
Oracle® Communication Services Gatekeeper
Platform Development Studio - Developer’s Guide

Release 4.0

June 2008

Oracle Communication Services Gatekeeper Platform Development Studio - Developer’s Guide, Release 4.0

Copyright © 2007, 2008, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Platform Development Studio - Developer’s Guide i

Contents

Document Roadmap
Document Scope and Audience . 1-1

Guide to This Document . 1-1

Terminology . 1-2

Related Documentation. 1-5

Overview of the Platform Development Studio
Creating New Communication Services . 2-1

The Eclipse Wizard . 2-2

Example Communication Service . 2-2

The Platform Test Environment. 2-2

Integration and Customization . 2-2

Service Interceptors . 2-3

Subscriber-centric Policy . 2-3

Integration with External Systems . 2-3

Using the Eclipse Wizard
About the Eclipse Wizard . 3-1

Configure Eclipse . 3-2

Prerequisites . 3-2

Basic configuration of Eclipse environment . 3-2

Configuring of the Eclipse Wizard . 3-2

Using the Eclipse Wizard . 3-3

ii Platform Development Studio - Developer’s Guide

Generating a Communication Service Project . 3-3

Adding a Plug-in to a Communication Service Project . 3-7

Removing a Plug-in from a Communication Service Project 3-8

Description of a Generated Project
Generated project . 4-2

Communication Service Project . 4-2

Plug-in . 4-4

SOAP2SOAP Plug-in . 4-6

Generated classes for a Plug-in . 4-8

Interface: ManagedPluginService . 4-9

Interface: PluginService. 4-9

Interface: PluginInstanceFactory . 4-9

Interface: PluginServiceLifecycle . 4-10

PluginService . 4-10

ManagedPlugin Skeleton . 4-10

PluginInstance . 4-11

PluginNorth . 4-11

PluginNorth skeleton . 4-13

RequestFactory Skeleton. 4-13

Generated classes for a SOAP2SOAP Plug-in. 4-13

Comparison with a Non-SOAP2SOAP Plug-in . 4-14

Client Stubs . 4-14

<Web Services Interface>_Stub. 4-14

<Web Services Interface> . 4-14

<Web Services Interface>Service_Impl . 4-15

<Web Services Interface>Service . 4-15

PluginInstance . 4-15

Platform Development Studio - Developer’s Guide iii

PluginNorth . 4-15

PluginSouth . 4-16

RequestFactory . 4-16

Build Files and Targets for a Communication Service Project 4-16

Main Build File . 4-16

Communication Service Common Build File . 4-17

Plug-in Build File . 4-17

Ant Tasks . 4-18

cs_gen. 4-18

plugin_gen . 4-20

cs_package . 4-21

javadoc2annotation. 4-23

Communication Service Example
Overview. 5-1

High-level Flow for sendData (Flow A) . 5-3

High-level Flow for startNotification and stopNotification (Flow B). 5-4

High-level flow for notifyDataReception (Flow C) . 5-4

Interfaces. 5-5

Web Service Interface Definition . 5-5

Interface: SendData . 5-5

Interface: NotificationManager . 5-5

Interface: NotificationListener . 5-7

Network Interface Definition. 5-8

sendDataToNetwork . 5-8

receiveData. 5-8

Directory Structure . 5-9

Directories for WSDL . 5-11

iv Platform Development Studio - Developer’s Guide

Application-initiated traffic . 5-11

Network-triggered traffic . 5-11

Directories for Java Source . 5-11

Communication Service Common. 5-12

Plug-in . 5-12

Directories for resources . 5-13

Directories for Configuration of Plug-in. 5-13

Directories for Build and Configuration of Builds . 5-14

Directories for Classes, JAR, and EAR Files . 5-15

Classes . 5-16

Communication Service Common . 5-17

ExceptionType . 5-17

NotificationManagerPluginFactory . 5-17

Plug-in Layer. 5-18

ContextTranslatorImpl . 5-18

ExamplePluginService. 5-19

ExamplePluginInstance . 5-20

ConfigurationStoreHandler . 5-22

ExampleMBean . 5-24

Management. 5-24

NotificationHandlerNorth . 5-24

NetworkToNotificationPluginAdapter. 5-26

NetworkToNotificationPluginAdapterImpl . 5-26

NotificationManagerPluginNorth . 5-28

SendDataPluginNorth . 5-29

SendDataPluginSouth . 5-30

SendDataPluginToNetworkAdapter . 5-31

SendDataPluginToNetworkAdapterImpl . 5-31

Platform Development Studio - Developer’s Guide v

FilterImpl . 5-31

NotificationData . 5-32

StoreHelper. 5-32

ExamplePluginInstance . 5-34

ExamplePluginService . 5-35

Store configuration . 5-37

SLA Example . 5-40

Container Services
Container service APIs . 6-2

Class: InstanceFactory . 6-3

Class: ClusterHelper . 6-4

Service: EventChannel Service. 6-4

Plug-in. 6-5

Management . 6-5

EDR . 6-5

SLA Enforcement . 6-5

Service Correlation . 6-6

Interface: ExternalInvocation . 6-7

Class: ExternalInvocatorFactory . 6-8

Class: ServiceCorrelation . 6-8

Implementing the ExternalInvocation Interface . 6-8

Parameter Tunneling. 6-9

Storage Services . 6-10

ConfigurationStore . 6-10

Interfaces . 6-11

StorageService . 6-15

Store configuration file. 6-17

vi Platform Development Studio - Developer’s Guide

<store> . 6-20

<db_table> . 6-20

<query> . 6-23

<provider-mapping> . 6-26

<providers> . 6-27

Shared libraries. 6-27

Communication Service Description
High-level components. 7-1

Communication Service Common . 7-2

Plug-in . 7-5

Plug-in Service and Plug-in Instance . 7-6

States . 7-6

PluginPool . 7-10

Interface: Plugin . 7-10

Interface: PluginNorth. 7-11

Interface: PluginNorthCallBack . 7-11

Interface: PluginSouth. 7-11

Interface: ManagedPluginService . 7-12

Interface: PluginService. 7-12

Interface: PluginInstanceFactory . 7-12

Interface: PluginServiceLifecycle . 7-12

Interface: ManagedPluginInstance . 7-12

Interface: PluginInstance . 7-13

Interface: PluginInstanceLifecycle . 7-13

Class: RequestFactory. 7-14

Class: CallbackFactory . 7-14

Interface: Callback . 7-15

Platform Development Studio - Developer’s Guide vii

Class: RequestInfo. 7-15

RequestIdentifierRequestInfo, if the request contains a request identifier. 7-16

Class: ServiceType . 7-16

Interface: ContextMapperInfo . 7-16

Interface: RequestContext . 7-17

Class: ManagedPlugin . 7-17

Class: AbstractManagedPlugin . 7-17

Management . 7-17

SLA Enforcement . 7-17

Shared libraries . 7-18

Annotations, EDRs, Alarms, and CDRs
About aspects and annotations . 8-2

How aspects are applied . 8-2

Context Aspect . 8-3

EDR Generation . 8-6

Exception scenarios . 8-8

Adding data to the RequestContext . 8-9

Using translators. 8-10

Trigger an EDR programmatically . 8-12

EDR Content . 8-13

Using send lists. 8-19

RequestContext and EDR . 8-20

Categorizing EDRs . 8-22

The EDR descriptor . 8-22

Special characters . 8-25

Values provided . 8-26

Boolean semantic of the filters. 8-26

viii Platform Development Studio - Developer’s Guide

Example filters . 8-27

Check-list for EDR generation . 8-33

Frequently Asked Questions about EDRs and EDR filters . 8-34

Alarm generation . 8-37

Trigger an alarm programmatically. 8-38

Alarm content . 8-39

CDR generation . 8-41

Triggering a CDR . 8-41

Trigger a CDR programmatically . 8-41

CDR content . 8-42

Additional_info column. 8-46

Out-of-the box (OOTB) CDR support . 8-47

Extending Statistics . 8-48

Making Communication Services Manageable
Overview . 9-1

Create Standard JMX MBeans . 9-2

Create an MBean Interface . 9-2

Implement the MBean. 9-4

Register the MBean with the Runtime MBean Server . 9-4

Use the Configuration Store to Persist Values . 9-6

Using the Platform Test Environment
Overview . 10-1

Installing and Running the Platform Test Environment. 10-3

Navigating the Platform Test Environment GUI . 10-4

The Tools Panel. 10-5

The Tool Selector Panel . 10-5

Platform Development Studio - Developer’s Guide ix

The Tool Action Panel . 10-5

The Simulator Panel . 10-19

The SLA Editor . 10-20

Extending the Platform Test Environment . 10-24

The Stateful SPI. 10-25

The Stateless SPI . 10-27

The Custom Base SPI . 10-28

The Custom Results Provider SPI . 10-30

The Custom Statistics Provider SPI. 10-31

The Context API . 10-32

The Module.xml Descriptor File . 10-34

Using the Unit Test Framework (UTFW) with the Platform Test Environment 10-43

Service Interceptors
Overview. 11-1

Interceptor Decisions and Request Flow . 11-2

Decisions . 11-2

Flow Control . 11-6

Changing the invocation order . 11-9

Standard Interceptors . 11-9

Retry functionality for plug-ins . 11-15

Custom Interceptors . 11-16

Developing Custom Interceptors . 11-16

Deploying Custom Interceptors. 11-18

Subscriber-centric Policy
Service Classes and the Subscriber SLA . 12-1

The <reference> tag. 12-2

x Platform Development Studio - Developer’s Guide

The <restriction> tag . 12-3

Managing the Subscriber SLA . 12-4

The Profile Provider SPI and Subscriber Contracts . 12-4

Deploying the Custom Profile Provider . 12-6

Subscriber Policy Enforcement . 12-6

Do Relevant Subscriber Contracts Exist . 12-6

 . 12-7

Is There Adequate Budget for the Contracts. 12-11

Creating an EDR Listener and Generating SNMP MIBs
Overview of External EDR listeners . 13-1

Example using a pure JMS listener. 13-3

Example using JMSListener utility with no filter . 13-3

Using JMSListener utility with a filter . 13-4

Description of EDR listener utility. 13-5

Class JMSListener. 13-6

Class EdrFilterFactory . 13-6

Class EdrData . 13-7

Class ConfigDescriptor . 13-7

Class EdrConfigDescriptor . 13-7

Class AlarmConfigDescriptor . 13-8

Class CdrConfigDescriptor . 13-8

Updating EDR configuration files . 13-8

Generating SNMP MIBs . 13-8

Converting Traffic Paths and Plug-ins to Communication
Services

Converting Network Protocol Plug-ins . 14-1

Platform Development Studio - Developer’s Guide xi

Converting Traffic Paths. 14-2

Checklist . 14-2

Policy
Overview. 15-1

Policy Request Data . 15-2

Adding a New Rule. 15-4

Mapping PolicyRequest Data . 15-5

Creating a New Rule File by Extending an Existing File: an Example 15-7

Using RequestContext Parameters Defined in Service Level Agreements 15-8

Callable Policy Web Service
Introduction. 16-2

Callable Policy Web Service interface definition. 16-3

Endpoints . 16-3

Detailed service description. 16-3

Policy Evaluation . 16-3

Policy management . 16-4

XML Schema data type definition. 16-4

AdditionalDataValue structure . 16-4

AdditionalDataValueType enumeration . 16-4

Interface: Policy. 16-5

Operation: evaluate. 16-5

Interface: PolicyManagement . 16-6

Operation: viewRuleFile . 16-6

Operation: deleteRuleFile. 16-7

Operation: loadRules . 16-8

Operation: listRuleFiles . 16-9

xii Platform Development Studio - Developer’s Guide

Rule files. 16-10

Checklist

Platform Development Studio - Developer’s Guide 1-1

C H A P T E R 1

Document Roadmap

The following sections describe the audience for, and organization of, this document:

Document Scope and Audience

Guide to This Document

Terminology

Related Documentation

Document Scope and Audience
This document describes the WebLogic Network Gatekeeper Platform Development Studio, a
framework for creating and testing new extension Communication Services. The intended
audience of this document consists of system integrators and field engineers who need to extend
the out-of-the-box functionality of WebLogic Network Gatekeeper.

Guide to This Document
The document contains the following chapters:

Chapter 1, “Document Roadmap”: This chapter

Chapter 2, “Overview of the Platform Development Studio”: A high level description of the
capabilities of the PDS

Chapter 3, “Using the Eclipse Wizard”: Setting up the Eclipse Wizard to generate extension
projects

Document Roadmap

1-2 Platform Development Studio - Developer’s Guide

Chapter 4, “Description of a Generated Project”: The elements of a generated Communication
Service project.

Chapter 5, “Communication Service Example”: A description of the example Communication
Service provided with the Platform Development Studio.

Chapter 6, “Container Services”: Accessing Network Gatekeeper’s Core functionality

Chapter 7, “Communication Service Description”: A component by component description of a
Communication Service

Chapter 8, “Annotations, EDRs, Alarms, and CDRs”: Creating EDRs, CDRs, and Alarms

Chapter 9, “Making Communication Services Manageable”: Rendering extension
Communication Services manageable by the Network Gatekeeper Console extension or other
management tools

Chapter 10, “Using the Platform Test Environment”: Using the testing tools framework

Chapter 11, “Service Interceptors”: An overview of service interceptors, a description of the
standard out of the box ones, and of developing custom versions

Chapter 12, “Subscriber-centric Policy”: Creating a policy mechanism based on individual
subscriber preferences and permissions

Chapter 13, “Creating an EDR Listener and Generating SNMP MIBs”: Using and integrating
external EDR listeners and generating SNMP MIBs

Chapter 14, “Converting Traffic Paths and Plug-ins to Communication Services”: Converting
extensions built on previous versions of Network Gatekeeper

Chapter 15, “Policy”: Using and extending Policy mechanisms in Communication Services

Chapter 16, “Callable Policy Web Service”: Integrating using the Callable Policy Web Service

Chapter 17, “Checklist”: A checklist for creating extensions.

Terminology
The following terms and acronyms are used in this document:

Account—A registered application or service provider. An account belongs to an account
group, which is tied to a common SLA

Account group—Multiple registered service providers or services which share a common
SLA

Te rmino logy

Platform Development Studio - Developer’s Guide 1-3

Administrative User—Someone who has privileges on the Network Gatekeeper
management tool. This person has an administrative user name and password

Alarm—The result of an unexpected event in the system, often requiring corrective action

API—Application Programming Interface

Application—A TCP/IP based, telecom-enabled program accessed from either a telephony
terminal or a computer

Application-facing Interface—The Application Services Provider facing interface

Application Service Provider—An organization offering application services to end users
through a telephony network

AS—Application Server

Application Instance—An Application Service Provider from the perspective of internal
Network Gatekeeper administration. An Application Instance has a user name and
password

CBC—Content Based Charging

End User—The ultimate consumer of the services that an application provides. An end
user can be the same as the network subscriber, as in the case of a prepaid service or they
can be a non-subscriber, as in the case of an automated mail-ordering application where the
subscriber is the mail-order company and the end user is a customer to this company

Enterprise Operator —See Service Provider

Event—A trackable, expected occurrence in the system, of interest to the operator

HA —High Availability

HTML—Hypertext Markup Language

IP—Internet Protocol

JDBC—Java Database Connectivity, the Java API for database access

Location Uncertainty Shape—A geometric shape surrounding a base point specified in
terms of latitude and longitude. It is used in terminal location

MAP—Mobile Application Part

Mated Pair—Two physically distributed installations of WebLogic Network Gatekeeper
nodes sharing a subset of data allowing for high availability between the nodes

Document Roadmap

1-4 Platform Development Studio - Developer’s Guide

MM7—A multimedia messaging protocol specified by 3GPP

MPP—Mobile Positioning Protocol

Network Plug-in—The WebLogic Network Gatekeeper module that implements the
interface to a network node or OSA/Parlay SCS through a specific protocol

NS—Network Simulator

OAM —Operation, Administration, and Maintenance

Operator—The party that manages the Network Gatekeeper. Usually the network operator

OSA—Open Service Access

PAP—Push Access Protocol

Plug-in—See Network Plug-in

Plug-in Manager—The Network Gatekeeper module charged with routing an
application-initiated request to the appropriate network plug-in

Policy Engine—The Network Gatekeeper module charged with evaluating whether a
particular request is acceptable under the rules

Quotas—Access rule based on an aggregated number of invocations. See also Rates

Rates—Access rule based on allowable invocations per time period. See also Quotas

Rules—The customizable set of criteria - based on SLAs and operator-desired additions -
according to which requests are evaluated

SCF—Service Capability Function or Service Control Function, in the OSA/Parlay sense.

SCS—Service Capability Server, in the OSA/Parlay sense. WebLogic Network Gatekeeper
can interact with these on its network-facing interface

Service Capability—Support for a specific kind of traffic within WebLogic Network
Gatekeeper. Defined in terms of Communication Services

Service Provider—See Application Service Provider

SIP—Session Initiation Protocol

SLA—Service Level Agreement

SMPP—Short Message Peer-to-Peer Protocol

Rela ted Documentat ion

Platform Development Studio - Developer’s Guide 1-5

SMS—Short Message Service

SMSC—Short Message Service Centre

SNMP—Simple Network Management Protocol

SOAP—Simple Object Access Protocol

SPA—Service Provider APIs

SS7—Signalling System 7

Subscriber—A person or organization that signs up for access to an application. The
subscriber is charged for the application service usage. See End User

SQL—Structured Query Language

TCP—Transmission Control Protocol

Communication Service—offers a service to an application

USSD—Unstructured Supplementary Service Data

VAS—Value Added Service

VLAN—Virtual Local Area Network

VPN—Virtual Private Network

WebLogic Network Gatekeeper Container—The container hosting communication
services.

WSDL —Web Services Definition Language

XML—Extended Markup Language

Related Documentation
This developer’s guide is part of a set of documentation for Network Gatekeeper itself. These
documents include:

System Administrator’s Guide

Concepts and Architectural Overview

Integration Guidelines for Partner Relationship Management

http://e-docs.bea.com/wlcp/wlng40/admin/index.html
http://e-docs.bea.com/wlcp/wlng40/archoverview/index.html
http://e-docs.bea.com/wlcp/wlng40/integrprm/index.html

Document Roadmap

1-6 Platform Development Studio - Developer’s Guide

SDK User Guide

Managing Accounts and SLAs

Statement of Compliance and Protocol Mapping

Application Development Guide

Communications Service Reference

Handling Alarms

Licensing

Installation Guide

http://e-docs.bea.com/wlcp/wlng40/sdk/index.html
http://e-docs.bea.com/wlcp/wlng40/spappmgmt/index.html
http://e-docs.bea.com/wlcp/wlng40/soc/index.html
http://e-docs.bea.com/wlcp/wlng40/appdev/index.html
http://e-docs.bea.com/wlcp/wlng40/tpref/index.html
http://e-docs.bea.com/wlcp/wlng40/alarms/index.html
http://e-docs.bea.com/wlcp/wlng40/licensing/index.html
http://e-docs.bea.com/wlcp/wlng40/installguide/index.html

Platform Development Studio - Developer’s Guide 2-1

C H A P T E R 2

Overview of the Platform Development
Studio

WebLogic Network Gatekeeper provides substantial functionality right out of the box. But
because all networks are different, matching the particular requirements and capabilities of some
networks sometimes means that Network Gatekeeper must be extended or that certain aspects of
it must be closely integrated with existing network functionality.The Platform Development
Studio is designed to ease this process. It consists of two main sections:

Creating New Communication Services

Integration and Customization

Creating New Communication Services
Networks change. Existing functionality is parsed in new ways to support new features. New
nodes with new or modified abilities are added. Because of WebLogic Network Gatekeeper's
highly modular design, exposing these new features to partners is a straightforward proposition.
The extension portion of the Platform Development Studio provides an environment in which
much of the mechanics of creating extensions is taken care of, allowing extension developers to
focus on only those parts of the system that correspond directly to their specific needs. This aspect
consists of three main parts

The Eclipse Wizard

Example Communication Service

The Platform Test Environment

Overv iew o f the P la t fo rm Deve l opment S tud io

2-2 Platform Development Studio - Developer’s Guide

The Eclipse Wizard
At the core of the extension portion of the Platform Development Studio is an Eclipse plug-in that
creates projects based on the responses that the developer makes to an Eclipse Wizard. The
developer supplies some basic naming information and the location of a WSDL for each
application facing interface that the Communication Service is meant to support, and the Wizard
generates either a complete Communication Service project, or a network plug-in only project.
For more information on setting up the Eclipse Plug-in and running the Wizard, see Chapter 3,
“Using the Eclipse Wizard.” To see an example of a generated project, see Chapter 4,
“Description of a Generated Project.” To get an understanding of the Network Gatekeeper
features with which your Communication Service will interact, see Chapter 15, “Policy,”
Chapter 6, “Container Services,”Chapter 8, “Annotations, EDRs, Alarms, and CDRs,” and
Chapter 9, “Making Communication Services Manageable.”

Example Communication Service
To give you a concrete sense of the task of generating a new Communication Service, the
Platform Development Studio contains an entire example Communication Service, which is
buildable and runnable. Based on a very simple Web Service interface and an equally simple
model of an underlying network protocol, this Communication Service demonstrates the entire
range of tasks that you will encounter in creating your own Communication Service. For more
information, see Chapter 5, “Communication Service Example.”

The Platform Test Environment
To simplify the testing of your Communication Service, the Platform Development Studio
includes the Platform Test Environment, which provides an extensible suite of tools for testing
Communication Services and the Unit Test Framework, which supplies an abstract base class,
WlngBaseTestCase, which includes mechanisms for connecting to the Platform Test
Environment. As well, there is a complete set of sample tools created to interact with the example
Communication Service. For more information, see Chapter 10, “Using the Platform Test
Environment.”

Integration and Customization
New Communication Services are not the only aspect of Network Gatekeeper that can handled
using the Platform Development Studio. To help integrate Network Gatekeeper into the
installation environment, three other aspects of customization are supported:

In tegrat ion and Customizat ion

Platform Development Studio - Developer’s Guide 2-3

Service Interceptors

Subscriber-centric Policy

Integration with External Systems

Service Interceptors
Service interceptors provide Network Gatekeeper with a mechanism for intercepting and
manipulating a request as it flows through any arbitrary Communication Service. They offer an
easy way to modify the request flow, simplify routing mechanisms for plug-ins, and centralize
policy and SLA enforcement. Out of the box, Network Gatekeeper uses these modules as part of
its internal functioning, but operators can also choose to create new interceptors, or to rearrange
the order in which the interceptors are used, in order to customize their functionality. Chapter 11,
“Service Interceptors” describes the request flow through interceptors, lists the standard
interceptors and explains how to rearrange interceptors or to create new custom versions.

Subscriber-centric Policy
Out of the box the Network Gatekeeper administration model allows operators to manage
application service provider access to the network at increasingly granular levels of control.
Using the Platform Development Studio, operators can extend that model to encompass their
subscribers, giving the operator the ability to offer those subscribers a highly personalized
experience while protecting their privacy and keeping their subscriber data safe within the
operator’s domain.

Operators create a Subscriber SLA, based on a provided schema, which describes sets of service
classes. The service classes define access relationships with the services of particular Service
Provider and Application Groups, along with default rates and quotas. Profile providers created
by the operator or integrator using the provided Profile Provider SPI then associate those service
classes with subscriber URIs, forming subscriber contracts. These contracts are used to evaluate
requests and to generate subscriber budgets, which are used by the normal request traffic policy
evaluation flow. A single subscriber can be covered by multiple subscriber contracts, based on
that individual subscriber’s desires. Chapter 12, “Subscriber-centric Policy” covers the process
for setting this up.

Integration with External Systems
Finally, the Platform Development Studio provides mechanisms to support the integration of
Network Gatekeeper with external network systems, including:

Overv iew o f the P la t fo rm Deve l opment S tud io

2-4 Platform Development Studio - Developer’s Guide

EDR listeners, covered in Chapter 13, “Creating an EDR Listener and Generating SNMP
MIBs”

Alarm monitoring using SNMP, covered in Chapter 13, “Creating an EDR Listener and
Generating SNMP MIBs”

Callable policy using JMX, covered in Chapter 16, “Callable Policy Web Service”

Additional integration points, not covered in the PDS, are provided by:

The Partner Relationship Management interfaces, for creating Partner Management portals,
covered in Integration Guidelines for Partner Relationship Management, a separate
document in this set

JMX for Management, for non-console based management, covered by the WLS
documents Developing Custom Management Utilities with JMX and Developing
Manageable Applications with JMX.

http://e-docs.bea.com/wls/docs100/jmxinst/
http://e-docs.bea.com/wls/docs100/jmxinst/
http://e-docs.bea.com/wls/docs100/jmx/
http://e-docs.bea.com/wlcp/wlng40/integrprm/index.html

Platform Development Studio - Developer’s Guide 3-1

C H A P T E R 3

Using the Eclipse Wizard

This section describes using the Eclipse Wizard to generate Communication Services:

“About the Eclipse Wizard” on page 3-1

“Configure Eclipse” on page 3-2

“Using the Eclipse Wizard” on page 3-3

– “Generating a Communication Service Project” on page 3-3

– “Adding a Plug-in to a Communication Service Project” on page 3-7

– “Removing a Plug-in from a Communication Service Project” on page 3-8

About the Eclipse Wizard
The Eclipse Wizard is a plug-in that enables an Eclipse user to create Network Gatekeeper
Communication Services. The extension projects are created using wizards that customize the
project depending on which type of extension is being developed. Two types of extensions can
be created:

Communication Services

Network protocol plug-ins for existing Service Facades (application-facing interfaces)

The Eclipse Wizard generates classes and Ant build files for both types of extensions. In addition,
there is a separate build file with Ant targets for packaging the extension for deployment.

Using the Ec l ipse Wi zard

3-2 Platform Development Studio - Developer’s Guide

Configure Eclipse

Prerequisites
Eclipse 3.2 or higher version must be installed

Ant 1.6.5 must be installed
Use the Ant provided with WebLogic Server. It is located in
$BEA_HOME/modules/org.apache.ant_1.6.5.

Basic configuration of Eclipse environment
To do the basic configuration of the Eclipse environment:

1. Start Eclipse

2. Open the Preferences window, Window−>Preferences...

a. In Java−>Installed JREs, make sure that the JRE used is the JRE installed with the
Network Gatekeeper. This is installed in $BEA_HOME/<jdk version>/jre

b. In Ant−>runtime, make sure Ant Home is set to the directory in which you have installed
Ant.

Configuring of the Eclipse Wizard
To configure the Eclipse Wizard, starting in Eclipse:

1. Open the Preferences window, Window−>Preferences...

2. In WLNG Platform Development Studio, configure the following:

WLNG Home Directory The directory of the Network Gatekeeper installation. This
provides references to WebLogic Server APIs. In the default installation, this would be
$BEA_HOME/wlng400.

WLNG PDS Home Directory The directory of the Network Gatekeeper Platform
Development Studio installation. This provides references to Network Gatekeeper APIs,
extension points and third party APIs. In the default installation, this would be
$BEA_HOME/wlng_pds400

JDK Installation Directory The JDK installation directory for Network Gatekeeper, for
example $BEA_HOME/jdk150_14.

Using the Ec l ipse Wi zard

Platform Development Studio - Developer’s Guide 3-3

Using the Eclipse Wizard

Generating a Communication Service Project
A Communication Service project is based on a WSDL file and a set of attributes given when
running the Communication Service Project wizard.

The WSDL defining the application-facing interface must adhere to the following:

Attribute name in <wsdl:service> must include the suffix Service.

Attribute name in <wsdl:port> must be the same as the name attribute in
<wsdl:service>, excluding the suffix Service.

To generate an Communication Service project:

1. In Eclipse, choose File−>New Project.

This opens the New Project window.

Using the Ec l ipse Wi zard

3-4 Platform Development Studio - Developer’s Guide

In this window... Perform the following action...

 Select Wizard Make sure WLNG Platform Development
Studio−>Communication Service Project is selected.

Click Next to proceed. You may cancel the wizard at any time by clicking
Exit. You may go back to a previous window by clicking Previous.

 Create a
Communication
Service

Enter a Project Name and choose a location for your project.

You can choose:
1. To create an entirely new Communication Service
2. To create a new Service Facade (application-facing interface) and the

common parts of the Service Enabler layer for an existing plug-in
3. To create a new network plug-in that uses the Service Facade and

common parts of the Service Enabler of a currently existing
Communication Service.

If you wish to do 3, check the check-box Use predefined communication
service and from the drop-down list select the Service Facade for which
you want to create a plug-in.

If you wish to do 1 or 2, leave the box unchecked.

Click Next to continue.

If you checked the Use predefined check box, the Define the Plug-in
Information window is displayed. Go to Define the Plug-in Information
instructions below.

If you did not check it, the Define the Communication Service is
displayed.

Define the
Communication Service
• Configure Service

WSDL Files

For each WSDL file that includes the service definition to be implemented
by the new Communication Service:

Click , browse to the WSDL file, select it, and click OK.

Using the Ec l ipse Wi zard

Platform Development Studio - Developer’s Guide 3-5

Define the
Communication Service
• Configure Callback

WSDL Files

For each WSDL file that includes the callback service definition to
be used by the new Communication Service in sending information to the
service provider’s application:

Click , browse to the WSDL file, select it, and click OK.

Define the
Communication Service
• Communication

Service Properties

Company: Set your company name, to be used in
META-INF/MANIFEST.MF.

Version: Set the version, to be used in META-INF/MANIFEST.MF.

Identifier: Create an identifier to tie together a collection of Web
Services. Will be a part of the names of the generated war and jar
files and the service type for the Communication Service:

<Communication Service identifier>.war and
<Communication Service identifier>_callback.jar

Service Type: Set the service type. Used in EDRs, statistics, etc. For
example: SmsServiceType, MultimediaMessagingServiceType.

Java Class Package Name: Set the package names to be used. For
example: com.mycompany.service

Web Services Context path: Set the context path for the Web
Service.For example: myService

In this window... Perform the following action...

Using the Ec l ipse Wi zard

3-6 Platform Development Studio - Developer’s Guide

Define the
Communication
Service
• WSDL Properties

Support SOAP Attachment Check this box if SOAP with attachments
must be supported.

Enable SOAP Plug-in Generation Check this box if generating a
SOAP-SOAP Communication Service.

Include WLNG Exceptions in WSDL Check this box if Network
Gatekeeper specific exception should be added to the Web Service for
SOAP-SOAP Communication Services. If this option is selected, WLNG
custom exceptions are appended to the WSDL. This is done to provide a
better error handling capability. The client application should handle these
exceptions. In SOAP-SOAP communication case, it is recommended,
though not required, to select this option

If you are creating an entirely new Communication Service, including a
new plug-in, click Next. The Define the Plug-in Information window
opens.

If you are not creating a new plug-in, you have completed the Wizard.
Click Finish to start the code generation process.

In this window... Perform the following action...

Using the Ec l ipse Wi zard

Platform Development Studio - Developer’s Guide 3-7

Adding a Plug-in to a Communication Service Project
To add a plug-in to an existing Communication Service project:

1. In the Eclipse package explorer, right-click the project for the Communication Service
project, and choose Properties.

This opens the Properties window for the Communication Service project.

Define the Plug-in
information

For each plug-in to be created in the Communication Service project:

Click

This opens a pop-up window with the following fields:
Protocol: An identifier for the network protocol the plug-in
implements. Used as a part of the names of the generated jar file:
<Communication Service identifier>_<protocol>.jar
and the service name Plugin_<Communication Service
identifier>_<protocol>

Schemes: Address schemes the plug-in can handle. Use a comma
separated list if multiple schemes are supported. For example: tel: or
sip:
Package Name: Package names to be used.

Company: Used in META-INF/MANIFEST.MF.

Version: Used in META-INF/MANIFEST.MF.

SOAP Plug-in: Check this box if the plug-in is a
SOAP2SOAP plug-in. Enable SOAP Plug-in Generation must
have been selected in the previous step.
Click OK.
The plug-in definitions are added to the list of plug-ins.

Click to remove the selected plug-in.

Click Finish to start the code generation for the plug-in(s).

In this window... Perform the following action...

Using the Ec l ipse Wi zard

3-8 Platform Development Studio - Developer’s Guide

Removing a Plug-in from a Communication Service Project
To remove a a plug-in from an existing Communication Service project:

1. In the Eclipse package explorer, right-click the project for the Communication Service
project, and choose Properties.

In this window... Perform the following action...

Plugin Configuration A list of plug-ins defined for the Communication Service project is
displayed.

For each plug-in to be created in the Communication Service project:

Click

This opens a pop-up window with the following fields:
Protocol: An identifier for the network protocol the plug-in
implements. Used as a part of the names of the generated jar file:
<Communication Service identifier>_<protocol>.jar
and the service name Plugin_<Communication Service
identifier>_<protocol>

Schemes: Address schemes the plug-in can handle. Use a comma
separated list if multiple schemes are supported. For example: tel: or
sip:
Package Name: Package names to be used.

Company: Used in META-INF/MANIFEST.MF.

Version: Used in META-INF/MANIFEST.MF.

SOAP Plug-in: Check this box if the plug-in is a
SOAP2SOAP plug-in.
Click OK.
The plug-in definitions are added to the list of plug-ins.

Click Finish to start the code generation for the plug-in(s).

Using the Ec l ipse Wi zard

Platform Development Studio - Developer’s Guide 3-9

This opens the Properties Window for the Communication Service project.

2. Click OK or Cancel to close the Properties window.

In this window... Perform the following action...

Plugin Configuration A list of plug-ins defined for the Communication Service project is
displayed.

For each plug-in to be removed from the Communication Service project:

• Select the plug-in to be removed and click

The plug-in definitions are removed from the list.
• Click Apply to remove the plug-in part(s) from the Communication

Service project.

Warning: This removes all parts of the project, including any manually
edited or added files.
• Click Restore Defaults to restore the plug-in definition list.

Using the Ec l ipse Wi zard

3-10 Platform Development Studio - Developer’s Guide

Platform Development Studio - Developer’s Guide 4-1

C H A P T E R 4

Description of a Generated Project

The section describes a project generated from the Eclipse Wizard:

Generated project

– Communication Service Project

– Plug-in

– SOAP2SOAP Plug-in

Generated classes for a Plug-in

– Interface: ManagedPluginService

– PluginService

– PluginInstance

– PluginNorth

– RequestFactory Skeleton

Generated classes for a SOAP2SOAP Plug-in

– Comparison with a Non-SOAP2SOAP Plug-in

– Client Stubs

– PluginInstance

– PluginNorth

– PluginSouth

Descr ip t i on o f a Gene rated Pro jec t

4-2 Platform Development Studio - Developer’s Guide

– RequestFactory

Build Files and Targets for a Communication Service Project

– Main Build File

– Communication Service Common Build File

– Plug-in Build File

– Ant Tasks

Generated project

Communication Service Project
Generating a Communication Service project the creates the directory structure illustrated in
Listing 4-1.

The base directory is the directory given in the Eclipse Wizard input field Identifier. It
contains the following files:

build.propertie:, properties file for the build files:

– wlng.home is set to $WLNG_HOME, the base directory for the Network Gatekeeper
installation.

– pds.home is set to $PDS_HOME, the base directory for the Platform Development
Studio.

build.xml: the main file for the project, that is the build file for the Communication
Service and references to any other plug-in specific build files in the project. See Main
Build File.

common.xm: properties, ant task and targets used by all build files in the project.

The directories and files in bold in Listing 4-1 are generated when building the common parts of
the Communication Service; the others are generated by the Eclipse Wizard.

Listing 4-1 Generated project for Communications Services Common

<Eclipse Project Name>

+- build.properties

Genera ted p ro jec t

Platform Development Studio - Developer’s Guide 4-3

+- common.xml

+- build.xml

+- <Identifier given in Ecplise Wizard>

| +- dist //Generated by target dist in <Eclipse Project Name>/build.xml

| | +- <Package name>.store_<version.jar // Example store configuration

| | +- wlng_at_<Identifier>.ear //Deployable in access tier

| | +- wlng_nt_<Identifier>.ear //Deployable in network tier

| +- common

| | +- build.xml //Build file for the common parts of the communication service

| | +- dist //Generated by target dist on

//<Eclipse Project Name>/common/build.xml

| | | +- request_factory_skel //Skeletons for the RequestFactory,

//one class for each service WSDL

| | | +- tmp //Used during build. Contains classes, source,

//definitions, WSDLs, templates, and more.

| | | +- <Identifier>.war // Web Service implementation

| | | +- <Identifier>_callback.jar // Service callback EJB for

//the communication service

| | | +- <Identifier>_callback_client.jar //Service call-back EJB used by

// the plug-in.

| | | +- <Identifier>_service.jar // Service EJB
// for the communication service

| | +- resources // Contains application.xml and weblogic-application.xml

// for the access and network tier EAR files respectively.

// The files are packaged in the EAR files META-INF directory

| | +- src // Source directory for communication service common

| | | +- <Package name>/plugin

| | | | +- <Web Services interface>PluginFactory // One per interface

Descr ip t i on o f a Gene rated Pro jec t

4-4 Platform Development Studio - Developer’s Guide

// defined in the

// Service WSDL files.

If the check-box Include WLNG Exceptions was checked when generating the Communication
Service, the following exception definitions are added to the Web Service:

PolicyException - Any policy based exceptions.

RoutingException - Any exceptions during the routing of the request.

ServiceException - Any other internal exceptions.

The exceptions are added only to the service facade, not to the plug-in to network interface.

If the exceptions listed above are present in the original WSDL they are reused; if not they are
added.

Plug-in
When creating a plug-in for a given Communication Service, the directory structure illustrated in
Listing 4-2 is created under the top-level directory. The base directory depends on the type of
Communication Service the plug-in belongs to, such as, for example,
px21_multimedia_messaging, or px21_sms. It also depends on whether the plug-in is for an
existing Communication Service or for a new one.

If the plug-in is for an existing Communication Service, it is generated under one of the following
directories:

px30_audio_call for plug-ins for Parlay X 30 Audio Call

px21_call_notification for Parlay X 2.1 Call Notification

px30_call_notification for Parlay X 3.0 Call Notification

px21_multimedia_messaging for Parlay X 2.1 Multimedia Messaging

px21_presence for Parlay X 2.1 Presence

ews_push_message for Extended Web Services WAP Push

px21_sms for Parlay X 2.1 Short Messaging

ews_susbcriber_profile for Extended Web Services Subscriber Profile

Genera ted p ro jec t

Platform Development Studio - Developer’s Guide 4-5

px21_terminal_location for Parlay X 2.1 Terminal Location

px21_third_party_call for Parlay X 2.1 Third Party Call

px30_third_party_call for Parlay X 3.0 Thrid Party Call

If it is for a new Communication Service, the base directory is given in the Identifier entry
field in the Eclipse Wizard.

The base directory contains the directory plugins, which contains subdirectories for each
protocol that is being added. The names of the directories are the same as the name chosen for the
Protocol field in the Eclipse Wizard.

Each of the sub-directories for a plug-in contains the following files:

build.xml: The build file for the plug-in, see Plug-in Build File.

Each plug-in sub-directory also contains the directories:

confi: The directory that includes an instancemap that will be used by the
InstanceFactory to create instances for the plug-in interface implementations.

dist: The directory where the final deployable plug-in jar will end up. If a new plug-in
skeleton is generated from the build file it will be generated here.

resources: The directory that contains deployment descriptors for the plug-in.

src: The directory that contains the generated plug-in code.

storage: The directory that contains the configuration file for the Storage service.

The directories and files in bold in Listing 4-2 are generated when building the plug-in, the others
are generated by the Eclipse Wizard.

Listing 4-2 Generated project for a plug-in

| +- plugins // Container directory for all plug-ins for

// the communication service

| | +- <Protocol> // One specific plug-in

| | | +- build.xml // Build file for the plug-in

| | | +- build // Used during the build process

| | | +- config //

Descr ip t i on o f a Gene rated Pro jec t

4-6 Platform Development Studio - Developer’s Guide

| | | | +- instance_factory

| | | | | +- instancemap //Instance map

| | | +- dist // Generated by target dist in build.xml for the plug-in

| | | | +- <Identifier>_<Protocol>_plugin.jar

| | | | +- <Package name>.store_<version>.jar

| | | +- resources // Contains parts of weblogic-extension.xml

// for the network tier EAR file.

// the file is packaged in the EAR file’s META-INF directory

| | | +- src

| | | | +- <Package name> // Directory structure reflecting

// plug-in package name

| | | | | +- management // Example MBean

| | | | | | +- MyTypeMBean.java

| | | | | | +- MyTypeMBeanImpl.java

| | | | | +- <Web Services interface> // One per Service WSDL

| | | | | | +- north

| | | | | | | +- <Web Services interface>PluginImpl.java

// Implmentation of the interface

| | | | | +- <Type>PluginInstance.java

| | | | | +- <Type>PluginService.java

// PluginService implementation

| | | +- storage //Example of a store configuration.

| | | | +- wlng-cachestore-config-extensions.xml

SOAP2SOAP Plug-in
When creating a SOAP2SOAP plug-in, the directory structure described in Plug-in is created
under the top-level directory. In addition, the directories and files in Listing 4-3 are generated.

Genera ted p ro jec t

Platform Development Studio - Developer’s Guide 4-7

The directories and files in bold are created when building the plug-in; the others are generated
by the Eclipse Wizard.

Note: Only the deployable artifacts are relevant. The generated code for SOAP2SOAP type of
plug-ins should not be modified.

Listing 4-3 Generated project for a SOAP2SOAP plug-in

| +- plugins // Container directory for all plug-ins for

// the communication service

| | +- <Protocol> // One specific plug-in

| | | +- build.xml // Build file for the plug-in

| | | +- build // Used during the build process

| | | +- config //

| | | | +- instance_factory

| | | | | +- instancemap //Instance map

| | | +- dist // Generated by target dist in build.xml for the plug-in

| | | | +- <Identifier>_<Protocol>_plugin.jar

| | | | +- <Package name>.store_<version>.jar //unused, empty

| | | +- resources // Contains parts of weblogic-extension.xml

// for the network tier EAR file.

// the file is packaged in the EAR file’s META-INF directory

| | | +- src

| | | | +- <Package name> // Directory structure reflecting

// plug-in package name

| | | | | +- client // Implementation of Web Service client

| | | | | | +- <Web Services interface>_Stub.java

| | | | | | +- <Web Services interface>.java

| | | | | | +- <Web Services interface>Service_Impl.java

Descr ip t i on o f a Gene rated Pro jec t

4-8 Platform Development Studio - Developer’s Guide

| | | | | | +- <Web Services interface>Service.java

| | | | | +- <Web Services call-back interface> // One per Call-back WSDL

| | | | | | +- south

| | | | | | | +- <Web Services interface>PluginSouth.java

// Interface for network-triggered requests

| | | | | | | +- <Web Services interface>PluginSouthImpl.java

// Implementation of the interface

| | | | | +- <Web Services interface> // One per Service WSDL

| | | | | | +- north

| | | | | | | +- <Web Services interface>PluginImpl.java

// Implementation of the interface

| | | | | +- <Type>PluginInstance.java

| | | | | +- <Type>PluginService.java

// PluginService implementation

| | | | | +- schema // Java Representation of the schemas in the WSDLs

| | | | | | +- <Package name> // Directory structure reflecting

// namespace in WSDL

| | | +- storage //Example of a store configuration. Empty.

| | | +- wsdl // WSDLS and XML-to-Java mappings.

| +- <Protocol Identifier_callback.war // Web Service implementation

// for the SOAP2SOAP plug-in

As illustrated in Listing 4-3, a WAR file for the plug-in is generated. This WAR file contains the
Web Service for network-triggered requests. It is only generated if there is a notification WSDL
defined at generation-time. It will be packaged in the EAR for the Service Enabler.

