BEA WebLogic Enterprise

Using Security

WebLogic Enterprise 5.0
Document Edition 5.0
December 1999

Copyright

Copyright © 1999 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES

NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and Tuxedo are registered trademarks of BEA Systems, Inc. BEA Builder, BEA
Connect, BEA Manager, BEA MessageQ, BEA Jolt, M3, eSolutions, eLink, WebLogic, and WebLogic Enterprise
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.
Using Security

Document Edition Date Software Version

5.0 December 1999 BEA WebLogic Enterprise 5.0

Contents

About This Document

What Y OU NEed t0 KINOWccoouiiiiiieeeetiece ettt et s X
E-0OCSWED SIte....cueiiiceeiee e sr e b eraenaes X
How to Print the DOCUMENL..........ceeie e e Xi
Documentation CONVENLIONSc.coecueieeieie e et e se e saesreeeresraeraeere e ens Xii

1. Overview of WLE Security

WLE SECUNLY FEAIUIES.......eiieeie ettt ettt e e 1-2
LinK-Level ENCIYPLIONccccveieieee ettt e e e s e sne e 1-3
HOW LLE WOTKS.....o ittt et e 1-3
DevelOpMENt PrOCESSoieiieeirtiriee sttt see e e seeseeee e 1-4
Username/Password AUthenti Cation..............coueieieeieeirienie e 1-4
How Username/Password Authentication WOrks..........ccocoveeeennieceenen 1-5
Development Process for Username/Password Authentication................. 1-7
THE SSL ProtOCOIeeviiieieeie ettt ettt e e e s e s 1-9
How the SSL Protocol WOFKS.......ccooieirerire e 1-9
Requirements for Using the SSL Protocolcceoeeeeriereveeneie e 1-11
Development Process for the SSL Protocolcooveieieveeneiesnnecene 1-12
Certificate-Based AUthentiCationccocoeieirieeiecierreee e e 1-14
How Certificate-based Authentication WOrKSccooeveeeeiiniecenicnnenn 1-15
Requirements for Using Certificate-Based Authentication..................... 1-16
Development Process for Certificate-Based Authentication.................... 1-17
Commonly Asked Questions about WLE SeCurityc.cccceeeeevececieieennnn 1-20
Do | have to Change the Security in an Existing WLE Application?...... 1-20
Can | Usethe SSL Protocol in an Existing WLE Application?............... 1-21
When Should | Use Mutua Certificate-Based Authentication?.............. 1-22

Using Security iii

iv

2. Managing Certificates and Keys

Installing the WLE Security Packccooiviieieiineee e 2-2
Using the LDAP Directory Service with Your WLE Application..................... 2-2
Editing the LDAP Search Flter File ... 2-3
Publishing a Certificate for the Certificate AUthOIitYcocoieieiiiiciiiiee 2-5
Obtaining Digital Certificates and Private Keys for Principas..........ccccoeeeeeeee 2-6
Storing the Private Keysin a Common LOCationccccecveeuevieceeiecieesienens 2-6
Defining the Trusted Certificate AUthONItIES.......ccueeeiiiiieiicecceece e 2-8
Creating aPeer RUIES FIlE ... 2-10

Configuring the WLE Environment for the SSL Protocol

Setting Parameters for the SSL Protocolooeoeiiniinneee e 32
Defining a Port for SSL CommUNICALIONS.........ccccoveveiiieineeiiee e et 3-2
Enabling Certificate-based Authentication...........ccccoeceeiieciiie v, 33
Enabling HOSt MatChINGcoviueieieeieeeee et 3-3
Setting the Encryption Strength..........cooooiee e 35
Setting the Interval for Session ReNegotiationc.cccoeveieereiievenece e 3-8
Defining Security Parameters for the [1OP Listener/Handler............ccocceveneee. 3-8
Example of Setting Parameters on the ISL System Process..........ccoceveveeveennne. 39
Example of Setting Command Line Options on the CORBA C++ ORB......... 3-10
Example of Setting System Properties on the CORBA JavaORB 3-10
Defining Security for a WLE CORBA Application
Setting Parameters for Security in the UBBCONFIG File........cccooeoeiineeennns 4-2
Configuring the Authentication SEerver ... reneineerre e 4-2
Defining a Security LEVEL ..o e s 4-3
Setting the Level of ENCryption...........ccoooe e 4-5
Sample UBBCONFI G File for Username/Password Authentication......... 4-5
Sample UBBCONFIG File for Certificate-Based Authentication.............. 4-7
Defining AUthOrized USErS..........cveoicie ettt st st 4-8

5. Writing a WLE CORBA Application That Implements Security

Understanding the Address Formats of the Bootstrap Objectcccccceeveneeee. 5-2
Using the Host and Port Address FOrmat............cceeeeeeoeeenencnie s 5-4
Using the corbaloc URL Address FOrmatcceeeneeeeeeneniene s 5-5

Using Security

Using the corbalocs URL Address FOMatcccveeeeeveeneeneieneneeeeeene 5-5

Using Username/Password AUthenticationcccoceeveveeie e e e 5-6
The Security Sample ApPlICaLIONccoceeeiireie e 5-6
Writing the Client AppPliCaIONccoiiieiiiree e 5-7

Using Certificate-based Authenticationccccevevieieiice e, 5-15
The Secure Simpapp Sample ApPliCation..........cccoeveiereeieie e 5-16
Writing the Client AppliCaIONccoviieirinee e 5-18

Using the Invocations Options Required() Method...........cocovviiiiiiiecinnnn. 5-21

6. Building and Running the CORBA Sample Applications

Building and Running the Security Sample Applicationcccoveeveicnennne 6-2
Step 1: Copy the files for the Security sample application into a work
IFECLOMY. ettt ettt e e e s 6-3
Step 2: Verify the settings of the environment variables. ... 6-5
Step 3:Change the Protection on the Files for the Security Sample
APPHICAITON. ...t e 6-7
Step 4: Set the Environment Variablesccoeieieir e 6-8
Step 5: Initialize the Database.........occvevveee i 6-8
Step 6: Load the UBBCONFIG File......cccooiiiiiieie e 6-8
Step 7: Compile the Security Sample Application.............ccoceeeiiveiciee. 6-9
Step 8: Start the server appliCation...........cocvveeieniene e 6-9
Step 8: Start the C++ client appliCation ... sereee e 6-10
Step 9: Start the Java client application.ccccoeveviieeininiecce e 6-10
Building and Running the Secure Simpapp Sample Application.................... 6-13
Step 1: Copy the Files for the Secure Simpapp Sample Application into a
WOTK DITECIONY ...viveieiiieeciiee et s 6-13
Step 2: Change the protection attribute on the files for the Secure Simpapp
SAMPIE APPLICELTON.ecviectiecr et 6-17
Step 3: Verify the settings of the environment variables.ccc....... 6-18
Step 4: Execute the runme command.ocoeoeverene e seeneeie s s 6-20
Using the Secure Simpapp Sample Applicationcccccevinieiievcnene 6-26

7. Writing a WLE Enterprise JavaBean that Implements Security

BEfOre Y OU BEJIN......couiieiieiee ettt et e s e ne e 7-2
How Authentication Works with WLE EJIBS........cccccoeriirieieineeie e 7-2
DeVE OPMENT SEEPS. ...ttt ettt e ee e e en s e enes 7-2

Using Security %

Step 1: Define security roles for the methods of the WLE EJB. ... 7-3

Step 2: Specify security roles in the Deployment Descriptor of the EJB.......... 7-4
Step 3: Define the INDI environment Properties.ocoeveeeeieeeneeniecesecneennas 7-5

WLEContext.INITIAL_CONTEXT_FACTORY Propertyccoccvvuene 7-5

WLEContext.PROVIDER_URL Propertycccoconvrnnnenenie s e 7-6

WLEContext. SECURITY_AUTHENTICATION Propertyccccoceenes 7-7
Step 4: Establish the INitial CONLEXL.ccuoviieeeiririee e e 7-9
Step 5: Use Home to get aWLE EJB.ooviiiiiiiceeeeee e 7-9
Step 6: Use the getCallerPrincipal M ethod to authenticate a WLE EJB.......... 7-10
Limitations and RESIICLIONS.........ccvrieririeeiiee e e 7-10
Example of Using Security in aWLE EJB.......ccccooiviiiinnicneeeerieenn, 7-10

8. Troubleshooting

Using ULOGS and ORB TFaCINQGcceeeueeeereerieeeeseereaneeseeseeeesessesessessessesseneeees 8-1
CORBA::ORB_init Problems..........cccooiiiiie i 8-3
Username/Password Authentication Problems...........ccccoeveiineiniecincne 8-4
Certificate-Based Authentication Problems...........ccccovinninie i 8-5
Tobj::Bootstrap::
resolve initial_references Problems...........cccovecciiieccecciecceeesee e 8-6
[1OP Listener/Handler Startup Problems..........ccocoi i 8-7
Configuration Problems...........ccuoeciiecceeeee e e e 8-8
Problems with Using Callbacks Objects with the SSL Protocaol 8-9
Troubleshooting Tips for Digital CertifiCatesoocoveoiriirinienie e 8-9
9. WLE Security Service APIs
The WLE Security MOE ..o e 9-2
Authentication Of PrinCIPalS........ceooieee it 9-2
Controlling ACCESS t0 ODJECES.oovieeuireire ettt e 9-3
AdMINiStrative CONIOlc.ooveiie et 9-3
Functional Components of the WLE Security Service.........ccccvoveerereneenenene 9-4
The Principal Authenticator ODJECL.........cccoieviieie e e 9-5
Using the Principa Authenticator Object with Certificate-based
AULNENTICAITON ...t e e 9-6
WLE Extensions to the Principal Authenticator Object............c.cccoeveeenee. 9-6
The CredentialS ObJECLc..cii et st 9-7
The SecurityCurrent ODJECL........ccoiiiiiieeeeeeeee e e 9-9

Using Security

10. Security Modules

CORBA MOUUIE.......eeiiee et e e s 10-2
TimMEBase MOAUIEooo i e 10-2
SECUNLY MOAUIE ... e e e 10-4
Security Level T MOAUIE......cccoiie e e 10-6
Security Level 2 MOAUIE.... ..o e e 10-7
B Io] o 1Y Koo (U1 =TSPTSRO 10-8

11. C++ Security Reference

SecurityLevel2::CredentialS.coco v reeeie e 11-9
SecurityLevel2::Principal AuthentiCatorcccoooioeree e 11-17

12. Java Security Reference

13. Automation Security Reference

MethOd DESCIIPLIONSeeeeeieiie ettt e e e 13-2
DISecurityLevel2 CUMENtcouevieeieeeeeeee et s 13-2
DITobj_Principal AUtRENLICALOc..oveieeeeriieeee e 13-7
DISecurityLevel2 CredentialS........coccvevereeerereeee e s 13-17

Programming EXamMpPIe.........cuo i e e 13-20

Using Security Vii

Viii Using Security

About This Document

This document provides an introduction to concepts associated with the BEA
WebL ogic Enterprise (WLE) security features, a description of how to secure your
WLE applications using the WL E security features, and a guide to the use of the
application programming interfaces (APIs) in the WLE Security Service.

This document covers the following topics:

Chapter 1, “Overview of WLE Security,” introduces concepts associated with the
WLE security features.

Chapter 2, “Managing Certificates and Keys,” describes how to set up a public
key infrastructure to interact with WLE applications that use the SSL protocol
and certificate-based authentication.

Chapter 3, “Configuring the WLE Environment for the SSL Protocol,” describes
configuring the IIOP Listener/Handler, the CORBA C++ ORB, or the CORBA
Java ORB so that it can be used with the Secure Sockets Layer (SSL) protocol
and certificate-based authentication.

Chapter 4, “Defining Security for a WLE CORBA Application,” explains the
configuration tasks required when using security in a WLE application.

Chapter 5, “Writing a WLE CORBA Application That Implements Security,”
explains how the bootstrapping options work and describes implementing
password-based authentication and certificate-based authentication in WLE
CORBA applications.

Chapter 6, “Building and Running the CORBA Sample Applications,” describes
how to build and run the Security and Secure Simpapp sample applications.

Chapter 7, “Writing a WLE Enterprise JavaBean that Implements Security,”
describes implementing password-based and certificate-based authentication in
WLE EJBs.

Using Security iX

m Chapter 8, “Troubleshooting,” provides troubleshooting tips that can be used
when solving problems that occur with the security portion of a WLE
application.

m Chapter 9, “WLE Security Service APIs,” introduces the WLE Security model
and the functional components of the security model.

m Chapter 10, “Security Modules,” includes the Object Management Group
(OMG) Interface Definition Language (IDL) for the modules used by the WLE
Security service.

m Chapter 11, “C++ Security Reference,” includes the C++ method descriptions.
m Chapter 12, “Java Security Reference,” includes the Java method descriptions.

m Chapter 13, “Automation Security Reference,” includes the Automation method
descriptions.

What You Need to Know

This document is intended for programmers who want to incorporate security into thei
WLE applications and system administrators who are responsible for setting up and
maintaining the security infrastructure in an enterprise.

e-docs Web Site

The BEA WebLogic Enterprise product documentation is available on the BEA
corporate Web site. From the BEA Home page, click the Product Documentation
button or go directly to the “e-docs” Product Documentation page at
http://e-docs.beasys.com

X Using Security

How to Print the Document

How to Print the Document

Y ou can print acopy of thisdocument from aWeb browser, onefile at atime, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Enterprise
documentation Home page on the e-docs Web site (and also on the documentation
CD). You can open the PDF in Adobe Acrobat Reader and print the entire document
(or a portion of it) in book format. To access the PDFs, open the WebLogic Enterprise
documentation Home page, click the PDF Files button, and select the document you
want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site ahttp://www.adobe.com

Related Information

For more information about CORBA, Java 2 Enterprise Edition (J2EE), BEA
TUXEDO, distributed object computing, transaction processing, C++ programming,
and Java programming, see WéE Bibliographyin the WebLogic Enterprise online
documentation.

Contact Us!

Your feedback on the BEA WebLogic Enterprise documentation is important to us.
Send us e-mail atocsupport@beasys.com if you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and update
the WebLogic Enterprise documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebLogic Enterprise 5.0 release.

Using Security Xi

If you have any questions about this version of BEA WebL ogic Enterprise, or if you
have problems installing and running BEA WebL ogic Enterprise, contact BEA
Customer Support through BEA WebSupport at www.beasys.com. Y ou can aso
contact Customer Support by using the contact information provided on the Customer
Support Card, which isincluded in the product package.

When contacting Customer Support, be prepared to provide the following information:
m Your name, e-mail address, phone humber, and fax number

m Your company name and company address

m Your machine type and authorization codes

m Thename and version of the product you are using

m A description of the problem and the content of pertinent error messages

Documentation Conventions

Xii

The following documentation conventions are used throughout this document.

Convention Item

boldfacetext Indicatesterms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

Using Security

Documentation Conventions

Convention Item
nonospace Indicates code samples, commands and their options, data structures and
t ext their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:
#i ncl ude <iostreamh> void main () the pointer psz
chnmod u+w *
\'t ux\ dat a\ ap
.doc
t ux. doc
Bl TVAP
fl oat
nonospace Identifies significant wordsin code.
bol df ace Example:
text void comit ()
nonospace Identifies variables in code.
italic Example:
t ext .
String expr
UPPERCASE Indicates device names, environment variables, and logicd operators.
TEXT Examples:
LPT1
SIGNON
OR
{} Indicates a set of choicesin a syntax line. The braces themselves should

never be typed.

[]

Indicates optional itemsin a syntax line. The brackets themsel ves should
never be typed.

Example:

buil dobjclient [-v] [-0o name | [-f file-list]...
[-1 file-list]...

Separates mutually exclusive choicesin a syntax line. The symbol itself
should never be typed.

Using Security Xiii

Xiv

Convention

Item

Indicates one of the following in acommand line:

m That an argument can be repeated several timesin acommand line

m That the statement omits additional optiona arguments

m That you can enter additional parameters, values, or other information
The ellipsisitself should never be typed.

Example:

bui l dobjclient [-v] [-0 nane | [-f file-list]...
[-1 file-list]...

Indicates the omission of items from a code example or from a syntax line.
The vertical dlipsisitself should never be typed.

Using Security

CHAPTER

1

Overview of WLE
Security

Thistopic includes the following sections:

WLE Security Features

Link-Level Encryption

Username/Password Authentication

The SSL Protocol

Certificate-Based Authentication

Commonly Asked Questions about WLE Security

Using Security

1-1

1 overview of WLE Security

WLE Security Features

1-2

The BEA WebL ogic Enterprise (referred to as WLE) product enables you to integrate
the following essential security featuresinto your WLE applications:

m Authentication allows the two communicating parties to be certain that they are
speaking with someone whom they trust. By using usernames and passwords or
digital certificates and public-key technology, a WLE object and the application
that invokes a request on the WLE object can each be authenticated to the other.

m Confidentiality is the ability to keep communication secret from parties other
than the intended recipient. It is achieved by encrypting all data. The WLE
product provides mechanisms that enable two communicating parties to
negotiate an algorithm they both support and to agree on the keys with which to
encrypt the data.

m Integrity isaguarantee that the data being transferred has not been modified in
transit. The same handshake that allows two parties to agree on a method of
encryption also provides a means of supplying integrity through the use of
shared data integrity secrets. Shared data integrity secrets ensure that when data
isreceived, any modifications made to the data while in transit will be detected.

The WLE product provides the security features:
m Link-Level Encryption

m Username/Password authentication

m The SSL protocol

m Certificate-based authentication

The remainder of thistopic describes how the different security features work in the
WLE product.

Using Security

Link-Level Encryption

Link-Level Encryption

Link-level encryption (LLE) isthe encryption of messages going across network links
between machinesin aWL E domain or between WLE domains. The objectiveof LLE
isto ensure confidentiality so that a network-based eavesdropper cannot learn the
content of WLE system messages or WLE application-generated messages. LLE is
point-to-point, which means that data may be encrypted/decrypted as many times as it
flows over network links.

How LLE Works

LLE worksin the following way:
1. The system administrator sets a parameter to control the encryption strength.

2. The WLE domain receives the initial connection and starts to negotiate the
encryption level to be used between the WLE applications.

3. Thetwo WLE applications agree on the largest common key size supported by
both.

4. The configured maximum key size parameter is reduced to agree with the
installed software’s capabilities. This step must be done at link negotiation time,
because at configuration time it may not be possible to verify a particular
machine’s installed encryption package.

5. The WLE applications exchange messages using the appropriate encryption level.

Figure 1-1 illustrates these steps.

Using Security 1-3

1 overview of WLE Security

Figurel-1 How LLE Works

WLE Domain
Machine 1
WLE Application 1
UBBCONFIG File
M NENCRYPTBI TS 40 40, 128
MAXENCRYPTBI TS 128 Bit
Encryption

Development Process

Theimplementation of LLE isan administrative task. The system administrators for
each WLE application set parameters in the UBBCONFI G file that control encryption
strength. When the two WLE applications establish communication, they negotiate
what level of encryption to use to exchange messages. Once an encryption level is
negotiated, it remainsin effect for the lifetime of the network connection.

Machine 2
WLE Application 2

UBBCONFIG File
M NENCRYPTBI TS 40
MAXENCRYPTBI TS 128

Username/Password Authentication

1-4

The WLE product supports a username/password mechanism to provide

authentication to existing WLE applications and to new WLE applications that are not

prepared to deploy afull public key infrastructure (PK1). When using

Username/Password authentication, the applicationsthat initiate invocations on WLE
objects authenti cate themselves to the WL E domain using a defined username and

password.

Using Security

Username/Password Authentication

The WLE product utilizes a delegated trust authentication model. In this model,
initiating applications authenticate to a trusted gateway process. In the WL E product,
the trusted gateway processis the I1OP Listener/Handler. As part of successful
authentication, a security association, called a security context, is established between
the initiating application and the I1OP Listener/Handler that controls accessto WLE
objects.

Two levels of Username/Password authenti cation are provided:

m Application password—In this security scenario, the client application
authenticates itself to the WLE domain. A user name or client application name,
and application password are used to authenticate the client application.

m System authentication—In this security scenario, the client application provides
the same information as when using application password authentication and
additional authentication data that is verified by a WLE-provided authentication
server AUTHSRV) before access is granted to client application.

Username/Password authentication is available in both the base WLE product and the
WLE Security pack. If you install the WLE Security pack and choose to use
Username/Password authentication, the SSL protocol can be used to provide
confidentiality to communication between different machines. When using
Username/Password authentication, you have the option of using the

Tobj : : Princi pal Aut henticator::1ogon() orthe

SecuritylLevel 2:: Princi pal Aut henticator: :authenticate() methods.

How Username/Password Authentication Works

Username/Password authentication works in the following way:

1. The initiating application instantiates the Bootstrap object with any of the URL
address formats. For more information about which URL address format to use
with the Bootstrap object, see “Understanding the Address Formats of the
Bootstrap Object” on page 5-2.

2. The initiating application obtains credentials for the user. The initiating
application must provide proof material to be used by the WLE domain to
authenticate the user. This proof material consists of the name of the user and a
password.

Using Security 1-5

1 overview of WLE Security

e Theinitiating application creates the security context using a
Pri nci pal Aut henti cat or object. Therequest for authentication is sent to
the I1OP Listener/Handler. The proof material in the authentication request is
securely relayed to the authentication server, which verifies the supplied
information.

e |f the verification succeeds, the WLE system constructsa Cr edenti al s
object that is used by all future invocations. The Cr edenti al s object for
the user is associated with the Cur r ent object that represents the security
context.

3. Theinitiating application invokes a WLE object in the WLE domain using an
object reference. The request is packaged into an I1OP request and is forwarded
to the 11OP Listener/Handler that associates the request with the previously
established security context.

If the SSL protocol is used to secure the connection for confidentiality and
integrity, the data will also be protected from eavesdropping.

4. ThellOP Listener/Handler receives the request from the initiating application.

5. ThellOP Listener/Handler forwards the request, along with the credentials of the
initiating application, to the appropriate WL E object.

Figure 1-2 illustrates these steps.

1-6 Using Security

Username/Password Authentication

Figure1-2 How Username/Password Authentication Works

Client WLE Domain
Application
Object Reference for
Bootstrap Object SecurityCurrent
Tobj _Bootstrap Object
(orb, //sling.com 2143) IIOP
or | . Listener/
Tobj _Boot strap ol Handler
(orb, corbal oc://sling.com 2143) Authentication Level
or T for WLE Domain
Tobj _Boot strap
(orb, corbal ocs: //sling.com 2143)

SecurityCurrent Object /
Princi pal Aut henti cat or

get _auth_type();

| ogon(user nane, appl i cati on_nane,
password);

Development Process for Username/Password
Authentication

Defining Username/password authentication for a WLE application includes
administration and programming steps. Table 1-1 and Table 1-2 list theadministration

and programming steps for Username/Password authentication. For a detailed

description of the administration steps for Username/Password authentication, see
“Defining Security for a WLE CORBA Application” on page 4-1. For a complete
description of the programming steps, see “Writing a WLE CORBA Application That
Implements Security” on page 5-1.

Using Security 1-7

1 overview of WLE Security

1-8

Table 1-1 Administration Sepsfor Username/Password Authentication

Step

Description

1

Set the SECURI TY parameter in the UBBCONFI Gfile to either APP_PWor
USER_AUTH.

If you defined the SECURI TY parameter as USER_AUTH, configure the
authentication server (AUTHSRV) in the UBBCONFI Gfile.

Usethet pusr add and t pgr padd commands to define lists of authorized users
and groups.

Usethet ml oadcf command toload the UBBCONFI Gfile. When the UBBCONFI G
fileisloaded, the system administrator is prompted for a password. The password
entered at this time becomes the password for the WLE application.

Table 1-2 Programming Steps for User name/Password Authentication

Step

Description

1

Write application code that uses the Bootstrap object to obtain areference to the
SecurityCurrent object.

Write application code that obtai ns the Principal Authenticator object from the
SecurityCurrent object.

Write application code that uses the

Tobj : : Princi pal Authenticator::logon() or

SecuritylLevel 2:: Principal Authenticator::authenticate()
operation to establish a security context with the WLE domain.

Write application code that prompts the user for the password defined when the
UBBCONFI Gfileisloaded.

Using Security

The SSL Protocol

The SSL Protocol

The WLE product providestheindustry-standard Secure Sockets L ayer (SSL) protocol
to establish secure communications between client and server applications. When
using the SSL protocol, principals use digital certificates to prove their identity to a
peer.

The default behavior of the SSL protocol in the WLE product isto have the I1OP
Listener/Handler prove itsidentity to the principal who initiated the SSL connection
using adigital certificate. Thedigita certificateisverified to ensure that the certificate
has not been tampered with or expired. If there isa problem with the digital certificate
in the chain, the SSL connection is terminated. In addition, the issuer of the digital
certificate is compared against a list of trusted certificate authorities to verify the
digital certificate received from the IIOP Listener/Handler has been signed by a
certificate authority that is trusted by the WLE domain.

Figure 1-3 provides a conceptual overview of the SSL protocol.

Figure1-3 TheSSL Protocol

SSL
WLE Client IIOP
Application < Listener/Handler
Certificate for
lIoP

Listener/Handler

How the SSL Protocol Works

The SSL protocol works in the following manner:

Using Security 1-9

1 overview of WLE Security

1-10

7.

Theinitiating application instantiates the Bootstrap object with aURL in the form
of corbal oc: // host: port or corbal ocs:// host: port.

If you usethe cor bal oc: // host : port URL address format, the bootstrapping
process is unsecure. You can use the aut hent i cat e() method of the
SecuritylLevel 2:: Current interface and the

i nvocati ons_opti ons_requi red() method to secure the bootstrapping
process and specify that certificate-based authentication is to be used.

Theinitiating application receives the digital certificate of the principal in this
case the I|OP Listener/Handler. The security context is established as result of a
Tobj Bootstrap::resolve_initial _references() ora

Tobj : : Princi pal Aut henti cat or:: Logon() method. This step is transparent
to the user of the application.

If the verification succeeds, the WLE system constructs a Cr edent i al s object.
The O edenti al s object for the principal represents the security context for the
current thread of execution.

Theinitiating application invokes a WLE object in the WLE domain using an
object reference.

Therequest is packaged into an [1OP request and is forwarded to the [lOP
Listener/Handler that associates the request with the established security context.

The request is digitally signed and encrypted before it is sent to the 11OP
Listener/Handler. The WLE system performs the signing and sealing of requests.

The I1OP Listener/Handler receives the request from the initiating application.
Thedigital signature of the request is verified and the request is decrypted.

The I1OP Listener/Handler forwards the reguest to the appropriate WL E object.

Figure 1-4 illustrates these steps.

Using Security

The SSL Protocol

Figure1-4 How the SSL Protocol Worksin aWLE Application

Client
Application
Bootstrap Object WLE Domain
Tobj _Boot strap 1IOP
(orb, corbal ocs://sling. com 2143) PF;SO'-W Listener/
I Handler
\
SecurityLevel2::Current Object

aut hent i cat e(WLE Object

Tobj :: CertificateBased Simple

or
Tobj : TuxedoSecurity);

Si npl e- >t o_upper ();

Requirements for Using the SSL Protocol

To usethe SSL protocol in a WLE application, you need to install the WLE Security
Pack. Information about installing the WLE Security Pack can be found in the BEA
WebL ogic Enterprise Installation Guide.

The WLE implementation of the SSL protocol isflexible enough to fitinto most public
key infrastructures. The WLE product requires that certificates are stored in an
LDAP-enabled directory. Y ou can choose any L DAP-enabled directory service. Y ou
can aso choose the certificate authority from which to obtain certificates and private
keys used in aWLE application. Y ou must have an LDAP-enabled directory service
and a certificate authority in place before using the SSL protocol in a WL E application.

Using Security -1

1 overview of WLE Security

Development Process for the SSL Protocol

1-12

Using the SSL protocol in aWLE application is primarily an administration process.

Table 1-4 lists the administration steps required to set up the infrastructure required to

use the SSL protocol and configure the IIOP Listener/Handler for the SSL protocol.

For a detailed description of the administration steps, see “Managing Certificates an
Keys” on page 2-1 and “Configuring the WLE Environment for the SSL Protocol” on
page 3-1.

Once the administration steps are complete, you can use either Username/Passwor
authentication or Certificate authentication in your WLE application. For more
information, see “Writing a WLE CORBA Application That Implements Security” on
page 5-1. In addition, you can use the SSL protocol with Enterprise JavaBeans, for
more information, see “Writing a WLE Enterprise JavaBean that Implements
Security” on page 7-1.

Note: If you are using the BEA CORBA C++ or CORBA Java ORB as a server
application, the ORB can also be configured to use the SSL protocol. For more
information, see “Configuring the WLE Environment for the SSL Protocol”
on page 3-1.

Table 1-3 Administration Stepsfor the SSL Protocol

Step Description

1 Install the WLE Security pack.

2 Set up an LDAP-enabled directory service.

3 Obtain a certificate and private key for the[1OP Listener/Handler from acertificate
authority.

4 Publish the certificates for the |OP Listener/Handler and the certificate authority

in the LDAP-enabled directory service.

5 Define the SEC_PRI NCI PAL_NAME, SEC_ PRI NCI PAL_LOCATI ON, and
SEC PRI NCl PAL_PASSVAR parameters for the |SL server processin the
UBBCONFI Gfile.

6 Define aport for secure communication on the 11 OP Listener/Handler using the - s
option of the ISL command.

Using Security

The SSL Protocol

Table 1-3 Administration Sepsfor the SSL Protocol

Step Description

7 Create a Trusted Certificate Authority file (trust_ca.cer) that definesthe certificate
authorities trusted by the [1OP Listener/Handler.

8 Usethet m oadcf command to load the UBBCONFI Gfile.

9 Optionally, create a Peer Rulesfile (peer _val . rul) for the IOP

Listener/Handler.

10 Optionally, modify the LDAP Search filter file to reflect the directory hierarchy in
place in your enterprise.

Figure 1-5 illustrates the configuration of a WLE application that uses the SSL
protocol.

Figure1-5 Configuration for Using the SSL Protocol in a WLE Application

1IOP
Listener/Handler

WLE Client
Application ISL -s -a

SEC_PRI NCI PAL_NAME
SEC_PRI NCI PAL_LOCATI ON
SEC_PRI NCI PAL_PASSVAR

trust_ca. cer

LDAP
Directory Service

Private Key for
1IOP
Listener/Handler

Certificate for IIOP
Listener/Handler

Certificates for
Certificate
Authorities

Using Security 1-13

1 overview of WLE Security

Certificate-Based Authentication

1-14

Certificate-based authentication requires that each side of an SSL connection proves
its identity to the other side of the connection. In the WLE product, the I1OP
Listener/Handler presents its digital certificate to the principal who initiated the SSL
connection. The initiator then provides a chain of digital certificates that are used by
the I1OP Listener/Handler to verify the identity of the initiator.

Once achain of digital certificatesis successfully verified, the I1OP Listener/Handler
retrieves the value of the distinguished name from the subject of the digital certificate.

The WLE product uses the email address element of the subject’s distinguished nan
as the identity of the principal. The IIOP Listener/Handler uses the identity of the
principal to impersonate the principal and establish a security context between the
initiating application and the WLE domain.

Once the principal has been authenticated, the principal that initiated the request an
the IIOP Listener/Handler agree on a cipher suite that represents the type and strenc
of encryption that they both support. They also agree on the encryption key and
synchronize to start encrypting all subsequent messages.

Figure 1-6 provides a conceptual overview of the certificate-based authentication.

Figure1-6 Certificate-Based Authentication

SSL Protocol

WLE Client lIOP
Application Certificate for Listener/
lHoP Handler

Listener/Handler

Certificates for
WLE Client Application

Using Security

Certificate-Based Authentication

How Certificate-based Authentication Works

Certificate-based authentication works in the following manner:

1

The initiating application instantiates the Bootstrap object with aURL in theform
of cor bal oc://host: port or cor bal ocs:// host: port and controlsthe
requirement for protection by setting attributes on the

Securitylevel 2:: Credenti al s object returned as aresult of the
Securitylevel 2:: Princi pal Authenticator: :authenticate operation.

Note: Youcanalso usethe SecuritylLevel 2:: Current:: authenticate()

method to secure the bootstrapping process and specify that certificate-based
authentication isto be used.

The initiating application obtains the digital certificate and the private key of the
principal. Retrieval of thisinformation may require proof material to be supplied

to gain access to the principal’s private key and certificate. The proof material
typically is a pass phrase rather than a password.

The security context is established as result of a

Tobj _Bootstrap::resolve_initial _references() ora

Tobj : : Princi pal Aut henticator:: Logon() method. This step is transparent
to the user of the application.

If the verification succeeds, the WLE system construCtsdent i al s object.
The Credenti al s object for the principal represents the security context for the
current thread of execution.

The initiating application invokes a WLE object in the WLE domain using an
object reference.

The request is packaged into an IIOP request and is forwarded to the 11OP
Listener/Handler that associates the request with the established security context.

The request is digitally signed and encrypted before it is sent to the IIOP
Listener/Handler. The WLE system performs the signing and sealing of requests.

The IIOP Listener/Handler receives the request from the initiating application.
The digital signature of the request is verified and the request is decrypted.

The IIOP Listener/Handler maps the principals certificate identity to a TUXEDO
user identity.

Using Security 1-15

1 overview of WLE Security

9. ThellOP Listener/Handler forwards the request, along with the TUXEDO
identity of the principal, to the appropriate WLE object.

