BEA Tuxedo

Getting Started with
BEA Tuxedo CORBA Applications

Copyright
Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights L egend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
thelaw to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, trand ated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rightsin Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clauseat NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "ASIS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONSREGARDING THE USE, OR THE
RESULTSOF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebL ogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebL ogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebL ogic Personalization Server, BEA WebL ogic Process Integrator, BEA WebL ogic
Collaborate, BEA WebL ogic Enterprise, and BEA WebL ogic Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.
Getting Sarted with BEA Tuxedo CORBA Applications

Document Edition Date Software Version

8.0 June 2001 BEA Tuxedo 8.0

Contents

About This Document

What Y OU NEed t0 KNMOWcceeiuiiiiiiiiieiie ettt s viii
E-0OCSWED SItE....oceieeeeceeee ettt s e r e e e r e e e viii
How to Print the DOCUMENT..........ceeie et st st e viii
Related INfOrmMation.........ccoueeieieieee et st s e e e iX
CONLBCE US! ...ttt et st et e ae e s e et e e e sreeraesranns iX
Documentation CONVENLIONScc.cceeiuiieeieie e et ee e ereeree e srae st sraesae e eaeereens X

1. Overview of the BEA Tuxedo CORBA Environment

Introduction to the BEA Tuxedo CORBA Environmentccccoeceeeeeeveeenenen. 1-1
Features of the BEA Tuxedo CORBA ENVironmentcccoeeeeeeeieeeeeeeveeeeenen. 1-3

2. The BEA Tuxedo CORBA Programming Environment

Overview of the BEA Tuxedo CORBA Programming Features..............c........ 2-1
DL COMPITENS. ...ttt et e e e se e e 2-2
Development COmMMANGSoooeeererieie et 2-3
AdMINiStration TOOIS.......ccveviieeiireeiieet et 2-3
ActiveX Application BUITAESccoiieiiniiee e 2-6

BEA Tuxedo CORBA ODbjECt SEIVICES......ccoiviirieiieeieeecie sttt 2-7

BEA Tuxedo CORBA Architectural COmMpONENtS.........ccceeereereeieeseenerneeinennas 2-8
Bootstrapping the BEA Tuxedo DOMaINccceouereneeieneineine e 2-9
[TOP Listener/Handl€rcvvueeirieineniere e 2-11
ORB......ecttt sttt ettt bbbt b e e e e e bbbt e bbb enen 2-12
TP FFraMEWOTK ..ottt s e 2-13

How BEA Tuxedo CORBA Client and Server Applications Interact............. 2-15
Step 1: The CORBA Server Application Is Initializedcooveennnns 2-16
Step 2: The CORBA Client Application Is Initialized...........cccccovenennnns 2-17

Getting Started with BEA Tuxedo CORBA Applications iii

iv

Step 3: The CORBA Client Application Authenticates Itself to the BEA
TUXEAO DOMEIN.....c..iiitieceiiteee et e e s e e e 2-17

Step 4: The CORBA Client Application Obtains a Reference to the CORBA
Object Needed to Execute Its BUSINESSLOGICcovevveveeieieveeecneen. 2-18

Step 5: The CORBA Client Application Invokes an Operation onthe CORBA
OB ECL ...ttt ettt et e s bbbttt e 2-20

3. Developing BEA Tuxedo CORBA Applications

Overview of the Development Process for BEA Tuxedo CORBA Applications..
3-2

The Simpapp Sample APPIICAIONcc.oie i 3-4
Step 1: Write the OMG IDL COE........oouiieieeeeeieeieee e 3-5
Step 2: Generate CORBA client Stubs and SKEletons..........cccoveveieeiennieeeeens 3-6
Step 3: Write the CORBA server AppliCation..........oceoevereeneneeneeie e 3-8

Writing the Methods That Implement the Operations for Each Interface.. 3-9

Creating the CORBA server ObJECoovivvievecece e 3-10

Defining an Object’s Activation POlIiCIES........c.ccceceeieevecie e 312

Creating and Registering a Factorycccveeveveeie e 3-13

Releasing the CORBA Server Applicationcccoeeeeeeereneneniesecneeeenns 3-14
Step 4: Write the CORBA Client AppliCation.........ccocceeveereieneneeieeiereeee 3-16
Step 5: Create an XA ResoUrce Managerccceeereereenieeneeseeseie e see e 3-19
Step 6: Create a Configuration File ... 3-20
Step 7: Create the TUXCONFIG Fil@oooiieiiee e 3-22
Step 8: Compilethe CORBA Server AppliCationccoccoceeeeeneeneeieieneenene 3-23
Step 9: Compilethe CORBA Client Application..........coeoeinneiienenienen 3-24
Step 10: Start the BEA Tuxedo CORBA Application.........cccoceeeeeieeieienenne. 3-24
Additional BEA Tuxedo CORBA Sample Applications.........ccccevvneeieennene. 3-25

Using Security

Overview of the SECUNItY SEIVICE.......oiuieiireeeriree et 4-1
HOW SECUILY WOFKS ...ttt st e 4-2
The Security Sample ApPliCaLION...........ooii i e 4-4
DeVE OPMENT SEEPS.....cee ettt ettt s e e e ene e e ees 4-6
Step 1: Define the Security Level in the Configuration File...................... 4-6
Step 2: Write the CORBA Client AppliCationcccvereiereneeiinienene 4-7

Getting Started with BEA Tuxedo CORBA Applications

5. Using Transactions

Overview of the Transaction SENVICEcevererne e 5-1
What Happens During @ TranSaCtioncocueeerneeineeiene e seeseeneenens 5-2
Transactions Sample APPlCAiON..........ooeii i e 5-4
DeVElOPMENT SEEPS......eveeeie ettt ettt et sttt s se e s eeb s e eae e eeesneneeeeas 5-6
Step 1: Write the OMG IDL COdEceeeie e e 5-7
Step 2: Define Transaction Policies for the Interfaces.........cccocooeeeienes 59
Step 3: Write the CORBA Client Applicationcccererieeicnineniennens 5-10
Step 4: Write the CORBA Server Application........cccooeveveiiceveeneeienn. 5-12
Step 5: Create a Configuration File.........coooo i 5-13
Index

Getting Started with BEA Tuxedo CORBA Applications %

Vi Getting Started with BEA Tuxedo CORBA Applications

About This Document

This document presents an overview of BEA Tuxedo® CORBA and describes the
development process for developing distributed CORBA applications using the BEA
Tuxedo software.

This document does not discuss every feature of BEA Tuxedo CORBA; instead, it
gives a general description of building atypical application using the BEA Tuxedo
CORBA programming environment. To find information about all the BEA Tuxedo
CORBA features, see the Home page of the BEA Tuxedo online documentation.

This document includes the following topics:

m Chapter 1, “Overview of the BEA Tuxedo CORBA Environment,” presents an
overview of the CORBA features in the BEA Tuxedo product.

m Chapter 2, “The BEA Tuxedo CORBA Programming Environment,” describes
the CORBA programming environment available in the BEA Tuxedo product
and the architectural components of the environment.

m Chapter 3, “Developing BEA Tuxedo CORBA Applications,” explains how to
build atypica BEA Tuxedo CORBA application using the Simpapp sample
application as an example.

m Chapter 4, “Using Security,” describes how security isincorporated into a BEA
Tuxedo CORBA application. The Security sample application isused as an
example.

m Chapter 5, “Using Transactions,” describes how transactions are incorporated
into a BEA Tuxedo CORBA application. The Transactions sample application is
used as an example.

Getting Started with BEA Tuxedo CORBA Applications Vii

What You Need to Know

This document isintended for programmers who want to familiarize themselves with
the BEA Tuxedo CORBA programming environment and create distributed CORBA
applications using the BEA Tuxedo product.

e-docs Web Site

The BEA Tuxedo product documentation is avail able from the BEA Systems, Inc.
corporate Web site. From the BEA Home page, click the Product Documentation
button or go directly to the “e-docs’ Product Documentation page at
http://e-docs.bea.com.

How to Print the Document

Y ou can print acopy of thisdocument from aWeb browser, onefile at atime, by using
the File—>Print option on your Web browser.

A PDF version of thisdocument isavailable on the BEA Tuxedo documentation Home
page on the e-docs Web site (and also on the documentation CD). Y ou can open the
PDF in Adobe Acrobat Reader and print the entire document (or aportion of it) in book
format. To access the PDFs, open the BEA Tuxedo documentation Home page, click
the PDF Files button, and select the document you want to print.

If you do not have the Adobe Acrobat Reader installed, you can download it for free
from the Adobe Web site at http://www.adobe.com/.

Viii Getting Started with BEA Tuxedo CORBA Applications

How to Print the Document

Related Information

For more information about CORBA, BEA Tuxedo, distributed object computing,
transaction processing, C++ programming, and Java programming, see the CORBA
Bibliography in the BEA Tuxedo online documentation.

Contact Us!

Y our feedback on the BEA Tuxedo documentation isimportant to us. Send us e-mail
at docsupport@bea.com if you have questions or comments. Y our commentswill be
reviewed directly by the BEA professionals who create and update the BEA Tuxedo

documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA Tuxedo 8.0 release.

If you have any questions about this version of BEA Tuxedo, or if you have problems
installing and running BEA Tuxedo, contact BEA Customer Support through BEA
WebSUPPORT at www.bea.com. Y ou can al so contact Customer Support by using the
contact information provided on the Customer Support Card, which isincluded in the
product package.

When contacting Customer Support, be prepared to providethefollowing information:
m Your name, e-mail address, phone number, and fax number

m Your company name and company address

m Your machine type and authorization codes

m The name and version of the product you are using

m A description of the problem and the content of pertinent error messages

Getting Started with BEA Tuxedo CORBA Applications iX

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention

Item

boldface text

Indicates terms defined in the glossary.

Ctrl+Tab

Indicates that you must press two or more keys simultaneously.

italics

Indicates emphasis or book titles.

nonospace
t ext

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
M onospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostreamh> void main () the pointer psz
chnod u+w *

\tux\ dat a\ ap

. doc

t ux. doc

Bl TMAP

fl oat

nonospace
bol df ace
t ext

I dentifies significant wordsin code.
Example:
void commt ()

nonospace
italic
t ext

Identifies variablesin code.
Example:
String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.
Examples:

LPT1

SIGNON

OR

X Getting Started with BEA Tuxedo CORBA Applications

Documentation Conventions

Convention

Item

{1}

Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[]

Indicates optional itemsin a syntax line. The brackets themsel ves should
never be typed.

Example:

bui l dobjclient [-v] [-0 name | [-f file-list]...
[-1 file-list]...

Separates mutually exclusive choicesin a syntax line. The symbol itself
should never be typed.

Indicates one of the following in acommand line:

m That an argument can be repeated severa timesin acommand line

m That the statement omits additional optional arguments

m That you can enter additional parameters, values, or other information
The ellipsisitself should never be typed.

Example:

buil dobjclient [-v] [-0 name | [-f file-list]...
[-1 file-list]...

Indicates the omission of items from a code example or from asyntax line.

The vertical ellipsisitself should never be typed.

Getting Started with BEA Tuxedo CORBA Applications

Xi

Xii Getting Started with BEA Tuxedo CORBA Applications

CHAPTER

1 oOverview of the BEA

Tuxedo CORBA
Environment

Thistopic includes the following sections:
m Introduction to the BEA Tuxedo CORBA environment

m Features of the BEA Tuxedo CORBA Environment

Introduction to the BEA Tuxedo CORBA
Environment

The CORBA environment in the BEA Tuxedo product is based on the CORBA
standard as a programming model for developing enterprise applications with high
performance, scalability, and reliability. BEA Tuxedo CORBA extends the Object
Request Broker (ORB) model with online transaction processing (OL TP) functions.
The BEA Tuxedo CORBA deployment infrastructure delivers secure, transactional,
distributed applications in a managed environment.

CORBA objects built with the BEA Tuxedo product are accessible from Web-based
applications that communicate using the CORBA Object Management Group (OMG)
Internet Inter-ORB Protocol (110P). [IOPisthe standard protocol for communications
running on the Internet or on an intranet within an enterprise.

Getting Started with BEA Tuxedo CORBA Applications 1-1

1 overview of the BEA Tuxedo CORBA Environment

BEA Tuxedo CORBA has a native implementation of 110P, ensuring
high-performance, interoperable, distributed-object applications for the Internet,
intranets, and enterprise computing environments. Y ou can build integrated enterprise
applications using multiple programming models. CORBA and Application-to-
Transaction-Monitor-Interface (ATMI) applications can be developed with fully
integrated transaction management, security, administration, and reliability
capabilities.

Theinteroperability technology incorporated into BEA Tuxedo CORBA provides for
scalable connectivity between the CORBA and WebL ogic Server environments. For
information on interoperability see BEA Tuxedo Interoperability in the BEA Tuxedo
online documentation.

Figure 1-1 illustrates the BEA Tuxedo CORBA environment.

Figure1-1 BEA Tuxedo CORBA

CORBA Java BEA ActiveX CORBA C++)
Client Client Client Third-Party
Application Application Application CIlenLORB

BEA Tuxedo Domain

IIOP Object Request Broker

Database

CORBA
‘ Access

Security

WebLogic | WLEC
Server T

Messaging

ATMI

User-defined User-defined
BEA Tuxedo ATMI BEA Tuxedo ATMI
Application 1 Application n

‘ TP Monitor and ‘

‘ Administration

The following sections outline the features of the CORBA environment.

1-2 Getting Started with BEA Tuxedo CORBA Applications

Features of the BEA Tuxedo CORBA Environment

Features of the BEA Tuxedo CORBA
Environment

The CORBA environment in the BEA Tuxedo product provides the following set of
features:

A C++ server-side ORB

Client application options including:
e CORBA Javaclient

e ActiveX client

e CORBA C++ client

e Third-party client ORBs

A proven run-time infrastructure for hosting e-commerce transaction
applications, including client connection concentrators, high-performance
message routing and load balancing, and high-availability features.

A Transaction Processing (TP) Framework for object state and transaction
management in CORBA applications.

A Management Information Base (M1B) that defines the key management
attributes of CORBA applications. In addition, programming interfaces and
scripting capabilities are available to access the MIBs.

An Administration Console graphical user interface (GUI) for the management
of CORBA applications.

The CORBA Transaction Service (OTS) to ensure the integrity of your data even
when transactions span multiple programming models, databases, and
applications.

A security service that handles authentication for principals that need to access
resourcesin a CORBA object in the CORBA environment.

