores the converted data in it. If the
tpusr file already exists, tpaclcvt adds the converted data to the file, but it
does not add duplicate user information to the file.

Note: For systems on which a shadow password file is used, you are prompted to
enter a password for each user in the file.

3. To convert the /etc/group file into the format needed by the BEA Tuxedo
system, enter the following command:

tpaclcvt -g /etc/group

This command creates the tpgrp file and stores the converted data in it. If the
tpgrp file already exists, tpaclcvt adds the converted data to the file, but it
does not add duplicate group information to the file.

Defining a Security Level

As part of defining security for a CORBA application, you need to define the
SECURITY parameter in the RESOURCES section of the UBBCONFIG file. The SECURITY
parameter has the following format:

*RESOURCES
SECURITY {NONE|APP_PW|USER_AUTH|ACL|MANDATORY_ACL}

Table 7-1 describes the values for the SECURITY parameter.
7-6 Using Security in CORBA Applications

Defining a Security Level
Table 7-1 Values for the SECURITY Parameter

Value Description

NONE Indicates that no password or access checking is performed in the
CORBA application.

Tobj::PrincipalAuthenticator::get_auth_type()
returns a value of TOBJ_NOAUTH.

APP_PW Indicates that client applications are required to supply an
application password to access the BEA Tuxedo domain. The
tmloadcf command prompts for an application password.

Tobj::PrincipalAuthenticator::get_auth_type()
returns a value of TOBJ_SYSAUTH.

USER_AUTH Indicates that client applications and the IIOP Listener/Handler
are required to authenticate themselves to the BEA Tuxedo
domain using a password. The value USER_AUTH is similar to
APP_PW but, in addition, indicates that user authentication will be
done during client initialization. The tmloadcf command
prompts for an application password.

Tobj::PrincipalAuthenticator::get_auth_type()
returns a value of TOBJ_APPAUTH.

No access control checking is performed at this security level.

ACL Indicates that authentication is used in the CORBA application
and access control checks are performed on interfaces, services,
queue names, and event names. If an associated ACL is not found
for a name, it is assumed that permission is granted. The
tmloadcf command prompts for an application password.

Tobj::PrincipalAuthenticator::get_auth_type
returns a value of TOBJ_APPAUTH.

MANDATORY_ACL Indicates that authentication is used in the CORBA application
and access control checks are performed on interfaces, services,
queue names, and event names. The value MANDATORY_ACL is
similar to ACL, but permission is denied if an associated ACL is
not found for the name.The tmloadcf command prompts for an
application password.

Tobj::PrincipalAuthenticator::get_auth_type
returns a value of TOBJ_APPAUTH.
Using Security in CORBA Applications 7-7

7 Configuring Authentication
Note: If the IIOP Listener/Handler is configured for using certificate authentication,
the value of the SECURITY parameter must be USER_AUTH or greater.

Configuring Application Password Security

To configure application password security, complete the following steps:

1. Ensure that you are working on the application MASTER machine and that the
application is inactive.

2. Set the SECURITY parameter in the RESOURCES section of the UBBCONFIG file to
APP_PW.

3. Load the configuration by running the tmloadcf command. The tmloadcf
command parses UBBCONFIG and loads the binary TUXCONFIG file to the location
referenced by the TUXCONFIG variable.

4. The system prompts you for a password. The password you enter may be up to 30
characters long. It becomes the password for the application and remains in effect
until you change it by using the passwd parameter of the tmadmin command.

5. Distribute the application password to authorized users of the application through
an offline means such as telephone or letter.

Configuring Password Authentication

Password authentication requires that in addition to the application password, each
client application must provide a valid username and user-specific data, such as a
password, to interact with the CORBA application. The password must match the
password associated with the username stored in the tpusr file. The checking of user
passwords against the username/password combination in the tpusr file is carried out
by the authentication service AUTHSVC, which is provided by the authentication server
AUTHSVR.

To enable password authentication, complete the following steps:
7-8 Using Security in CORBA Applications

Sample UBBCONFIG File for Password Authentication
1. Define users and their associated passwords in the tpusr file. For more
information about the tpusr file, see “Defining Authorized Users” on page 7-3.

2. Ensure that you are working on the application MASTER machine and that the
application is inactive.

3. Open UBBCONFIG with a text editor and add the following lines to the RESOURCES
and SERVERS sections:

*RESOURCES
SECURITY USER_AUTH
AUTHSVC “AUTHSVC”

.

.

.

*SERVERS
AUTHSVR SRVGRP="group_name" SRVID=1 RESTART=Y GRACE=600 MAXGEN=2
CLOPT="-A"

CLOPT="-A" causes the tmboot command to pass only the default
command-line options (invoked by "-A") to AUTHSVR when the tmboot
command starts the application.

4. Load the configuration by running the tmloadcf command. The tmloadcf
command parses UBBCONFIG and loads the binary TUXCONFIG file to the location
referenced by the TUXCONFIG variable.

5. The system prompts you for a password. The password you enter may be up to 30
characters long. It becomes the password for the application and remains in effect
until you change it by using the passwd parameter of the tmadmin command.

6. Distribute the application password to authorized users of the application through
an offline means such as telephone or letter.

Sample UBBCONFIG File for Password
Authentication

Listing 7-4 includes a UBBCONFIG file for an application which uses password
authentication. The key sections of the UBBCONFIG file are noted in boldface text.
Using Security in CORBA Applications 7-9

7 Configuring Authentication
Listing 7-3 Sample UBBCONFIG File for Password Authentication

*RESOURCES
 IPCKEY 55432
 DOMAINID securapp
 MASTER SITE1
 MODEL SHM
 LDBAL N
 SECURITY USER_AUTH
 AUTHSVR “AUTHSVC”

*MACHINES
 "ICEAXE"
 LMID = SITE1
 APPDIR = "D:\TUXDIR\samples\corba\SECURAPP"
 TUXCONFIG = "D:\TUXDIR\samples\corba\SECURAPP\results

\tuxconfig"
 TUXDIR = "D:\Tux8"
 MAXWSCLIENTS = 10

*GROUPS
 SYS_GRP
 LMID = SITE1
 GRPNO = 1
 APP_GRP
 LMID = SITE1
 GRPNO = 2

*SERVERS
 DEFAULT:
 RESTART = Y
 MAXGEN = 5

 AUTHSVR
 SRVGRP = SYS_GRP
 SRVID = 1

 RESTART = Y
 GRACE = 60

 MAXGEN = 2

 TMSYSEVT
 SRVGRP = SYS_GRP
 SRVID = 1

 TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 2
 CLOPT = "-A -- -N -M"
7-10 Using Security in CORBA Applications

Configuring Certificate Authentication
 TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 3
 CLOPT = "-A -- -N"

 TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 4
 CLOPT = "-A -- -F"

 simple_server
 SRVGRP = APP_GRP
 SRVID = 1
 RESTART = N

 ISL
 SRVGRP = SYS_GRP
 SRVID = 5
 CLOPT = “-A -- -n //PCWIZ::2500”

 SEC_PRINCIPAL_NAME="IIOPListener"
 SEC_PRINCIPAL_PASSVAR="ISH_PASS"

Configuring Certificate Authentication

Certificate authentication uses the SSL protocol so you need to install the license for
the SSL protocol and configure the SSL protocol before you can use certificate
authentication. Information about installing the license for the SSL protocol can be
found in Installing the BEA Tuxedo System. For information about configuring the SSL
protocol, see “Configuring the SSL Protocol” on page 6-1.

You also need an LDAP-enabled directory and certificate authority in place before
using certificate authentication in a CORBA application. You can choose any
LDAP-enabled directory service. You can also choose the certificate authority from
which to obtain certificates and private keys used in a CORBA application. For more
information, see “Managing Public Key Security” on page 4-1.

To enable certificate authentication, complete the following steps:

1. Install the license for the SSL protocol.

2. Set up an LDAP-enabled directory service.
Using Security in CORBA Applications 7-11

7 Configuring Authentication
3. Obtain a certificate and private key for the IIOP Listener/Handler from a
certificate authority.

4. Obtain a certificate and private key for the CORBA application from a certificate
authority.

5. Store the private keys for the CORBA application in the Home directory of the
user or in the following directories:

Windows 2000

%TUXDIR%\udataobj\security\keys

UNIX

$TUXDIR/udataobj/security/keys

6. Publish the certificates for the IIOP Listener/Handler, the CORBA application,
and the certificate authority in the LDAP-enabled directory service.

7. Define the SEC_PRINCIPAL, SEC_PRINCIPAL_LOCATION, and
SEC_PRINCIPAL_PASSVAR for the ISL server process in the UBBCONFIG file. For
more information, see “Defining Security Parameters for the IIOP
Listener/Handler” on page 6-7.

8. Use the tpusradd command to define the authorized users of your CORBA
application and IIOP Listener/Handler. Use the e-mail addresss of the user in the
tpusr file. For more information about the tpusr file, see “Defining Authorized
Users” on page 7-3. Use the phase phrase you defined in
SEC_PRINCIPAL_PASSVAR as the password for the IIOP Listener/Handler.

9. Define a port on the IIOP Listener/Handler for secure communications using the
-S option of the ISL command. For more information, see “Defining a Port for
SSL Network Connections” on page 6-2.

10. Enable certificate authentication in the IIOP Listener/Handler using the -a option
of the ISL command.

11. Create a Trusted Certificate Authority file (trust_ca.cer) that defines the
certificate authorities trusted by the CORBA application. For more information,
see “Defining the Trusted Certificate Authorities” on page 4-7.

12. Open UBBCONFIG with a text editor and add the following lines to the RESOURCES
and SERVERS sections:

*RESOURCES
SECURITY USER_AUTH
7-12 Using Security in CORBA Applications

Sample UBBCONFIG File for Certificate Authentication
13. Load the configuration by running the tmloadcf command. The tmloadcf
command parses UBBCONFIG and loads the binary TUXCONFIG file to the location
referenced by the TUXCONFIG variable.

14. Optionally, create a Peer Rules file (peer_val.rul) for both the CORBA
application and the IIOP Listener/Handler. For more information, see “Creating a
Peer Rules File” on page 4-9.

15. Optionally, modify the LDAP search file filter to reflect the hierarchy in place in
your enterprise. For more information, see “Editing the LDAP Search Filter File”
on page 4-5.

To enable certificate authentication, complete one of the following:

n Use the -a option of the ISL command to specify that certificate authentication
must be used by applications connecting to the IIOP Listener/Handler.

n Use the -ORBmutualAuth command-line option on the ORB to specify that
certificate authentication must be used by applications connecting to the
CORBA C++ ORB.

Enabling certificate authentication requires the license for the SSL protocol to be
installed. If the -a option or the -ORBmutualAuth command-line option is executed
and a license to enable the use of the SSL protocol does not exist, the IIOP
Listener/Handler or CORBA C++ ORB will not start.

Sample UBBCONFIG File for Certificate
Authentication

Listing 7-4 includes a UBBCONFIG file for a CORBA application which uses certificate
authentication. The key sections of the UBBCONFIG file are noted in boldface text.

Listing 7-4 Sample UBBCONFIG File for Certificate Authentication

*RESOURCES
 IPCKEY 55432
 DOMAINID simpapp
Using Security in CORBA Applications 7-13

7 Configuring Authentication
 MASTER SITE1
 MODEL SHM
 LDBAL N
 SECURITY USER_AUTH

AUTHSVR “AUTHSVC”

*MACHINES
 "ICEAXE"
 LMID = SITE1
 APPDIR = "D:\TUXDIR\samples\corba\SIMPAP~1"
 TUXCONFIG = "D:\TUXDIR\samples\corba\SIMPAP~1

\results\tuxconfig"
 TUXDIR = "D:\TUX8"
 MAXWSCLIENTS = 10

*GROUPS
 SYS_GRP
 LMID = SITE1
 GRPNO = 1
 APP_GRP
 LMID = SITE1
 GRPNO = 2

*SERVERS
 DEFAULT:
 RESTART = Y
 MAXGEN = 5

 AUTHSVR
 SRVGRP = SYS_GRP
 SRVID = 1

 RESTART = Y
 GRACE = 60

 MAXGEN = 2

TMSYSEVT
 SRVGRP = SYS_GRP
 SRVID = 1

 TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 2
 CLOPT = "-A -- -N -M"

 TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 3
 CLOPT = "-A -- -N"
7-14 Using Security in CORBA Applications

Configuring Access Control
 TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 4
 CLOPT = "-A -- -F"

 simple_server
 SRVGRP = APP_GRP
 SRVID = 1
 RESTART = N

 ISL
 SRVGRP = SYS_GRP
 SRVID = 5
 CLOPT = "-A -- -a -z40 -Z128 -S2458 -n //ICEAXE:2468"
 SEC_PRINCIPAL_NAME="IIOPListener"
 SEC_PRINCIPAL_LOCATION="IIOPListener.pem"
 SEC_PRINCIPAL_PASSVAR="ISH_PASS"

Configuring Access Control

Note: Access control only applies to the default authorization implementation. The
default authorization provider for the CORBA security environment does not
enforce access control checks. In addition, the setting of the SECURITY
parameter in the UBBCONFIG file does not control or enforce access control
used by third-party authorization implementation.

There are two levels of access control security: optional access control list (ACL) and
mandatory access control list (MANDATORY_ACL). Only when users are authenticated to
join an application does the access control list become active.

By using an access control list, a system administrator can organize users into groups
and associate the groups with objects that the member users have permission to access.
Access control is done at the group level for the following reasons:

n System administration is simplified. It is easier to give a group of people access
to a new object than it is to give individual users access to the object.

n Performance is improved. Because access permission needs to be checked for
each invocation of an entity, permission should be resolved quickly. Because
there are fewer groups than users, it is quicker to search through a list of
privileged groups than it is to search through a list of privileged users.
Using Security in CORBA Applications 7-15

7 Configuring Authentication
When using the default authorization provider, the access control checking feature is
based on the following files that are created and maintained by the system
administrator:

n tpusr contains a list of users

n tpgrp contains a list of groups

n tpacl contains a list of ACLs

Configuring Optional ACL Security

The difference between ACL and MANDATORY_ACL is the following.

n In ACL mode, a service request will be allowed if there is not a specific ACL.

n In MANDATORY_ACL mode, the service request is denied if there is not a specific
ACL.

Optional ACL Security requires that each client provide an application password, a
username, and user-specific data, such as a password, to join the application.

To configure optional ACL security, complete the following steps:

1. Ensure that you are working on the application MASTER machine and that the
application is inactive.

2. Open UBBCONFIG with a text editor and add the following lines to the RESOURCES
and SERVERS sections:

*RESOURCES
SECURITY ACL
AUTHSVC “AUTHSVC”

.

.

.

*SERVERS
AUTHSVR SRVGRP="group_name" SRVID=1 RESTART=Y GRACE=600 MAXGEN=2
CLOPT="-A"

CLOPT="-A" causes the tmboot command to pass only the default
command-line options (invoked by "-A") to AUTHSVR when the tmboot
command starts the application. By default, AUTHSVR uses the user information
7-16 Using Security in CORBA Applications

Configuring Access Control
in the tpusr file to authenticate clients that want to interact with the CORBA
application.

3. Load the configuration by running the tmloadcf command. The tmloadcf
command parses UBBCONFIG and loads the binary TUXCONFIG file to the location
referenced by the TUXCONFIG variable.

4. The system prompts you for a password. The password you enter may be up to 30
characters long. It becomes the password for the application and remains in effect
until you change it by using the passwd command of tmadmin.

5. Distribute the application password to authorized users of the application through
an offline means such as telephone or letter.

Configuring Mandatory ACL Security

Mandatory ACL security level requires that each client provide an application
password, a username, and user-specific data, such as a password, to interact with the
CORBA application.

To configure mandatory ACL security, perform the following steps:

1. Ensure that you are working on the application MASTER machine and that the
application is inactive.

2. Open UBBCONFIG with a text editor and add the following lines to the RESOURCES
and SERVERS sections:

*RESOURCES
SECURITY MANDATORY_ACL
AUTHSVC ..AUTHSVC

.

.

.

*SERVERS
AUTHSVR SRVGRP="group_name" SRVID=1 RESTART=Y GRACE=600 MAXGEN=2
CLOPT="-A"

CLOPT="-A" causes the tmboot command to pass only the default
command-line options (invoked by "-A") to AUTHSVR when the tmboot
command starts the application. By default, AUTHSVR uses the client user
information in the tpusr file named to authenticate clients that want to join the
Using Security in CORBA Applications 7-17

7 Configuring Authentication
application. The tpusr file resides in the directory referenced by the first
pathname defined in the application’s APPDIR variable.

3. Load the configuration by running the tmloadcf command. The tmloadcf
command parses UBBCONFIG and loads the binary TUXCONFIG file to the location
referenced by the TUXCONFIG variable.

4. The system prompts you for a password. The password you enter may be up to 30
characters long. It becomes the password for the application and remains in effect
until you change it by using the passwd command of tmadmin.

5. Distribute the application password to authorized users of the application through
an offline means such as telephone or letter.

Setting ACL Policy Between CORBA Applications

As the administrator, you use the following configuration parameters to set and control
the access control list (ACL) policy between CORBA applications that reside in
different BEA Tuxedo domains.

.

The following bullets explain how the ACL_POLICY configuration affects the operation
of local domain gateway (GWTDOMAIN) processes.

n When using a local ACL policy, each domain gateway (GWTDOMAIN) modifies
inbound CORBA client requests (requests originating from the remote

Parameter Name Description Setting

ACL_POLICY in DMCONFIG
(TA_DMACLPOLICY in DM_MIB)

May appear in the DM_REMOTE_DOMAINS
section of the DMCONFIG file for each remote
domain access point. Its value for a particular
remote domain access point determines whether
or not the local domain gateway modifies the
identity of service requests received from the
remote domain.*

LOCAL or GLOBAL.
Default is LOCAL.

LOCAL means modify
the identity of service
requests, and GLOBAL
means pass service
requests with no
change. DOMAINID
string for the remote
domain access point.

* A remote domain access point is also known as an RDOM (pronounced “are dom”) or simply remote domain.
7-18 Using Security in CORBA Applications

Configuring Access Control
application and received over the network connection) so that they take on the
DOMAINID for the remote domain access point and thus have the same access
permissions as that identity. Each domain gateway passes outbound client
requests without change.

In this configuration, each application has an ACL database containing entries
only for users in its own domain.

n When using a global ACL policy, each domain gateway (GWTDOMAIN) passes
inbound and outbound CORBA client requests without change. In this
configuration, each application has an ACL database containing entries for users
in its own domain as well as users in the remote domain.

Impersonating the Remote Domain Gateway

If the domain gateway receives a client request from a remote domain for which the
ACL_POLICY parameter is set (or defaulted) to LOCAL in the local DMCONFIG file, the
domain gateway removes any tokens from the request and creates an application key
containing the DOMAINID of the remote domain access point.

Example DMCONFIG Entries for ACL Policy

In Listing 7-5, the connection through the remote domain access point b01 is
configured for global ACL in the local DMCONFIG file, meaning that the domain
gateway process for domain access point c01 passes client requests from and to
domain access point b01 without change.

Listing 7-5 Sample DMCONFIG File for ACL Policy

*DM_LOCAL_DOMAINS
<LDOM name> <Gateway Group name> <domain type> <domain id>
[<connection principal name>] [<security>]...
c01 GWGRP=bankg1

TYPE=TDOMAIN
DOMAINID="BA.CENTRAL01"
CONN_PRINCIPAL_NAME="BA.CENTRAL01"
SECURITY=DM_PW

.

.

.

Using Security in CORBA Applications 7-19

7 Configuring Authentication
*DM_REMOTE_DOMAINS
<RDOM name> <domain type> <domain id> [<ACL policy>]
[<connection principal name>] [<local principal name>]...
b01 TYPE=TDOMAIN

DOMAINID="BA.BANK01"
ACL_POLICY=GLOBAL
CONN_PRINCIPAL_NAME="BA.BANK01"

Configuring Security to Interoperate with
Older WebLogic Enterprise Client
Applications

It may be necessary for CORBA erver applications in a BEA Tuxedo domain to
securely interoperate with client applications that were built with the security features
available in the 4.2 and 5.0 releases of the WebLogic Enterprise product. To allow
CORBA server applications to interoperate with older, secure client applications, you
need to either set the CLOPT -t option in the UBBCONFIG file or specify the
-ORBinterOp command-line option on the CORBA object request broker (ORB).

By setting the CLOPT -t option or specifying the -ORBinterOP command-line option,
you are lowering the effective level of security for a CORBA server. Therefore, the use
of compatibility mode should be carefully considered before enabling the mode in a
server application.

You need to set the CLOPT -t option on any server applications that will interoperate
with the older client application. The CLOPT -t option is specified in the *SERVERS
section of the UBBCONFIG file.

Listing 7-6 Example UBBCONFIG File Entries for Interoperability

*SERVERS
SecureSrv SRVGRP=group_name SRVID=server_number

CLOPT=A -t..
7-20 Using Security in CORBA Applications

Configuring Security to Interoperate with Older WebLogic Enterprise Client Applica-
If you are using a remote CORBA C++ ORB, specify the -ORBinterOp command-line
option on the ORB to allow the ORB to interoperate with client application using the
security features in the 4.2 or 5.0 releases of the WebLogic Enterprise product.
Using Security in CORBA Applications 7-21

7 Configuring Authentication
7-22 Using Security in CORBA Applications

CHAPTER
8 Configuring Single
Sign-on

This topic includes the following sections:

n Single Sign-on with Password Authentication

n Single Sign-on with Password Authentication and the SSL Protocol

n Single Sign-on with the SSL Protocol and Certificate Authentication

Single Sign-on with Password
Authentication

The steps for implementing single sign-on with password authentication are as
follows:

1. In the CORBA.connectionpool section of the weblogic.properties file,
define the following properties:

l appaddrlist=//host:port

where the host and port specify the name and port number of the IIOP
Listener/Handler in the BEA Tuxedo domain used with your CORBA
application. For more information about the different address formats
supported in CORBA applications, see “Writing a CORBA Application that
Implements Security” on page 10-1.
Using Security in CORBA Applications 8-1

8 Configuring Single Sign-on
l username as the name of the WebLogic Server User.

l userpassword as the password for the WebLogic Server User

l apppassword as the password of the CORBA application you want to
access.

l securitycontext as Yes. Yes indicates that you want the security context
of the WebLogic Server User passed to the BEA Tuxedo domain.