Figure1-7 How Certificate-Based Authentication Works

Client
Application
Bootstrap Object WLE Domain
Tobj _Bootstrap SSL lop
(orb, corbal ocs://sling.com 2143) Protocol Listener/
Handler \
SecurityLevel2::Current Object
aut henti cat e(WLE Object
Tobj : : Certi fi cat eBased Simple
emai | address
passphrase) ;

Si npl e- >t o_upper () ;

Requirements for Using Certificate-Based Authentication

1-16

Certificate-based authentication uses the SSL protocol so you need to install the WLE
Security Pack. Information about installing the WL E Security Pack can befoundin the
BEA WebLogic Enterprise Installation Guide. Y ou aso need an LDAP-enabled
directory. Y ou can choose any L DAP-enabled directory service. Y ou can also choose
the certificate authority from which to obtain certificates and private keys used in a
WLE application. Y ou must have an L DAP-enabled directory service and acertificate
authority in place before using certificate-based authentication in a WLE application.

Using Security

Certificate-Based Authentication

Development Process for Certificate-Based

Authentication

Using certificate-based authentication in a WLE application includes administration
and programming steps. Table 1-4 and Table 1-5 list the administration and

programming steps for certificate-based authentication. For a detailed description of
the administration steps, see “Managing Certificates and Keys” on page 2-1 and
“Configuring the WLE Environment for the SSL Protocol” on page 3-1.

Table 1-4 Administration Stepsfor Certificate-Based Authentication

Step

Description

1

Install the WLE Security pack.

Set up an LDAP-enabled directory service.

Obtain acertificate and private key for the || OP Listener/Handler from a certificate
authority.

Obtain a certificate and private key for the WLE application from a certificate
authority.

Storethe private key filesfor the WL E application in the Home directory of the user
orin $TUXDI R/ udat aobj / security/ keys.

Publish the certificates for the 11 OP Listener/Handler, the WLE application, and the
certificate authority in the LDAP-enabled directory service.

Definethe SEC_ PRI NCI PAL_NAME, SEC PRI NCl PAL_LOCATI ON, and
SEC PRI NCI PAL_PASSVAR for the I SL server processin the UBBCONFI Gfile.

Usethet pusr add command to define the authorized users of your WLE
application.

Defineaport for secure on thellOP Listener/Handler using the - s option of thel SL
command.

10

Enabl e certificate-based authentication in the [IOP Listener/Handler using the - a
option of the ISL command.

11

Create a Trusted Certificate Authority file (trust_ca.cer) that definesthe certificate
authorities trusted by the I[1OP Listener/Handler.

Using Security 1-17

1 overview of WLE Security

Table 1-4 Administration Stepsfor Certificate-Based Authentication

Step Description

12 Create a Trusted Certificate Authority file (trust_ca.cer) that defines the certificate
authorities trusted by the WLE client application.

13 Usethet ml oadcf command to |load the UBBCONFI Gfile.

14 Optionally, create a Peer Rulesfile (peer _val . r ul) for both the WLE client

application and the | 1OP Listener/Handler.

15 Optionally, modify the LDAP Search filter file to reflect the directory hierarchy in
place in your enterprise.

Figure 1-8 illustrates the configuration of a WL E application that uses
certificate-based authentication.

1-18 Using Security

Certificate-Based Authentication

Figure1-8 Configuration for Using Certificate-Based Authentication inaWLE

Application
WLE Client 1IOP
Application Listener/Handler
corbal ocs:// =
host : port “lIsSL -s -a
< SEC_PRI NCI PAL_NAMVE

SEC_PRI NCI PAL_LCCATI ON
peer _val .rul SEC_PRI NCI PAL_PASSVAR

trust_ca.cer LDAP trust _ca.cer

Directory Service

Certificate for IIOP peer_val . rul

Listener/Handler

Private Key for
WLE Client Certificates for
Application Certificate

Private Key for

Authorities

11OP
Certificates for Listener/Handler

WLE Client
Applications

Table 1-5 lists the programming steps for using certificate-based authentication in a

WLE application. For more information, see “Writing a WLE CORBA Application
That Implements Security” on page 5-1. In addition, you can use certificate-based
authentication with Enterprise JavaBeans, for more information see “Writing a WLE
Enterprise JavaBean that Implements Security” on page 7-1.

Table 1-5 Programming Stepsfor Certificate-Based Authentication

Step Description

1 Write application code that usesthe cor bal oc or cor bal ocs URL address
formats of the Bootstrap object. Note that the CommonName in the Distinguished
Name of the certificate of the [|OP Listener/Handler must match exactly the host
name provided in the URL address format.

Using Security 1-19

1 overview of WLE Security

Table 1-5 Programming Steps for Certificate-Based Authentication

Step Description

2 Write application code that uses thé henti cat e() method of the
Securitylevel 2:: Current interface to perform authentication. Specify
Tobj:: CertificateBased forthe method argument and the pass phrase
for the private key as theut h_dat a argument foiSecuri ty: : Opaque.

Commonly Asked Questions about WLE
Security

Thefollowing sectionsanswer some of the commonly asked questions about the WL E
security features.

Do I have to Change the Security in an Existing WLE
Application?

The answer is no. If you are using security interfaces from previous versions of the
WLE product in your WLE application there is no requirement for you to change your
WLE application. Y ou can leave your current security schemein place and your
existing WLE application will work with WLE applications built with the WLE 5.0
product.

For example, if your WLE application consists of a set of server applications which

provide general information to all client applications which connect to them, there is

really no need to implement a stronger security scheme. If your WLE application has

a set of server applications which provide information to client applications on an

internal network which provides enough security to detect sniffers, you don’t need to
implement the features in the WLE Security Pack.

1-20 Using Security

Commonly Asked Questions about WLE Security

Can | Use the SSL Protocol in an Existing WLE
Application?

The answer isyes. Y ou may want to take advantage of the extra security protection
provided by the SSL protocol in your existing WLE application. For example, if you
have a WLE server application which provides stock pricesto a specific set of client
applications, you can use the SSL protocol to make sure the client applications are
connected to the correct WLE server application and that they are not being routed to
afake WLE server application with incorrect data. A username and password is
sufficient proof material to authenticate the client application. However, by using the
SSL protocol, the username and password will be encrypted adding an additional level
of security.

The SSL protocol offers WL E applications the following benefits:

m Protection of the entire conversation including the initial bootstrapping process.
The SSL protocol protects against man-in-the-middle attacks, replay attacks,
tampering, and sniffing.

m Evenif you only use the default settings, the SSL protocol provides signed and
sealed protection since the default encryption settings are a minimum of 40 bit
by default.

m Client verification of the connected 110P Listener/Handler using the certificate
of the 11OP Listener/Handler. The client application can then apply additional
security rulesto restrict access to the client application by the [|OP
Listener/Handler. This protection also appliesto |1OP Listener/Handlers
connecting to remote server applications when using callback objects.

To usethe SSL protocol in a WLE application, set up the infrastructure to use digital
certificates, change the command line options on the | SL server processto usethe SSL
protocol, and configure a port for secure communications on the [1OP

Listener/Handler. If your existing WL E application uses username/password

authentication, you can use that code with the SSL protocol. If your WLE C++

CORBA client application doesnot aready catchthel nval i dDomai n exception when
resolving initial referencesto the Bootstrap object and performing authentication,

write code to handle this exception. For more information, see “The SSL Protocol” on
page 1-9.

Using Security 1-21

1 overview of WLE Security

Note: The Javaimplementation of the
Tobj _Bootstrap::resolve_initial _references() method does not
throw an I nval i dDonai n exception. When the cor bal oc or cor bal ocs
URL address formats are used, the
Tobj _Boot strap: :resol ve_initial _references() method internally
catchesthel nval i dDonai n exception and throws the exception as a
COMM _FAI LURE. The method functionsthisway in order to provide backward
compatibility.

When Should I Use Mutual Certificate-Based
Authentication?

Y ou might be ready to migrate your existing WL E application to use Internet
connections between the WL E application and web browsers and commercial web
servers. For example, users of your WLE application might be shopping over the
internet. The users must be confident that:

m They arein fact communicating with the server at the online store and not an
impostor that mimics the store’s server to get credit card information.

m The data exchanged between the user of the WLE application and the online
store will be unintelligible to network eavesdroppers.

m The data exchanged with the online store will arrive unaltered. An instruction to
order $500 worth of merchandise must not accidently or maliciously become a
$5000 order.

In these situations, the SSL protocol and certificate-based authentication offer WLE
applications the maximum level of protection. In addition to the benefits achieved
through the use of the SSL protocol, certificate-based authentication offers WLE
applications:

m |IOP Listener/Handler verification of the client application that initiates a
request using the certificate of the client application. In addition, the 1OP
Listener/Handler can apply additional rules which restrict access to the client
application based on the identity established by the certificate. A remote ORB
acting as a server application can also be configured to allow mutual
authentication and verify the identity of a client application based on a
certificate.

1-22 Using Security

Commonly Asked Questions about WLE Security

m Inside the WLE domain, the client application can still haveaTUXEDO
username and password. The IOP Listener/Handler will perform maps the
identity defined in a certificate to a TUXEDO username and password thus
allowing existing WLE applications to have an identity in native WLE server
applications.

For more information, see “The SSL Protocol” on page 1-9 and “Certificate-Based
Authentication” on page 1-14

Using Security 1-23

1 overview of WLE Security

1-24 Using Security

CHAPTER

2

Managing Certificates
and Keys

Thistopic includes the following sections:

Installing the WL E Security Pack

Using the LDAP Directory Service with Your WLE Application
Editing the LDAP Search Filter File

Publishing a Certificate for the Certificate Authority

Obtaining Digital Certificates and Private Keysfor Principals
Storing the Private Keys in aCommon Location

Defining the Trusted Certificate Authorities

Creating a Peer Rules File

The WLE product requires you have an L DAP-enabled directory service and a
certificate authority (either commercial or private) set up for your organization.

Perform the tasks in this topic only if you are using the SSL Protocol or
certificate-based authentication.

Using Security

2-1

2 Managing Certificates and Keys

Installing the WLE Security Pack

To usethe SSL protocol or certificate-based authentication to protect communication
between principals and the WL E domain, you need to install the WLE Security Pack.
The WLE Security Pack contains the files necessary to enable the use of the SSL
protocol. For complete information about installing the WLE Security Pack, see the
BEA WebLogic Enterprise Installation Guide.

Using the LDAP Directory Service with Your
WLE Application

2-2

The use of aglobal directory service isthe most popular way to store certificates. A
directory service simplifies the management of information that needs to be globally
available to an ever-growing number of users. The Lightweight Directory Access
Protocol (LDAP) provides accessto a variety of directory services.

The WLE product retrievesdigital certificates for principals and certificate authorities
from an LDAP-enabled directory service, such as Netscape Directory Service or
Microsoft Active Directory. Before you can use the SSL protocol or certificate-based
authentication, you need to install an LDAP-enabled directory service and configure it
for your organization. The WLE product requires that the digital certificates be stored
in the directory servicein Privacy Enhanced Mail (PEM) format.

Directory services define a hierarchy of object classes. While there are a number of
different object classes, there is asmall set associated with digital certificates.
Figure 2-1 illustrates the object classes associated with digital certificates.

Using Security

Editing the LDAP Search Filter File

Figure2-1 LDAP Directory Structurefor Digital Certificates

root

strongAuthenticationUser certificationAuthority person
userCertificate caCertificate cn
authorityRevocationlist sn
certificateRevocationlist userPassword

By default, the WLE product retrieves digital certificates from the following object
classes:

m certificationAuthority—contains digital certificates for certificate
authorities

m strongAut henti cati onUser —contains digital certificates for principals and
the IIOP Listener/Handler.

Refer to theBEA WebLogic Enterprise Installation Guide for information about
integrating your LDAP-enabled directory service into the WLE environment.

Editing the LDAP Search Filter File

When configuring a WLE application to use the SSL protocol or certificate-based
authentication, you may need to customize the LDAP search filter file to limit the
scope of the search of the directory service. Customizing the LDAP search filter file
can result in significant performance gains. The WLE Security Pack ships with the
following LDAP search filters:

m A filter stanza that searches the directory service for digital certificates assigned
to certificate authorities. The filter limits its search to instances of the
certificationAuthority object class.

Using Security 2-3

2 Managing Certificates and Keys

m A filter stanzathat searches the directory service for digita certificates assigned
to principals. The filter limits its search to instances of the
strongAut henti cati onUser object class.

If the directory service scheme for your organization is defined to store digital
certificatesin object classes other than certi fi cati onAut hority and
strongAut hent i cati onUser , the LDAP search filter file must be modified to
specify those object classes.

If can specify alocation of the LDAP search filter file during the install ation of the
WLE Security pack. For more information, see the BEA WebLogic Enterprise
Installation Guide.

The LDAP search filter fileis owned by the administrator account. BEA recommends
that the file be protected so that only the owner has read and write privileges for the
file and al other users have only read privileges for the file.

Tolimit the search of the directory service for certificates for principals and certificate
authorities, you need to modify the following tags in the LDAP search filter file:

m BEA person_| ookup

m BEA issuer_| ookup

These tags identify the stanzas in the LDAP search filter file that contains the filter
expression that will be used when looking up information in the directory service.
These BEA -specific tags allow the stanzas of an LDAP search filter fileto be storedin
acommon LDAP search filter file with stanzas used by other LDAP-enabled
applications that might be found in your organization.

Thefollowing is an example of the stanzas of an LDAP search filter file used by the
WLE product for the SSL protocol and certificate-based authentication:

“BEA_person_lookup”
“x (] (objectClass=strongAuthenticationUser) (mail=%v))”
“email address”
“(|(objectClass=strongAuthenticationUser) (mail=%v))”
“start of email address”
“BEA _issuer_lookup”
“xm et (&(objectClass=certificationAuthority)
(cn=%v))” “exact match cn”
(sn=%v))" “exact match sn”

m BEA_person_lookup specifiesto search the LDAP directory service for
principals by their email addresses.

2-4 Using Security

Publishing a Certificate for the Certificate Authority

m BEA i ssuer _| ookup specifiesto search the LDAP directory service for
principals by their common names (cn).

See the documentation for your LDAP-enabled directory service for additional
information about LDAP Search Filefilters.

Publishing a Certificate for the Certificate
Authority

During the authentication process, the identity of a principal depends on the integrity

of the public key value in the principal’s digital certificate and the private key
associated with the digital certificate.A certificate authority is a trusted entity that
confirms the integrity of a digital certificate. All digital certificates must be signed by
a certificate authority. In order to use the SSL protocol or certificate-based
authentication in a WLE application, you need to set up a certificate authority from
which to obtain digital certificates.

When setting up security for a WLE application, it is important to choose a suitable
certificate authority, make the digital certificate for the certificate authority available,
and then use the certificate authority to sign digital certificates for your WLE
application. You can use a commercial or private certificate authority of your choice
with the WLE product. The certificate authority must be in place before using the SSL
protocol or certificate-based authentication.

Once you have chosen a certificate authority, you need a digital certificate for the
certificate authority you are using. Refer to the documentation for the certificate
authority you are using for instructions on obtaining a digital certificate for the
certificate authority. Load the digital certificate for the certificate authority in the
certificationAuthority object class of the LDAP-enabled directory service you
are using.

Using Security 2-5

2 Managing Certificates and Keys

Obtaining Digital Certificates and Private
Keys for Principals

When using the SSL protocol and certificate-based authentication, the [|OP
Listener/Handler and any principal that will useyour WL E applicationrequireadigital
certificate and private key to prove their identity to initiators of an SSL connection.

Refer to the documentation for the certificate authority you are using for instructions
on obtaining a digital certificate for aprincipal. Load the digital certificates for the

principalsin the st rongAut hent i cati onUser object class of the LDAP-enabled
directory service you are using.

Storing the Private Keys in a Common
Location

2-6

When aprincipal gets adigital certificate from a certificate authority, they also get a
file with a private key. Principals need this private key file to verify their identity in
the authentication process. Store the private key filein alocal directory structure that
isaccessibleto remote applications. Assign the private key file protections so that only
the owner of the private key file haswrite privileges and all other users only have read
privileges for thefile.

The WLE system uses the email address of the principal to construct a name for the
private key file as follows:

1. The @character in the name is replaced by an underscore (_) character.
2. All characters after the dot (.) character are del eted.

3. A . PEMfileextension is appended to thefile.

Using Security

Storing the Private Keys in a Common Location

For example, if the name of the principal ismi | 0zzi @i gconpany. comtheresulting
private key fileismi | 0zzi _bi gconpany. pem This haming convention allows an
enterprise to have multiple principals that share a common username but are in
different email domains.

The WLE software looks in the following directories for private key files:

UNIX
$HOVE

Window NT
9%HOVEDRI VE% %HOVEPATHY%

The WLE software also looks in the following directory for private key files:
$TUXDI R/ udat aobj / security/ keys

The / keys directory should be protected so that only the administrator has read and
write privileges for the directory and all other users should only have read privileges
for the directory.

Listing 2-1 provides an example of a private key file.

Listing 2-1 Example of Private Key File

----- BEG N ENCRYPTED PRI VATE KEY-- - - -

M | CoDAaBgkghki BwOBBOMWDQQ t SFrt Ycf KygCAQUEggKAEgr Mko8g YB/ MOSXG
SbbCOn10vTov6LUndf BNd6Kt g8KX9BFEUR3+26aVq9z9j wli Hs UBZONXRx+7TV/ p4
kDf Py2i we/] WiiNzby ge5i g84i gXt k GEHPODWQY/ CDmvx g4 GaBnt OUSWY| nYt 4X8m
y2UsvWAVhZGTzr UGC@BO0z9I x| n/ pmBPIB3pTBEt J8r Yi NbQG uwB9GOy ZI ANYGy +
crfrTlhLp3z4aSt ci hP1b3RAI Fw+t 2f e YKEQNCF aPmwwJLI k6/ bp9Gd6LEEVRASY
+zUxj LUES5K26GyWE/ ncdhDt Ay+212s5I nf j s5voi 1Uv5ER88f Tt Yj AcM j t yOPM
cl Bb8+gEzKQOnj ocr yW QHEOr UxnQ dpi G / FEj z3DPN67AvHcx2UOAghol bNzgn
79c+nnnmBYcnFREWNWTKCt i cyvXTCs| T/ bHD/ Tn2Ryj VW8Dbq/ 231 2YZLEMR2+k 7
kdeanB8RpHINHIVTKQWBA/ t Po/ aSkx6Ce7t Xj GCICyuCGEVRt Cxupo2NRYcG 45Z
CzOvJIB8t SGLwW4WHh/ i KBVOdMZHEqV115t 4Ha3k+uYUL+0D/ eTSf QV77KAf TXLvoO
4LAbV/ JvLbAUCD70U/ CA 8yi j | | XSZPf 61 B1Y5XH8P+FMyCk DOgwYG3z MW becgCj
abDVI TdwYL5r Cal t 8Nnz9xy7c2vKkYoCILVI vZEVZE22gP77zcE73K4zf v/ 1 | MBV
npzaWjF4AnSnBY5253skM349f i ehl KhmirHi Bk XOK1r 8RNI DI e+c9uvbCD+94/ q0Z
OYh7KOcycQOsj r | ulj r QQnEy4r Fcr SW OVWAMANOr Pr dR1Rd8T31 Rkwo4+aQ' i cd
gL+r ==

----- END ENCRYPTED PRI VATE KEY---- -

Using Security 2-7

2 Managing Certificates and Keys

Defining the Trusted Certificate Authorities

2-8

When establishing an SSL connection, the WLE processes (client applications and the

[1OP Listener/Handler) check the identity of the certificate authority and certificates

from the peer’s digital certificate chain against a list of trusted certificate authorities to
ensure the certificate authority is trusted by the organization. This check is similar to
the check done in Web browsers. If the comparison fails, the initiator of the SSL
connection refuses to authenticate the target and drops the SSL connection. It is
typically the job of the system administrator to define a list of trusted certificate
authorities.

Retrieve from the LDAP-enabled directory service the digital certificates for the
certificate authorities that are to be trusted. Cut and paste the PEM formatted digital
certificates into a file named ust _ca. cer which is stored in

$TUXDI R udat aobj / security/certs. Thetrust _ca. cer can be edited with any

text editor.

Thetrust_ca. cer file should be owned by the administrator account. BEA
recommends that the file be protected so that only the owner has read and write
privileges for the file and all other users have only read privileges for the file.

Listing 2-2 provides an example of a Trusted Certificate Authority file.

Listing 2-2 Example of Trusted Certificate Authority File

----- BEG N CERTI FI CATE- - - -

M | Euz CCBCSgAW BAgl QKt ZuMbAOz S9dZal ATIxI uDANBgkghki GOw0BAQQFADCB
z DEXMBUGALUEChMOVmMVyaVNpZ24s| El uYy4xHz AdBgNVBASTFI ZI cml TaWilul FRy
dXNOI E5I dHdvensx Rj BEBgNVBAs TPXd3dy522XJpc2l nbi 5 b20vcm/wb3Npd®y
eS9SUEEgSWEj b3JwlLi BCe SBSZWYULEXxJQUI uTFREKGVpOTgx SDBGBgNVBAMI P1Z|

cm TaWdul ENs YXNz | DEgQOEgSWhkaXZpZHVhbCBTdW z Y3Jp Yy LVBI cnNvbnEg
TrB0I FZhbAd kYXR ZDAeFw050TA2 MIQMVDAWMVDBa FWOWVDA2 MMy Mz USNTI aM | B
G EXMBUGALUEChMOVmyaVNpZ24s1 El uYy4xHz AdBgNVBASTFI ZI cm TaWdul FRy
dXNOI E5I dHdvensx Rj BEBgNVBAs TPXd3dy52ZXJpc2l nbi 5 b20vcmywb3NpdX®y
eS9SUEEgSWEj b3JwLi Bi e SBSZWYULEXxJQUI uTFREKGVpOTgxH Ac BgNVBASTFVBI

cnNvbrrEgTn®0I FZhbd kYXRI ZDEOMDI GALUECx M RA naXRhbCBJRCBDbGFz cy Ax
| QOgTW j cmdzb2Z01 EZ1bGagU2Vydm j ZTEYMBYGALUEAX QPUGF1bCBCLi BQYXRy
aVWr MBYWJAYJKoZI hvcNAQkBFhdwYXVsLnBhdHIpY2t AYmivhc 3l zLniN\vb TBc MAOG
CSqGS| b3DQEBAQUAADS AMEgCQQDAbJhRRy6e DW Cudk YLpTPYW nMri eDb20aqGE
CBdCbhyWkEgl 63LFy+LkVdEqf S60zQBFhK405f 50s T5U7niThAgMBAAG ggGPM | B

Using Security

Defining the Trusted Certificate Authorities

i zZAJBgNVHRVEA] AAM Gs Bg NVHSAEgaQangaEwg Z4 GC2 CGSAGGHEUBBWEBM GOMCgG
CCs GAQUFBWM BFhxodHRwezovL3d3dy52ZXJpc2l nbi 5) b20vQLBTM3 GCCs GAQUF
Bwi OMFYWFRYOVNVyaVNpZ24s| El uYy4wAwl BARo9Vmvy aVNpZ24ncy BDUFMyaVibj

b3JwLi Bi eSByZWZI cmVuY2Ugbd hYi 4gbHRkLi AoYyk5Ny BWZXJpU2l nbj ARBgl g
hk gBhvh CAQEEBAMCB4 Awg Y YGCNCGSAGGHEUBBgMEE BZ2ZDQ@2NTJi ZDYz Zj | wNDcw
M kyOTg3N N OAQyZj | 3NTA2 OWWVBMz U Ymivk MW WNTI k YTc 1YmvD Ynivb Nz AxNz (B
ZGE1ZDNmM EOMMIT YWRi Mk MhUAOT T x Nl NmJ mN2 QOMTEOCTI hYTNE M2 Q3Zj Rm
M2 VhNDU2NDAz BgNVHRBELDAgMO gJ gAkhi JodHRwWO 8vY3JsLnZl cm zaWiuLm\v
bS9j bGFzczEuY3JsMAOGCSqGSI b3DQEBBAUAAAGBAAOda2gPad4CuEK79r me22wt

+h8f 503+xer PQA2nVTgE/ ri npVir/ 9/ EgNBvHxnFV6WANj r f aux1GYKaZf LV/ di m
910yKj / DxVi +t 9d1SRbCxE7UbvOct GxKJQ 7d6ybNOxul r DNAuuhu2r r 6P3ALR79
2Ci 6r HHCOHI JGgEFNs95

----- BEG N CERTI FI CATE- - - -

M | EuzCCBCSgAW BAgl QKt ZuMbACz S9dZal ATJIx| uDANBgkghki GOWOBAQQFADCB
z DEXMBUGAL UEChMOVMVYy aVNpZ24s1 El uYy4xHz AdBgNVBAs TFI ZI cl TaWlul FRy
dXNOI E51 dHdvcmsxRj BEBgNVBAs TPXd3dy52ZXJpc2l nbi 5] b20vcmvwb3Npd Ry
eS9SUEEgSWEj b3JwLi BCe SBSZWYuL ExJ QUI uTFREKG\VH OT gx SDBGBgNVBAMTP1Z|

crml TaWdul ENs YXNz| DEgQUEgSWkaXZpZHVhbCBTdW z Y3JpYmVy LVBI cnNvbiEg
TrmB0l FZhbd k YXRI ZDAe Fw05OTA2 MT QMvDAWVDBa FWOWVDA2MTMy Mz USNTI aM | B
G EXMBUGALUEChMOVMVYy aVNpZ24si El uYy4xHz AdBgNVBAsS TFI ZI ¢ TaWdul FRy
dXNOI E51 dHdvenmsxRj BEBgNVBAs TPXd3dy52ZXJpc 2l nbi 5j b20vcnvinb3Npd Ry
eS9SUEEgSWEj b3JwLi Bi e SBSZWYUL ExJ QUI uTFREKGVh OTgxHj Ac BgNVBAS TFVBI

cnNvbnEgTB0I FZhbAd kYXR ZDEOMDI GALUECXM RGA naXRhbCBJRCBDbGFzcy Ax
I COgTW j cnBzb2Z01 EZ1bGagU2Vydm j ZTEYMBYGALUEAX QPUGF1bCBCLi BQYXRy
aVWNr MSYWJAYJKoZI hve NAQKkBFhdwYXVs LnBhdHI pY2t AYnivhe 31 zLmi\vb TBcMAOG
CSqGS| b3DQEBAQUAAOS AMEgCQQDAbJhRRy 6e DW Cudk YLpTPYW nMr eDb20aqGE
CBdChyWpkEgl 63LFy+LkVdEqf S60z QBFhK406f 50s T5U7nThAgMBAAG ggGPM | B
i ZAJBgNVHRVEA] AAM Gs Bg NVHSAEgaQagaEwg Z4 GC2 CGSAGGHEUBBWEBM GOMCgG
CCs GAQUFBWM BFhxodHRwezovL3d3dy52ZXJpc2l nbi 5) b20vQLBTMS GCCs GAQUF
Bwi OMFYWFRYOVNVyaVNpZ24s| El uYy4wAwl BARo9Vmvy aVNpZ24ncy BDUFMyaV\bj

b3JwLi Bi eSByZWzZI cmVuY2Ugbd hYi 4gbHRKLi AoYyk5Ny BWZXJIpU2l nbj ARBgl g
hk gBhvh CAQEEBAMCB4 Awg Y YGCCGSAGGHEUBBgMEE BZ2ZDQ@2NTJi ZDYz Zj | wNDcw
M kyOTg3N N OAQyZj | 3NTA2 OWVBMz U5 Ymivk MW WNTI k YTc 1YmvD Ynivb Nz AxNz (B
ZGE1ZDNmM EOMMIT YWRi Mk MhUAOT T x Nl NmJ mN2 QOMTEOCTI hYTNE M2 Q3Zj Rm
M2 VhNDU2NDAz BgNVHRBELDAgMO gJ gAkhi JodHRWO 8vY3JsLnZl cm zaWiuLm\v
bS9j bGFzczEuY3JsMAOGCSqGSI b3DQEBBAUAAAGCBAAOda2gPa4 CuEK79r me22wt

+h8f 503+xer PQA2nVTgE/ ri npV1r/ 9/ EgNBv HXnFV6WAN]j r f aux1GYKazf LV/ di m
910yKj / DxVi +t 9d1SRbCxE7UbvOct GxKJQ 7d6ybNOxul r DNAuuhu2r r 6P3ALR79
2Ci 6r HHCOHI JGgEFNs95

Using Security 2-9

2 Managing Certificates and Keys

Creating a Peer Rules File

2-10

When communicating across network links, it is important to validate the peer to
which you are connected is the intended or authorized peer. Without this check, it is
possible to make a secure connection, exchange secure messages, and receive avalid
chain of digital certificates but still be vulnerable to a man-in-the-middle attach. You
perform peer validation by verifying a set of specified information contained in the
peer digital certificate against alist of information that specifiestherulesfor validating
peer trust. The system administrator maintains the Peer Rulesfile.

The peer rules are maintained in an ASCI| file named peer _val . r ul . Store the
peer _val . rul filein thefollowing location in the WLE directory structure:

$TUXDI R/ udat aobj / security/certs

Listing 2-3 provides an example of a Peer Rulesfile.

Listing 2-3 Example of Peer RulesFile

This file contains the list of rules for validating if
a peer is authorized as the target of a secure connection

H H H

O=Ace | ndustry

O="BEA Systems, Inc.”; OU=Enteprise Engineering;L=Nashua;S=NH
O="Netscape Communications, Corp.”, C=US

o=Ace Industry, ou=QA, cn=www.ace.com

Each rulein the Peer Rulesfileis comprised of aset of elementsthat areidentified by
akey. The WLE product recognizes the key names listed in Table 2-1.

Table 2-1 Supported Keysfor Peer RulesFile

Key Attribute

CN CommonName
SN SurName

L LocalityName

Using Security

Creating a Peer Rules File

Table2-1 Supported Keysfor Peer RulesFile

Key Attribute

S StateOrProvinceName

O OrganizationName

U OrganizationalUnitName
C CountryName

E EmailAddress

Each key isfollowed by an optional white space, the character =, an optional white

space, and finally the value to be compared. The key isnot case sensitive. A ruleisnot

a match unless the subject’s distinguished name contains each of the specified
elements in the rule and the values of those elements match the values specified in the
rule, including case and punctuation.

Each line in the Peer Rules file contains a single rule that is used to determine if a
secure connection is to be established. Rules cannot span lines; the entire rule must
appear on a single line. Each element in the rule can be separated by either a comma
(,) or semi-colon;() character.

Lines beginning with the pound charactérgre comments. Comments cannot appear
on the same line as the name of an organization.

A value must be enclosed in single quotation marks if one of the following cases is
true:

m Strings contain any of the following characters:
,+=""<CR><>#;

m Strings have leading or trailing spaces

m Strings contain consecutive spaces

By default, the WLE product verifies peer information against the Peer Rules file. If
you do not want to perform this check, create an empty Peer Rules file.

Using Security 2-11

2 Managing Certificates and Keys

2-12 Using Security

CHAPTER

3

Configuring the WLE

Environment for the
SSL Protocol

Thistopic includes the following sections:

Setting Parameters for the SSL Protocol

Defining a Port for SSL Communi cations

Enabling Certificate-based A uthentication

Enabling Host Matching

Setting the Encryption Strength

Setting the Interval for Session Renegotiation

Defining Security Parameters for the I11OP Listener/Handler

Example of Setting Parameters on the ISL System Process

Example of Setting Command Line Options on the CORBA C++ ORB

Perform the tasks in this topic only if you are using the SSL Protocol or
certificate-based authentication.

Using Security

3-1

3 Configuring the WLE Environment for the SSL Protocol

Setting Parameters for the SSL Protocol

To usethe SSL protocol or certificate-based authentication with the 11OP
Listener/Handler, the CORBA C++ object request broker (ORB), or the CORBA Java
ORB, you need to:

m Specify the secure port on which SSL connections will be accepted.
m Enable certificate-based authentication.
m Specify the strength that will be used when encrypting data.

m Optionally, set theinterval for session renegotiation (11OP Listener/Handler
only).

Thefollowing sections detail how to use the options of the ISL command, the
command line options of the CORBA C++ ORB, or the system properties of the
CORBA Java ORB to set these SSL parameters.

Defining a Port for SSL Communications

To define aport for SSL communications:

m Usethe-S option of the ISL command to specify which port of the [|OP
Listener/Handler will listen for secure connections using the SSL protocol. You
can configure the I1OP Listener/Handler to allow only SSL connections by
setting the - S option and - n option of the ISL command to the same value.

m If you are using aremote CORBA C++ or CORBA Java ORB, use the
- ORBsecur ePort command line option or system property on the ORB to
specify which port of the ORB will listen for secure connections using the SSL
protocol. You should set this command line option or system property when
using callback objects or the WL E Notification Service.

Note: If you are using the SSL protocol with ajoint client/server application, you

must specify a port number for SSL communications. Y ou cannot use the
default.

3-2 Using Security

Enabling Certificate-based Authentication

Defining a secure port for SSL communi cation requires the WLE Security Pack to be
installed. If the - S option or the - ORBsecur ePort command line option or system
property is executed and alicense to enable the use of the SSL protocol does not exist,
the I1OP Listener/Handler, CORBA C++ ORB, or CORBA Java ORB will not start.

Enabling Certificate-based Authentication

To enable certificate-based authentication:

m Usethe- a option of the ISL command to specify that certificate-based
authentication must be used by applications connecting to the |1OP
Listener/Handler.

m Usethe- ORBnut ual Aut h command line option or system property on the ORB
to specify that certificate-based authentication must be used by applications
connecting to the CORBA C++ or CORBA Java ORB.

Enabling certificate-based authentication requires the WLE Security Pack to be
installed. If the - a option or the - ORBnut ual Aut h command line option or system
property is executed and alicense to enable the use of the SSL protocol does not exist,
the I1OP Listener/Handler, CORBA C++ ORB, or CORBA Java ORB will not start.

