
BEA
 Tuxedo®

Using the BEA Tuxedo
Domains Component
Release 8.1
January 2003

Copyright

Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the agreement. This document may not, in whole or in part,
be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form
without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic Commerce
Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA
WebLogic Server, BEA WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA
Systems, Inc.

All other trademarks are the property of their respective companies.

Contents

About This Document
What You Need to Know ... vii
e-docs Web Site... viii
How to Print the Document... viii
Related Information... viii
Contact Us!.. ix
Documentation Conventions ...x

1. About Domains
What Is the BEA Tuxedo Domains Component?.. 1-1

Interoperability Among Domains... 1-3
Types of Domain Gateways ... 1-3

Example of a Domains Configuration... 1-4
Functionality Supported by Domain Gateways... 1-6

Request/Response Communication Between Local and Remote Domains1-7
Conversational Communication Between Local and Remote Domains 1-8
Queuing Messages on Remote Domains.. 1-9
Encoding and Decoding Operations for Domains...................................... 1-9

BEA Tuxedo Domains Architecture ... 1-10
Domains Configuration File... 1-11
Domain Gateway Servers... 1-11
Domains Administrative Servers ... 1-12
Domains Administrative Tools .. 1-14

Understanding the Domains Configuration File.. 1-16
Location of DMCONFIG File.. 1-17
Binary Version of DMCONFIG File ... 1-17
Descriptions of Sections of the DMCONFIG File 1-18
Using the BEA Tuxedo Domains Component iii

Terminology Improvements for DMCONFIG File.................................. 1-24
Specifying Domains Data-Dependent Routing ... 1-25
Specifying Domains Transaction and Blocking Timeouts 1-26

How the Domains Component Handles Transaction Timeouts 1-27
How the Domains Component Handles Blocking Timeouts 1-28

Specifying Domains Connection Policies ... 1-29
How To Configure Your Connection Policy.. 1-30
How To Use Connection Retry Processing .. 1-32
How Connection Policy Determines Availability of Remote Services.... 1-33

Specifying Domains Failover and Failback... 1-35
How to Configure Domains-Level Failover and Failback 1-35
How to Configure Domains Link-Level Failover 1-36

Specifying Domains Keepalive ... 1-36
What is TCP-Level Keepalive? .. 1-37
How to Configure TCP-Level Keepalive for Domains............................ 1-38
What is Application-Level Keepalive? .. 1-40
How to Configure Application-Level Keepalive for Domains 1-41
Keepalive Compatibility with Earlier BEA Tuxedo Releases 1-43

Configuring a Domains Environment.. 1-43
Configuring a Domains Environment for Migration 1-46

How to Migrate the DMADM Server .. 1-49
How to Migrate a TDomain Gateway Group ... 1-49
Methods for Activating Individual Server Processes 1-50

2. Planning and Configuring ATMI Domains
Planning to Build Domains from Multiple BEA Tuxedo Applications 2-2

Option 1: Reconfigure the Applications as a Single BEA Tuxedo Domain ...
2-7

Option 2: Reconfigure the Applications as a Domains Configuration..... 2-12
Examining the creditapp Domains Configuration ... 2-22
Setting Up a Domains Configuration .. 2-27

Configuring a Sample Domains Application (simpapp) 2-27
Configuration Tasks ... 2-28
How to Set Environment Variables for lapp .. 2-30
How to Define the Domains Environment for lapp in the UBBCONFIG File
iv Using the BEA Tuxedo Domains Component

2-31
How to Define Domains Parameters for lapp in the DMCONFIG File... 2-33
How to Compile Application and Domains Gateway Configuration Files for

lapp.. 2-35
How to Set Environment Variables for rapp.. 2-36
How to Define the Domains Environment for rapp in the UBBCONFIG File

2-38
How to Define Domains Parameters for rapp in the DMCONFIG File... 2-39
How to Compile Application and Domain Gateway Configuration Files for

rapp.. 2-40
How to Compress Data Between Domains .. 2-42
How to Route Service Requests to Remote Domains 2-42

Setting Up Security in a Domains Configuration.. 2-43
Domains Security Mechanisms.. 2-43
How to Configure Principal Names for Domains Authentication 2-44
How to Configure Domains Password Security....................................... 2-46
How to Configure Domains Access Control Lists 2-53
How to Configure ACL Policy for a Remote Domain............................. 2-54
How to Configure Domains Link-Level Encryption................................ 2-55

Setting Up Connections in a Domains Configuration 2-56
How to Request Connections for Client Demands (ON_DEMAND Policy) ..

2-57
How to Request Connections at Boot Time (ON_STARTUP Policy)..... 2-58
How to Limit Connections to Incoming Messages Only

(INCOMING_ONLY Policy) ... 2-59
How to Configure the Connection Retry Interval for ON_STARTUP Only...

2-60
How to Configure the Maximum Retry Number 2-61
Example of Coding Connection Policies Between Domains 2-62

Controlling Connections in a Domains Configuration.................................... 2-63
How to Establish Connections Between Domains................................... 2-63
How to Break Connections Between Domains .. 2-64
How to Report on Connection Status... 2-64

Configuring Domains Link-Level Failover and Keepalive............................. 2-65
Using the BEA Tuxedo Domains Component v

3. Planning and Configuring CORBA Domains
Overview of the CORBA Domains Environment ... 3-2
Single-Domain Versus Multiple-Domain Communication 3-2

Single-Domain Communication... 3-3
Multiple-Domain Communication ... 3-4

Elements of a CORBA Domains Configuration.. 3-5
Understanding and Using the Configuration Files .. 3-7

The UBBCONFIG File... 3-7
The DMCONFIG File .. 3-9
The factory_finder.ini File.. 3-18

Specifying Unique Factory Object Identifiers in the factory_finder.ini File... 3-22
Processing the factory_finder.ini File.. 3-23
Types of CORBA Domains Configurations .. 3-23

Directly Connected Domains ... 3-24
Indirectly Connected Domains ... 3-24

Examples of CORBA Domains Configurations .. 3-25
Sample UBBCONFIG Files ... 3-26
Sample DMCONFIG File... 3-29
Sample factory_finder.ini File.. 3-33

4. Administering Domains
Using Domains Run-Time Administrative Commands..................................... 4-1
Using the Administrative Interface, dmadmin(1).. 4-4
Using the Domains Administrative Server, DMADM(5) 4-5
Using the Gateway Administrative Server, GWADM(5).................................. 4-6
Using the Domain Gateway Server ... 4-7
Managing Transactions in a Domains Environment ... 4-8

Using the TMS Capability Across Domains .. 4-9
Using GTRID Mapping in Transactions .. 4-12
Using Logging to Track Transactions .. 4-19
Recovering Failed Transactions ... 4-21
vi Using the BEA Tuxedo Domains Component

About This Document

This document explains how to configure and administer the BEA Tuxedo Domains
component for both BEA Tuxedo ATMI and CORBA environments.

This document covers the following topics:

Chapter 1, “About Domains,” provides an overview of the BEA Tuxedo
Domains component.

Chapter 2, “Planning and Configuring ATMI Domains,” explains how to plan
and configure a domain for a BEA Tuxedo ATMI Domains environment.

Chapter 3, “Planning and Configuring CORBA Domains,” explains how to
configure a domain for a BEA Tuxedo CORBA Domains environment.

Chapter 4, “Administering Domains,” explains how to administer a BEA Tuxedo
Domains environment.

What You Need to Know

This document is intended mainly for administrators who configure operational
parameters that support mission-critical BEA Tuxedo systems. It assumes a familiarity
with the BEA Tuxedo system.
Using the BEA Tuxedo Domains Component vii

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “e-docs”
Product Documentation page at http://e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the BEA Tuxedo documentation Home
page on the e-docs Web site (and also on the documentation CD). You can open the
PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in book
format. To access the PDFs, open the BEA Tuxedo documentation Home page, click
the PDF files button and select the document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com.

Related Information

The following BEA Tuxedo documents contain information that is relevant to the BEA
Tuxedo Domains component:

BEA Tuxedo Product Overview

Setting Up a BEA Tuxedo Application
viii Using the BEA Tuxedo Domains Component

http://e-docs.bea.com
http://www.adobe.com

Administering a BEA Tuxedo Application at Run Time

Scaling, Distributing, and Tuning CORBA Applications

For more information about BEA Tuxedo ATMI and CORBA environments, see
Bibliography.

Contact Us!

Your feedback on the BEA Tuxedo documentation is important to us. Send us e-mail
at docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the BEA Tuxedo
documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA Tuxedo 8.1 release.

If you have any questions about this version of BEA Tuxedo, or if you have problems
installing and running BEA Tuxedo, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. You can also contact Customer Support by
using the contact information provided on the Customer Support Card, which is
included in the product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages
Using the BEA Tuxedo Domains Component ix

mailto:docsupport@bea.com
http://www.bea.com

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:
#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.
Example:
void commit ()

monospace
italic
text

Identifies variables in code.
Example:
String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.
Examples:
LPT1
SIGNON
OR
x Using the BEA Tuxedo Domains Component

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:
That an argument can be repeated several times in a command line
That the statement omits additional optional arguments
That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
Using the BEA Tuxedo Domains Component xi

xii Using the BEA Tuxedo Domains Component

CHAPTER
1 About Domains

The following sections provide an overview of the BEA Tuxedo Domains component:

What Is the BEA Tuxedo Domains Component?

Example of a Domains Configuration

Functionality Supported by Domain Gateways

BEA Tuxedo Domains Architecture

Understanding the Domains Configuration File

Specifying Domains Data-Dependent Routing

Specifying Domains Transaction and Blocking Timeouts

Specifying Domains Connection Policies

Specifying Domains Failover and Failback

Specifying Domains Keepalive

Configuring a Domains Environment

Configuring a Domains Environment for Migration

What Is the BEA Tuxedo Domains
Component?

As a company’s business grows, application engineers may need to organize the
business information management into distinct applications, each having
administrative autonomy, based on functionality, geographical location, or
Using the BEA Tuxedo Domains Component 1-1

1 About Domains
confidentiality. These distinct business applications, known as domains, need to share
information. The BEA Tuxedo Domains component provides the infrastructure for
interoperability among the domains of a business, thereby extending the BEA Tuxedo
client/server model to multiple transaction processing (TP) domains. The following
figure shows how the BEA Tuxedo Domains component can tie multiple domains
together.

Figure 1-1 Interdomain Communications Using the BEA Tuxedo Domains
Component

BEA Tuxedo Domain

BEA Tuxedo Domain

BEA
TDomain
Gateway

BEA
WTC

Gateway

Mainframe Center

BEA WebLogic Server

BEA
eLink

Gateway

BEA TOP END

BEA
TDomain
GatewayBEA

TEDG
Gateway
1-2 Using the BEA Tuxedo Domains Component

What Is the BEA Tuxedo Domains Component?
Interoperability Among Domains

By transparently making services of a remote domain available to users of the local
domain, and making services of the local domain available to users of a remote
domain, the BEA Tuxedo Domains component breaks down the walls between a
company’s business applications. In addition, the Domains component enables a
company running a BEA Tuxedo application to expand its business by interoperating
with applications running on other transaction processing (TP) systems, such as BEA’s
WebLogic Server, BEA’s TOP END, IBM/Transarc’s Encina, and IBM’s CICS.

Because a company often uses the nature of a business application as part of its name,
applications have names like the “accounting” domain or the “order entry” domain. A
BEA Tuxedo domain is a single computer or network of computers controlled by a
single configuration file known as the UBBCONFIG file. (The BEA Tuxedo
configuration file may have any name as long as the content of the file conforms to the
format described on reference page UBBCONFIG(5) in BEA Tuxedo File Formats, Data
Descriptions, MIBs, and System Processes Reference.) A BEA Tuxedo domain is
administered as a single unit.

Types of Domain Gateways

The BEA Tuxedo Domains component offers different types of gateways to be able to
communicate with different types of networks and domains. Specifically, the Domains
component offers the following domain gateways:

BEA Tuxedo TDomain gateway (implemented by the GWTDOMAIN server
process)—provides interoperability between two or more BEA Tuxedo domains
through a specially designed TP protocol that flows over network protocol
TCP/IP. Working with the WebLogic Tuxedo Connector (WTC) gateway, a BEA
WebLogic Server component, the BEA Tuxedo TDomain gateway can also
provide interoperability between Tuxedo domains and WebLogic Server
applications.

BEA TOP END domain gateway (TEDG) (implemented by the GWTOPEND server
process)—provides interoperability between BEA Tuxedo domains and TOP
END systems over network protocol TCP/IP.

BEA eLink Adapter for Mainframe TCP gateway (implemented by the
GWIDOMAIN server process) provides interoperability between BEA Tuxedo
Using the BEA Tuxedo Domains Component 1-3

1 About Domains
domains and applications running under IBM OS/390 Customer Information
Control System (CICS) and Information Management System (IMS) over
network protocol TCP/IP. The gateway supports only non-transactional tasks.

BEA eLink Adapter for Mainframe SNA gateway (implemented by the GWSNAX
server process)—provides interoperability between BEA Tuxedo domains and
applications running on any System Network Architecture (SNA) Advanced
Program-to-Program Communications (APPC) or Common Programming
Interface for Communications (CPI-C) supported platform, including IBM
OS/400, OS/390 CICS and IMS systems and VSE/CICS. The gateway supports
communication with multiple SNA networks.

BEA eLink Adapter for Mainframe OSI TP gateway (implemented by the
GWOSITP server process)—provides interoperability between BEA Tuxedo
domains and other transaction processing applications that use the Open Systems
Interconnection (OSI) transaction processing (TP) standard. OSI TP is a protocol
for distributed transaction processing defined by the International Standards
Organization (ISO). The gateway supports global transactions and various
non-transactional tasks.

The discussions that follow focus on the BEA TDomain gateway and the
communication between BEA Tuxedo domains. For information about the WTC
gateway, see:

BEA Tuxedo Product Overview

WebLogic Tuxedo Connector at
http://e-docs.bea.com/wls/docs70/wtc.html

For information about the TEDG gateway, see Using the BEA Tuxedo TOP END
Domain Gateway with ATMI Applications. For information about BEA eLink
gateways, see BEA eLink Documentation at
http://e-docs.bea.com/elink/mainfram/mainfram.htm.

Example of a Domains Configuration

The following figure shows an example Domains configuration involving four
domains, three of which are BEA Tuxedo domains.
1-4 Using the BEA Tuxedo Domains Component

Example of a Domains Configuration
Figure 1-2 A Banking Domains Configuration—Example

The BEA Tuxedo credit card authorization center at the bottom of the figure has two
gateway groups: a TDomain gateway group named bankgw1 and an OSI TP gateway
group named bankgw2. bankgw1 provides access to two remote BEA Tuxedo
domains, Bank ABC and Bank CBA, using network protocol TCP/IP. bankgw2
provides access to one remote domain, Bank XYZ, using network protocol OSI TP.

In this example, Bank ABC generates service requests to the credit card authorization
center. These requests are received by a domain gateway server process named
GWTDOMAIN running within group bankgw1. This gateway issues a service request, on
behalf of the remote domain, to the credit card authorization service provided by
another locally running server process. This server handles the request and sends the
reply to the gateway, and the gateway forwards the reply to Bank ABC.

The credit card authorization center may also issue service requests. For example, the
authorization center may send balance inquiries to Bank XYZ via a domain gateway
server process named GWOSITP.
Using the BEA Tuxedo Domains Component 1-5

1 About Domains
The BEA Tuxedo Domains component makes the interdomain communications
possible through domain gateway server processes that advertises remote services—
services available in other domains—as if they were local services.

Functionality Supported by Domain
Gateways

Domain gateways support the following functionality:

Multinetwork support—gateways can communicate with other domains via a
variety of network protocols, such as TCP/IP, IPX/SPX, OSI, and others.
However, a gateway is limited by the capabilities of the networking library to
which it is linked. In other words, a gateway typically supports a single type of
network protocol. As an example, the BEA Tuxedo TDomain gateway supports
only TCP/IP.

Multidomain Interaction—gateways can communicate with multiple domains.

Transaction management—gateways enable ATMI applications to interoperate
with other domains within a transaction. The gateway coordinates the
commitment or rollback of transactions running across domains.

Multiple messaging models—gateways support the following ATMI messaging
models, without any need to change existing BEA Tuxedo applications:

Request/response model—ATMI applications using the BEA Tuxedo system
can request services from applications running in other domains.

Conversational model—ATMI applications can establish conversations with
programs running in other domains.

Queuing model—ATMI applications using the BEA Tuxedo system can store
data on queues in other domains.

Typed buffer support—gateways can perform encoding and decoding operations
for all the types of buffers defined by BEA Tuxedo ATMI applications.
1-6 Using the BEA Tuxedo Domains Component

Functionality Supported by Domain Gateways
Request/Response Communication Between Local and
Remote Domains

Domain gateways provide support for the request/response model of communication
defined by the ATMI interface. Except for the following BEA Tuxedo ATMI
functions, which are logically limited to use within a single application and are not
supported across domains, a BEA Tuxedo application can request remote services
exactly as if they were offered locally:

tpinit(3c)/tpterm(3c)—BEA Tuxedo applications do not attach to the
environment of a remote domain; they use domain gateways to access a remote
domain. Therefore, an extra tpinit()/tpterm() sequence is not needed for
remote applications.

tpadvertise(3c) and tpunadvertise(3c)—Domains does not support these
functions because domain gateways do not support dynamic service
advertisements across domains.

tpnotify(3c) and tpbroadcast(3c)—Domains does not support the
unsolicited communication paradigm provided by these functions.

Event posting (tppost(3c)) and notification of events (tpsubscribe(3c))—
Domains does not support these functions across domains.

Support for tpforward(3c) is provided to preserve application portability.
Forwarded requests are interpreted by domain gateways as simple service requests.
This process is shown in the following figure, which illustrates the simple scenario of
a service using tpforward to send a request to a remote service.
Using the BEA Tuxedo Domains Component 1-7

1 About Domains
Figure 1-3 Using tpforward to Send a Request to a Remote Service

For more information about the BEA Tuxedo request/response model, see
“Request/Response Communication” on page 2-10 in Introducing BEA Tuxedo ATMI.

Conversational Communication Between Local and
Remote Domains

Domain gateways provide support for the conversational model of communication
defined by the ATMI interface. The ATMI is a connection-oriented interface that
enables clients to establish and maintain conversations with services programmed in
the conversational model.

BEA Tuxedo applications use tpconnect(3c) to open a conversation with a remote
service, tpsend(3c) and tprecv(3c) to communicate with this service, and
tpdiscon(3c) to end the conversation. Domain gateways maintain the conversation
with the remote service, and support the same semantics for returns (that is, tpreturn
with TPSUCCESS or TPFAIL) and disconnects that are defined for BEA Tuxedo
conversational services.

Note: The ATMI connection-oriented functions provide half-duplex conversations;
tpforward(3c) is not allowed within a conversational service.

For more information about the BEA Tuxedo conversational model, see
“Conversational Communication” on page 2-12 in Introducing BEA Tuxedo ATMI.
1-8 Using the BEA Tuxedo Domains Component

../int/intatm.htm#448612
../int/intatm.htm#968512

Functionality Supported by Domain Gateways
Queuing Messages on Remote Domains

Domain gateways provide support for the queuing model of communication defined
by the ATMI interface. Any client or server can store messages or service requests in
a queue in a remote domain. All stored requests are sent through the transaction
protocol to ensure safe storage.

The BEA Tuxedo system enables messages to be queued to persistent storage (disk) or
to non-persistent storage (memory) for later processing or retrieval. ATMI provides
primitives that allow messages to be added (that is, tpenqueue) or read (that is,
tpdequeue) from queues. Reply messages and error messages can be queued for later
return to clients. An administrative command interpreter (that is, qmadmin) is provided
for creating, listing, and modifying queues. Servers are provided to accept requests to
enqueue and dequeue messages (that is, TMQUEUE server), to forward messages from
the queue for processing (that is, TMQFORWARD server), and to manage the transactions
that involve queues (that is, TMS_QM server).

For more information about the BEA Tuxedo queueing model, see “Message Queuing
Communication” on page 2-13 in Introducing BEA Tuxedo ATMI.

Encoding and Decoding Operations for Domains

Domain gateways support all predefined types of typed buffers supported by the
release of BEA Tuxedo system software in which the domain gateway server processes
are running. As of release 8.1, BEA Tuxedo supports 11 predefined buffer types.

Each buffer type supported by a BEA Tuxedo release has its own set of routines that
can be called automatically to initialize, send and receive messages, and encode and
decode data without programmer intervention. The set of routines is called a typed
buffer switch.

In BEA Tuxedo ATMI applications, typed buffers are used to send data—service
requests and replies—between clients and servers. Typed buffers, which by definition
contain information about themselves (metadata), allow application programmers to
transfer data without needing to know which data representation scheme is used by the
machines on which the application’s clients and servers are running.
Using the BEA Tuxedo Domains Component 1-9

../int/intatm.htm#221252
../int/intatm.htm#221252

1 About Domains
A domain gateway can receive and process service requests sent from workstations,
from local BEA Tuxedo machines, and from remote domains. Using the appropriate
typed buffer switch, a domain gateway will decode any service request that it receives
encoded for the following reasons:

Data-dependent routing depends upon matching specified criteria to fields within
data. Therefore, a domain gateway must decode the encoded data in order to
route that data to the appropriate remote domain for the service requested.

Different data formats may be used within different domains, depending on the
networking protocols implemented or used in a domain. Therefore, a domain
gateway must decode the encoded data to determine which data format is being
used.

OSI terminology provides a useful distinction between abstract syntax (that is, the
structure of the data) and transfer syntax (that is, the particular encoding used to
transfer the data). Each typed buffer implicitly defines a particular data structure (that
is, its abstract syntax) and the encoding rules (or typed buffer operations) required to
map the data structure to a particular transfer syntax (for example, XDR). For the
predefined buffer types that support encoding/decoding, the BEA Tuxedo system
provides the encoding rules required to map these types to the XDR transfer syntax.

For more information about typed buffers and encoding and decoding operations, see
“What Are Typed Buffers?” on page 2-23 in Introducing BEA Tuxedo ATMI.

BEA Tuxedo Domains Architecture

The BEA Tuxedo Domains architecture consists of four major parts:

Domains configuration file

Domain gateway servers

Domains administrative servers

Domains administrative tools
1-10 Using the BEA Tuxedo Domains Component

../int/intatm.htm#347351

BEA Tuxedo Domains Architecture
Domains Configuration File

A Domains configuration is a set of two or more domains (applications) that can
communicate and share services via the BEA Tuxedo Domains component. How
multiple domains are connected and which services they make accessible to one
another are defined in Domains configuration files. Each BEA Tuxedo domain
involved in a Domains configuration requires its own Domains configuration file.

The text version of the Domains configuration file is known as the DMCONFIG file,
although it may have any name as long as the content of the file conforms to the format
described on reference page DMCONFIG(5) in BEA Tuxedo File Formats, Data
Descriptions, MIBs, and System Processes Reference. The binary version of the
Domains configuration file is known as BDMCONFIG. For a detailed description of the
DMCONFIG file, see “Understanding the Domains Configuration File” on page 1-16.

Domain Gateway Servers

The BEA Tuxedo Domains component achieves multiple-domain interoperability
through a highly asynchronous, multitasking, multithreaded domain gateway process,
which is a BEA Tuxedo supplied server that makes access to services across domains
transparent to both the application programmer and the application user.

The following figure illustrates how one BEA Tuxedo domain communicates with
another domain via a domain gateway.
Using the BEA Tuxedo Domains Component 1-11

1 About Domains
Figure 1-4 Two-Way Communication Through a Gateway

In the figure, the domain gateway handles outgoing credit card authorization requests
to another domain. It also handles incoming authorization responses.

Domains Administrative Servers

The following figure shows the BEA Tuxedo Domains administrative servers used to
administer a Domains configuration.

BEA Tuxedo Domain
1-12 Using the BEA Tuxedo Domains Component

BEA Tuxedo Domains Architecture
Figure 1-5 Domains Administrative Servers

A domain gateway group, as shown in the previous figure, consists of a gateway
administrative server (GWADM), a domain gateway server (for example, GWTDOMAIN),
and (optional) a Domains transaction log (TLOG). The GWADM server enables run-time
administration of the domain gateway. A BEA Tuxedo domain can communicate with
one or more remote domains through a domain gateway group.

Associated with all domain gateway groups running in a BEA Tuxedo domain is a
Domains administrative server (DMADM), which enables run-time administration of the
BEA Tuxedo Domains configuration file (BDMCONFIG).

GWADM Server

The GWADM(5) server registers with the DMADM server to obtain the configuration
information used by the corresponding gateway group. GWADM accepts requests from
the DMADMIN service, which is a generic administrative service advertised by the DMADM
server, for run-time statistics or changes in the run-time options of the specified
gateway group. Periodically, GWADM sends an “I-am-alive” message to the DMADM
server. If no reply is received from DMADM, GWADM registers again. This process ensures
the GWADM server always has the current information about the Domains configuration
for its gateway group.

For more information about GWADM, see “Administering Domains” on page 4-1.
Using the BEA Tuxedo Domains Component 1-13

1 About Domains
DMADM Server

the DMADM(5) server provides a registration service for gateway groups. This service
is requested by GWADM servers as part of their initialization procedure. The registration
service downloads the configuration information required by the requesting gateway
group. The DMADM server maintains a list of registered gateway groups, and propagates
to these groups any changes made to the Domains configuration file (BDMCONFIG).

For more information about DMADM, see “Administering Domains” on page 4-1.

Domains Administrative Tools

The following Domains administrative tools are provided by the BEA Tuxedo system
for setting up and maintaining a Domains configuration:

dmloadcf(1)—reads the DMCONFIG file, checks the syntax, and loads the binary
BDMCONFIG configuration file.

dmunloadcf(1)—translates the BDMCONFIG configuration file from binary to
text format.

dmadmin(1)—allows a BEA Tuxedo administrator to update the BDMCONFIG file
when the Tuxedo domain is running.

The following figure shows the relationships between the Domains administrative
tools and the Domains text and binary configuration files. Administration using the
dmadmin utility is through the DMADMIN service, which is advertised by the DMADM
server.
1-14 Using the BEA Tuxedo Domains Component

BEA Tuxedo Domains Architecture
Figure 1-6 Relationships Between Domains Administrative Tools and Files

dmloadcf Command

The dmloadcf(1) command parses the DMCONFIG file and loads the information into
BDMCONFIG. The command uses the environment variable BDMCONFIG to point to the
device or system filename in which the configuration should be stored.

The dmloadcf command, through the -c option, also provides an estimate of the
interprocess communications (IPC) resources needed for each local domain specified
in the configuration.

The dmloadcf command checks the DMTYPE file (%TUXDIR%\udataobj\DMTYPE for
Windows or $TUXDIR/udataobj/DMTYPE for UNIX) to verify that the domain
gateway types specified in the Domains configuration file are valid. Each type of
domain gateway has a domain type designator (TDOMAIN, TOPEND, SNAX, OSITP,
OSITPX), which is used as a tag in the DMTYPE file. Each line in this file has the
following format:

dmtype:access_module_lib:comm_libs:tm_typesw_lib:gw_typesw_lib

The file has the following entry for the TDomain gateway:

TDOMAIN:-lgwt:-lnwi -lnws -lnwi::

For more information about dmloadcf, see reference page dmloadcf(1)in BEA
Tuxedo Command Reference.
Using the BEA Tuxedo Domains Component 1-15

../rfcm/rfcmd.htm#7309411

1 About Domains
dmunloadcf Command

The dmunloadcf(1) command converts the BDMCONFIG configuration file from
binary to text format and prints the output to standard output. For more information
about dmunloadcf, see reference page dmunloadcf(1)in BEA Tuxedo Command
Reference.

dmadmin Command

The dmadmin(1) command allows a BEA Tuxedo administrator to configure,
monitor, and tune domain gateways when the Tuxedo domain is running. It acts as an
administrative command interpreter that translates administrative commands and
sends requests to the DMADMIN service, a generic administrative service advertised by
the DMADM server. DMADMIN invokes functions that validate, retrieve, or update
information in the BDMCONFIG file.

You invoke dmadmin with the -c option to dynamically update the BDMCONFIG file.
Depending on the configuration being changed, some updates will take place
immediately, while others will take place only for new occurrences of whatever is
affected by the update.

For more information about dmadmin, see “Administering Domains” on page 4-1.

Understanding the Domains Configuration
File

Each BEA Tuxedo domain involved in a Domains configuration has a configuration
file in which the interdomain parameters are defined. The text version of the
configuration file is referred to as DMCONFIG, although the configuration file may have
any name, as long as the content of the file conforms to the format described on
reference page DMCONFIG(5) in BEA Tuxedo File Formats, Data Descriptions,
MIBs, and System Processes Reference. Typical configuration filenames begin with
the string dm, followed by a mnemonic string, such as config in the filename
dmconfig.
1-16 Using the BEA Tuxedo Domains Component

../rfcm/rfcmd.htm#1440711
../rf5/rf5.htm#2885315

Understanding the Domains Configuration File
As the administrator for the Domains configuration, you need to create a separate
DMCONFIG file for each BEA Tuxedo domain participating in the configuration. You
can create and edit a DMCONFIG file with any text editor.

Location of DMCONFIG File

For a BEA Tuxedo domain involved in a Domains configuration, the DMCONFIG file
resides on the machine on which the Domains administrative server DMADM is to run,
as specified in the UBBCONFIG file for the Tuxedo domain. The DMADM server may run
on any machine (master machine, non-master machine) in a Tuxedo domain.

Note: The master machine for a BEA Tuxedo domain contains the domain’s
UBBCONFIG file, and is designated as the master machine in the RESOURCES
section of the UBBCONFIG file. Starting, stopping, and administering a Tuxedo
domain is done through the master machine.

Binary Version of DMCONFIG File

The BDMCONFIG file is a binary version of the DMCONFIG file. It is created by running
the dmloadcf command, which parses DMCONFIG and loads the binary BDMCONFIG file
to the location referenced by the BDMCONFIG environment variable. As with DMCONFIG,
the BDMCONFIG file may be given any name; the actual name is the device or system
filename specified in the BDMCONFIG environment variable. The BDMCONFIG
environment variable must be set to an absolute pathname ending with the device or
system filename where BDMCONFIG is to be loaded.

Unlike the TUXCONFIG file, which is the binary version of UBBCONFIG, the BDMCONFIG
file is not propagated to any other machine in a Tuxedo domain when the Tuxedo
application is booted. For the BDMCONFIG file to reside on any other machine in a
Tuxedo domain, the administrator for that domain must manually place it there.
Using the BEA Tuxedo Domains Component 1-17

1 About Domains
Descriptions of Sections of the DMCONFIG File

The DMCONFIG file is made up of specification sections. Lines beginning with an
asterisk (*) indicate the beginning of a specification section. Each such line contains
the name of the section immediately following the *. The asterisk is required when
specifying a section name.

Allowable section names are:

DM_LOCAL (also known as DM_LOCAL_DOMAINS)

DM_REMOTE (also known as DM_REMOTE_DOMAINS)

DM_EXPORT (also known as DM_LOCAL_SERVICES)

DM_IMPORT (also known as DM_REMOTE_SERVICES)

DM_RESOURCES

DM_ROUTING

DM_ACCESS_CONTROL

DM_domtype, where domtype is TDOMAIN, TOPEND, OSITP, OSITPX, or SNACRM +
SNALINKS + SNASTACKS

Note: The DM_LOCAL section must precede the DM_REMOTE section.

As the administrator for the Domains configuration, you use these sections to:

Define local domain access points through which application clients on a remote
domain can access services on the local domain.

Specify the local services available through each local domain access point.

Define remote domain access points through which application clients on the
local domain can access services on a remote domain.

Specify the remote services available through each remote domain access point.

Map local domain access points and remote domain access points to specific
domain gateway groups (TDOMAIN, TOPEND, ...) and network addresses.

The following figure is a simple example of what you are trying to accomplish.
1-18 Using the BEA Tuxedo Domains Component

Understanding the Domains Configuration File
Figure 1-7 Establishing What Services Are Shared Between Two BEA Tuxedo
Domains—Example

In the example, you must also create a DMCONFIG file for Domain Y that complements
the DMCONFIG file created for Domain X. That is, a local domain access point in the
Domain X DMCONFIG file would be a remote domain access point in the Domain Y
DMCONFIG file, and a remote domain access point in the Domain X DMCONFIG file
would be a local domain access point in the Domain Y DMCONFIG file. The example
demonstrates the use of the TDomain gateway server.

The following table provides a description of each section in the DMCONFIG file.

