
Using Security

W e b L o g i c E n t e r p r i s e 5 . 0
D o c u m e n t E d i t i o n 5 . 0

D e c e m b e r 1 9 9 9

BEA WebLogic Enterprise

Copyright

Copyright © 1999 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and Tuxedo are registered trademarks of BEA Systems, Inc. BEA Builder, BEA
Connect, BEA Manager, BEA MessageQ, BEA Jolt, M3, eSolutions, eLink, WebLogic, and WebLogic Enterprise
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

Using Security

Document Edition Date Software Version

5.0 December 1999 BEA WebLogic Enterprise 5.0

Contents

About This Document
What You Need to Know ..x

e-docs Web Site ...x

How to Print the Document... xi

Documentation Conventions .. xii

1. Overview of WLE Security
WLE Security Features.. 1-2

Link-Level Encryption .. 1-3

How LLE Works .. 1-3

Development Process ... 1-4

Username/Password Authentication.. 1-4

How Username/Password Authentication Works 1-5

Development Process for Username/Password Authentication 1-7

The SSL Protocol .. 1-9

How the SSL Protocol Works .. 1-9

Requirements for Using the SSL Protocol ... 1-11

Development Process for the SSL Protocol ... 1-12

Certificate-Based Authentication .. 1-14

How Certificate-based Authentication Works ... 1-15

Requirements for Using Certificate-Based Authentication...................... 1-16

Development Process for Certificate-Based Authentication.................... 1-17

Commonly Asked Questions about WLE Security ... 1-20

Do I have to Change the Security in an Existing WLE Application? 1-20

Can I Use the SSL Protocol in an Existing WLE Application? 1-21

When Should I Use Mutual Certificate-Based Authentication? 1-22
Using Security iii

2. Managing Certificates and Keys
Installing the WLE Security Pack ... 2-2

Using the LDAP Directory Service with Your WLE Application 2-2

Editing the LDAP Search Filter File ... 2-3

Publishing a Certificate for the Certificate Authority 2-5

Obtaining Digital Certificates and Private Keys for Principals......................... 2-6

Storing the Private Keys in a Common Location .. 2-6

Defining the Trusted Certificate Authorities ... 2-8

Creating a Peer Rules File ... 2-10

3. Configuring the WLE Environment for the SSL Protocol
Setting Parameters for the SSL Protocol ... 3-2

Defining a Port for SSL Communications... 3-2

Enabling Certificate-based Authentication.. 3-3

Enabling Host Matching .. 3-3

Setting the Encryption Strength... 3-5

Setting the Interval for Session Renegotiation .. 3-8

Defining Security Parameters for the IIOP Listener/Handler............................ 3-8

Example of Setting Parameters on the ISL System Process.............................. 3-9

Example of Setting Command Line Options on the CORBA C++ ORB........ 3-10

Example of Setting System Properties on the CORBA Java ORB 3-10

4. Defining Security for a WLE CORBA Application
Setting Parameters for Security in the UBBCONFIG File................................ 4-2

Configuring the Authentication Server .. 4-2

Defining a Security Level... 4-3

Setting the Level of Encryption.. 4-5

Sample UBBCONFIG File for Username/Password Authentication......... 4-5

Sample UBBCONFIG File for Certificate-Based Authentication 4-7

Defining Authorized Users .. 4-8

5. Writing a WLE CORBA Application That Implements Security
Understanding the Address Formats of the Bootstrap Object 5-2

Using the Host and Port Address Format ... 5-4

Using the corbaloc URL Address Format .. 5-5
iv Using Security

Using the corbalocs URL Address Format .. 5-5

Using Username/Password Authentication ... 5-6

The Security Sample Application .. 5-6

Writing the Client Application ... 5-7

Using Certificate-based Authentication .. 5-15

The Secure Simpapp Sample Application.. 5-16

Writing the Client Application ... 5-18

Using the Invocations_Options_Required() Method....................................... 5-21

6. Building and Running the CORBA Sample Applications
Building and Running the Security Sample Application 6-2

Step 1: Copy the files for the Security sample application into a work
directory. ... 6-3

Step 2: Verify the settings of the environment variables. 6-5

Step 3:Change the Protection on the Files for the Security Sample
Application.. 6-7

Step 4: Set the Environment Variables .. 6-8

Step 5: Initialize the Database .. 6-8

Step 6: Load the UBBCONFIG File .. 6-8

Step 7: Compile the Security Sample Application..................................... 6-9

Step 8: Start the server application... 6-9

Step 8: Start the C++ client application ... 6-10

Step 9: Start the Java client application. .. 6-10

Building and Running the Secure Simpapp Sample Application.................... 6-13

Step 1: Copy the Files for the Secure Simpapp Sample Application into a
Work Directory ... 6-13

Step 2: Change the protection attribute on the files for the Secure Simpapp
sample application... 6-17

Step 3: Verify the settings of the environment variables. 6-18

Step 4: Execute the runme command... 6-20

Using the Secure Simpapp Sample Application 6-26

7. Writing a WLE Enterprise JavaBean that Implements Security
Before You Begin.. 7-2

How Authentication Works with WLE EJBs.. 7-2

 Development Steps... 7-2
Using Security v

Step 1: Define security roles for the methods of the WLE EJB. 7-3

Step 2: Specify security roles in the Deployment Descriptor of the EJB.......... 7-4

Step 3: Define the JNDI environment properties. ... 7-5

WLEContext.INITIAL_CONTEXT_FACTORY Property 7-5

WLEContext.PROVIDER_URL Property ... 7-6

WLEContext.SECURITY_AUTHENTICATION Property 7-7

Step 4: Establish the InitialContext. .. 7-9

Step 5: Use Home to get a WLE EJB. ... 7-9

Step 6: Use the getCallerPrincipal Method to authenticate a WLE EJB......... 7-10

Limitations and Restrictions .. 7-10

Example of Using Security in a WLE EJB.. 7-10

8. Troubleshooting
Using ULOGS and ORB Tracing .. 8-1

CORBA::ORB_init Problems.. 8-3

Username/Password Authentication Problems.. 8-4

Certificate-Based Authentication Problems .. 8-5

Tobj::Bootstrap::
resolve_initial_references Problems... 8-6

IIOP Listener/Handler Startup Problems... 8-7

Configuration Problems... 8-8

Problems with Using Callbacks Objects with the SSL Protocol 8-9

Troubleshooting Tips for Digital Certificates ... 8-9

9. WLE Security Service APIs
The WLE Security Model.. 9-2

Authentication of Principals ... 9-2

Controlling Access to Objects .. 9-3

Administrative Control ... 9-3

Functional Components of the WLE Security Service...................................... 9-4

The Principal Authenticator Object ... 9-5

Using the Principal Authenticator Object with Certificate-based
Authentication ... 9-6

WLE Extensions to the Principal Authenticator Object............................. 9-6

The Credentials Object .. 9-7

The SecurityCurrent Object ... 9-9
vi Using Security

10. Security Modules
CORBA Module... 10-2

TimeBase Module .. 10-2

Security Module ... 10-4

Security Level 1 Module .. 10-6

Security Level 2 Module .. 10-7

Tobj Module... 10-8

11. C++ Security Reference
SecurityLevel2::Credentials ... 11-9

SecurityLevel2::PrincipalAuthenticator... 11-17

12. Java Security Reference

13. Automation Security Reference
Method Descriptions ... 13-2

DISecurityLevel2_Current ... 13-2

DITobj_PrincipalAuthenticator.. 13-7

DISecurityLevel2_Credentials ... 13-17

Programming Example.. 13-20
Using Security vii

viii Using Security

the

ic

s

ol

es

 in
About This Document

This document provides an introduction to concepts associated with the BEA
WebLogic Enterprise (WLE) security features, a description of how to secure your
WLE applications using the WLE security features, and a guide to the use of the
application programming interfaces (APIs) in the WLE Security Service.

This document covers the following topics:

n Chapter 1, “Overview of WLE Security,” introduces concepts associated with
WLE security features.

n Chapter 2, “Managing Certificates and Keys,” describes how to set up a publ
key infrastructure to interact with WLE applications that use the SSL protocol
and certificate-based authentication.

n Chapter 3, “Configuring the WLE Environment for the SSL Protocol,” describe
configuring the IIOP Listener/Handler, the CORBA C++ ORB, or the CORBA
Java ORB so that it can be used with the Secure Sockets Layer (SSL) protoc
and certificate-based authentication.

n Chapter 4, “Defining Security for a WLE CORBA Application,” explains the
configuration tasks required when using security in a WLE application.

n Chapter 5, “Writing a WLE CORBA Application That Implements Security,”
explains how the bootstrapping options work and describes implementing
password-based authentication and certificate-based authentication in WLE
CORBA applications.

n Chapter 6, “Building and Running the CORBA Sample Applications,” describ
how to build and run the Security and Secure Simpapp sample applications.

n Chapter 7, “Writing a WLE Enterprise JavaBean that Implements Security,”
describes implementing password-based and certificate-based authentication
WLE EJBs.
Using Security ix

.

s.

od

their
and

n Chapter 8, “Troubleshooting,” provides troubleshooting tips that can be used
when solving problems that occur with the security portion of a WLE
application.

n Chapter 9, “WLE Security Service APIs,” introduces the WLE Security model
and the functional components of the security model.

n Chapter 10, “Security Modules,” includes the Object Management Group
(OMG) Interface Definition Language (IDL) for the modules used by the WLE
Security service.

n Chapter 11, “C++ Security Reference,” includes the C++ method descriptions

n Chapter 12, “Java Security Reference,” includes the Java method description

n Chapter 13, “Automation Security Reference,” includes the Automation meth
descriptions.

What You Need to Know

This document is intended for programmers who want to incorporate security into
WLE applications and system administrators who are responsible for setting up
maintaining the security infrastructure in an enterprise.

e-docs Web Site

The BEA WebLogic Enterprise product documentation is available on the BEA
corporate Web site. From the BEA Home page, click the Product Documentation
button or go directly to the “e-docs” Product Documentation page at
http://e-docs.beasys.com.
x Using Security

How to Print the Document

tion
ent
rise

 you

obe

ng,

s.
r
date

r the
How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Enterprise
documentation Home page on the e-docs Web site (and also on the documenta
CD). You can open the PDF in Adobe Acrobat Reader and print the entire docum
(or a portion of it) in book format. To access the PDFs, open the WebLogic Enterp
documentation Home page, click the PDF Files button, and select the document
want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Ad
Web site at http://www.adobe.com/.

Related Information

For more information about CORBA, Java 2 Enterprise Edition (J2EE), BEA
TUXEDO, distributed object computing, transaction processing, C++ programmi
and Java programming, see the WLE Bibliography in the WebLogic Enterprise online
documentation.

Contact Us!

Your feedback on the BEA WebLogic Enterprise documentation is important to u
Send us e-mail at docsupport@beasys.com if you have questions or comments. You
comments will be reviewed directly by the BEA professionals who create and up
the WebLogic Enterprise documentation.

In your e-mail message, please indicate that you are using the documentation fo
BEA WebLogic Enterprise 5.0 release.
Using Security xi

If you have any questions about this version of BEA WebLogic Enterprise, or if you
have problems installing and running BEA WebLogic Enterprise, contact BEA
Customer Support through BEA WebSupport at www.beasys.com. You can also
contact Customer Support by using the contact information provided on the Customer
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

n Your name, e-mail address, phone number, and fax number

n Your company name and company address

n Your machine type and authorization codes

n The name and version of the product you are using

n A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.
xii Using Security

Documentation Conventions
monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

Convention Item
Using Security xiii

... Indicates one of the following in a command line:

n That an argument can be repeated several times in a command line

n That the statement omits additional optional arguments

n That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
xiv Using Security

CHAPTER
1 Overview of WLE
Security

This topic includes the following sections:

n WLE Security Features

n Link-Level Encryption

n Username/Password Authentication

n The SSL Protocol

n Certificate-Based Authentication

n Commonly Asked Questions about WLE Security
Using Security 1-1

1 Overview of WLE Security
WLE Security Features

The BEA WebLogic Enterprise (referred to as WLE) product enables you to integrate
the following essential security features into your WLE applications:

n Authentication allows the two communicating parties to be certain that they are
speaking with someone whom they trust. By using usernames and passwords or
digital certificates and public-key technology, a WLE object and the application
that invokes a request on the WLE object can each be authenticated to the other.

n Confidentiality is the ability to keep communication secret from parties other
than the intended recipient. It is achieved by encrypting all data. The WLE
product provides mechanisms that enable two communicating parties to
negotiate an algorithm they both support and to agree on the keys with which to
encrypt the data.

n Integrity is a guarantee that the data being transferred has not been modified in
transit. The same handshake that allows two parties to agree on a method of
encryption also provides a means of supplying integrity through the use of
shared data integrity secrets. Shared data integrity secrets ensure that when data
is received, any modifications made to the data while in transit will be detected.

The WLE product provides the security features:

n Link-Level Encryption

n Username/Password authentication

n The SSL protocol

n Certificate-based authentication

The remainder of this topic describes how the different security features work in the
WLE product.
1-2 Using Security

Link-Level Encryption
Link-Level Encryption

Link-level encryption (LLE) is the encryption of messages going across network links
between machines in a WLE domain or between WLE domains. The objective of LLE
is to ensure confidentiality so that a network-based eavesdropper cannot learn the
content of WLE system messages or WLE application-generated messages. LLE is
point-to-point, which means that data may be encrypted/decrypted as many times as it
flows over network links.

How LLE Works

LLE works in the following way:

1. The system administrator sets a parameter to control the encryption strength.

2. The WLE domain receives the initial connection and starts to negotiate the
encryption level to be used between the WLE applications.

3. The two WLE applications agree on the largest common key size supported by
both.

4. The configured maximum key size parameter is reduced to agree with the
installed software’s capabilities. This step must be done at link negotiation time,
because at configuration time it may not be possible to verify a particular
machine’s installed encryption package.

5. The WLE applications exchange messages using the appropriate encryption level.

Figure 1-1 illustrates these steps.
Using Security 1-3

1 Overview of WLE Security
Figure 1-1 How LLE Works

Development Process

The implementation of LLE is an administrative task. The system administrators for
each WLE application set parameters in the UBBCONFIG file that control encryption
strength. When the two WLE applications establish communication, they negotiate
what level of encryption to use to exchange messages. Once an encryption level is
negotiated, it remains in effect for the lifetime of the network connection.

Username/Password Authentication

The WLE product supports a username/password mechanism to provide
authentication to existing WLE applications and to new WLE applications that are not
prepared to deploy a full public key infrastructure (PKI). When using
Username/Password authentication, the applications that initiate invocations on WLE
objects authenticate themselves to the WLE domain using a defined username and
password.

WLE Domain

40, 128
Bit

Encryption

Machine 2
WLE Application 2

UBBCONFIG File
MINENCRYPTBITS 40
MAXENCRYPTBITS 128

Machine 1
WLE Application 1

UBBCONFIG File
MINENCRYPTBITS 40
MAXENCRYPTBITS 128
1-4 Using Security

Username/Password Authentication

e,

es

n

d the

L
se

d a
The WLE product utilizes a delegated trust authentication model. In this model,
initiating applications authenticate to a trusted gateway process. In the WLE product,
the trusted gateway process is the IIOP Listener/Handler. As part of successful
authentication, a security association, called a security context, is established between
the initiating application and the IIOP Listener/Handler that controls access to WLE
objects.

Two levels of Username/Password authentication are provided:

n Application password—In this security scenario, the client application
authenticates itself to the WLE domain. A user name or client application nam
and application password are used to authenticate the client application.

n System authentication—In this security scenario, the client application provid
the same information as when using application password authentication and
additional authentication data that is verified by a WLE-provided authenticatio
server (AUTHSRV) before access is granted to client application.

Username/Password authentication is available in both the base WLE product an
WLE Security pack. If you install the WLE Security pack and choose to use
Username/Password authentication, the SSL protocol can be used to provide
confidentiality to communication between different machines. When using
Username/Password authentication, you have the option of using the
Tobj::PrincipalAuthenticator::logon() or the
SecurityLevel2::PrincipalAuthenticator::authenticate() methods.

How Username/Password Authentication Works

Username/Password authentication works in the following way:

1. The initiating application instantiates the Bootstrap object with any of the UR
address formats. For more information about which URL address format to u
with the Bootstrap object, see “Understanding the Address Formats of the
Bootstrap Object” on page 5-2.

2. The initiating application obtains credentials for the user. The initiating
application must provide proof material to be used by the WLE domain to
authenticate the user. This proof material consists of the name of the user an
password.
Using Security 1-5

1 Overview of WLE Security
l The initiating application creates the security context using a
PrincipalAuthenticator object. The request for authentication is sent to
the IIOP Listener/Handler. The proof material in the authentication request is
securely relayed to the authentication server, which verifies the supplied
information.

l If the verification succeeds, the WLE system constructs a Credentials
object that is used by all future invocations. The Credentials object for
the user is associated with the Current object that represents the security
context.

3. The initiating application invokes a WLE object in the WLE domain using an
object reference. The request is packaged into an IIOP request and is forwarded
to the IIOP Listener/Handler that associates the request with the previously
established security context.

If the SSL protocol is used to secure the connection for confidentiality and
integrity, the data will also be protected from eavesdropping.

4. The IIOP Listener/Handler receives the request from the initiating application.

5. The IIOP Listener/Handler forwards the request, along with the credentials of the
initiating application, to the appropriate WLE object.

Figure 1-2 illustrates these steps.
1-6 Using Security

Username/Password Authentication

at
Figure 1-2 How Username/Password Authentication Works

Development Process for Username/Password
Authentication

Defining Username/password authentication for a WLE application includes
administration and programming steps. Table 1-1 and Table 1-2 list the administration
and programming steps for Username/Password authentication. For a detailed
description of the administration steps for Username/Password authentication, see
“Defining Security for a WLE CORBA Application” on page 4-1. For a complete
description of the programming steps, see “Writing a WLE CORBA Application Th
Implements Security” on page 5-1.

Client
Application

WLE Domain

Bootstrap Object
Tobj_Bootstrap

 (orb,//sling.com:2143)

or
Tobj_Bootstrap
 (orb,corbaloc://sling.com:2143)

or
Tobj_Bootstrap
 (orb,corbalocs://sling.com:2143)

logon(username,application_name,
 password);

SecurityCurrent Object
PrincipalAuthenticator

get_auth_type();

Object Reference for
SecurityCurrent

Object

Authentication Level
for WLE Domain

IIOP
Listener/
Handler
Using Security 1-7

1 Overview of WLE Security
Table 1-1 Administration Steps for Username/Password Authentication

Step Description

1 Set the SECURITY parameter in the UBBCONFIG file to either APP_PW or
USER_AUTH.

2 If you defined the SECURITY parameter as USER_AUTH, configure the
authentication server (AUTHSRV) in the UBBCONFIG file.