Generated classes for a Plug-in
The generated classes are listed below.

Generated c lasses fo r a P lug- in

Platform Development Studio - Developer’s Guide 4-9

Figure 4-1 Example class diagram of the generated plug-in classes for life-cycle management and
relationship with other interfaces

Interface: ManagedPluginService
The interface a plug-in service needs to implement.

It extends the interfaces PluginService, PluginInstanceFactory and PluginServiceLifecycle.

Interface: PluginService
The interface that defines the plug-in service when it is registered in the Plug-in Manager.

Interface: PluginInstanceFactory
The factory that allows a plug-in service to create plug-in instances.

Descr ip t i on o f a Gene rated Pro jec t

4-10 Platform Development Studio - Developer’s Guide

Interface: PluginServiceLifecycle
The interface that defines the lifecycle for a plug-in service. See States.

PluginService
Class.

Implements com.bea.wlcp.wlng.api.plugin.ManagedPluginService.

Defines the life-cycle for a plug-in service, see States.

Also holds the data that is specific for the plug-in instance.

The actual class name is <Communication Service Type>PluginService. This class
manages the life-cycle for the plug-in service, including implementing the necessary interfaces
that make the plug-in deployable in Network Gatekeeper. It is also responsible for registering the
north interfaces with the Plug-in Manager. At startup time it uses the InstanceFactory to create
one instance of each plug-in service and at activation time it registers these with the Plug-in
Manager. The InstanceFactory uses an instancemap to find out which class it should instantiate
for each plug-in interface implementation. The instance map is found under the resource
directory.

ManagedPlugin Skeleton
The ManagedPlugin skeleton implements the following methods related to life-cycle
management and should be adjusted for the plug-in:

doStarted() - plug-in specific functionality for being started.

doActivated() - plug-in specific functionality for being activated.

doDeactivated() - plug-in specific functionality for being deactivated.

doStopped() - plug-in specific functionality for being stopped.

handleForceSuspending() - Called when a FORCE STOP/SHUTDOWN has been issued.

handleResuming() - Transitions the plug-in from ADMIN to ACTIVE state in which it
begins to accept traffic.

handleSuspending(CompletionBarrier barrier) - Called in a normal re-deployment when the
plug-in is taken from ACTIVE do ADMIN state.

Generated c lasses fo r a P lug- in

Platform Development Studio - Developer’s Guide 4-11

isActive() - reports back true or false. If false, no application-initiated requests are routed
to the plug-in.

In addition, this class defines which address schemes the plug-in can handle, in private static
final String[] SUPPORTED_SCHEMES.

PluginInstance
Class.

Implements com.bea.wlcp.wlng.api.plugin.ManagedPluginInstance.

Defines the life-cycle for a plug-in instance, see States.

The actual class name is <Communication service Type>PluginInstance. This class
manages the life-cycle for the plug-in instance including implementing the necessary interfaces
that make the plug-in an instance in Network Gatekeeper.

It is also responsible for instantiating the classes that implement the traffic interfaces, and
initializing stores to use and relevant MBeans.

See Interface: ManagedPluginInstance.

PluginNorth
This is an empty implementation of the Plug-in North interface. This interface is generated based
on the WSDL files that define the application-facing interface. This is the starting point for the
plug-in implementation.

The following files will be generated in the directory under src/...../<service
name>/north:

<web service interface name>PluginNorth: This class implements the plug-in
interface. One file is generated for each plug-in interface. There is one plug-in interface for
each service WSDL.

Descr ip t i on o f a Gene rated Pro jec t

4-12 Platform Development Studio - Developer’s Guide

Figure 4-2 Class diagram of the generated PluginNorth and RequestFactory.

Generated c lasses fo r a SOAP2SOAP P lug- in

Platform Development Studio - Developer’s Guide 4-13

PluginNorth skeleton
Below is an outline on what needs to be implemented in the plug-in skeleton.

The class contains a Java mapping of the methods defined in the Web Service. The methods are
mapped one-to-one. The name of each method is the same as the name of the operation defined
in the WSDL. The parameter is a class that mirrors the parameters in the input message in the
Web Service request. The return type is a class that represents the output message in the Web
Service Request.

RequestFactory Skeleton
The actual class name is <Communication service identifier>PluginFactory, such as,
for example, NotificationManagerPluginFactory. This is a helper class used by the Service
EJB. It serves two purposes:

It creates the routing information requested by the Plug-in Manager when routing the
method call to a plug-in.

It converts exceptions thrown either by the Plug-in Manager or by the plug-in to exception
types that are supported by the application-facing interface. This is the place to convert
exceptions specific to an extension plug-in to exceptions specific to the application-facing
interface. It is a best practice to have one single place for performing these conversions in
order to document and locate exception mappings.

The following files will be generated in the dist directory under request_factory_skel/src:

<webservice_interface_name>PluginFactory: This class extends the
RequestFactory class. There will be one file generated for each plug-in interface.

Generated classes for a SOAP2SOAP Plug-in
In addition to the generated classes for a regular plug-in, a SOAP2SOAP plug-in adds a few extra
classes, because the network protocol is known.

Note: Only the deployable artifacts are relevant. The generated code for SOAP2SOAP type of
plug-ins should not be modified.

See Managing and Configuring SOAP2SOAP Communication Services in the System
Administrator’s Guide for information on how to configure and manage a SOAP2SOAP
plug-in

http://e-docs.bea.com/wlcp/wlng40/admin/tpsoap2soap.html

Descr ip t i on o f a Gene rated Pro jec t

4-14 Platform Development Studio - Developer’s Guide

Comparison with a Non-SOAP2SOAP Plug-in
The following generated code is similar to the code generated for the non-SOAP2SOAP plug-ins:

Interface: ManagedPluginService

Interface: PluginService

Interface: PluginInstanceFactory

Interface: PluginServiceLifecycle

ManagedPlugin Skeleton

RequestFactory Skeleton

Client Stubs
These classes and interfaces are generated for each interface, based on the Service WSDLs:

<Web Services Interface>_Stub

<Web Services Interface>

<Web Services Interface>Service_Impl

<Web Services Interface>Service

<Web Services Interface>_Stub
Class.

Extends weblogic.wsee.jaxrpc.StubImp

Implements <Web Services Interface>

Used by the corresponding PluginNorth class.

<Web Services Interface>
Interface.

Extends java.rmi.Remote.

Implemented by <Web Services Interface>_Stub.

Defines the traffic methods.

Generated c lasses fo r a SOAP2SOAP P lug- in

Platform Development Studio - Developer’s Guide 4-15

<Web Services Interface>Service_Impl
Class.

Extends weblogic.wsee.jaxrpc.ServiceImpl.

Implements the Web Service.

<Web Services Interface>Service
Interface.

Extends javax.xml.rpc.Service.

Defines the traffic interfaces.

PluginInstance
In addition to the functionality in described in PluginInstance, in the PluginInstance generated for
SOAP2SOAP plug-ins, the following occurs:

In the implementation of activate() it:

– instantiates and registers a class implementing
com.bea.wlcp.wlng.httpproxy.management.HTTPProxyManagement

– instantiates and registers a a class implementing
com.bea.wlcp.wlng.heartbeat.management.HeartbeatManagement

It unregisters the above in the implementation of deactivate().

In the implementation of isConnected(), HeartbeatManagement is used to check the
connection towards the network node.

getHttpProxyManagement() is added for use by PluginSouth.

HTTPProxyManagement is described in section Managing and Configuring SOAP2SOAP
Communication Services in Network Gatekeeper System Administrator’s Guide.

HeartbeatManagement is described in section Configuring Heartbeats in Network Gatekeeper
System Administrator’s Guide.

PluginNorth
In addition to the functionality described in PluginNorth, this class:

http://e-docs.bea.com/wlcp/wlng40/admin/heartbeat.html
http://e-docs.bea.com/wlcp/wlng40/admin/tpsoap2soap.html
http://e-docs.bea.com/wlcp/wlng40/admin/tpsoap2soap.html

Descr ip t i on o f a Gene rated Pro jec t

4-16 Platform Development Studio - Developer’s Guide

Checks whether there is an endpoint to the network node registered in the
HttpProxyManagement MBean.

Instantiates the client stubs used to make Web Services call to the network node: see Client
Stubs.

Invokes the corresponding method on the stubs.

PluginSouth
This class implements a Java representation of the Web Service implementation. It implements
PluginSouth: see Interface: PluginSouth. When a network-triggered method is invoked, it:

gets the handle to the callback EJB, see Class: CallbackFactory.

Resolves the endpoint used for the application instance by querying the PluginInstance for
the endpoint by calling getApplicationEndPoint(getApplicationInstanceId).

Passes on the request to the callback EJB.

RequestFactory
The RequestFactory for a SOAP2SOAP plug-in has the same functionality as described in
RequestFactory Skeleton, but instead of serving as a skeleton, it is an implementation. It contains
an implementation of createRequestInfo(...) which means that the Plug-in Manager does no
routing based on destination address.

Build Files and Targets for a Communication Service
Project

Main Build File
The main build file for the Communication Service contains the following targets:

build_csc, builds the common parts of the Communication Service .

build_plugins, builds the plug-ins for the Communicaiton Service .

stage, copies the JARs for the plug-ins to the directory stage.

make-facade, creates a deployable EAR for the access tier in the directory dist.

Bui ld F i l es and Targe ts fo r a Communicat ion Serv ice P ro jec t

Platform Development Studio - Developer’s Guide 4-17

make-enabler, creates a deployable EAR for the network tier in the directory dist.

deploy-facade, deploys the service facade EAR to the access tier.

undeploy-facade, undeploys the service facade EAR from the access tier.

deploy-enabler, deploys the service enabler EAR from the network tier.

undeploy-enabler, undeploys the service enabler EAR from the network tier

clean, clears the directory dist.

dist, calls the
prepare,build_csc,build_plugins,stage,make-facade,make-enabler targets.

Note: When using the deploy and undeploy targets, make sure to adapt the settings for user,
password, adminurl, targets, and appversion in the parameters to wldeploy. By default
Web Services Security is not enabled for new Communication Services. See section
Setting up WS-Policy and JMX Policy in System Administrator’s Guide for instructions
on how to configure this.

Communication Service Common Build File
The build file for the common parts of the Communication Service contains the following targets:

dist, Calls the csc_gen ant task that generates the Java source for each PluginFactory. The
source is generated under the directory dist/request_factory_skel/src

clean: Deletes the dist directory.

Plug-in Build File
The build file for the plug-in contains the following targets:

compile, compiles the source code under the src directory and puts the class files under
the build directory.

jar, calls the compile target and then creates a plug-in jar file under the dist directory.

instrument, weaves the aspects that should apply into the plug-in.

build.schema, builds the schema file and the classes used by the storage service.

dist, calls the clean, compile, jar and instrument, and build.schema targets.

clean, deletes the build and dist directories.

http://e-docs.bea.com/wlcp/wlng40/admin/wssecurity.html

Descr ip t i on o f a Gene rated Pro jec t

4-18 Platform Development Studio - Developer’s Guide

Ant Tasks
The build files use a set of ant tasks and macros, described below:

cs_gen

plugin_gen

cs_package

javadoc2annotation

The ant tasks are defined in $PDS_HOME/lib/wlng/ant-tasks.jar

cs_gen
This ant task builds the common parts of the Communication Service. Below is a description of
the attributes.

Table 4-1 cs_gen ant task

Attribute Description

destDir Defines the destination directory for the generated files.

packageName Define the package name to be used.

Example: com.mycompany.service

serviceType Defines the service type. Used in EDRs, statistics, etc.

Example: SmsServiceType, MultimediaMessagingServiceType.

company Defines the company name, to be used in META-INF/MANIFEST.MF.

version Defines the version, to be used in META-INF/MANIFEST.MF.

contextPath Defines the context path for the Web Service.

Example: myService

soapAttachmentSupport Use true if SOAP with attachments shall be supported.

Use false if not.

wlngHome Path to $WLNG_HOME, this depends on the installation. Example:
c:/bea/wlng400

Bui ld F i l es and Targe ts fo r a Communicat ion Serv ice P ro jec t

Platform Development Studio - Developer’s Guide 4-19

Example:

<cs_gen destDir="${dist.dir}"

packageName="com.bea.wlcp.wlng.example"

name="say_hello"

serviceType="example"

company="BEA"

version="4.0"

contextPath="sayHello"

soapAttachmentSupport="false"

wlngHome="${wlng.home}"

pdsHome="${pds.home}">

<classpath refid="wls.classpath"/>

<classpath refid="wlng.classpath"/>

<servicewsdl file="${wsdl}/example_hello_say_service.wsdl"/>

</cs_gen>

pdsHome Path to $PDS_Home, this depends on the installation. Example
c:/bea/wlng_pds400

classpath Defines the necessary classpaths. Must include:
$WLNG_HOME/server/lib/weblogic.jar

$WLNG_HOME/server/lib/webservices.jar

$WLNG_HOME/server/lib/api.jar

$PDS_HOME/lib/wlng/wlng.jar

$PDS_HOME/lib/log4j/log4j.jar

servicewsdl URL to the WSDL that defines the service.

Table 4-1 cs_gen ant task

Attribute Description

Descr ip t i on o f a Gene rated Pro jec t

4-20 Platform Development Studio - Developer’s Guide

plugin_gen
This ant task builds a plug-in for a Communication Service. Below is a description of the
attributes.

Table 4-2 plugin_gen ant task

Attribute Description

destDir Defines the destination directory for the generated files.

packageName Define the package name to be used.

Example: com.mycompany.service

name Name and directory of the plug-in JAR.

serviceType Defines the service type. Used in EDRs, statistics, etc.

Example: SmsServiceType, MultimediaMessagingServiceType.

esPackageName Communication Service package name used to import relevant classes.

protocol An identifier for the network protocol the plug-in implements. Used as a
part of the names of the generated jar file: <Communication Service
identifier>_<protocol>.jar and the service name
Plugin_<Communication Service
identifier>_<protocol>.

schemes Address schemes the plug-in can handle. Use a comma separated list if
multiple schemes are supported. For example: tel: or sip:.

company Defines the company name, to be used in META-INF/MANIFEST.MF.

version Defines the version, to be used in META-INF/MANIFEST.MF.

pluginifjar The name of the JAR file for the plug-in.

Bui ld F i l es and Targe ts fo r a Communicat ion Serv ice P ro jec t

Platform Development Studio - Developer’s Guide 4-21

Example:

<plugin_gen destDir="${dist.dir}"

packageName="com.bea.wlcp.wlng.example.bla"

name="say_hello"

serviceType="example"

esPackageName="com.bea.wlcp.wlng.example"

protocol="bla"

schemes=""

company="BEA"

version="4.0"

pluginifjar="${dist.dir}/say_hello/common/dist/say_hello_service.jar">

<classpath refid="wls.classpath"/>

<classpath refid="wlng.classpath"/>

<servicewsdl file="${wsdl}/example_hello_say_service.wsdl"/>

</plugin_gen>

cs_package
This ant task packages a Communication Service. Below is a description of the attributes.

classpath Defines the necessary classpaths. Must include:
$WLNG_HOME/server/lib/weblogic.jar

$WLNG_HOME/server/lib/webservices.jar

$WLNG_HOME/server/lib/api.jar

$PDS_HOME/lib/wlng/wlng.jar

$PDS_HOME/lib/log4j/log4j.jar

servicewsdl URL to the WSDL that defines the service.

Table 4-2 plugin_gen ant task

Attribute Description

Descr ip t i on o f a Gene rated Pro jec t

4-22 Platform Development Studio - Developer’s Guide

Example:

<cs_package destfile="${cs.dist}/${enabler.ear.name}.ear"

duplicate ="fail"

displayname="${enabler.ear.name}">

<descriptorfileset dir="${csc.dir}/resources/enabler/META-INF"

includes="*.xml"/>

<descriptorfileset dir="${cs.name}/plugins"

includes="*/resources/META-INF/*.xml"/>

<manifest>

Table 4-3 cs_package ant task

Attribute Description

destfile Defines the destination directory for the generated files.

duplicate Defines the package name to be used.

Example: com.mycompany.service

displayname Used in applicaiton.xml for the display name of the application.

descriptorfileset Defines the service type. Used in EDRs, statistics, etc.

Example: SmsServiceType, MultimediaMessagingServiceType.

manifest Description of the manifest file use. Enter values for the following
attributes:

name="Bundle-Name" value should be the name of the EAR for the service
enabler.

name="Bundle-Version" value should be the version to use.

name="Bundle-Vendor" value should be vendor name

name="Weblogic-Application-Version" value should be the version of the
EAR

fileset Should point to the Communication Service JAR.

zipfileset Should point to the plug-in JAR(s).

Bui ld F i l es and Targe ts fo r a Communicat ion Serv ice P ro jec t

Platform Development Studio - Developer’s Guide 4-23

<attribute name="Bundle-Name"

value="${enabler.ear.name}"/>

<attribute name="Bundle-Version"

value="${manifest.bundle.version}"/>

<attribute name="Bundle-Vendor"

value="${manifest.bundle.vendor}"/>

<attribute name="Weblogic-Application-Version"

value="${manifest.bundle.version}"/>

</manifest>

<fileset dir="${csc.dist}">

<include name="*_service.jar"/>

</fileset>

<zipfileset dir="${cs.stage}">

<include name="*plugin.jar"/>

</zipfileset>

</cs_package>

javadoc2annotation
This ant macro annotates an MBean interface based on the JavaDoc. The macro is defined in the
common.xml build file for the

The annotations are rendered as descriptive information by the Gatekeeper Administration
console. Below is a description of the attributes.

Table 4-4 javadoc2annotation ant macro

Attribute Description

tempDir Temporary directory for the generated files.

destDir Destination directory for the generated MBean interface.

Descr ip t i on o f a Gene rated Pro jec t

4-24 Platform Development Studio - Developer’s Guide

Example:

<javadoc2annotation

tempDir="${plugin.generated.dir}/mbean_gen_tmpdir"

destDir="${plugin.classes.dir}"

sourceDir="${plugin.src.dir}"

classpath="javadoc.classpath">

</javadoc2annotation>

sourceDir Source directory for the MBean interface with JavaDoc annotations.

classpath Defines the necessary classpaths. Depending on which interfaces that are
used from the MBean, include:
$WLNG_HOME/server/lib/weblogic.jar

$WLNG_HOME/server/lib/webservices.jar

$WLNG_HOME/server/lib/api.jar

$PDS_HOME/lib/wlng/wlng.jar

$PDS_HOME/lib/log4j/log4j.jar

Table 4-4 javadoc2annotation ant macro

Attribute Description

Platform Development Studio - Developer’s Guide 5-1

C H A P T E R 5

Communication Service Example

This section describes the example Communication Service in the Platform Development Studio:

Overview

– High-level Flow for sendData (Flow A)

– High-level Flow for startNotification and stopNotification (Flow B)

– High-level flow for notifyDataReception (Flow C)

Interfaces

– Web Service Interface Definition

– Network Interface Definition

Directory Structure

Classes

Store configuration

SLA Example

Overview
The Communication service example demonstrates the following:

Structure and execution workflow in a Communication Service.

Parameter validation

Communicat i on Se rv i ce Example

5-2 Platform Development Studio - Developer’s Guide

Hitless upgrade

Retry

Simple TCP/IP protocol-based simulator

Testability with the PTE

The example is based on an end-to-end Communication Service, with a set of simple interfaces

SendData, which defines the operation sendData used to send data to a given address.

NotificationManager, which defines these operations:

– startEventNotification, that starts a subscription for network-triggered events.

– stopEventNotification, that ends the subscription for network-triggered events.

Notification, which defines the operation:

– notifyDataReception, used to notify the application on a network-triggered event.

The SendData and NotificationManager interfaces are used by an application and implemented
by the Communication Service.

The Notification interface is used by the Communication Service and implemented by an
application.

The Communication Service to network node interface is a simple TCP/IP based interface that
defines the two commands:

sendDataToNetwork, that sends data to the network node.

receiveData, that is used by the network node to send data to a receiver - in this case the
network protocol plug-in.

Figure 5-1 illustrates the flow for these operations.

Overv i ew

Platform Development Studio - Developer’s Guide 5-3

Figure 5-1 Overview of example Communication Service
g

The flow marked A* is for sendData, the flow marked B* is for startNotification and
stopNotification, and the flow marked C* is for notifyDataReception.

The modules marked with 1 are automatically generated based on the WSDL files that defines
the application-facing interface and code generation templates provided by the Platform
Development Studio. The modules marked with 2 are skeletons generated at build time.

High-level Flow for sendData (Flow A)
1. A1: An application invokes the Web Service SendData, with the operation sendData.

2. A2: The request is passed on the EJB for the interface, which passes it on to the network
protocol plug-in. The diagram is simplified, but at this stage the Plug-in Manager is invoked
and makes a routing decision to route to the appropriate plug-in.

Communicat i on Se rv i ce Example

5-4 Platform Development Studio - Developer’s Guide

3. A3: The Plug-in Manager invokes the sendData method in the class SendDataPluginNorth.
It will always invoke a class named PluginNorth, that has a prefix that is the same as the Java
representation of the Web Service interface.

4. A4: The request is passed on to class SendDataPluginToNetworkAdapter that performs the
protocol translation according to the network-interface.

5. A5: The request is passed to SendDataPluginSouth.

6. A6: The request is handed off to the network node.

High-level Flow for startNotification and stopNotification
(Flow B)
The initial steps (B1-B3) are similar to flow A*. Instead of translating the request to a command
on the network node, NotificationManagerNorth uses the StoreHelper to either store a new or
remove a previously registered subscription for notifications. The data stored, the
NotificationData, is used in network-triggered requests to resolve which application started the
notification and the destination to which to send it. In the example the notification is started on
an address, so the address is stored together with information to which endpoint the application
wants the notification to be sent.

High-level flow for notifyDataReception (Flow C)
1. C1: The network protocol plug-in receives the network-triggered command receiveData on

NetworkToNotificationPluginAdapter.

2. C2: SendDataPluginSouth can be used to add additional information to the request before
passing in on.

3. C3: NetworkToNotificationPluginAdapter performs the protocol translation.

4. C4: StoreHelper is used to examine if the request matches any stored NotificationData. If so,
the information in NotificationData is retrieved. This information includes which application
instance that the request resolves to and on which endpoint this application wants to be
notified about the network triggered event.

5. C5: NotificationCallbackFactory is used to get a hold of an active NotificationCallback EJB
to pass on the request to.

6. C6: The request is passed on to the NotificationCallback EJB.

7. C7: The request is passed on to an application.

I n te r faces

Platform Development Studio - Developer’s Guide 5-5

Interfaces
The example Communication Service translates between an application-facing interface, defined
in WSDL, see Web Service Interface Definition and a network interface, TCP/IP based, see
Network Interface Definition.

Web Service Interface Definition

Interface: SendData
This interface is a simple interface containing operations for sending data.

Operation: sendData
Send data to the network.

Input message: sendDataMessage

Output message: sendDataResponse

Interface: NotificationManager
The Notification Manager Web Service is a simple interface containing operations for managing
subscriptions to network triggered events.

Part name Part type Optional Description

data xsd:string N The data to be sent to the target device

address xsd:anyURI N Address of the target device.

Example:

tel:4154011234

Part name Part type Optional Description

none

Communicat i on Se rv i ce Example

5-6 Platform Development Studio - Developer’s Guide

Operation: startEventNotification
Start the subscription of event notification from the network.

Input message: startEventNotificationRequest

Output message: invokeMessageResponse

Operation: stopEventNotification
Stop the subscription of event notification from the network.

Input message: stopEventNotificationRequest

Part name Part type Optional Description

correlator xsd:string N Service unique identifier provided to set up this
notification.

endPoint xsd:string N Endpoint address. Endpoint of the application to
receive notifications.

Example:

http://www.hostname.com/NotificationService/servi
ces/Notification

address xsd:anyUR N Service activation number.

Example:

tel:4154567890

Part name Part type Optional Description

none

I n te r faces

Platform Development Studio - Developer’s Guide 5-7

Output message: stopEventNotificationResponse

Interface: NotificationListener
The NotificationListener interface defines the methods that the Communication Service invokes
on a Web Service that is implemented by an application.

Operation: notifyDataReception
Method used for receiving a notification.

Input message: notifyDataReceptionRequest

Output message: notifyDataReceptionResponse

Part name Part type Optional Description

correlator xsd:string N Service unique identifier provided to set up this
notification.

Part name Part type Optional Description

none

Part name Part type Optional Description

correlator xsd:string N Service unique identifier provided to set up this
notification.

originatingA
ddress

 xsd:anyURI N Address of the device where the data originated.

Example:

tel:4153083412

 data xsd:string Data sent by the originating device.

Communicat i on Se rv i ce Example

5-8 Platform Development Studio - Developer’s Guide

Network Interface Definition

sendDataToNetwork
This command sends data from the Communication Service to the network node.

receiveData
This command sends data from the network node to the Communication Service.

Part name Part type Optional Description

none

Argument Type Description

fromAddress String The address from which the request is sent.

toAddress String The address to which the request shall be sent.

data String The data to send.

Argument Type Description

fromAddress String The address from which the request is sent.

toAddress String The address to which the request shall be sent.

data String The data to send.

Di rec to ry S t ructure

Platform Development Studio - Developer’s Guide 5-9

Directory Structure
Below is a description of the directory structure for the example Communication Service.

communication_service

+- build.properties

+- common.xml

+- build.xml

+- example

| +- common

| | +- build.xml

| | +- dist

| | | +- request_factory_skel

| | | +- tmp

| | | +- example.war

| | | +- example_callback.jar

| | | +- example_callback_client.jar

| | | +- example_service.jar

| | | +- resources

| | | | +- enabler

| | | | + facade

| | | +- src

| | | | +- com/<package name>Plugin

| | | | | +- ExceptionType.java

| | | | | +- NotificationManagerPluginFactory.java

| | | | | +- SendDataPluginFactory.java

| | | | | +- handlerconfig.xml

| | | | | +- weblogic.xml

| | +- wsdl

Communicat i on Se rv i ce Example

5-10 Platform Development Studio - Developer’s Guide

| +- dist

| | +- com.acompany.plugin.example.netex.store_4.0.jar

| | +- example_enabler.ear

| | +- example_facade.ear

| +- plugins

| | +- nextex

| | | +- build.xml

| | | +- dist

| | | | +- example_netex_plugin.jar

| | | | +- com.acompany.plugin.example.nextex.store_4.0.0.0.jar

| | | +- build

| | | +- config

| | | | +- edr

| | | | | +- alarm.xml

| | | | | +- cdr.xml

| | | | | +- edr.xml

| | | | | +- alarm.xml

| | | | +- instance_factory

| | | | | +- instancemap

| | | +- dist

| | | | +- com.acompany.plugin.example.netex.store_4.0.jar

| | | | +- example_netex_plugin.jar

| | | +- src/com/acompany/plugin/example/netex/

| | | | +- context

| | | | +- management

| | | | +- notification

| | | | +- notificationmanager

Di rec to ry S t ructure

Platform Development Studio - Developer’s Guide 5-11

| | | | +- senddata

| | | | +- store

| | | +- storage

| | | | +- wlng-cachestore-config-extensions.xml

Directories for WSDL
Below is a list of WSDL files that define the application-facing interface and the Java
representation of these in the plug-in.

Application-initiated traffic

$PDS_HOME/example/communication_service/example/common/wsdl/service
example_common_faults.wsdl

example_common_types.xsd

example_data_send_interface.wsdl

example_data_send_service.wsdl

example_notification_manager_interface.wsdl

example_notification_manager_service.wsdl

Network-triggered traffic

$PDS_HOME/example/communication_service/example/common/wsdl/callback
example_notification_interface.wsdl

example_notification_service.wsdl

Directories for Java Source
Below is a list of Java source directories for the Communication Service Common and the
Plug-in.

Communicat i on Se rv i ce Example

5-12 Platform Development Studio - Developer’s Guide

Communication Service Common

$PDS_HOME/example/communication_service/example/common/src
com.acompany.example.plugin.ExceptionType

com.acompany.example.plugin.NotificationManagerPluginFactory

com.acompany.example.plugin.SendDataPluginFactory

Plug-in

$PDS_HOME/example/communication_service/example/plugins/netex/src
com.acompany.plugin.example.netex.context.ContextTranslatorImpl

com.acompany.plugin.example.netex.management.ConfigurationStoreHandler

com.acompany.plugin.example.netex.management.ExampleMBean

com.acompany.plugin.example.netex.management.ExampleMBeanImpl

com.acompany.plugin.example.netex.management.Management

com.acompany.plugin.example.netex.notification.north.NotificationHandlerNo

rth

com.acompany.plugin.example.netex.notification.south.NetworkToNotification

PluginAdapter

com.acompany.plugin.example.netex.notification.south.NetworkToNotification

PluginAdapterImpl

com.acompany.plugin.example.netex.notificationmanager.north.NotificationMa

nagerPluginNorth

com.acompany.plugin.example.netex.senddata.north.SendDataPluginNorth

com.acompany.plugin.example.netex.senddata.south.SendDataPluginSouth

com.acompany.plugin.example.netex.senddata.south.SendDataPluginToNetworkAd

apter

com.acompany.plugin.example.netex.senddata.south.SendDataPluginToNetworkAd

apterImpl

com.acompany.plugin.example.netex.store.FilterImpl

com.acompany.plugin.example.netex.store.NotificationData

Di rec to ry S t ructure

Platform Development Studio - Developer’s Guide 5-13

com.acompany.plugin.example.netex.store.StoreHelper

com.acompany.plugin.example.netex.ExamplePluginInstance

com.acompany.plugin.example.netex.ExamplePluginService

Directories for resources
Only the Communication Service common components have associated resources. The resources
are XML files that serve as deployment descriptors for the network tier EAR and the access tier
EAR.

$PDS_HOME/example/communication_service/example/common/resources/at/META-IN
F
Contains deployment descriptors for the access tier EAR file. These must be present in the
META-INF directory of the EAR. See
http://edocs.bea.com/wls/docs100/programming/app_xml.html

application.xml

weblogic-application.xml

The code generation creates these files, and the build script takes care of the packaging.

$PDS_HOME/example/communication_service/example/common/resources/nt/META-IN
F
Contains deployment descriptors for the network tier EAR file. These must be present in the
META-INF directory of the EAR. See
http://edocs.bea.com/wls/docs100/programming/app_xml.html

application.xml

weblogic-application.xml

weblogic-extension.xml

The code generation creates these files, and the build script takes care of the packaging.

Directories for Configuration of Plug-in
$PDS_HOME/example/communication_service/example/plugins/netex/config/edr
Sample entries to add in the EDR, CDR, and Alarm filters.

http://edocs.bea.com/wls/docs100/programming/app_xml.html
http://edocs.bea.com/wls/docs100/programming/app_xml.html

Communicat i on Se rv i ce Example

5-14 Platform Development Studio - Developer’s Guide

alarm.xml

cdr.xml

edr.xml

These serves as examples. Add the contents of these to the EDR configuration file. Use the EDR
Configuration Pane as described in Managing and Configuring EDRs, CDRs and Alarms in the
System Administrator’s Guide.

$PDS_HOME/example/communication_service/example/plugins/netex/instance_factory
Sample instance map for mapping of classes, interfaces, and abstract classes.

When using com.bea.wlcp.wlng.api.util.InstanceFactory to retrieve instances for a given
interface, class, or abstract class, this mapping is referenced. The mapping can be overridden. See
JavaDoc for InstanceFactory for details.

instancemap

$PDS_HOME/example/communication_service/example/plugins/netex/storage
Sample store configuration file. Defines how the Storage service is used by the plug-in, store
type, table names, query definitions, and get and set methods. See StoreHelper, FilterImpl, and
NotificationData.

wlng-cachestore-config-extensions.xml

Directories for Build and Configuration of Builds
$PDS_HOME/example/communication_service/
build.properties

Defines the installation directory for Network Gatekeeper and for the Platform Development
Studio.

common.xml

Defines properties, class paths, task definitions, and macros for the build.

build.xml

Main build file to build the Communication Service. This build file also contains targets for
packaging deployable artifacts into the access and network tier.

http://e-docs.bea.com/wlcp/wlng40/admin/edr.html

Di rec to ry S t ructure

Platform Development Studio - Developer’s Guide 5-15

$PDS_HOME/example/communication_service/example/common
build.xml

Build file for the common parts of the Communication Service.

$PDS_HOME/example/communication_service/example/plugins/netex
build.xml

Build file for the plug-in.

Directories for Classes, JAR, and EAR Files
$PDS_HOME/example/communication_service/example/dist
Deployment artefacts for the Communication Service.

example_facade.ear

The part of the Communication Service that is deployed in the access tier.

example_enabler.ear

The part of the Communications Service that is deployed in the network tier.

$PDS_HOME/example/communication_service/example/common/dist
JAR and WAR files for the common parts of the Communication Service.

example_callback_client.jar

example_callback.jar

example_service.jar

example.war

$PDS_HOME/example/communication_service/example/common/dist/request_factory_
skel
Auto generated source for skeleton classes extending
com.bea.wlcp.wlng.api.plugin.RequestFactory.

One class is generated per Service WSDL, that is per interface that defines application-initiated
operations.

The classes are named <PreFix>PluginFactory, where <PreFix> is picked up from the WSDL
binding in the WSDL file.

Communicat i on Se rv i ce Example

5-16 Platform Development Studio - Developer’s Guide

In the subdirectory that corresponds to the package name, the following classes are generated:

NotificationManagerPluginFactory.java

SendDataPluginFactory.java

These are generated as skeletons, but in the example they are adapted to the specific use cases.

$PDS_HOME/example/communication_service/example/plugins/netex/dist
Contains individual JAR files comprises the plug-in.

com.acompany.plugin.example.netex.store_4.0.jar

Includes the schema file for the store used by the plug-in, packaged together with the classes for
which instances are stored. This file must be put in $DOMAIN_HOME/config/store_schema on
each server in the network tier. The server needs to be restarted if any changes have been done to
the store schema or the classes referred to in the store schema.

example_netex_plugin.jar

The JAR for the plug-in.

$PDS_HOME/example/communication_service/example/plugins/netex/dist/mbean_gene
rationdir
Output directory for the MBean that has been processed by the javadoc2annotation ant task.

Classes
Below is a description of the classes and the methods defined in these classes:

Communication Service Common

– ExceptionType

– NotificationManagerPluginFactory

– SendDataPluginFactory

Plug-in Layer

– ContextTranslatorImpl

– ExamplePluginService

– ConfigurationStoreHandler

– ExampleMBean

Classes

Platform Development Studio - Developer’s Guide 5-17

– ExampleMBeanImpl

– Management

– NotificationHandlerNorth

– NetworkToNotificationPluginAdapter

– NetworkToNotificationPluginAdapterImpl

– NotificationManagerPluginNorth

– SendDataPluginNorth

– SendDataPluginSouth

– SendDataPluginToNetworkAdapter

– SendDataPluginToNetworkAdapterImpl

– FilterImpl

– NotificationData

– StoreHelper

Communication Service Common

ExceptionType
Class.

Enumeration for exception types:

Defines:

SERVICE_ERROR

POLICY_ERROR

NotificationManagerPluginFactory
Class.

Extends RequestFactory.

Helper class that is used by the service EJB for two purposes:

Creating routing information requested by the Plug-in Manager when routing the method
call to a plug-in.

Communicat i on Se rv i ce Example

5-18 Platform Development Studio - Developer’s Guide

Converting Exceptions, thrown either by the Plug-in Manager or by the plug-in, to
Exceptions that are supported by the application-facing interface.

Note: This class needs to remain in this package and the class name must not be changed.

public void validateRequest(Method method, Object... args)
Validates the request to make sure that mandatory parameters are present. Operates on a Java
representation of the Web Service call.

public RequestInfo createRequestInfo(Class<? extends Plugin> type, Method method,
Object... args)
Used by the service EJB to extract routing data from the method call. The routing data is then
given to the Plug-in Manager. This method returns the routing data in a RequestInfo object.

Returns a:

AddressRequestInfo if the request contains an actual address that can be routed to a
specific plug-in.

CorrelatorRequestInfo if the request contains an correlator that relates to an operation that
relates to states (to start or to stop something). Most often it is the starting and stopping of
notifications that use a correlator.

public Throwable convertEx(Method method, Throwable e)
Called by the service EJB in order to convert Exceptions thrown by the Plug-in Manager and the
Plug-in to Exceptions defined by the called method.

private Throwable convertEx(Method method, PluginException e)
Converts a PluginException to an Exception that can be thrown by the method called by the
application.

Plug-in Layer

ContextTranslatorImpl
Class.

Implements interface com.bea.wlcp.wlng.api.plugin.context.ContextTranslator.

Responsible for setting any non-simple parameter into the RequestContext.

Classes

Platform Development Studio - Developer’s Guide 5-19

public void translate(Object param, ContextInfo info)
Puts the member variables of a complex data type into the ContextInfo.

Checks the interface type.

Gets the simple data types provided in the parameter param.

Puts each of the parameters into the ContextInfo object.

These parameters are provided in each subsequent EDR that is emitted in the request.

ExamplePluginService
Package: com.acompany.plugin.example.netex

Implements ManagedPluginService.

Initial point for the network protocol plug-in.

Defines the life-cycle for a plug-in service.

Also holds the data that is specific for the plug-in instance.

This class manages the life-cycle for the plug-in service, including implementing the necessary
interfaces that make the plug-in deployable in Network Gatekeeper. It is also responsible for
registering the north interfaces with the Plug-in Manager. At startup time it uses the
InstanceFactory to create one instance of each plug-in service and at activation time it registers
these with the Plug-in Manager. The InstanceFactory uses an instancemap to find out which class
it should instantiate for each plug-in interface implementation. The instance map is found under
the resource directory. It also has

public boolean isRunning()
Checks to see if the plug-in service is in running state.

public String[] getSupportedSchemes()
Returns a list of address schemes the plug-in supports.

public void init(String id, PluginPool pool)
Initializes the plug-in service with its ID and a reference to its plug-in pool.

public void doStarted()
When entering state Started, the plug-in instantiates a TimerManager.

Communicat i on Se rv i ce Example

5-20 Platform Development Studio - Developer’s Guide

public void doStopped()
No action.

public void doActivated()
No action.

public void doDeactivated()
No action.

public void handleSuspending(CompletionBarrier barrier)
The plug-in service does not handle graceful shutdown: it propagates the request to public void
handleForceSuspending().

public void handleForceSuspending()
When the plug-in is being forcefully suspended, the plug-in service iterates through all plug-in
instances and calls public void handleSuspending() on each.

public boolean isActive()
While there is a connection to the network node and the plug-in is in state ACTIVE/RUNNING
this method must return true, in all other cases false. This method is invoked by the Plug-in
Manager during route selection.

public ServiceType getServiceType()
Returns the type of the service. Used by the Plug-in Manager to route requests to a plug-in
instance that can manage the type of request. The ServiceType is auto-generated based on the
WSDL that defines the application-facing interfaces.

public String getNetworkProtocol()
Returns a descriptive name of the network protocol being used.

createInstance(String)
Creates a new plug-in instance.

ExamplePluginInstance
Package: com.acompany.plugin.example.netex.

Classes

Platform Development Studio - Developer’s Guide 5-21

Implements ManagedPluginInstance

Defines the life-cycle for a plug-in instance/

This class manages the life-cycle for the plug-in instance including implementing the necessary
interfaces that make the plug-in an instance in Network Gatekeeper.

It is also responsible for instantiating classes that implement the traffic interfaces and for
initializing stores to use and MBeans.

public String getId()
Returns the plug-in instance ID.

public void activate()

Instantiates the classes implementing the PluginNorth interface:

– SendDataPluginNorth

– NotificationManagerPluginNorth

– NotificationHandlerNorth

Instantiates the class implementing the PluginSouth interface:

– SendDataPluginSouth

Instantiates the classes that implements the southbound and northbound adapter instances:

– NetworkToNotificationPluginAdapterImpl

– SendDataPluginToNetworkAdapterImpl

Creates the network proxy:

Registers the PluginNorth interfaces into the Plug-in Manager.

Registers the PluginSouth interfaces into the Plug-in Manager.

Registers the NetworkToNotificationPluginAdapter into the network proxy to be notified
when a request arrives from the network node.

Sets NotificationHandlerNorth to NetworkToNotificationPluginAdapter in order to forward
request to the application.

Sets the network proxy into the SendDataPluginToNetworkAdapter in order to send request
to the network.

Communicat i on Se rv i ce Example

5-22 Platform Development Studio - Developer’s Guide

Sets SendDataPluginToNetworkAdapter into SendDataPluginNorth.

Instantiates ConfigurationStoreHandler.

Instantiates Management and registers the plug-in into it.

private void rethrowServiceDeploymentException(Exception e)
Re-throws a ServiceDeploymentException if any other exception is encountered. The exception
is wrapped in a ServiceDeploymentException.

public ConfigurationStoreHandler getConfigurationStore()
Returns a handle to the ConfigurationStore used by the plug-in instance. The ConfigurationStore
was initiated in public void activate().

public NetworkProxy getNetworkProxy()
Returns handle to the NetworkProxy. The NetworkProxy was initiated in public void activate().

public void connect()
Connects to the network using NetworkProxy.

ConnectTimerTask
Inner class of ExamplePluginService.

Extends java.util.TimerTask.

It has one method, run(), that tries to connect to the network node, if not connected. This class is
instantiated and scheduled as a java.util.Timer in public void handleResuming().

ConfigurationStoreHandler
Handles storage of configuration data using the StorageService.

A set of default settings are defined as static final variables. These are used to populate the
ConfigurationStore with default values the first time the plug-in is deployed.

Takes the plug-in ID as a parameter. The plug-in ID is the key in the ConfigurationStore.

Uses ConfigurationStoreFactory to get a handle to the ConfigurationStoreService and gets the
local ConfigurationStore that handles configuration data for the plug-in instance.

The plug-in only deals with configuration data that is unique for the instance in a specific server,
so the store is fetched as outlined in Listing 5-1.

Classes

Platform Development Studio - Developer’s Guide 5-23

Listing 5-1 Get a server-specific (local) ConfigurationStore

ConfigurationStoreFactory factory = ConfigurationStoreFactory.getInstance();

localConfigStore = factory.getStore(pluginId, LOCAL_STORE,
ConfigurationStore.STORE_TYPE_LOCAL);

If the plug-in uses a ConfigurationStore that is shared between the plug-in instances in the cluster,
it must fetch that one as well, as outlined in Listing 5-2

Listing 5-2 Get a cluster-wide (shared) ConfigurationStore

ConfigurationStoreFactory factory = ConfigurationStoreFactory.getInstance();

sharedConfigStore = factory.getStore(pluginId, SHARED_STORE,
ConfigurationStore.ConfigurationStore.STORE_TYPE_SHARED);

After the ConfigurationStore is fetched, it is initialized with default values for the available
configuration settings. These default values can be changed later on, using the MBeans, see
ExampleMBean.

public void setLocalInteger(String key, Integer value),

public Integer getLocalInteger(String key),

public void setLocalString(String key, String value), and

public String getLocalString(String key)
The methods above are used to set and get data to and from the ConfigurationStore. One set/get
pair must be implemented per data type in the ConfigurationStore. It is only necessary to
implement set/get methods for the data types actually used by the plug-in.