The Secure Sockets Layer (SSL) protocol to encrypt client to server
communication on the wire. SSL support includes [1OP connection pools.

Getting Started with BEA Tuxedo CORBA Applications 1-3

1 overview of the BEA Tuxedo CORBA Environment

1-4

m A Security Service Plug-In Interface (SPI) for CORBA that allows integration of
third-party security plug-ins.

m A Notification Service that receives event posting messages, filters them, and
distributes the messages to subscribers. The Notification Service provides two
sets of interfaces. a CORBA-based interface and a simplified BEA-proprietary
interface.

m Animplementation of the CosLifeCycle service.

m Animplementation of CosNaming that allows BEA Tuxedo CORBA server
applications to advertise object references using logical names.

m Aninterface repository that stores meta information about BEA Tuxedo CORBA
objects. Meta information includes information about modul es, interfaces,
operations, attributes, and exceptions.

m Dynamic Invocation Interface (DI1) support. DIl allows BEA Tuxedo CORBA
client applications to create requests dynamically for objects that were not
defined at compile time.

Theremainder of this Getting Sarted with BEA Tuxedo CORBA Applications manual
describes the programming environment for BEA Tuxedo CORBA and the
development process for CORBA applications.

Getting Started with BEA Tuxedo CORBA Applications

CHAPTER

2 The BEA Tuxedo

CORBA Programming
Environment

Thistopic includes the following sections:

m Overview of the BEA Tuxedo CORBA Programming Features
m BEA Tuxedo CORBA Object Services

m BEA Tuxedo CORBA Architectural Components

m How BEA Tuxedo CORBA Client and Server Applications Interact

Overview of the BEA Tuxedo CORBA
Programming Features

BEA Tuxedo offers arobust CORBA programming environment that simplifies the
devel opment and management of distributed objects. Thefoll owing topics describethe
features of the programming environment:

m IDL Compilers

m Development Commands

Getting Started with BEA Tuxedo CORBA Applications 2-1

2 The BEA Tuxedo CORBA Programming Environment

m Administration Tools

m ActiveX Application Builder

IDL Compilers

The BEA Tuxedo CORBA programming environment supplies Interface Definition
Language (IDL) compilers to facilitate the development of CORBA objects:

m i dl —compilesthe OMG IDL file and generates client stub and server skeleton
filesrequired for interface definitions being implemented in C++.

m idltoj ava—for building a Java client, compiles IDL files to Java source code
based on IDL-to-Java mappings defined by the OMG. Thisi dl t oj ava compiler
includes several enhancements, extensions and additions that are not present in
the original Sun Microsystems, Inc. version of the compiler. The BEA
Tuxedo-specific revisions are summarized bel ow.

Note:

Differs from that described in the Sun Microsystems, Inc. documentation in
behavior and defaults of the flags.

Includes a new #pragmatag: #pragma | D name Repository_id.
Includes a new #pragmatag: #pr agnae ver si on name mn.

Extends the #pr agma prefix to work on inner scope. A blank prefix reverts.
Allows unions with Boolean discriminators.

Allow declarations nested inside complex types.

The nBi dI t oj ava compiler is deprecated in thisrelease. BEA Systems

recommends using thei dl t oj ava compiler to generate client stubs for
CORBA Javaclients and CORBA Javajoint client/servers.

For adescription of how to use the IDL compiler, see Chapter 3, “ Developing BEA
Tuxedo CORBA Applications.” For adescription of thei dl command, see the BEA
Tuxedo Command Reference in the BEA Tuxedo online documentation.

For adescription of how to usethei dl t oj ava command, see the BEA Tuxedo
Command Reference and Using the CORBA idltojava Compiler in the BEA Tuxedo
online documentation.

2-2 Getting Started with BEA Tuxedo CORBA Applications

Overview of the BEA Tuxedo CORBA Programming Features

Development Commands

Table 2-1 lists the commands that the BEA Tuxedo CORBA programming
environment provides for developing CORBA applications and managing the

Interface Repository.

Table 2-1 BEA Tuxedo CORBA Development Commands

Development
Command

Description

bui | dobj cl i ent

Constructs a C++ client application.

bui | dobj server

Constructs a C++ server application.

geni cf Generates an Implementation Configuration File (ICF). Thel CFfile
defines activation and transaction policies for C++ server
applications.

idl2ir Creates the Interface Repository and | oadsinterface definitions into
it.

ir2idl Shows the content of the Interface Repository.

i rdel Deletes the specified object from the Interface Repository.

For a description of how to use the devel opment commands to develop client and
server applications, see Chapter 3, “ Developing BEA Tuxedo CORBA Applications.”

For a description of the development commands, see the BEA Tuxedo Command
Reference in the BEA Tuxedo online documentation.

Administration Tools

The BEA Tuxedo CORBA programming environment provides acomplete set of tools
for administering your CORBA applications. Y ou can manage BEA Tuxedo CORBA
applications through commands, through a graphical user interface, or by including
administration utilitiesin a script.

Getting Started with BEA Tuxedo CORBA Applications 2-3

2 The BEA Tuxedo CORBA Programming Environment

Y ou can usethe commandslisted in Table 2-2 to perform administration tasksfor your

CORBA application.

Table 2-2 Administration Commands

Administration
Command

Description

tmadnmi n

Displays information about current configuration parameters.

t mboot

Activates the BEA Tuxedo CORBA application referenced in
the specified configuration file. Depending on the options used,
the entire application or parts of the application are started.

tnconfig

Dynamically updates and retrieves information about the
configuration of a BEA Tuxedo CORBA application.

t m oadcf

Parsesthe configuration file and loads the binary version of the
configuration file.

t nshut down

Shuts down a set of specified server applications, or removes
interfaces from a configuration file.

t munl oadcf

Unloads the configuration file.

The Administration Console is a Java-based applet that you can download into your
Internet browser and use to manage your BEA Tuxedo CORBA applicationsremotely.
The Administration Console allows you to perform administration tasks, such as
monitoring system events, managing system resources, creating and configuring
administration objects, and viewing system statistics. Figure 2-1 shows the main
window of the Administration Console.

2-4 Getting Started with BEA Tuxedo CORBA Applications

Overview of the BEA Tuxedo CORBA Programming Features

Figure2-1 Administration Console Main Window

BEA Administration Conszole [_ O]
main Settings Toolz Help
o |y [E | (& m | & | ?
top Fiefrezh Search Activate Deact Migrate Log file Ewent Stats Settings C5 Help Help
e Y = Configuration Teol T_INTERFACE
t#mL:Simpﬂ.u |
iDL SimpFactory: 1.0 General | System Parameters Policies | statistics |
E- B GROUPZ |
[]—EﬁServers | |
) CORBA Interface Queues | Auto transaction mode: IYes 'l
— ¥ IDLSimp.0 5 ?
..ﬁ' s Deactivation policy:
— ﬁ' IDL:SimpFactony:1.0 |
— <& IDLTobi1.0 Transaction policy:

— ﬁ' |DL:beasys. com/Tobj/FactoryFinder: 1.0

— ﬁ' |DL:beasys. comd T obj/Principalduthenticator: 1.0

— ﬁ' |DL:beasys. comdTobj/ TransactionCurrent: 1.0

— ﬁ' |DL:beasys. comdTobj/ TransactionR equired: 1.0

— ﬁ' |DL:omg. org/CosLifeCycle/F actaryFinder: 1.0

— ﬁ' |DL:omg.org/CosT ransactions/Current: 1.0

— ﬁ' IDL:omg. org/CosTransactions/TransactionalObje—
— ﬁ' IDL:omg.org.-"Sec:urit_l,lLeveI2.-"F'rinc:ipalAuthentic:atc§

- Factaries -
I—%IDL:Sim|:|Fac:t0r_l,l:‘| .0 I

[(— Change i Cancel i Mew.. i Delete i

Inaddition, aset of utilities called the AdminAPI isprovided for directly accessing and
mani pulating system settings in the Management Information Bases (MIBs) for the
BEA Tuxedo product. The advantage of the AdminAPI isthat it can be used to
automate administrative tasks, such as monitoring log files and dynamically
reconfiguring an application, thus eliminating the need for manual intervention.

For information about the Administration commands, see File Formats, Data
Descriptions, MIBs, and System Processes Reference in the BEA Tuxedo online
documentation.

For a description of the Administration Console and how it works, see the online help
that is integrated into the Administration Console graphical user interface (GUI).

For information about the AdminAPI, see Setting Up a BEA Tuxedo Applicationin the
BEA Tuxedo online documentation.

Getting Started with BEA Tuxedo CORBA Applications 2-5

2 The BEA Tuxedo CORBA Programming Environment

ActiveX Application Builder

The ActiveX Application Builder is adevelopment tool that you use with a client

development tool (such as Visual Basic) to select which CORBA interfacesin aBEA
Tuxedo domain you want your ActiveX client application to interact with. In addition,
you use the ActiveX Application Builder to create Automation bindings for CORBA

interfaces, and to create packages for deploying ActiveX views of CORBA objectsto
client machines.

Figure 2-2 shows the ActiveX Application Builder main window.

Figure2-2 ActiveX Application Builder Main Window

El Builder - Services Hi=] E3
File Edit “iew Toolz Window Help

Slg| Ble| alaf 5] 2

= worktaton View: =T
ED wieblLogic 2L Automation
E|[:| Interfaces gﬁ DU niversityBasic_Registrar
- erzityB azic gﬁ UniverzityB azic_CourseSpnopsisE numerator
z ﬁ UniversityB azic_RegistrarlFactony
gﬁ Fiegistrar
gﬁ FegistrarF actary
i - WisualEdge
[:' Objects
For Help. press F1 l_ l— o

2-6 Getting Started with BEA Tuxedo CORBA Applications

BEA Tuxedo CORBA Obiject Services

For adescription of the ActiveX Application Builder and how it works, see the online
help that is integrated into the ActiveX Application Builder graphical user interface
(GUI). For information about creating ActiveX client applications, see Using CORBA
ActiveX in the BEA Tuxedo online documentation.

BEA Tuxedo CORBA Object Services

The BEA Tuxedo product includes a set of environmental objects that provide object
servicesto CORBA client applicationsin a BEA Tuxedo domain. Y ou access the
environmental objects through a bootstrapping process that accesses the servicesin a
particular BEA Tuxedo domain.

BEA Tuxedo CORBA provides the following services:

m Object Life Cycle service

The Object Life Cycle service is provided through the FactoryFinder
environmental object. The FactoryFinder object isa CORBA object that can be
used to locate a factory, which in turn can create object references for CORBA
objects. Factories and FactoryFinder objects are implementations of the CORBA
Services Life Cycle Service. BEA Tuxedo CORBA applications use the Object
Life Cycle serviceto find object references.

For information about using the Object Life Cycle Service, see “How BEA
Tuxedo CORBA Client and Server Applications Interact” on page 2-16.

m Security service

The Security service is accessed through either the SecurityCurrent
environmental object or the Principal Authenticator object. The SecurityCurrent
and Principal Authenticator objects are used to authenticate a client application
into a BEA Tuxedo domain with the proper security. The BEA Tuxedo software
provides an implementation of the CORBA Services Security Service.

For information about using security, see Using Security in CORBA Applications
in the BEA Tuxedo online documentation.

m Transaction service

The Transaction service is accessed through either the TransactionCurrent
environmental object or the TransactionFactory object. The TransactionCurrent

Getting Started with BEA Tuxedo CORBA Applications 2-7

2 The BEA Tuxedo CORBA Programming Environment

and TransactionFactory objects alow a client application to participate in a
transaction. The BEA Tuxedo software provides an implementation of the
CORBA Services Object Transaction Service (OTS).

For information about using transactions, see Using CORBA Transactionsin the
BEA Tuxedo online documentation.

m Interface Repository service

The Interface Repository service is accessed through the I nterfaceRepository
object. The InterfaceRepository object is a CORBA object that contains interface
definitions for all the available CORBA interfaces and the factories used to
create object references to the CORBA interfaces. The InterfaceRepository
object is used with client applications that use DII.

For information about using DI, see Creating CORBA Client Applications.

BEA Tuxedo CORBA providesenvironmental objectsfor thefollowing programming
environments:

m C++
m Java
m Automation (used by ActiveX client applications)

BEA Tuxedo CORBA also supports the use of the OMG CORBA Interoperable
Naming Service (INS) by third-party clients, to obtain initial object references.

BEA Tuxedo CORBA Architectural
Components

This section provides an introduction to the following architectural components of the
BEA Tuxedo CORBA programming environment:

m Bootstrapping the BEA Tuxedo Domain
m |IOP Listener/Handler
m ORB

2-8 Getting Started with BEA Tuxedo CORBA Applications

BEA Tuxedo CORBA Architectural Components

m TP Framework

Figure 2-3 illustrates the componentsin a BEA Tuxedo CORBA application.

Figure2-3 Componentsin a BEA Tuxedo CORBA Application

Client Machine BEA Tuxedo Domain
i Server Machine(s)
Client Application FactoryFinder - -
Object Server Application M

Bootstrap Object or

INS
SecurityCurrent ™
Object Framework

. Portable
Transacuqncu rrent or TransactionFactory Object
TransactionFactory Object Adapter
Object Reference

TransactionCurrent
SecurityCurrent or Object
PrincipalAuthenticator
Object Reference Bootstrap
InterfaceRepository Object
Object
L
lop
Listener/
Handler

Getting Started with BEA Tuxedo CORBA Applications 2-9

2 The BEA Tuxedo CORBA Programming Environment

Bootstrapping the BEA Tuxedo Domain

A domain isaway of grouping objects and services together as a management entity.
A BEA Tuxedo domain has at least one I|OP Listener/Handler and isidentified by a
name. One client application can connect to multiple BEA Tuxedo domains using
different Bootstrap objects.

Bootstrapping the BEA Tuxedo domain establishes communication between a client
application and thedomain. There are two mechanisms avail ablefor bootstrapping, the
BEA mechanism and the CORBA | nteroperable Naming Service (INS) bootstrapping
mechanism specified by the OMG. Use the BEA mechanism if you are using BEA
CORBA client software. Usethe CORBA INS mechanism if you are using a client
ORB from another vendor. For more information about bootstrapping the BEA
Tuxedo domain, see the CORBA Programming Reference in the BEA Tuxedo online
documentation.

One of thefirst things that client applications do after startup is create a Bootstrap
object by supplying the host and port of the IIOP Listener/Handler using one of the
following URL address formats:

m //host:port
m corbal oc://host: port

m corbal ocs://host:port

For more information about the Bootstrap URL address formats, see Using Security in
CORBA Applications in the BEA Tuxedo online documentation.