3 Use the tpusradd and tpgrpadd commands to define lists of authorized users
and groups.

4 Use the tmloadcf command to load the UBBCONFIG file. When the UBBCONFIG
file is loaded, the system administrator is prompted for a password. The password
entered at this time becomes the password for the WLE application.

Table 1-2 Programming Steps for Username/Password Authentication

Step Description

1 Write application code that uses the Bootstrap object to obtain a reference to the
SecurityCurrent object.

2 Write application code that obtains the PrincipalAuthenticator object from the
SecurityCurrent object.

3 Write application code that uses the
Tobj::PrincipalAuthenticator::logon() or
SecurityLevel2::PrincipalAuthenticator::authenticate()
operation to establish a security context with the WLE domain.

4 Write application code that prompts the user for the password defined when the
UBBCONFIG file is loaded.
1-8 Using Security

The SSL Protocol
The SSL Protocol

The WLE product provides the industry-standard Secure Sockets Layer (SSL) protocol
to establish secure communications between client and server applications. When
using the SSL protocol, principals use digital certificates to prove their identity to a
peer.

The default behavior of the SSL protocol in the WLE product is to have the IIOP
Listener/Handler prove its identity to the principal who initiated the SSL connection
using a digital certificate. The digital certificate is verified to ensure that the certificate
has not been tampered with or expired. If there is a problem with the digital certificate
in the chain, the SSL connection is terminated. In addition, the issuer of the digital
certificate is compared against a list of trusted certificate authorities to verify the
digital certificate received from the IIOP Listener/Handler has been signed by a
certificate authority that is trusted by the WLE domain.

Figure 1-3 provides a conceptual overview of the SSL protocol.

Figure 1-3 The SSL Protocol

How the SSL Protocol Works

The SSL protocol works in the following manner:

SSL
WLE Client
Application

IIOP
Listener/Handler

Certificate for
IIOP

Listener/Handler
Using Security 1-9

1 Overview of WLE Security
1. The initiating application instantiates the Bootstrap object with a URL in the form
of corbaloc://host:port or corbalocs://host:port.

If you use the corbaloc://host:port URL address format, the bootstrapping
process is unsecure. You can use the authenticate() method of the
SecurityLevel2::Current interface and the
invocations_options_required() method to secure the bootstrapping
process and specify that certificate-based authentication is to be used.

2. The initiating application receives the digital certificate of the principal in this
case the IIOP Listener/Handler. The security context is established as result of a
Tobj_Bootstrap::resolve_initial_references() or a
Tobj::PrincipalAuthenticator::Logon() method. This step is transparent
to the user of the application.

3. If the verification succeeds, the WLE system constructs a Credentials object.
The Credentials object for the principal represents the security context for the
current thread of execution.

4. The initiating application invokes a WLE object in the WLE domain using an
object reference.

5. The request is packaged into an IIOP request and is forwarded to the IIOP
Listener/Handler that associates the request with the established security context.

 The request is digitally signed and encrypted before it is sent to the IIOP
Listener/Handler. The WLE system performs the signing and sealing of requests.

6. The IIOP Listener/Handler receives the request from the initiating application.
The digital signature of the request is verified and the request is decrypted.

7. The IIOP Listener/Handler forwards the request to the appropriate WLE object.

Figure 1-4 illustrates these steps.
1-10 Using Security

The SSL Protocol
Figure 1-4 How the SSL Protocol Works in a WLE Application

Requirements for Using the SSL Protocol

To use the SSL protocol in a WLE application, you need to install the WLE Security
Pack. Information about installing the WLE Security Pack can be found in the BEA
WebLogic Enterprise Installation Guide.

The WLE implementation of the SSL protocol is flexible enough to fit into most public
key infrastructures. The WLE product requires that certificates are stored in an
LDAP-enabled directory. You can choose any LDAP-enabled directory service. You
can also choose the certificate authority from which to obtain certificates and private
keys used in a WLE application. You must have an LDAP-enabled directory service
and a certificate authority in place before using the SSL protocol in a WLE application.

Client
Application

WLE DomainBootstrap Object

Tobj_Bootstrap
 (orb,corbalocs://sling.com:2143)

Simple->to_upper();

SecurityLevel2::Current Object
authenticate(
 Tobj::CertificateBased

 or
 Tobj:TuxedoSecurity);

IIOP
Listener/
Handler

WLE Object
Simple

SSL
Protocol
Using Security 1-11

1 Overview of WLE Security

 and
on

word

n
for

ore
l”
Development Process for the SSL Protocol

Using the SSL protocol in a WLE application is primarily an administration process.
Table 1-4 lists the administration steps required to set up the infrastructure required to
use the SSL protocol and configure the IIOP Listener/Handler for the SSL protocol.
For a detailed description of the administration steps, see “Managing Certificates
Keys” on page 2-1 and “Configuring the WLE Environment for the SSL Protocol”
page 3-1.

Once the administration steps are complete, you can use either Username/Pass
authentication or Certificate authentication in your WLE application. For more
information, see “Writing a WLE CORBA Application That Implements Security” o
page 5-1. In addition, you can use the SSL protocol with Enterprise JavaBeans,
more information, see “Writing a WLE Enterprise JavaBean that Implements
Security” on page 7-1.

Note: If you are using the BEA CORBA C++ or CORBA Java ORB as a server
application, the ORB can also be configured to use the SSL protocol. For m
information, see “Configuring the WLE Environment for the SSL Protoco
on page 3-1.

Table 1-3 Administration Steps for the SSL Protocol

Step Description

1 Install the WLE Security pack.

2 Set up an LDAP-enabled directory service.

3 Obtain a certificate and private key for the IIOP Listener/Handler from a certificate
authority.

4 Publish the certificates for the IIOP Listener/Handler and the certificate authority
in the LDAP-enabled directory service.

5 Define the SEC_PRINCIPAL_NAME, SEC_PRINCIPAL_LOCATION, and
SEC_PRINCIPAL_PASSVAR parameters for the ISL server process in the
UBBCONFIG file.

6 Define a port for secure communication on the IIOP Listener/Handler using the -s
option of the ISL command.
1-12 Using Security

The SSL Protocol
Figure 1-5 illustrates the configuration of a WLE application that uses the SSL
protocol.

Figure 1-5 Configuration for Using the SSL Protocol in a WLE Application

7 Create a Trusted Certificate Authority file (trust_ca.cer) that defines the certificate
authorities trusted by the IIOP Listener/Handler.

8 Use the tmloadcf command to load the UBBCONFIG file.

9 Optionally, create a Peer Rules file (peer_val.rul) for the IIOP
Listener/Handler.

10 Optionally, modify the LDAP Search filter file to reflect the directory hierarchy in
place in your enterprise.

Table 1-3 Administration Steps for the SSL Protocol

Step Description

Private Key for
IIOP

Listener/Handler

LDAP
Directory Service

Certificate for IIOP
Listener/Handler

Certificates for
Certificate
Authorities

IIOP
Listener/Handler

ISL -s -a
SEC_PRINCIPAL_NAME
SEC_PRINCIPAL_LOCATION
SEC_PRINCIPAL_PASSVAR

WLE Client
Application

trust_ca.cer
Using Security 1-13

1 Overview of WLE Security

name

e

t and
ength

.

Certificate-Based Authentication

Certificate-based authentication requires that each side of an SSL connection proves
its identity to the other side of the connection. In the WLE product, the IIOP
Listener/Handler presents its digital certificate to the principal who initiated the SSL
connection. The initiator then provides a chain of digital certificates that are used by
the IIOP Listener/Handler to verify the identity of the initiator.

Once a chain of digital certificates is successfully verified, the IIOP Listener/Handler
retrieves the value of the distinguished name from the subject of the digital certificate.
The WLE product uses the email address element of the subject’s distinguished
as the identity of the principal. The IIOP Listener/Handler uses the identity of the
principal to impersonate the principal and establish a security context between th
initiating application and the WLE domain.

Once the principal has been authenticated, the principal that initiated the reques
the IIOP Listener/Handler agree on a cipher suite that represents the type and str
of encryption that they both support. They also agree on the encryption key and
synchronize to start encrypting all subsequent messages.

Figure 1-6 provides a conceptual overview of the certificate-based authentication

Figure 1-6 Certificate-Based Authentication

WLE Client
Application

IIOP
Listener/
Handler

SSL Protocol

Certificate for
IIOP

Listener/Handler

Certificates for
WLE Client Application
1-14 Using Security

Certificate-Based Authentication

l

he

text.

sts.

.

O
How Certificate-based Authentication Works

Certificate-based authentication works in the following manner:

1. The initiating application instantiates the Bootstrap object with a URL in the form
of corbaloc://host:port or corbalocs://host:port and controls the
requirement for protection by setting attributes on the
SecurityLevel2::Credentials object returned as a result of the
SecurityLevel2::PrincipalAuthenticator::authenticate operation.

Note: You can also use the SecurityLevel2::Current::authenticate()
method to secure the bootstrapping process and specify that certificate-based
authentication is to be used.

2. The initiating application obtains the digital certificate and the private key of the
principal. Retrieval of this information may require proof material to be supplied
to gain access to the principal’s private key and certificate. The proof materia
typically is a pass phrase rather than a password.

 The security context is established as result of a
Tobj_Bootstrap::resolve_initial_references() or a
Tobj::PrincipalAuthenticator::Logon() method. This step is transparent
to the user of the application.

3. If the verification succeeds, the WLE system constructs a Credentials object.
The Credentials object for the principal represents the security context for t
current thread of execution.

4. The initiating application invokes a WLE object in the WLE domain using an
object reference.

5. The request is packaged into an IIOP request and is forwarded to the IIOP
Listener/Handler that associates the request with the established security con

6. The request is digitally signed and encrypted before it is sent to the IIOP
Listener/Handler. The WLE system performs the signing and sealing of reque

7. The IIOP Listener/Handler receives the request from the initiating application
The digital signature of the request is verified and the request is decrypted.

8. The IIOP Listener/Handler maps the principals certificate identity to a TUXED
user identity.
Using Security 1-15

1 Overview of WLE Security
9. The IIOP Listener/Handler forwards the request, along with the TUXEDO
identity of the principal, to the appropriate WLE object.

Figure 1-7 How Certificate-Based Authentication Works

Requirements for Using Certificate-Based Authentication

Certificate-based authentication uses the SSL protocol so you need to install the WLE
Security Pack. Information about installing the WLE Security Pack can be found in the
BEA WebLogic Enterprise Installation Guide. You also need an LDAP-enabled
directory. You can choose any LDAP-enabled directory service. You can also choose
the certificate authority from which to obtain certificates and private keys used in a
WLE application. You must have an LDAP-enabled directory service and a certificate
authority in place before using certificate-based authentication in a WLE application.

Client
Application

WLE DomainBootstrap Object

Tobj_Bootstrap
 (orb,corbalocs://sling.com, 2143)

Simple->to_upper();

SecurityLevel2::Current Object
authenticate(
 Tobj::CertificateBased
 email address

 passphrase);

IIOP
Listener/
Handler

WLE Object
Simple

SSL
Protocol
1-16 Using Security

Certificate-Based Authentication

Development Process for Certificate-Based
Authentication

Using certificate-based authentication in a WLE application includes administration
and programming steps. Table 1-4 and Table 1-5 list the administration and
programming steps for certificate-based authentication. For a detailed description of
the administration steps, see “Managing Certificates and Keys” on page 2-1 and
“Configuring the WLE Environment for the SSL Protocol” on page 3-1.

Table 1-4 Administration Steps for Certificate-Based Authentication

Step Description

1 Install the WLE Security pack.

2 Set up an LDAP-enabled directory service.

3 Obtain a certificate and private key for the IIOP Listener/Handler from a certificate
authority.

4 Obtain a certificate and private key for the WLE application from a certificate
authority.

5 Store the private key files for the WLE application in the Home directory of the user
or in $TUXDIR/udataobj/security/keys.

6 Publish the certificates for the IIOP Listener/Handler, the WLE application, and the
certificate authority in the LDAP-enabled directory service.

7 Define the SEC_PRINCIPAL_NAME, SEC_PRINCIPAL_LOCATION, and
SEC_PRINCIPAL_PASSVAR for the ISL server process in the UBBCONFIG file.

8 Use the tpusradd command to define the authorized users of your WLE
application.

9 Define a port for secure on the IIOP Listener/Handler using the -s option of the ISL
command.

10 Enable certificate-based authentication in the IIOP Listener/Handler using the -a
option of the ISL command.

11 Create a Trusted Certificate Authority file (trust_ca.cer) that defines the certificate
authorities trusted by the IIOP Listener/Handler.
Using Security 1-17

1 Overview of WLE Security
Figure 1-8 illustrates the configuration of a WLE application that uses
certificate-based authentication.

12 Create a Trusted Certificate Authority file (trust_ca.cer) that defines the certificate
authorities trusted by the WLE client application.

13 Use the tmloadcf command to load the UBBCONFIG file.

14 Optionally, create a Peer Rules file (peer_val.rul) for both the WLE client
application and the IIOP Listener/Handler.

15 Optionally, modify the LDAP Search filter file to reflect the directory hierarchy in
place in your enterprise.

Table 1-4 Administration Steps for Certificate-Based Authentication

Step Description
1-18 Using Security

Certificate-Based Authentication

d
LE
Figure 1-8 Configuration for Using Certificate-Based Authentication in a WLE
Application

Table 1-5 lists the programming steps for using certificate-based authentication in a
WLE application. For more information, see “Writing a WLE CORBA Application
That Implements Security” on page 5-1. In addition, you can use certificate-base
authentication with Enterprise JavaBeans, for more information see “Writing a W
Enterprise JavaBean that Implements Security” on page 7-1.

Private Key for
IIOP

Listener/Handler

Private Key for
WLE Client
Application

LDAP
Directory Service

Certificate for IIOP
Listener/Handler

Certificates for
Certificate
Authorities

Certificates for
WLE Client

Applications

peer_val.rul

trust_ca.cer

IIOP
Listener/Handler

ISL -s -a
SEC_PRINCIPAL_NAME
SEC_PRINCIPAL_LOCATION
SEC_PRINCIPAL_PASSVARpeer_val.rul

WLE Client
Application

trust_ca.cer

corbalocs://
host:port

Table 1-5 Programming Steps for Certificate-Based Authentication

Step Description

1 Write application code that uses the corbaloc or corbalocs URL address
formats of the Bootstrap object. Note that the CommonName in the Distinguished
Name of the certificate of the IIOP Listener/Handler must match exactly the host
name provided in the URL address format.
Using Security 1-19

1 Overview of WLE Security

d to

e
Commonly Asked Questions about WLE
Security

The following sections answer some of the commonly asked questions about the WLE
security features.

Do I have to Change the Security in an Existing WLE
Application?

The answer is no. If you are using security interfaces from previous versions of the
WLE product in your WLE application there is no requirement for you to change your
WLE application. You can leave your current security scheme in place and your
existing WLE application will work with WLE applications built with the WLE 5.0
product.

For example, if your WLE application consists of a set of server applications which
provide general information to all client applications which connect to them, there is
really no need to implement a stronger security scheme. If your WLE application has
a set of server applications which provide information to client applications on an
internal network which provides enough security to detect sniffers, you don’t nee
implement the features in the WLE Security Pack.

2 Write application code that uses the authenticate() method of the
SecurityLevel2::Current interface to perform authentication. Specify
Tobj::CertificateBased for the method argument and the pass phras
for the private key as the auth_data argument for Security::Opaque.

Table 1-5 Programming Steps for Certificate-Based Authentication

Step Description
1-20 Using Security

Commonly Asked Questions about WLE Security

l” on
Can I Use the SSL Protocol in an Existing WLE
Application?

The answer is yes. You may want to take advantage of the extra security protection
provided by the SSL protocol in your existing WLE application. For example, if you
have a WLE server application which provides stock prices to a specific set of client
applications, you can use the SSL protocol to make sure the client applications are
connected to the correct WLE server application and that they are not being routed to
a fake WLE server application with incorrect data. A username and password is
sufficient proof material to authenticate the client application. However, by using the
SSL protocol, the username and password will be encrypted adding an additional level
of security.

The SSL protocol offers WLE applications the following benefits:

n Protection of the entire conversation including the initial bootstrapping process.
The SSL protocol protects against man-in-the-middle attacks, replay attacks,
tampering, and sniffing.

n Even if you only use the default settings, the SSL protocol provides signed and
sealed protection since the default encryption settings are a minimum of 40 bit
by default.

n Client verification of the connected IIOP Listener/Handler using the certificate
of the IIOP Listener/Handler. The client application can then apply additional
security rules to restrict access to the client application by the IIOP
Listener/Handler. This protection also applies to IIOP Listener/Handlers
connecting to remote server applications when using callback objects.

To use the SSL protocol in a WLE application, set up the infrastructure to use digital
certificates, change the command line options on the ISL server process to use the SSL
protocol, and configure a port for secure communications on the IIOP
Listener/Handler. If your existing WLE application uses username/password
authentication, you can use that code with the SSL protocol. If your WLE C++
CORBA client application does not already catch the InvalidDomain exception when
resolving initial references to the Bootstrap object and performing authentication,
write code to handle this exception. For more information, see “The SSL Protoco
page 1-9.
Using Security 1-21

1 Overview of WLE Security

 to
a

LE

Note: The Java implementation of the
Tobj_Bootstrap::resolve_initial_references() method does not
throw an InvalidDomain exception. When the corbaloc or corbalocs
URL address formats are used, the
Tobj_Bootstrap::resolve_initial_references() method internally
catches the InvalidDomain exception and throws the exception as a
COMM_FAILURE. The method functions this way in order to provide backward
compatibility.

When Should I Use Mutual Certificate-Based
Authentication?

You might be ready to migrate your existing WLE application to use Internet
connections between the WLE application and web browsers and commercial web
servers. For example, users of your WLE application might be shopping over the
internet. The users must be confident that:

n They are in fact communicating with the server at the online store and not an
impostor that mimics the store’s server to get credit card information.

n The data exchanged between the user of the WLE application and the online
store will be unintelligible to network eavesdroppers.

n The data exchanged with the online store will arrive unaltered. An instruction
order $500 worth of merchandise must not accidently or maliciously become
$5000 order.