Note: There are other properties in the CORBA.connectionpool section of the
weblogic.properties file that are used to set up the connection pool. For
more information about setting up CORBA connection pools, see Using
WebLogic Enterprise Connectivity in the WebLogic Server online
documentation.

2. Use the tpusradd command to define the WebLogic Server User as an
authorized user in the BEA Tuxedo domain. The username and password for the
WebLogic Server User must appear in the tpusr file exactly as they are defined
in the weblogic.properties file.

3. Set -E option of the ISL command to configure the IIOP Listener/Handler to
detect and utilize the propagated security context from the WebLogic Server
security realm. The -E option of the ISL command requires you to specify a
principal name. The principal name is the username as defined in the
weblogic.properties file. The ISL command for the IIOP Listener/Handler is
defined for the CLOPT parameter in the UBBCONFIG file for the BEA Tuxedo
domain.

4. Set the SECURITY parameter in the UBBCONFIG file to USER_AUTH or higher.

Single Sign-on with Password
Authentication and the SSL Protocol

The steps for implementing single sign-on with password authentication and the SSL
protocol are as follows:
8-2 Using Security in CORBA Applications

Single Sign-on with Password Authentication and the SSL Protocol
1. Configure the SSL protocol in the WebLogic Server and the BEA Tuxedo CORBA
environments.

For information about configuring the SSL protocol in the WebLogic Server
environment, see Managing Security in the WebLogic Server online
documentation.

For information about configuring the SSL protocol in the CORBA environment,
see “Single Sign-on” on page 3-24.

2. In the CORBA.connectionpool section of the weblogic.properties file
define the following properties:

l appaddrlist=corbalocs://host:port

where the host and port specify the name and port number of the IIOP
Listener/Handler in the BEA Tuxedo domain you want to access. For more
information about the different address formats supported in CORBA
applications, see “Using the Bootstapping Mechanism” on page 10-1.

l username as the name of the WebLogic Server User.

l userpassword as the password for the WebLogic Server User.

l apppassword as the password of the CORBA application you want to
access.

l securitycontext as Yes. Yes indicates that you want the security context
of the WebLogic Server User passed to the BEA Tuxedo domain.

l minencryptionlevel and maxecryptionlevel. These are optional
properties. The valid values are 0, 40, 56, and 128. The default is 40 for the
minencryptionlevel property. The maxecryptionlevel property defaults
to the maximum strength allowed by the license. These two properties are
used at the time of the SSL handshake to determine the encryption strength
that will be used between the WebLogic Server and BEA Tuxedo CORBA
environments.

Note: There are other properties in the CORBA.connectionpool section of the
weblogic.properties file that are used to set up CORBA connection pools.
For more information about setting up connection pools, see Using WebLogic
Enterprise Connectivity in the WebLogic Server online documentation.
Using Security in CORBA Applications 8-3

8 Configuring Single Sign-on
3. Use the tpusradd command to define the WebLogic Server User as an
authorized user in the BEA Tuxedo domain. The username and password for the
WebLogic Server User must appear in the tpusr file exactly as they are defined
in the weblogic.properties file.

4. Set -E option of the ISL command to configure the IIOP Listener/Handler to
detect and utilize the propagated security context from the WebLogic Server
security realm. The -E option of the ISL command requires you to specify a
principal name. The principal name is the username as defined in the
weblogic.properties file. The ISL command for the IIOP Listener/Handler is
defined for the CLOPT parameter in the UBBCONFIG file for the BEA Tuxedo
domain.

5. Set the SECURITY parameter in the UBBCONFIG file to USER_AUTH or higher.

Single Sign-on with the SSL Protocol and
Certificate Authentication

The steps for implementing single sign-on with the SSL protocol and certificate
authentication are as follows:

1. Configure the SSL protocol in the WebLogic Server and the BEA Tuxedo CORBA
environments.

For information about configuring the SSL protocol in the WebLogic Server
environment, see Managing Security in the WebLogic Server online
documentation.

For information about configuring the SSL protocol in the BEA Tuxedo CORBA
environment, see “Single Sign-on” on page 3-24.

2. In the CORBA.connectionpool section of the weblogic.properties file
define the following properties:

l appaddrlist=corbalocs://host:port

where the host and port specify the name and port number of the IIOP
Listener/Handler in the BEA Tuxedo domain you want to access.

l username as the e-mail address of the subject of the digital certificate.
8-4 Using Security in CORBA Applications

Single Sign-on with the SSL Protocol and Certificate Authentication
l userpassword as the private key of the digital certificate.

l apppassword as the password of the CORBA application you want to
access.

l securitycontext as Yes. Yes indicates that you want the security context
of the WebLogic Server User passed to the BEA Tuxedo domain.

l minencryptionlevel and maxecrptionlevel. These are optional
properties. The valid values are 0, 40, 56, and 128. The default is 40 for the
minencryptionlevel property. The maxecryptionlevel property defaults
to the maximum strength allowed by the license. These two properties are
used at the time of the SSL handshake to determine the encryption strength
that will be used between the WebLogic Server and BEA Tuxedo CORBA
environments.

l certificatebasedauth as Yes. Yes indicates that certificate
authentication is to be used.

Note: There are other properties in the CORBA.connectionpool section of the
weblogic.properties file that are used to set up the CORBA connection
pool. For more information about setting up connection pools, see Using
WebLogic Enterprise Connectivity in the WebLogic Server online
documentation.

3. Use the tpusradd command to define the WebLogic Server User as an
authorized user in the BEA Tuxedo domain. The username and password for the
WebLogic Server User must appear in the tpusr file exactly as they are defined
in the weblogic.properties file.

4. Set -E option of the ISL command to configure the IIOP Listener/Handler to
detect and utilize the propagated security context from the WebLogic Server
security realm. The -E option of the ISL command requires you to specify a
principal name. The principal name is the username as defined in the
weblogic.properties file. The ISL command for the IIOP Listener/Handler is
defined for the CLOPT parameter in the UBBCONFIG file for the BEA Tuxedo
domain.

5. Set the -a option of the ISL command to configure the IIOP Listener/Handler to
enable certificate authentication.The ISL command for the IIOP Listener/Handler
is defined for the CLOPT parameter in the UBBCONFIG file for the BEA Tuxedo
domain.

6. Set the SECURITY parameter in the UBBCONFIG file to USER_AUTH or higher.
Using Security in CORBA Applications 8-5

8 Configuring Single Sign-on
Using certificate authentication between the WebLogic Server environment and the
BEA Tuxedo CORBA environment implies performing a new SSL handshake to
establish a connection from the WebLogic Server environment to a CORBA object in
the BEA Tuxedo CORBA environment. In order to support multiple client requests
over the same SSL network connection, certificate authentication must be set up as
follows:

n Obtain a digital certificate for the WebLogic Enterprise Connectivity process.
This digital certificate is presented to the BEA Tuxedo CORBA environment for
the purpose of authenticating the identity of the WebLogic Enterprise
Connectivity process. Once established, the authenticated connection between
the WebLogic Enterprise Connectivity product and the BEA Tuxedo
environment remains.

n When a client request is made from the WebLogic Server environment on a
CORBA object in the BEA Tuxedo CORBA environment, digital certificates are
exchanged between the environments and session keys are generated for both
sides of the connection. Because WebLogic Connectivity is part of WebLogic
Server, the WebLogic Connectivity process will accept any message from the
BEA Tuxedo CORBA environment that has the sessions keys that were created
when the SSL connection was established between the environments. The
WebLogic Enterprise Connectivity process then forwards the client request using
the established SSL connection to the BEA Tuxedo environment.
8-6 Using Security in CORBA Applications

CHAPTER
9 Configuring Security
Plug-ins

This topic includes the Registering the Security Plug-ins (SPIs) section.

Registering the Security Plug-ins (SPIs)

The CORBA and ATMI environments in the BEA Tuxedo product use a common
transaction processing (TP) infrastructure that consists of a set of core services, such
as security. The TP infrastructure is available to CORBA applications through well
defined interfaces. These interfaces allow system administrators to change the default
behavior of the TP infrastructure by loading and linking their own service code
modules, referred to as security plug-ins.

In order to use a security plug-in, you need to register the security plug-in with the
BEA Tuxedo system. The registry of the BEA Tuxedo system is a disk-based
repository for storing information related to the security plug-ins. Initially, this registry
holds information about the default security plug-ins. Additional entries are made to
the registry as custom security plug-ins are added to the BEA Tuxedo system. The
registry entry for a security plug-in is a set of binary files that stores information about
the plug-in. There is one registry per BEA Tuxedo installation. Every client
application, server application, and server machine in a particular CORBA application
must use the same set of security plug-ins.

The registry is located in the following directory:
Using Security in CORBA Applications 9-1

9 Configuring Security Plug-ins
Windows 2000

$TUXDIR\udataobj

UNIX

$TUXDIR/udataobj

The system administrator of a CORBA application in which custom security plug-ins
are used is responsible for registering those plug-ins. A system administer can register
security plug-ins in the registry of the BEA Tuxedo system only from the local
machine. That is, a system administrator cannot register security plug-ins while logged
on to the host machine from a remote location.

The following commands are available for managing security plug-ins:

n epifreg—for registering a security plug-in

n epifunreg—for unregistering a security plug-in

n epifregedt—for editing registry information

Instructions for using these commands are available in Developing Security Services
for ATMI and CORBA Environments. (This document contains the specifications for
the Security SPIs, and describes the BEA Tuxedo plug-in framework feature that
makes the dynamic loading and linking of security plug-ins possible.) To obtain this
document, see your BEA account executive.

When installing custom security plug-ins, the security vendor that provided the plug-in
should provide instructions for using the commands to set up the registry for the BEA
Tuxedo system in order to access the customer security plug-ins.
9-2 Using Security in CORBA Applications

Part III Security
Programming
 Chapter 10. Writing a CORBA Application that

Implements Security

 Chapter 11. Building and Running the CORBA Sample
Applications

 Chapter 12. Troubleshooting

CHAPTER
10 Writing a CORBA
Application That
Implements Security

This topic includes the following sections:

n Using the Bootstrapping Mechanism

n Using Password Authentication

n Using Certificate Authentication

n Using the Interoperable Naming Service Mechanism

n Using the Invocations_Options_Required() Method

Using the Bootstrapping Mechanism

Note: This mechanism should be used with the BEA CORBA client applications.

The Bootstrap object in the BEA Tuxedo CORBA environment has been enhanced so
that users can specify that all communication to a given IIOP Listener/Handler be
protected. The Bootstrap object supports corbaloc and corbalocs Uniform
Resource Locator (URL) address formats to be used when specifying the location of
the IIOP Listener/Handler. The type of security provided depends on the format of
URL used to specify the location of the IIOP Listener/Handler.
Using Security in CORBA Applications 10-1

10 Writing a CORBA Application That Implements Security
As with the Host and Port address format, you use the URL address formats to specify
the location of the IIOP Listener/Handler, but the bootstrapping process behaves
differently. When using the corbaloc or corbalocs URL address format, the initial
connection to the IIOP Listener/Handler is deferred until either:

n The principal uses password authentication with either the
Tobj::PrincipalAuthenticator::logon or the
SecurityLevel2::PrincipalAuthenticator::authenticate methods.

n The principal calls the Tobj_Bootstrap::resolve_initial_references
method using an object ID value other than SecurityCurrent.

Using the corbalocs URL address format indicates that the SSL protocol is used to
protect at least the integrity of the connection between the principal and the IIOP
Listener/Handler.

Table 10-1 highlights the differences between the two URL address formats.

Both the corbaloc and corbalocs URL address formats provide stringified object
references that are easily manipulated in both TCP/IP and Domain Name System
(DNS) environments. The corbaloc and corbalocs URL address formats contain a
DNS-style host name or an IP address and port.

Table 10-1 Differences Between corbaloc and corbalocs URL Address Formats

URL Address Formats Functionality

corbaloc By default, invocations on the IIOP Listener/Handler are unprotected.
Configuring the IIOP Listener/Handler for the SSL protocol is optional.

A principal can secure the bootstrapping process by using the
authenticate() method of the
SecurityLevel2::PrincipalAuthenticator interface and the
invocation_options_required() method of the
SecurityLeve12::Credentials interface to specify that certificate
authentication is to be used.

corbalocs Invocations on the IIOP Listener/Handler are protected and the IIOP
Listener/Handler or the CORBA C++ ORB must be configured to enable the use
of the SSL protocol. For more information, see “Configuring the SSL Protocol”
on page 6-1.
10-2 Using Security in CORBA Applications

Using the Bootstrapping Mechanism
The URL address formats follow and extend the definition of object URLs adopted by
the Object Management Group (OMG) as part of the Interoperable Naming Service
submission. The BEA Tuxedo software also extends the URL format described in the
OMG Interoperable Naming Service submission to support a secure form that is
modeled after the URL for secure HTTP, as well as to support functionality in previous
releases of the WebLogic Enterprise product.

Listing 10-1 contains examples of the new URL address formats.

Listing 10-1 Examples of the corbaloc and corbalocs URL Address Formats

corbaloc://555xyz.com:1024,corbaloc://555backup.com:1022,
corbaloc://555last.com:1999
corbalocs://555xyz.com:1024,(corbalocs://555backup.com:1022|corba
locs://555last.com:1999)
corbaloc://555xyz.com:1111
corbalocs://24.128.122.32:1011, corbalocs://24.128.122.34

As an enhancement to the URL syntax described in the OMG Interoperable Naming
Service submission, the BEA Tuxedo product extends the syntax to support a list of
multiple URLs, each with a different scheme. Listing 10-2 contains examples of
specifying multiple URLs.

Listing 10-2 Examples of Specifying Multiple URL Address Formats

corbalocs://555xyz.com:1024,corbaloc://555xyz.com:1111
corbalocs://ctxobj.com:3434,corbalocs://mthd.com:3434,corbaloc://force.com:1111

In the examples in Listing 10-2, if the parser reaches the URL
corbaloc://force.com:1111, it resets its internal state as if it had never attempted
secure connections, and then begins attempting unprotected connections. This
situation occurs if the client application has not set any SSL parameters on the
Credentials object.

The following sections describe the behavior when using the different address formats
of the Bootstrap object.
Using Security in CORBA Applications 10-3

10 Writing a CORBA Application That Implements Security
Using the Host and Port Address Format

If a CORBA client application uses the Host and Port address format of the Bootstrap
object, the constructor method of the Bootstrap object constructs an object reference
using the specified host name and port number. The invocation to the IIOP
Listener/Handler is made without the protections offered by the SSL protocol.

The client application can still authenticate using password authentication. However,
since the bootstrapping process is performed over an unprotected and unverified link,
all communications are vulnerable to the following security attacks:

n The Man-in-the-Middle attack, because there was no verification that the
principal to which the connection was made was the desired principal.

n The Denial of Service attack, because no object references were returned, the
object references returned were invalid, or the security token was invalid.

n The Sniffer attack, because the information was sent in the clear so that anyone
with a packet sniffer can see the content of a message that was not encrypted
(for example, only the username/password information is encrypted).

n The Tamper attack, because the integrity of the information is not protected. The
contents of the message could be changed and the change would not be detected.

n The Replay attack, because the same request can be sent repeatedly without
detection.

Note: If the IIOP Listener/Handler is configured for the SSL protocol and the Host
and Port address format of the Bootstrap object is used, the invocation on the
specified CORBA object results in a INVALID_DOMAIN exception.

Using the corbaloc URL Address Format

By default, the invocation on the IIOP Listener/Handler is unprotected when using the
corbaloc URL address format and password authentication. Therefore, all
communications are vulnerable to the following security attacks:

n The Man-in-the-Middle attack, because there was no verification that the
principal to which the connection was made was the desired principal.
10-4 Using Security in CORBA Applications

Using the Bootstrapping Mechanism
n The Denial of Service attack, because no object references were returned, the
object references returned were invalid, or the security token was invalid.

n The Sniffer attack, because the information was sent in the clear so that anyone
with a packet sniffer can see the content of a message that was not encrypted
(for example, only the username/password information is encrypted).

n The Tamper attack, because the integrity of the information is not protected. The
content of the message could be changed and the change would not be detected.

n The Replay attack, because the same request can be sent repeatedly without
detection.

You can protect the bootstrapping process when using the corbaloc URL address
format by using the
SecurityLevel2::PrincipalAuthenticator::authenticate() method,
specifying that certificate authentication is to be used, and setting the
invocation_methods_required method on the Credentials object.

Note: If the IIOP Listener/Handler is configured for the SSL protocol but not
configured for certificate authentication and the corbaloc URL address
format is used, the invocation on the specified CORBA object results in an
INVALID_DOMAIN exception.

BEA recommends that existing CORBA applications migrate to the corbaloc URL
address format instead of using the Host and Port Address format.

Using the corbalocs URL Address Format

The corbalocs URL address format is the recommended format to use to ensure that
communications between principals and the IIOP Listener/Handler are protected. The
corbalocs URL address format functions in the same way as the corbaloc URL
address format, except the SSL protocol is used to protect all communications with the
IIOP Listener/Handler or the CORBA C++ ORB regardless of the type of
authentication used.

When the defaults are used with the corbalocs URL address format, communications
are vulnerable only to Denial of Service security attacks. Using the SSL protocol and
certificate authentication guards against Sniffer, Tamper, and Replay attacks. In
addition, the validation check of the host specified in the digital certificate guards
against Man-in-the-Middle attacks.
Using Security in CORBA Applications 10-5

10 Writing a CORBA Application That Implements Security
To use the corbalocs URL address format, the IIOP Listener/Handler or the CORBA
C++ ORB must be configured to enable the use of the SSL protocol. For more
information about configuring the IIOP Listener/Handler or the CORBA C++ ORB for
the SSL protocol, see “Configuring the SSL Protocol” on page 6-1.

Using Password Authentication

This section describes implementing password authentication in a CORBA
applications.

The Security Sample Application

The Security sample application demonstrates password authentication. The Security
sample application requires each student using the application to have an ID and a
password. The Security sample application works in the following manner:

1. The client application has a logon method. This method invokes operations on the
PrincipalAuthenticator object, which is obtained as part of the process of logging
on to access the domain.

2. The server application implements a get_student_details() method on the
Registrar object to return information about a student. After the user is
authenticated and the logon is complete, the get_student_details() method
accesses the student information in the database to obtain the student information
needed by the client logon method.

3. The database in the Security sample application contains course and student
information.

Figure 10-1 illustrates the Security sample application.
10-6 Using Security in CORBA Applications

Using Password Authentication
Figure 10-1 Security Sample Application

The source files for the Security sample application are located in the
\samples\corba\university directory in the BEA Tuxedo software. For
information about building and running the Security sample application, see the Guide
to the CORBA University Sample Applications.

Writing the Client Application

When using password authentication, write client application code that does the
following:

1. Uses the Bootstrap object to obtain a reference to the SecurityCurrent object for the
specific BEA Tuxedo domain. You can use the Host and Port Address format, the
corbaloc URL address format, or the corbalocs URL address format.

2. Gets the PrincipalAuthenticator object from the SecurityCurrent object.

3. Uses one of the following methods to authenticate the principal:

CORBA Java
Client

Application

CORBA C++
Client

Application

ActiveX Client
Application

Database

logon()

Security Required

Server
Application

Registrar Object

get_student_details()

browse_courses()

get_course_details()

CORBA
Using Security in CORBA Applications 10-7

10 Writing a CORBA Application That Implements Security
l C++—SecurityLevel2::PrincipalAuthenticator::authenticate()

using Tobj::TuxedoSecurity

l Java—SecurityLevel2.PrincipalAuthenticator.authenticate()

using Tobj::TuxedoSecurity

l C++—Tobj::PrincipalAuthenticator::logon()

l Java—Tobj.PrincipalAuthenticator.logon()

The SecurityLevel2::PrincipalAuthenticator interface is defined in the
CORBAservices Security Service specification. This interface contains two methods
that are used to accomplish the authentication of the principal. There are two methods
because authentication of principals may require more than one step. The
authenticate() method allows the caller to authenticate and optionally select
attributes for the principal of this session.

The CORBA environment extends the PrincipalAuthenticator object with
functionality to support similar security to that found in the ATMI environment in the
BEA Tuxedo product. The enhanced functionality is provided by the
Tobj::PrincipalAuthenticator interface.

The methods defined for the Tobj::PrincipalAuthenticator interface provide a
focused, simplified form of the equivalent CORBA-defined interface. You can use
either the CORBA-defined or the BEA Tuxedo extensions when developing a CORBA
application.

The Tobj::PrincipalAuthenticator interface provides the same functionality as
the SecurityLevel2::PrincipalAuthenticator interface. However, unlike the
SecurityLevel2::PrincipalAuthenticator::authenticate() method, the
logon() method of the Tobj::PrincipalAuthenticator interface does not return
a Credentials object. As a result, CORBA applications that need to use more than one
principal identity are required to call the Current::get_credentials() method
immediately after the logon() method to retrieve the Credentials object as a result
of the logon. Retrieval of the Credentials object directly after a logon method should
be protected with serialized access.

Note: The user data specified as part of the logon cannot contain embedded NULLs.

The following sections contain C++ and Java code examples that illustrate
implementing password authentication. For a Visual Basic code example, see
“Automation Security Reference” on page 17-1.
10-8 Using Security in CORBA Applications

Using Password Authentication
C++ Code Example That Uses the
SecurityLevel2::PrincipalAuthenticator::authenticate() Method

Listing 10-3 contains C++ code that performs password authentication using the
SecurityLevel2::PrincipalAuthenticator::authenticate()method.