Remote Domain

DMCONFIG

Local Domain

A. Remote Client Access to Local Services

Local Domain

DMCONFIGTuxedo
Client

Remote Domain

TDomain
Gateway

B. Local Client Access to Remote Services

TDomain
Gateway

Tuxedo
Server

Tuxedo
Client

TDomain
Gateway

TDomain
Gateway

Tuxedo
Server

Domain X

Domain X

Domain Y

Domain Y
Using the BEA Tuxedo Domains Component 1-19

1 About Domains
Table 1-1 DMCONFIG File Sections (Sheet 1 of 4)

Section Purpose

DM_LOCAL (also known as
DM_LOCAL_DOMAINS)

Defines one or more local domain access point identifiers (also known as local
domains, or LDOMs). For each local domain access point (logical name) that you
define, you specify a domain gateway group (TDOMAIN, ...) for the access point in
this section, and you specify in the DM_EXPORT section the local services available
through the access point. The local services available through the local domain
access point will be available to clients in one or more remote domains.
You can define multiple local domain access points in this section, one for each
gateway group (TDOMAIN, TOPEND, SNAX, OSITP, OSITPX) used by this BEA
Tuxedo domain to communicate with a remote domain.
One and only one local domain access point is allowed per gateway group. A
domain gateway group consists of a GWADM server process and a domain gateway
server process (for example, GWTDOMAIN, the TDomain gateway server).
Example of a local domain access point entry:
*DM_LOCAL
LOCAL1 GWGRP=GWTGROUP

TYPE=TDOMAIN
ACCESSPOINTID=“BA.CENTRAL01”

Note: You may substitute DOMAINID for the ACCESSPOINTID parameter.

DM_REMOTE (also known as
DM_REMOTE_DOMAINS)

Defines one or more remote domain access point identifiers (also known as remote
domains, or RDOMs). For each remote domain access point (logical name) that you
define, you specify a domain gateway group (TDOMAIN, ...) for the access point in
this section, and you specify in the DM_IMPORT section the remote services
available through the access point. The remote services available through the
remote domain access point will be available to clients in the local domain.
You can define multiple remote domain access points in this section, one or more
for each gateway group (TDOMAIN, TOPEND, SNAX, OSITP, OSITPX) used by
this BEA Tuxedo domain to communicate with a remote domain.
Example of remote domain access point entries:
*DM_REMOTE
REMOT1 TYPE=TDOMAIN

ACCESSPOINTID=“BA.BANK01”
REMOT2 TYPE=TDOMAIN

ACCESSPOINTID=“BA.BANK02”

Note: You may substitute DOMAINID for the ACCESSPOINTID parameter.
1-20 Using the BEA Tuxedo Domains Component

Understanding the Domains Configuration File
DM_EXPORT (also known as
DM_LOCAL_SERVICES)

Specifies the local services exported to one or more remote domains through a
local domain access point defined in the DM_LOCAL section. Only the services
specified for a local domain access point are available to clients on one or more
remote domains, meaning that specifying services in this section is a way to restrict
remote client access to local services. If the DM_EXPORT section is absent, or is
present but empty, all services advertised by the local domain are available to the
remote domains.
A local service made available to remote domains inherits many of its properties
from the SERVICES section of the local UBBCONFIG file. Some of the properties
that may be inherited are LOAD, PRIO, AUTOTRAN, ROUTING, BUFTYPE, and
TRANTIME.
Example of a local service made available to remote domains:
*DM_EXPORT
LTOLOWER LACCESSPOINT=LOCAL1

CONV=N
RNAME=“TOLOWER”
ACL=branch

Note: You may substitute LDOM for the LACCESSPOINT parameter.

DM_IMPORT (also known as
DM_REMOTE_SERVICES)

Specifies the remote services imported through one or more remote domain access
points defined in the DM_REMOTE section and made available to the local domain
through one or more local domain access points. If the DM_IMPORT section is
absent, or is present but empty, no remote services are available to the local
domain.
A remote BEA Tuxedo service made available to the local domain inherits many
of its properties from the SERVICES section of the remote UBBCONFIG file. Some
of the properties that may be inherited are LOAD, PRIO, AUTOTRAN, ROUTING,
BUFTYPE, and TRANTIME.
Example of a remote service made available to the local domain:
*DM_IMPORT
RTOUPPER AUTOTRAN=N

RACCESSPOINT=REMOT1
LACCESSPOINT=LOCAL1
CONV=N
RNAME=“TOUPPER”

Note: You may substitute RDOM for the RACCESSPOINT parameter, and LDOM
for the LACCESSPOINT parameter.

Table 1-1 DMCONFIG File Sections (Sheet 2 of 4)

Section Purpose
Using the BEA Tuxedo Domains Component 1-21

1 About Domains
DM_RESOURCES Specifies global Domains configuration information, specifically a user-supplied
configuration version string. The only parameter in this section is
VERSION=string, where string is a field in which users can enter a version
number for the current DMCONFIG file. This field is not checked by the software.

DM_ROUTING Specifies data-dependent routing criteria for routing local service requests to one
of several remote domains offering the same service. For an example, see
“Specifying Domains Data-Dependent Routing” on page 1-25.

DM_ACCESS_CONTROL Specifies one or more access control list (ACL) names and associates one or more
remote domain access points with each specified ACL name. You can use the ACL
parameter in the DM_EXPORT section by setting ACL=ACL_NAME to restrict access
to a local service exported through a particular local domain access point to just
those remote domain access points associated with the ACL_NAME.
Example of an ACL entry:
*DM_ACCESS_CONTROL
branch ACLIST=REMOT1

Table 1-1 DMCONFIG File Sections (Sheet 3 of 4)

Section Purpose
1-22 Using the BEA Tuxedo Domains Component

Understanding the Domains Configuration File
For a detailed description of the DMCONFIG file, see reference pages DMCONFIG(5)and
DM_MIB(5)in BEA Tuxedo File Formats, Data Descriptions, MIBs, and System
Processes Reference.

DM_domtype Defines the parameters required for a particular Domains configuration. Currently,
the value of domtype can be TDOMAIN, TOPEND, OSITP, OSITPX, or SNACRM
+ SNALINKS + SNASTACKS. Each domain type must be specified in a separate
section.
In a DM_TDOMAIN section, you define the TDomain-specific network
configuration for a local or remote domain access point. You can also define the
network configuration for one or more remote domain access points associated
with one or more WebLogic Server applications, to combine Tuxedo ATMI
servers and WebLogic Server Enterprise JavaBean (EJB) servers in an application;
for details, see BEA Tuxedo Interoperability.
The DM_TDOMAIN section should have an entry per local domain access point if
requests from remote domains to local services are accepted through that access
point. For each local domain access point specified in this section, you must
specify the network address to be used for listening for incoming connections.
The DM_TDOMAIN section should have an entry per remote domain access point if
requests from the local domain to remote services are accepted through that access
point. For each remote domain access point specified in this section, you must
specify the destination network address to be used when connecting to that remote
domain access point.
When Domains link-level failover is in use, you can specify more than one
destination network address for a remote domain access point to implement the
mirrored gateway capability. For an example of a mirrored gateway, see “How to
Configure Domains Link-Level Failover” on page 1-36.
For information about the DM_TOPEND section, see reference page
DMCONFIG(5)for GWTOPEND(5) in BEA Tuxedo File Formats, Data
Descriptions, MIBs, and System Processes Reference. For information about the
DM_OSITP, DM_OSITPX, DM_SNACRM, DM_SNALINKS, and DM_SNASTACKS
sections, see the BEA eLink Documentation page at
http://e-docs.bea.com/elink/mainfram/mainfram.htm.

Table 1-1 DMCONFIG File Sections (Sheet 4 of 4)

Section Purpose
Using the BEA Tuxedo Domains Component 1-23

../rf5/rf5.htm#2885315
../rf5/rf5.htm#5798315
../rf5/rf5.htm#2885315
../rf5/rf5.htm#8973015

1 About Domains
Terminology Improvements for DMCONFIG File

For BEA Tuxedo release 7.1 or later, the Domains MIB uses improved class and
attribute terminology to describe the interaction between local and remote domains.
The improved terminology has been applied to the DMCONFIG(5) reference page,
section names, parameter names, and error messages, and to the DM_MIB(5) reference
page, classes, and error messages.

For backwards compatibility, aliases are provided between the DMCONFIG terminology
used prior to BEA Tuxedo 7.1 and the improved Domains MIB terminology. For BEA
Tuxedo release 7.1 or later, both versions of DMCONFIG terminology are accepted. The
following table shows the mapping of the previous and improved terminology for the
DMCONFIG file.

For BEA Tuxedo release 7.1 or later, the dmunloadcf command generates by default
a DMCONFIG file that uses the improved domains terminology. Use the -c option to
print a DMCONFIG file that uses the previous domains terminology. For example:

prompt> dmunloadcf -c > dmconfig_prev

Previous Terminology Improved Terminology

Section Name Parameter Name Section Name Parameter Name

DM_LOCAL_DOMAINS DM_LOCAL

DM_REMOTE_DOMAINS DM_REMOTE

DOMAINID ACCESSPOINTID

MAXRDOM MAXACCESSPOINT

MAXRDTRAN MAXRAPTRAN

DM_LOCAL_SERVICES DM_EXPORT

DM_REMOTE_SERVICES DM_IMPORT

LDOM LACCESSPOINT

RDOM RACCESSPOINT
1-24 Using the BEA Tuxedo Domains Component

Specifying Domains Data-Dependent Routing
Specifying Domains Data-Dependent
Routing

You can specify data-dependent routing criteria for the routing of local service
requests to remote domains in the DM_ROUTING section of the DMCONFIG file for any of
the following buffer types:

FML

FML32

VIEW

VIEW32

X_C_TYPE

X_COMMON

XML

In the following example, the remote service TOUPPER is available through two
different remote domain access points named REMOT1 and REMOT2, and the
data-dependent routing criteria for TOUPPER is defined in the routing criteria table
named ACCOUNT. In the example, RTOUPPER1 and RTOUPPER2 are alias service names
for TOUPPER, which is the actual service name expected by the remote domains.

*DM_IMPORT
RTOUPPER1 AUTOTRAN=N

RACCESSPOINT=REMOT1
LACCESSPOINT=LOCAL1
CONV=N
RNAME=“TOUPPER”
ROUTING=ACCOUNT

RTOUPPER2 AUTOTRAN=N
RACCESSPOINT=REMOT2
LACCESSPOINT=LOCAL1
CONV=N
RNAME=“TOUPPER”
ROUTING=ACCOUNT
Using the BEA Tuxedo Domains Component 1-25

1 About Domains
*DM_ROUTING
ACCOUNT FIELD=branchid

BUFTYPE=“VIEW:account”
RANGES=“MIN-1000:REMOT1,1001-3000:REMOT2”

For the ACCOUNT routing table, VIEW and account are the type and subtype of data
buffers for which this routing table is valid, and branchid is the name of the field in
the VIEW data buffer to which routing is applied. The allowed values for the
branchid field are as follows:

For the REMOT1 access point, the allowed values range from the minimum value
allowed on the machine associated with REMOT1 to less than or equal to 1000.

For the REMOT2 access point, the allowed values range from the 1001 to less than
or equal to 3000.

If the value of the branchid field for a TOUPPER service request is within the range
MIN-1000, the service request is routed through the REMOT1 access point. If the value
of the branchid field for a TOUPPER service request is within the range 1001-3000,
the service request is routed through the REMOT2 access point.

Specifying Domains Transaction and
Blocking Timeouts

The BEA Tuxedo system provides two timeout mechanisms: a transaction timeout
mechanism and a blocking timeout mechanism. The transaction timeout is used to
define the duration of an ATMI transaction, which may involve several service
requests. The timeout value is defined when the transaction is started. The blocking
timeout is used to define the duration of individual service requests, that is, how long
the ATMI application is willing to wait for a reply to a service request.

If a process is not in transaction mode, the BEA Tuxedo system performs blocking
timeouts. If a process is in transaction mode, the BEA Tuxedo system performs
transaction timeouts but not blocking timeouts. The latter statement is true for
intradomain transactions (that is, transactions handled within a single BEA Tuxedo
domain) but is not true for interdomain transactions. For interdomain transactions, if a
process is in transaction mode, the Domains software performs both transaction
timeouts and blocking timeouts.
1-26 Using the BEA Tuxedo Domains Component

Specifying Domains Transaction and Blocking Timeouts
How the Domains Component Handles Transaction
Timeouts

The BEA Tuxedo transaction timeout mechanism is used unchanged in the Domains
component. Use of the same transaction timeout mechanism is necessary because
domain gateways implement the transaction manager server (TMS) functionality and
therefore are required to handle the TMS timeout messages generated by the BEA
Tuxedo Bulletin Board Liaison (BBL) administrative process.

A local service made available to remote domains in the DM_EXPORT section of the
DMCONFIG file inherits the following transaction-related properties from the SERVICES
section of the local UBBCONFIG file:

AUTOTRAN—When AUTOTRAN is turned on for a service and a service request is
received for the service that is not already within a transaction, the local BEA
Tuxedo system automatically starts a transaction for the service.

TRANTIME—Transaction timeout value in seconds for transactions automatically
started for the service. If this timeout value is exceeded for a transaction, the
BEA Tuxedo nodes (machines) infected with the transaction generate a TMS
timeout message.

Similarly, a remote BEA Tuxedo service made available to the local domain in the
DM_IMPORT section of the DMCONFIG file inherits the AUTOTRAN and TRANTIME
properties from the SERVICES section of the remote UBBCONFIG file. If the TRANTIME
timeout value is exceeded for a transaction, the BEA Tuxedo nodes infected with the
transaction generate a TMS timeout message.

A service advertised on a machine running BEA Tuxedo release 8.1 or later inherits an
additional transaction-timeout property named MAXTRANTIME from the RESOURCES
section of the UBBCONFIG file. If the MAXTRANTIME timeout value is less than the
TRANTIME timeout value or the timeout value passed in a tpbegin(3c) call to start a
transaction, the timeout for a transaction is reduced to the MAXTRANTIME value.
MAXTRANTIME has no effect on a transaction started on a machine running BEA
Tuxedo 8.0 or earlier, except that when a machine running BEA Tuxedo 8.1 or later is
infected by the transaction, the transaction timeout value is capped—reduced if
necessary—to the MAXTRANTIME value configured for that node.
Using the BEA Tuxedo Domains Component 1-27

1 About Domains
For a Domains configuration, the following transaction-handling scenarios are
possible:

If an interdomain transaction infects a node that does not understand the
MAXTRANTIME parameter, or the node understands the MAXTRANTIME parameter
but the parameter is not set, the timeout value for the transaction is determined
by TRANTIME or by the timeout value passed in the tpbegin() call that started
the transaction. If the TRANTIME or tpbegin() timeout value is exceeded, all
BEA Tuxedo nodes infected with the transaction—including the node that
started the transaction—generate a TMS timeout message.

If an interdomain transaction infects a node that understands the MAXTRANTIME
parameter and the parameter is set for that node, the timeout value for the
transaction is reduced to no greater than the MAXTRANTIME value on that node.

If the TRANTIME or tpbegin() timeout value is less than or equal to
MAXTRANTIME, the transaction-handling scenario becomes the one previously
described.

If the TRANTIME or tpbegin() timeout value is greater than MAXTRANTIME, the
infected node reduces the timeout value for the transaction to MAXTRANTIME. If
the MAXTRANTIME timeout value is exceeded, the infected node generates a TMS
timeout message.

For more information about MAXTRANTIME, see MAXTRANTIME in the RESOURCES
section in UBBCONFIG(5) or TA_MAXTRANTIME in the T_DOMAIN class in TM_MIB(5).

How the Domains Component Handles Blocking
Timeouts

The BEA Tuxedo blocking timeout mechanism uses information stored in the registry
slot assigned to each BEA Tuxedo client or server process—one registry slot per
process—running on the local machine. Information in the registry slot is used by the
local BBL to detect requesters that have been blocked for a time greater than
BLOCKTIME. Because a domain gateway process is a multitasking server that can
process several service requests at a time (which would require multiple registry slots),
domain gateways cannot use the registry slot mechanism. When a blocking timeout
condition arises in a Domains environment, a domain gateway sends an error/failure
reply message to the requester and cleans any context associated with the service
request.
1-28 Using the BEA Tuxedo Domains Component

Specifying Domains Connection Policies
In the DM_LOCAL section of the DMCONFIG file, you can set the blocking timeout for a
local domain access point using the BLOCKTIME parameter. For example:

*DM_LOCAL
LOCAL1 GWGRP=GWTGROUP

TYPE=TDOMAIN
ACCESSPOINTID=“BA.CENTRAL01”
BLOCKTIME=30

The BLOCKTIME parameter specifies the maximum wait time a blocking ATMI call
will block before timing out. A blocking timeout condition implies that the affected
service request has failed.

The blocking timeout value is a multiplier of the SCANUNIT parameter specified in the
RESOURCES section of the UBBCONFIG file. The value SCANUNIT * BLOCKTIME must
be greater than or equal to SCANUNIT and less than or equal to 32,767 seconds.

If BLOCKTIME is not specified in the DMCONFIG file, the default is set to the value of the
BLOCKTIME parameter specified in the RESOURCES section of the UBBCONFIG file. If the
BLOCKTIME parameter is not specified in the UBBCONFIG file, the default is set so that
(SCANUNIT * BLOCKTIME) is approximately 60 seconds.

Be aware that interdomain transactions generate blocking timeout conditions when
transaction duration exceeds BLOCKTIME. That is, for an interdomain transaction, if the
BLOCKTIME value is less than (a) the TRANTIME timeout value specified in the
SERVICES section of the UBBCONFIG file or (b) the timeout value passed in the
tpbegin() call to start the transaction, the timeout for the transaction is reduced to the
BLOCKTIME value. In contrast, for intradomain transactions (that is, transactions
handled within a single BEA Tuxedo domain), the BLOCKTIME value specified in the
RESOURCES section of the TUXCONFIG file has no effect on the timeout of an
intradomain transaction.

Specifying Domains Connection Policies

You can specify the conditions under which a local domain gateway tries to establish
a connection to one or more remote domains by selecting one of the following
connection policies:
Using the BEA Tuxedo Domains Component 1-29

1 About Domains
ON_DEMAND (default)—Connect when requested by either (1) a client request to a
remote service or (2) an administrative “connect” command. Under this
connection policy, a connection can be established in any of the following ways:

Client request

Manually through the dmadmin(1) connect command

Through an incoming connection

ON_STARTUP—Connect at gateway server initialization (boot) time. Under this
connection policy, a connection can be established in any of the following ways:

Automatically when the BEA Tuxedo application boots

Manual through the dmadmin(1) connect command

Through an incoming connection

INCOMING_ONLY—Accept incoming connections but do not initiate a connection
automatically. Under this connection policy, a connection can be established in
any of the following ways:

Manually through the dmadmin(1) connect command

Through an incoming connection

Connection policy applies only to TDomain and TOP END domain gateways.

How To Configure Your Connection Policy

In the DM_LOCAL section of the DMCONFIG file, you set the connection policy for a local
domain access point using the CONNECTION_POLICY parameter. For example:

*DM_LOCAL
LOCAL1 GWGRP=GWTGROUP

TYPE=TDOMAIN
ACCESSPOINTID=“BA.CENTRAL01”
BLOCKTIME=30
CONNECTION_POLICY=ON_STARTUP

If you do not specify a connection policy for a local domain access point, the
connection policy for that access point defaults to ON_DEMAND.
1-30 Using the BEA Tuxedo Domains Component

Specifying Domains Connection Policies
For TDomain gateways running BEA Tuxedo release 8.1 or later software, you can set
the connection policy on a per local or per remote domain basis in the DM_TDOMAIN
section of the DMCONFIG file. For example:

*DM_LOCAL
LOCAL1 GWGRP=GWTGROUP

TYPE=TDOMAIN
ACCESSPOINTID=“BA.CENTRAL01”
BLOCKTIME=30

*DM_TDOMAIN
LOCAL1 NWADDR=“//albany.acme.com:4051”

CONNECTION_POLICY=ON_STARTUP
REMOT1 NWADDR=“//newyork.acme.com:65431”

CONNECTION_POLICY=ON_DEMAND
REMOT2 NWADDR=“//philly.acme.com:65431”

The connection policy specified for a remote domain access point takes precedence
over the connection policy specified for a local domain access point. So, in the
preceding example, the connection policy configurations will be:

LOCAL1 to REMOT1 — ON_DEMAND
LOCAL1 to REMOT2 — ON_STARTUP

For BEA Tuxedo 8.1 or later, you can specify any of the following connection policy
values for a local domain access point in the DM_TDOMAIN section of the DMCONFIG
file:

ON_DEMAND

ON_STARTUP

INCOMING_ONLY

Specifying no connection policy for a local domain access point defaults to the global
connection policy specified in the DM_LOCAL section of the DMCONFIG file. Specifying
a global connection policy in the DM_TDOMAIN section takes precedence over the global
connection policy specified in the DM_LOCAL section.

Note: If you choose to specify a global connection policy in the DM_TDOMAIN section,
do not specify a global connection policy in the DM_LOCAL section.

For BEA Tuxedo 8.1 or later, you can also specify any of the following connection
policy values for a remote domain access point in the DM_TDOMAIN section of the
DMCONFIG file:
Using the BEA Tuxedo Domains Component 1-31

1 About Domains
LOCAL (default)

ON_DEMAND

ON_STARTUP

INCOMING_ONLY

Specifying LOCAL or no connection policy for a remote domain access point defaults
to the global connection policy.

Without the remote-domain connection policy capability, a global connection policy of
ON_STARTUP means that the local TDomain gateway will try to connect to all remote
domains at boot time, even if some of the remote domains will not be used initially.
With a large number of remote domains, the boot time could be substantial. With the
remote-domain connection policy capability, you can select which remote domain
connections not to automatically establish at boot time for a global connection policy
of ON_STARTUP.

How To Use Connection Retry Processing

When CONNECTION_POLICY is set to ON_STARTUP, you can configure two other
parameters to determine how many times the local domain gateway attempts to
establish a connection to the remote domains. By default, the local domain gateway
retries failed connections every 60 seconds, but you can specify a different value for
this interval using parameters MAXRETRY and RETRY_INTERVAL.

You use the MAXRETRY parameter to specify the number of times that a domain
gateway tries to establish connections to remote domains. The minimum value is 0, and
the maximum value is 2147483647. The default setting is 2147483647. Setting this
parameter to 0 turns off connection retry processing.

You use the RETRY_INTERVAL parameter to specify the number of seconds between
automatic attempts to establish a connection to remote domains. The minimum value
is 0, and the maximum value is 2147483647. The default setting is 60. If the MAXRETRY
parameter is set to 0, setting RETRY_INTERVAL is not allowed.

Example 1:

*DM_LOCAL
LOCAL1 GWGRP=GWTGROUP

TYPE=TDOMAIN
ACCESSPOINTID=“BA.CENTRAL01”
1-32 Using the BEA Tuxedo Domains Component

Specifying Domains Connection Policies
BLOCKTIME=30
CONNECTION_POLICY=ON_STARTUP
MAXRETRY=5
RETRY_INTERVAL=100

Example 2 (Only possible for TDomain gateways running BEA Tuxedo release 8.1 or
later software):

*DM_LOCAL
LOCAL1 GWGRP=GWTGROUP

TYPE=TDOMAIN
ACCESSPOINTID=“BA.CENTRAL01”
BLOCKTIME=30

*DM_TDOMAIN
LOCAL1 NWADDR=“//albany.acme.com:4051”

CONNECTION_POLICY=ON_STARTUP
MAXRETRY=5
RETRY_INTERVAL=100

REMOT1 NWADDR=“//newyork.acme.com:65431”
CONNECTION_POLICY=ON_STARTUP
MAXRETRY=10
RETRY_INTERVAL=40

In the second example, the MAXRETRY and RETRY_INTERVAL values 10 and 40 will be
the automatic connection retry criteria used by the local TDomain gateway to establish
a connection to the remote domain access point named REMOT1.

How Connection Policy Determines Availability of
Remote Services

The connection policy that you specify determines how services imported from a
remote domain are advertised in the BEA Tuxedo bulletin board by the domain
gateway:

For ON_DEMAND, the local domain gateway continually advertises services
imported from a remote domain.

For ON_STARTUP, the local domain gateway advertises services imported from a
remote domain as long as a connection exists to the remote domain.
Using the BEA Tuxedo Domains Component 1-33

1 About Domains
For INCOMING_ONLY, the local domain gateway advertises services imported
from a remote domain when the gateway receives an incoming connection or
when a dmadmin connect command is issued.

When the connection policy is ON_STARTUP or INCOMING_ONLY (but not ON_DEMAND),
Dynamic Status, a TDomain and TOP END domain gateway feature, checks the status
of remote services. The status of a remote service depends on the status of the network
connection between the local and remote domain gateways. Remote services are
advertised and available on the local domain whenever a connection is successfully
established to the domain on which they reside. Remote services are suspended and
unavailable whenever the connection is not established to the domain on which they
reside.

For each service, the domain gateway keeps track not only of the remote domains from
which the service is imported, but also of which remote domains are available. In this
way, the gateway provides intelligent load balancing of requests to remote domains. If
all the remote domains from which a service is imported become unreachable, the
domain gateway suspends the service in the BEA Tuxedo bulletin board.

For example, suppose a service named RSVC is imported from two remote domains,
as specified by the following entries in the DM_IMPORT section of the DMCONFIG file:

*DM_IMPORT
RSVC AUTOTRAN=N

RACCESSPOINT=REMOT1
LACCESSPOINT=LOCAL1

RSVC AUTOTRAN=N
RACCESSPOINT=REMOT2
LACCESSPOINT=LOCAL1

When connections to both REMOT1 and REMOT2 are up, the domain gateway load
balances requests for the RSVC service. If the connection to REMOT1 goes down, the
gateway sends all requests for RSVC to REMOT2. If both connections go down, the
gateway suspends RSVC in the bulletin board. Subsequent requests for RSVC are either
routed to a local service or fail with TPENOENT.

See Also

“Setting Up Connections in a Domains Configuration” on page 2-56

“Controlling Connections in a Domains Configuration” on page 2-63
1-34 Using the BEA Tuxedo Domains Component

Specifying Domains Failover and Failback
Specifying Domains Failover and Failback

In the DM_IMPORT section of the DMCONFIG file, you can set up the Domains-level
failover and failback functionality for your Domains configuration. In the
DM_TDOMAIN section of the DMCONFIG file, you can set up the Domains link-level
failover functionality for your Domains configuration.

How to Configure Domains-Level Failover and Failback

Domains-level failover is a mechanism that transfers requests to alternate remote
domains when a failure is detected with a primary remote domain. It also provides
failback to the primary remote domain when that domain is restored.

To support Domains-level failover and failback, you specify a list of the remote
domain access points through which a particular service can be executed. For example:

*DM_IMPORT
TOUPPER RACCESSPOINT=“REMOT1,REMOT2,REMOT3”

In this example, the TOUPPER service can be executed through any of three remote
domain access points: REMOT1 (primary), REMOT2, and REMOT3. When REMOT1 is
unavailable, REMOT2 is used for failover. When REMOT1 and REMOT2 are both
unavailable, REMOT3 is used for failover.

You must specify ON_STARTUP or INCOMING_ONLY as the value of the
CONNECTION_POLICY parameter if you want to configure alternate remote domains for
a service. If you specify ON_DEMAND as your connection policy, your servers cannot
“fail over” to the alternate remote domains that you have specified in the
RACCESSPOINT parameter.

Domains-level failback occurs when a network connection to the primary remote
domain is re-established for any of the following reasons:

Automatic connection retries (ON_STARTUP only)

Incoming connections

Manual dmadmin connect command
Using the BEA Tuxedo Domains Component 1-35

1 About Domains
How to Configure Domains Link-Level Failover

Domains link-level failover is a mechanism that ensures that a secondary network link
becomes active when a primary network link fails. However, it does not provide
failback to the primary link when that link is restored, meaning that when the primary
link is restored, you must manually bring down the secondary link to force traffic back
onto the primary link.

To configure Domains link-level failover, you specify multiple entries for a remote
domain access point in the DM_TDOMAIN section of the DMCONFIG file. For example:

*DM_TDOMAIN
REMOT1 NWADDR=“//newyork.acme.com:65431”
REMOT1 NWADDR=“//trenton.acme.com:65431”

The first entry is considered to be the primary address, which means its NWADDR is the
first network address tried when a connection is being attempted to the remote domain
access point. The second entry is considered to be the secondary address, which means
its NWADDR is the second network address tried when a connection cannot be
established using the primary address.

The second entry points to a secondary remote gateway that must reside in a different
BEA Tuxedo domain than the BEA Tuxedo domain in which the primary remote
gateway resides. The secondary and primary remote gateways must have the same
ACCESSPOINTID defined in the DM_LOCAL section of their associated DMCONFIG files;
this arrangement is often referred to as a mirrored gateway. This feature is not
recommended for use with transactions or conversations. In addition, the mirrored
gateway is not recommended for use when the primary remote gateway is available.

Specifying Domains Keepalive

Domains keepalive, available for TDomain gateways running BEA Tuxedo release 8.1
or later software, allows you to enable and configure a keepalive protocol at the TCP
level and/or application level for each TDomain gateway connection. TCP-level
keepalive and application-level keepalive are not mutually exclusive, meaning that
you can configure a Domains connection using both options.
1-36 Using the BEA Tuxedo Domains Component

Specifying Domains Keepalive
The following table provides some key information about Domains keepalive.
.

Most BEA Tuxedo Domains configurations span across firewalls, and firewalls
typically time out idle connections. Not only will Domains keepalive keep BEA
Tuxedo interdomain connections open during periods of inactivity, but it will also
enable TDomain gateways to quickly detect Domains connection failures. Currently,
a TDomain gateway learns of a Domains connection failure through the underlying
TCP stack, which may report the failure 15 minutes or more (depending on the local
operating system configuration) after the failure occurs.

What is TCP-Level Keepalive?

Although the keepalive functionality is not part of the TCP specification, most
operating systems provide a TCP keepalive timer. The TCP keepalive timer allows the
server machine at one end of a TCP connection to detect whether the client machine at
the other end of the connection is reachable.

Every message received by the server machine over the TCP connection resets the TCP
keepalive timer. If the keepalive timer detects no activity on the TCP connection for a
predefined period of time (typically two hours), the timer expires, and the server
machine sends a probe segment packet to the client machine. If the connection is still
open and the client machine is still alive, the client machine responds by sending an
acknowledgement to the server machine. If the server machine does not receive an

Table 1-2 About Domains Keepalive

Level Interoperate With
Earlier Tuxedo
Release?

Individual
Timer?

Quicker
Connection Failure
Detection?

Keepalive Event
With Firewall?

TCP-Level
Keepalive

Yes No Yes * Yes

Application-Level
Keepalive

No Yes Yes Yes

* For TCP-level keepalive to quickly detect a TDomain gateway connection failure, it must be set to a small time
interval. Doing so may flood the network with TCP packets.
Using the BEA Tuxedo Domains Component 1-37

1 About Domains
acknowledgement within a fixed period of time of sending the probe segment packet,
the server machine assumes that the connection is broken and releases any resources
associated with the connection.

Besides determining whether the connection is open and the client machine is alive,
TCP-level keepalive is a way of keeping idle connections open through firewalls.
Automatically sending a probe segment packet after a predefined period of connection
inactivity resets the firewall’s idle-connection timer before it times out, which allows
the connection to stay open.

The interval for an operating system’s TCP keepalive timer is typically set to two
hours. This interval can be changed, but changing it affects all TCP connections for a
machine. An operating system’s TCP keepalive interval is a system-wide value.

How to Configure TCP-Level Keepalive for Domains

The BEA Tuxedo TCP-level keepalive option for Domains is named TCPKEEPALIVE,
which has been added as an optional parameter in the DM_TDOMAIN section of the
DMCONFIG file. You can use this parameter to enable the Domains TCP-level keepalive
option on a per local or per remote domain basis.

The allowed values for TCPKEEPALIVE are:

LOCAL (relevant only to remote domain access points)

NO (keepalive disabled)

YES (keepalive enabled)

By default, the Domains TCP-level keepalive option is disabled. When you enable
TCP-level keepalive for a Domains connection, the keepalive interval used for the
connection is the system-wide value configured for the operating system’s TCP
keepalive timer.

To clarify the use of TCPKEEPALIVE, consider the following Domains TCP-level
keepalive configuration:

*DM_TDOMAIN
LOCAL1 NWADDR=“//albany.acme.com:4051”

TCPKEEPALIVE=Y
1-38 Using the BEA Tuxedo Domains Component

Specifying Domains Keepalive
REMOT1 NWADDR=“//newyork.acme.com:65431”
REMOT2 NWADDR=“//philly.acme.com:65431”

TCPKEEPALIVE=NO

The TCP-level keepalive configuration specified for a remote domain access point
takes precedence over the TCP-level keepalive configuration specified for the local
domain access point. So, in the preceding example, the TCP-level keepalive
configurations will be:

LOCAL1 to REMOT1 — TCP-level keepalive enabled
LOCAL1 to REMOT2 — TCP-level keepalive disabled

For a local domain access point, you can specify any of the following values for the
TCPKEEPALIVE parameter:

NO (default)

YES

For a remote domain access point, you can specify any of the following values for the
TCPKEEPALIVE parameter:

LOCAL (default)

NO

YES

Specifying LOCAL or no configuration for a remote domain access point defaults to the
local TCP-level keepalive configuration.

Note: You can enable each of two interoperating BEA Tuxedo domains with
TCP-level keepalive, assuming that both domains are running BEA Tuxedo
8.1 or later software.