In these situations, the SSL protocol and certificate-based authentication offer W
applications the maximum level of protection. In addition to the benefits achieved
through the use of the SSL protocol, certificate-based authentication offers WLE
applications:

n IIOP Listener/Handler verification of the client application that initiates a
request using the certificate of the client application. In addition, the IIOP
Listener/Handler can apply additional rules which restrict access to the client
application based on the identity established by the certificate. A remote ORB
acting as a server application can also be configured to allow mutual
authentication and verify the identity of a client application based on a
certificate.
1-22 Using Security

Commonly Asked Questions about WLE Security

ed
n Inside the WLE domain, the client application can still have a TUXEDO
username and password. The IIOP Listener/Handler will perform maps the
identity defined in a certificate to a TUXEDO username and password thus
allowing existing WLE applications to have an identity in native WLE server
applications.

 For more information, see “The SSL Protocol” on page 1-9 and “Certificate-Bas
Authentication” on page 1-14
Using Security 1-23

1 Overview of WLE Security
1-24 Using Security

CHAPTER
2 Managing Certificates
and Keys

This topic includes the following sections:

n Installing the WLE Security Pack

n Using the LDAP Directory Service with Your WLE Application

n Editing the LDAP Search Filter File

n Publishing a Certificate for the Certificate Authority

n Obtaining Digital Certificates and Private Keys for Principals

n Storing the Private Keys in a Common Location

n Defining the Trusted Certificate Authorities

n Creating a Peer Rules File

The WLE product requires you have an LDAP-enabled directory service and a
certificate authority (either commercial or private) set up for your organization.

Perform the tasks in this topic only if you are using the SSL Protocol or
certificate-based authentication.
Using Security 2-1

2 Managing Certificates and Keys
Installing the WLE Security Pack

To use the SSL protocol or certificate-based authentication to protect communication
between principals and the WLE domain, you need to install the WLE Security Pack.
The WLE Security Pack contains the files necessary to enable the use of the SSL
protocol. For complete information about installing the WLE Security Pack, see the
BEA WebLogic Enterprise Installation Guide.

Using the LDAP Directory Service with Your
WLE Application

The use of a global directory service is the most popular way to store certificates. A
directory service simplifies the management of information that needs to be globally
available to an ever-growing number of users. The Lightweight Directory Access
Protocol (LDAP) provides access to a variety of directory services.

The WLE product retrieves digital certificates for principals and certificate authorities
from an LDAP-enabled directory service, such as Netscape Directory Service or
Microsoft Active Directory. Before you can use the SSL protocol or certificate-based
authentication, you need to install an LDAP-enabled directory service and configure it
for your organization. The WLE product requires that the digital certificates be stored
in the directory service in Privacy Enhanced Mail (PEM) format.

Directory services define a hierarchy of object classes. While there are a number of
different object classes, there is a small set associated with digital certificates.
Figure 2-1 illustrates the object classes associated with digital certificates.
2-2 Using Security

Editing the LDAP Search Filter File

file
e

ed
Figure 2-1 LDAP Directory Structure for Digital Certificates

By default, the WLE product retrieves digital certificates from the following object
classes:

n certificationAuthority—contains digital certificates for certificate
authorities

n strongAuthenticationUser—contains digital certificates for principals and
the IIOP Listener/Handler.

Refer to the BEA WebLogic Enterprise Installation Guide for information about
integrating your LDAP-enabled directory service into the WLE environment.

Editing the LDAP Search Filter File

When configuring a WLE application to use the SSL protocol or certificate-based
authentication, you may need to customize the LDAP search filter file to limit the
scope of the search of the directory service. Customizing the LDAP search filter
can result in significant performance gains. The WLE Security Pack ships with th
following LDAP search filters:

n A filter stanza that searches the directory service for digital certificates assign
to certificate authorities. The filter limits its search to instances of the
certificationAuthority object class.

root

strongAuthenticationUser

userCertificate

certificationAuthority

caCertificate

authorityRevocationlist

certificateRevocationlist

cn

person

userPassword

sn
Using Security 2-3

2 Managing Certificates and Keys
n A filter stanza that searches the directory service for digital certificates assigned
to principals. The filter limits its search to instances of the
strongAuthenticationUser object class.

If the directory service scheme for your organization is defined to store digital
certificates in object classes other than certificationAuthority and
strongAuthenticationUser, the LDAP search filter file must be modified to
specify those object classes.

If can specify a location of the LDAP search filter file during the installation of the
WLE Security pack. For more information, see the BEA WebLogic Enterprise
Installation Guide.

The LDAP search filter file is owned by the administrator account. BEA recommends
that the file be protected so that only the owner has read and write privileges for the
file and all other users have only read privileges for the file.

To limit the search of the directory service for certificates for principals and certificate
authorities, you need to modify the following tags in the LDAP search filter file:

n BEA_person_lookup

n BEA_issuer_lookup

These tags identify the stanzas in the LDAP search filter file that contains the filter
expression that will be used when looking up information in the directory service.
These BEA-specific tags allow the stanzas of an LDAP search filter file to be stored in
a common LDAP search filter file with stanzas used by other LDAP-enabled
applications that might be found in your organization.

The following is an example of the stanzas of an LDAP search filter file used by the
WLE product for the SSL protocol and certificate-based authentication:

“BEA_person_lookup”
 “.*” “ “ “(|(objectClass=strongAuthenticationUser) (mail=%v))”
 “email address”
 “(|(objectClass=strongAuthenticationUser) (mail=%v))”
 “start of email address”
“BEA_issuer_lookup”
 “.*” “ ” “(&(objectClass=certificationAuthority)
 (cn=%v))” “exact match cn”
 (sn=%v))” “exact match sn”

n BEA_person_lookup specifies to search the LDAP directory service for
principals by their email addresses.
2-4 Using Security

Publishing a Certificate for the Certificate Authority

by

m

le
le,

ice
SSL

e

u
n BEA_issuer_lookup specifies to search the LDAP directory service for
principals by their common names (cn).

See the documentation for your LDAP-enabled directory service for additional
information about LDAP Search File filters.

Publishing a Certificate for the Certificate
Authority

During the authentication process, the identity of a principal depends on the integrity
of the public key value in the principal’s digital certificate and the private key
associated with the digital certificate.A certificate authority is a trusted entity that
confirms the integrity of a digital certificate. All digital certificates must be signed
a certificate authority. In order to use the SSL protocol or certificate-based
authentication in a WLE application, you need to set up a certificate authority fro
which to obtain digital certificates.

When setting up security for a WLE application, it is important to choose a suitab
certificate authority, make the digital certificate for the certificate authority availab
and then use the certificate authority to sign digital certificates for your WLE
application. You can use a commercial or private certificate authority of your cho
with the WLE product. The certificate authority must be in place before using the
protocol or certificate-based authentication.

Once you have chosen a certificate authority, you need a digital certificate for th
certificate authority you are using. Refer to the documentation for the certificate
authority you are using for instructions on obtaining a digital certificate for the
certificate authority. Load the digital certificate for the certificate authority in the
certificationAuthority object class of the LDAP-enabled directory service yo
are using.
Using Security 2-5

2 Managing Certificates and Keys
Obtaining Digital Certificates and Private
Keys for Principals

When using the SSL protocol and certificate-based authentication, the IIOP
Listener/Handler and any principal that will use your WLE application require a digital
certificate and private key to prove their identity to initiators of an SSL connection.

Refer to the documentation for the certificate authority you are using for instructions
on obtaining a digital certificate for a principal. Load the digital certificates for the
principals in the strongAuthenticationUser object class of the LDAP-enabled
directory service you are using.

Storing the Private Keys in a Common
Location

When a principal gets a digital certificate from a certificate authority, they also get a
file with a private key. Principals need this private key file to verify their identity in
the authentication process. Store the private key file in a local directory structure that
is accessible to remote applications. Assign the private key file protections so that only
the owner of the private key file has write privileges and all other users only have read
privileges for the file.

The WLE system uses the email address of the principal to construct a name for the
private key file as follows:

1. The @ character in the name is replaced by an underscore (_) character.

2. All characters after the dot (.) character are deleted.

3. A .PEM file extension is appended to the file.
2-6 Using Security

Storing the Private Keys in a Common Location
For example, if the name of the principal is milozzi@bigcompany.com the resulting
private key file is milozzi_bigcompany.pem. This naming convention allows an
enterprise to have multiple principals that share a common username but are in
different email domains.

The WLE software looks in the following directories for private key files:

UNIX

$HOME

Window NT

%HOMEDRIVE% %HOMEPATH%

The WLE software also looks in the following directory for private key files:

$TUXDIR/udataobj/security/keys

The /keys directory should be protected so that only the administrator has read and
write privileges for the directory and all other users should only have read privileges
for the directory.

Listing 2-1 provides an example of a private key file.

Listing 2-1 Example of Private Key File

-----BEGIN ENCRYPTED PRIVATE KEY-----
MIICoDAaBgkqhkiG9w0BBQMwDQQItSFrtYcfKygCAQUEggKAEgrMxo8gYB/MOSXG
SbbCn10vTov6LUndfBNd6Ktg8KX9BFEuR3+26aVq9z9jwJiHsU8ZONxRx+7TV/p4
kDfPy2iwe/jWmNzbyge5ig84igXtkGEHPODWQY/ODmVxq4GwBnt0U5WMjnYt4X8m
y2UsvW9VhZGTzrUGCQ30z9Ixln/pm8PJB8pTBEtJ8rYiNbQGiuwB9GOyZIANYGy+
crfrTIhLp3z4aStcihP1b3R9lFw+t2feYKEQnCfaPmwwJLIk6/bp9Gd6LEEVR45y
+zUxj1uE5K26GyWE/mcdhDtAy+212s5lnfjs5voi1Uv5ER88fTtYjAcMljty0PM/
cIBb8+gEzKQOnjocryWJQHE9rUxnQjdpiCj/FEjz3DPN67AvHcx2UOAqholbNzqn
79c+nnnm9YcnFREwnwTKCticyvXTCsIT/bHD/Tn2RyjVW8Dbq/23I2YZLEMR2+k7
kdeanB8RpHdNHJVTKQM3A/tPo/aSkx6Ce7tXjGCJCyuCGDVRtCxupo2NRYcGi45Z
CzOvJB8tSGLw4WHh/iK8V0dM7H6qV115t4Ha3k+uYU1+0D/eTSfQV77KAfTXLvoO
4LAbV/JvLbAUCD70U/COl8yijllXSZPf6IB1Y5XH8P+FMgCkDOqwYG8zMWjbcgCj
abDVITdwYL5rCaIt8Nnz9xy7c2vKkYoCJLVIvZEVZE22gP77zcE73K4zfv/IlMBV
7npzaWqF4mSnBY5Z5JskM349fiehIKhmTHiBkX0K1r8RNIDle+c9uvbCD+94/q0Z
OYh7K0cycO0sjrIu1jrQQmEy4rFcrSWIOVWNMdN0rPrdR1Rd8T3IRkwo4+aO/icd
gL+rOA==
-----END ENCRYPTED PRIVATE KEY-----
Using Security 2-7

2 Managing Certificates and Keys

s to
r to

ital

Defining the Trusted Certificate Authorities

When establishing an SSL connection, the WLE processes (client applications and the
IIOP Listener/Handler) check the identity of the certificate authority and certificates
from the peer’s digital certificate chain against a list of trusted certificate authoritie
ensure the certificate authority is trusted by the organization. This check is simila
the check done in Web browsers. If the comparison fails, the initiator of the SSL
connection refuses to authenticate the target and drops the SSL connection. It is
typically the job of the system administrator to define a list of trusted certificate
authorities.

Retrieve from the LDAP-enabled directory service the digital certificates for the
certificate authorities that are to be trusted. Cut and paste the PEM formatted dig
certificates into a file named trust_ca.cer which is stored in
$TUXDIR/udataobj/security/certs. The trust_ca.cer can be edited with any
text editor.

The trust_ca.cer file should be owned by the administrator account. BEA
recommends that the file be protected so that only the owner has read and write
privileges for the file and all other users have only read privileges for the file.

 Listing 2-2 provides an example of a Trusted Certificate Authority file.

Listing 2-2 Example of Trusted Certificate Authority File

-----BEGIN CERTIFICATE----

MIIEuzCCBCSgAwIBAgIQKtZuM5AOzS9dZaIATJxIuDANBgkqhkiG9w0BAQQFADCB
zDEXMBUGA1UEChMOVmVyaVNpZ24sIEluYy4xHzAdBgNVBAsTFlZlcmlTaWduIFRy
dXN0IE5ldHdvcmsxRjBEBgNVBAsTPXd3dy52ZXJpc2lnbi5jb20vcmVwb3NpdG9y
eS9SUEEgSW5jb3JwLiBCeSBSZWYuLExJQUIuTFREKGMpOTgxSDBGBgNVBAMTP1Zl
cmlTaWduIENsYXNzIDEgQ0EgSW5kaXZpZHVhbCBTdWJzY3JpYmVyLVBlcnNvbmEg
Tm90IFZhbGlkYXRlZDAeFw05OTA2MTQwMDAwMDBaFw0wMDA2MTMyMzU5NTlaMIIB
GjEXMBUGA1UEChMOVmVyaVNpZ24sIEluYy4xHzAdBgNVBAsTFlZlcmlTaWduIFRy
dXN0IE5ldHdvcmsxRjBEBgNVBAsTPXd3dy52ZXJpc2lnbi5jb20vcmVwb3NpdG9y
eS9SUEEgSW5jb3JwLiBieSBSZWYuLExJQUIuTFREKGMpOTgxHjAcBgNVBAsTFVBl
cnNvbmEgTm90IFZhbGlkYXRlZDE0MDIGA1UECxMrRGlnaXRhbCBJRCBDbGFzcyAx
IC0gTWljcm9zb2Z0IEZ1bGwgU2VydmljZTEYMBYGA1UEAxQPUGF1bCBCLiBQYXRy
aWNrMSYwJAYJKoZIhvcNAQkBFhdwYXVsLnBhdHJpY2tAYmVhc3lzLmNvbTBcMA0G
CSqGSIb3DQEBAQUAA0sAMEgCQQDAbJhRRy6eDWiCu4kYLpTPYWtnMmleDb20aqGE
CBdCbyWpkEgl63LFy+LkVdEqfS60zQBFhK4O5f50sT5U7mThAgMBAAGjggGPMIIB
2-8 Using Security

Defining the Trusted Certificate Authorities
izAJBgNVHRMEAjAAMIGsBgNVHSAEgaQwgaEwgZ4GC2CGSAGG+EUBBwEBMIGOMCgG
CCsGAQUFBwIBFhxodHRwczovL3d3dy52ZXJpc2lnbi5jb20vQ1BTMGIGCCsGAQUF
BwICMFYwFRYOVmVyaVNpZ24sIEluYy4wAwIBARo9VmVyaVNpZ24ncyBDUFMgaW5j
b3JwLiBieSByZWZlcmVuY2UgbGlhYi4gbHRkLiAoYyk5NyBWZXJpU2lnbjARBglg
hkgBhvhCAQEEBAMCB4AwgYYGCmCGSAGG+EUBBgMEeBZ2ZDQ2NTJiZDYzZjIwNDcw
MjkyOTg3NjNjOWQyZjI3NTA2OWM3MzU5YmVkMWIwNTlkYTc1YmM0YmM5NzAxNzQ3
ZGE1ZDNmMjE0MWJlYWRiMmJkMmU4OTIxNmFlNmJmN2Q0MTE0OTlhYTNiMzQ3ZjRm
M2VhNDU2NDAzBgNVHR8ELDAqMCigJqAkhiJodHRwOi8vY3JsLnZlcmlzaWduLmNv
bS9jbGFzczEuY3JsMA0GCSqGSIb3DQEBBAUAA4GBAA0da2gPa4CuEK79rmU62Zwt
+h8f5o3+xerPQd2nVTgE/rinpV1r/9/EgNBvHxnFV6WAnjrfaux1GYKaZfLV/dim
91oyKj/DxVi+t9d1SRbCxE7Ubv0ctGxKJQl7d6ybN0xuIrDNAuuhu2rr6P3ALR79
2Ci6rHHC0HlJGqEFNs95

-----END CERTIFICATE-----

-----BEGIN CERTIFICATE----

MIIEuzCCBCSgAwIBAgIQKtZuM5AOzS9dZaIATJxIuDANBgkqhkiG9w0BAQQFADCB
zDEXMBUGA1UEChMOVmVyaVNpZ24sIEluYy4xHzAdBgNVBAsTFlZlcmlTaWduIFRy
dXN0IE5ldHdvcmsxRjBEBgNVBAsTPXd3dy52ZXJpc2lnbi5jb20vcmVwb3NpdG9y
eS9SUEEgSW5jb3JwLiBCeSBSZWYuLExJQUIuTFREKGMpOTgxSDBGBgNVBAMTP1Zl
cmlTaWduIENsYXNzIDEgQ0EgSW5kaXZpZHVhbCBTdWJzY3JpYmVyLVBlcnNvbmEg
Tm90IFZhbGlkYXRlZDAeFw05OTA2MTQwMDAwMDBaFw0wMDA2MTMyMzU5NTlaMIIB
GjEXMBUGA1UEChMOVmVyaVNpZ24sIEluYy4xHzAdBgNVBAsTFlZlcmlTaWduIFRy
dXN0IE5ldHdvcmsxRjBEBgNVBAsTPXd3dy52ZXJpc2lnbi5jb20vcmVwb3NpdG9y
eS9SUEEgSW5jb3JwLiBieSBSZWYuLExJQUIuTFREKGMpOTgxHjAcBgNVBAsTFVBl
cnNvbmEgTm90IFZhbGlkYXRlZDE0MDIGA1UECxMrRGlnaXRhbCBJRCBDbGFzcyAx
IC0gTWljcm9zb2Z0IEZ1bGwgU2VydmljZTEYMBYGA1UEAxQPUGF1bCBCLiBQYXRy
aWNrMSYwJAYJKoZIhvcNAQkBFhdwYXVsLnBhdHJpY2tAYmVhc3lzLmNvbTBcMA0G
CSqGSIb3DQEBAQUAA0sAMEgCQQDAbJhRRy6eDWiCu4kYLpTPYWtnMmleDb20aqGE
CBdCbyWpkEgl63LFy+LkVdEqfS60zQBFhK4O5f50sT5U7mThAgMBAAGjggGPMIIB
izAJBgNVHRMEAjAAMIGsBgNVHSAEgaQwgaEwgZ4GC2CGSAGG+EUBBwEBMIGOMCgG
CCsGAQUFBwIBFhxodHRwczovL3d3dy52ZXJpc2lnbi5jb20vQ1BTMGIGCCsGAQUF
BwICMFYwFRYOVmVyaVNpZ24sIEluYy4wAwIBARo9VmVyaVNpZ24ncyBDUFMgaW5j
b3JwLiBieSByZWZlcmVuY2UgbGlhYi4gbHRkLiAoYyk5NyBWZXJpU2lnbjARBglg
hkgBhvhCAQEEBAMCB4AwgYYGCmCGSAGG+EUBBgMEeBZ2ZDQ2NTJiZDYzZjIwNDcw
MjkyOTg3NjNjOWQyZjI3NTA2OWM3MzU5YmVkMWIwNTlkYTc1YmM0YmM5NzAxNzQ3
ZGE1ZDNmMjE0MWJlYWRiMmJkMmU4OTIxNmFlNmJmN2Q0MTE0OTlhYTNiMzQ3ZjRm
M2VhNDU2NDAzBgNVHR8ELDAqMCigJqAkhiJodHRwOi8vY3JsLnZlcmlzaWduLmNv
bS9jbGFzczEuY3JsMA0GCSqGSIb3DQEBBAUAA4GBAA0da2gPa4CuEK79rmU62Zwt
+h8f5o3+xerPQd2nVTgE/rinpV1r/9/EgNBvHxnFV6WAnjrfaux1GYKaZfLV/dim
91oyKj/DxVi+t9d1SRbCxE7Ubv0ctGxKJQl7d6ybN0xuIrDNAuuhu2rr6P3ALR79
2Ci6rHHC0HlJGqEFNs95

-----END CERTIFICATE-----
Using Security 2-9

2 Managing Certificates and Keys
Creating a Peer Rules File

When communicating across network links, it is important to validate the peer to
which you are connected is the intended or authorized peer. Without this check, it is
possible to make a secure connection, exchange secure messages, and receive a valid
chain of digital certificates but still be vulnerable to a man-in-the-middle attach. You
perform peer validation by verifying a set of specified information contained in the
peer digital certificate against a list of information that specifies the rules for validating
peer trust. The system administrator maintains the Peer Rules file.