Enabling Host Matching

The SSL protocol is capable of encrypting messages for confidentiality; however, the
use of encryption does nothing to prevent a man-in-the-middl e attack. During a
man-in-the-middle attack, a principal masquerades as the location from which an
initiating application retrieves the initial object references used in the bootstrapping
process.

To prevent man-in-the-middle attacks, it is necessary to perform acheck to ensure that
the digital certificate received during an SSL connection isfor the principal for which
the connection was intended. Host Matching is a check that the host specified in the
object reference used to make the SSL connection matches the common name in the

Using Security 3-3

3 Configuring the WLE Environment for the SSL Protocol

34

subject in the distinguished name specified in the target’s digital certificate. Host
Matching is performed only by the initiator of an SSL connection, and confirms that
the target of a request is actually located at the same network address specified by t
domain name in the target’s digital certificate. If this comparison fails, the initiator of
the SSL connection refuses to authenticate the target and drops the SSL connectior
Host Matching is not technically part of the SSL protocol and is similar to the same
check done in Web browsers.

The domain name contained in the digital certificate must match exactly the host
information contained in the object reference. Therefore, the use of DNS host name
instead of IP addresses is strongly encouraged.

By default Host Matching in enabled in the IIOP Listener/Handler and in the CORBA
C++ and CORBA Java ORBs. If you need to enable Host Matching, do one of the
following:

m Inthe IIOP Listener/Handler, specify the option of the ISL command.

m Inthe CORBA C++ or CORBA Java ORBSs, specify tlRBpeerValidate
command line option or system property.

Thevaluesfor the-v option and the -ORBpeerValidate ~ command line option or
system property are as follows:

m none—No host matching is performed.

m det ect —If the object reference used to make the SSL connection does not
match the host name in the target's certificate, the IIOP Listener/Handler or the
ORB does not authenticate the target and drops the SSL connectiatet Ehe
value is the default value.

m war n—If the object reference used to make the SSL connection does not match
the host name in the target's certificate, the IIOP Listener/Handler or the ORB
sends a message to the user log and continues processing.

If there is more than one IIOP Listener/Handler in a WLE domain configured for SSL
connections (for example, in the case of fault tolerance), BEA recommends using DN
alias names for the IIOP Listener/Handlers or creating different digital certificates for
each IIOP Listener/Handler. The switch onthe [IOP Listener can be used to specify

the DNS alias name so that object references will be created correctly.

Using Security

Setting the Encryption Strength

Setting the Encryption Strength

To set the encryption strength:

m Usethe-z and -z optionsof the ISL command to set the encryption strength
in the I1OP Listener/Handler.

m Usethe- ORBni nCrypt o and - ORBmax Cr ypt o command line option or system
property on the ORB to set the encryption strength in the CORBA C++ or
CORBA Java ORB.

The - z option and the - ORBmi nCr ypt o command line option or system property set
the minimum level of encryption used when an application establishes an SSL
connection with the IIOP Listener/Handler, the CORBA C++ ORB, or the CORBA
Java ORB. Thevalid values are 0, 40, 56, and 128. 0 means the data is signed but not
sealed while 40, 56, and 128 specify the length (in bits) of the encryption key. If this
minimum level of encryption is not met, the SSL connection fails. The default is 40.

The - Z option and the - ORBmaxCr ypt o command line option or system property set
the maximum level of encryption used when an application establishes an SSL
connection with the IIOP Listener/Handler, the CORBA C++ ORB, or the CORBA
Java ORB. Thevalid valuesare 0, 40, 56, and 128. 0 meansthat datais signed but not
sealed while 40, 56, and 128 specify the length (in bits) of the encryption key. The
default minimum value is 40. The default maximum value is whatever capability is
specified by the license.

The -z or -z options and the -ORBminCrypto and -ORBmaxCrypto command line
options or system properties are available only if the WLE Security pack is installed.

To change the strength of encryption currently used in aWLE application, you need to
shut down the |1OP Listener/Handler or the ORB.

The combination in which you set the encryption values isimportant. The encryption
values set in the initiator of an SSL connection need to be a subset of the encryption
values set in the target of an SSL connection.

Table 3-1 lists combinations of encryption values and describes the encryption
behavior.

Using Security 3-5

3 Configuring the WLE Environment for the SSL Protocol

3-6

Table 3-1 Combinations of Encryption Values

-z
- ORBm nCrypt o

-Z
- ORBmaxCr ypt o

Description

No vaue specified

No value specified

If the use of the SSL protocal is specified by
some other command line option or system
property but no values are specified for

ORBmi nCr ypt 0 and ORBmaxCr ypt 0, these
command line options or system properties are
assigned their default values.

No value specified

M aximum encryption defaults to the maximum
value specified in the license. Tamper/replay
detection and privacy protection are negotiated.

No vaue specified

Tamper/replay detection is negotiated. Privacy
protection is not provided.

Tamper/replay detection is negotiated. Privacy
protection is not provided.

40, 56, 128

No value specified

Maximum encryption defaults to the maximum
value specified in the license. Privacy
protection can be negotiated to the maximum
alowed by the SSL license.

No vaue specified 40, 56, 12 Privacy protection can be negotiated to the
value specified by the- Z optionaslong asitis
less than the maximum allowed by the SSL
license. The - z option defaults to 40.

40, 56, 128 40, 56, 128 Privacy protection can be negotiated between

the values specified by the - z option up to the
value specified by the - Z option as long asthe
values are less than the maximum alowed by
the SSL license.

Note: Inall combinationslisted in Table 3-1, the value of the SSL license controls
the maximum bit strength. If a bit strength is specified beyond the maximum
licensed value, the I1OP Listener/Handler or ORB will not start and an error
will be generated indicating the bit strength setting isinvalid. Stopping the

Using Security

Setting the Encryption Strength

[1OP Listener/Handler or ORB from starting, instead of lowering the
maximum value and giving only awarning, protects against an incorrectly
configured application running with less protection than was expected.

If acipher that exceeds the maximum licensed bit strength is somehow
negotiated, the SSL connection is not established.

The WLE product supports the cipher suites described in Table 3-2.

Table 3-2 SSL Cipher Suites Supported by the WL E Product

Cipher Suite Key Symmetric
Exchange Key
Type Strength
SSL_RSA W TH RC4_128_SHA RSA 128
SSL_RSA W TH RC4_128_MD5 RSA 128
SSL_RSA W TH DES_CDC_SHA RSA 56
SSL_RSA EXPORT_W TH_RC4_40_MD5 RSA 40
SSL_RSA EXPORT_W TH_DES40_CBC SHA RSA 40
SSL_RSA EXPORT_W TH_RC2_CBC 40_MD5 RSA 40
SSL_DH DSS_EXPORT_W TH_DES40_CBC_SHA Diffie 40
Hellman
SSL_DH RSA _EXPORT_W TH_DES40_CBC_SHA Diffie 40
Hellman
SSL_RSA W TH 3DES_EDE_CBC_SHA RSA 112
SSL_RSA W TH NULL_SHA RSA 0
SSL_RSA W TH NULL_MD5 RSA 0

Using Security 3-7

3 Configuring the WLE Environment for the SSL Protocol

Setting the Interval for Session
Renegotiation

Note: You set the interval for session renegotiation only in the [1OP
Listener/Handler.

Use the - R option of the ISL command to control the time between session
renegotiations. Periodic renegotiation of an SSL session refreshes the symmetric keys
used to encrypt and decrypt information which limits the time a symmetric key is
exposed. You can keep long-term SSL connections more secure by periodically
changing the symmetric keys used for encryption.

The -R option specifies the renegotiation interval in minutes. If an SSL connection
does renegotiate within the specified interval, the 1OP Listener/Handler will request
the application to renegotiate the SSL session for inbound connections or actually
perform the renegotiation in the case of outbound connections. The default isO minutes
which results in no periodic session renegotiations.

Y ou can not use session renegotiation when enabling certificate-based authentication
using the -a option of the ISL command.

Defining Security Parameters for the 1IOP
Listener/Handler

3-8

For the I1OP Listener/Handler to participate in SSL connections, the I|OP
Listener/Handler authenticatesitself to the peer that initiated the SSL connection. This
authentication requires adigital certificate. The private key associated with the digital
certificateisused aspart of establishing an SSL connection that resultsin an agreement
between the principa and the peer (in this case a client application and the [IOP
Listener/Handler) on the session key. The session key is a symmetric key (as opposed
to the private-public keys) that is used to encrypt data during an SSL session.Y ou
define the following information for the [IOP Listener/Handler so that it can be
authenticated by peers:

Using Security

Example of Setting Parameters on the ISL System Process

m SEC PR NC PAL_NAVE
Specifies the identity of the [IOP Listener/Handler.
m SEC PRI NC PAL_LOCATI ON

Specifies the location of the private key file. For example,
$TUXDI R/ udat aobj / security/ keys/ml ozzi.pem

m SEC PRI NCl PAL_PASSVAR

Specifies an environment variable that holds the pass phrase for the private key
of the I1OP Listener/Handler. If this parameter is not specified, you will be
prompted for it when you enter the t ml oadcf command.

These parameters are included in the part of the SERVERS section of the UBBCONFI G
file that definesthe ISL system process.

Example of Setting Parameters on the ISL
System Process

Y ou set parameters for the SSL protocol in the portion of the SERVERS section of the
UBBCONFI Gthat defines information for the ISL server process. Listing 3-1 includes
codefrom aUBBCONFI Gfilethat set parametersto configurethe 11 OP Listener/Handl er
for the SSL protocol and certificate-based authentication.

Listing 3-1 UsingthelSL Command in the UBBCONFIG File

I SL
SRVCRP = SYS_GRP
SRVID =5
CLOPT ="-A---a-z40 -Z128 -S3579 -n //ICEPICK:2569
SEC_PRINCIPAL_NAME="BLOTTO"
SEC_PRINCIPAL_LOCATION="BLOTTO.pem"”
SEC_PRINCIPAL_VAR="AUDIT_PASS”

Using Security 39

3 Configuring the WLE Environment for the SSL Protocol

Example of Setting Command Line Options
on the CORBA C++ ORB

Listing 3-2 contains sample codethat illustrates using the command line options on the
CORBA C++ ORB to configure the ORB for the SSL protocol.

Listing 3-2 Exampleof Settingthe Command Line Optionson the CORBA C++
ORB

Chatd i ent -ORBid BEA || OP
- ORBsecur ePort 2100
- ORBm nCrypto 40
- ORBMaxCrypto 128
TechTopi cs

Example of Setting System Properties on the
CORBA Java ORB

Listing 3-3 contains sample code that illustrates using the system properties of the
CORBA Java ORB to configure the ORB for the SSL protocol.

Listing 3-3 Example of Setting the System Properties on the CORBA Java ORB

Chatd i ent - DTOBJADDR=cor bal ocs: // pi gl et: 1900
- Dor g. ong. CORBA=CRBPort =1948
- cl asspat h=%CLASSPATH% cl i ent
- ORBMaxCrypto 128

3-10 Using Security

CHAPTER

4 Defining Security for a

WLE CORBA
Application

Thistopic includes the following sections:
m Setting Parameters for Security in the UBBCONFIG File
m Defining Authorized Users

Using Security 4-1

4 Defining Security for a WLE CORBA Application

Setting Parameters for Security in the
UBBCONFIG File

To configure security for your WLE application, you need to set parametersin the
UBBCONFI Gfile that define the following:

m The server process being used as the authentication server in the WLE
application. (This parameter is required for Username/Password authentication

only).
m The security level of the WLE application.

m Thelevel of encryption to be used when using link-level encryption.

m Theidentity of the IlOP Listener/Handler, which is the location of and the
password phrase for the private key for the [IOP Listener/Handler. (These
parameters are required for certificate-based authentication only).

Note: For information about setting security parameters for the [10P
Listener/Handler inthe UBBCONFI Gfile, see “Defining Security Parameters for
the IIOP Listener/Handler” on page 3-8.

To set parameters in thuBBCONFI Gfile, open the file in any text editor. The
parameters for security take effect when you usertheadcf command to update the
configuration parameters for your WLE application. The following sections describe
setting the parameters for security in UBBCONFI Gfile.

Configuring the Authentication Server

Note: You only need to configure the Authentication Server, if you have specified a
value ofUSER_AUTH or higher for theSECURI TY parameter.

Username/Password authentication requires that an authentication server be
configured for the purpose of authenticating users by checking their individual
passwords against a file of legal users. The WLE system uses a default authenticati
server calledhUTHSRYV to perform authentication.

4-2 Using Security

Setting Parameters for Security in the UBBCONFIG File

For a WL E application to authenticate users, the val ue of the AUTHSVC parameter in the
RESOURCES section of the UBBCONFI Gfile needs to specify the name of the processto
be used as the authentication server for the WLE application. The service must be
called AUTHSVC. If the AUTHSVC parameter is specified in the RESQURCES section of
the UBBCONFI Gfile, the SECURI TY parameter must also be specified with avalue of at
least USER_AUTH. If the value is not specified, an error will occur when the system
executes thet m oadcf command.

In addition, you need to define AUTHSVR n the SERVERS section of the UBBCONFI Gfile.
The SERVERS section contains information about the server processes to be booted in
the WLE application. For more information about the parametersin the SERVERS
section of the UBBCONFI Gfile, see the Administration Guide in the WebL ogic
Enterprise online documentation.

Listing 4-1 contains the portion of the UBBCONFI Gfile that defines the authentication
server.

Listing4-1 Parametersfor the Authentication Server

* RESOURCES
SECURI TY USER AUTH
AUTHSVC “AUTHSVC”

*SERVERS
AUTHSVR
SRVGRP="SYS_GRP”
SRVID=1
RESTART=Y
GRACE=60
MAXGEN=2

Defining a Security Level

As part of defining security for aWLE application, you need to define the SECURITY
parameter in the RESOURCESection of the UBBCONFIdile. The SECURITY parameter
has the following format:

*RESOURCES
SECURITY {NONE|APP_PW|USER_AUTH|ACL|MANDATORY_ACL}

Table 4-1 describes the values for the SECURITY parameter.

Using Security 4-3

4 Defining Security for a WLE CORBA Application

Table 4-1 Valuesfor the SECURITY Parameter

Value Description
NONE Indicates that no password or access checking is performed in the
WLE application.

Tobj :: Princi pal Aut henticator::get_auth_type()
returns avalue of TOBJ_NOAUTH.

APP_PW Indicates that client applications are required to supply an
application password to access the WLE domain. The
t m oadcf command prompts for an application password.

Tobj :: Princi pal Aut henticator::get_auth_type()
returnsavalue of TOBJ_SYSAUTH.

USER_AUTH Indicates that client applications are required to authenticate
themselves to the WLE domain using a password. The value
USER_AUTHis similar to APP_PWhut, in addition, indicates that
user authentication will be done during client initialization. The
t ml oadcf command prompts for an application password.

Tobj :: Princi pal Aut henticator::get_auth_type()
returns avalue of TOBJ _APPAUTH.

ACL Indicates that authentication is used in the WLE application and
accesscontrol checksare performed oninterfaces, services, queue
names, and event names. If an associated ACL is not found for a
name, it is assumed that permission is granted. Thet m oadcf
command prompts for an application password.

Tobj :: Princi pal Aut henticator::get_auth_type
returnsavalue of TOBJ_APPAUTH.

MANDATORY_ACL Indicates that authentication is used in the WLE application and
accesscontrol checksare performed oninterfaces, services, queue
names, and event names. The value MANDATORY_ACL is
similar to ACL, but permission is denied if an associated
ACL isnot found for the name.Thet nl oadcf command
prompts for an application password.

Tobj :: Princi pal Aut henticator::get_auth_type
returns avalue of TOBJ_APPAUTH.

When using Username/Password authentication, the value of the SECURI TY parameter
must be APP_PWor greater.

4-4 Using Security

Setting Parameters for Security in the UBBCONFIG File

If the 11OP Listener/Handler is configured for using certificate-based authentication,
the value of the SECURI TY parameter must be USER_AUTH or greater.

Setting the Level of Encryption

Y ou can encrypt the messages between WL E applications on different machinesin the
same WLE domain using link-level encryption. In the UBBCONFI Gfilefor each WLE
application, you need to set the M NENCRYPTBI TS and MAXENCRYPTBI TS parameters
for the machines that establish the network connection, as follows.

m The M NENCRYPTBI TS parameter specifies that at least the defined number of
bits are meaningful.

m The MAXENCRYPTBI TS parameter specifies that encryption should be negotiated
up to the defined level.

The possible valuesfor theM NENCRYPTBI TS and MAXENCRYPTBI TS parametersare 0,
40, and 128. A value of zero means no encryption is used, while 40 and 128 specify
the number of significant bits in the encryption key.

Sample UBBCONFIG File for Username/Password
Authentication

Listing 4-3 includes a UBBCONFI G file for an application which uses
Username/Password authentication. The key sections of the UBBCONFI Gfile are noted
in bold face text.

Listing4-2 Sample UBBCONFIG Filefor Username/Password Authentication

* RESOURCES
| PCKEY 55432
DOVAI NI D secur app
MASTER SI TEL
MODEL SHM
LDBAL N
SECURI TY USER_AUTH
AUTHSVR “AUTHSVC”

Using Security 4-5

4 Defining Security for a WLE CORBA Application

* MACH NES
"1 CEAXE"
LMD
APPDI R

SI TE1

"D: \ MB\ sanpl es\ cor ba\ SECURAPP"

TUXCONFI G "D: \ MB\ sanpl es\ cor ba\ SECURAPP\ r esul t s\t uxconfi g"
TUXDI R "D\ WLE5"

MAXWSCLI ENTS = 10

* GROUPS
SYS GRP
LM D

GRPNO
APP_GRP
LM D

GRPNO

SI TE1

SI TE1

* SERVERS
DEFAULT:
RESTART
MAXGEN

o<

AUTHSVR
SRVCGRP
SRVI D
RESTART
GRACE
MAXGEN = 2

SYS GRP

nuonon
[

TMSYSEVT
SRVCGRP
SRVI D

TMFENAME
SRVCGRP
SRVI D
CLOPT

SYS GRP

1o
N

".A-- -N-M

TMFENAME
SRVCGRP
SRVI D
CLOPT

SYS GRP
3
AN

TMFENAME
SRVCGRP
SRVI D
CLOPT

SYS GRP
4
"oA L.

si npl e_server
SRVGRP = APP_GRP

4-6 Using Security

Setting Parameters for Security in the UBBCONFIG File

SRID =1
RESTART = N

I SL
SRVGRP = SYS GRP
SRID =5

CLOPT = *A ---n/[PCWIZ::2500"

Sample UBBCONFIG File for Certificate-Based
Authentication

Listing 4-3 includes a UBBCONFIGfile for an application which uses certificate-based
authentication. The key sections of the UBBCONFIdile are noted in bold face text.

Listing 4-3 Sample UBBCONFIG Filefor Certificate-Based Authentication

*RESOURCES
IPCKEY 55432
DOMAINID simpapp
MASTER SITE1
MODEL SHM
LDBAL N
SECURI TY USER_AUTH

*MACHINES
"ICEAXE"
LMID = SITE1
APPDIR ="D:\M3\samples\corba\SIMPAP~1"
TUXCONFIG ="D:\M3\samples\corba\SIMPAP~1\results\tuxconfig"
TUXDIR ="D:\WLE5"
MAXWSCLIENTS = 10

*GROUPS
SYS_GRP
LMID =SITE1
GRPNO =1
APP_GRP
LMID =SITE1
GRPNO =2

*SERVERS
DEFAULT:

Using Security 4-7

4 Defining Security for a WLE CORBA Application

RESTART = Y
MAXGEN = 5
TMSYSEVT
SRVGRP = SYS GRP
SRVIiD =1
TMFFENAMVE
SRVGRP = SYS GRP
SRVID =2
CLOPT ="-A-- -N-M
TMFENAMVE
SRVGRP = SYS GRP
SRVID =3
CLOPT ="-A-- -N'
TMFFENAMVE
SRVGRP = SYS GRP
SRVID =4
CLOPT ="-A-- -F"
si npl e_server
SRVGRP = APP_GRP
SRVID =1
RESTART = N
I SL
SRVGRP = SYS GRP
SRVID =5
CLOPT = "-A-- -a -z40 -Z7128 -S2458 -n //| CEAXE: 2468"

SEC_PRI NCl PAL_NAVE="| | OPLi st ener "
SEC_PRI NCI PAL_LQOCATI ON="1 | OPLi st ener . pent'
SEC_PRI NCI PAL_PASSVAR="1 SH_PASS"

Defining Authorized Users

As part of configuring security for a WLE application, you need to define the
principalsand groups of principal swho have accessto the WL E application. The WLE
system uses the email address of a principal to map the external identity of aprincipal
represented by adigital certificate to an identity used by a WLE application to
authenticate a principal.

4-8 Using Security

Defining Authorized Users

You use thet pusr add command to create files containing lists of authorized
principals. The t pusradd command adds a new principal entry to the WLE security
datafiles. Thisinformation isused by the AUTHSRV to authenticate principals. Thefile
that contains the principalsiscaled t pusr.

Thefileisacolon-delimited, flat ASCII file, readable only by the administrator of the
WLE application. The system file entries have alimit of 512 characters per line. The
fileis kept in the application directory, specified by the environment variable

$APPDI R. The environment variable $APPDI Rmust be set to the path name of the WLE
application.

Thet pusr add file should be owned by the administrator account. BEA recommends
that the file be protected so that only the owner has read and write privileges for the
file and all other users have only read privileges for thefile.

When defining names of authorized users for aWLE EJB, there is a one-to-one
associ ation between the users defined with the t pusr add command and the security
roles defined in the deployment descriptor of the WLE EJB.

Thet pusr add command has the following options:
-u uid

The user identification number. uid must be a positive decimal integer below 128K.
uid must be unique withinthelist of existing identifiersfor the application. uid defaults
to the next available (unique) identifier greater than 0.

-cclient_nanme

A string of printable charactersthat specifiesthe name of the principal. The name may
not contain a colon (:). pound sign (#), or anewline (n). The principal name must be
unigue within the list of existing principals for the WLE application. The name of the
principal can be either the name of a WLE client application or aWLE EJB.

Listing 4-4 includes a samplet pusr add file.

Listing4-4 Sampletpusradd File

d t nane ud
m | ozzi 122
smart 555
patt 1234
but | er 15555

Using Security 4-9

4 Defining Security for a WLE CORBA Application

4-10

Note: Usethe t pgr padd command to add groups of principalsto the WLE security
datafiles.

In addition to thet pusr add and t pgr padd commands, the WLE product providesthe
following commands to modify the t pusr andt pgr p files:

m tpusrdel

m t pusrnod

m t pgrpdel

m t pgrpnod

For a complete description of the commands, see WLE Reference in the WebL ogic
Enterprise online documentation.

Using Security

CHAPTER

5

Writing a WLE CORBA

Application That
Implements Security

Thistopic contains the following sections:

Understanding the Address Formats of the Bootstrap Object
Using Username/Password Authentication
Using Certificate-based Authentication

Using the Invocations Options Required() Method

Using Security

5 Writing a WLE CORBA Application That Implements Security

Understanding the Address Formats of the
Bootstrap Object

The Bootstrap object in the WL E product has been enhanced so that users can specify
that all communication to a given I1OP Listener/Handler be protected. The Bootstrap
object supportscor bal oc and cor bal ocs Uniform Resource L ocator (URL) address
formatsto be used when specifying thelocation of the [|OP Listener/Handler. Thetype
of security provided depends on the format of URL used to specify the location of the
[1OP Listener/Handler.

Aswith the Host and Port address format, you use the URL address formats to specify
the location of the I1OP Listener/Handler, but the bootstrapping process behaves
differently. When using the cor bal oc or cor bal ocs URL address format, theinitial
connection to the I1OP Listener/Handler is deferred until either:

m Theprincipal uses Username/Password authenticate with either the
Tobj : : Princi pal Aut henti cat or: : | ogon or the
SecuritylLevel 2:: Princi pal Aut henti cat or: : aut hent i cat e methods.

m Theprincipal callsthe Tobj _Bootstrap::resol ve_initial _references
method using an object 1D value other than SecurityCurrent.

Using the cor bal ocs URL address format indicates that the SSL protocol is used to
the protect at least the integrity of the connection between the principal and the [1OP
Listener/Handler.

Table 5-1 highlights the differences between the two URL address formats.

Table5-1 Differences Between cor bal oc and cor bal ocs URL Address
Formats

URL AddressFormats Functionality

cor bal oc

By default, invocations on the | |OP Listener/Handler are unprotected. Configuring
the I1OP Listener/Handler for the SSL protocol is optional.

A principal can secure the bootstrapping process by using the

SecuritylLevel 2:: Current:: authenticate()and

SecuritylLevel2: :Credential s::invocation_options_required(
) methods to specify that certificate-based authentication isto be used.

5-2 Using Security

Understanding the Address Formats of the Bootstrap Object

URL Address Formats Functionality

cor bal ocs Invocations on the I1OP Listener/Handler are protected and the 11OP
Listener/Handler, the CORBA C++ ORB, or the CORBA Java ORB must be
configured to enable the use of the SSL protocol. For more information, see
“Configuring the WLE Environment for the SSL Protocol” on page 3-1.

Both the cor bal oc and cor bal ocs URL address formats provide stringified object
references that are easily manipulated in both TCP/IP and Domain Name System
(DNS) environments. The cor bal oc and cor bal ocs URL address formats contain a
DNS-style host name or an | P address and port.

The URL address formats follow and extend the definition of object URL s adopted by
the Object Management Group (OMG) as part of the Interoperable Naming Service
submission. The WLE software also extends the URL format described in the OMG
Interoperable Naming Service submission to support a secure form that is modeled
after the URL for secure HT TP, aswell asto support functionality in previous rel eases
of the WLE product.

Listing 5-1 contains examples of the new URL address formats.

Listing5-1 Examples of thecor bal oc and cor bal ocs URL Address Formats

corbal oc://555xyz. com 1024, cor bal oc: // 555backup. com 1022,

cor bal oc:/ /555l ast. com 1999

cor bal ocs: //555xyz. com 1024, (cor bal ocs: //555backup. com 1022| cor ba
| ocs: // 555l ast.com 1999)

corbal oc://555xyz.com 1111

corbal ocs://24.128. 122.32:1011, corbal ocs://24.128.122. 34

As an enhancement to the URL syntax described in the OMG Interoperable Naming
Service submission, the WLE product extends the syntax to support alist of multiple
URLSs, each with a different scheme. Listing 5-2 contains examples of specifying
multiple URLs.

Listing 5-2 Examples of Specifying Multiple URL Address Formats

cor bal ocs: //555xyz. com 1024, cor bal oc: //555xyz. com 1111
cor bal ocs: // ctxobj.com 3434, corbal ocs://nt hd. com 3434, corbal oc://force.com 1111

Using Security 5-3

5 Writing a WLE CORBA Application That Implements Security

In the examplesin Listing 5-2, if the parser reaches the URL

corbal oc: //force.com 1111, it resetsitsinterna state asif it had never attempted
secure connections, and then begins attempting unprotected connections. This
situation occursif the client application has not set any SSL parameters on the
Credential's object.

Thefollowing sections describe the behavior when using the different address formats
of the Bootstrap object.

Using the Host and Port Address Format

5-4

If aWLE client application uses the Host and Port address format of the Bootstrap
object, the constructor method of the Bootstrap object constructs an object reference
using the specified host name and port number. The invocation to the |1OP
Listener/Handler is made without the protections offered by the SSL protocol.

Theclient application can still authenticate using Username/Password authenti cation.
However, since the bootstrapping process is performed over an unprotected and
unverified link, all communications are vulnerable to the following security attacks:

m TheMan-in-the-Middle attack, because there was no verification that the
principal to which the connection was made was the desired principal.

m TheDenial of Service attack, because no object references were returned, the
object references returned wereinvalid, or the security token was invalid.

m The Sniffer attack, because the information was sent in the clear so that anyone
with a packet sniffer can see the content of a message that was not encrypted
(for example, only the username/password information is encrypted).

m The Tamper attack, because the integrity of the information is not protected. The
contents of the message could be changed and the change would not be detected.

m TheReplay attack, because the same request can be sent repeatedly without
detection.

Note: If the IIOP Listener/Handler is configured for the SSL protocol and the Host
and Port address format of the Bootstrap object is used, the invocation on the
specified WLE object resultsin al NVALI D_DOVAI N exception.

Using Security

Understanding the Address Formats of the Bootstrap Object

Using the corbaloc URL Address Format

By default, the invocation on the 11 OP Listener/Handler is unprotected when using the
cor bal oc URL addressformat and Username/Password authentication. Therefore, all
communications are vulnerable to the following security attacks:

The Man-in-the-Middle attack, because there was no verification that the
principal to which the connection was made was the desired principal .

The Denial of Service attack, because no object references were returned, the
object references returned were invalid, or the security token wasinvalid.

The Sniffer attack, because the information was sent in the clear so that anyone
with a packet sniffer can see the content of a message that was not encrypted
(for example, only the username/password information is encrypted).

The Tamper attack, because the integrity of the information is not protected. The
content of the message could be changed and the change would not be detected.

The Replay attack, because the same request can be sent repeatedly without
detection.

Y ou can protect the bootstrapping process when using the cor bal oc URL address
format by using the Securi tyLevel 2:: Current:: aut henti cat e() method,
specifying that certificate-based authentication is to be used, and setting the

i nvocat i on_net hods_r equi r ed method on the Credentials object.

Note: If the [IOP Listener/Handler is configured for the SSL protocol and not for

certificate-based authentication and the cor bal oc URL address format is
used, the invocation on the specified WLE object resultsin an
I NVALI D_DOMAI N exception.

BEA recommends that existing WLE applications migrate to the cor bal oc URL
address format instead of using the Host and Port Address format.

Using the corbalocs URL Address Format

Thecor bal ocs URL addressformat isthe recommended format to use to ensure that
communications between principals and the [|OP Listener/Handler are protected. The
cor bal ocs URL address format functionsin the same way asthe cor bal oc URL

Using Security 5-5

5 Writing a WLE CORBA Application That Implements Security

addressformat, except the SSL protocol is used to protect all communicationswith the
I1OP Listener/Handler, the CORBA C++ ORB, or the CORBA Java ORB regardless
of the type of authentication used.

When thedefaultsare used withthecor bal ocs URL addressformat, communications
arevulnerable only to Denial of Service security attacks. Using the SSL protocol and
certificate-based authentication guards against Sniffer, Tamper, and Replay attacks. In
addition, the validation check of the host specified in the digital certificate guards
against Man-in-the-Middle attacks.

To use the cor bal ocs URL address format, the 11OP Listener/Handler, the CORBA

C++ ORB, or the CORBA Java ORB must be configured to enable the use of the SSL
protocol. For more information about configuring the I1OP Listener/Handler, the

CORBA C++ ORB, or the CORBA Java ORB for the SSL protocol, see “Configuring
the WLE Environment for the SSL Protocol” on page 3-1.

Using Username/Password Authentication

This section describes implementing Username/Password authentication in WLE
applications.

The Security Sample Application

The Security sample application demonstrates Username/Password authentication.
The Security sample application requires each student using the application to have
ID and a password. The Security sample application works in the following manner:

1. The client application has a logon method. This method invokes operations on th
PrincipalAuthenticator object, which is obtained as part of the process of logging
on to access the domain.

2. The server application implementgea _st udent _det ai | s() method on the
Regi strar object to return information about a student. After the user is
authenticated and the logon is complete gite st udent _det ai | s() method
accesses the student information in the database to obtain the student informatic
needed by the client logon method.

5-6 Using Security

Using Username/Password Authentication

3. The database in the Security sample application contains course and student
information.

Figure 5-1 illustrates the Security sample application.

Figure5-1 Security Sample Application

Server
Application
CORBA C++ br owse_courses() PP
Client
Application get _course_det ai | s() . .
¢ Registrar Object
CORBA Java
Client '* get_student_details() &
Application
CORBA 4
ActiveX Client
Application
Database

E Security Required

The source files for the Security sample application are located in the

\'sanpl es\ cor ba\ uni versity directory in the WLE software. For information
about building and running the Security sample application, see “Building and
Running the CORBA Sample Applications” on page 6-1.

Writing the Client Application

When using Username/Password authentication, write client application code that
does the following:

1. Uses the Bootstrap object to obtain a reference to the SecurityCurrent object for the

specific WLE domain. You can use the Host and Port Address format, the
cor bal oc URL address format, or ther bal ocs URL address format.

Using Security 5-7

5 Writing a WLE CORBA Application That Implements Security

2. Getsthe Principa Authenticator object from the SecurityCurrent object.

3. Uses one of the following methods to authenticate the principal:

e C++—SecurityLevel 2::Princi pal Authenticator::authenticate()
using Tobj : : TuxedoSecurity

e Java—Securitylevel 2. Princi pal Aut henti cat or. aut henticat e()
using Tobj : : TuxedoSecurity

e C++—Tobj ::Princi pal Authenticator:: | ogon()
e Java—TJobj . Princi pal Aut henti cator. | ogon()

TheSecuritylLevel 2:: Princi pal Aut henti cat or interface is defined in the
CORBAservices Security Service specification. This interface contains two
methods that are use to accomplish the authentication of the principal. There are
two methods because authentication of principals may require more than one
step. Theaut hent i cat e() method allows the caller to authenticate and

optionally select attributes for the principal of this session.

The WLE product extends the PrincipalAuthenticator object with functionality to
support similar security to that found in BEA TUXEDO. The enhanced
functionality is provided by th&obj : : Pri nci pal Aut henti cat or interface.

The methods defined for thebj : : Pri nci pal Aut hent i cat or interface

provide a focused, simplified form of the equivalent CORBA-defined interface.
You can use either the CORBA-defined or the WLE extensions when developing
a WLE application.