If the connection policy for a Domains connection is ON_STARTUP and the TCP
connection is closed due to a TCP-level keepalive failure, automatic connection retry
attempts. If the connection retry is not successful, you must use the dmadmin connect
command to re-establish the connection. For information about the dmadmin connect
command, see “How to Establish Connections Between Domains” on page 2-63.
Using the BEA Tuxedo Domains Component 1-39

1 About Domains
What is Application-Level Keepalive?

Some people argue against using the operating system’s TCP keepalive, citing that the
probe segment packets consume unnecessary bandwidth and waste money on internet
connections where users pay on a per packet basis. Some people also believe that
keepalive belongs in the application layer or link layer, not in the transport (TCP)
layer, citing that the application layer should:

Decide whether the application has been waiting an excessively long time to
receive incoming messages.

Decide what actions to take to determine whether the TCP connection is still
open and that the machine and application at the other end of the connection are
still running.

Regardless of who thinks what, one advantage of application-level keepalive over
TCP-level keepalive is that the interval for the keepalive timer can be set on a per
connection basis. With TCP-level keepalive, the timer interval must be set on a per
machine basis.

Using application-level keepalive, the server application sends an application-specific
keepalive message whenever the application keepalive timer times out. (Typically, the
keepalive message consists of just header information, meaning that the message has
no associated data.) The client application responds by sending an acknowledgement
to the server application. If the server application does not receive an
acknowledgement within a predefined period of time of sending the keepalive
message, the server application assumes that the connection is broken and releases any
resources associated with the connection.

Besides determining whether the connection is open and the client application is
running, application-level keepalive is a way of keeping idle connections open through
firewalls. Automatically sending a keepalive message after a predefined period of
connection inactivity resets the firewall’s idle-connection timer before it times out,
which allows the connection to stay open.
1-40 Using the BEA Tuxedo Domains Component

Specifying Domains Keepalive
How to Configure Application-Level Keepalive for
Domains

The BEA Tuxedo application-level keepalive option for Domains is named
KEEPALIVE. This parameter and a companion parameter named KEEPALIVEWAIT have
been added as optional parameters in the DM_TDOMAIN section of the DMCONFIG file.
You can use these parameters to configure the Domains application-level keepalive
option on a per local or per remote domain basis.

You use the DMKEEPALIVE parameter to specify the maximum time that the local
TDomain gateway will wait without receiving any traffic on the Domains connection;
if the maximum time is exceeded, the gateway sends an application-level keepalive
request message. The allowed values for DMKEEPALIVE are:

-1 (relevant only to remote domain access points)

0 (keepalive disabled)

1 <= value <= 2147483647 (keepalive enabled), in milliseconds, currently
rounded up to the nearest second by the Domains software

The DMKEEPALIVE default setting is 0.

You use the DMKEEPALIVEWAIT parameter to specify the maximum time that the local
TDomain gateway will wait without receiving an acknowledgement to a sent keepalive
message. If the maximum time is exceeded, the gateway assumes that the connection
to the remote TDomain gateway is broken and releases any resources associated with
the connection. The minimum value for DMKEEPALIVEWAIT is 0, and the maximum
value is 2147483647 milliseconds, currently rounded up to the nearest second by the
Domains software. The DMKEEPALIVEWAIT default setting is 0.

If DMKEEPALIVE is 0 (keepalive disabled), setting DMKEEPALIVEWAIT has no
effect.

If DMKEEPALIVE is enabled and DMKEEPALIVEWAIT is set to a value greater than
DMKEEPALIVE, the local TDomain gateway will send more than one
application-level keepalive message before the DMKEEPALIVEWAIT timer expires.
This combination of settings is allowed.

If DMKEEPALIVE is enabled and DMKEEPALIVEWAIT is set to 0, receiving an
acknowledgement to a sent keepalive message is unimportant: any such
acknowledgement is ignored by the local TDomain gateway. The local TDomain
Using the BEA Tuxedo Domains Component 1-41

1 About Domains
gateway continues to send keepalive messages every time the DMKEEPALIVE
timer times out. Use this combination of settings to keep an idle connection open
through a firewall.

To clarify the use of DMKEEPALIVE and DMKEEPALIVEWAIT, consider the following
Domains application-level keepalive configuration:

*DM_TDOMAIN
LOCAL1 NWADDR=“//albany.acme.com:4051”

DMKEEPALIVE=1010
DMKEEPALIVEWAIT=20

REMOT1 NWADDR=“//newyork.acme.com:65431”
DMKEEPALIVE=4000
DMKEEPALIVEWAIT=3000

REMOT2 NWADDR=“//philly.acme.com:65431”
DMKEEPALIVE=-1

The keepalive configuration specified for a remote domain access point takes
precedence over the keepalive configuration specified for the local domain access
point. So, in the preceding example, the application-level keepalive configurations will
be:

LOCAL1 to REMOT1 — Keepalive timer = 4 seconds, and wait timer = 3 seconds
LOCAL1 to REMOT2 — Keepalive timer = 2 seconds, and wait timer = 1 second

For a local domain access point, you can specify any of the following values for the
DMKEEPALIVE parameter:

0 (default)

1 <= value <= 2147483647 in milliseconds, currently rounded up to the nearest
second by the Domains software

For a remote domain access point, you can specify any of the following values for the
DMKEEPALIVE parameter:

-1 (default)

0

1 <= value <= 2147483647 in milliseconds, currently rounded up to the nearest
second by the Domains software

Specifying -1 or no keepalive configuration for a remote domain access point defaults
to the local application-level keepalive configuration.
1-42 Using the BEA Tuxedo Domains Component

Configuring a Domains Environment
Note: You can configure each of two interoperating BEA Tuxedo domains with
application-level keepalive, using the same or different wait intervals,
assuming that both domains are running BEA Tuxedo 8.1 or later software.

If the connection policy for a Domains connection is ON_STARTUP and the connection
experiences an application-level keepalive failure, automatic connection retry
processing attempts to re-establish the connection. For more information about
connection retry processing, see “How To Use Connection Retry Processing” on page
1-32.

Keepalive Compatibility with Earlier BEA Tuxedo
Releases

Domains TCP-level keepalive is compatible with BEA Tuxedo 8.0 or earlier software.
The BEA Tuxedo software running at the other end of the TCP connection may be any
release of BEA Tuxedo because Domains TCP-level keepalive is executed at the
network transport (TCP) layer.

Domains application-level keepalive is not compatible with BEA Tuxedo 8.0 or earlier
software. The BEA Tuxedo software running at the other end of the TCP connection
must be BEA Tuxedo 8.1 or later to be able to understand an application-level
keepalive message. When connected to a TDomain gateway running an earlier release
of BEA Tuxedo software, the TDomain gateway does not send an application-level
keepalive message; instead, it logs a warning message in the local user log (ULOG)
stating that the remote domain is running an earlier release of BEA Tuxedo software
and does not support Domains application-level keepalive.

Configuring a Domains Environment

The following list summarizes the tasks that you must complete to configure a
Domains environment for the TDomain gateway type:

1. Edit the UBBCONFIG file with any text editor and configure the Domains
administrative servers and the TDomain gateway server. For example:
Using the BEA Tuxedo Domains Component 1-43

1 About Domains
*GROUPS
DMADMGRP LMID=SITE1 GRPNO=1
GWTGROUP LMID=SITE2 GRPNO=2

*SERVERS
DMADM SRVGRP=DMADMGRP

SRVID=1001
REPLYQ=N
RESTART=Y
GRACE=0

GWADM SRVGRP=GWTGROUP
SRVID=1002
REPLYQ=N
RESTART=Y
GRACE=0

GWTDOMAIN SRVGRP=GWTGROUP
SRVID=1003
RQADDR=“GWTGROUP”
REPLYQ=N
RESTART=Y
GRACE=0

Note: In the previous example, REPLYQ=N is specified for the DMADM, GWADM, and
GWTDOMAIN servers. This setting is not required: you can, if you prefer,
designate a reply queue for any of these servers by specifying REPLYQ=Y.
When REPLYQ is set to N, however, performance may be improved.

The TDomain gateway server and its associated GWADM server must run on the
same machine in a BEA Tuxedo domain. The DMADM server may run on any
machine—master machine, non-master machine—in the BEA Tuxedo domain.

2. Load the BEA Tuxedo configuration by running tmloadcf(1). The tmloadcf
command parses UBBCONFIG and loads the binary TUXCONFIG file to the location
referenced by the TUXCONFIG variable.

3. Edit the DMCONFIG file with any text editor and configure the Domains
environment for the TDomain gateway server. For example:

*DM_LOCAL
LOCAL1 GWGRP=GWTGROUP

TYPE=TDOMAIN
ACCESSPOINTID=“BA.CENTRAL01”
BLOCKTIME=30
CONNECTION_POLICY=ON_STARTUP
MAXRETRY=5
RETRY_INTERVAL=100
1-44 Using the BEA Tuxedo Domains Component

Configuring a Domains Environment
*DM_REMOTE
REMOT1 TYPE=TDOMAIN

ACCESSPOINTID=“BA.BANK01”
REMOT2 TYPE=TDOMAIN

ACCESSPOINTID=“BA.BANK02”

*DM_EXPORT
LTOLOWER LACCESSPOINT=LOCAL1

CONV=N
RNAME=“TOLOWER”

*DM_IMPORT
RTOUPPER AUTOTRAN=N

RACCESSPOINT=REMOT1
LACCESSPOINT=LOCAL1
CONV=N
RNAME=“TOUPPER”

*DM_TDOMAIN
LOCAL1 NWADDR=“//albany.acme.com:4051”
REMOT1 NWADDR=“//newyork.acme.com:65431”
REMOT2 NWADDR=“//philly.acme.com:65431”

The DMCONFIG file must reside on the same machine as the DMADM server.

4. Load the Domains configuration by running dmloadcf(1). The dmloadcf
command parses DMCONFIG and loads the binary BDMCONFIG file to the location
referenced by the BDMCONFIG variable.

5. Start the BEA Tuxedo application servers by running tmboot(1). The tmboot
command executes all administrative processes and all servers listed in the
SERVERS section of the TUXCONFIG file named by the TUXCONFIG and
TUXOFFSET environment variables. It starts the servers in the order that they are
listed in the SERVERS section: DMADM, then GWADM, and then GWTDOMAIN. The
Domains servers must be started in this order. In addition, the Domains servers
must be started before the application servers.

For a detailed example of configuring a Domains ATMI environment, see “Planning
and Configuring ATMI Domains” on page 2-1. For a detailed example of configuring
a Domains CORBA environment, see “Planning and Configuring CORBA Domains”
on page 3-1.
Using the BEA Tuxedo Domains Component 1-45

1 About Domains
Configuring a Domains Environment for
Migration

The following sample UBBCONFIG and DMCONFIG files give you an idea of how to
configure a BEA Tuxedo application for Domains migration. The entries of particular
importance to the Domains migration are highlighted in bold.

Listing 1-1 Sample UBBCONFIG File Configured for Domains Migration

*RESOURCES
IPCKEY 76666
MASTER SITE1,SITE2
OPTIONS LAN,MIGRATE
MODEL MP
#
*MACHINES
mach1 LMID=SITE1
 TUXDIR=“/home/rsmith/tuxroot”
 APPDIR=“/home/rsmith/bankapp”
 TUXCONFIG=“/home/rsmith/bankapp/tuxconfig”
mach2 LMID=SITE2
 TUXDIR=“/home/rsmith/tuxroot”
 APPDIR=“/home/rsmith/bankapp”
 TUXCONFIG=“/home/rsmith/bankapp/tuxconfig”
mach3 LMID=SITE3
 TUXDIR=“/home/rsmith/tuxroot”
 APPDIR=“/home/rsmith/bankapp”
 TUXCONFIG=“/home/rsmith/bankapp/tuxconfig”
#
*GROUPS
DMADMGRP LMID=“SITE1,SITE3” GRPNO=1
GWTGROUP LMID=“SITE2,SITE3” GRPNO=2
.
.
.
*NETWORK
SITE1 NADDR=“//albany.acme.com:4065”
 NLSADDR=“//albany.acme.com:4068”
SITE2 NADDR=“//auburn.acme.com:4065”
 NLSADDR=“//auburn.acme.com:4068”
SITE3 NADDR=“//boston.acme.com:4065”
1-46 Using the BEA Tuxedo Domains Component

Configuring a Domains Environment for Migration
 NLSADDR=“//boston.acme.com:4068”

#
*SERVERS
DMADM SRVGRP=DMADMGRP

SRVID=1001
REPLYQ=N
RESTART=Y
GRACE=0

GWADM SRVGRP=GWTGROUP
SRVID=1002
REPLYQ=N
RESTART=Y
GRACE=0

GWTDOMAIN SRVGRP=GWTGROUP
SRVID=1003
RQADDR=“GWTGROUP”
REPLYQ=N
RESTART=Y
GRACE=0

.

.

.

Note: In the previous example, REPLYQ=N is specified for the DMADM, GWADM, and
GWTDOMAIN servers. This setting is not required: you can, if you prefer,
designate a reply queue for any of these servers by specifying REPLYQ=Y.
When REPLYQ is set to N, however, performance may be improved.

Listing 1-2 Sample DMCONFIG File Configured for Domains Migration

*DM_LOCAL
LOCAL1 GWGRP=GWTGROUP

TYPE=TDOMAIN
ACCESSPOINTID=“BA.CENTRAL01”
BLOCKTIME=30
CONNECTION_POLICY=ON_STARTUP
MAXRETRY=5
RETRY_INTERVAL=100

*DM_REMOTE
REMOT1 TYPE=TDOMAIN

ACCESSPOINTID=“BA.BANK01”
Using the BEA Tuxedo Domains Component 1-47

1 About Domains
REMOT2 TYPE=TDOMAIN
ACCESSPOINTID=“BA.BANK02”

*DM_EXPORT
LTOLOWER LACCESSPOINT=LOCAL1

CONV=N
RNAME=“TOLOWER”

*DM_IMPORT
RTOUPPER AUTOTRAN=N

RACCESSPOINT=REMOT1
LACCESSPOINT=LOCAL1
CONV=N
RNAME=”TOUPPER”

*DM_TDOMAIN
LOCAL1 NWADDR=“//albany.acme.com:4051”
LOCAL1 NWADDR=“//boston.acme.com:4051”
REMOT1 NWADDR=“//newyork.acme.com:65431”
REMOT2 NWADDR=“//philly.acme.com:65431”

In the sample configuration files, the DMADM server and the TDomain gateway group
servers are configured to migrate to the SITE3 machine. For the DMADM migration, an
administrator will activate a DMADM server process on the SITE3 machine after
completing the following tasks:

Setting the BDMCONFIG environment variable on the SITE3 machine.

Running the dmloadcf(1) command to load the BDMCONFIG file on the SITE3
machine.

For the TDomain gateway group migration, an administrator will activate GWADM and
GWTDOMAIN server processes on the SITE3 machine. At that point, the configurations
and responsibilities associated with the LOCAL1 access point will be handled by the
new GWTDOMAIN server process listening for incoming connection requests on network
address boston.acme.com:4051.

Note: The DMADM and domain gateway group(s) do not have to be migrated to the
same machine.
1-48 Using the BEA Tuxedo Domains Component

Configuring a Domains Environment for Migration
How to Migrate the DMADM Server

To migrate DMADM to a new machine, follow these steps.

1. Copy DMCONFIG to the new machine and run dmloadcf.

2. Activate the DMADM server process on the new machine. For details, see “Methods
for Activating Individual Server Processes” on page 1-50.

3. Optional: Restart all domain gateway groups for the BEA Tuxedo application.
For details, see “Methods for Activating Individual Server Processes” on page
1-50.

If you do not restart the domain gateway groups, they will continue to function,
but after DMADM has been migrated, all MIB requests for them will fail.

How to Migrate a TDomain Gateway Group

When transactions are being used in a Domains configuration, the TDomain gateway
group can be migrated only across machines of the same type.

To migrate a TDomain gateway group, follow these steps.

1. In the DMCONFIG file, add multiple listening addresses, in the following format, to
the DM_TDOMAIN section:

*DM_TDOMAIN
LOCAL1 NWADDR=“//primary:port”
LOCAL1 NWADDR=“//backup:port”

2. If you are using transactions, you must copy the Domains transaction log
manually to the backup machine.

3. The DMCONFIG files for the remote domains should include both network
addresses specified in step 1.

4. Activate the GWADM and GWTDOMAIN server processes on the new machine. For
details, see the following section.
Using the BEA Tuxedo Domains Component 1-49

1 About Domains
Methods for Activating Individual Server Processes

You can use any of the following methods to activate individual BEA Tuxedo server
processes:

BEA Tuxedo Administration Console

Command tmboot(1) with the -s command line option

MIB (TM_MIB(5)) API

For information about performing application migration tasks, see “Migrating Your
Application” in Administering a BEA Tuxedo Application at Run Time.
1-50 Using the BEA Tuxedo Domains Component

CHAPTER
2 Planning and
Configuring ATMI
Domains

The following sections explain how to plan and configure a domain for a BEA Tuxedo
ATMI Domains environment:

Planning to Build Domains from Multiple BEA Tuxedo Applications

Examining the creditapp Domains Configuration

Setting Up a Domains Configuration

Setting Up Security in a Domains Configuration

Setting Up Connections in a Domains Configuration

Controlling Connections in a Domains Configuration

Configuring Domains Link-Level Failover and Keepalive
Using the BEA Tuxedo Domains Component 2-1

2 Planning and Configuring ATMI Domains
Planning to Build Domains from Multiple
BEA Tuxedo Applications

The following figure shows two BEA Tuxedo applications: the bankapp application
and a credit card authorization application.

Figure 2-1 Two BEA Tuxedo Applications

The bankapp application connects ATMs at various bank branches to the central bank
office. The credit card authorization application processes customer requests for credit
cards. Over time, the bank managers realize that their customers would be better served
if the bankapp application could communicate directly with the credit card
authorization application. With direct communication, the bank could offer instant
credit cards to anyone opening a new account.

The bankapp application is a sample application included with the BEA Tuxedo
distribution, and the credit card authorization application is a hypothetical extension of
bankapp. The bankapp application files reside at the following location:

tux_prod_dir\samples\atmi\bankapp (Windows)

tux_prod_dir/samples/atmi/bankapp (UNIX)
2-2 Using the BEA Tuxedo Domains Component

Planning to Build Domains from Multiple BEA Tuxedo Applications
Where tux_prod_dir represents the directory in which the BEA Tuxedo distribution
is installed.

The following listing shows the content of a file named ubbmp, which is the
UBBCONFIG file for the multiple-machine version of the bankapp application.

Listing 2-1 ubbmp Configuration File for the bankapp Application

.

.

.
*RESOURCES
IPCKEY 80952
UID <user id from id(1)>
GID <group id from id(1)>
PERM 0660
MAXACCESSERS 40
MAXSERVERS 35
MAXSERVICES 75
MAXCONV 10
MAXGTT 20
MASTER SITE1,SITE2
SCANUNIT 10
SANITYSCAN 12
BBLQUERY 30
BLOCKTIME 30
DBBLWAIT 6
OPTIONS LAN,MIGRATE
MODEL MP
LDBAL Y
##SECURITY ACL
##AUTHSVC "..AUTHSVC"
#
*MACHINES
<SITE1's uname> LMID=SITE1

TUXDIR="<TUXDIR1>"
APPDIR="<APPDIR1>"
ENVFILE="<APPDIR1>/ENVFILE"
TLOGDEVICE="<APPDIR1>/TLOG"
TLOGNAME=TLOG
TUXCONFIG="<APPDIR1>/tuxconfig"
TYPE="<machine type1>"
ULOGPFX="<APPDIR1>/ULOG"

<SITE2's uname> LMID=SITE2
TUXDIR="<TUXDIR2>"
APPDIR="<APPDIR2>"
ENVFILE="<APPDIR2>/ENVFILE"
Using the BEA Tuxedo Domains Component 2-3

2 Planning and Configuring ATMI Domains
TLOGDEVICE="<APPDIR2>/TLOG"
TLOGNAME=TLOG
TUXCONFIG="<APPDIR2>/tuxconfig"
TYPE="<machine type2>"
ULOGPFX="<APPDIR2>/ULOG"

#
*GROUPS
#
Group for Authentication Servers
#
##AUTHGRP LMID=SITE1 GRPNO=101

#
Group for Application Queue (/Q) Servers
#
##QGRP1 LMID=SITE1 GRPNO=102
TMSNAME=TMS_QM TMSCOUNT=2
OPENINFO="TUXEDO/QM:<APPDIR1>/qdevice:QSP_BANKAPP"

#
Group for Application Manager's Servers
#
##MGRGRP1 LMID=SITE1 GRPNO=103

#
Group for EventBroker Servers
#
##EVBGRP1 LMID=SITE1 GRPNO=104

DEFAULT: TMSNAME=TMS_SQL TMSCOUNT=2
BANKB1 LMID=SITE1 GRPNO=1

OPENINFO="TUXEDO/SQL:<APPDIR1>/bankdl1:bankdb:readwrite"
BANKB2 LMID=SITE2 GRPNO=2

OPENINFO="TUXEDO/SQL:<APPDIR2>/bankdl2:bankdb:readwrite"

*NETWORK
SITE1 NADDR="<network address of SITE1>"

BRIDGE="<device of provider1>"
NLSADDR="<network listener address of SITE1>"

SITE2 NADDR="<network address of SITE2>"
BRIDGE="<device of provider2>"
NLSADDR="<network listener address of SITE2>"

*SERVERS
#
TUXEDO System /T server providing application specific authentication.
Ref. AUTHSVR(5).
#
##AUTHSVR SRVGRP=AUTHGRP SRVID=1 RESTART=Y GRACE=0 MAXGEN=2
CLOPT="-A"
2-4 Using the BEA Tuxedo Domains Component

Planning to Build Domains from Multiple BEA Tuxedo Applications
#
TUXEDO System /T Message Queue Manager. It is a server that enqueues and
dequeues messages on behalf of programs calling tpenqueue(3) and
tpdequeue(3) respectively. Ref. TMQUEUE(5).
#
##TMQUEUE SRVGRP=QGRP1 SRVID=1 CONV=N GRACE=0
CLOPT="-s QSP_BANKAPP:TMQUEUE"

#
TUXEDO System /T Message Forwarding Server that forwards messages that have
been stored using tpenqueue(3) for later processing. Ref. TMQFORWARD(5).
#
##TMQFORWARD SRVGRP=QGRP1 SRVID=2 CONV=N REPLYQ=N GRACE=0
CLOPT="-- -e -n -d -q Q_OPENACCT_LOG"

#
TUXEDO System /T User Event Broker that manages user events by notifying
subscribers when those events are posted. Ref. TMUSREVT(5).
#
##TMUSREVT SRVGRP=EVBGRP1 SRVID=1 GRACE=3600
ENVFILE="<APPDIR1>/TMUSREVT.ENV"
CLOPT="-e tmusrevt.out -o tmusrevt.out -A --
-f <APPDIR1>/tmusrevt.dat"
SEQUENCE=11

#
TUXEDO Application Server that subscribes to certain events.
#
##ACCTMGR SRVGRP=MGRGRP1 SRVID=1
CLOPT="-A -o ACCTMGR.LOG -- -w 1000.00"
SEQUENCE=12

DEFAULT: RESTART=Y MAXGEN=5 REPLYQ=Y CLOPT="-A"

TLR SRVGRP=BANKB1 SRVID=1 RQADDR=tlr1
CLOPT="-A -- -T 100 -e 1000.00"

TLR SRVGRP=BANKB1 SRVID=2 RQADDR=tlr1
CLOPT="-A -- -T 200 -e 1000.00"

TLR SRVGRP=BANKB2 SRVID=3 RQADDR=tlr2
CLOPT="-A -- -T 600 -e 1000.00"

TLR SRVGRP=BANKB2 SRVID=4 RQADDR=tlr2
CLOPT="-A -- -T 700 -e 1000.00"

XFER SRVGRP=BANKB1 SRVID=5
XFER SRVGRP=BANKB2 SRVID=6
ACCT SRVGRP=BANKB1 SRVID=7
ACCT SRVGRP=BANKB2 SRVID=8
BAL SRVGRP=BANKB1 SRVID=9
BAL SRVGRP=BANKB2 SRVID=10
BTADD SRVGRP=BANKB1 SRVID=11
BTADD SRVGRP=BANKB2 SRVID=12
Using the BEA Tuxedo Domains Component 2-5

2 Planning and Configuring ATMI Domains
AUDITC SRVGRP=BANKB1 SRVID=13 CONV=Y MIN=1 MAX=10 RQADDR="auditc"
BALC SRVGRP=BANKB1 SRVID=24
BALC SRVGRP=BANKB2 SRVID=25
#
*SERVICES
DEFAULT: LOAD=50 AUTOTRAN=Y TRANTIME=30
WITHDRAWAL PRIO=50 ROUTING=ACCOUNT_ID
DEPOSIT PRIO=50 ROUTING=ACCOUNT_ID
TRANSFER PRIO=50 ROUTING=ACCOUNT_ID
INQUIRY PRIO=50 ROUTING=ACCOUNT_ID
CLOSE_ACCT PRIO=40 ROUTING=ACCOUNT_ID
OPEN_ACCT PRIO=40 ROUTING=BRANCH_ID
BR_ADD PRIO=20 ROUTING=BRANCH_ID
TLR_ADD PRIO=20 ROUTING=BRANCH_ID
ABAL PRIO=30 ROUTING=b_id
TBAL PRIO=30 ROUTING=b_id
ABAL_BID PRIO=30 ROUTING=b_id
TBAL_BID PRIO=30 ROUTING=b_id
ABALC_BID PRIO=30 ROUTING=b_id
TBALC_BID PRIO=30 ROUTING=b_id
#
*ROUTING
ACCOUNT_ID FIELD=ACCOUNT_ID

BUFTYPE="FML"
RANGES="10000-59999:BANKB1,

60000-109999:BANKB2"
BRANCH_ID FIELD=BRANCH_ID

BUFTYPE="FML"
RANGES="1-5:BANKB1,

6-10:BANKB2"
b_id FIELD=b_id

BUFTYPE="VIEW:aud"
RANGES="1-5:BANKB1,

6-10:BANKB2"

The following sections demonstrate two different ways of reconfiguring the bankapp
application and the credit card authorization application so that they can communicate
directly with one another:

“Option 1: Reconfigure the Applications as a Single BEA Tuxedo Domain” on
page 2-7

“Option 2: Reconfigure the Applications as a Domains Configuration” on page
2-12
2-6 Using the BEA Tuxedo Domains Component

Planning to Build Domains from Multiple BEA Tuxedo Applications
Option 1: Reconfigure the Applications as a Single BEA
Tuxedo Domain

One solution is to combine the bankapp application and the credit card authorization
application into one BEA Tuxedo application, or domain, as shown in the following
figure.

Figure 2-2 Combining Two BEA Tuxedo System Applications

Creating the UBBCONFIG File for the Combined Application

To create the UBBCONFIG file for the combined application, take the following
information from the UBBCONFIG file for the credit card authorization application and
add it to the UBBCONFIG file for the bankapp application:

Add machine, network, and group entries for the credit card authorization
application to the UBBCONFIG file.
Using the BEA Tuxedo Domains Component 2-7

2 Planning and Configuring ATMI Domains
Add Server entries for the credit card authorization application to the
UBBCONFIG file.

Add Service entries for the credit card authorization to the UBBCONFIG file.

The following listing shows a possible UBBCONFIG file for the combined application.

Listing 2-2 Sample UBBCONFIG File for the Combined Application

*RESOURCES
IPCKEY 76666
UID 0000
GID 000
PERM 0660
MAXACCESSERS 40
MAXSERVERS 35
MAXSERVICES 75
MAXCONV 10
MAXGTT 100
MASTER SITE1,SITE2
SCANUNIT 10
SANITYSCAN 5
BBLQUERY 50
BLOCKTIME 2
DBBLWAIT 6
OPTIONS LAN,MIGRATE
MODEL MP
LDBAL Y
#
*MACHINES
#
Machines for the bankapp part
mach1 LMID=SITE1
 TUXDIR=“/home/rsmith/tuxroot”
 APPDIR=“/home/rsmith/bankapp”
 ENVFILE=“/home/rsmith/bankapp/ENVFILE”
 TLOGDEVICE=“/home/rsmith/bankapp/TLOG”
 TLOGNAME=TLOG
 TUXCONFIG=“/home/rsmith/bankapp/tuxconfig”

TYPE=“type1”
ULOGPFX=“/home/rsmith/bankapp/ULOG”

mach2 LMID=SITE2
 TUXDIR=“/home/rsmith/tuxroot”
 APPDIR=“/home/rsmith/bankapp”
 ENVFILE=“/home/rsmith/bankapp/ENVFILE”
 TLOGDEVICE=“/home/rsmith/bankapp/TLOG”
 TLOGNAME=TLOG
2-8 Using the BEA Tuxedo Domains Component

Planning to Build Domains from Multiple BEA Tuxedo Applications
 TUXCONFIG=“/home/rsmith/bankapp/tuxconfig”
 TYPE=“type2”
 ULOGPFX=“/home/rsmith/bankapp/ULOG”
mach3 LMID=SITE3
 TUXDIR=“/home/rsmith/tuxroot”
 APPDIR=“/home/rsmith/bankapp”
 ENVFILE=“/home/rsmith/bankapp/ENVFILE”
 TLOGDEVICE=“/home/rsmith/bankapp/TLOG”
 TLOGNAME=TLOG
 TUXCONFIG=“/home/rsmith/bankapp/tuxconfig”
 TYPE=“type2”
 ULOGPFX=“/home/rsmith/bankapp/ULOG”
#
Machine for the credit card authorization part
sfexpz LMID=SITE4
 TUXDIR=“/home/rsmith/tuxroot”
 APPDIR=“/home/rsmith/bankapp”
 ENVFILE=“/home/rsmith/bankapp/ENVFILE”
 TLOGDEVICE=“/home/rsmith/bankapp/TLOG”
 TLOGNAME=TLOG
 TUXCONFIG=“/home/rsmith/bankapp/tuxconfig”

TYPE=“type1”
ULOGPFX=“/home/rsmith/bankapp/ULOG”

#
*GROUPS
DEFAULT: TMSNAME=TMS_SQL TMSCOUNT=2
#
Groups for the bankapp part
BANKB1 LMID=SITE1 GRPNO=1

OPENINFO=“TUXEDO/SQL:/home/rsmith/bankapp/bankdl1:bankdb:readwrite”
BANKB2 LMID=SITE2 GRPNO=2

OPENINFO=“TUXEDO/SQL:/home/rsmith/bankapp/bankdl2:bankdb:readwrite”
BANKB3 LMID=SITE3 GRPNO=3

OPENINFO=“TUXEDO/SQL:/home/rsmith/bankapp/bankdl3:bankdb:readwrite”
#
Group for the credit card authorization part
CREDIT LMID=SITE4 GRPNO=4

OPENINFO=“TUXEDO/SQL:/home/rsmith/bankapp/crdtdl1:bankdb:readwrite”
#
*NETWORK
#
Network connections for the bankapp part
SITE1 NADDR=“<network address of SITE1>”
 BRIDGE=“<device of provider1>”
 NLSADDR=“<network listener address of SITE1>”
SITE2 NADDR=“<network address of SITE2>”
 BRIDGE=“<device of provider2>”
 NLSADDR=“<network listener address of SITE2>”
SITE3 NADDR=“<network address of SITE3>”
Using the BEA Tuxedo Domains Component 2-9

2 Planning and Configuring ATMI Domains
 BRIDGE=“<device of provider3>”
 NLSADDR=“<network listener address of SITE3>”
#
Network connections for the credit card authorization part
SITE4 NADDR=“<network address of SITE4>”
 BRIDGE=“<device of provider4>”
 NLSADDR=“<network listener address of SITE4>”
#
*SERVERS
DEFAULT: RESTART=Y MAXGEN=5 REPLYQ=Y CLOPT=“-A”
#
Servers for the bankapp part
TLR SRVGRP=BANKB1 SRVID=1 RQADDR=tlr1

CLOPT=“-A -- -T 100 -e 1000.00”
TLR SRVGRP=BANKB1 SRVID=2 RQADDR=tlr1

CLOPT=“-A -- -T 200 -e 1000.00”
TLR SRVGRP=BANKB2 SRVID=3 RQADDR=tlr2

CLOPT=“-A -- -T 600 -e 1000.00”
TLR SRVGRP=BANKB2 SRVID=4 RQADDR=tlr2

CLOPT=“-A -- -T 700 -e 1000.00”
TLR SRVGRP=BANKB3 SRVID=5 RQADDR=tlr3

CLOPT=“-A -- -T 800 -e 1000.00”
TLR SRVGRP=BANKB3 SRVID=6 RQADDR=tlr3

CLOPT=“-A -- -T 900” -e 1000.00
XFER SRVGRP=BANKB1 SRVID=7
XFER SRVGRP=BANKB2 SRVID=8
XFER SRVGRP=BANKB3 SRVID=9
ACCT SRVGRP=BANKB1 SRVID=10
ACCT SRVGRP=BANKB2 SRVID=11
ACCT SRVGRP=BANKB3 SRVID=12
BAL SRVGRP=BANKB1 SRVID=13
BAL SRVGRP=BANKB2 SRVID=14
BAL SRVGRP=BANKB3 SRVID=15
BTADD SRVGRP=BANKB1 SRVID=16
BTADD SRVGRP=BANKB2 SRVID=17
BTADD SRVGRP=BANKB3 SRVID=18
AUDITC SRVGRP=BANKB1 SRVID=19 CONV=Y MIN=1 MAX=10 RQADDR=”auditc”
BALC SRVGRP=BANKB1 SRVID=20
BALC SRVGRP=BANKB2 SRVID=21
BALC SRVGRP=BANKB3 SRVID=22
#
Servers for the credit card authorization part
TLRA SRVGRP=CREDIT SRVID=26

CLOPT=“-A -- -T 300”
ACCTA SRVGRP=CREDIT SRVID=27
CRDT SRVGRP=CREDIT SRVID=35
#
*SERVICES
DEFAULT: LOAD=50 AUTOTRAN=Y TRANTIME=30
2-10 Using the BEA Tuxedo Domains Component

Planning to Build Domains from Multiple BEA Tuxedo Applications
#
Services for the bankapp part
WITHDRAWAL PRIO=50 ROUTING=ACCOUNT_ID
DEPOSIT PRIO=50 ROUTING=ACCOUNT_ID
TRANSFER PRIO=50 ROUTING=ACCOUNT_ID
INQUIRY PRIO=50 ROUTING=ACCOUNT_ID
CLOSE_ACCT PRIO=40 ROUTING=ACCOUNT_ID
OPEN_ACCT PRIO=40 ROUTING=BRANCH_ID
BR_ADD PRIO=20 ROUTING=BRANCH_ID
TLR_ADD PRIO=20 ROUTING=BRANCH_ID
ABAL PRIO=30 ROUTING=b_id
TBAL PRIO=30 ROUTING=b_id
ABAL_BID PRIO=30 ROUTING=b_id
TBAL_BID PRIO=30 ROUTING=b_id
ABALC_BID PRIO=30 ROUTING=b_id
TBALC_BID PRIO=30 ROUTING=b_id
#
Services for the credit card authorization part
WITHDRAWALA PRIO=50
INQUIRYA PRIO=50
OPENCA PRIO=40
CLOSECA PRIO=40
DEPOSITA PRIO=50
OPEN_ACCT2 PRIO=40
OPENC PRIO=40
#
*ROUTING
ACCOUNT_ID FIELD=ACCOUNT_ID

BUFTYPE=“FML”
RANGES=“10000-39999:BANKB1,

40000-69999:BANKB2,
70000-109999:BANKB3,
:”

BRANCH_ID FIELD=BRANCH_ID
BUFTYPE=“FML”
RANGES=“1-5:BANKB1,

6-10:BANKB2,
11-15:BANKB3”

b_id FIELD=b_id
BUFTYPE="VIEW:aud"
RANGES="1-5:BANKB1,

6-10:BANKB2,
11-15:BANKB3"
Using the BEA Tuxedo Domains Component 2-11

2 Planning and Configuring ATMI Domains
Limitations of Option 1

Administering a single large application can be more cumbersome than
administering two smaller ones; each smaller one has its own UBBCONFIG file
and hence its own administrative interface.