The peer rules are maintained in an ASCII file named peer_val.rul. Store the
peer_val.rul file in the following location in the WLE directory structure:

$TUXDIR/udataobj/security/certs

Listing 2-3 provides an example of a Peer Rules file.

Listing 2-3 Example of Peer Rules File

#
This file contains the list of rules for validating if
a peer is authorized as the target of a secure connection
#
O=Ace Industry
O=”BEA Systems, Inc.”; OU=Enteprise Engineering;L=Nashua;S=NH
O=”Netscape Communications, Corp.”, C=US
o=Ace Industry, ou=QA, cn=www.ace.com

Each rule in the Peer Rules file is comprised of a set of elements that are identified by
a key. The WLE product recognizes the key names listed in Table 2-1.

Table 2-1 Supported Keys for Peer Rules File

Key Attribute

CN CommonName

SN SurName

L LocalityName
2-10 Using Security

Creating a Peer Rules File

 in the

 a
ust
mma

ar

 is

. If
Each key is followed by an optional white space, the character =, an optional white
space, and finally the value to be compared. The key is not case sensitive. A rule is not
a match unless the subject’s distinguished name contains each of the specified
elements in the rule and the values of those elements match the values specified
rule, including case and punctuation.

Each line in the Peer Rules file contains a single rule that is used to determine if
secure connection is to be established. Rules cannot span lines; the entire rule m
appear on a single line. Each element in the rule can be separated by either a co
(,) or semi-colon (;) character.

Lines beginning with the pound character (#) are comments. Comments cannot appe
on the same line as the name of an organization.

A value must be enclosed in single quotation marks if one of the following cases
true:

n Strings contain any of the following characters:

, + = "" <CR> < > # ;

n Strings have leading or trailing spaces

n Strings contain consecutive spaces

By default, the WLE product verifies peer information against the Peer Rules file
you do not want to perform this check, create an empty Peer Rules file.

S StateOrProvinceName

O OrganizationName

OU OrganizationalUnitName

C CountryName

E EmailAddress

Table 2-1 Supported Keys for Peer Rules File

Key Attribute
Using Security 2-11

2 Managing Certificates and Keys
2-12 Using Security

CHAPTER
3 Configuring the WLE
Environment for the
SSL Protocol

This topic includes the following sections:

n Setting Parameters for the SSL Protocol

n Defining a Port for SSL Communications

n Enabling Certificate-based Authentication

n Enabling Host Matching

n Setting the Encryption Strength

n Setting the Interval for Session Renegotiation

n Defining Security Parameters for the IIOP Listener/Handler

n Example of Setting Parameters on the ISL System Process

n Example of Setting Command Line Options on the CORBA C++ ORB

Perform the tasks in this topic only if you are using the SSL Protocol or
certificate-based authentication.
Using Security 3-1

3 Configuring the WLE Environment for the SSL Protocol
Setting Parameters for the SSL Protocol

To use the SSL protocol or certificate-based authentication with the IIOP
Listener/Handler, the CORBA C++ object request broker (ORB), or the CORBA Java
ORB, you need to:

n Specify the secure port on which SSL connections will be accepted.

n Enable certificate-based authentication.

n Specify the strength that will be used when encrypting data.

n Optionally, set the interval for session renegotiation (IIOP Listener/Handler
only).

The following sections detail how to use the options of the ISL command, the
command line options of the CORBA C++ ORB, or the system properties of the
CORBA Java ORB to set these SSL parameters.

Defining a Port for SSL Communications

To define a port for SSL communications:

n Use the -S option of the ISL command to specify which port of the IIOP
Listener/Handler will listen for secure connections using the SSL protocol. You
can configure the IIOP Listener/Handler to allow only SSL connections by
setting the -S option and -n option of the ISL command to the same value.

n If you are using a remote CORBA C++ or CORBA Java ORB, use the
-ORBsecurePort command line option or system property on the ORB to
specify which port of the ORB will listen for secure connections using the SSL
protocol. You should set this command line option or system property when
using callback objects or the WLE Notification Service.

Note: If you are using the SSL protocol with a joint client/server application, you
must specify a port number for SSL communications. You cannot use the
default.
3-2 Using Security

Enabling Certificate-based Authentication
Defining a secure port for SSL communication requires the WLE Security Pack to be
installed. If the -S option or the -ORBsecurePort command line option or system
property is executed and a license to enable the use of the SSL protocol does not exist,
the IIOP Listener/Handler, CORBA C++ ORB, or CORBA Java ORB will not start.

Enabling Certificate-based Authentication

To enable certificate-based authentication:

n Use the -a option of the ISL command to specify that certificate-based
authentication must be used by applications connecting to the IIOP
Listener/Handler.

n Use the -ORBmutualAuth command line option or system property on the ORB
to specify that certificate-based authentication must be used by applications
connecting to the CORBA C++ or CORBA Java ORB.

Enabling certificate-based authentication requires the WLE Security Pack to be
installed. If the -a option or the -ORBmutualAuth command line option or system
property is executed and a license to enable the use of the SSL protocol does not exist,
the IIOP Listener/Handler, CORBA C++ ORB, or CORBA Java ORB will not start.

Enabling Host Matching

The SSL protocol is capable of encrypting messages for confidentiality; however, the
use of encryption does nothing to prevent a man-in-the-middle attack. During a
man-in-the-middle attack, a principal masquerades as the location from which an
initiating application retrieves the initial object references used in the bootstrapping
process.

To prevent man-in-the-middle attacks, it is necessary to perform a check to ensure that
the digital certificate received during an SSL connection is for the principal for which
the connection was intended. Host Matching is a check that the host specified in the
object reference used to make the SSL connection matches the common name in the
Using Security 3-3

3 Configuring the WLE Environment for the SSL Protocol

at
by the
r of
tion.
e

t
mes

BA
e

e

ch

SL
DNS
 for
subject in the distinguished name specified in the target’s digital certificate. Host
Matching is performed only by the initiator of an SSL connection, and confirms th
the target of a request is actually located at the same network address specified
domain name in the target’s digital certificate. If this comparison fails, the initiato
the SSL connection refuses to authenticate the target and drops the SSL connec
Host Matching is not technically part of the SSL protocol and is similar to the sam
check done in Web browsers.

The domain name contained in the digital certificate must match exactly the hos
information contained in the object reference. Therefore, the use of DNS host na
instead of IP addresses is strongly encouraged.

By default Host Matching in enabled in the IIOP Listener/Handler and in the COR
C++ and CORBA Java ORBs. If you need to enable Host Matching, do one of th
following:

n In the IIOP Listener/Handler, specify the -v option of the ISL command.

n In the CORBA C++ or CORBA Java ORBs, specify the –ORBpeerValidate
command line option or system property.

The values for the -v option and the -ORBpeerValidate command line option or
system property are as follows:

n none —No host matching is performed.

n detect—If the object reference used to make the SSL connection does not
match the host name in the target’s certificate, the IIOP Listener/Handler or th
ORB does not authenticate the target and drops the SSL connection. The detect
value is the default value.

n warn—If the object reference used to make the SSL connection does not mat
the host name in the target’s certificate, the IIOP Listener/Handler or the ORB
sends a message to the user log and continues processing.

If there is more than one IIOP Listener/Handler in a WLE domain configured for S
connections (for example, in the case of fault tolerance), BEA recommends using
alias names for the IIOP Listener/Handlers or creating different digital certificates
each IIOP Listener/Handler. The –H switch on the IIOP Listener can be used to specify
the DNS alias name so that object references will be created correctly.
3-4 Using Security

Setting the Encryption Strength
Setting the Encryption Strength

To set the encryption strength:

n Use the -z and -Z options of the ISL command to set the encryption strength
in the IIOP Listener/Handler.

n Use the -ORBminCrypto and -ORBmaxCrypto command line option or system
property on the ORB to set the encryption strength in the CORBA C++ or
CORBA Java ORB.

The -z option and the -ORBminCrypto command line option or system property set
the minimum level of encryption used when an application establishes an SSL
connection with the IIOP Listener/Handler, the CORBA C++ ORB, or the CORBA
Java ORB. The valid values are 0, 40, 56, and 128. 0 means the data is signed but not
sealed while 40, 56, and 128 specify the length (in bits) of the encryption key. If this
minimum level of encryption is not met, the SSL connection fails. The default is 40.

The -Z option and the -ORBmaxCrypto command line option or system property set
the maximum level of encryption used when an application establishes an SSL
connection with the IIOP Listener/Handler, the CORBA C++ ORB, or the CORBA
Java ORB. The valid values are 0, 40, 56, and 128. 0 means that data is signed but not
sealed while 40, 56, and 128 specify the length (in bits) of the encryption key. The
default minimum value is 40. The default maximum value is whatever capability is
specified by the license.

The –z or –Z options and the -ORBminCrypto and -ORBmaxCrypto command line
options or system properties are available only if the WLE Security pack is installed.

To change the strength of encryption currently used in a WLE application, you need to
shut down the IIOP Listener/Handler or the ORB.

The combination in which you set the encryption values is important. The encryption
values set in the initiator of an SSL connection need to be a subset of the encryption
values set in the target of an SSL connection.

Table 3-1 lists combinations of encryption values and describes the encryption
behavior.
Using Security 3-5

3 Configuring the WLE Environment for the SSL Protocol
Note: In all combinations listed in Table 3-1, the value of the SSL license controls
the maximum bit strength. If a bit strength is specified beyond the maximum
licensed value, the IIOP Listener/Handler or ORB will not start and an error
will be generated indicating the bit strength setting is invalid. Stopping the

Table 3-1 Combinations of Encryption Values

-z
-ORBminCrypto

-Z
-ORBmaxCrypto

Description

No value specified No value specified If the use of the SSL protocol is specified by
some other command line option or system
property but no values are specified for
ORBminCrypto and ORBmaxCrypto, these
command line options or system properties are
assigned their default values.

0 No value specified Maximum encryption defaults to the maximum
value specified in the license. Tamper/replay
detection and privacy protection are negotiated.

No value specified 0 Tamper/replay detection is negotiated. Privacy
protection is not provided.

0 0 Tamper/replay detection is negotiated. Privacy
protection is not provided.

40, 56, 128 No value specified Maximum encryption defaults to the maximum
value specified in the license. Privacy
protection can be negotiated to the maximum
allowed by the SSL license.

No value specified 40, 56, 12 Privacy protection can be negotiated to the
value specified by the -Z option as long as it is
less than the maximum allowed by the SSL
license. The -z option defaults to 40.

40, 56, 128 40, 56, 128 Privacy protection can be negotiated between
the values specified by the -z option up to the
value specified by the -Z option as long as the
values are less than the maximum allowed by
the SSL license.
3-6 Using Security

Setting the Encryption Strength
IIOP Listener/Handler or ORB from starting, instead of lowering the
maximum value and giving only a warning, protects against an incorrectly
configured application running with less protection than was expected.

If a cipher that exceeds the maximum licensed bit strength is somehow
negotiated, the SSL connection is not established.

The WLE product supports the cipher suites described in Table 3-2.

Table 3-2 SSL Cipher Suites Supported by the WLE Product

Cipher Suite Key
Exchange
Type

Symmetric
Key
Strength

SSL_RSA_WITH_RC4_128_SHA RSA 128

SSL_RSA_WITH_RC4_128_MD5 RSA 128

SSL_RSA_WITH_DES_CDC_SHA RSA 56

SSL_RSA_EXPORT_WITH_RC4_40_MD5 RSA 40

SSL_RSA_EXPORT_WITH_DES40_CBC_SHA RSA 40

SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 RSA 40

SSL_DH_DSS_EXPORT_WITH_DES40_CBC_SHA Diffie
Hellman

40

SSL_DH_RSA_EXPORT_WITH_DES40_CBC_SHA Diffie
Hellman

40

SSL_RSA_WITH_3DES_EDE_CBC_SHA RSA 112

SSL_RSA_WITH_NULL_SHA RSA 0

SSL_RSA_WITH_NULL_MD5 RSA 0
Using Security 3-7

3 Configuring the WLE Environment for the SSL Protocol
Setting the Interval for Session
Renegotiation

Note: You set the interval for session renegotiation only in the IIOP
Listener/Handler.

Use the -R option of the ISL command to control the time between session
renegotiations. Periodic renegotiation of an SSL session refreshes the symmetric keys
used to encrypt and decrypt information which limits the time a symmetric key is
exposed. You can keep long-term SSL connections more secure by periodically
changing the symmetric keys used for encryption.

The –R option specifies the renegotiation interval in minutes. If an SSL connection
does renegotiate within the specified interval, the IIOP Listener/Handler will request
the application to renegotiate the SSL session for inbound connections or actually
perform the renegotiation in the case of outbound connections. The default is 0 minutes
which results in no periodic session renegotiations.

You can not use session renegotiation when enabling certificate-based authentication
using the -a option of the ISL command.

Defining Security Parameters for the IIOP
Listener/Handler

For the IIOP Listener/Handler to participate in SSL connections, the IIOP
Listener/Handler authenticates itself to the peer that initiated the SSL connection. This
authentication requires a digital certificate. The private key associated with the digital
certificate is used as part of establishing an SSL connection that results in an agreement
between the principal and the peer (in this case a client application and the IIOP
Listener/Handler) on the session key. The session key is a symmetric key (as opposed
to the private-public keys) that is used to encrypt data during an SSL session.You
define the following information for the IIOP Listener/Handler so that it can be
authenticated by peers:
3-8 Using Security

Example of Setting Parameters on the ISL System Process
n SEC_PRINCIPAL_NAME

Specifies the identity of the IIOP Listener/Handler.

n SEC_PRINCIPAL_LOCATION

Specifies the location of the private key file. For example,
$TUXDIR/udataobj/security/keys/milozzi.pem.

n SEC_PRINCIPAL_PASSVAR

Specifies an environment variable that holds the pass phrase for the private key
of the IIOP Listener/Handler. If this parameter is not specified, you will be
prompted for it when you enter the tmloadcf command.

These parameters are included in the part of the SERVERS section of the UBBCONFIG
file that defines the ISL system process.

Example of Setting Parameters on the ISL
System Process

You set parameters for the SSL protocol in the portion of the SERVERS section of the
UBBCONFIG that defines information for the ISL server process. Listing 3-1 includes
code from a UBBCONFIG file that set parameters to configure the IIOP Listener/Handler
for the SSL protocol and certificate-based authentication.

Listing 3-1 Using the ISL Command in the UBBCONFIG File

...
ISL

SRVGRP = SYS_GRP
SRVID = 5
CLOPT = “-A -- -a -z40 -Z128 -S3579 -n //ICEPICK:2569
SEC_PRINCIPAL_NAME=”BLOTTO”

 SEC_PRINCIPAL_LOCATION=”BLOTTO.pem”
 SEC_PRINCIPAL_VAR=”AUDIT_PASS”
Using Security 3-9

3 Configuring the WLE Environment for the SSL Protocol
Example of Setting Command Line Options
on the CORBA C++ ORB

Listing 3-2 contains sample code that illustrates using the command line options on the
CORBA C++ ORB to configure the ORB for the SSL protocol.

Listing 3-2 Example of Setting the Command Line Options on the CORBA C++
ORB

ChatClient -ORBid BEA_IIOP
-ORBsecurePort 2100
-ORBminCrypto 40
-ORBMaxCrypto 128
TechTopics

Example of Setting System Properties on the
CORBA Java ORB

Listing 3-3 contains sample code that illustrates using the system properties of the
CORBA Java ORB to configure the ORB for the SSL protocol.