The client application then uses the Bootstrap object or the INS bootstrapping
mechanism to obtain references to the objects in aBEA Tuxedo domain. Once the
Bootstrap object isinstantiated, ther esol ve_i ni ti al _references() method is
invoked by the client application, passinginastring i d, to obtain areferenceto the
objects in the BEA Tuxedo domain that provide CORBA services.

Figure 2-4 illustrates how the Bootstrap object or INS mechanism operates in a BEA
Tuxedo domain.

2-10 Getting Started with BEA Tuxedo CORBA Applications

BEA Tuxedo CORBA Architectural Components

Figure2-4 How the Bootstrap Object or INS Operates

CORBA Client Application BEA Tuxedo Domain

Bootstrap Object FactoryFinder

or INS \ Object

™~
~ . liop TransactionCurrent
resol ve_initial _references() Listener/Handler Object
l - TransactionFactory
FactoryFinder Object
Object Reference
TransactionCurrent or SecurityCurrent
TransactionFactory Object
Object Reference

; PrincipalAuthenticator
SecurityCurrent or Object

PrincipalAuthenticator
Object Reference

InterfaceRepository
Object

InterfaceRepository
Object Reference

NameService

Object
NameService
Object Reference NotificationService
Object
NotificationService
Object Reference Tobj_SimpleEventsService
Object
InterfaceRepository
Object Reference

Tobj_SimpleEventsService
Object Reference

Getting Started with BEA Tuxedo CORBA Applications 2-11

2 The BEA Tuxedo CORBA Programming Environment

[IOP Listener/Handler

ThellOP Listener/Handler isaprocessthat receivesthe CORBA client request, which
issent using 11OP, and delivers that request to the appropriate CORBA server
application. The IlOP Listener/Handler serves as a communication concentrator,
providing a critical scalability feature. The 11OP Listener/Handler removes from the
CORBA server application the burden of maintaining client connections. For
information about configuring the I1OP Listener/Handler, see Setting Up a BEA
Tuxedo Application and the description of the ISL command in the BEA Tuxedo
Command Reference in the BEA Tuxedo online documentation.

ORB

The ORB serves asan intermediary for requests that CORBA client applications send
to CORBA server applications, so that these applications do not need to contain
information about each other. The ORB isresponsible for all the mechanismsrequired
to find the implementation that can satisfy the request, to prepare an object’s
implementation to receive the request, and to communicate the data that makes up the
reguest. The BEA Tuxedo CORBA product includes a C++ client/server ORB and a
BEA Systemsversion of theJavalDL client ORB provided with the Java Development
Kit (JDK) from Sun Microsystems, Inc.

Figure 2-5 shows the relationship between an ORB, a CORBA client application, and
a CORBA server application.

2-12 Getting Started with BEA Tuxedo CORBA Applications

BEA Tuxedo CORBA Architectural Components

Figure2-5 The ORB in a CORBA Client/Server Environment

CORBA Client CORBA Server

Application Application
Re (uests Directs Directs R
Sgrvice Response Request eturns
to Client to Server Response

AN /

Object Request Broker

When the client application uses 110P to send a request to the BEA Tuxedo domain,
the ORB performs the following functions:

m Validates each request and its arguments to ensure that the client application
supplied all the required arguments.

m Manages the mechanisms required to find the CORBA object that can satisfy the
request from the CORBA client application. To do this, the ORB interacts with
the Portable Object Adapter (POA). The POA prepares an object’s
implementation to receive the request and communicates the data in the request.

m Marshalsdata. The ORB on the client machine writes the data associated with
the request into a standard form. The ORB receives this data and converts it into
the format appropriate for the machine on which the server application is
running. When the server application sends data back to the client application,
the ORB marshals the data back into its standard form and sends it back to the
ORB on the client machine.

Getting Started with BEA Tuxedo CORBA Applications 2-13

2 The BEA Tuxedo CORBA Programming Environment

TP Framework

The TP Framework provides a programming model that achieves high levels of
performance while shielding the application programmer from the complexities of the
CORBA interfaces. The TP Framework supports the rapid construction of CORBA
applications, which makes it easier for application programmersto adhere to design
patterns associated with successful TP applications.

The TP Framework interactswith the Portable Object Adapter (POA) and the CORBA
application, thus eliminating the need for direct POA callsin an application. In
addition, the TP Framework integrates transactions and state management into the
BEA Tuxedo CORBA application.

The application programmer uses an application programming interface (API) that
automates many of the functionsrequired in a standard CORBA application. The
application programmer is responsible only for writing the business logic of the
CORBA application and overriding default actions provided by the TP Framework.

The TP Framework API provides routines that perform the following functions
required by a CORBA application:

m Initializing the CORBA server application and executing startup and shutdown
routines

m Creating object references

m Registering and unregistering object factories

m Managing objects and object state

m Tying the CORBA server application to BEA Tuxedo CORBA system resources
m Getting and initializing the ORB

m Performing object housekeeping

The TP Framework ensures that the execution of a client request takes place in a
coordinated, predictable manner. The TP Framework calls the objects and services
available in the BEA Tuxedo application at the appropriate time, in the correct
seguence. In addition, the TP Framework maximizes the reuse of system resources by
objects. Figure 2-6 illustrates the TP Framework.

2-14 Getting Started with BEA Tuxedo CORBA Applications

BEA Tuxedo CORBA Architectural Components

Figure2-6 TheTP Framework

BEA Tuxedo Domain

Server Machine

TP Framework
Server Object

TP Object

CORBA

Object

Implementations
[

Factory ‘

Portable Object
Adapter

The TP Framework isnot asingle object, but israther a collection of objectsthat work
together to manage the CORBA objects that contain and implement the data and
businesslogic in your CORBA application.

One of the TP Framework objects is the Server object. The Server object isa
user-written programming entity that implements operationsthat perform tasks such as
initializing and releasing the server application. For server applicationsthe TP
Framework instantiates the CORBA objects needed to satisfy a client request.

If aclient request arrivesrequiring an object that is not currently active and in memory
in the server application, the TP Framework coordinates all the operationsthat are
required to instantiate the object. This includes coordinating with the ORB and the
POA to get the client request to the appropriate object implementation code.

Getting Started with BEA Tuxedo CORBA Applications 2-15

2 The BEA Tuxedo CORBA Programming Environment

How BEA Tuxedo CORBA Client and Server
Applications Interact

Theinteraction between BEA Tuxedo CORBA client and server applicationsincludes
the following steps:

1. The CORBA server application isinitialized.

2. The CORBA client application isinitialized.

3. The CORBA client application authenticates itself to the BEA Tuxedo domain.
4

. The CORBA client application obtains areference to the CORBA object needed
to execute its business logic.

5. The CORBA client application invokes an operation on the CORBA object.

The following topics describe what happens during each step.

2-16 Getting Started with BEA Tuxedo CORBA Applications

How BEA Tuxedo CORBA Client and Server Applications Interact

Step 1: The CORBA Server Application Is Initialized

The system administrator entersthe t mboot command on a machine in the BEA
Tuxedo domain to start the BEA Tuxedo CORBA server application. The TP
Framework invokesthei ni ti al i ze() operationintheSer ver object toinitiaizethe
server application.

CORBA Server Application

TP Framework

Server Object

Initialize server {
Regi ster factories;

}

During the initialization process, the Server object does the following:

1

2
3.
4

Usesthe Bootstrap object or INSto obtain a reference to the FactoryFinder object.

. Typically registers any factories with the FactoryFinder object.

Optionally gets an object reference to the ORB.

. Performs any process-wide initialization.

Getting Started with BEA Tuxedo CORBA Applications — 2-17

2 The BEA Tuxedo CORBA Programming Environment

Step 2: The CORBA Client Application Is Initialized

During initialization, the CORBA client application obtainsinitial referencesto the
objects available in the BEA Tuxedo domain.

CORBA Client Application

Instantiate the Bootstrap object; Bootstrap
Resolve initial references; “«— > Object

The Bootstrap object returns references to the FactoryFinder, SecurityCurrent,
TransactionCurrent, NameService, and | nterfaceRepository objectsin the BEA
Tuxedo domain.

Step 3: The CORBA Client Application Authenticates
Itself to the BEA Tuxedo Domain

If the BEA Tuxedo domain has a security model in effect, the CORBA client
application needsto authenticateitself to the BEA Tuxedo domain beforeit caninvoke
any operations in the CORBA server application. To authenticate itself to the BEA
Tuxedo domain using authentication, the CORBA client application completes these
steps:

1. Usesthe Bootstrap object to obtain areference to the SecurityCurrent object.

2. Invokesthel ogon() operation of the Principa Authenticator object, which is
retrieved from the SecurityCurrent object.

Note: For information about using certificate based authentication, see Using
Security in CORBA Applications in the BEA Tuxedo online documentation.

2-18 Getting Started with BEA Tuxedo CORBA Applications

How BEA Tuxedo CORBA Client and Server Applications Interact

Step 4: The CORBA Client Application Obtains a
Reference to the CORBA Object Needed to Execute Its
Business Logic

The CORBA client application needs to perform the following steps:

1. Obtain areference to the factory for the object it needs.

For exampl e, the client application needs a reference to the SimpleFactory
object. The client application obtains this factory reference from the
FactoryFinder object, shown in the following figure.

CORBA Server Application

TP Framework
Server Object

CORBA Client Application
Initialize server {

Instantiate the Bootstrap object; Regi ster factories;
Resol ve initial references; }
Log on;

Find one factory;

FactoryFinder
Object

SecurityCurrent
Object

. Invoke the SimpleFactory object to get areference to the Si npl e object.

If the SimpleFactory object is not active, the TP Framework instantiates the
SimpleFactory object by invoking the Server : : creat e_servant method on
the Server object, shown in the following figure.

Getting Started with BEA Tuxedo CORBA Applications 2-19

2 The BEA Tuxedo CORBA Programming Environment

CORBA Server Application

TP Framework
Server Object

Initialize server {
Regi ster factories;

}
CORBA Client Application [4Server::create_servant () {
}
Instantiate the Bootstrap object;
Resol ve initial references;
Log on;
Find a factory by ID; SimpleFactory

3. The TP Framework invokestheact i vate_object () andfind_si npl e()
operations on the SimpleFactory object to get areference to the Simple object,
shown in the following figure.

CORBA Server Application

TP Framework
Server Object

Initialize server {
Regi ster factories;

}
CORBA Client Application
Instantiate the Bootstrap object;
Resolve initial references;
Log on;
Find a factory by ID; /v{ SimpleFactory ‘
Fi nd_si npl e; -~
Simple

The SimpleFactory object then returnsthe object referenceto the Si npl e object to the
client application.

Note: Becausethe TP Framework activates objects by default, the Simpapp sample
application does not explicitly usetheact i vat e_obj ect () operation for the
SimpleFactory object.

2-20 Getting Started with BEA Tuxedo CORBA Applications

How BEA Tuxedo CORBA Client and Server Applications Interact

Step 5: The CORBA Client Application Invokes an
Operation on the CORBA Object

Using the reference to the CORBA object that the factory has returned to the client
application, the client application invokes an operation on the object. For example,
now that the client application has an object reference to the Simple object, the client
application can invoke thet o_upper () operation on it. The instance of the Simple
object required for the client request is created as shown in the following figure.

CORBA Server Application
__— TP Framework

Server Object

Initialize server {
Regi ster factories;

N}
- — Server::create_servant() {
CORBA Client Application }
[
Instantiate the Bootstrap object; L
Resol ve initial references;
Log on; | SimpleFactory ‘
Find a factory by ID, «— |
Fi nd_si npl e; ¢
to_upper(); —//mm |
\‘b{ Simple ‘

Getting Started with BEA Tuxedo CORBA Applications 2-21

2 The BEA Tuxedo CORBA Programming Environment

2-22 Getting Started with BEA Tuxedo CORBA Applications

CHAPTER

3

Developing BEA

Tuxedo CORBA
Applications

Thistopic includes the following sections:

m Overview of the Development Process for BEA Tuxedo CORBA Applications

m The Simpapp Sample Application

m Step 1: Writethe OMG IDL Code

m Step 2: Generate CORBA client Stubs and Skeletons
m Step 3: Writethe CORBA server Application

m Step 4: Writethe CORBA Client Application

m Step 5: Create an XA Resource Manager

m Step 6: Create a Configuration File

m Step 7: Create the TUXCONFIG File

m Step 8: Compile the CORBA Server Application

m Step 9: Compile the CORBA Client Application

m Step 10: Start the BEA Tuxedo CORBA Application
m Additiona BEA Tuxedo CORBA Sample Applications

Getting Started with BEA Tuxedo CORBA Applications

3-1

3 Developing BEA Tuxedo CORBA Applications

For an in-depth discussion of creating BEA Tuxedo CORBA client and server
applications, see the following in the BEA Tuxedo online documentation:

m Creating CORBA Client Applications

m Creating CORBA Server Applications

Overview of the Development Process for
BEA Tuxedo CORBA Applications

Table 3-1 outlines the development process for BEA Tuxedo CORBA applications.

Table 3-1 Development Process for BEA Tuxedo CORBA Applications

Step Description

1 Write the Object M anagement Group (OMG) Interface Definition
Language (IDL) code for each CORBA interface you want to usein
your BEA Tuxedo application.

2 Generate the CORBA client stubs and the skeletons.
3 Write the CORBA server application.

4 Write the CORBA client application.

5 Create an XA resource manager.

6 Create a configuration file.

7 Create a TUXCONFI Gfile.

8 Compile the CORBA server application.

9 Compile the CORBA client application.

10 Start the BEA Tuxedo CORBA application.

The stepsin the development process are described in the following sections.

3-2 Getting Started with BEA Tuxedo CORBA Applications

Overview of the Development Process for BEA Tuxedo CORBA Applications

Figure 3-1 illustrates the process for devel oping BEA Tuxedo CORBA applications.

Figure3-1 Development Processfor BEA Tuxedo CORBA Applications

Interface Specifications .
in OMG IDL ‘
N~ N

/

CORBA Client Stubs

=

Write CORBA client
application code

I

Compile CORBA client
application code

|

} CORBA Running
| Client Client
|| Stubs Code
|

|

idl (client/server) or
i dl tojava (client)
Command

CORBA Client Application

Getting Started with BEA Tuxedo CORBA Applications

Skeletons

?