Listing 10-3 C++ Client Application That Uses the
SecurityLevel2::PrincipalAuthenticator::authenticate() Method

...
//Create Bootstrap object
 Tobj_Bootstrap* bootstrap = new Tobj_Bootstrap(orb,
 corbalocs://sling.com:2143);

//Get SecurityCurrent object
CORBA::Object_var var_security_current_oref =
 bootstrap.resolve_initial_references(“SecurityCurrent”);
SecurityLevel2::Current_var var_security_current_ref =
 SecurityLevel2::Current::_narrow(var_security_current_oref.in());

//Get the PrincipalAuthenticator
SecurityLevel2::PrincipalAuthenticator_var var_principal_authenticator =
 var_security_current_oref->principal_authenticator();

const char * user_name = “john”
const char * client_name = “university”;
char system_password[31] = {‘\0’};
char user_password[31] = {‘\0’};

Tobj::PrincipalAuthenticator_ptr var_bea_principal_authenticator =
Tobj::PrincipalAuthenticator::_narrow(var_bea_principal_authenticator.in());

//Determine the security level
Tobj::AuthType auth_type = var_bea_principal_authenticator->get_auth_type();
switch (auth_type)
{
 case Tobj::TOBJ_NOAUTH;
 break;

 case Tobj::TOBJ_SYSAUTH
 strcpy(system_password, “sys_pw”);

 case Tobj::TOBJ_APPAUTH
 strcpy(system_password, “sys_pw”);
 strcpy(user_password, “john_pw”);
 break;
Using Security in CORBA Applications 10-9

10 Writing a CORBA Application That Implements Security
}
if (auth_type != Tobj::TOBJ_NOAUTH)

{
 SecurityLevel2::Credentials_var creds;
 Security::Opaque_var auth_data;
 Security::AttributeList_var privileges;
 Security::Opaque_var cont_data;
 Security::Opaque_var auth_spec_data;

var_bea_principalauthenticator->build_auth_data(user_name,
 client_name,
 system_password,
 user_password,
 NULL,
 auth_data,
 privileges);
Security::AuthenticationStatus status =
 var_bea_principalauthenticator->authenticate(
 Tobj::TuxedoSecurity,
 user_name,
 auth_data,
 privileges,
 creds,
 cont_data, auth_spec_data);

if (status != Security::SecAuthSuccess)
 {
 //Failed authentication
 return;
 }
}

// Proceed with application
...

Java Code Example That Uses the
SecurityLevel2.PrincipalAuthenticator.authenticate() Method

Listing 10-4 contains Java code that performs password authentication using the
SecurityLevel2.PrincipalAuthenticator.authenticate()method.
10-10 Using Security in CORBA Applications

Using Password Authentication
Listing 10-4 Java Client Application That Uses the
SecurityLevel2.PrincipalAuthenticator.authenticate() Method

...
// Create Bootstrap object
 Tobj_Bootstrap bs =
 new Tobj_Bootstrap(orb, corbalocs://sling.com:2143);

// Get SecurityCurrent object
 org.omg.CORBA.Object secCurObj =
 bs.resolve_initial_references("SecurityCurrent");
 org.omg.SecurityLevel2.Current secCur2Obj =
 org.omg.SecurityLevel2.CurrentHelper.narrow(secCurObj);

 // Get Principal Authenticator
 org.omg.Security.PrincipalAuthenticator princAuth =
 secCur2Obj.principal_authenticator();
 com.beasys.Tobj.PrincipalAuthenticator auth =
 Tobj.PrincipalAuthenticatorHelper.narrow(princAuth);

 // Get Authentication type
 com.beasys.Tobj.AuthType authType = auth.get_auth_type();

 // Initialize arguments
 String userName = "John";
 String clientName = "Teller";
 String systemPassword = null;
 String userPassword = null;
 byte[] userData = new byte[0];

 // Prepare arguments according to security level requested
 switch(authType.value())
 {
 case com.beasys.Tobj.AuthType._TPNOAUTH:
 break;

 case com.beasys.Tobj.AuthType._TPSYSAUTH:
 systemPassword = "sys_pw";
 break;

 case com.beasys.Tobj.AuthType._TPAPPAUTH:
 systemPassword = "sys_pw";
 userPassword = "john_pw";
 break;
 }

 // Build security data
 org.omg.Security.OpaqueHolder auth_data =
 new org.omg.Security.OpaqueHolder();
Using Security in CORBA Applications 10-11

10 Writing a CORBA Application That Implements Security
 org.omg.Security.AttributeListHolder privs =
 new Security.AttributeListHolder();
 auth.build_auth_data(userNname, clientName, systemPassword,
 userPassword, userData, authData,
 privs);

 // Authenticate user
 org.omg.SecurityLevel2.CredentialsHolder creds =
 new org.omg.SecurityLevel2.CredentialHolder();
 org.omg.Security.OpaqueHolder cont_data =
 new org.omg.Security.OpaqueHolder();
 org.omg.Security.OpaqueHolder auth_spec_data =
 new org.omg.Security.OpaqueHolder();

 org.omg.Security.AuthenticationStatus status =
 auth.authenticate(com.beasys.Tobj.TuxedoSecurity.value,
 0, userName, auth_data.value(),
 privs.value(), creds, cont_data,
 auth_spec_data);
 if (status != AuthenticatoinStatus.SecAuthSuccess)
 System.exit(1);
 }
...

C++ Code Example That Uses the Tobj::PrincipalAuthenticator::logon() Method

Listing 10-5 contains C++ code that performs password authentication using the
Tobj::PrincipalAuthenticator::logon()method.

Listing 10-5 C++ Client Application That Uses the
Tobj::PrincipalAuthenticator::logon() Method

...
CORBA::Object_var var_security_current_oref =
 bootstrap.resolve_initial_references(“SecurityCurrent”);
SecurityLevel2::Current_var var_security_current_ref =
 SecurityLevel2::Current::_narrow(var_security_current_oref.in());

//Get the PrincipalAuthenticator
SecurityLevel2::PrincipalAuthenticator_var var_principal_authenticator_oref =
 var_security_current_oref->principal_authenticator();

//Narrow the PrincipalAuthenticator
Tobj::PrincipalAuthenticator_var var_bea_principal_authenticator =
10-12 Using Security in CORBA Applications

Using Password Authentication
 Tobj::PrincipalAuthenticator::_narrow
 var_principal_authenticator_oref.in());

const char * user_name = “john”
const char * client_name = “university”;
char system_password[31] = {‘\0’};
char user_password[31] = {‘\0’};

//Determine the security level
Tobj::AuthType auth_type = var_bea_principal_authenticator->get_auth_type();
switch (auth_type)
{
 case Tobj::TOBJ_NOAUTH;
 break;

 case Tobj::TOBJ_SYSAUTH
 strcpy(system_password, “sys_pw”);

 case Tobj::TOBJ_APPAUTH
 strcpy(system_password, “sys_pw”);
 strcpy(user_password, “john_pw”);
 break;
}
if (auth_type != Tobj::TOBJ_NOAUTH)

{
 SecurityLevel2::Credentials_var creds;
 Security::Opaque_var auth_data;
 Security::AttributeList_var privileges;
 Security::Opaque_var cont_data;
 Security::Opaque_var auth_spec_data;

//Determine the security level
Tobj::AuthType auth_type = var_bea_principal_authenticator->get_auth_type();
Security::AuthenticationStatus status = var_bea_principal_authenticator->logon(
 user_name,
 client_name,
 system_password,
 user_password,
 0);

if (status != Security::SecAuthSuccess)
 {
 //Failed authentication
 return;
 }
}

Using Security in CORBA Applications 10-13

10 Writing a CORBA Application That Implements Security
// Proceed with application
...
// Log off
 try
 {
 logoff();
 }
...

Java Code Example That Uses the Tobj.PrincipalAuthenticator.logon() Method

Listing 10-6 contains Java code that performs password authentication using the
Tobj.PrincipalAuthenticator.logon()method.

Listing 10-6 Java Client Application That Uses the
Tobj.PrincipalAuthenticator.logon() Method

...
 // Create bootstrap object
 Tobj_Bootstrap bs =
 new Tobj_Bootstrap(orb, corbaloc://sling.com;2143);

 // Get security current
 org.omg.CORBA.Object secCurObj =
 bs.resolve_initial_references("SecurityCurrent");
 org.omg.SecurityLevel2.Current secCur2Obj =
 org.omg.SecurityLevel2.CurrentHelper.narrow(secCurObj);

 // Get Principal Authenticator
 org.omg.Security.PrincipalAuthenticator princAuth =
 secCur2Obj.principal_authenticator();
 com.beasys.Tobj.PrincipalAuthenticator auth =
 Tobj.PrincipalAuthenticatorHelper.narrow(princAuth);

 // Get Authentication type
 com.beasys.Tobj.AuthType authType = auth.get_auth_type();

 // Initialize arguments
 String userName = "John";
 String clientName = "Teller";
 String systemPassword = null;
 String userPassword = null;
 byte[] userData = new byte[0];
10-14 Using Security in CORBA Applications

Using Certificate Authentication
 // Prepare arguments according to security level requested
 switch(authType.value())
 {
 case com.beasys.Tobj.AuthType._TPNOAUTH:
 break;

 case com.beasys.Tobj.AuthType._TPSYSAUTH:
 systemPassword = "sys_pw";
 break;

 case com.beasys.Tobj.AuthType._TPAPPAUTH:
 systemPassword = "sys_pw";
 userPassword = "john_pw";
 break;
 }

 // Tuxedo-style Authentication
 org.omg.Security.AuthenticationStatus status =
 auth.logon(userName, clientName, systemPassword,
 userPassword, userData);
...

// Proceed with application

// Log off
 try
 {
 auth.logoff();
 }
...

Using Certificate Authentication

This section describes implementing certificate authentication in CORBA
applications.
Using Security in CORBA Applications 10-15

10 Writing a CORBA Application That Implements Security
The Secure Simpapp Sample Application

The Secure Simpapp sample application uses the existing Simpapp sample application
and modifies the code and configuration files to support secure communications
through the SSL protocol and certificate authentication.

The server application in the Secure Simpapp sample application provides an
implementation of a CORBA object that has the following two methods:

l The upper method accepts a string from the client application and converts
the string to uppercase letters.

l The lower method accepts a string from the client application and converts
the string to lowercase letters.

The Simpapp sample application was modified in the following ways to support
certificate authentication and the SSL protocol:

n In the ISL section of the UBBCONFIG file, the -a, -S, -z, and -Z options of the
ISL command are specified to configure the IIOP Listener/Handler for the SSL
protocol.

n In the ISL section of the UBBCONFIG file, the SEC_PRINCIPAL_NAME, the
SEC_PRINCIPAL_LOCATION, and the SEC_PRINCIPAL_PASSVAR parameters are
defined to specify proof material for the IIOP Listener/Handler.

n The code for the CORBA client application uses the corbalocs URL address
format.

n The code for the CORBA client application uses the authenticate() method
of the SecurityLevel2:PrincipalAuthenticator interface to authenticate
the principal and obtain credentials for the principals.

The source files for the C++ Secure Simpapp sample application are located in the
\samples\corba\simpappSSL directory of the BEA Tuxedo software. For
instructions for building and running the Secure Simpapp sample application, see
“Building and Running the CORBA Sample Applications” on page 11-1.
10-16 Using Security in CORBA Applications

Using Certificate Authentication
Writing the CORBA Client Application

When using certificate authentication, write CORBA client application code that does
the following:

1. Uses the Bootstrap object to obtain a reference to the SecurityCurrent object for the
specific BEA Tuxedo domain. Use the corbalocs URL address format.

2. Gets the PrincipalAuthenticator object from the SecurityCurrent object.

3. Uses the authenticate() method of the
SecurityLevel2:PrincipalAuthenticator interface to authenticate the
principals and obtain credentials for the principals. When using certificate
authentication, specify Tobj::CertificateBased for the method argument and
the pass phrase for the private key as the auth_data argument for
Security::Opaque.

The following sections contain C++ and Java code examples that illustrate
implementing certificate authentication.

C++ Code Example of Certificate Authentication

Listing 10-7 illustrates using certificate authentication in a CORBA C++ client
application.

Listing 10-7 CORBA C++ Client Application That Uses Certificate
Authentication

....

// Initialize the ORB
CORBA::ORB_var v_orb = CORBA::ORB_init(argc, argv, "");

// Create the bootstrap object
Tobj_Bootstrap bootstrap(v_orb.in(), corbalocs://sling.com:2143);

// Resolve SecurityCurrent

CORBA::Object_ptr seccurobj =
 bootstrap.resolve_initial_references("SecurityCurrent");
SecurityLevel2::Current_ptr seccur =
 SecurityLevel2::Current::_narrow(seccurobj);
Using Security in CORBA Applications 10-17

10 Writing a CORBA Application That Implements Security
// Perform certificate-based authentication
 SecurityLevel2::Credentials_ptr the_creds;
 Security::AttributeList_varprivileges;
 Security::Opaque_var continuation_data;
 Security::Opaque_var auth_specific_data;
 Security::Opaque_var response_data;

//Principal email address
 char emailAddress[] = “milozzi@bigcompany.com;”
// Pass phrase for principal’s digital certificate
 char password[] = “asdawrewe98infldi7;”

// Convert the certificate private key password to opaque
 unsigned long password_len = strlen(password);
 Security::Opaque ssl_auth_data(password_len);

// Authenticate principal certificate with principal authenticator
 for(int i = 0; (unsigned long) i < password_len; i++)
 ssl_auth_data[i] = password[i];
 Security::AuthenticationStatus auth_status;
 SecurityLevel2::PrincipalAuthenticator_var PA =
 seccur->principal_authenticator();

 auth_status = PA->authenticate(Tobj::CertificateBased,
 emailAddress,
 ssl_auth_data,
 privileges,
 the_creds,
 continuation_data,
 auth_specific_data);

while(auth_status == Security::SecAuthContinue) {
auth_status = PA->continue_authentication(

 response_data,
 the_creds,
 continuation_data,
 auth_specific_data);

}

...

Java Code Example of Certificate Authentication

Listing 10-8 illustrates using certificate authentication in a CORBA Java client
application.
10-18 Using Security in CORBA Applications

Using Certificate Authentication
Listing 10-8 CORBA Java Client Application That Uses Certificate
Authentication

...

// Initialize the ORB.

 Properties Prop;
 Prop = new Properties(System.getProperties());
 Prop.put("org.omg.CORBA.ORBClass","com.beasys.CORBA.iiop.ORB");
 Prop.put("org.omg.CORBA.ORBSingletonClass",
 "com.beasys.CORBA.idl.ORBSingleton");

 ORB orb = ORB.init(args, Prop);

// Create the Bootstrap object

 Tobj_Bootstrap bs = new Tobj_Bootstrap(orb,
 corbalocs://foo:2501);

//Resolve SecurityCurrent
 org.omg.CORBA.object ocurr =
 bs.resolve_initial_references(“SecurityCurrent”);
 org.omg.SecurityLevel2.Current curr =
 org.omg.SecurityLevel2.CurrentHelper.narrow(occur);

// Get Principal Authenticator

 com.beasys.Tobj.PrincipalAuthenticator pa =
 (com.beasys.Tobj.PrincipalAuthenticator)
 curr.principal_authenticator();

 OpaqueHolder auth_data = new OpaqueHolder();
 AttributeListHolder privileges = new AttributeListHolder();
 org.omg.SecurityLevel2.CredentialsHolder creds =
 new org.omg.SecurityLevel2.CredentialsHolder();
 OpaqueHolder continuation_data = new OpaqueHolder();
 OpaqueHolder auth_specific_data = new OpaqueHolder();
 auth_data.value=new String (“deathstar”).getbytes(“UTF8);
 if(pa.authenticate(com.beasys.Tobj.CertificateBased.value,
 “vader@largecompany.com”,
 auth_data.value,
 privileges.value,
 the_creds,
 continuation_data,
 auth_specific_data)

 !AuthenticationStatus.SecAuthSuccess) {
 System.err.println(“logon failed”);
Using Security in CORBA Applications 10-19

10 Writing a CORBA Application That Implements Security
 System.exit(1);
 }
 ...

Using the Interoperable Naming Service
Mechanism

Note: This mechanism should be used with third-party client ORBs.

To use the Interoperable Naming Service mechanism to access the BEA Tuxedo
domain with the proper credentials, perform the following steps:

1. Use the ORB::resolve_initial_references() operation to get a
SecurityLevel2::PrincipalAuthenticator object for the BEA Tuxedo
domain. The SecurityLevel2::PrincipalAuthenticator object adheres to
the standard CORBAservices Security Service instead of the proprietary BEA
delegated interfaces and contains methods for the purpose of authenticating
principals.

2. Use the authenticate() method of the
SecurityLevel2::PrincipalAuthenticator object to log on to the BEA
Tuxedo domain and authenticate the client ORB to the BEA Tuxedo domain. If
security credentials are required to access the BEA Tuxedo domain, the
authenticate() method will return a status indicating that continued
authentication is required.

3. Use the continue_authentication() method of the
SecurityLevel2::PrincipalAuthenticator object to pass encyrpted logon
and credential information to the BEA Tuxedo domain.

For more information about using the CORBA Interoperable Naming Service (INS)
mechanism, see the CORBA Bootstrap Object Programming Reference for the
SecurityLevel2::PrincipalAuthenticator interface.
10-20 Using Security in CORBA Applications

Using the Invocations_Options_Required() Method
Using the Invocations_Options_Required()
Method

When using certificate authentication, it may be necessary for a principal to explicitly
define the security attributes it requires. For example, a bank application may have
specific security requirements it needs to meet before the bank application can transfer
data to a database. The invocation_options_required() method of the
SecurityLevel2::Credentials interface allows the principal to explicitly control
the security characteristics of the SSL connection. When using the corbaloc URL
address format, you can secure the bootstrapping process by using the
authenticate()and invocation_options_required() methods of the
SecurityLevel2::Credentials interface.

To use the invocation_options_required() method, complete the following
steps:

1. Write application code that uses the authenticate() method of the
SecurityLevel2::PrincipalAuthenticator object to specify certificate
authentication is being used.

2. Use the invocation_options_required() method to specify the security
attributes the principal requires. See the description of the
invocation_options_required() method in the “C++ Security Reference”
on page 15-1 and “Java Security Reference” on page 16-1 for a complete list of
security options.

Listing 10-9 provides a C++ example that uses the
invocation_options_required() method.

Listing 10-9 C++ Example That Uses the invocation_options_required() Method

// Initialize the ORB
CORBA::ORB_var v_orb = CORBA::ORB_init(argc, argv, "");

// Create the bootstrap object
Tobj_Bootstrap bootstrap(v_orb.in(), corbalocs://sling.com:2143);

// Resolve SecurityCurrent
Using Security in CORBA Applications 10-21

10 Writing a CORBA Application That Implements Security
CORBA::Object_ptr seccurobj =
 bootstrap.resolve_initial_references("SecurityCurrent");
SecurityLevel2::Current_ptr seccur =
 SecurityLevel2::Current::_narrow(seccurobj);

// Perform certificate-based authentication
 SecurityLevel2::Credentials_ptr the_creds;
Security::AttributeList_var privileges;
 Security::Opaque_var continuation_data;
 Security::Opaque_var auth_specific_data;
 Security::Opaque_var response_data;

//Principal email address
 char emailAddress[] = “milozzi@bigcompany.com;”
// Pass phrase for principal’s digital certificate
 char password[] = “asdawrewe98infldi7;”

// Convert the certificate private key password to opaque
 unsigned long password_len = strlen(password);
 Security::Opaque ssl_auth_data(password_len);

// Authenticate principal certificate with principal authenticator
 for(int i = 0; (unsigned long) i < password_len; i++)
 ssl_auth_data[i] = password[i];
 Security::AuthenticationStatus auth_status;
 SecurityLevel2::PrincipalAuthenticator_var PA =
 seccur->principal_authenticator();

 auth_status = PA->authenticate(Tobj::CertificateBased,
 emailAddress,
 ssl_auth_data,
 privileges,
 the_creds,
 continuation_data,
 auth_specific_data);
 the_creds->invocation_options_required(
 Security::Integrity|
 Security::DetectReplay|
 Security::DetectMisordering|
 Security::EstablishTrustInTarget|
 Security::EstalishTrustInClient|

 Security::SimpleDelegation);

 while(auth_status == Security::SecAuthContinue) {
 auth_status = PA->continue_authentication(

 response_data,
 the_creds,
 continuation_data,
 auth_specific_data);
10-22 Using Security in CORBA Applications

Using the Invocations_Options_Required() Method
}

...

Listing 10-10 provdes a Java example of using the
invocation_options_required() method

Listing 10-10 Java Example That Uses the invocation_options_required()
Method

...

// Initialize the ORB.

 Properties Prop;
 Prop = new Properties(System.getProperties());
 Prop.put("org.omg.CORBA.ORBClass","com.beasys.CORBA.iiop.ORB");
 Prop.put("org.omg.CORBA.ORBSingletonClass",
 "com.beasys.CORBA.idl.ORBSingleton");

 ORB orb = ORB.init(args, Prop);

// Create the Bootstrap object

 Tobj_Bootstrap bs = new Tobj_Bootstrap(orb,
 corbalocs://foo:2501);

//Resolve SecurityCurrent
 org.omg.CORBA.object ocurr =
 bs.resolve_initial_references(“SecurityCurrent”);
 org.omg.SecurityLevel2.Current curr =
 org.omg.SecurityLevel2.CurrentHelper.narrow(occur);

// Get Principal Authenticator

 com.beasys.Tobj.PrincipalAuthenticator pa =
 (com.beasys.Tobj.PrincipalAuthenticator)
 curr.principal_authenticator();

 OpaqueHolder auth_data = new OpaqueHolder();
 AttributeListHolder privileges = new AttributeListHolder();
 org.omg.SecurityLevel2.CredentialsHolder creds =
 new org.omg.SecurityLevel2.CredentialsHolder();
 OpaqueHolder continuation_data = new OpaqueHolder();
 OpaqueHolder auth_specific_data = new OpaqueHolder();
 auth_data.value=new String (“deathstar”).getbytes(“UTF8);
 if(pa.authenticate(com.beasys.Tobj.CertificateBased.value,
 “vader@largecompany.com”,
Using Security in CORBA Applications 10-23

10 Writing a CORBA Application That Implements Security
 auth_data.value,
 privileges.value,
 the_creds,
 continuation_data,
 auth_specific_data)
 org.omg.SecurityLevel2.Credentials credentials = curr.get_credentials(
 org.omg.Security.CredentialType.SecInvocationCredentials);

 credentials.invocation_options_required(
 (short) (org.omg.Security.Integrity.value |
 org.omg.Security.DetectReplay.value|
 org.omg.Security.DetectMisordering.value|
 org.omg.Security.EstablishTrustInTarget.value|
 org.omg.Security.EstablishTrustInClient.value|
 org.omg.Security.SimpleDelegation.value)
);
 !AuthenticationStatus.SecAuthSuccess) {
 System.err.println(“logon failed”);
 System.exit(1);
 }
 ...
10-24 Using Security in CORBA Applications

CHAPTER
11 Building and Running
the CORBA Sample
Applications

The topic includes the following sections:

n Building and Running the Security Sample Application

n Building and Running the Secure Simpapp Sample Application
Using Security in CORBA Applications 11-1

11 Building and Running the CORBA Sample Applications
Building and Running the Security Sample
Application

The Security sample application demonstrates using password authentication. For
instructions for building and running the Security sample application, see the Guide to
the CORBA University Sample Applications.