Listing 3-3 Example of Setting the System Properties on the CORBA Java ORB

ChatClient -DTOBJADDR=corbalocs://piglet:1900
-Dorg.omg.CORBA=ORBPort=1948
-classpath=%CLASSPATH% client
-ORBMaxCrypto 128
3-10 Using Security

CHAPTER
4 Defining Security for a
WLE CORBA
Application

This topic includes the following sections:

n Setting Parameters for Security in the UBBCONFIG File

n Defining Authorized Users
Using Security 4-1

4 Defining Security for a WLE CORBA Application

r

ibe

d a

cation
Setting Parameters for Security in the
UBBCONFIG File

To configure security for your WLE application, you need to set parameters in the
UBBCONFIG file that define the following:

n The server process being used as the authentication server in the WLE
application. (This parameter is required for Username/Password authentication
only).

n The security level of the WLE application.

n The level of encryption to be used when using link-level encryption.

n The identity of the IIOP Listener/Handler, which is the location of and the
password phrase for the private key for the IIOP Listener/Handler. (These
parameters are required for certificate-based authentication only).

Note: For information about setting security parameters for the IIOP
Listener/Handler in the UBBCONFIG file, see “Defining Security Parameters fo
the IIOP Listener/Handler” on page 3-8.

To set parameters in the UBBCONFIG file, open the file in any text editor. The
parameters for security take effect when you use the tmloadcf command to update the
configuration parameters for your WLE application. The following sections descr
setting the parameters for security in the UBBCONFIG file.

Configuring the Authentication Server

Note: You only need to configure the Authentication Server, if you have specifie
value of USER_AUTH or higher for the SECURITY parameter.

Username/Password authentication requires that an authentication server be
configured for the purpose of authenticating users by checking their individual
passwords against a file of legal users. The WLE system uses a default authenti
server called AUTHSRV to perform authentication.
4-2 Using Security

Setting Parameters for Security in the UBBCONFIG File
For a WLE application to authenticate users, the value of the AUTHSVC parameter in the
RESOURCES section of the UBBCONFIG file needs to specify the name of the process to
be used as the authentication server for the WLE application. The service must be
called AUTHSVC. If the AUTHSVC parameter is specified in the RESOURCES section of
the UBBCONFIG file, the SECURITY parameter must also be specified with a value of at
least USER_AUTH. If the value is not specified, an error will occur when the system
executes the tmloadcf command.

In addition, you need to define AUTHSVR in the SERVERS section of the UBBCONFIG file.
The SERVERS section contains information about the server processes to be booted in
the WLE application. For more information about the parameters in the SERVERS
section of the UBBCONFIG file, see the Administration Guide in the WebLogic
Enterprise online documentation.

Listing 4-1 contains the portion of the UBBCONFIG file that defines the authentication
server.

Listing 4-1 Parameters for the Authentication Server

*RESOURCES
 SECURITY USER_AUTH
 AUTHSVC “AUTHSVC”

*SERVERS
 AUTHSVR
 SRVGRP=”SYS_GRP”
 SRVID=1
 RESTART=Y
 GRACE=60
 MAXGEN=2

Defining a Security Level

As part of defining security for a WLE application, you need to define the SECURITY
parameter in the RESOURCES section of the UBBCONFIG file. The SECURITY parameter
has the following format:

*RESOURCES
SECURITY {NONE|APP_PW|USER_AUTH|ACL|MANDATORY_ACL}

Table 4-1 describes the values for the SECURITY parameter.
Using Security 4-3

4 Defining Security for a WLE CORBA Application
When using Username/Password authentication, the value of the SECURITY parameter
must be APP_PW or greater.

Table 4-1 Values for the SECURITY Parameter

Value Description

NONE Indicates that no password or access checking is performed in the
WLE application.

Tobj::PrincipalAuthenticator::get_auth_type()
returns a value of TOBJ_NOAUTH.

APP_PW Indicates that client applications are required to supply an
application password to access the WLE domain. The
tmloadcf command prompts for an application password.

Tobj::PrincipalAuthenticator::get_auth_type()
returns a value of TOBJ_SYSAUTH.

USER_AUTH Indicates that client applications are required to authenticate
themselves to the WLE domain using a password. The value
USER_AUTH is similar to APP_PW but, in addition, indicates that
user authentication will be done during client initialization. The
tmloadcf command prompts for an application password.

Tobj::PrincipalAuthenticator::get_auth_type()
returns a value of TOBJ_APPAUTH.

ACL Indicates that authentication is used in the WLE application and
access control checks are performed on interfaces, services, queue
names, and event names. If an associated ACL is not found for a
name, it is assumed that permission is granted. The tmloadcf
command prompts for an application password.

Tobj::PrincipalAuthenticator::get_auth_type
returns a value of TOBJ_APPAUTH.

MANDATORY_ACL Indicates that authentication is used in the WLE application and
access control checks are performed on interfaces, services, queue
names, and event names. The value MANDATORY_ACL is
similar to ACL, but permission is denied if an associated
ACL is not found for the name.The tmloadcf command
prompts for an application password.

Tobj::PrincipalAuthenticator::get_auth_type
returns a value of TOBJ_APPAUTH.
4-4 Using Security

Setting Parameters for Security in the UBBCONFIG File
If the IIOP Listener/Handler is configured for using certificate-based authentication,
the value of the SECURITY parameter must be USER_AUTH or greater.

Setting the Level of Encryption

You can encrypt the messages between WLE applications on different machines in the
same WLE domain using link-level encryption. In the UBBCONFIG file for each WLE
application, you need to set the MINENCRYPTBITS and MAXENCRYPTBITS parameters
for the machines that establish the network connection, as follows.

n The MINENCRYPTBITS parameter specifies that at least the defined number of
bits are meaningful.

n The MAXENCRYPTBITS parameter specifies that encryption should be negotiated
up to the defined level.

The possible values for the MINENCRYPTBITS and MAXENCRYPTBITS parameters are 0,
40, and 128. A value of zero means no encryption is used, while 40 and 128 specify
the number of significant bits in the encryption key.

Sample UBBCONFIG File for Username/Password
Authentication

Listing 4-3 includes a UBBCONFIG file for an application which uses
Username/Password authentication. The key sections of the UBBCONFIG file are noted
in bold face text.

Listing 4-2 Sample UBBCONFIG File for Username/Password Authentication

*RESOURCES
 IPCKEY 55432
 DOMAINID securapp
 MASTER SITE1
 MODEL SHM
 LDBAL N
 SECURITY USER_AUTH
 AUTHSVR “AUTHSVC”
Using Security 4-5

4 Defining Security for a WLE CORBA Application
*MACHINES
 "ICEAXE"
 LMID = SITE1
 APPDIR = "D:\M3\samples\corba\SECURAPP"
 TUXCONFIG = "D:\M3\samples\corba\SECURAPP\results\tuxconfig"
 TUXDIR = "D:\WLE5"
 MAXWSCLIENTS = 10

*GROUPS
 SYS_GRP
 LMID = SITE1
 GRPNO = 1
 APP_GRP
 LMID = SITE1
 GRPNO = 2

*SERVERS
 DEFAULT:
 RESTART = Y
 MAXGEN = 5

 AUTHSVR
 SRVGRP = SYS_GRP
 SRVID = 1

 RESTART = Y
 GRACE = 60

 MAXGEN = 2

 TMSYSEVT
 SRVGRP = SYS_GRP
 SRVID = 1

 TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 2
 CLOPT = "-A -- -N -M"

 TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 3
 CLOPT = "-A -- -N"

 TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 4
 CLOPT = "-A -- -F"

 simple_server
 SRVGRP = APP_GRP
4-6 Using Security

Setting Parameters for Security in the UBBCONFIG File
 SRVID = 1
 RESTART = N

 ISL
 SRVGRP = SYS_GRP
 SRVID = 5
 CLOPT = “-A -- -n //PCWIZ::2500”

Sample UBBCONFIG File for Certificate-Based
Authentication

Listing 4-3 includes a UBBCONFIG file for an application which uses certificate-based
authentication. The key sections of the UBBCONFIG file are noted in bold face text.

Listing 4-3 Sample UBBCONFIG File for Certificate-Based Authentication

*RESOURCES
 IPCKEY 55432
 DOMAINID simpapp
 MASTER SITE1
 MODEL SHM
 LDBAL N
 SECURITY USER_AUTH

*MACHINES
 "ICEAXE"
 LMID = SITE1
 APPDIR = "D:\M3\samples\corba\SIMPAP~1"
 TUXCONFIG = "D:\M3\samples\corba\SIMPAP~1\results\tuxconfig"
 TUXDIR = "D:\WLE5"
 MAXWSCLIENTS = 10

*GROUPS
 SYS_GRP
 LMID = SITE1
 GRPNO = 1
 APP_GRP
 LMID = SITE1
 GRPNO = 2

*SERVERS
 DEFAULT:
Using Security 4-7

4 Defining Security for a WLE CORBA Application
 RESTART = Y
 MAXGEN = 5

 TMSYSEVT
 SRVGRP = SYS_GRP
 SRVID = 1

 TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 2
 CLOPT = "-A -- -N -M"

 TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 3
 CLOPT = "-A -- -N"

 TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 4
 CLOPT = "-A -- -F"

 simple_server
 SRVGRP = APP_GRP
 SRVID = 1
 RESTART = N

 ISL
 SRVGRP = SYS_GRP
 SRVID = 5
 CLOPT = "-A -- -a -z40 -Z128 -S2458 -n //ICEAXE:2468"
 SEC_PRINCIPAL_NAME="IIOPListener"
 SEC_PRINCIPAL_LOCATION="IIOPListener.pem"
 SEC_PRINCIPAL_PASSVAR="ISH_PASS"

Defining Authorized Users

As part of configuring security for a WLE application, you need to define the
principals and groups of principals who have access to the WLE application. The WLE
system uses the email address of a principal to map the external identity of a principal
represented by a digital certificate to an identity used by a WLE application to
authenticate a principal.
4-8 Using Security

Defining Authorized Users
You use the tpusradd command to create files containing lists of authorized
principals. The tpusradd command adds a new principal entry to the WLE security
data files. This information is used by the AUTHSRV to authenticate principals. The file
that contains the principals is called tpusr.

The file is a colon-delimited, flat ASCII file, readable only by the administrator of the
WLE application. The system file entries have a limit of 512 characters per line. The
file is kept in the application directory, specified by the environment variable
$APPDIR. The environment variable $APPDIR must be set to the path name of the WLE
application.

The tpusradd file should be owned by the administrator account. BEA recommends
that the file be protected so that only the owner has read and write privileges for the
file and all other users have only read privileges for the file.

When defining names of authorized users for a WLE EJB, there is a one-to-one
association between the users defined with the tpusradd command and the security
roles defined in the deployment descriptor of the WLE EJB.

The tpusradd command has the following options:

-u uid

The user identification number. uid must be a positive decimal integer below 128K.
uid must be unique within the list of existing identifiers for the application. uid defaults
to the next available (unique) identifier greater than 0.

-c client_name

A string of printable characters that specifies the name of the principal. The name may
not contain a colon (:). pound sign (#), or a newline (n). The principal name must be
unique within the list of existing principals for the WLE application. The name of the
principal can be either the name of a WLE client application or a WLE EJB.

Listing 4-4 includes a sample tpusradd file.

Listing 4-4 Sample tpusradd File

Cltname Uid

milozzi 122
smart 555
patt 1234
butler 15555
Using Security 4-9

4 Defining Security for a WLE CORBA Application
Note: Use the tpgrpadd command to add groups of principals to the WLE security
data files.

In addition to the tpusradd and tpgrpadd commands, the WLE product provides the
following commands to modify the tpusr and tpgrp files:

n tpusrdel

n tpusrmod

n tpgrpdel

n tpgrpmod

For a complete description of the commands, see WLE Reference in the WebLogic
Enterprise online documentation.
4-10 Using Security

CHAPTER
5 Writing a WLE CORBA
Application That
Implements Security

This topic contains the following sections:

n Understanding the Address Formats of the Bootstrap Object

n Using Username/Password Authentication

n Using Certificate-based Authentication

n Using the Invocations_Options_Required() Method
Using Security 5-1

5 Writing a WLE CORBA Application That Implements Security
Understanding the Address Formats of the
Bootstrap Object

The Bootstrap object in the WLE product has been enhanced so that users can specify
that all communication to a given IIOP Listener/Handler be protected. The Bootstrap
object supports corbaloc and corbalocs Uniform Resource Locator (URL) address
formats to be used when specifying the location of the IIOP Listener/Handler. The type
of security provided depends on the format of URL used to specify the location of the
IIOP Listener/Handler.

As with the Host and Port address format, you use the URL address formats to specify
the location of the IIOP Listener/Handler, but the bootstrapping process behaves
differently. When using the corbaloc or corbalocs URL address format, the initial
connection to the IIOP Listener/Handler is deferred until either:

n The principal uses Username/Password authenticate with either the
Tobj::PrincipalAuthenticator::logon or the
SecurityLevel2::PrincipalAuthenticator::authenticate methods.

n The principal calls the Tobj_Bootstrap::resolve_initial_references
method using an object ID value other than SecurityCurrent.

Using the corbalocs URL address format indicates that the SSL protocol is used to
the protect at least the integrity of the connection between the principal and the IIOP
Listener/Handler.

Table 5-1 highlights the differences between the two URL address formats.

Table 5-1 Differences Between corbaloc and corbalocs URL Address
Formats

URL Address Formats Functionality

corbaloc By default, invocations on the IIOP Listener/Handler are unprotected. Configuring
the IIOP Listener/Handler for the SSL protocol is optional.

A principal can secure the bootstrapping process by using the
SecurityLevel2::Current::authenticate()and
SecurityLeve12::Credentials::invocation_options_required(
) methods to specify that certificate-based authentication is to be used.
5-2 Using Security

Understanding the Address Formats of the Bootstrap Object
Both the corbaloc and corbalocs URL address formats provide stringified object
references that are easily manipulated in both TCP/IP and Domain Name System
(DNS) environments. The corbaloc and corbalocs URL address formats contain a
DNS-style host name or an IP address and port.

The URL address formats follow and extend the definition of object URLs adopted by
the Object Management Group (OMG) as part of the Interoperable Naming Service
submission. The WLE software also extends the URL format described in the OMG
Interoperable Naming Service submission to support a secure form that is modeled
after the URL for secure HTTP, as well as to support functionality in previous releases
of the WLE product.

Listing 5-1 contains examples of the new URL address formats.

Listing 5-1 Examples of the corbaloc and corbalocs URL Address Formats

corbaloc://555xyz.com:1024,corbaloc://555backup.com:1022,
corbaloc://555last.com:1999
corbalocs://555xyz.com:1024,(corbalocs://555backup.com:1022|corba
locs://555last.com:1999)
corbaloc://555xyz.com:1111
corbalocs://24.128.122.32:1011, corbalocs://24.128.122.34

As an enhancement to the URL syntax described in the OMG Interoperable Naming
Service submission, the WLE product extends the syntax to support a list of multiple
URLs, each with a different scheme. Listing 5-2 contains examples of specifying
multiple URLs.

Listing 5-2 Examples of Specifying Multiple URL Address Formats

corbalocs://555xyz.com:1024,corbaloc://555xyz.com:1111
corbalocs://ctxobj.com:3434,corbalocs://mthd.com:3434,corbaloc://force.com:1111

corbalocs Invocations on the IIOP Listener/Handler are protected and the IIOP
Listener/Handler, the CORBA C++ ORB, or the CORBA Java ORB must be
configured to enable the use of the SSL protocol. For more information, see
“Configuring the WLE Environment for the SSL Protocol” on page 3-1.

URL Address Formats Functionality
Using Security 5-3

5 Writing a WLE CORBA Application That Implements Security
In the examples in Listing 5-2, if the parser reaches the URL
corbaloc://force.com:1111, it resets its internal state as if it had never attempted
secure connections, and then begins attempting unprotected connections. This
situation occurs if the client application has not set any SSL parameters on the
Credentials object.

The following sections describe the behavior when using the different address formats
of the Bootstrap object.

Using the Host and Port Address Format

If a WLE client application uses the Host and Port address format of the Bootstrap
object, the constructor method of the Bootstrap object constructs an object reference
using the specified host name and port number. The invocation to the IIOP
Listener/Handler is made without the protections offered by the SSL protocol.

The client application can still authenticate using Username/Password authentication.
However, since the bootstrapping process is performed over an unprotected and
unverified link, all communications are vulnerable to the following security attacks:

n The Man-in-the-Middle attack, because there was no verification that the
principal to which the connection was made was the desired principal.

n The Denial of Service attack, because no object references were returned, the
object references returned were invalid, or the security token was invalid.

n The Sniffer attack, because the information was sent in the clear so that anyone
with a packet sniffer can see the content of a message that was not encrypted
(for example, only the username/password information is encrypted).

n The Tamper attack, because the integrity of the information is not protected. The
contents of the message could be changed and the change would not be detected.

n The Replay attack, because the same request can be sent repeatedly without
detection.

Note: If the IIOP Listener/Handler is configured for the SSL protocol and the Host
and Port address format of the Bootstrap object is used, the invocation on the
specified WLE object results in a INVALID_DOMAIN exception.
5-4 Using Security

Understanding the Address Formats of the Bootstrap Object
Using the corbaloc URL Address Format

By default, the invocation on the IIOP Listener/Handler is unprotected when using the
corbaloc URL address format and Username/Password authentication. Therefore, all
communications are vulnerable to the following security attacks:

n The Man-in-the-Middle attack, because there was no verification that the
principal to which the connection was made was the desired principal.

n The Denial of Service attack, because no object references were returned, the
object references returned were invalid, or the security token was invalid.

n The Sniffer attack, because the information was sent in the clear so that anyone
with a packet sniffer can see the content of a message that was not encrypted
(for example, only the username/password information is encrypted).

n The Tamper attack, because the integrity of the information is not protected. The
content of the message could be changed and the change would not be detected.

n The Replay attack, because the same request can be sent repeatedly without
detection.

You can protect the bootstrapping process when using the corbaloc URL address
format by using the SecurityLevel2::Current::authenticate() method,
specifying that certificate-based authentication is to be used, and setting the
invocation_methods_required method on the Credentials object.

Note: If the IIOP Listener/Handler is configured for the SSL protocol and not for
certificate-based authentication and the corbaloc URL address format is
used, the invocation on the specified WLE object results in an
INVALID_DOMAIN exception.

BEA recommends that existing WLE applications migrate to the corbaloc URL
address format instead of using the Host and Port Address format.

Using the corbalocs URL Address Format

The corbalocs URL address format is the recommended format to use to ensure that
communications between principals and the IIOP Listener/Handler are protected. The
corbalocs URL address format functions in the same way as the corbaloc URL
Using Security 5-5

5 Writing a WLE CORBA Application That Implements Security

ing

ion.
ve an
er:

n the
ing

ation
address format, except the SSL protocol is used to protect all communications with the
IIOP Listener/Handler, the CORBA C++ ORB, or the CORBA Java ORB regardless
of the type of authentication used.