CORBA Server
Description File or
Implementation
Configuration File

Write method
implementations

-l

Write CORBA Server
object

Compile CORBA
server
application code

UBBCONFIG

Method
Implementations

CORBA Server Application

3-3

3 Developing BEA Tuxedo CORBA Applications

The Simpapp Sample Application

Throughout this topic, the Simpapp sample application is used to demonstrate the
development steps.

The CORBA server application in the Simpapp sample application provides an
implementation of a CORBA object that has the following two methods:

e Theupper method accepts a string from the CORBA client application and
converts the string to uppercase | etters.

e Thel ovwer method accepts a string from the CORBA client application and
converts the string to lowercase | etters.

Figure 3-2 illustrates how the Simpapp sample application works.

Figure3-2 Simpapp Sample Application

CORBA Server
Application

S npl eFact ory
L7 find_sinpl e()

CORBA Client |,
Application
\\ Sinpl e
to_upper ()
to_ | ower()

3-4 Getting Started with BEA Tuxedo CORBA Applications

Step 1: Write the OMG IDL Code

The source files for the Simpapp sample application are located in the

$TUXDI R\ sanpl es\ cor ba\ si npapp directory of the BEA Tuxedo software.
Instructions for building and running the Simpapp sample applications are in the
Readne. t xt filein the same directory.

Note: The Simpapp sample applications demonstrate building CORBA C++ client
and server applications and CORBA Java client applications. For information
about building a simple ActiveX client application, see the Basic sample
application in the BEA Tuxedo online documentation.

BEA Tuxedo offers a suite of sample applications that demonstrate and aid in the
development of BEA Tuxedo CORBA applications. For an overview of the available
sample applications, see Samples in the BEA Tuxedo online documentation.

Step 1: Write the OMG IDL Code

Thefirst step in writing a BEA Tuxedo CORBA application isto specify all of the
CORBA interfaces and their methods using the Object Management Group (OMG)
Interface Definition Language (IDL). An interface definition written in OMG IDL
completely defines the CORBA interface and fully specifies each operation’s
arguments. OMG IDL isapurely declarative language. This means that it contains no
implementation details. Operations specified in OMG IDL can be written in and
invoked from any language that provides CORBA bindings.

The Simpapp sample application implements the CORBA interfaces listed in
Table 3-2.

Table 3-2 CORBA Interfacesfor the Simpapp Sample Application

Interface Description Operation

Si npl eFactory Creates object referencestothe find_si npl e()
Si npl e object

Sinpl e Converts the case of astring to_upper ()

to | ower()

Getting Started with BEA Tuxedo CORBA Applications 3-5

3 Developing BEA Tuxedo CORBA Applications

Listing 3-1 showsthesi npl e. i dI filethat definesthe CORBA interfacesin the
Simpapp sample application.

Listing3-1 OMG IDL Codefor the Simpapp Sample Application

#pragma prefix "beasys. cont

interface Sinple

{
//Convert a string to | ower case (return a new string)
string to_lower(in string val);
/I Convert a string to upper case (in place)
void to_upper(inout string val);
I
interface SinpleFactory
{
Sinple find_sinple();
b

Step 2: Generate CORBA client Stubs and
Skeletons

Theinterface specification defined in OMG IDL is used by the IDL compiler to
generate CORBA client stubsfor the CORBA client application, and skeletons for the
CORBA server application. The CORBA client stubs are used by the CORBA client
applicationfor all operation invocations. Y ou use the skel eton, along with the code you
write, to create the CORBA server application that implements the CORBA objects.

During the development process, use one of the following commands to compile the
OMG IDL file and produce CORBA client stubs and skeletons for BEA Tuxedo
CORBA client and server applications:

m If you are creating CORBA C++ client and server applications, usethei dI
command. For a description of thei dl command, see the BEA Tuxedo
Command Reference in the BEA Tuxedo online documentation.

3-6 Getting Started with BEA Tuxedo CORBA Applications

Step 2: Generate CORBA client Stubs and Skeletons

m If you are creating a CORBA Javaclient, usethei dl t oj ava command. For a
description of thei dlI t oj ava command, see the BEA Tuxedo Command
Reference and Using the CORBA idltojava Compiler in the BEA Tuxedo online
documentation.

Table 3-3 liststhe files that are created by thei dl command.

Table 3-3 Files Created by the idl Command

File

Default Name

Description

CORBA client stub file

application_c.cpp

Contains generated code for sending a request.

CORBA client stub header
file

application_c.h

Contains class definitions for each interface and
type specified in the OMG IDL file.

Skeleton file

application_s.cpp

Contains skeletons for each interface specified in
the OMG IDL file. During run time, the skeleton
maps CORBA client requests to the appropriate
operation in the CORBA server application.

Skeleton header file

application_s.h

Contains the skeleton class definitions.

Implementation file

application_i.cpp

Contains signatures for the methods that
implement the operations on the interfaces
specified inthe OMG IDL file.

Implementation header file

application_i.h

Contains theinitia class definitions for each
interface specified in the OMG IDL file.

Getting Started with BEA Tuxedo CORBA Applications 3-7

3 Developing BEA Tuxedo CORBA Applications

Table 3-4 lists the filesthat are created by thei dI t oj ava command.

Table 3-4 Files Created by the idltojava Command

File Default Name

Description

Base interface classfile interface.java

Contains an implementation of the interface,
written in Java.

Copy thisfileto create anew file, and add your
business logic to the new file. By conventionin
the samples and in this document, thisfileis
namedi nt er f acel npl . j ava. Subgtitute
the actual name of theinterfacein thefilename.
Thisnew fileiscalled an object implementation
file.

CORBA client stub file _interfaceStub.java

Contains generated code for sending a request.

Holder classfile interfaceHol der.j ava

Contains the implementation of the Holder
class. The Holder class provides operations for
out andi nout arguments, which CORBA
has, but which do not map exactly to Java.

Helper classfile interfaceHel per.java

Contains the implementation of the Hel per
class. The Helper class provides auxiliary
functiondity, notably the nar r ow method.

Step 3: Write the CORBA server Application

The BEA Tuxedo software supports CORBA C++ server applications. The steps for

creating CORBA server applications are:

1. Write the methods that implement the operations for each interface.

. Createthe CORBA server object.

. Define object activation policies.

2
3
4. Create and register afactory.
5

. Release the CORBA server application.

3-8 Getting Started with BEA Tuxedo CORBA Applications

Step 3: Write the CORBA server Application

Writing the Methods That Implement the Operations for
Each Interface

After you compile the OMG IDL file, you need to write methods that implement the
operationsfor each interfacein thefile. Animplementation file contains the following:

m Method declarations for each operation specified in the OMG IDL file
m Your application’s business logic
m Congtructors for each interface implementation (implementing these is optional)

m Theactivate_object() anddeacti vate_obj ect () methods (optional)

Withinthe act i vat e_obj ect () and deact i vat e_obj ect () methods, you
write code that performs any particular steps related to activating or deactivating
the object. For more information, see Creating CORBA Server Applications in
the BEA Tuxedo online documentation.

Y ou can write the implementation file manually. Thei di command provides an
option for generating a template for implementation files.

Listing 3-2 includes the C++ implementation of the Si npl e and Si npl eFact ory
interfaces in the Simpapp sample application.

Listing 3-2 C++ Implementation of the Simple and SimpleFactory I nterfaces

/1 Inplementation of the Sinple_i::to_| ower nethod which converts
/1 a string to | ower case.

char* Sinmple_i::to_|l ower(const char* val ue)

{
CORBA: : String_var var_|lower = CORBA: :string_dup(val ue);
for (char* ptr = var_lower; ptr & *ptr; ptr++) {
*ptr = tolower(*ptr);
}

return var_|lower. _retn();

}

/1 Inplenmentation of the Sinple_i::to_upper nethod which converts
/] a string to upper case.

void Sinple_i::to_upper(char*& val uel)

Getting Started with BEA Tuxedo CORBA Applications 39

3 Developing BEA Tuxedo CORBA Applications

{
CORBA: : String_var var_upper = val uel;
var _upper = CORBA: :string_dup(var_upper.in());
for (char* ptr = var_upper; ptr && *ptr; ptr++) {
*ptr = toupper(*ptr)
}
val ue = var _upper._retn();
}

/1 Inmplenmentation of the SinpleFactory i::find_sinple nmethod which
/1l creates an object reference to a Sinple object.

Sinmple_ptr SinpleFactory_i::find_sinple()

CORBA: : Onj ect _var var_sinmple_oref =
TP:: creat e_obj ect _reference(
_tc_Sinple->id(),
"sinple",
CORBA: : NVList:: nil()
)

Creating the CORBA server Object

The Server object performsthe following tasks:

m Initializes the CORBA server application, including registering factories,
allocating resources needed by the CORBA server application, and, if hecessary,
opening an XA resource manager.

m Performs CORBA server application shutdown and cleanup procedures.
m Instantiates CORBA objects needed to satisfy CORBA client reguests.

In CORBA server applications, the Server object is already instantiated and a header
file for the Server object is available. Y ou implement methods that initialize and
release the server application, and, if desired, create servant objects.

Listing 3-3 includesthe C++ code from the Simpapp sampl e application for the Server
object.

3-10 Getting Started with BEA Tuxedo CORBA Applications

Step 3: Write the CORBA server Application

Listing3-3 CORBA C++ Server Object

static CORBA:: Obj ect _var static_var_factory reference;

/1 Method to start up the server

CORBA: : Bool ean Server::initialize(int argc, char* argv[])

{
/1 Create the Factory (bject Reference

static_var_factory reference =
TP: : create_object _reference(
_tc_SinpleFactory->id(),
"sinple_factory",
CORBA: : NVList:: nil ()
)

/1 Register the factory reference with the FactoryFi nder

TP: :regi ster_factory(
static_var_factory reference.in(),
_tc_SinpleFactory->id()
)i
return CORBA _TRUE;

/1 Method to shutdown the server

void Server::release()

{
/1 Unregister the factory.

try {
TP: :unregi ster_factory(

static_var_factory reference.in(),
_tc_Sinpl eFactory->id()

)i
}
catch (...) {

TP: :userlog("Coul dn’t unregister the SinpleFactory");
}

/! Method to create servants

Tobj _Servant Server::create_servant(const char*
interface_repository_id)
{
if (!strcnp(interface_repository_id,
_tc_SinpleFactory->id())) {

Getting Started with BEA Tuxedo CORBA Applications 3-11

3 Developing BEA Tuxedo CORBA Applications

return new Sinpl eFactory_i();
if (!strcnp(interface_repository_id,
_tc_Sinple->id())) {

return new Sinple_i();
}

return O;

Defining an Object’s Activation Policies

As part of CORBA server development, you determine what events cause an object to
be activated and deactivated by assigning object activation policies.

For CORBA server applications, specify object activation policiesin the
Implementation Configuration File (1CF). A template| CFfileiscreated by thegeni cf
command.

Note: You also define transaction policiesin the ICF file. For information about
using transactions in your BEA Tuxedo CORBA application, see Using
CORBA Transactions in the BEA Tuxedo online documentation.

The BEA Tuxedo software supports the activation policies listed in Table 3-5.

Table 3-5 Activation Policies

Activation Policy Description

nmet hod Causes the object to be active only for the duration of the
invocation on one of the object’ soperations. Thisisthe default
activation policy.

transaction Causesthe object to be activated when an operation isinvoked
onit. If the object is activated within the scope of atransaction,
the object remains active until the transaction is either
committed or rolled back.

3-12 Getting Started with BEA Tuxedo CORBA Applications

Step 3: Write the CORBA server Application

Table 3-5 Activation Policies (Continued)

Activation Policy Description

process Causes the object to be activated when an operation isinvoked
onit, and to be deactivated only when one of the following
occurs:

m The processin which the server application existsis shut
down.

m Themethod TP: : deact i vat eEnabl e() (C++) or
com beasys. Tobj . TP. deact i vat eEnabl e()
(Java) has been invoked on the object.

The Si npl e interface in the Simpapp sample application is assigned the default
activation policy of method. For more information about managing object state and
defining object activation policies, see Creating CORBA Server Applications in the
BEA Tuxedo online documentation.

Creating and Registering a Factory

If your CORBA server application manages a factory that you want CORBA client
applicationsto be able to locate easily, you need to write the code that registers that
factory with the FactoryFinder object.

To writethe code that registers afactory managed by your CORBA server application,
you do the following:

1. Create an object reference to the factory.

You include an invocation to the creat e_obj ect _r ef erence() method,
specifying the Interface Repository ID of the factory’s OMG IDL interface or
the object ID (OID) in string format. In addition, you can specify routing
criteria.

2. Register the factory with the BEA Tuxedo domain.

Usether egi ster _factory() method to register the factory with the
FactoryFinder object in the BEA Tuxedo domain. Ther egi st er _fact ory()
method requires the object reference for the factory and a string identifier.

Getting Started with BEA Tuxedo CORBA Applications 3-13

3 Developing BEA Tuxedo CORBA Applications

Listing 3-4 includes the code from the Simpapp sample application that creates and
registers afactory.

Listing 3-4 Example of Creating and Registering a Factory

CORBA: : Obj ect _var v_reg_oref =
TP: creat e_obj ect _reference(

_tc. SinpleFactory->id(), // Factory Interface ID
“sinpl efactory”, /] Cbject ID
CORBA: : NVList:: _nil () //Routing Criteria

)

TP: :regi ster_factory(
CORBA: : Cbj ect _var v_reg oref.in(),
_tc_SinpleFactory->id(),

)

In Listing 3-4, notice the following:

m tc.Sinpl eFactory->id() specifiesthe SimpleFactory object’s Interface
Repository ID by extracting it from its typecode.

m CORBA :NVList:: nil() specifiesthat norouting criteriaare used, with the
result that an object reference created for the Simple object is routed to the same
group as the SimpleFactory object that created the object reference.

Releasing the CORBA Server Application

Y ou need to include code in your CORBA server application to perform a graceful
shutdown of the CORBA server application. Ther el ease() method is provided for
that purpose. Within ther el ease() method, you may perform any

application-specific cleanup tasks that are specific to the CORBA server application
such as:

m Unregistering object factories managed by the CORBA server application

m Deallocating resources

3-14 Getting Started with BEA Tuxedo CORBA Applications

Step 3: Write the CORBA server Application

m Closing any databases
m Closing an XA resource manager

Once aCORBA server application receives arequest to shut down, the CORBA server
application can no longer receive requests from other remote objects. This has
implications on the order in which CORBA server applications should be shut down,
which isan administrative task. For example, do not shut down one server processif a
second server process contains an invocation initsr el ease() method to the first
Server process.