Building and Running the Secure Simpapp
Sample Application

The Secure Simpapp sample application demonstrates using the SSL protocol and
certificate authentication to protect communications between client applications and
the BEA Tuxedo domain.

To build and run the Secure Simpapp sample application, complete the following
steps:

1. Copy the files for the Secure Simpapp sample application into a work directory.

2. Change the protection attribute on the files for the Secure Simpapp sample
application.

3. Verify the environment variables.

4. Execute the runme command.

Before you can use the Secure Simpapp sample application, obtain a certificate and
private key (IIOPListener.pem) for the IIOP Listener/Handler from the certificate
authority in your enterprise and load the certificate in a Lightweight Directory Access
Protocol (LDAP)-enabled directory service. The runme command prompts you for the
pass phrase for the private key for the IIOP Listener/Handler.
11-2 Using Security in CORBA Applications

Building and Running the Secure Simpapp Sample Application
Step 1: Copy the Files for the Secure Simpapp Sample
Application into a Work Directory

You need to copy the files for the Secure Simpapp sample application into a work
directory on your local machine.

The files for the Secure Simpapp sample application are located in the following
directories:

Windows 2000

drive:\TUXdir\samples\corba\simpappSSL

UNIX

/usr/local/TUXdir/samples/corba/simpappSSL

You will use the files listed in Table 11-1 to build and run the Secure Simpapp sample
application.

Table 11-1 Files Included in the Secure Simpapp Sample Application

File Description

Simple.idl The OMG IDL code that declares the Simple and
SimpleFactory interfaces.

Simples.cpp The C++ source code that overrides the default
Server::initialize and
Server::release methods.

Simplec.cpp The source code for the CORBA C++ client
application in the Secure Simpapp sample
application.

Simple_i.cpp The C++ source code that implements the Simple
and SimpleFactory methods.

Simple_i.h The C++ header file that defines the implementation
of the Simple and SimpleFactory methods.

SimpleClient.java The Java source code for the client application in the
Secure Simpapp sample application.
Using Security in CORBA Applications 11-3

11 Building and Running the CORBA Sample Applications
Step 2: Change the Protection Attribute on the Files for
the Secure Simpapp Sample Application

During the installation of the BEA Tuxedo software, the sample application files are
marked read-only. Before you can edit or build the files in the Secure Simpapp sample
application, you need to change the protection attribute of the files you copied into
your work directory, as follows:

Windows 2000

Readme.html This file provides the latest information about
building and running the Secure Simpapp sample
application.

runme.cmd The Windows 2000 batch file that builds and runs the
Secure Simpapp sample application.

runme.ksh The UNIX Korn shell script that builds and executes
the Secure Simpapp sample application.

makefile.mk The makefile for the Secure Simpapp sample
application on the UNIX operating system. This file
is used to manually build the Secure Simpapp sample
application. Refer to the Readme.html file for
information about manually building the Secure
Simpapp sample application. The UNIX make
command needs to be in the path of your machine.

makefiles.nt The makefile for the Secure Simpapp sample
application on the Windows 2000 operating system.
This makefile can be used directly by the Visual C++
nmake command. This file is used to manually build
the Secure Simpapp sample application. Refer to the
Readme.html file for information about manually
building the Secure Simpapp sample application.
The Windows 2000 nmake command needs to be in
the path of your machine.

Table 11-1 Files Included in the Secure Simpapp Sample Application

File Description
11-4 Using Security in CORBA Applications

Building and Running the Secure Simpapp Sample Application
prompt>attrib -r drive:\workdirectory*.*

UNIX

prompt>/bin/ksh

ksh prompt>chmod u+w /workdirectory/*.*

On the UNIX operating system platform, you also need to change the permission of
runme.ksh to give execute permission to the file, as follows:

ksh prompt>chmod +x runme.ksh

Step 3: Verify the Settings of the Environment Variables

Before building and running the Secure Simpapp sample application, you need to
ensure that certain environment variables are set on your system. In most cases, these
environment variables are set as part of the installation procedure. However, you need
to check the environment variables to ensure they reflect correct information.

Table 11-2 lists the environment variables required to run the Secure Simpapp sample
application.

Table 11-2 Required Environment Variables for the Secure Simpapp Sample Application

Environment
Variable

Description

APPDIR The directory path where you copied the sample application files. For example:

Windows 2000

APPDIR=c:\work\simpappSSL

UNIX

APPDIR=/usr/work/simpappSSL

TUXCONFIG The directory path and name of the configuration file. For example:

Windows 2000

TUXCONFIG=c:\work\simpappSSL\tuxconfig

UNIX

TUXCONFIG=/usr/work/simpappSSL/tuxconfig
Using Security in CORBA Applications 11-5

11 Building and Running the CORBA Sample Applications
To verify that the information for the environment variables defined during installation
is correct, perform the following steps:

Windows 2000

1. From the Start menu, select Settings.

2. From the Settings menu, select the Control Panel.

The Control Panel appears.

3. Click the System icon.

The System Properties window appears.

4. Click the Environment tab.

TOBJADDR The host name and port number of the IIOP Listener/Handler. The port number must
be defined as a port for SSL communications. For example:

Windows 2000

TOBJADDR=trixie::1111

UNIX
TOBJADDR=trixie::1111

JAVA_HOME The directory path where you installed the JDK software. For example:

Windows 2000

JAVA_HOME=c:\JDK1.2

UNIX

JAVA_HOME=/usr/local/JDK1.2

If JAVA_HOME is not defined the sample only uses CORBA C++ client application.

RESULTSDIR A subdirectory of APPDIR where files that are created as a result of executing the
runme command are stored. For example:

Windows 2000

RESULTSDIR=c:\workdirectory\

UNIX

RESULTSDIR=/usr/local/workdirectory/

Table 11-2 Required Environment Variables for the Secure Simpapp Sample Application

Environment
Variable

Description
11-6 Using Security in CORBA Applications

Building and Running the Secure Simpapp Sample Application
The Environment page appears.

5. Check the settings of the environment variables.

UNIX

ksh prompt>printenv TUXDIR

ksh prompt>printenv JAVA_HOME (for the CORBA Java client application)

To change the settings, perform the following steps:

Windows 2000

1. On the Environment page in the System Properties window, click the environment
variable you want to change or enter the name of the environment variable in the
Variable field.

2. Enter the correct information for the environment variable in the Value field.

3. Click OK to save the changes.

UNIX

ksh prompt>export TUXDIR=directorypath

ksh prompt>export JAVA_HOME=directorypath (for the CORBA Java client
application)

Step 4: Execute the runme Command

The runme command automates the following steps:

1. Setting the system environment variables.

2. Loading the UBBCONFIG file.

3. Compiling the code for the client application.

4. Compiling the code for the server application.

5. Starting the server application using the tmboot command.

6. Starting the client application.
Using Security in CORBA Applications 11-7

11 Building and Running the CORBA Sample Applications
7. Stopping the server application using the tmshutdown command.

Note: You can also run the Secure Simpapp sample application manually. The steps
for manually running the Secure Simpapp sample application are described in
the Readme.html file.

To build and run the Secure Simpapp sample application, enter the runme command,
as follows:

Windows 2000

prompt>cd workdirectory

prompt>runme

UNIX

ksh prompt>cd workdirectory

ksh prompt>./runme.ksh

The Secure Simpapp sample application runs and prints the following messages:

Testing simpapp
 cleaned up
 prepared
 built
 loaded ubb
 booted
 ran
 shutdown
 saved results
 PASSED

During execution of the runme command, you are prompted for a password. Enter the
pass phrase of the private key of the IIOP Listener/Handler.

Table 11-3 lists the C++ files in the work directory generated by the runme command.

Table 11-3 C++ Files Generated by the runme Command

File Description

Simple_c.cpp Generated by the idl command, this file contains
the client stubs for the SimpleFactory and
Simple interfaces.
11-8 Using Security in CORBA Applications

Building and Running the Secure Simpapp Sample Application
Table 11-4 lists the Java files in the work directory generated by the runme command.

Simple_c.h Generated by the idl command, this file contains
the client definitions of the SimpleFactory and
Simple interfaces.

Simple_s.cpp Generated by the idl command, this file contains
the server skeletons for the SimpleFactory and
Simple interfaces.

Simple_s.h Generated by the idl command, this file contains
the server definition for the SimpleFactory
and Simple interfaces.

Table 11-4 Java Files Generated by the runme Command

File Description

SimpleFactory.java Generated by the idltojava command for the
SimpleFactory interface. The
SimpleFactory interface contains the Java
version of the OMG IDL interface. It extends
org.omg.CORBA.Object.

SimpleFactoryHolder.java Generated by the idltojava command for the
SimpleFactory interface.This class holds a
public instance member of type
SimpleFactory. The class provides operations
for out and inout arguments that are included in
CORBA, but that do not map exactly to Java.

SimpleFactoryHelper.java Generated by the idltojava command for the
SimpleFactory interface. This class provides
auxiliary functionality, notably the narrow
method.

_SimpleFactoryStub.java Generated by the idltojava command for the
SimpleFactory interface. This class is the
client stub that implements the
SimpleFactory.java interface.

Table 11-3 C++ Files Generated by the runme Command (Continued)

File Description
Using Security in CORBA Applications 11-9

11 Building and Running the CORBA Sample Applications
Table 11-5 lists files in the RESULTS directory generated by the runme command.

Simple.java Generated by the idltojava command for the
Simple interface. The Simple interface
contains the Java version of the OMG IDL
interface. It extends org.omg.CORBA.Object.

SimpleHolder.java Generated by the idltojava command for the
Simple interface.This class holds a public
instance member of type Simple. The class
provides operations for out and inout
arguments that CORBA has but that do not match
exactly to Java.

SimpleHelper.java Generated by the idltojava command for the
Simple interface. This class provides auxiliary
functionality, notably the narrow method.

_SimpleStub.java Generated by the idltojava command for the
Simple interface. This class is the client stub that
implements the Simple.java interface.

Table 11-5 Files in the results Directory Generated by the runme Command

File Description

input Contains the input that the runme command
provides to the CORBA client application.

output Contains the output produced when the runme
command executes the CORBA client
application.

expected_output Contains the output that is expected when the
CORBA client application is executed by the
runme command. The data in the output file
is compared to the data in the
expected_output file to determine whether
or not the test passed or failed.

Table 11-4 Java Files Generated by the runme Command (Continued)

File Description
11-10 Using Security in CORBA Applications

Building and Running the Secure Simpapp Sample Application
Using the Secure Simpapp Sample Application

Run the server application in the Secure Simpapp sample application, as follows:

Windows 2000

prompt>tmboot -y

UNIX

ksh prompt>tmboot -y

Run the CORBA C++ client application in the Secure Simpapp sample application as
follows:

log Contains the output generated by the runme
command. If the runme command fails, check
this file for errors.

setenv.cmd Contains the commands to set the environment
variables needed to build and run the Secure
Simpapp sample application on the Windows
2000 operating system platform.

stderr Generated by the tmboot command, which is
executed by the runme command.

stdout Generated by the tmboot command, which is
executed by the runme command.

tmsysevt.dat Contains filtering and notification rules used by
the TMSYSEVT (system event reporting)
process. This file is generated by the tmboot
command in the runme command.

tuxconfig A binary version of the UBBCONFIG file.

ULOG.<date> A log file that contains messages generated by
the tmboot command.

Table 11-5 Files in the results Directory Generated by the runme Command

File Description
Using Security in CORBA Applications 11-11

11 Building and Running the CORBA Sample Applications
Windows 2000

prompt> set TOBJADDR=corbalocs://host:port
prompt> simple_client -ORBid BEA_IIOP -ORBpeerValidate none
String?
Hello World
HELLO WORLD
hello world

UNIX

ksh prompt>export TOBJADDR=corbalocs://host:port
ksh prompt>simple_client -ORBid BEA_IIOP -ORBpeerValidate none
String?
Hello World
HELLO WORLD
hello world

Run the CORBA Java client application in the Secure Simpapp sample application, as
follows:

Windows 2000

prompt> set CLASSPATH=%TUXDIR%\udataobj\java\jdk\m3envobj.jar;
%TUXDIR%\udataobj\java\jdk\wleclient.jar;.;%CLASSPATH%
java -DTOBJADDR=%TOBJADDR% -Dorg.omg.CORBA.ORBpeerValidate=none
classpath %CLASSPATH% SimpleClient
String?
Hello World
HELLO WORLD
hello world

UNIX

ksh prompt>export
CLASSPATH=${TUXDIR}/udataobj/java/jdk/m3envobj.jar;
${TUXDIR}/udataobj/java/jdk/wleclient.jar:.:${CLASSPATH}
java -DTOBJADDR=${TOBJADDR} -Dorg.omg.CORBA.ORBpeerValidate=none
-classpath ${CLASSPATH} SimpleClient
String?
Hello World
HELLO WORLD
hello world

Note: The CORBA Java client application in the Secure Simpapp sample CORBA
Java client application uses the client-only JAR files m3envobj.jar and
wleclient.jar.
11-12 Using Security in CORBA Applications

Building and Running the Secure Simpapp Sample Application
Before using another sample application, enter the following commands to stop the
Secure Simpapp sample application and to remove unnecessary files from the work
directory:

Windows 2000

prompt>tmshutdown -y

prompt>nmake -f makefile.nt clean

UNIX

ksh prompt>tmshutdown -y

ksh prompt>make -f makefile.mk clean
Using Security in CORBA Applications 11-13

11 Building and Running the CORBA Sample Applications
11-14 Using Security in CORBA Applications

CHAPTER
12 Troubleshooting

This topic includes the following sections:

n Using ULOGS and ORB Tracing

n CORBA::ORB_init Problems

n Password Authentication Problems

n Certificate Authentication Problems

n Tobj::Bootstrap:: resolve_initial_references Problems

n IIOP Listener/Handler Startup Problems

n Configuration Problems

n Problems with Using Callbacks Objects with the SSL Protocol

n Troubleshooting Tips for Digital Certificates

Note: The problems in this topic pertain to using the SSL protocol and certificate
authentication with CORBA applications.

Using ULOGS and ORB Tracing

In general, Object Request Brokers (ORBs) write important failures to the ULOG file.
When using the CORBA C++ ORB, you can also enable ORB internal tracing which
may provide information in addition to the information that appears in the ULOG file.

When looking at the ULOG file, note that remote ORB processes by default do not write
data to the ULOG file in APPDIR.
Using Security in CORBA Applications 12-1

12 Troubleshooting
n On UNIX, the remote ORB writes information to a ULOG file in the current
directory.

n On Windows 2000, the remote ORB writes information to a ULOG file in the
c:\ulog directory.

You can set the ULOGPFX environment variable to control the location of the ULOG file
for remote ORBs (for example, you can set the location of the ULOG file to APPDIR so
that all information is put in the same ULOG file). Set the ULOGPFX environment
variable as follows:

Windows 2000

set ULOGPFX=%APPDIR%\ULOG

UNIX

setenv ULOGPFX $APPDIR/ULOG

To enable ORB tracing, complete the following steps:

1. Create a file named trace.dat in APPDIR. The contents of trace.dat should
have all=on.

2. Use the following command to set the OBB_TRACE_INPUT environment variable
to point to the trace.dat file before running the application:

set OBB_TRACE_INPUT=%APPDIR%\trace.dat

If you want ORB tracing sent to separate files, add the following line to the
trace.dat file:

output=obbtrace%p.log

This command sends the trace output to files that are named after each running
process. You may want to do this if you are using ORB tracing on UNIX to an
NFS mounted drive. In this case, trace performance is slow due to the user log
opening, writing, and closing the file for each trace statement.
12-2 Using Security in CORBA Applications

CORBA::ORB_init Problems
CORBA::ORB_init Problems

The ORB_init routine does not perform internal ORB tracing so you will not see any
trace output for invalid argument processing. Therefore, you need to double check the
arguments that were passed to the ORB_init routine.

If a CORBA::BAD_PARAM exception occurs when executing the ORB_init routine,
verify that all required arguments have values. Also, check that arguments which
expect a value from a specific set of valid values have the correct value. Note that
values for the arguments of the ORB_init routine are case sensitive.

If a CORBA::NO_PERMISSION exception occurs and an SSL argument was specified to
the ORB_init routine, make sure the security license is enabled. Also, verify that the
specified level of encryption does not exceed the encryption level supported by the
security license.

If a CORBA::IMP_LIMIT exception occurs when executing the ORB_init routine,
verify that the ORBport and ORBSecurePort system properties have the same value.

If a CORBA::Initialize exception occurs when executing the ORB_init routine,
verify that the values for OrbId or configset are valid.

If Secure Sockets Layer (SSL) arguments are passed to the ORB_init routine, the
ORB attempts to load and initialize the SSL protocol. If no SSL arguments are passed,
the ORB does not attempt to initialize the SSL protocol.

The ORB is not aware of the new URL address formats for the Bootstrap object so if
you specify a corbaloc or corbalocs URL address format, the ORB does not try to
load the SSL protocol during the ORB_init routine.

If SSL arguments were specified to the ORB_init routine, check the following:

n The specified values for the SSL arguments do not conflict with each other or
other ORB arguments.

n Whether or not the ORB is a native process. If the ORB is a native process, SSL
arguments are not supported.

n That the value specified for the maxCrypto system property is less than the
value specified for the minCrypto system property. The values for the properties
must be within the range appropriate for the license.
Using Security in CORBA Applications 12-3

12 Troubleshooting
n Application-controlled SSL configuration parameters that are not correct. The
ORB_init routine does not perform digital certificate lookups check so look for
missing or corrupted files that would case the dynamic libraries not to be loaded.
Also, verify the dynamic libraries are loaded. The ORB trace function will
provide information about whether or not the dynamic libraries are loaded.

If the problem persists, turn on ORB tracing. ORB tracing will log SSL failures that
occur when the liborbssl dynamic library is loaded and initialized.

Password Authentication Problems

If the client application fails when using the corbalocs URL address format with
password authentication, check the following:

n The proper configuration steps were performed. See “Configuring the SSL
Protocol”and “Configuring Authentication” for the list of the required
configuration steps.

n An initialization error occurred. Specify a valid SSL system property to the
ORB_init routine, an error occurs if:

l The IIOP Listener/Handler is not available. The ORB trace log will show
failed connection attempts.

l The IIOP Listener/Handler is available but it does not support the SSL
protocol. The ULOG file will show that a non-GIOP message was received.

l The IIOP Listener/Handler was available and configured for the SSL
protocol but the SSL connection could not be established. This error can
occur when the range of encryption strengths supported by the IIOP
Listener/Handler and the range of encryption strengths required by the client
application do not match.

The ULOG file will indicate that a non-GIOP message was received if the
IIOP Listener/Handler was configured for the SSL protocol but the CORBA
client application used a TOBJADDR object without the corbalocs prefix to
indicate a secure connection.
12-4 Using Security in CORBA Applications

Certificate Authentication Problems
Certificate Authentication Problems

If the client application fails when using the corbalocs URL address format with
certificate authentication, check the following:

n The proper configuration steps were performed. See “Configuring the SSL
Protocol” on page 6-1 and “Configuring Authentication” on page 7-1 for the list
of the required configuration steps.

n Determine whether or not an initialization error occurred.

n Specify a valid SSL system property to the ORB_init routine, an error occurs
if:

l The IIOP Listener/Handler is not available. The ORB trace log will show
failed connection attempts.

l The IIOP Listener/Handler is available but it does not support the SSL
protocol. The ULOG file will show that a non-GIOP message was received.

l The IIOP Listener/Handler was available and configured for the SSL
protocol but the SSL connection could not be established. This error can
occur when the range of encryption strengths supported by the IIOP
Listener/Handler and the range of encryption strengths required by the client
application do not match. The error can also occur when the client
application does not trust the certificate chain of the IIOP Listener/Handler
or the client application did not receive a certificate from the IIOP
Listener/Handler. The error will be written to the ULOG file and the error will
also show up in the ORB trace output.

If an error does not occur, the problem is in the authentication process and the
ULOG file will contain one of the following error statements indicating the
problem:

l Couldn’t connect to an LDAP server

l Couldn’t find a filter that matched the client certificate

l The client certificate was not found in LDAP

l The private key file could not be found

l The passphrase used to open the private key is not correct
Using Security in CORBA Applications 12-5

12 Troubleshooting
l The public key from the client certificate did not match
the private key

Additional certificate problems can also occur. See “Tobj::Bootstrap::
resolve_initial_references Problems” on page 12-6 for more information about the
types of certificate errors that can occur.

Note: At this point of the initialization process, the failure is not due to a problem in
the IIOP Listener/Handler.