When the defaults are used with the corbalocs URL address format, communications
are vulnerable only to Denial of Service security attacks. Using the SSL protocol and
certificate-based authentication guards against Sniffer, Tamper, and Replay attacks. In
addition, the validation check of the host specified in the digital certificate guards
against Man-in-the-Middle attacks.

To use the corbalocs URL address format, the IIOP Listener/Handler, the CORBA
C++ ORB, or the CORBA Java ORB must be configured to enable the use of the SSL
protocol. For more information about configuring the IIOP Listener/Handler, the
CORBA C++ ORB, or the CORBA Java ORB for the SSL protocol, see “Configur
the WLE Environment for the SSL Protocol” on page 3-1.

Using Username/Password Authentication

This section describes implementing Username/Password authentication in WLE
applications.

The Security Sample Application

The Security sample application demonstrates Username/Password authenticat
The Security sample application requires each student using the application to ha
ID and a password. The Security sample application works in the following mann

1. The client application has a logon method. This method invokes operations o
PrincipalAuthenticator object, which is obtained as part of the process of logg
on to access the domain.

2. The server application implements a get_student_details() method on the
Registrar object to return information about a student. After the user is
authenticated and the logon is complete, the get_student_details() method
accesses the student information in the database to obtain the student inform
needed by the client logon method.
5-6 Using Security

Using Username/Password Authentication

at

r the
3. The database in the Security sample application contains course and student
information.

Figure 5-1 illustrates the Security sample application.

Figure 5-1 Security Sample Application

The source files for the Security sample application are located in the
\samples\corba\university directory in the WLE software. For information
about building and running the Security sample application, see “Building and
Running the CORBA Sample Applications” on page 6-1.

Writing the Client Application

When using Username/Password authentication, write client application code th
does the following:

1. Uses the Bootstrap object to obtain a reference to the SecurityCurrent object fo
specific WLE domain. You can use the Host and Port Address format, the
corbaloc URL address format, or the corbalocs URL address format.

CORBA Java
Client

Application

CORBA C++
Client

Application

ActiveX Client
Application

Database

logon()

Security Required

Server
Application

Registrar Object

get_student_details()

browse_courses()

get_course_details()

CORBA
Using Security 5-7

5 Writing a WLE CORBA Application That Implements Security

 are

 to

.
ing

e

f the

ple,
2. Gets the PrincipalAuthenticator object from the SecurityCurrent object.

3. Uses one of the following methods to authenticate the principal:

l C++—SecurityLevel2::PrincipalAuthenticator::authenticate()

using Tobj::TuxedoSecurity

l Java—SecurityLevel2.PrincipalAuthenticator.authenticate()
using Tobj::TuxedoSecurity

l C++—Tobj::PrincipalAuthenticator::logon()

l Java—Tobj.PrincipalAuthenticator.logon()

The SecurityLevel2::PrincipalAuthenticator interface is defined in the
CORBAservices Security Service specification. This interface contains two
methods that are use to accomplish the authentication of the principal. There
two methods because authentication of principals may require more than one
step. The authenticate() method allows the caller to authenticate and
optionally select attributes for the principal of this session.

The WLE product extends the PrincipalAuthenticator object with functionality
support similar security to that found in BEA TUXEDO. The enhanced
functionality is provided by the Tobj::PrincipalAuthenticator interface.

The methods defined for the Tobj::PrincipalAuthenticator interface
provide a focused, simplified form of the equivalent CORBA-defined interface
You can use either the CORBA-defined or the WLE extensions when develop
a WLE application.

The Tobj::PrincipalAuthenticator interface provides the same
functionality as the SecurityLevel2::PrincipalAuthenticator interface.
However, unlike the
SecurityLevel2::PrincipalAuthenticator::authenticate() method,
the logon() method of the Tobj::PrincipalAuthenticator interface does
not return a Credentials object. As a result, WLE applications that need to us
more than one principal identity are required to call the
Current::get_credentials() method immediately after the logon()
method to retrieve the Credentials object as a result of the logon. Retrieval o
Credentials object directly after a logon method should be protected with
serialized access.

The following sections contain C++ and Java code examples that illustrate
implementing Username/Password authentication. For a Visual Basic code exam
see “Automation Security Reference” on page 13-1.
5-8 Using Security

Using Username/Password Authentication
C++ Code Example of Using the
SecurityLevel2::PrincipalAuthenticator::authenticate() Method

Listing 5-3 contains C++ code that performs Username/Password authentication using
the SecurityLevel2::PrincipalAuthenticator::authenticate()method.

Listing 5-3 C++ Client Application that uses the
SecurityLevel2::PrincipalAuthenticator::authenticate() Method

...
//Create Bootstrap object
 Tobj_Bootstrap* bootstrap = new Tobj_Bootstrap(orb,
 corbalocs://sling.com:2143);

//Get SecurityCurrent object
CORBA::Object_var var_security_current_oref =
 bootstrap.resolve_initial_references(“SecurityCurrent”);
SecurityLevel2::Current_var var_security_current_ref =
 SecurityLevel2::Current::_narrow(var_security_current_oref.in());

//Get the PrincipalAuthenticator
SecurityLevel2::PrincipalAuthenticator_var var_principal_authenticator_oref =
 var_security_current_oref->principal_authenticator();

const char * user_name = “john”
const char * client_name = “university”;
char system_password[31] = {‘\0’};
char user_password[31] = {‘\0’};

//Determine the security level
Tobj::AuthType auth_type = var_bea_principal_authenticator->get_auth_type();
switch (auth_type)
{
 case Tobj::TOBJ_NOAUTH;
 break;

 case Tobj::TOBJ_SYSAUTH
 strcpy(system_password, “sys_pw”);

 case Tobj::TOBJ_APPAUTH
 strcpy(system_password, “sys_pw”);
 strcpy(user_password, “john_pw”);
 break;
}
if (auth_type != Tobj::TOBJ_NOAUTH)
Using Security 5-9

5 Writing a WLE CORBA Application That Implements Security
{
 SecurityLevel2::Credentials_var creds;
 Security::Opaque_var auth_data;
 Security::AttributeList_var privileges;
 Security::Opaque_var cont_data;
 Security::Opaque_var auth_spec_data;

var_bea_principalauthenticator->build_auth_data(user_name,
 client_name,
 system_password,
 user_password,
 NULL,
 auth_data,
 privileges);
Security::AuthenticationStatus status =
 var_bea_principalauthenticator->authenticate(
 Tobj::TuxedoSecurity,
 user_name,
 auth_data,
 privileges,
 creds,
 cont_data, auth_spec_data);

if (status != Security::SecAuthSuccess)
 {
 //Failed authentication
 return;
 }
}

// Proceed with application
...

Java Code Example of Using the
SecurityLevel2.PrincipalAuthenticator.authenticate() Method

Listing 5-4 contains Java code that performs Username/Password authentication using
the SecurityLevel2.PrincipalAuthenticator.authenticate()method.

Listing 5-4 Java Client Application that uses the
5-10 Using Security

Using Username/Password Authentication
SecurityLevel2.PrincipalAuthenticator.authenticate() Method

...
// Create Bootstrap object
 Tobj_Bootstrap bs =
 new Tobj_Bootstrap(orb, corbalocs://sling.com:2143);

// Get SecurityCurrent object
 org.omg.CORBA.Object secCurObj =
 bs.resolve_initial_references("SecurityCurrent");
 org.omg.SecurityLevel2.Current secCur2Obj =
 org.omg.SecurityLevel2.CurrentHelper.narrow(secCurObj);

 // Get Principal Authenticator
 org.omg.Security.PrincipalAuthenticator princAuth =
 secCur2Obj.principal_authenticator();
 com.beasys.Tobj.PrincipalAuthenticator auth =
 Tobj.PrincipalAuthenticatorHelper.narrow(princAuth);

 // Get Authentication type
 com.beasys.Tobj.AuthType authType = auth.get_auth_type();

 // Initialize arguments
 String userName = "John";
 String clientName = "Teller";
 String systemPassword = null;
 String userPassword = null;
 byte[] userData = new byte[0];

 // Prepare arguments according to security level requested
 switch(authType.value())
 {
 case com.beasys.Tobj.AuthType._TPNOAUTH:
 break;

 case com.beasys.Tobj.AuthType._TPSYSAUTH:
 systemPassword = "sys_pw";
 break;

 case com.beasys.Tobj.AuthType._TPAPPAUTH:
 systemPassword = "sys_pw";
 userPassword = "john_pw";
 break;
 }

 // Build security data
 org.omg.Security.OpaqueHolder auth_data =
 new org.omg.Security.OpaqueHolder();
 org.omg.Security.AttributeListHolder privs =
Using Security 5-11

5 Writing a WLE CORBA Application That Implements Security
 new Security.AttributeListHolder();
 auth.build_auth_data(userNname, clientName, systemPassword,
 userPassword, userData, authData,
 privs);

 // Authenticate user
 org.omg.SecurityLevel2.CredentialsHolder creds =
 new org.omg.SecurityLevel2.CredentialHolder();
 org.omg.Security.OpaqueHolder cont_data =
 new org.omg.Security.OpaqueHolder();
 org.omg.Security.OpaqueHolder auth_spec_data =
 new org.omg.Security.OpaqueHolder();

 org.omg.Security.AuthenticationStatus status =
 auth.authenticate(com.beasys.Tobj.TuxedoSecurity.value,
 0, userName, auth_data.value(),
 privs.value(), creds, cont_data,
 auth_spec_data);
 if (status != AuthenticatoinStatus.SecAuthSuccess)
 System.exit(1);
 }
...

C++ Code Example of Using the Tobj::PrincipalAuthenticator::logon() Method

Listing 5-5 contains C++ code that performs Username/Password authentication using
the Tobj::PrincipalAuthenticator::logon()method.

Listing 5-5 C++ Client Application that uses the
Tobj::PrincipalAuthenticator::logon() Method

...
CORBA::Object_var var_security_current_oref =
 bootstrap.resolve_initial_references(“SecurityCurrent”);
SecurityLevel2::Current_var var_security_current_ref =
 SecurityLevel2::Current::_narrow(var_security_current_oref.in());

//Get the PrincipalAuthenticator
SecurityLevel2::PrincipalAuthenticator_var var_principal_authenticator_oref =
 var_security_current_oref->principal_authenticator();

//Narrow the PrincipalAuthenticator
Tobj::PrincipalAuthenticator_var var_bea_principal_authenticator =
 Tobj::PrincipalAuthenticator::_narrow
 var_principal_authenticator_oref.in());
5-12 Using Security

Using Username/Password Authentication
const char * user_name = “john”
const char * client_name = “university”;
char system_password[31] = {‘\0’};
char user_password[31] = {‘\0’};

//Determine the security level
Tobj::AuthType auth_type = var_bea_principal_authenticator->get_auth_type();
switch (auth_type)
{
 case Tobj::TOBJ_NOAUTH;
 break;

 case Tobj::TOBJ_SYSAUTH
 strcpy(system_password, “sys_pw”);

 case Tobj::TOBJ_APPAUTH
 strcpy(system_password, “sys_pw”);
 strcpy(user_password, “john_pw”);
 break;
}
if (auth_type != Tobj::TOBJ_NOAUTH)

{
 SecurityLevel2::Credentials_var creds;
 Security::Opaque_var auth_data;
 Security::AttributeList_var privileges;
 Security::Opaque_var cont_data;
 Security::Opaque_var auth_spec_data;
var_bea_principalauthenticator->build_auth_data(user_name,
 client_name,
 system_password,
 user_password,
 NULL,
 auth_data,
 privileges);
//Determine the security level
Tobj::AuthType auth_type = var_bea_principal_authenticator->get_auth_type();
Security::AuthenticationStatus status = var_bea_principal_authenticator->logon(
 user_name,
 client_name,
 system_password,
 user_password,
 0);

if (status != Security::SecAuthSuccess)
 {
 //Failed authentication
Using Security 5-13

5 Writing a WLE CORBA Application That Implements Security
 return;
 }
}
// Proceed with application
...
// Log off
 try
 {
 logoff();
 }
...

Java Code Example of Using the Tobj.PrincipalAuthenticator.logon() Method

Listing 5-6 contains Java code that performs Username/Password authentication using
the Tobj.PrincipalAuthenticator.logon()method.

Listing 5-6 Java Client Application That Uses the
Tobj.PrincipalAuthenticator.logon() Method

...
 // Create bootstrap object
 Tobj_Bootstrap bs =
 new Tobj_Bootstrap(orb, corbaloc://sling.com;2143);

 // Get security current
 org.omg.CORBA.Object secCurObj =
 bs.resolve_initial_references("SecurityCurrent");
 org.omg.SecurityLevel2.Current secCur2Obj =
 org.omg.SecurityLevel2.CurrentHelper.narrow(secCurObj);

 // Get Principal Authenticator
 org.omg.Security.PrincipalAuthenticator princAuth =
 secCur2Obj.principal_authenticator();
 com.beasys.Tobj.PrincipalAuthenticator auth =
 Tobj.PrincipalAuthenticatorHelper.narrow(princAuth);

 // Get Authentication type
 com.beasys.Tobj.AuthType authType = auth.get_auth_type();

 // Initialize arguments
 String userName = "John";
 String clientName = "Teller";
 String systemPassword = null;
 String userPassword = null;
 byte[] userData = new byte[0];
5-14 Using Security

Using Certificate-based Authentication
 // Prepare arguments according to security level requested
 switch(authType.value())
 {
 case com.beasys.Tobj.AuthType._TPNOAUTH:
 break;

 case com.beasys.Tobj.AuthType._TPSYSAUTH:
 systemPassword = "sys_pw";
 break;

 case com.beasys.Tobj.AuthType._TPAPPAUTH:
 systemPassword = "sys_pw";
 userPassword = "john_pw";
 break;
 }

 // TUXEDO-style Authentication
 org.omg.Security.AuthenticationStatus status =
 auth.logon(userName, clientName, systemPassword,
 userPassword, userData);
...

// Proceed with application

// Log off
 try
 {
 auth.logoff();
 }
...

Using Certificate-based Authentication

This section describes implementing certificate-based authentication in WLE
applications.
Using Security 5-15

5 Writing a WLE CORBA Application That Implements Security
The Secure Simpapp Sample Application

The Secure Simpapp sample application uses the existing Simpapp sample application
and modifies the code and configuration files to support secure communications
through the SSL protocol and certificate-based authentication.

The server application in the secure Simpapp sample application provides an
implementation of a CORBA object that has the following two methods:

l The upper method accepts a string from the client application and converts
the string to uppercase letters.

l The lower method accepts a string from the client application and converts
the string to lowercase letters.

 Figure 5-2 illustrates how the Secure Simpapp sample application works.
5-16 Using Security

Using Certificate-based Authentication
Figure 5-2 Secure Simpapp Sample Application

The Simpapp sample application was modified in the following ways to support
certificate-based authentication and the SSL protocol:

n In the ISL section of the UBBCONFIG file, the -a, -S, -z, and -Z options of the
ISL command are specified to configure the IIOP Listener/Handler for the SSL
protocol.

n In the ISL section of the UBBCONFIG file, the SEC_PRINCIPAL_NAME, the
SEC_PRINCIPAL_LOCATION, and the SEC_PRINCIPAL_PASSVAR parameters are
defined to specify proof material for the IIOP Listener/Handler.

n The code for the client application uses the corbalocs URL address format.

Simpapp
Server

Application

SimpleFactory

Simple

DBAccess
 Database

IIOP
Listener/
Handler

Simpapp
Client

Application

Private Key
for Simpapp Client

Application

Private Key
for IIOP

Listener/Handler

LDAP
Directory
Service

Digital Certifcate
for

Simpapp Client Application

Digital Certifcate
for

IIOP Listener/Handler

Digital Certifcate
for

Certificate Authority
Using Security 5-17

5 Writing a WLE CORBA Application That Implements Security

s the

r the
n The code for the client application uses the authenticate() method of the
SecurityLevel2:Current interface to authenticate the principal and obtain
credentials for the principals.

The source files for the C++ and Java versions of the Secure Simpapp sample
application are located in the \samples\corba\simpappSSL and
\samples\corba\simpappSSL_java directories of the WLE software. For
instructions for building and running the Secure Simpapp sample application, see
“Building and Running the CORBA Sample Applications” on page 6-1.

Writing the Client Application

When using certificate-based authentication, write client application code that doe
following:

1. Uses the Bootstrap object to obtain a reference to the SecurityCurrent object fo
specific WLE domain. Use either the corbalocs URL address format.

2. Gets the PrincipalAuthenticator object from the SecurityCurrent object.

3. Uses the authenticate() method of the SecurityLevel2:Current interface
to authenticate the principals and obtain credentials for the principals. When
using certificate-based authentication, specify Tobj::CertificateBased for
the method argument and the pass phrase for the private key as the auth_data
argument for Security::Opaque.

The following sections contain C++ and Java code examples that illustrate
implementing certificate-based authentication.

C++ Code Example of Certificate-based Authentication

Listing 5-7 illustrates using certificate-based authentication in a C++ client
application.

Listing 5-7 C++ Client Application That Uses Certificate-Based Authentication

....
5-18 Using Security

Using Certificate-based Authentication
// Initialize the ORB
CORBA::ORB_var v_orb = CORBA::ORB_init(argc, argv, "");

// Create the bootstrap object
Tobj_Bootstrap bootstrap(v_orb.in(), corbalocs://sling.com:2143);

// Resolve SecurityCurrent

CORBA::Object_ptr seccurobj =
 bootstrap.resolve_initial_references("SecurityCurrent");
SecurityLevel2::Current_ptr seccur =
 SecurityLevel2::Current::_narrow(seccurobj);

// Perform certificate-based authentication
 SecurityLevel2::Credentials_ptr the_creds;
 Security::AttributeList_varprivileges;
 Security::Opaque_var continuation_data;
 Security::Opaque_var auth_specific_data;
 Security::Opaque_var response_data;

//Principal email address
 char emailAddress[] = “milozzi@bigcompany.com;”
// Pass phrase for principal’s digital certificate
 char password[] = “asdawrewe98infldi7;”

// Convert the certificate private key password to opaque
 unsigned long password_len = strlen(password);
 Security::Opaque ssl_auth_data(password_len);

// Authenticate principal certificate with principal authenticator
 for(int i = 0; (unsigned long) i < password_len; i++)
 ssl_auth_data[i] = password[i];
 Security::AuthenticationStatus auth_status;
 SecurityLevel2::PrincipalAuthenticator_var PA =
 seccur->principal_authenticator();

 auth_status = PA->authenticate(Tobj::CertificateBased,
 emailAddress,
 ssl_auth_data,
 privileges,
 the_creds,
 continuation_data,
 auth_specific_data);

while(auth_status == Security::SecAuthContinue) {
auth_status = PA->continue_authentication(

 response_data,
 the_creds,
 continuation_data,
 auth_specific_data);
Using Security 5-19

5 Writing a WLE CORBA Application That Implements Security
}

...