During server shutdown, you may want to unregister each of the server application’s
factories. Theinvocation of theunr egi st er _fact ory() method should be oneof the
first actionsinther el ease() implementation. Theunr egi st er _f act or y() method
unregisters the server application’s factories. This operation requires the following
input arguments:

m The object reference for the factory

m A string identifier, based on the factory object’s interface typecode, used to
identify the Interface Repository 1D of the object's OMG IDL interface

Listing 3-5 includes C++ code that releases a server application and unregisters the
factories in the CORBA server application.

Listing 3-5 Example of Releasing a BEA Tuxedo CORBA server Application

public void rel ease()

{
TP: :unregi ster_factory(
factory_reference.in(),
Si npl eFact or yHel per->i d
)i
}

Getting Started with BEA Tuxedo CORBA Applications 3-15

3 Developing BEA Tuxedo CORBA Applications

Step 4. Write the CORBA Client Application

The BEA Tuxedo software supports the following types of CORBA client
applications:

m CORBA C++

m CORBA Java

m CORBA Javaapplets

m ActiveX

The stepsfor creating CORBA client applications are as follows:
1. Initialize the ORB.

2. Usethe Bootstrap object or the CORBA INS bootstrapping mechanism to
establish communication with the BEA Tuxedo domain.

3. Resolveinitid references to the FactoryFinder environmental object.
4. Useafactory to get an object reference for the desired CORBA object.

5. Invoke methods on the CORBA object.

Note: For information about creating an ActiveX client application, see Using
CORBA ActiveX in the BEA Tuxedo online documentation.

The CORBA client development steps are illustrated in Listing 3-6 and Listing 3-7,
which include code from the Simpapp sample application. In the Simpapp sample
application, the CORBA client application uses a factory to get an object reference to
the Simple object and then invokesthet o_upper () andto_l ower () methodson
the Simple object.

3-16 Getting Started with BEA Tuxedo CORBA Applications

Step 4: Write the CORBA Client Application

Listing 3-6 CORBA Client Application from the Simpapp Sample Application

int main(int argc, char* argv[])
{

try {
/1l Initialize the ORB

CORBA: : ORB_var var_orb = CORBA:: ORB_init(argc, argv, "");

/] COreate the Bootstrap object
Tobj _Bootstrap bootstrap(var_orb.in(), "");

/1 Use the Bootstrap object to find the FactoryFi nder
CORBA: : (bj ect _var var_factory_finder_oref =
bootstrap.resolve_initial _references("FactoryFi nder");

/1 Narrow the FactoryFi nder

Tobj : : Fact oryFi nder _var var _factory finder_reference =
Tobj : : Fact oryFi nder:: _narrow
(var_factory finder_oref.in());

/1 Use the factory finder to find the Sinple factory
CORBA: : Obj ect _var var_sinmple_factory_oref =
var_factory finder_reference->find_one_ factory_ by id(
_tc_SinpleFactory->id()

’

/1 Narrow the Sinple factory
Si nmpl eFactory_var var_sinple_factory_reference =
Si nmpl eFact ory:: _narrow(
var_sinple_factory_oref.in());

/1 Find the Sinple object
Si nmpl e_var var_sinple =
var _sinple_factory_reference->find_sinple();

/]l Get a string fromthe user
cout << "String?";

char m xed[256] ;

cin >> mxed;

// Convert the string to upper case :

CORBA: : String_var var_upper = CORBA: :string_dup(m xed);
var _si npl e- >t o_upper (var _upper.inout());

cout << var_upper.in() << endl;

// Convert the string to |ower case

CORBA: : String_var var_lower = var_sinple->to_| ower(m xed);
cout << var_lower.in() << endl;

Getting Started with BEA Tuxedo CORBA Applications 3-17

3 Developing BEA Tuxedo CORBA Applications

return O;

}

Listing 3-7 Java Client Application from the Simpapp Sample Application

public class Sinpledient
{

public static void main(String args[])

/1 Initialize the ORB.
ORB orb = ORB.init(args, null);

/1 Create the Bootstrap object
Tobj Bootstrap bootstrap = new Tobj Bootstrap(orb, "");

/1 Use the Bootstrap object to |ocate the FactoryFinder
org. ong. CORBA. bj ect factory_finder_oref =
boot strap.resolve_initial _references("FactoryFinder");

/1 Narrow t he FactoryFi nder
Fact oryFi nder factory_finder_reference =
Fact or yFi nder Hel per. narrow(factory_finder_oref);

/1 Use the FactoryFinder to find the Sinple factory.
org. ong. CORBA. (bj ect sinple_factory_oref =

factory finder_reference.find one factory by id

(Si npl eFact oryHel per.id());

/1 Narrow the Sinple factory
Si npl eFactory sinple_factory_reference =
Si nmpl eFact or yHel per . narrow(si npl e_factory_oref);

/1 Find the Sinple object.
Sinple sinple = sinple_factory_reference.find_sinple();

/1 Get a string fromthe user.
Systemout. printIn("String?");
String mxed = in.readLine();

/1 Convert the string to upper case.

org. ong. CORBA. Stri ngHol der buf = new

org. ong. CORBA. St ri ngHol der (m xed) ;
sinpl e.to_upper (buf);

3-18 Getting Started with BEA Tuxedo CORBA Applications

Step 5: Create an XA Resource Manager

System out . pri ntl n(buf.val ue);

/1 Convert the string to | ower case.
String lower = sinple.to_|lower(m xed);
System out. println(l ower);

}

Step 5: Create an XA Resource Manager

When using transactionsin a BEA Tuxedo CORBA application, you need to create a
CORBA server process for the resource manager that interacts with a database on
behalf of the BEA Tuxedo CORBA application. The resource manager you use must
conform to the X/OPEN XA specification and you need the following information
about the resource manager:

m The name of the structure of type xa_swi t ch_t that contains the name of the
XA resource manager.

m Flagsindicating the capabilities of the XA resource manager and function
pointersfor the actual XA functions.

m The name of the object filesthat provide the services of the XA interface.

m The commands needed to open and close the XA resource manager. This
information is specified in the OPENI NFO and CLOSEI NFO parametersin the
UBBCONFI G configuration file.

When integrating a new XA resource manager into the BEA Tuxedo system, thefile
$TUXDI R/ udat aobj / RMmust be updated to include information about the XA

resource manager. The information is used to include the correct libraries for the XA
resource manager and to set up the interface between the transaction manager and the
XA resource manager automatically and correctly. The format of thisfileisasfollows:

rmnane: rmstructure_nane:library_nanes

wherer m_nane isthe name of the XA resource manager, r m st r uct ur e_nane isthe
name of thexa_swi t ch_t structurethat definesthe name of the X A resource manager,
andl i brary_names isthelist of the object filesfor the XA resource manager. White

Getting Started with BEA Tuxedo CORBA Applications 3-19

3 Developing BEA Tuxedo CORBA Applications

space (tabs and/or spaces) is alowed before and after each of the values and may be
embedded within thel i br ary_names. The colon (:) character may not be embedded
within any of the values. Lines beginning with a pound sign (#) are treated as
comments and are ignored.

Usethe bui | dt ns command to build a server process for the XA resource manager.
Thefiles that result from the bui | dt ms command need to beinstalled in the
$TUXDI R/ bi n directory.

For more information about the bui | dt ms command, see the BEA Tuxedo Command
Reference in the BEA Tuxedo online documentation.

Step 6: Create a Configuration File

Because the BEA Tuxedo software offers great flexibility and many options to
application designers and programmers, no two CORBA applications are alike. An
application, for example, may be small and simple (asingle client and server running
on one machine) or complex enough to handle transactions among thousands of client
and server applications. For this reason, for every BEA Tuxedo CORBA application
being managed, the system administrator must provide aconfiguration file that defines
and manages the components (for example, domains, server applications, client
applications, and interfaces) of that application.

When system administrators create a configuration file, they are describing the BEA
Tuxedo CORBA application using a set of parameters that the BEA Tuxedo software
interprets to create a runnable version of the application. During the setup phase of
administration, the system administrator’s job isto create a configuration file. The
configuration file contains the sections listed in Table 3-6.

Table 3-6 Sectionsin the Configuration File for BEA Tuxedo CORBA

Applications
Sectionsin the Description
Configuration File
RESOURCES Defines defaults (for example, user access and the main
administration machine) for the BEA Tuxedo CORBA
application.

3-20 Getting Started with BEA Tuxedo CORBA Applications

Step 6: Create a Configuration File

Table 3-6 Sectionsin the Configuration Filefor BEA Tuxedo CORBA
Applications (Continued)

Sectionsin the
Configuration File

Description

MACHI NES Defines hardware-specific information about each machine
running in the BEA Tuxedo CORBA application.

GROUPS Defineslogical groupings of server applications or CORBA
interfaces.

SERVERS Defines the server application processes (for example, the
Transaction Manager) used in the BEA Tuxedo CORBA
application.

SERVI CES Defines parameters for services provided by the BEA Tuxedo
application.

| NTERFACES Defines information about the CORBA interfaces in the BEA
Tuxedo CORBA application.

ROUTI NG Defines routing criteriafor the BEA Tuxedo CORBA

application.

Listing 3-8 shows the configuration file for the Simpapp sample application.

Listing 3-8 Configuration File for Simpapp Sample Application

* RESOURCES

| PCKEY 55432
DOVAI NI D si npapp
MASTER S| TE1
MODEL SHM

LDBAL N

*MACHI NES
"PCW Z"
LM D
APPDI R
TUXCONFI G
TUXDI R
MAXWECLI ENTS

S| TE1

"C:\TUXD R\ MY_SI M~1"

"C:\ TUXDI R\ MY_SI M~1\resul t s\t uxconfi g"
"C\TUXD R

10

Getting Started with BEA Tuxedo CORBA Applications 3-21

3 Developing BEA Tuxedo CORBA Applications

* GROUPS
SYS _GRP
LM D
GRPNO
APP_GRP
LM D
GRPNO

SI TE1

SI TE1

* SERVERS

DEFAULT:
RESTART
MAXGEN

TMBYSEVT
SRVGRP
SRVI D

TMFFNAME
SRVGRP
SRVI D
CLOPT

TMFFNAME
SRVGRP
SRVI D
CLOPT

TMFFENAME
SRVGRP
SRVI D
CLOPT

si npl e_server
SRVGRP
SRVI D
RESTART

I SL
SRVGRP
SRVI D
CLOPT

o<

SYS GRP

SYS GRP

I mn
N

".A-- -N-M

SYS GRP
3
AN

SYS GRP
4
"oA .

APP_GRP
1
N

SYS GRP
5
"-A-- -n //PONZ: 2468"

*SERVI CES

Step 7: Create the TUXCONFIG File

There are two forms of the configuration file:

3-22 Getting Started with BEA Tuxedo CORBA Applications

Step 8: Compile the CORBA Server Application

m An ASCII version of thefile, created and modified with any editor. Throughout

the BEA Tuxedo documentation, the ASCII version of the configuration fileis
referred to as the UBBCONFI Gfile. You can choose any name for the
configuration file.

The TUXCONFI Gfile, a binary version of the UBBCONFI Gfile created using the
tm oadcf command. When thet ml oadcf command is executed, the
environment variable TUXCONFI G must be set to the name and directory location
of the TUXCONFI Gfile. Thet m oadcf command converts the configuration file
to binary form and writes it to the location specified in the command.

For more information about thet ml oadcf command, see the BEA Tuxedo Command
Reference in the BEA Tuxedo online documentation.

Step 8: Compile the CORBA Server
Application

Y ou usethebui | dobj ser ver command to compile and link C++ server applications.
Thebui | dobj server command has the following format:

bui | dobj server [-0 servernane] [options]

In the bui | dobj ser ver command syntax:

-0 server name represents the name of the server application to be generated
by this command.

opt i ons represents the command-line options to the bui | dobj ser ver
command.

When you create a server application to support multithreading, you must specify the
-t option on the bui | dobj ser ver command when you build the application. For
complete information on creating a server application to support multithreading, see
Creating CORBA Server Applications.

Getting Started with BEA Tuxedo CORBA Applications 3-23

3 Developing BEA Tuxedo CORBA Applications

Step 9: Compile the CORBA Client
Application

Thefina step in the development of the CORBA client application isto produce the
executable client application. To do this, you need to compile the code and then link
against the client stub.

When creating CORBA C++ client applications, use the bui | dobj cl i ent command
to construct a BEA Tuxedo CORBA client application executable. The command
combines the CORBA client stubs for interfaces that use static invocation, and the
associated header files, with the standard BEA Tuxedo librariesto form a CORBA
client executable. For the syntax of the bui | dobj cli ent command, see the BEA
Tuxedo Command Reference in the BEA Tuxedo online documentation.

When creating CORBA Javaclient applications, usethej avac command to construct
a CORBA client application executable program. Y ou need to include the

t uxdi r\ udat aobj \ j ava\ j dk\ nBenvobj . j ar fileinyour CLASSPATH when you
compile the Javaclient application. The nBenvobj . j ar file containsthe Java classes
for the BEA Tuxedo environmental objects.

Step 10: Start the BEA Tuxedo CORBA
Application

Usethe t mboot command to start the server processesin your BEA Tuxedo CORBA
application. The CORBA application is usually booted from the machine designated
asthe MASTER in the RESOURCES section of the UBBCONFI Gfile.

For thet mboot command to find executables, the BEA Tuxedo system processes must
be located inthe $TUXDI R/ bi n directory. Server applications should bein APPDI R, as
specified in the configuration file.

3-24 Getting Started with BEA Tuxedo CORBA Applications

Additional BEA Tuxedo CORBA Sample Applications

When booting server applications, the t mboot command uses the CLOPT, SEQUENCE,
SRVGRP, SRVI D, and M N parameters from the configuration file. Server applications
are booted in the order in which they appear in the configuration file.

For more information about using thet mboot command, see File Formats, Data
Descriptions, MIBs, and System Processes Reference in the BEA Tuxedo online
documentation.

Additional BEA Tuxedo CORBA Sample
Applications

Sample applications demonstrate the tasks involved in devel oping a BEA Tuxedo
CORBA application, and provide sample code that can be used by CORBA client and
server programmers to build their own BEA Tuxedo CORBA application. Code from
the sample applications are used throughout the information topicsin the BEA Tuxedo
product to illustrate the devel opment and administrative steps.

Table 3-7 describes the additional BEA Tuxedo CORBA sample applications.