Booting a networked application can be more costly because of the time required
to boot each server and because of the need to propagate bulletin boards across
the network. Smaller, separate applications can be booted simultaneously.

Option 2: Reconfigure the Applications as a Domains
Configuration

Another solution is to reconfigure the bankapp application and the credit card
authorization application as a Domains configuration, as shown in the following
figure. The two domains interoperate through two TDomain gateway server processes,
one running in each domain.

Figure 2-3 Domains Configuration

BEA Tuxedo
System

BEA Tuxedo
System

BEA Tuxedo
System

BEA Tuxedo Domain
2-12 Using the BEA Tuxedo Domains Component

Planning to Build Domains from Multiple BEA Tuxedo Applications
To create the Domains configuration for the bankapp and credit card authorization
applications, you need to create two UBBCONFIG files, one for each of the BEA Tuxedo
applications, and two DMCONFIG files, one for each of the BEA Tuxedo applications.

Creating the UBBCONFIG File for the bankapp Application in the Domains
Environment

To create the UBBCONFIG file for the bankapp application in the Domains
environment, start with a copy of the UBBCONFIG file shown in “Sample UBBCONFIG
File for the Combined Application” on page 2-8 and make the following changes:

In the MACHINES section, remove the machine entry for the credit card
authorization application.

In the NETWORK section, remove the network entry for the credit card
authorization application.

In the GROUPS section, do the following:

Remove the group entry for the credit card authorization application.

Add a group entry for the DMADM server and a different group entry for the
GWADM and GWTDOMAIN servers.

In the SERVERS section, do the following:

Remove the server entries for the credit card authorization application.

Add server entries for the DMADM, GWADM, and GWTDOMAIN servers.

In the SERVICES section, remove the service entries for the credit card
authorization application.

The following listing shows a possible UBBCONFIG file for the bankapp application in
the Domains environment.
Using the BEA Tuxedo Domains Component 2-13

2 Planning and Configuring ATMI Domains
Listing 2-3 Sample UBBCONFIG File for the bankapp Application in the
Domains Environment

*RESOURCES
IPCKEY 76666
UID 0000
GID 000
PERM 0660
MAXACCESSERS 40
MAXSERVERS 35
MAXSERVICES 75
MAXCONV 10
MAXGTT 100
MASTER SITE1,SITE2
SCANUNIT 10
SANITYSCAN 5
BBLQUERY 50
BLOCKTIME 2
DBBLWAIT 6
OPTIONS LAN,MIGRATE
MODEL MP
LDBAL Y
MAXBUFTYPE 16
#
*MACHINES
mach1 LMID=SITE1
 TUXDIR=“/home/rsmith/tuxroot”
 APPDIR=“/home/rsmith/bankapp”
 ENVFILE=“/home/rsmith/bankapp/ENVFILE”
 TLOGDEVICE=“/home/rsmith/bankapp/TLOG”
 TLOGNAME=TLOG
 TUXCONFIG=“/home/rsmith/bankapp/tuxconfig”

TYPE=“type1”
ULOGPFX=“/home/rsmith/bankapp/ULOG”

mach2 LMID=SITE2
 TUXDIR=“/home/rsmith/tuxroot”
 APPDIR=“/home/rsmith/bankapp”
 ENVFILE=“/home/rsmith/bankapp/ENVFILE”
 TLOGDEVICE=“/home/rsmith/bankapp/TLOG”
 TLOGNAME=TLOG
 TUXCONFIG=“/home/rsmith/bankapp/tuxconfig”
 TYPE=“type2”
 ULOGPFX=“/home/rsmith/bankapp/ULOG”
mach3 LMID=SITE3
 TUXDIR=“/home/rsmith/tuxroot”
 APPDIR=“/home/rsmith/bankapp”
 ENVFILE=“/home/rsmith/bankapp/ENVFILE”
 TLOGDEVICE=“/home/rsmith/bankapp/TLOG”
2-14 Using the BEA Tuxedo Domains Component

Planning to Build Domains from Multiple BEA Tuxedo Applications
 TLOGNAME=TLOG
 TUXCONFIG=“/home/rsmith/bankapp/tuxconfig”
 TYPE=“type2”
 ULOGPFX=“/home/rsmith/bankapp/ULOG”
#
*GROUPS
DEFAULT: TMSNAME=TMS_SQL TMSCOUNT=2
#
Groups for bankapp
BANKB1 LMID=SITE1 GRPNO=1

OPENINFO=“TUXEDO/SQL:/home/rsmith/bankapp/bankdl1:bankdb:readwrite”
BANKB2 LMID=SITE2 GRPNO=2

OPENINFO=“TUXEDO/SQL:/home/rsmith/bankapp/bankdl2:bankdb:readwrite”
BANKB3 LMID=SITE3 GRPNO=3

OPENINFO=“TUXEDO/SQL:/home/rsmith/bankapp/bankdl3:bankdb:readwrite”
#
Groups for Domains
DMADMGRP LMID=SITE1 GRPNO=4
GWTGROUP LMID=SITE2 GRPNO=5
#
*NETWORK
SITE1 NADDR=“<network address of SITE1>”
 BRIDGE=“<device of provider1>”
 NLSADDR=“<network listener address of SITE1>”
SITE2 NADDR=“<network address of SITE2>”
 BRIDGE=“<device of provider2>”
 NLSADDR=“<network listener address of SITE2>”
SITE3 NADDR=“<network address of SITE3>”
 BRIDGE=“<device of provider3>”
 NLSADDR=“<network listener address of SITE3>”
#
*SERVERS
DEFAULT: RESTART=Y MAXGEN=5 REPLYQ=Y CLOPT=“-A”
#
Servers for Domains
DMADM SRVGRP=DMADMGRP

SRVID=1001
REPLYQ=N
RESTART=Y
GRACE=0

GWADM SRVGRP=GWTGROUP
SRVID=1002
REPLYQ=N
RESTART=Y
GRACE=0

GWTDOMAIN SRVGRP=GWTGROUP
SRVID=1003
RQADDR=”GWTGROUP”
REPLYQ=N
Using the BEA Tuxedo Domains Component 2-15

2 Planning and Configuring ATMI Domains
RESTART=Y
GRACE=0

#
Servers for bankapp
TLR SRVGRP=BANKB1 SRVID=1 RQADDR=tlr1

CLOPT=“-A -- -T 100 -e 1000.00”
TLR SRVGRP=BANKB1 SRVID=2 RQADDR=tlr1

CLOPT=“-A -- -T 200 -e 1000.00”
TLR SRVGRP=BANKB2 SRVID=3 RQADDR=tlr2

CLOPT=“-A -- -T 600 -e 1000.00”
TLR SRVGRP=BANKB2 SRVID=4 RQADDR=tlr2

CLOPT=“-A -- -T 700 -e 1000.00”
TLR SRVGRP=BANKB3 SRVID=5 RQADDR=tlr3

CLOPT=“-A -- -T 800 -e 1000.00”
TLR SRVGRP=BANKB3 SRVID=6 RQADDR=tlr3

CLOPT=“-A -- -T 900” -e 1000.00
XFER SRVGRP=BANKB1 SRVID=7
XFER SRVGRP=BANKB2 SRVID=8
XFER SRVGRP=BANKB3 SRVID=9
ACCT SRVGRP=BANKB1 SRVID=10
ACCT SRVGRP=BANKB2 SRVID=11
ACCT SRVGRP=BANKB3 SRVID=12
BAL SRVGRP=BANKB1 SRVID=13
BAL SRVGRP=BANKB2 SRVID=14
BAL SRVGRP=BANKB3 SRVID=15
BTADD SRVGRP=BANKB1 SRVID=16
BTADD SRVGRP=BANKB2 SRVID=17
BTADD SRVGRP=BANKB3 SRVID=18
AUDITC SRVGRP=BANKB1 SRVID=19 CONV=Y MIN=1 MAX=10 RQADDR=”auditc”
BALC SRVGRP=BANKB1 SRVID=20
BALC SRVGRP=BANKB2 SRVID=21
BALC SRVGRP=BANKB3 SRVID=22
#
*SERVICES
DEFAULT: LOAD=50 AUTOTRAN=Y TRANTIME=30
WITHDRAWAL PRIO=50 ROUTING=ACCOUNT_ID
DEPOSIT PRIO=50 ROUTING=ACCOUNT_ID
TRANSFER PRIO=50 ROUTING=ACCOUNT_ID
INQUIRY PRIO=50 ROUTING=ACCOUNT_ID
CLOSE_ACCT PRIO=40 ROUTING=ACCOUNT_ID
OPEN_ACCT PRIO=40 ROUTING=BRANCH_ID
BR_ADD PRIO=20 ROUTING=BRANCH_ID
TLR_ADD PRIO=20 ROUTING=BRANCH_ID
ABAL PRIO=30 ROUTING=b_id
TBAL PRIO=30 ROUTING=b_id
ABAL_BID PRIO=30 ROUTING=b_id
TBAL_BID PRIO=30 ROUTING=b_id
ABALC_BID PRIO=30 ROUTING=b_id
TBALC_BID PRIO=30 ROUTING=b_id
2-16 Using the BEA Tuxedo Domains Component

Planning to Build Domains from Multiple BEA Tuxedo Applications
#
*ROUTING
ACCOUNT_ID FIELD=ACCOUNT_ID

BUFTYPE=“FML”
RANGES=“10000-39999:BANKB1,

40000-69999:BANKB2,
70000-109999:BANKB3,
:”

BRANCH_ID FIELD=BRANCH_ID
BUFTYPE=“FML”
RANGES=“1-5:BANKB1,

6-10:BANKB2,
11-15:BANKB3”

b_id FIELD=b_id
BUFTYPE="VIEW:aud"
RANGES="1-5:BANKB1,

6-10:BANKB2,
11-15:BANKB3"

Note: In the previous example, REPLYQ=N is specified for the DMADM, GWADM, and
GWTDOMAIN servers. This setting is not required: you can, if you prefer,
designate a reply queue for any of these servers by specifying REPLYQ=Y.
When REPLYQ is set to N, however, performance may be improved.

Creating a DMCONFIG File for the bankapp Application

You also need to create a DMCONFIG file for the bankapp application, an example of
which is shown in the following listing. The binary version of the a DMCONFIG file
(BDMCONFIG) must reside on the same machine as the DMADM server.

Listing 2-4 Sample DMCONFIG File for the bankapp Application

*DM_LOCAL
LOCAL1 GWGRP=GWTGROUP

TYPE=TDOMAIN
ACCESSPOINTID=”BANK”
BLOCKTIME=10
CONNECTION_POLICY=ON_STARTUP
DMTLOGDEV=“/home/rsmith/bankapp/DMTLOG”
AUDITLOG=“/home/rsmith/bankapp/AUDITLOG”

#
*DM_REMOTE
REMOT1 TYPE=TDOMAIN
Using the BEA Tuxedo Domains Component 2-17

2 Planning and Configuring ATMI Domains
ACCESSPOINTID=”CREDIT.CARD”
#
If the DM_EXPORT section is absent, as in this sample DMCONFIG
file, all services advertised by the local domain are available
to the remote domains. Thus, the following bankapp services are
available to the credit card authorization application:
#
WITHDRAWAL
DEPOSIT
TRANSFER
INQUIRY
CLOSE_ACCT
OPEN_ACCT
BR_ADD
TLR_ADD
ABAL
TBAL
ABAL_BID
TBAL_BID
ABALC_BID
TBALC_BID
#
*DM_IMPORT
WITHDRAWALA RACCESSPOINT=REMOT1

LACCESSPOINT=LOCAL1
INQUIRYA RACCESSPOINT=REMOT1

LACCESSPOINT=LOCAL1
OPENCA RACCESSPOINT=REMOT1

LACCESSPOINT=LOCAL1
CLOSECA RACCESSPOINT=REMOT1

LACCESSPOINT=LOCAL1
DEPOSITA RACCESSPOINT=REMOT1

LACCESSPOINT=LOCAL1
OPEN_ACCT2 RACCESSPOINT=REMOT1

LACCESSPOINT=LOCAL1
OPENC RACCESSPOINT=REMOT1

LACCESSPOINT=LOCAL1
#
*DM_TDOMAIN
LOCAL1 NWADDR=“albany.acme.com:4051”
REMOT1 NWADDR=“newyork.acme.com:65431”
2-18 Using the BEA Tuxedo Domains Component

Planning to Build Domains from Multiple BEA Tuxedo Applications
Creating the UBBCONFIG File for the Credit Card Authorization Application in
the Domains Environment

To create the UBBCONFIG file for the credit card authorization application in the
Domains environment, make the following changes to the UBBCONFIG file for the
credit card authorization application:

In the GROUPS section, add a group entry for the DMADM server and a different
group entry for the GWADM and GWTDOMAIN servers.

In the SERVERS section, add server entries for the DMADM, GWADM, and
GWTDOMAIN servers.

The following listing shows a possible UBBCONFIG file for the credit card authorization
application in the Domains environment.

Listing 2-5 Sample UBBCONFIG File for the Credit Card Authorization
Application in the Domains Environment

*RESOURCES
IPCKEY 76666
UID 0000
GID 000
PERM 0660
MAXACCESSERS 40
MAXSERVERS 35
MAXSERVICES 75
MAXCONV 10
MAXGTT 100
MASTER SITE1
SCANUNIT 10
MODEL SHM
LDBAL Y
#
*MACHINES
sfexpz LMID=SITE1
 TUXDIR=“/home/rsmith/tuxroot”
 APPDIR=“/home/rsmith/creditapp”
 ENVFILE=“/home/rsmith/creditapp/ENVFILE”
 TLOGDEVICE=“/home/rsmith/creditapp/TLOG”
 TLOGNAME=TLOG
 TUXCONFIG=“/home/rsmith/creditapp/tuxconfig”

TYPE=“type1”
ULOGPFX=“/home/rsmith/creditapp/ULOG”

#
*GROUPS
Using the BEA Tuxedo Domains Component 2-19

2 Planning and Configuring ATMI Domains
DEFAULT: TMSNAME=TMS_SQL TMSCOUNT=2
#
Group for credit card authorization
CREDIT LMID=SITE1 GRPNO=1

OPENINFO=“TUXEDO/SQL:/home/rsmith/creditapp/crdtdl1:bankdb:readwrite”
#
Groups for Domains
DMADMGRP LMID=SITE1 GRPNO=2
GWTGROUP LMID=SITE1 GRPNO=3
#
*SERVERS
DEFAULT: RESTART=Y MAXGEN=5 REPLYQ=Y CLOPT=“-A”
#
Servers for Domains
DMADM SRVGRP=DMADMGRP

SRVID=50
REPLYQ=N
RESTART=Y
GRACE=0

GWADM SRVGRP=GWTGROUP
SRVID=60
REPLYQ=N
RESTART=Y
GRACE=0

GWTDOMAIN SRVGRP=GWTGROUP
SRVID=70
RQADDR=”GWTGROUP”
REPLYQ=N
RESTART=Y
GRACE=0

#
Servers for credit card authorization
TLRA SRVGRP=CREDIT SRVID=1

CLOPT=“-A -- -T 600”
ACCTA SRVGRP=CREDIT SRVID=2
CRDT SRVGRP=CREDIT SRVID=3
#
*SERVICES
DEFAULT: LOAD=50 AUTOTRAN=Y TRANTIME=30
Services for credit card authorization
WITHDRAWALA PRIO=50
INQUIRYA PRIO=50
OPENCA PRIO=40
CLOSECA PRIO=40
DEPOSITA PRIO=50
OPEN_ACCT2 PRIO=40
OPENC PRIO=40
2-20 Using the BEA Tuxedo Domains Component

Planning to Build Domains from Multiple BEA Tuxedo Applications
Note: In the previous example, REPLYQ=N is specified for the DMADM, GWADM, and
GWTDOMAIN servers. This setting is not required: you can, if you prefer,
designate a reply queue for any of these servers by specifying REPLYQ=Y.
When REPLYQ is set to N, however, performance may be improved.

Creating a DMCONFIG File for the Credit Card Authorization Application

You also need to create a DMCONFIG file for the credit card authorization application,
an example of which is shown in the following listing.

Listing 2-6 Sample DMCONFIG File for the Credit Card Authorization
Application

*DM_LOCAL
LOCAL1 GWGRP=GWTGROUP

TYPE=TDOMAIN
ACCESSPOINTID=”CREDIT.CARD”
BLOCKTIME=8
DMTLOGDEV=“/home/rsmith/creditapp/DMTLOG”
AUDITLOG=“/home/rsmith/creditapp/AUDITLOG”

#
*DM_REMOTE
REMOT1 TYPE=TDOMAIN

ACCESSPOINTID=”BANK”
#
If the DM_EXPORT section is absent, as in this sample DMCONFIG
file, all services advertised by the local domain are available
to the remote domains. Thus, the following credit card
authorization services are available to the bankapp application:
#
WITHDRAWALA
INQUIRYA
OPENCA
CLOSECA
DEPOSITA
OPEN_ACCT2
OPENC
#
*DM_IMPORT
WITHDRAWAL RACCESSPOINT=REMOT1

LACCESSPOINT=LOCAL1
DEPOSIT RACCESSPOINT=REMOT1

LACCESSPOINT=LOCAL1
TRANSFER RACCESSPOINT=REMOT1

LACCESSPOINT=LOCAL1
Using the BEA Tuxedo Domains Component 2-21

2 Planning and Configuring ATMI Domains
INQUIRY RACCESSPOINT=REMOT1
LACCESSPOINT=LOCAL1

CLOSE_ACCT RACCESSPOINT=REMOT1
LACCESSPOINT=LOCAL1

OPEN_ACCT RACCESSPOINT=REMOT1
LACCESSPOINT=LOCAL1

BR_ADD RACCESSPOINT=REMOT1
LACCESSPOINT=LOCAL1

TLR_ADD RACCESSPOINT=REMOT1
LACCESSPOINT=LOCAL1

ABAL RACCESSPOINT=REMOT1
LACCESSPOINT=LOCAL1

TBAL RACCESSPOINT=REMOT1
LACCESSPOINT=LOCAL1

ABALC_BID RACCESSPOINT=REMOT1
LACCESSPOINT=LOCAL1

TBALC_BID RACCESSPOINT=REMOT1
LACCESSPOINT=LOCAL1

#
*DM_TDOMAIN
LOCAL1 NWADDR=“newyork.acme.com:65431”
REMOT1 NWADDR=“albany.acme.com:4051”

Examining the creditapp Domains
Configuration

The creditapp application is a sample Domains configuration that spans four
machines. In effect, the creditapp application is yet another solution to reconfiguring
the bankapp application and the credit card authorization application—as described in
“Planning to Build Domains from Multiple BEA Tuxedo Applications” on page 2-2—
so that the two applications can communicate directly with one another. In this
solution, the bankapp and credit card authorization applications are reconfigured as
four BEA Tuxedo domains, one domain per machine, that interoperate using TDomain
gateway server processes.

The creditapp application is included with the BEA Tuxedo distribution. Its files
reside at the following location:
2-22 Using the BEA Tuxedo Domains Component

Examining the creditapp Domains Configuration
tux_prod_dir\samples\atmi\creditapp (Windows)

tux_prod_dir/samples/atmi/creditapp (UNIX)

Where tux_prod_dir represents the directory in which the BEA Tuxedo distribution
is installed.

The Domains configuration for the creditapp application requires four UBBCONFIG
files, one for each of the BEA Tuxedo domains, and four DMCONFIG files, one for each
of the BEA Tuxedo domains. The four UBBCONFIG files are named ubbdom1 through
ubbdom4, and the four DMCONFIG files are named domcon1 through domcon4. The files
reside in the creditapp directory.

The following listing shows the content of the ubbdom1 configuration file. Notice in
the SERVERS section that this domain is configured for three TDomain gateway groups,
to be used by this domain to communicate with the three other domains in the Domains
configuration.

Listing 2-7 ubbdom1 Configuration File for the creditapp Application

.

.

.
*RESOURCES
IPCKEY 80952
UID <user id from id(1)>
GID <group id from id(1)>
PERM 0660
MAXACCESSERS 40
MAXSERVERS 35
MAXSERVICES 75
MAXCONV 10
MASTER SITE1
MODEL SHM
LDBAL Y
MAXGTT 100
MAXBUFTYPE 16
SCANUNIT 10
SANITYSCAN 5
DBBLWAIT 6
BBLQUERY 50
BLOCKTIME 2
#
#
*MACHINES
<SITE1's uname> LMID=SITE1
Using the BEA Tuxedo Domains Component 2-23

2 Planning and Configuring ATMI Domains
TUXDIR="<TUXDIR1>"
APPDIR="<APPDIR1>"
ENVFILE="<APPDIR1>/ENVFILE"
TLOGDEVICE="<APPDIR1>/TLOG"
TLOGNAME=TLOG
TUXCONFIG="<APPDIR1>/tuxconfig"
ULOGPFX="<APPDIR1>/ULOG"
TYPE="<machine type1>"

#
#
*GROUPS
DEFAULT: LMID=SITE1
BANKB1 GRPNO=1 TMSNAME=TMS_SQLTMSCOUNT=2

OPENINFO="TUXEDO/SQL:<APPDIR1>/crdtdl1:bankdb:readwrite"
BANKB2 GRPNO=2
BANKB3 GRPNO=3
BANKB4 GRPNO=4
#
#
*SERVERS
#
DEFAULT: RESTART=Y MAXGEN=5 REPLYQ=Y CLOPT="-A"
DMADM SRVGRP=BANKB2 SRVID=32
GWADM SRVGRP=BANKB2 SRVID=30
GWTDOMAIN SRVGRP=BANKB2 SRVID=31
GWADM SRVGRP=BANKB3 SRVID=24
GWTDOMAIN SRVGRP=BANKB3 SRVID=25
GWADM SRVGRP=BANKB4 SRVID=20
GWTDOMAIN SRVGRP=BANKB4 SRVID=21
TLRA SRVGRP=BANKB1 SRVID=2

CLOPT="-A -- -T 100"
BTADD SRVGRP=BANKB1 SRVID=3
ACCTA SRVGRP=BANKB1 SRVID=4
CRDT SRVGRP=BANKB1 SRVID=5
CRDTA SRVGRP=BANKB1 SRVID=6
#
*SERVICES
DEFAULT: LOAD=50
INQUIRYA PRIO=50
WITHDRAWALA PRIO=50
OPEN_ACCT2 PRIO=40
OPENC PRIO=40
OPENCA PRIO=40
CLOSECA PRIO=40
BR_ADD PRIO=20
TLR_ADD PRIO=20
2-24 Using the BEA Tuxedo Domains Component

Examining the creditapp Domains Configuration
The following listing shows the content of the domcon1 Domains configuration file.
Notice in the DM_LOCAL section (also known as the DM_LOCAL_DOMAINS section) that
this domain is configured for three TDomain gateway groups, to be used by this
domain to communicate with the three other domains in the Domains configuration.
The domcon1 content shown here has been updated with the improved Domains
terminology described in “Terminology Improvements for DMCONFIG File” on page
1-24.

Listing 2-8 domcon1 Domains Configuration File for the creditapp Application

.

.

.
*DM_RESOURCES
#
VERSION=U22
#

#
#
*DM_LOCAL
#
QDOM1 GWGRP=BANKB2

TYPE=TDOMAIN
ACCESSPOINTID=”QDOM1”
BLOCKTIME=10
MAXACCESSPOINT=89
DMTLOGDEV=“<APPDIR1>/DMTLOG”
AUDITLOG=“<APPDIR1>/AUDITLOG”
DMTLOGNAME=”DMTLOG_TDOM1”

QDOM2 GWGRP=BANKB3
TYPE=TDOMAIN
ACCESSPOINTID=”QDOM2”
BLOCKTIME=10
MAXACCESSPOINT=89
DMTLOGDEV=“<APPDIR1>/DMTLOG”
AUDITLOG=“<APPDIR1>/AUDITLOG”
DMTLOGNAME=”DMTLOG_TDOM2”

QDOM3 GWGRP=BANKB4
TYPE=TDOMAIN
ACCESSPOINTID=”QDOM3”
BLOCKTIME=10
MAXACCESSPOINT=89
DMTLOGDEV=“<APPDIR1>/DMTLOG”
Using the BEA Tuxedo Domains Component 2-25

2 Planning and Configuring ATMI Domains
AUDITLOG=“<APPDIR1>/AUDITLOG”
DMTLOGNAME=”DMTLOG_TDOM3”

#
#
*DM_REMOTE
#
TDOM1 TYPE=TDOMAIN

ACCESSPOINTID=”TDOM1”

TDOM2 TYPE=TDOMAIN
ACCESSPOINTID=”TDOM2”

TDOM3 TYPE=TDOMAIN
ACCESSPOINTID=”TDOM3”

#
#
*DM_TDOMAIN
#
TDOM1 NWADDR=“<network address of SITE2>”

NWDEVICE=”<device of provider2>

TDOM2 NWADDR=“<network address of SITE3>”
NWDEVICE=”<device of provider3>

TDOM3 NWADDR=“<network address of SITE4>”
NWDEVICE=”<device of provider4>

QDOM1 NWADDR=“<network address of SITE1>”
NWDEVICE=”<device of provider1>

QDOM2 NWADDR=“<network address of SITE1A>”
NWDEVICE=”<device of provider1>

QDOM3 NWADDR=“<network address of SITE1B>”
NWDEVICE=”<device of provider1>

#
#
*DM_EXPORT
#
WITHDRAWALA
INQUIRYA
OPENCA
CLOSECA
2-26 Using the BEA Tuxedo Domains Component

Setting Up a Domains Configuration
If you decide to run the creditapp application, start by reading the README file in the
creditapp directory. The README file explains how to use a UNIX shell script named
RUNME.sh to run the creditapp application. If you want to run the creditapp
application on a Windows system, read the README file to learn the basic setup
information and then execute the comparable tasks in the Windows environment. For
details on using BEA Tuxedo on Windows, see, Using BEA Tuxedo ATMI on
Windows.

Setting Up a Domains Configuration

To configure a Domains environment, you as the Domains administrator must specify
all the information that a BEA Tuxedo domain needs to know about the other
domains—the remote domains—involved in the Domains configuration. This
information includes local services exported to the remote domains, services imported
from the remote domains, and addressing and security parameters for contacting the
remote domains. This information is defined in the UBBCONFIG and DMCONFIG
configuration files for each domain involved in the Domains configuration.

The Domains example described in the following sections is based on the simpapp
application, which is a sample application included with the BEA Tuxedo distribution
at the following location:

tux_prod_dir\samples\atmi\simpapp (Windows)

tux_prod_dir/samples/atmi/simpapp (UNIX)

Where tux_prod_dir represents the directory in which the BEA Tuxedo distribution
is installed.

Configuring a Sample Domains Application (simpapp)

The Domains example, illustrated in the following figure, consists of two BEA Tuxedo
domains: lapp, a local application based on simpapp, and rapp, a remote application
based on simpapp. The lapp application is configured to allow its clients to access a
service called TOUPPER that is available in the rapp application.
Using the BEA Tuxedo Domains Component 2-27

2 Planning and Configuring ATMI Domains
Figure 2-4 Local and Remote Applications in simpapp

Configuration Tasks

The following tasks are required to configure the lapp and rapp applications.
2-28 Using the BEA Tuxedo Domains Component

Setting Up a Domains Configuration
Using the BEA Tuxedo Domains Component 2-29

2 Planning and Configuring ATMI Domains
How to Set Environment Variables for lapp

You need to set the following environment variables for the lapp application to be
configured successfully:

TUXDIR—Absolute pathname to the BEA Tuxedo system root directory on this
machine; sometimes represented as tux_prod_dir.

APPDIR—Absolute pathname to the lapp application root directory on this
machine.

TUXCONFIG—Absolute pathname of the device or filename where the application
binary configuration file for lapp is found on this machine.

BDMCONFIG—Absolute pathname of the device or filename where the Domains
binary configuration file for lapp is found on this machine.

PATH—must include %TUXDIR%\bin (Windows) or $TUXDIR/bin (UNIX).

LD_LIBRARY_PATH (UNIX only)—list of dynamically loadable libraries that
must be loaded on this machine (must include $TUXDIR/lib); on HP-UX on the
HP 9000, use SHLIB_PATH instead of LD_LIBRARY_PATH.

Windows Example

prompt> set TUXDIR=C:\bea\tuxedo
prompt> set APPDIR=C:\home\lapp
prompt> set TUXCONFIG=C:\home\lapp\lapp.tux
prompt> set BDMCONFIG=C:\home\lapp\lapp.bdm
prompt> set PATH=%APPDIR%;%TUXDIR%\bin;%PATH%

Note: Windows accesses the required dynamically loadable library files through its
PATH variable setting.

UNIX Example

prompt> TUXDIR=/home/rsmith/bea/tuxedo
prompt> APPDIR=/home/rsmith/lapp
prompt> TUXCONFIG=/home/rsmith/lapp/lapp.tux
prompt> BDMCONFIG=/home/rsmith/lapp/lapp.bdm
prompt> PATH=$APPDIR:$TUXDIR/bin:/bin:$PATH
2-30 Using the BEA Tuxedo Domains Component

Setting Up a Domains Configuration
prompt> LD_LIBRARY_PATH=$APPDIR:$TUXDIR/lib:/lib:/usr/lib:
$LD_LIBRARY_PATH

prompt> export TUXDIR APPDIR TUXCONFIG BDMCONFIG PATH LD_LIBRARY_PATH

How to Define the Domains Environment for lapp in the
UBBCONFIG File

In lapp.ubb, the text version of the lapp application configuration file, only the
required parameters are defined. Default settings are used for the other parameters. The
following listing shows the content of lapp.ubb.