TheTobj : : Pri nci pal Aut henti cat or interface provides the same
functionality as thesecuri t yLevel 2: : Pri nci pal Aut hent i cat or interface.
However, unlike the

SecuritylLevel 2:: Princi pal Aut henti cat or: : aut henti cat e() method,

thel ogon() method of theTobj : : Pri nci pal Aut henti cat or interface does
not return a Credentials object. As a result, WLE applications that need to use
more than one principal identity are required to call the
Current::get_credential s() method immediately after theogon()

method to retrieve the Credentials object as a result of the logon. Retrieval of the
Credentials object directly after a logon method should be protected with
serialized access.

The following sections contain C++ and Java code examples that illustrate
implementing Username/Password authentication. For a Visual Basic code example
see “Automation Security Reference” on page 13-1.

5-8 Using Security

Using Username/Password Authentication

C++ Code Example of Using the
SecurityLevel2::PrincipalAuthenticator::authenticate() Method

Listing 5-3 contains C++ codethat performs Username/Password authentication using
the Securi tylLevel 2:: Princi pal Aut henti cator: : aut hent i cat e() method.

Listing 5-3 C++ Client Application that usesthe
SecurityL evel2::Principal Authenticator ::authenticate() M ethod

/] Creat e Bootstrap object
Tobj _Boot strap* bootstrap = new Tobj Boot strap(orb,
corbal ocs://sling.com2143);

/] Get SecurityCurrent object

CORBA: : (hj ect _var var_security current_oref =
bootstrap.resolve_initial_references(“SecurityCurrent”);

SecurityLevel2::Current_var var_security _current_ref =
SecurityLevel2::Current::_narrow(var_security _current_oref.in());

/IGet the PrincipalAuthenticator
SecurityLevel2::PrincipalAuthenticator_var var_principal_authenticator_oref =
var_security _current_oref->principal_authenticator();

const char * user_name = “john”

const char * client_name = “university”;
char system_password[31] = {\0’};
char user_password[31] = {\0'};

/IDetermine the security level
Tobj::AuthType auth_type = var_bea_principal_authenticator->get_auth_type();
switch (auth_type)
{
case Tobj::TOBJ_NOAUTH,;
break;

case Tobj::TOBJ_SYSAUTH
strcpy(system_password, “sys_pw");

case Tobj::TOBJ_APPAUTH
strcpy(system_password, “sys_pw");

strcpy(user_password, “john_pw”);
break;

if (auth_type != Tobj::TOBJ_NOAUTH)

Using Security 5-9

5 Writing a WLE CORBA Application That Implements Security

{
SecuritylLevel 2:: Credential s_var creds;
Security:: Opaque_var aut h_dat a;
Security::Attributelist_var privil eges;
Security:: Opaque_var cont _dat a;
Security:: Opaque_var aut h_spec_dat a;

var _bea_pri nci pal aut henti cat or - >bui | d_aut h_dat a(user _nane,
client_nane,
syst em password,
user _password,
NULL,
aut h_dat a,
privileges);
Security::AuthenticationStatus status =
var _bea_princi pal aut henti cat or->aut henti cat e(
Tobj : : TuxedoSecurity,
user _nane,
aut h_dat a,
privil eges,
creds,
cont _data, auth_spec_data);

if (status != Security::SecAuthSuccess)

// Failed aut hentication
return;

}
}

/1 Proceed with application

Java Code Example of Using the
SecurityLevel2.PrincipalAuthenticator.authenticate() Method

Listing 5-4 contains Java codethat performs Username/Password authentication using
the SecuritylLevel 2. Princi pal Aut henti cat or. aut henti cat e() method.

Listing 54 Java Client Application that usesthe

5-10 Using Security

Using Username/Password Authentication

SecurityL evel2.Principal Authenticator.authenticate() M ethod

/1 COreate Bootstrap object
Tobj _Bootstrap bs =
new Tobj Boot strap(orb, corbal ocs://sling.com?2143);

/1 Get SecurityCQurrent object
or g. ong. CORBA. Obj ect secCurOoj =
bs.resolve_initial _references("SecurityCurrent");
org.ong. SecuritylLevel 2. Current secCur2Cj =
org.ong. SecuritylLevel 2. Qurrent Hel per. narrow(secCur Qoj) ;

/1 Get Principal Authenticator
org. ong. Security. Principal Authenticator princAuth =
secCQur 2Qbj . princi pal _authenticator();
com beasys. Tobj . Pri nci pal Aut henti cator auth =
Tobj . Pri nci pal Aut hent i cat or Hel per. narr ow(pri ncAut h) ;

/1 Get Authentication type
com beasys. Tobj . Aut hType aut hType = auth. get_auth_type();

/1 Initialize argunments
String userNanme = "John";
String clientName = "Tel ler";
String systenPassword = nul | ;
String userPassword = null;
byte[] userData = new byte[0];

/'l Prepare argunents according to security |level requested
swi t ch(aut hType. val ue())
{
case com beasys. Tobj . Aut hType. TPNQAUTH:
br eak;

case com beasys. Tobj . Aut hType. TPSYSAUTH.
syst enPassword = "sys pw';
br eak;

case com beasys. Tobj . Aut hType. TPAPPAUTH:.
syst enmPassword = "sys pw';
user Password = "john_pw';
br eak;

}

/1 Build security data

org. ong. Security. OpaqueHol der auth_data =
new or g. ongy. Security. OpaqueHol der () ;

org.ong. Security.AttributelistHol der privs =

Using Security 51

5 Writing a WLE CORBA Application That Implements Security

new Security.Attributeli st Hol der();
aut h. bui | d_aut h_dat a(user Nnane, clientNane, systenPassword,
user Passwor d, user Data, authbDat a,
privs);

/1 Authenticate user

org.ony. SecuritylLevel 2. Credenti al sHol der creds =
new org. ony. SecuritylLevel 2. O edenti al Hol der () ;

org.ony. Security. OpaqueHol der cont _data =
new org. ong. Security. OpaqueHol der();

org.ony. Security. OpaqueHol der auth_spec_data =
new org. ong. Security. OpaqueHol der();

org.ony. Security. Aut henticati onStatus status =
aut h. aut hent i cat e(com beasys. Tobj . TuxedoSecuri ty. val ue,

0, userNane, auth_data. val ue(),
privs.val ue(), creds, cont_data,
aut h_spec_dat a);

if (status != Authenticatoi nStatus. SecAut hSuccess)

Systemexit(1);
}

C++ Code Example of Using the Tobj::PrincipalAuthenticator::logon() Method

Listing 5-5 contains C++ codethat performs Username/Password authentication using
the Tobj : : Pri nci pal Aut hent i cat or: : | ogon() method.

Listing 55 C++ Client Application that usesthe
Tobj::Principal Authenticator::logon() Method

CORBA: : Obj ect _var var_security current_oref =
bootstrap.resolve_initial_references(“SecurityCurrent”);

SecurityLevel2::Current_var var_security _current_ref =
SecurityLevel2::Current::_narrow(var_security _current_oref.in());

/IGet the PrincipalAuthenticator
SecurityLevel2::PrincipalAuthenticator_var var_principal_authenticator_oref =
var_security _current_oref->principal_authenticator();

/INarrow the PrincipalAuthenticator
Tobj::PrincipalAuthenticator_var var_bea_principal_authenticator =
Tobj::PrincipalAuthenticator::_narrow
var_principal_authenticator_oref.in());

5-12 Using Security

Using Username/Password Authentication

const char * user_name = “john”

const char * client_name = “university”;
char system_password[31] = {\0'};
char user_password[31] = {\0'};

/IDetermine the security level

Tobj::AuthType auth_type = var_bea_principal_authenticator->get_auth_type();

switch (auth_type)

{
case Tobj::TOBJ_NOAUTH,;
break;

case Tobj::TOBJ_SYSAUTH
strcpy(system_password, “sys_pw”);

case Tobj::TOBJ_APPAUTH
strcpy(system_password, “sys_pw");
strcpy(user_password, “john_pw");
break;

}
if (auth_type != Tobj::TOBJ_NOAUTH)

{

SecurityLevel2::Credentials_var
Security::Opaque_var
Security::AttributeList_var
Security::Opaque_var
Security::Opaque_var

creds;
auth_data;
privileges;
cont_data;
auth_spec_data;

var_bea_principalauthenticator->build_auth_data(user_name,
client_name,
system_password,
user_password,

NULL,

auth_data,
privileges);

/IDetermine the security level

Tobj::AuthType auth_type = var_bea_principal_authenticator->get_auth_type();
Security::AuthenticationStatus status = var_bea_principal_authenticator->logon(
user_name,
client_name,
system_password,
user_password,

0);

if (status != Security::SecAuthSuccess)

/IFailed authentication

Using Security

5-13

5 Writing a WLE CORBA Application That Implements Security

return;

}
}

/1 Proceed with application

}}.Log of f
try

| ogof f();
}

Java Code Example of Using the Tobj.PrincipalAuthenticator.logon() Method

Listing 5-6 contains Java codethat performs Username/Password authentication using
the Tobj . Pri nci pal Aut hent i cat or. | ogon() method.

Listing 56 Java Client Application That Usesthe
Tobj.Principal Authenticator.logon() M ethod

/] Create bootstrap object
Tobj _Bootstrap bs =
new Tobj Bootstrap(orb, corbaloc://sling.com 2143);

/1 Get security current
org. ong. CORBA. Obj ect secCurGhj =

bs.resolve_initial _references("SecurityCurrent");
org.ony. SecuritylLevel 2. Current secCur2Cbhj =

org. ong. SecuritylLevel 2. Current Hel per. narr ow(secCur Qvj) ;

/1 Get Principal Authenticator

org.ong. Security. Principal Aut henti cator princAuth =
secCur 2bj . princi pal _aut henticator();

com beasys. Tobj . Pri nci pal Aut henti cator auth =
Tobj . Princi pal Aut henti cat or Hel per. narrow(pri ncAut h) ;

/1 Get Authentication type
com beasys. Tobj . Aut hType aut hType = auth.get _auth_type();

/1 Initialize argunments
String userNanme = "John";
String clientName = "Tel ler";
String systenPassword = nul|;
String userPassword = nul |;
byte[] userData = new byte[O0];

5-14 Using Security

Using Certificate-based Authentication

/1 Prepare argunents according to security level requested

swi t ch(aut hType. val ue())

{
case com beasys. Tobj . Aut hType. TPNQAUTH:

br eak;

case com beasys. Tobj . Aut hType. TPSYSAUTH:
syst enPassword = "sys pw';

br eak;
case com beasys. Tobj . Aut hType. TPAPPAUTH:
systenPassword = "sys pw';
user Password = "j ohn_pw';
br eak;

}

/1 TUXEDO- styl e Aut hentication
org.ony. Security.AuthenticationStatus status =
aut h. I ogon(user Nane, client Nane, systenPassword,
user Password, userData);

/1 Proceed with application

/1 Log off
try

{
aut h. | ogoff ();

}

Using Certificate-based Authentication

This section describes implementing certificate-based authentication in WLE
applications.

Using Security 5-15

5 Writing a WLE CORBA Application That Implements Security

The Secure Simpapp Sample Application

The Secure Simpapp sampl e appli cation uses the existing Simpapp sample application
and modifies the code and configuration files to support secure communications
through the SSL protocol and certificate-based authentication.

The server application in the secure Simpapp sample application provides an
implementation of a CORBA object that has the following two methods:

e Theupper method accepts a string from the client application and converts
the string to uppercase letters.

e Thel ovwer method accepts a string from the client application and converts
the string to lowercase letters.

Figure 5-2 illustrates how the Secure Simpapp sample application works.

5-16 Using Security

Using Certificate-based Authentication

Figure5-2 Secure Simpapp Sample Application

Simpapp
Server
Application
X Si npl eFactory
Simpapp lloP
Client < » Listener/
Application Handler Sinpl e
A
\ 2
DBAccess
Database
LDAP
Directory
Service
Digital Certifcate Private Key
for for IIOP
Simpapp Client Application Listener/Handler
Digital Certifcate
for Private Key
IIOP Listener/Handler for Simpapp Client
Application
Digital Certifcate
for
Certificate Authority

The Simpapp sample application was modified in the following ways to support
certificate-based authentication and the SSL protocol:

m Inthel SL section of the UBBCONFI Gfilg, the-a, - S, - z, and - Z options of the
ISL command are specified to configure the |1OP Listener/Handler for the SSL
protocol.

m Inthe | SL section of the UBBCONFI Gfile, the SEC PRI NCI PAL_NAME, the
SEC_PRI NCI PAL_LOCATI ON, and the SEC_PRI NCI PAL_PASSVAR parameters are
defined to specify proof material for the [IOP Listener/Handler.

m The code for the client application uses the cor bal ocs URL address format.

Using Security 5-17

5 Writing a WLE CORBA Application That Implements Security

m Thecodefor the client application uses the aut hent i cat e() method of the
SecuritylLevel 2: Current interface to authenticate the principal and obtain
credentials for the principals.

The source files for the C++ and Java versions of the Secure Simpapp sample
application are located in the\ sanpl es\ cor ba\ si npappSSL and

\ sanpl es\ cor ba\ si npappSSL_j ava directories of the WL E software. For
instructions for building and running the Secure Simpapp sample application, see
“Building and Running the CORBA Sample Applications” on page 6-1.

Writing the Client Application

When using certificate-based authentication, write client application code that does th
following:

1. Uses the Bootstrap object to obtain a reference to the SecurityCurrent object for tt
specific WLE domain. Use either ther bal ocs URL address format.

2. Gets the PrincipalAuthenticator object from the SecurityCurrent object.

3. Uses thawut henti cat e() method of theSecuri t yLevel 2: Current interface
to authenticate the principals and obtain credentials for the principals. When
using certificate-based authentication, spetifyyj : : Certi fi cat eBased for
themet hod argument and the pass phrase for the private key astthedat a
argument forSecuri ty: : Opaque.

The following sections contain C++ and Java code examples that illustrate
implementing certificate-based authentication.

C++ Code Example of Certificate-based Authentication

Listing 5-7 illustrates using certificate-based authentication in a C++ client
application.

Listing 57 C++ Client Application That Uses Certificate-Based Authentication

5-18 Using Security

Using Certificate-based Authentication

/1 Initialize the ORB
CORBA: : ORB_var v_orb = CORBA:: ORB_init(argc, argv, "");

/1 Create the bootstrap object
Tobj _Bootstrap bootstrap(v_orb.in(), corbalocs://sling.com2143);

/1 Resol ve SecurityCurrent

CORBA: : Obj ect _ptr seccurobj =

bootstrap.resolve_initial _references("SecurityCurrent");
SecuritylLevel 2::Current_ptr seccur =

SecuritylLevel 2:: Current:: _narrow seccurobj);

/1 Performcertificate-based authentication
SecuritylLevel 2:: Credential s_ptr the_creds;
Security::AttributelList_varprivil eges;
Security:: Opaque_var continuation_data;
Security:: Opaque_var auth_specific_data;
Security:: Opaque_var response_data;

/1 Principal email address
char emai | Address[] = “milozzi@bigcompany.com;”
/I Pass phrase for principal’s digital certificate
char password[] = “asdawrewe98infldi7;”

/I Convert the certificate private key password to opaque
unsigned long password_len = strlen(password);
Security::Opaque ssl_auth_data(password_len);

/I Authenticate principal certificate with principal authenticator
for(inti = 0; (unsigned long) i < password_len; i++)
ssl_auth_data[i] = password[i];
Security::AuthenticationStatus auth_status;
SecurityLevel2::PrincipalAuthenticator_var PA =

seccur->principal_authenticator();

auth_status = PA->authenticate(Tobj::CertificateBased,
emailAddress,
ssl_auth_data,
privileges,
the_creds,
continuation_data,
auth_specific_data);

while(auth_status == Security::SecAuthContinue) {
auth_status = PA->continue_authentication(
response_data,
the_creds,
continuation_data,
auth_specific_data);

Using Security 5-19

5 Writing a WLE CORBA Application That Implements Security

Java Code Example of Certificate-based Authentication

Listing 5-8 illustrates using certificate-based authentication in a C++ client
application.

Listing 5-8 Java Client Application That Uses Certificate-based Authentication

// Initialize the ORB.

Properties Prop;
Prop = new Properties(System getProperties());
Pr op. put (" org. ong. CORBA. ORBd ass", "com beasys. CORBA. i i op. ORB") ;
Pr op. put (" or g. ong. CORBA. ORBSi ngl et onCl ass",
"com beasys. CORBA. i dl . ORBSi ngl et on") ;

ORB orb = ORB.init(args, Prop);
/1 Create the Bootstrap object

Tobj Bootstrap bs = new Tobj Bootstrap(orb,
corbal ocs: //foo:2501);

/I Resol ve SecurityCurrent
or g. ong. CORBA. obj ect ocurr =
bs.resolve _initial_references(“SecurityCurrent”);
org.omg.SecurityLevel2.Current curr =
org.omg.SecurityLevel2.CurrentHelper.narrow(occur);

/I Get Principal Authenticator

com.beasys.Tobj.PrincipalAuthenticator pa =
(com.beasys.Tobj.PrincipalAuthenticator)
curr.principal_authenticator();

OpaqueHolder auth_data = new OpaqueHolder();
AttributeListHolder privileges = new AttributeListHolder();
org.omg.SecurityLevel2.CredentialsHolder creds =

new org.omg.SecurityLevel2.CredentialsHolder();
OpaqueHolder continuation_data = new OpaqueHolder();

5-20 Using Security

Using the Invocations_Options_Required() Method

OpaqueHol der auth_speci fic_data = new OpaqueHol der ();
auth_data.value=new String (“deathstar”).getbytes(“UTF8);
if(pa.authenticate(com.beasys.Tobj.CertificateBased.value,

“vader@Ilargecompany.com”,
auth_data.value,
privileges.value,
the_creds,
continuation_data,

auth_specific_data)

IAuthenticationStatus.SecAuthSuccess) {
System.err.printin(“logon failed”);
System.exit(1);

Using the Invocations_Options_Required()
Method

When using certificate-based authentication, it may be necessary for a principal to
explicitly define the security attributes it requires. For example, a bank application
may have specific security requirements it needs met before the bank application can
transfer data to a database. The invocation_options_required() method of the
SecurityLevel2::Credentials interface allows the principal to explicitly control
the security characteristics of the SSL connection. When using the corbaloc URL
address format, you can secure the bootstrapping process by using the

authenticate() and invocation_options_required() methods of the
SecurityLevel2::Credentials interface.
Perform the following steps to use the invocation_options_required() method :

1. Write application code that uses the authenticate() method of the
SecurityLevel2::Current object to specify certificate-based authentication is
being used

Using Security 5-21

5 Writing a WLE CORBA Application That Implements Security

2. Usethe invocati on_options_required() method to specify the security
attributes the principal requires. See the description of the
i nvocati on_options_required() methodinthe“C++ Security Reference”
on page 11-1 and “Java Security Reference” on page 12-1 for a complete list of
security options.

Listing 5-9 provides a C++ example of using the
i nvocati on_options_required() method.

Listing 59 C++ Example of Using theinvocation_options_required() M ethod

/1 Initialize the ORB
CORBA: : ORB_var v_orb = CORBA::ORB_init(argc, argv, "");

/1l Create the bootstrap object
Tobj Bootstrap bootstrap(v_orb.in(), corbalocs://sling.com2143);

/1 Resolve SecurityCurrent

CORBA: : Cbj ect _ptr seccurobj =

bootstrap.resolve_initial _references("SecurityCurrent");
SecuritylLevel 2:: CQurrent _ptr seccur =

SecuritylLevel 2::Current:: _narrow(seccurobj);

/1 Performcertificate-based authentication
SecuritylLevel 2::Credentials_ptr t he_creds;

Security::Attributelist_var privil eges;
Security:: Opaque_var continuation_dat a;
Security:: Opaque_var auth_specific_data;
Security:: Opaque_var response_dat a;

/I Principal email address
char email Address[] = “milozzi@bigcompany.com;”
/I Pass phrase for principal’s digital certificate
char password[] = “asdawrewe98infldi7;"

/I Convert the certificate private key password to opaque
unsigned long password_len = strlen(password);
Security::Opaque ssl_auth_data(password_len);

/I Authenticate principal certificate with principal authenticator
for(inti = 0; (unsigned long) i < password_len; i++)
ssl_auth_datali] = password[i];
Security::AuthenticationStatus auth_status;
SecurityLevel2::PrincipalAuthenticator_var PA =

seccur->principal_authenticator();

5-22 Using Security

Using the Invocations_Options_Required() Method

aut h_status = PA->authenticate(Tobj:: CertificateBased,
enai | Addr ess,
ssl _auth_data,
privil eges,
t he_creds,
conti nuati on_dat a,
aut h_specific_data);
the_creds->i nvocati on_opti ons_required(
Security::Integrity]|
Security:: Det ect Repl ay|
Security:: Detect M sordering|
Security:: EstablishTrustl nTarget |
Security::EstalishTrustlnCient|
Security:: Sinmpl eDel egati on);

whi | e(aut h_status == Security:: SecAut hContinue) {
aut h_status = PA->conti nue_aut henti cati on(
response_dat a,
t he_creds,
conti nuati on_dat a,
aut h_speci fi c_dat a);

Listing 5-10 provdes a Java example of using the
i nvocati on_options_required() method

Listing 5-10 Java Example of Using theinvocation_options required() Method

/1l Initialize the ORB.

Properti es Prop;
Prop = new Properties(System getProperties());
Prop. put ("org. ong. CORBA. ORBCl ass", "com beasys. CORBA. i i op. ORB") ;
Prop. put ("org. ong. CORBA. ORBSI ngl et ond ass",
"com beasys. CORBA. i dl . ORBSi ngl eton");

ORB orb = ORB.init(args, Prop);
/1 COreate the Bootstrap object

Tobj _Bootstrap bs = new Tobj _Boot strap(orhb,
corbal ocs://foo: 2501);

Using Security 5-23

5 Writing a WLE CORBA Application That Implements Security

/I Resol ve SecurityCurrent
or g. ong. CORBA. obj ect ocurr =
bs.resolve _initial_references(“SecurityCurrent”);
org.omg.SecurityLevel2.Current curr =
org.omg.SecurityLevel2.CurrentHelper.narrow(occur);

/I Get Principal Authenticator

com.beasys.Tobj.PrincipalAuthenticator pa =
(com.beasys.Tobj.PrincipalAuthenticator)
curr.principal_authenticator();

OpaqueHolder auth_data = new OpaqueHolder();
AttributeListHolder privileges = new AttributeListHolder();
org.omg.SecurityLevel2.CredentialsHolder creds =
new org.omg.SecurityLevel2.CredentialsHolder();
OpagueHolder continuation_data = new OpaqueHolder();
OpagqueHolder auth_specific_data = new OpaqueHolder();
auth_data.value=new String (“deathstar”).getbytes(“UTF8);
if(pa.authenticate(com.beasys.Tobj.CertificateBased.value,
“vader@largecompany.com”,
auth_data.value,
privileges.value,
the_creds,
continuation_data,
auth_specific_data)
org.ony. SecuritylLevel 2. Credentials credentials = curr.get_credenti al s(
org.ong. Security. Credenti al Type. Secl nvocati onCredenti al s);

credential s.invocati on_options_required(
(short) (org.ong.Security.Integrity.value |
org.ong. Security. Det ect Repl ay. val ue|
org.ong. Security. Detect M sorderi ng. val ue|
org.ong. Security. EstablishTrustl nTarget. val ue|
org.ong. Security. EstablishTrustlnCient.val ue|
org.ong. Security. Si npl eDel egat i on. val ue)
)
lAuthenticationStatus.SecAuthSuccess) {
System.err.printin(“logon failed”);
System.exit(1);
}

5-24 Using Security

CHAPTER

6 Building and Running

the CORBA Sample
Applications

The topic contains the following sections:
m Building and Running the Security Sample Application
m Building and Running the Secure Simpapp Sample Application

Using Security 6-1

6 Building and Running the CORBA Sample Applications

Building and Running the Security Sample
Application

6-2

The Security sample application demonstrates using Username/Password

authentication. The sample application has both C++ and Java client applications. For

a description of the Security sample application, see “Writing a WLE CORBA
Application That Implements Security” on page 5-1 This section describes how to
build the Security sample application and how to use the client applications in the
Security sample application.

Perform the following steps to build the Security sample application:
Copy the files for the Security sample application into a work directory.
Verify the settings of the environment variables.

Change the protection on the files for the Security sample application.
Set the environment variables.

Initialize the database.

Load theUBBCONFI Gfile.

Compile the client and server sample applications.

Start the server application in the Security sample application.

© © N o o M~ w0 bdE

Start the C++ client application in the Security sample application.
10. Start the Java client application in the Security sample application.
The following sections describe these steps.

Refer toReadne. t xt in the\ W.Edi r\ sanpl es\ cor ba\ uni versi ty\security
directory for troubleshooting information and the latest information about using the
Security sample application.

Using Security

Building and Running the Security Sample Application

Step 1: Copy the files for the Security sample application
into a work directory.

Y ou need to copy thefilesfor the Security sample application into awork directory on
your local machine. The files for the Security sample application are located in the
following directories:

Windows NT

drive:\ WLEdi r\ sanpl es\ cor ba\ uni versi ty\security
UNIX

/usr/ WEdi r/ sanpl es/ cor ba/ uni versi ty/security

Inaddition, you needto copy theut i | s directory into your work directory. Theuti | s
directory contains files that set up logging, tracing, and access to the database used
with the Security sample application.

You will usethefileslisted in Table 6-1 to create the Security sample application.

Table 6-1 FilesIncluded in the Security Sample Application

File Description

uni vs. idl The OMG IDL code that declares the
Cour seSynopsi sEnunerat or,Regi strar,
and Regi st rar Fact or y interfaces.

uni vss. cpp The C++ sourcecode for the server applicationinthe
Security sample application.

uni vs_i. h The C++ source code for method implementations of
univs_i.cpp the Cour seSynopsi sEnuner at or,
Regi st rar,and Regi strar Fact ory interfaces.

uni vsc. cpp The C++ source code for the C++ client application
in the Security sample application.

Uni vSAppl et . j ava The Java source code for the Java client application
in the Security sample application.

Using Security 6-3

6 Building and Running the CORBA Sample Applications

Table 6-1 FilesIncluded in the Security Sample Application

File

Description

univs_utils.h
univs_utils.cpp

Thefilesthat define database accessfunctionsfor the
CORBA C++ client application.

uni vs. i cf

The Implementation Configuration File (ICF) for the
Security sample application.

set envs. sh

A UNIX script that sets the environment variables
needed to build and run the Security sample
application.

set envs. cnd

An MS-DOS command procedure that sets the
environment variables needed to build and run the
Security sample application.

ubb_s. mk The UBBCONFI Gfile for the UNIX operating
system.
ubb_s. nt The UBBCONFI Gfilefor the Windows NT operating

system.

makefil es. nk

The makefi | e for the Security sample application
on the UNIX operating system.

makefil es. nt

The makef i | e for the Security sample application
on the Windows NT operating system.

| og. cpp, | 0g. h,
log_client.cpp,and
| og_server.cpp

The client and server applications that provide
logging and tracing functions for the sample
applications. Thesefiles arelocated inthe\ uti | s
directory.

or adbconn. cpp and
or anoconn. cpp

The files that provide access to an Oracle SQL
database instance. These files are located in the
\util s directory.

sanpl esdb. cpp and
sanpl esdb. h

Thefilesthat provide print functions for the database
exceptionsin the sample applications. Thesefilesare
located inthe\ ut i | s directory.

uni que_i d. cpp and
uni que_id. h

Using Security

C++ Unique ID class routines for the sample
applications.These filesare located inthe\ uti | s
directory.

Building and Running the Security Sample Application

Table 6-1 FilesIncluded in the Security Sample Application

File Description

sanpl esdbsqgl . h and C++ classmethods that implement accessto the SQL

sanpl esdbsql . pc database. Thesefilesarelocated inthe\ util s
directory.

uni versity. sql The SQL for the University database. Thisfileis
located inthe\ uti | s directory.

Readne. t xt Thefile that provide the latest information about
building and running the Security sample
application.

Step 2: Verify the settings of the environment variables.

Before building and running the Security sample application, you need to ensure that
certain environment variables are set on your system. In most cases, these environment
variables are set as part of the installation procedure. However, you need to check the
environment variables to ensure they reflect correct information.

Table 6-5 lists the environment variables required to run the Security sample
application.

Table 6-2 Required Environment Variablesfor the Security Sample Application

Environment Description

Variable

APPDI R The directory path where you copied the sample application files. For example:
Windows NT
APPDI R=c: \ wor k\ securityapp
UNIX

APPDI R=/ usr/ wor kl securityapp

Using Security 6-5

6 Building and Running the CORBA Sample Applications

Table 6-2 Required Environment Variables for the Security Sample Application

Environment
Variable

Description

TUXCONFI G

The directory path and name of the configuration file. For example:
Windows NT

TUXCONFI G=c: \ wor k\ securit yapp\tuxconfig

UNIX

TUXCONFI G=/ usr / wor kl securi tyapp/tuxconfig

TUXDI R

The directory path where you installed the WLE software. For example:
Windows NT

TUXDI R=c: \ WLEdi r

UNIX

TUXCONFI G=/ usr /| ocal / WLEdi r

JDKDI R

The directory path where you ingtalled the JDK software. For example:
Windows NT

JDKDI R=c:\j dk1.2.2

UNIX

JDKDI R=/ usr /1l ocal /jdk1l.2.1

Y ou need to specify this parameter only if you plan to use the Java version of the
Secure Simpapp sample application.

6-6

To verify that theinformation for the environment variabl es defined during installation
is correct, perform the following steps:

Windows NT

1. From the Start menu, select Settings.

2. From the Settings menu, select the Control Panel.

The Control Panel appears.

3. Click the System icon.

The System Properties window appears.

4. Click the Environment tab.

The Environment page appears.

Using Security

Building and Running the Security Sample Application

5. Check the settings of the environment variables.

UNIX
ksh pronpt >pri ntenv TUXDI R
ksh pronpt >pri ntenv JAVA HOVE

To change the settings, perform the following steps:
Windows NT

1. Onthe Environment page in the System Properties window, click the environment
variable you want to change or enter the name of the environment variable in the
Variable field.

2. Enter the correct information for the environment variable in the Value field.
3. Click OK to save the changes.
UNIX

ksh pronpt >export TUXDI R=di rect orypat h
ksh pronpt >export JAVA HOVE=di rect or ypat h

Step 3:Change the Protection on the Files for the Security
Sample Application.

During the installation of the WLE software, the sample application files are marked
read-only. Before you can edit the files or build the files in the Security sample
application, you need to change the protection of the files you copied into your work
directory, as follows:

Windows NT

pronpt>attrib -r drive:\workdirectory*.*
UNIX

pronpt >chnod u+rw / wor kdi rect oryl *.*

Using Security 6-7

6 Building and Running the CORBA Sample Applications

Step 4: Set the Environment Variables

Use the following command to set the environment variables used to build the client
and server applications in the Security sample application:

Windows NT
pronpt >set envs

UNI X
pronpt >/ bi n/ ksh

pronpt >. ./setenvs. sh

Step 5: Initialize the Database

Use the following command to initialize the database used with the Security sample
application:

Windows NT
pronpt >nnake -f makefiles.nt initdb

UNI X
pronpt >make -f makefiles.nk initdb

Step 6: Load the UBBCONFIG File

Use the following command to load the UBBCONFI Gfile:

Windows NT
pronpt >t M oadcf -y ubb_s. nt

UNI X
pronpt >t M oadcf -y ubb_s. nk

6-8 Using Security

Building and Running the Security Sample Application

The build process for the UBBCONFI Gfile prompts you for an application password.
This password will be used to log on to the client applications. Enter the password and
press Enter. Y ou are then prompted to verify the password by entering it again.

Step 7: Compile the Security Sample Application

The directory for the Security sample application contains amekef i | e that buildsthe
client and server sample applications in the Security sample application.

Use the following command to build the C++ client and server applications in the
Security sample application:

Windows NT

pronpt >nnake -f makefil es. nt

UNIX

pronpt >make -f makefil es. nk

To build the Java client application in the Security sample application:
Windows NT

pronpt >nnake -f makefiles.nt javaclient

UNIX

pronpt >make -f makefil es. nk javaclient

Step 8: Start the server application

Start the system processes and the server application in the Security sample application
by entering the following command:

pronpt >t nboot -y

Before using another sample application, enter the following command to stop the
system processes and the server application in the Security sample application.

pr onpt >t nshut down

Using Security 6-9

6 Building and Running the CORBA Sample Applications

Step 8: Start the C++ client application

Start the C++ client application in the Security sample application by performing the
following steps:

1. Atthe MS-DOS prompt, enter the following command:
pronpt >univs_client

2. AttheEnter student id: prompt, enter any number between 100001 and
100010.

3. Press Enter.

4. AttheEnter domain password: prompt, enter the password you defined when
you loaded the UBBCONFI Gfile.

5. Press Enter.

Step 9: Start the Java client application.

To run the Java client application in the Security sample application, perform the
following steps:

1. Modify the following linesin the Uni vSAppl et . ht ni file:

code="Uni vSAppl et. cl ass"
codebase=.
to read as follows:

code=" Uni vSAppl et "
ar chi ve="Uni vSAppl et . j ar, nBenvobj .jar"

2. Copy the modified Uni vSAppl et . ht i file to the source directory for the Web
server (the directory varies by Web server product).

3. CreateaUni vSAppl et . j ar file asfollows:

a. Createatnp directory under the directory where you built the sample
application and copy the Uni ver si t yS subdirectory and the classfiles it
containsinto thet np directory.