In the set methods, the parameter name/key is provided as the first parameter and the actual value
is provided in the second parameter.

In the get methods, the parameter name/key is provided as the parameter and the actual value is
returned.

Communicat i on Se rv i ce Example

5-24 Platform Development Studio - Developer’s Guide

ExampleMBean
Interface.

Management interface for the example simulator.

It defines the following methods:

public void setNetworkPort(int port) throws ManagementException;

public int getNetworkPort() throws ManagementException;

public void connect() throws ManagementException;

public void disconnect() throws ManagementException;

public boolean connected();

Implemented by ExampleMBeanImpl.

All MBean methods should throw com.bea.wlcp.wlng.api.management.ManagementException
or a subclass thereof if the management operation fails.

Management
Class.

Handles registration of the ExampleMBean in the MBean Server.

NotificationHandlerNorth

NotificationHandlerNorth()
Constructor.

Empty.

public void deliver(String data, String destinationAddress, String originatingAddress)
Delivers data originating from the network node to the application.

NetworkToNotificationPluginAdapterImpl calls this method upon a network triggered request.

The actual delivery is not done directly to the application. Instead it is done via the service
callback client EJB which forwards the request to the service callback EJB. Both of these are
generated during the build process.

First, the NotificationData associated with the destination address is fetched.

Classes

Platform Development Studio - Developer’s Guide 5-25

NotificationCallback, which is a generated class, is fetched using private NotificationCallback
getNotificationCallback().

NotifyDataReception, a generated class that is a Java representation of the operation defined in
the callback WDSL is instantiated.

The correlator associated with the NotificationData is set on NotifyDataReception.

The data (payload) in the network triggered request is set on NotifyDataReception.

The originating address in the network-triggered request is converted to a URI and set on
NotifyDataReception.

The endpoint associated with NotificationData is fetched.

A remote call is done to the method notifyDataReception on the Callback EJB in the access tier.
The endpoint and NotifyDataReception are supplied as parameters.

private NotificationCallback getNotificationCallback()
Helper method to get the object representing the Callback EJB.

If the object is already retrieved it is returned, otherwise the NotificationCallbackFactory is used
to get a new object. This is the preferred pattern.

Using the CallBackFactory ensures high-availability between the network tier and the access tier
for network triggered requests.

The Callback is generated during the build process when the access tier is generated. Three files
are generated per callback WSDL. The names are based on the interface name defined in the
WSDL. The interface in the WSDL is Notification, so:

the factory is named NotificationCallbackFactory.

the implementation class is named NotificationCallbackImpl

an interface is named is named NotificationCallback.

The classes are completely based on the WSDL file for the callback interface. The factory shall
be used to retrieve the implementation class that implements the interface.

private NotificationData getNotificationData(String destinationAddress)
Helper method to fetch the NotificationData from the StoreHelper. The NotificationData is
retrieved based on the key destination address.

Communicat i on Se rv i ce Example

5-26 Platform Development Studio - Developer’s Guide

NetworkToNotificationPluginAdapter
Interface

extends PluginSouth, NetworkCallback

Defines the interface between NetworkToNotificationPluginAdapter and the network node.

public void setNotificationHandler(NotificationHandlerNorth notificationHandlerNorth)
Sets the NotificationHandler.

NetworkToNotificationPluginAdapterImpl
Class.

Implements NetworkToNotificationPluginAdapter.

public void setNotificationHandler(NotificationHandlerNorth notificationHandlerNorth)
Sets NotificationHandlerNorth in the class.

public String resolveAppInstanceGroupdId(ContextMapperInfo info)
From interface com.bea.wlcp.wlng.api.plugin.PluginSouth

Gives the plug-in an opportunity to add additional values to the RequestContext before the
network-triggered requests is passed on to public void
receiveData(@ContextKey(EdrConstants.FIELD_ORIGINATING_ADDRESS) String
fromAddress, @ContextKey(EdrConstants.FIELD_DESTINATION_ADDRESS)
@MapperInfo(C) String toAddress, String data).

This method is called only once per network-triggered request. It is invoked after
resolveAppInstanceGroupId(ContextMapperInfo), when the RequestContext for the
current request has been rebuilt.

The default implementation is supposed to be empty.

RequestContext contains the fully rebuilt RequestContext.

ContextMapperInfo contains the annotated parameters in public void
receiveData(@ContextKey(EdrConstants.FIELD_ORIGINATING_ADDRESS) String
fromAddress, @ContextKey(EdrConstants.FIELD_DESTINATION_ADDRESS)
@MapperInfo(C) String toAddress, String data).

Classes

Platform Development Studio - Developer’s Guide 5-27

public void receiveData(@ContextKey(EdrConstants.FIELD_ORIGINATING_ADDRESS)
String fromAddress, @ContextKey(EdrConstants.FIELD_DESTINATION_ADDRESS)
@MapperInfo(C) String toAddress, String data)
From NetworkCallback.

The network node invokes this method when a network-triggered events occurs.

The parameter:

fromAddress is the address representing the originator of the request

toAddress is the address representing the destination of the request.

data contains the payload of the request.

The method is annotated with @Edr, so the method is woven with annotation EDR.

fromAddress and toAddress are annotated with @ContextKey, which means that they will be put
it the current RequestContext under the key specified by the string in the argument of the
annotation. As illustrated in Listing 5-3, they are put in the RequestContext under the keys
EdrConstants.FIELD_ORIGINATING_ADDRESS and
EdrConstants.FIELD_DESTINATION_ADDRESS, respectively. These keys ensure that the
values will be available in all subsequent EDRs emitted during this request.

toAddress is also annotated with @MapperInfo, which means that the value should be registered
in ContextMapperInfo under the key specified by the string in the argument of the annotation. In
Listing 5-3, the key is C.

Listing 5-3 Annotation of network-triggered method

...

@Edr

public void receiveData(

@ContextKey(EdrConstants.FIELD_ORIGINATING_ADDRESS)

String fromAddress,

@ContextKey(EdrConstants.FIELD_DESTINATION_ADDRESS)

@MapperInfo(C)

String toAddress,

Communicat i on Se rv i ce Example

5-28 Platform Development Studio - Developer’s Guide

String data) {

...

NotificationManagerPluginNorth
Class.

Implements NotificationManagerPlugin.

public StartEventNotificationResponse
startEventNotification(@ContextTranslate(ContextTranslatorImpl.class)
StartEventNotification parameters)
Starts a subscription for notifications on network-triggered requests.

The method is a Java representation of the application-facing operation startEventNotification,
defined in the WSDL that was used as input for the code generation.

As illustrated in Listing 5-4, the method is annotated with @EDR, and the parameter is put in the
RequestContext using the annotation @ContextTranslate, since the parameter is a complex data
type that requires traversal in order to resolve the simple data types. When using this annotation,
the class is provided as an ID.

Listing 5-4 Annotations for startEventNotification

...

@Edr

public StartEventNotificationResponse startEventNotification(

@ContextTranslate(ContextTranslatorImpl.class) StartEventNotification
parameters)

throws ServiceException {

...

In the operation, these parameters are included:

<xsd:element name="correlator" type="xsd:string"/>

Classes

Platform Development Studio - Developer’s Guide 5-29

<xsd:element name="endPoint" type="xsd:string"/>

<xsd:element name="address" type="xsd:anyURI"/>

The values of correlator and endPoint are put in NotificationData.

The application instance ID for the originator of the request, the application that uses the Web
Services interface, is resolved from the RequestContextManager and put in NotificationData.

Using StoreHelper, NotificationData is put in the StorageService.

public StopEventNotificationResponse
stopEventNotification(@ContextTranslate(ContextTranslatorImpl.class)
StopEventNotification parameters)stopEventNotification(StopEventNotification)
Ends a previously started subscription for notifications on network-triggered requests.

The method is a Java representation of the application-facing operation
stoptEventNotification, defined in the WSDL that was used as input for the code
generation.

The method is annotated in a similar manner to public StartEventNotificationResponse
startEventNotification(@ContextTranslate(ContextTranslatorImpl.class) StartEventNotification
parameters).

Using StoreHelper, NotificationData corresponding to the correlator provided in the requests is
removed from the StorageService.

SendDataPluginNorth
Class.

Implements SendDataPlugin.

public void setPluginToNetworkAdapter(SendDataPluginToNetworkAdapter adapter)
Sets SendDataPluginToNetworkAdapter to be used for application-initiated requests.

public SendDataResponse sendData(@ContextTranslate(ContextTranslatorImpl.class)
SendData parameters)
Sends data to the network

The method is a Java representation of the application-facing operation sendData, defined in the
WSDL that was used as input for the code generation.

Communicat i on Se rv i ce Example

5-30 Platform Development Studio - Developer’s Guide

The method is annotated in a similar manner to public StartEventNotificationResponse
startEventNotification(@ContextTranslate(ContextTranslatorImpl.class) StartEventNotification
parameters).

Passes on the request to SendDataPluginToNetworkAdapter.

If there is a need to retry the request, this method re-throws a PluginRetryException, so the
request can be retried by the service interceptors.

SendDataPluginSouth
Class.

implements PluginSouth.

public SendDataPluginSouth()
Constructor.

Empty.

public void send(NetworkProxy proxy, String address, String data)
Sends data to the network node.

Passes on the request to sendDataToNetwork using the NetworkProxy.

The method is annotated with @Edr.

public String resolveAppInstanceGroupdId(ContextMapperInfo info)
Empty implementation that returns null. This method has meaning, and is used, only in
network-triggered requests.

The application instance ID is already known in the RequestContext, since the class only handles
application-initiated requests.

public void prepareRequestContext(RequestContext ctx, ContextMapperInfo info))
From interface com.bea.wlcp.wlng.api.plugin.PluginSouth

Gives the plug-in an opportunity to add additional values to the RequestContext before the
application-initiated requests is passed on to public void send(NetworkProxy proxy, String
address, String data).

Empty in this example. Normally all data about the request should be known at this point, so no
additional data needs to be set.

Classes

Platform Development Studio - Developer’s Guide 5-31

SendDataPluginToNetworkAdapter
Interface.

Defines the interface between the plug-in and the network node for application-initiated requests.

SendDataPluginToNetworkAdapterImpl
Class.

public SendDataPluginToNetworkAdapterImpl()
Constructor.

Instantiates SendDataPluginSouth.

public void setNetworkProxy(NetworkProxy networkProxy)
Sets the NetworkProxy object. This is a remote object in the network node.

public void send(String address, String data)
Hands off the request to the network node using SendDataPluginSouth.

FilterImpl
Class.

Implements interface com.bea.wlcp.wlng.api.storage.filter.Filter.

This is the query filter used for the named store NotificationData.

Evaluates whether an entry in the named store NotificationData matches the filter. The filter is
defined in XML, see Store configuration.

public boolean matches(Object value)
Must be invoked after public void setParameters(Serializable ... parameters).

Returns true if the value provided in Object matches parameters[0], as set in public void
setParameters(Serializable ... parameters).

public void setParameters(Serializable ... parameters)
Sets the query parameters for the filter.

The parameters are ordered as provided to the StoreQuery and it is the responsibility of the
implementation to handle them in this order.

Communicat i on Se rv i ce Example

5-32 Platform Development Studio - Developer’s Guide

NotificationData
Class.

Implements Serializable

The data structure representing a notification. The notification is registered and de-registered by
applications using the application-facing Web Services interfaces and represents a subscription
for network-triggered events. The NotificationData is used for:

Matching a network-triggered event with a subscription started by an application. The
match is usually based on the destination address in the requests from the network.

Resolving information on which application instance created the subscription, and the
endpoint on which the application expects to be notified of the event.

NotificationData is stored using the storage service, normally using the invalidating cache storage
provider for cluster-wide access and high performance.

Each of the attributes to be stored must have a corresponding set method and get method.

The class must be serializable.

public NotificationData()
Constructor.

Empty.

StoreHelper
Class.

Singleton.

Helper class for storing NotificationData using the StorageService.

public static StoreHelper getInstance()
Returns the single instance of StoreHelper.

public void addNotificationData(URI address, NotificationData notificationData)
Stores the NotificationData using the Storage Service.

The named store is retrieved using private Store<String, NotificationData> getStore().

Classes

Platform Development Studio - Developer’s Guide 5-33

The NotificationData is put into the named store. The address is the key and the object is the
value.

The named store is released. This should always be done in a finally{...} block.

public void removeNotificationData(String correlator)
Removes NotificationData using the StorageService.

The named store is retrieved using private Store<String, NotificationData> getStore().

A Set of matching entries are returned using private Set<Map.Entry<String, NotificationData>>
getEntries(String correlator, Store<String, NotificationData> store).

If there are matching entries, all are removed using private void
removeEntries(Set<Map.Entry<String, NotificationData>> set, Store<String, NotificationData>
store).

The named store is released. This should always be done in a finally{...} block.

public NotificationData getNotificationData(String destinationAddress)
Gets NotificationData using the StorageService

The named store is retrieved using private Store<String, NotificationData> getStore().

The NotificationData that is keyed on destinationAddress is fetched from the store.

The named store is released. This should always be done in a finally{...} block.

private Store<String, NotificationData> getStore()
Gets a named stored from com.bea.wlcp.wlng.api.storage.StoreFactory.

private Set<Map.Entry<String, NotificationData>> getEntries(String correlator,
Store<String, NotificationData> store)
Gets a java.util.Set of entries of NotificationData from a named store using the StorageService.
The query being used is a named query, com.bea.wlcp.wlng.plugin.example.netex.Query,
defined in wlng-cachestore-config-extensions.xml.

private void removeEntries(Set<Map.Entry<String, NotificationData>> set,
Store<String, NotificationData> store)
Removes a java.util.Set of entries of NotificationData using the StorageService. The
NotificationData is removed from a named store.

Communicat i on Se rv i ce Example

5-34 Platform Development Studio - Developer’s Guide

ExamplePluginInstance
Class.

Implements com.bea.wlcp.wlng.api.plugin.ManagedPluginInstance.

Defines the life-cycle for a plug-in instance.

Also holds the data that is specific to the plug-in instance.

public ExamplePluginInstance(String id, ExamplePluginService parent)
Constructor.

The id is the plug-in instance ID, and the parent is the Plug-in service the of which the plug-in is
an instance.

public String getId()
The plug-in instance returns the ID that it was instantiated with.

public void activate()
Called when the plug-in instance is activated, so the plug-in:

Instantiates the traffic interfaces.

Registers the traffic interfaces with the Plug-in Manager.

Register callbacks between the interfaces.

Initiates the Store.

Instantiates and registers the MBean interface.

If the plug-in service is in state ACTIVE (RUNNING), public void handleResuming() is called.

public void handleResuming()
Connects to the network node.

If the connection fails, a timer is triggered to retry the connection setup.

public void deactivate()
Called when the plug-in instance is deactivated.

If the plug-in service is in state ACTIVE (RUNNING), public void handleSuspending() is called.

Classes

Platform Development Studio - Developer’s Guide 5-35

The call-back is unregistered from the network node.

The MBean is unregistered.

public void handleSuspending()
If existing, the timer associated with connection setup is cancelled.

The plug-in disconnects from the network node.

public List<PluginInterfaceHolder> getNorthInterfaces()/ public
List<PluginInterfaceHolder> getSouthInterfaces()
Returns a list of the interfaces.

public boolean isConnected()
Returns true if there is a connection to the network node, that is if the plug-in instance is ready to
accept traffic.

public int customMatch(RequestInfo requestInfo)
Checks which operation that is about to be invoked on the plug-in instance by introspection of
the RequestInfo associated with request.

If the operation is StopEventNotification and the correlator provided is cached using the Storage
service, the request must be sent to all instances of the plug-in, since the request depends on an
earlier request (startNotification). MATCH_REQUIRED is returned.

If the operation is any other than StopEventNotification, the request is unrelated to any previous
operation and any plug-in instance can be used. MATCH_OPTIONAL is returned.

private void rethrowDeploymentException(Exception e)
Re-throws a DeploymentException given another exception. The exception is wrapped in a
DeploymentException.

public ConfigurationStoreHandler getConfigurationStore()
Gets the ConfigurationStoreHandler.

ExamplePluginService
Class.

Implements com.bea.wlcp.wlng.api.plugin.ManagedPluginService.

Communicat i on Se rv i ce Example

5-36 Platform Development Studio - Developer’s Guide

Defines the life-cycle for a plug-in service.

Also holds the data that is specific for the plug-in instance.

public ExamplePluginService()
Constructor.

Empty.

public TimerManager getTimerManager()
Gets a handle to the TimerManager.

public boolean isRunning()
Checks if the plug-in service is in RUNNING state.

public String[] getSupportedSchemes()
Returns an array of supported address schemes.

public void init(String id, PluginPool pool)
Initializes the plug-in service with the ID and a reference to the plug-in pool.

The PluginPool holds all plug-in instances.

public void doStarted()
Instantiates a TimerManager to be used.

public void doStopped()/public void doActivated()/public void doDeactivated()
Empty implementation. Nothing to do here.

public void handleResuming()
Iterates over all plug-in instances using the PluginInstancePool and calls public void
handleResuming() on ExamplePluginInstance

public void handleSuspending(CompletionBarrier barrier)
The nature of the example network protocol is that is does not have connections to maintain.
Because it is possible to treat this event as in public void handleForceSuspending () the request
is passed on to that method.

Store conf igurat ion

Platform Development Studio - Developer’s Guide 5-37

public void handleForceSuspending ()
When the plug-in service is being forcefully suspended, the plug-in instances are disconnected
from the network node immediately, without waiting for any in-flight requests to complete.

This is done by iterating over the PluginInstancePool and calling public void handleSuspending()
on ExamplePluginInstance

public ServiceType getServiceType()
Returns the service type, com.acompany.example.servicetype.ExampleServiceType.type. The
type is automatically generated when the service EJB is generated.

public String getNetworkProtocol()
Returns the network protocol. A string used for informational purposes.

public ManagedPluginInstance createInstance(String pluginInstanceId)
Creates a new instance of the plug-in service. The ID for the new plug-in is supplied together with
the object that created the instance (this).

Store configuration
The store configuration file wlng-cachestore-config-extensions.xml defines:

Which data to store

The get and set methods to retrieve and store the data

The database table structure use to store the data

Queries to perform on the store

Listing 5-5 shows the store configuration file for the example Communication Service.

The configuration file defines:

The store type ID: since the store type ID is prefixed with wlng.db.wt
(wlng.db.wt.es_example), the store is a write-through cache.

The table to be used: es_example

The identifier for the store is a combination of the type of the key column
(java.lang.String) and the type of the value column
(com.acompany.plugin.example.netex.store.NotificationData). These are used when the

Communicat i on Se rv i ce Example

5-38 Platform Development Studio - Developer’s Guide

store is retrieved from the StoreFactory, see private Store<String, NotificationData>
getStore()

The key column: address

The value columns for the key:

– correlator

– endpoint

– appinstance

The get- and set methods for the value columns.

The query to use when doing lookups in the store.

The configuration file, together with any non-complex data types must be packaged into a Jar and
put in the directory $DOMAIN_HOME/config/store_schema so it can be accessed by the storage
service.

Listing 5-5 Store configuration for the example Communication Service

<?xml version="1.0" encoding="UTF-8"?>

<store-config xmlns="http://www.bea.com/ns/wlng/30"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.bea.com/ns/wlng/30
wlng-cachestore-config.xsd">

 <db_table name="es_example">

 <key_column name="address" data_type="VARCHAR(100)"/>

 <value_column name="correlator" data_type="VARCHAR(100)">

 <methods>

 <get_method name="getCorrelator"/>

 <set_method name="setCorrelator"/>

 </methods>

 </value_column>

Store conf igurat ion

Platform Development Studio - Developer’s Guide 5-39

 <value_column name="endpoint" data_type="VARCHAR(255)">

 <methods>

 <get_method name="getEndPoint"/>

 <set_method name="setEndPoint"/>

 </methods>

 </value_column>

 <value_column name="appinstance" data_type="VARCHAR(100)">

 <methods>

 <get_method name="getApplicationInstance"/>

 <set_method name="setApplicationInstance"/>

 </methods>

 </value_column>

 </db_table>

 <store type_id="wlng.db.wt.es_example" db_table_name="es_example">

 <identifier>

 <classes key-class="java.lang.String"
value-class="com.acompany.plugin.example.netex.store.NotificationData"/>

 </identifier>

 <index>

 <get_method name="address"/>

 </index>

 </store>

 <query name="com.bea.wlcp.wlng.plugin.example.netex.Query">

 <sql><![CDATA[SELECT * FROM es_example WHERE correlator LIKE ?]]></sql>

 </query>

Communicat i on Se rv i ce Example

5-40 Platform Development Studio - Developer’s Guide

</store-config>

SLA Example
Below is an example SLA for the example Communication Service. There are examples of
service provider group and application group SLAs in:

$PDS_HOME\pte\resource\sla

Listing 5-6 Example SLA for the example Communication Service

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<Sla xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
applicationGroupID="default_app_group"
xsi:noNamespaceSchemaLocation="app_sla_file.xsd">

 <serviceContract>

 <startDate>2008-04-17</startDate>

 <endDate>2099-04-17</endDate>

 <scs>com.acompany.example.plugin.SendDataPlugin</scs>

 <contract/>

 </serviceContract>

 <serviceContract>

 <startDate>2008-04-17</startDate>

 <endDate>2099-04-17</endDate>

 <scs>com.acompany.example.plugin.NotificationManagerPlugin</scs>

 <contract/>

 </serviceContract>

 <serviceContract>

 <startDate>2008-04-17</startDate>

 <endDate>2099-04-17</endDate>

SLA Example

Platform Development Studio - Developer’s Guide 5-41

 <scs>com.acompany.example.callback.NotificationCallback</scs>

 <contract/>

 </serviceContract>

</Sla>

Communicat i on Se rv i ce Example

5-42 Platform Development Studio - Developer’s Guide

Platform Development Studio - Developer’s Guide 6-1

C H A P T E R 6

Container Services

This chapter provides a high-level description of Network Gatekeeper container services. It also
provides an overview of other parts of the API available for the use of extension developers:

Container service APIs

Class: InstanceFactory

Class: ClusterHelper

Service: EventChannel Service

Plug-in

Management

EDR

SLA Enforcement

Service Correlation

Parameter Tunneling

Storage Services

– ConfigurationStore

– StorageService

Shared libraries

Conta ine r Serv ices

6-2 Platform Development Studio - Developer’s Guide

JavaDoc for the container API is available in the $PDS_Home/doc/javadoc directory of the
Platform Development studio installation and on the Network Gatekeeper site at
edocs.bea.com.

Container service APIs
The Network Gatekeeper container service APIs provide the basic infrastructure by which a
Communication Service and the container services of Network Gatekeeper can communicate.

All APIs for inter-working with the container services are found in com.bea.wlcp.wlng.api.*.

In order for a network protocol plug of a Communication Service to interact with Network
Gatekeeper it must be deployable in the context of Network Gatekeeper. Once it is deployable, it
can have access to certain utility functions.

.

Table 6-1 Summary of the container services APIs

Package Summary

com.bea.wlcp.wlng.api.account Represents an application instance and the related
accounts and groups and the states of the accounts.

com.bea.wlcp.wlng.api.corba Factory to retrieve an ORB.

com.bea.wlcp.wlng.api.edr.* Annotations, interfaces and classes used when annotating
EDRs. Descriptor classes for alarms, EDRs, and CDRs.

Helper classes for EDR listeners.

See Annotations, EDRs, Alarms, and CDRs.

com.bea.wlcp.wlng.api.event_channel Classes to publish and listen to events over cluster-wide
event channels.

See Service: EventChannel Service.

com.bea.wlcp.wlng.api.interceptor Interfaces and classes for service interceptors.

See Service Interceptors.

com.bea.wlcp.wlng.api.management.* MBean helper classes.

See Making Communication Services Manageable.

com.bea.wlcp.wlng.api.plugin.* Plug-in related classes and interfaces.

See Plug-in.

Class : I ns tanceFac to ry

Platform Development Studio - Developer’s Guide 6-3

Class: InstanceFactory
The Instance Factory is the mechanism used in Network Gatekeeper to retrieve instances of a
given interface, class, or abstract class. You retrieve an instance of the Instance Factory using the
public static method getInstance(). The factory itself has a single method:

getImplementation(Class theClass) - Retrieves a class that implements a given
interface or extends a given class

The implementation to be used is located and used based on the following rules:

1. First, check the jar file’s instancemap, a standard java.util.Properties file. Every jar
file can have its own instancemap. The instancemap provides a list that maps a given
interface, class, or abstract class to the preferred implementation of that functionality. See
Listing 6-1 for an example.

Note: The interface name used in the instancemap must be unique across all plug-ins for a
given Service Enabler. It is not possible to use the same interface in two
instancemap files belonging to two different plug-ins and still map them to two
different implementations.

2. If a mapping is provided and the target class has a public constructor or static singleton
method, instantiate it.

com.bea.wlcp.wlng.api.servicecorrelation Interface to implement if extending the existing service
correlation mechanism.

See Service Correlation.

com.bea.wlcp.wlng.api.statistics Annotation for statistics.

com.bea.wlcp.wlng.api.storage Interfaces and classes for the Storage Service.

See Storage Services.

com.bea.wlcp.wlng.api.timers Factory for using commonj.timers API.

com.bea.wlcp.wlng.api.util Classes and interfaces for commonly used functions, for
example ID generator, InstanceFactory, and clustering.

com.bea.wlcp.wlng.api.work Factory for using commonj.work API.

Table 6-1 Summary of the container services APIs

Package Summary

Conta ine r Serv ices

6-4 Platform Development Studio - Developer’s Guide

3. If there is no explicit mapping, or if there is no public constructor or static singleton method
for a mapped class, instantiate an object named according to the following pattern:
theClass.getClass().getName() +”Impl” if this exists and has a public constructor or
static singleton method.

Listing 6-1 Example instancemap file

com.bea.wlcp.wlng.MyInterface=com.bea.wlcp.wlng.MyImplementation

com.bea.wlcp.wlng.MyOtherInterface=com.bea.wlcp.wlng.MyOtherImplementation

For details see Javadoc for Package com.bea.wlcp.wlng.api.util Class InstanceFactory.

Class: ClusterHelper
com.bea.wlcp.wlng.api.util.cluster.ClusterHelper

Helper class for getting the JNDI Context for the network and access tier.

For details see Javadoc for Package com.bea.wlcp.wlng.api.util.cluster Interface
ClusterHelper.

Service: EventChannel Service
This service is used to broadcast events to other Network Gatekeeper server instances and to
register listeners for events originating in other Network Gatekeeper server instances.

Interface: EventChannel
Use this interface to broadcast events to other instances of Network Gatekeeper, and to register
listeners for events originating in them. It is used, for example, in propagating changes of cached
data. It is retrieved using the com.bea.wlcp.wlng.api.event_channel.EventChannelFactory.

An event has a name and a value, where the name is an identifier for the event and the value is
any object implementing java.io Serializable.

The following methods are available:

deactivateAllListeners() - Deactivates all registered listeners.

publishEvent - Publishes an event to all registered listeners.

Plug- in

Platform Development Studio - Developer’s Guide 6-5

publishEventToOneNode - Publishes an event to one Network Gatekeeper instance.

registerEventListener - Registers an EventListener.

unregisterEventListener - Unregisters an EventListener.

Interface: EventChannelListener
This interface is used to receive events published using EventChannel.

The following method is available:

processEvent(String eventType, Serializable event, String source) -
Receives an event.

Plug-in
The com.bea.wlcp.wlng.api.plugin.* packages contain a range of interfaces and classes
for use by the extension developer.

See Communication Service Description.

Management
Base classes and annotations for giving the Network Gatekeeper Management Console or other
JMX tools management access to Communication Services. See Chapter 9, “Making
Communication Services Manageable” for more information. Also see the JavaDoc for the
packages: com.bea.wlcp.wlng.api.management.*

EDR
See Chapter 8, “Annotations, EDRs, Alarms, and CDRs.”. Also see the JavaDoc for the packages
com.bea.wlcp.wlng.api.edr.*

SLA Enforcement
SLA enforcement operates on methods identified by the Java representation of the interface, and
the operation on the application-facing interface for the Communication Service.

The content of the tag <scs> defined in the <serviceContract> tag in the SLA is the plug-in type
for the plug-in.

Conta ine r Serv ices

6-6 Platform Development Studio - Developer’s Guide

An operation on the application-facing interface is represented in the rules according to the
following scheme: <service name> and <operation name>.

Parameters in the operation are represented in the rules according to the following scheme:

arg<n>.<parameter name>

where <n> in arg<n> depends on the WSDL that defines the application-facing interface,
normally this is arg0.

If the parameter in <parameter name > is

a composed parameter, the notation is according to the Java Bean notation for that
parameter.

an enumeration, the notation is according to the Java-representation of that parameter,
<parameter name >.<enumeration value>. The <enumeration value> is the String
representation.

I it is not possible to extend the SLA schema. The SLA schema represents a contract supported
by Network Gatekeeper base product and is defined by the XSD. It is version controlled and
corresponds to the product release that implements the contracted functionality. Extensions
cannot restrict or expand the same XSD/contract for specific solutions. Other contracts or
configuration mechanisms must be used for specific extensions. However, it is possible to
customize the way requests are enforced and filtered using one or both of the following methods:

If the enforcement or filtering concerns more than one specific plug-in, create an
interceptor.

If the enforcement or filtering concerns a specific plug-in, augment the plug-in itself to
perform this function.

Service Correlation
It is often the case that service providers would like to be able to bundle what are to Network
Gatekeeper separate services into a single unit for charging purposes. An end user could send an
SMS to the provider requesting the location of the coffee shop closest to her current location. The
application would receive the network-initiated SMS (one service), do a user location lookup on
the customer (one service), and then send the customer an MMS with a map showing the
requested information (one service). So three Network Gatekeeper services need to be grouped
into a single service charging unit. To do this, Network Gatekeeper provides the framework for
a Service Correlation service that uses a Service Correlation ID (SCID) to combine/correlate all
the services.

Serv ice Co r re lat i on

Platform Development Studio - Developer’s Guide 6-7

The Service Correlation ID is optional.

The Service Correlation ID is captured in the CDRs and EDRs generated from WLNG.

The Service Correlation ID is propagated as a String.

The Service Correlation ID is propagated to and from the application in the SOAP header.

The SCID itself is provided either by the application or by an external mechanism that the
Communication Service must provide (see Interface: ExternalInvocation). Network Gatekeeper
does not check whether or not it is unique. The SCID is stored in WLS Work Context, so that it
can be accessed by both the Access Tier and the Network Tier. The Service Correlation class
registers itself as a RequestContextListener. When application-initiated request traffic enters
the plug-in, the Service Correlation service takes the SCID from the Work Context and places it
in the RequestContext object, where it will be available to the EDR service. When
network-initiated request traffic is leaving the plug-in, the Service Correlation service takes the
SCID from the RequestContext object and places it in the Work Context, where it can be
retrieved by the SOAP Handler and passed along to the application.

Interface: ExternalInvocation
Because Service Correlator IDs may need to be stored across several invocations and a
RequestContext object exists only for the lifetime of a single request, a Communication Service
needs to create a way of storing and retrieving the SCIDs. This is done by implementing the
ExternalInvocation interface. This interface has two methods: one stores the Service
Correlation ID and one retrieves it. The implementor is free to modify the ID once it has been
stored, or to use the Invocation object to create IDs in the first place.

When the Service Correlation service takes the SCID (should there be one) out of the Work
Context of an application-initiated request, it automatically attempts to store it in an object of this
type before putting the SCID in the RequestContext.

When a network-initiated request is leaving the plug-in, the Service Correlation service
automatically attempts to retrieve an SCID from an object of this type, using the SCID (should
there be one) it finds in the RequestContext object before it sets the Work Context. In this way,
if the ExternalInvocation object has modified the SCID in any way, it is this modified version
that is put in the Work Context and thus sent on to the application. The ExternalInvocation
implementation class should have an empty public constructor or a static method that returns
itself.

Conta ine r Serv ices

6-8 Platform Development Studio - Developer’s Guide

Class: ExternalInvocatorFactory
This class is used by the Service Correlation service to locate and instantiate the correct
ExternalInvocation object. It does this by using an instancemap. The instancemap entry
should look like this:
com.bea.wlcp.wlng.api.servicecorrelation.ExternalInvocation=myPackageStruc
ture.myImplClass

where myImplClass is the ExternalInvocation implementation.

Class: ServiceCorrelation
This class manages the transport and storage of the Service Correlation ID across multiple service
invocations.

Implementing the ExternalInvocation Interface
There are four basic steps in creating a custom service correlation:

1. Create a jar file that includes your code. For example:

Listing 6-2 Sample Custom Service Correlation

package myPackageStructure;

import com.bea.wlcp.wlng.api.servicecorrelation.ExternalInvocation;

import

com.bea.wlcp.wlng.api.servicecorrelation.ExternalInvocationException;

public class MyImplClass implements ExternalInvocation {

public MyImplClass() {

}

public String pushServiceCorrelationID(String scID, String serviceName,

String methodName, String spID, String appID, String appInstGrp) throws

ExternalInvocationException {

// your code here

return scID;

Paramete r Tunne l ing

Platform Development Studio - Developer’s Guide 6-9

}

public String getServiceCorrelationID(String scID, String serviceName,

String methodName, String spID, String appID, String appInstGrp) throws

ExternalInvocationException {

// your code here

return scID;

}

}

2. Create the instancemap. See Class: ExternalInvocatorFactory.

3. Put the instancemap file in the JAR. This makes your custom service correlation available to
the service interceptor InvokeServiceCorrelation.

4. Put the JAR file in $DOMAIN_Home/lib.

Parameter Tunneling
Parameter tunneling is a feature that allows an application to send additional parameters to
Network Gatekeeper and lets a plug-in use these parameters. This feature makes it possible for
an application to tunnel parameters that are not defined in the interface that the application is
using and can be seen as an extension to the application-facing interface.

The application sends the tunneled parameters in the SOAP header of a Web Services request.

The tunneled parameter can be retrieved in a plug-in by the key. The parameter is fetched from
the RequestContext, using the method getXParam(String key). If a value for the key can not
be found, null is returned.

Listing 6-3 Get the value of the tunneled parameter ‘aParameterName’.

RequestContext.getCurrent().getXParam("aParameterName");

Conta ine r Serv ices

6-10 Platform Development Studio - Developer’s Guide

If the same parameter is defined in the <contextAttribute> SLA tag, it should override the
parameter tunneled from the application. This behavior, however, is defined per plug-in.

Storage Services
The storage services provided in Network Gatekeeper are of two types, described below:

“ConfigurationStore” on page 6-10

“StorageService” on page 6-15

ConfigurationStore
The Network Gatekeeper Core exposes a ConfigurationStore Java API that Communication
Services can use to store simple configuration parameters instead of using JDBC and caching
algorithms in each module.

Note: This utility is intended for configuration parameters only, not traffic data

All data stored in a ConfigurationStore are stored in a database table and cached in memory.

Below are the characteristics of a ConfigurationStore:

It is a named store.

Parameters stored in it must be initialized before they can be used.

Stores can be either domain wide (shared) or limited to a single Network Gatekeeper server
(local). The domain wide store type replicates all data changes to all servers in the cluster,
while the local store type keeps a different view of the parameters on different servers and
data changes affect only the view for that particular server.

Parameters stored in a ConfigurationStore are persisted to database.

Data in all ConfigurationStores are also cached in memory.

Only one instance of each named ConfigurationStore is cached in memory per server.

Updates to a cluster wide named ConfigurationStore is reflected in all cluster nodes.

The named ConfigurationStore only supports parameters of type Boolean, Integer,
Long, String, and Serializable.

Sto rage Serv ices

Platform Development Studio - Developer’s Guide 6-11

Interfaces
The Java interface APIs are found in the package com.bea.wlcp.wlng.api.storage.

The entry point to configuration stores is through the
com.bea.wlcp.wlng.api.storage.configuration.ConfigurationStoreFactory using the following
method:

public abstract ConfigurationStore getStore(String moduleName, String name,

int storeType) throws ConfigurationException;

The ConfigurationStore service exposes an interface with the following features:

Methods to initialize a the store with the following data types:

– Boolean,

– Integer,

– Long,

– String

– Serializable

A ConfigurationStore is initialized using a name in key/value pair. You get and set
configuration parameters using the key.

Methods to set and get the following data types:

– Boolean,

– Integer,

– Long,

– String

– Serializable

Methods to add and remove listeners for notifications on updates. When a parameter has
been updated in one instance of the ConfigurationStore, a notification is broadcast to
all other instances of the ConfigurationStore.

Listing 6-4 is an example of using the Configuration Store.

Conta ine r Serv ices

6-12 Platform Development Studio - Developer’s Guide

Listing 6-4 Example of a ConfigurationStoreHelper

package com.acompany.plugin.example.netex.management;

import com.bea.wlcp.wlng.api.storage.configuration.*;

/**

 * Class used for handling the configuration store.

 *

 * @author Copyright (c) 2007 by BEA Systems, Inc. All Rights Reserved.

 */

public class ConfigurationStoreHandler {

/**

 * Constants used for the values stored in the store.

 */

 public static final String KEY_NETWORK_HOST = "KEY_NETWORK_HOST";

 public static final String KEY_NETWORK_PORT = "KEY_NETWORK_PORT";

/**

 * Constant to access either the local store. Note that these are

 * just names for the store.

 */

 private static final String LOCAL_STORE = "local";

/**

 * Local configuration store instance.

 */

 private ConfigurationStore localConfigStore;

/**

 * Constructor.

 *

 * @param pluginId The plugin id

Sto rage Serv ices

Platform Development Studio - Developer’s Guide 6-13

 * @throws ConfigurationException An exception thrown if the initialization
failed

 */

 public ConfigurationStoreHandler(String pluginId)

 throws ConfigurationException {

 ConfigurationStoreFactory factory = ConfigurationStoreFactory.getInstance();

 localConfigStore = factory.getStore(pluginId, LOCAL_STORE,

 ConfigurationStore.STORE_TYPE_LOCAL);

 // To obtain a shared configuration store, use
ConfigurationStore.STORE_TYPE_SHARED

 localConfigStore.initialize(KEY_NETWORK_HOST, "localhost");

 localConfigStore.initialize(KEY_NETWORK_PORT, 5001);

 }

 /**

 * Sets an integer value in the local store.

 *

 * @param key The key associated with the value.

 * @param value The value to store.

 * @throws ConfigurationException An exception thrown if the operation failed

 */

 public void setLocalInteger(String key, Integer value)

 throws ConfigurationException {

 localConfigStore.setInteger(key, value);

 }

/**

Conta ine r Serv ices

6-14 Platform Development Studio - Developer’s Guide

 * Gets an integer value from the local store.

 *

 * @param key The key associated with the value.

 * @return The value associated with the key.

 * @throws InvalidTypeException thrown if type is invalid.

 * @throws NotInitializedException thrown if key value has not been

 * initialized.

 */

 public Integer getLocalInteger(String key)

 throws InvalidTypeException, NotInitializedException {

 return localConfigStore.getInteger(key);

 }

/**

 * Sets a string value in the local store.

 *

 * @param key The key associated with the value.

 * @param value The value to store.

 * @throws ConfigurationException An exception thrown if the operation failed

 */

 public void setLocalString(String key, String value)

 throws ConfigurationException {

 localConfigStore.setString(key, value);

 }

/**

 * Gets a string value from the local store.

 *

 * @param key The key associated with the value.

Sto rage Serv ices

Platform Development Studio - Developer’s Guide 6-15

 * @return The value associated with the key.

 * @throws InvalidTypeException thrown if type is invalid.

 * @throws NotInitializedException thrown if key value has not been

 * initialized.

 */

 public String getLocalString(String key)

 throws InvalidTypeException, NotInitializedException {

 return localConfigStore.getString(key);

 }

}

StorageService
The Storage Service is used for storing data that is not configuration-related, but related to the
traffic flow through a Communication Service, in a cluster-wide store.

It provides mechanisms for:

Store initialization

A store is created using the StoreFactory singleton class, by specifying either a
key/value class pair where the value class should be a class that is unique to the Store
(recommended), or a Store name.

Basic Map usage

Since the Store interface extends the java.util.Map interface, it can be used as any other
Map, and it is extended to be a cluster-wide view of the store.

Named queries

In addition to the standard java.util.Map interface, Stores have support for a
StoreQuery interface. The behaviors of these named queries are configured as part of the
Storage Service configuration files. There is an option to define a cache filter and/or SQL
query. If there is an index specified for the Store, this index can be used by implementing

Conta ine r Serv ices

6-16 Platform Development Studio - Developer’s Guide

the IndexFilter interface for the cache filter. The index is automatically used for SQL
queries that can make use of these indexes.

Store listener

The Store API has support for registering StoreListeners. These listeners get notified if
the Storage Service decides to automatically remove Store entries (based on configuration
parameters). It will not be notified if the extension itself removes entries from the Store.

Cluster locking

Cluster wide locking can be done using the Store interface. This should be used if the same
entry in a Store may be modified on multiple servers at the same time, to avoid getting
errors due to concurrent modification when a transaction commits.

A Communication Service extension uses the StorageService through an API. The API
functionality is implemented by a storage provider. Network Gatekeeper uses a write-through
invalidating storage provider. Invalidating stores are backed by a database table. Other storage
providers, supporting additional features, can be integrated but are not supported out-of-the box.

Extensions can use the com.bea.wlcp.wlng.api.storage.Store interface. This interface
extends a java.util.Map interface and adds the following methods:

addListener: Adds a listener for the store.

getQuery: Gets a named query.

lock: Takes a cluster-wide lock.

release: Releases the current store instance.

removeListener: Removes a registered listener.

unlock: Unlocks a previously obtained cluster-wide lock.

The storage service use configuration files that defines the configuration for stores and the
relationship between the cluster-wide store and the database table that backs the store. In each
configuration file it is possible to define named queries towards the store. There is one
configuration file per plug-in. Each configuration store configuration file shall, together its XSD
and any complex data types stored, be created and packaged in a JAR file, in the directory
$DOMAIN_HOME/config/store_schema. The configuration file must be named
wlng-cachestore-config-extensions.xml and it must be present in the root of the JAR.

Sto rage Serv ices

Platform Development Studio - Developer’s Guide 6-17

For details about the store configuration file, see the corresponding xsd:
com.bea.wlcp.wlng.storage_4.0.0.0.jar/wlng-cachestore-config.xsd in
$BEA_HOME/wlng400/modules.

A Store is retrieved from com.bea.wlcp.wlng.api.storage.StoreFactory, either by the
name of the store or by the class names of the key/value names. How to retrieve the Store depends
on how the store is configured.

The store interface needs to be released when no longer needed. The programming model is to
retrieve the Store from the StoreFactory when the Store is used, and to release it once it has
finished, using try { .. } finally { store.release(); }

Listing 6-5 Example: retrieve a store identified by key/value classes, operate on it, and release it.