Tobj::Bootstrap::
resolve_initial_references Problems

If a failure occurs when performing a
Tobj::Bootstrap::resolve_initial_references with the corbaloc or
corbalocs URL address format, a CORBA::InvalidDomain exception is raised.
This exception may mask CORBA::NO_PERMISSION or CORBA::COMM_FAILURE
exceptions that are raised internally. Look at the ULOG file and turn on ORB tracing to
get more details on the error. The following errors may occur:

n If the IIOP Listener/Handler is not available, the ORB trace log will show failed
connection attempts.

n If the IIOP Listener/Handler is available but it does not support the SSL
protocol, the ULOG file will show that a non-GIOP message was received.

n If the IIOP Listener/Handler is available and configured for the SSL protocol but
the SSL connection could not be established. An error can occur if the range of
encryption strengths supported by the IIOP Listener/Handler and required by the
client application do not match.

n The IIOP Listener/Handler could not map a certificate to a username/password
combination. Verify that the security level for the CORBA application is set to
USER_AUTH and that the specified username matches the principal name passed
into the authenticate call. Also, check that the username does not exceed the 30
character limit.
12-6 Using Security in CORBA Applications

IIOP Listener/Handler Startup Problems
Additional certificate problems can occur. See “Troubleshooting Tips for Digital
Certificates” on page 12-9 for more information about the types of certificate errors
that can occur.

Note: The Java implementation of the
Tobj_Bootstrap::resolve_initial_references() method does not
throw an InvalidDomain exception. When the corbaloc or corbalocs
URL address formats are used, the
Tobj_Bootstrap::resolve_initial_references() method internally
catches the InvalidDomain exception and throws the exception as a
COMM_FAILURE. The method functions this way in order to provide backward
compatibility.

IIOP Listener/Handler Startup Problems

This section describes problems that can occur during the startup of the IIOP
Listener/Handler.

If a failure occurs when starting the IIOP Listener/Handler, check the ULOG file for a
description of the error. The IIOP Listener/Hander verifies that the values for the SSL
arguments specified in the CLOPT parameters are valid. If any of the values are invalid,
the appropriate error is recorded in the ULOG file. This check is similar to the argument
checking done by the ORB.

The IIOP Listener/Handler will not start its processes unless the -m option is specified.
The ISH is the process that actually loads and initializes the SSL libraries. If there is a
problem loading and initializing the SSL libraries in the ISH process, the error will not
be recorded in the ULOG file until the ISH process starts to handle incoming requests
from client application.

If you suspect a problem with the startup of the IIOP Listener/Handler processes,
check the ULOG file.
Using Security in CORBA Applications 12-7

12 Troubleshooting
Configuration Problems

The following are miscellaneous tips to resolve the common configuration problems
which may occur when using security:

n The ORB -ORBpeerValidate command-line option and the -v option of the
ISL command do not control the peer validation rules checking. This system
property and option only control the checking of the host name specified in the
peer certificate against the host name of the machine to which the principal was
connected.

n The only way to disable the peer validation rules on an installed kit is to create
an empty file for %TUXDIR%\udataobj\security\certs\peer_val.rul. If
you are writing a script that builds your CORBA application, you cannot register
the peer_val.rul file in the script.

n When enabling renegotiation intervals in the IIOP Listener/Handler, check that
the option on the ISL command is -R not -r. If you use an -r, the IIOP
Listener/Handler will use the SSL protocol but the renegotiation interval will not
be used. In addition, the ULOG file will note that an unknown option was
specified on the IIOP Listener/Handler.

Another way to determine if the IIOP Listener/Handler is performing
renegotiations is to enable ORB tracing on the client side and check whether the
cipher suite negotiation callback is being called the configured renegotiation
interval. Note that the client application must be sending requests for in order for
renegotiations to occur.

n If you have defined the SECURITY parameter in the CORBA application’s
UBBCONFIG file to be APP_PW or greater and you have configured the IIOP
Listener/Handler to use the SSL protocol but not mutual authentication, you
must use password authentication with the corbalocs URL address format to
communicate with the IIOP Listener/Handler. If you try to use certificate
authentication, the IIOP Listener/Handler will not ask the principal for a
certificate when establishing an SSL connection and the IIOP Listener/Handler
is not able to map the identity of the principal to a BEA Tuxedo identity.
12-8 Using Security in CORBA Applications

Problems with Using Callbacks Objects with the SSL Protocol
Problems with Using Callbacks Objects with
the SSL Protocol

If you have a joint client/server application and the client portion of the joint
client/server application specifies security requirements using either the corbalocs
URL address format or by requiring credentials, you must use the -ORBsecurePort
system property with the ORB_init routine to specify that a secure port be used.

If you do not specify the -ORBsecurePort system property, the server registration
will fail with a CORBA::NO_PERMISSION exception. To verify this is the problem,
enable ORB tracing and look for the following trace output:

TCPTransport::Listen: FAILURE: Attempt to listen on clear port
while Credentials require SSL be used

If you want to use the SSL protocol with callback objects, the joint client/server
application must use the
SecurityLevel2::PrincipalAuthenticator::authenticate() method with
certificate authentication. Otherwise, the joint client/server application does not have
a certificate with which to identify itself to the IIOP Listener/Handler which in this
case is the initiator of the SSL connection.

Troubleshooting Tips for Digital Certificates

In general, problems with digital certificates occur when:

n One of the digital certificates in the certificate chain of the IIOP
Listener/Handler is not from a certificate authority defined in the trust_ca.cer
file. A problem can occur if any certificate authority in the trust_ca.cer file is
invalid.

n The name the IIOP Listener/Handler connected to the client application does not
match the host name specified in digital certificates of the IIOP Listener/Handler
when a host match is performed. The name of the IIOP Listener/Handler is
specified in the CommonName attribute of the distinguish name of the IIOP
Using Security in CORBA Applications 12-9

12 Troubleshooting
Listener/Handler. The host name and the CommonName attribute must match
exactly.

You can verify this error by setting the -ORBpeerValidate system property to
none and executing the ORB_init routine again.

n One of the digital certificates in the certificate chain of the IIOP
Listener/Handler does not match the specified peer validation rules.

n The digital certificate of the IIOP Listener/Handler is invalid. The digital
certificate of the IIOP Listener/Handler becomes invalid when the digital
certificate is tampered with, it expires, or the certificate authority that issued the
digital certificate expires.

If a digital certificate is rejected for no explainable reason, complete the following
steps:

1. Open the digital certificate in a viewer, for example, Microsoft Explorer.

2. Look at the KeyUsage and BasicConstraints properties of the digital
certificate. A small yellow triangle with an exclamation mark indicates the
property is critical. Any digital certificate with a property marked critical is
rejected by the BEA Tuxedo software.

3. If the none of the properties of the digital certificate are critical, check the
properties of the next digital certificate in the certificate chain. Perform this step
until all the properties of all the digital certificates in the certificate chain have
been verified.
12-10 Using Security in CORBA Applications

Part IV Security
Reference
 Chapter 14. CORBA Security APIs

 Chapter 15. Security Modules

 Chapter 16. C++ Security Reference

 Chapter 17. Java Security Reference

 Chapter 18. Automation Security Reference

CHAPTER
13 CORBA Security APIs

This topic includes the following sections:

n The CORBA Security Model

n Functional Components of the CORBA Security Environment

n The Principal Authenticator Object

n The Credentials Object

n The SecurityCurrent Object

For the C++, Java, and Automation method descriptions for the CORBA Security
APIs, see the following topics:

n “C++ Security Reference” on page 15-1

n “Java Security Reference” on page 16-1

n “Automation Security Reference” on page 17-1
Using Security in CORBA Applications 13-1

13 CORBA Security APIs
The CORBA Security Model

The security model in the CORBA environment of the BEA Tuxedo product defines
only a framework for security. The BEA Tuxedo product provides the flexibility to
support different security mechanisms and policies that can be used to achieve the
appropriate level of functionality and assurance for a particular CORBA application.

The security model in the CORBA environment defines:

n Under what conditions client applications may access objects in a BEA Tuxedo
domain

n What type of proof material principals are required to authenticate themselves to
the BEA Tuxedo domain

The security model in the CORBA environment is a combination of the security model
defined in the CORBAservices Security Service specification and the value-added
extensions that provide a focused, simplified form of the security model found in the
ATMI environment of the BEA Tuxedo product.

The following sections describe the general characteristics of the CORBA security
model.

Authentication of Principals

Authentication of principals (for example, an individual user, a client application, a
server application, a joint client/server application, or an IIOP Listener/Handler)
provides security officers with the ability to ensure that only registered principals have
access to the objects in the system. An authenticated principal is used as the primary
mechanism to control access to objects. The act of authenticating principals allows the
security mechanisms to:

n Make principals accountable for their actions

n Control access to protected objects

n Identify the originator of a request

n Identify the target of request
13-2 Using Security in CORBA Applications

Functional Components of the CORBA Security Environment
Controlling Access to Objects

The CORBA security model provides a simple framework through which a security
officer can limit access to the BEA Tuxedo domain to authorized users only. Limiting
access to objects allows security officers to prohibit access to objects by unauthorized
principals. The access control framework consists of two parts:

n The object invocation policy that is enforced automatically on object invocation

n An application access policy that the user-written application can enforce

Administrative Control

The system administrator is responsible for setting security policies for the CORBA
application. The BEA Tuxedo product provides a set of configuration parameters and
utilities. Using the configuration parameters and utilities, a system administrator can
configure the CORBA application to force the principals to be authenticated to access
a system on which BEA Tuxedo software is installed. To enforce the configuration
parameters, the system administrator uses the tmloadcf command to update the
configuration file for a particular CORBA application.

For more information about configuring security for your CORBA application, see
“Configuring the SSL Protocol” on page 6-1 and “Configuring Authentication” on
page 7-1.

Functional Components of the CORBA
Security Environment

The CORBA security model is based on the process of authenticating principals to the
BEA Tuxedo domain. The objects in the CORBA security environment are used to
authenticate a principal. The principal provides identity and authentication data, such
as a password, to the client application. The client application uses the Principal
Authenticator object to make the calls necessary to authenticate the principal. The
Using Security in CORBA Applications 13-3

13 CORBA Security APIs
credentials for the authenticated principal are associated with the security system’s
implementation of the SecurityCurrent object and are represented by a Credentials
object.

Figure 13-1 illustrates the authentication process used in the CORBA security model.

Figure 13-1 Authentication Process in the CORBA Security Model

The following sections describe the objects in the CORBA security model.

The Principal Authenticator Object

The Principal Authenticator object is used by a principal that requires authentication
but has not been authenticated prior to calling the object system. The act of
authenticating a principal results in the creation of a Credentials object that is made
available as the default credentials for the application.

User
Sponsor

Principal
Authenticator

Object

Client
Application

Credentials
Object

Security
Current
Object

ORB
13-4 Using Security in CORBA Applications

The Principal Authenticator Object
The Principal Authenticator object is a singleton object; there is only a single instance
allowed in a process address space. The Principal Authenticator object is also stateless.
A Credentials object is not associated with the Principal Authenticator object that
created it.

All Principal Authenticator objects support the
SecurityLevel2::PrincipalAuthenticator interface defined in the
CORBAservices Security Service specification. This interface contains two methods
that are used to accomplish the authentication of the principal. This is because
authentication of principals may require more than one step. The authenticate
method allows the caller to authenticate, and optionally select, attributes for the
principal of this session.

Any invocation that fails because the security infrastructure does not permit the
invocation will raise the standard exception CORBA::NO_PERMISSION. A method that
fails because the feature requested is not supported by the security infrastructure
implementation will raise the CORBA::NO_IMPLEMENT standard exception. Any
parameter that has inappropriate values will raise the CORBA::BAD_PARAM standard
exception. If a timing-related problem occurs, they raise a CORBA::COMM_FAILURE.
The Bootstrap object maps most system exceptions to CORBA::Invalid_Domain.

The Principal Authenticator object is a locality-constrained object. Therefore, a
Principal Authenticator object may not be used through the DII/DSI facilities of
CORBA. Any attempt to pass a reference to this object outside of the current process,
or any attempt to externalize it using CORBA::ORB::object_to_string, will result
in the raising of the CORBA::MARSHAL exception.

Using the Principal Authenticator Object with Certificate
Authentication

The Principal Authenticator object has been enhanced to support certificate
authentication. The use of certificate authentication is controlled by specifying the
Security::AuthenticationMethod value of Tobj::CertificateBased as a
parameter to the PrincipalAuthenticator::authenticate operation. When
certificate authentication is used, the implementation of the
PrincipalAuthenticator::authenticate operation must retrieve the credentials
for the principal by obtaining the private key and digital certificates for the principal
and registering them for use with the SSL protocol.
Using Security in CORBA Applications 13-5

13 CORBA Security APIs
The values of the security_name and auth_data parameters of the
PrincipalAuthenticator::authenticate operation are used to open the private
key for the principal. If the user does not specify the proper values for both of these
parameters, the private key cannot be opened and the user fails to be authenticated. As
a result of successfully opening the private key, a chain of digital certificates that
represent the local identity of the principal is built. Both the private key and the chain
of digital certificates must be registered to be used with the SSL protocol.

BEA Tuxedo Extensions to the Principal Authenticator
Object

The CORBA environment in the BEA Tuxedo product extends the Principal
Authenticator object to support a security mechanism similar to the security in the
ATMI environment in the BEA Tuxedo product. The enhanced functionality is
provided by defining the Tobj::PrincipalAuthenticator interface. This interface
contains methods to provide similar capability to that available from the ATMI
environment through the tpinit function. The interface
Tobj::PrincipalAuthenticator is derived from the CORBA
SecurityLevel2::PrincipalAuthenticator interface.

The extended Principal Authenticator object adheres to all the same rules as the
Principal Authenticator object defined in the CORBAservices Security Service
specification.

The implementation of the extended Principal Authenticator object requires users to
supply a username, client name, and additional authentication data (for example,
passwords) used for authentication. Because the information needs to be transmitted
over the network to the IIOP Listener/Handler, it is protected to ensure confidentiality.
The protection must include encryption of any information provided by the user.

An extended Principal Authenticator object that supports the
Tobj::PrincipalAuthenticator interface provides the same functionality as if the
SecurityLevel2::PrincipalAuthenticator interface were used to perform the
authentication of the principal. However, unlike the
SecurityLevel2::PrincipalAuthenticator::authenticate method, the
logon method defined on the Tobj::PrincipalAuthenticator interface does not
return a Credentials object.
13-6 Using Security in CORBA Applications

The Credentials Object
The Credentials Object

A Credentials object (as shown in Figure 13-2) holds the security attributes of a
principal. The Credentials object provides methods to obtain and set the security
attributes of the principals it represents. These security attributes include its
authenticated or unauthenticated identities and privileges. It also contains information
for establishing security associations.

Credentials objects are created as the result of:

n Authentication

n Copying an existing Credentials object

n Asking for a Credentials object via the SecurityCurrent object
Using Security in CORBA Applications 13-7

13 CORBA Security APIs
Figure 13-2 The Credentials Object

Multiple references to a Credentials object are supported. A Credentials object is
stateful. It maintains state on behalf of the principal for which it was created. This state
includes any information necessary to determine the identity and privileges of the
principal it represents. Credentials objects are not associated with the Principal
Authenticator object that created it, but must contain some indication of the
authentication authority that certified the principal’s identity.

The Credentials object is a locality-constrained object; therefore, a Credentials object
may not be used through the DII/DSI facilities. Any attempt to pass a reference to this
object outside of the current process, or any attempt to externalize it using
CORBA::ORB::object_to_string, will result in the raising of the CORBA::MARSHAL
exception.

The Credentials object has been enhanced to allow application developers to indicate
the security attributes for establishing secure connections. These attributes allow
developers to indicate whether a secure connection requires integrity, confidentiality,
or both. To support this capability, two new attributes were added to the
SecurityLevel2::Credentials interface.

n The invocation_options_supported attribute indicates which security
options are allowed when establishing a secure connection.

Public
Identity

Attributes

Unauthenticated
Attributes

Authenticated
Attributes

Credentials - Containing Security Attributes
13-8 Using Security in CORBA Applications

The SecurityCurrent Object
n The invocation_options_required attribute allows the application
developer to specify the minimum set of security options that must be used in
establishing a secure connection.

The SecurityCurrent Object

The SecurityCurrent object (see Figure 13-3) represents the current execution context
at both the principal and target objects. The SecurityCurrent object represents
service-specific state information associated with the current execution context. Both
client and server applications have SecurityCurrent objects that represent the state
associated with the thread of execution and the process in which the thread is
executing.

Figure 13-3 The SecurityCurrent Object

The SecurityCurrent object is a singleton object; there is only a single instance allowed
in a process address space. Multiple references to the SecurityCurrent object are
supported.

The CORBAservices Security Service specification defines two interfaces for the
SecurityCurrent object associated with security:

n SecurityLevel1::Current, which derives from CORBA::Current

n SecurityLevel2::Current, which derives from the
SecurityLevel1::Current interface

get_credentials

principal_authenticator

CredentialsCredentials

TID Ptr

0

authenticate

Current

PrincipalAuthenticator

Credentials
Using Security in CORBA Applications 13-9

13 CORBA Security APIs
Both interfaces give access to security information associated with the execution
context.

At any stage, a client application can determine the default credentials for subsequent
invocations by calling the Current::get_credentials method and asking for the
invocation credentials. These default credentials are used in all invocations that use
object references.

When the Current::get_attributes method is invoked by a client application, the
attributes returned from the Credentials object are those of the principal.

The SecurityCurrent object is a locality-constrained object; therefore, a
SecurityCurrent object may not be used through the DII/DSI facilities. Any attempt to
pass a reference to this object outside of the current process, or any attempt to
externalize it using CORBA::ORB::object_to_string, results in a
CORBA::MARSHAL exception.
13-10 Using Security in CORBA Applications

CHAPTER
14 Security Modules

This topic contains the Object Management Group (OMG) Interface Definition
Language (IDL) definitions for the following modules that are used in the CORBA
security model:

n CORBA

n TimeBase

n Security

n Security Level 1

n Security Level 2

n Tobj
Using Security in CORBA Applications 14-1

14 Security Modules
CORBA Module

The OMG added the CORBA::Current interface to the CORBA module to support the
Current pseudo-object. This change enables the CORBA module to support Security
Replaceability and Security Level 2.

Listing 14-1 shows the CORBA::Current interface OMG IDL statements.

Note: This information is taken from CORBAservices: Common Object Services
Specification, p. 15-230. Revised Edition: March 31, 1995. Updated:
November 1997. Used with permission by OMG.

Listing 14-1 CORBA::Current Interface OMG IDL Statements

module CORBA {
 // Extensions to CORBA
 interface Current {
 };
};

TimeBase Module

All data structures pertaining to the basic Time Service, Universal Time Object, and
Time Interval Object are defined in the TimeBase module. This allows other services
to use these data structures without requiring the interface definitions. The interface
definitions and associated enums and exceptions are encapsulated in the TimeBase
module.

Listing 14-2 shows the TimeBase module OMG IDL statements.

Note: This information is taken from CORBAservices: Common Object Services
Specification, p. 14-5. Revised Edition: March 31, 1995. Updated: November
1997. Used with permission by OMG.
14-2 Using Security in CORBA Applications

Listing 14-2 TimeBase Module OMG IDL Statements

// From time service
module TimeBase {
 // interim definition of type ulonglong pending the
 // adoption of the type extension by all client ORBs.
 struct ulonglong {
 unsigned long low;
 unsigned long high;
 };
 typedef ulonglong TimeT;
 typedef short TdfT;
 struct UtcT {
 TimeT time; // 8 octets
 unsigned long inacclo; // 4 octets
 unsigned short inacchi; // 2 octets
 TdfT tdf; // 2 octets
 // total 16 octets
 };
};

Table 14-1 defines the TimeBase module data types.

Note: This information is taken from CORBAservices: Common Object Services
Specification, p. 14-6. Revised Edition: March 31, 1995. Updated: November
1997. Used with permission by OMG.

Table 14-1 TimeBase Module Data Type Definitions

Data Type Definition

Time
ulonglong

OMG IDL does not at present have a native type representing an unsigned
64-bit integer. The adoption of technology submitted against that RFP will
provide a means for defining a native type representing unsigned 64-bit
integers in OMG IDL.

Pending the adoption of that technology, you can use this structure to
represent unsigned 64-bit integers, understanding that when a native type
becomes available, it may not be interoperable with this declaration on all
platforms. This definition is for the interim, and is meant to be removed when
the native unsigned 64-bit integer type becomes available in OMG IDL.
Using Security in CORBA Applications 14-3

14 Security Modules
Security Module

The Security module defines the OMG IDL for security data types common to the
other security modules. This module depends on the TimeBase module and must be
available with any ORB that claims to be security ready.

Listing 14-3 shows the data types supported by the Security module.

Note: This information is taken from CORBAservices: Common Object Services
Specification, p. 15-193 to 15-195. Revised Edition: March 31, 1995.
Updated: November 1997. Used with permission by OMG.

Listing 14-3 Security Module OMG IDL Statements

module Security {
 typedef sequence<octet> Opaque;

Time TimeT TimeT represents a single time value, which is 64-bit in size, and holds the
number of 100 nanoseconds that have passed since the base time. For
absolute time, the base is 15 October 1582 00:00.

Time TdfT TdfT is of size 16 bits short type and holds the time displacement factor in
the form of seconds of displacement from the Greenwich Meridian.
Displacements east of the meridian are positive, while those to the west are
negative.

Time UtcT UtcT defines the structure of the time value that is used universally in the
service. When the UtcT structure is holding, a relative or absolute time is
determined by its history. There is no explicit flag within the object holding
that state information. The inacclo and inacchi fields together hold a
value of type InaccuracyT packed into 48 bits. The tdf field holds time
zone information. Implementation must place the time displacement factor
for the local time zone in this field whenever it creates a Universal Time
Object (UTO).

The content of this structure is intended to be opaque; to be able to marshal
it correctly, the types of fields need to be identified.