6-10 Using Security

Building and Running the Security Sample Application

Copy the class filesin the Security sample application directory that were
generated by the makef i | e into thet np directory, set the directory (cd) to
thet np directory, and issue one of the following commands to create a jar
file that contains all the Security sample application classes:

jar -cf ..\UnivSApplet.jar *.* (Microsoft Windows NT systems)
jar -cf ../UnivSApplet.jar * (UNIX systems)

4. Copy the Uni vSAppl et . jar fileyou just created to the source directory for the
Web server (the directory name varies by Web server product).

5. Copy the nBenvobj . j ar filefrom the appropriate subdirectory
(9@ UXDI R% udat aobj \ j ava Microsoft Windows NT systems or
${ TUXDI R} / udat aobj / j ava UNIX systems) to the Web server source
directory.

6. Make sure the Security server application isrunning, start up your Web browser,
and point it to the node where the Web server is running.

Note: On Microsoft Windows NT systems, the node hame needs to bein all
uppercase characters. For example, if the node is specified as SERVER in the
UBBCONFI Gfileand in the Uni vSAppl et . ht nl file, set your browser to
htt p: // SERVER/ Uni vSAppl et . htnl .

1. Modify thefollowing lines in the Uni vSAppl et . ht i file:

code="Uni vSAppl et . cl ass"
codebase=.
to read as follows:

code="Uni vSAppl et "
ar chi ve="Uni vSAppl et . j ar, nBenvobj . jar"

2. Copy the modified Uni vSAppl et . ht M file to the source directory for the Web
server (the directory varies by Web server product).

3. After executing the makef i | e to build the Security sample application, create a
Uni vSAppl et . j ar file, asfollows:

a. Createatnp directory under the directory where you built the sample
application and copy the Uni ver si t yS subdirectory and the classfiles it
containsinto thet np directory.

Copy the class filesin the Security sample application directory that were
generated by the makef i | e into thet np directory, set the directory (cd) to

Using Security 6-11

6 Building and Running the CORBA Sample Applications

6-12

thet np directory, and issue one of the following commands to create ajar
file that contains all the Production sample application classes:

jar -cf ..\UnivSApplet.jar *.* (Microsoft WindowsNT systems)
jar -cf ../ UnivSApplet.jar * (UNIX systems)

4. Copy the Uni vSAppl et . j ar fileyou just created to the source directory for the

Web server (the directory name varies by Web server product).

Copy the n8envobj . jar filefrom the appropriate subdirectory
(9rUXDI R4 udat aobj \ j ava Microsoft Windows NT systems or

${ TUXDI R}/ udat aobj / j ava UNIX systems) to the Web server source
directory.

Make sure the Security server application is running, start up your Web browser,
and point it to the node where the Web server is running.

Note: On Microsoft Windows NT systems, the node name needsto bein all

9.

uppercase characters. For example, if the node is specified as SERVER in the
UBBCONFI Gfile and in the Uni vSAppl et . ht i file, set your browser to
htt p:// SERVER/ Uni vPAppl et . ht i .

A logon window appears.
Enter a number between 100001 and 100010 in the st udent | Dfield.

Enter the password you defined when you |oaded the UBBCONFI Gfilein the
Domai n Passwor d field.

Click the Logon button.

10. Enter a search string to find a course.

Using Security

Building and Running the Secure Simpapp Sample Application

Building and Running the Secure Simpapp
Sample Application

The Secure Simpapp sample application demonstrates using the SSL protocol and
certificate-based authentication to protect communications between client applications
and the WLE domain. There are C++ and Javaversions of the Secure Simpapp sample
application.

Perform the following steps to build and run the Secure Simpapp sample application:
1. Copy thefiles for the Secure Simpapp sample application into awork directory.

2. Change the protection attribute on the files for the Secure Simpapp sample
application.

3. Verify the environment variables.
4. Execute the r unme command.

Before you can use the Secure Simpapp sampl e application, obtain a certificate and
private key (1 1 OPLi st ener . pen) for the IIOP Listener/Handler from the certificate
authority in your enterprise and load the certificate in a Lightweight Directory Access
Protocol (LDAP)-enabled directory service. The r unme command promptsyou for the
pass phrase for the private key for the I|OP Listener/Handler.

Step 1: Copy the Files for the Secure Simpapp Sample
Application into a Work Directory
Y ou need to copy thefiles for the Secure Simpapp sample application into awork
directory on your local machine. The following sections detail the directory location

and sources files for the C++ and Java versions of the Secure Simpapp sample
application.

Using Security 6-13

6 Building and Running the CORBA Sample Applications

C++ Version of the Secure Simpapp Sample Application

Thefilesfor the C++ version of the Secure Simpapp sample application arelocated in
the following directories:

WindowsNT
drive: | WEdi r\ sanpl es\ cor ba\ si npappSSL

UNI X
/usr/local/Wedirl sanpl es/ cor ba/ si mnappSSL

Youwill usethefileslisted in Table 6-3 to build and run the C++ version of the Secure
Simpapp sample application.

Table 6-3 FilesIncluded in the C++ Version of the Secure Simpapp Sample

Application

File Description

Si nmpl e. idl The OMG IDL code that declaresthe Si npl e and
Si npl eFact ory interfaces. Thisfileiscopied from
the WLE si npappSSL_j ava directory by the
r unme command file.

Si npl es. cpp The C++ source code that overrides the default
Server::initialize and
Server: : rel ease methods.

Si npl ec. cpp The C++ source code for the client applicationin the
Secure Simpapp sample application.

Sinple_i.cpp The C++ source code that implements the Si npl e
and Si npl eFact or y methods.

Sinple_i.h The C++ header file that definestheimplementation
of the Si npl e and Si npl eFact or y methods.

Readne. ht m Thisfile provides the latest information about
building and running the C++ version of the Secure
Simpapp sample application.

runne. crd The Windows NT batch file that builds and runs the
C++ version of the Secure Simpapp sample
application.

6-14 Using Security

Building and Running the Secure Simpapp Sample Application

Table 6-3 FilesIncluded in the C++ Version of the Secure Simpapp Sample
Application

File Description

runme. ksh The UNIX Korn shell script that builds and executes
the C++ version of the Secure Simpapp sample
application.

makefile. nk The makefile for the C++ version of the Secure
Simpapp sample application on the UNIX operating
system. Thisfileis used to manually build the C++
version of the Secure Simpapp sampl e application.
Refer to the Readne. ht ni filefor information
about manually building the C++ version of the
Secure Simpapp sample application. The UNIX
make command needs to be in the path of your
machine.

makefil es. nt The makefile for the C++ version of the Secure
Simpapp sample application on the Windows NT
operating system. This makefile can be used directly
by the Visual C++ nmake command. Thisfileis
used to manually build the C++ version of the Secure
Simpapp sample application. Refer to the
Readne. ht m file for information about manually
building the C++ version of the Secure Simpapp
sample application. The Windows NT nmake
command needs to be in the path of your machine.

Java Version of the Secure Simpapp Sample Application

Thefiles for the Java version of the Secure Simpapp sample application are located in
the following directories:

Windows NT
drive: | WEdi r\ sanpl es\ cor ba\ si npappSSL_j ava

UNIX
/usr/local /Wedirl sanpl es/ corba/ si mappSSL_j ava

You will use thefileslisted in Table 6-4 to build and run the Java Secure Simpapp
sample application.

Using Security 6-15

6 Building and Running the CORBA Sample Applications

Table 6-4 FilesIncluded in the Java Version of the Secure Simpapp Sample

Application

File Description

Si nmpl e. idl The OMG IDL code that declaresthe Si npl e and
Si npl eFact ory interfaces. Thisfileiscopied from
the WLE si npappSSL_j ava directory by the
r unnme command file.

Serverlnpl .java The Java source code that overrides the
Server.initialize andServer.rel ease
methods.

SinpleClient.java The Javasource code for the client application in the

Secure Simpapp sample application.

Si npl eFactoryl npl . java The Java source code that implements the
Si npl eFact or y methods.

Si npl el npl . j ava The Java source code that implements the Si npl e
methods.
Si npl e. xm The Server Description File used to associate

activation and transaction policy vaues with
CORBA interfaces. For the Java version of the
Secure Simpapp sample application, the Si npl e
and Si npl eFact or y interfaces have an activation
policy of met hod and atransaction policy of
optional .

Readne. ht m The file that provides the latest information about
building and running the Java version of the Secure
Simpapp sample application.

runme. crd The Windows NT batch file that builds and runs the
Java version of the Secure Simpapp sample
application.

runme. ksh The UNIX Korn shell script that builds and executes
the Java version of the Secure Simpapp sample
application.

6-16 Using Security

Building and Running the Secure Simpapp Sample Application

Table 6-4 FilesIncluded in the Java Version of the Secure Simpapp Sample
Application

File Description

makefil e. mk The makefile for the Java version of the Secure
Simpapp sample application on the UNIX operating
system. Thisfileisused to manually build the Secure
Simpapp sample application. Refer to the
Readne. ht m file for information about manually
building the Secure Simpapp sample application.
The UNIX nake command needsto bein the path of
your machine.

makefiles. nt The makefile for the Secure Simpapp sample
application on the Windows NT operating system.
Thisfileisused to manually build the Javaversion of
the Secure Simpapp sample application. Refer to the
Readne. ht m file for information about manually
building the Secure Simpapp sample application.
The Windows NT nmake command needs to bein
the path of your machine.

Step 2: Change the protection attribute on the files for
the Secure Simpapp sample application.

During the installation of the WLE software, the sample application files are marked
read-only. Before you can edit or build the filesin the Secure Simpapp sample
application, you need to change the protection attribute of the files you copied into
your work directory, as follows:

Windows NT

pronpt>attrib -r drive:\workdirectory*.*
UNIX

pr onpt >/ bi n/ ksh

ksh pronpt >chnod u+w / wor kdi rectoryl *.*

Using Security 6-17

6 Building and Running the CORBA Sample Applications

On the UNIX operating system platform, you also need to change the permission of
r unne. ksh to give execute permission to the file, asfollows:

ksh pronpt>chnod +x runmne. ksh

Step 3: Verify the settings of the environment variables.

Before building and running the Secure Simpapp sampl e application, you need to
ensure that certain environment variables are set on your system. In most cases, these
environment variables are set as part of the installation procedure. However, you need
to check the environment variables to ensure they reflect correct information.

Table 6-5 lists the environment variables required to run the Secure Simpapp sample
application.

Table 6-5 Required Environment Variables for the Secure Simpapp Sample Application

Environment Description

Variable

APPDI R The directory path where you copied the sample application files. For example:
Windows NT
APPDI R=c: \ wor k\ si npappSSL
UNIX

APPDI R=/ usr/ wor ki si npappSSL

TUXCONFI G The directory path and name of the configuration file. For example:
Windows NT
TUXCONFI G=c: \ wor k\ si npappSSL\ t uxconfi g
UNIX
TUXCONFI G=/ usr / wor k/ si mpappSSL/ tuxconfig

6-18 Using Security

Building and Running the Secure Simpapp Sample Application

Table 6-5 Required Environment Variablesfor the Secure Simpapp Sample Application

Environment
Variable

Description

JDKDI R

The directory path where you installed the JDK software. For example:
Windows NT

JDKDI R=c:\j dk1l. 2.2

UNIX

JDKDI R=/ usr/local /jdkl.2.1

Y ou need to specify this parameter only if you plan to use the Java version of the
Secure Simpapp sample application.

TOBJADDR

The host name and port number of the IIOP Listener/Handler. The port number must
be defined as a port for SSL communi cations. For example:

Windows NT

TOBJADDR=t ri xi e:: 1111

UNIX

TOBJADDR=t ri xi e:: 1111

JAVA HOMVE

The directory path where you installed the JDK software. For example:
Windows NT

JAVA HOVE=c: \ JDK1. 2

UNIX

JAVA HOVE=/usr /| ocal / JDK1. 2

Y ou need to define this environment variable only when you use the Java version of
the Secure Simpapp sample application.

RESULTSDI R or
JRESULTSDI R

A subdirectory of APPDI Rwhere files that are created as a result of executing the
runme command are stored. For example:

Windows NT

RESULTSDI R=c: \ wor kdi r ect or y\

UNIX

RESULTSDI R=/ usr /| ocal / wor kdi rect ory/

When using the Java version of the Secure Simpapp sample application, specify the
JRESULTSDI R environment variable.

To verify that theinformation for the environment variabl es defined during install ation
is correct, perform the following steps:

Using Security 6-19

6 Building and Running the CORBA Sample Applications

Windows NT

1
2.

5.

From the Start menu, select Settings.

From the Settings menu, select the Control Panel.
The Control Panel appears.

Click the System icon.

The System Properties window appears.

Click the Environment tab.

The Environment page appears.

Check the settings of the environment variables.

UNIX

ksh pronpt>printenv TUXDI R

ksh pronpt >pri nt env JAVA HOVE

To change the settings, perform the following steps:

Windows NT

1

2.
3.

On the Environment page in the System Properties window, click the environment
variable you want to change or enter the name of the environment variable in the
Vari abl e field.

Enter the correct information for the environment variable in the Vval ue field.

Click OK to save the changes.

UNIX

ksh pronpt>export TUXDI R=directorypath

ksh pronpt >export JAVA HOVE=di rect or ypat h

Step 4: Execute the runme command.

The runme command automates the following steps:

1

Setting the system environment variables

6-20 Using Security

Building and Running the Secure Simpapp Sample Application

Loading the UBBCONFI Gfile

Compiling the code for the client application

Compiling the code for the server application

Starting the server application using the t nboot command

Starting the client application

N o g ~c D

Stopping the server application using the t mshut down command

Note: Y ou can also run the Secure Simpapp sample application manually. The steps
for manually running the Secure Simpapp sample application are described in
the Readme. htm file.

To build and run the Secure Simpapp sample application, enter the r unme command,
asfollows:

Windows NT

pronpt >cd workdirectory

pr onpt >r unme

UNIX

ksh pronpt >cd workdi rectory

ksh pronpt >./runne. ksh
The Secure Simpapp sample application runs and prints the following messages:

Testing si npapp
cl eaned up
prepar ed
bui | t
| oaded ubb
boot ed
ran
shut down
saved results

PASSED

During execution of the r unme command, you are prompted for a password. Enter the
pass phrase of the private key of the |1 OP Listener/Handler.

Table 6-6 liststhe C++ filesin the work directory generated by the r unme command.

Using Security 6-21

6 Building and Running the CORBA Sample Applications

Table 6-6 C++ Files Generated by the r unme Command

File

Description

Sinple_c.cpp

Generated by thei dI command, thisfile contains
the client stubs for the Si npl eFact ory and
Si npl e interfaces.

Sinple_c.h

Generated by thei dI command, thisfile contains
the client definitions of the Si npl eFact ory and
Si npl e interfaces.

Sinple_s.cpp

Generated by thei dI command, thisfile contains
the server skeletonsfor the Si npl eFact ory and
Si npl e interfaces.

Sinple_s.h

Generated by thei dI command, thisfile contains
the server definition for the Si npl eFact ory
and Si npl e interfaces.

.adni . keybd

A filethat contains the security encryption key
database. The subdirectory is created by the
t m oadcf command inther unme command.

results

A directory generated by ther unme command.

Table 6-7 lists the Java filesin the work directory generated by the r unme command.

Table 6-7 Java Files Generated by the r unme Command

File

Description

Si npl eFactory. j ava

Generated by the nBi dl t oj ava command for
the Si npl eFact ory interface. The

Si nmpl eFact or y interface contains the Java
version of the OMG IDL interface. It extends
org. ong. CORBA. Obj ect.

Si npl eFact or yHol der . j ava

6-22 Using Security

Generated by the nBi dl t oj ava command for
the Si npl eFact or y interface.Thisclassholdsa
public instance member of type

Si npl eFact or y. The class provides operations
forout andi nout argumentsthat areincludedin
CORBA, but that do not map exactly to Java.

Building and Running the Secure Simpapp Sample Application

Table 6-7 Java Files Generated by the r unme Command

File

Description

Si npl eFact oryHel per.j ava

Generated by the nBi dl t oj ava command for
the Si npl eFact ory interface. Thisclass
provides auxiliary functionality, notably the
nar r ow method.

_Sinpl eFactorySt ub. j ava

Generated by the nBi dl t oj ava command for
the Si npl eFact ory interface. Thisclassisthe
client stub that implements the

Si npl eFact ory. j ava interface.

_Si npl eFact oryl npl Base. j ava

Generated by the nBi dI t oj ava command for
the Si npl eFact or y interface. This abstract
classisthe server skeleton. It implements the

Si npl eFact ory. j ava interface. The
user-written server class Si npl eFact or yl npl
extends _Si npl eFact oryl npl Base.

Sinple.java

Generated by the nBi dlI t oj ava command for
the Si npl e interface. The Si npl e interface
contains the Java version of the OMG IDL
interface. It extends or g. ong. CORBA. (bj ect .

Si npl eHol der . j ava

Generated by the nBi dl t oj ava command for
the Si npl e interface.This class holds a public
instance member of type Si npl e. Theclass
provides operations for out andi nout
argumentsthat CORBA has but that do not match
exactly to Java

Si npl eHel per.java

Generated by the nBi dlI t oj ava command for
the Si npl e interface. This class provides
auxiliary functionality, notably the nar r ow
method.

_Sinpl eSt ub. j ava

Generated by the nBi dl t oj ava command for
the Si npl e interface. Thisclassistheclient stub
that implementsthe Si npl e. j ava interface.

Using Security 6-23

6 Building and Running the CORBA Sample Applications

Table 6-7 Java Files Generated by the r unme Command

File

Description

_Si npl el npl Base. j ava

Generated by the nBi dl t oj ava command for
the Si npl e interface. This abstract classisthe
server skeleton. ItimplementstheSi npl e. j ava
interface. The user-written server class

Si npl el npl extends_Si npl el npl Base.

Si npl e. ser

The Server Descriptor File generated by the
bui | dj obj server command inthe r unnme
command.

Sinple.jar

The server Java Archive file generated by the
bui | dj avaser ver command inthe r unnme
command.

.adni . keybd

A filethat contains the security encryption key
database. The subdirectory is created by the
t m oadcf command inther unme command.

results

A directory generated by ther unme command.

Table 6-8 lists filesin the RESULTS or JRESULTS directory generated by the r unne

command.

Table 6-8 Filesin theresul ts Directory Generated by the runme Command

File Description

i nput Contains the input that the r unme command
provides to the Java client application.

out put Containsthe output produced whenthe r unme

command executes the Java client application.

expect ed_out put

6-24 Using Security

Contains the output that is expected when the
Java client application is executed by the

r unme command. The datain the out put file
is compared to the datain the

expect ed_out put fileto determine whether
or not the test passed or failed.

Building and Running the Secure Simpapp Sample Application

Table 6-8 Filesintheresul ts Directory Generated by the runme Command

File

Description

| og

Contains the output generated by ther unme
command. If ther unme command fails, check
thisfilefor errors.

setenv. cnmd

Contains the commands to set the environment
variables needed to build and run the Java
Secure Simpapp sample application on the
Windows NT operating system platform.

set env. ksh

Contains the commands to set the environment
variables needed to build and run the Java
Secure Simpapp sample application on the
UNIX operating system platform.

stderr

Generated by thet mboot command, which is
executed by ther unme command. If the

- nor edi r ect JavaServer option is specified
in the UBBCONFI Gfile, the

System err. println method sendsthe
output to thest der r fileinstead of to the
ULOGfile.

st dout

Generated by thet mboot command, which is
executed by ther unme command. If the

- nor edi r ect JavaServer option is specified
in the UBBCONFI Gfile, the

Syst em out . pri ntl n method sendsthe
output to thest dout fileinstead of to the
ULOGfile.

t neysevt . dat

Containsfiltering and notification rules used by
the TMSY SEVT (system event reporting)
process. Thisfileis generated by thet nboot
command in ther unme command.

tuxconfig A binary version of the UBBCONFI Gfile.

ubb The UBBCONFI Gfilefor the Java Secure
Simpapp sample application.

ULOG. <dat e> A log file that contains messages generated by

thet mboot command.

Using Security 6-25

6 Building and Running the CORBA Sample Applications

Using the Secure Simpapp Sample Application

6-26

Run the server application in the Secure Simpapp sample application, as follows:
Windows NT

pr onpt >t nboot

UNIX

ksh pronpt >t nboot

Run the client application in the Secure Simpapp sample application, as follows:
Windows NT

pronpt >j ava -classpath .; %'UXDI R udat aobj \ j ava\j dk\ nBenvobj .j ar
- DTOBJ ADDR=%0 OBJ ADDR% Si npl ed i ent

String?

Hello World

HELLO WORLD

hello world

UNIX

ksh pronpt>java -cl asspath .:$TUXD R/ udat aobj /java/j dk\
/ nBenvobj .jar - DTOBJADDR=$TOBJADDR Si npl ed i ent

String?

Hello World

HELLO WORLD

hello world

Note: The Secure Simpapp sample client application uses the client-only JAR file
nBenvobj . j ar . However, you can also use the n8. j ar fileto run theclient
application.

Before using another sample application, enter the following commands to stop the
Secure Simpapp sample application and to remove unnecessary files from the work
directory:

Windows NT
pronpt >t nshut down -y

pronpt >nnake -f makefile.nt clean

UNIX

Using Security

Building and Running the Secure Simpapp Sample Application

ksh pronpt >t nshut down -y

ksh pronpt >make -f makefile.nk clean

Using Security 6-27

6 Building and Running the CORBA Sample Applications

6-28 Using Security

CHAPTER

.

Writing a WLE
Enterprise JavaBean

that Implements
Security

Thistopic includes the following sections:

Before You Begin

How Authentication Works with WLE EJBs

Development Steps

Step 1: Define security roles for the methods of the WLE EJB.

Step 2: Specify security roles in the Deployment Descriptor of the EJB.
Step 3: Define the INDI environment properties.

Step 4: Establish the Initial Context.

Step 5: UseHome to get aWLE EJB.

Step 6: Usethe getCallerPrincipal Method to authenticate a WLE EJB.

Using Security

7 Writing a WLE Enterprise JavaBean that Implements Security

Before You Begin

This document describes the BEA implementation of the Security feature. The
information in this document supplements the Sun Microsystems, Inc. evolving
Enterprise JavaBeans 1.1 Specification (Public Release, October 18,1999).

Note: Before proceeding with the remainder of thistopic, you should be familiar
with the entire content of Sun’s specification, particularly Chapter 15,
“Security Management.”

This topic describes only the integrating security into WLE EJBs. For a complete
description of developing an EJB using the WLE productGsting Started in the
WebLogic Enterprise online documentation.

Note: An EJB in the WLE domain that issues a callback to a remote J2EE client
application cannot propagate the security context of that client application in
the callback.

How Authentication Works with WLE EJBs

From the perspective of an EJB container, EJBs are nontrusted entities that require
authentication. The WLE product uses a JNDI implementation that runs within the
EJB container’s trusted environment. Usinghel ni t i al Cont ext Fact ory JNDI
factory with security environment properties establishes the security context for the
WLE client application. The WLE client application authenticates itself with the WLE
domain when establishing the JNDI Initial context.

Development Steps

Table 7-1 lists the development steps required to implement security in a WLE EJB.

7-2 Using Security

Step 1: Define security roles for the methods of the WLE EJB.

Table 7-1 Development Steps for | mplementing Security ina WLE EJB

Step Description

1 Define security roles for the methods of the WLE EJB.

2 Specify security roles in the Deployment Descriptor of the EJB.

3 Define the INDI environment properties.

4 Establish the Initial Context.

5 Use Home to get the WLE EJB.

6 Usetheget Cal | er Pri nci pal method to authenticate the WLE EJB.

Step 1: Define security roles for the methods
of the WLE EJB.

During the assembly and deployment of an EJB package, you define security rolesand
associ ate roles with methods in the deployment descriptor. Security roles are mapped
to groupsof usersin the WLE security environment. Y ou can use any of the techniques
described in the Security Management chapter of the Enterprise JavaBeans 1.1
Specification to define security roles for the methods of a WLE EJB.

It is possible that two methods with the same name or name/signature appear in both
the bean’s home and remote interfaces. To handle this case, the optional
<net hod-i ntf > element may further restrict the selection to eitiare or Renot e
interface methods.

In a mandatory access control environment, any method invocation not specifically
authorized is denied. Sometimes a method does not have a defined

<net hod- per m ssi on> element. If theSECURI TY parameter in thBESOURCES

section of theUBBCONFI Gfile is set toOMANDATORY_ACL access on a method without
an associatednet hod- per ni ssi on> element, access is denied. This is the

Using Security 7-3

7 Writing a WLE Enterprise JavaBean that Implements Security

recommended setting for production environments. For al other settings of the
SECURI TY parameter, access to a method without an associated
<met hod- per m ssi on> element is allowed.

There may be methods that should be available to everyone, even in a mandatory
access control environment. The WLE system defines a specia role name* which
means everyone has access to the method.

Step 2: Specify security roles in the
Deployment Descriptor of the EJB.

Y ou specify security roles for the methods of an EJB in the deployment descriptor of

the bean. In the WLE product, there is a one-to-one association between the security

roles defined in the depl oyment descriptor of the EJB and the groups defined with the

t pgr padd commands. Role hames may be referenced in deployment descriptors

before the corresponding group exists. A run time, if a bean’s deployment descriptol
references a role that does not have a corresponding group, the role is ignored.

Role names are restricted to any alphanumeric characters, a e nderscore(

_), the at-sign@, and a period (). The maximum length of a role name is 30
characters. If the name of a security role does not conform to these limitations, it will
not be possible for users to have the defined security role.

Listing 7-1 includes code that defines a security role.

Listing 7-1 Defining a Security Role for a Method in an EJB

<assenbl y-descri pt or>
<security-rol e>
<description>
“teller” is a role name
</description>
</security-role>

<method-permission>
<role-name>teller</role-name>

7-4 Using Security

Step 3: Define the JNDI environment properties.

<net hod>
<ej b- name>Account i ng</ ej b- nane>
<met hod- name>wi t hdr aw</ net hodnane>
</ met hod>
</ met hod- per m ssi on>

</ assenbl y-descri pt or>

Step 3: Define the JNDI environment
properties.

The following sections describe the INDI environment properties that must be set to
enable either Username/Password or certificate-based authentication.

WLEContext.INITIAL_CONTEXT_FACTORY Property

The classcom beasys. j ndi . W.EI ni t i al Cont ext Fact ory isthe INDI Service
Provider Interface (SPI). Thisinitial context provides an entry point into the WLE
domain. Set W.ECont ext . | NI TI AL_CONTEXT_FACTCRY to

com beasys. j ndi . W.EI ni ti al Cont ext Fact ory to accessthe WLE domain.

Listing 7-2 includescodethat definesthe W.ECont ext . I NI TI AL_CONTEXT_FACTCRY
property for the WLE environment.

Listing 7-2 WLEContext.INITIAL_CONTEXT_FACTORY Property

Hasht abl e env = new Hasht abl e();

/*

*Specify the initial context inplenmentation to use.
*The service provider supplies the factory class.
*/

env. put (WLECont ext. | NI TI AL_CONTEXT _FACTCRY,

Using Security 7-5

7 Writing a WLE Enterprise JavaBean that Implements Security

“com.beasys.jndi.WLEInitialContextFactory”);

WLEContext.PROVIDER_URL Property

Specifies the entry point into the WLE domain. The value should reflect the host and
port of the [IOP Listener/Handler of the target WLE domain. Use one of the following
URL address formats when specifying the location of the IIOP Listener/Handler:

m corbaloc://hostname:portnumber

Indicates that the IIOP/RMI protocol isto be used to communicate with the
WLE domain. This URL address format only supports Username/Password
authentication.

m corbalocs://hostname:portnumbe r

Indicates that the SSL protocol isto be used to communicate with the WLE
domain. ThisURL address format supports both Username/password and
certificate-based authentication.

The host and port combination in the URL must match the ISL parameter in the WLE
application’sUBBCONFI Gfile. The format of the host and port combination as well as
the capitalization must match. If the addresses do not match, communication with th
WLE domain fails.

Listing 7-3 includes code that defines theECont ext . PROVI DER_URL property for
the WLE environment.

Listing 7-3 WLEContext.PROPERTY_URL Property

env. put (VWL.ECont ext . PROVI DER_URL,
“corbaloc://’'myhost:1000");

A WLE server application that acts as a client application (referred to as ajoint
client/server application) must set the WLEContext.PROPERTY_URL as an empty or
null string. The joint client/server application connects to the current application in
which it was booted.

7-6 Using Security

Step 3: Define the JNDI environment properties.

WLEContext.SECURITY_AUTHENTICATION Property

Set this property to indicate the type of authentication to be used. The valid values for
this property are asfollows:

m None—Indicates that no authentication is performed
m Si npl e—Indicates that Username/Password authentication is performed
m Strong—Indicates that certificate-based authentication is performed

See Table 7-2 for additional keys that need to be specified to use Username/Password
or certificate-based authentication.

Listing 7-4 includes code that defines te&ECont ext . SECURI TY_AUTHENTI CATI ON
property for the WLE environment.

Listing 7-4 WLEContext.SECURITY_AUTHENTICATION Property

env.put(WLEContext. SECURITY_AUTHENTICATION, "strong™);

Table 7-2 WLE Property Keysfor Security

Property Key M eaning

WLEContext. SECURITY_PRINCIPAL Specifiestheidentity of the principa used when authenticating
the caller to the WLE domain.

Using Security 7-7

7 Writing a WLE Enterprise JavaBean that Implements Security

Table 7-2 WLE Property Keysfor Security

Property Key

M eaning

WLEContext. SECURITY_CREDENTIALS Specifiesthe credentials of the principal when authenticating

the caller to the WLE domain.

m For certificate-based authentication enabled via
SECURITY_AUTHENTICATION="strong" , it specifies
the pass phrase used to access the private key and
certificate for the EJB.

m For password-based authentication enabled via
SECURITY_AUTHENTICATION="simple” , it specifies
a string that is the user’s password or an arbitrary object
user _dat a used by the authentication served{HSVR)
to verify the credentials of the EJB.

W.ECont ext . CLI ENT_NAME Specifies the name of the EJB defined by thee option of the

t pusr add command. For more information, see “Defining
Authorized Users” on page 4-8

W.ECont ext . SYSTEM _PASSWORD The system password. Required only when using

Username/Password authentication.

Listing 7-5 includes the WLE keys used to define Username/Password authentication.

Listing 7-5 WLE Keysfor Username/Password Authentication

Hasht abl e env = new Hasht abl e();
env.put(Context. PROVIDER_URL, “corbalocs://"myhost:1000")

env.put(Context.INITIAL_CONTEXT_FACTORY,
“com.beasys.jndi.WLEInitialContextFactory”);

/IPassword-Based Authentication

env.put(WLEContext. SECURITY_PRINCIPAL, “milozzi");
env.put(WLEContext. SYSTEM_CREDENTIALS, “mypassword”);
env.put(WLEContext. CLIENT_NAME, “writers”);
env.put(WLEContext. SECURITY_AUTHENTICATION, "simple”);
env.put(WLEContext. SYSTEM_PASSWORD, “password”);

Listing 7-6 includes the WL E keys used to define certificate-based authentication.

7-8 Using Security

Step 4: Establish the InitialContext.

Listing 7-6 WLE Keysfor Certificate-Based Authentication

//Certificate-Based Authentication
env.put(WLEContext. SECURITY_AUTHENTICATION, "strong™);
env.put(WLEContext. SYSTEM_PASSWORD, “SSL");
env.put(WLEContext. SECURITY_PRINCIPAL, “milozzi");
env.put(WLEContext. SECURITY_CREDENTIALS, “credentials”);

Step 4: Establish the InitialContext.

To accessaWLE EJB using JNDI, you establish an Initial Context using the following
code:

Context ctx = new InitialContext(env);

Specifying env as com.beasys.com.jndi.WLEInitialContextFactory . After
the context is created, the client application has access to bean homesin the WLE
domain using WL E as the name service provider.

A WLE EJB isimplicitly associated with the security context specified when the
WLEContext object is created. To specify a new security context, the EJB needs to
close the current security context and establish a new security context with new
security attributes. Use the following code to close the current security context:

ctx.close();

Step 5: Use Home to get a WLE EJB.

Client applications use the bean’s home interface to create or find beans. The beans’s
home is obtained by using theokup method on the InitialContext.

Using Security 7-9

7 Writing a WLE Enterprise JavaBean that Implements Security

Step 6: Use the getCallerPrincipal Method to
authenticate a WLE EJB.

Usetheget Cal | er Pri nci pal method onthe j avax. ej b. EJBCont ext associated
with aWLE EJB to authenticatethe principal. You canalsousethe i sCal | er I nRol e
method to determine the role of the client application invoking methods on the EJB.
The default principal is 11 OP Client.

Limitations and Restrictions

It is possible to deploy the same EJB more than once with different deployment
descriptorsthat set different access control policies. Inthis case access control isbased
on the depl oyment descriptor from which a particular bean isloaded. Security policies
are not considered when the WLE system has a choice of how to route areguest to any
particular bean or container.

Example of Using Security in a WLE EJB

7-10

Listing 7-7 illustrates using Username/Password authentication in aWLE EJB.

Note: The code examplein Listing 7-7 usesthe cor bal ocs URL address format so
that the SSL protocol is used to protect the integrity of the communications.