Store<String, NotificationData> store =
StoreFactory.getInstance().getStore(String.class, NotificationData.class);

try {

notificationData = store.put(address.toString(), notificationData);

} finally {

store.release();

}

If it is a named store, it can also be retrieved by name as illustrated below.

Listing 6-6 Retrieving a store by name

Store<Serializable,Serializable> store =
StoreFactory.getInstance().getStore("A", this.getClass().getClassLoader());

Store configuration file
The configuration file wlng-cachestore-config-extensions.xml defines attributes of the
store and relations between the store, the cache for the store, and the mapping to a database table.
This part is used by extension developers.

Conta ine r Serv ices

6-18 Platform Development Studio - Developer’s Guide

In addition, the configuration file can contain a section with mapping information between a
store, the provider it uses, and the factory for the storage provider. This section should not be used
by extension developers.

The XSD for the configuration file is located in
com.bea.wlcp.wlng.storage_4.0.0.0.jar/wlng-cachestore-config.xsd in
$BEA_HOME/wlng400/modules.

There is one configuration file per plug-in. The file must be embedded in a JAR that contains the
file itself and any complex data types used. The JAR must be stored in
$DOMAIN_HOME/config/store_schema.

Below is an example of a store configuration file for extensions.

Listing 6-7 Example of a store configuration file for extensions

<store-config>

 <db_table name="example_store_notification">

 <key_column name="address" data_type="VARCHAR(255)"/>

 <!-- bucket_column using default BLOB type -->

 <bucket_column name="notification_data_value"/>

 <value_column name="correlator" data_type="VARCHAR(255)">

 <methods>

 <get_method name="getCorrelator"/>

 <set_method name="setCorrelator"/>

 </methods>

 </value_column>

 </db_table>

 <store type_id="wlng.db.wt.example_store_notification"

Sto rage Serv ices

Platform Development Studio - Developer’s Guide 6-19

 db_table_name="example_store_notification">

 <identifier>

 <classes key-class="java.lang.String"

value-class="com.acompany.plugin.example.netex.notification.NotificationData"/
>

 </identifier>

 <index>

 <get_method name="getCorrelator"/>

 </index>

 </store>

 <query name="com.bea.wlcp.wlng.plugin.example.netex.Query">

 <sql>

 <![CDATA[

 SELECT * FROM example_store_notification WHERE correlator = ?

]]>

 </sql>

<filter-class>com.acompany.plugin.example.netex.store.FilterImpl</filter-class
>

 </query>

</store-config>

A store is defined between the elements <store-config> and </store-config>

Each Store has three sections:

store: Defines the store.

db_table: Defines the database table used to persist data in the store.

Conta ine r Serv ices

6-20 Platform Development Studio - Developer’s Guide

query: Defines queries on the store. This is optional, only required if non-key queries are
used with the store.

<store>
The store section defines the store itself. The attribute type_id defines the type of the store and
a store type identifier. The ID must be mapped to a provider store mapping defined in
wlng-cachestore-config.xml.

The name should always have the prefix wlng.db.wt. when using the storage provider in
Network Gatekeeper. The prefix which indicates that it is a write-through cache, that is, data put
in the store is always written to database without any delay.

The attribute db_table_name identifies the database definition to use.

store contains the following elements:

identifier: Holds one classes element. This element defines the classes for the key and the
value that defines the store. The class for the key is defined in the attribute key-class and
the class for the value part is defined in the attribute value-class. If a named store is used,
the name is given in the element name.

index: Defines an index on the cache and one or more get methods. The methods maps to
an index on the corresponding columns in the table and potentially a cache index if
supported by the provider in use.

<db_table>
The db_table section defines the database table used to persist data in store. The attribute name
defines the table name to use. This name must be the same as the db_table_name specified in
the store section. It contains the following elements:

key_column: Has the attributes name and data_type. The attribute name specifies the
column name for the key and the attribute data_type specifies the SQL data type for the
key.

multi_key_column: Has the attributes name and data_type. The attribute name specifies
the column name for one part of a multi key column and the attribute data_type specifies
the SQL data type for the part of the key. The difference between multi_key_column and
key_column is that multi_key_column supports 2 or more columns to be parts of the key,
so multi_key_column can occur two or more times in the configuration file.

bucket_column: Has the attribute name. This attribute specifies the name of the column
for the value part of the store. By default this is a BLOB. There is an optional attribute

Sto rage Serv ices

Platform Development Studio - Developer’s Guide 6-21

data_type, that can be used if other data types are used. This must be a Java to SQL
supported data type mapping and corresponds to the data type in the value part of the store.

value_column: Is used if attributes in the value part of the store should be stored in a
separate column. The attribute name defines the name of the column and the data_type
specifies the SQL data type for the column. value_column has the sub-element methods,
which encloses the elements get_method and set_method. The sub-element methods
defines the names of the set and get methods for the data stored in value_column and the
set and get methods for the attribute of the object in the store.

Listing 6-8 Example of single key column configuration

...

<db_table name="single_key_store">

<key_column name="sample_key_1" data_type="VARCHAR(30)">

<methods>

<get_method name="getSampleKey1"/>

<set_method name="setSampleKey1"/>

</methods>

</key_column>

<value_column name="sample_value" data_type="VARCHAR(30)">

<methods>

<get_method name="getSampleValue"/>

<set_method name="setSampleValue"/>

</methods>

</value_column>

</db_table>

...

Conta ine r Serv ices

6-22 Platform Development Studio - Developer’s Guide

Listing 6-9 Example of multi key column configuration

...

<db_table name="combined_key_store">

<multi_key_column name="sample_key_1" data_type="VARCHAR(30)">

<methods>

<get_method name="getSampleKey1"/>

<set_method name="setSampleKey1"/>

</methods>

</multi_key_column>

<multi_key_column name="sample_key_2" data_type="INT">

<methods>

<get_method name="getSampleKey2"/>

<set_method name="setSampleKey2"/>

</methods>

</multi_key_column>

<value_column name="sample_value" data_type="VARCHAR(30)">

<methods>

<get_method name="getSampleValue"/>

<set_method name="setSampleValue"/>

</methods>

</value_column>

</db_table>

...

Sto rage Serv ices

Platform Development Studio - Developer’s Guide 6-23

<query>
In addition to the standard java.util.Map interface, Stores have support for a StoreQuery
interface. The behavior of these named queries are configured as part of the Storage Service
configuration files.

The query section specifies a named query and a filter associated with the named query. The
attribute name defines the name of the query. When using the storage service, the query is fetched
using this name. The SQL query towards the database is defined in the element sql. The actual
query is defined in the element <![CDATA[.....]]>.

The filter is a class that implements com.bea.wlcp.wlng.api.storage.filter.Filter, and
the name of the class is defined in the element filter-class. The filter implements the method
setParameters, and a matches(...) method.

The setParameters method maps the parameters to the filter class or a PreparedStatement
setObject call ordered as the parameter array given. The filter class must implement the
matches method in such a way that it will yield the same result as the SQL query specified.

Listing 6-10 Example of a named query

<query name="com.bea.wlcp.wlng.plugin.example.netex.Query">

 <sql>

 <![CDATA[

 SELECT * FROM example_store_notification WHERE correlator = ?

]]>

 </sql>

<filter-class>com.acompany.plugin.example.netex.store.FilterImpl</filter-class
>

 </query>

Listing 6-11 Example of using the named query using a filter

StoreQuery<String, NotificationData> storeQuery =
store.getQuery("com.bea.wlcp.wlng.plugin.example.netex.Query");

Conta ine r Serv ices

6-24 Platform Development Studio - Developer’s Guide

storeQuery.setParameters(correlator);

set = storeQuery.entrySet();

Listing 6-12 Example of a filter implementation

public class FilterImpl implements Filter {

 /**

 * The query parameters.

 */

 private Serializable[] parameters;

 /**

 * Default constructor.

 */

 public FilterImpl() {

 }

 /**

 * Evaluate if a store entry matches the filter.

 *

 * @param value The store entry value to evaluate.

 */

 public boolean matches(Object value) {

 if (parameters == null || value == null || parameters.length == 0) {

Sto rage Serv ices

Platform Development Studio - Developer’s Guide 6-25

 return false;

 }

 if (value instanceof NotificationData) {

 String compareValue = ((NotificationData) value).getCorrelator();

 if (compareValue != null) {

 return compareValue.equals(parameters[0]);

 }

 return compareValue == parameters[0];

 }

 return false;

 }

 /**

 * Set query parameters. The parameters will be ordered as provided to the

 * StoreQuery and it it the responsibility of the implementation to handle

 * them in this order.

 *

 * @param parameters The query parameters to use.

 */

 public void setParameters(Serializable ... parameters)

 throws StorageException {

 this.parameters = parameters;

Conta ine r Serv ices

6-26 Platform Development Studio - Developer’s Guide

 }

}

<provider-mapping>
The provider-mapping section contains definitions of which storage provider a given type-id is
mapped to. This section shall not be used unless a custom storage provider is used.

In the type_id attribute for store_mapping type, the same ID shall be used as when the store was
defined. A best match (longest matching entry) is performed. A wildcard (*) can be used at the
end of type_id to match the prefix.

The <provider-name> entry references the type of store being used, see “<providers>” on
page 6-27.

The type_id for the storage provider mapping in use is wlng.db.wt.*. which references the
write-through provider.

There is another set of type_id attributes defined for store_mapping:

wlng.db.log.*, which is used for internal purposes only.

wlng.db.wb.*, which shall be used if the storage provider supports write-behind operations.
The invalidating storage provider does not support write-behind operations, write-through
will be used.

wlng.db.wt.*, which shall be used if the storage provider supports write-through
operations.

wlng.cache.*, which shall be used if the storage provider supports cache-only operations.
The invalidating storage provider does not support cache-only operations, write-through
will be used.

wlng.local.*, which is used for internal purposes only.

These store mapping types are present for internal and future use. All store mapping types (except
for the internal wlng.db.log.*) are by default mapped to the keyword invalidating which
represents the invalidating storage provider. This should not be changed unless a custom storage
provider is used.

Shared l ib ra r i es

Platform Development Studio - Developer’s Guide 6-27

<providers>
The providers section contains mappings between the provider-name defined in the
provider-mapping section and the factory class for the storage provider. This section should not
be changed used unless a custom storage provider is used.

Shared libraries
It is possible for multiple plug-ins to share common libraries, for example a third party library or
custom code that can be shared.

If there are such parts, these should preferably not be packaged into the plug-in jar but instead be
copied into the APP-INF/lib directory of the Communication Service network tier EAR. All
classes in this directory are available for all of the plug-ins in the EAR.

Conta ine r Serv ices

6-28 Platform Development Studio - Developer’s Guide

Platform Development Studio - Developer’s Guide 7-1

C H A P T E R 7

Communication Service Description

This chapter provides a description of an Communication Service and its components:

High-level components

Communication Service Common

Plug-in

Management

SLA Enforcement

Shared libraries

High-level components
From a component point of view, a Communication Service consists of a set of components:

A Service Web Service

A Service EJB

A Callback EJB

A Call-back client EJB

A set of network protocol plug-ins

Communicat i on Se rv i ce Descr ip t i on

7-2 Platform Development Studio - Developer’s Guide

One set of the above handles application-initiated requests, while another handles
network-triggered requests, as illustrated in Figure 7-1. Some calls are remote since the modules
may be deployed in separate clusters.

Figure 7-1 High-level component of a Communication Service

Communication Service Common
The Communication Service common parts are auto-generated based on one or more WSDLs.
For application-initiated requests, these are referred to as service WSDLs, while for network
triggered requests, they are referred to as callback WSDL files.

Based on the service WSDLs, the following common parts of a Communication Service is
generated using the Eclipse wizard:

Service Web Service

Service EJB

Call-back EJB

Call-back client EJB

The Service Web Service implements the interfaces defined in the set of WSDL files that defines
the Web Service for application-initiated requests.

Communicat i on Serv ice Common

Platform Development Studio - Developer’s Guide 7-3

The Web Service is packaged into one single WAR file. An a example of this is Parlay X 2.1,
which defines the following interfaces for application-initiated requests: SendSms, ReceiveSms,
and SmsNotificationManager. The Service Web Service implements all the above interfaces and
is packaged into one single WAR file for the Communication Service.

The Web Service makes a Java RMI call to the Service EJB which, using the Plug-in Manager,
calls the appropriated plug-in instance. The operations defined between the Service Web Service
and the Service EJB are Java realizations of the interfaces defined in the service WSDLs. The
Service EJB is packaged into one single JAR file for the Communication Service.

The Callback EJB is a Web Services client that uses a Web Service implemented by an
application. It uses the interfaces defined in the set of WSDL files that defines the Web Service
for network-triggered requests, the callback WSDL files. The Web Service client is packaged into
one single JAR file for the Communication Service.

The Callback EJB client is a client library that abstracts the remote call between the plug-in POJO
and the Callback EJB and provides an invalidating cache of references to the remote object in
order to support in-production redeployment of the EAR file for the access tier. The Callback EJB
client is packaged into one single JAR file for the Communication Service.

Communicat i on Se rv i ce Descr ip t i on

7-4 Platform Development Studio - Developer’s Guide

Module Description North
interface

South
interface

Service Web
Service

Implements the interfaces defined in the set of
WSDL files that defines the Web Service for
application-initiated requests. Passes on the
requests to the Service EJB. Any Service EJB of
the same type can be chosen, regardless of
which server it is deployed in. The requests are
load-balanced across the different server
instances.
Packaged into one single WAR file.
Deployed as a part of the access tier EAR for the
Communication Service.

The Service Web Service is transparent to an
extension developer.

SOAP/HTTP
representation
of the Service
WSDLs

Java RMI
representation
of the Service
WSDLs

Service EJB Accepts requests from the Service Web Service
implementation and propagates them to the
appropriate plug-in using the Plug-in Manager.
The Service EJB is responsible for:

Constructing the RequestInfo object.

Converting any exception caught to an
exception that is defined in the Service
WSDLs.

This functionality must be implemented in the
PluginFactory class, which extends Class:
RequestInfo.

Packaged in one single JAR file.
Deployed as a part of the network tier EAR.

Java RMI
representation
of the Service
WSDLs

Local Java
representation
of the Service
WSDLs.

Plug- in

Platform Development Studio - Developer’s Guide 7-5

Plug-in
The com.bea.wlcp.wlng.api.plugin.* packages contain a range of interfaces and classes
for use by the extension developer.

Callback EJB A Web Services client that uses a Web Service
implemented by an application.

Accepts requests from the Service callback
client EJB and propagates them to an
application.

Packaged into one single JAR file for the
Communication Service.

Deployed as a part of the access tier EAR.

SOAP/HTTP
representation
of the Service
callback
WSDLs.

Java RMI
representation
of the
Callback
WSDLs

Callback EJB
client

A client library that abstracts the remote call
between the plug-in and the Callback EJB.
Accepts requests from a plug-in and propagates
them to the Callback EJB.
It provides an invalidating cache of references
to the remote object in order to support
in-production redeployment of the EAR file for
the access tier.
Any Callback EJB of the same type can be
chosen, regardless of which server it is
deployed in. The requests are load-balanced
across the different server instances.
See Class: CallbackFactory and Interface:
Callback.

Packaged into one single JAR file for the
Communication Service.

Deployed as a part of the network tier EAR.

Java RMI
representation
of the Service
callback
WSDLs.

Local Java
representation
of the
Callback
WSDLs.

Module Description North
interface

South
interface

Communicat i on Se rv i ce Descr ip t i on

7-6 Platform Development Studio - Developer’s Guide

First of these is a set of interfaces that define the borders of a plug-in and related helper classes.
These borders are used to apply aspects. See JavaDoc for com.bea.wlcp.wlng.plugin

Plug-in Service and Plug-in Instance
A plug-in service is a JEE application that implements
com.bea.wlcp.wlng.api.plugin.ManagedPluginService. It has:

A life-cycle, defined in com.bea.wlcp.wlng.api.plugin.PluginServiceLifecycle.

A registry, defined in com.bea.wlcp.wlng.api.plugin.PluginService.

a factory to create plug-in instances, defined in
com.bea.wlcp.wlng.api.plugin.PluginInstanceFactory

The plug-in instance is a class that implements
com.bea.wlcp.wlng.api.plugin.ManagedPluginInstance. It has:

A life-cycle defined in com.bea.wlcp.wlng.api.plugin.PluginInstanceLifecycle.

A set of PluginNorth and PluginSouth interfaces that it implements. These interfaces are
defined by the application-facing interfaces and the network-facing interfaces.

A registry, defined in com.bea.wlcp.wlng.api.plugin.PluginInstance. This registry holds the
list of the registered interfaces.

Logic that examines the data in a request and determines if the instance can handle it or
not. The interface for this logic is defined in com.bea.wlcp.wlng.api.plugin.PluginInstance.

Logic that maintains the state of a connection. The interface for this logic is defined in
com.bea.wlcp.wlng.api.plugin.PluginInstance.

Plug-in routing and registration with the Plug-in Manager is done by the plug-in instance. It is the
plug-in instance that is part of the traffic flow.

Life-cycle management is performed on the plug-in service.

States
A plug-in service is in one of a distinct set of states:

NEW

STARTED

Plug- in

Platform Development Studio - Developer’s Guide 7-7

ACTIVE (ADMIN)

ACTIVE (RUNNING)

The plug-in instance is in one of the following states:

NEW

ACTIVE

Figure 7-2 States for a plug-in service (left) and a plug-in instance (right)

The state transitions in Table 7-1 are triggered by either the start-up sequence of the server the
plug-in is deployed in or an explicit deployment of the plug-in using either the
weblogic.Deployer, see http://edocs.bea.com/wls/docs100/deployment/wldeployer.html, or the
administration console, see:

http://edocs.bea.com/wls/docs100/ConsoleHelp/taskhelp/deployment/DeployApplicationsAn
dModules.html

http://edocs.bea.com/wls/docs100/ConsoleHelp/taskhelp/deployment/UpdateApplication.htm
l

http://edocs.bea.com/wls/docs100/ConsoleHelp/taskhelp/deployment/RemoveAnApplication
OrModuleFromADomain.html.

Note: All deployments are one EAR level, which means that individual plug-ins are not target,
but all plug-ins within the EAR are affected.

http://edocs.bea.com/wls/docs100/deployment/wldeployer.html
http://edocs.bea.com/wls/docs100/ConsoleHelp/taskhelp/deployment/DeployApplicationsAndModules.html
http://edocs.bea.com/wls/docs100/ConsoleHelp/taskhelp/deployment/DeployApplicationsAndModules.html
http://edocs.bea.com/wls/docs100/ConsoleHelp/taskhelp/deployment/UpdateApplication.html
http://edocs.bea.com/wls/docs100/ConsoleHelp/taskhelp/deployment/RemoveAnApplicationOrModuleFromADomain.html
http://edocs.bea.com/wls/docs100/ConsoleHelp/taskhelp/deployment/RemoveAnApplicationOrModuleFromADomain.html

Communicat i on Se rv i ce Descr ip t i on

7-8 Platform Development Studio - Developer’s Guide

Table 7-1 Plug-in service state transitions

Transition Triggered by Descriptions

init Deployment or
startup.

The plug-in service has been created and initialized.

The only method that will be called in this state is doStarted()

doStarted Deployment or
startup

The plug-in service should perform as much initialization as
possible without be externally visible. Examples include: retrieve
configuration data, create internal objects, and initialize stores.

doActivated Deployment or
startup

The plug-in service should continue activation and become visible,
for example register MBeans, without accepting traffic.

handleResuming Deployment or
startup.

The plug-in service should order all plug-in instances to establish
connections with the network node, if applicable, and accept traffic.

handleSuspending Graceful
undeployment/re
deployment/stop

That is, invoking
weblogic.Deplo
yer with
-graceful

The plug-in service should order the plug-in instance to reject new
traffic, but to continue processing of in-flight work.

A com.bea.wlcp.wlng.api.plugin.CompletionBarrier is provided in
the request.

When all in-flight work has been processed, the plug-in should get
the com.bea.wlcp.wlng.api.plugin.CompletionBarrierCallback
from the CompletionBarrier and call completed() on the
CompletionBarrierCallback.

handleForceSuspendi
ng

Forced
undeployment/re
deployment/stop

That is invoking
weblogic.Deplo
yer with
-retiretimeout

The plug-in service should order the plug-in instance to reject new
traffic and to discard in-flight work.

doDeactivated Undeployment. The plug-in service should deactivate itself, unregister any MBeans
and become invisible.

doStopped Undeployment. The plug-in service should perform cleanup and be available for
garbage collection.

Plug- in

Platform Development Studio - Developer’s Guide 7-9

The state transitions in Table 7-2 are triggered by either the start-up sequence of the server the
plug-in instance is created in or an explicit creation of a new instance using the Plug-in manager:
see Managing and Configuring the Plug-in Manager in the System Administrator’s Guide.

The Plug-in Manager maintains a pool of plug-in instances. This pool is provided to the plug-in
when init() is called. This pool can be used to iterate over in order to propagate events related to
state transitions in the plug-in service to the plug-in instances.

The Plug-in Manager has a registry of all PluginNorth and PluginSouth interfaces, and it is the
responsibility of the plug-in instance to register these interfaces with the Plug-in Manager. The
Plug-in Manager use these when routing it to an appropriate plug-in instance. The Plug-in

Table 7-2 Plug-in instance state transitions

Transition Triggered by Descriptions

activate Creation of the
plug-in instance
using the
Plug-in
Manager
MBean.

The plug-in instance has been created. Depending on the state of the
plug-in service, the plug-in instance should take the appropriate action. If
the plug-in service is in state:
• ACTIVE (ADMIN), the plug-in instance shall:

– instantiate and register the PluginNorth and call-back
interfaces with the Plug-in Manager.

– instantiate and register the PluginSouth interfaces with the
Plug-in Manager.

– instantiate any ConfigurationStore.
– register the MBean for the instance.

• ACTIVE (RUNNING), the plug-in shall:
– connect to the network node, if a connection-oriented

protocol is used.
– register call-backs with the network node, if any.

deactivate Destruction of
the plug-in
instance using
the Plug-in
Manager
MBean.

The plug-in instance shall:
• de-register any call-backs with the network node.
• disconnect from the network node, if connected.
• de-register the MBean for the instance.
• cancel any timers.

http://e-docs.bea.com/wlcp/wlng40/admin/pluginmanager.html

Communicat i on Se rv i ce Descr ip t i on

7-10 Platform Development Studio - Developer’s Guide

Manager queries the plug-in instance for information in order to make a routing decision. A
plug-in instance maintains:

A list of PluginNort interfaces

A list of PluginSouth interfaces

Whether the plug-in instance has a connection to the network node.

Custom pattern matching, where the plug-in examines the request and marks the plug-in
instance as either a

– mandatory

– optional

– required

target for the request.

The plug-in service maintains a:

Service type, used by all plug-in instances to generate EDRs, CDRs, and Statistics.

List of supported address schemes, used by the Plug-in Manager when taking a routing
decision.

PluginPool
A collection of PluginInstances. The pool is populated when creating a plug-in instance using the
PluginInstanceFactory.

Using the pool, the plug-in service can list plug-in instances and get a plug-in instance by
its plug-in instance ID.

Interface: Plugin
Superinterface for Interface: PluginNorth, Interface: PluginNorthCallBack, and Interface:
PluginSouth.

It must be implemented by all classes that handles application-triggered requests from the service
EJB to the plug-in. There must be one class per interface.

PluginNorth defines the entry-point for application-initiated requests and is one of the borders at
which aspects are woven.

Plug- in

Platform Development Studio - Developer’s Guide 7-11

It must be implemented by any plug-in that handles network-triggered requests, either new
requests or notifications. PluginNorthCallback defines the limit between the plug-in and the
service callback EJB and further on to an application.

Interface: PluginNorth
All interfaces in the plug-in that implement the traffic interfaces defined in the service WSDLs
must implement this interface. A list of the implementations is maintained in the class that
implements in Interface: ManagedPluginInstance. Statistics aspects are applied for classes that
implement this interface.

Interface: PluginNorthCallBack
All interfaces in the plug-in that implement the traffic interfaces defined in the service callback
WSDLs must implement this interface.

Interface: PluginSouth
This interface must be implemented by the plug-in. Defines the south border of a plug-in, that is
the network-facing border.

It contains methods used to rebuild the object defined by Interface: RequestContext for
network-initiated requests, using information from the object defined by Interface:
ContextMapperInfo, and methods for resolving which application instance the request belongs to.

When a network triggered request arrives at the plug-in, the usual pattern is to correlate the
request with a previous subscription for notifications.

By extending PluginSouth in the class that implements the request, aspects that call the method

public String resolveAppInstanceGroupId(ContextMapperInfo)

are applied.

It is the responsibility of the plug-in instance to extract the information provided in the request
and to resolve the application instance that matches this data as a part of the rebuilding of the
RequestContext. This is done using the Context Aspect.

After resolving the application instance, the method

public void prepareRequestContext(RequestContext ctx, ContextMapperInfo

info)

Communicat i on Se rv i ce Descr ip t i on

7-12 Platform Development Studio - Developer’s Guide

is called. In the implementation of this method, the plug-in instance has the option to add
additional data to the object defined by Interface: RequestContext.

Interface: ManagedPluginService
The interface a plug-in service must implement.

It extends the interfaces PluginService, PluginInstanceFactory and PluginServiceLifecycle.

Interface: PluginService
The interface that defines the plug-in service when registered in the Plug-in Manager.

It defines a set of attributes that must be defined by implementing the following methods:

getNetworkProtocol(), returns a descriptive name for the supported network protocol.
For example "SMPP v3.4"

getServiceType(), returns a ServiceType. See Class: ServiceType.

getSupportedSchemes(), returns a list of supported address schemes. This is a String array
of URI schemes: for example “tel”, “mailto”, and “sip“.

Interface: PluginInstanceFactory
Factory that allows a plug-in service to create plug-in instances.

Defines the method:

ManagedPluginInstance createInstance(String pluginInstanceId)

The plug-in service is responsible for creating an instance of the class implementing Interface:
ManagedPluginInstance when this method is invoked. The method is triggered by the method
createPluginInstance on the Plug-in Manager MBean.

Interface: PluginServiceLifecycle
Defines the life-cycle for a plug-in service. See States.

Interface: ManagedPluginInstance
Must be implemented by a plug-in instance.

It extends the interfaces PluginInstance and PluginInstanceLifecycle.

Plug- in

Platform Development Studio - Developer’s Guide 7-13

Interface: PluginInstance
Defines the plug-in instance when registered in the Plug-in Manager.

The plug-in instance is responsible for:

maintaining a list of north interfaces that the plug-in implements.

maintaining a list of south interfaces that the plug-in implements.

Both of these lists are arrays of PluginInterfaceHolder.

The lists shall be returned when getNorthInterfaces() and getSouthInterfaces() are
invoked, respectively.

The plug-in instance is also responsible for implementing customMatch(RequestInfo
requestInfo). In this request, the plug-in instance examines the RequestInfo object and decides
if the plug-in instance can be used to serve the request. By returning:

MATCH_OPTIONAL: Indicates that the request can be served by any plug-in instance.
The request is completely stateless.

MATCH_REMOVE: The request cannot be served. This situation can occur, for example,
if a plug-in service does not implement the method being invoked or if the request relates
to a previous request which is known only to a subset of the plug-in instances in the
cluster.

MATCH_REQUIRED: The request must be served by the plug-in instance. This situation
can occur, for example, if the request relates to a previous request which is known only to
a subset of the plug-in instances in the cluster.

Only these constants can be returned.

The plug-in instance is also responsible for maintaining information on the connection status with
the network node it is connected to by returning True or False when isConnected() is invoked.

All methods in this interfaces are invoked by the Plug-in Manager when selecting a plug-in
instance to route the request to.

Interface: PluginInstanceLifecycle
Defines the life-cycle for a plug-in service. See States.

Communicat i on Se rv i ce Descr ip t i on

7-14 Platform Development Studio - Developer’s Guide

Class: RequestFactory
The Request Factory is used to perform application-initiated request processing both before and
after a request is processed in the plug-in. Each Communication Service must have one
implementation of the RequestFactory per each application-facing interface, named according to
the pattern: <myinterfacename>.PluginFactory. A skeleton for the factory is generated by
the Eclipse plug-in.

The RequestFactory has two main functions:

Packages routing information contained in the request into a RequestInfo object that the
Plug-in Manager uses to select an appropriate plug-in to process the request. See below for
more information on RequestInfo objects.

Note: In order to support sendlists which target multiple plug-ins, the Request Factory
implementation must support three methods that are not required for non-sendlist
based plug-ins:

createRequestInfos: allows the creation of multiple RequestInfo objects.
Each instance of a RequestInfo object is matched to a plugin. For example if an
SMS message request is sent to 3 addresses, the factory should create an array of 3
AddressRequestInfo objects.

createPartialRequest: splits a request into multiple requests sent to different
plug-ins

mergeResults: merges the results reported back by multiple plug-ins into a single
result.

For more information, see the RequestFactory JavaDoc

Note: Plug-ins are invoked in sequence and if one of them fails the whole request is
considered a failure. In this case, an exception is thrown and the transaction is rolled
back.

Translates any exceptions thrown in the plug-in (or the underlying network) into a form
that can be sent back to the application.

Class: CallbackFactory
This class is used by a plug-in instance to get an implementation of Interface: Callback. There is
one CallbackFactory per interface defined in the callback WSDLs.

The naming pattern is com.acompany.example.callback.<interface
name>CallbackFactory

Plug- in

Platform Development Studio - Developer’s Guide 7-15

The implementation of the interface is fetched using the following pattern:

Listing 7-1

import com.acompany.example.callback.NotificationCallback;

import com.acompany.example.callback.NotificationCallbackFactory;

...

private NotificationCallback cachedNotificationCallback = null

....

private NotificationCallback getNotificationCallback() {

if(cachedNotificationCallback == null) {

cachedNotificationCallback =

NotificationCallbackFactory.getInstance().create();

}

return cachedNotificationCallback;

}

Interface: Callback
This interface is used by a plug-in to propagate a network-triggered request from the plug-in to
the callback EJB. The interface defines a Java representation of the methods defined in the
callback WSDLs. There is one interface per interface defined in the callback WSDLs.

The naming pattern is com.acompany.example.callback.<interface name>Callback

Class: RequestInfo
The object created by the RequestFactory to hold information from the application-initiated
request. There are four sub-classes of RequestInfo that can be used depending on the request:

AddressRequestInfo, if the request contains an address.

CorrelatorRequestInfo, if the request contains a correlator.

Communicat i on Se rv i ce Descr ip t i on

7-16 Platform Development Studio - Developer’s Guide

RegistrationIdentifierRequestInfo, if the request contains a registration identifier.

RequestIdentifierRequestInfo, if the request contains a request identifier.

Class: ServiceType
This is an abstract utility class that each plug-in must implement. An object of this type is passed
to the Plug-in Manager when the plug-in registers itself, so that the Plug-in Manager can query
for service type.

Aspects takes care of making this service type available in the request thread of each plug-in. The
service type is used by various services, including the EdrService.

Interface: ContextMapperInfo
This interface defines a ContextMapperInfo object. When network-initiated traffic enters the
plug-in from the network-facing (south) side, aspects take any annotated arguments from the
network call that will be needed by the plug-in for correlation purposes and places them in this
very short-lived object. Arguments are stored by key, defined when the annotation is set, that
make it possible to retrieve a particular value. So if an argument is annotated with
@MapperInfo(C), its value can be retrieved using the key “C”. Methods in the plug-in that need

Table 7-3 Existing ServiceTypes

ServiceType Plugin

AccessServiceType Access

ThirdPartyCallServiceType Third-party Call

CallNotificationServiceType Call Notification

SmsServiceType Sms

MultimediaMessagingServiceType Mms

TerminalLocationServiceType Terminal Location

AudioCallServiceType Audio Call

PresenceServiceType Presence

Management

Platform Development Studio - Developer’s Guide 7-17

to retrieve these arguments in order to perform a mapping (for example, associating a notification
with the session ID of the request that established it) can use this object. The PluginSouth
interface includes one such method, resolveAppInstanceGroupdId.

Interface: RequestContext
Defines a RequestContext object. A RequestContext object is available in all
Communication Services for both application-initiated and network-initiated requests. It contains
contextual information about the request, including the service provider account ID, application
account ID, and application instance of the application that initiated either the request or the
notification, as well as the session ID.

Class: ManagedPlugin
Deprecated. Use ManagedPluginService instead.

Allows the plug-in to register itself in the Plug-in Manager. See Class: AbstractManagedPlugin.

Class: AbstractManagedPlugin
Deprecated. Use ManagedPluginService instead.

Extends ManagedPlugin, implements ServiceDeployable. It makes the plug-in deployable as
a service in Network Gatekeeper, and assists in registering the plug-in with the Manager. See the
com.bea.wlcp.wlng.api.plugin.common package JavaDoc for details.

Management
These are base classes and annotations for giving the Network Gatekeeper Management Console
or other JMX tools management access to Communication Services. See Chapter 9, “Making
Communication Services Manageable” for more information. Also see the JavaDoc for the
packages: com.bea.wlcp.wlng.api.management.*

SLA Enforcement
SLA enforcement operates on methods identified by the Java representation of the interface, and
the operation of the application-facing interface for the Communication Service

The content of the tag <scs> defined in the <serviceContract> tag in the SLA is the plug-in type
for the plug-in.

Communicat i on Se rv i ce Descr ip t i on

7-18 Platform Development Studio - Developer’s Guide

An operation on the application-facing interface is represented in the rules according to the
following scheme: <service name> and <operation name>.

Parameters in the operation are represented in the rules according to the following scheme:

arg<n>.<parameter name>

where <n> in arg<n> depends on the WSDL that defines the application-facing interface,
normally this is arg0.

If the parameter in <parameter name > is

a composed parameter, the notation is according to the Java Bean notation for that
parameter.

an enumeration, the notation is according to the Java-representation of that parameter,
<parameter name >.<enumeration value>. The <enumeration value> is the String
representation. See Using the Platform Test Environment for information about the SLA
Editor.

Shared libraries
It is possible for multiple plug-ins to share common libraries: for example, a third party library
or custom code that can be shared.

If there are such parts, these should preferably not be packaged into the plug-in jar but instead be
copied into the APP-INF/lib directory of the Communication Service EARs that utilizes this
shared library. All jars in this directory are available for each of the plug-ins in the EAR.

Platform Development Studio - Developer’s Guide 8-1

C H A P T E R 8

Annotations, EDRs, Alarms, and CDRs

The following section describe aspects and generation of EDRs, alarms, CDRs, and statistics:

“About aspects and annotations” on page 8-2

“How aspects are applied” on page 8-2

“Context Aspect” on page 8-3

“EDR Generation” on page 8-6

– “Exception scenarios” on page 8-8

– “Adding data to the RequestContext” on page 8-9

– “Trigger an EDR programmatically” on page 8-12

– “EDR Content” on page 8-13

– “RequestContext and EDR” on page 8-20

“Categorizing EDRs” on page 8-22

– “The EDR descriptor” on page 8-22

“Check-list for EDR generation” on page 8-33

“Alarm generation” on page 8-37

– “Trigger an alarm programmatically” on page 8-38

– “Alarm content” on page 8-39

Anno ta t i ons , EDRs , A la rms, and CDRs

8-2 Platform Development Studio - Developer’s Guide

“CDR generation” on page 8-41

– “Triggering a CDR” on page 8-41

– “Trigger a CDR programmatically” on page 8-41

– “CDR content” on page 8-42

– “Out-of-the box (OOTB) CDR support” on page 8-47

“Extending Statistics” on page 8-48

About aspects and annotations
Aspects allow developers to manage cross-cutting concerns in their code in a straight forward and
coherent way. Aspects in Network Gatekeeper (pointcuts, advice, etc.) are written in the AspectJ
1.5.3 annotation style. There is already support for editing annotations in many modern IDEs, and
aspects are simply set up as annotated classes.

How aspects are applied
All aspects are applied at build time by weaving the byte code of previously complied Java
packages. Minimal reflection is used at runtime to make aspect based decisions.

Different aspect types are applicable to different Network Gatekeeper modules. In general there
are two categories of aspects:

Those restricted to the code for the traffic flow

Those that can be applied to other packages.

Note: In this case, traffic flow is defined to include only plug-in implementations.

Traffic aspects are subdivided into two categories:

Those that are always applied

Those that are controlled using annotations.

Only statistics aspects are always applied because they are used in to enforce licensing. Traffic
aspects are applied to North and South boundaries of a plug-in as well as to the internal processing
of the plug-in.

Annotations are used to control the aspects that are not always applied for each plug-in. These
annotations are defined as part of the functional areas that a given set of aspect implements. They
allow the plug-in to communicate with the aspects as well as to customize their behavior.

Contex t Aspect

Platform Development Studio - Developer’s Guide 8-3

Context Aspect
The Context aspect is woven at compile time, using PluginSouth as a marker.

While requests coming from the north interface have a valid context (with attributes like Service
provider account ID, application Account ID, and so on) any events triggered by the network and
entering a plug-in’s south interface do not have a valid context.

The Context aspect solves this problem by rebuilding the context as soon as a south interface
method is invoked: after this aspect is executed, a valid context will be available for any
subsequent usages, such as the EDR aspect. All methods inside a class implementing the interface
PluginSouth are woven by the Context aspect.

The Context aspect requires the following in order to correctly weave the south interface methods
and be able to rebuild the context:

Each Plugin must explicitly register its north and south interfaces.

Each south interface must implement the resolveAppInstanceGroupdId() and
prepareRequestContext() methods of the PluginSouth interface.

North interfaces must implement PluginNorth and south interfaces must implement
PluginSouth.

The following rules apply for methods in classes that implement PluginNorth:

The default behavior is that EDRs are triggered only for exceptions and callbacks to EJBs
in the access tier (Service Callback EJB)

If a method is annotated with @NoEdr, no EDRs will be generated. It overrides the default
behavior.

If a method is annotated with @EDR, 2 EDRs will be generated:

– When entering the method

– When exiting the method.

The following rule applies for methods in classes that implement PluginSouth:

Methods that perform requests to the network may have a parameter annotated with
@MapperInfo in order to be able to rebuild the RequestContext when the response to the
request arrives from the network. The annotated parameter must be used as a key to
resolve the application instance ID using some plug-in specific lookup.

Anno ta t i ons , EDRs , A la rms, and CDRs

8-4 Platform Development Studio - Developer’s Guide

Methods must implement resolveAppInstanceGroupdId(ContextMapperInfo info)
in PluginSouth and return the application instance ID that corresponds to the original
request to the network.

The ways of doing this are plug-in-specific, but normally a network triggered request is tied to an
application instance in a store that is managed by the plug-in. The store used for context mapping
may be a local cache or a cluster wide store, depending on wether responses are known to always
arrive on the same plug-in instance, or if they can arrive to a plug-in on another server in the
cluster.

Example:

1. An application sends a request to the network and an ID for this request is either supplied by
the network or generated by the plug-in. At this point the originator of the requests, the
application instance, is known since the request originated from an application.

2. The plug-in puts the application instance ID and the ID for the request into a store.

3. At a later stage, when a response to the original requests arrives to the plug-in, the method
resolveAppInstanceGroupId() is called by aspects.

4. In this method, the plug-in must perform a lookup in the store of the application instance
related to that request and return the application instance ID to the aspect.

5. The aspect authenticates the application instance with the container and puts the application
instance ID in the RequestContext.

6. The method in the plug-in receives the request from the network and the RequestContext
contains the application instance ID.

In the example below the method deliver(...) is a request from the underlying network. The
destinationAddress is annotated to be available by the aspect that handles network-triggered
requests associated with this request represented by constant C.

NotificationHandler handles the store for notifications and supplies all necessary parameters to
the store.

Listing 8-1 Application initiated request

protected static final String C = "destinationAddress";

@Edr

 public void deliver(String data,

Contex t Aspect

Platform Development Studio - Developer’s Guide 8-5

 @ContextKey(EdrConstants.FIELD_DESTINATION_ADDRESS)

 @MapperInfo(C) String destinationAddress,

 @ContextKey(EdrConstants.FIELD_ORIGINATING_ADDRESS) String
originatingAddress,

 String nwTransactionId)

 throws Exception {

 notificationHandler.deliver(data, destinationAddress, originatingAddress,
nwTransactionId);

 }

When a network triggered event occurs, the aspect calls
resolveApplicationInstanceGroup(...) in PluginSouth and the plug-in looks up the
application instance using any argument available in ContextMapperInfo that can help the
plug-in to resolve this ID from ContextMapperInfo, using info.getArgument(C). The
application instance ID is returned to the aspect and the execution flow continues in the plug-in,
with a RequestContext that contains the application instance ID, session ID and so on.

Listing 8-2 Rebuilding RequestContext

protected static final String C = "destinationAddress";

public String resolveAppInstanceGroupdId(ContextMapperInfo info) {

 String destinationAddress = (String) info.getArgument(C);

 NotificationData notificationData = null;

 try {

 notificationData =
StoreHelper.getInstance().getNotificationData(destinationAddress);

 } catch (StorageException e) {

Anno ta t i ons , EDRs , A la rms, and CDRs

8-6 Platform Development Studio - Developer’s Guide

return null;

 }

 if (notificationData == null) {

 return null;

 }

 return notificationData.getAppInstanceGroupId();

 }

Below are the steps you have to take to make your plug-in compliant with the Context aspect:

Make sure to register all your PluginSouth objects before registering your plug-in in the
Plug-in Manager.

Make sure to implement the resolveAppInstanceGroupdId() method for each
PluginSouth instance.

Annotate each parameter in south object methods that you need to have when aspect calls
back the resolveAppInstanceGroupId() or the prepareRequestContext() methods.
All the annotated parameters will be available in the ContextMapperInfo parameter. The
aspect needs to have them annotated to be able to store them into the ContextMapperInfo
object.

EDR Generation
EDRs are generated in the two following ways:

automatically using aspects at given points in the traffic execution flow in a plug-in.

manually anywhere in the code using the EdrService.

EDRs should be generated at the plug-in boundaries (north and south), using the @Edr annotation
to ensure that the boundaries are covered. Additional Edrs can be added elsewhere in the plug-in
if needed: for example for CDRs.

For extensions, the EDR ID should be in the range 500 000 to 999 999.

EDR Generat ion

Platform Development Studio - Developer’s Guide 8-7

EDRs are generated automatically by an aspect in the following locations in the plug-in:

Before and after any method annotated with @Edr

Before and after any callback to an EJB

After any exception is thrown

Note: Note that aspects are not applied outside the plug-in.

The following values are always available in an EDR when it is generated from an aspect:

class name

method name

direction of the request (south, north)

position (before, after)

interface (north, south, other, null)

source (method, exception)

Table 8-1 Manual annotation for EDRs

Trigger When Modifiers restrictions What is woven

method before executing public method only only in methods annotated
with @Edr

method after executing public method only only in methods annotated
with @Edr

method-call before calling any method only for method call to a
class implementing the
PluginNorthCallback
interface (EJB callback)

method-call after calling any method only for method call to a
class implementing the
PluginNorthCallback
interface (EJB callback)

exception after throwing any method any exception thrown
except in methods annotated
with @NoEdr

Anno ta t i ons , EDRs , A la rms, and CDRs

8-8 Platform Development Studio - Developer’s Guide

Exception scenarios
Exceptions are automatically woven by the aspect.

Some limitations apply:

The aspect will catch only exceptions that are thrown by a plug-in method.