Table 3-7 The BEA Tuxedo CORBA Sample Applications

BEA Tuxedo CORBA Description
Sample Application

Simpapp Provides a CORBA C++ client application, a CORBA
Javaclient application, and a C++ server application. The
C++ server application contains two operations that
manipulate strings received from the C++ client
application.

Basic Describes how to develop BEA Tuxedo CORBA client
and server applications and configure the BEA Tuxedo
application. Building C++ server applications and
CORBA C++, CORBA Java, and ActiveX client
applications are demonstrated.

Getting Started with BEA Tuxedo CORBA Applications 3-25

3 Developing BEA Tuxedo CORBA Applications

3-26

Table 3-7 The BEA Tuxedo CORBA Sample Applications (Continued)

BEA Tuxedo CORBA
Sample Application

Description

Security

Demonstrates adding BEA Tuxedo authentication to a
BEA Tuxedo CORBA application. For information about
building and running the Security sample application, see
Using Security in CORBA Applicationsin the BEA
Tuxedo online documentation.

Transactions

Adds transactional objectsto the CORBA C++ server
application and CORBA client applicationsin the Basic
sample application. The Transactions sample application
demonsgtrates how to use the Implementation
Configuration File (ICF) to definetransaction policiesfor
CORBA objects. For information about building and
running the Transactions sample application, see Using
CORBA Transactionsin the BEA Tuxedo online
documentation.

Wrapper

Demonstrates how to wrap an existing BEA Tuxedo
ATMI application as a CORBA object.

Production

Demonstrates replicating server applications, creating
statel ess objects, and implementing factory-based routing
in server applications.

Secure Simpapp

Implements the necessary development and

admini strative changesto the Simpapp sampl e application
to support certificate authentication. For information
about building and running the Secure Simpapp sample
application, see Using Security in CORBA Applicationsin
the BEA Tuxedo online documentation.

Introductory Events

Demonstrates how to use joint CORBA client/server
applicationsand callback objectstoimplement eventsina
BEA Tuxedo CORBA application. The C++ version uses
the BEA Simple Events APl and the Javaversion usesthe
CosNotification API. For information about building and
running the Introductory Events sample application, see
Using the CORBA Notification Service in the BEA
Tuxedo online documentation.

Getting Started with BEA Tuxedo CORBA Applications

Additional BEA Tuxedo CORBA Sample Applications

Table 3-7 The BEA Tuxedo CORBA Sample Applications (Continued)

BEA Tuxedo CORBA Description
Sample Application

Advanced Events Provides a more complex implementation of eventsin a
BEA Tuxedo CORBA application with transient and
persistent subscriptions and datafiltering. The C++
version uses the Advanced CosNotification APl and the
Java version uses the Advanced Simple Java API. For
information about building and running the Advanced
Events sample application, see Using the CORBA
Notification Service in the BEA Tuxedo online
documentation.

Getting Started with BEA Tuxedo CORBA Applications 3-27

3 Developing BEA Tuxedo CORBA Applications

3-28 Getting Started with BEA Tuxedo CORBA Applications

CHAPTER

4 Using Security

Thistopic includes the following sections:
m Overview of the Security Service

m How Security Works

m The Security Sample Application

m Development Steps

Note: Thischapter describes how to use authentication. For a complete description
of all the security features available in the CORBA security environment and
instructions for implementing the features, see Using Security in CORBA
Applications in the BEA Tuxedo online documentation.

Overview of the Security Service

The CORBA environment in the BEA Tuxedo product offers a security model based
on the CORBA Services Security Service. The BEA Tuxedo CORBA security model
implements the authentication portion of the CORBA Services Security Service.

In the CORBA environment security information is defined on a domain basis. The
security level for thedomainis defined in the configurationfile. Client applicationsuse
the SecurityCurrent object to provide the necessary authentication information to log
on to the BEA Tuxedo domain.

Getting Started with BEA Tuxedo CORBA Applications 4-1

4 Using Security

Thefollowing levels of authentication are provided:
B TOBJ_NQAUTH

No authentication is needed; however, the client application may still
authenticate itself, and may specify a username and a client application name,
but no password.

m TOBJ_SYSAUTH

The client application must authenticate itself to the BEA Tuxedo domain and
must specify a username, client application name, and application password.

m TOBJ_APPAUTH

In addition to the TOBJ_SYSAUTH information, the client application must
provide application-specific information. If the default BEA Tuxedo CORBA
authentication service is used in the application configuration, the client
application must provide a user password; otherwise, the client application
provides authentication data that isinterpreted by the custom authentication
service in the application.

Note: If aclient application is not authenticated and the security level is
TOBJ_NQAUTH, the I OP Listener/Handler of the BEA Tuxedo domain
registers the client application with the username and client application name
sent to the I1OP Listener/Handler.

In the BEA Tuxedo CORBA security environment, only the Principal Authenticator
and Credentials properties on the SecurityCurrent object are supported. For a
description of the Securi tyLevel 1: : Current and SecurityLevel 2:: Current
interfaces, see the CORBA Programming Referencein the BEA Tuxedo online
documentation.

How Security Works

Figure 4-1 illustrates how CORBA security worksin a BEA Tuxedo domain.

4-2 Getting Started with BEA Tuxedo CORBA Applications

How Security Works

Figure4-1 How CORBA Security Worksin a BEA Tuxedo Domain

CORBA Client Application

Bootstrap Object
Tobj _Boot strap
(orb,//sling.com 2143)
or
Tobj _Boot strap

(orb, corblocs://sling.com 2143)

SecurityCurrent Object
Princi pal Aut henti cat or
get _auth_type();

/

| ogon(user nane,
appl i cati on_nane,
password) ;

BEA Tuxedo Domain

Object Reference for
SecurityCurrent

IIOP
Listener/
Handler

Object

¥

The steps are as follows:

1

Note:

Authentication Level
for BEA Tuxedo
Domain

The client application uses the Bootstrap object to return an object reference to the
SecurityCurrent object for the BEA Tuxedo domain.

The client application obtains the Principal Authenticator.

The client application usesthe
Tobj : : Princi pal Authenticator::get_auth_type() method to get the
authentication level for the BEA Tuxedo domain.

The proper authentication level is returned to the client application.

The client application usesthe Tobj : : Pri nci pal Aut henticator: : 1 ogon()
method to log on to the BEA Tuxedo domain with the proper authentication

information.

BEA Tuxedo CORBA also supports the use of the CORBA Interoperable

Naming Service (INS) to obtain an initial object reference for the Security
Service. For information on the INS bootstrapping mechanism, see the
CORBA Programming Reference.

Getting Started with BEA Tuxedo CORBA Applications 4-3

4 Using Security

The Security Sample Application

The Security sample application demonstrates how to use password authentication.
The Security sample application requiresthat each student using the application hasan
ID and a password. The Security sample application works in the following manner:

m Theclient application hasal ogon() operation. This operation invokes
operations on the Principal Authenticator object, which is obtained as part of the
process of logging on to access the domain.

m The server application implements aget _st udent _det ai | s() operation on the
Regi st rar object to return information about a student. After the user is
authenticated, logon is complete and the get _st udent _det ai | s() operation
accesses the student information in the database to obtain the student
information needed by the client logon operation.

m Thedatabase in the Security sample application contains course and student
information.

Note: Certificate authentication isillustrated in the Secure Simpapp sample
application.

Figure 4-2 illustrates the Security sample application.

4-4 Getting Started with BEA Tuxedo CORBA Applications

The Security Sample Application

Figure4-2 Security Sample Application

CORBA Server
Application
COREA C++ browse_courses() PP
Client
Application get _cour se_detail s() X .
Registrar Object
> | ogon()
CORBA Java
Client * get _student _details() &
Application
CORBA

ActiveX Client

Application -

Database

l:l Security Required

The source files for the Security sample application are located in the

\'sanpl es\ cor ba\ uni versity directory in the BEA Tuxedo software. For
information about building and running the Security sample application, see Using
Security in CORBA Applications in the BEA Tuxedo online documentation.

Getting Started with BEA Tuxedo CORBA Applications 4-5

4 Using Security

Development Steps

Table 4-1 lists the devel opment steps for writing a BEA Tuxedo CORBA application
that employs authenti cation security.

Table 4-1 Development Stepsfor BEA Tuxedo CORBA Applications That Have
Security

Step Description

1 Define the security level in the configuration file.

2 Write the CORBA client application.

Step 1: Define the Security Level in the Configuration File

The security level for a BEA Tuxedo domain is defined by setting the SECURI TY
parameter in the RESOURCES section of the configuration file to the desired security
level. Table 4-2 lists the options for the SECURI TY parameter.

Table 4-2 Optionsfor the SECURITY Parameter

Option Definition

NONE No security isimplemented in the domain. This option isthe
default. This option maps to the TOBJ_NOAUTH level of
authentication.

APP_PW Requires that client applications provide an application
password during initialization. The t m oadcf command
prompts for an application password. This option maps to the
TOBJ_SYSAUTH level of authentication.

USER_AUTH Requires an application password and performs a per-user
authentication during the initialization of the client application.
This option maps to the TOBJ_APPAUTH level of
authentication.

4-6 Getting Started with BEA Tuxedo CORBA Applications

Development Steps

In the Security sample application, the SECURI TY parameter is set to APP_PwWfor
application-level security. For information about adding security to a BEA Tuxedo
CORBA application, see Using Security in CORBA Applications in the BEA Tuxedo
online documentation.

Step 2: Write the CORBA Client Application

Write client application code that does the following:

1. UsestheBootstrap object to obtain areference to the Security Current object for the
specific BEA Tuxedo domain.

2. Getsthe Principal Authenticator object from the SecurityCurrent object.

3. Usestheget _aut h_type() opperation of the Principal Authenticator object to
return the type of authentication expected by the BEA Tuxedo domain.

Listing 4-1 and Listing 4-2 include the portions of the CORBA C++ and CORBA Java
client applications in the Security sample application that illustrate the development
steps for security.

Listing4-1 Example of Security in a CORBA C++ Client Application

CORBA: : (hj ect _var var_security current_oref =

boot strap.resolve_initial _references(“SecurityCurrent”);
SecuritylLevel 2::Current_var var_security current_ref =

SecuritylLevel 2::Current:: _narrowvar_security current_oref.in());

/1 Get the Principal Aut henti cat or
SecuritylLevel 2:: Principal Authenticator_var var_principal authenticator_oref =
var_security_current _ref->principal _authenticator();
/I Narrow t he Principal Aut henti cator
Tobj : : Princi pal Authenticator_var var_bea princi pal _authenticator =
Tobj : : Princi pal Authenticator:: _narrow (
var_princi pal _authenticator_oref.in());

/I Determ ne the security |evel
Tobj : : Aut hType auth_type = var_bea_princi pal _authenticator->get_auth _type();
Security::Authenticati onStatus status = var_bea_pri nci pal aut henti cat or- >l ogon(
user _nane,
client_nane,

Getting Started with BEA Tuxedo CORBA Applications 4-7

4 Using Security

syst em passwor d,
user _password,
0);

Listing 4-2 Example of Security in a CORBA Java Client Application

org. ong. CORBA. Obj ect SecurityCurrentChj =
gBoot strapCbj Ref.resol ve_initial _references(“SecurityCurrent”);
org.ong. SecuritylLevel 2. Current secCur =
org. ong. SecuritylLevel 2. Qurrent Hel per. narrow(Securi tyCurrent Qbj);

/1 Get the Principal Aut henti cat or
org.ong. SecuritylLevel 2. Pri nci pal Aut henti cator authlevel 2 =
secCur. princi pal _authenticator();
/I Narrow the Princi pal Aut henti cat or
com beasys. Tobj . Pri nci pal Aut henti cat or Cbj Ref gPri nAut hObj Ref =
(com beasys. Tobj . Pri nci pal Aut henti cator)
org. ong. SecuritylLevel 2. Pri nci pal Aut henti cat or Hel per. narrow(aut hl evel 2);

/I Determ ne the security | evel
com beasys. Tobj . Aut ht ype aut hType = gPri nAut hCbj Ref. get _auth_type();

org.ong. Security.AuthenticationStatus status = gPrinAut hQbj Ref. | ogon
(gUser Nane, ClientNanme, gSystenPassword, gUserPassword, 0);

4-8 Getting Started with BEA Tuxedo CORBA Applications

CHAPTER

5 Using Transactions

Thistopic includes the following sections:
m Overview of the Transaction Service
m What Happens During a Transaction
m Transactions Sample Application

m Development Steps

Note: Thistopic describes using the C++ interface to the CORBA Services Object
Transaction service. For a complete description of all the transaction features
available in the CORBA environment of the BEA Tuxedo product and
instructions for implementing the transaction features, see Using CORBA
Transactions in the BEA Tuxedo online documentation.

Overview of the Transaction Service

One of the most fundamental features of the BEA Tuxedo product is transaction
management. Transactions are a means to guarantee that database transactions are
completed accurately and that they take on al the ACID properties (atomicity,
consistency, isolation, and durability) of a high-performance transaction. The BEA
Tuxedo system protects the integrity of your transactions by providing a complete
infrastructure for ensuring that database updates are done accurately, even across a
variety of resource managers.

Getting Started with BEA Tuxedo CORBA Applications 5-1

5 Using Transactions

The BEA Tuxedo system uses the following:

The CORBA Services Object Transaction Service (OTS)

The CORBA environment in the BEA Tuxedo product providesa C++ interface to the
Object Transaction Service. The OTS is accessed through the TransactionCurrent
environmental object. For information about using the TransactionCurrent
environmental object, see Creating CORBA Client Applicationsin the BEA Tuxedo
online documentation.

OT S provides the following support for your business transactions:

Creates aglobal transaction identifier when a client application initiates a
transaction.

Works with the TP Framework to track objectsthat are involved in atransaction
and, therefore, need to be coordinated when the transaction is ready to commit.

Notifies the resource managers—which are, most often, databases—when they
are accessed on behalf of atransaction. Resource managers then lock the
accessed records until the end of the transaction.

Orchestrates the two-phase commit when the transaction compl etes, which
ensures that all the participants in the transaction commit their updates
simultaneously. It coordinates the commit with any databases that are being
updated using the Open Group XA protocol. Almost all relational databases
support this standard.

Executes the rollback procedure when the transaction must be stopped.

Executes arecovery procedure when failures occur. It determines which
transactions were active in the machine at the time of the crash, and then
determines whether the transaction should be rolled back or committed.