Listing 7-7 Username/Password Authenticationin aWLE EJB

static public Context getlnitial Context() throws Exception {
Hasht abl e env = new Hashtable ();
env. put (WLECont ext. | NI TI AL_CONTEXT_FACTCRY,
“com.beasys.jndi.WLEInitialContextFactory”);

Using Security

Example of Using Security in a WLE EJB

env. put (WLECont ext . PROVI DER_URL, corbal ocs:// nyhost: 7002);
return new Initial Context(env);

/ | Passwor d- Based Aut henti cation
env.put(WLEContext. SECURITY_AUTHENTICATION, "simple”);
env.put(WLEContext. SYSTEM_PASSWORD, “RMI");
env.put(WLEContext. SECURITY_PRINCIPAL, “milozzi);
env.put(WLEContext. CLIENT_NAME, “writers);
env.put(WLEContext. SECURITY_CREDENTIALS, “password”);

Listing 7-8 illustrates using certificate-based authentication in aWLE EJB.

Listing 7-8 Certificate-based Authentication ina WLE EJB

Hashtable env = new Hashtable ();
env.put(WLEContext.INITIAL_CONTEXT_FACTORY,
“com.beasys.jndi.WLEInitialContextFactory”);

env.put(WLEContext.PROVIDER_URL, corbalocs://myhost:7002);
return new InitialContext(env);

/ICertificate-Based Authentication

env.put(WLEContext. SECURITY_AUTHENTICATION, "strong™);
env.put(WLEContext. SECURITY_PRINCIPAL, “milozzi@bigcompany.com”);
env.put(WLEContext. CLIENT_NAME, “writers);

env.put(WLEContext. SYSTEM_PASSWORD, “SSL");

env.put(WLEContext. SECURITY_CREDENTIALS, “credentials”);

Using Security 7-11

7 Writing a WLE Enterprise JavaBean that Implements Security

7-12 Using Security

CHAPTER

8 Troubleshooting

Thistopic includes the following sections:

m Using ULOGS and ORB Tracing

m CORBA::ORB_init Problems

m Username/Password Authentication Problems

m Certificate-Based Authentication Problems

m Tobj::Bootstrap:: resolve _initial_references Problems

m |IOP Listener/Handler Startup Problems

m Configuration Problems

m Problems with Using Callbacks Objects with the SSL Protocol

m Troubleshooting Tips for Digital Certificates

Note: The problemsin this topic pertain to using the SSL protocol and
certificate-based authentication with WLE CORBA applications.

Using ULOGS and ORB Tracing

In general, Object Request Brokers (ORBs) write important failuresto the ULOGfile.
When using the CORBA C++ ORB, you can also enable ORB internal tracing which
may provide information in addition to the information that appears in the ULOG file.

When looking the ULOGfile, note that remote ORB processes by default do not write
datato the ULOGfilein APPDI R.

Using Security 8-1

8 Troubleshooting

m On UNIX, the remote ORB writes information to a ULOGfile in the current
directory.

m On Windows NT, the remote ORB writes information to a ULOGfile in the
c:\ ul og directory.

Y ou can set the ULOGPFX environment variable to control the location of the ULOGfile
for remote ORBs (for example, you can set the location of the ULOGfile to APPDI R SO
that all information is put in the same ULOGfil€). Set the ULOGPFX environment
variable as follows:

UNIX

set env ULOGPFX $APPDI R/ ULOG

Windows NT
set ULOGPFX=%APPDI R% ULOG

To enable ORB tracing, perform the following steps:

1. Createafilenamedtrace. dat in APPDI R. The contents of t r ace. dat should
have al | =on.

2. Usethefollowing command to set the OBB_ TRACE_| NPUT environment variable
to point to the trace. dat file before running the application:
set OBB_TRACE_| NPUT=%APPDI RA t r ace. dat

If you want ORB tracing sent to separate files, add the following line to the
trace. dat file:

out put =obbt race%p. | og

This command sends the trace output to files that are named after each running
process. You may want to do this if you are using ORB tracing on UNIX to an
NFS mounted drive. In this case, trace performance is slow due to the user log
opening, writing, and closing the file for each trace statement.

The CORBA Java ORB logs error messages to the ULOGfilein all error situations as
well as puts minor codes to all system exceptions thrown by the ORB. Therefore,
tracing is not necessary.

8-2 Using Security

CORBA::ORB_init Problems

CORBA::ORB init Problems

Note: Thissection applies to the CORBA C++ ORB only.

The ORB_i ni t routine does not perform internal ORB tracing so you will not see any
trace output for invalid argument processing. Therefore, you need to double check the
arguments that were passed to the ORB_i ni t routine.

If a CORBA: : BAD_PARAMexception occurs when executing the ORB_i ni t routine,
verify that all required arguments have values. Also, check that arguments which
expect a value from a specific set of valid values have the correct value. Note that
values for the arguments of the ORB_i ni t routine are case sensitive.

If a CORBA: : NO_PERSM SSI ON exception occurs and an SSL argument was specified
to the ORB_i ni t routine, make sure the WLE Security Pack isinstalled. Also, verify
that the specified level of encryption does not exceed the encryption level supported
by the WLE Security Pack.

If aCORBA: : | MP_LI M T exception occurs when executing the ORB_i ni t routine,
verify that the ORBport and ORBSecur ePor t system properties have the same value.

If aCORBA: : I ni ti ali ze exception occurs when executing the ORB_i ni t routine,
verify that the values for O bl d or confi gset arevalid.

Note: TheOrbld andconfi gset vauesapply to the CORBA C++ ORB only.

If Secure Socket Layer (SSL) argumentsare passed to the ORB_i ni t routine, the ORB
attemptsto load and initialize the SSL protocol. If no SSL arguments are passed, the
ORB does not attempt to initialize the SSL protocol.

The ORB is not aware of the new URL address formats for the Bootstrap object so if
you specify acorbaloc or corbal ocs URL address format, the ORB does not try to load
the SSL protocol during the ORB_init routine.

If SSL arguments were specified tothe ORB_i ni t routine, check the following:

m The specified values for the SSL arguments do not conflict with each other or
other ORB arguments.

m Whether or not the ORB is a native process. If the ORB is a native process, SSL
arguments are not supported.

Using Security 8-3

8 Troubleshooting

m That the value specified for the maxCr ypt o system property is lessthan the
value specified for the ni nOr ypt o system property.

m Application controlled SSL configuration parameters that are not correct. The
ORB_i ni t routine does not perform digital certificate lookups check so look for
missing or corrupted files that would case the dynamic libraries not the |oaded.
Also, verify the dynamic libraries are loaded. The ORB trace function will
provide information about whether or not the dynamic libraries are loaded.

If the problem persists, turn on ORB tracing. ORB tracing will log SSL failures that
occur when the 1i bor bssl dynamic library isloaded and initialized.

Username/Password Authentication
Problems

If the client application fails when using the cor bal ocs URL address format with
Username/Password authentication, check the following:

m The proper configuration steps were performed. See “Configuring the WLE
Environment for the SSL Protocol’and “Defining Security for a WLE CORBA
Application” for the list of the required configuration steps.

m An initialization error occurred. Specify a valid SSL system property to the
ORB_i ni t routine, an error occurs if:

e The IIOP Listener/Handler is not available. The ORB trace log will show
failed connection attempts.

e The IIOP Listener/Handler is available but it does not support the SSL
protocol. TheuLoG file will show that a non-GIOP message was received.

e The IIOP Listener/Handler was available and configured for the SSL
protocol but the SSL connection could not be established. This error can
occur when the range of encryption strengths supported by the 11OP
Listener/Handler and the range of encryption strengths required by the client
application don't match.

8-4 Using Security

Certificate-Based Authentication Problems

Certificate-Based Authentication Problems

If the client application fails when using the cor bal ocs URL address format with
certificate-based authentication, check the following:

m The proper configuration steps were performed. See “Configuring the WLE
Environment for the SSL Protocol’and “Defining Security for a WLE CORBA
Application” for the list of the required configuration steps.

m Determine whether or not an initialization error occurred.

m Specify a valid SSL system property to thBB_i ni t routine, an error occurs
if:
¢ The IIOP Listener/Handler is not available. The ORB trace log will show
failed connection attempts.

e The IIOP Listener/Handler is available but it does not support the SSL
protocol. TheuLoGfile will show that a non-GIOP message was received.

e The IIOP Listener/Handler was available and configured for the SSL
protocol but the SSL connection could not be established. This error can
occur when the range of encryption strengths supported by the 11OP
Listener/Handler and the range of encryption strengths required by the client
application don't match. The error can also occur when the client application
does not trust the certificate chain of the IIOP Listener/Handler or the client
application did not receive a certificate from the IIOP Listener/Handler. The
error will be written to the ULOG file and the error will also show up in the
ORSB trace output.

If an error does not occur, the problem is in the authentication process and the
uLoGfile will contain one of the following error statements indicating the
problem:

e Couldn't connect to an LDAP server

e Couldn't find a filter that matched the client certificate
e The client certificate was not found in LDAP

e The private key file could not be found

e The passphrase used to open the private key is not correct

Using Security 8-5

8 Troubleshooting

e The public key fromthe client certificate did not nmatch
the private key

Additional certificate problems can also occur. See “Tobj::Bootstrap::
resolve_initial_references Problems” for more information about the types of
certificate errors that can occur.

Note: At this point of the initialization process, the failure is not due to a problem in
the IIOP Listener/Handler.

Tobj::Bootstrap::
resolve_initial references Problems

If a failure occurs when performing a

Tobj : : Bootstrap: :resolve_initial _references with thecor bal oc or

cor bal ocs URL address format, @RBA: : | nval i dDomai n exception is raised.
This exception may masBoRBA: : NO_PERM SSI ON or CORBA: : COVM FAI LURE
exceptions that are raised internally. Look atuheGfile and turn on ORB tracing to
get more details on the error. The following errors may occur:

m If the IIOP Listener/Handler is not available, the ORB trace log will show failed
connection attempts.

m If the IIOP Listener/Handler is available but it does not support the SSL
protocol, theuLOG file will show that a non-GIOP message was received.

m If the IIOP Listener/Handler is available and configured for the SSL protocol but
the SSL connection could not be established. An error can occur if the range of
encryption strengths supported by the IIOP Listener/Handler and required by the
client application don't match.

m The IIOP Listener/Handler couldn't map a certificate to a Username/Password
user name. Verify that the security level for the WLE application is set to
USER_AUTH and that Username/Password user name matches the principal name
passed into the authenticate call. Also, check that the user name doesn't exceed
the 30 character limit.

8-6 Using Security

IIOP Listener/Handler Startup Problems

Additiona certificate problems can occur. See ““Troubleshooting Tips for Digital
Certificates” on page 8-9” for more information about the types of certificate errors
that can occur.

Note: The Java implementation of the
Tobj _Bootstrap::resolve_initial _references() method does not
throw anl nval i dDomai n exception. When theor bal oc or cor bal ocs
URL address formats are used, the
Tobj _Bootstrap: :resolve_initial _references() method internally
catches thénval i dDomai n exception and throws the exception as a
COMM _FAI LURE. The method functions this way in order to provide backward
compatibility.

1I0P Listener/Handler Startup Problems

This section describes problems that can occur during the startup of the IIOP
Listener/Handler.

If a failure occurs when starting the 1IOP Listener/Handler, checkitbe file for a
description of the error. The IIOP Listener/Hander verifies that the values for the SSL
arguments specified in tlee OPT parameters are valid. If any of the values are invalid,
the appropriate error is recorded in th@Gfile. This check is similar to the argument
checking done by the ORB.

The 1IIOP Listener/Handler will not start its processes unlessibetion is specified.

The ISH is the process that actually loads and initializes the SSL libraries. If there is a
problem loading and initializing the SSL libraries in the ISH process, the error will not
be recorded in theLoGfile until the ISH process starts to handle incoming requests
from client application.

If you suspect a problem with the startup of the IIOP Listener/Handler processes,
check thelLoG file.

Using Security 8-7

8 Troubleshooting

Configuration Problems

8-8

The following are miscellaneous tips to resolve the common configuration problems
which may occur when using the WLE Security Pack:

m The ORB - ORBpeer Val i dat e command line option or system property and the

- v option of the ISL command do not control the peer validation rules checking.
This system property and option only control the checking of the host name
specified in the peer certificate against the host name of the machine to which
the principal was connected.

The only way to disable the peer validation rules on an installed kit isto create
an empty filefor %arUXDI R% udat aobj \ securi ty\cert s\ peer_val .rul.If
you are writing a script that builds your WL E application, you can also not
register thepeer _val . rul fileinthe script.

When enabling renegotiation intervals in the I1OP Listener/Handler, check that
the option on the ISL command is-Rnot -r. If youusean-r, thellOP
Listener/Handler will use the SSL protocol but the renegotiation interval will not
be used. In addition, the ULOGfile will note that an unknown option was
specified on the I1OP Listener/Handler.

Another way to determine if the |1OP Listener/Handler is performing
renegotiations is to enable ORB tracing on the client side and check whether the
cipher suite negotiation callback is being called the configured renegotiation
interval. Note that the client application must be sending requests for in order for
renegotiations to occur.

If you have defined the SECURI TY parameter in the WLE application’s

UBBCONFI Gfile to beAPP_Pwor greater and you have configured the [IOP
Listener/Handler to use the SSL protocol but not mutual authentication, you
must use Username/Password authentication witbdhieal ocs URL address
format to communicate with the IIOP Listener/Handler. If you try to use
certificate-based authentication, the 1IOP Listener/Handler will not ask the
principal for a certificate when establishing an SSL connection and the IIOP
Listener/Handler is not able to map the identity of the principal to a TUXEDO
identity.

Using Security

Problems with Using Callbacks Objects with the SSL Protocol

Problems with Using Callbacks Objects with
the SSL Protocol

If you have ajoint client/server application and the client portion of the joint
client/server application specifies security requirements using either the cor bal ocs
URL address format or by requiring credentials, you must use the - ORBsecur ePor t
system property with the ORB_i ni t routine to specify that a secure port be used.

If you do not specify the - ORBsecur ePort system property, the server registration
will fail with a CORBA: : NO_PERM SSI ON exception. To verify thisis the problem,
enable ORB tracing and look for the following trace output:

TCPTransport::Listen: FAILURE: Attenpt to listen on clear port
while Credentials require SSL be used

If you want to use the SSL protocol with callback objects, the joint client/server
application must use the

SecuritylLevel 2:: Princi pal Aut henticator::aut henti cat e() method with
certificate-based authentication. Otherwise, the joint client/server application does not
have a certificate with which to identify itself to the IOP Listener/Handler whichin
this caseis the initiator of the SSL connection.

Troubleshooting Tips for Digital Certificates

In general, problems with digital certificates occur when:

m One of the digital certificates in the certificate chain of the IOP
Listener/Handler is not from acertificate authority defined inthetrust _ca. cer
file.

m The name the IIOP Listener/Handler connected to the client application does not
match the host name specified in digital certificates of the IIOP Listener/Handler
when a host match is performed. The name of the I1OP Listener/Handler is
specified in the CormonNane attribute of the distinguish name of the [1OP

Using Security 8-9

8 Troubleshooting

8-10

Listener/Handler. The host name and the ConmpnNane attribute must match
exactly.

You can verify this error by setting the - ORBpeer Val i dat e system property to
none and executing the ORB_i ni t routine again.

m Oneof thedigita certificatesin the certificate chain of the [IOP
Listener/Handler does not match the specified peer validation rules.

m Thedigita certificate of the IIOP Listener/Handler isinvalid. Thedigital
certificate of the I1OP Listener/Handler becomes invalid when the digital
certificate istampered with, it expires, or the certificate authority that issued the
digital certificate expires.

If adigital certificateisrejected for no explainable reason, perform the following steps:
1. Openthedigital certificate in aviewer, for example, Windows Explorer.

2. Look at the KeyUsage and Basi cConst rai nt s properties of the digital
certificate. A small yellow triangle with an exclamation mark indicates the
property is critical. Any digital certificate with a property marked critical is
rejected by the WL E software.

3. If the none of the properties of the digital certificate are critical, check the
properties of the next digital certificate in the certificate chain. Perform this step
until all the properties of all the digital certificates in the certificate chain have
been verified.

Using Security

CHAPTER

9

WLE Security Service
APIs

Thistopic includes the following sections:

m The WLE Security Model

m Functiona Components of the WLE Security Service
m The Principal Authenticator Object

m The Credentials Object

m The SecurityCurrent Object

For the C++, Java, and Automation method descriptionsfor the WL E Security Service,
see the following topics:

m “C++ Security Reference” on page 11-1
m “Java Security Reference” on page 12-1

m “Automation Security Reference” on page 13-1

Using Security 9-1

9 wiE Security Service APIs

The WLE Security Model

The security model in the WLE product defines only a framework for security. The
WLE product provides the flexibility to support different security mechanisms and
policiesthat can be used to achievethe appropriatelevel of functionality and assurance
for a particular WLE application.

The security model in the WLE product defines:
m Under what conditions client applications may access objectsin a WLE domain

m What type of proof material principals are required to authenticate themselves to
the WLE domain

The security model in the base WLE product is a combination of the security
model defined in the CORBAservices Security Service specificationland the
value-added extensions that provide a focused, simplified form of the security
model found in BEA TUXEDO.

The following sections describe the general characteristics of the WLE security
model.

Authentication of Principals

9-2

Authentication of principals (for example, an individual user, aclient application, a
server application, ajoint client/server application, or an |1OP Listener/Handler)
provides security officerswith the ability to ensure that only registered principals have
access to the objects in the system. An authenticated principal is used as the primary
mechanism to control accessto objects. Theact of authenticating principals alowsthe
security mechanismsto:

m Make principal s accountable for their actions

m Control access to protected objects

1. All references to the CORBA services Security Service specification in this docu-
ment are to the Revision 1.5, December 1998 edition, published by the Object Man-
agement Group.

Using Security

The WLE Security Model

m |dentify the originator of arequest

m |dentify the target of request

Controlling Access to Objects

The WLE security model provides a simple framework through which a security
officer can limit access to the WL E domain to authorized users only. Limiting access
to objects allows security officers to prohibit access to objects by unauthorized
principals. The access control framework consists of two parts:

m The object invocation policy that is enforced automatically on object invocation

m An application access policy that the user-written application can enforce

Administrative Control

The system administrator is responsible for setting security policies for the WLE
application. The WLE product providesaset of configuration parametersand utilities.
Using the configuration parameters and utilities, a system administrator can configure
the WLE application to force the principals to be authenticated to access a system on
which WLE softwareisinstalled. To enforce the configuration parameters, the system
administrator usesthet nl oadcf command to update the configuration file for a
particular WL E application.

For more information about configuring security for your WLE application, see
“Configuring the WLE Environment for the SSL Protocol” on page 3-1 and “Defining
Security for a WLE CORBA Application” on page 4-1.

Using Security 9-3

9 wiE Security Service APIs

Functional Components of the WLE Security
Service

The WLE security model is based on the process of authenticating principals to the

WLE domain. The objects of the WLE Security Service are used to authenticate a

principal. The principal providesidentity and authentication data, such as a password,

to the client application. The client application usesthe Principal Authenticator object

to make the calls necessary to authenticate the principal. The credentials for the
authenticated principal are associated with the security system’s implementation of th
SecurityCurrent object and are represented by a Credentials object.

Figure 9-1 illustrates the authentication process used in the WLE security model.