The aspect will not catch an exception that is thrown by a library and caught by the
plug-in.

If the same exception is re-thrown several times, the aspect will only trigger an EDR once,
for the first instance of the exception.

The diagram illustrates typical scenarios when a library (or core service) throws an exception in
the plug-in.

Figure 8-1 Exception scenarios

Scenario 1:

EDR Generat ion

Platform Development Studio - Developer’s Guide 8-9

The plug-in method in Stage 2 simply catches the exception but does not re-throw it or
throw another exception. Since it just consume the exception, the aspect will not trigger an
EDR.

Scenario 2:

The plug-in method in Stage 2 lets the exception A propagate (or re-throw exception A).

In this case, the aspect triggers an EDR after the method in stage 2. Since the same
exception A (the same exception instance object) is propagated (or re-thrown), only the
first method triggers an EDR.

Scenario 3:

This scenario is almost identical to scenario 2 except that the method in stage 1 is not
throwing the exception A but another exception, named B. In this case, because B is not
the same instance as A, the aspect will trigger another EDR after the method in stage 1.

Adding data to the RequestContext
In addition to the default values, an EDR also contains all the values put into the RequestContext
using the putEdr() method.

Listing 8-3 Example to add values to and EDR using RequestContex

...

RequestContext ctx = RequestContextManager.getCurrent();

// this value will be part of any EDRs generated in the current request

ctx.putEdr("address", "tel:1234");

// this value will NOT be part of any EDRs since ctx.put(...) is used

ctx.put("foo", "bar");

...

Note: Common key names are defined in the class com.bea.wlcp.wlng.api.edr.EdrConstants.

Anno ta t i ons , EDRs , A la rms, and CDRs

8-10 Platform Development Studio - Developer’s Guide

Using translators
When a parameter is a more complex object, it is possible to specify a translator that will take
care of extracting the relevant information from this parameter.

The annotation is @ContextTranslate.

For example, the following method declares:

The first (and only) parameter should be translated using the specified translator
ACContextTranslator

The returned object should also be translated using the specified translator
ACContextTranslator

Listing 8-4 Using a translator

...

 @Edr

 public @ContextTranslate(ACContextTranslator.class) PlayTextMessageResponse
playTextMessage(@ContextTranslate(ACContextTranslator.class) PlayTextMessage
parameters) {

 ...

 return response;

 }

 ...

The Translator is a class implementing the ContextTranslator interface.

Listing 8-5 Example of a Translator

 public class ACContextTranslator implements ContextTranslator {

 public void translate(Object param, ContextInfo info) {

 if(param instanceof PlayTextMessage) {

 PlayTextMessage msg = (PlayTextMessage) param;

EDR Generat ion

Platform Development Studio - Developer’s Guide 8-11

 info.put("address", msg.getAddress().toString());

 } else if(param instanceof PlayTextMessageResponse) {

 PlayTextMessageResponse response = (PlayTextMessageResponse) param;

 info.put("correlator", response.getResult());

 } ...

 }

 }

The ContextTranslator class specified in the @ContextTranslate annotation is automatically
instantiated by the aspect when needed. It is however possible to explicitly register it using the
ContextTranslatorManager.

Listing 8-6 Example of registering a context translator

ContextTranslatorManager.register(ACContextTranslator.class.getName(), new
ACContextTranslator());

Below is a summary of annotations to use.

Table 8-2 Annotations

Name Type Description

@ContextKey Annotation Specifies that an argument must be put into the current
RequestContext under the name provided in this
annotation

@ContextTranslate Annotation Same as @ContextKey but for complex argument that
need to be translated using a translator (implementing
the ContextTranslator interface).

ContextTranslator Interface Interface used by static translators to translate complex
object.

Anno ta t i ons , EDRs , A la rms, and CDRs

8-12 Platform Development Studio - Developer’s Guide

Trigger an EDR programmatically
Network Gatekeeper triggers EDRs automatically in all plug-ins where aspects have been
applied. It is also possible to trigger EDRs explicitly. In this case, you will have to manually
create and trigger the EDR by following these steps:

1. Create an EdrData object

2. Trigger the EDR using the EdrService instance

Below is an example of triggering an EDR from inside a plug-in.

Listing 8-7 Trigger an EDR programmatically

public class SamplePlugin {

// Get the EdrDataHelper like a logger

private static final EdrDataHelper helper =
EdrDataHelper.getHelper(SamplePlugin.class);

public void doSomething() {

...

// Create a new EdrData using the EdrDataHelper class to allow

// the WLNG to automatically populate some fields

EdrData data = helper.createData();

// Since we are creating the EdrData manually,

// we have to provide the mandatory fields.

// Note that the EdrDataHelper will provide most of them

data.setValue(EdrConstants.FIELD_SOURCE,
EdrConstants.VALUE_SOURCE_METHOD);

data.setValue(EdrConstants.FIELD_METHOD_NAME, "doSomething");

// Log the EDR

EdrServiceFactory.getService().logEdr(data);

...

EDR Generat ion

Platform Development Studio - Developer’s Guide 8-13

}

}

EDR Content
The following table describes the content of an EDR. It describes which values are mandatory,
who is responsible for providing these values, and other information.

Legends:

A: Automatically provided by the WLNG

H: Provided if the EdrDataHelper createData API is used to create the EdrData (which is
the recommended way)

M: Provided manually in the EdrData

X: Provided in the EDR descriptor.

C: Custom filter. Use the element <attribute> to specify a custom filter.

Note: EDRs triggered by aspects will have all the mandatory fields provided by the aspect.

Anno ta t i ons , EDRs , A la rms, and CDRs

8-14 Platform Development Studio - Developer’s Guide

Table 8-3 EDR content

Name Description Filter tag name

EdrId To get the ID, use getIdentifier() in EdrConfigDescriptor.

This value is provided in the EDR descriptor.

Provider INSIDE plug-in: X

Provider OUTSIDE plug-in: X

Mandatory: Yes

C

ServiceName The name (or type) of the service.

Fields in EdrConstants: FIELD_SERVICE_NAME

Provider INSIDE plug-in: H

Provider OUTSIDE plug-in: M

Mandatory: Yes

C

ServerName The name of the Network Gatekeeper server.

Fields in EdrConstants: FIELD_SERVER_NAME

Provider INSIDE plug-in: H

Provider OUTSIDE plug-in: H

Mandatory: Yes

C

Timestamp The time at which the EDR was triggered (in ms since midnight,
January 1, 1970 UTC)

Fields in EdrConstants: FIELD_TIMESTAMP

Provider INSIDE plug-in: A

Provider OUTSIDE plug-in: A

Mandatory: Yes

C

EDR Generat ion

Platform Development Studio - Developer’s Guide 8-15

ContainerTransaction
Id

The WebLogic Server transaction ID, if available.

Fields in EdrConstants:
FIELD_CONTAINER_TRANSACTION_ID

Provider INSIDE plug-in: H

Provider OUTSIDE plug-in: H

Mandatory: No

C

Class Name of the class that triggered the EDR.

Fields in EdrConstants: FIELD_CLASS_NAME

Provider INSIDE plug-in: H

Provider OUTSIDE plug-in: H

Mandatory: Yes

<class>

Method Name of the method that triggered the EDR.

Provider INSIDE plug-in: M

Provider OUTSIDE plug-in: M

Mandatory: Yes

<name> inside
<method> or
<method> inside
<exception>

Source Indicates the type of source that triggered the EDR.

Fields in EdrConstants: FIELD_SOURCE

Values in EdrConstants: VALUE_SOURCE_METHOD,
VALUE_SOURCE_EXCEPTION

Provider INSIDE plug-in: M

Provider OUTSIDE plug-in: M

Mandatory: Yes

<method> or
<exception>

Table 8-3 EDR content

Name Description Filter tag name

Anno ta t i ons , EDRs , A la rms, and CDRs

8-16 Platform Development Studio - Developer’s Guide

Direction Direction of the request.

Fields in EdrConstants: FIELD_DIRECTION

Values in EdrConstants:VALUE_DIRECTION_SOUTH,
VALUE_DIRECTION_NORTH

Provider INSIDE plug-in: M

Provider OUTSIDE plug-in: M

Mandatory: No

<direction>

Position Position of the EDR relative to the method that triggered the EDR.

Fields in EdrConstants: FIELD_POSITION

Values in EdrConstants: VALUE_POSITION_BEFORE,
VALUE_POSITION_AFTER

Provider INSIDE plug-in: M

Provider OUTSIDE plug-in: M

Mandatory: No

<position>

Interface Interface where the EDR is triggered.

Fields in EdrConstants: FIELD_INTERFACE

Values in EdrConstants: VALUE_INTERFACE_NORTH,
VALUE_INTERFACE_SOUTH,
VALUE_INTERFACE_OTHER

Provider INSIDE plug-in: M

Provider OUTSIDE plug-in: M

Mandatory: No

<interface>

Table 8-3 EDR content

Name Description Filter tag name

EDR Generat ion

Platform Development Studio - Developer’s Guide 8-17

Exception Name of the exception that triggered the EDR.

Fields in EdrConstants: FIELD_EXCEPTION_NAME

Provider INSIDE plug-in: M

Provider OUTSIDE plug-in: M

Mandatory: No

<name> inside
<exception>

SessionId Session ID.

Fields in EdrConstants: FIELD_SESSION_ID

Provider INSIDE plug-in: H

Provider OUTSIDE plug-in: M

Mandatory: No

C

ServiceProviderId Service provider account ID.

Fields in EdrConstants: FIELD_SP_ACCOUNT_ID

Provider INSIDE plug-in: H

Provider OUTSIDE plug-in: M

Mandatory: No

C

ApplicationId Application account ID.

Fields in EdrConstants: FIELD_APP_ACCOUNT_ID

Provider INSIDE plug-in: H

Provider OUTSIDE plug-in: M

Mandatory: No

C

Table 8-3 EDR content

Name Description Filter tag name

Anno ta t i ons , EDRs , A la rms, and CDRs

8-18 Platform Development Studio - Developer’s Guide

AppInstanceGroupId Application instance ID.

Fields in EdrConstants: FIELD_APP_INSTANCE_GROUP_ID

Provider INSIDE plug-in: H

Provider OUTSIDE plug-in: M

Mandatory: No.

C

OrigAddress The originating address with scheme included (for example
“tel:1234”).

Fields in EdrConstants: FIELD_ORIGINATING_ADDRESS

Provider INSIDE plug-in: M

Provider OUTSIDE plug-in: M

Mandatory: No

C

Table 8-3 EDR content

Name Description Filter tag name

EDR Generat ion

Platform Development Studio - Developer’s Guide 8-19

Using send lists
If more than one address need to be stored in the DestAddress field, use the following
pattern. Both patterns described below can be used.

Listing 8-8 Pattern to store one single or multiple addresses in field destination directly on EdrData.

EdrData data = ...;

// If there is only one address

data.setValue(EdrConstants.FIELD_DESTINATION_ADDRESS, address);

// If there are multiple addresses

data.setValues(EdrConstants.FIELD_DESTINATION_ADDRESS, addresses);

DestAddress The destination address(es) with scheme included (For example
“tel:1234”). See Using send lists.

Fields in EdrConstants: FIELD_DESTINATION_ADDRESS

Provider INSIDE plug-in: M

Provider OUTSIDE plug-in: M

Mandatory: No

C

<custom> Any additional information put into the current RequestContext
using the putEdr() API will end up in the EDR.

Fields in EdrConstants: -

Provider INSIDE plug-in: -

Provider OUTSIDE plug-in: -

Mandatory: No

C

Table 8-3 EDR content

Name Description Filter tag name

Anno ta t i ons , EDRs , A la rms, and CDRs

8-20 Platform Development Studio - Developer’s Guide

If you are using the current RequestContext object, simply store a List of addresses. The
EdrDataHelper will automatically take care of converting this to a List of Strings in the EdrData.

Listing 8-9 Pattern to store one single or multiple addresses in field destination using RequestContext.

RequestContext ctx = RequestContextManager.getCurrent();

// If there is only one address

ctx.putEdr(EdrConstants.FIELD_DESTINATION_ADDRESS, address);

// If there are multiple addresses

URI[] addresses = ...;

ctx.putEdr(EdrConstants.FIELD_DESTINATION_ADDRESS, Arrays.asList(addresses));

RequestContext and EDR
The following diagram shows how and where information for the EDR is added to the
RequestContext and how it finally ends up in the additional info column of the alarm and CDR
databases.

EDR Generat ion

Platform Development Studio - Developer’s Guide 8-21

Figure 8-2 RequestContext and EDR

There are 3 ways of putting information in the RequestContext that will end up in the EDR (more
precisely in the EdrData object):

Using the putEdr() API of the RequestContext

Using the @ContextKey or @ContextTranslate annotation. In the case of the
@ContextTranslate annotation, the information that will end up in the RequestContext will
be what is put into the ContextInfo object.

Any information put in the RequestContext parameter of the
PluginSouth.prepareRequestContext() method.

When an EDR is created, the EdrDataHelper (which is the recommended way to create the EDR)
will populate the EdrData with all the key/value pairs found in the RequestContext.

When the EdrService writes the alarm or CDR additional information content into the database,
it will use all the EdrData key/value pairs EXCEPT a set of well-known keys that are either not
relevant or already included in other columns of the database, see “Alarm content” on page 8-39
and “CDR content” on page 8-42.

Anno ta t i ons , EDRs , A la rms, and CDRs

8-22 Platform Development Studio - Developer’s Guide

Categorizing EDRs
Only one type of EDR exists: alarms and CDRs are subsets of this EDR type. In order to
categorize the flow of EDRs as either a pure EDRS, an alarm or a CDR, the EDR service uses 3
descriptors:

EDR descriptor contains descriptors that describe pure EDRs.

Alarm descriptor contains descriptors that describe EDRs that should be considered alarms.

CDR descriptor contains descriptors that describe EDRs that should be considered CDRs.

These XML descriptors can be manipulated using the EDR Configuration Pane as described in
Managing and Configuring EDRs, CDRs and Alarms in the System Administrator’s Guide. File
representations of these must be included in edrjmslistener.jar if using external EDR listeners.

The EDR descriptor
Each descriptor contains a list of EDR descriptors that define an EDR as a pure-EDR, as an alarm
or as a CDR.

The descriptor is composed of two parts:

The <filter> element: this is the filter

The <data> element: this part is used to attach additional data with the EDR if it is
matched by the <filter> part

Table 8-4 EDR descriptors.

Descriptor Descriptor Description

EDR <edr...> Defines which EDRs are pure EDRs

Alarm <alarm...> Defines which EDRs are alarms

CDR <cdr...> Defines which EDRs are CDRs

http://e-docs.bea.com/wlcp/wlng40/admin/edr.html

Categor i z ing EDRs

Platform Development Studio - Developer’s Guide 8-23

The following table describes the elements allowed in the <filter> part:

Table 8-5 Elements allowed in <filter> part of an EDR descriptor.

Source Filter Min
occurs

Max occurs Description

<method> 0 unbounded Filter EDR triggered by a method

<name> 0 unbounded Name of the method that triggered the
EDR

<class> 0 unbounded Name of the class that triggered the
EDR

<direction> 0 2 Direction of the request

<interface> 0 3 Interface where the EDR has been
triggered

<position> 0 2 Position relative to the method that
triggered the EDR

<exception> 0 unbounded Filter EDR triggered by an exception

<name> 0 unbounded Name of the exception that triggered
the EDR

<class> 0 unbounded Name of the class where the
exception was thrown

<method> 0 unbounded Name of the method where the
exception was thrown

<direction> 0 2 Direction of the request

<interface> 0 3 Interface where the EDR has been
triggered

<position> 0 2 Position relative to the method that
triggered the EDR

<attribute> 0 unbounded Filter EDR by looking at custom
attribute

Anno ta t i ons , EDRs , A la rms, and CDRs

8-24 Platform Development Studio - Developer’s Guide

The following table describes the values allowed for each element of the <filter> part:

<key> 1 1 Name of the key

<value> 1 1 Value

Table 8-5 Elements allowed in <filter> part of an EDR descriptor.

Source Filter Min
occurs

Max occurs Description

Table 8-6 Values allowed in each element of the <filter> part.

Source Filter Allowed values Comment

<method> <name> “returntype nameofmethod([args])” Method name. The arguments
can be omitted with the
parenthesis. See Special
characters below.

<class> “fullnameofclass” Fully qualified class name. See
Special characters below.

<direction> “south”, “north”

<interface> “north”, “south”, “other”

<position> “before”, “after”

<exception
>

<name> “fullnameofexceptionclass” Fully qualified exception class
name. See Special characters
below.

<class> “fullnameofclass” Fully qualified class name where
the exception was triggered. See
Special characters below.

<method> “returntype nameofmethod([args])” Method name. The arguments
can be omitted with the
parenthesis See Special
characters below.

<direction> “south”, “north”

Categor i z ing EDRs

Platform Development Studio - Developer’s Guide 8-25

Special characters
The filter uses special characters to indicate more precisely how to match certain values.

Using * at the end of a method, class or exception name matches all names that match the string
specified prior to the * (that is, what the string starts with).

Note: The usage of any of these characters disables the caching of the filter containing them.
To avoid a performance hit, using the other way of matching is strongly encouraged.

<interface> “north”, “south”, “other”

<position> “before”, “after”

<attribute> <key> “astring”

<value> “astring”

Table 8-6 Values allowed in each element of the <filter> part.

Source Filter Allowed values Comment

Table 8-7 Example filters

To match on Use the filter

All sendInfoRes methods
with one argument of
type int.

<method>

 <name>void sendInfoRes(int)</name>

 ...

 </method>

All methods starting with
sendInfoRes regardless
of the arguments.

<method>

 <name>void sendInfoRes</name>

 ...

 </method>

Anno ta t i ons , EDRs , A la rms, and CDRs

8-26 Platform Development Studio - Developer’s Guide

Values provided
The exact value in these fields depends on who triggered the EDR. If the aspect triggered the
EDR, then the name of the method (with return type and parameters) or the fully qualified name
of the class/exception is indicated. If the EDR is manually triggered from the code, it is up to the
implementer to decide what name to use. Here are some examples of fully qualified method/class
names as specified by the aspect:

Example methods:

SendSmsResponse sendSms(SendSms)

void receivedMobileOriginatedSMS(NotificationInfo, boolean,

SmsMessageState, String, SmsNotificationRemote)

TpAppMultiPartyCallBack reportNotification(TpMultiPartyCallIdentifier,

TpCallLegIdentifier[], TpCallNotificationInfo, int)

Example Class:

com.bea.wlcp.wlng.plugin.sms.smpp.SMPPManagedPluginImpl

Boolean semantic of the filters
The following diagram shows briefly how the filter works:

All methods starting with
void sendInfo.

<method>

 <name>void sendInfo*</name>

 ...

 </method>

All class names beginning
with
com.bea.wlcp.wlng.plugin

<method>

 <class>com.bea.wlcp.wlng.plugin*</class>

 ...

 </method>

Table 8-7 Example filters

To match on Use the filter

Categor i z ing EDRs

Platform Development Studio - Developer’s Guide 8-27

The EdrConfigSource elements are the following: <method>, <exception> or <attribute>.
They are combined using OR.

The filter elements of each EdrConfigSource are combined using AND. However, if the
same filter is available more than once (e.g. multiple class names), they are combined with
OR.

Figure 8-3 Filter mechanism

Example filters

Example 1: filter
The following filter will categorize EDRs as pure EDRs with an id of 1000 when the following
conditions are met:

The class where the method triggered the EDR is
com.bea.wlcp.wlng.plugin.AudioCallPlugin or any subclass of it.

AND the request is southbound (direction = south)

AND the interface where the EDR was trigger is north

AND the EDR has been triggered after the method has been executed (position = after)

Anno ta t i ons , EDRs , A la rms, and CDRs

8-28 Platform Development Studio - Developer’s Guide

Listing 8-10 Example 1: filter

<edr id="1000" description="...">

 <filter>

 <method>

 <class>com.bea.wlcp.wlng.plugin.AudioCallPlugin</class>

 <direction>south</direction>

 <interface>north</interface>

 <position>after</position>

 </method>

 </filter>

 </edr>

Example 2: Alarm filter
The following filter will categorize EDRs into alarms when the following conditions are met:

The exception is the class com.bea.wlcp.wlng.plugin.PluginException or a subclass of it.

OR the name of the exception starts with org.csapi.*. Since “‘*” is used, the matching will
not be performed using the class hierarchy but only using a pure string matching.

The alarms descriptor has a <alarm-group> element that is used to group alarms by
service/source: this group id and each individual alarm id is used to generate the OID of SNMP
traps.

Listing 8-11 Example 3: filter

<alarm-group id="104" name="parlayX" description="Parlay X alarms">>

<alarm id="1000" severity="minor" description="Parlay X exception">

 <filter>

 <exception>

 <name>com.bea.wlcp.wlng.plugin.PluginException</name>

Categor i z ing EDRs

Platform Development Studio - Developer’s Guide 8-29

 <name>org.csapi*</name>

 </exception>

 </filter>

 </alarm>

</alarm-group>

Example 3: Alarm filter
The following filter will categorize EDRs into alarms when the following conditions are met:

The exception is the class com.bea.wlcp.wlng.plugin.PluginException or a subclass of it

OR the name of the exception starts with “org.csapi”. String matching in used.

AND the exception was triggered in a class whose name starts with
com.bea.wlcp.wlng.plugin

AND the request is northbound (direction = north) when the exception was triggered

If the filter determines that the EDR is an alarm, the following attributes are available to the alarm
listener (they are defined in the <data> part):

identifier = 123

source = wlng_nt1

Listing 8-12 Example 3: filter

<alarm id="1000" severity="minor" description="Parlay X exception">

 <filter>

 <exception>

 <name>com.bea.wlcp.wlng.plugin.PluginException</name>

 <name>org.csapi*</name>

 <class>com.bea.wlcp.wlng.plugin*</class>

 <direction>north</direction>

Anno ta t i ons , EDRs , A la rms, and CDRs

8-30 Platform Development Studio - Developer’s Guide

 </exception>

 </filter>

 <data>

 <attribute key="identifier" value="123"/>

 <attribute key="source" value="wlng_nt1"/>

 </data>

 </alarm>

Example 4: filter
The following filter (for example purposes only) will categorize EDRs into pure EDRs with the
id 1002 when the following conditions are met:

The name of the method that triggered the EDR starts with “void play” AND the class is
com.bea.wlcp.wlng.plugin.AudioCallPluginNorth or a subclass of it AND the EDR was
triggered after executing this method.

OR the name of the method that triggered the EDR is “String getMessageStatus” AND the
class is 'com.bea.wlcp.wlng.plugin.AudioCallPluginNorth' or a subclass of it AND the
EDR was triggered before executing this method.

OR the name of the exception that triggered the EDR starts with com.bea.wlcp.wlng.bar
AND the exception was triggered in a plug-in north interface

OR the name of the exception that triggered the EDR starts with
com.bea.wlcp.wlng.plugin.exceptionA AND the exception was triggered in a class whose
name starts with com.bea.wlcp.wlng.plugin.classD AND the exception was triggered in a
method whose name starts with void com.bea.wlcp.wlng.plugin.methodA AND the
exception was triggered in a plugin north interface

OR the EDR contains an attribute with key attribute_a and value value_a

OR the EDR contains an attribute with key attribute_b and value value_b

Listing 8-13 Example 4: filter

<edr id="1002">

Categor i z ing EDRs

Platform Development Studio - Developer’s Guide 8-31

 <filter>

 <method>

 <name>void play*</name>

 <class>com.bea.wlcp.wlng.plugin.AudioCallPluginNorth</class>

 <position>after</position>

 </method>

 <method>

 <name>String getMessageStatus</name>

 <class>com.bea.wlcp.wlng.plugin.AudioCallPluginNorth</class>

 <position>before</position>

 </method>

 <exception>

 <name>com.bea.wlcp.wlng.bar*</name>

 <interface>north</interface>

 </exception>

 <exception>

 <name>com.bea.wlcp.wlng.plugin.exceptionA</name>

 <class>com.bea.wlcp.wlng.plugin.classD</class>

 <method>void com.bea.wlcp.wlng.plugin.methodA</method>

 <interface>north</interface>

 </exception>

 <attribute key="attribute_a" value="value_a"/>

 <attribute key="attribute_b" value="value_b"/>

 </filter>

 </edr>

Anno ta t i ons , EDRs , A la rms, and CDRs

8-32 Platform Development Studio - Developer’s Guide

Example 5: filter with corresponding code for manually triggering a matching EDR
The following example shows a manually triggered EDR with its corresponding filter. The EDR
is triggered using these lines.

Listing 8-14 Example 5: Trigger the EDR

 // Declare the EdrDataHelper for each class

 private static final EdrDataHelper helper =
EdrDataHelper.getHelper(MyClass.class);

 public void myMethodName() {

 ...

 // Create a new EdrData. Use the EdrDataHelper class to allow the WLNG to
automatically populate some fields

 EdrData data = helper.createData();

 // Because we are creating the EdrData manually, we have to provide the
mandatory fields

 data.setValue(EdrConstants.FIELD_SOURCE, EdrConstants.VALUE_SOURCE_METHOD);

 data.setValue(EdrConstants.FIELD_METHOD_NAME, "myMethodName");

 data.setValue("myKey", "myValue");

 // Log the EDR

 EdrManager.getInstance().logEdr(data);

 ...

 }

This EDR can be filtered using the following filter (note the various way of identifying this EDR):

Check- l i s t f o r EDR generat i on

Platform Development Studio - Developer’s Guide 8-33

Listing 8-15 Example: Filter 5

 <edr id="1003">

 <filter>

 <!-- Match both method name and class name -->

 <method>

 <name>myMethodName</name>

 <class>com.bea.wlcp.wlng.myClassName</class>

 </method>

 <!-- OR match only the method name (looser than matching also the class
name) -->

 <method>

 <name>myMethodName</name>

 </method>

 <!-- OR match only the classname (looser than matching also the method
name) -->

 <method>

 <class>com.bea.wlcp.wlng.myClassName</class>

 </method>

 <!-- OR match only the custom attribute -->

 <attribute key="myKey" value="myValue"/>

 </filter>

 </edr>

Check-list for EDR generation
Below is a list of steps to make your plug-in able to take advantage of the aspect EDR:

Make sure to register all your PluginNorth (and south) objects within the ManagedPlugin
before registering in the PluginManager.

Anno ta t i ons , EDRs , A la rms, and CDRs

8-34 Platform Development Studio - Developer’s Guide

Annotate all the methods you want to be woven using the @Edr annotation.

Annotate the specific arguments you want to see in the EDR for each annotated methods.
Use either @ContextKey or @ContextTranslate depending on the kind of argument.

Add to the EDR descriptor all the EDRs you are triggering, either manually or with the
@Edr annotation. This is the only way to customize alarms and CDRs.

If external EDR listeners, CDR, and alarms are used, the file edrjmslistener.jar needs
to be updated on all the listeners. Add the contents of the EDR descriptors to edr.xml,
CDR descriptor to cdr.xml, and alarm descriptor to alarm.xml. The xml files resides in the
directory edr in edrjmslistener.jar.

Frequently Asked Questions about EDRs and EDR filters
Question: Is it possible to specify both exception and method name in the filter section?

Listing 8-16 Example: method name and exception in a filter.

<filter>

 <method>

 <name>internalSendSms</name>

 </method>

 <exception>

<name>com.bea.wlcp.wlng.plugin.sms.smpp.TooManyAddressesException</name>

 </exception>

 </filter>

Answer

Yes, make sure that the <method> element is before the <exception> element. Otherwise the
XSD will complain.

Q: Is it possible to specify multiple method names?

Frequent l y Asked Quest ions about EDRs and EDR f i l t e rs

Platform Development Studio - Developer’s Guide 8-35

Answer

Yes.

Q: In some places I have methods re-throwing an exception. Is it possible to have only one
of the methods generate the EDR and map that edr to an alarm?

Listing 8-17 Re-throwing an exception

myMethodA()throws MyException{

 myMethodB();

}

myMethodB()throws MyException{

 myMethodC();

}

myMethodC()throws MyException{

 ...

 //on error

 throw new MyException(“Exception text..”);

}

Answer

In this case, only the first exception will be caught by aspect. Or more precisely, they will all be
caught by aspect but will only trigger an EDR for the first one, but not for the re-thrown ones (if
they are the same, of course). So you don’t need to use the @NoEdr annotation for myMethodA
and myMethodB.

Q: Will aspect detect the following exception?

Anno ta t i ons , EDRs , A la rms, and CDRs

8-36 Platform Development Studio - Developer’s Guide

Listing 8-18 Example exception

 try{

 throw new ReceiverConnectionFailureException(message);

 }catch(ReceiverConnectionFailureException connfail){

 //EDR-ALARM-MAPPING

 }

Answer

This exception will NOT be detected by the aspects. If you need to generate an EDR you will
have to either manually create an EDR or call a method throwing an exception.

Q: Will EDRs for exceptions also work for private methods?

Answer

Yes, EDRs can work for any method.

Q: Will exceptions be disabled with the @NoEdr annotation?

Answer

Yes, with the @NoEdr annotation you will not get any EDRs, not even for exceptions.

Q: How can data from the current context be included in an alarm?

Can an alarm be generated in a request with more than 12 destination addresses? How can
information be added to the alarm about how many addresses that were included in the request?

It is possible to specify some info in the alarm descriptor with something like

<data>

 <attribute key="source" value="thesource"/>

</data>

. Can something be put in the RequestContext using the putEdr method and then get it into the
alarm in some way?

Answer

Ala rm generat ion

Platform Development Studio - Developer’s Guide 8-37

Yes, add custom information by putting this information into the current RequestContext, as
show below.

RequestContext ctx = RequestContextManager.getCurrent();

ctx.putEdr("address", "tel:1234");

This value is part of any EDRs generated in the current request.

The information will be available in the database in the additional_info column. Make sure you
are putting in only relevant information.

Q: Is it possible to specify classname in the filtering section?

Answer

Yes, use the <class> tag inside <method> or <exception> in the filter.

 <filter>

 <exception>

 <class>com.y.y.z.MyClass</class>

 <name>com.x.y.z.MyException</name>

 </exception>

</filter>

Alarm generation
An alarm is a subset of an EDR. To generate an alarm, generate an EDR, either using one
generated in aspects or programmatically and define the ID, and the descriptor of the alarm in the
alarm descriptor.

The alarm ID, severity, description and other kind of attributes are defined in the alarm descriptor,
see “The EDR descriptor” on page 8-22. For extensions, the alarm ID shall be in the range 500
000 to 999 999.

Note: The alarm filter that provides the first match in the alarm descriptor is used for triggering
the alarm.

There are two ways to trigger an alarm:

Anno ta t i ons , EDRs , A la rms, and CDRs

8-38 Platform Development Studio - Developer’s Guide

Use an existing EDR that is generated in the plug-in and add its descriptor to the alarm
descriptor.

Programmatically trigger an EDR and add its descriptor in both the alarm descriptor file
and the EDR descriptor. Make sure the ID of the alarm is unique and that the description is
the same as in the EDR descriptor.T

Trigger an alarm programmatically
Trigger an EDR as described in “EDR Content” on page 8-13. Then specify in the alarm
descriptor the corresponding alarms.

Listing 8-19 Example code to trigger an alarm

private static final EdrDataHelper helper =
EdrDataHelper.getHelper(MyClass.class);

...

EdrData data = helper.createData();

data.setValue(EdrConstants.FIELD_SOURCE, EdrConstants.VALUE_SOURCE_METHOD);

data.setValue(EdrConstants.FIELD_METHOD_NAME, "com.bea.wlcp.wlng.myMethod");

data.setValue("myAdditionalInformation", ...);

EdrManager.getInstance().logEdr(data);

...

The corresponding entry in the alarm descriptor that matches this EDR is shown below.

Listing 8-20 Alarm descriptor

 <alarm id="2006"

 severity="major"

 description="Sample alarm">

 <filter>

Ala rm generat ion

Platform Development Studio - Developer’s Guide 8-39

 <method>

 <name>com.bea.wlcp.wlng.myMethod</name>

 <class>com.bea.wlcp.wlng.myClass</class>

 </method>

 </filter>

 </alarm>

Alarm content
Below is a list of the information provided in alarms.

Table 8-8 Alarm information for alarm listeners, also stored in DB

Field Comment

alarm_id Unique ID for the alarm.

Automatically provided by the EdrService.

source Service name emitting the alarm.

Automatically provided by the EdrService.

timestamp Timestamp in milliseconds since midnight, January 1, 1970 UTC.

Automatically provided by the EdrService.

severity Severity level.

Defined in the alarm. descriptor.

identifier The alarm identifier.

Defined in the alarm descriptor.
The column in the database will always contain the identifier defined in the alarm
descriptor.

Anno ta t i ons , EDRs , A la rms, and CDRs

8-40 Platform Development Studio - Developer’s Guide

alarm_info The alarm information or description.

Defined in the alarm descriptor.

additional_info Automatically provided by the EdrService.
Not valid for backwards compatible alarm listeners.

The format of this field was changed when Network Gatekeeper 3.0 was
introduced. Each entry is formatted as:

key=value\n

Similar to the Java properties file.

All the custom key/value pairs found in the EdrData except these are present
(EdrConstants if not specified):
• FIELD_TIMESTAMP
• FIELD_SERVICE_NAME
• FIELD_CLASS_NAME
• FIELD_METHOD_NAME
• FIELD_SOURCE
• FIELD_DIRECTION
• FIELD_POSITION
• FIELD_INTERFACE
• FIELD_EXCEPTION_NAME
• FIELD_ORIGINATING_ADDRESS
• FIELD_DESTINATION_ADDRESS
• FIELD_CONTAINER_TRANSACTION_ID
• FIELD_CORRELATOR
• FIELD_SESSION_ID
• FIELD_SERVER_NAME
• ExternalInvocatorFactory.SERVICE_CORRELATION_ID
• FIELD_BC_EDR_ID
• FIELD_BC_EDR_ID_3
• FIELD_BC_ALARM_IDENTIFIER
• FIELD_BC_ALARM_INFO

Table 8-8 Alarm information for alarm listeners, also stored in DB

Field Comment

CDR generat i on

Platform Development Studio - Developer’s Guide 8-41

CDR generation
A CDR is a subset of an EDR. To generate a CDR, generate an EDR and define the ID of the EDR
in the CDR descriptor.

Triggering a CDR
There are two ways to trigger a CDR:

Use an existing EDR that is generated in the plug-in and add its description to the CDR
descriptor.

Programmatically trigger an EDR and add its description to the CDR descriptor.

Trigger a CDR programmatically
If none of the existing EDR is appropriate for a CDR, you can programmatically trigger an EDR
that will become a CDR. See the section, “Trigger an EDR programmatically” on page 8-12 for
information on how to create and trigger an EDR. Specify in the CDR descriptor the description
necessary for this EDR to be considered a CDR.

Listing 8-21 Example, triggering a CDR

private static final EdrDataHelper helper =
EdrDataHelper.getHelper(MyClass.class);

...

EdrData data = helper .createData();

data.setValue(EdrConstants.FIELD_SOURCE, EdrConstants.VALUE_SOURCE_METHOD);

data.setValue(EdrConstants.FIELD_METHOD_NAME,
"com.bea.wlcp.wlng.myEndOfRequestMethod");

// Fill the required fields for a CDR

data.setValue(EdrConstants.FIELD_CDR_START_OF_USAGE, ...);

...

EdrManager.getInstance().logEdr(data);

Anno ta t i ons , EDRs , A la rms, and CDRs

8-42 Platform Development Studio - Developer’s Guide

...

The description, in the CDR descriptor, that matches this EDR is shown below.

Listing 8-22 Filter to match the EDR

<cdr>

 <filter>

 <method>

 <name>com.bea.wlcp.wlng.myEndOfRequestMethod</name>

 <class>com.bea.wlcp.wlng.myClass</class>

 </method>

 </filter>

</cdr>

CDR content
In addition to the EDR fields, the following table lists the specific fields used only for CDRs.

Table 8-9 Fields in EdrConstants specific for CDRs.

Field in EdrConstants Comment

FIELD_CDR_SESSION_ID

FIELD_CDR_START_OF_USAGE

FIELD_CDR_CONNECT_TIME

FIELD_CDR_END_OF_USAGE

FIELD_CDR_DURATION_OF_USAGE

FIELD_CDR_AMOUNT_OF_USAGE

CDR generat i on

Platform Development Studio - Developer’s Guide 8-43

The CDR content is aligned toward the 3GPP Charging Applications specifications. As a result
the database schema has been changed to accommodate these ends and to facilitate future
extensions.

Legends:

NU: Not used

NC: New column in DB

RC: Renamed column in DB

FIELD_CDR_ORIGINATING_PARTY

FIELD_CDR_DESTINATION_PARTY Same pattern applies as for send lists, see “Using send lists”
on page 8-19.

FIELD_CDR_CHARGING_INFO

Table 8-9 Fields in EdrConstants specific for CDRs.

Field in EdrConstants Comment

Table 8-10 Content in database

Field Comment DB

transaction_id Unique id for the CDR.

Provided automatically by the EDR service.

x

service_name name of the service

Provided automatically by the EDR service.

x

service_provider the service provider account ID

Provided automatically by the EDR service.

x

application_id the application account ID (was user_id in 2.2) RC

application_instance_grp_i
d

the application instance ID. NC

container_transaction_id id of the current user transaction

Provided automatically by the EDR service.

NC

Anno ta t i ons , EDRs , A la rms, and CDRs

8-44 Platform Development Studio - Developer’s Guide

server_name name of the server that generated the CDR.

Provided automatically by the EDR service.

NC

timestamp in ms since midnight, January 1, 1970 UTC NC

service_correlation_id Service Correlation ID.

Provided automatically by the EDR service.

NC

charging_session_id Id that correlates requests that belong to one
charging session as defined by the plug-in. Was
'session_id' in 2.2.

Plug-in specific. Plug-in needs to put the value
into the RequestContext of the request that will
trigger the CDR.

x

start_of_usage The date and time the service capability module
started to use services in the network (in ms
since midnight, January 1, 1970 UTC)

Plug-in specific. Plug-in needs to put the value
into the RequestContext of the request that will
trigger the CDR.

x

connect_time The date and time the destination party
responded (in ms since midnight, January 1,
1970 UTC). Used for call control only.

Plug-in specific. Plug-in needs to put the value
into the RequestContext of the request that will
trigger the CDR.

x

end_of_usage The date and time the service capability module
stopped using services in the network (in ms
since midnight, January 1, 1970 UTC).

Plug-in specific. Plug-in needs to put the value
into the RequestContext of the request that will
trigger the CDR

x

Table 8-10 Content in database

Field Comment DB

CDR generat i on

Platform Development Studio - Developer’s Guide 8-45

duration_of_usage The total time the service capability module
used the network services (in ms)

Plug-in specific. Plug-in needs to put the value
into the RequestContext of the request that will
trigger the CDR

x

amount_of_usage Plug-in specific. Plug-in needs to put the value
into the RequestContext of the request that will
trigger the CDR.

x

originating_party The originating party address with scheme
included (e.g. “tel:1234”)

Plug-in specific. Plug-in needs to put the value
into the RequestContext of the request that will
trigger the CDR.

x

destination_party the originating party address with scheme
included (e.g. “tel:1234”). Additional addresses
are stored in the additional_info field.

x

charging_info The charging service code from the application.

Plug-in specific. Plug-in needs to put the value
into the RequestContext of the request that will
trigger the CDR.

x

additional_info Additional information provided by the plug-in x

revenue_share_percentage Not used. NU

party_to_charge Not used. NU

slee_instance Not used. NU

network_transaction_id Not used. NU

network_plugin_id Not used. NU

transaction_part_number Not used. NU

completion_status Not used. NU

Table 8-10 Content in database

Field Comment DB

Anno ta t i ons , EDRs , A la rms, and CDRs

8-46 Platform Development Studio - Developer’s Guide

Additional_info column
The EDR populates the additional_info column of the DB with all the custom key/value pairs
found in the EdrData except the ones listed below.

Excluded keys (EdrConstants if not specified):

FIELD_SERVICE_NAME

FIELD_APP_INSTANCE_GROUP_ID

FIELD_SP_ACCOUNT_ID

FIELD_CONTAINER_TRANSACTION_ID

FIELD_SERVER_NAME

FIELD_TIMESTAMP

ExternalInvocatorFactory.SERVICE_CORRELATION_ID

FIELD_CDR_SESSION_ID

FIELD_CDR_START_OF_USAGE

FIELD_CDR_CONNECT_TIME

FIELD_CDR_END_OF_USAGE

FIELD_CDR_DURATION_OF_USAGE

FIELD_CDR_AMOUNT_OF_USAGE

FIELD_CDR_ORIGINATING_PARTY

FIELD_CDR_DESTINATION_PARTY

FIELD_CDR_CHARGING_INFO

FIELD_CLASS_NAME

FIELD_METHOD_NAME

FIELD_SOURCE

FIELD_DIRECTION

FIELD_POSITION

CDR generat i on

Platform Development Studio - Developer’s Guide 8-47

FIELD_INTERFACE

FIELD_EXCEPTION_NAME

FIELD_ORIGINATING_ADDRESS

FIELD_DESTINATION_ADDRESS

FIELD_CORRELATOR

FIELD_APP_ACCOUNT_ID

FIELD_SESSION_ID

FIELD_BC_EDR_ID

FIELD_BC_EDR_ID_3

FIELD_BC_ALARM_IDENTIFIER

FIELD_BC_ALARM_INFO

Two keys not present in the EdrData are added to additional_info.

The format of the additional_info field is formatted as:

key=value\n

similar to the Java properties file.

Out-of-the box (OOTB) CDR support
It is difficult to come up with a CDR generation scheme which will fulfill the requirements of all
customers. Network Gatekeeper generates a default set of CDRs which can be customized by
re-configuring the CDR descriptor.

Table 8-11 Keys not present in EdrData, but added in additional_info

Key Description

destinationParty If a send list is specified as the destination party, the first address will be
written in the destination_party field of the DB and the remainder of the list
will be written under this key name

oldInfo Any backwards compatible additional info is available

Anno ta t i ons , EDRs , A la rms, and CDRs

8-48 Platform Development Studio - Developer’s Guide

The guiding principle for deciding when to generate CDRs is:

Generate a CDR when you are 100% sure that you have completely handled the service
request

In other words, after the last method, in a potential sequence of method calls, returns.

For network-triggered requests this means that you should a CDR at the south interface after the
method has returned back to the network. For application-triggered requests generate a CDR at
the north interface after the method has returned to the Network Tier SLSB.

Extending Statistics
Aspects are also used to generate statistics. To add a new statistic type to your Communication
Service requires two steps:

1. You must add a new statistic type, using the addStatisticType operation in the
Management Console. For more information, see “Managing and Configuring Statistics and
Transaction Licenses” in the System Administration Guide.

2.The statistics aspect is automatically applied to all public methods at PluginNorth. By default
extension Communication Services generate information identified with the transaction type
TRANSACTION_TYPE_EXTENSION. To generate more specific types, annotate your
code with @Statistics(id=<My_Statistics_Type>)

For extensions, the statistics ID shall be in the range 1000 to 2250.