Table 14-1 TimeBase Module Data Type Definitions (Continued)

Data Type Definition
14-4 Using Security in CORBA Applications

 // Extensible families for standard data types
 struct ExtensibleFamily {
 unsigned short family_definer;
 unsigned short family;
 };

 //security attributes
 typedef unsigned long SecurityAttributeType;

 // identity attributes; family = 0
 const SecurityAttributeType AuditId = 1;
 const SecurityAttributeType AccountingId = 2;
 const SecurityAttributeType NonRepudiationId = 3;

 // privilege attributes; family = 1
 const SecurityAttributeType Public = 1;
 const SecurityAttributeType AccessId = 2;
 const SecurityAttributeType PrimaryGroupId = 3;
 const SecurityAttributeType GroupId = 4;
 const SecurityAttributeType Role = 5;
 const SecurityAttributeType AttributeSet = 6;
 const SecurityAttributeType Clearance = 7;
 const SecurityAttributeType Capability = 8;

 struct AttributeType {
 ExtensibleFamily attribute_family;
 SecurityAttributeType attribute_type;
 };

 typedef sequence <AttributeType> AttributeTypeLists;
 struct SecAttribute {
 AttributeType attribute_type;
 Opaque defining_authority;
 Opaque value;
 // The value of this attribute can be
 // interpreted only with knowledge of type
 };

 typedef sequence<SecAttribute> AttributeList;

 // Authentication return status
 enum AuthenticationStatus {
 SecAuthSuccess,
 SecAuthFailure,
 SecAuthContinue,
 SecAuthExpired
 };
Using Security in CORBA Applications 14-5

14 Security Modules
 // Authentication method
 typedef unsigned long AuthenticationMethod;

 enum CredentialType {
 SecInvocationCredentials;
 SecOwnCredentials;
 SecNRCredentials

 // Pick up from TimeBase
 typedef TimeBase::UtcT UtcT;
};

Table 14-2 describes the Security module data type.

Security Level 1 Module

This section defines those interfaces available to client application objects that use
only Level 1 Security functionality. This module depends on the CORBA module and
the Security and TimeBase modules. The Current interface is implemented by the
ORB.

Listing 14-4 shows the Security Level 1 module OMG IDL statements.

Note: This information is taken from CORBAservices: Common Object Services
Specification, p. 15-198. Revised Edition: March 31, 1995. Updated:
November 1997. Used with permission by OMG.

Listing 14-4 Security Level 1 Module OMG IDL Statements

module SecurityLevel1 {
 interface Current : CORBA::Current {// PIDL
 Security::AttributeList get_attributes(

Table 14-2 Security Module Data Type Definition

Data Type Definition

sequence<octet> Data whose representation is known only to the Security Service
implementation.
14-6 Using Security in CORBA Applications

 in Security::AttributeTypeList attributes
);
 };
};

Security Level 2 Module

This section defines the additional interfaces available to client application objects that
use Level 2 Security functionality. This module depends on the CORBA and Security
modules.

Listing 14-5 shows the Security Level 2 module OMG IDL statements.

Note: This information is taken from CORBAservices: Common Object Services
Specification, p. 15-198 to 15-200. Revised Edition: March 31, 1995.
Updated: November 1997. Used with permission by OMG.

Listing 14-5 Security Level 2 Module OMG IDL Statements

module SecurityLevel2 {
 // Forward declaration of interfaces
 interface PrincipalAuthenticator;
 interface Credentials;
 interface Current;

 // Interface Principal Authenticator
 interface PrincipalAuthenticator {
 Security::AuthenticationStatus authenticate(
 in Security::AuthenticationMethod method,
 in string security_name,
 in Security::Opaque auth_data,
 in Security::AttributeList privileges,
 out Credentials creds,
 out Security::Opaque continuation_data,
 out Security::Opaque auth_specific_data
);

 Security::AuthenticationStatus
 continue_authentication(
 in Security::Opaque response_data,
 inout Credentials creds,
Using Security in CORBA Applications 14-7

14 Security Modules
 out Security::Opaque continuation_data,
 out Security::Opaque auth_specific_data
);
 };

 // Interface Credentials
 interface Credentials {
 attribute Security::AssociationOptions
 invocation_options_supported;

attribute Security::AssociationOptions
invocation_options_required;

Security::AttributeList get_attributes(
 in Security::AttributeTypeList attributes
);
 boolean is_valid(
 out Security::UtcT expiry_time
);
 };

 // Interface Current derived from SecurityLevel1::Current
 // providing additional operations on Current at this
 // security level. This is implemented by the ORB.
 interface Current : SecurityLevel1::Current { // PIDL
 void set_credentials(
 in Security::CredentialType cred_type,
 in Credentials cred
);

 Credentials get_credentials(
 in Security::CredentialType cred_type
);
 readonly attribute PrincipalAuthenticator
 principal_authenticator;
 };
};

Tobj Module

This section defines the Tobj module interfaces.

This module provides the interfaces you use to program the ATMI-style of
authentication.

Listing 14-6 shows the Tobj module OMG IDL statements.
14-8 Using Security in CORBA Applications

Listing 14-6 Tobj Module OMG IDL Statements

//Tobj Specific definitions

 //get_auth_type () return values
 enum AuthType {
 TOBJ_NOAUTH,
 TOBJ_SYSAUTH,
 TOBJ_APPAUTH
 };

 typedef sequence<octet> UserAuthData;

 interface PrincipalAuthenticator :
 SecurityLevel2::PrincipalAuthenticator { // PIDL
 AuthType get_auth_type();

 Security::AuthenticationStatus logon(
 in string user_name,
 in string client_name,
 in string system_password,
 in string user_password,
 in UserAuthData user_data
);
 void logoff();

 void build_auth_data(
 in string user_name,
 in string client_name,
 in string system_password,
 in string user_password,
 in UserAuthData user_data,
 out Security::Opaque auth_data,
 out Security::AttributeList privileges
);
 };
};
Using Security in CORBA Applications 14-9

14 Security Modules
14-10 Using Security in CORBA Applications

CHAPTER
15 C++ Security Reference

This topic contains the C++ method descriptions for CORBA security.
Using Security in CORBA Applications 15-1

15 C++ Security Reference
SecurityLevel1::Current::get_attributes

Synopsis Returns attributes for the Current interface.

OMG IDL
Definition

Security::AttributeList get_attributes(
in Security::AttributeTypeList attributes

);
};

Argument attributes

The set of security attributes (privilege attribute types) whose values are
desired. If this list is empty, all attributes are returned.

Description This method gets privilege (and other) attributes from the principal’s credentials for
the Current interface.

Return Values The following table describes valid return values.

Note: The defining_authority field is always empty. Depending on the security
level defined in the UBBCONFIG file not all the values for the get_attribute
method may be available. Two additional values, Group Id and Role, are
available with the security level is set to ACL or MANDATORY_ACL in the
UBBCONFIG file.

Note: This information is taken from CORBAservices: Common Object Services
Specification, pp. 15-103, 104. Revised Edition: March 31, 1995. Updated:
November 1997. Used with permission by OMG.

Return Value Meaning

Security::Public Empty (Public is returned when no authentication was
performed).

Security::AccessId Null terminated ASCII string containing the BEA
Tuxedo username.

Security::PrimaryGroupId Null terminated ASCII string containing the BEA
Tuxedo name of the principal.
15-2 Using Security in CORBA Applications

SecurityLevel2::PrincipalAuthenticator::authenticate

Synopsis Authenticates the principal and optionally obtains credentials for the principal.

OMG IDL
Definition

Security::AuthenticationStatus
 authenticate(
 in Security::AuthenticationMethod method,
 in Security::SecurityName security_name,
 in Security::Opaque auth_data,
 in Security::AttributeList privileges,
 out Credentials creds,
 out Security::Opaque continuation_data,
 out Security::Opaque auth_specific_data);

Arguments method

The security mechanism to be used. Valid values are
Tobj::TuxedoSecurity and Tobj::CertificateBased.

security_name

The principal’s identification information (for example, logon information).
The value must be a pointer to a NULL-terminated string containing the
username of the principal. The string is limited to 30 characters, excluding the
NULL character.

When using certificate authentication, this name is used to look up a
certificate in the LDAP-enabled directory service. It is also used as the basis
for the name of the file in which the private key is stored. For example:
milozzi@company.com is the e-mail address used to look up a certificate in
the LDAP-enabled directory service and milozzi_company.pem is the name
of the private key file.

auth_data

The principals’ authentication, such as their password or private key. If the
Tobj:TuxedoSecurity security mechanism is specified, the value of this
argument is dependent on the configured level of authentication. If the
Tobj::CertificateBased argument is specified, the value of this
argument is the pass phrase used to decrypt the private key of the principal.

privileges

The privilege attributes requested.

creds

The object reference of the newly created Credentials object.The object
reference is not fully initialized; therefore, the object reference cannot be used
until the return value of the SecurityLevel2::Current::authenticate
method is SecAuthSuccess.
Using Security in CORBA Applications 15-3

15 C++ Security Reference
continuation_data

If the return value of the SecurityLevel2::Current::authenticate
method is SecAuthContinue, this argument contains the challenge
information for the authentication to continue. The value returned will always
be empty.

auth_specific_data

Information specific to the authentication service being used. The value
returned will always be empty.

Description The SecurityLevel2::Current::authenticate method is used by the client
application to authenticate the principal and optionally request privilege attributes that
the principal requires during its session with the BEA Tuxedo domain.

If the Tobj::TuxedoSecurity security mechanism is to be specified, the same
functionality can be obtained by calling the
Tobj::PrincipalAuthenticator::logon operation, which provides the same
functionality but is specifically tailored for use with the ATMI authentication security
mechanism.

Return Values The following table describes the valid return values.

Return Value Meaning

SecAuthSuccess The object reference of the newly created Credentials object
returned as the value of the creds argument is initialized and ready
to use.

SecAuthFailure The authentication process was inconsistent or an error occurred
during the process. Therefore, the creds argument does not contain
an object reference to a Credentials object.

If the Tobj::TuxedoSecurity security mechanism is used, this
return value indicates that authentication failed or that the client
application was already authenticated and did not call either the
Tobj::PrincipalAuthenticator::logoff or the
Tobj_Bootstrap::destroy_current operation.

SecAuthContinue Indicates that the authentication procedure uses a
challenge/response mechanism. The creds argument contains the
object reference of a partially initialized Credentials object. The
continuation_data indicates the details of the challenge.
15-4 Using Security in CORBA Applications

SecAuthExpired Indicates that the authentication data contained some information,
the validity of which had expired; therefore, the creds argument
does not contain an object reference to a Credentials object.

If the Tobj::TuxedoSecurity security mechanism is used, this
return value is never returned.

CORBA::BAD_PARAM The CORBA::BAD_PARAM exception occurs if:

n Values for the security_name, auth_data, or
privileges arguments are not specified.

n The length of an input argument exceeds the maximum length
of the argument.

n The value of the method argument is
Tobj::TuxedoSecurity and the content of the
auth_data argument contains a username or a
clientname as an empty or a NULL string.

Return Value Meaning
Using Security in CORBA Applications 15-5

15 C++ Security Reference
SecurityLevel2::Current::set_credentials

Synopsis Sets credentials type.

OMG IDL
Definition

void set_credentials(

 in Security::CredentialType cred_type,

 in Credentials creds

);

Arguments cred_type

The type of credentials to be set; that is, invocation, own, or non-repudiation.

creds

The object reference to the Credentials object, which is to become the default.

Description This method can be used only to set SecInvocationCredentials; otherwise,
set_credentials raises CORBA::BAD_PARAM. The credentials must have been
obtained from a previous call to SecurityLevel2::Current::get_credentials
or SecurityLevel2::PrincipalAuthenticator::authenticate.

Return Values None.

Note: This information is taken from CORBAservices: Common Object Services
Specification, p. 15-104. Revised Edition: March 31, 1995. Updated:
November 1997. Used with permission by OMG.
15-6 Using Security in CORBA Applications

SecurityLevel2::Current::get_credentials

Synopsis Gets credentials type.

OMG IDL
Definition

Credentials get_credentials(

 in Security::CredentialType cred_type

);

Argument cred_type

The type of credentials to get.

Description This call can be used only to get SecInvocationCredentials; otherwise,
get_credentials raises CORBA::BAD_PARAM. If no credentials are available,
get_credentials raises CORBA::BAD_INV_ORDER.

Return Values Returns the active credentials in the client application only.

Note: This information is taken from CORBAservices: Common Object Services
Specification, p. 15-105. Revised Edition: March 31, 1995. Updated:
November 1997. Used with permission by OMG.
Using Security in CORBA Applications 15-7

15 C++ Security Reference
SecurityLevel2::Current::principal_authenticator

Synopsis Returns the PrincipalAuthenticator.

OMG IDL
Definition

readonly attribute PrincipalAuthenticator

 principal_authenticator;

Description The PrincipalAuthenticator returned by the principal_authenticator
attribute is of actual type Tobj::PrincipalAuthenticator. Therefore, it can be
used both as a Tobj::PrincipalAuthenticator and as a
SecurityLevel2::PrincipalAuthenticator.

Note: This method raises CORBA::BAD_INV_ORDER if it is called on an invalid
SecurityCurrent object.

Return Values Returns the PrincipalAuthenticator.
15-8 Using Security in CORBA Applications

SecurityLevel2::Credentials

Synopsis Represents a particular principal’s credential information that is specific to a process.
A Credentials object that supports the SecurityLevel2::Credentials interface is
a locality-constrained object. Any attempt to pass a reference to the object outside its
locality, or any attempt to externalize the object using the
CORBA::ORB::object_to_string() operation, results in a CORBA::Marshall
exception.

OMG IDL
Definition

#ifndef _SECURITY_LEVEL_2_IDL
#define _SECURITY_LEVEL_2_IDL

#include <SecurityLevel1.idl>

#pragma prefix “omg.org”

module SecurityLevel2
 {
 interface Credentials
 {
 attribute Security::AssociationOptions
 invocation_options_supported;
 attribute Security::AssociationOptions
 invocation_options_required;
Security::AttributeList
 get_attributes(
 in Security::AttributeTypeList attributes);

 boolean
 is_valid(
 out Security::UtcT expiry_time);

};
 };
#endif /* _SECURITY_LEVEL_2_IDL */

C++ Declaration class SecurityLevel2
 {
 public:
 classCredentials;
 typedefCredentials *Credentials_ptr;

 class Credentials : public virtual CORBA::Object
 {
 public:
Using Security in CORBA Applications 15-9

15 C++ Security Reference
 static Credentials_ptr _duplicate(Credentials_ptr obj);
 static Credentials_ptr _narrow(CORBA::Object_ptr obj);
 static Credentials_ptr _nil();

 virtual Security::AssociationOptions
 invocation_options_supported() = 0;
 virtual void
 invocation_options_supported(
 const Security::AssociationOptions options) = 0;
 virtual Security::AssociationOptions
 invocation_options_required() = 0;
 virtual void
 invocation_options_required(
 const Security::AssociationOptions options) = 0;

 virtual Security::AttributeList *
 get_attributes(
 const Security::AttributeTypeList & attributes) = 0;

 virtual CORBA::Boolean
 is_valid(Security::UtcT_out expiry_time) = 0;

 protected:
 Credentials(CORBA::Object_ptr obj = 0);
 virtual ~Credentials() { }

 private:
 Credentials(const Credentials&) { }
 void operator=(const Credentials&) { }
 }; // class Credentials
 }; // class SecurityLevel2
15-10 Using Security in CORBA Applications

SecurityLevel2::Credentials::get_attributes

Synopsis Gets the attribute list attached to the credentials.

OMG IDL
Definition

Security::AttributeList get_attributes(

 in AttributeTypeList attributes

);

Argument attributes

The set of security attributes (privilege attribute types) whose values are
desired. If this list is empty, all attributes are returned.

Description This method returns the attribute list attached to the credentials of the principal. In the
list of attribute types, you are required to include only the type value(s) for the
attributes you want returned in the AttributeList. Attributes are not currently
returned based on attribute family or identities. In most cases, this is the same result
you would get if you called SecurityLevel1::Current::get_attributes(),
since there is only one valid set of credentials in the principal at any instance in time.
The results could be different if the credentials are not currently in use.

Return Values Returns attribute list.

Note: This is information taken from CORBAservices: Common Object Services
Specification, p. 15-97. Revised Edition: March 31, 1995. Updated: November
1997. Used with permission by OMG.
Using Security in CORBA Applications 15-11

15 C++ Security Reference
SecurityLevel2::Credentials::invocation_options_supported

Synopsis Indicates the maximum number of security options that can be used when establishing
an SSL connection to make an invocation on an object in the BEA Tuxedo domain.

OMG IDL
Definition

attribute Security::AssociationOptions

 invocation_options_supported;

Argument None.

Description This method should be used in conjunction with the
SecurityLevel2::Credentials::invocation_options_required method.

The following security options can be specified:

Security Option Description

NoProtection The SSL protocol does not provide message protection.

Integrity The SSL protocol provides an integrity check of messages. Digital signatures
are used to protect the integrity of messages.

Confidentiality The SSL connection protects the confidentiality of messages. Crytography is
used to protect the confidentiality of messages.

DetectReplay The SSL protocol provides replay detection. Replay occurs when a message is
sent repeatedly with no detection.

DetectMisordering The SSL protocol provides sequence error detection for requests and request
fragments.

EstablishTrustInTarget Indicates that the target of a request authenticates itself to the initiating
principal.

NoDelegation Indicates that the principal permits an intermediate object to use its privileges
for the purpose of access control decisions. However, the principal’s privileges
are not delegated so the intermediate object cannot use the privileges when
invoking the next object in the chain.

SimpleDelegation Indicates that the principal permits an intermediate object to use its privileges
for the purpose of access control decisions, and delegates the privileges to the
intermediate object. The target object receives only the privileges of the client
application and does not know the identity of the intermediate object. When
this invocation option is used without restrictions on the target object, the
behavior is known as impersonation.
15-12 Using Security in CORBA Applications

Return Values The list of defined security options.

If the Tobj::TuxedoSecurity security mechanism is used to create the security
association, only the NoProtection, EstablishTrustInClient, and
SimpleDelegation security options are returned. The EstablishTrustInClient
security option appears only if the security level of the CORBA application is defined
to require passwords to access the BEA Tuxedo domain.

Note: A CORBA::NO_PERMISSION exception is returned if the security options
specified are not supported by the security mechanism defined for the CORBA
application. This exception can also occur if the security options specified
have less capabilities than the security options specified by the
SecurityLevel2::Credentials::invocation_options_required
method.

The invocation_options_supported attribute has set() and get()
methods. You cannot use the set() method when using the
Tobj::TuxedoSecurity security mechanism to get a Credentials object. If
you do use the set() method with the Tobj::TuxedoSecurity security
mechanism, a CORBA::NO_PERMISSION exception is returned.

CompositeDelegation Indicates that the principal permits the intermediate object to use its
credentials and delegate them. The privileges of both the principal and the
intermediate object can be checked.

Security Option Description
Using Security in CORBA Applications 15-13

15 C++ Security Reference
SecurityLevel2::Credentials::invocation_options_required

Synopsis Specifies the minimum number of security options to be used when establishing an
SSL connection to make an invocation on a target object in the BEA Tuxedo domain.

OMG IDL
Definition

attribute Security::AssociationOptions

 invocation_options_required;

Argument None.

Description Use this method to specify that communication between principals and the BEA
Tuxedo domain should be protected. After using this method, a Credentials object
makes an invocation on a target object using the SSL protocol with the defined level
of security options. This method should be used in conjunction with the
SecurityLevel2::Credentials::invocation_options_supported method.

The following security options can be specified:

Security Option Description

NoProtection The SSL protocol does not provide message protection.

Integrity The SSL protocol provides an integrity check of messages. Digital signatures
are used to protect the integrity of messages.

Confidentiality The SSL connection protects the confidentiality of messages. Crytography is
used to protect the confidentiality of messages.

DetectReplay The SSL protocol provides replay detection. Replay occurs when a message is
sent repeatedly with no detection.

DetectMisordering The SSL protocol provides sequence error detection for requests and request
fragments.

EstablishTrustInTarget Indicates that the target of a request authenticates itself to the initiating
principal.

NoDelegation Indicates that the principal permits an intermediate object to use its privileges
for the purpose of access control decisions. However, the principal’s privileges
are not delegated so the intermediate object cannot use the privileges when
invoking the next object in the chain.
15-14 Using Security in CORBA Applications

Return Values The list of defined security options.

If the Tobj::TuxedoSecurity security mechanism is used to create the security
association, only the NoProtection, EstablishTrustInClient, and
SimpleDelegation security options are returned. The EstablishTrustInClient
security option appears only if the security level of the CORBA application is defined
to require passwords to access the BEA Tuxedo domain.

Note: A CORBA::NO_PERMISSION exception is returned if the security options
specified are not supported by the security mechanism defined for the CORBA
application. This exception can also occur if the security options specified
have more capabilities than the security options specified by the
SecurityLevel2::Credentials::invocation_options_supported
method.

The invocation_options_required attribute has set() and get()
methods. You cannot use the set() method when using the
Tobj::TuxedoSecurity security mechanism to get a Credentials object. If
you do use the set() method with the Tobj::TuxedoSecurity security
mechanism, a CORBA::NO_PERMISSION exception is returned.

SimpleDelegation Indicates that the principal permits an intermediate object to use its privileges
for the purpose of access control decisions, and delegates the privileges to the
intermediate object. The target object receives only the privileges of the client
application and does not know the identity of the intermediate object. When
this invocation option is used without restrictions on the target object, the
behavior is known as impersonation.

CompositeDelegation Indicates that the principal permits the intermediate object to use its
credentials and delegate them. The privileges of both the principal and the
intermediate object can be checked.

Security Option Description
Using Security in CORBA Applications 15-15

15 C++ Security Reference
SecurityLevel2::Credentials::is_valid

Synopsis Checks status of credentials.

OMG IDL
Definition

boolean is_valid(

 out Security::UtcT expiry_time

);

Description This method returns TRUE if the credentials used are active at the time; that is, you did
not call Tobj::PrincipalAuthenticator::logoff or
Tobj_Bootstrap::destroy_current. If this method is called after
Tobj::PrincipalAuthenticator::logoff(), FALSE is returned. If this method is
called after Tobj_Bootstrap::destroy_current(), the CORBA::BAD_INV_ORDER
exception is raised.