Figure9-1 Authentication Processin the WLE Product

.- ~

/ User
\ Sponsor

Client
Application

A}
\
T
’
’

~~~~~~~~

Security
Current
Object

Principal
Authenticator
Object

I p—p——

Credentials
Object

The following sections describe the objects in the WLE security model.

9-4 Using Security



The Principal Authenticator Object

The Principal Authenticator Object

The Principal Authenticator object is used by a principal that requires authentication
but has not been authenticated prior to calling the object system. The act of
authenticating a principal results in the creation of a Credentials object that is made
available as the default credentials for the application.

The Principal Authenticator object isa singleton object; thereisonly asingle instance
allowedinaprocess address space. The Principal Authenticator object isalso stateless.
A Credentials object is not associated with the Principal Authenticator object that
created it.

All Principal Authenticator objects support the

SecuritylLevel 2:: Princi pal Aut hent i cat or interface defined in the
CORBAservices Security Service specification. This interface contains two methods
that are used to accomplish the authentication of the principal. This is because
authentication of principals may require more than one step. The aut hent i cat e
method allows the caller to authenticate, and optionally select, attributes for the
principal of this session.

Any invocation that fails because the security infrastructure does not permit the
invocation will raise the standard exception CORBA: : NO_PERM SSI ON. A method that
fails because the feature requested is not supported by the security infrastructure
implementation will raise the CORBA: : NO_| MPLEMENT standard exception. Any
parameter that has inappropriate values will raise the CORBA: : BAD_PARAMSstandard
exception. If atiming-related problem raisesaCORBA: : COVM FAI LURE. The Bootstrap
object maps most system exceptionsto CORBA: : | nval i d_Domai n.

The Principal Authenticator object is alocality-constrained object. Therefore, a
Principal Authenticator object may not be used through the DII/DSI facilities of
CORBA. Any attempt to pass areference to this object outside of the current process,
or any attempt to externalize it using CORBA: : ORB: : obj ect _t o_stri ng, will result
in the raising of the CORBA: : MARSHAL exception.

Using Security 9-5



9 wiE Security Service APIs

Using the Principal Authenticator Object with
Certificate-based Authentication

The Principal Authenticator object has been enhanced to support certificate-based
authentication. The use of certificate-based authentication is controlled by specifying
theSecurity: : Aut henti cati onMet hod valueof Tobj:: Certificat eBased asa
parameter to the Pri nci pal Aut henti cator: : aut henti cat e operation. When
certificate-based authentication is used, the implementation of the

Pri nci pal Aut henti cator: :aut henti cat e operation must retrieve the credentials
for the principal by obtaining the private key and digital certificates for the principal
and registering them for use with the SSL protocol.

Thevalues of thesecuri ty_nanme and aut h_dat a parameters of the

Pri nci pal Aut henti cator: :authenti cat e operation are used to open the private
key for the principal. If the user does not specify the proper values for both of these
parameters, the private key cannot be opened and the user failsto be authenticated. As
aresult of successfully opening the private key, a chain of digital certificates that
represent the local identity of the principal is built. Both the private key and the chain
of digital certificates must be registered to be used with the SSL protocol.

WLE Extensions to the Principal Authenticator Object

9-6

The WLE product extends the Principal Authenticator object to support a security
mechanism similar to the security in BEA TUXEDO. The enhanced functionality is
provided by defining the Tobj : : Pri nci pal Aut henti cat or interface. Thisinterface
contains methods to provide similar capability to that available from BEA TUXEDO
through thet pi ni t function. Theinterface Tobj : : Pri nci pal Aut henti cator is
derived from the CORBA Securi tyLevel 2: : Princi pal Aut henti cat or interface.

The extended Principa Authenticator object adheresto all the same rules as the
Principal Authenticator object defined in the CORBA services Security Service
specification.

Theimplementation of the extended Principal Authenticator object requires usersto
supply a user name, client name, and additional authentication data (for example,
passwords) used for authentication. Because the information needs to be transmitted
over the network to the [lOP Listener/Handler, it is protected to ensure confidentiality.
The protection must include encryption of any information provided by the user.

Using Security



The Credentials Object

An extended Principal Authenticator object that supports the

Tobj : : Princi pal Aut henti cat or interface providesthe samefunctionality asif the
Securitylevel 2:: Princi pal Aut henti cat or interface were used to perform the
authentication of the principa. However, unlike the

SecuritylLevel 2:: Princi pal Aut henti cat or:: aut henti cat e method, the
logon method defined on the Tobj : : Pri nci pal Aut hent i cat or interface does not
return a Credentials object.

The Credentials Object

A Credentials object (as shown in Figure 9-2) holds the security attributes of a
principal. The Credentials object provides methods to obtain and set the security
attributes of the principalsit represents. These security attributes include its
authenticated or unauthenticated identities and privileges. It also containsinformation
for establishing security associations.

Credentials objects are created as the result of:
m Authentication
m Copying an existing Credentials object

m Asking for a Credentias object viathe SecurityCurrent object

Using Security 9-7



9 wiE Security Service APIs

9-8

Figure9-2 The Credentials Object

N
Credentials - Containing Security Attributes
( .
Unauthenticated Authenticated
Attributes Attributes
4 R / ’ Identity R
[} . \ | \
] Public ," \  Attributes
N S N\ ,
\ Semmaee="" k _________
J

Multiple references to a Credentials object are supported. A Credentials object is

stateful. It maintains state on behalf of the principal for which it was created. Thisstate
includes any information necessary to determine the identity and privileges of the

principal it represents. Credentials objects are not associated with the Principal

Authenticator object that created it, but must contain some indication of the

authentication authority that certified the principal’s identity.

The Credentials object is a locality-constrained object; therefore, a Credentials objec
may not be used through the DII/DSI facilities. Any attempt to pass a reference to thi
object outside of the current process, or any attempt to externalize it using

CORBA: : ORB: : obj ect _t o_st ri ng, will result in the raising of theORBA: : MARSHAL

exception.

The Credentials object has been enhanced to allow application developers to indica
the security attributes for establishing secure connections. These attributes allow
developers to indicate whether a secure connection requires integrity, confidentiality
or both. To support this capability, two new attributes were added to the

SecuritylLevel 2:: Credenti al s interface.

m Theinvocation_options_support ed attribute indicates which security

options are allowed when establishing a secure connection.

m The invocation_options_required attribute allows the application

developer to specify the minimum set of security options that must be used in
establishing a secure connection.

Using Security




The SecurityCurrent Object

The SecurityCurrent Object

The SecurityCurrent object (see Figure 9-3) representsthe current execution context at
both the principal and target objects. The SecurityCurrent object represents
service-specific state information associated with the current execution context. Both
client and server applications have SecurityCurrent objects that represent state

associ ated with the thread of execution and the processin which thethread is
executing.

Figure9-3 The SecurityCurrent Object

Current

PrincipalAuthenticator

principal_authenticator

authenticate & Credentials Credentials
get_credentials

TID Ptr
Credentials _>|T—I_|

The SecurityCurrent object isasingleton object; thereisonly asingleinstance allowed
in aprocess address space. Muultiple references to the SecurityCurrent object are
supported.

The CORBAservices Security Service specification defines two interfaces for the
SecurityCurrent object associated with security:

m Securitylevel 1:: Current, which derives from CORBA: : Current

m Securitylevel 2:: Current,which derives from the
SecuritylLevel 1:: Current interface

Both interfaces give access to security information associated with the execution
context.

At any stage, aclient application can determine the default credentials for subsequent
invocations by calling the Current : : get _credenti al s method and asking for the
invocation credentials. These default credentials are used in al invocations that use
object references.

Using Security 9-9



9 wiE Security Service APIs

WhenthecCurrent:: get_attri but es methodisinvoked by aclient application, the
attributes returned from the Credential s object are those of the principal .

The SecurityCurrent object is alocality-constrained object; therefore, a
SecurityCurrent object may not be used through the DII/DSI facilities. Any attempt to
pass a reference to this object outside of the current process, or any attempt to
externalize it using CORBA: : ORB: : obj ect _to_stri ng, resultsina

CORBA: : MARSHAL exception.

9-10  Using Security



CHAPTER

10 Security Modules

Thistopic contains the Object Management Group (OMG) Interface Definition
Language (IDL) definitions for the following modules that are used in the WLE

Security Service:

CORBA
TimeBase
Security
Security Level 1
Security Level 2
Tobj

Using Security

10-1



10 Security Modules

CORBA Module

The OMG added the CORBA: : Cur r ent interface to the CORBA module to support the
Current pseudo-object. The change enables the CORBA module to support Security
Replaceability and Security Level 2.

Listing 10-1 shows the CORBA: : Curr ent interface OMG IDL statements.

Listing 10-1 CORBA::Current Interface OMG IDL Statements

nmodul e CORBA {
/1 Extensions to CORBA
interface Current {
}s

b

/1 This information is taken from CORBAservices: Conmon Obj ect

// Services Specification, page 15-230. Revised Edition:

/1 March 31, 1995. Updated: Novenber 1997. Used with perm ssion by
OoMG.

TimeBase Module

10-2

All data structures pertaining to the basic Time Service, Universal Time Object, and
Time Interval Object are defined in the TimeBase module. This allows other services
to use these data structures without requiring the interface definitions. The interface
definitions and associated enums and exceptions are encapsulated in the TimeBase
module.

Listing 10-2 shows the TimeBase module OMG IDL statements.

Listing 10-2 TimeBase Module OMG IDL Statements

/1 Fromtime service

nodul e Ti meBase {
/1 interimdefinition of type ulonglong pending the
/1 adoption of the type extension by all client ORBs.

Using Security



struct ul ongl ong {

unsi gned | ong | ow;
unsi gned | ong hi gh;
b
t ypedef ul ongl ong Ti meT,;
t ypedef short Tdf T,
struct UtcT {
Ti meT tine; /] 8 octets
unsi gned | ong inacclo; // 4 octets
unsi gned short inacchi; [/ 2 octets
Tdf T tdf; /] 2 octets
// total 16 octets
}s

}s

/1 This information is taken from CORBAservi ces: Conmon (bj ect

// Services Specification, p. 14-5. Revised Edition:

/1 March 31, 1995. Updated: Novenber 1997. Used wi th perm ssion by
oMG.

Table 10-1 defines the TimeBase module data types.

Note:  Thisinformation istaken from CORBAservices. Common Object Services
Secification, p. 14-6. Revised Edition: March 31, 1995. Updated: November 1997.
Used with permission by OMG.

Table 10-1 TimeBase Module Data Type Definitions

DataType  Definition

Ti ne OMG IDL does not at present have a native type representing an unsigned

ul ongl ong  64-hit integer. The adoption of technology submitted against that RFP will
provide a means for defining a native type representing unsigned 64-bit
integersin OMG IDL.

Pending the adoption of that technology, you can use this structure to
represent unsigned 64-bit integers, understanding that when a native type
becomes available, it may not be interoperable with this declaration on all
platforms. Thisdefinitionisfor theinterim, and ismeant to be removed when
the native unsigned 64-bit integer type becomes availablein OMG IDL.

Time TimeT Ti nmeT representsasingletimevalue, which is64 bit in size, and holds the
number of 100 nanoseconds that have passed since the base time. For
absolute time, the base is 15 October 1582 00:00.

Using Security  10-3



10 Security Modules

Table 10-1 TimeBase M odule Data Type Definitions (Continued)

DataType  Definition

Time Tdf T  Tdf Tisof size 16 bits short type and holds the time displacement factor in
the form of seconds of displacement from the Greenwich Meridian.
Displacements east of the meridian are positive, while those to the west are
negative.

Time WceT Ut cT defines the structure of the time value that is used universally in the
service. When the Ut ¢ T structure is holding, arelative or absolutetime is
determined by its history. Thereisno explicit flag within the object holding
that state information. Thei naccl o andi nacchi fieldstogether hold a
valueof typel naccur acyT packedinto 48 bits. Thet df field holdstime
zone information. Implementation must place the time displacement factor
for the local time zone in this field whenever it creates a Universal Time
Object (UTO).

The content of this structureisintended to be opague; to be able to marshal
it correctly, the types of fields need to be identified.

Security Module

10-4

The Security module defines the OMG IDL for security data types common to the
other security modules. This module depends on the TimeBase module and must be
available with any ORB that claims to be security ready.

Listing 10-3 shows the data types supported by the Security module.

Listing 10-3 Security Module OMG IDL Statements

nmodul e Security {
typedef sequence<oct et > Opaque;

/1 Extensible famlies for standard data types
struct ExtensibleFamly {

unsi gned short fam | y_definer;
unsi gned short famly;
b
/lsecurity attributes
t ypedef unsigned | ong SecurityAttributeType;

Using Security



/] identity attributes; famly =0

const SecurityAttributeType Auditld = 1;

const SecurityAttributeType Accountingld = 2;
const SecurityAttributeType NonRepudiationld = 3;

/1 privilege attributes; famly =1

const SecurityAttributeType Public = 1;

const SecurityAttributeType Accessld = 2;

const SecurityAttributeType PrinmaryGoupld = 3;
const SecurityAttributeType Goupld = 4;

const SecurityAttributeType Role = 5;

const SecurityAttributeType AttributeSet = 6;
const SecurityAttributeType Cl earance = 7;
const SecurityAttributeType Capability = 8;

struct AttributeType {
Ext ensi bl eFam | y attribute famly;
SecurityAttributeType attribute_type;

b

t ypedef sequence <AttributeType>  AttributeTypeLists;
struct SecAttribute {
AttributeType attribute_type;
Opaque defining_aut hority;
Opaque val ue;
/1 The value of this attribute can be
/1 interpreted only with know edge of type

i
t ypedef sequence<SecAttribute> AttributeList;

// Authentication return status
enum Aut henti cati onStat us {
SecAut hSuccess,
SecAut hFai | ure,
SecAut hCont i nue,
SecAut hExpi red

b

/1 Authentication nethod
typedef unsigned | ong Aut hent i cati onMet hod;

enum Cr edenti al Type {
Secl nvocati onCredenti al s;
SecOMNCr edenti al s;
SecNRCr edenti al s

Using Security

10-5



10 Security Modules

/1 Pick up from Ti mneBase
typedef TineBase:: UtcT UcT;

/1 This information is taken from CORBAservices: Conmon Obj ect
// Services Specification, pp. 15-193 t0195. Revised Edition:

/1 March 31, 1995. Updated: Novenmber 1997. Used with perm ssion by
OoMG.

Table 10-2 describes the Security module data type.

Table 10-2 Security M odule Data Type Definition

Data Type Definition

sequence<oct et > Datawhose representation is known only to the Security Service
implementation.

Security Level 1 Module

10-6

This section defines those interfaces available to client application objects that use
only Level 1 Security functionality. This module depends on the CORBA module and
the Security and TimeBase modules. The Current interface is implemented by the
ORB.

Listing 10-4 shows the Security Level 1 module OMG IDL statements.

Listing 10-4 Security Level 1 Module OMG IDL Statements

nodul e SecuritylLevel 1 {
interface Current : CORBA :Current {// PIDL
Security::AttributeList get_attributes(
in Security::AttributeTypeList attributes
)
}
b

/1 This information is taken from CORBAservices: Conmon bj ect
// Services Specification, p. 15-198. Revised Edition:

Using Security



/1 March 31, 1995. Updated: Novenber 1997. Used with perm ssion by

oVG.

Security Level 2 Module

This section definesthe additional interfaces avail ableto client application objectsthat
use Level 2 Security functionality. This modul e depends on the CORBA and Security

modules.

Listing 10-5 shows the Security Level 2 module OMG IDL statements.

Listing 10-5 Security Level 2 Module OMG IDL Statements

nmodul e SecuritylLevel 2 {

// Forward decl arati on of

interface Principal Aut henti cator;
interface Credenti al s;
interface Current;

/1 Interface Principal

interface Principal Aut henticator {

}s
/1

Security::

)

Security::AuthenticationStatus

)

in
in
in
in
ou
ou
ou

interfaces

Aut henti cat or

Aut henti cati onStatus aut henti cat e(

Security:: Authenticati onMet hod nethod,

string
Security:: Qpaque

Security::AttributelList

t Credentials
t Security::Opaque
t Security::Opaque

security_nane,

aut h_dat a,
privil eges,
creds,

conti nuati on_dat a,
auth_specific_data

conti nue_aut henti cation(

in Security:: Qpaque

i nout Credentials
out Security::Opaque
out Security::Opaque

Interface Credentials

interface Credentials {

response_dat a,
creds,

conti nuati on_dat a,
auth_specific_data

Using Security  10-7



10 Security Modules

attribute Security::Associati onOptions
i nvocation_options_support ed;

attribute Security::AssociationQptions
i nvocati on_options_required;

Security::AttributeList get_attributes(
in Security::AttributeTypeli st attributes

)
bool ean is_valid(

out Security::UcT expiry_tinme
)

b

/1l Interface Current derived from SecuritylLevel 1:: Current
/1 providing additional operations on Current at this
/1 security level. This is inplemented by the ORB.
interface Current : SecuritylLevel 1::Current { // PIDL
voi d set_credenti al s(
in Security::Credential Type cred_type,
in Credentials cred

)

Credentials get_credenti al s(
in Security::Credential Type cred_type
)

readonly attribute Principal Aut henti cat or
princi pal _authenticator;
h
h

/1 This information is taken from CORBAservices: Conmon Obj ect

// Services Specification, pp. 15-198 to 200. Revi sed Edition:

/1 March 31, 1995. Updated: Novenber 1997. Used with perm ssion by
/1 OMG

Tobj Module

This section defines the Tobj module interfaces.

This module provides the interfaces you use to program the BEA TUXEDO style of
authentication.

Listing 10-6 shows the Tobj module OMG IDL statements.

10-8  Using Security



Listing 10-6 Tobj Module OMG IDL Statements

/1 Tobj Specific definiti

/1l get _auth_type
enum Aut hType {

ons

() return val ues

TOBJ_NCQAUTH,
TOBJ_SYSAUTH,
TOBJ_APPAUTH

}s

typedef sequence<oct et > User Aut hDat a;

interface Principal Authenti cat or
SecuritylLevel 2:: Principal Authenticator { // PIDL

Aut hType
Security::
in
in
in
in
in
)

get _auth_type();

Aut henti cati onStat us | ogon(

string user _nane,
string client_nane,
string syst em password,
string user _password,
User Aut hDat a user data

voi d | ogoff();

voi d build_auth_data(

in
in
in
in
in
out
out

string user _nane,
string client_nane,
string syst em password,
string user _password,
User Aut hDat a user _dat a,
Security:: Opaque aut h_dat a,
Security::AttributeList privileges

Using Security  10-9



10 Security Modules

10-10 Using Security



CHAPTER

11 C++ Security Reference

Thistopic contains the C++ method descriptions for the WLE Security Service.

Using Security -1



11 C++ Security Reference

SecurityLevel1::Current::get_attributes

Synopsis
OMG IDL
Definition

Argument

Description

Return Values

Returns attributes for the Current interface.

Security::AttributelList get_attributes(
in Security::AttributeTypeli st attri butes

)
}s

attributes
The set of security attributes (privilege attribute types) whose values are
desired. If thislist is empty, all attributes are returned.

This method gets privilege (and other) attributes from the principal’s credentials for
the Current interface.

The following table describes valid return values.

Table 11-1
Return Value M eaning
Security::Public Empty (Public is returned when no authentication was
performed)
Security:: Accessld Null terminated ASCII string containing tiveLE
user name

Security::PrimaryG oupld Null terminated ASCII string containing theLE
name of the principal

Note: The other attribute types are never returned.defiéni ng_aut hori ty field
is always empty.

Note: This information is taken frol@ORBAservices. Common Object Services
Specification, pp. 15-103, 104. Revised Edition: March 31, 1995. Updated:
November 1997. Used with permission by OMG.

11-2 Using Security



SecurityLevel2::Current::authenticate

Synopsis

OMG IDL
Definition

Arguments

Authenticates the principal and optionally obtains credentials for the principal .

Security:: Authenticati onStatus
aut henti cat e(

et hod

in Security:: Aut henti cati onMet hod net hod,

in Security:: SecurityNane security_nane,

in Security:: Qpaque aut h_dat a,

in Security::Attributelist privileges,

out Credentials creds,

out Security:: Qpaque conti nuation_dat a,
out Security:: Qpaque aut h_specific_data );

The security mechanism to be used. Valid values are
Tobj : : TuxedoSecurity and Tobj : : Certificat eBased.

security_nane

The principal’s identification information (for example, logon information).
The value must be a pointer to a NULL-terminated string containing the user
name of the principal. The string is limited to 30 characters, excluding the
NULL character.

When using certificate-based authentication, this name is used to look up a
certificate in the LDAP-enabled directory service. It is also used as the basis
for the name of the file in which the private key is stored. For example:

m | ozzi @onpany. comis email address used to look up a certificate in the
LDAP-enabled directory service andl ozzi _conpany. pemis the name of

the private key file.

aut h_dat a

The principals’ authentication, such as their password or private key. If the
Tobj : TuxedoSecuri ty security mechanism is specified, the value of this
argument is dependent on the configured level of authentication. If the

Tobj : : Certificat eBased argument is specified, the value of this

argument is the pass phrase used to decrypt the private key of the principal.

privileges

creds

The privilege attributes requested.

The object reference of the newly created Credentials object.The object
reference is not fully initialized; therefore, the object reference cannot be used
until the return value of thgecuritylLevel 2:: Current: :authenticate
method isSecAut hSuccess.

Using Security 11-3



11 C++ Security Reference

Description

Return Values

continuation_data
If the return value of the SecuritylLevel 2:: Current: :authenticate
method is SecAut hCont i nue, this argument contains the challenge
information for the authentication to continue. The val uereturned will always
be empty.

auth_specific_data
Information specific to the authentication service being used. The value
returned will always be empty.

The SecurityLevel 2:: Current: : aut henti cat e method isused by the client
application to authenticate the principal and optionally request privilege attributes that
the principal requires during its session with the WL E domain.

If the Tobj : : TuxedoSecurity security mechanism isto be specified, the same
functionality can be obtained by calling the

Tobj : : Princi pal Aut henti cat or: : | ogon operation, which provides the same
functionality but is specifically tailored for use with the TUXEDO-styl e authentication
security mechanism.

The following table describes the valid return values.

Table 11-2
Return Value Meaning
SecAut hSuccess The object reference of the newly created Credentials

object returned as the value of the cr eds argument is
initialized and ready to use.

SecAut hFai l ure The authentication process was inconsistent or an error

occurred during the process. Therefore, the cr eds argument
does not contain an object reference to a Credentials object.

If the Tobj : : TuxedoSecuri ty security mechanismis
used, this return value indicates that authentication failed or
that the client application was al ready authenticated and did not
call either the

Tobj : : Princi pal Authenticator::1ogoff or

Tobj _Bootstrap: :destroy_current operation.

11-4 Using Security



Table 11-2

Return Value

M eaning

SecAut hCont i nue

Indicates that the authentication procedure uses a
challenge/response mechanism. The cr eds argument
contains the object reference of a partially initialized
Credentials object. The cont i nuat i on_dat a indicates
the details of the challenge.

SecAut hExpi red

Indicates that the authentication data contained some
information, the validity of which had expired; therefore, the
creds argument does not contain an object referenceto a
Credentials object.

If the Tobj : : TuxedoSecur ity security mechanism is
used, thisreturn value is never returned.

CORBA: : BAD_PARAM

The CORBA: : BAD_PARAMexception occursif:

m Valuesforthesecurity nane,auth_data,or
pri vil eges arguments are not specified.

m  Thelength of an input argument exceeds the maximum
length of the argument.

m  Thevalue of the met hod argument is
Tobj : : TuxedoSecuri t y and the content of the
aut h_dat a argument containsauser nane or a
cl i ent nanme asan empty or aNULL string.

Using Security 11-5



11 C++ Security Reference

SecurityLevel2::Current::set_credentials

Synopsis

OMG IDL
Definition

Arguments

Description

Return Values

Sets credentials type.

voi d set_credential s(
in Security::Credential Type cred_type,

in Credentials creds
)
cred_type
Thetype of credentialsto be set; that is, invocation, own, or non-repudiation.
creds

Theobject reference to the Credential s obj ect, which isto become the default.

This method can be used only to set Secl nvocat i onCr edent i al s; otherwise,

set _credential s raises CORBA: : BAD PARAM The credentials must have been
obtained from apreviouscall to SecuritylLevel 2::Current::get_credential s
or SecurityLevel 2:: Princi pal Aut henti cat or:: aut henti cate.

None.

Note: Thisinformation istaken from CORBAservices. Common Object Services
Specification, p. 15-104. Revised Edition: March 31, 1995. Updated:
November 1997. Used with permission by OMG.

11-6 Using Security



SecurityLevel2::Current::get_credentials

Synopsis
OMG IDL
Definition

Argument

Description

Return Values

Gets credentiastype.

Credentials get_credential s(
in Security::Credential Type cred_type

K

cred_type
The type of credentialsto get.

Thiscall can be used only to get Secl nvocat i onCr edent i al s; otherwise,
get _credenti al s raises CORBA: : BAD_PARAM If no credentials are avail able,
get _credenti al s raises CORBA: : BAD | N\V_ORDER

Returns the active credentials in the client application only.

Note: Thisinformation istaken from CORBAservices: Common Object Services
Specification, p. 15-105. Revised Edition: March 31, 1995. Updated:
November 1997. Used with permission by OMG.

Using Security n-7



11 C++ Security Reference

SecurityLevel2::Current::principal_authenticator

Synopsis

OMG IDL
Definition

Description

Return Values

Returnsthe Pri nci pal Aut henti cator.

readonly attribute Principal Aut henti cat or
princi pal _aut henticator;

ThePrinci pal Aut henti cat or returned by thepri nci pal _aut henti cat or
attribute is of actual type Tobj : : Pri nci pal Aut hent i cat or . Therefore, it can be
used both asaTobj : : Pri nci pal Aut henti cat or and asa

SecuritylLevel 2:: Princi pal Aut henti cator.

Note: This method raises CORBA: : BAD | NV_ORDERIf itiscalled on aninvalid
SecurityCurrent object.

Returnsthe Pri nci pal Aut henti cator.

11-8 Using Security



SecurityLevel2::Credentials

Synopsis  Represents a particular principal’s credential information that is specific to a process.
A Credentials object that supports the SecurityLevel2::Credentials interface is a
locality-constrained object. Any attempt to pass a reference to the object outside its
locality, or any attempt to externalize the object using the
CORBA: : ORB: : obj ect _to_string() operation, results in @RBA: : Mar shal |
exception.

OMGIDL  #ifndef _SECURITY_LEVEL 2 | DL
Definition  #define _SECURI TY_LEVEL 2 | DL

#i ncl ude <SecuritylLevel 1.idl >
#pragma prefix “omg.org”
module SecurityLevel2

interface Credentials
{
attribute Security::AssociationOptions
invocation_options_supported;
attribute Security::AssociationOptions
invocation_options_required;
Security::AttributeList
get_attributes(
in Security::AttributeTypeList  attributes);

boolean
is_valid(
out Security::UtcT expiry_time );

h
k
#endif /+ SECURITY_LEVEL_2_IDL *

C++ Declaration  class SecurityLevel2

{

public:
classCredentials;
typedefCredentials *Credentials_ptr;

class Credentials : public virtual CORBA::Object

{
public:

Using Security 11-9



11 C++ Security Reference

static Credentials_ptr _duplicate(Credentials_ptr obj);
static Credentials_ptr _narrow( CORBA: : Cbject_ptr obj);
static Credentials _ptr _nil();

virtual Security::AssociationOptions
i nvocation_options_supported() = O;
virtual void
i nvocati on_options_support ed(
const Security::AssociationOptions options ) = 0;
virtual Security::AssociationOptions
i nvocation_options_required() = 0;
virtual void
i nvocation_options_required(
const Security::AssociationOptions options ) = 0;

virtual Security::AttributelList *
get _attributes(
const Security::AttributeTypeList & attributes) = O;

virtual CORBA:: Bool ean
is_valid( Security::UcT out expiry_tine) = 0;

pr ot ect ed:

Credenti al sS(CORBA: : Obj ect _ptr obj = 0);
virtual ~Credentials() { }

private:

}s

b

11-10  Using Security

Credential s( const Credential s& { }

voi d operator=(const Credentials& { }
/1 class Credentials

/1 class SecuritylLevel 2



SecurityLevel2::Credentials::get_attributes

Synopsis
OMG IDL
Definition

Argument

Description

Return Values

Gets the attribute list attached to the credentids.

Security::AttributelList get_attributes(
in AttributeTypeli st attributes

K

attributes
The set of security attributes (privilege attribute types) whose values are
desired. If thislist isempty, all attributes are returned.

Thismethod returnsthe attribute list attached to the credential s of the principal. In the
list of attribute types, you are required to include only the type value(s) for the
attributes you want returned inthe At t r i but eLi st . Attributes are not currently
returned based on attribute family or identities. In most cases, this is the same result
you would get if you called SecuritylLevel 1:: Current::get_attributes(),
sincethereisonly one valid set of credentialsin the principal at any instancein time.
The results could be different if the credentials are not currently in use.

Returns attribute list.
Note: Thisisinformation taken from CORBAservices: Common Object Services

Soecification, p. 15-97. Revised Edition: March 31, 1995. Updated: November
1997. Used with permission by OMG.

Using Security  11-11



11 C++ Security Reference

SecurityLevel2::Credentials::invocation_options_supported

Synopsis  Indicates the maximum number of security options that can be used when establising
an SSL connection to make an invocation on an object in the WLE domain.

OMGIDL attribute Security::Associati onOpti ons(
Definition i nvocat i on_options_support ed,

Argument  None.

Description  This method should be used in conjunction with the
SecuritylLevel 2:: Oredenti al s: ;i nvocation_options_requi red method.

Thefollowing security options can be specified:

Table 11-3

Security Option Description

NoPr ot ecti on The SSL protocol does not provide message protection.

Integrity The SSL protocol provides an integrity check of messages. Digital signatures
are used to protect the integrity of messages.

Confidentiality The SSL connection protects the confidentiality of messages. Crytography is
used to protect the confidentiality of messages.

Det ect Repl ay The SSL protocol provides replay detection. Replay occurswhen amessageis
sent repeatedly with no detection..

Det ect M sorderi ng The SSL protocol provides sequence error detection for requests and request
fragments.

Est abl i shTrust I nTarget Indicatesthat the target of arequest authenticates itself to theinitiating

principal.

Est abl i shTrusti nTarget Indicatesthat theinitiating principal authenticatesitself to the target of the
request.

NoDel egat i on Indicates that the principal permits an intermediate object to use its privileges

for the purpose of access control decisions. However, the principal’s privileges
are not delegated so the intermediate object cannot use the privileges when
invoking the next object in the chain.

11-12  Using Security



Table 11-3

Security Option Description

Si npl eDel egat i on Indicates that the principal permits an intermediate object to use its privileges
for the purpose of access control decisions, and delegates the privilegesto the
intermediate object. Thetarget object receives only the privileges of the client
application and does not know the identity of the intermediate object. When
thisinvocation option is used without restrictions on the target object, the
behavior is known as impersonation.

Conposi t eDel egati on Indicates that the principa permits the intermediate object to use its
credentials and delegate them. The privileges of both the principal and the
intermediate object can be checked.

Return Values  The list of defined security options.

If the Tobj : : TuxedoSecuri ty security mechanism is used to create the security
association, only the NoPr ot ect i on, Est abl i shTrust I nd i ent, and

Si npl eDel egat i on security options are returned. The Est abl i shTrust I nd i ent
security option appears only if the security level of the WLE application is defined to
require passwords to access the WLE domain.

Note: A CORBA: : BAD_PARAMexception is returned if the security options specified
are not supported by the security mechanism defined for the WLE application.
This exception can also occur if the security options specified have less
capabilities than the security options specified by the
SecuritylLevel 2::Credenti al s::invocation_options_required
method.

A Credentials object with a security mechanism of Tobj : : TuxedoSecurity
always returns the CORBA: : BAD_PARAMexception.

Using Security  11-13



11 C++ Security Reference

SecurityLevel2::Credentials::invocation_options_required

Synopsis  Specifies the minimum number of security options to be used when establishing an
SSL connection to make an invocation on atarget object in the WLE domain.

OMGIDL attribute Security::Associati onOpti ons(
Definition i nvocation_options_required,

Argument  None.

Description  Use this method to specify that communication between principals and the WLE
domain should be protected. After using this method, a Credentials object makes an
invocation on atarget object using the SSL protocol with the defined level of security
options. This method should be used in conjunction with the
SecuritylLevel 2:: Oredenti al s: :i nvocation_options_support ed method.

The following security options can be specified:

Table 11-4

Security Option Description

NoPr ot ecti on The SSL protocol does not provide message protection.

Integrity The SSL protocol provides an integrity check of messages. Digital signatures
are used to protect the integrity of messages.

Confidentiality The SSL connection protects the confidentiality of messages. Crytography is
used to protect the confidentiality of messages.

Det ect Repl ay The SSL protocol provides replay detection. Replay occurswhen amessageis
sent repeatedly with no detection..

Det ect M sorderi ng The SSL protocol provides sequence error detection for requests and request
fragments.

Est abl i shTrust I nTarget Indicatesthat the target of arequest authenticates itself to the initiating
principal.

Est abl i shTrusti nTarget Indicatesthat theinitiating principal authenticatesitself to the target of the
request.

11-14  Using Security



Table 11-4

Security Option

Description

NoDel egat i on

Indicates that the principal permits an intermediate object to use its privileges

for the purpose of access control decisions. However, the principal’s privileges
are not delegated so the intermediate object cannot use the privileges when
invoking the next object in the chain.

Si npl eDel egati on

Indicates that the principal permits an intermediate object to use its privileges
for the purpose of access control decisions, and delegates the privileges to the
intermediate object. The target object receives only the privileges of the client
application and does not know the identity of the intermediate object. When

this invocation option is used without restrictions on the target object, the
behavior is known as impersonation).

Conposi t eDel egati on

Indicates that the principal permits the intermediate object to use its
credentials and delegate them. The privileges of both the principal and the
intermediate object can be checked.

Return Values

Thelist of defined security options.

If the Tobj : : TuxedoSecuri ty security mechanism is used to create the security
association, only the NoPr ot ect i on, Est abl i shTrust I nd i ent, and

Si npl eDel egat i on security options are returned. The Est abl i shTrust I nd i ent
security option appears only if the security level of the WLE application is defined to
require passwords to access the WL E domain.

Note:

A CORBA: : BAD_PARAMexception is returned if the security options specified
are not supported by the security mechanism defined for the WLE application.
This exception can aso occur if the security options specified have more
capabilities than the security options specified by the

SecuritylLevel 2::Credential s::invocation_options_supported
method.

A Credentias object with a parameter of Tobj : : TuxedoSecurity aways
returns the CORBA: : BAD_PARAM exception.

Using Security  11-15



11 C++ Security Reference

SecurityLevel2::Credentials::is_valid

Synopsis
OMG IDL
Definition

Description

Return Values

Checks status of credentials.

bool ean is_valid(
out Security::UcT expiry_time

)

This method returns TRUE if the credentials used are active at the time; that is, you did
not call Tobj : : Pri nci pal Aut henti cator: : | ogoff or

Tobj _Boot strap:: destroy_current . If thismethod iscaled after

Tobj : : Princi pal Aut henti cator: : | ogof f (), FALSEisreturned. If thismethodis
called after Tobj _Boot st rap: : destroy_current (), the CORBA: : BAD | N\V_ORDER
exception is raised.

The expiration date returned contains the maxi mum unsi gned | ong | ong valuein
C++and maxi mum | ong in Java. Until theunsi gned | ong | ong datatypeisadopted,
theul ongl ong datatypeis substituted. The ul ongl ong datatypeis defined asfollows:

/1l interimdefinition of type ulonglong pending the
/1 adoption of the type extension by all client ORBs.
struct ul ongl ong {

unsi gned | ong | ow;

unsi gned | ong hi gh;
b

Note: Thisinformation istaken from CORBAservices. Common Object Services
Specification, p. 15-97. Revised Edition: March 31, 1995. Updated: November
1997. Used with permission by OMG.

11-16  Using Security



SecurityLevel2::PrincipalAuthenticator

Synopsis

OMG IDL
Definition

Allows aprincipal to be authenticated. A Principal Authenticator object that supports
the Securi tylLevel 2:: Princi pal Aut henti cator interfaceisa
locality-constrained object. Any attempt to pass a reference to the object outside its
locality, or any attempt to externalize the object using the

CORBA: : ORB: : obj ect _to_string() operation, resultsin a CORBA: : Mar shal |
exception.

#i f ndef _SECURI TY_LEVEL_2_ | DL
#define _SECURI TY_LEVEL_2_ | DL
#i ncl ude <SecuritylLevel 1.idl >
#pragma prefix “omg.org”

module SecurityLevel2
{
interface PrincipalAuthenticator
{ /I Locality Constrained
Security::AuthenticationStatus authenticate (
in Security::AuthenticationMethod method,

in Security::SecurityName security_name,
in Security::Opaque auth_data,
in Security::AttributeList privileges,
out Credentials creds,
out Security::Opaque continuation_data,
out Security::Opaque auth_specific_data
)i
Security::AuthenticationStatus continue_authentication (
in Security::Opaque response_data,
in Credentials creds,
out Security::Opaque continuation_data,
out Security::Opaque auth_specific_data
)i
h

k
#endif // SECURITY_LEVEL_2_IDL

#pragma prefix "beasys.com"
module Tobj

{

const Security::AuthenticationMethod
TuxedoSecurity = 0x54555800;

Using Security  11-17



11 C++ Security Reference

CertificateBased = 0x43455254;

b

C++ Declaration  cl ass Securitylevel 2
{
public:

cl assPrinci pal Aut henti cator;
typedef Pri nci pal Aut henti cator * Principal Aut henti cator _ptr;

class Principal Authenticator : public virtual CORBA:: hject
{
public:
static Principal Aut henticator_ptr
_duplicate(Principal Aut henti cator_ptr obj);
static Principal Authenticator_ptr
_narrow CORBA: : Cbj ect_ptr obj);
static Principal Authenticator_ptr _nil();

virtual Security::AuthenticationStatus
aut henticate (
Security:: Aut henti cati onMet hod met hod,
const char * security_nane,
const Security::Opaque & auth_data,
const Security::AttributeList & privil eges,
Credential s_out creds,
Security:: Opaque_out continuation_data,
Security:: Opaque_out auth_specific_data) = O;

virtual Security::AuthenticationStatus
continue_authentication (
const Security::Opaque & response_dat a,
Credential s_ptr & creds,
Security:: Opaque_out continuation_data,
Security:: Opaque_out auth_specific_data) = O;

pr ot ect ed:
Pri nci pal Aut henti cat or (CORBA: : Cbj ect _ptr obj = 0);
virtual ~Principal Authenticator() { }

private:
Pri nci pal Aut henti cator( const Principal Authenticator& { }
voi d operator=(const Principal Authenticator& { }

}; I/ class Principal Authenticator

b

11-18  Using Security



SecurityLevel2::PrincipalAuthenticator::continue_authentication
Synopsis  Alwaysfails.

OMGIDL  Security::AuthenticationStatus continue_authentication(

Definition in Security::Opaque response_dat a,
i nout Credential s creds,
out Security:: Opaque conti nuation_dat a,
out Security:: Opaque aut h_specific_data
)

Description  Because the WLE software does authentication in one step, this method always fails
and returns Securi ty: : Aut henti cati onSt at us: : SecAut hFai | ure.