Listing 2-9 lapp.ubb Configuration File

lapp.ubb
#
*RESOURCES
IPCKEY 111111
MASTER LAPP
MODEL SHM

*MACHINES
giselle
 LMID=LAPP
 TUXDIR=”/home/rsmith/tuxedo”
 APPDIR=”/home/rsmith/lapp”
 TUXCONFIG=”/home/rsmith/lapp/lapp.tux”

*GROUPS
LDMGRP GRPNO=1 LMID=LAPP
LGWGRP GRPNO=2 LMID=LAPP
.
.
.
*SERVERS
DMADM SRVGRP=LDMGRP SRVID=1
GWADM SRVGRP=LGWGRP SRVID=1
GWTDOMAIN SRVGRP=LGWGRP SRVID=2 REPLYQ=N
.
.
.
*SERVICES
.
.
.

Using the BEA Tuxedo Domains Component 2-31

2 Planning and Configuring ATMI Domains
Note: In the previous UBBCONFIG file listing, REPLYQ=N is specified for the DMADM,
GWADM, and GWTDOMAIN servers. This setting is not required: you can, if you
prefer, designate a reply queue for any of these servers by specifying
REPLYQ=Y. When REPLYQ is set to N, however, performance may be improved.

Server Group Definitions

The following server groups are defined in lapp.ubb:

LDMGRP—contains the Domains administrative server (DMADM).

LGWGRP—contains the gateway administrative server (GWADM) and the TDomain
gateway server (GWTDOMAIN).

Server Definitions

DMADM—the Domains administrative server enables run-time modification of the
Domains configuration information in the binary Domains configuration file
(BDMCONFIG). DMADM supports a list of registered gateway groups. Only one
instance of DMADM may be running in a BEA Tuxedo domain involved in a
Domains configuration.

GWADM—the gateway administrative server enables run-time administration of a
particular domain gateway group. This server gets Domains configuration
information from the DMADM server. It also provides administrative functionality
and transaction logging for the gateway group.

GWTDOMAIN—the TDomain gateway server enables access to and from remote
BEA Tuxedo domains, allowing interoperability of two or more BEA Tuxedo
domains. Information about the local and remote services that the TDomain
gateway exports and imports is included in the Domains configuration file
(DMCONFIG).
2-32 Using the BEA Tuxedo Domains Component

Setting Up a Domains Configuration
How to Define Domains Parameters for lapp in the
DMCONFIG File

In lapp.dom, the text version of the lapp Domains configuration file, only the
required parameters are defined. Default settings are used for optional parameters. The
following listing shows the content of the lapp.dom file.

Listing 2-10 lapp.dom Domains Configuration File

#
lapp.dom
#
*DM_LOCAL
LAPP GWGRP=LGWGRP
 TYPE=TDOMAIN
 ACCESSPOINTID=”111111"

*DM_REMOTE
RAPP TYPE=TDOMAIN
 ACCESSPOINTID=”222222"

*DM_EXPORT

*DM_IMPORT
TOUPPER

*DM_TDOMAIN
LAPP NWADDR=”//giselle:5000"
RAPP NWADDR=”//juliet:5000"

DM_LOCAL Section Definitions

The DM_LOCAL section identifies the local domain access points, their associated
domain gateway groups, and their characteristics. There is one and only one local
domain access point per domain gateway group.

The lapp.dom file specifies only one local domain access point, LAPP, and defines the
following properties for the LAPP access point:

GWGRP value is LGWGRP, the name of the domain gateway server group specified
in the lapp.ubb file.
Using the BEA Tuxedo Domains Component 2-33

2 Planning and Configuring ATMI Domains
TYPE of TDOMAIN indicates that the lapp application will be communicating
with the rapp application through the local TDomain gateway server. This
parameter indicates the protocol used by the gateways. Other TYPE values
include TOPEND (BEA TOP END gateway), IDOMAIN (BEA eLink Adapter for
Mainframe gateway), SNAX (BEA eLink Adapter for Mainframe SNA gateway),
and OSITP/OSITPX (BEA eLink Adapter for Mainframe OSI TP gateway).

ACCESSPOINTID identifies the name of the local domain access point; this
identifier must be unique across all domains involved in the Domains
configuration.

DM_REMOTE Section Definitions

The DM_REMOTE section identifies the remote domain access points and their
characteristics. There may be one or more remote domain access points per domain
gateway group.

The lapp.dom file specifies only one remote domain access point, RAPP, and defines
the following properties for the RAPP access point:

TYPE of TDOMAIN indicates that the lapp application will be communicating
with the rapp application through the local TDomain gateway server.

ACCESSPOINTID identifies the name of the remote domain access point; this
identifier must be unique across all domains involved in the Domains
configuration.

DM_EXPORT Section Definitions

The DM_EXPORT section provides information about the services that are exported to
one or more remote domains through a local domain access point. If this section is
absent, or is present but empty, all services advertised by the local domain are available
to the remote domains associated with the access points defined in the DM_REMOTE
section.

As specified in the lapp.dom file, no lapp services are available to the rapp
application through the LAPP access point.
2-34 Using the BEA Tuxedo Domains Component

Setting Up a Domains Configuration
DM_IMPORT Section Definitions

The DM_IMPORT section provides information about the services that are imported
through one or more remote domain access points and made available to the local
domain through one or more local domain access points. If this section is absent, or is
present but empty, no remote services are available to the local domain.

As specified in the lapp.dom file, the rapp service named TOUPPER is available to the
lapp application.

DM_TDOMAIN Section Definitions

The DM_TDOMAIN section defines the addressing information required by the BEA
Tuxedo Domains component. Each domain access point specified in the LOCAL and
REMOTE sections of the configuration file appears as an entry in the in the DM_TDOMAIN
section.

Associated with each local domain access point entry is a NWADDR value, which
specifies the network address at which the local domain will accept connections from
one or more remote domains.

Associated with each remote domain access point entry is a NWADDR value, which
specifies the network address at which the local domain will make a connection to a
remote domain.

As specified in the lapp.dom file, the lapp application will listen for incoming
connection requests on the network address giselle:5000, where giselle is the
name of the machine on which the lapp application is running, and 5000 is the
listening port. Also specified in lapp.dom is that when the lapp application attempts
to make a connection to the rapp application, it will use the network address
juliet:5000, where juliet is the name of the machine on which the rapp
application is running, and 5000 is the destination port.

How to Compile Application and Domains Gateway
Configuration Files for lapp

The lapp.ubb application configuration file contains the information necessary to
boot the lapp application. You compile this file into a binary data file by running
tmloadcf(1).
Using the BEA Tuxedo Domains Component 2-35

../rfcm/rfcmd.htm#9061611

2 Planning and Configuring ATMI Domains
The lapp.dom Domains configuration file contains the information used by the local
lapp TDomain gateway to communicate with the remote rapp TDomain gateway.
You compile this file into a binary data file by running dmloadcf(1).

To compile both configuration files, use the following sample session as a guide.

Windows:
prompt> cd C:\home\lapp
prompt> set TUXCONFIG=C:\home\lapp\lapp.tux
prompt> tmloadcf -y lapp.ubb
prompt> set BDMCONFIG=C:\home\lapp\lapp.bdm
prompt> dmloadcf -y lapp.dom

UNIX:
prompt> cd /home/rsmith/lapp
prompt> TUXCONFIG=/home/rsmith/lapp/lapp.tux
prompt> export TUXCONFIG
prompt> tmloadcf -y lapp.ubb
prompt> BDMCONFIG=/home/rsmith/lapp/lapp.bdm
prompt> export BDMCONFIG
prompt> dmloadcf -y lapp.dom

Once you build both the lapp and rapp applications, you boot the applications on their
respective machines by executing the tmboot(1) command:

prompt> tmboot -y

The order in which the two applications are booted does not matter. Monitor the
applications with dmadmin(1), as described in “Administering Domains” on page 4-1.
Once both applications are booted, a client in the lapp application can call the
TOUPPER service provided by the rapp application.

How to Set Environment Variables for rapp

You need to set the following environment variables for the rapp application to be
configured successfully:

TUXDIR—Absolute pathname to the BEA Tuxedo system root directory on this
machine; sometimes represented as tux_prod_dir.
2-36 Using the BEA Tuxedo Domains Component

../rfcm/rfcmd.htm#7309411
../rfcm/rfcmd.htm#5173411
../rfcm/rfcmd.htm#7516311

Setting Up a Domains Configuration
APPDIR—Absolute pathname to the rapp application root directory on this
machine.

TUXCONFIG—Absolute pathname of the device or filename where the application
binary configuration file for rapp is found on this machine.

BDMCONFIG—Absolute pathname of the device or filename where the Domains
binary configuration file for rapp is found on this machine.

PATH—must include %TUXDIR%\bin (Windows) or $TUXDIR/bin (UNIX).

LD_LIBRARY_PATH (UNIX only)—list of dynamically loadable libraries that
must be loaded on this machine (must include $TUXDIR/lib); on HP-UX on the
HP 9000, use SHLIB_PATH instead of LD_LIBRARY_PATH.

Windows Example

prompt> set TUXDIR=C:\bea\tuxedo
prompt> set APPDIR=C:\home\rapp
prompt> set TUXCONFIG=C:\home\rapp\rapp.tux
prompt> set BDMCONFIG=C:\home\rapp\rapp.bdm
prompt> set PATH=%APPDIR%;%TUXDIR%\bin;%PATH%

Note: Windows accesses the required dynamically loadable library files through its
PATH variable setting.

UNIX Example

prompt> TUXDIR=/home/rsmith/bea/tuxedo
prompt> APPDIR=/home/rsmith/rapp
prompt> TUXCONFIG=/home/rsmith/rapp/rapp.tux
prompt> BDMCONFIG=/home/rsmith/rapp/rapp.bdm
prompt> PATH=$APPDIR:$TUXDIR/bin:/bin:$PATH
prompt> LD_LIBRARY_PATH=$APPDIR:$TUXDIR/lib:/lib:/usr/lib:

$LD_LIBRARY_PATH
prompt> export TUXDIR APPDIR TUXCONFIG BDMCONFIG PATH LD_LIBRARY_PATH
Using the BEA Tuxedo Domains Component 2-37

2 Planning and Configuring ATMI Domains
How to Define the Domains Environment for rapp in the
UBBCONFIG File

In rapp.ubb, the text version of the rapp application configuration file, only the
required parameters are defined. Default settings are used for the other parameters. The
following listing shows the content of the rapp.ubb file.

Listing 2-11 rapp.ubb Application Configuration File

rapp.ubb
#
*RESOURCES
IPCKEY 222222
MASTER RAPP
MODEL SHM

*MACHINES
juliet
 LMID=RAPP
 TUXDIR=”/home/rsmith/bea/tuxedo”
 APPDIR=”/home/rsmith/rapp”
 TUXCONFIG=”/home/rsmith/rapp/rapp.tux”

*GROUPS
RDMGRP GRPNO=1 LMID=RAPP
RGWGRP GRPNO=2 LMID=RAPP
APPGRP GRPNO=3 LMID=RAPP
.
.
.
*SERVERS
DMADM SRVGRP=RDMGRP SRVID=1
GWADM SRVGRP=RGWGRP SRVID=1
GWTDOMAIN SRVGRP=RGWGRP SRVID=2 REPLYQ=N
simpserv SRVGRP=APPGRP SRVID=1
.
.
.
*SERVICES
TOUPPER
.
.
.

2-38 Using the BEA Tuxedo Domains Component

Setting Up a Domains Configuration
Note: In the previous UBBCONFIG file listing, REPLYQ=N is specified for the DMADM,
GWADM, and GWTDOMAIN servers. This setting is not required: you can, if you
prefer, designate a reply queue for any of these servers by specifying
REPLYQ=Y. When REPLYQ is set to N, however, performance may be improved.

The following server groups are defined in rapp.ubb:

RDMGRP—contains the Domains server DMADM.

RGWGRP—contains the Domains servers GWADM and GWTDOMAIN.

APPGRP—contains the application server simpserv.

The simpserv server advertises the TOUPPER service, which converts strings from
lowercase to uppercase characters.

How to Define Domains Parameters for rapp in the
DMCONFIG File

In rapp.dom, the text version of the rapp Domains configuration file, only the
required parameters are defined. Default settings are used for the other parameters. The
following listing shows the content of the rapp.dom file.

Listing 2-12 rapp.dom Domains Configuration File

rapp.dom
#
*DM_LOCAL
RAPP GWGRP=RGWGRP
 TYPE=TDOMAIN
 ACCESSPOINTID=”222222"

*DM_REMOTE
LAPP TYPE=TDOMAIN
 ACCESSPOINTID=”111111"

*DM_EXPORT
TOUPPER

*DM_IMPORT
Using the BEA Tuxedo Domains Component 2-39

2 Planning and Configuring ATMI Domains
*DM_TDOMAIN
RAPP NWADDR=”//juliet:5000"
LAPP NWADDR=”//giselle:5000"

The rapp.dom Domains configuration file is similar to the lapp.dom Domains
configuration file, except that the two files list different services to be exported and
imported. Specifically, the rapp.dom file defines the following Domains
configurations for the rapp application:

Specifies a local domain access point named RAPP, and a remote domain access
point named LAPP. Both access points are associated with the TDomain gateway
server group named RGWGRP.

Specifies that the rapp service named TOUPPER is available to the lapp
application.

Specifies that no lapp services are available to the rapp application.

Specifies that the rapp application will listen for incoming connection requests
on network address juliet:5000, where juliet is the name of the machine on
which the rapp application is running, and 5000 is the listening port.

Specifies that if the rapp application attempts to make a connection to the lapp
application, it will use the network address giselle:5000, where giselle is
the name of the machine on which the lapp application is running, and 5000 is
the destination port.

How to Compile Application and Domain Gateway
Configuration Files for rapp

The rapp.ubb application configuration file contains the information necessary to
boot the rapp application. You compile this file into a binary data file by running
tmloadcf(1).

The rapp.dom Domains configuration file contains the information used by the local
rapp TDomain gateway to communicate with the remote lapp TDomain gateway.
You compile this file into a binary data file by running dmloadcf(1).
2-40 Using the BEA Tuxedo Domains Component

../rfcm/rfcmd.htm#9061611
../rfcm/rfcmd.htm#7309411

Setting Up a Domains Configuration
To compile both configuration files, use the following sample session as a guide.

Windows:
prompt> cd C:\home\rapp
prompt> set TUXCONFIG=C:\home\rapp\rapp.tux
prompt> tmloadcf -y rapp.ubb
prompt> set BDMCONFIG=C:\home\rapp\rapp.bdm
prompt> dmloadcf -y rapp.dom

UNIX:
prompt> cd /home/rsmith/rapp
prompt> TUXCONFIG=/home/rsmith/rapp/rapp.tux
prompt> export TUXCONFIG
prompt> tmloadcf -y rapp.ubb
prompt> BDMCONFIG=/home/rsmith/rapp/rapp.bdm
prompt> export BDMCONFIG
prompt> dmloadcf -y rapp.dom

Once you build both the rapp and lapp applications, you boot the applications on their
respective machines by executing the tmboot(1) command:

prompt> tmboot -y

The order in which the two applications are booted does not matter. Monitor the
applications with dmadmin(1), as described in “Administering Domains” on page 4-1.
Once both applications are booted, a client in the lapp application can call the
TOUPPER service provided by the rapp application.

See Also

“Understanding the Domains Configuration File” on page 1-16

“How to Compress Data Between Domains” on page 2-42

“How to Route Service Requests to Remote Domains” on page 2-42

UBBCONFIG(5) in BEA Tuxedo File Formats, Data Descriptions, MIBs, and
System Processes Reference

DMCONFIG(5) in BEA Tuxedo File Formats, Data Descriptions, MIBs, and
System Processes Reference
Using the BEA Tuxedo Domains Component 2-41

../rfcm/rfcmd.htm#5173411
../rfcm/rfcmd.htm#7516311
../rf5/rf5.htm#365105
../rf5/rf5.htm#2885315

2 Planning and Configuring ATMI Domains
How to Compress Data Between Domains

Data sent between domains can be compressed for faster performance. To configure
compression, set the CMPLIMIT parameter in the DM_TDOMAIN section of the DMCONFIG
file. This parameter, which is only relevant to remote domain access points, specifies
the compression threshold to be used when sending data to a remote domain. The
minimum value is 0, and the maximum value is 2147483647. The default setting is
2147483647. Application buffers larger than the specified size will be compressed.

For more information about setting the CMPLIMIT parameter, see “Compressing Data
Over a Network” in Administering a BEA Tuxedo Application at Run Time.

How to Route Service Requests to Remote Domains

Data-dependent routing information used by domain gateways to send service requests
to specific remote domains is provided in the DM_ROUTING section of the DMCONFIG
file. The FML, FML32, VIEW, VIEW32, X_C_TYPE, X_COMMON, and XML typed buffers are
supported.

To create a routing table for a domain involved in a Domains configuration, you
specify the following information in the DM_ROUTING section of the DMCONFIG file:

Buffer type for which the routing entry is valid

Name of the routing entry and field

Ranges and associated remote domain names of the routing field.

For an example of a Domains data-dependent routing configuration, see “Specifying
Domains Data-Dependent Routing” on page 1-25. For a detailed description of
Domains data-dependent routing, see the DM_ROUTING section on reference page
DMCONFIG(5)in BEA Tuxedo File Formats, Data Descriptions, MIBs, and System
Processes Reference.
2-42 Using the BEA Tuxedo Domains Component

../ada/adrnet.htm#651221
../ada/adrnet.htm#651221
../rf5/rf5.htm#2885315

Setting Up Security in a Domains Configuration
Setting Up Security in a Domains
Configuration

The BEA Tuxedo ATMI environment provides the following basic security
capabilities for Domains configurations:

Authentication—Verifies the identities of the local domain and a remote domain
when attempting to establish a connection to one another

Authorization—Restricts remote client access to local services via access control
lists (ACLs)

Link-level encryption—Keeps interdomain communications private

The security capabilities available to Domains configurations and those available to
individual BEA Tuxedo applications are relatively independent but compatible. For
information about the security capabilities available to BEA Tuxedo applications, see
Using Security in ATMI Applications.

Domains Security Mechanisms

The BEA Tuxedo Domains component provides the following security mechanisms:

Domains authentication—Supplies the means by which the local domain and a
remote domain can mutually authenticate one another when attempting to
connect to one another. You specify identities, or principal names, for the local
domain and each remote domain via the CONNECTION_PRINCIPAL_NAME
parameter in the DM_LOCAL and DM_REMOTE sections of the DMCONFIG file.

In addition, the local domain and a remote domain can use any of three levels of
password security when attempting to connect to one another. You configure the
level of password security on a local domain basis by setting the SECURITY
parameter in the DM_LOCAL section of the DMCONFIG file.

Domains local domain access—Restricts local services to remote domains. If a
service is not exported to remote domains, it is unavailable to them. You export
Using the BEA Tuxedo Domains Component 2-43

2 Planning and Configuring ATMI Domains
a service by placing an entry for the service in the DM_EXPORT section of the
DMCONFIG file.

Domains access control lists (ACLs)—Restricts the availability of services in a
local domain to only certain remote domains. You create ACL names in the
DM_ACCESS_CONTROL section of the DMCONFIG file and apply the ACL names to
services in the EXPORT section of the DMCONFIG file.

Domains ACL policy—Controls the ACL policy for remote domains. You
configure a local or global ACL policy for a remote domain via the ACL_POLICY
parameter in the DM_REMOTE section of the DMCONFIG file.

Domains link-level encryption—Ensures data privacy between communicating
domain gateways. For TDomain gateways, you configure link-level encryption
by setting the MINENCRYPTBITS and MAXENCRYPTBITS parameters in the
DM_TDOMAIN section of the DMCONFIG file.

How to Configure Principal Names for Domains
Authentication

As described in “Establishing a Link Between Domains” on page 2-25 in Using
Security in ATMI Applications, a local TDomain gateway needs an identity, or
principal name, that both the local domain and a remote domain know about so that the
remote domain can authenticate the local domain when the domains are attempting to
connect to one another. Similarly, the remote TDomain gateway needs an identity, or
principal name, that both the remote domain and the local domain know about so that
the local domain can authenticate the remote domain when the domains are attempting
to establish a connection to one another. In addition, the local TDomain gateway uses
its assigned principal name to acquire a set of security credentials needed when setting
up the connection.

The local TDomain gateway needs a second principle name to acquire a set of security
credentials required to enforce the local access control list (ACL) policy described in
“How to Configure ACL Policy for a Remote Domain” on page 2-54.

As the administrator, you use the following configuration parameters to specify the
principal names for the TDomain gateways running in your Release 7.1 or later BEA
Tuxedo applications:
2-44 Using the BEA Tuxedo Domains Component

../sec/secadm.htm#440951

Setting Up Security in a Domains Configuration
SEC_PRINCIPAL_NAME (string) in UBBCONFIG

Specifies the security principal name identification string to be used for
authentication purposes by an application running BEA Tuxedo 7.1 or later
software. This parameter may contain a maximum of 511 characters (excluding
the terminating NULL character). The principal name specified for this parameter
becomes the identity of one or more system processes—including TDomain
gateway (GWTDOMAIN) processes—running in this application.

During application booting, each TDomain gateway process in the application
calls the authentication plug-in to acquire security credentials for the security
principal name specified in SEC_PRINCIPAL_NAME. A TDomain gateway
acquires these credentials for the principal name specified in the
SEC_PRINCIPAL_NAME parameter.

CONNECTION_PRINCIPAL_NAME (string) in DM_LOCAL section of DMCONFIG

Specifies the connection principal name identifier, which is the principal name
for verifying the identity of the domain gateway associated with this local
domain access point when establishing a connection to a remote domain. This
parameter applies only to domain gateways of type TDOMAIN running BEA
Tuxedo 7.1 or later software.

The CONNECTION_PRINCIPAL_NAME parameter may contain a maximum of 511
characters (excluding the terminating NULL character). If this parameter is not
specified, the connection principal name defaults to the ACCESSPOINTID string
for this local domain access point.

For default authentication plug-ins, if a value is assigned to the
CONNECTION_PRINCIPAL_NAME parameter for this local domain access point, it
must be the same as the value assigned to the ACCESSPOINTID parameter for this
local domain access point. If these values do not match, the local TDomain
gateway process will not boot, and the system will generate the following
userlog(3c) message: ERROR: Unable to acquire credentials.

CONNECTION_PRINCIPAL_NAME (string) in DM_REMOTE section of DMCONFIG

Specifies the connection principal name identifier, which is the principal name
for verifying the identity of this remote domain access point when establishing a
connection to the local domain. This parameter applies only to domain gateways
of type TDOMAIN running BEA Tuxedo 7.1 or later software.

The CONNECTION_PRINCIPAL_NAME parameter may contain a maximum of 511
characters (excluding the terminating NULL character). If this parameter is not
Using the BEA Tuxedo Domains Component 2-45

2 Planning and Configuring ATMI Domains
specified, the connection principal name defaults to the ACCESSPOINTID string
for this remote domain access point.

For default authentication plug-ins, if a value is assigned to the
CONNECTION_PRINCIPAL_NAME parameter for this remote domain access point,
it must be the same as the value assigned to the ACCESSPOINTID parameter for
this remote domain access point. If these values do not match, any attempt to set
up a connection between the local TDomain gateway and the remote TDomain
gateway will fail, and the system will generate the following userlog(3c)
message: ERROR: Unable to initialize administration key for
domain domain_name.

In the following example, the CONNECTION_PRINCIPAL_NAME identities in the
DMCONFIG file are used when establishing a connection through the LOCAL1 access
point and the REMOT1 access point.

*DM_LOCAL
LOCAL1 GWGRP=bankg1

TYPE=TDOMAIN
ACCESSPOINTID="BA.CENTRAL01"
CONNECTION_PRINCIPAL_NAME="BA.CENTRAL01"

*DM_REMOTE
REMOT1 TYPE=TDOMAIN

ACCESSPOINTID="BA.BANK01"
CONNECTION_PRINCIPAL_NAME="BA.BANK01"

How to Configure Domains Password Security

Domain gateways can be made to authenticate incoming connections requested by
remote domains. Application administrators can define when security should be
enforced for incoming connections from remote domains.

As the administrator, you can specify the level of security used by a particular local
domain by setting the SECURITY parameter in the DM_LOCAL section of the DMCONFIG
file. There are three levels of password security:

No security (using the NONE option)—Incoming connections from remote
domains are not authenticated.

Application password (using the APP_PW option)—Incoming connections from
remote domains are authenticated using the application password defined in the
TUXCONFIG file. (The application password is not included in the UBBCONFIG
2-46 Using the BEA Tuxedo Domains Component

Setting Up Security in a Domains Configuration
file.) The BEA Tuxedo application password is administered with tmloadcf(1),
which prompts for the password when the SECURITY option is enabled in the
TUXCONFIG file. The password is automatically propagated with the TUXCONFIG
file to the other machines in the configuration. You can update the password
dynamically using the tmadmin command.

Domains password (using the DM_PW option)—Connections between the local
and remote domains are authenticated using passwords defined in the
DM_PASSWORDS section of the BDMCONFIG file. (The DM_PASSWORDS section is
not included in the DMCONFIG file.) These passwords are added to the binary
configuration file after dmloadcf has been run, using DM_MIB(5) or the passwd
subcommand of the dmadmin(1) command. Each entry contains the password
used by a remote domain to access the local domain, and the password required
by the local domain to access a remote domain.

If in the TUXCONFIG file the SECURITY parameter is set to NONE or is not set, the
Domains configuration can still require the TDomain gateways to enforce security at
the DM_PW level. If the DM_PW option is selected, each remote domain must have a
password defined in the DM_PASSWORDS section of the BDMCONFIG file. In other words,
incoming connections without a password are rejected by the TDomain gateway.

Using the DM_MIB(5) to Set Domains Passwords (DM_PW)

You can use the DM_MIB to set Domains passwords (DM_PW). The T_DM_PASSWORDS
class in the DM_MIB represents configuration information for interdomain
authentication through local and remote access points of type TDOMAIN. The
T_DM_PASSWORDS class contains the following entries for each remote domain.

TA_DMLACCESSPOINT—Name of the local domain access point to which the
password applies.

TA_DMRACCESSPOINT—Name of the remote domain access point to which the
password applies.

TA_DMLPWD—Local password used to authenticate connections between the local
domain access point (identified by TA_DMLACCESSPOINT) and the remote
domain access point (identified by TA_DMRACCESSPOINT).

TA_DMRPWD—Remote password used to authenticate connections between the
remote domain access point (identified by TA_DMRACCESSPOINT) and the local
domain access point (identified by TA_DMLACCESSPOINT).

Note: Passwords are stored securely in encrypted format.
Using the BEA Tuxedo Domains Component 2-47

../rfcm/rfcmd.htm#9061611

2 Planning and Configuring ATMI Domains
For information about formatting MIB administrative requests and interpreting MIB
administrative replies, see reference page DM_MIB(5)in BEA Tuxedo File Formats,
Data Descriptions, MIBs, and System Processes Reference.

Using the dmadmin Command to Set Domains Passwords (DM_PW)

You can also use the dmadmin command to set Domains passwords (DM_PW):

prompt> dmadmin
passwd [-r] local_domain_access_point_name

remote_domain_access_point_name

The dmadmin command prompts you for new passwords for the specified local and
remote domain access points. For more information about dmadmin(1), see
“Administering Domains” on page 4-1.

Examples of Coding Password Security Between Domains

The SECURITY parameter in the DM_LOCAL section of the DMCONFIG file specifies the
security type of a local domain. If authentication is required, it is done every time a
connection is established between the local domain and a remote domain. If the
security types of the two domains are incompatible, or if the passwords do not match,
the connection fails.

Example 1: Setting Security to NONE

If SECURITY is set to NONE for a local domain, incoming connection attempts are not
authenticated. Even with SECURITY set to NONE, a local domain can still connect to a
remote domain that has SECURITY set to DM_PW, but before such a connection can be
established, you must define the passwords on both sides by using DM_MIB(5) or the
dmadmin passwd command.

Listing 2-13 Setting Security to NONE for Both Application and Domains

LOCAL1: SECURITY in UBBCONFIG set to NONE
SECURITY in DMCONFIG set to NONE

REMOT1: SECURITY in UBBCONFIG set to NONE
SECURITY in DMCONFIG set to DM_PW
2-48 Using the BEA Tuxedo Domains Component

../rf5/rf5.htm#8973015

Setting Up Security in a Domains Configuration
In this example, LOCAL1 is not enforcing any security but REMOT1 is enforcing DM_PW
security. On the initiator (LOCAL1) side, the pertinent attributes in UBBCONFIG and
DMCONFIG are set as follows:

UBBCONFIG
*RESOURCES
 SECURITY NONE

DMCONFIG
*DM_LOCAL
LOCAL1 GWGRP=bankg1

TYPE=TDOMAIN
ACCESSPOINTID="BA.CENTRAL01"
CONNECTION_PRINCIPAL_NAME="BA.CENTRAL01"
SECURITY=NONE

*DM_REMOTE
REMOT1 TYPE=TDOMAIN

ACCESSPOINTID="BA.BANK01"
CONNECTION_PRINCIPAL_NAME="BA.BANK01"

On the responder (REMOT1) side, the pertinent attributes in UBBCONFIG and DMCONFIG
are set as follows:

UBBCONFIG
*RESOURCES
 SECURITY NONE

DMCONFIG
*DM_LOCAL
REMOT1 GWGRP=bankg2

TYPE=TDOMAIN
ACCESSPOINTID="BA.BANK01"
CONNECTION_PRINCIPAL_NAME="BA.BANK01"
SECURITY=DM_PW

*DM_REMOTE
LOCAL1 TYPE=TDOMAIN

ACCESSPOINTID="BA.CENTRAL01"
CONNECTION_PRINCIPAL_NAME="BA.CENTRAL01"

After the required attributes have been set in the TUXCONFIG and BDMCONFIG files,
boot the applications on LOCAL1 and REMOT1.

On LOCAL1:
 dmadmin
 passwd LOCAL1 REMOT1
 Enter Local Domain Password:foo1
 Reenter Local Domain Password:foo1
Using the BEA Tuxedo Domains Component 2-49

2 Planning and Configuring ATMI Domains
 Enter Remote Domain Password:foo2
 Reenter Remote Domain Password:foo2

On REMOT1:
 dmadmin
 passwd REMOT1 LOCAL1
 Enter Local Domain Password:foo2
 Reenter Local Domain Password:foo2
 Enter Remote Domain Password:foo1

Reenter Remote Domain Password:foo1

Once passwords have been created on both domains, a connection can be established
and services can be invoked on the remote domain.

Listing 2-14 Setting Application Security to NONE and Domains Security to
DM_PW

On the initiator (LOCAL1) side, the pertinent attributes in UBBCONFIG and DMCONFIG
are set as follows:

UBBCONFIG
*RESOURCES
 SECURITY NONE

DMCONFIG
*DM_LOCAL
LOCAL1 GWGRP=bankg1

TYPE=TDOMAIN
ACCESSPOINTID="BA.CENTRAL01"
CONNECTION_PRINCIPAL_NAME="BA.CENTRAL01"
SECURITY=DM_PW

*DM_REMOTE
REMOT1 TYPE=TDOMAIN

ACCESSPOINTID="BA.BANK01"
CONNECTION_PRINCIPAL_NAME="BA.BANK01"

On the responder (REMOT1) side, the pertinent attributes in UBBCONFIG and DMCONFIG
are set as follows:

UBBCONFIG
*RESOURCES
 SECURITY NONE

DMCONFIG
*DM_LOCAL
REMOT1 GWGRP=bankg2

TYPE=TDOMAIN
2-50 Using the BEA Tuxedo Domains Component

Setting Up Security in a Domains Configuration
ACCESSPOINTID="BA.BANK01"
CONNECTION_PRINCIPAL_NAME="BA.BANK01"
SECURITY=DM_PW

*DM_REMOTE
LOCAL1 TYPE=TDOMAIN

ACCESSPOINTID="BA.CENTRAL01"
CONNECTION_PRINCIPAL_NAME="BA.CENTRAL01"

After the required attributes have been set in the TUXCONFIG and BDMCONFIG files,
boot the applications on LOCAL1 and REMOT1:

On LOCAL1:
 dmadmin
 passwd LOCAL1 REMOT1
 Enter Local Domain Password:foo1
 Reenter Local Domain Password:foo1
 Enter Remote Domain Password:foo2

Reenter Remote Domain Password:foo2

On REMOT1:
 dmadmin
 passwd REMOT1 LOCAL1
 Enter Local Domain Password:foo2
 Reenter Local Domain Password:foo2
 Enter Remote Domain Password:foo1
 Reenter Remote Domain Password:foo1

Once passwords have been created on both domains, a connection can be established
and services can be invoked on the remote domain.

Example 2: Setting Security to APP_PW

If the SECURITY parameter in the UBBCONFIG is set to APP_PW or higher, then
SECURITY in the DMCONFIG can be set to NONE, APP_PW, or DM_PW. Because you can
define multiple views of a domain in one DMCONFIG file (one view per local domain
definition), you can assign a different type of security mechanism to each of those
views.