Platform Development Studio - Developer’s Guide 9-1

C H A P T E R 9

Making Communication Services
Manageable

Once you have created your extension Communication Service, any OAM functions that you
have designed - read/write attributes and/or operations - must be exposed in a way that allows
them to be accessed and manipulated, either through the Network Gatekeeper Console extension,
or through other management tools. The following chapter provides a description of the
mechanism that Network Gatekeeper uses to accomplish this.

Overview
WebLogic Network Gatekeeper uses the Java Management Extensions (JMX) 1.2 standard, as it
is implemented in JDK 1.5. The JMX model consists of three layers, Instrumentation, Agent, and
Distributed Services. As an Communication Service developer, you work in the Instrumentation
layer. You create managed beans (MBeans) that expose your Communication Service
management functionality as a management interface. These MBeans are then registered with the
Agent, the Runtime MBean Server in the WebLogic Server instance, which makes the
functionality available to the Distributed Services layer, management tools like the Network
Gatekeeper Management Console. Finally, because configuration information needs to be
persisted, you store the values you set using Network Gatekeeper’s Configuration Store, which
provides a write-through database cache. In addition to persisting the configuration information,
the cache also provides cluster-wide access to the data, updating a cluster-wide store whenever
there is a change in globally relevant configuration data.

For more information on the JMX model in general in relation to WebLogic Server, see
Developing Manageable Applications with JMX.

http://edocs.bea.com/wls/docs100/jmxinst/index.html

Making Communicat i on Serv i ces Manageable

9-2 Platform Development Studio - Developer’s Guide

Create Standard JMX MBeans
Creating standard MBeans is a three step process.

1. Create an MBean Interface

2. Implement the MBean

3. Register the MBean with the Runtime MBean Server

Configuration settings should be persisted, see Use the Configuration Store to Persist Values.

Create an MBean Interface
The first thing you need to do is to create an interface file that describes getter and setter methods
for each class attribute that is to be exposed through JMX (getter only for read-only attributes;
setter only for write-only) and a wrapper operation for each class method to be exposed. The
attribute names should be the case-sensitive names that you wish to see displayed in the UI of the
Console extension.

For each read-write attribute define a get and set method that follows this naming pattern:
get<Attribute name>, set<Attribute name> where <Attribute name> is a case-sensitive
name that you want to expose to JMX clients.

For each read-only attribute define only an is or a get method. For each write-only
attribute, define only a set method.

The JavaDoc will be rendered in the console as a description of an attribute or operation. It
will render exactly as in the JavaDoc. For example:

/**

 * Connects to the simulator

 * @throws ManagementException An exception if the connection failed

 */

 public void connect() throws ManagementException;

Will render as:

Create Standard JMX MBeans

Platform Development Studio - Developer’s Guide 9-3

Any internal operation or attribute should be annotated with @Internal annotation. This
attribute or method will not be shown in the console. Example:

@Internal

public String resetStatistics();

Indicate optional parameters for the operation by @OptionalParam annotation. In the
JavaDoc for the operation, explicitly specify which parameters are optional. Example:

/**

 * Gets the alarms matching the specified criteria from the database

 * @param Identifier EDR Identifier

 * @Param Source server name (optional)

 * @Param Severity 0 - Critical, 1- Major, 2 -Minor

 * @Param maxEntries max number of entries

 */

 AlarmData[] getAlarms(long identifier,

 @OptionalParam('source')String source,

 int severity,

 int maxEntries) throws ManagementException;

The interface should be named <ServiceName>MBean.java. The interface for the example
Communication Service provided with the Platform Development Studio is named
ExampleMBean.java.

Making Communicat i on Serv i ces Manageable

9-4 Platform Development Studio - Developer’s Guide

Implement the MBean
Once you have defined the interface, it must be implemented.

You must name your class <ServiceName>MBeanImpl.java, based on the interface name. The
implementation must extend WLNGMBeanDelegate. This class takes care of setting up
notifications and MBean descriptions and all MBean implementation classes must extend it. All
MBean implementations must also be public, non-abstract classes and have at least one public
constructor. The MBean implementation for the example Communication Service provided with
the Platform Development Studio is named ExampleMBeanImpl.java.

MBean implementation must be a public, non abstract class

MBean must have at least one public constructor

MBean must implement its corresponding MBean interface and extend
WLNGMBeanDelegate

Register the MBean with the Runtime MBean Server
The MBean must be registered with the Runtime MBean Server in the local WebLogic Server
instance. Network Gatekeeper provides a proxy class for MBean registration:

com.bea.wlcp.wlng.api.management.MBeanManager

The MBean implementation is registered using an ObjectName, and a DisplayName:

registerMBean(Object mBeanImpl, ObjectName objectName, String displayName)

Construct the ObjectName using:

constructObjectName(String type, String instanceName, HashMap properties)

There should be no spaces in the InstanceName or Type. Object names are case-sensitive

If the MBean is a regular MBean, use the conventions as illustrated in Table 9-1

Create Standard JMX MBeans

Platform Development Studio - Developer’s Guide 9-5

Example:

com.bea.wlcp.wlng:AppName= wlng_nt_sms_px21#4.0,InstanceName=
Plugin_px21_short_messaging_smpp,
Type=com.bea.wlcp.wlng.plugin.sms.smpp.management.SmsMBean

If the MBean is a MBean that should be the child of a regular MBean, use the conventions as
illustrated in Table 9-2

Table 9-1 MBean ObjectName

The ObjectName convention for extensions

type Fully qualified MBean Name.

<MBeanObj>.class.getName()

instanceName Unique name that identifies the instance of the MBean. For example, it
can be obtained from serviceContext.getName()

The unique name of the MBean. If this is a plug-in that potentially is
used on the same server with multiple plug-in instances this should be
unique per plug-in instance. It is recommended to use
managedPlugin.getId().

properties HashMap that contains objectName key and value pairs
ObjectNameConstants class has set of constants that can be used as keys.

Null for non-hierarchical MBeans.

Table 9-2 MBean ObjectName with hierarchy

The ObjectName convention for extensions

type Fully qualified MBean Name of the parent MBean.

<Parent MBeanObj>.class.getName()

instanceName Unique name that identifies the instance of the parent MBean.

properties.key=ObjectNam
eConstants.LEVEL1_INS
TANCE_NAME

properties.value is a unique name that identifies the instance of the
MBean

Making Communicat i on Serv i ces Manageable

9-6 Platform Development Studio - Developer’s Guide

Example:

A child MBean, for example HeartBeatConfiguration, can register with the same
Level1InstanceName for all instances of the Plug-in (since it is a child, its MBean name depends
on the parent’s instance:

com.bea.wlcp.wlng:AppName= wlng_nt_sms_px21#4.0,InstanceName=
Plugin_px21_short_messaging_smpp,
Type=com.bea.wlcp.wlng.plugin.sms.smpp.management.SmsMBean,Level1InstanceName=He
artBeatManager,Level1Type=com.bea.wlcp.wlng.heartbeat.management.HeartbeatMBean

com.bea.wlcp.wlng:AppName= wlng_nt_multimedia_messaging_px21#4.0,InstanceName
Plugin_px21_multimedia_messaging_mm7, Type=
com.bea.wlcp.wlng.plugin.multimediamessaging.mm7.management.MessagingManagementM
Bean,Level1InstanceName=HeartBeatManager,Level1Type=com.bea.wlcp.wlng.heartbeat.man
agement.HeartbeatMBean

Use the Configuration Store to Persist Values
The Network Gatekeeper Configuration Store API provides a cluster-aware write-through
database cache. Parameters stored in the Configuration Store are both cached in memory and
written to the database. The store works in two modes: Local and Global. Values stored in the
Local store are of interest only to a single server instance, whereas values stored in the Global
store are of interest to all servers cluster-wide. Updates to a value in the Global store update all
cluster nodes. The example Communication Service provides a handler class,

properties.key=ObjectNam
eConstants.LEVEL1_TYP
E

Fully qualified MBean Name: <MBeanObj>.class.getName()

properties.key=ObjectNam
eConstants.LEVEL2_INS
TANCE_NAME

properties.value is a unique name that identifies the instance of the
MBean

properties.key=ObjectNam
eConstants.LEVEL2_TYP
E

Fully qualified MBean Name: <MBeanObj>.class.getName()

Table 9-2 MBean ObjectName with hierarchy

The ObjectName convention for extensions

Use the Conf igurat ion Sto re to Pe rs i s t Va lues

Platform Development Studio - Developer’s Guide 9-7

ConfigurationStoreHandler, that gives an example of both usages of the Configuration Store
API.

Note: The configuration store supports only Boolean, Integer, Long, and String values.

Making Communicat i on Serv i ces Manageable

9-8 Platform Development Studio - Developer’s Guide

Platform Development Studio - Developer’s Guide 10-1

C H A P T E R 10

Using the Platform Test Environment

Testing is a key part of the development cycle. Network Gatekeeper provides an entire suite of
testing tools to help you develop your extensions quickly and efficiently. This chapter introduces
the Platform Test Environment (PTE). It consists of:

Overview

Installing and Running the Platform Test Environment

Navigating the Platform Test Environment GUI

Extending the Platform Test Environment

Using the Unit Test Framework (UTFW) with the Platform Test Environment

Overview
The Platform Test Environment is a key part of the Platform Development Studio.

Us ing the P lat fo rm Tes t Env i ronment

10-2 Platform Development Studio - Developer’s Guide

Figure 10-1 The Platform Test Environment in Context

The Platform Test Environment is a flexible, powerful tool, consisting of:

Application service test clients for most out-of-the-box communication services

PRM test clients for many operations covered by the Partner Relationship Management
interfaces

Network simulators for most node types supported by the out-of-the-box communication
services

Dual mode support:

– Standalone with a Java Swing-based GUI

I ns ta l l ing and Running the P la t fo rm Tes t Env i ronment

Platform Development Studio - Developer’s Guide 10-3

– Console, in which the PTE’s functionality can be accessed using JMX, as, for example,
from a unit test

MBean browser for performing Network Gatekeeper management tasks

A JMS-based EDR/CDR/Alarm listener

JNDI browser

Database browser for interacting with the database

Real-time duration test graphing

SLA editor

Embedded TCP Monitor

Easily extendable architecture

– An example application test client for use with the example communication service

– An example network simulator for use with the example communication service

– A set of SPIs that allows your modules to interact with the PTE

A framework for building unit tests, including:

– A base test class, derived from JUnit

– Mechanisms that simplify connecting to the Platform Testing Environment

– An example test case for use with the example communication service

Installing and Running the Platform Test Environment
The Platform Test Environment is automatically installed when you install Network Gatekeeper.
In standard installations, it is found in the <bea_home>/wlng_pds400/pte directory. Before
you use the PTE, you must have:

Installed WLNG 4.0

Used the setWLSEnv script in <bea_home>/wlng400/server/bin or set the equivalent
path so that you have access to the Ant 1.6.5 installation that comes with WLS.

Created a driver directory under <bea_home>/wlng_pds400/pte/lib and copied your
JDBC driver into it.

Us ing the P lat fo rm Tes t Env i ronment

10-4 Platform Development Studio - Developer’s Guide

To start the PTE in GUI mode, either type ‘ant run’ in a command window, or, if you are using
Windows, double-click the run.cmd file in the PTE directory.

To start the PTE in console mode, type ‘ant console’ in a command window, or, if you are
using Windows, double-click the console.cmd file in the PTE directory.

WARNING: Compatibility between the settings of this version of the PTE and any future
versions is not guaranteed.

Navigating the Platform Test Environment GUI
The Java Swing-based GUI provides an easy to use access point to the many parts of the Platform
Test Environment. Any changes made to the GUI are saved on exit. The GUI consists, broadly,
of:

The Tools Panel, the upper panel

The Simulator Panel, the lower panel

Figure 10-2 The Main PTE GUI

Nav igat ing the P lat fo rm Tes t Env i ronment GU I

Platform Development Studio - Developer’s Guide 10-5

The Tools Panel
The Tools Panel is divided into two main sections:

The Tool Selector Panel

The Tool Action Panel

The Tool Selector Panel
Use this panel to select the tool you wish to use:

Figure 10-3 The Tool Selector

Notice the Plus and Minus icons in the lower left. You can use these to create multiple versions
of the tools. For example, you could create a server tool to correspond to each server instance you
are running.

The Tool Action Panel
The Tool Action Panel displays the actions you can do in that particular tool.

The Server Tool

Us ing the P lat fo rm Tes t Env i ronment

10-6 Platform Development Studio - Developer’s Guide

The Database Tool

The Clients Tool

The Tests Tool

The Server Tool

Figure 10-4 The Server Tool Action Panel with the Management Tab selected

At the top of the panel, you specify the server with which you wish to interact and your
administrative username and password.

Below that are the three main tabs:

Management: This tab lets you perform management tasks on Network Gatekeeper.

Nav igat ing the P lat fo rm Tes t Env i ronment GU I

Platform Development Studio - Developer’s Guide 10-7

– Browser: The sub-tab lets you browse the MBeans on the server you have chosen. You
can use this to make changes in the configuration of Network Gatekeeper instead of
opening up the Management Console. Use the Connect button to connect to the server.
Use your mouse to traverse the MBean list in the left column. Fill in your desired
information in the right column. You can use the Pop Out icon on the right to have the
same information displayed in a separate pop up window.

Note: For a detailed description of Network Gatekeeper management tasks, see the
System Administration Guide and Managing Accounts and SLAs, separate
documents in this set.

If you want to record a script so that you can automate the management tasks you need
to do more than once, use the Record button. Once you have begun recording, simply
do the tasks you wish to automate. When you are finished, click the Recording button
to stop. You will get a prompt asking you to name the script. The script will
automatically be saved when you close the PTE.

Note: Many windows display convenience functions in the form of icons, as is shown
above in the orange circle. Hover your mouse over the icon, and a tooltip
explaining its function will appear.

– Scripts: This sub-tab displays a list of all the scripts you have recorded in the past. To
play a script back, select the name you gave it when you created it, and click the Run
button.

Event Data Record: Use this tab to monitor EDRs, CDRs, and Alarms

http://e-docs.bea.com/wlcp/wlng40/admin/index.html
http://e-docs.bea.com/wlcp/wlng40/spappmgmt/index.html

Us ing the P lat fo rm Tes t Env i ronment

10-8 Platform Development Studio - Developer’s Guide

Figure 10-5 The Event Data Record Tab

Click Connect to establish the JMS connection between the PTE EDR (and CDRs and
Alarms) listener and the server instance. Select the sort of records you are interested in
receiving using the Dynamic Filter, shown above in the green box. The list of EDRs
displays in the window outlined in blue. Selecting a particular EDR in the list causes the
contents of that record to be shown in the box outlined in red.

To export, import, or copy to the clipboard a list of EDRs, use the convenience icons in the
bottom left of the EDR list window.

To save memory in situations where you are expecting a large number of EDRs, check
Counter Mode. This will count the number of records, but will not display the contents.

JNDI: Use this tab to browse the JNDI tree.

Server Log: Use this tab to browse the logs.

Nav igat ing the P lat fo rm Tes t Env i ronment GU I

Platform Development Studio - Developer’s Guide 10-9

Figure 10-6 Server Log Tab

The Database Tool

Figure 10-7 The Database Tool Action Panel with the Database Tab selected

The Database tool lets you scan your database tables and manipulate them directly.

Us ing the P lat fo rm Tes t Env i ronment

10-10 Platform Development Studio - Developer’s Guide

At the top of the panel you enter your database information, including your database username
and password. Click the Connect button to connect to the database.

Below that are the two main tabs:

Database: This tab allows you to scan your database tables, and to see the data in them. If
there is a table you wish to monitor more closely, enter the name in the dialog box at the
top of the left column and click Detach. That table then appears individually as an
additional tab.

Command: This tab allows you to enter any SQL command you wish directly to the
database.

Figure 10-8 The Command Tab

Nav igat ing the P lat fo rm Tes t Env i ronment GU I

Platform Development Studio - Developer’s Guide 10-11

The Clients Tool

Figure 10-9 The Clients Tool Action Panel with the Short Messaging Client Tab selected

The Clients Tool Action Panel is the most complex of the UIs for the Platform Test Environment.
The display is divided into three hierarchical groups:

Client Groups: Use the Clients Group column, outlined in red on the left above, to select
the functional group of clients you are interested in manipulating. Your choices are:

– Messaging

– Call Control

– Mobility

– PRM (clients for the Partnership Relationship Management interfaces)

– Other (clients for Session Management, Subscriber Profile, and the example
communication service included with the PTE)

Clients: Use the Clients tabs, outlined in blue above, to select the set of clients you are
interested in manipulating. In the context of the PTE, a client is made up of modules. Each
module represents one operation belonging to a set of interfaces. So, in the example above,
the client that is selected represents the functionality offered by the Parlay X 2.1 Short
Messaging set of interfaces.

Note: This particular client also happens to include a module that belongs to the Extended
Web Services Binary SMS interface. This is because the two sets of interfaces share

Us ing the P lat fo rm Tes t Env i ronment

10-12 Platform Development Studio - Developer’s Guide

a common network node and are bundled together in the same .EAR file in Network
Gatekeeper.

Modules: Use the Modules tabs, outlined in green above, to select the module you are
interested in manipulating. A module represents a client that executes a single operation
from an interface. So, in the example above, the module shown as Application-initiated,
represents the single operation, SendSms. If you wanted to test the operation
SendSmsLogo, you would need to create an additional module.

Once you have selected the module you wish to use, the display shows two windows. In
the lower window, you configure the client module, setting any required parameters. In the
upper right corner you will notice a small eye icon. Clicking this will route debug
information to the TCP Monitor.

In the upper window, outlined in orange, dependencies are shown. In this case, the
operation requires that the client acquire a session ID before sending the command. If you
attempt to execute a command and the dependencies have not been set up, the PTE will
offer to open the requisite modules for you. See Figure 10-14 below for more information
on running sessions.

Once the dependencies are taken care of, you can simply click the Send button if you wish
to execute the operation at that moment. You can also choose to string several tests
together into an automated set. See the The Tests Tool section below for more information.

Note: In some module configuration windows, you will see URLs written out with variable
values.

Figure 10-10 Variables in URLs

To set those variables, or to add others that are of use to you as you create and run tests,
use the Manage Variables window. Click Tools -> Manage Variables. The default
variables are shown outlined in red. To add a variable, click the plus button, outlined in
blue. When you are finished editing, click the OK button.

Nav igat ing the P lat fo rm Tes t Env i ronment GU I

Platform Development Studio - Developer’s Guide 10-13

Figure 10-11 The Manage Variables Window

Most client modules are stateless. When you click Send, the operation is executed and it
completes. But some modules have state. They are started, and they run until they are stopped.
The Short Messaging Notification Manager is such a module. As shown in Figure 10-12, it has
a Start button, rather than a Send button.

Figure 10-12 A Stateful Module

When you set up notifications, that is, when you tell Network Gatekeeper that your client is
interested in receiving asynchronous messages from the network, the client must provide a web
service to which the notifications can be delivered. These client-based web services also show up
in the PTE GUI as client modules. In Figure 10-13 below, the Notifications tab is selected. This
module runs the web service to which both kinds of Short Messaging notifications can be
returned: Delivery Receipts for Application-initiated messages and actual SMSes sent from the

Us ing the P lat fo rm Tes t Env i ronment

10-14 Platform Development Studio - Developer’s Guide

network to the client application. Notice the dependency on the Axis web server. It must be
running for the web service to function.

Figure 10-13 The Client Notification Web Service

Finally there is the question of session management. The default setting in Network Gatekeeper
is to require applications to start a session and get a Session ID before they send traffic through
the system. But this requirement is configurable in Network Gatekeeper, and so the PTE makes
it possible to turn the session requirement on and off. By selecting the Other client group and the
Session client, the Session Manager module, you can simply check the Sessionless option, shown
below in Figure 10-14, and your clients will not be required to acquire or use a Session ID in order
to run traffic.

Nav igat ing the P lat fo rm Tes t Env i ronment GU I

Platform Development Studio - Developer’s Guide 10-15

Figure 10-14 Turning Sessions Off

The Tests Tool

Figure 10-15 Creating an Automated Test Sequence

Automated: While it is possible to execute a single operation from the client configuration
screen, seen above in Figure 10-9, it is usually the case that you will want to string
together a set of actions, including setting up client and simulator modules, and executing
operations, into a single automated test sequence. The PTE makes this simple to do. To
create a test, use the icons at the top of the left column, as shown in Table 10-1:

Us ing the P lat fo rm Tes t Env i ronment

10-16 Platform Development Studio - Developer’s Guide

Once you have created your test, click the plus icon at the top of the right column to add
operations. The Select an Operation window opens, as in Figure 10-16 below.

Figure 10-16 The Select an Operation Window

Table 10-1 Creating tests

Icon Function

Adds a new test. When you click it, you will be prompted to give your test
a name.

Allows you to select from a set of predefined tests. This can be useful for
understanding test flows

Deletes the selected test.

Nav igat ing the P lat fo rm Tes t Env i ronment GU I

Platform Development Studio - Developer’s Guide 10-17

This window shows all operations available in every module in the PTE: clients, simulators, and
even duration tests. Select your first operation, and then continue adding until you have
completed the desired test sequence.

Note: If you have multiple clients that might be able to perform a particular operation, a popup
window will appear and allow you to choose the one you wish to use.

Each test sequence that you create is automatically persisted when the PTE is shut down, so that
you only need to create a test once. To run a single test from the GUI, click the Run button on
the top of the right column. To run the entire test sequence from the GUI, click the Run button
on the top of the left column. The status of the tests is indicated by the color of the box next to
the individual test item names: see Figure 10-17 below.

Figure 10-17 A Running Test

Green boxes indicate success; red boxes indicate failure; white boxes indicate an in-progress test;
and black boxes indicate tests that have not yet run.

Duration: In addition to functional testing, it is also important to see behavior over time.
The PTE also makes it easy to create duration tests and includes a real-time graphing
display. See Figure 10-18 below.

Us ing the P lat fo rm Tes t Env i ronment

10-18 Platform Development Studio - Developer’s Guide

Figure 10-18 Duration Tests

Create a new test by clicking the plus icon in the lower left corner. You are prompted for a name
for the test. Configure the test in the upper portion of the right column. Select the type of traffic
you wish to run, based on the client type, from the dropdown Traffic menu. Select what you wish
to see graphed (Transactions Per Second, Exceptions, or Latency) in the Display dropdown menu
outlined in red in the graphic above. Current statistics appear in the boxes at the bottom of the
graph, outlined in green.

Make sure the appropriate simulator is running and start the test by clicking the Start button. The
test runs in the background, so it is possible to run multiple tests in parallel.

Nav igat ing the P lat fo rm Tes t Env i ronment GU I

Platform Development Studio - Developer’s Guide 10-19

Because duration test results are not saved across PTE sessions, you can choose to export results
to be saved in a file and then import them back into the tool later, using the icons outlined in
purple above.

The Simulator Panel
Figure 10-19 The Simulator Panel with MM7 Selected

Like the Clients Tool, the Simulator panel is set up as a hierarchy. On the extreme left there are
two buttons: Map and Simulator. Under the Simulator button is a set of tabs and sub-tabs. The
tabs list the available simulator modules, including a simulator for the example communication
service (Netex), and a separate tab and module for the Axis Server, which is required to run traffic
over HTTP based protocols like MM7. See Figure 10-19 above. Under the row of tabs is the row
of sub-tabs. The number of sub-tabs depends on the module selected. In all cases, there is a
Control tab in which you can set up any necessary configurations. This area is also where the
Start button is for each of the modules. The other tabs may allow you to see the actual content of
a message or show you the statistics associated with traffic.

Us ing the P lat fo rm Tes t Env i ronment

10-20 Platform Development Studio - Developer’s Guide

Figure 10-20 The Maps Panel

The Maps panel is a variant of a tool which was originally developed as part of the Application
Developers SDK. It provides a map on which you can place phone terminals. This offers visual
support for testing Parlay X 2.1 SMS, MMS, and Terminal Location traffic.

The SLA Editor
Managing large XML files can be difficult, particularly in a test environment where you may
wish to change small details multiple times for various iterations of testing. To help you manage
your SLAs, the PTE ships with an SLA editor, which manages the tags and validation so that you
can focus on setting appropriate values. To access the SLA editor, first make sure you have
selected the Server Tool and are connected to the server. Then click Tools -> Manage SLAs in
the Menu Bar. The SLAs are fetched from the file system and the SLA Browser window opens.
See Figure 10-21.

Nav igat ing the P lat fo rm Tes t Env i ronment GU I

Platform Development Studio - Developer’s Guide 10-21

Figure 10-21 The SLA Browser

The SLA files that were fetched from the file system are listed in the main window. If you want
to search for other files that may be on your system, click the Change... button and a file browser
appears. To create an entirely new SLA, click the Plus button in the upper left corner, outlined in
purple. You can also delete or rename SLAs using buttons in the same area.

To edit an SLA, select the one you are interested in and then click the pencil icon in the upper
right corner, outlined in green. The SLA Editor window opens. See Figure 10-22.

Us ing the P lat fo rm Tes t Env i ronment

10-22 Platform Development Studio - Developer’s Guide

Figure 10-22 The SLA Editor

Select the SLA type using the dropdown menu and specify the group identifier. If you wish to
import a different SLA from the file system, or to save changes out, use the import and export
icons on the bottom left. To upload the SLAs to, or download them from, the repository in the
running instance of WLNG, use the icons outlined in blue on the bottom left.

There are two basic kinds of editing you can do - the main Service Contracts and any Overrides
you have specified. Each has its own window. To edit a Service Contract, select the item you are
interested in and click the pencil icon in the upper right corner. This opens the Contract Editor.
See Figure 10-23.

Nav igat ing the P lat fo rm Tes t Env i ronment GU I

Platform Development Studio - Developer’s Guide 10-23

Figure 10-23 The Contract Editor

The tags that can be edited appear as tabs at the top of the window. For more information on these
tags, see the “Defining Service Provider Group and Application Group SLAs” chapter in
Managing Accounts and SLAs a separate document in this set.

In the figure, a rate limit method restriction is being added to the sendData operation of the
sample communication service. When you have made your edits, click the OK button and the
window closes. Click OK once again (on Figure 10-22) the window closes. To preview the edits
you have made in XML format, click the Eye icon at the top left of the SLA Browser
(Figure 10-21). The Preview SLA window opens. See Figure 10-24.

http://e-docs.bea.com/wlcp/wlng40/spappmgmt/spappslaoverview.html

Us ing the P lat fo rm Tes t Env i ronment

10-24 Platform Development Studio - Developer’s Guide

Figure 10-24 The Preview SLA window

The Method Restriction rate limit that was added in Figure 10-23 is shown outlined in red.

When you have completed your edits, simply click the Close button on the SLA Browser
window.

Extending the Platform Test Environment
One of the most common uses for the Platform Testing Environment is to test extension
communication services. Depending on how those extensions are implemented, you may need to
create one or more new modules so that the PTE can interact successfully with your new
communication service. You can implement new client modules, and even new clients containing
multiple modules, if support for the application-facing interface that you want your
communication service to use is not already available in the PTE. You can also implement new
simulators, if the network node type that you want your communication service to interact with
is not available. From the point of view of the PTE, a module is a module.

The only relevant distinction in the PTE is between modules for operations that simply execute
and return and those for operations that start a process which runs until it is turned off. These are
called, respectively, stateless and stateful modules. See Figure 10-12 for more information.

Extend ing the P la t fo rm Test Env i ronment

Platform Development Studio - Developer’s Guide 10-25

Stateless modules must implement the CustomStatelessModule SPI and stateful modules must
implement the CustomStatefulModule SPI. There are two additional, optional interfaces that
can be implemented if you would like your module to display results (for example, a notification,
a message from the network delivered to a client Web Service) or provide statistics in the GUI.
The custom module SPI hierarchy is as follows:

Figure 10-25 The Custom SPI Hierarchy

Any module that is created must be packaged as a .jar file which must be located in the
PTE_HOME/lib/modules/ directory. The root of the .jar file must include a descriptor file
called module.xml. All custom modules automatically load when the PTE starts up.

Note: The modules created for use with the example communication service are located in
<bea_home>/wlng_pds400/example/pte_module.

The Stateful SPI
Figure 10-26 shows the execution sequence for a stateful module:

Us ing the P lat fo rm Tes t Env i ronment

10-26 Platform Development Studio - Developer’s Guide

Figure 10-26 The Execution Sequence for a Stateful Module

The following listing is the SPI that must be implemented by stateful PTE modules.

Listing 10-1 CustomStatefulModule SPI

package com.bea.wlcp.wlng.et.spi;

/**

 * This interface must be implemented by a custom stateful module.

 * A stateful module has a start() and a stop() method and will be

 * represented in the UI by the Start/Stop button.

 * Note: a stateful module is not used in duration tests.

 *

 * @author Copyright (c) 2008 by BEA Systems, Inc. All Rights Reserved.

 */

public interface CustomStatefullModule extends CustomModule {

/**

 * Starts the module.

 * @param context The custom module context

Extend ing the P la t fo rm Test Env i ronment

Platform Development Studio - Developer’s Guide 10-27

 * @return true if the module successfully started

 * @throws Exception Any exception preventing the module to start

 */

 public boolean start(CustomModuleContext context) throws Exception;

/**

 * Stops the module.

 * @param context The custom module context

 * @return true if the module successfully stopped

 * @throws Exception Any exception preventing the module to stop

 */

 public boolean stop(CustomModuleContext context) throws Exception;

}

The Stateless SPI
Figure 10-27 shows the execution sequence for a stateless module:

Figure 10-27 The Execution Sequence for a Stateless Module

The following listing is the SPI that must be implemented by stateless PTE modules.

Us ing the P lat fo rm Tes t Env i ronment

10-28 Platform Development Studio - Developer’s Guide

Listing 10-2 CustomStatelessModule SPI

package com.bea.wlcp.wlng.et.spi;

/**

 * This interface must be implemented by custom stateless module.

 * A stateless module has only an execute() method and will be

 * represented in the UI by the Send button.

 *

 * @author Copyright (c) 2008 by BEA Systems, Inc. All Rights Reserved.

 */

public interface CustomStatelessModule extends CustomModule {

/**

 * Asks the module to execute its job and return the result.

 *

 * @param context The custom module context

 * @return The result of the execution

 * @throws Exception Any exception that occurred during the execution

 */

 public Object execute(CustomModuleContext context) throws Exception;

}

The Custom Base SPI
This following is the base SPI for custom PTE modules. It should not be implemented directly.
See the first comment.

Listing 10-3 The Custom Base SPI

package com.bea.wlcp.wlng.et.spi;

Extend ing the P la t fo rm Test Env i ronment

Platform Development Studio - Developer’s Guide 10-29

import com.bea.wlcp.wlng.et.api.CustomModuleContext;

/**

 * This interface defines the general API a custom module must implement.

 * Note: a custom module should NOT implement this interface directly but

 * one of the subinterface like CustomStatefulModule or

CustomStatelessModule.

 *

 * @author Copyright (c) 2008 by BEA Systems, Inc. All Rights Reserved.

 */

public interface CustomModule {

 /**

 * Prepares the module with the given context. This method is invoked

before

 * the module is executed: it can be used by the module to prepare

 * any internal states needed.

 * Note: when a duration test is performed on the Platform Test

Environment,

 * prepare() is invoked only once at the beginning of the duration test.

 *

 * @param context The context of the custom module

 * @throws Exception Any exception that occurred during the module

preparation

 */

 public void prepare(CustomModuleContext context) throws Exception;

Us ing the P lat fo rm Tes t Env i ronment

10-30 Platform Development Studio - Developer’s Guide

The Custom Results Provider SPI
The following listing is the SPI that must be implemented by modules that wish to display some
sort of results in the GUI.

Listing 10-4 The CustomResultsProvider SPI

package com.bea.wlcp.wlng.et.spi;

/**

 * A custom module can implement this interface if it wants to provide

 * a list of results in the UI. The PTE will automatically display a list

 * and handle the user interaction with it.

 *

 * @author Copyright (c) 2008 by BEA Systems, Inc. All Rights Reserved.

 */

public interface CustomResultsProvider {

/**

 * Clears the results.

 */

 public void clearResults();

/**

 * Returns an array of string that will be used to create

 * the name of each column of the results table.

 * @return An array of string to create the column headers

 */

 public String[] getResultsHeaders();

/**

 * Returns the results. Each result is composed of a map whose keys are

 * the same as the strings returned by getResultsHeaders().

Extend ing the P la t fo rm Test Env i ronment

Platform Development Studio - Developer’s Guide 10-31

 *

 * Note: It is up to the custom module to accumulate the results until

 * this method is invoked by the PTE.

 *

 * @return A list of results

 */

 public List<Map<String,String>> getResults();

}

The Custom Statistics Provider SPI
The following listing is the SPI that must be implemented by modules that wish to display
statistics in the GUI.

Listing 10-5 The CustomStatisticsProvider SPI

package com.bea.wlcp.wlng.et.spi;

/**

 * A custom module can implement this interface if it wants to provide

 * some statistics in the UI. The PTE will automatically display a list

 * and handle the user interaction with it.

 * @author Copyright (c) 2008 by BEA Systems, Inc. All Rights Reserved.

 */

public interface CustomStatisticsProvider {

/**

 * Clears the statistics.

 */

 public void clearStatistics();

Us ing the P lat fo rm Tes t Env i ronment

10-32 Platform Development Studio - Developer’s Guide

/**

 * Returns a map of statistics. Each key represent a particular statistic

 * and the value the value of the statistic.

 * @return The map of statistics

 */

 public Map<String,String> getStatistics();

}

The Context API
The following listing is the API that allows modules to acquire context.

Listing 10-6 The Context API

package com.bea.wlcp.wlng.et.api;

/**

 * This interface defines the context available to a custom module.

 *

 * @author Copyright (c) 2008 by BEA Systems, Inc. All Rights Reserved.

 */

public interface CustomModuleContext {

 /**

 * Returns the custom module data object as described in the module.xml

 * @return The custom module data object

 */

 public Object getData();

Extend ing the P la t fo rm Test Env i ronment

Platform Development Studio - Developer’s Guide 10-33

 /**

 * Returns the module of the specified type that this module depends on.

 * If there are many modules of the same type, the one chosen by the user

 * in the UI will be chosen.

 *

 * @param type The type of module

 * @return The module instance of the specified type

 */

 public CustomModule getDependency(String type);

 /**

 * Prepares the stub that the module will use to send a request. The PTE

 * will perform various changes to the stub depending on the UI settings,

 * like TCP Monitor or Override Endpoint.

 *

 * @param stub The stub to prepare

 * @param path The path to the parameter declared in module.xml that

corresponds

 * to the stub url. Use null if it doesn't have any corresponding parameter.

 */

 public void prepareStub(Stub stub, String path);

 /**

 * Deploy (or undeploy) a service using a specific WSDD file.

 *

 * @param wsddFile The WSDD file that the axis server will execute

 * @throws Exception Any exception when executing the command

Us ing the P lat fo rm Tes t Env i ronment

10-34 Platform Development Studio - Developer’s Guide

 */

 public void axisDeploy(String wsddFile) throws Exception;

The Module.xml Descriptor File
Every module is packaged in a .jar file with a descriptor file, module.xml, in its root. What is in
the file depends on the nature of the module.

The following is the listing for a client module and the simulator module supplied with the
example communication service:

Listing 10-7 The example module.xml

<module-factory xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://www.bea.com/ns/wlng/40/et">

 <module name="example_application_initiated"

 type="client"

 class="com.bea.wlcp.wlng.et.example.SendDataModule"

 version="1.0"

 depends="session"

 uiPanel="client"

 uiTabs="Other,Example,Application-Initiated"

 >

 <data>

 <parameter name="Parameters"

 class="com.bea.wlcp.wlng.et.example.SendDataData"

 occurs="1">

Extend ing the P la t fo rm Test Env i ronment

Platform Development Studio - Developer’s Guide 10-35

 <parameter name="url"

 class="java.lang.String"

 occurs="1"

 default="http://${at.host}:${at.port}/example/SendData"

 monitor="true"/>

 <parameter name="data"

class="com.acompany.schema.example.data.send.local.SendData"

 occurs="1">

 <parameter name="address"

 class="java.net.URI"

 occurs="1"

 default="tel:1234"/>

 <parameter name="data"

 class="java.lang.String"

 occurs="1"

 default="Hello, world"/>

 </parameter>

 </parameter>

 </data>

 </module>

 ...

Us ing the P lat fo rm Tes t Env i ronment

10-36 Platform Development Studio - Developer’s Guide

 <module name="example_simulator"

 type="netex"

 class="com.bea.wlcp.wlng.et.example.SimulatorModule"

 version="1.0"

 uiPanel="simulator"

 uiTabs="Netex"

 >

 <data>

 <parameter name="Parameters"

 class="com.bea.wlcp.wlng.et.example.SimulatorData"

 occurs="1">

 <parameter name="port"

 class="int"

 occurs="1"

 default="5001"/>

 </parameter>

 </data>

 </module>

</module-factory>

Below is the entire .xsd file for module.xml:

Extend ing the P la t fo rm Test Env i ronment

Platform Development Studio - Developer’s Guide 10-37

Listing 10-8 The module.xsd File

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified">

 <!-- Main element that describes one or more modules -->

 <xs:element name="module-factory">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="module" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <!-- Defines a single module -->

 <xs:element name="module">

 <xs:complexType>

 <xs:sequence>

 <!-- Optional data of the module -->

 <xs:element ref="data" minOccurs="0" maxOccurs="1"/>

 </xs:sequence>

 <!-- Name of the module. It will be used also for the display -->

 <xs:attribute name="name" type="xs:string" use="required"/>

 <!-- Type of the module -->

 <xs:attribute name="type" type="xs:string" use="required"/>

 <!-- Class of the module (fully qualified) -->

 <xs:attribute name="class" type="xs:string" use="required"/>

Us ing the P lat fo rm Tes t Env i ronment

10-38 Platform Development Studio - Developer’s Guide

 <!-- Version of the module -->

 <xs:attribute name="version" type="xs:string" use="required"/>

 <!-- Name of the module this module depends on.

 Predefined types are:

 - session : session module

 - axis : axis server module

 The PTE will make sure that before this module is started, the

 dependent module is running. -->

 <xs:attribute name="depends" type="xs:string" use="optional"/>

 <!-- UI panel where the module will be located (see ui-panels) -->

 <xs:attribute name="uiPanel" type="ui-panels" use="required"/>

 <!-- Location of the module in the panel tabs.

 The location is a list of UI tab names separated by comma. For example:

 "Other,Example,SendData"

 means that the module will be in a tab named "SendData"

 located in the tab "Example" located in tab "Other".

 The name of each tab is available in the UI.

 If a tab doesn't exist for a particular name, it will be created.-->

 <xs:attribute name="uiTabs" type="xs:string" use="required"/>

 </xs:complexType>

 </xs:element>

 <!-- Available UI panels -->

 <xs:simpleType name="ui-panels">

 <xs:restriction base="xs:string">

 <!-- Client panel -->

 <xs:enumeration value="client"/>

Extend ing the P la t fo rm Test Env i ronment

Platform Development Studio - Developer’s Guide 10-39

 <!-- Simulator panel -->

 <xs:enumeration value="simulator"/>

 </xs:restriction>

 </xs:simpleType>

 <!-- Data of the module -->

 <xs:element name="data">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="parameter" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <!-- A single parameter -->

 <xs:element name="parameter">

 <xs:complexType>

 <xs:sequence>

 <!-- Can contain other parameters too -->

 <xs:element ref="parameter" minOccurs="0" maxOccurs="unbounded"/>

 <!-- Values restriction of the parameter (see restricted) -->

 <xs:element ref="restricted" minOccurs="0" maxOccurs="1"/>

 <!-- Internal use only -->

 <xs:element ref="instance" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <!-- Name of the parameter. It will be used to access the member

 of the parameter (MBean-style) -->

Us ing the P lat fo rm Tes t Env i ronment

10-40 Platform Development Studio - Developer’s Guide

 <xs:attribute name="name" type="xs:string" use="required"/>

 <!-- Fully qualified name of the parameter -->

 <xs:attribute name="class" type="xs:string" use="required"/>

 <!-- Occurrences of the parameter (see parameter-occurs) -->

 <xs:attribute name="occurs" type="parameter-occurs" use="required"/>

 <!-- Default value of the parameter -->

 <xs:attribute name="default" type="xs:string" use="optional"/>

 <!-- Set to true if this parameter represent an URL to a stub. If true,

 it can be monitored by TCP monitor and have other properties -->

 <xs:attribute name="stub" type="xs:boolean" use="optional"/>

 <!-- Set to true if this parameter must be instanciated at creation

time.

 This is only useful if the parameter is optional. -->

 <xs:attribute name="instanciate" type="xs:boolean" use="optional"/>

 <!-- Internal use only -->

 <xs:attribute name="preview" type="xs:boolean" use="optional"/>

 <!-- Internal use only -->

 <xs:attribute name="help" type="xs:boolean" use="optional"/>

 <!-- Internal use only -->

 <xs:attribute name="multiline" type="xs:integer" use="optional"/>

 <!-- Internal use only -->

 <xs:attribute name="timebase" type="parameter-timebase"

use="optional"/>

 <!-- Optional display string to use instead of the name in the UI -->

 <xs:attribute name="display" type="xs:string" use="optional"/>

 </xs:complexType>

 </xs:element>

Extend ing the P la t fo rm Test Env i ronment

Platform Development Studio - Developer’s Guide 10-41

 <!-- The value the parameter is restricted to -->

 <xs:element name="restricted">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="value" minOccurs="1" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <!-- A value has a content only -->

 <xs:element name="value">

 <xs:complexType>

 <xs:attribute name="content" type="xs:string" use="required"/>

 </xs:complexType>

 </xs:element>

 <!-- The occurrences of a parameter -->

 <xs:simpleType name="parameter-occurs">

 <xs:restriction base="xs:string">

 <!-- required (one and only one) -->

 <xs:enumeration value="1"/>

 <!-- optional -->

 <xs:enumeration value="?"/>

 <!-- one or more -->

 <xs:enumeration value="+"/>

 <!-- zero or more -->

 <xs:enumeration value="*"/>

Us ing the P lat fo rm Tes t Env i ronment

10-42 Platform Development Studio - Developer’s Guide

 <!-- tree of parameter-->

 <xs:enumeration value="t"/>

 </xs:restriction>

 </xs:simpleType>

 <!-- Internal use only -->

 <xs:element name="instance">

 <xs:complexType>

 <xs:attribute name="v1" type="xs:string" use="required"/>

 <xs:attribute name="v2" type="xs:string" use="optional"/>

 <xs:attribute name="v3" type="xs:string" use="optional"/>

 </xs:complexType>

 </xs:element>

 <!-- Internal use only -->

 <xs:simpleType name="parameter-timebase">

 <xs:restriction base="xs:string">

 <xs:enumeration value="ms"/>

 <xs:enumeration value="s"/>

 <xs:enumeration value="min"/>

 <xs:enumeration value="h"/>

 </xs:restriction>

 </xs:simpleType>

</xs:schema>

Us ing the Un i t Tes t F ramework (UTFW) w i th the P la t fo rm Test Env i ronment

Platform Development Studio - Developer’s Guide 10-43

Using the Unit Test Framework (UTFW) with the Platform
Test Environment

Unit tests are a core part of any testing cycle. Data are input into the system and the results are
retrieved from the system and compared to expected values, all programmatically.