Return Values The expiration date returned contains the maximum unsigned long long value in
C++ and maximum long in Java. Until the unsigned long long datatype is adopted,
the ulonglong datatype is substituted. The ulonglong datatype is defined as follows:

 // interim definition of type ulonglong pending the
 // adoption of the type extension by all client ORBs.
 struct ulonglong {
 unsigned long low;
 unsigned long high;
 };

Note: This information is taken from CORBAservices: Common Object Services
Specification, p. 15-97. Revised Edition: March 31, 1995. Updated: November
1997. Used with permission by OMG.
15-16 Using Security in CORBA Applications

SecurityLevel2::PrincipalAuthenticator

Synopsis Allows a principal to be authenticated. A Principal Authenticator object that supports
the SecurityLevel2::PrincipalAuthenticator interface is a
locality-constrained object. Any attempt to pass a reference to the object outside its
locality, or any attempt to externalize the object using the
CORBA::ORB::object_to_string() operation, results in a CORBA::Marshall
exception.

OMG IDL
Definition

#ifndef _SECURITY_LEVEL_2_IDL
#define _SECURITY_LEVEL_2_IDL

#include <SecurityLevel1.idl>

#pragma prefix “omg.org”

module SecurityLevel2
 {
 interface PrincipalAuthenticator
 { // Locality Constrained
 Security::AuthenticationStatus authenticate (
 in Security::AuthenticationMethod method,
 in Security::SecurityName security_name,
 in Security::Opaque auth_data,
 in Security::AttributeList privileges,
 out Credentials creds,
 out Security::Opaque continuation_data,
 out Security::Opaque auth_specific_data
);

 Security::AuthenticationStatus continue_authentication (
 in Security::Opaque response_data,
 in Credentials creds,
 out Security::Opaque continuation_data,
 out Security::Opaque auth_specific_data
);
 };
 };
#endif // SECURITY_LEVEL_2_IDL

#pragma prefix "beasys.com"
module Tobj
 {
 const Security::AuthenticationMethod
 TuxedoSecurity = 0x54555800;
Using Security in CORBA Applications 15-17

15 C++ Security Reference
 CertificateBased = 0x43455254;
 };

C++ Declaration class SecurityLevel2
 {
 public:
 classPrincipalAuthenticator;
 typedefPrincipalAuthenticator * PrincipalAuthenticator_ptr;

 class PrincipalAuthenticator : public virtual CORBA::Object
 {
 public:
 static PrincipalAuthenticator_ptr
 _duplicate(PrincipalAuthenticator_ptr obj);
 static PrincipalAuthenticator_ptr
 _narrow(CORBA::Object_ptr obj);
 static PrincipalAuthenticator_ptr _nil();

 virtual Security::AuthenticationStatus
 authenticate (
 Security::AuthenticationMethod method,
 const char * security_name,
 const Security::Opaque & auth_data,
 const Security::AttributeList & privileges,
 Credentials_out creds,
 Security::Opaque_out continuation_data,
 Security::Opaque_out auth_specific_data) = 0;

 virtual Security::AuthenticationStatus
 continue_authentication (
 const Security::Opaque & response_data,
 Credentials_ptr & creds,
 Security::Opaque_out continuation_data,
 Security::Opaque_out auth_specific_data) = 0;

 protected:
 PrincipalAuthenticator(CORBA::Object_ptr obj = 0);
 virtual ~PrincipalAuthenticator() { }

 private:
 PrincipalAuthenticator(const PrincipalAuthenticator&) { }
 void operator=(const PrincipalAuthenticator&) { }
 }; // class PrincipalAuthenticator
 };
15-18 Using Security in CORBA Applications

SecurityLevel2::PrincipalAuthenticator::continue_authentication

Synopsis Always fails.

OMG IDL
Definition

Security::AuthenticationStatus continue_authentication(

 in Security::Opaque response_data,

 in Credentials creds,

 out Security::Opaque continuation_data,

 out Security::Opaque auth_specific_data

);

Description Because the BEA Tuxedo software does authentication in one step, this method always
fails and returns Security::AuthenticationStatus::SecAuthFailure.

Return Values Always returns Security::AuthenticationStatus::SecAuthFailure.

Note: This information is taken from CORBAservices: Common Object Services
Specification, pp. 15-92, 93. Revised Edition: March 31, 1995. Updated:
November 1997. Used with permission by OMG.
Using Security in CORBA Applications 15-19

15 C++ Security Reference
Tobj::PrincipalAuthenticator::get_auth_type

Synopsis Gets the type of authentication expected by the BEA Tuxedo domain.

OMG IDL
Definition

AuthType get_auth_type();

Description This method returns the type of authentication expected by the BEA Tuxedo domain.

Note: This method raises CORBA::BAD_INV_ORDER if it is called with an invalid
SecurityCurrent object.

Return Values A reference to the Tobj_AuthType enumeration. Returns the type of authentication
required to access the BEA Tuxedo domain. The following table describes the valid
return values.

Return Value Meaning

TOBJ_NOAUTH No authentication is needed; however, the client
application can still authenticate itself by specifying a
username and a client application name. No password
is required.

To specify this level of security, specify the NONE
value for the SECURITY parameter in the RESOURCES
section of the UBBCONFIG file.

TOBJ_SYSAUTH The client application must authenticate itself to the
BEA Tuxedo domain, and must specify a username, a
name, and a password for the client application.

To specify this level of security, specify the APP_PW
value for the SECURITY parameter in the RESOURCES
section of the UBBCONFIG file.

TOBJ_APPAUTH The client application must provide proof material that
authenticates the client application to the BEA Tuxedo
domain.The proof material may be a password or a
digital certificate.

To specify this level of security, specify the
USER_AUTH value for the SECURITY parameter in the
RESOURCES section of the UBBCONFIG file.
15-20 Using Security in CORBA Applications

Tobj::PrincipalAuthenticator::logon

Synopsis Authenticates the principal.

OMG IDL
Definition

Security::AuthenticationStatus logon(
 in string user_name,
 in string client_name,
 in string system_password,
 in string user_password,
 in UserAuthData user_data
);

Arguments user_name

The BEA Tuxedo username. The authentication level is TOBJ_NOAUTH. If
user_name is NULL or empty, or exceeds 30 characters, logon raises
CORBA::BAD_PARAM.

client_name

The BEA Tuxedo name of the client application. The authentication level is
TOBJ_NOAUTH. If the client_name is NULL or empty, or exceeds 30
characters, logon raises the CORBA::BAD_PARAM exception.

system_password

The CORBA client application password. The authentication level is
TOBJ_SYSAUTH. If the client name is NULL or empty, or exceeds 30
characters, logon raises the CORBA::BAD_PARAM exception.

Note: The system_password must not exceed 30 characters.

user_password

The user password (needed for use by the default BEA Tuxedo authentication
service). The authentication level is TOBJ_APPAUTH. The password must not
exceed 30 characters.

user_data

Data that is specific to the client application (needed for use by a custom BEA
Tuxedo authentication service). The authentication level is TOBJ_APPAUTH.

Note: TOBJ_SYSAUTH includes the requirements of TOBJ_NOAUTH, plus a client
application password. TOBJ_APPAUTH includes the requirements of
TOBJ_SYSAUTH, plus additional information, such as a user password or
user data.

Note: The user_password and user_data arguments are mutually exclusive,
depending on the requirements of the authentication service used in the
configuration of the BEA Tuxedo domain. The BEA Tuxedo default
Using Security in CORBA Applications 15-21

15 C++ Security Reference
authentication service expects a user password. A customized
authentication service may require user data. The logon call raises the
CORBA::BAD_PARAM exception if both user_password and user_data
are specified.

Description This method authenticates the principal via the IIOP Listener/Handler so that the
principal can access a BEA Tuxedo domain. This method is functionally equivalent to
SecurityLevel2::PrincipalAuthenticator::authenticate, but the
arguments are oriented to ATMI authentication.

Note: This method raises CORBA::BAD_INV_ORDER if it is called with an invalid
SecurityCurrent object.

Return Values The following table describes the valid return values.

Return Value Meaning

Security::AuthenticationStatus::
SecAuthSuccess

The authentication succeeded.

Security::AuthenticationStatus::
SecAuthFailure

The authentication failed, or the client application was
already authenticated and did not call one of the following
methods:

Tobj::PrincipalAuthenticator:logoff

Tobj_Bootstrap::destroy_current
15-22 Using Security in CORBA Applications

Tobj::PrincipalAuthenticator::logoff

Synopsis Discards the security context associated with the principal.

OMG IDL
Definition

void logoff();

Description This call discards the security context, but does not close the network connections to
the BEA Tuxedo domain. Logoff also invalidates the current credentials. After
logging off, invocations using existing object references fail if the authentication type
is not TOBJ_NOAUTH.

If the principal is currently authenticated to a BEA Tuxedo domain, calling
Tobj_Bootstrap::destroy_current() calls logoff implicitly.

Note: This method raises CORBA::BAD_INV_ORDER if it is called with an invalid
SecurityCurrent object.

Return Values None.
Using Security in CORBA Applications 15-23

15 C++ Security Reference
Tobj::PrincipalAuthenticator::build_auth_data

Synopsis Creates authentication data and attributes for use by
SecurityLevel2::PrincipalAuthenticator::authenticate.

OMG IDL
Definition void build_auth_data(

 in string user_name,

 in string client_name,

 in string system_password,

 in string user_password,

 in UserAuthData user_data,

 out Security::Opaque auth_data,

 out Security::AttributeList privileges

);

Arguments user_name

The BEA Tuxedo username.

client_name

The CORBA client name.

system_password

The CORBA client application password.

user_password

The user password (default BEA Tuxedo authentication service).

user_data

Client application-specific data (custom BEA Tuxedo authentication
service).

auth_data

For use by authenticate.

privileges

For use by authenticate.

Note: If user_name, client_name, or system_password is NULL or empty, or
exceeds 30 characters, the subsequent authenticate method invocation
raises the CORBA::BAD_PARAM exception.
15-24 Using Security in CORBA Applications

Note: The user_password and user_data parameters are mutually exclusive,
depending on the requirements of the authentication service used in the
configuration of the BEA Tuxedo domain. The BEA Tuxedo default
authentication service expects a user password. A customized
authentication service may require user data. If both user_password and
user_data are specified, the subsequent authentication call raises the
CORBA::BAD_PARAM exception.

Description This method is a helper function that creates authentication data and attributes to be
used by SecurityLevel2::PrincipalAuthenticator::authenticate.

Note: This method raises CORBA::BAD_INV_ORDER if it is called with an invalid
SecurityCurrent object.

Return Values None.
Using Security in CORBA Applications 15-25

15 C++ Security Reference
15-26 Using Security in CORBA Applications

CHAPTER
16 Java Security
Reference

For information about the security application programming interface (API), see the
CORBA Javadoc in the BEA Tuxedo online documentation.
Using Security in CORBA Applications 16-1

16 Java Security Reference
16-2 Using Security in CORBA Applications

CHAPTER
17 Automation Security
Reference

This topic contains the Automation method descriptions for CORBA security. In
addition, this topic contains programming examples that illustrate using the
Automation methods to implement security in an ActiveX client application.

This topic includes the following sections:

n Method Descriptions

n Programming Example

Note: The Automation security methods do not support certificate authentication or
the use of the SSL protocol.
Using Security in CORBA Applications 17-1

17 Automation Security Reference
Method Descriptions

This section describes the Automation Security Service methods.

DISecurityLevel2_Current

The DISecurityLevel2_Current object is a BEA implementation of the CORBA
Security model. In this release of the BEA Tuxedo software, the get_attributes(),
set_credentials(), get_credentials(), and Principal_Authenticator()
methods are supported.
17-2 Using Security in CORBA Applications

Method Descriptions
DISecurityLevel2_Current.get_attributes

Synopsis Returns attributes for the Current interface.

MIDL Mapping HRESULT get_attributes(
 [in] VARIANT attributes,
 [in,out,optional] VARIANT* exceptionInfo,
 [out,retval] VARIANT* returnValue);

Automation
Mapping

Function get_attributes(attributes, [exceptionInfo])

Parameters attributes

The set of security attributes (privilege attribute types) whose values are
desired. If this list is empty, all attributes are returned.

exceptioninfo

An optional input argument that allows the client application to get additional
exception data if an error occurs. For the ActiveX client applications, all
exception data is returned in the OLE Automation Error Object.

Description This method gets privilege (and other) attributes from the credentials for the client
application from the Current interface.

Return Values A variant containing an array of DISecurity_SecAttribute objects. The following
table describes the valid return values.

Return Value Meaning

Security::Public Empty (Public is returned when no authentication was
performed.)

Security::AccessId Null-terminated ASCII string containing the BEA
Tuxedo username.

Security::PrimaryGroupId Null-terminated ASCII string containing the BEA
Tuxedo name of the client application.
Using Security in CORBA Applications 17-3

17 Automation Security Reference
DISecurityLevel2_Current.set_credentials

Synopsis Sets credentials type.

MIDL Mapping HRESULT set_credentials(
 [in] Security_CredentialType cred_type,
 [in] DISecurityLevel2_Credentials* cred,
 [in,out,optional] VARIANT* exceptionInfo);

Automation
Mapping

Sub set_credentials(cred_type As Security_CredentialType,
 cred As DISecurityLevel2_Credentials,
 [exceptionInfo])

Description This method can be used only to set SecInvocationCredentials; otherwise,
set_credentials raises CORBA::BAD_PARAM. The credentials must have been
obtained from a previous call to DISecurityLevel2_Current.get_credentials.

Arguments cred_type

The type of credentials to be set; that is, invocation, own, or nonrepudiation.

cred

The object reference to the Credentials object, which is to become the default.

exceptioninfo

An optional input argument that allows the client application to get additional
exception data if an error occurs. For the ActiveX client applications, all
exception data is returned in the OLE Automation Error Object.

Return Values None.
17-4 Using Security in CORBA Applications

Method Descriptions
DISecurityLevel2_Current.get_credentials

Synopsis Gets credentials type.

MIDL Mapping HRESULT get_credentials(
 [in] Security_CredentialType cred_type,
 [in,out,optional] VARIANT* exceptionInfo,
 [out,retval] DISecurityLevel2_Credentials** returnValue);

Automation
Mapping

Function get_credentials(cred_type As Security_CredentialType,
 [exceptionInfo]) As DISecurityLevel2_Credentials

Description This call can be used only to get SecInvocationCredentials; otherwise,
get_credentials raises CORBA::BAD_PARAM. If no credentials are available,
get_credentials raises CORBA::BAD_INV_ORDER.

Arguments cred_type

The type of credentials to get.

exceptioninfo

An optional input argument that allows the client application to get additional
exception data if an error occurs. For the ActiveX client application, all
exception data is returned in the OLE Automation Error Object.

Return Values A DISecurityLevel2_Credentials object for the active credentials in the client
application only.
Using Security in CORBA Applications 17-5

17 Automation Security Reference
DISecurityLevel2_Current.principal_authenticator

Synopsis Returns the PrincipalAuthenticator.

MIDL Mapping HRESULT principal_authenticator([out, retval]
 DITobj_PrincipalAuthenticator** returnValue);

Automation
Mapping

Property principal_authenticator As DITobj_PrincipalAuthenticator

Description The PrincipalAuthenticator returned by the principal_authenticator
property is of actual type DITobj_PrincipalAuthenticator. Therefore, it can be
used as a DISecurityLevel2_PrincipalAuthenticator.

Note: This method raises CORBA::BAD_INV_ORDER if it is called on an invalid
SecurityCurrent object.

Return Values A DITobj_PrincipalAuthenticator object.
17-6 Using Security in CORBA Applications

Method Descriptions
DITobj_PrincipalAuthenticator

The DITobj_PrincipalAuthenticator object is used to log in to and log out of the
BEA Tuxedo domain. In this release of the BEA Tuxedo software, the authenticate,
build_auth_data(), continue_authentication(), get_auth_type(),
logon(), and logoff() methods are implemented.
Using Security in CORBA Applications 17-7

17 Automation Security Reference
DITobj_PrincipalAuthenticator.authenticate

Synopsis Authenticates the client application.

MIDL Mapping HRESULT authenticate(
 [in] long method,
 [in] BSTR security_name,
 [in] VARIANT auth_data,
 [in] VARIANT privileges,
 [out] DISecurityLevel2_Credentials**

creds,
 [out] VARIANT* continuation_data,
 [out] VARIANT* auth_specific_data,
 [in,out,optional] VARIANT* exceptionInfo,
 [out,retval] Security_AuthenticationStatus* returnValue);

Automation
Mapping

Function authenticate(method As Long, security_name As String,
 auth_data, privileges, creds As DISecurityLevel2_Credentials,
 continuation_data, auth_specific_data,
 [exceptionInfo]) As Security_AuthenticationStatus

Arguments method

Must be Tobj::TuxedoSecurity. If method is invalid, authenticate
raises CORBA::BAD_PARAM.

security_name

The BEA Tuxedo username.

auth_data

As returned by DITobj_PrincipalAuthenticator.build_auth_data. If
auth_data is invalid, authenticate raises CORBA::BAD_PARAM.

privileges

As returned by DITobj_PrincipalAuthenticator.build_auth_data.
If privileges is invalid, authenticate raises CORBA::BAD_PARAM.

creds

Placed into the SecurityCurrent object.

continuation_data

Always empty.

auth_specific_data

Always empty.
17-8 Using Security in CORBA Applications

Method Descriptions
exceptioninfo

An optional input argument that allows the client application to get additional
exception data if an error occurs. For the ActiveX client application, all
exception data is returned in the OLE Automation Error Object.

Description This method authenticates the client application via the IIOP Listener/Handler so that
it can access a BEA Tuxedo domain.

Return Values A Security_AuthenticationStatus Enum value. The following table describes
the valid return values.

Return Value Meaning

Security::Authentication
Status::
SecAuthSuccess

The authentication succeeded.

Security::Authentication
Status::
SecAuthFailure

The authentication failed, or the client application was
already authenticated and did not invoke
Tobj::PrincipalAuthenticator:logoff or
Tobj_Bootstrap::destroy_current.
Using Security in CORBA Applications 17-9

17 Automation Security Reference
DITobj_PrincipalAuthenticator.build_auth_data

Synopsis Creates authentication data and attributes for use by
DITobj_PrincipalAuthenticator.authenticate.

MIDL Mapping HRESULT build_auth_data(
 [in] BSTR user_name,
 [in] BSTR client_name,
 [in] BSTR system_password,
 [in] BSTR user_password,
 [in] VARIANT user_data,
 [out] VARIANT* auth_data,
 [out] VARIANT* privileges,
 [in,out,optional] VARIANT* exceptionInfo);

Automation
Mapping

Sub build_auth_data(user_name As String, client_name As String,
 system_password As String, user_password As String, user_data,
 auth_data, privileges, [exceptionInfo])

Arguments user_name

The BEA Tuxedo username.

client_name

A name of the CORBA client application.

system_password

The password for the CORBA client application.

user_password

The user password (for default authentication service).

user_data

Client application-specific data (custom authentication service).

auth_data

For use by authenticate.

privileges

For use by authenticate.

exceptioninfo

An optional input argument that allows the client application to get additional
exception data if an error occurs. For the ActiveX client application, all
exception data is returned in the OLE Automation Error Object.
17-10 Using Security in CORBA Applications

Method Descriptions
Note: If user_name, client_name, or system_password is NULL or empty, or
exceeds 30 characters, the subsequent authenticate method invocation
raises the CORBA::BAD_PARAM exception.

Note: The user_password and user_data parameters are mutually exclusive,
depending on the requirements of the authentication service used in the
configuration of the BEA Tuxedo domain. The default authentication
service expects a user password. A customized authentication service may
require user data. If both user_password and user_data are specified,
the subsequent authentication call raises the CORBA::BAD_PARAM
exception.

Description This method is a helper function that creates authentication data and attributes to be
used by DITobj_PrincipalAuthenticator.authenticate.

Note: This method raises CORBA::BAD_INV_ORDER if it is called with an invalid
SecurityCurrent object.

Return Values None.
Using Security in CORBA Applications 17-11

17 Automation Security Reference
DITobj_PrincipalAuthenticator.continue_authentication

Synopsis Always returns Security::AuthenticationStatus::SecAuthFailure.

MIDL Mapping HRESULT continue_authentication(
 [in] VARIANT response_data,
 [in,out] DISecurityLevel2_Credentials** creds,
 [out] VARIANT* continuation_data,
 [out] VARIANT* auth_specific_data,
 [in,out,optional] VARIANT* exceptionInfo,

 [out,retval] Security_AuthenticationStatus* returnValue);

Automation
Mapping

Function continue_authentication(response_data,
 creds As DISecurityLevel2_Credentials, continuation_data,
 auth_specific_data, [exceptionInfo]) As
 Security_AuthenticationStatus

Description Because the BEA Tuxedo software does authentication in one step, this method always
fails and returns Security::AuthenticationStatus::SecAuthFailure.

Return Values Always returns SecAuthFailure.
17-12 Using Security in CORBA Applications

Method Descriptions
DITobj_PrincipalAuthenticator.get_auth_type

Synopsis Gets the type of authentication expected by the BEA Tuxedo domain.

MIDL Mapping HRESULT get_auth_type(

 [in, out, optional] VARIANT* exceptionInfo,

 [out, retval] Tobj_AuthType* returnValue);

Automation
Mapping

Function get_auth_type([exceptionInfo]) As Tobj_AuthType

Argument exceptioninfo

An optional input argument that allows the client application to get additional
exception data if an error occurs. For the ActiveX client application, all
exception data is returned in the OLE Automation Error Object.

Description This method returns the type of authentication expected by the BEA Tuxedo domain.

Note: This method raises CORBA::BAD_INV_ORDER if it is called with an invalid
SecurityCurrent object.

Returned
Values

A reference to the Tobj_AuthType enumeration. The following table describes the
valid return values.

Return Value Meaning

TOBJ_NOAUTH No authentication is needed; however, the client
application can still authenticate itself by specifying
a username and a client application name. No
password is required.

To specify this level of security, specify the NONE
value for the SECURITY parameter in the
RESOURCES section of the UBBCONFIG file.

TOBJ_SYSAUTH The client application must authenticate itself to the
BEA Tuxedo domain, and must specify a username,
a name, and a password for the client application.

To specify this level of security, specify the APP_PW
value for the SECURITY parameter in the
RESOURCES section of the UBBCONFIG file.
Using Security in CORBA Applications 17-13

17 Automation Security Reference
TOBJ_APPAUTH The client application must provide proof material
that authenticates the client application to the BEA
Tuxedo domain.The proof material may be a
password or a digital certificate.