Note: If SECURITY is set to APP_PW for a local domain access point in the DMCONFIG,
then SECURITY in the UBBCONFIG must be set to APP_PW or higher.
Using the BEA Tuxedo Domains Component 2-51

2 Planning and Configuring ATMI Domains
Listing 2-15 Setting Security to APP_PW for Both Application and Domains

LOCAL1: SECURITY in UBBCONFIG set to APP_PW
 SECURITY in DMCONFIG set to APP_PW

REMOT1: SECURITY in UBBCONFIG set to APP_PW
 SECURITY in DMCONFIG set to APP_PW

In this example, both LOCAL1 and REMOT1 enforce APP_PW security.

On the initiator (LOCAL1) side, the pertinent attributes in UBBCONFIG and DMCONFIG
are set as follows:

UBBCONFIG
*RESOURCES
 SECURITY APP_PW

DMCONFIG
*DM_LOCAL
LOCAL1 GWGRP=bankg1

TYPE=TDOMAIN
ACCESSPOINTID="BA.CENTRAL01"
CONNECTION_PRINCIPAL_NAME="BA.CENTRAL01"
SECURITY=APP_PW

*DM_REMOTE
REMOT1 TYPE=TDOMAIN

ACCESSPOINTID="BA.BANK01"
CONNECTION_PRINCIPAL_NAME="BA.BANK01"

On the responder (REMOT1) side, the pertinent attributes in UBBCONFIG and DMCONFIG
are set as follows.

UBBCONFIG
*RESOURCES
 SECURITY APP_PW

DMCONFIG
*DM_LOCAL
REMOT1 GWGRP=bankg2

TYPE=TDOMAIN
ACCESSPOINTID="BA.BANK01"
CONNECTION_PRINCIPAL_NAME="BA.BANK01"
SECURITY=APP_PW
2-52 Using the BEA Tuxedo Domains Component

Setting Up Security in a Domains Configuration
*DM_REMOTE
LOCAL1 TYPE=TDOMAIN

ACCESSPOINTID="BA.CENTRAL01"
CONNECTION_PRINCIPAL_NAME="BA.CENTRAL01"

After the TUXCONFIG and BDMCONFIG files have been created, boot the applications on
LOCAL1 and REMOT1.

How to Configure Domains Access Control Lists

To set up a Domains access control list (ACL) in the DM_ACCESS_CONTROL section of
the DMCONFIG file, you specify the name of the ACL and the remote domain access
points associated with the ACL name. The following table clarifies the procedure.

Upon creating an ACL, you use the ACL parameter in the DM_EXPORT section of the
DMCONFIG file to restrict access to a local service exported through a particular local
domain access point to just those remote domain access points associated with the
ACL name (for example, ACL=ACLGRP1).

Domain ACL Field Description

Domains ACL name The name of this ACL.
A valid name consists of a string of 1-30 characters, inclusive. It
must be printable and it may not include a colon, a pound sign, or
a newline character.
Example: ACLGRP1

Remote Domains list The list of remote domains that are granted access in this access
control list.
A valid value in this field is a set of one or more comma-separated
remote domain names.
Examples: REMDOM1,REMDOM2,REMDOM3
Using the BEA Tuxedo Domains Component 2-53

2 Planning and Configuring ATMI Domains
How to Configure ACL Policy for a Remote Domain

As the administrator, you use the following configuration parameters to set and control
the ACL policy for remote domains running BEA Tuxedo release 7.1 or later software.
You set these parameters in the DM_REMOTE section of the DMCONFIG file.

ACL_POLICY (LOCAL | GLOBAL)

Specifies the access control list (ACL) policy for this remote domain access
point. This parameter applies only to domain gateways of type TDOMAIN running
BEA Tuxedo 7.1 or later software and domain gateways of type OSITPX running
BEA Tuxedo 8.0 or later software.

LOCAL means that the local domain replaces the credential (identity) of any
service request received from the remote domain with the principal name
specified in the LOCAL_PRINCIPAL_NAME parameter for this remote domain
access point. GLOBAL means that the local domain does not replace the credential
received with a remote service request; if no credential is received with a remote
service request, the local domain forwards the service request to the local service
as is (which usually fails). If not specified, the default is LOCAL.

LOCAL_PRINCIPAL_NAME (string)

The local principal name identifier (credential) assigned by the local domain to
service requests received from the remote domain when the ACL_POLICY
parameter for this remote domain access point is set (or defaulted) to LOCAL.
This parameter applies only to domain gateways of type TDOMAIN running BEA
Tuxedo 7.1 or later software and domain gateways of type OSITPX running BEA
Tuxedo 8.0 or later software.

The LOCAL_PRINCIPAL_NAME parameter may contain a maximum of 511
characters (excluding the terminating NULL character). If this parameter is not
specified, the local principal name defaults to the ACCESSPOINTID string for this
remote domain access point.

CREDENTIAL_POLICY (LOCAL | GLOBAL)

Specifies the credential policy for this remote domain access point. This
parameter applies only to domain gateways of type TDOMAIN running BEA
Tuxedo 8.0 or later software.

LOCAL means that the local domain removes the credential (identity) from a local
service request destined for this remote domain access point. GLOBAL means that
the local domain does not remove the credential from a local service request
2-54 Using the BEA Tuxedo Domains Component

Setting Up Security in a Domains Configuration
destined for this remote domain access point. If not specified, the default is
LOCAL.

Note that the CREDENTIAL_POLICY parameter controls whether or not the local
domain removes the credential from a local service request before sending the
request to a remote domain. The ACL_POLICY parameter controls whether or not
the local domain replaces the credential of a service request received from a
remote domain with the principal name specified in the
LOCAL_PRINCIPAL_NAME parameter.

In the following example, the connection for the REMOT1 access point is configured for
global ACL in the DMCONFIG file, meaning that the domain gateway for the LOCAL1
access point passes client requests from the REMOT1 access point without change. For
global ACL, the LOCAL_PRINCIPAL_NAME entry for the REMOT1 access point is
ignored. Also, because CREDENTIAL_POLICY=GLOBAL, the domain gateway for the
LOCAL1 access point does not remove the credential from any local service request
destined for the REMOT1 access point.

*DM_LOCAL
LOCAL1 GWGRP=bankg1

TYPE=TDOMAIN
ACCESSPOINTID="BA.CENTRAL01"
CONNECTION_PRINCIPAL_NAME="BA.CENTRAL01"
SECURITY=DM_PW

*DM_REMOTE
REMOT1 TYPE=TDOMAIN

ACCESSPOINTID="BA.BANK01"
CONNECTION_PRINCIPAL_NAME="BA.BANK01"
ACL_POLICY=GLOBAL
CREDENTIAL_POLICY=GLOBAL
LOCAL_PRINCIPAL_NAME="BA.BANK01.BOB"

How to Configure Domains Link-Level Encryption

Domains link-level encryption (LLE) establishes data privacy for messages moving
over the network links that connect the local domain gateway to the remote domain
gateway. There are three levels of link-level encryption security: 0-bit (no encryption),
56-bit (International), and 128-bit (United States and Canada).

To set up Domains link-level encryption on domain gateway links, follow these steps.
Using the BEA Tuxedo Domains Component 2-55

2 Planning and Configuring ATMI Domains
1. Open the DMCONFIG file with a text editor and add the following lines to the
DM_TDOMAIN section.

*DM_TDOMAIN
LOCAL1 NWADDR=“newyork.acme.com:65431”

MINENCRYPTBITS=min
MAXENCRYPTBITS=max

REMOT1 NWADDR=“albany.acme.com:4051”
MINENCRYPTBITS=min
MAXENCRYPTBITS=max

2. Load the configuration by running dmloadcf(1). The dmloadcf command
parses DMCONFIG and loads the binary BDMCONFIG file to the location referenced
by the BDMCONFIG variable.

In the preceding example, when tmboot(1) starts the application, each domain
gateway reads the BDMCONFIG file to access various parameters, including
MINENCRYPTBITS and MAXENCRYPTBITS, and propagates those parameters to its local
and remote domains. When the local domain is establishing a network link with a
remote domain, the two domains negotiate the key size until they agree on the largest
key size supported by both.

Setting Up Connections in a Domains
Configuration

You can specify the conditions under which a local domain gateway tries to establish
a connection to a remote domain. To specify these conditions, assign a value to the
CONNECTION_POLICY parameter in the DM_LOCAL section of the DMCONFIG file. You
can select any of the following connection policies:

Connect when a local client program requests a remote service (ON_DEMAND)

Connect at boot time (ON_STARTUP)

Accept incoming connections but do not initiate a connection automatically
(INCOMING_ONLY)
2-56 Using the BEA Tuxedo Domains Component

Setting Up Connections in a Domains Configuration
For BEA Tuxedo release 8.1 or later, you can also define the connection policy on a
per remote domain basis in the DM_TDOMAIN section of the DMCONFIG file. For details,
see “How To Configure Your Connection Policy” on page 1-30.

For connection policies of ON_STARTUP and INCOMING_ONLY, Dynamic Status is
invoked. Dynamic Status, described in “How Connection Policy Determines
Availability of Remote Services” on page 1-33, is a BEA Tuxedo Domains capability
that checks and reports the status of remote services.

How to Request Connections for Client Demands
(ON_DEMAND Policy)

A connection policy of ON_DEMAND (CONNECTION_POLICY=ON_DEMAND) means that a
connection is attempted only when either a local client requests a remote service or an
administrative dmadmin connect command is run. ON_DEMAND is the default
connection policy setting.

The following diagram shows how connections are attempted and made by a domain
gateway for which the connection policy is ON_DEMAND.
Using the BEA Tuxedo Domains Component 2-57

2 Planning and Configuring ATMI Domains
Figure 2-5 Connections Made with an ON_DEMAND Policy

How to Request Connections at Boot Time (ON_STARTUP
Policy)

A connection policy of ON_STARTUP (CONNECTION_POLICY=ON_STARTUP) means that
a domain gateway attempts to establish a connection with its remote domains when the
domain gateway server is initialized. By default, the ON_STARTUP connection policy
retries failed connections every 60 seconds, but you can specify a different value for
this interval, as explained in “How to Configure the Connection Retry Interval for
ON_STARTUP Only” on page 2-60.

The following diagram shows how connections are attempted and made by a domain
gateway for which the connection policy is ON_STARTUP.
2-58 Using the BEA Tuxedo Domains Component

Setting Up Connections in a Domains Configuration
Figure 2-6 Connections Made with an ON_STARTUP Policy

How to Limit Connections to Incoming Messages Only
(INCOMING_ONLY Policy)

A connection policy of INCOMING_ONLY (CONNECTION_POLICY=INCOMING_ONLY)
means that a domain gateway does not try to establish a connection to remote domains
upon starting. The following diagram shows how connections are attempted and made
by a domain gateway for which the connection policy is INCOMING_ONLY.
Using the BEA Tuxedo Domains Component 2-59

2 Planning and Configuring ATMI Domains
Figure 2-7 Connections Made with an INCOMING_ONLY Policy (Accept
Incoming Connections)

How to Configure the Connection Retry Interval for
ON_STARTUP Only

When the CONNECTION_POLICY parameter is set to ON_STARTUP, automatic
connection retry processing is available. Connection retry processing enables a domain
gateway to retry, automatically, a failed attempt to connect to a remote domain. As the
administrator, you can control the frequency of automatic connection attempts. To do
so, specify the length (in seconds) of the interval during which the gateway should wait
before trying, again, to establish a connection. You can specify the retry interval by
setting the RETRY_INTERVAL parameter as follows:

RETRY_INTERVAL=number_of_seconds

You can specify between 0 and 2147483647 seconds. If the connection policy is
ON_STARTUP and you do not specify a value for the RETRY_INTERVAL parameter, a
default of 60 seconds is used.
2-60 Using the BEA Tuxedo Domains Component

Setting Up Connections in a Domains Configuration
The RETRY_INTERVAL parameter is valid only when the connection policy is
ON_STARTUP. For the other connection policies (ON_DEMAND and INCOMING_ONLY),
connection retry processing is not available.

How to Configure the Maximum Retry Number

You indicate the number of times that a domain gateway tries to establish connections
to remote domains before quitting by assigning a value to the MAXRETRY parameter: the
minimum value is 0; the default and maximum value is the value of the MAXLONG
parameter (2147483647).

If you set MAXRETRY=0, connection retry processing is turned off. The local
domain gateway does not attempt to connect to the remote domain gateway(s)
automatically.

If you set MAXRETRY=number, the gateway tries to establish a connection the
specified number of times before quitting.

If you set MAXRETRY=MAXLONG, the default setting, connection retry processing is
repeated up to 2147483647 times or until a connection is established.

The MAXRETRY parameter is valid only when the connection policy is ON_STARTUP. For
the other connection policies (ON_DEMAND and INCOMING_ONLY), connection retry
processing is not available.

The following table presents examples of how MAXRETRY and RETRY_INTERVAL affect
automatic connection retry processing.
Using the BEA Tuxedo Domains Component 2-61

2 Planning and Configuring ATMI Domains
Example of Coding Connection Policies Between
Domains

Because domains involved in a Domains configuration work independently of one
another, any combination of connection policies is allowed in a Domains
configuration. However, not every connection policy combination is practical. In most
cases, for example, configuring each of two interoperating domains with a connection
policy of ON_STARTUP does not make much sense.

The following configuration example is a practical connection policy combination. In
this example, LOCAL1 is configured for ON_STARTUP in the local DMCONFIG file, and
REMOT1 is configured for INCOMING_ONLY in the remote DMCONFIG file.

In local DMCONFIG file:
*DM_LOCAL
LOCAL1 GWGRP=bankg1

TYPE=TDOMAIN
CONNECTION_POLICY=ON_STARTUP
MAXRETRY=5
RETRY_INTERVAL=100

*DM_REMOTE
REMOT1 TYPE=TDOMAIN

ACCESSPOINTID="BA.BANK01"

Table 2-1 Example Settings of the MAXRETRY and RETRY_INTERVAL
Parameters

If You Set... Then...

CONNECTION_POLICY=ON_STARTUP
MAXRETRY=3
RETRY_INTERVAL=30

The local domain gateway makes three attempts
to establish a connection, at 30 seconds intervals,
before quitting.

CONNECTION_POLICY=ON_STARTUP
MAXRETRY=0

The local domain gateway attempts to establish a
connection at initialization time but does not retry
if the first attempt fails.

CONNECTION_POLICY=ON_STARTUP
RETRY_INTERVAL=30

The domain gateway attempts to establish a
connection every 30 seconds until a connection is
established.
2-62 Using the BEA Tuxedo Domains Component

Controlling Connections in a Domains Configuration
In remote DMCONFIG file:
*DM_LOCAL
REMOT1 GWGRP=bankg2

TYPE=TDOMAIN
ACCESSPOINTID="BA.BANK01"
CONNECTION_POLICY=INCOMING_ONLY

*DM_REMOTE
LOCAL1 TYPE=TDOMAIN

ACCESSPOINTID="BA.CENTRAL01"
CONNECTION_PRINCIPAL_NAME="BA.CENTRAL01"

Controlling Connections in a Domains
Configuration

As the administrator, you can control the number of connections you want to establish
between domains. You can also break the connections between local and remote
domains.

How to Establish Connections Between Domains

To establish a connection between a local domain gateway and a remote domain, run
the dmadmin command with the connect (co) subcommand:

prompt> dmadmin co -d local_domain_access_point_name

By default, connections are established between the local domain you have specified
and all remote domains configured for the local gateway. If you want to establish a
connection to only one remote domain, specify that domain on the command line with
the -R option:

prompt> dmadmin co -d local_domain_access_point_name
-R remote_domain_access_point_name

If a connection attempt fails and the connection policy is ON_STARTUP with connection
retry processing turned on, repeated attempts to connect (via connection retry
processing) are made.
Using the BEA Tuxedo Domains Component 2-63

2 Planning and Configuring ATMI Domains
How to Break Connections Between Domains

To break a connection between a local gateway and a remote domain (making sure that
the gateway does not try to re-establish the connection through automatic connection
retry processing), run the dmadmin command with the disconnect (dco)
subcommand:

prompt> dmadmin dco -d local_domain_access_point_name

By default, all remote domains configured for the local gateway are disconnected. If
you want to end the connection to only one remote domain, specify that domain on the
command line with the -R option:

prompt> dmadmin dco -d local_domain_access_point_name
-R remote_domain_access_point_name

Automatic connection retry processing is stopped by this command, regardless of
whether there are any active connections when the command is run.

How to Report on Connection Status

Using the dmadmin printdomain command, you can generate a report on connection
status and the connections being retried. The connect command reports whether a
connection attempt has succeeded. The printdomain command prints information
about the specified local domain, including a list of remote domains, a list of remote
domains to which it is connected, and a list of remote domains to which it is trying to
establish connections.

The following example shows a dmadmin session in which the printdomain
command is issued (in its abbreviated form, pd) for a local domain access point named
LOCAL1.

prompt> dmadmin
dmadmin - Copyright ...
.
.
.
pd -d LOCAL1
Local domain :LOCAL1
 Connected domains:
 Domainid: REMOT1
2-64 Using the BEA Tuxedo Domains Component

Configuring Domains Link-Level Failover and Keepalive
 Disconnected domains being retried:
 Domainid: REMOT2

dco -d LOCAL1 -R REMOT1
Operation completed successfully. Use printdomain(pd) to obtain
results.

dco -d LOCAL1 -R REMOT2
Operation completed successfully. Use printdomain(pd) to obtain
results.

co -d LOCAL1 -R REMOT1
Operation completed successfully. Use printdomain(pd) to obtain
results.

pd -d LOCAL1
Local domain :LOCAL1
 Connected domains:
 Domainid: REMOT1

In this example, the remote domain access point names (REMOT1, REMOT2) and their
DOMAINID—ACCESSPOINTID—names (REMOT1, REMOT2) are the same, as defined in
the DM_REMOTE section of the DMCONFIG file, to keep the example simple.

Configuring Domains Link-Level Failover
and Keepalive

Domains link-level failover is a mechanism that ensures that an alternate network link
becomes active when a primary link fails. Domains keepalive is a mechanism that
keeps interdomain connections open through firewalls during periods of inactivity and
enables quick detection of connection failures. Domains keepalive is available in BEA
Tuxedo release 8.1 or later.

For a description of Domains link-level failover, see “How to Configure Domains
Link-Level Failover” on page 1-36. For a description of Domains keepalive, see
“Specifying Domains Keepalive” on page 1-36.
Using the BEA Tuxedo Domains Component 2-65

2 Planning and Configuring ATMI Domains
2-66 Using the BEA Tuxedo Domains Component

3 Planning and
Configuring CORBA
Domains

The following sections explain how to plan and configure a domain for a BEA Tuxedo
CORBA Domains environment:

Overview of the CORBA Domains Environment

Single-Domain Versus Multiple-Domain Communication

Elements of a CORBA Domains Configuration

Understanding and Using the Configuration Files

Specifying Unique Factory Object Identifiers in the factory_finder.ini File

Processing the factory_finder.ini File

Types of CORBA Domains Configurations

Examples of CORBA Domains Configurations
Using the BEA Tuxedo Domains Component 3-1

3 Planning and Configuring CORBA Domains
Overview of the CORBA Domains
Environment

A BEA Tuxedo Domains configuration is an extension of the core ATMI domain
environment, as explained in “What Is the BEA Tuxedo Domains Component?” on
page 1-1. A BEA Tuxedo domain, or business application, is a construct that is entirely
administrative. There are no programming interfaces that refer to domains. Only an
administrator is aware of domains.

In a BEA Tuxedo Domains configuration, an administrator can configure which
services of a domain are available to other domains in the configuration. So, from a
CORBA perspective, the BEA Tuxedo Domains component is simply the means for
BEA Tuxedo CORBA applications to interoperate with one another and share
resources. The CORBA clients and the participating applications themselves do not
need to know anything about the Domains configuration. All they need to know is what
factory objects are available and how to access those objects.

This transparency between domains allows administrators to configure services in
individual domains and to spread resources across multiple domains. If applications
were to include information about domains, changing configurations would require
that the applications be rewritten as well.

Single-Domain Versus Multiple-Domain
Communication

The following figure shows a simple Domains configuration consisting of two BEA
Tuxedo CORBA applications.
3-2 Using the BEA Tuxedo Domains Component

Single-Domain Versus Multiple-Domain Communication
Figure 3-1 Domains Configuration Consisting of Two CORBA Applications

The single-domain and multiple-domain discussions that follow are based on this
simple Domains configuration.

Single-Domain Communication

The following steps describe single-domain communication between CORBA Client
X and Domain A in the simple Domains configuration:

1. Client X connects to Domain A using the Bootstrap object. The client application
uses the Bootstrap object to locate a FactoryFinder and then uses the FactoryFinder
to ask for a factory for objects of type Q. (The FactoryFinder call is itself an
invocation on Domain A.)

2. When the FactoryFinder returns a factory, the client invokes that factory in
Domain A.

3. The factory returns a reference to an object of type Q, called Q1.

4. The client then invokes on object Q1 in Domain A.

Throughout these steps, the client does not know where any of the objects are, or which
domains they are in.

text
Client X Server

for Q
Domain
Gateway

Domain
Gateway

Server
for R

Domain A Domain C
Using the BEA Tuxedo Domains Component 3-3

3 Planning and Configuring CORBA Domains
The administrative actions for connecting a client to Domain A are relatively simple
for a client because the client is a simple machine and has very little infrastructure; it
stands alone for the most part. Indeed, the connection to a BEA Tuxedo domain is the
primary administration for a client. The actual administrative chore is setting the
address of the ISL that is in Domain A.

Multiple-Domain Communication

For multiple-domain communication, Q1 in the simple Domains configuration needs
the services of Object R1, which is in Domain C; therefore, object Q1 must execute
operations similar to those previously described in steps 1 through 4, but across
domain boundaries. The actual steps are as follows:

1. Object Q1 uses a Bootstrap object to locate a FactoryFinder and then uses the
FactoryFinder to ask for a factory for objects of type R.

2. When the FactoryFinder returns a reference to a factory in Domain C, Object Q1
invokes that factory.

3. The factory returns a reference to an object of type R, called R1.

4. Object Q1 invokes on Object R1.

As with Client X, there must be some administration to allow Object Q1 to get at the
factories and objects in Domain C. As the simple Domains configuration shows, the
mechanism for communication between domains is a domain gateway. A domain
gateway is a system server in a domain.

A system server is different than a user-written server because it is part of the BEA
Tuxedo product; other system servers are the name servers, FactoryFinders, and ISLs.
A domain gateway is somewhat similar in concept to an ISL because it is the “contact”
point for a domain. It is different from an ISL, however, because a domain gateway
connects to another domain gateway, which is itself a contact point for a domain; that
is, a domain gateway’s job is to connect to another domain gateway. Thus, the pair of
domain gateways cooperate to make sure that invocation on objects that inhabit
different domains are routed to the correct domain.
3-4 Using the BEA Tuxedo Domains Component

Elements of a CORBA Domains Configuration
Elements of a CORBA Domains
Configuration

The following elements work together to accomplish a BEA Tuxedo Domains
configuration for CORBA:

BEA Tuxedo configuration file

This text file, known as the UBBCONFIG file, names a domain and identifies the
group and server entry for a domain gateway server. No attributes of domain
gateways are specified in the UBBCONFIG file; all such attributes are in the
Domains configuration file (explained next).

Note that the BEA Tuxedo configuration file may have any name as long as the
content of the file conforms to the format described on reference page
UBBCONFIG(5) in BEA Tuxedo File Formats, Data Descriptions, MIBs, and
System Processes Reference.

Domains configuration file

This text file, known as the DMCONFIG file, describes the remote domains that are
connected to this domain—the local domain. One DMCONFIG file is required for
each domain participating in a Domains configuration. If a domain is not
connecting to another domain, the DMCONFIG file is not needed.

Note that the Domains configuration file may have any name as long as the
content of the file conforms to the format described on reference page
DMCONFIG(5) in BEA Tuxedo File Formats, Data Descriptions, MIBs, and
System Processes Reference.

FactoryFinder Domains configuration file

This text file, known as factory_finder.ini, specifies which factories can be
searched for or found across domain boundaries. One factory_finder.ini file
is required for each domain participating in a CORBA Domains configuration. If
a domain is not connecting to another domain, the factory_finder.ini file is
not needed.

You must carefully coordinate the factory_finder.ini file with the
DMCONFIG so that they both have information about the same connected domains
and provide the same connectivity.
Using the BEA Tuxedo Domains Component 3-5

3 Planning and Configuring CORBA Domains
Note that the FactoryFinder Domains configuration file may have any name as
long as the content of the file conforms to the format described on reference
page factory_finder.ini(5) in BEA Tuxedo File Formats, Data
Descriptions, MIBs, and System Processes Reference.

Invocation of an object in a remote domain

From a CORBA perspective, the whole point of the BEA Tuxedo Domains
component is for an application in one CORBA domain to be able to make an
invocation on an object in another CORBA domain, without either the client or
server applications being aware that domains are a factor. Configuration
information is intended to allow such invocations to cross domain boundaries
and to hide those boundaries from applications.

References to objects in a remote domain

Any object reference may specify a local domain or a remote domain. A
reference to a remote domain typically happens when a FactoryFinder returns a
reference to a factory in a remote domain. It also happens when that factory, in
turn, creates and returns a reference to an object in that remote domain
(although, of course, the reference is local to the domain of the factory).

Note: Applications are not aware of the domain of an object reference. Applications
cannot find out what domain an object reference refers to.

FactoryFinders

For a server in a local domain to obtain an object reference to an object in
another domain, the application uses the same FactoryFinder pattern as it does
for objects in the local domain. The application uses the same pattern because it
is not aware that the FactoryFinder returns a reference to a factory in another
domain. The configuration files hide this fact.

Once an object reference has been obtained via a FactoryFinder or factory, the
object reference can be passed anywhere; that is, passed to objects in the local
domain, returned to a client, or passed to another domain.
3-6 Using the BEA Tuxedo Domains Component

Understanding and Using the Configuration Files
Understanding and Using the Configuration
Files

You use the following three configuration files to set up a CORBA Domains
configuration:

UBBCONFIG, the BEA Tuxedo configuration file

DMCONFIG, the Domains configuration file

factory_finder.ini, the FactoryFinder Domains configuration file

Each domain in a CORBA Domains configuration requires a set of these three files.
As the administrator, you must coordinate the configurations within each set of
configuration files and between sets of configuration files. As the number of domains
grows in a Domains configuration, your effort to coordinate the configurations also
grows.

The UBBCONFIG File

You must specify the following parameters in the UBBCONFIG file to configure
multiple domains:

Domain name

Gateway group

Gateway server

Domain Name

Though not required for single BEA Tuxedo domains (that is, standalone domains), a
domain that is connected to another domain must have a DOMAINID. You specify this
parameter in the RESOURCES section of the UBBCONFIG file as follows:

DOMAINID domain_name
Using the BEA Tuxedo Domains Component 3-7

3 Planning and Configuring CORBA Domains
The domain_name must be 1 to13 characters long. For example:

DOMAINID headquarters

domain_name is the name that will be referenced in the DM_EXPORT and DM_IMPORT
sections of the related DMCONFIG file. In that file, the domain_name will be referenced
as:

"//domain_name"

The quotes are part of the reference. The slashes (//) mean that the name applies to
BEA Tuxedo CORBA domains, rather than to BEA Tuxedo ATMI domains. For
example:

"//headquarters"

Every domain in an enterprise must have a unique domain_name.

Gateway Group and Server Names

As with every other BEA Tuxedo system server, there must be a group and a server
name specified for a gateway. For example, the GROUPS section in the UBBCONFIG file
might contain:

LGWGRP LMID=LDOM GRPNO=4

In this example, LGWGRP is a name chosen by a user (perhaps an abbreviation for
“Local Gateway Group”).

The server name for a BEA Tuxedo domain gateway—the TDomain gateway—is
GWTDOMAIN and must be associated, like every other group, with a server group and a
server ID. You specify the GWTDOMAIN name in the SERVERS section associated with
the server group name chosen. For example:

GWTDOMAIN SRVGRP=LGWGRP SRVID=1

This entry tells the BEA Tuxedo CORBA application that a TDomain gateway is to be
used and that additional information is found in the DMCONFIG file.
3-8 Using the BEA Tuxedo Domains Component

Understanding and Using the Configuration Files
The DMCONFIG File

Each BEA Tuxedo domain participating in a Domains configuration requires its own
DMCONFIG file. A DMCONFIG file describes the relationship between the local domain
(the domain in which the DMCONFIG file resides) and one or more remote domains (the
domains with which the local domain will interoperate).

In most documentation for the DMCONFIG file, the focus is on the configuring of BEA
Tuxedo ATMI domains to share services, a concept not applicable to BEA Tuxedo
CORBA environments. For a BEA Tuxedo CORBA Domains environment, a
“service” is simply the name of a BEA Tuxedo domain that can service BEA Tuxedo
CORBA requests.

The following seven sections of the DMCONFIG file apply to a CORBA Domains
environment:

DM_LOCAL (also known as DM_LOCAL_DOMAINS)

DM_REMOTE (also known as DM_REMOTE_DOMAINS)

DM_EXPORT (also known as DM_LOCAL_SERVICES)

DM_IMPORT (also known as DM_REMOTE_SERVICES)

DM_RESOURCES

DM_ACCESS_CONTROL

DM_TDOMAIN

Note: The DM_LOCAL section must precede the DM_REMOTE section.

Many of the of the parameters in these seven sections are not relevant to configuring a
CORBA Domains environment because they are ATMI-specific parameters.

The discussions that follow are based on the sample DMCONFIG file shown in the
following listing.
Using the BEA Tuxedo Domains Component 3-9

3 Planning and Configuring CORBA Domains
Listing 3-1 Sample DMCONFIG File for a BEA Tuxedo CORBA Domains
Environment

#
BEA Tuxedo CORBA Domains Configuration File
#
*DM_RESOURCES
VERSION=Experimental8.9

*DM_LOCAL
LDOM GWGRP=LGWGRP TYPE=TDOMAIN ACCESSPOINTID="MUTT"

*DM_REMOTE
TDOM1 TYPE=TDOMAIN ACCESSPOINTID="JEFF"

*DM_EXPORT
"//MUTT"

*DM_IMPORT
"//JEFF" RACCESSPOINT=TDOM1

*DM_TDOMAIN
LDOM NWADDR="//sanfran.kmart.com:2507"
TDOM1 NWADDR="//sanhose.kmart.com:3186"

Note: The ACCESSPOINTID parameter in this listing may be replaced with the
DOMAINID parameter, and the RACCESSPOINT parameter may be replaced with
the RDOM parameter. This listing uses the improved DMCONFIG terminology.

DM_RESOURCES

The DM_RESOURCES section specifies global Domains configuration information,
specifically a user-supplied configuration version string. The only parameter in this
section is VERSION=string, where string is a field in which users can enter a version
number for the current DMCONFIG file. This field is not checked by the software.

In the sample DMCONFIG file, the VERSION parameter is set to Experimental8.9:

*DM_RESOURCES
VERSION=Experimental8.9
3-10 Using the BEA Tuxedo Domains Component

Understanding and Using the Configuration Files
DM_LOCAL

The DM_LOCAL section, also known as the DM_LOCAL_DOMAINS section, defines one or
more local domain access points (logical names). For each local domain access point
that you define, you specify a domain gateway group (TDOMAIN, ...) for the access point
in this section, and—for the CORBA environment—you specify in the DM_EXPORT
section the domain_name of the local BEA Tuxedo domain available through the
access point. The local domain will be available through the local domain access point
to CORBA clients in one or more remote BEA Tuxedo domains.

The DM_LOCAL section must have one and only one entry for each domain gateway
group defined in the UBBCONFIG file. Each entry specifies the parameters required for
the domain gateway processes running in that group.

Entries in the DM_LOCAL section have the form:

LocalAccessPoint required_parameters [optional_parameters]

where LocalAccessPoint is the local domain access point identifier (logical name)
that you choose to represent a gateway group defined in the UBBCONFIG file. Note that
the local domain access point is not the same name as the domain_name or the gateway
group that is specified in the UBBCONFIG file. Rather, a local domain access point is a
name used only within the DMCONFIG file to provide an extra level of insulation from
potential changes in the UBBCONFIG file (changes in UBBCONFIG will affect only the
defined parameters for the local domain access point, not the logical name of the local
domain access point used throughout the DMCONFIG file).

The following parameters are required parameters:

GWGRP = identifier

This parameter specifies the name of a domain gateway server group (the name
provided in the GROUPS section of the UBBCONFIG file) associated with this local
domain access point.

TYPE = TDOMAIN

The TYPE parameter is required to specify the use of TDomain gateways for
BEA Tuxedo CORBA environments.

ACCESSPOINTID = string

The ACCESSPOINTID parameter, also known as DOMAINID, is used to identify the
gateway group associated with this local domain access point for purposes of
security when setting up connections to remote domains. The gateway server
Using the BEA Tuxedo Domains Component 3-11

3 Planning and Configuring CORBA Domains
group specified in the GWGRP parameter uses this string during any security
checks. It has no required relationship to the domain_name found in the
RESOURCES section of the UBBCONFIG file. ACCESSPOINTID must be unique
across both local and remote domains. The value of string can be a sequence
of characters (for example, “BA.CENTRAL01”), or a sequence of hexadecimal
digits preceded by 0x (for example, “0x0002FF98C0000B9D6”).
ACCESSPOINTID must be 32 octets or fewer in length. If the value is a string, it
must be 32 characters or fewer (counting the trailing NULL).