The Unit Test Framework allows you to create unit tests for the PTE easily. You implement your
test class based on the abstract class WlngBaseTestCase and it manages the mechanics of using
JMX and JMS to connect to the PTE for you. A test.properties file located in the same
directory can be used to define commonly changed properties of the test.

Note: The WlngBaseTestCase class is located in
<bea_home>/wlng_pds400/lib/wlng/pte_api.jar.

There are five basic steps to creating a unit test for the PTE:

1. Create any necessary client or simulator modules for the PTE using the required SPI and
XML configuration files

2. Implement a test class based on the abstract class WlngBaseTestCase

3. Provision Network Gatekeeper

4. Start the Platform Test Environment and make sure the modules are correctly loaded

5. Run the test class

Note: The PTE should be running in Console (non-GUI) mode when you run your test. See
Installing and Running the Platform Test Environment for more information on
starting in Console mode.

Us ing the P lat fo rm Tes t Env i ronment

10-44 Platform Development Studio - Developer’s Guide

Figure 10-28 An SMS Unit Test Sequence

The test sequence flow is as follows:

1. The test client calls execute on the PTE’s Module Management MBean. The mechanics of
the JMX call are taken care of by the base class.

2. The MBean calls execute on the specified Module, in this case sendSMS. This request
includes a request for delivery receipts.

3. The sendSMS Module sends the request to Network Gatekeeper.

4. Network Gatekeeper processes it and submits it to the network simulator module, in this case
the SMPP module

5. The simulator module returns a Delivery Receipt to Network Gatekeeper

6. Network Gatekeeper sends the receipt on to the Notification module (which represents the
client Web Service implementation)

7. The test client retrieves the result of Network Gatekeeper’s submit from the SMPP simulator

8. The test client retrieves the Delivery Receipt from the Notification module

Us ing the Un i t Tes t F ramework (UTFW) w i th the P la t fo rm Test Env i ronment

Platform Development Studio - Developer’s Guide 10-45

To help you understand more clearly how all this works, there is an example unit test, which tests
the example communication service, using the example clients and simulator. In standard
installations, it is located in
<bea_home>/wlng_pds400/example/unit_test/src/com/bea/wlcp/wlng/pds/example

. See Listing 10-9 below.

Listing 10-9 A Unit Test for the Example Communication Service

package com.bea.wlcp.wlng.et.example;

import com.bea.wlcp.wlng.et.api.WlngBaseTestCase;

import java.util.List;

import java.util.Map;

/**

 * This class illustrates how to use the Unit Test Framework to

 * test the Communication Service Example. A few things are assumed before

 * running this class:

 * - the WLNG should be running and configured properly

 * - the CS example should be deployed and ready

 *

 * Note: this example uses also the wlngJmx to be able to access the WLNG

 * MBeans to ask the CS example plugin to connect to the Netex simulator.

 *

 */

public class TestSendData extends WlngBaseTestCase {

Us ing the P lat fo rm Tes t Env i ronment

10-46 Platform Development Studio - Developer’s Guide

 private static final String SEND_DATA_MBEAN =

"com.bea.wlcp.wlng.pte:group=traffic,name=SendData";

 private static final String NETWORK_TRIGGERED_MBEAN =

"com.bea.wlcp.wlng.pte:group=traffic,name=NetworkTriggered";

 private static final String NOTIF_MANAGER_MBEAN =

"com.bea.wlcp.wlng.pte:group=client,name=NotificationManager";

 private static final String NOTIF_MBEAN =

"com.bea.wlcp.wlng.pte:group=client,name=Notification";

 private static final String NETEX_SIMULATOR_MBEAN =

"com.bea.wlcp.wlng.pte:group=netex,name=Simulator";

 private static final String EXAMPLE_PLUGIN_MBEAN =

 "com.bea.wlcp.wlng:AppName=es_example_nt#4.0," +

 "InstanceName=example_netex_plugin," +

"Type=com.acompany.plugin.example.netex.management.ExampleMBean";

 public TestSendData() throws Exception {

 }

 @Override

 protected void setUp() throws Exception {

 super.setUp();

 wlngJmx.open("localhost", 8001, "weblogic", "weblogic");

 start(NETEX_SIMULATOR_MBEAN);

 }

 @Override

 protected void tearDown() throws Exception {

Us ing the Un i t Tes t F ramework (UTFW) w i th the P la t fo rm Test Env i ronment

Platform Development Studio - Developer’s Guide 10-47

 wlngJmx.close();

 stop(NETEX_SIMULATOR_MBEAN);

 super.tearDown();

 }

 public void testSendData() throws Exception {

 assertTrue(isRunning(NETEX_SIMULATOR_MBEAN));

 resetStatistics(NETEX_SIMULATOR_MBEAN);

 wlngJmx.invokeOperation(EXAMPLE_PLUGIN_MBEAN, "connect");

 String data = "Hello at " + System.currentTimeMillis();

 String to = "tel:1234";

 putParameter(SEND_DATA_MBEAN, "url",

"http://localhost:8001/example/SendData");

 putParameter(SEND_DATA_MBEAN, "data.data", data);

 putParameter(SEND_DATA_MBEAN, "data.address", to);

 start(SESSION_MBEAN);

 assertTrue(isRunning(SESSION_MBEAN));

 execute(SEND_DATA_MBEAN);

 Thread.sleep(2000);

 stop(SESSION_MBEAN);

Us ing the P lat fo rm Tes t Env i ronment

10-48 Platform Development Studio - Developer’s Guide

 Map<String,String> stats = listAllStatistics(NETEX_SIMULATOR_MBEAN);

 System.out.println("Simulator statistics: "+stats);

 assertEquals("MessageReceived", "1", stats.get("MessageReceived"));

 assertEquals("MessageSent", "0", stats.get("MessageSent"));

 }

 public void testSendNetworkTriggeredData() throws Exception {

 String data = "Hello at " + System.currentTimeMillis();

 String from = "tel:1234";

 String to = "tel:7878";

 String correlator = "1234567890";

 assertTrue(isRunning(NETEX_SIMULATOR_MBEAN));

 resetStatistics(NETEX_SIMULATOR_MBEAN);

 wlngJmx.invokeOperation(EXAMPLE_PLUGIN_MBEAN, "connect");

 start(SESSION_MBEAN);

 assertTrue(isRunning(SESSION_MBEAN));

 putParameter(NOTIF_MANAGER_MBEAN, "url",

"http://localhost:8001/example/NotificationManager");

 putParameter(NOTIF_MANAGER_MBEAN, "start.address", "tel:7878");

 putParameter(NOTIF_MANAGER_MBEAN, "start.correlator", correlator);

 putParameter(NOTIF_MANAGER_MBEAN, "start.endpoint",

"http://localhost:13444/axis/services/Notification");

 putParameter(NOTIF_MANAGER_MBEAN, "stop.correlator", correlator);

 start(NOTIF_MANAGER_MBEAN);

Us ing the Un i t Tes t F ramework (UTFW) w i th the P la t fo rm Test Env i ronment

Platform Development Studio - Developer’s Guide 10-49

 start(NOTIF_MBEAN);

 putParameter(NETWORK_TRIGGERED_MBEAN, "data", data);

 putParameter(NETWORK_TRIGGERED_MBEAN, "fromAddress", from);

 putParameter(NETWORK_TRIGGERED_MBEAN, "toAddress", to);

 clearResults(NOTIF_MBEAN);

 execute(NETWORK_TRIGGERED_MBEAN);

 Thread.sleep(2000);

 stop(NOTIF_MBEAN);

 stop(NOTIF_MANAGER_MBEAN);

 stop(SESSION_MBEAN);

 Map<String,String> stats = listAllStatistics(NETEX_SIMULATOR_MBEAN);

 System.out.println("Simulator statistics: "+stats);

 assertEquals("MessageReceived", "0", stats.get("MessageReceived"));

 assertEquals("MessageSent", "1", stats.get("MessageSent"));

 List<Map<String,String>> results = listAllResults(NOTIF_MBEAN);

 System.out.println("Notification results: "+results);

 assertEquals("Correlator", correlator,

results.get(0).get("Correlator"));

 assertEquals("From Address", from, results.get(0).get("From Address"));

 assertEquals("Data", data, results.get(0).get("Data"));

Us ing the P lat fo rm Tes t Env i ronment

10-50 Platform Development Studio - Developer’s Guide

 }

}

Platform Development Studio - Developer’s Guide 11-1

C H A P T E R 11

Service Interceptors

The following sections give a high-level overview of service interceptors and describe both the
out-of-the-box interceptors that ship with Network Gatekeeper and how to develop your won
custom interceptors:

Overview

Interceptor Decisions and Request Flow

– Decisions

– Flow Control

– Changing the invocation order

Standard Interceptors

– Retry functionality for plug-ins

Custom Interceptors

– Developing Custom Interceptors

– Deploying Custom Interceptors

Overview
Interceptors are used to:

Provide a mechanism to intercept and manipulate a request flowing through any arbitrary
Communication Service in Network Gatekeeper

Se rv i ce In te rcepto rs

11-2 Platform Development Studio - Developer’s Guide

Supply an easy way to modify the request flow

Simplify the routing mechanism for plug-ins

Centralize policy and SLA enforcement

Some typical use cases for interceptors are to:

Deny a request if the user does not subscribe to a particular service in the application layer.

Deny a request if a PIN is not valid

Verify that a request’s parameters are valid

Perform argument manipulation like aliasing

A set of standard interceptors are provided out-of-the-box. Some are required, while others
provide extra functionality. In addition, custom interceptors can be developed.

Interceptor Decisions and Request Flow
An interceptor makes a decision whether to permit, deny or stay neutral to a particular request:
see Decisions. The Plug-in Manager is responsible for calling the first interceptor in the chain of
interceptors as defined in the interceptor configuration file: see Flow Control. When changing the
chain of interceptors, the interceptor module normally needs to be redeployed: see Changing the
invocation order.

Decisions
For application-initiated requests, the Plug-in Manager is called automatically by the service EJB
for the application-facing interface. For network-triggered requests, the Plug-in Manager is called
by an aspect that is woven prior to calling the service callback EJB for the application-facing
interface.

Figure 11-1 illustrates where interceptors are triggered, both for application-initiated requests
and for network-triggered.

In te rcepto r Dec is ions and Request F l ow

Platform Development Studio - Developer’s Guide 11-3

Figure 11-1 Interceptors and the request flow

The interceptor chain is invoked at the point-cut that is a Java representation of the
application-facing interface. Note that some application-initiated requests are not necessarily
propagated to the network, and some network-triggered requests are not necessarily forwarded to
the service callback client.

Each interceptor is responsible for deciding whether to continue to proceed down the chain of
interceptors or to break it. The interceptor has two ways to break the chain, either to return or to
abort.

Se rv i ce In te rcepto rs

11-4 Platform Development Studio - Developer’s Guide

Figure 11-2 Proceeding or breaking the interceptor chain

When the decision is to:

Proceed, the request is passed on to the next interceptor in the chain and ultimately to the
network protocol plug-in or to the application. When the request is returned from either
one of these, the return path traverses the interceptors that were used in the calling path,
making in possible to manipulate the request in the return path and ultimately return to the
originator of the request, the application or the network node.

Return, the request is rolled back through the previous interceptors using a regular return
statement, making it possible for the previous interceptors to manipulate the request in the
rollback path and ultimately return to the originator of the request, the application or the
network node.

Abort the request, is rolled back through each interceptors’ exception catch-block rather
than returning in a regular mode.

In te rcepto r Dec is ions and Request F l ow

Platform Development Studio - Developer’s Guide 11-5

– For application-initiated requests the exception is reported back to the application. It is
possible to reuse the exception catalogue to map the exception thrown by the
interceptor to an exception defined by the application-facing interface.
com.bea.wlcp.wlng.api.plugin.DenyPluginException should be used by the
interceptors for this scenario.

– For network-triggered requests, it is the responsibility of the plug-in to act on the
thrown exception.

The interceptors have access to context data for the request. The actual data that is available
depends on the context of the request. In general, the data available is the data that is defined by
the application-facing interface, and includes the following items:

The RequestContext for the request, including:

– Service provider account ID.

– Application account ID.

– Application User ID.

– Transaction ID.

– Session ID.

– A Java Map containing arbitrary request-specific data.

The type of plug-in targeted by the request for (application-initiated requests).

The type of object targeted by the request (network-triggered requests).

The method targeted by the request.

The arguments that will be used in the method targeted by the request.

The set of RequestInfo available by the request, including:

– method name.

– arguments to the method.

– plug-in type.

A list of plug-ins that matches the specified RequestInfo.

The interception point: is the request is network-triggered or is it application-initiated.

The following data can be set by the interceptor:

In the RequestContext:

Se rv i ce In te rcepto rs

11-6 Platform Development Studio - Developer’s Guide

– Session ID.

– Transaction ID.

– Java Map.

A list of plug-ins that matches the specified RequestInfo.

Arguments to the method.

Flow Control
The invocation order of interceptors is defined in an XML-based configuration file that contains
the interceptors: see Standard Interceptors.

Each interceptor is identified by the class name of the entry point of the interceptor, that is, the
class that implements the Service Provider Interface (SPI) Interceptor.

The configuration file, which is expressed in XML, contains the tags described in Table 11-1.

Table 11-1 Description of interceptor configuration file

Tag Description

<interceptor-config> Main tag. Contains zero or more <position> tags.

<position> Contains one or more <interceptor> tags.

Has an attribute name which is either:
• MT_NORTH, which indicates that all <interceptor> tags encapsulated

by this tag are valid for application-initiated (mobile terminated)
requests.

• MO_NORTH, which indicates that all <interceptor> tags encapsulated
by this tag are valid for network-triggered (mobile originated) requests.

An interceptor may be present in both.

<interceptor> Has the following attributes:
• class, which identifies the class for the interceptor implementation, see

above.
• index, which indicates the invocation order relative to other

interceptors within the same <position> tag. The order is ascending.
Must be unique.

In te rcepto r Dec is ions and Request F l ow

Platform Development Studio - Developer’s Guide 11-7

Listing 11-1 Example of an interceptor configuration file

<?xml version="1.0" encoding="UTF-8"?>

<interceptor-config xmlns="http://www.bea.com/ns/wlng/30"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.bea.com/ns/wlng/30 config.xsd">

<position name="MT_NORTH">

<interceptor class="com.bea.wlcp.wlng.interceptor.EnforceApplicationState"
index="100"/>

<interceptor class="com.bea.wlcp.wlng.interceptor.EnforceSpAppBudget"
index="200"/>

<interceptor
class="com.bea.wlcp.wlng.interceptor.ValidateRequestUsingRequestFactory"
index="300"/>

<interceptor class="com.bea.wlcp.wlng.interceptor.CreatePluginList"
index="400"/>

<interceptor class="com.bea.wlcp.wlng.interceptor.RemoveInactivePlugin"
index="500"/>

<interceptor
class="com.bea.wlcp.wlng.interceptor.RemoveInvalidAddressPlugin" index="600"/>

<interceptor
class="com.bea.wlcp.wlng.interceptor.FilterPluginListUsingCustomMatch"
index="700"/>

<interceptor class="com.bea.wlcp.wlng.interceptor.RoundRobinPluginList"
index="800"/>

<interceptor class="com.bea.wlcp.wlng.interceptor.EnforceNodeBudget"
index="900"/>

<interceptor
class="com.bea.wlcp.wlng.interceptor.InvokeServiceCorrelation" index="1000"/>

<interceptor
class="com.bea.wlcp.wlng.interceptor.FindAndValidateSLAContract"
index="1100"/>

<interceptor class="com.bea.wlcp.wlng.interceptor.CreatePolicyData"
index="1200"/>

Se rv i ce In te rcepto rs

11-8 Platform Development Studio - Developer’s Guide

<interceptor
class="com.bea.wlcp.wlng.interceptor.CheckMethodParametersFromSLA"
index="1300"/>

<interceptor
class="com.bea.wlcp.wlng.interceptor.EnforceBlacklistedMethodFromSLA"
index="1400"/>

<interceptor
class="com.bea.wlcp.wlng.interceptor.InjectValuesInRequestContextFromSLA"
index="1500"/>

<interceptor class="com.bea.wlcp.wlng.interceptor.EvaluateILOGPolicy"
index="1600"/>

<interceptor class="com.bea.wlcp.wlng.interceptor.InvokePlugin"
index="1700"/>

</position>

<position name="MO_NORTH">

<interceptor class="com.bea.wlcp.wlng.interceptor.EnforceApplicationState"
index="100"/>

<interceptor
class="com.bea.wlcp.wlng.interceptor.InvokeServiceCorrelation" index="200"/>

<interceptor class="com.bea.wlcp.wlng.interceptor.CreatePolicyData"
index="300"/>

<interceptor class="com.bea.wlcp.wlng.interceptor.EvaluateILOGPolicy"
index="400"/>

<interceptor class="com.bea.wlcp.wlng.interceptor.InvokeApplication"
index="500"/>

</position>

</interceptor-config>

Each interceptor is responsible for calling the next interceptor in the chain, as opposed to being
invoked by a delegator. This means that:

For application-initiated request, the interceptors can change and add request-specific data.
This data is then propagated to the next interceptor and ultimately to the network protocol
plug-in. When the request returns from the plug-in, the data can be changed as the request
is returning through the invocation chain.

Standard In te rcepto rs

Platform Development Studio - Developer’s Guide 11-9

For network-triggered request, the interceptors can change and add request-specific data.
This data is then propagated to the next interceptor and ultimately to the application. When
the request returns from the application, the data can be changed as the request is returning
through the invocation chain.

This is useful for aliasing of data, where the interceptor anonymizes request data such as
telephone numbers so that an application is not aware of the true subscriber telephone number.

For application-initiated requests, the last interceptor in the chain is responsible for calling the
plug-in. The out-of-the-box interceptor InvokePlugin does this.

For network-triggered requests, the last interceptor in the chain is responsible for calling the
callback service EJB, which calls the application. The out-of-the-box interceptor
InvokeApplication does this.

In either scenario, the first interceptor is called by the Plug-in Manager. The Plug-in Manager is,
for application-triggered requests, invoked by the service EJB. For network triggered requests,
the Plug-in Manager is invoked by an aspect applied to the north interface of the plug-in.

Changing the invocation order
As described in Flow Control, the invocation order of the interceptors is defined in the interceptor
configuration file, see Table 11-3.

To rearrange the invocation chain, explode the ear file, edit the config.xml file and change the
attribute index in the tag <interceptor>. Repackage the ear file and deploy it.

To exclude an interceptor chain, explode the ear file and delete or comment out the
<interceptor> tag for it. Repackage the ear file and deploy it.

Always use the interceptors.ear deployed on the Administration server as the master and use
standard WebLogic procedures to redeploy the application interceptor.ear to all servers in
the network tier cluster from the Administration server.

Standard Interceptors
Below is a description of the interceptors that are available out of the box as a part of Network
Gatekeeper. The name of the interceptor in the configuration file is the fully qualified class name.
That is, it is prefixed with com.bea.wlcp.wlng.interceptor.

Se rv i ce In te rcepto rs

11-10 Platform Development Studio - Developer’s Guide

Table 11-2 Out-of-the-box interceptors

Interceptor Description

EnforceApplicationState

Enforces the application state. Verifies that the application with which the
request is related has established a session with Network Gatekeeper.

EnforceSpAppBudget

Enforces the budget defined in the service provider group SLA and
application group SLA. Is related to the SLA tag <rate> in
<methodRestrictions>: see Defining Service Provider Level and
Application Level Service Agreements.

ValidateRequestUsingRequestFactory

Validates the request using the RequestFactory corresponding to the type
of plug-in the request is intended for. See description of the class
RequestFactory.

CreatePluginList

Creates a list of plug-ins that are capable of handling the given request.

RemoveInactivePlugin

Removes any plug-in that is not active from the current plug-in list.

CreatePluginList must have been invoked prior to this.

RemoveInvalidAddressPlugin

Matches configured plug-in routes with plug-ins.

Removes any plug-in which does not support the address provided in the
request from the current plug-in list.

CreatePluginList must have been invoked prior to this.

FilterPluginListUsingCustomMatch

Invokes the custom match method of each plug-in in the current plug-in
list. The custom match method either removes the plug-in from the current
plug-in list or marks it as required.

CreatePluginList must have been invoked prior to this.

http://e-docs.bea.com/wlcp/wlng40/spappmgmt/spappslaoverview.html
http://e-docs.bea.com/wlcp/wlng40/spappmgmt/spappslaoverview.html
http://e-docs.bea.com/wlcp/wlng40/extension/core.html#wp1118639

Standard In te rcepto rs

Platform Development Studio - Developer’s Guide 11-11

RoundRobinPluginList

Performs a round-robin of the list of available plug-ins. This is not a strict
round-robin, but a function of the number of plug-ins that match the request
and the number of destination or target addresses in the request. If these
parameters are consistent, a true round-robin is performed.

CreatePluginList must have been invoked prior to this.

EnforceNodeBugdet

Enforces all settings in the service provider node SLA and global node
SLA, including validity of the dates and the budgets. See Writing Node
SLAs.

EnforceSpAppBudget must have been invoked prior to this.

InvokeServiceCorrelation

Invokes the service correlation feature, see Service Correlation.

FindAndValidateSLAContract

Enforces the existence of application level and service provider level SLAs
for the given request. It also verifies that the dates given in the SLA are
current. See Defining Service Provider Level and Application Level
Service Agreements.

CreatePolicyRequestData

Creates the policy request data object needed by other interceptors.

CheckMethodParametersFromSLA

Checks and enforces that the request parameters are allowed as specified in
the service provider group and application group SLAs.

Is related to the SLA tags <parameterName> and <parameterValue> in
<methodParameters>, see Defining Service Provider Level and
Application Level Service Agreements.

FindAndValidateSLAContract and CreatePolicyRequest must have been
invoked prior to this.

EnforceBlacklistedMethodFromSLA

Table 11-2 Out-of-the-box interceptors

Interceptor Description

http://e-docs.bea.com/wlcp/wlng40/admin/pluginmanager.html#wp1087299
http://e-docs.bea.com/wlcp/wlng40/admin/pluginmanager.html#wp1087299
http://e-docs.bea.com/wlcp/wlng40/extension/core.html#wp1118639
http://e-docs.bea.com/wlcp/wlng40/spappmgmt/spappslaoverview.html
http://e-docs.bea.com/wlcp/wlng40/spappmgmt/spappslaoverview.html
http://e-docs.bea.com/wlcp/wlng40/spappmgmt/spappslaoverview.html
http://e-docs.bea.com/wlcp/wlng40/spappmgmt/spappslaoverview.html

Se rv i ce In te rcepto rs

11-12 Platform Development Studio - Developer’s Guide

Enforces the method blacklist as specified in the service provider group
and application group SLAs.

Is related to the SLA tag <blacklistedMethod> in <methodAccess>. See
Defining Service Provider Level and Application Level Service
Agreements.

FindAndValidateSLAContract must have been invoked prior to this.

InjectValuesInRequestContextFromSLA

Adds any optional request context attribute as specified in the service
provider group and application group SLAs.

Is related to the SLA tags <attributeName>, <attributeValue>, and
<contextAttribute> in <requestContext>. See Defining Service Provider
Level and Application Level Service Agreements.

FindAndValidateSLAContract must have been invoked prior to this.

EvaluateILOGPolicy

Evaluates any custom ILOG policy rules.

CreatePolicyRequestData must have been invoked prior to this.

InvokePlugin

Invokes the plug-in(s). This should be the last interceptor for an
application-initiated (mobile terminated) request.

CreatePluginList must have been invoked prior to this.

InvokeApplication

Invokes the Application via the service callback EJB. This should be the
last interceptor for an network-triggered (mobile originated) request.

RetryPlugin

Performs retries of request. See Retry functionality for plug-ins.

CreatePluginList must have been invoked prior to this.

Table 11-2 Out-of-the-box interceptors

Interceptor Description

http://e-docs.bea.com/wlcp/wlng40/spappmgmt/spappslaoverview.html
http://e-docs.bea.com/wlcp/wlng40/spappmgmt/spappslaoverview.html
http://e-docs.bea.com/wlcp/wlng40/spappmgmt/spappslaoverview.html
http://e-docs.bea.com/wlcp/wlng40/spappmgmt/spappslaoverview.html

Standard In te rcepto rs

Platform Development Studio - Developer’s Guide 11-13

Note: Some interceptors must be invoked before others can be invoked. A quick overview of
the necessary sequences is seen in Figure 11-3

Figure 11-3 Required Interceptor Sequences

All out-of-the-box interceptors are classes packaged in $DOMAIN_HOME/interceptors.ear.

ResultFilter

Applies result filters as specified in the service provider group and
application group SLAs.

Relates to the SLA tag <resultRestriction>. See Defining Service Provider
Level and Application Level Service Agreements.

InjectValuesInRequestContextFromSLA must have been invoked prior to
this.

Table 11-2 Out-of-the-box interceptors

Interceptor Description

http://e-docs.bea.com/wlcp/wlng40/spappmgmt/spappslaoverview.html
http://e-docs.bea.com/wlcp/wlng40/spappmgmt/spappslaoverview.html

Se rv i ce In te rcepto rs

11-14 Platform Development Studio - Developer’s Guide

Below is a description of the contents of this ear:

Table 11-3 Contents of interceptor.ear

Path Content

/

dummy.war

Empty war file. Present in order to deploy the interceptors.
Do not remove or change.

/APP-INF/classes/

config.xml

Interceptor configuration file. See Flow Control.

config.xsd

Schema for config.xml

/APP-INF/classes/com/bea/wlcp/wlng/interceptor/

Classes for the out-of-the-box interceptors, see Table 11-2.

Do not change the content of this directory.

/APP-INF/classes/com/bea/wlcp/wlng/interceptor/deploy/

Infrastructure for the interceptor functionality. Do not
change the content of this directory.

META-INF/

MANIFEST.MF

Manifest file for the interceptor infrastructure.

application.xml

Deployment descriptor. Do not edit or remove.

weblogic-application.xml

WebLogic extensions to application.xml. Do not edit
or remove.

WEB-INF/

No content.

Standard In te rcepto rs

Platform Development Studio - Developer’s Guide 11-15

Retry functionality for plug-ins
The RetryPlugin interceptor handles retry functionality for plug-ins. The retry is attempted
among the plug-ins that were chosen based on the data provided in the request. Retries are only
performed among the plug-ins in the same Network Gatekeeper instance.

The RetryPlugin is triggered when a plug-in throws a RetryPluginExeption. This exception is
captured by the RetryPlugin interceptor, which removes the plug-in that threw the exception from
the list of chosen plug-ins and calls the next interceptor in the chain.

The different decision scenarios are described below.

The following out-of-the-box plug-in throws the RetryPluginException:

Subscriber Profile/LDAPv3.

Custom plug-ins can use the infrastructure for retries as provided by the RetryPlugin interceptor.
This exception should be thrown if the communication with the underlying network node fails,
or if an unexpected error is reported back from the plug-in.

If the RequestInfo objects
in the RequestContext are
associated with:

The RetryPlugin interceptor:

PluginHolder objects
that are marked as
optional

removes the failed RequestInfo from the RequestContext and the next
interceptor in the chain is invoked.

PluginHolder objects
that are marked as
required

treats the request itself as failed. No retry is performed, and an
exception is thrown.

some PluginHolder
objects that are marked
as optional, and some
that are marked as
required

removes the RequestInfo objects that are associated with the PluginHolder
objects that are marked as optional from the RequestContext and the next
interceptor in the chain is invoked.

Se rv i ce In te rcepto rs

11-16 Platform Development Studio - Developer’s Guide

Custom Interceptors

Developing Custom Interceptors
An interceptor implements the interface
com.bea.wlcp.wlng.api.interceptor.Interceptor.

This interface defines the method:

Object invoke(com.bea.wlcp.wlng.api.interceptor.Context context) throws

Exception;

The interceptor is responsible for invoking the next interceptor in the invocation chain using the
method:

Object com.bea.wlcp.wlng.api.interceptor.Context.invokeNext(Interceptor

current) throws Exception;

Since the interceptors call each other, the normal case would be just to return the object that was
returned by the called interceptor. But in some cases, the returned object may be changed in order
to do, for example, aliasing.

The decisions within the interceptor are expressed in these ways:

To proceed, continue down the invocation chain by calling the next interceptor.

To break the chain due to a violation: for example a parameter in the request is out-of
bounds, or that usage policies are violated. This aborts the request throwing a
PluginDenyException.

To break the chain because the request has been fulfilled (for example because there is no
need to call the plug-in or the application in order to fulfill the needs of the request),
simply return the request.

See Interceptor Decisions and Request Flow.

Note: The interceptor must be thread safe.

Listing 11-2 illustrates a very basic interceptor.

Listing 11-2 Example interceptor

import com.bea.wlcp.wlng.api.interceptor.Interceptor;

Custom In te rcepto rs

Platform Development Studio - Developer’s Guide 11-17

public class SampleInterceptor implements Interceptor {

private final int ABORT = 0;

private final int RETURN = 1;

public Object invoke(Context ctx) throws Exception {

int decision = // Logic that evaluates the request and makes a decision.

if (decision == ABORT) {

throw new Exception();

} else if (decision == RETURN) {

Object returnValue = // Define a returnValue here if desired.

return returnValue;

} else {

Object returnValue = ctx.invokeNext(this);

// Define a new returnValue here if desired, for example for aliasing.

return returnValue;

}

}

}

All necessary classes are available in the package:

com.bea.wlcp.wlng.api.interceptor located in
$BEA_HOME/wlng_pds400/lib/api/wlng.jar

As an alternative to embedding the interceptor in interceptors.ear and defining the
invocation order in /APP-INF/classes/config.xml it is possible to put the new interceptor
in a separate ear file. Using this alternative, the interceptor must register the interceptor using the
InterceptorManager, which is retrieved using the InterceptorManagerFactory.

Se rv i ce In te rcepto rs

11-18 Platform Development Studio - Developer’s Guide

When registering the interceptor manually, data corresponding to the data set in
/APP-INF/classes/config.xml in interceptors.ear is supplied as parameters to the
method:

void register(Interceptor interceptor, InterceptionPoint ip, int index);

in the InterceptorManager interface.

The attribute name in the tag <position> corresponds to the argument ip, the attribute index
in the tag <interceptor> corresponds to the argument index.

Listing 11-3 shows an example of how to register an interceptor manually.

Listing 11-3 Manually registering an interceptor

InterceptorManager im = InterceptorManagerFactory.getInstance(); // Get manager

im.register(myInterceptor, InterceptorManager.MT_NORTH, myIndex); // Register

im.update(); // Changes do not take effect until update() is called

Deploying Custom Interceptors
To deploy the interceptor in the common interceptor ear file, explode the interceptors.ear
file and put the class files for the interceptor in /APP-INF/classes. Add a new <interceptor> tag
with the attribute class referring to the entry point of the interceptor and a numeric value in the
attribute index that corresponds to the location in the interceptor invocation chain.

For example:

If the interceptor main class is com.acompany.interceptor.DoStuff, the class DoStuff
should be inserted into interceptors.ear in
/APP-INF/classes/com/acompany/interceptor, and the corresponding entry in
/APP-INF/classes/config.xml shall be

<interceptor class="com.acompany.interceptor.DoStuff" index="1150"/>

See Flow Control for more information about /APP-INF/classes/config.xml. See Standard
Interceptors to get information about where in the invocation chain to insert the new interceptor.

Custom In te rcepto rs

Platform Development Studio - Developer’s Guide 11-19

If deploying the interceptor in a separate ear, always deploy it using the Administration server
and use standard WebLogic procedures to deploy the application to all servers in the cluster from
the Administration server.

Se rv i ce In te rcepto rs

11-20 Platform Development Studio - Developer’s Guide

Platform Development Studio - Developer’s Guide 12-1

C H A P T E R 12

Subscriber-centric Policy

Making subscriber personalization easy and offering superior subscriber data protection is key to
growing and maintaining a loyal subscriber base. The Platform Development Studio offers a
straightforward way to extend the power of Network Gatekeeper’s flexible policy-based control
to the operator’s subscriber base. The mechanism can be divided into three parts:

Service Classes and the Subscriber SLA

The Profile Provider SPI and Subscriber Contracts

Subscriber Policy Enforcement

Note: There is an example Profile Provider in <bea_home>/wlng_pds400/example

Service Classes and the Subscriber SLA
The first step in adding subscriber-centric policy to Network Gatekeeper is to create a Subscriber
SLA. This is an XML file based on the sub_sla_file.xsd schema.

Note: The schema file can be found in the wlng.jar file located in the
<bea_home>/wlng_pds400/lib/wlng directory.

The SLA is used to define classes of service in the context of existing Service Provider and
Application Groups. (For more information on Service Provider and Application Groups, see
“Managing Application Service Providers” in Concepts and Architectural Overview, a separate
document in this set.) These service classes can then be associated with subscribers, based on
their preferences and permissions, defining individualized relationships between subscribers and
Service Provider and Application Group functionality.

http://e-docs.bea.com/wlcp/wlng40/archoverview/apservprov.html

Subscr ibe r-cent r i c Po l ic y

12-2 Platform Development Studio - Developer’s Guide

The <reference> tag
The <reference> tag specifies the operator’s already-established Application and Service
Provider Groups that are to be associated with this service class. There are two reference types
that define the groups: the ApplicationGroupReference and the
ServiceProviderGroupReference. In addition there are two additional reference types, the
ServiceReference and the MethodReference that indicate specific service interfaces and
methods, respectively, covered by those groups. In the Listing 12-1 snippet, the service class
news_subscription is defined. Evaluation of matches in the class occurs using the following
rules:

If no reference type is specified, everything of that type is a match

Two or more entries of the same reference type creates an OR relationship

The default relationship is AND

So, in the case of Listing 12-1, the class covers any request that matches:

Any of the service interfaces of the silver_app_group

(No ServiceReference type is specified, so everything is a match)

OR the gold_app_group

(Two ApplicationGroupReference entries creates an OR)

– AND the SendSMS service interface of the gold_app_group

(The default relationship)

– AND the content_sp_group

(The default relationship)

– AND the SendSMS service interface of the content_sp_group

(The default relationship)

– AND either the sendSms OR the getSmsDeliveryStatus methods

(Two MethodReference entries creates an OR)

Se rv ice C lasses and the Subscr ibe r SLA

Platform Development Studio - Developer’s Guide 12-3

Listing 12-1 The <reference> element

<ServiceClass name="news_subscription">

 <references>

 <ApplicationGroupReference id="silver_app_group"/>

 <ApplicationGroupReference id="gold_app_group">

<ServiceReference

serviceInterface="com.bea.wlcp.wlng.px21.plugin.SendSmsPlugin"/>

 </ApplicationGroupReference>

<ServiceProviderGroupReference id="content_sp_group">

 <ServiceReference

serviceInterface="com.bea.wlcp.wlng.px21.plugin.SendSmsPlugin">

<MethodReference methodName="sendSms" />

 <MethodReference methodName="getSmsDeliveryStatus" />

 </ServiceReference>

 </ServiceProviderGroupReference>

 </references>

Use of the empty tag, <references/>, matches everything.

The <restriction> tag
In addition to the <reference> tag, service classes may have a <restriction> tag. This tag is
used to attach default rates and quotas that are used to create budgets for the classes. These rates
and quotas can be replaced in specific contracts.

Note: The XSD requires you either to specify a rate/quota restriction or to use the
<restrictAllType/> tag.

Listing 12-2 The <restriction> tag

<restriction>

Subscr ibe r-cent r i c Po l ic y

12-4 Platform Development Studio - Developer’s Guide

 <rate>

 <reqLimit>5</reqLimit>

 <timePeriod>1000</timePeriod>

 </rate>

 <quota>

 <qtaLimit>600</qtaLimit>

 <days>3</days>

 <limitExceedOK>true</limitExceedOK>

 </quota>

</restriction>

These tags function exactly as they do in the other SLAs in Network Gatekeeper. For more
information on these tags, see the Contract structure section of the “Defining Service Provider
Group and Application Group SLAs” chapter of Managing Accounts and SLAs. a separate
document in this set. If the <limitExceedOK> tag is set to true, the request is allowed even when
if quota has been exceeded, but an alarm (Alarm id 200000) is fired

There is also a <restrictAllType/> tag. This tag, as its name implies, denies access to all
requests.

Managing the Subscriber SLA
There are three management methods in the Service Level Agreement MBean for managing a
Subscriber SLA. They are covered in detail in the “Managing a Subscriber SLA” chapter of
Managing Accounts and SLAs, a separate document in this set. The methods allow you to load a
Subscriber SLA as a string, to load a Subscriber SLA from a URL, and to retrieve a loaded
Subscriber SLA.

The Profile Provider SPI and Subscriber Contracts
Once the Subscriber SLA is established, the various service classes it defines must be associated
with individual subscribers. The combination of a subscriber (identified by URI) and a service
class is called a subscriber contract. A subscriber (a URI) can have multiple subscriber contracts
associated with it.

http://e-docs.bea.com/wlcp/wlng40/spappmgmt/subprofile.html
http://e-docs.bea.com/wlcp/wlng40/spappmgmt/spappslaoverview.html
http://e-docs.bea.com/wlcp/wlng40/spappmgmt/spappslaoverview.html

The Pro f i l e P rov ide r SP I and Subscr ibe r Cont racts

Platform Development Studio - Developer’s Guide 12-5

The subscriber contract object contains a URI designating the subscriber and the service class
type with which it is associated. It also contains an expiration time, represented as a
java.util.Date.

Note: The subscriber contract constructor will throw an exception if the URI, service class type,
and expiration time are not specified.

The subscriber contract may also replace the default rate and/or quota settings in the service class,
or set this subscriber to RestrictAll, that is, to deny access for all requests.

The operator or integrator is responsible for creating the mechanism, a Profile Provider, that
supplies these subscriber contracts.

Note: All class files related to creating Profile Providers are in the
com.bea.wlcp.wlng.spi.subscriberdata package, and can be found in the
wlng.jar file in the <bea_home>/wlng_pds400/lib/wlng directory. The JavaDoc for
the files can be found in the <bea_home>/wlng_pds400/doc/javadoc directory. An
example implementation can be found in the
<bea_home>wlng_pds400/example/profile_providers directory. This sample
implementation assumes the use of a properties file to assign subscriber URIs to
particular service classes. An example properties file,
exampleSubscriberContractMappingFile.properties, can be found in the same
directory.

The Profile Provider must implement the Profile Provider SPI. The SPI defines three methods;

init: Network Gatekeeper initializes the Profile Provider by passing in a list of the service
classes that are defined in the Subscriber SLA and a list of any previously defined
subscriber contracts. The Provider returns a list of updated subscriber contracts.

contractExpired: Network Gatekeeper sends the Provider a list of service classes and a
list of expired contracts. The Provider returns an updated list of contracts for those that
have expired. The Provider can remove or add contracts to the returned list.

serviceClassesUpdated: Whenever the Subscriber SLA is updated, and the service
classes are thus modified, Network Gatekeeper sends the Provider a list of the updated
service classes and a list of all current contracts. The Provider returns an updated list of
contracts. The Provider can make any necessary updates to the subscriber contracts.

The Profile Provider implementation must have a public constructor with no parameters or a
static method which returns ProfileProvider.

Note: There is a sample Profile Provider in <bea_home>/wlng_pds400/example.

Subscr ibe r-cent r i c Po l ic y

12-6 Platform Development Studio - Developer’s Guide

Deploying the Custom Profile Provider
Once the ProfileProviderImpl has been created, the .jar file containing it must be added to
the app-inf/lib directory of the profile_providers.ear file, which can be found in the
<bea_home>/wlng_pds400/integration/profile_provider directory. You must also
modify the app-inf/classes/ProfileProviders.prop file, adding a line containing the
package and implementation file name of each of your providers (multiple providers are
possible). For example:

com.mycompany.mypackage.MyProfileProviderImpl

Once the EAR is modified, it can be deployed in the normal manner. For more information on
deploying EAR files in Network Gatekeeper, see the “Deployment model for Communication
Services and Container Services” chapter in the System Administrator’s Guide, a separate
document in this set.

Subscriber Policy Enforcement
Once the providers.ear is deployed, the singleton SubscriberProfileService initializes
the Profile Provider(s) and receives the relevant subscriber contracts. It uses the Budget Service
to create budgets for the contracts, based on the specified rates and quotas, and also creates and
schedules a timer based on the expiration times in the contracts. Both the Subscriber SLA and the
subscriber contracts are persisted using the Storage Service.

Note: For more information on budgets in Network Gatekeeper, see the “Managing and
Configuring Budgets” chapter in the System Administrator’s Guide, a separate document
in this set.

When a request from an application arrives at Network Gatekeeper, it passes through the
Interceptor Stack for policy evaluation. The EnforceSubscriberBudget interceptor manages
policy enforcement for subscriber contracts. The process within the interceptor has two phases:

Do Relevant Subscriber Contracts Exist

Is There Adequate Budget for the Contracts

Do Relevant Subscriber Contracts Exist
The first thing the interceptor must determine is whether one or more contracts exist that are
relevant to the particular request that is being evaluated. The interceptor iterates through all the
target URIs in the application request, and evaluates whether or not there are contracts in effect
that it should enforce.

http://e-docs.bea.com/wlcp/wlng40/admin/deploymodel.html
http://e-docs.bea.com/wlcp/wlng40/admin/deploymodel.html
http://e-docs.bea.com/wlcp/wlng40/admin/budget.html
http://e-docs.bea.com/wlcp/wlng40/admin/budget.html

Platform Development Studio - Developer’s Guide 12-7

If there are no contracts at all associated with a particular URI, the request is simply passed
on to the next interceptor in the sequence.

If there are contracts associated with a particular URI, a set of evaluations must be carried
out. The figures below show the decision flow for the evaluations. All three sections must
evaluate to true for there to be an enforceable contract.

Note: The XML snippets correspond to the relevant sections of Listing 12-1:

Subscr ibe r-cent r i c Po l ic y

12-8 Platform Development Studio - Developer’s Guide

– Is there an ApplicationGroupReference and is it relevant? See Figure 12-1

Figure 12-1 Application Group Reference Evaluation

Note: The evaluation for methodExists is covered in Figure 12-3

Platform Development Studio - Developer’s Guide 12-9

– Is there a ServiceProviderGroupReference and is it relevant? See Figure 12-2.

Figure 12-2 Service Provider Group Reference Evaluation

Note: The evaluation for methodExists is covered in Figure 12-3

– Is there a Service Reference (and possibly a MethodReference) and are they
relevant? See Figure 12-3

Subscr ibe r-cent r i c Po l ic y

12-10 Platform Development Studio - Developer’s Guide

Figure 12-3 Service and Method Reference Evaluation

Platform Development Studio - Developer’s Guide 12-11

Is There Adequate Budget for the Contracts
Once the interceptor determines that an enforceable contract exists, it first determines whether
the contract includes a <restriction> tag set to <restrictAll/>. If so, the request is
immediately denied, and processing on the request ceases.

If the <restriction> tag is not set to <restrictAll/, the decision flow here is identical to
the other budget evaluations that take place in Network Gatekeeper.

If there are no relevant contracts, or there are relevant contracts and there is adequate budget to
cover them, budgets are adjusted as necessary and the request passes on to the next interceptor.
If there are relevant contracts and there is not adequate budget to cover them, the request is
denied.