To specify this level of security, specify the
USER_AUTH value for the SECURITY parameter in
the RESOURCES section of the UBBCONFIG file.

Return Value Meaning
17-14 Using Security in CORBA Applications

Method Descriptions
DITobj_PrincipalAuthenticator.logon

Synopsis Logs in to the BEA Tuxedo domain. The correct input parameters depend on the
authentication level.

MIDL Mapping HRESULT logon(

 [in] BSTR user_name,

 [in] BSTR client_name,

 [in] BSTR system_password,

 [in] BSTR user_password,

 [in] VARIANT user_data,

 [in,out,optional] VARIANT* exceptionInfo,

 [out,retval] Security_AuthenticationStatus*

 returnValue);

Automation
Mapping

Function logon(user_name As String, client_name As String,
 system_password As String, user_password As String,

 user_data, [exceptionInfo]) As Security_AuthenticationStatus

Description For remote CORBA client applications, this method authenticates the client
application via the IIOP Listener/Handler so that the remote client application can
access a BEA Tuxedo domain. This method is functionally equivalent to
DITobj_PrincipalAuthenticator.authenticate, but the parameters are
oriented to security.

Arguments user_name

The BEA Tuxedo username. This parameter is required for TOBJ_NOAUTH,
TOBJ_SYSAUTH, and TOBJ_APPAUTH authentication levels.

client_name

The name of the CORBA client application. This parameter is required for
TOBJ_NOAUTH, TOBJ_SYSAUTH, and TOBJ_APPAUTH authentication levels.

system_password

A password for the CORBA client application. This parameter is required for
TOBJ_SYSAUTH and TOBJ_APPAUTH authentication levels.

user_password

The user password (default authentication service). This parameter is
required for the TOBJ_APPAUTH authentication level.
Using Security in CORBA Applications 17-15

17 Automation Security Reference
user_data

Application-specific data (custom authentication service). This parameter is
required for the TOBJ_APPAUTH authentication level.

Note: If user_name, client_name, or system_password is NULL or empty, or
exceeds 30 characters, the subsequent authenticate method invocation
raises the CORBA::BAD_PARAM exception.

Note: If the authorization level is TOBJ_APPAUTH, only one of user_password
or user_data may be supplied.

exceptioninfo

An optional input argument that allows the client application to get additional
exception data if an error occurs. For the ActiveX client application, all
exception data is returned in the OLE Automation Error Object.

Return Values The following table describes the valid return values.

Return Value Meaning

Security::AuthenticationStatus::
SecAuthSuccess

The authentication succeeded.

Security::AuthenticationStatus::
SecAuthFailure

The authentication failed, or the client application was already
authenticated and did not call one of the following methods:

Tobj::PrincipalAuthenticator:logoff

Tobj_Bootstrap::destroy_current
17-16 Using Security in CORBA Applications

Method Descriptions
DITobj_PrincipalAuthenticator.logoff

Synopsis Discards the current security context associated with the CORBA client application.

MIDL Mapping HRESULT logoff([in, out, optional] VARIANT* exceptionInfo);

Automation
Mapping

Sub logoff([exceptionInfo])

Description This call discards the context associated with the CORBA client application, but does
not close the network connections to the BEA Tuxedo domain. Logoff also
invalidates the current credentials. After logging off, calls using existing object
references fail if the authentication type is not TOBJ_NOAUTH.

If the client application is currently authenticated to a BEA Tuxedo domain, calling
Tobj_Bootstrap.destroy_current() calls logoff implicitly.

Argument exceptioninfo

An optional input argument that allows the client application to get additional
exception data if an error occurs. For the ActiveX client applications, all
exception data is returned in the OLE Automation Error Object.

Return Values None.

DISecurityLevel2_Credentials

The DISecurityLevel2_Credentials object is a BEA implementation of the
CORBA Security model. In this release of the BEA Tuxedo software, the
get_attributes() and is_valid() methods are supported.
Using Security in CORBA Applications 17-17

17 Automation Security Reference
DISecurityLevel2_Credentials.get_attributes

Synopsis Gets the attribute list attached to the credentials.

MIDL Mapping HRESULT get_attributes(
 [in] VARIANT attributes,
 [in,out,optional] VARIANT* exceptionInfo,
 [out,retval] VARIANT* returnValue);

Automation
Mapping

Function get_attributes(attributes, [exceptionInfo])

Arguments attributes

The set of security attributes (privilege attribute types) whose values are
desired. If this list is empty, all attributes are returned.

exceptioninfo

An optional input argument that allows the client application to get additional
exception data if an error occurs. For the ActiveX client application, all
exception data is returned in the OLE Automation Error Object.

Description This method returns the attribute list attached to the credentials of the client
application. In the list of attribute types, you are required to include only the type
value(s) for the attributes you want returned in the AttributeList. Attributes are not
currently returned based on attribute family or identities. In most cases, this is the same
result you would get if you called
DISecurityLevel2.Current::get_attributes(), since there is only one valid
set of credentials in the client application at any instance in time. The results could be
different if the credentials are not currently in use.

Return Values A variant containing an array of DISecurity_SecAttribute objects.
17-18 Using Security in CORBA Applications

Method Descriptions
DISecurityLevel2_Credentials.is_valid

Synopsis Checks the status of credentials.

MIDL Mapping HRESULT is_valid(
 [out] IDispatch** expiry_time,
 [in,out,optional] VARIANT* exceptionInfo,
 [out,retval] VARIANT_BOOL* returnValue

Automation
Mapping

Function is_valid(expiry_time As Object,
 [exceptionInfo]) As Boolean

Description This method returns TRUE if the credentials used are active at the time; that is, you did
not call DITobj_PrincipalAuthenticator.logoff or destroy_current. If this
method is called after DITobj_PrincipalAuthenticator.logoff(), FALSE is
returned. If this method is called after destroy_current(), the
CORBA::BAD_INV_ORDER exception is raised.

Return Values The output expiry_time as a DITimeBase_UtcT object set to max.
Using Security in CORBA Applications 17-19

17 Automation Security Reference
Programming Example

This section contains the portions of an ActiveX client application that implement the
following:

n Using the Bootstrap object to obtain the SecurityCurrent object

n Getting the Principal Authenticator object from the SecurityCurrent object

n Using Tuxedo-style authentication

n Logging off the BEA Tuxedo domain

Listing 17-1 ActiveX Client Application That Uses Tuxedo-Style Authentication

Set objSecurityCurrent = objBootstrap.CreateObject(“Tobj.SecurityCurrent”)
Set objPrincipalAuthenticator = objSecurityCurrent.principal_authenticator

 AuthorityType = objPrincipalAuthenticator.get_auth_type
 If AuthorityType = TOBJ_APPAUTH Then logonStatus =
 oPrincipalAuthenticator.Logon(
 UserName,_
 ClientName,_
 SystemPassword,_
 UserPassword
 User Data)
End If

 objPrincipalAuthenticator.logoff()
17-20 Using Security in CORBA Applications

Index

A
administration steps

certificate authentication 3-18
link-level encryption 3-5
password authentication 3-8
the SSL protocol 3-12

authentication
certificate 3-14
password 3-6

authorized users
defining 7-3

AUTHSRV
code example 7-2
configuring 7-2
described 3-6
use with password authentication 3-9

B
BEA Tuxedo domain

adding security to 10-6
building

Secure Simpapp sample application 11-2
Security sample application 11-2

C
certificate authentication

administration steps 3-18
C++ code example 10-17
configuration illustrated 3-20

described 3-14
development process 3-18
how it works 3-15
illustrated 3-15
Java code example 10-18
programming steps 3-18
sample UBBCONFIG file 7-13
writing the client application 10-17

certificate authorities
defined 4-7
obtaining a digital certificate for 4-8

cipher suites
supported by the WLE product 2-12

compiling
client applications

Secure Simpapp sample
application 11-7

concepts
certificate authentication 3-14
digital certificates 3-10
link-level encryption 3-1
password authentication 3-6
SSL protocol 3-10

configuring
a port for SSL communications 6-2
host matching 6-3
setting session renegotiation 6-7
setting the encyrption strength 6-4
the SSL protocol

CORBA C++ ORB 6-2
IIOP Listener/Handler 6-2
Using Security in CORBA Applications I-1

CORBA C++ client applications
starting

Secure Simpapp sample
application 11-7

CORBA C++ ORB
defining a port for SSL

communications 6-2
enabling host matching 6-3
setting the encryption strength 6-4

CORBA Java client applications
starting

Secure Simpapp sample application
11-7

CORBA module
described 14-2

CORBA Module IDL 14-2
CORBA Security model

accessing objects 13-3
administrative control 13-3
authenticating principals 13-2
components 13-3

Credentials object 13-7
PrincipalAuthenticator object 13-4
SecurityCurrent object 13-9

described 13-2
corbaloc 3-16
corbaloc URL Address format

described 10-4
corbalocs URL Address format

described 10-5
Credentials object

described 13-7
customer support contact information xii

D
Data types

security module 14-4
development process

certificate authentication 3-18
password authentication 3-8

the SSL protocol 3-12
digital certificates

certificate authentication 3-14
SSL protocol 3-10
troubleshooting 12-9

directory location of source files
Secure Simpapp sample application 11-3

documentation, where to find it xi

E
encryption

setting encryption strength 6-4
values 6-5

environment variables
JAVA_HOME 11-5
Secure Simpapp sample application 11-5
TUXDIR 11-5

F
file protections

Secure Simpapp sample application 11-4

H
host matching

enabling 6-3
values 6-3

I
IIOP Listener/Handler

configuring session renegotiation 6-7
defining a port for SSL

communications 6-2
enabling host matching 6-3
SEC_PRINCIPAL_LOCATION

parameter 6-7
SEC_PRINCIPAL_NAME

parameter 6-7
SEC_PRINCIPAL_PASSVAR
I-2 Using Security in CORBA Applications

parameter 6-8
setting security parameters 6-7
setting the encryption strength 6-4
use with certificate authentication 3-14
use with the SSL protocol 3-10

Interoperable Naming Service
using 10-20

invocation_options_required method
C++ code example 10-21
described 10-21
Java code example 10-23

ISL command
configuring session renegotiation 6-7
enabling host matching 6-3
example 6-9
setting the encryption strength 6-4
specifying a port for SSL

communications 6-2

J
JAVA_HOME parameter

Secure Simpapp sample application 11-5
joint client/server applications

using the SSL protocol 6-2

L
LDAP directory service

search filter file 4-5
use with CORBA security 4-3
use with the SSL protocol 3-11

LDAP Search Filter file
modifying 4-5
stanzas used by SSL protocol 4-6
stanzas used for certificate

authentication 4-6
tags 4-5

link-level encryption
administration steps 3-5
described 3-1

development process 3-5

O
OMG IDL

CORBA module 14-2
SecurityLevel 2 module 14-7
Security module 14-4
SecurityLevel 1 module 14-6
TimeBase module 14-2
Tobj module 14-7

P
password authentication

administration steps 3-8
application password 3-6
C++ example

SecurityLevel2
PrincipalAuthenticator
10-9

Tobj PrincipalAuthenticator 10-12
defining users and groups 3-9
described 3-6
development process 3-8
how it works 3-7
illustrated 3-7
interfaces explained 10-8
Java example

SecurityLevel2
PrincipalAuthenticator
10-10

Tobj PrincipalAuthenticator 10-14
programming steps 3-8
sample UBBCONFIG file 7-9
system authentication 3-6
writing the client application 10-7

Peer Rules file
described 4-9
elements 4-9
example 4-9
Using Security in CORBA Applications I-3

syntax 4-10
PrincipalAuthenticator object

certificate authentication 13-5
CORBA extensions 13-6
described 13-4
using in client applications 10-6

printing product documentation xi
private keys

example 4-7
format 4-6
location 4-6

protocols
link-level encryption 3-1
SSL 3-10

R
related information xi
runme command

description 11-7
files generated by 11-8, 11-9

S
SEC_PRINCIPAL_LOCATION parameter

defined 6-7
SEC_PRINCIPAL_NAME parameter

defined 6-7
SEC_PRINCIPAL_PASSVAR parameter

defined 6-8
Secure Simpapp sample application

building 11-2
changing protection on files 11-4
compiling the Java client

application 11-7
description 10-16
development process 10-16
loading the UBBCONFIG file 11-7
required environment variables 11-5
runme command 11-7
setting up the work directory 11-3

source files 11-3
starting the Java client application 11-11
using the client applications 11-11

SecurityLevel 2 module
described 14-7

Security module
described 14-4

SECURITY parameter
defining in UBBCONFIG file 7-7
setting for password authentication 3-8
values for 7-7

Security sample application
description 10-6
illustrated 10-6
location of files 10-7
PrincipalAuthenticator object 10-6
SecurityCurrent object 10-6

SecurityCurrent object
described 13-9
using in client applications 10-6

SecurityLevel 1 module
described 14-6

source files
Secure Simpapp sample application 11-3

SSL parameters
SEC_PRINCIPAL_LOCATION 3-12
SEC_PRINCIPAL_NAME 3-12
SEC_PRINCIPAL_PASSVAR 3-12

SSL protocol
administration steps 3-12
configuration illustrated 3-13
described 3-10
development process 3-12
how it works 3-10
requirements 3-11

support
technical xii
I-4 Using Security in CORBA Applications

T
Third-party ORBs

using the Interoperable Naming
Service 10-20

TimeBase module
described 14-2

TimeBase Module IDL 14-3
tmboot command

Secure Simpapp sample
application 11-11

tmloadcf command
Secure Simpapp sample application 11-7

Tobj module
described 14-7

tpgrpadd command
defining security groups 3-9, 7-4

tpusradd command
defining users for security 3-9, 7-4

troubleshooting
bootstrapping problems 12-6
callback objects 12-9
certificate authentication problems 12-5
configuration problems 12-8
digital certificates 12-9
IIOP Listener/Handler startup

problems 12-7
ORB initialization problems 12-3
password authentication problems 12-4
tracing 12-1
Ulog file 12-1

Trusted Certificate Authority file
described 4-8
example 4-8

TUXCONFIG parameter
setenv file 11-5

TUXDIR parameter
Secure Simpapp sample application 11-5

U
UBBCONFIG file

configuring the authentication server 7-2
defining a security level 7-6
defining link-level encryption 3-5
defining security parameters for the IIOP

Listener/Handler 6-8
example of certificate

authentication 7-13
example of password authentication 7-9
link-level encryption 3-5
password authentication 3-8
Secure Simpapp sample application 11-7

URL Address formats
certifcate authentication 3-16
corbaloc 10-2, 10-4
corbalocs 10-2, 10-5
Host and Port 10-4
password authentication 3-28
syntax 10-3
Using Security in CORBA Applications I-5

I-6 Using Security in CORBA Applications

	Copyright
	Contents
	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	Part I Security Concepts
	1 Overview of the CORBA Security Features
	The CORBA Security Features
	The CORBA Security Environment
	Single Sign-on in the CORBA Security Environment
	BEA Tuxedo Security SPIs

	2 Introduction to the SSL Technology
	The SSL Protocol
	Digital Certificates
	Certificate Authority
	Certificate Repositories
	A Public Key Infrastructure
	PKCS-5 and PKCS-8 Compliance
	Supported Public Key Algorithms
	Supported Symmetric Key Algorithms
	Supported Message Digest Algorithms
	Supported Cipher Suites
	Standards for Digital Certificates

	3 Fundamentals of CORBA Security
	Link-Level Encryption
	How LLE Works
	Encryption Key Size Negotiation
	Determining min-max Values
	Finding a Common Key Size

	WSL/WSH Connection Timeout During Initialization
	Development Process

	Password Authentication
	How Password Authentication Works
	Development Process for Password Authentication

	The SSL Protocol
	How the SSL Protocol Works
	Requirements for Using the SSL Protocol
	Development Process for the SSL Protocol

	Certificate Authentication
	How Certificate Authentication Works
	Development Process for Certificate Authentication

	Using an Authentication Plug-in
	Authorization
	Auditing
	Single Sign-on
	PKI Plug-ins
	Commonly Asked Questions About the CORBA Security Features
	Do I Have to Change the Security in an Existing CORBA Application?
	Can I Use the SSL Protocol in an Existing CORBA Application?
	When Should I Use Certificate Authentication?

	Part II Security Adminstration
	4 Managing Public Key Security
	Requirements for Using Public Key Security
	Who Needs Digital Certificates and Private/Private Key Pairs?
	Requesting a Digital Certificate
	Publishing Certificates in the LDAP Directory Service
	Editing the LDAP Search Filter File
	Storing the Private Keys in a Common Location
	Defining the Trusted Certificate Authorities
	Creating a Peer Rules File

	5 Configuring Link-Level Encryption
	Understanding min and max Values
	Verifying the Installed Version of LLE
	Configuring LLE on CORBA Application Links

	6 Configuring the SSL Protocol
	Setting Parameters for the SSL Protocol
	Defining a Port for SSL Network Connections
	Enabling Host Matching
	Setting the Encryption Strength
	Setting the Interval for Session Renegotiation
	Defining Security Parameters for the IIOP Listener/Handler
	Example of Setting Parameters on the ISL System Process
	Example of Setting Command-line Options on the CORBA C++ ORB

	7 Configuring Authentication
	Configuring the Authentication Server
	Defining Authorized Users
	Defining a Security Level
	Configuring Application Password Security
	Configuring Password Authentication
	Sample UBBCONFIG File for Password Authentication
	Configuring Certificate Authentication
	Sample UBBCONFIG File for Certificate Authentication
	Configuring Access Control
	Configuring Optional ACL Security
	Configuring Mandatory ACL Security
	Setting ACL Policy Between CORBA Applications
	Impersonating the Remote Domain Gateway
	Example DMCONFIG Entries for ACL Policy

	Configuring Security to Interoperate with Older WebLogic Enterprise Client Applications

	8 Configuring Single Sign-on
	Single Sign-on with Password Authentication
	Single Sign-on with Password Authentication and the SSL Protocol
	Single Sign-on with the SSL Protocol and Certificate Authentication

	9 Configuring Security Plug-ins
	Registering the Security Plug-ins (SPIs)

	Part III Security Programming
	10 Writing a CORBA Application That Implements Security
	Using the Bootstrapping Mechanism
	Using the Host and Port Address Format
	Using the corbaloc URL Address Format
	Using the corbalocs URL Address Format

	Using Password Authentication
	The Security Sample Application
	Writing the Client Application
	C++ Code Example That Uses the SecurityLevel2::PrincipalAuthenticator::authenticate() Method
	Java Code Example That Uses the SecurityLevel2.PrincipalAuthenticator.authenticate() Method
	C++ Code Example That Uses the Tobj::PrincipalAuthenticator::logon() Method
	Java Code Example That Uses the Tobj.PrincipalAuthenticator.logon() Method

	Using Certificate Authentication
	The Secure Simpapp Sample Application
	Writing the CORBA Client Application
	C++ Code Example of Certificate Authentication
	Java Code Example of Certificate Authentication

	Using the Interoperable Naming Service Mechanism
	Using the Invocations_Options_Required() Method

	11 Building and Running the CORBA Sample Applications
	Building and Running the Security Sample Application
	Building and Running the Secure Simpapp Sample Application
	Step 1: Copy the Files for the Secure Simpapp Sample Application into a Work Directory
	Step 2: Change the Protection Attribute on the Files for the Secure Simpapp Sample Application
	Step 3: Verify the Settings of the Environment Variables
	Step 4: Execute the runme Command
	Using the Secure Simpapp Sample Application

	12 Troubleshooting
	Using ULOGS and ORB Tracing
	CORBA::ORB_init Problems
	Password Authentication Problems
	Certificate Authentication Problems
	Tobj::Bootstrap:: resolve_initial_references Problems
	IIOP Listener/Handler Startup Problems
	Configuration Problems
	Problems with Using Callbacks Objects with the SSL Protocol
	Troubleshooting Tips for Digital Certificates

	Part IV Security Reference
	13 CORBA Security APIs
	The CORBA Security Model
	Authentication of Principals
	Controlling Access to Objects
	Administrative Control

	Functional Components of the CORBA Security Environment
	The Principal Authenticator Object
	Using the Principal Authenticator Object with Certificate Authentication
	BEA Tuxedo Extensions to the Principal Authenticator Object

	The Credentials Object
	The SecurityCurrent Object

	14 Security Modules
	CORBA Module
	TimeBase Module
	Security Module
	Security Level 1 Module
	Security Level 2 Module
	Tobj Module

	15 C++ Security Reference
	SecurityLevel1::Current::get_attributes
	SecurityLevel2::PrincipalAuthenticator::authenticate
	SecurityLevel2::Current::set_credentials
	SecurityLevel2::Current::get_credentials
	SecurityLevel2::Current::principal_authenticator
	SecurityLevel2::Credentials
	SecurityLevel2::Credentials::get_attributes
	SecurityLevel2::Credentials::invocation_options_supported
	SecurityLevel2::Credentials::invocation_options_required
	SecurityLevel2::Credentials::is_valid

	SecurityLevel2::PrincipalAuthenticator
	SecurityLevel2::PrincipalAuthenticator::continue_authentication
	Tobj::PrincipalAuthenticator::get_auth_type
	Tobj::PrincipalAuthenticator::logon
	Tobj::PrincipalAuthenticator::logoff
	Tobj::PrincipalAuthenticator::build_auth_data

	16 Java Security Reference
	17 Automation Security Reference
	Method Descriptions
	DISecurityLevel2_Current
	DISecurityLevel2_Current.get_attributes
	DISecurityLevel2_Current.set_credentials
	DISecurityLevel2_Current.get_credentials
	DISecurityLevel2_Current.principal_authenticator

	DITobj_PrincipalAuthenticator
	DITobj_PrincipalAuthenticator.authenticate
	DITobj_PrincipalAuthenticator.build_auth_data
	DITobj_PrincipalAuthenticator.continue_authentication
	DITobj_PrincipalAuthenticator.get_auth_type
	DITobj_PrincipalAuthenticator.logon
	DITobj_PrincipalAuthenticator.logoff

	DISecurityLevel2_Credentials
	DISecurityLevel2_Credentials.get_attributes
	DISecurityLevel2_Credentials.is_valid

	Programming Example

	Index