Java Code Example of Certificate-based Authentication

Listing 5-8 illustrates using certificate-based authentication in a C++ client
application.

Listing 5-8 Java Client Application That Uses Certificate-based Authentication

...

// Initialize the ORB.

 Properties Prop;
 Prop = new Properties(System.getProperties());
 Prop.put("org.omg.CORBA.ORBClass","com.beasys.CORBA.iiop.ORB");
 Prop.put("org.omg.CORBA.ORBSingletonClass",
 "com.beasys.CORBA.idl.ORBSingleton");

 ORB orb = ORB.init(args, Prop);

// Create the Bootstrap object

 Tobj_Bootstrap bs = new Tobj_Bootstrap(orb,
 corbalocs://foo:2501);

//Resolve SecurityCurrent
 org.omg.CORBA.object ocurr =
 bs.resolve_initial_references(“SecurityCurrent”);
 org.omg.SecurityLevel2.Current curr =
 org.omg.SecurityLevel2.CurrentHelper.narrow(occur);

// Get Principal Authenticator

 com.beasys.Tobj.PrincipalAuthenticator pa =
 (com.beasys.Tobj.PrincipalAuthenticator)
 curr.principal_authenticator();

 OpaqueHolder auth_data = new OpaqueHolder();
 AttributeListHolder privileges = new AttributeListHolder();
 org.omg.SecurityLevel2.CredentialsHolder creds =
 new org.omg.SecurityLevel2.CredentialsHolder();
 OpaqueHolder continuation_data = new OpaqueHolder();
5-20 Using Security

Using the Invocations_Options_Required() Method
 OpaqueHolder auth_specific_data = new OpaqueHolder();
 auth_data.value=new String (“deathstar”).getbytes(“UTF8);
 if(pa.authenticate(com.beasys.Tobj.CertificateBased.value,
 “vader@largecompany.com”,
 auth_data.value,
 privileges.value,
 the_creds,
 continuation_data,
 auth_specific_data)

 !AuthenticationStatus.SecAuthSuccess) {
 System.err.println(“logon failed”);
 System.exit(1);
 }
 ...

Using the Invocations_Options_Required()
Method

When using certificate-based authentication, it may be necessary for a principal to
explicitly define the security attributes it requires. For example, a bank application
may have specific security requirements it needs met before the bank application can
transfer data to a database. The invocation_options_required() method of the
SecurityLevel2::Credentials interface allows the principal to explicitly control
the security characteristics of the SSL connection. When using the corbaloc URL
address format, you can secure the bootstrapping process by using the
authenticate() and invocation_options_required() methods of the
SecurityLevel2::Credentials interface.

Perform the following steps to use the invocation_options_required() method :

1. Write application code that uses the authenticate() method of the
SecurityLevel2::Current object to specify certificate-based authentication is
being used
Using Security 5-21

5 Writing a WLE CORBA Application That Implements Security

 of
2. Use the invocation_options_required() method to specify the security
attributes the principal requires. See the description of the
invocation_options_required() method in the “C++ Security Reference”
on page 11-1 and “Java Security Reference” on page 12-1 for a complete list
security options.

Listing 5-9 provides a C++ example of using the
invocation_options_required() method.

Listing 5-9 C++ Example of Using the invocation_options_required() Method

// Initialize the ORB
CORBA::ORB_var v_orb = CORBA::ORB_init(argc, argv, "");

// Create the bootstrap object
Tobj_Bootstrap bootstrap(v_orb.in(), corbalocs://sling.com:2143);

// Resolve SecurityCurrent

CORBA::Object_ptr seccurobj =
 bootstrap.resolve_initial_references("SecurityCurrent");
SecurityLevel2::Current_ptr seccur =
 SecurityLevel2::Current::_narrow(seccurobj);

// Perform certificate-based authentication
 SecurityLevel2::Credentials_ptr the_creds;
Security::AttributeList_var privileges;
 Security::Opaque_var continuation_data;
 Security::Opaque_var auth_specific_data;
 Security::Opaque_var response_data;

//Principal email address
 char emailAddress[] = “milozzi@bigcompany.com;”
// Pass phrase for principal’s digital certificate
 char password[] = “asdawrewe98infldi7;”

// Convert the certificate private key password to opaque
 unsigned long password_len = strlen(password);
 Security::Opaque ssl_auth_data(password_len);

// Authenticate principal certificate with principal authenticator
 for(int i = 0; (unsigned long) i < password_len; i++)
 ssl_auth_data[i] = password[i];
 Security::AuthenticationStatus auth_status;
 SecurityLevel2::PrincipalAuthenticator_var PA =
 seccur->principal_authenticator();
5-22 Using Security

Using the Invocations_Options_Required() Method
 auth_status = PA->authenticate(Tobj::CertificateBased,
 emailAddress,
 ssl_auth_data,
 privileges,
 the_creds,
 continuation_data,
 auth_specific_data);
 the_creds->invocation_options_required(
 Security::Integrity|
 Security::DetectReplay|
 Security::DetectMisordering|
 Security::EstablishTrustInTarget|
 Security::EstalishTrustInClient|

 Security::SimpleDelegation);

 while(auth_status == Security::SecAuthContinue) {
 auth_status = PA->continue_authentication(

 response_data,
 the_creds,
 continuation_data,
 auth_specific_data);

}

...

Listing 5-10 provdes a Java example of using the
invocation_options_required() method

Listing 5-10 Java Example of Using the invocation_options_required() Method

...

// Initialize the ORB.

 Properties Prop;
 Prop = new Properties(System.getProperties());
 Prop.put("org.omg.CORBA.ORBClass","com.beasys.CORBA.iiop.ORB");
 Prop.put("org.omg.CORBA.ORBSingletonClass",
 "com.beasys.CORBA.idl.ORBSingleton");

 ORB orb = ORB.init(args, Prop);

// Create the Bootstrap object

 Tobj_Bootstrap bs = new Tobj_Bootstrap(orb,
 corbalocs://foo:2501);
Using Security 5-23

5 Writing a WLE CORBA Application That Implements Security
//Resolve SecurityCurrent
 org.omg.CORBA.object ocurr =
 bs.resolve_initial_references(“SecurityCurrent”);
 org.omg.SecurityLevel2.Current curr =
 org.omg.SecurityLevel2.CurrentHelper.narrow(occur);

// Get Principal Authenticator

 com.beasys.Tobj.PrincipalAuthenticator pa =
 (com.beasys.Tobj.PrincipalAuthenticator)
 curr.principal_authenticator();

 OpaqueHolder auth_data = new OpaqueHolder();
 AttributeListHolder privileges = new AttributeListHolder();
 org.omg.SecurityLevel2.CredentialsHolder creds =
 new org.omg.SecurityLevel2.CredentialsHolder();
 OpaqueHolder continuation_data = new OpaqueHolder();
 OpaqueHolder auth_specific_data = new OpaqueHolder();
 auth_data.value=new String (“deathstar”).getbytes(“UTF8);
 if(pa.authenticate(com.beasys.Tobj.CertificateBased.value,
 “vader@largecompany.com”,
 auth_data.value,
 privileges.value,
 the_creds,
 continuation_data,
 auth_specific_data)
 org.omg.SecurityLevel2.Credentials credentials = curr.get_credentials(
 org.omg.Security.CredentialType.SecInvocationCredentials);

 credentials.invocation_options_required(
 (short) (org.omg.Security.Integrity.value |
 org.omg.Security.DetectReplay.value|
 org.omg.Security.DetectMisordering.value|
 org.omg.Security.EstablishTrustInTarget.value|
 org.omg.Security.EstablishTrustInClient.value|
 org.omg.Security.SimpleDelegation.value)
);
 !AuthenticationStatus.SecAuthSuccess) {
 System.err.println(“logon failed”);
 System.exit(1);
 }
 ...
5-24 Using Security

CHAPTER
6 Building and Running
the CORBA Sample
Applications

The topic contains the following sections:

n Building and Running the Security Sample Application

n Building and Running the Secure Simpapp Sample Application
Using Security 6-1

6 Building and Running the CORBA Sample Applications

o
e

e
Building and Running the Security Sample
Application

The Security sample application demonstrates using Username/Password
authentication. The sample application has both C++ and Java client applications. For
a description of the Security sample application, see “Writing a WLE CORBA
Application That Implements Security” on page 5-1 This section describes how t
build the Security sample application and how to use the client applications in th
Security sample application.

Perform the following steps to build the Security sample application:

1. Copy the files for the Security sample application into a work directory.

2. Verify the settings of the environment variables.

3. Change the protection on the files for the Security sample application.

4. Set the environment variables.

5. Initialize the database.

6. Load the UBBCONFIG file.

7. Compile the client and server sample applications.

8. Start the server application in the Security sample application.

9. Start the C++ client application in the Security sample application.

10. Start the Java client application in the Security sample application.

The following sections describe these steps.

Refer to Readme.txt in the \WLEdir\samples\corba\university\security
directory for troubleshooting information and the latest information about using th
Security sample application.
6-2 Using Security

Building and Running the Security Sample Application
Step 1: Copy the files for the Security sample application
into a work directory.

You need to copy the files for the Security sample application into a work directory on
your local machine. The files for the Security sample application are located in the
following directories:

Windows NT

drive:\WLEdir\samples\corba\university\security

UNIX

/usr/WLEdir/samples/corba/university/security

In addition, you need to copy the utils directory into your work directory. The utils
directory contains files that set up logging, tracing, and access to the database used
with the Security sample application.

You will use the files listed in Table 6-1 to create the Security sample application.

Table 6-1 Files Included in the Security Sample Application

File Description

univs.idl The OMG IDL code that declares the
CourseSynopsisEnumerator, Registrar,
and RegistrarFactory interfaces.

univss.cpp The C++ source code for the server application in the
Security sample application.

univs_i.h
univs_i.cpp

The C++ source code for method implementations of
the CourseSynopsisEnumerator,
Registrar, and RegistrarFactory interfaces.

univsc.cpp The C++ source code for the C++ client application
in the Security sample application.

UnivSApplet.java The Java source code for the Java client application
in the Security sample application.
Using Security 6-3

6 Building and Running the CORBA Sample Applications
univs_utils.h
univs_utils.cpp

The files that define database access functions for the
CORBA C++ client application.

univs.icf The Implementation Configuration File (ICF) for the
Security sample application.

setenvs.sh A UNIX script that sets the environment variables
needed to build and run the Security sample
application.

setenvs.cmd An MS-DOS command procedure that sets the
environment variables needed to build and run the
Security sample application.

ubb_s.mk The UBBCONFIG file for the UNIX operating
system.

ubb_s.nt The UBBCONFIG file for the Windows NT operating
system.

makefiles.mk The makefile for the Security sample application
on the UNIX operating system.

makefiles.nt The makefile for the Security sample application
on the Windows NT operating system.

log.cpp, log.h,
log_client.cpp, and
log_server.cpp

The client and server applications that provide
logging and tracing functions for the sample
applications. These files are located in the \utils
directory.

oradbconn.cpp and
oranoconn.cpp

The files that provide access to an Oracle SQL
database instance. These files are located in the
\utils directory.

samplesdb.cpp and
samplesdb.h

The files that provide print functions for the database
exceptions in the sample applications.These files are
located in the \utils directory.

unique_id.cpp and
unique_id.h

C++ Unique ID class routines for the sample
applications.These files are located in the \utils
directory.

Table 6-1 Files Included in the Security Sample Application

File Description
6-4 Using Security

Building and Running the Security Sample Application
Step 2: Verify the settings of the environment variables.

Before building and running the Security sample application, you need to ensure that
certain environment variables are set on your system. In most cases, these environment
variables are set as part of the installation procedure. However, you need to check the
environment variables to ensure they reflect correct information.

Table 6-5 lists the environment variables required to run the Security sample
application.

samplesdbsql.h and
samplesdbsql.pc

C++ class methods that implement access to the SQL
database. These files are located in the \utils
directory.

university.sql The SQL for the University database. This file is
located in the \utils directory.

Readme.txt The file that provide the latest information about
building and running the Security sample
application.

Table 6-1 Files Included in the Security Sample Application

File Description

Table 6-2 Required Environment Variables for the Security Sample Application

Environment
Variable

Description

APPDIR The directory path where you copied the sample application files. For example:

Windows NT

APPDIR=c:\work\securityapp

UNIX

APPDIR=/usr/work/securityapp
Using Security 6-5

6 Building and Running the CORBA Sample Applications
To verify that the information for the environment variables defined during installation
is correct, perform the following steps:

Windows NT

1. From the Start menu, select Settings.

2. From the Settings menu, select the Control Panel.

The Control Panel appears.

3. Click the System icon.

The System Properties window appears.

4. Click the Environment tab.

The Environment page appears.

TUXCONFIG The directory path and name of the configuration file. For example:

Windows NT

TUXCONFIG=c:\work\securityapp\tuxconfig

UNIX

TUXCONFIG=/usr/work/securityapp/tuxconfig

TUXDIR The directory path where you installed the WLE software. For example:

Windows NT

TUXDIR=c:\WLEdir

UNIX
TUXCONFIG=/usr/local/WLEdir

JDKDIR The directory path where you installed the JDK software. For example:

Windows NT

JDKDIR=c:\jdk1.2.2

UNIX

JDKDIR=/usr/local/jdk1.2.1

You need to specify this parameter only if you plan to use the Java version of the
Secure Simpapp sample application.

Table 6-2 Required Environment Variables for the Security Sample Application

Environment
Variable

Description
6-6 Using Security

Building and Running the Security Sample Application
5. Check the settings of the environment variables.

UNIX

ksh prompt>printenv TUXDIR

ksh prompt>printenv JAVA_HOME

To change the settings, perform the following steps:

Windows NT

1. On the Environment page in the System Properties window, click the environment
variable you want to change or enter the name of the environment variable in the
Variable field.

2. Enter the correct information for the environment variable in the Value field.

3. Click OK to save the changes.

UNIX

ksh prompt>export TUXDIR=directorypath

ksh prompt>export JAVA_HOME=directorypath

Step 3:Change the Protection on the Files for the Security
Sample Application.

During the installation of the WLE software, the sample application files are marked
read-only. Before you can edit the files or build the files in the Security sample
application, you need to change the protection of the files you copied into your work
directory, as follows:

Windows NT

prompt>attrib -r drive:\workdirectory*.*

UNIX

prompt>chmod u+rw /workdirectory/*.*
Using Security 6-7

6 Building and Running the CORBA Sample Applications
Step 4: Set the Environment Variables

Use the following command to set the environment variables used to build the client
and server applications in the Security sample application:

Windows NT

prompt>setenvs

UNIX

prompt>/bin/ksh

prompt>. ./setenvs.sh

Step 5: Initialize the Database

Use the following command to initialize the database used with the Security sample
application:

Windows NT

prompt>nmake -f makefiles.nt initdb

UNIX

prompt>make -f makefiles.mk initdb

Step 6: Load the UBBCONFIG File

Use the following command to load the UBBCONFIG file:

Windows NT

prompt>tmloadcf -y ubb_s.nt

UNIX

prompt>tmloadcf -y ubb_s.mk
6-8 Using Security

Building and Running the Security Sample Application
The build process for the UBBCONFIG file prompts you for an application password.
This password will be used to log on to the client applications. Enter the password and
press Enter. You are then prompted to verify the password by entering it again.

Step 7: Compile the Security Sample Application

The directory for the Security sample application contains a makefile that builds the
client and server sample applications in the Security sample application.

Use the following command to build the C++ client and server applications in the
Security sample application:

Windows NT

prompt>nmake -f makefiles.nt

UNIX

prompt>make -f makefiles.mk

To build the Java client application in the Security sample application:

Windows NT

prompt>nmake -f makefiles.nt javaclient

UNIX

prompt>make -f makefiles.mk javaclient

Step 8: Start the server application

Start the system processes and the server application in the Security sample application
by entering the following command:

prompt>tmboot -y

Before using another sample application, enter the following command to stop the
system processes and the server application in the Security sample application.

prompt>tmshutdown
Using Security 6-9

6 Building and Running the CORBA Sample Applications
Step 8: Start the C++ client application

Start the C++ client application in the Security sample application by performing the
following steps:

1. At the MS-DOS prompt, enter the following command:

prompt>univs_client

2. At the Enter student id: prompt, enter any number between 100001 and
100010.

3. Press Enter.

4. At the Enter domain password: prompt, enter the password you defined when
you loaded the UBBCONFIG file.

5. Press Enter.

Step 9: Start the Java client application.

To run the Java client application in the Security sample application, perform the
following steps:

1. Modify the following lines in the UnivSApplet.html file:

 code="UnivSApplet.class"
 codebase=.

 to read as follows:

 code="UnivSApplet"
 archive="UnivSApplet.jar,m3envobj.jar"

2. Copy the modified UnivSApplet.html file to the source directory for the Web
server (the directory varies by Web server product).

3. Create a UnivSApplet.jar file, as follows:

a. Create a tmp directory under the directory where you built the sample
application and copy the UniversityS subdirectory and the class files it
contains into the tmp directory.
6-10 Using Security

Building and Running the Security Sample Application
Copy the class files in the Security sample application directory that were
generated by the makefile into the tmp directory, set the directory (cd) to
the tmp directory, and issue one of the following commands to create a jar
file that contains all the Security sample application classes:

jar -cf ..\UnivSApplet.jar *.* (Microsoft Windows NT systems)
jar -cf ../UnivSApplet.jar * (UNIX systems)

4. Copy the UnivSApplet.jar file you just created to the source directory for the
Web server (the directory name varies by Web server product).

5. Copy the m3envobj.jar file from the appropriate subdirectory
(%TUXDIR%\udataobj\java Microsoft Windows NT systems or
${TUXDIR}/udataobj/java UNIX systems) to the Web server source
directory.

6. Make sure the Security server application is running, start up your Web browser,
and point it to the node where the Web server is running.