Subscr ibe r-cent r i c Po l ic y

12-12 Platform Development Studio - Developer’s Guide

Platform Development Studio - Developer’s Guide 13-1

C H A P T E R 13

Creating an EDR Listener and
Generating SNMP MIBs

The following section describes how to create an external EDR listener.

Overview of External EDR listeners

– Example using a pure JMS listener

– Example using JMSListener utility with no filter

– Using JMSListener utility with a filter

Description of EDR listener utility

– Class JMSListener

– Class EdrFilterFactory

– Class EdrData

– Class ConfigDescriptor

– Class EdrConfigDescriptor

– Class AlarmConfigDescriptor

– Class CdrConfigDescriptor

Generating SNMP MIBs

Overview of External EDR listeners
External EDR listeners are JMS topic subscribers.

Creat ing an EDR L is tene r and Generat ing SNMP MIBs

13-2 Platform Development Studio - Developer’s Guide

The diagram below illustrates three different ways of listening for EDRs as a JMS listener.

Figure 13-1 Flow for external EDR, alarm, and CDR listeners

EDRs are published externally using a JMS topic. This makes it possible to implement
language-independent listeners anywhere on the network in a standard way. It is possible to
implement an EDR listener in several ways:

Alternative 1: Using a pure JMS listener. Implement the javax.jms.MessageListener
interface. It is up to the implementation class to implement any filtering mechanism
needed.

Network
Gatekeeper

EDR
JMS
Topic

Pure JMS
listener

JMSListener

MyEDRListenerNoFilter MyEDRListenerWithFilter

JMSListener

Stream of EDRs

register(url) register(url, filter)

(1)
(2) (3)

Ove rv i ew o f Ex te rna l EDR l i s teners

Platform Development Studio - Developer’s Guide 13-3

Alternative 2: Using a subclass of JMSListener with no filter specified. In that case, the
JMSListener class will use a tag, if available in the EDR, to filter the EDR into a specific
category: EDR, alarm or CDR.

Alternative 3: Using a subclass of JMSListener with a specified filter. This filter is used to
perform the filtering. If a default filter is used to perform the same filtering as the WLNG,
note that all classes used in the xml configuration files must be present in the current class
loader. Otherwise, some EDRs will not be correctly filtered.

Example using a pure JMS listener

Listing 13-1 Example using a pure JMS listener

public class ClientJMSListener implements MessageListener {

public void onMessage(Message msg) {

// Extract the EdrData object or array

if(o instanceof EdrData[]) {

for(EdrData edr : (EdrData[])o) {

//do something with each EDR

}

}

}

}

Example using JMSListener utility with no filter

Listing 13-2 Example using a subclass of JMSListener with no filter specified

public class SampleEdrJMSListener extends JMSListener {

public SampleEdrJMSListener(String url) throws Exception {

// Register in the JMS topic. No filter is specified so

Creat ing an EDR L is tene r and Generat ing SNMP MIBs

13-4 Platform Development Studio - Developer’s Guide

// the "tag" filtering mechanism will be used.

register(url);

}

@Override

public void onEdr(EdrData edr, ConfigDescriptor descriptor) {

// The "tag" mechanism will filter the stream of EDRs according

// to the internal WLNG filtering. To know which type of EDR is

// actually provided in this method, we have to determine the

// instance of the ConfigDescriptor as follow:

if(descriptor instanceof EdrConfigDescriptor) {

// do something with this EDR

} else if(descriptor instanceof AlarmConfigDescriptor) {

// do something with this alarm

} else if(descriptor instanceof CdrConfigDescriptor) {

// do something with this CDR

}

}

}

Using JMSListener utility with a filter

Listing 13-3 Using a subclass of JMSListener with a specified filter

public class SampleEdrJMSListener extends JMSListener {

public SampleEdrJMSListener(String url) throws Exception {

// Register in the JMS topic. Use the default alarm filter.

Descr ip t i on o f EDR l i s tene r u t i l i t y

Platform Development Studio - Developer’s Guide 13-5

// Note that in this case all classes needed by the alarm.xml file

// must be in the current class loader in order for the filtering

// to work correctly.

register(url, EdrFilterFactory.createDefaultFilterForAlarm());

}

@Override

public void onEdr(EdrData edr, ConfigDescriptor descriptor) {

// Only AlarmConfigDescriptor should be received here.

// Just check before casting.

if(descriptor instanceof AlarmConfigDescriptor) {

... do something with this alarm

}

}

}

Note: When using the JMSListener class, make sure that any modification to an EDR, CDR. or
alarms descriptor in network Gatekeeper is also updated in the edrjmslistener.jar file.

Description of EDR listener utility
The EDR listener utility contains a set of classes to use when creating an external JMS listener
using the JMSListener.

The helper classes are found in the domain home directory in Network Gatekeeper, in:
$ET_Home/lib/edrjmslistener.jar

Creat ing an EDR L is tene r and Generat ing SNMP MIBs

13-6 Platform Development Studio - Developer’s Guide

Class JMSListener

Class EdrFilterFactory

Table 13-1 JMSListener

Method Description

public void register(String url) Registers the JMS listener to the EDR topic
using no filter. The filtering will be done using
the tagging mechanism. The parameter url
specifies the URL of a network tier WLNG
server.

public void register(String url, EdrFilter filter) Registers the JMS listener to the EDR topic
using the specified filter.

public void onEdr(EdrData edr, ConfigDescriptor
descriptor)

Method that the subclass can override to get
notified each time an EDR is received.

The descriptor will be a subclass of
ConfigDescriptor that will identify the type of
EDR: either EdrConfigDescriptor,
AlarmConfigDescriptor or
CdrConfigDescriptor.

Table 13-2 EdrFilterFactory

Method Description

public static EdrFilter createDefaultFilterForEdr() Creates the default filter using in the WLNG to filter the
EDRs using the edr.xml file embedded in the
edrjmslistener.jar file.

public static EdrFilter
createDefaultFilterForAlarm()

Creates the default filter using in the WLNG to filter the
alarms using the alarm.xml file embedded in the
edrjmslistener.jar file.

public static EdrFilter createDefaultFilterForCdr() Creates the default filter using in the WLNG to filter the
CDRs using the cdr.xml file embedded in the
edrjmslistener.jar file.

Descr ip t i on o f EDR l i s tene r u t i l i t y

Platform Development Studio - Developer’s Guide 13-7

Class EdrData
This class contains all the values that an EDR (alarm and CDR) have.

Class ConfigDescriptor
This class is the parent class of EdrConfigDescriptor, AlarmConfigDescriptor and
CdrConfigDescriptor.

Class EdrConfigDescriptor
This class contains the data that is specified in the descriptors in the edr.xml configuration file:
the identifier and the description.

Table 13-3 EdrData

Method Description

public String getValue(String key) Gets the value associated with the specified key.

public List<String> getValues(String
key)

Gets the values associated with the specified key.

Table 13-4 EdrConfigDescriptor

Method Description

public long getIdentifier() Returns the identifier of the EDR.

public String getDescription() Returns the description of the EDR.

Creat ing an EDR L is tene r and Generat ing SNMP MIBs

13-8 Platform Development Studio - Developer’s Guide

Class AlarmConfigDescriptor
This class contains the data that is specified in the descriptors in the alarm.xml configuration file:
the identifier, the severity and the description.

Class CdrConfigDescriptor
This class identifies a CDR. This descriptor does not contain any additional data.

Updating EDR configuration files
If you are using external EDR listeners, and the alarm, CDR, or EDR descriptors have been
updated in Network Gatekeeper, the corresponding files need to be updated in
edrjmslistener.jar. Update the corresponding xml file with the updated entries in the edr
directory in edrjmslistener.jar.

Generating SNMP MIBs
Alarms can be forwarded as SNMP traps, see Managing and Configuring the SNMP service in
System Administrator’s Guide.

The MIB file that corresponds to the alarms can be generated using the ant task mibgenerator
defined in com.bea.wlcp.wlng.ant.MIBGeneratorTask.

The ant task is packaged in $PDS_HOME/wlng/lib/ant-mib-generator.jar

There is an example build file that uses the an task in $PDS_HOME/integration

When the alarms descriptor is changed, a new MIB should be generated and distributed to the
SNMP clients. Copy the contents of the alarm descriptor and paste it into an xml file. Use this
xml file when generating the MIB file.

Table 13-5 AlarmConfigDescriptor

Method Description

public long getIdentifier() Returns the identifier of the alarm.

public String getSeverity() Returns the severity of the alarm.

public String
getDescription()

Returns the description of the alarm.

http://e-docs.bea.com/wlcp/wlng40/admin/snmp.html

Platform Development Studio - Developer’s Guide 14-1

C H A P T E R 14

Converting Traffic Paths and Plug-ins
to Communication Services

Traffic paths and network protocol plug-ins developed as extensions to Network Gatekeeper 3.0
can be converted to communication services and deployed in this release using the procedure
described in this section.

Plug-ins and traffic paths developed for Network Gatekeeper 2.2 and earlier should be
re-engineered in order to take full advantage of the improvements of the platforms.

A pre-requisite is to have the source code for the traffic path and plug-in that is to be converted.

Converting Network Protocol Plug-ins

Converting Traffic Paths

Checklist

Converting Network Protocol Plug-ins
The procedure for converting a plug-in for an existing communication service is:

1. Generate a a new plug-in using the Platform Development Studio Eclipse Wizard, see Using
the Eclipse Wizard.

2. Copy the src directory of the plug-in to be converted to the src directory of the new plug-in.

3. If no MBean class is declared, remove the javadoc2annotation target from the build.xml
file for the new plug-in.

Conver t ing T raf f i c Paths and P lug- ins to Communicat ion Se rv ices

14-2 Platform Development Studio - Developer’s Guide

Converting Traffic Paths
The procedure for converting a traffic path to a communication service is:

1. Generate a new common service with the same settings as the traffic path to be converted
using the Platform Development Studio Eclipse Wizard, see Using the Eclipse Wizard.

2. Copy any customized part from the traffic_path directory for the traffic path to be
converted to common directory for new communication service.

3. Copy the src directory of the plug-in to be converted to the src directory of the new plug-in.

4. If no MBean class is declared, remove the javadoc2annotation target from the build.xml
file for the new plug-in.

Checklist
Below are a few items that should be verified during the conversion process:

Make sure that the version used in the deploy targets in the main build.xml matches the
one specified in the common.xml file.

Make sure that the class specified in the property plugin.class defined in the build.xml
for the plug-in is correct.

Remove all references to com.incomit.policy.DenyException since it is not supported
anymore.

Platform Development Studio - Developer’s Guide 15-1

C H A P T E R 15

Policy

For most installations of WebLogic Network Gatekeeper, the ability rapidly and accurately to
evaluate the status of requests in terms of Policy, or rules governing a variety of service
characteristics, is one of the most important features that the system offers.

Note: Some evaluations, such as enforcement of SLAs, are performed by the Interceptor Stack.
See Chapter 11, “Service Interceptors” for more details. The Policy system described in
this chapter allows you to add additional types of evaluation to the request flow,
including adding rules to be used for the Callable Policy Web Service.

If you extend the Network Gatekeeper, particularly if you add a new Communication Service,
you may also need to make changes in the Policy system to cover new functionality that you have
added. This chapter provides a very high level description of the process by which policy requests
are processed and though which new rules can be added. It covers:

Overview

Policy Request Data

Adding a New Rule

Using RequestContext Parameters Defined in Service Level Agreements

Overview
When an application service request arrives at the service interceptor CreatePolicyRequestData,
its parameters are put in a PolicyRequest object. The service interceptor EvaluateILOGPolicy
evaluates these custom policy rules The rules themselves are written in the ILOG IRL language.

Po l icy

15-2 Platform Development Studio - Developer’s Guide

Policy Request Data
A PolicyRequest object has a standard form. The values in the object must be mapped to the
variables in the Policy Rule that will be used to evaluate them. The Policy Request object can
contain subsets of this standard data:

applicationID: The Application ID of the requesting party

serviceProviderID: The Service Provider ID of the requesting party

nodeID: Used internally by Network Gatekeeper - ignore

serviceName: The name of the software module in which the policy request originates.
Used in the rules to match to service contracts in the SLAs and to look-up any rules
specific to the service.

methodName: The name of the method which the request wishes to have executed. Access
to this method is what is being evaluated.

serviceCode: The service code provided by the application, which is written to CDRs for
tracking purposes

requesterID: An additional ID that may be provided by the application for tracking
purposes. (dependent on the northbound interface being used)

All of the above are Strings.

transactionID: Used internally by Network Gatekeeper - ignore

noOfActiveSessions: Used internally by Network Gatekeeper - ignore

timeStamp: The time the request was fed to the Policy Engine.

reqCounter: The number of target addresses in the request. If only one target address is
used in the request this value is set to 1. If using multiple target addresses in the request, it
is the number of target addresses.

All of these are Longs.

In addition to these standard values, Policy Request objects contain all the parameters passed in
from the application in its initial request, as AdditionalParameters, an array of
AdditionalDataValue. An AdditionalDataValue consist of a name-value pair. The
following data types can be defined in an AdditionalDataValue object.

intValue(int val): Integer values

Po l i c y Request Data

Platform Development Studio - Developer’s Guide 15-3

longValue(long val): Long values

stringValue(String val): Strings.

stringArrayValue(String[] val): Arrays of String values.

booleanValue(boolean val): Boolean values.

shortValue(short val): Short values.

charValue(char val): Char values.

floatValue(float val): Float values.

doubleValue(double val): Double values.

intArrayValue(int[] val): Arrays of int values.

The name of the name-value pair is defined in the dataName member variable in the
AdditionalData object. See Listing 15-1

Listing 15-1 Defining AdditionalData

AdditionalData adArray[] = new AdditionalData[1];

AdditionalDataValue targetAddressValue = new AdditionalDataValue();

AdditionalData adTargetAddressString = new AdditionalData();

targetAddressValue.stringValue(address);

adTargetAddressString.dataName = "targetAddress";

adTargetAddressString.dataValue = targetAddressValue;

adArray[0] = adTargetAddressString;

policyRequest.additionalParameters = adArray;

If any of the incoming parameters from the application are complex types, the objects are
automatically examined and broken down into simple Java types. So, for example, the Parlay X
2.1 complex type ChargingInformation can contain a description, which is a string, a currency
kind, which is also a string, an amount, which is a decimal number, and a code, which is a string.
When the data is sent to the Policy Engine, it is broken down into a string value called

Po l icy

15-4 Platform Development Studio - Developer’s Guide

parameters.charging.currency, another string value called parameters.charging.code,
and so forth.

Adding a New Rule
New rules can be added to the Policy Service. The rule must have a name and a priority.

High priority rules are evaluated before low priority rules.There are a set of pre-defined priority
levels, which are mapped to a numerical value:

minimum, where the value is -1*109

low, where the value is -1*106

high, where the value is 1*106

maximum, where the value is 1*109

Listing 15-2 shows the basic structure of a rule:

Listing 15-2 Skeleton of a rule

rule DenySubscriberNotExists

{

priority = high;

 when

 {

// fetch the policy request data and perform evaluations.

}

then

 {

// Take action on

}

};

Adding a New Ru le

Platform Development Studio - Developer’s Guide 15-5

Mapping PolicyRequest Data
In order to perform an evaluation, the data in the PolicyRequest object must be fetched by the
rule in the Policy Engine and mapped to the equivalent variable name in the rule. The standard
types of request data in the Policy Request are associated with variables of the same name in the
rules. Below is an example of a rule assigning the PolicyRequest member variable
serviceName to the rule variable sname via the Policy Request object. The rule object pr is
assigned to the PolicyRequest object.

Listing 15-3 Policy Request data is fetched

?pr: event PolicyRequest(?sname: serviceName);

If the Policy Engine has evaluated the request and made the decision to deny it, the Policy
Engine’s representation of the PolicyRequest object (pr) must be retracted. Retracting the
PolicyRequest object aborts further rule enforcement.

Listing 15-4 Retract a request

retract (?pr);

If the Policy Engine has evaluated the request and made the decision to allow it, the Policy
Engine’s representation of the request (pr) must still be retracted, but in the last rule of the
execution flow. For example, this could be achieved by adding a general finalizing allow rule that
retracts the request. This rule should have priority minimum.

Listing 15-5 General finalizing allow rule that retracts a request

rule AllowServiceRequest

{

 priority = minimum;

 when

Po l icy

15-6 Platform Development Studio - Developer’s Guide

 {

?pr: event PolicyRequest();

 }

 then

 {

retract (?pr);

?pr.allow();

 }

};

Data that is defined as AdditionalValues must fetched as shown in Listing 15-6. The
Additional Value named targetAddress is stored in the variable addDataValue. The
PolicyRequest object is pr.

Listing 15-6 Fetching AdditionalValue data

bind ?addDataValue = ?pr.getAdditionalDataStringValue("targetAddress");

The particular signature of the fetching method depends on the type of data:

getAdditionalDataIntValue(...), for int values

getAdditionalDataLongValue(...), for long value.

getAdditionalDataStringValue(...), for String values

getAdditionalDataStringArrayValue(...), for arrays of String values

getAdditionalDataBooleanValue(...), for boolean values

getAdditionalDataShortValue(...), for short values

Adding a New Ru le

Platform Development Studio - Developer’s Guide 15-7

getAdditionalDataCharValue(...), for char values

getAdditionalDataFloatValue(...), for float values

getAdditionalDataDoubleValue(...), for double values

getAdditionalDataIntArrayValue(...) for arrays of int values.

If the data type is unknown, it can be determined by invoking the discriminator method on the
AdditionalDataValue object.

Listing 15-7 Determine the type of an AdditionalDatavalue

bind ?type = ?pr.getAdditionalData.dataValue.discriminator().value();

Where type is one of the following:

AdditionalDataType._P_ADDITIONAL_INT

AdditionalDataType._P_ADDITIONAL_LONG

AdditionalDataType._P_ADDITIONAL_STRING

AdditionalDataType._P_ADDITIONAL_STRING_ARRAY

AdditionalDataType._P_ADDITIONAL_BOOLEAN

AdditionalDataType._P_ADDITIONAL_SHORT

AdditionalDataType._P_ADDITIONAL_CHAR

AdditionalDataType._P_ADDITIONAL_FLOAT

AdditionalDataType._P_ADDITIONAL_DOUBLE

AdditionalDataType._P_ADDITIONAL_INT_ARRAY

Creating a New Rule File by Extending an Existing File: an
Example
The following shows an example of extending an existing rule file:

1. List the Current Services’ Rule Files

Po l icy

15-8 Platform Development Studio - Developer’s Guide

2. Select the Service Whose Rule File You Wish to Extend

3. Add a New Extended Rule

4. Load the New Rule File.

Use the operations in the PolicyService to manage the rule files, see Managing the PolicyService
in the System Administrator’s Guide.

Using RequestContext Parameters Defined in Service
Level Agreements

It is possible to use generic data specified in service provider and application-level SLAs in a
plug-in. This is useful when the choice of the action or behavior a plug-in should make is based
on which service provider or application originates the request originates. For example, this can
be used for information about parameters that corresponds to a certain group of applications. For
instance a certain group might get the priority on their SMS set to LOW because they pay less.
The priority might be a parameter that is sent down to the network which handles this.

In an SLA, a <contextAttribute> is defined as a name/value pair, where the name is defined in
the tag <attributeName> and the value is specified in <attributeValue>.

A plug-in can retrieve the value specified in <attributeValue> using the name specified in
<attributeName>. The value is retrieved using the RequestContext for the request:

String attributeValue =

(String)RequestContextManager.getCurrent().get("<attributeName>");

For example, the value associated with the contextAttribute with the attributeName
com.bea.wlcp.wlng.plugin.sms.testName1 is retrieved using:

String value1 =

(String)RequestContextManager.getCurrent().get("com.bea.wlcp.wlng.plugin.s

ms.testName1");

http://e-docs.bea.com/wlcp/wlng40/admin/policyservice.html

Platform Development Studio - Developer’s Guide 16-1

C H A P T E R 16

Callable Policy Web Service

The following section describes how to use the callable policy interface exposed by Network
Gatekeeper.

Introduction

Callable Policy Web Service interface definition

– Endpoints

– Detailed service description

– XML Schema data type definition

• AdditionalDataValue structure

• AdditionalDataValueType enumeration

– Interface: Policy

• Operation: evaluate

– Interface: PolicyManagement

• Operation: viewRuleFile

• Operation: deleteRuleFile

• Operation: loadRules

• Operation: listRuleFiles

Rule files

Cal lab le Po l i cy Web Se rv i ce

16-2 Platform Development Studio - Developer’s Guide

Introduction
The callable policy service in WebLogic Network Gatekeeper exposes two Web Services
interfaces related to callable policy:

Policy evaluation

Policy management

The callable policy service is intended to allow applications and network nodes that have no
policy evaluation capabilities themselves to use the policy evaluation capabilities in Network
Gatekeeper. The service is not designed to expose the service to external service providers.
Rather it is to be used internally as a way of exposing generic policy capabilities to network nodes
within the telecom network where Network Gatekeeper is deployed. Communication Services
deployed in Network Gatekeeper do not use the interfaces exposed by the callable policy Web
Service.

For example, a node in the network might need to enforce a set of rules for requests flowing
through it, to allow or deny requests based on time of day and originator of the request. In this
case, the node might determine the originator of the request and use the callable policy evaluation
Web Service to evaluate that request. The rule that is being evaluated uses the data provided in
the web services call and makes its decision based on them. Modifications to the rules can be done
using the policy management Web Service.

A user of the policy evaluation and policy management Web Services interfaces is registered
using the same service provider and application model that is used for users of the
Communication Services. If the system requires sessions, the user must be logged in using the
same session manager interface exposed to these service provider applications.

Note: If there is no specific rule file associated with a ServiceName loaded in the rule engine,
it uses the default rule file in its evaluation. If you are using Callable Policy, you must
make sure that an appropriate rule file is loaded into the rule engine. For more
information. see the “Managing the PolicyService” chapter in the System Administration
Guide.

It necessary to have service provider group and application group Service Level Agreements
defined for the user of the callable policy service. To use the policy evaluation interface, the tag
<scs> must contain the value com.bea.wlcp.wlng.px21.plugin.PolicyPlugin.

To use the policy management interface, the tag <scs> must contain the value
com.bea.wlcp.wlng.px21.plugin.PolicyManagementPlugin.

http://e-docs.bea.com/wlcp/wlng40/admin/policyservice.html

Cal lab le Po l i cy Web Se rv ice in te r face de f in i t i on

Platform Development Studio - Developer’s Guide 16-3

Listing 16-1 Example of SLA that allows the use of both the policy evaluation and policy management
interfaces

<serviceContract>

<scs>com.bea.wlcp.wlng.px21.plugin.PolicyPlugin</scs>

</serviceContract>

<serviceContract>

<scs>com.bea.wlcp.wlng.px21.plugin.PolicyManagementPlugin</scs>

</serviceContract>

Callable Policy Web Service interface definition

Endpoints
The endpoint for the Policy evaluation interface is:
http://<host:port>/callable_policy/Policy

The endpoint for the Policy management interface is:
http://<host:port>/callable_policy/PolicyManagement

Detailed service description

Policy Evaluation
The policy evaluation interface makes it possible for an external application to evaluate a request
containing a set of parameters. The parameters in the request include authentication information,
information on the type of service the request should be evaluated against, the method name of
the method that should be evaluated, and arbitrary additional data provided as name-value pairs.

All request parameters are evaluated according to a policy rule.

When evaluated, a copy of the data provided in the evaluation process is returned together with
information on the outcome of the requests, that is, if the request was allowed or denied. If the
request was allowed, the application calling the Web Service must use the returned copy of the
parameters for further processing, because the returned parameters in the request may have been
changed by the policy rule processing.

Cal lab le Po l i cy Web Se rv i ce

16-4 Platform Development Studio - Developer’s Guide

Policy management
The policy management web service interface makes it possible to load and delete policy rules.

XML Schema data type definition

AdditionalDataValue structure
Defines the AdditionalDataValue structure.

AdditionalDataValueType enumeration
Describes a data type.

Element Name Element type Optional Description

name xsd:string N Name part of the additional data
name-value pair.

value xsd:string N Value part of the additional data
name-value pair.

type callable_policy_l
ocal_xsd:Additio
nalDataValueTyp
e

N Identifies the data type. See
AdditionalDataValueType
enumeration.

Enumeration value Description

STRING_TYPE Data type is String.

INTEGER_TYPE Data type is Integer.

FLOAT_TYPE Data type is float.

DOUBLE_TYPE Data type is double.

CHAR_TYPE Data type is Char.

BOOLEAN_TYPE Data type is boolean.

Cal lab le Po l i cy Web Se rv ice in te r face de f in i t i on

Platform Development Studio - Developer’s Guide 16-5

Interface: Policy
Operations to evaluate a request.

Operation: evaluate
The policy evaluation interface makes it possible for an external application to evaluate a request
containing a set of parameters. All of the request parameters are evaluated according to a Policy
rule.

Input message: evaluateRequest

INT_ARRAY_TYPE Data type is int array.

STRINGARRAY_TYP
E

Data type is String array.

Part name Part type Optional Description

type xsd:string N Service type to be evaluated.

serviceName xsd:string N ServiceName associated with the rule file.

methodNam
e

xsd:string N Name of method to be evaluated.

requesterID xsd:string N The application ID as given by the operator.

timeStamp xsd:dateTime N Defines the date and time of the request.

additionalDa
ta

callable_polic
y_local_xsd:a
dditionalData
Value

Y Specifies any other data, specified as name-value
pairs. See AdditionalDataValue structure.

Enumeration value Description

Cal lab le Po l i cy Web Se rv i ce

16-6 Platform Development Studio - Developer’s Guide

Output message: evaluateResponse

Referenced faults
ServiceException:

If there is an internal error during evaluation process, a ServiceException is thrown.

PolicyException:

If the policy evaluation request is rejected, a PolicyException is thrown.

Interface: PolicyManagement
Operations to manage policy rules.

Operation: viewRuleFile
Fetches a policy rule file of a given type and service from the rules engine.

Part name Part type Optional Description

modifiedReq
uest

callable_polic
y_local_xsd:e
valuateReques
t

N The response that Network Gatekeeper returns after
being evaluated by policy rules.

Same data structure as evaluateRequest, but data
may have been changed by the policy evaluation.

returnValue xsd:string N Return value the policy rules passed back.

thrownExce
ption

xsd:string N Name of the exception thrown during evaluation.

thrownPolic
yException

xsd:string N Name of the policy rejection exception thrown
during evaluation.

denyReason
Description

xsd:string N Description of the reason of denying the request.

denyCode xsd:string N Code identifying the reason of denying the request.

Cal lab le Po l i cy Web Se rv ice in te r face de f in i t i on

Platform Development Studio - Developer’s Guide 16-7

Input message: viewRuleFile

Output message: viewRuleFileResponse

Referenced faults
ServiceException:

If there is an internal error during evaluation process, a ServiceException is thrown.

PolicyException:

If the policy evaluation request is rejected, a PolicyException is thrown.

Operation: deleteRuleFile
Deletes a policy rule file of a given type and service from the rules engine.

Part name Part type Optional Description

type xsd:string N Type of SLA, either:
• Application
• Serviceprovider

serviceName xsd:String N ServiceName associated with the rule file.

Part name Part type Optional Description

return xsd:String N The rule file.

Cal lab le Po l i cy Web Se rv i ce

16-8 Platform Development Studio - Developer’s Guide

Input message: deleteRuleFile

Output message: deleteRuleFileResponse

Referenced faults
ServiceException:

If there is an internal error during evaluation process, a ServiceException is thrown.

PolicyException:

If the policy evaluation request is rejected, a PolicyException is thrown.

Operation: loadRules
Loads a a policy rule file of a given type and service into the rules engine.

Part name Part type Optional Description

type xsd:string N Type of rule file, either:
• Application
• Serviceprovider

serviceName xsd:String N ServiceName associated with the rule file.

Part name Part type Optional Description

- - - -

Cal lab le Po l i cy Web Se rv ice in te r face de f in i t i on

Platform Development Studio - Developer’s Guide 16-9

Input message: loadRules

Output message: loadRulesResponse

Referenced faults
ServiceException:

If there is an internal error during evaluation process, a ServiceException is thrown.

PolicyException:

If the policy evaluation request is rejected, a PolicyException is thrown.

Operation: listRuleFiles
Lists the rule files of a given type that are loaded into the rules engine.

Part name Part type Optional Description

type xsd:string N Type of rule file, either:
• Application
• Serviceprovider

irlUrl xsd:string N URL to rule file to be loaded.

serviceName xsd:string N ServiceName associated with the rule file.

Part name Part type Optional Description

- - - -

Cal lab le Po l i cy Web Se rv i ce

16-10 Platform Development Studio - Developer’s Guide

Input message: listRuleFiles

Output message: listRuleFilesResponse

Referenced faults
ServiceException:

If there is an internal error during evaluation process, a ServiceException is thrown.

PolicyException:

If the policy evaluation request is rejected, a PolicyException is thrown.

Rule files
The rule files are written in IRL, ILog Rule Language.

When writing rules in the context of Network Gatekeeper policy rules, the following apply:

The rule is associated with a service name when loaded into Network Gatekeeper policy service,
Input message: loadRules.

Which rule to be triggered by Input message: evaluateRequest is correlated with the parameter
serviceName given in the Web Service request.

When the evaluate request triggers the rule, a set of general parameters can be accessed by the
policy rule:

Part name Part type Optional Description

type xsd:string N Type of rule file, either:
• Application
• Serviceprovider

Part name Part type Optional Description

ruleFile Array of
xsd:string

Y A list of rule files matching the given criteria.

Rule f i l es

Platform Development Studio - Developer’s Guide 16-11

String applicationID: Application ID associated with the request.

String serviceProviderID: Service provider ID associated with the request.

String serviceName: Service name from which the request originates or is destined for.

String methodName: Method that triggered the request.

String serviceCode.

String requesterID.

long transactionID.

int noOfActiveSessions.

long timeStamp: Time the request was sent to the rules engine for processing.
Milliseconds from start of UNIX epoch.

long reqCounter: Defines the increase rate for related counters.

A rule must have a name and a priority. High priority rules are evaluated before low priority
rules.There are a set of pre-defined priority levels, which are mapped to a numerical value:

minimum, where the value is -1*109

low, where the value is -1*106

high, where the value is 1*106

maximum, where the value is 1*109

Listing 16-2 shows the basic structure of a rule:

Listing 16-2 Skeleton of a rule

rule DenySubscriberNotExists

{

priority = high;

when

{

// fetch the policy request data and perform evaluations.

Cal lab le Po l i cy Web Se rv i ce

16-12 Platform Development Studio - Developer’s Guide

}

then

{

// Take action on

}

};

In order to perform an evaluation, the data in the PolicyRequest object must be fetched by the
rule and mapped to the equivalent variable names in the rule. The standard types of request data
in the Policy Request are associated with variables of the same name in the rules. Below is an
example of a rule assigning the PolicyRequest member variable serviceName to the rule
variable sname via the Policy Request object. The rule object pr is assigned to the
PolicyRequest object.

Listing 16-3 Policy Request data is fetched

?pr: event PolicyRequest(?sname: serviceName);

If the Policy Engine has evaluated the request and made the decision to deny it, the Policy
Engine’s representation of the PolicyRequest object (pr) must be retracted. Retracting the
PolicyRequest object aborts further rule enforcement.

Listing 16-4 Retract a request

retract (?pr);

If the Policy Engine has evaluated the request and made the decision to allow it, the Policy
Engine’s representation of the request (pr) must still be retracted, but in the last rule of the
execution flow. For example, this could be achieved by adding a general finalizing allow rule that
retracts the request. This rule should have priority minimum.

Rule f i l es

Platform Development Studio - Developer’s Guide 16-13

Listing 16-5 General finalizing allow rule that retracts a request

rule AllowServiceRequest

{

priority = minimum;

when

{

?pr: event PolicyRequest();

}

then

{

retract (?pr);

?pr.allow();

}

}

Data that is defined as AdditionalValues must fetched as shown below. The Additional Value
named targetAddress is stored in the variable addDataValue. The PolicyRequest object is
pr.

Listing 16-6 Fetching AdditionalValue data

bind ?addDataValue = ?pr.getAdditionalDataStringValue("targetAddress");

The particular signature of the fetching method depends on the type of data:

getAdditionalDataIntValue(...), for int values

getAdditionalDataLongValue(...), for long value.

Cal lab le Po l i cy Web Se rv i ce

16-14 Platform Development Studio - Developer’s Guide

getAdditionalDataStringValue(...), for String values

getAdditionalDataStringArrayValue(...), for arrays of String values

getAdditionalDataBooleanValue(...), for boolean values

getAdditionalDataShortValue(...), for short values

getAdditionalDataCharValue(...), for char values

getAdditionalDataFloatValue(...), for float values

getAdditionalDataDoubleValue(...), for double values

getAdditionalDataIntArrayValue(...) for arrays of int values.

If the data type is unknown, it can be determined by invoking the discriminator method on the
AdditionalDataValue object.

Listing 16-7 Determine the type of an AdditionalDatavalue

bind ?type = ?pr.getAdditionalData.dataValue.discriminator().value();

Where type is one of the following:

AdditionalDataType._P_ADDITIONAL_INT

AdditionalDataType._P_ADDITIONAL_LONG

AdditionalDataType._P_ADDITIONAL_STRING

AdditionalDataType._P_ADDITIONAL_STRING_ARRAY

AdditionalDataType._P_ADDITIONAL_BOOLEAN

AdditionalDataType._P_ADDITIONAL_SHORT

AdditionalDataType._P_ADDITIONAL_CHAR

AdditionalDataType._P_ADDITIONAL_FLOAT

AdditionalDataType._P_ADDITIONAL_DOUBLE

AdditionalDataType._P_ADDITIONAL_INT_ARRAY

Platform Development Studio - Developer’s Guide 17-1

C H A P T E R 17

Checklist

This section contains a short summary checklist to use when creating extensions to Network
Gatekeeper:

When creating the management interface, consider if the management operations and
attributes should be cluster-wide or local.

Make sure to follow the plug-in naming convention: Plugin_<web service interface
part>_<network protocol>.

Make sure to implement customMatch of the PluginInstance (or
ManagedPluginInstance) to be sure that requests end up in the correct plug-in. This is
important when there are multiple plug-ins for the same communication service.

Create exception types that are very specific to various error scenarios. This will allow fine
grain control of the alarms that are generated.

Have a clean separation between the north and the south side of the plug-in.

Make sure to return all north interfaces (callback included) and souths interfaces when
implementing the getNorthInterfaces() and getSouthInterfaces() of
PluginInstance.

Make sure to implement the resolveAppInstanceGroupdId() method for each
PluginSouth instance (if applicable).

Annotate each parameter in the south object methods that you need to have when aspect
calls back the resolveAppInstanceGroupId() or the prepareRequestContext()
methods.

Check l is t

17-2 Platform Development Studio - Developer’s Guide

Consider what additional EDR fields you need to add. Annotate all the methods you want
to be woven using the @Edr annotation.

Annotate the specific arguments you want to see in the EDR for each annotated methods.
Use either @ContextKey or @ContextTranslate depending on the kind of argument.

Add all the EDRs you are triggering to the EDR descriptor.

	Oracle® Communication Services Gatekeeper
	Release 4.0

	Oracle Communication Services Gatekeeper Platform Development Studio - Developer’s Guide, Release 4.0
	Document Roadmap
	Document Scope and Audience
	Guide to This Document
	Terminology
	Related Documentation

	Overview of the Platform Development Studio
	Creating New Communication Services
	The Eclipse Wizard
	Example Communication Service
	The Platform Test Environment

	Integration and Customization
	Service Interceptors
	Subscriber-centric Policy
	Integration with External Systems

	Using the Eclipse Wizard
	About the Eclipse Wizard
	Configure Eclipse
	Prerequisites
	Basic configuration of Eclipse environment
	Configuring of the Eclipse Wizard

	Using the Eclipse Wizard
	Generating a Communication Service Project
	Adding a Plug-in to a Communication Service Project
	Removing a Plug-in from a Communication Service Project

	Description of a Generated Project
	Generated project
	Communication Service Project
	Plug-in
	SOAP2SOAP Plug-in

	Generated classes for a Plug-in
	Interface: ManagedPluginService
	Interface: PluginService
	Interface: PluginInstanceFactory
	Interface: PluginServiceLifecycle

	PluginService
	ManagedPlugin Skeleton

	PluginInstance
	PluginNorth
	PluginNorth skeleton

	RequestFactory Skeleton

	Generated classes for a SOAP2SOAP Plug-in
	Comparison with a Non-SOAP2SOAP Plug-in
	Client Stubs
	<Web Services Interface>_Stub
	<Web Services Interface>
	<Web Services Interface>Service_Impl
	<Web Services Interface>Service

	PluginInstance
	PluginNorth
	PluginSouth
	RequestFactory

	Build Files and Targets for a Communication Service Project
	Main Build File
	Communication Service Common Build File
	Plug-in Build File
	Ant Tasks
	cs_gen
	plugin_gen
	cs_package
	javadoc2annotation

	Communication Service Example
	Overview
	High-level Flow for sendData (Flow A)
	High-level Flow for startNotification and stopNotification (Flow B)
	High-level flow for notifyDataReception (Flow C)

	Interfaces
	Web Service Interface Definition
	Interface: SendData
	Interface: NotificationManager
	Interface: NotificationListener

	Network Interface Definition
	sendDataToNetwork
	receiveData

	Directory Structure
	Directories for WSDL
	Application-initiated traffic
	Network-triggered traffic

	Directories for Java Source
	Communication Service Common
	Plug-in

	Directories for resources
	Directories for Configuration of Plug-in
	Directories for Build and Configuration of Builds
	Directories for Classes, JAR, and EAR Files

	Classes
	Communication Service Common
	ExceptionType
	NotificationManagerPluginFactory

	Plug-in Layer
	ContextTranslatorImpl
	ExamplePluginService
	ExamplePluginInstance
	ConfigurationStoreHandler
	ExampleMBean
	Management
	NotificationHandlerNorth
	NetworkToNotificationPluginAdapter
	NetworkToNotificationPluginAdapterImpl
	NotificationManagerPluginNorth
	SendDataPluginNorth
	SendDataPluginSouth
	SendDataPluginToNetworkAdapter
	SendDataPluginToNetworkAdapterImpl
	FilterImpl
	NotificationData
	StoreHelper
	ExamplePluginInstance
	ExamplePluginService

	Store configuration
	SLA Example

	Container Services
	Container service APIs
	Class: InstanceFactory
	Class: ClusterHelper
	Service: EventChannel Service
	Plug-in
	Management
	EDR
	SLA Enforcement
	Service Correlation
	Interface: ExternalInvocation
	Class: ExternalInvocatorFactory
	Class: ServiceCorrelation
	Implementing the ExternalInvocation Interface

	Parameter Tunneling
	Storage Services
	ConfigurationStore
	Interfaces

	StorageService
	Store configuration file
	<store>
	<db_table>
	<query>
	<provider-mapping>
	<providers>

	Shared libraries

	Communication Service Description
	High-level components
	Communication Service Common
	Plug-in
	Plug-in Service and Plug-in Instance
	States
	PluginPool
	Interface: Plugin
	Interface: PluginNorth
	Interface: PluginNorthCallBack
	Interface: PluginSouth
	Interface: ManagedPluginService
	Interface: PluginService
	Interface: PluginInstanceFactory
	Interface: PluginServiceLifecycle

	Interface: ManagedPluginInstance
	Interface: PluginInstance
	Interface: PluginInstanceLifecycle

	Class: RequestFactory
	Class: CallbackFactory
	Interface: Callback
	Class: RequestInfo
	RequestIdentifierRequestInfo, if the request contains a request identifier.
	Class: ServiceType
	Interface: ContextMapperInfo
	Interface: RequestContext
	Class: ManagedPlugin
	Class: AbstractManagedPlugin

	Management
	SLA Enforcement
	Shared libraries

	Annotations, EDRs, Alarms, and CDRs
	About aspects and annotations
	How aspects are applied
	Context Aspect
	EDR Generation
	Exception scenarios
	Adding data to the RequestContext
	Using translators

	Trigger an EDR programmatically
	EDR Content
	Using send lists

	RequestContext and EDR

	Categorizing EDRs
	The EDR descriptor
	Special characters
	Values provided
	Boolean semantic of the filters
	Example filters

	Check-list for EDR generation
	Frequently Asked Questions about EDRs and EDR filters
	Alarm generation
	Trigger an alarm programmatically
	Alarm content

	CDR generation
	Triggering a CDR
	Trigger a CDR programmatically
	CDR content
	Additional_info column

	Out-of-the box (OOTB) CDR support

	Extending Statistics

	Making Communication Services Manageable
	Overview
	Create Standard JMX MBeans
	Create an MBean Interface
	Implement the MBean
	Register the MBean with the Runtime MBean Server

	Use the Configuration Store to Persist Values

	Using the Platform Test Environment
	Overview
	Installing and Running the Platform Test Environment
	Navigating the Platform Test Environment GUI
	The Tools Panel
	The Tool Selector Panel
	The Tool Action Panel

	The Simulator Panel
	The SLA Editor

	Extending the Platform Test Environment
	The Stateful SPI
	The Stateless SPI
	The Custom Base SPI
	The Custom Results Provider SPI
	The Custom Statistics Provider SPI
	The Context API
	The Module.xml Descriptor File

	Using the Unit Test Framework (UTFW) with the Platform Test Environment

	Service Interceptors
	Overview
	Interceptor Decisions and Request Flow
	Decisions
	Flow Control
	Changing the invocation order

	Standard Interceptors
	Retry functionality for plug-ins

	Custom Interceptors
	Developing Custom Interceptors
	Deploying Custom Interceptors

	Subscriber-centric Policy
	Service Classes and the Subscriber SLA
	The <reference> tag
	The <restriction> tag
	Managing the Subscriber SLA

	The Profile Provider SPI and Subscriber Contracts
	Deploying the Custom Profile Provider

	Subscriber Policy Enforcement
	Do Relevant Subscriber Contracts Exist
	Is There Adequate Budget for the Contracts

	Creating an EDR Listener and Generating SNMP MIBs
	Overview of External EDR listeners
	Example using a pure JMS listener
	Example using JMSListener utility with no filter
	Using JMSListener utility with a filter

	Description of EDR listener utility
	Class JMSListener
	Class EdrFilterFactory
	Class EdrData
	Class ConfigDescriptor
	Class EdrConfigDescriptor
	Class AlarmConfigDescriptor
	Class CdrConfigDescriptor

	Updating EDR configuration files
	Generating SNMP MIBs

	Converting Traffic Paths and Plug-ins to Communication Services
	Converting Network Protocol Plug-ins
	Converting Traffic Paths
	Checklist

	Policy
	Overview
	Policy Request Data
	Adding a New Rule
	Mapping PolicyRequest Data
	Creating a New Rule File by Extending an Existing File: an Example

	Using RequestContext Parameters Defined in Service Level Agreements

	Callable Policy Web Service
	Introduction
	Callable Policy Web Service interface definition
	Endpoints
	Detailed service description
	Policy Evaluation
	Policy management

	XML Schema data type definition
	AdditionalDataValue structure
	AdditionalDataValueType enumeration

	Interface: Policy
	Operation: evaluate

	Interface: PolicyManagement
	Operation: viewRuleFile
	Operation: deleteRuleFile
	Operation: loadRules
	Operation: listRuleFiles

	Rule files

	Checklist