For example, the lines

*DM_LOCAL
LDOM GWGRP=LGWGRP TYPE=TDOMAIN ACCESSPOINTID="MUTT"

identify LDOM as the local domain access point associated with the local TDomain
gateway group having server group name LGWGRP (as specified in the UBBCONFIG file).
If the domain gateway is ever involved in a domain-to-domain security check, it goes
by the name MUTT.

Note: If the domain gateway is ever involved in a domain-to-domain security check
and the CONNECTION_PRINCIPAL_NAME parameter is specified for the local
domain access point, the gateway goes by the name specified in that
parameter.

Optional parameters in the DM_LOCAL section describe resources and limits used in the
operation of domain gateways. For a description of these parameters, see reference
page DMCONFIG(5) in BEA Tuxedo File Formats, Data Descriptions, MIBs, and
System Processes Reference.

DM_REMOTE

The DM_REMOTE section, also known as the DM_REMOTE_DOMAINS section, defines one
or more remote domain access points (logical names). For each remote domain access
point that you define, you specify a domain gateway group (TDOMAIN, ...) for the access
point in this section, and—for the CORBA environment—you specify in the
DM_IMPORT section the domain_name of the remote BEA Tuxedo domain available
through the access point. The remote domain will be available through the remote
domain access point to CORBA clients in the local domain.

You can define multiple remote domain access points in this section, one or more for
each domain gateway group used by this BEA Tuxedo domain to communicate with a
remote domain.
3-12 Using the BEA Tuxedo Domains Component

Understanding and Using the Configuration Files
Entries in the DM_REMOTE section have the form:

RemoteAccessPoint required_parameters

where RemoteAccessPoint is a remote domain access point identifier (logical name)
that you choose for a particular remote domain to be accessed by a particular gateway
group defined in the UBBCONFIG file. Note that a remote domain access point is not the
same name as the domain_name or the gateway group that is specified in the local or
remote domain’s UBBCONFIG file. Rather, a remote domain access point is a name used
only within the DMCONFIG to provide an extra level of insulation from potential
changes in UBBCONFIG (changes in UBBCONFIG will affect only the defined parameters
for the remote domain access point, not the logical name of the remote domain access
point used throughout the DMCONFIG file).

The required parameters are:

TYPE = TDOMAIN
The TYPE parameter is required to specify the use of TDomain gateways for
BEA Tuxedo CORBA environments.

ACCESSPOINTID = string
The ACCESSPOINTID parameter, also known as DOMAINID, is used to identify
the remote domain associated with this remote domain access point for
purposes of security when setting up a connection to the remote domain. The
gateway uses this string during any security checks. ACCESSPOINTID has no
required relationship to the domain_name found in the RESOURCES section of
the UBBCONFIG file. ACCESSPOINTID must be unique across both local and
remote domains. The value of string can be a sequence of characters (for
example, “BA.BANK01”), or a sequence of hexadecimal digits preceded by 0x
(for example, “0x0002FF98C0000B9D6”). ACCESSPOINTID must be 32 octets
or fewer in length. If the value is a string, it must be 32 characters or fewer
(counting the trailing NULL).

For example, the lines

*DM_REMOTE
TDOM1 TYPE=TDOMAIN ACCESSPOINTID="JEFF"

identify TDOM1 as a remote domain access point name associated with a local TDomain
gateway group. If the domain gateway is ever involved in a domain-to-domain security
check with a partner gateway, the gateway expects that partner to go by the name JEFF.
Using the BEA Tuxedo Domains Component 3-13

3 Planning and Configuring CORBA Domains
Note: If the domain gateway is ever involved in a domain-to-domain security check
and the CONNECTION_PRINCIPAL_NAME parameter is specified for the remote
domain access point, the gateway expects the partner to go by the name
specified in that parameter.

DM_EXPORT

The DM_EXPORT section, also known as the DM_LOCAL_SERVICES section, specifies in
a CORBA environment the domain_name of the BEA Tuxedo domain to be exported
through a local domain access point defined in the DM_LOCAL section. The BEA
Tuxedo domain specified for a local domain access point is available to CORBA
clients on one or more remote BEA Tuxedo domains. The DM_EXPORT section is
required for a CORBA Domains configuration.

Entries in the DM_EXPORT section have the form:

service [LACCESSPOINT=local access point name]
 [ACL=...]

where service is of the form:

"//domain_name"

This domain_name is the name assigned to the DOMAINID parameter in the RESOURCES
section of the local UBBCONFIG file. Entering this name in the DM_EXPORT section
means that the local domain accepts CORBA requests from remote domains. Also
possible is to specify a service entry that accepts requests for a domain name other
than the domain name of the local domain, in the case where the local domain acts as
a pass-through for routing purposes.

The optional parameter, ACL, specifies the name of the access control list (ACL) to be
used by the local domain to restrict requests made to the local domain by remote BEA
Tuxedo CORBA domains. The name of the ACL is defined in the
DM_ACCESS_CONTROL section of the DMCONFIG file. If this parameter is not specified,
access control is not performed for remote requests to the local domain.

For example, the lines:

*DM_EXPORT
"//MUTT"

mean that the local domain with name MUTT accepts remote CORBA requests through
any remote domain access point defined in the DM_REMOTE section.
3-14 Using the BEA Tuxedo Domains Component

Understanding and Using the Configuration Files
DM_IMPORT

The DM_IMPORT section, also known as the DM_REMOTE_SERVICES section, specifies
in a CORBA environment the domain_name of the BEA Tuxedo domain to be
imported through a remote domain access point defined in the DM_REMOTE section. The
BEA Tuxedo domain specified for a remote domain access point is available to
CORBA clients on the local domain. The DM_IMPORT section is required for a CORBA
Domains configuration.

Entries in the DM_IMPORT section have the form:

service [RACCESSPOINT=remote domain access point]
 [LACCESSPOINT=local domain access point]

[TRANTIME=...]

where service is of the form:

"//domain_name"

This domain_name is the name assigned to the DOMAINID parameter in the RESOURCES
section of the remote UBBCONFIG file. Entering this name in the DM_IMPORT section
means that the remote domain accepts CORBA requests from the local domain. Also
possible is to specify a service entry that accepts requests for a domain name other
than the domain name of the remote domain, in the case where the remote domain acts
as a pass-through for routing purposes.

For example, the lines:

*DM_IMPORT
 "//JEFF" RACCESSPOINT=TDOM1

mean that the remote domain with name JEFF and associated with remote domain
access point TDOM1 accepts CORBA requests through any local domain access point
defined in the DM_LOCAL section.

DM_ACCESS_CONTROL

The DM_ACCESS_CONTROL section specifies one or more access control list (ACL)
names and associates one or more remote domain access points with each specified
ACL name. You can use the ACL parameter in the DM_EXPORT section by setting
ACL=ACL_NAME to restrict access to a local domain exported through a particular local
domain access point to just those remote domain access points associated with the
ACL_NAME.
Using the BEA Tuxedo Domains Component 3-15

3 Planning and Configuring CORBA Domains
Entries in the DM_ACCESS_CONTROL section have the form:

ACL_NAME required_parameters

where ACL_NAME is an identifier used to specify an access control list; it may
contain no more than 15 characters.

The only required parameter is:

ACLIST = identifier [,identifier]

where an ACLIST is composed of one or more remote domain access point names
separated by commas. The wildcard character (*) can be used to specify that all the
remote domain access points defined in the DM_REMOTE section can access a local
domain.

DM_TDOMAIN

The DM_TDOMAIN section defines the network addressing information for the TDomain
gateways implementing the BEA Tuxedo CORBA domains. The DM_TDOMAIN section
should have:

One entry per local domain access point if CORBA requests from remote
domains are accepted through that access point

One entry per remote domain access point if CORBA requests from the local
domain to the remote domain are accepted through that access point

In the DM_TDOMAIN section, you can also define the configuration for one or more
remote domain access points associated with one or more WebLogic Server
applications, to combine Tuxedo CORBA servers and WebLogic Server Enterprise
JavaBean (EJB) servers in an application. For details, see “Interoperability with BEA
WebLogic Server” on page 2-1 in BEA Tuxedo Interoperability.

Entries in the DM_TDOMAIN section have the form:

AccessPoint required_parameters [optional_parameters]

where AccessPoint is an identifier value used to identify either (1) a local domain
access point in the DM_LOCAL section or (2) a remote domain access point in the
DM_REMOTE section.
3-16 Using the BEA Tuxedo Domains Component

../interop/iopwls.htm#439632
../interop/iopwls.htm#439632

Understanding and Using the Configuration Files
The following parameter is required:

NWADDR = string
This parameter specifies the network address associated with a local domain
access point or a remote domain access point. If the association is with a local
domain access point, the network address is used by the local domain gateway
to listen for connection requests from remote domains. If the association is with
a remote domain access point, the network address is used by the local domain
gateway to initiate a connection to the remote domain.

If string has the form "0xhex-digits" or "\\xhex-digits", it must
contain an even number of valid hex digits. These forms are translated
internally into a character array containing TCP/IP addresses. The addresses
may also be in either of the following two forms:

"//hostname:port_number"
"//#.#.#.#:port_number"

In the first of these formats, hostname is resolved to a TCP/IP host address at
the time the address is bound, using the locally configured name resolution
facilities accessed via gethostbyname(3c). The "#.#.#.#" is the dotted
decimal format, where each # represents a decimal number in the range 0 to
255.

Port_number is a decimal number in the range 0 to 65535 (the hexadecimal
representations of the string specified).

For example, the lines:

*DM_TDOMAIN
 LDOM NWADDR="//sanfran.kmart.com:2507"
 TDOM1 NWADDR="//sanhose.kmart.com:3186"

mean that the TDomain gateway belonging to gateway group LGWGRP—as stated in the
DM_LOCAL section for the LDOM access point—is configured to listen at address
"//sanfran.kmart.com:2507" for connection requests from remote domains. The
TDomain gateway is also configured to initiate a connection to
"//sanhose.kmart.com:3186" when sending requests to the remote domain
associated with the TDOM1 access point.

For a description of the optional parameters for the DM_TDOMAIN section, see reference
page DMCONFIG(5) in BEA Tuxedo File Formats, Data Descriptions, MIBs, and
System Processes Reference.
Using the BEA Tuxedo Domains Component 3-17

3 Planning and Configuring CORBA Domains
The factory_finder.ini File

The factory_finder.ini file identifies the remote factory objects that can be used
in the local domain. It also identifies the local factory objects that can be used in remote
domains.

The factory_finder.ini file contains two sections, DM_REMOTE_FACTORIES and
DM_LOCAL_FACTORIES. As clarified in the following display, the format of the
factory_finder.ini file is modeled after the syntax used in the DMCONFIG file:

*DM_REMOTE_FACTORIES
 "local_factory_id.factory_kind"
 DOMAINID="domain_id"
 RNAME="remote_factory_id.factory_kind"
 ...

*DM_LOCAL_FACTORIES
 "factory_id.factory_kind"
 ...

The following display demonstrates the syntax for CORBA factory objects:

*DM_REMOTE_FACTORIES
 "AccountFactory.FactoryKind"
 DOMAINID="MyAccountFactoryDomain"
 RNAME="MyAccountFactory.FactoryKind

where AccountFactory is the name used to register the factory in the local domain’s
FactoryFinder, MyAccountFactoryDomain is the name of the remote domain, and
MyAccountFactory is the name used to register the factory in the remote domain’s
FactoryFinder.

Note: No two CORBA domains participating in a Domains configuration are
allowed to have factory objects with the same factory_id.factory_kind
identifier. For details, see “Specifying Unique Factory Object Identifiers in the
factory_finder.ini File” on page 3-22.

DM_REMOTE_FACTORIES

The DM_REMOTE_FACTORIES section specifies which factory objects in remote
domains are available (imported) to the local domain. Identifiers for remote factory
objects are listed in this section. The identifier, under which the object is registered,
3-18 Using the BEA Tuxedo Domains Component

Understanding and Using the Configuration Files
including a kind value of FactoryInterface, must be listed in this section. For
example, the entry for a remote factory object to be registered by the TP Framework
with the identifier Teller in domain Norwest would be specified as:

*DM_REMOTE_FACTORIES
 "Teller.FactoryInterface"
 DOMAINID="Norwest"
 RNAME="BankTeller.FactoryInterface"

If the RNAME is not specified, the factory_kind must be specified in the factory name,
and the factory name must be enclosed in quotation marks; otherwise, the
NameManager is not able to locate the appropriate factory. An entry that does not
contain a factory_kind value is not defaulted with a value of FactoryInterface.

The following example shows a factory object to be registered with the identifier
Teller in domain Norwest. Note the absence of the RNAME specification, the
specification of the factory_kind value, and the quotation marks around the factory
name.

*DM_REMOTE_FACTORIES
 "Teller.FactoryInterface"
 DOMAINID="Norwest"

Because the identities of factories in a Domains configuration may collide, the factory
identifier and the RNAME parameters allow you to specify alternative identities, or
“aliases,” in the local domain for remote factories. The following listing shows two
examples of a remote factory that is registered by the TP Framework with the identifier
BankTeller in domain Norwest. In both examples, the factory is made available in
the local domain with an alias of Teller.

Listing 3-2 Assigning an Alias to a Remote Factory

#EXAMPLE 1:
*DM_REMOTE_FACTORIES
 Teller
 DOMAINID="Norwest"
 RNAME=”BankTeller.FactoryInterface”

#EXAMPLE 2:
*DM_REMOTE_FACTORIES
 "Teller.FactoryInterface"
 DOMAINID="Norwest"
 RNAME="BankTeller.FactoryInterface"
Using the BEA Tuxedo Domains Component 3-19

3 Planning and Configuring CORBA Domains
You can also assign multiple aliases to the same remote factory. In the example shown
in the following listing, the remote factory will be registered in the local domain with
two aliases: Teller and BankTeller.

Listing 3-3 Assigning Multiple Aliases to a Remote Factory

*DM_REMOTE_FACTORIES
 "Teller.FactoryInterface"
 DOMAINID="Norwest"
 RNAME="BankTeller.FactoryInterface"
 "BankTeller.FactoryInterface"
 DOMAINID="Norwest"
 RNAME="BankTeller.FactoryInterface"

DM_LOCAL_FACTORIES

The DM_LOCAL_FACTORIES section specifies which factory objects in the local domain
are available (exported) to remote domains. This section can be used in the following
ways:

If the DM_LOCAL_FACTORIES section is not present in a factory_finder.ini,
or is present but empty, all factory objects in the local domain are available to
remote domains. This software behavior allows administrators an easy means to
make local factory objects available to remote domains without having to
provide an entry for every factory object in the local domain.

If the DM_LOCAL_FACTORIES section is present in a factory_finder.ini file
but contains the reserved keyword NONE, none of the factory objects in the local
domain are available to remote domains. Using the NONE keyword allows
administrators to restrict access without having to provide an entry for every
factory object in the local domain.

The identifier, or name, under which the factory object is registered, including a kind
value of FactoryInterface, must be listed in the DM_LOCAL_FACTORIES section.
For example, the entry for a factory object to be registered by the TP Framework with
the identifier Teller would be specified as:

*DM_LOCAL_FACTORIES
 "Teller.FactoryInterface"
3-20 Using the BEA Tuxedo Domains Component

Understanding and Using the Configuration Files
The factory_kind must be specified for the NameManager to locate the appropriate
factory object. An entry that does not contain a factory_kind value is not defaulted
with a value of FactoryInterface. This software behavior allows for the use of the
CORBA NamingService.

An entry into the file for Domain A might be:

*DM_REMOTE_FACTORIES
fA.FactoryInterface DOMAINID=B

This entry means that a request in Domain A to find a factory with the identifier fA can
be satisfied by the FactoryFinder in Domain B. Of course, the UBBCONFIG and
DMCONFIG files for the two domains must also be set up so that there are connected
domain gateways between the two domains.

An alternate form of the entry is:

CDE.FactoryInterface DOMAINID=B RNAME=fA.FactoryInterface

This entry means that a request in Domain A to find a factory with the identifier CDE
will be satisfied by the FactoryFinder in Domain B using the ID fA. The alternate form
is sometimes called an alias.

Note: The factory ID must have .FactoryInterface at the end. For simplicity, in
discussions about test configurations, the .FactoryInterface is left off, but
it should appear in the factory_finder.ini file.

See Also

UBBCONFIG(5)in BEA Tuxedo File Formats, Data Descriptions, MIBs, and
System Processes Reference

DMCONFIG(5)in BEA Tuxedo File Formats, Data Descriptions, MIBs, and
System Processes Reference

factory_finder.ini(5)in BEA Tuxedo File Formats, Data Descriptions,
MIBs, and System Processes Reference
Using the BEA Tuxedo Domains Component 3-21

../rf5/rf5.htm#365105
../rf5/rf5.htm#2885315
../rf5/rf5.htm#953095

3 Planning and Configuring CORBA Domains
Specifying Unique Factory Object Identifiers
in the factory_finder.ini File

In a single-domain configuration, multiple factory objects with the same name are
allowed, to achieve load balancing. In a Domains configuration, however, no two
domains are allowed to have factory objects with the same
factory_id.factory_kind identifier. If the same identifier, or name, is used in two
domains, the software’s behavior varies depending on whether or not BEA WebLogic
Enterprise was used to configure the CORBA Domains environment:

In releases prior to BEA WebLogic Enterprise 5.1, the software allows the first
server in a domain to register the factory without issuing an error message. If
two factories with the same name are registered in a domain, the Master
NameManager fails.

In BEA WebLogic Enterprise 5.1 or later and BEA Tuxedo 8.0 or later, the
software generates an error and writes it to the ULOG.

There are two ways to ensure that your identifiers, or names, are unique across
domains and thus avoid this problem:

Use unique identifiers throughout the enterprise. Choosing this method may
mean keeping a master list of all identifiers.

In the factory_finder.ini file, use the RNAME parameter so that an alias is
used by the local NameManager. Choosing this method means that you must
also modify local clients to use the alias to access the remote factory object. The
listing “Assigning an Alias to a Remote Factory” on page 3-19 shows an
example of a factory_finder.ini file that uses the RNAME parameter to create
an alias.
3-22 Using the BEA Tuxedo Domains Component

Processing the factory_finder.ini File
Processing the factory_finder.ini File

When starting up, the Master NameManager reads the factory_finder.ini file.
The condition under which the Master NameManager is started determines whether
the Master NameManager reads all or just some of the factory_finder.ini file:

If the Master NameManager process is started as part of booting the CORBA
application (the initialization mode), it reads the entire content of the
factory_finder.ini file. Thus, any new factory objects added to the
DM_REMOTE_FACTORIES section of the factory_finder.ini file are made
known to the local BEA Tuxedo application.

If the Master NameManager process is restarted as a result of process failure, it
reads only the DM_LOCAL_FACTORIES section of the factory_finder.ini file.
Thus, any new factory objects added to the DM_REMOTE_FACTORIES section are
not made known to the local BEA Tuxedo application.

When adding a new domain with factory objects to the DM_REMOTE_FACTORIES
section of the factory_finder.ini file, you must shut down and restart the Master
NameManager. For more information about NameManager, see TMFFNAME(5)in BEA
Tuxedo File Formats, Data Descriptions, MIBs, and System Processes Reference.

Types of CORBA Domains Configurations

When using the BEA Tuxedo Domains component to connect multiple BEA Tuxedo
CORBA domains, you can configure two types of configurations: directly connected
domains and indirectly connected domains. You, as the administrator, configure both
types using the DMCONFIG file.
Using the BEA Tuxedo Domains Component 3-23

../rf5/rf5.htm#33465

3 Planning and Configuring CORBA Domains
Directly Connected Domains

Every domain in a Domains configuration can have a gateway connection—a direct
connection—to every other domain in the Domains configuration. With directly
connected domains, a request goes directly to the target domain.

A directly connected Domains configuration, or “n-way” configuration, is reasonable
when the number of domains is small, but each new domain added to the configuration
requires two, four, ... or more new gateways. At some point, you may consider giving
up speed of delivery for ease of management of domain connections by configuring
indirectly connected domains.

Indirectly Connected Domains

You should consider what the likely traffic patterns are. Domains that have only
occasional interactions are candidates for gateway removal. Since there will still be
interactions, it must still be possible to reach the other domain. The technique used is
to route the request through an intermediate domain that does have direct access to the
target domain.

For example, consider the three domains, A, B, and C, shown in the following figure.

Figure 3-2 Indirectly Connected Domains
3-24 Using the BEA Tuxedo Domains Component

Examples of CORBA Domains Configurations
Domains A and B are directly connected, and Domains B and C are directly connected,
but A and C are not directly connected. For Domains A and C to communicate, they
must use Domain B as the intermediary. Therefore, the DMCONFIG file for Domain A
must state that it is possible to connect to Domain C by going through Domain B (and
vice versa). That is, the connectivity is:

Domains A <-> B <-> C
Gateways GAB GBA GBC GCB

Domain A has a gateway process, GAB (the gateway from A to B), that connects to
Domain B. The Domain A DMCONFIG file states that GAB acts as a gateway to two
domains, Domains B and C. The DMCONFIG file for Domain C has a similar
configuration, stating that GCB is connected to B and A. The DMCONFIG file for
Domain B has two gateway processes, one which connects to A (GBA) and one which
connects to C (GBC). This configuration is called an indirect connection.

Given this indirect connection, when a server in A invokes a request on an object in C,
BEA Tuxedo CORBA server knows that it can send the request to gateway GAB. The
BEA Tuxedo gateway does not know that its partner gateway in B cannot service the
request itself, but that is acceptable. Once the request is in Domain B, it is routed
through GBC to C, which can service the request. Thus, the request is serviced with
one extra hop.

It is even possible for the two gateways in Domain B to be a single gateway, so that
there is not an extra hop within B. In effect, the same processing occurs in Domain B,
but it all occurs within a single gateway process.

Examples of CORBA Domains
Configurations

The following examples show how to configure directly connected CORBA domains.
If you want to use these examples, you will need to change the APPDIR, TUXCONFIG,
and TUXDIR variables to match your environment. Also, you will have to substitute
appropriate information wherever text is enclosed by left (<) and right (>) angle
brackets (for example, <App Server Name>) and delete the angle brackets.
Using the BEA Tuxedo Domains Component 3-25

3 Planning and Configuring CORBA Domains
Sample UBBCONFIG Files

The following three listings show the UBBCONFIG files for three directly connected
domains: Here, There, and Yonder. To use these files, you must replace host with
the name of the local machine.

Listing 3-4 UBBCONFIG File for the Here Domain

#
Copyright (c) 1999 BEA Systems, Inc.
All rights reserved
#
#
#
RESOURCES
#
*RESOURCES
 IPCKEY 123312
 DOMAINID HereD
 MASTER LAPP
 MODEL SHM
 LDBAL N#
MACHINES
#
*MACHINES
 <host>
 LMID=LAPP
 APPDIR="/tst1/wle4.2/test_dom/t07:
 /tst1/wle4.2/dec_unix/wlemdomai"
 TUXCONFIG="/tst1/wle4.2/test_dom/tuxconfig"
 TUXDIR="/lclobb/lc"
 MAXWSCLIENTS=10
#
GROUPS
#
*GROUPS
 DEFAULT: LMID=LAPP
 ICEGRP GRPNO=11 OPENINFO=NONE
 GROUP1 GRPNO=21 OPENINFO=NONE
 LDMGRP GRPNO=3
 LGWGRP GRPNO=4
#
SERVERS
#
*SERVERS
3-26 Using the BEA Tuxedo Domains Component

Examples of CORBA Domains Configurations
 DEFAULT: CLOPT="-A"
 DMADM SRVGRP=LDMGRP SRVID=1
 GWADM SRVGRP=LGWGRP SRVID=1
 GWTDOMAIN SRVGRP=LGWGRP SRVID=2
 TMSYSEVT SRVGRP=ICEGRP SRVID=1
 TMFFNAME SRVGRP=ICEGRP SRVID=2
 CLOPT="-A -- -N -M -f <FF ini file for Here>"
 TMFFNAME SRVGRP=ICEGRP SRVID=3 CLOPT="-A -- -N"
 TMFFNAME SRVGRP=ICEGRP SRVID=4 CLOPT="-A -- -F"
 <App Server Name> SRVGRP=GROUP1 SRVID=2
 ISL SRVGRP=GROUP1 SRVID=1
 CLOPT="-A -- -d /dev/tcp -n //<host>:<port>"

#
SERVICES
#
*SERVICES

UBBCONFIG File for the “There” Domain

#
Copyright (c) 1999 BEA Systems, Inc.
All rights reserved
#
RESOURCES
#
*RESOURCES
 IPCKEY 133445
 DOMAINID ThereD
 MASTER LAPP1
 MODEL SHM
 LDBAL N
#
MACHINES
#
*MACHINES
 <host>
 LMID=LAPP1
 APPDIR="D:\test_dom\t07;D:\Iceberg\qa\orb\bld\wlemdomain"
 TUXCONFIG="D:\test_dom\tuxconfig"
 TUXDIR="D:\Iceberg"
 MAXWSCLIENTS=10
#
GROUPS
#
*GROUPS
 DEFAULT LMID=LAPP1
 ICEGRP GRPNO=11 OPENINFO=NONE
Using the BEA Tuxedo Domains Component 3-27

3 Planning and Configuring CORBA Domains
 GROUP1 GRPNO=21 OPENINFO=NONE
 LDMGRP GRPNO=3
 LGWGRP GRPNO=4
#
SERVERS
#
*SERVERS
 DEFAULT: CLOPT="-A"
 DMADM SRVGRP=LDMGRP SRVID=1
 GWADM SRVGRP=LGWGRP SRVID=1
 GWTDOMAIN SRVGRP=LGWGRP SRVID=2
 TMSYSEV SRVGRP=ICEGRP SRVID=1
 TMFFNAME SRVGRP=ICEGRP SRVID=2
 CLOPT="-A -- -N -M -f <FF ini file for There>"
 TMFFNAME SRVGRP=ICEGRP SRVID=3 CLOPT="-A -- -N"
 TMFFNAME SRVGRP=ICEGRP SRVID=4 CLOPT="-A -- -F"
 <App Server Name> SRVGRP=GROUP1 SRVID=2
 ISL SRVGRP=GROUP1 SRVID=1
 CLOPT="-A -- -d /dev/tcp -n //<host>:<port>"
#
SERVICES
#
*SERVICES

Listing 3-5 UBBCONFIG File for the Yonder Domain

Copyright (c) 1999 BEA Systems, Inc.
All rights reserved
#
RESOURCES
#
*RESOURCES
 IPCKEY 123334
 DOMAINID YonderD
 MASTER LAPP
 MODEL SHM
 LDBAL N
#
MACHINES
#
*MACHINES
 <host>
 LMID=LAPP
 APPDIR="/tst1/wle4.2/test_dom/t07p:
 /tst1/wle4.2/<host3>/wlemdomain"
3-28 Using the BEA Tuxedo Domains Component

Examples of CORBA Domains Configurations
 TUXCONFIG="/tst1/wle4.2/test_dom/<host3>/tuxconfig"
 TUXDIR="/lclobb/lc"
 MAXWSCLIENTS=10
#
GROUPS
#
*GROUPS
 DEFAULT: LMID=LAPP
 ICEGRP GRPNO=11 OPENINFO=NONE
 GROUP1 GRPNO=21 OPENINFO=NONE
 LDMGRP GRPNO=3
 LGWGRP GRPNO=4
#
SERVERS
#
*SERVERS
 DEFAULT: CLOPT="-A"
 DMADM SRVGRP=LDMGRP SRVID=1
 GWADM SRVGRP=LGWGRP SRVID=1
 GWTDOMAIN SRVGRP=LGWGRP SRVID=2
 TMSYSEVT SRVGRP=ICEGRP SRVID=1
 TMFFNAME SRVGRP=ICEGRP SRVID=2
 CLOPT="-A -- -N -M"
 TMFFNAME SRVGRP=ICEGRP SRVID=3 CLOPT="-A -- -N"
 TMFFNAME SRVGRP=ICEGRP SRVID=4 CLOPT="-A -- -F"
 <App Server Name> SRVGRP=GROUP1 SRVID=2
 ISL SRVGRP=GROUP1 SRVID=1
 CLOPT="-A -- -d /dev/tcp -n //<host>:<port>"
#
SERVICES
#
*SERVICES

Sample DMCONFIG File

The following three listings show the DMCONFIG files for three directly connected
domains: Here, There, and Yonder. To use these listings in a Domains configuration,
you must replace host1 with the name of the local machine for the Here domain,
replace host2 with the name of the local machine for the There domain, and replace
host3 with the name of the local machine for the Yonder domain.
Using the BEA Tuxedo Domains Component 3-29

3 Planning and Configuring CORBA Domains
Listing 3-6 DMCONFIG File for the Local Machine in the Here Domain in a
Three-Domain Configuration

#
Copyright (c) 1999 BEA Systems, Inc.
All rights reserved
#
#
Tuxedo Domains Configuration File
#
*DM_RESOURCES

 VERSION=U22

#
DM_LOCAL
#
*DM_LOCAL

 LDOM1 GWGRP=LGWGRP TYPE=TDOMAIN ACCESSPOINTID="HereG"

#
DM_REMOTE
#
*DM_REMOTE

 TDOM1 TYPE=TDOMAIN ACCESSPOINTID="ThereG"
 TDOM2 TYPE=TDOMAIN ACCESSPOINTID="YonderG"

#
DM_TDOMAIN
#
*DM_TDOMAIN

 LDOM1 NWADDR="//<host1>:<tcpport>"
 TDOM1 NWADDR="//<host2>:<tcpport>"
 TDOM2 NWADDR="//<host3>:<tcpport>"
#
DM_EXPORT
#
*DM_EXPORT
 "//HereD"
#
DM_IMPORT
#
*DM_IMPORT
3-30 Using the BEA Tuxedo Domains Component

Examples of CORBA Domains Configurations
 "//ThereD" RACCESSPOINT=TDOM1
 "//YonderD" RACCESSPOINT=TDOM2

To use the following listing in a Domains configuration, you must replace host1 with
the name of the local machine for the There domain, replace host2 with the name of
the local machine for the Here domain, and replace host3 with the name of the local
machine for the Yonder domain.

Listing 3-7 DMCONFIG File for the There Domain in a Three-Domain
Configuration

#
Copyright (c) 1999 BEA Systems, Inc.
All rights reserved
#
#
Tuxedo Domains Configuration File
#
*DM_RESOURCES

 VERSION=U22

#
DM_LOCAL
#
*DM_LOCAL

 LDOM1 GWGRP=LGWGRP TYPE=TDOMAIN ACCESSPOINTID="ThereG"

#
DM_REMOTE
#
*DM_REMOTE

 TDOM1 TYPE=TDOMAIN ACCESSPOINTID="HereG"
 TDOM2 TYPE=TDOMAIN ACCESSPOINTID="YonderG"

#
DM_TDOMAIN
#
*DM_TDOMAIN

 LDOM1 NWADDR="//<host1>:<tcpport>"
 TDOM1 NWADDR="//<host2>:<tcpport>"
Using the BEA Tuxedo Domains Component 3-31

3 Planning and Configuring CORBA Domains
 TDOM2 NWADDR="//<host3>:<tcpport>"
#
DM_EXPORT
#
*DM_EXPORT
 "//ThereD"
#
DM_IMPORT
#
*DM_IMPORT

 "//HereD" RACCESSPOINT=TDOM1
 "//YonderD" RACCESSPOINT=TDOM2

To use the following listing in a Domains configuration, you must replace host1 with
the name of the local machine for the Yonder domain, replace host2 with the name of
the local machine for the Here domain, and replace host3 with the name of the local
machine for the There domain.

Listing 3-8 DMCONFIG File for the Yonder Domain in a Three-Domain
Configuration

#
Copyright (c) 1999 BEA Systems, Inc.
All rights reserved
#
#
Tuxedo Domains Configuration File
#
*DM_RESOURCES

 VERSION=U22

#
DM_LOCAL
#
*DM_LOCAL

 LDOM1 GWGRP=LGWGRP TYPE=TDOMAIN ACCESSPOINTID="YonderG"

#
DM_REMOTE
#
*DM_REMOTE
3-32 Using the BEA Tuxedo Domains Component

Examples of CORBA Domains Configurations
 TDOM1 TYPE=TDOMAIN ACCESSPOINTID="HereG"
 TDOM2 TYPE=TDOMAIN ACCESSPOINTID="ThereG"

#
DM_TDOMAIN
#
*DM_TDOMAIN

 LDOM1 NWADDR="//<host1>:<tcpport>"
 TDOM1 NWADDR="//<host2>:<tcpport>"
 TDOM2 NWADDR="//<host3>:<tcpport>"
#
DM_EXPORT
#
*DM_EXPORT
 "//YonderG"
#
DM_IMPORT
#
*DM_IMPORT

 "//HereD" RACCESSPOINT=TDOM1
 "//ThereD" RACCESSPOINT=TDOM2

Sample factory_finder.ini File

The following two listings show the factory_finder.ini files for the Here and
There domains. The Yonder domain does not require a factory_finder.ini file.