What Happens During a Transaction

Figure 5-1 illustrates how transactionswork in a BEA Tuxedo CORBA application.

5-2 Getting Started with BEA Tuxedo CORBA Applications

What Happens During a Transaction

Figure5-1 How TransactionsWork in a BEA Tuxedo CORBA Application

CSRE:_A Client BEA Tuxedo Domain
pplication Object Reference for
TransactionCurrent or

BootstrapObject | 11— | TransactionFactory
or CORBA INS Object
TransactionCurrent TP Framework
Object

/ acti vate_obj ect()
register_for_courses()

deactivat e_obj ect ()

TransactionFactory

Object l

begi n() ‘ Transaction Manager ‘
register_for_courses() >

conmi t()

Database

A basic transaction works in the following way:

1. Theclient application uses the Bootstrap object to return an object reference to the
TransactionCurrent object for the BEA Tuxedo domain.

2. A client application begins a transaction using the
Tobj : : Transacti onCurrent: : begi n() method, and issues arequest to the
CORBA interface through the TP Framework. All operations on the CORBA
interface execute within the scope of atransaction.

e If acall to any of these operations raises an exception (either explicitly or as
aresult of acommunication failure), the exception can be caught and the
transaction can be rolled back.

¢ |f no exceptions occur, the client application commits the current transaction
using the Tobj : : Transacti onCurrent: : conmi t () method. This method
ends the transaction and starts the processing of the operation. The
transaction is committed only if al of the participantsin the transaction agree
to commit.

Getting Started with BEA Tuxedo CORBA Applications 5-3

5 Using Transactions

3. TheTobj:: Transacti onCurrent: commit () method causesthe TP Framework
to call the Transaction M anager to complete the transaction.

4. The Transaction Manager updates the database.

Note: BEA Tuxedo CORBA also supports the use of the CORBA Interoperable
Naming Service (INS) to obtain an initial object reference for the Security
Service. For information on the INS bootstrapping mechanism, see the
CORBA Programming Reference.

Transactions Sample Application

In the Transactions sample application, the operation of registering for coursesis
executed within the scope of atransaction. The transaction model used in the
Transactions sampl e application is a combination of the conversational model and the
model in which a single client invocation invokes multiple individual operationson a
database.

The Transactions sample application works in the following way:
1. Students submit alist of courses for which they want to be registered.

2. For each course in thelist, the CORBA server application checks whether:
e Thecourseisin the database.
e Thestudent isalready registered for a course.

e The student exceeds the maximum number of credits the student can take.

3. One of thefollowing occurs:

e |f the course meets all the criteria, the CORBA server application registers
the student for the course.

e |f the courseis not in the database or if the student is already registered for
the course, the CORBA server application adds the course to alist of courses
for which the student could not be registered. After processing all the
registration requests, the CORBA server application returns the list of
courses for which registration failed. The CORBA client application can then
choose to either commit the transaction (thereby registering the student for

5-4 Getting Started with BEA Tuxedo CORBA Applications

Transactions Sample Application

the courses for which registration request succeeded) or to roll back the
transaction (thus, not registering the student for any of the courses).

e |f the student exceeds the maximum number of credits the student can take,
the CORBA server application returns a TooMany Cr edi t s user exception to
the CORBA client application. The CORBA client application provides a
brief message explaining that the request was rejected. The CORBA client
application then rolls back the transaction.

Figure 5-2 illustrates how the Transactions sample application works.

Figure5-2 Transactions Sample Application

CORBA C++
Client get _student _detail s()
Application get _course_detail s()
br owse_courses()
CORBA Java regi ster_for_courses()
Client CORBA Server

Application ij Application
SN
ActiveX Client CORBA A

Application

Database

A Part of a Transaction

The Transactions sample application shows two ways in which a transaction can be
rolled back:

m Nonfatal. If the registration for a course fails because the course is not in the
database, or because the student is already registered for the course, the CORBA
server application returns the numbers of those courses to the CORBA client
application. The decision to roll back the transaction lies with the user of the
CORBA client application.

m Fata. If the registration for a course fails because the student exceeds the
maximum number of credits he or she can take, the CORBA server application
generates a CORBA exception and returnsit to the CORBA client application.

Getting Started with BEA Tuxedo CORBA Applications 5-5

5 Using Transactions

The decision to roll back the transaction also lies with the CORBA client
application.

Development Steps

This topic describes the development steps for writing a BEA Tuxedo CORBA
application that includes transactions. Table 5-1 lists the devel opment steps.

Table 5-1 Development Stepsfor BEA Tuxedo CORBA Applications That Have
Transactions

Step Description

1 Writethe OMG IDL code for the transactional CORBA
interface.

2 Define the transaction policies for the CORBA interface in the
Implementation Configuration file (ICF).

3 Write the CORBA client application.

4 Write the CORBA server application.

5 Create a configuration file.

The Transactions sample application is used to demonstrate these devel opment steps.
The source files for the Transactions sample application are located in the

\ sanpl es\ corba\ uni versi ty directory of the BEA Tuxedo software. For
information about building and running the Transactions sample application, see
Guide to the CORBA University Sample Application in the BEA Tuxedo online
documentation.

5-6 Getting Started with BEA Tuxedo CORBA Applications

Step 1: Write the OMG IDL Code

Step 1: Write the OMG IDL Code

Y ou need to specify interfaces involved in transactions in Object Management Group
(OMG@G) Interface Definition Language (IDL) just as you would any other CORBA
interface. Y ou must also specify any user exceptions that may occur from using the
interface.

For the Transactions sample application, you would define in OMG IDL the

Regi strar interfaceandther egi st er _for _courses() operation. The

regi ster_for_courses() operation hasaparameter, Not Regi st er edLi st, which
returns to the CORBA client application the list of courses for which registration
failed. If the value of Not Regi st er edLi st isempty, the CORBA client application
commitsthetransaction. Y ou also need to define the TooMany Or edi t s user exception.

Listing 5-1 includesthe OMG IDL code for the Transactions sample application.

Listing5-1 OMG IDL Codefor the Transactions Sample Application

#pragma prefix "beasys. cont
nmodul e UniversityT

{
typedef unsi gned | ong CourseNunber;

typedef sequence<Cour seNunber > Cour seNunber Li st ;

struct CourseSynopsi s

{
Cour seNunber cour se_nunber;
string title;

I

typedef sequence<CourseSynopsi s> Cour seSynopsi sLi st;

interface CourseSynopsi sEnuner at or

{

/I Returns a list of length O if there are no nore entries
Cour seSynopsi sLi st get _next _n(
in unsigned | ong nunber _to get, // O = return all
out unsigned | ong nunber _remaini ng

)

voi d destroy();
b

Getting Started with BEA Tuxedo CORBA Applications 5-7

5

Using Transactions

5-8

typedef unsigned short Days;

const Days MONDAY = 1;
const Days TUESDAY = 2;
const Days WEDNESDAY = 4;
const Days THURSDAY = 8;
const Days FRI DAY = 16;

/1 Classes restricted to sanme tine block on all schedul ed days,
//starting on the hour

struct

{

}s

struct

{

struct

b

Cl assSchedul e

Days class_days; // bitmask of days
unsi gned short start_hour; // whole hours in mlitary time
unsi gned short duration; /] mnutes

Cour seDetai l s

Cour seNunber cour se_nunber;
doubl e cost;

unsi gned short nunber _of credits;
Cl assSchedul e cl ass_schedul e;
unsi gned short nunber of seats;

string title;
string pr of essor;
string description;

typedef sequence<Cour seDet ai | s> Cour seDet ai | sLi st;
typedef unsigned | ong Studentld;

St udent Detai | s

Student | d student _id;
string nanme;
Cour seDet ai | sLi st registered_courses;

enum Not Regi st er edReason

{

b

struct

Al r eadyRegi st er ed,
NoSuchCour se

Not Regi st er ed

Cour seNunber course_nunber;
Not Regi st er edReason not _regi st ered_r eason;

typedef sequence<Not Regi st er ed> Not Regi st er edLi st ;

Getting Started with BEA Tuxedo CORBA Applications

Step 1: Write the OMG IDL Code

excepti on TooManyCredits
{

b

/1 The Registrar interface is the main interface that all ows
//students to access the database.
interface Registrar

unsi gned short maxi mumcredits;

{
Cour seSynopsi sLi st
get _courses_synopsi s(
in string search_criteria,
in unsigned | ong nunber to_get,
out unsigned | ong nunber _renmai ni ng,
out Cour seSynopsi sEnunerator rest);
CourseDetai | sLi st get_courses_detail s(in CourseNunberLi st
cour ses);
Student Detai | s get_student_details(in Studentld student);
Not Regi st eredLi st regi ster_for_courses(
in Studentld st udent,
in Cour seNunber Li st courses
) raises (
TooManyCredits
)i
b

/1l The RegistrarFactory interface finds Registrar interfaces.

interface RegistrarFactory

{
Registrar find_ registrar(
)i

b

Step 2: Define Transaction Policies for the Interfaces

Transaction policies are used on a per-interface basis. During design, it is decided
which interfaces within aBEA Tuxedo CORBA application will handle transactions.
The transaction policies are listed in the following table.

Getting Started with BEA Tuxedo CORBA Applications 5-9

5 Using Transactions

Transaction Policy Description

al ways The interface must always be part of atransaction. If the
interface is not part of atransaction, a transaction will be
automatically started by the TP Framework.

i gnore The interface is not transactional; however, requests made to
this interface within a scope of atransaction are allowed. The
AUTOTRAN parameter, specified in the UBBCONFI Gfilefor this
interface, isignored.

never The interface is not transactional. Objects created for this
interface can never beinvolved in atransaction. The BEA
Tuxedo system generates the | NVALI D_TRANSACTI ON
exception if an interface with this policy isinvolved in a
transaction.

optional The interface might be transactional. Objects can beinvolvedin
atransaction if the request is transactional. This transaction
policy isthe default.

Note: Todefinetransactional propertiesfor areguest you can
aso usethe aut ot r an parameter.

During devel opment, you decide which interfaces will execute in atransaction by
assigning transaction policies.

For CORBA server applications, you specify transaction policiesin the
Implementation Configuration File (ICF). A template | CFfileis created when you run
thegeni ¢cf command.

In the Transactions sample application, the transaction policy of the Regi st r ar
interfaceis set to al ways.

Step 3: Write the CORBA Client Application

The CORBA client application needs code that performs the following tasks:

1. Obtains areference to the TransactionCurrent or TransactionFactory object from
the Bootstrap object.

5-10 Getting Started with BEA Tuxedo CORBA Applications

Step 1: Write the OMG IDL Code

2. Begins atransaction by invoking the Tobj : : Transacti onCurrent: : begi n()
operation on the TransactionCurrent object.

3. Invokes operations on the object. In the Transactions sample application, the
CORBA client application invokesthe r egi st er _f or _cour ses() operation on
the Regi st rar object, passing alist of courses.

Listing 5-2 illustrates the portion of the CORBA C++ client application in the
Transactions sample application that illustrates the devel opment steps for transactions.

Listing5-2 Transactions Code for CORBA C++ Client Applications

CORBA: : hj ect _var var_transaction_current_oref =
Boot strap.resolve_initial _references("Transacti onCurrent");
CosTransactions:: Current _var var_transacti on_current_ref=
CosTransactions:: Current:: _narrow var_transaction_current_oref.in());
//Begin the transaction
var _transaction_current_ref->begin();
try {
/1 Performthe operation inside the transaction
poi nter _Regi star_ref->register_for_courses(student _id, course_nunber |ist);
I/
/1 1f operation executes with no errors, conmt the transaction:
CORBA: : Bool ean report_heuristics = CORBA _TRUE;
var _transaction_current_ref->conm t(report_heuristics);

}
catch (...) {
/1 1f the operation has problens executing, rollback the
/1 transaction. Then throw the original exception again.
/1 1f the rollback fails, ignore the exception and throw the
/1 original exception again.

try {
var _transacti on_current _ref->roll back();

}
catch (...) {

TP: :userlog("roll back failed");
}

t hr ow;

Getting Started with BEA Tuxedo CORBA Applications 5-11

5 Using Transactions

Step 4: Write the CORBA Server Application

When using transactionsin CORBA server applications, you need to write methods
that implement the interface’s operations. In the Transactions sample application, you
would write a method implementation for ther egi st er _f or _cour ses() operation.

If your BEA Tuxedo CORBA application uses adatabase, you need to include codein
the CORBA server application that opens and closes an XA resource manager. These
operations areincluded inthe Server: :initialize() and Server::rel ease()
operations of the Server object.

Listing 5-3 shows the portion of the code for the Server object in the Transactions
sample application that opens and closes the XA resource manager.

Note: For acomplete example of a C++ server application that implements
transactions, see the Transactions sample application in Using CORBA
Transactionsin the BEA Tuxedo online documentation.

Listing 5-3 C++ Server Object in Transactions Sample Application

CORBA: : Bool ean Server::initialize(int argc, char* argv[])

{
TRACE METHOD("Server::initialize");
try {
open_dat abase();
begi n_transactional ();
regi ster_fact();
return CORBA TRUE;
}
catch (CORBA: : Exception& e) {
LOG(" CORBA exception : " <<e);
}
catch (Sanpl esDBExcepti on& e) {
LOE "Can't connect to database");
}
catch (...) {
LOGE " Unexpect ed exception");
cl eanup();
return CORBA _FALSE;
}

5-12 Getting Started with BEA Tuxedo CORBA Applications

Step 1: Write the OMG IDL Code

void Server::release()

{
TRACE_METHOD(" Ser ver: : rel ease");
cl eanup();

}

static void cl eanup()

{
unregi ster_factory();
end_transactional ();
cl ose_dat abase();

}

/1 Wilities to nanage transacti on resource nanager
CORBA: : Bool ean s_becane_transacti onal = CORBA FALSE;
static void begin_transactional ()
{

TP: : open_xa_rm();

s_becanme_transactional = CORBA TRUE;
}

static void end_transactional ()

i f(!s_becane_transactional){
/1 cl eanup not necessary
return;

}

try {
TP::close_ xa rm();

}
catch (CORBA:: Exception& e) ({
LOG " CORBA Exception : " << e);

}
catch (...) {

LOX "unexpect ed exception");
}

s_becane_transactional = CORBA FALSE;

Step 5: Create a Configuration File

Y ou need to add the following information to the configuration file for a transactional
BEA Tuxedo CORBA application.