Return Values ~ Alwaysreturns Securi ty: : Aut henti cati onSt at us: : SecAut hFai | ure.

Note: Thisinformation istaken from CORBAservices: Common Object Services
Soecification, pp. 15-92, 93. Revised Edition: March 31, 1995. Updated:
November 1997. Used with permission by OMG.

Using Security  11-19



11 C++ Security Reference

Tobj::PrincipalAuthenticator::get_auth_type

Synopsis  Gets the type of authentication expected by the WLE domain.

OMGIDL Aut hType get_auth_type();

Definition

Description  This method returns the type of authentication expected by the WL E domain.

Note: This method raises CORBA: : BAD | NV_ORDERIf it iscalled with an invalid

SecurityCurrent object.

Return Values A reference to the Tobj _Aut hType enumeration. The following table describes the

valid return val ues.

Table 11-5

Return Value

Meaning

TOBJ_NOAUTH

No authentication is needed; however, the client
application can still authenticate itself by specifying
auser name and a client application name. No
password is required.

To specify thislevel of security, specify the NONE

value for the SECURI TY parameter in the
RESQURCES section of the UBBCONFI Gfile.

TOBJ_SYSAUTH

The client application must authenticate itself to the
WLE domain, and must specify auser name, aname,
and a password for the client application.

To specify thisleve of security, specify the APP_PW
value for the SECURI TY parameter in the
RESQURCES section of the UBBCONFI Gfile.

TOBJ_APPAUTH

The client application must provide proof material
that authenticates the client application to the WLE
domain.The proof material may be a password or a
digital certificate.

To specify thislevel of security, specify the
USER_AUTHvalue for the SECURI TY parameter in
the RESOURCES section of the UBBCONFI Gfile.

Returnsthe type of authentication required to access the WLE domain.

11-20  Using Security



Tobj::PrincipalAuthenticator::logon

Synopsis

OMG IDL
Definition

Arguments

Authenticates the principal.

Security:: AuthenticationStatus | ogon(

in string user _nane

in string client_nane

in string syst em password
in string user _password,

i n User Aut hDat a user _data
)i

user _nane
The WLE user name. The authentication level i s TOBJ_NQAUTH. If
user _nane iSNULL or empty, or exceeds 30 characters, | ogon raises
CORBA: : BAD_PARAM

client_nane
The WLE name of the client application. The authentication level is
TOBJ_NOAUTH. If thecl i ent _name isNULL or empty, or exceeds 30
characters, logon raises the CORBA: : BAD_PARAMexception.

syst em password
The WLE client application password. The authentication level is
TOBJ_SYSAUTH. If the client nameis NULL or empty, or exceeds 30
characters, logon raises the CORBA: : BAD_PARAMexception.

Note: Thesyst em passwor d must not exceed 30 characters.

user_password
The user password (needed for use by the default WL E authentication
service). The authentication level is TOBJ_APPAUTH.

user_data
Datathat is specific to the client application (needed for use by a custom
WLE authentication service). The authentication level is TOBJ_APPAUTH.

Note: TOBJ_SYSAUTH includes the requirements of TOBJ_NOAUTH, plusaclient
application password. TOBJ_APPAUTH includes the requirements of
TOBJ_SYSAUTH, plus additional information, such as a user password or
user data.

Note: Theuser_passwor d and user _dat a arguments are mutually exclusive,
depending on the requirements of the authentication service used in the
configuration of the WLE domain. The WLE default authentication
service expects auser password. A customized authentication service may

Using Security  11-21



11 C++ Security Reference

require user data. The logon call raises the CORBA: : BAD_PARAMexception
if both user _passwor d and user _dat a are specified.

Description  This method authenticates the principal viathe I10P Listener/Handler so that the
principal can access a WLE domain. This method is functionally equivalent to
SecuritylLevel 2:: Princi pal Aut henti cat or: : aut henti cat e, but the
arguments are oriented to TUXEDO-style authentication.

Note: This method raises CORBA: : BAD | NV_ORDERIf it iscalled with an invalid
SecurityCurrent object.

Return Values  The following table describes the valid return values.

Table 11-6

Return Value

M eaning

Security::AuthenticationStatus::

SecAut hSuccess

The authentication succeeded.

Security:: AuthenticationStatus::

SecAut hFai l ure

The authentication failed, or the client application was
already authenticated and did not call one of the
following methods:

Tobj : : Princi pal Aut henti cator: | ogof f

Tobj _Bootstrap::destroy_current

CORBA: : | NVALI D_DOVAI N

The method was used with the cor bal oc or
cor bal ocs URL address format.

11-22  Using Security



Tobj::PrincipalAuthenticator::logoff

Synopsis

OMG IDL
Definition

Description

Return Values

Discards the security context associated with the principal .

void |l ogoff();

This call discards the security context, but does not close the network connectionsto
the WLE domain. Logof f also invalidates the current credentials. After logging off,
invocations using existing object references fail if the authentication typeis not
TOBJ_NOAUTH.

If the principal is currently authenticated to a WLE domain, calling
Tobj _Bootstrap: :destroy_current () calsl ogoff implicitly.

Note: This method raises CORBA: : BAD | NV_CRDERf itis called with an invalid
SecurityCurrent object.

None.

Using Security  11-23



11 C++ Security Reference

Tobj::PrincipalAuthenticator::build_auth_data

Synopsis

OMG IDL
Definition

Arguments

Creates authentication data and attributes for use by
SecuritylLevel 2:: Princi pal Aut henti cator::aut henti cate.

voi d buil d_aut h_dat a(

in string user _nane,
in string client_nane,
in string syst em password,
in string user _password,
in User Aut hDat a user data,
out Security::Opaque aut h_dat a,
out Security::Attributelist privileges
)
user _nane

The WLE user name.

client_nane
The WLE client name.

syst em password
The WLE client application password.

user _password
The user password (default WL E authentication service).

user _data
Client application-specific data (custom WLE authentication service).

aut h_dat a
For use by aut hent i cat e.

privil eges
For use by aut hent i cat e.

Note: Ifuser_name,client_name,orsystem passwor diSNULL or empty, or
exceeds 30 characters, the subsequent aut hent i cat e method invocation
raises the CORBA: : BAD_PARAMexception.

11-24  Using Security



Note: Theuser_passwor d and user _dat a parameters are mutually exclusive,
depending on the requirements of the authentication service used in the
configuration of the WLE domain. The WLE default authentication
service expects auser password. A customized authentication service may
require user data. If both user _passwor d and user _dat a are specified,
the subsequent authentication call raises the CORBA: : BAD_PARAM
exception.

Description  Thismethod is a helper function that creates authentication data and attributesto be
used by SecurityLevel 2:: Princi pal Aut henti cator: : aut henti cat e.

Note: This method raises CORBA: : BAD | NV_CRDERf itiscalled with an invalid
SecurityCurrent object.

Return Values  None.

Using Security  11-25



11 C++ Security Reference

11-26  Using Security



CHAPTER

12 Java Security
Reference

For information about the security package application programming interface (API),
see the WLE Javadoc.

Using Security  12-1



12 Java Security Reference

12-2  Using Security



CHAPTER

13 Automation Security
Reference

Thistopic containsthe Automation method descriptionsfor the WLE Security service.
In addition, the topic contains programming examples that illustrate using the
Automation methods to implement security in an ActiveX client application.

Note: The Automation security methods do not support certificate-based
authentication or the use of the SSL procotol.

Using Security  13-1



13 AutomATION SECURITY REFERENCE

Method Descriptions

This section describes the Automation Security Service methods.

DiSecurityLevel2_Current

The Dl SecurityLevel 2_Current objectisaBEA implementation of the CORBA
Security model. In thisrelease of the WLE software, theget _attri but es(),

set _credential s(),get_credentials(),andPrincipal _Authenticator()
methods are supported.

13-2  Using Security



METHOD DESCRIPTIONS

DISecurityLevel2_Current.get_attributes

Synopsis

MIDL Mapping

Automation
Mapping

Parameters

Description

Return Values

Returns attributes for the Current interface.

HRESULT get _attri but es(
[in] VARIANT attri butes,
[in,out,optional] VAR ANT* excepti onl nfo,
[out,retval] VAR ANT* returnVal ue);

Function get _attributes(attributes, [exceptionlnfo])

attributes
The set of security attributes (privilege attribute types) whose values are
desired. If thislist isempty, all attributes are returned.

excepti oni nfo
An optional input argument that allowsthe client application to get additional
exception data if an error occurs. For the ActiveX client applications, all
exception datais returned in the OL E Automation Error Object.

This method gets privilege (and other) attributes from the credentials for the client
application from the Current interface.

A variant containing an array of DI Security_SecAt tri but e objects. Thefollowing
table describes the valid return values.

Return Value M eaning

Security::Public Empty (Publicisreturned when no authentication
was performed.)

Security::Accessld Null-terminated A SCI| string containing the WLE
user name

Security::PrimaryGoupld Null-terminated ASCII string containing the WLE
name of the client application

Using Security  13-3



13 AutomATION SECURITY REFERENCE

DiISecurityLevel2_Current.set_credentials

Synopsis

MIDL Mapping

Automation
Mapping

Description

Arguments

Return Values

Sets credentials type.

HRESULT set _credenti al s(
[in] Security Oredential Type cred_type
[in] Dl SecuritylLevel 2 _Credential s* cred,
[in,out,optional] VAR ANT* exceptionlnfo);

Sub set _credential s(cred_type As Security_ Credenti al Type
cred As Dl SecuritylLevel 2_Credenti al s,
[ exceptionl nfo])

This method can be used only to set Secl nvocat i onCr edent i al s; otherwise,
set _credential s raises CORBA: : BAD PARAM The credentials must have been
obtained from apreviouscall to DI SecuritylLevel 2_Current.get_credentials.

cred_type
Thetype of credentialsto be set; that is, invocation, own, or nonrepudiation.

cred
Theobject reference to the Credential s obj ect, which isto become the default.

exceptioninfo
An optional input argument that allowsthe client application to get additional
exception dataif an error occurs. For the ActiveX client applications, all
exception datais returned in the OLE Automation Error Object.

None.

13-4 Using Security



METHOD DESCRIPTIONS

DiISecurityLevel2_Current.get_credentials

Synopsis

MIDL Mapping

Automation
Mapping

Description

Arguments

Return Values

Gets credentiastype.

HRESULT get credenti al s(
[in] Security Credential Type cred_type,
[in,out,optional] VAR ANT* excepti onl nfo,
[out,retval] DI SecuritylLevel 2_COredential s** returnVal ue);

Function get _credential s(cred_type As Security O edential Type,
[ exceptionlnfo]) As DI SecuritylLevel 2_Credenti al s

Thiscall can be used only to get Secl nvocat i onCr edent i al s; otherwise,
get _credenti al s raises CORBA: : BAD_PARAM If no credentials are avail able,
get _credenti al s raises CORBA: : BAD | N\V_ORDER

cred_type
The type of credentialsto get.

exceptioni nfo
An optional input argument that allowsthe client application to get additional
exception data if an error occurs. For the ActiveX client application, all
exception datais returned in the OL E Automation Error Object.

A Dl SecuritylLevel 2_Credenti al s object for the active credentials in the client
application only.

Using Security  13-5



13 AutomATION SECURITY REFERENCE

DiSecurityLevel2_Current.principal_authenticator

Synopsis
MIDL Mapping
Automation
Mapping

Description

Return Values

Returnsthe Pri nci pal Aut hent i cat or.

HRESULT pri nci pal _authenti cator([out, retval]
Dl Tobj _Princi pal Aut henti cator** returnVal ue);

Property principal _authenticator As D Tobj Principal Aut henti cat or

ThePrinci pal Aut henti cat or returned by thepri nci pal _aut henti cat or
property is of actual type DI Tobj _Pri nci pal Aut hent i cat or. Therefore, it can be
used asaDl SecurityLevel 2_Pri nci pal Aut henti cator.

Note: This method raises CORBA: : BAD | NV_ORDERIf itiscalled on aninvalid
SecurityCurrent object.

A DI Tobj _Pri nci pal Aut henti cat or object.

13-6  Using Security



METHOD DESCRIPTIONS

DITobj_PrincipalAuthenticator

TheDl Tobj _Pri nci pal Aut henti cat or objectisusedtologintoandlogout of the
WLE domain. In thisrelease of the WLE software, the aut hent i cat e,

bui l d_auth_data(), conti nue_aut hentication(), get_auth_type(),

I ogon(), and I ogoff () methods are implemented

Using Security  13-7



13 AutomATION SECURITY REFERENCE

DITobj_PrincipalAuthenticator.authenticate

Synopsis  Authenticates the client application.

MIDL Mapping  HRESULT aut henti cat e(

[in] long nmet hod,
[in] BSTR security_name,
[in] VARI ANT aut h_dat a,
[in] VAR ANT privil eges,
[out] DI SecuritylLevel 2_Credenti al s**

creds,
[out] VARI ANT* continuation_data,
[out] VARI ANT* aut h_speci fic_data,
[in,out,optional] VARI ANT* exceptionl nfo,
[out,retval] Security_ AuthenticationStatus* returnVal ue);

Automation ~ Functi on authenticate(nmethod As Long, security nane As String,
Mapping auth_data, privileges, creds As Dl SecuritylLevel 2 _Credenti al s,
continuation_data, auth_specific_data,
[ exceptionlnfo]) As Security_ AuthenticationStatus

Arguments  met hod
Must be Tobj :: TuxedoSecurity. If met hod isinvalid, aut henti cat e
raises CORBA: : BAD PARAM

security_name
The WLE user name.

aut h_dat a
Asreturned by DI Tobj _Pri nci pal Aut henti cator. bui | d_aut h_dat a. If
aut h_dat a isinvalid, aut hent i cat e raises CORBA: : BAD_PARAM

privil eges
As returned by DI Tobj _Pri nci pal Aut henti cator. bui | d_aut h_dat a.
If privil eges isinvalid, aut hent i cat e raises CORBA: : BAD_PARAM

creds
Placed into the SecurityCurrent object.

continuation_data
Always empty.

13-8  Using Security



METHOD DESCRIPTIONS

Description

Return Values

aut h_specific_data
Always empty.

exceptioninfo

An optional input argument that allowsthe client application to get additional
exception data if an error occurs. For the ActiveX client application, all
exception datais returned in the OL E Automation Error Object.

This method authenticates the client application viathe |1 OP Listener/Handler so that

it can access a WLE domain.

A Security_AuthenticationStatus Enum value. The following table describes

the valid return values.

Return Value

M eaning

Security:: Aut hentication
Status::
SecAut hSuccess

The authentication succeeded.

Security:: Aut hentication
Status::
SecAut hFai | ure

The authentication failed, or the client
application was already authenticated and did
not invoke

Tobj : : Princi pal Authenticator: | ogoff or
Tobj _Bootstrap::destroy_current.

Using Security  13-9



13 AutomATION SECURITY REFERENCE

DITobj_PrincipalAuthenticator.build_auth_data

Synopsis  Creates authentication data and attributes for use by
Dl Tobj _Princi pal Aut henti cator. aut henti cat e.

MIDL Mapping  HRESULT bui | d_aut h_dat a(

[in] BSTR user _nane,

[in] BSTR client_nane,
[in] BSTR syst em password
[in] BSTR user _password
[in] VAR ANT user _dat a,

[out] VARI ANT* aut h_dat a

out privil eges

[ ] VARI ANT* ivil

[in,out,optional] VARI ANT* exceptionlnfo);

Automation  Sub buil d_aut h_data(user_name As String, client_name As String
Mapping system password As String, user_password As String, user_data,
auth_data, privileges, [exceptionlnfo])

Arguments  user _nane
The WLE user name.

client_nane
A name of the WLE client application.

syst em password
The password for the WLE client application.

user _password
The user password (default WL E authentication service).

user _data
Client application-specific data (custom WLE authentication service).

aut h_dat a
For use by aut hent i cat e.

privil eges
For use by aut hent i cat e.

exceptioninfo
An optional input argument that allowsthe client application to get additional
exception dataif an error occurs. For the ActiveX client application, all
exception datais returned in the OLE Automation Error Object.

13-10 Using Security



METHOD DESCRIPTIONS

Note: Ifuser_name,client_name,orsyst em passwor disNULL or empty, or
exceeds 30 characters, the subsequent aut hent i cat e method invocation
raises the CORBA: : BAD_PARAMexception.

Note: Theuser_passwor d and user _dat a parameters are mutually exclusive,
depending on the requirements of the authentication service used in the
configuration of the WLE domain. The WLE default authentication
service expects auser password. A customized authentication service may
require user data. If both user _passwor d and user _dat a are specified,
the subsequent authentication call raises the CORBA: : BAD_PARAM

exception.

Description  Thismethod is a helper function that creates authentication data and attributesto be
used by DI Tobj _Pri nci pal Aut henti cat or . aut henti cat e.

Note: This method raises CORBA: : BAD | NV_CRDERf itiscalled with an invalid
SecurityCurrent object.

Return Values  None.

Using Security  13-11



13 AutomATION SECURITY REFERENCE

DITobj_PrincipalAuthenticator.continue_authentication

Synopsis

MIDL Mapping

Automation
Mapping

Description

Return Values

Alwaysreturns Securi ty: : Aut henti cati onSt at us: : SecAut hFai | ur e.

HRESULT conti nue_aut henti cati on(
[in] VAR ANT response_data,
[in,out] DI SecuritylLevel 2_Credential s** creds,
[out] VARI ANT* continuation_dat a,
[out] VARI ANT* auth_specific_data,
[in,out,optional] VARI ANT* exceptionlnfo,
[out,retval] Security_ AuthenticationStatus* returnVal ue);

Function continue_aut henti cati on(response_dat a,
creds As DI SecuritylLevel 2 _Credentials, continuation_data,
aut h_speci fic_data, [exceptionlinfo]) As
Security_ AuthenticationStatus

Because the WL E software does authentication in one step, this method always fails
and returns Security: : Aut henti cati onSt at us: : SecAut hFai | ure.

Always returns Sec Aut hFai | ur e.

13-12  Using Security



METHOD DESCRIPTIONS

DITobj_PrincipalAuthenticator.get_auth_type

Synopsis

MIDL Mapping

Automation
Mapping

Argument

Description

Returned
Values

Gets the type of authentication expected by the WLE domain.

HRESULT get _aut h_type(
[in, out, optional] VAR ANT* excepti onl nfo,
[out, retval] Tobj Aut hType* returnVal ue);

Function get_auth_type([exceptionlnfo]) As Tobj AuthType

excepti oni nfo
An optional input argument that allowsthe client application to get additional
exception data if an error occurs. For the ActiveX client application, all
exception datais returned in the OL E Automation Error Object.

This method returns the type of authentication expected by the WLE domain.

Note: This method raises CORBA: : BAD | NV_CRDERf itiscalled with an invalid
SecurityCurrent object.

A reference to the Tobj _Aut hType enumeration. The following table describes the
valid return values.

Return Value M eaning

TOBJ_NQAUTH No authentication is needed; however, the client
application can still authenticate itself by specifying
auser name and aclient application name. No
password isrequired.

To specify thislevel of security, specify the NONE
value for the SECURI TY parameter in the
RESOURCES section of the UBBCONFI Gfile.

Using Security  13-13



13 AutomATION SECURITY REFERENCE

Return Value M eaning

TOBJ_SYSAUTH The client application must authenticate itself to the
WLE domain, and must specify auser name, aname,
and a password for the client application.

To specify thisleve of security, specify the APP_PW
value for the SECURI TY parameter in the
RESQOURCES section of the UBBCONFI Gfile.

TOBJ_APPAUTH The client application must provide proof material
that authenticates the client application to the WLE
domain.The proof material may be a password or a
digital certificate.
To specify thislevel of security, specify the
USER_AUTHvalue for the SECURI TY parameter in
the RESOQURCES section of the UBBCONFI Gfile.

13-14  Using Security



METHOD DESCRIPTIONS

DITobj_PrincipalAuthenticator.logon

Synopsis

MIDL Mapping

Automation
Mapping

Description

Arguments

Logsintothe WL E domain. The correct input parameters depend on the authentication
level.

HRESULT | ogon(

[in] BSTR user _nane,

[in] BSTR client_nane,
[in] BSTR syst em password,
[in] BSTR user _password,
[in] VARI ANT user _dat a,
[in,out,optional] VAR ANT* excepti onl nf o,

[out,retval] Security_ AuthenticationStatus*
ret urnVal ue) ;

Function | ogon(user_nane As String, client_name As String,
system password As String, user_password As String,
user _data, [exceptionlnfo]) As Security AuthenticationStatus

For remote WLE client applications, this method authenticates the client application
viathe IIOP Listener/Handler so that the remote client application can accessaWLE
domain. This method is functionally equivaent to

Dl Tobj _Pri nci pal Aut henti cat or . aut hent i cat e, but the parameters are
oriented to WLE security.

user _nane
The WLE user name. This parameter is required for TOBJ_NQAUTH,
TOBJ_SYSAUTH, and TOBJ _APPAUTH authentication levels.

client_nane
The name of the WLE client application. This parameter is required for
TOBJ_NOAUTH, TOBJ_SYSAUTH, and TOBJ_ APPAUTH authentication levels.

syst em password
A password for the WLE client application. This parameter is required for
TOBJ_SYSAUTH and TOBJ_APPAUTH authentication levels.

user_password
The user password (default WLE authentication service). This parameter is
required for the TOBJ_APPAUTH authentication level.

Using Security  13-15



13 AutomATION SECURITY REFERENCE

user _data
Application-specific data (custom authentication service). This parameter is
required for the TOBJ_APPAUTH authentication level.

Note: Ifuser_name,cli ent_name, orsystem passwor diSNULL or empty, or
exceeds 30 characters, the subsequent aut hent i cat e method invocation
raises the CORBA: : BAD_PARAMexception.

Note: If the authorization level is TOBJ_APPAUTH, only one of user _passwor d
or user _dat a may be supplied.

exceptioninfo
An optional input argument that allowsthe client application to get additional
exception dataif an error occurs. For the ActiveX client application, all
exception datais returned in the OLE Automation Error Object.

Return Values  The following table describes the valid return values.

Return Value Meaning

Security::AuthenticationStatus:: The authentication succeeded.

SecAut hSuccess

Security::AuthenticationStatus::  Theauthentication failed, or the client application was
SecAut hFai lure aready authenticated and did not call one of the

following methods:
Tobj : : Princi pal Aut henti cator: | ogof f
Tobj _Bootstrap::destroy_current

13-16  Using Security



METHOD DESCRIPTIONS

DITobj_PrincipalAuthenticator.logoff

Synopsis
MIDL Mapping

Automation
Mapping

Description

Argument

Return Values

Discards the current security context associated with the WLE client application.

HRESULT | ogoff ([in, out, optional] VAR ANT* excepti onlnfo);

Sub | ogoff ([ exceptionl nfo])

This call discardsthe context associated with the WL E client application, but does not
closethe network connectionsto the WLE domain. Logof f also invalidatesthe current
credentials. After logging off, calls using existing object references fail if the
authentication type is not TOBJ_NQAUTH.

If the client application is currently authenticated to a WL E domain, calling
Tobj _Boot strap. destroy_current () callsl ogof f implicitly.

excepti oni nfo
An optional input argument that allowsthe client application to get additional
exception data if an error occurs. For the ActiveX client applications, all
exception datais returned in the OL E Automation Error Object.

None.

DiSecurityLevel2_Credentials

TheDI SecurityLevel 2_Credenti al s object isaBEA implementation of the
CORBA Security model. Inthisrelease of the WL E software, theget _att ri but es()
andis_val i d() methods are supported.

Using Security  13-17



13 AutomATION SECURITY REFERENCE

DiSecurityLevel2_Credentials.get_attributes

Synopsis

MIDL Mapping

Automation
Mapping

Arguments

Description

Return Values

Gets the attribute list attached to the credentials.

HRESULT get _attri butes(
[in] VAR ANT attributes,
[in,out,optional] VARI ANT* exceptionlnfo
[out,retval] VARIANT* returnVal ue);

Function get_attributes(attributes, [exceptionlnfo])

attributes
The set of security attributes (privilege attribute types) whose values are
desired. If thislist is empty, all attributes are returned.

exceptioninfo
An optional input argument that allowsthe client application to get additional
exception dataif an error occurs. For the ActiveX client application, all
exception datais returned in the OLE Automation Error Object.

This method returns the attribute list attached to the credentials of the client
application. In the list of attribute types, you are required to include only the type
value(s) for the attributesyou want returned inthe At t ri but eLi st . Attributesare not
currently returned based on attribute family or identities. |n most cases, thisisthe same
result you would get if you called

Dl Securitylevel 2. Current::get_attributes(), sincethereisonly onevalid
set of credentialsin the client application at any instancein time. The results could be
different if the credentials are not currently in use.

A variant containing an array of DI Security_SecAttri but e objects.

13-18 Using Security



METHOD DESCRIPTIONS

DiISecurityLevel2_Credentials.is_valid

Synopsis

MIDL Mapping

Automation
Mapping

Description

Return Values

Checks the status of credentidls.

HRESULT is_val i d(
[out] |Dispatch** expiry_tine,
[in,out,optional] VAR ANT* excepti onl nfo,
[out,retval] VAR ANT_BOOL* r et urnVal ue

Function is _valid(expiry_ time As bject,
[ exceptionlnfo]) As Bool ean

Thismethod returns TRUE if the credentials used are active at thetime; that is, you did
not call DI Tobj _Pri nci pal Aut henticat or. | ogoff ordestroy_current . If this
method is called after DI Tobj _Pri nci pal Aut henti cat or. | ogoff (), FALSEis
returned. If this method is called after destroy_current (), the

CORBA: : BAD | NV_ORDER exception is raised.

The output expi ry_time asaDi Ti nreBase_Ut cT object set to max.

Using Security  13-19



13 AutomATION SECURITY REFERENCE

Programming Example

This section contains the portions of an ActiveX client application that implement the
following:

4 Using the Bootstrap object to obtain the SecurityCurrent object

4 Getting the Principal Authenticator object from the SecurityCurrent object
4 Using TUXEDO-style authentication
¢

L ogging off the WLE domain

Listing 13-1 ActiveX Client Application That Uses TUXEDO-Style
Authentication

Set objSecurityCurrent = objBootstrap.CreateObject(“Tobj.SecurityCurrent”)
Set objPrincipalAuthenticator = objSecurityCurrent.principal_authenticator

AuthorityType = objPrincipalAuthenticator.get_auth_type

If AuthorityType = TOBJ_APPAUTH Then logonStatus =
oPrincipalAuthenticator.Logon(
UserName,_
ClientName,_
SystemPassword,
UserPassword
User Data)

End If

objPrincipalAuthenticator.logoff()

13-20 Using Security



Index

A

administration steps
certificate-based authentication 1-17
link-level encryption 1-4
the SSL protocol 1-12
username/password authentication 1-8
authentication
certificate-based 1-14
username/password 1-4
authorized users
defining 4-8
AUTHSRV
code example 4-3
configuring 4-2
described 1-5
use with username/password
authentication 1-8

B

building
Secure Simpapp sample application 6-11
Security sample application 6-2

C

certificate authorities
defined 2-8
obtaining a digital certificate for 2-8
certificate-based authentication
administration steps 1-17

C++ code example 5-18
configuration illustrated 1-19
configuring 3-3
defining JINDI environment
properties 7-5
described 1-14
development process 1-17
how it works 1-15
illustrated 1-14
Java code example 5-20
programming steps 1-17
requirements 1-16
sample UBBCONFIG file 4-7
writing the client application 5-18
cipher suites
supported by the WLE product 3-7
compiling
client applications
Secure Simpapp sample
application 6-19
Security sample
application 6-9
server applications
Secure Simpapp sample
application 6-19
Security sample
application 6-9
concepts
AUTHSRYV 1-5
certificate-based authentication 1-14
digital certificates 1-9

Using Security -1



link-level encryption 1-3
SSL protocol 1-9
username/password authentication 1-4
configuring
aport for SSL communications 3-2
certificate-based authentication 3-3
host matching 3-3
setting session renegotiation 3-8
setting the encyrption strength 3-5
the SSL protocol
CORBA C++ ORB 3-2
CORBA Java ORB 3-2
[1OP Listener/Handler 3-2
CORBA C++ client applications
starting
Secure Simpapp sample
application 6-19
Security sample
application 6-10
CORBA C++ ORB
defining a port for SSL
communications 3-2
enabling certificate-based
authentication 3-3
enabling host matching 3-4
setting the encryption strength 3-5
CORBA Java client applications
starting
Secure Simpapp sample
application 6-19
Security sample
application 6-10
CORBA Java ORB
defining a port for SSL
communications 3-2
enabling certificate-based
authentication 3-3
enabling host matching 3-4
example of configuring
the SSL protocol 3-10

[-2 Using Security

CORBA module
described 10-2
CORBA Module IDL 10-2
corbaloc URL Address format
described 5-5
corbalocs URL Address format
described 5-5
Credentia's object
described 9-7

D

Datatypes
security module 10-4
deployment descriptor
specifying security roles 7-4
development process
certificate-based authentication 1-17
for security in EJBs 7-2
the SSL protocol 1-12
username/password authentication 1-7
digital certificates
certificate-based authentication 1-14
for principals 2-6
obtaining 2-5
publishing in LDAP 2-5
SSL protocol 1-9
troubleshooting 8-9
directory location of source files
Secure Simpapp sample
application 6-12, 6-14
Security sample application 6-3

E

EJBs
assigning security roles to methods 7-3
code example
certificate-based
authentication 7-10
username/password



authentication 7-10 |

depoyment descriptor 7-4 I1OP Listener/Handler

description (?f security 7-2 configuring session renegotiation 3-8

how authentication works 7-2 defining a port for SSL

property keys for security 7-7 communications 3-2

specifying certificate-based enabling certificate-based
authentication 7-7 authentication 3-3

specifying username/password enabling host matching 3-4
authentication 7-7 SEC_PRINCIPAL_LOCATION

steps for adding security to 7-2 parameter 3-9

using URL Address formats 7-6 SEC PRINCIPAL NAME

encryption B parameter_3-9

defining in the UBBCONFIG file 4-5 SEC PRINCIPAL PASSVAR

setting encryption strength 3-5 ~ parameter 3-9

values 3-6

setting security parameters 3-8

environment variables setting the encryption strength 3-5

APPDIR 6-5, 6-17 use with certificate-based
JAVA_HOME 6-5, 6-16 authentication 1-14
JDKDIR 6-6, 6-17 use with the SSL protocol 1-9
Secure Simpapp sample

S invocation_options_required method
application 6-5, 6-16 C++ code example 5-22

Security sample application 6-5 described 5-21

TOBJADDR 6-17 Java code example 5-23

TUXCONFIG 6-6, 6-17 ISL command

TUXDIR6-5, 6-16 configuring session renegotiation 3-8

enabling certificate-based

F authentication 3-3
file protections enabling host matching 3-4
example 3-9

Secure Simpapp sample application 6-16

Security sample application 6-7 setting the encryption strength 3-5

specifying a port for SSL
communications 3-2

H ISL parameter

host matching Security sample application 6-10
enabling 3-3
values 3-4 J

JAVA_HOME parameter
Secure Simpapp sample
application 6-5, 6-16

Using Security [-3



JDKDIR parameter
setenv file 6-6, 6-17
JNDI environment properties
for certificate-based
authentication 7-5
for username/password
authentication 7-5
WLEContext.INITIAL_CONTEXT
_FACTORY 7-5
WLEContext. PROVIDER_URL 7-6
WLEContext.SECURITY
_AUTHENTICATION 7-7
JNDI factory
use in authentication 7-2
joint client/server applications
using the SSL protocol 3-2

L

LDAP directory service
directory structure 2-3
search filter file 2-3
use with certificate-based
authentication 1-16
use with the SSL protocol 1-11
use with WLE security 2-2
LDAP Search Filter file
modifying 2-3
stanzas used by SSL protocol 2-4
stanzas used for certificate-based
authentication 2-4
tags 2-4
link-level encryption
administration steps 1-4
described 1-3
development process 1-4
how it works 1-3
illustrated 1-3
loading the UBBCONFIG file
Security sample application 6-8

-4 Using Security

M
makefile

Secure Simpapp sample application 6-15

Security sample application 6-9

0

OMG IDL
CORBA module 10-2
Security Level 2 module 10-7
Security module 10-4
SecurityL evel 1 module 10-6
TimeBase module 10-2
Tobj module 10-7

P

Peer Rulesfile
described 2-10
elements 2-10
example 2-10
syntax 2-11
Principal Authenticator object
certificate-based authentication 9-6
described 9-5
using in client applications 5-6
WLE extensions 9-6
private keys
example 2-7
for principals 2-6
format 2-6
location 2-6
protocols
link-level encryption 1-3
SSL 1-9

R
runme command
description 6-19
files generated by 6-20, 6-21



S

SEC_PRINCIPAL_LOCTION parameter
defined 3-9
SEC_PRINCIPAL_NAME parameter
defined 3-9
SEC_PRINCIPAL_PASSVAR parameter
defined 3-9
Secure Simpapp sample application
building 6-11
changing protection on files 6-16
compiling the Java client
application 6-19
compiling the Java server
application 6-19
description 5-16
development process 5-17
illustrated 5-16
loading the UBBCONFIG file 6-19
locations of files 6-12
reguired environment variables 6-5, 6-16
runme command 6-19
setting up the work directory 6-12
source files 6-12, 6-14
starting the Java client application 6-24
starting the Java server application 6-24
using the client applications 6-24
Security Level 2 module
described 10-7
Security module
described 10-4
SECURITY parameter
defining in UBBCONFIG file 4-4
setting for username/password
authentication 1-8
valuesfor 4-4
security roles
assigning to EJB methods 7-3
defining in deployment descriptor 7-4
syntax rules 7-4

Security sample application
building 6-9
changing protection on files 6-7
compiling client applications 6-9
compiling server application 6-9
description 5-6
illustrated 5-7
initializing the database 6-8
ISL parameter 6-10
loading the UBBCONFIG file 6-8
location of files5-7
makefile 6-9
Principal Authenticator object 5-6
SecurityCurrent object 5-6
setenv file 6-8
setting up the work directory 6-3
sourcefiles 6-3
tmloadcf command 6-8
SecurityCurrent object
described 9-9
using in client applications 5-6
SecurityLevel 1 module
described 10-6
sourcefiles
Secure Simpapp sample
application 6-14
Security sample application 6-3
SSL parameters
SEC_PRINCIPAL_LOCATION 1-12
SEC_PRINCIPAL_NAME 1-12
SEC_PRINCIPAL_PASSVAR 1-12
SSL protocol
administration steps 1-12
configuration illustrated 1-13
described 1-9
development process 1-12
how it works 1-9
illustrated 1-9
requirements 1-11
support
documentation xiv

Using Security [-5



technical xiv

T

TimeBase module
described 10-2
TimeBase Module IDL 10-2
tmboot command
Secure Simpapp sample application 6-24
Security sample application 6-9
tmloadcf command
Secure Simpapp sample application 6-19
Security sample application 6-8
Tobj module
described 10-7
tpgrpadd command
defining security groups 1-8, 4-9
tpusradd command
defining users for security 1-8, 4-9
troubleshooting
bootstrapping problems 8-6
callback objects 8-9
certificate-based authentication
problems 8-5
configuration problems 8-8
digital certificates 8-9
[1OP Listener/Handler startup problems
8-7
ORSB initialization problems 8-3
tracing 8-1
Ulog file 8-1
username/password
authentication problems 8-4
Trusted Certificate Authority file
described 2-8
example 2-8
TUXCONFIG parameter
setenv file 6-6, 6-17
TUXDIR parameter
Secure Simpapp sample
application 6-5, 6-16

-6 Using Security

U

UBBCONFIG file
configuring the authentication
server 4-2
defining a security level 4-3
defining link-level encryption 1-4
defining security parameters for
the I1OP Listener/Handler 3-9
example of certificate-based
authentication 4-7
exampl e of username/password
authentication 4-5
link-level encryption 1-4
Secure Simpapp sample application 6-19
Security sample application 6-4
setting parameters for security 4-2
setting the encryption 4-5
username/password authentication 1-8
URL Address formats
certifcate-based authentication 1-15
corbaloc 5-2, 5-5
corbalocs 5-2, 5-5
described 5-2
Host and Port 5-4
syntax 5-3
the SSL protocol 1-10
username/password authentication 1-22
using with EJBs 7-6
username/password authentication
administration steps 1-7
application password 1-5
C++ example
SecurityLevel2
Principal Authenticator 5-9
Tobj Principa Authenticator 5-12
defining JNDI environment
properties 7-5
defining users and groups 1-8
described 1-4
devel opment process 1-7



how it works 1-5
illustrated 1-5
interfaces explained 5-8
Java example
SecuritylL evel2
Principal Authenticator
5-10
Tobj Principal Authenticator 5-14
programming steps 1-7
sample UBBCONFIG file 4-5
system authentication 1-5
writing the client application 5-7

w

WLE domain
adding security to 5-6
WLE Security model
accessing objects 9-3
administrative control 9-3
authenticating principals 9-2
components 9-4
Credentia's object 9-7
Principal Authenticator object 9-5
SecurityCurrent object 9-9
described 9-2
WLE Security Pack
described 2-2

use with certificate-based authentication

1-16
use with SSL protocol 1-11

WLEContext.

INITIAL_CONTEXT_FACTORY

property 7-5
WLEContext.

PROVIDER_URL property 7-6
WLEContext.

SECURITY_AUTHENTICATION

property 7-7

Using Security

-7



	Copyright
	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions


	1 Overview of WLE Security
	WLE Security Features
	Link-Level Encryption
	How LLE Works
	Development Process

	Username/Password Authentication
	How Username/Password Authentication Works
	Development Process for Username/Password Authentication

	The SSL Protocol
	How the SSL Protocol Works
	Requirements for Using the SSL Protocol
	Development Process for the SSL Protocol

	Certificate-Based Authentication
	How Certificate-based Authentication Works
	Requirements for Using Certificate-Based Authentication
	Development Process for Certificate-Based Authentication

	Commonly Asked Questions about WLE Security
	Do I have to Change the Security in an Existing WLE Application?
	Can I Use the SSL Protocol in an Existing WLE Application?
	When Should I Use Mutual Certificate-Based Authentication?


	2 Managing Certificates and Keys
	Installing the WLE Security Pack
	Using the LDAP Directory Service with Your WLE Application
	Editing the LDAP Search Filter File
	Publishing a Certificate for the Certificate Authority
	Obtaining Digital Certificates and Private Keys for Principals
	Storing the Private Keys in a Common Location
	Defining the Trusted Certificate Authorities
	Creating a Peer Rules File

	3 Configuring the WLE Environment for the SSL Protocol
	Setting Parameters for the SSL Protocol
	Defining a Port for SSL Communications
	Enabling Certificate-based Authentication
	Enabling Host Matching
	Setting the Encryption Strength
	Setting the Interval for Session Renegotiation
	Defining Security Parameters for the IIOP Listener/Handler
	Example of Setting Parameters on the ISL System Process
	Example of Setting Command Line Options on the CORBA C++ ORB
	Example of Setting System Properties on the CORBA Java ORB

	4 Defining Security for a WLE CORBA Application
	Setting Parameters for Security in the UBBCONFIG File
	Configuring the Authentication Server
	Defining a Security Level
	Setting the Level of Encryption
	Sample UBBCONFIG File for Username/Password Authentication
	Sample UBBCONFIG File for Certificate-Based Authentication

	Defining Authorized Users

	5 Writing a WLE CORBA Application That Implements Security
	Understanding the Address Formats of the Bootstrap Object
	Using the Host and Port Address Format
	Using the corbaloc URL Address Format
	Using the corbalocs URL Address Format

	Using Username/Password Authentication
	The Security Sample Application
	Writing the Client Application

	Using Certificate-based Authentication
	The Secure Simpapp Sample Application
	Writing the Client Application

	Using the Invocations_Options_Required() Method

	6 Building and Running the CORBA Sample Applications
	Building and Running the Security Sample Application
	Step 1: Copy the files for the Security sample application into a work directory.
	Step 2: Verify the settings of the environment variables.
	Step 3:Change the Protection on the Files for the Security Sample Application.
	Step 4: Set the Environment Variables
	Step 5: Initialize the Database
	Step 6: Load the UBBCONFIG File
	Step 7: Compile the Security Sample Application
	Step 8: Start the server application
	Step 8: Start the C++ client application
	Step 9: Start the Java client application.

	Building and Running the Secure Simpapp Sample Application
	Step 1: Copy the Files for the Secure Simpapp Sample Application into a Work Directory
	Step 2: Change the protection attribute on the files for the Secure Simpapp sample application.
	Step 3: Verify the settings of the environment variables.
	Step 4: Execute the runme command.
	Using the Secure Simpapp Sample Application


	7 Writing a WLE Enterprise JavaBean that Implements Security
	Before You Begin
	How Authentication Works with WLE EJBs
	Development Steps
	Step 1: Define security roles for the methods of the WLE EJB.
	Step 2: Specify security roles in the Deployment Descriptor of the EJB.
	Step 3: Define the JNDI environment properties.
	WLEContext.INITIAL_CONTEXT_FACTORY Property
	WLEContext.PROVIDER_URL Property
	WLEContext.SECURITY_AUTHENTICATION Property

	Step 4: Establish the InitialContext.
	Step 5: Use Home to get a WLE EJB.
	Step 6: Use the getCallerPrincipal Method to authenticate a WLE EJB.
	Limitations and Restrictions
	Example of Using Security in a WLE EJB

	8 Troubleshooting
	Using ULOGS and ORB Tracing
	CORBA::ORB_init Problems
	Username/Password Authentication Problems
	Certificate-Based Authentication Problems
	Tobj::Bootstrap:: resolve_initial_references Problems
	IIOP Listener/Handler Startup Problems
	Configuration Problems
	Problems with Using Callbacks Objects with the SSL Protocol
	Troubleshooting Tips for Digital Certificates

	9 WLE Security Service APIs
	The WLE Security Model
	Authentication of Principals
	Controlling Access to Objects
	Administrative Control

	Functional Components of the WLE Security Service
	The Principal Authenticator Object
	Using the Principal Authenticator Object with Certificate-based Authentication
	WLE Extensions to the Principal Authenticator Object

	The Credentials Object
	The SecurityCurrent Object

	10 Security Modules
	CORBA Module
	TimeBase Module
	Security Module
	Security Level 1 Module
	Security Level 2 Module
	Tobj Module

	11 C++ Security Reference
	SecurityLevel2::Credentials
	SecurityLevel2::PrincipalAuthenticator

	12 Java Security Reference
	13 Automation Security Reference
	Method Descriptions
	DISecurityLevel2_Current
	DITobj_PrincipalAuthenticator
	DISecurityLevel2_Credentials

	Programming Example