Listing 3-9 factory_finder.ini File for the Here Local Domain

Copyright (c) 1999 BEA Systems, Inc.
All rights reserved
#
Factory Finder Initialization file for Domain “Here”
This is the local domain.
#
DM_LOCAL_FACTORIES
#
*DM_LOCAL_FACTORIES

 "AFactory.FactoryInterface"
#

Using the BEA Tuxedo Domains Component 3-33

3 Planning and Configuring CORBA Domains
DM_REMOTE_FACTORIES
#
*DM_REMOTE_FACTORIES
 "AFacYonder.FactoryInterface"
 DOMAINID="YonderD"
 RNAME="AFactory.FactoryInterface"

 "BFactory.FactoryInterface"
 DOMAINID="YonderD"

Listing 3-10 factory_finder.ini File for the There Remote Domain

#
Copyright (c) 1999 BEA Systems, Inc.
All rights reserved
#
Factory Finder Initialization file for Domain “There”
This is a remote domain.
#
DM_LOCAL_FACTORIES
#
*DM_LOCAL_FACTORIES
 "AFactory.FactoryInterface"
#
DM_REMOTE_FACTORIES
#
*DM_REMOTE_FACTORIES
 "AFacYonder.FactoryInterface"
 DOMAINID="YonderD"
 RNAME="AFactory.FactoryInterface"
 "BFactory.FactoryInterface"
 DOMAINID="YonderD"
3-34 Using the BEA Tuxedo Domains Component

CHAPTER
4 Administering
Domains

The following sections explain how to administer a BEA Tuxedo Domains
environment:

Using Domains Run-Time Administrative Commands

Using the Administrative Interface, dmadmin(1)

Using the Domains Administrative Server, DMADM(5)

Using the Gateway Administrative Server, GWADM(5)

Using the Domain Gateway Server

Managing Transactions in a Domains Environment

Using Domains Run-Time Administrative
Commands

To integrate the Domains component with an existing BEA Tuxedo application, you
add entries for domain gateway groups and gateway servers to the TUXCONFIG file.
You can use either the tmconfig(1) or tmadmin(1) command to add a Domains
configuration to a running BEA Tuxedo application. You can also use tmadmin to list
the information available in the bulletin board for domain gateway groups and
individual domain gateways.
Using the BEA Tuxedo Domains Component 4-1

4 Administering Domains
Once your Domains environment is configured and integrated, you can administer it
dynamically using a set of administrative tools provided by the Domains component.
For example, you can specify and modify the list of services that are accessible across
applications. The Domains software preserves the characteristics of the BEA Tuxedo
programming interface (ATMI) and extends the scope of the ATMI so that clients can
invoke services across domains. This functionality allows programmers to expand or
partition applications without changing any application code.

The following figure shows the relationship between administrative commands and
servers in the Domains administrative subsystem.

Figure 4-1 Domains Run-Time Administration

The BEA Tuxedo Domains component offers the following administrative commands:

dmadmin(1) command, a generic administrative service—Enables
administrators to configure, monitor, and tune domain gateway groups
dynamically, and to update the Domains configuration file (BDMCONFIG) while
the BEA Tuxedo application is running. The command acts as a front-end
process that translates administrative commands and sends service requests to
the DMADMIN service, a generic administrative service advertised by the DMADM
server. The DMADMIN service invokes the validation, retrieval, or update of
functions provided in the DMADM server to maintain the BDMCONFIG file.

DMADM(5), the Domains administrative server—Provides the administrative
processing required for updating the Domains configuration. This server acts as
a back-end to the dmadmin command. It provides a registration service to
4-2 Using the BEA Tuxedo Domains Component

../rfcm/rfcmd.htm#7516311
../rf5/rf5.htm#3454515

Using Domains Run-Time Administrative Commands
domain gateway groups. This registration service is requested by GWADM servers
as part of their initialization procedure. The registration service downloads the
configuration information required by the requesting domain gateway group. The
DMADM server maintains a list of registered domain gateway groups, and
propagates to these groups any changes made to the configuration.

GWADM(5), the gateway administrative server—Registers with the DMADM server
to obtain the configuration information used by the corresponding domain
gateway group. The GWADM accepts queries from DMADM to obtain run-time
statistics or to change the run-time options of the corresponding domain gateway
group. Periodically, the GWADM server sends an “I-am-alive” message to the
DMADM server. If no reply is received from the DMADM server, the GWADM server
registers again. This mechanism makes sure the GWADM server always has the
latest copy of the Domains configuration for its group.

GWTDOMAIN(5), the TDomain gateway server—Provides interoperability
between two or more BEA Tuxedo domains. Working with the WebLogic
Tuxedo Connector (WTC) gateway, a BEA WebLogic Server component, the
BEA Tuxedo TDomain gateway can also provide interoperability between
Tuxedo domains and WebLogic Server applications.

Note: For information about domain gateway types other than GWTDOMAIN, see
Using the BEA Tuxedo TOP END Domain Gateway with ATMI
Applications and BEA eLink Documentation at
http://e-docs.bea.com/elink/mainfram/mainfram.htm.

BDMCONFIG—the binary version of the Domains configuration file, which
together with the TUXCONFIG file and factory_finder.ini file (CORBA only)
contain all the configuration parameters that the BEA Tuxedo software needs to
create a Domains configuration.

Note: You can also specify gateway parameters when a domain gateway group is
booted using the CLOPT parameter, when the GWADM server is defined in the
SERVERS section of the TUXCONFIG file.
Using the BEA Tuxedo Domains Component 4-3

../rf5/rf5.htm#2497915
../rf5/rf5.htm#1239015

4 Administering Domains
Using the Administrative Interface,
dmadmin(1)

dmadmin is an administrative interface to the DMADM and GWADM servers. The
communication between the two servers is done via FML typed buffers.
Administrators can use the dmadmin command in the following ways:

For the interactive administration of the information stored in the BDMCONFIG
file and the different domain gateway groups running within a particular BEA
Tuxedo application.

To obtain statistics or other information gathered by domain gateway groups.

To change domain gateway group parameters.

To add (or update) information in the BDMCONFIG file.

Note: You can delete information from the BDMCONFIG file at run time only if the
deletions do not involve an active domain gateway group.

See Also

dmadmin(1) in BEA Tuxedo Command Reference
4-4 Using the BEA Tuxedo Domains Component

../rfcm/rfcmd.htm#7516311

Using the Domains Administrative Server, DMADM(5)
Using the Domains Administrative Server,
DMADM(5)

The Domains administrative server, DMADM(5), is a BEA Tuxedo-supplied server that
performs the following functions:

Supports run-time administration of the BDMCONFIG file

Maintains the BDMCONFIG file

Supports a list of registered domain gateway groups

Propagates run-time configuration changes to the registered domain gateway
groups

The DMADM server advertises two services:

DMADMIN, which is used by the dmadmin command and the GWADM server.

A service called DMADM_svrid, where srvid is the appropriate server ID for the
service. Registered GWADM servers use DMADM_svrid for specific administrative
functions (for example, to refresh the domain gateway group configuration
information or to signal that a GWADM is still registered).

The DMADM server must be defined in the SERVERS section of the TUXCONFIG file as a
server running within a group (for example, DMADMGRP). There should be only one
instance of the DMADM server in this group.

See Also

DMADM(5) in BEA Tuxedo File Formats, Data Descriptions, MIBs, and System
Processes Reference
Using the BEA Tuxedo Domains Component 4-5

../rf5/rf5.htm#3454515
../rf5/rf5.htm#3454515

4 Administering Domains
Using the Gateway Administrative Server,
GWADM(5)

The gateway administrative server, GWADM(5), is a BEA Tuxedo-supplied server that
provides administrative functions for a domain gateway group. The main functions of
the GWADM server include:

Getting Domains configuration information from the DMADM server, and
accepting queries from dmadmin. The GWADM server gets the domain gateway
group configuration information by registering with the DMADM server. The
GWADM server then makes the configuration available to gateways by storing the
information in shared memory.

Providing administrative functionality for a domain gateway group, for example,
by accepting queries from dmadmin for run-time statistics or by changing the
run-time parameters of the domain gateway group.

Providing transaction logging functionality for a domain gateway group. The
GWADM server determines which transactions need to be logged by reading
information stored in shared memory. When the GWADM server is booted, it scans
the log to see whether any transactions need to be recovered, and then
reconstructs the transaction information in shared memory. The gateway server
scans the information in shared memory and performs recovery for the
corresponding transactions. The recovery procedure is performed
asynchronously with new incoming or outgoing requests received by the domain
gateway group.

The GWADM server advertises a service name based on the local domain access point
name (as specified in the DM_LOCAL section of the BDMCONFIG file) associated with the
domain gateway group to which the GWADM server belongs. The dmadmin command
uses this service to retrieve information from all active domain gateway groups or from
a specific domain gateway group.

The GWADM server must be defined in the SERVERS section of the TUXCONFIG file. It
should not be part of the MSSQ used by the gateways associated with the group. It must
be the first server booted within the domain gateway group; that is, either (a) it must
have a SEQUENCE number, or (b) it must be defined ahead of the gateway servers.
4-6 Using the BEA Tuxedo Domains Component

../rf5/rf5.htm#2497915

Using the Domain Gateway Server
The GWADM server requires the existence of a DMADM server. Specifically, a DMADM
server must be booted before that GWADM is booted.

The GWADM server must create the shared memory required by the domain gateway
group to populate the configuration tables with information received from the DMADM
server. The GWADM server uses IPC_PRIVATE with shmget and stores the ipckey
returned in the shmid field of its registry entry in the bulletin board. Gateways can
obtain the ipckey by retrieving the GWADM registry entry and checking the shmid field.

See Also

GWADM(5) in BEA Tuxedo File Formats, Data Descriptions, MIBs, and System
Processes Reference

Using the Domain Gateway Server

A domain gateway server provides connectivity to remote domain gateway servers,
and can communicate with one or more remote gateways simultaneously. A gateway
advertises the services imported to a BEA Tuxedo application and controls access to
the local services exported by the application. You define your application’s exported
and imported services in the Domains configuration file (DMCONFIG). Use dmadmin to
dynamically configure, monitor, and tune domain gateway groups.

See Also

“Types of Domain Gateways” on page 1-3
Using the BEA Tuxedo Domains Component 4-7

../rf5/rf5.htm#2497915

4 Administering Domains
Managing Transactions in a Domains
Environment

Application programmers can request the execution of remote services within a
transaction. Also, users of remote domains can request local services to be executed
within a transaction. Domains, therefore, coordinates the mapping of remote
transactions to local transactions, and the sane termination (commitment or rollback)
of these transactions.

The BEA Tuxedo system architecture uses a separate process, the Transaction
Manager Server (TMS), to coordinate the commitment and recovery of transaction
branches accessing a particular group. In a Domains environment, however, this
architecture would require extra messages from the gateway to the TMS server to
process a commitment for an incoming transaction. To simplify the Domains
architecture and to reduce the number of messages, the TMS code is integrated with the
gateway code. Thus, domain gateways can process the transaction protocol used by the
BEA Tuxedo system. The BEA Tuxedo transaction protocol requires that the domain
gateway group advertise the TMS service, which is done when the first gateway is
booted. Once the TMS service is advertised, any transaction control messages directed
to the domain gateway group are placed on the gateway’s queue.

Domain gateway groups should be defined in the TUXCONFIG file without the
TMSNAME, TMSCOUNT, OPENINFO, and CLOSEINFO parameters. These four parameters
apply only to groups that use an XA-compliant resource manager, which domain
gateways do not use.

The commitment protocol across domains is strictly hierarchical. It is not possible to
flatten the transaction tree because the structure of the transaction tree is not fully
known by every domain; a superior knows only its immediately subordinate domains.
Flattening the tree would also require the root domain to be fully connected to all
domains participating in the transaction.

Domain gateways provide four capabilities that you can use to manage transactions.
These capabilities are described in the following sections:

“Using the TMS Capability Across Domains” on page 4-9

“Using GTRID Mapping in Transactions” on page 4-12
4-8 Using the BEA Tuxedo Domains Component

Managing Transactions in a Domains Environment
“Using Logging to Track Transactions” on page 4-19

“Recovering Failed Transactions” on page 4-21

Using the TMS Capability Across Domains

In the BEA Tuxedo system, the TMS is a special server that is implicitly associated with
server groups that use X/Open XA-compliant resource managers. The TMS server
releases application servers from the delays associated with the distributed 2-phase
commitment protocol. TMS servers coordinate the commitment of a transaction via
special service requests to the TMS service, which is offered by all TMS servers.

In a Domains environment, GWTDOMAIN gateways are not associated with an
XA-compliant resource manager. The Transaction Processing Working Group (TPWG)
of X/Open has proposed an advanced XA interface. This interface is not used in the
BEA Tuxedo system because the interface does not match the highly asynchronous
and non-blocking model required by the gateway. While domain gateways do not use
a separate TMS server, they do offer the Transaction Manager Servers capability, which
allows gateways to coordinate the 2-phase commitment of transactions executed
across domains.

Domain gateways coordinate transactions across domains in the following manner:

1. Domain gateways advertise the TMS service and perform all operations associated
with that service. Messages sent to this service are placed on the queue used by the
appropriate domain gateway group, and the gateways manage the transactions
associated with the group.

2. A gateway can act as a subordinate of transactions coordinated by another group
within the domain. In this case, the gateway is a superior of the transaction
branches executed in other remote domains. When acting as a subordinate of a
transaction coordinated by a remote domain, the gateway also acts as the
coordinator for all groups in the local domain accessed by the transaction. The
gateway, acting as both subordinate and coordinator, is illustrated in the
following figure.
Using the BEA Tuxedo Domains Component 4-9

4 Administering Domains
Figure 4-2 The Domain Gateway as Subordinate/Coordinator of Another
Domain Gateway Group

3. As a coordinator of transactions within the domain, the gateway manages the
commitment of a transaction for a particular client. This is illustrated in the
following figure.
4-10 Using the BEA Tuxedo Domains Component

Managing Transactions in a Domains Environment
Figure 4-3 Client Commit Managed by a Domain Gateway

4. Gateways manage transaction commitment for a particular client or for a server
that uses the forwarding service with the AUTOTRAN capability. When this
combination is used, the last server in the forward chain (the domain gateway)
issues the commit and becomes the coordinator of the transaction. (A domain
gateway always acts as the last server in a forward chain.)

5. Gateways automatically start and terminate transactions for remote services
specified with the AUTOTRAN capability. This capability is required when an the
application administrator wants to enforce reliable network communication with
remote services. Administrators can specify this capability by setting the
AUTOTRAN parameter to Y in the corresponding remote service definition.

For more information, see the DM_IMPORT section of DMCONFIG(5) in BEA
Tuxedo File Formats, Data Descriptions, MIBs, and System Processes
Reference.

6. Gateways map the BEA Tuxedo system transaction protocol to the networking
transaction protocol used for interoperation with remote domains. How this
mapping is done depends on which instantiation of domain gateway you are
using: TDomain, TOP END, SNA, or OSI TP.
Using the BEA Tuxedo Domains Component 4-11

../rf5/rf5.htm#2885315

4 Administering Domains
Using GTRID Mapping in Transactions

In the BEA Tuxedo system, a transaction tree is a 2-level tree where the root is the
domain gateway group coordinating a global transaction and branches are involved in
the transaction. Each group performs its part of the global transaction independently
from the parts performed by other groups. Each group, therefore, implicitly defines a
transaction branch. The BEA Tuxedo system, through TMS servers, coordinates the
completion of the global transaction, making sure each branch is completed.

A GTRID is a Global Transaction Identifier. GTRID mapping defines how to construct
a transaction tree that crosses domain boundaries. You specify GTRIDs using the
MAXGTT parameter in the RESOURCES section of the BEA Tuxedo configuration file.

Defining Tightly-coupled and Loosely-coupled Relationships

In the X/Open DTP Model, a Transaction Manager Server can construct transaction
trees by defining either tightly-coupled or loosely-coupled relationships with a
resource manager (RM) by the way it interprets the transaction identifiers (XIDs) used
by the XA interface.

A tightly-coupled relationship is one in which a single transaction identifier, XID, is
used by all processes participating in a single global transaction, accessing a single
RM. This relationship maximizes data sharing between processes; XA-compliant RMs
expect to share locks for resources used by processes having the same XID. The BEA
Tuxedo system achieves the tightly-coupled relationship via the group concept; that is,
all work done by a group on behalf of a given global transaction belongs to the same
transaction branch; all the processes executed by the group are given the same XID.

In a loosely-coupled relationship, the TMS generates a transaction branch for each part
of the work in support of the global transaction. The RM handles each transaction
branch separately; there is no sharing of data or of locks between the transaction
branches. Deadlocks between transaction branches can occur and result in the rollback
of a global transaction. In the BEA Tuxedo application, when different groups
participate in a single global transaction, each group defines a separate transaction
branch, which results in a loosely-coupled relationship.
4-12 Using the BEA Tuxedo Domains Component

Managing Transactions in a Domains Environment
Global Transactions Across Domains

There are several differences between global transactions in a single BEA Tuxedo
application and global transactions across domains. The first difference is that in the
Domains framework, the transaction tree cannot be flattened to a 2-level tree. There
are two reasons for this:

The transaction may involve more domains than can be known from the root
domain (where the transaction is controlled), so the structure of the transaction
tree cannot be fully known.

If a transaction tree is flattened to two levels, the root domain must be connected
directly to all domains in the transaction.

This means that the commitment protocol across domains must be hierarchical. Even
a loopback service request defines a new branch in the transaction tree.

Note: A loopback request goes to another domain and then comes back to be
processed in the original domain. For example, Domain A requests a service
of Domain B. The service in Domain B requests another service in Domain A.
The transaction tree has two branches at the network level: a branch b1 from
A to B and a branch b2 from B to A. Domain A cannot commit the work done
on branch b2 before receiving commit instructions from B.

The structure of a transaction tree for global transactions across domains also depends
on the distributed transaction processing protocol used by a relevant domain gateway
instantiation. For example, in the OSI TP protocol each dialogue (the OSI TP word for
a service request) is associated with a different transaction branch. In the BEA Tuxedo
system, the OSI TP instantiation uses a dialogue for each service request, so each
service request is mapped to a separate transaction branch. The XAP-TP interface
hides this mapping and provides a mechanism by which an entire OSI TP subtree can
be referenced by a user-defined identifier. (In the BEA Tuxedo implementation, this
identifier is the GTRID.) The GTRID is used to instruct XAP-TP how a transaction tree
must be constructed, that is, which dialogues must be included within a given OSI TP
transaction. Therefore, from the BEA Tuxedo perspective, a whole OSI TP subtree can
be managed as a single transaction branch.

This property, however, applies only to outgoing service requests (that is, service
requests sent from the root domain to subordinate domains). It cannot be applied to
incoming service requests. The OSI TP instantiation consequently implements a
loosely-coupled relationship; each incoming service request is mapped to a new BEA
Tuxedo global transaction.
Using the BEA Tuxedo Domains Component 4-13

4 Administering Domains
The TDomain instantiation tries to optimize GTRID mapping by implementing a
tightly-coupled relationship. In TDomain, multiple service requests issued on behalf
of the same global transaction are mapped to the same network transaction branch.
Therefore, incoming service requests can be mapped to a single BEA Tuxedo
transaction. However, the hierarchical structure of interdomain communication and
the interdomain transaction tree must still be maintained.

The optimization that TDomain introduces applies only to a single domain. When two
or more domains are involved in a transaction, the network transaction tree contains at
least one branch per domain interaction. Hence, across domains, the network
transaction tree remains loosely-coupled. There are as many branches as there are
domains involved in the transaction (even if all the branches access the same resource
manager instance).

Domain gateway groups implement a loosely-coupled relationship because they
generate different transaction branches for interdomain transactions.

Example of a Service Request Graph Generating Local and Remote Requests

The following figure shows the service request graph for a client that generates three
service requests: one local request (r0) and two remote requests (r2 and r3). Request
r0 goes to a local service (Svc0), which generates another remote service request (r1).
Request r1 goes to remote service Rsvc1, which issues a loopback service request r4
to local service Svc4. Svc0 and Svc4 are executed in different groups (G0 and G4). The
domain gateway is executed within another group (GW), and the remote services Rscv1,
Rsvc2, and Rsvc3 are executed in another domain (Domain B).
4-14 Using the BEA Tuxedo Domains Component

Managing Transactions in a Domains Environment
Figure 4-4 Service Request Graph

Transaction Trees for BEA eLink OSI TP and BEA Tuxedo Domains

The following two figures show the transaction tree for BEA eLink OSI TP and the
transaction tree for BEA Tuxedo domains. It is assumed, in these figures, that both
Domain A and Domain B are BEA Tuxedo system applications.

BEA eLink OSI TP is loosely-coupled because of the OSI TP protocol. The transaction
tree for this instantiation shows group G0 in Domain A coordinating the global
transaction started by the client. Group G0 coordinates group GW. Requests r1, r2, and
r4 are mapped each to an OSI TP dialogue and therefore to an OSI TP transaction
branch. However, OSI TP uses the XAP-TP feature that allows an entire OSI TP
Using the BEA Tuxedo Domains Component 4-15

4 Administering Domains
transaction to be referred by a unique identifier (T1) and uses this identifier for requests
r1, r2, and r3. It is up to XAP-TP to generate OSI TP transaction identifiers and to
construct the corresponding OSI TP transaction tree. The only function that must be
performed by the generic Domains software is the mapping of service requests r1, r2,
and r3 to the T1 identifier.

In Domain B, OSI TP uses the rule that new transaction branches must be mapped to
a new BEA Tuxedo transaction. Therefore, OSI TP transaction branches r1, r2, and
r3 get mapped to three different BEA Tuxedo transactions (the corresponding
mapping is represented by identifiers T2, T3, and T4). The graph shows the domain
gateway group GW in Domain B coordinating three BEA Tuxedo transactions on group
G1.

Finally, there is the loopback service request r4 that generates another branch in the
transaction tree. OSI TP maps this request to identifier T2, but XAP-TP generates a
new branch in its transaction tree (r4: B to A'). This is a new transaction branch on
Domain A, and therefore, the gateway generates a new mapping T5 to a new BEA
Tuxedo transaction. Therefore, the transaction graph shows that domain gateway
group GW on Domain A coordinates group G4.

Notice that the hierarchical nature of the OSI TP protocol is fully enforced by these
mappings. However, because these mappings introduce a loosely-coupled
relationship, the probability of intratransaction deadlock is increased (for example,
there are three BEA Tuxedo transactions accessing the RM represented by group G1).
4-16 Using the BEA Tuxedo Domains Component

Managing Transactions in a Domains Environment
Figure 4-5 Transaction Tree for BEA eLink OSI TP Environment
Using the BEA Tuxedo Domains Component 4-17

4 Administering Domains
The TDomain instantiation provides a tightly-coupled integration that solves this
deadlock problem by minimizing the number of transaction branches required in the
interoperation between two domains. The corresponding transaction tree is shown in
the following figure.

Figure 4-6 Transaction Tree for TDomain Environment

Notice that the gateway still must perform mappings between a BEA Tuxedo system
transaction and a network transaction, and that the hierarchical nature of the
communication between domains must be strictly enforced. The diagram shows that
requests r1, r2, and r3 are mapped to a single TDomain transaction branch. Therefore,
on Domain B only one BEA Tuxedo system transaction needs to be generated; T2
represents this mapping and the graph shows domain gateway group GW on Domain B
4-18 Using the BEA Tuxedo Domains Component

Managing Transactions in a Domains Environment
coordinating group G1. Request r4 is mapped to identifier T2 on Domain B, but
TDomain will generate a new branch in its transaction tree (r4: B to A'). Because this
is a new transaction branch on Domain A, the gateway generates a new mapping, T3,
to a new BEA Tuxedo system transaction. The graph shows that domain gateway
group GW on Domain A also coordinates group G4. Hence, the hierarchical nature of
interdomain communication is fully enforced with this mapping: group G4 cannot
commit before group G1.

Summary of Domains Transaction Management

Domains transaction management can be summarized as follows:

Gateways generate mappings from a BEA Tuxedo system transaction to a
network transaction. A new mapping is generated for each BEA Tuxedo system
transaction and each incoming network transaction branch.

Each instantiation of domain gateway (TDomain, TOP END, SNA, or OSI TP)
handles its own representation of the network transaction tree. All instantiations
observe the hierarchical nature of the interdomain communication.

Using Logging to Track Transactions

Logging is used to keep track of the progress of a 2-phase commit protocol. The
information stored in the log is used to make sure a transaction is completed in the
event of a network failure or machine crash.

To ensure completion of transactions across domains, domain gateways log the
mapping between local and remote identifiers. Along with this information, the
Domains transaction management facility records the decisions made during different
phases of the commitment protocol, and any information available about the remote
domains involved in the transaction. In the OSI TP case, the XAP-TP interface logs the
information required for the recovery of the OSI TP protocol machine. The
information is referred to as a blob (binary large object) and is kept in the same log
record as the commit information to make recovery easier.

Domains log records have a different structure from the log records stored in the BEA
Tuxedo system TLOG. TLOG records are fixed in size and are stored in a single page.
Domains log records vary in size; more than one page may be required to store the
record. The Domains logging mechanism, DMTLOG, has the capability of storing
variable-size log records.
Using the BEA Tuxedo Domains Component 4-19

4 Administering Domains
When a TMS is the superior of a domain gateway group, the BEA Tuxedo TLOG is still
required to coordinate the commitment.

Logging is performed by the GWADM administrative server. The request for a log write
is made by the GWTDOMAIN process, but the actual log write is performed by the GWADM
process.

You must create a log called DMTLOG for each domain gateway group. The DMTLOG files
are defined in the DM_LOCAL section of the DMCONFIG file. To create a DMTLOG file, add
an entry for the DMTLOGDEV parameter:

DMTLOGDEV=string

where string is the name of the log file. In addition, you cam set one or both of the
two optional parameters:

DMTLOGNAME=identifier

DMTLOGSIZE=numeric

For more information, see DMCONFIG(5) in BEA Tuxedo File Formats, Data
Descriptions, MIBs, and System Processes Reference.

Administrators also have the option of using the run-time administration utility
(dmadmin) to create a DMTLOG. For more information, see dmadmin(1) in BEA Tuxedo
Command Reference.

If a DMTLOG has not been created when a domain gateway group is booted, the gateway
server automatically creates the log, based on information in the BDMCONFIG file.

Until a logging device is specified in the BDMCONFIG file, a domain gateway group
cannot process requests in transaction mode and the domain gateway group cannot
offer the TMS service.

To coordinate the commit protocol, domain gateways require the following two log
records:

Ready record—a ready record is a file created by a gateway acting as a leaf or
intermediate machine in a transaction tree. It records information about the
superior and subordinate remote domains involved in the transaction. A ready
record indicates that all subordinates of the domain gateway group logging the
record have been prepared.
4-20 Using the BEA Tuxedo Domains Component

../rf5/rf5.htm#2885315
../rfcm/rfcmd.htm#7516311

Managing Transactions in a Domains Environment
Commit record—a commit record documents that a transaction has been
committed. A domain gateway creates a commit record as the coordinator of a
particular transaction tree.

When a transaction has been committed on all machines, these logs for the transaction
are removed.

When the OSI TP protocol is being used, two types of heuristic records are logged:

Log Heuristic record—this record holds the details of a heuristic decision in the
domain until the outcome of the relevant transaction is known by the superior.

Log Damage record—this record is created to indicate one of two conditions for
a transaction branch: (run with tmadmin(1)) a heuristic hazard (when the
outcome of the transaction branch for a subordinate is unknown) or a heuristic
mix (when the transaction subtree has a mixed outcome).

Heuristic log records persist until they are explicitly removed by the administrator.
This persistence is required to provide the correct information during recovery after a
crash, and to provide diagnostic information for administrators.

The administrator uses the forgettran command (run with tmadmin(1)) to remove
heuristic records when they are no longer needed.

Recovering Failed Transactions

When a domain gateway group is booted, the gateway server performs an automatic
warm-start of the DMTLOG. The warm-start includes scanning the log to see if any
transactions were not completed. If incomplete transactions are found, action is taken
to complete them.

In OSI TP, any blobs stored in the DMTLOG with a transaction record are passed to the
network access module, which uses the blobs to reconstruct its internal state and to
recover any failed connections

In the case of heuristic decisions, if a domain gateway group is a subordinate of a local
TMS and a heuristic decision has been indicated, the TMS generates a TMS_STATUS
message to learn the final decision:

If a gateway fails, then it cleans up after itself when it is restarted (this is called
a hot-start). The gateway rolls back all undecided transactions in which it was
involved.
Using the BEA Tuxedo Domains Component 4-21

../rfcm/rfcmd.htm#2554911
../rfcm/rfcmd.htm#2554911

4 Administering Domains
If a communication line failure occurs and the first phase of the commit has not
been completed, the gateway rolls back the transactions associated with that
connection.

If OSI TP Domains is being used and a transaction fails in the second phase of
the commit, recovery is managed by XAP-TP.
4-22 Using the BEA Tuxedo Domains Component

	Tuxedo®
	Using the BEA Tuxedo Domains Component
	Release 8.1
	January 2003
	Contents
	About This Document
	1. About Domains
	2. Planning and Configuring ATMI Domains
	3. Planning and Configuring CORBA Domains
	4. Administering Domains

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 About Domains
	What Is the BEA Tuxedo Domains Component?
	Example of a Domains Configuration
	Functionality Supported by Domain Gateways
	BEA Tuxedo Domains Architecture
	Understanding the Domains Configuration File
	Specifying Domains Data-Dependent Routing
	Specifying Domains Transaction and Blocking Timeouts
	Specifying Domains Connection Policies
	Specifying Domains Failover and Failback
	Specifying Domains Keepalive
	Configuring a Domains Environment
	Configuring a Domains Environment for Migration

	2 Planning and Configuring ATMI Domains
	Planning to Build Domains from Multiple BEA Tuxedo Applications
	Option 1: Reconfigure the Applications as a Single BEA Tuxedo Domain
	Option 2: Reconfigure the Applications as a Domains Configuration

	Examining the creditapp Domains Configuration
	Setting Up a Domains Configuration
	Configuring a Sample Domains Application (simpapp)
	Configuration Tasks
	How to Set Environment Variables for lapp
	How to Define the Domains Environment for lapp in the UBBCONFIG File
	How to Define Domains Parameters for lapp in the DMCONFIG File
	How to Compile Application and Domains Gateway Configuration Files for lapp
	How to Set Environment Variables for rapp
	How to Define the Domains Environment for rapp in the UBBCONFIG File
	How to Define Domains Parameters for rapp in the DMCONFIG File
	How to Compile Application and Domain Gateway Configuration Files for rapp
	How to Compress Data Between Domains
	How to Route Service Requests to Remote Domains

	Setting Up Security in a Domains Configuration
	Domains Security Mechanisms
	How to Configure Principal Names for Domains Authentication
	How to Configure Domains Password Security
	How to Configure Domains Access Control Lists
	How to Configure ACL Policy for a Remote Domain
	How to Configure Domains Link-Level Encryption

	Setting Up Connections in a Domains Configuration
	How to Request Connections for Client Demands (ON_DEMAND Policy)
	How to Request Connections at Boot Time (ON_STARTUP Policy)
	How to Limit Connections to Incoming Messages Only (INCOMING_ONLY Policy)
	How to Configure the Connection Retry Interval for ON_STARTUP Only
	How to Configure the Maximum Retry Number
	Example of Coding Connection Policies Between Domains

	Controlling Connections in a Domains Configuration
	How to Establish Connections Between Domains
	How to Break Connections Between Domains
	How to Report on Connection Status

	Configuring Domains Link-Level Failover and Keepalive

	3 Planning and Configuring CORBA Domains
	Overview of the CORBA Domains Environment
	Single-Domain Versus Multiple-Domain Communication
	Single-Domain Communication
	Multiple-Domain Communication

	Elements of a CORBA Domains Configuration
	Understanding and Using the Configuration Files
	The UBBCONFIG File
	The DMCONFIG File
	The factory_finder.ini File

	Specifying Unique Factory Object Identifiers in the factory_finder.ini File
	Processing the factory_finder.ini File
	Types of CORBA Domains Configurations
	Directly Connected Domains
	Indirectly Connected Domains

	Examples of CORBA Domains Configurations
	Sample UBBCONFIG Files
	Sample DMCONFIG File
	Sample factory_finder.ini File

	4 Administering Domains
	Using Domains Run-Time Administrative Commands
	Using the Administrative Interface, dmadmin(1)
	Using the Domains Administrative Server, DMADM(5)
	Using the Gateway Administrative Server, GWADM(5)
	Using the Domain Gateway Server
	Managing Transactions in a Domains Environment
	Using the TMS Capability Across Domains
	Using GTRID Mapping in Transactions
	Using Logging to Track Transactions
	Recovering Failed Transactions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