Getting Started with BEA Tuxedo CORBA Applications 5-13

5 Using Transactions

m Inthe SERVERS section specify the transactional group for the CORBA server
application and for the application that manages the database.

m |nthe GROUPS section define the server group. In the OPENI NFOand CLOSEI NFO
parameters of the GROUPS section, include information to open and close the XA
resource manager for the database. You obtain this information from the product
documentation for your database. Note that the default version of the
com beasys. Tobj . Server.initialize() operation automatically opens the
resource manager.

m Include the pathname to the transaction log (TLOG) in the TLOGDEVI CE
parameter. For more information about the transaction log, see Administering a
BEA Tuxedo Application at Run Time in the BEA Tuxedo online documentation.

Listing 5-4 includes the portions of the configuration file that define thisinformation
for the Transactions sample application.

Listing 5-4 Configuration Filefor Transactions Sample Application

* RESCURCES
| PCKEY 55432
DOVAI NI D university
MASTER SI TE1

MODEL SHMV

LDBAL N

SECURI TY APP_PW
* MACH NES

BLOTTO

LMD = SITE1L

APPDI R = C:\ TRANSACTI ON_SAMPLE

TUXCONFI G=C: \ TRANSACTI ON_SAMPLE\ t uxconfi g
TLOGDEVI CE=C: \ APP_DI R\ TLOG

TLOGNAME=TLOG

TUXDI R="C: \ t uxdi r"

MAXWSCLI ENTS=10

* GROUPS
SYS _GRP
LM D = SITEL
GRPNO =1
ORA_GRP
LM D = SITEL
GRPNO =2

5-14 Getting Started with BEA Tuxedo CORBA Applications

Step 1: Write the OMG IDL Code

OPENI NFO

"ORACLE_XA: Or acl e_XA+Sqgl Net =ORCL+Acc=P

/scott/tiger+SesTm=100+LogDi r =. +MaxCur =5"

OPENI NFO

"ORACLE_XA: Or acl e_XA+Acc=P/ scott/ti ger

+SesTn¥100+LogDi r =. +MaxCur =5"

CLCSEI NFO
TMSNAME

* SERVERS
DEFAULT:
RESTART
MAXCGEN

o<

TMSYSEVT
SRVCGRP
SRVI D

TMFFENAME
SRVCGRP
SRVI D
CLOPT

TMFENAME
SRVCGRP
SRVI D
CLOPT

TMFENAME
SRVCGRP
SRVI D
CLOPT

T™ FRSVR
SRVCGRP
SRVI D

nn

"TM5_ORA"

SYS GRP

SYS GRP

"A-- -N-M

SYS _GRP
3

NN

SYS GRP
4
"A L

SYS GRP
5

UNI VT_SERVER

SRVCGRP
SRVI D
RESTART

I SL
SRVCGRP
SRVI D
CLOPT

*SERVI CES

ORA_GRP
1
N

SYS GRP
6

-A -- -n //MACH NENAME: 2500

Getting Started with BEA Tuxedo CORBA Applications

5-15

5 Using Transactions

For information about the transaction log and defining parametersin the Configuration
file, see Setting Up a BEA Tuxedo Application in the BEA Tuxedo online
documentation.

5-16 Getting Started with BEA Tuxedo CORBA Applications

Index

A
activation policies
defining in Implementation
Configuration file 3-12

defining in Server Description file 3-12

Simpapp sample application 3-12
Simple interface 3-13
supported 3-12
ActiveX application builder
description 2-6
AdminAPI
description 2-5
administration commands
tmadmin command 2-4
tmboot command 2-4
tmconfig command 2-4
tmloadcf command 2-4
tmshutdown command 2-4
tmunloadcf command 2-4
Administration console
description 2-4
administration tools
AdminAPI 2-5
administration commands 2-4
Administration console 2-4
Authenticates 2-18
authentication
client application 2-18
levels 4-2

B

BEA Tuxedo
ActiveX application builder 2-6
administration tools 2-3
devel opment commands 2-3
how CORBA client and server
applications work 2-16
IDL compilers2-2
object services 2-7
BEA Tuxedo CORBA
description of components 2-8
features 1-3
illustrated 2-9
managing
tmconfig command 2-4
tmunloadcf command 2-4
BEA Tuxedo CORBA applications
defining security levels 4-6
how they work 2-16
managing
tmadmin command 2-4
tmboot command 2-4
tmloadcf command 2-4
tmshutdown command 2-4
using CORBA services Object
Transaction Service 5-2
using Java Transaction Service 5-2
BEA Tuxedo CORBA components
ORB 2-12
TP Framework 2-14
BEA Tuxedo domain

Getting Started with BEA Tuxedo CORBA Applications -1

adding security to 4-4
Bootstrap object
illustrated 2-10
Simpapp sample application 3-16
building
C++ client applications 3-24
buildobjclient command 2-3
C++ server applications
buildobjserver command 2-3
genicf command 2-3
Java client applications 3-24
buildobjclient command
building C++ client applications 2-3
description 2-3
format 3-24
in the Simpapp sample application 3-24
buildobjserver command
building C++ server applications 2-3
description 2-3
format 3-23
in the Simpapp sample application 3-23

C

client applications
authenticating into the BEA Tuxedo
domain 2-18
initialization process 2-18
invoking objects 2-20
using transactions 5-3
writing
Security sample application 5-10
Simpapp sample application 3-16
Transactions sample application 5-
10
client stubs
generating 3-6
in Simpapp sample application 3-6
code example
C++ client application for Simpapp
sample application 3-17

C++ implementation of the Simple
interface 3-9
C++ Server object 3-11
C++ server object that supports
transactions 5-12
configuration file for Simpapp sample
application 3-21
Java client application for the Simpapp
sample application 3-18
OMG IDL for Transactions sample
application 5-7
security in C++ client applications 4-7
security in Java client applications 4-8
transactions in C++ client application
5-11
UBBCONFIG file for Transactions
sample application 5-14
compiling
C++ client applications 3-24
C++ server applications 3-23
Java client applications 3-24
CORBAservices Object Transaction Service
using in BEA Tuxedo CORBA
applications 5-2
create_servant method 2-19
customer support contact information ix

D

development commands
buildobjclient command 2-3
buildobjserver command 2-3
genicf command 2-3
idl2ir command 2-3
ir2idl command 2-3
irdel command 2-3
development process
activation policies 3-12
BEA Tuxedo CORBA applications 3-2
client applications
Security sample application 4-7

[-2 Getting Started with BEA Tuxedo CORBA Applications

Simpapp sample application 3-16
Transactions sample application 5-
10
defining object activation policies 3-12
illustrated 3-3
Implementation Configuration file 3-12
OMG IDL
Simpapp sample application 3-5
Transactions sample application 5-7
Security sample application 4-6
server applications
Simpapp sample application 3-8
Transactions sample application 5-
12
Server Description file 3-12
Simpapp sample application 3-4
steps for creating BEA Tuxedo CORBA
applications 3-2
Transactions sample application 5-6
writing a configuration file 3-20
writing server application code 3-8
writing the client application code 3-16
writing the OMG IDL 3-5
documentation, where to find it viii

E

environmental objects
and client initialization 2-18

description 2-7
F
factories
finding 2-19
registering 2-19
FactoryFinder object
description 2-7

example use of 2-19

G

genicf command
creating an ICF file 2-3
description 2-3

IDL
See I nterface Definition Language 2-2
idl command 2-2
description 2-2
files created by 3-7
generating client stubs 3-6
generating skeletons 3-6
IDL compiler
idl command 2-2
supported 2-2
idl2ir command
description 2-3
idltojava command
files created by 3-8
iditojava compiler
differences from Sun version 2-2
Implementation Configuration file
defining activation policies 3-12
defining transaction policies 5-9
initialize method
summary 2-16, 2-17
INS
See | nteroperable Naming Service 2-10
Interface Definition Language 2-2
Interface Repository
creating 2-3
deleting objects from 2-3
idl2ir command 2-3
ir2idl command 2-3
irdel command 2-3
loading interface definitionsinto 2-3
InterfaceRepository object
description 2-8
interfaces

Getting Started with BEA Tuxedo CORBA Applications [-3

writing methods to implement
operations 3-9
Interoperable Naming Service 2-10
ir2idl command
description 2-3
irdel command
description 2-3

J

Java Transaction Service
using in BEA Tuxedo CORBA
applications 5-2

M

ma3idltojava command
deprecated 2-2
ma3idltojava deprecated 2-2
Management Information Base
see MIB 1-3
managing
BEA Tuxedo CORBA applications
tmadmin command 2-4
tmboot command 2-4
tmconfig command 2-4
tmloadcf command 2-4
tmshutdown command 2-4
tmunloadcf command 2-4
method implementations
C++3-9
writing 3-9
MIB

for BEA Tuxedo CORBA applications

1-3

0]

Object Life Cycle service
description 2-7
object request broker

see ORB 2-12
object services
Interface Repository 2-8
Object Life Cycle service 2-7
Security service 2-7
Transaction service 2-7
objects
invoking 2-20
OMG IDL
compiling 3-6
generating client stubs 3-6
generating skeletons 3-6
Simple interface 3-5, 3-6
SimpleFactory interface 3-5, 3-6
Transactions sample application 5-7
ORB
description 2-12
illustrated 2-13

P

POA

description 2-13

interaction with TP Framework 2-14
Portable Object Adapter

see POA 2-13
Principal Authenticator object

using in client applications 4-4
printing product documentation viii
programming tools 2-2

R

register_factory method
example of 2-19
related information ix
resolve initial_references method 2-18

S
Security sample application

-4 Getting Started with BEA Tuxedo CORBA Applications

defining security level 4-6
description 4-4
development process 4-6
illustrated 4-4
location of files 4-5
Principal Authenticator object 4-4
SecurityCurrent object 4-4
using the Principal Authenticator object
4-7
using the SecurityCurrent object 4-7
writing the client application 4-7
Security service
description 2-7
functional description 4-2
SecurityCurrent object
description 2-7
using in client applications 4-4
server applications
defining object activation policies 3-12
Implementation Configuration file 3-12
Server Description file 3-12
writing
Simpapp sample application 3-8
Transactions sample application 5-
12
writing method implementations 3-9
writing the Server object 3-10
Server Description file
defining activation policies 3-12
Server object 5-12
description 2-15
Transactions sample application 5-12
writing 3-10
Simpapp sample application
compiling
C++ client application 3-24
C++ server application 3-23
Javaclient application 3-24
configuration file 3-20
description 3-4
filelocation 3-5

illustrated 3-4

interfaces defined for 3-5

OMG IDL 3-5

using the Bootstrap object 3-16

using the buildobjserver command 3-23

writing the client application code 3-16
Simple interface

activation policy 3-13

OMG IDL 3-5
SimpleFactory interface

OMG IDL 3-5
skeletons

generating 3-6

in Simpapp sample application 3-6
support

technica ix
supporting databases 5-12

T

TLOGDEVICE parameter 5-14
tmadmin command
description 2-4
tmboot command
description 2-4
tmconfig command
description 2-4
tmloadcf command
creating a configuration file 3-23
description 2-4
tmshutdown command
description 2-4
tmunloadcf command
description 2-4
Tobj_Bootstrap 2-18
TP Framework
description 2-14
illustrated 2-14
transaction policies
defined 5-9
Transaction server application

Getting Started with BEA Tuxedo CORBA Applications [-5

writing the server application 5-12
Transaction service

description 2-7, 5-1

features 5-2
TransactionCurrent object

description 2-7
transactions

functional overview 5-2

illustrated 5-3

in client applications 5-3
Transactions sample application

description 5-4

filelocation 5-6

illustrated 5-5

OMG IDL 5-7

starting server application 5-12

transaction policies 5-10

UBBCONFIG file 5-13

writing client applications 5-10

writing server applications 5-12
Transactions sample application

development process 5-6

TUXCONFIG file

description 3-23

U

UBBCONFIG file
adding transactions 5-13
description 3-23
sectionsin 3-20
setting the security level 4-6
user exceptions
Transactions sample application 5-5
UserTransaction object
description 2-7

-6 Getting Started with BEA Tuxedo CORBA Applications

	Copyright
	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Overview of the BEA Tuxedo CORBA Environment
	Introduction to the BEA Tuxedo CORBA Environment
	Features of the BEA Tuxedo CORBA Environment

	2 The BEA Tuxedo CORBA Programming Environment
	Overview of the BEA Tuxedo CORBA Programming Features
	IDL Compilers
	Development Commands
	Administration Tools
	ActiveX Application Builder

	BEA Tuxedo CORBA Object Services
	BEA Tuxedo CORBA Architectural Components
	Bootstrapping the BEA Tuxedo Domain
	IIOP Listener/Handler
	ORB
	TP Framework

	How BEA Tuxedo CORBA Client and Server Applications Interact
	Step 1: The CORBA Server Application Is Initialized
	Step 2: The CORBA Client Application Is Initialized
	Step 3: The CORBA Client Application Authenticates Itself to the BEA Tuxedo Domain
	Step 4: The CORBA Client Application Obtains a Reference to the CORBA Object Needed to Execute It...
	Step 5: The CORBA Client Application Invokes an Operation on the CORBA Object

	3 Developing BEA Tuxedo CORBA Applications
	Overview of the Development Process for BEA Tuxedo CORBA Applications
	The Simpapp Sample Application
	Step 1: Write the OMG IDL Code
	Step 2: Generate CORBA client Stubs and Skeletons
	Step 3: Write the CORBA server Application
	Writing the Methods That Implement the Operations for Each Interface
	Creating the CORBA server Object
	Defining an Object’s Activation Policies
	Creating and Registering a Factory
	Releasing the CORBA Server Application

	Step 4: Write the CORBA Client Application
	Step 5: Create an XA Resource Manager
	Step 6: Create a Configuration File
	Step 7: Create the TUXCONFIG File
	Step 8: Compile the CORBA Server Application
	Step 9: Compile the CORBA Client Application
	Step 10: Start the BEA Tuxedo CORBA Application
	Additional BEA Tuxedo CORBA Sample Applications

	4 Using Security
	Overview of the Security Service
	How Security Works
	The Security Sample Application
	Development Steps
	Step 1: Define the Security Level in the Configuration File
	Step 2: Write the CORBA Client Application

	5 Using Transactions
	Overview of the Transaction Service
	What Happens During a Transaction
	Transactions Sample Application
	Development Steps
	Step 1: Write the OMG IDL Code
	Step 2: Define Transaction Policies for the Interfaces
	Step 3: Write the CORBA Client Application
	Step 4: Write the CORBA Server Application
	Step 5: Create a Configuration File

	Index