Note: On Microsoft Windows NT systems, the node name needs to be in all
uppercase characters. For example, if the node is specified as SERVER in the
UBBCONFIG file and in the UnivSApplet.html file, set your browser to
http://SERVER/UnivSApplet.html.

1. Modify the following lines in the UnivSApplet.html file:

 code="UnivSApplet.class"
 codebase=.

 to read as follows:

 code="UnivSApplet"
 archive="UnivSApplet.jar,m3envobj.jar"

2. Copy the modified UnivSApplet.html file to the source directory for the Web
server (the directory varies by Web server product).

3. After executing the makefile to build the Security sample application, create a
UnivSApplet.jar file, as follows:

a. Create a tmp directory under the directory where you built the sample
application and copy the UniversityS subdirectory and the class files it
contains into the tmp directory.

Copy the class files in the Security sample application directory that were
generated by the makefile into the tmp directory, set the directory (cd) to
Using Security 6-11

6 Building and Running the CORBA Sample Applications
the tmp directory, and issue one of the following commands to create a jar
file that contains all the Production sample application classes:

jar -cf ..\UnivSApplet.jar *.* (Microsoft Windows NT systems)
jar -cf ../UnivSApplet.jar * (UNIX systems)

4. Copy the UnivSApplet.jar file you just created to the source directory for the
Web server (the directory name varies by Web server product).

5. Copy the m3envobj.jar file from the appropriate subdirectory
(%TUXDIR%\udataobj\java Microsoft Windows NT systems or
${TUXDIR}/udataobj/java UNIX systems) to the Web server source
directory.

6. Make sure the Security server application is running, start up your Web browser,
and point it to the node where the Web server is running.

Note: On Microsoft Windows NT systems, the node name needs to be in all
uppercase characters. For example, if the node is specified as SERVER in the
UBBCONFIG file and in the UnivSApplet.html file, set your browser to
http://SERVER/UnivPApplet.html.

A logon window appears.

7. Enter a number between 100001 and 100010 in the student ID field.

8. Enter the password you defined when you loaded the UBBCONFIG file in the
Domain Password field.

9. Click the Logon button.

10. Enter a search string to find a course.
6-12 Using Security

Building and Running the Secure Simpapp Sample Application
Building and Running the Secure Simpapp
Sample Application

The Secure Simpapp sample application demonstrates using the SSL protocol and
certificate-based authentication to protect communications between client applications
and the WLE domain. There are C++ and Java versions of the Secure Simpapp sample
application.

Perform the following steps to build and run the Secure Simpapp sample application:

1. Copy the files for the Secure Simpapp sample application into a work directory.

2. Change the protection attribute on the files for the Secure Simpapp sample
application.

3. Verify the environment variables.

4. Execute the runme command.

Before you can use the Secure Simpapp sample application, obtain a certificate and
private key (IIOPListener.pem) for the IIOP Listener/Handler from the certificate
authority in your enterprise and load the certificate in a Lightweight Directory Access
Protocol (LDAP)-enabled directory service. The runme command prompts you for the
pass phrase for the private key for the IIOP Listener/Handler.

Step 1: Copy the Files for the Secure Simpapp Sample
Application into a Work Directory

You need to copy the files for the Secure Simpapp sample application into a work
directory on your local machine. The following sections detail the directory location
and sources files for the C++ and Java versions of the Secure Simpapp sample
application.
Using Security 6-13

6 Building and Running the CORBA Sample Applications
C++ Version of the Secure Simpapp Sample Application

The files for the C++ version of the Secure Simpapp sample application are located in
the following directories:

Windows NT

drive:\WLEdir\samples\corba\simpappSSL

UNIX

/usr/local/WLedir/samples/corba/simappSSL

You will use the files listed in Table 6-3 to build and run the C++ version of the Secure
Simpapp sample application.

Table 6-3 Files Included in the C++ Version of the Secure Simpapp Sample
Application

File Description

Simple.idl The OMG IDL code that declares the Simple and
SimpleFactory interfaces.This file is copied from
the WLE simpappSSL_java directory by the
runme command file.

Simples.cpp The C++ source code that overrides the default
Server::initialize and
Server::release methods.

Simplec.cpp The C++ source code for the client application in the
Secure Simpapp sample application.

Simple_i.cpp The C++ source code that implements the Simple
and SimpleFactory methods.

Simple_i.h The C++ header file that defines the implementation
of the Simple and SimpleFactory methods.

Readme.html This file provides the latest information about
building and running the C++ version of the Secure
Simpapp sample application.

runme.cmd The Windows NT batch file that builds and runs the
C++ version of the Secure Simpapp sample
application.
6-14 Using Security

Building and Running the Secure Simpapp Sample Application
Java Version of the Secure Simpapp Sample Application

The files for the Java version of the Secure Simpapp sample application are located in
the following directories:

Windows NT

drive:\WLEdir\samples\corba\simpappSSL_java

UNIX

/usr/local/WLedir/samples/corba/simappSSL_java

You will use the files listed in Table 6-4 to build and run the Java Secure Simpapp
sample application.

runme.ksh The UNIX Korn shell script that builds and executes
the C++ version of the Secure Simpapp sample
application.

makefile.mk The makefile for the C++ version of the Secure
Simpapp sample application on the UNIX operating
system. This file is used to manually build the C++
version of the Secure Simpapp sample application.
Refer to the Readme.html file for information
about manually building the C++ version of the
Secure Simpapp sample application. The UNIX
make command needs to be in the path of your
machine.

makefiles.nt The makefile for the C++ version of the Secure
Simpapp sample application on the Windows NT
operating system. This makefile can be used directly
by the Visual C++ nmake command. This file is
used to manually build the C++ version of the Secure
Simpapp sample application. Refer to the
Readme.html file for information about manually
building the C++ version of the Secure Simpapp
sample application. The Windows NT nmake
command needs to be in the path of your machine.

Table 6-3 Files Included in the C++ Version of the Secure Simpapp Sample
Application

File Description
Using Security 6-15

6 Building and Running the CORBA Sample Applications
Table 6-4 Files Included in the Java Version of the Secure Simpapp Sample
Application

File Description

Simple.idl The OMG IDL code that declares the Simple and
SimpleFactory interfaces.This file is copied from
the WLE simpappSSL_java directory by the
runme command file.

ServerImpl.java The Java source code that overrides the
Server.initialize and Server.release
methods.

SimpleClient.java The Java source code for the client application in the
Secure Simpapp sample application.

SimpleFactoryImpl.java The Java source code that implements the
SimpleFactory methods.

SimpleImpl.java The Java source code that implements the Simple
methods.

Simple.xml The Server Description File used to associate
activation and transaction policy values with
CORBA interfaces. For the Java version of the
Secure Simpapp sample application, the Simple
and SimpleFactory interfaces have an activation
policy of method and a transaction policy of
optional.

Readme.html The file that provides the latest information about
building and running the Java version of the Secure
Simpapp sample application.

runme.cmd The Windows NT batch file that builds and runs the
Java version of the Secure Simpapp sample
application.

runme.ksh The UNIX Korn shell script that builds and executes
the Java version of the Secure Simpapp sample
application.
6-16 Using Security

Building and Running the Secure Simpapp Sample Application
Step 2: Change the protection attribute on the files for
the Secure Simpapp sample application.

During the installation of the WLE software, the sample application files are marked
read-only. Before you can edit or build the files in the Secure Simpapp sample
application, you need to change the protection attribute of the files you copied into
your work directory, as follows:

Windows NT

prompt>attrib -r drive:\workdirectory*.*

UNIX

prompt>/bin/ksh

ksh prompt>chmod u+w /workdirectory/*.*

makefile.mk The makefile for the Java version of the Secure
Simpapp sample application on the UNIX operating
system. This file is used to manually build the Secure
Simpapp sample application. Refer to the
Readme.html file for information about manually
building the Secure Simpapp sample application.
The UNIX make command needs to be in the path of
your machine.

makefiles.nt The makefile for the Secure Simpapp sample
application on the Windows NT operating system.
This file is used to manually build the Java version of
the Secure Simpapp sample application. Refer to the
Readme.html file for information about manually
building the Secure Simpapp sample application.
The Windows NT nmake command needs to be in
the path of your machine.

Table 6-4 Files Included in the Java Version of the Secure Simpapp Sample
Application

File Description
Using Security 6-17

6 Building and Running the CORBA Sample Applications
On the UNIX operating system platform, you also need to change the permission of
runme.ksh to give execute permission to the file, as follows:

ksh prompt>chmod +x runme.ksh

Step 3: Verify the settings of the environment variables.

Before building and running the Secure Simpapp sample application, you need to
ensure that certain environment variables are set on your system. In most cases, these
environment variables are set as part of the installation procedure. However, you need
to check the environment variables to ensure they reflect correct information.

Table 6-5 lists the environment variables required to run the Secure Simpapp sample
application.

Table 6-5 Required Environment Variables for the Secure Simpapp Sample Application

Environment
Variable

Description

APPDIR The directory path where you copied the sample application files. For example:

Windows NT

APPDIR=c:\work\simpappSSL

UNIX

APPDIR=/usr/work/simpappSSL

TUXCONFIG The directory path and name of the configuration file. For example:

Windows NT

TUXCONFIG=c:\work\simpappSSL\tuxconfig

UNIX

TUXCONFIG=/usr/work/simpappSSL/tuxconfig
6-18 Using Security

Building and Running the Secure Simpapp Sample Application
To verify that the information for the environment variables defined during installation
is correct, perform the following steps:

JDKDIR The directory path where you installed the JDK software. For example:

Windows NT

JDKDIR=c:\jdk1.2.2

UNIX

JDKDIR=/usr/local/jdk1.2.1

You need to specify this parameter only if you plan to use the Java version of the
Secure Simpapp sample application.

TOBJADDR The host name and port number of the IIOP Listener/Handler. The port number must
be defined as a port for SSL communications. For example:

Windows NT
TOBJADDR=trixie::1111

UNIX
TOBJADDR=trixie::1111

JAVA_HOME The directory path where you installed the JDK software. For example:

Windows NT

JAVA_HOME=c:\JDK1.2

UNIX

JAVA_HOME=/usr/local/JDK1.2

You need to define this environment variable only when you use the Java version of
the Secure Simpapp sample application.

RESULTSDIR or
JRESULTSDIR

A subdirectory of APPDIR where files that are created as a result of executing the
runme command are stored. For example:

Windows NT

RESULTSDIR=c:\workdirectory\

UNIX

RESULTSDIR=/usr/local/workdirectory/

When using the Java version of the Secure Simpapp sample application, specify the
JRESULTSDIR environment variable.

Table 6-5 Required Environment Variables for the Secure Simpapp Sample Application

Environment
Variable

Description
Using Security 6-19

6 Building and Running the CORBA Sample Applications
Windows NT

1. From the Start menu, select Settings.

2. From the Settings menu, select the Control Panel.

The Control Panel appears.

3. Click the System icon.

The System Properties window appears.

4. Click the Environment tab.

The Environment page appears.

5. Check the settings of the environment variables.

UNIX

ksh prompt>printenv TUXDIR

ksh prompt>printenv JAVA_HOME

To change the settings, perform the following steps:

Windows NT

1. On the Environment page in the System Properties window, click the environment
variable you want to change or enter the name of the environment variable in the
Variable field.

2. Enter the correct information for the environment variable in the Value field.

3. Click OK to save the changes.

UNIX

ksh prompt>export TUXDIR=directorypath

ksh prompt>export JAVA_HOME=directorypath

Step 4: Execute the runme command.

The runme command automates the following steps:

1. Setting the system environment variables
6-20 Using Security

Building and Running the Secure Simpapp Sample Application
2. Loading the UBBCONFIG file

3. Compiling the code for the client application

4. Compiling the code for the server application

5. Starting the server application using the tmboot command

6. Starting the client application

7. Stopping the server application using the tmshutdown command

Note: You can also run the Secure Simpapp sample application manually. The steps
for manually running the Secure Simpapp sample application are described in
the Readme.html file.

To build and run the Secure Simpapp sample application, enter the runme command,
as follows:

Windows NT

prompt>cd workdirectory

prompt>runme

UNIX

ksh prompt>cd workdirectory

ksh prompt>./runme.ksh

The Secure Simpapp sample application runs and prints the following messages:

Testing simpapp
 cleaned up
 prepared
 built
 loaded ubb
 booted
 ran
 shutdown
 saved results
 PASSED

During execution of the runme command, you are prompted for a password. Enter the
pass phrase of the private key of the IIOP Listener/Handler.

Table 6-6 lists the C++ files in the work directory generated by the runme command.
Using Security 6-21

6 Building and Running the CORBA Sample Applications
Table 6-7 lists the Java files in the work directory generated by the runme command.

Table 6-6 C++ Files Generated by the runme Command

File Description

Simple_c.cpp Generated by the idl command, this file contains
the client stubs for the SimpleFactory and
Simple interfaces.

Simple_c.h Generated by the idl command, this file contains
the client definitions of the SimpleFactory and
Simple interfaces.

Simple_s.cpp Generated by the idl command, this file contains
the server skeletons for the SimpleFactory and
Simple interfaces.

Simple_s.h Generated by the idl command, this file contains
the server definition for the SimpleFactory
and Simple interfaces.

.adm/.keybd A file that contains the security encryption key
database. The subdirectory is created by the
tmloadcf command in the runme command.

results A directory generated by the runme command.

Table 6-7 Java Files Generated by the runme Command

File Description

SimpleFactory.java Generated by the m3idltojava command for
the SimpleFactory interface. The
SimpleFactory interface contains the Java
version of the OMG IDL interface. It extends
org.omg.CORBA.Object.

SimpleFactoryHolder.java Generated by the m3idltojava command for
the SimpleFactory interface.This class holds a
public instance member of type
SimpleFactory. The class provides operations
for out and inout arguments that are included in
CORBA, but that do not map exactly to Java.
6-22 Using Security

Building and Running the Secure Simpapp Sample Application
SimpleFactoryHelper.java Generated by the m3idltojava command for
the SimpleFactory interface. This class
provides auxiliary functionality, notably the
narrow method.

_SimpleFactoryStub.java Generated by the m3idltojava command for
the SimpleFactory interface. This class is the
client stub that implements the
SimpleFactory.java interface.

_SimpleFactoryImplBase.java Generated by the m3idltojava command for
the SimpleFactory interface. This abstract
class is the server skeleton. It implements the
SimpleFactory.java interface. The
user-written server class SimpleFactoryImpl
extends _SimpleFactoryImplBase.

Simple.java Generated by the m3idltojava command for
the Simple interface. The Simple interface
contains the Java version of the OMG IDL
interface. It extends org.omg.CORBA.Object.

SimpleHolder.java Generated by the m3idltojava command for
the Simple interface.This class holds a public
instance member of type Simple. The class
provides operations for out and inout
arguments that CORBA has but that do not match
exactly to Java.

SimpleHelper.java Generated by the m3idltojava command for
the Simple interface. This class provides
auxiliary functionality, notably the narrow
method.

_SimpleStub.java Generated by the m3idltojava command for
the Simple interface. This class is the client stub
that implements the Simple.java interface.

Table 6-7 Java Files Generated by the runme Command

File Description
Using Security 6-23

6 Building and Running the CORBA Sample Applications
Table 6-8 lists files in the RESULTS or JRESULTS directory generated by the runme
command.

_SimpleImplBase.java Generated by the m3idltojava command for
the Simple interface. This abstract class is the
server skeleton. It implements the Simple.java
interface. The user-written server class
SimpleImpl extends _SimpleImplBase.

Simple.ser The Server Descriptor File generated by the
buildjobjserver command in the runme
command.

Simple.jar The server Java Archive file generated by the
buildjavaserver command in the runme
command.

.adm/.keybd A file that contains the security encryption key
database. The subdirectory is created by the
tmloadcf command in the runme command.

results A directory generated by the runme command.

Table 6-8 Files in the results Directory Generated by the runme Command

File Description

input Contains the input that the runme command
provides to the Java client application.

output Contains the output produced when the runme
command executes the Java client application.

expected_output Contains the output that is expected when the
Java client application is executed by the
runme command. The data in the output file
is compared to the data in the
expected_output file to determine whether
or not the test passed or failed.

Table 6-7 Java Files Generated by the runme Command

File Description
6-24 Using Security

Building and Running the Secure Simpapp Sample Application
log Contains the output generated by the runme
command. If the runme command fails, check
this file for errors.

setenv.cmd Contains the commands to set the environment
variables needed to build and run the Java
Secure Simpapp sample application on the
Windows NT operating system platform.

setenv.ksh Contains the commands to set the environment
variables needed to build and run the Java
Secure Simpapp sample application on the
UNIX operating system platform.

stderr Generated by the tmboot command, which is
executed by the runme command. If the
-noredirect JavaServer option is specified
in the UBBCONFIG file, the
System.err.println method sends the
output to the stderr file instead of to the
ULOG file.

stdout Generated by the tmboot command, which is
executed by the runme command. If the
-noredirect JavaServer option is specified
in the UBBCONFIG file, the
System.out.println method sends the
output to the stdout file instead of to the
ULOG file.

tmsysevt.dat Contains filtering and notification rules used by
the TMSYSEVT (system event reporting)
process. This file is generated by the tmboot
command in the runme command.

tuxconfig A binary version of the UBBCONFIG file.

ubb The UBBCONFIG file for the Java Secure
Simpapp sample application.

ULOG.<date> A log file that contains messages generated by
the tmboot command.

Table 6-8 Files in the results Directory Generated by the runme Command

File Description
Using Security 6-25

6 Building and Running the CORBA Sample Applications
Using the Secure Simpapp Sample Application

Run the server application in the Secure Simpapp sample application, as follows:

Windows NT

prompt>tmboot

UNIX

ksh prompt>tmboot

Run the client application in the Secure Simpapp sample application, as follows:

Windows NT

prompt>java -classpath .;%TUXDIR%\udataobj\java\jdk\m3envobj.jar
-DTOBJADDR=%TOBJADDR% SimpleClient
String?
Hello World
HELLO WORLD
hello world

UNIX

ksh prompt>java -classpath .:$TUXDIR/udataobj/java/jdk\
/m3envobj.jar -DTOBJADDR=$TOBJADDR SimpleClient
String?
Hello World
HELLO WORLD
hello world

Note: The Secure Simpapp sample client application uses the client-only JAR file
m3envobj.jar. However, you can also use the m3.jar file to run the client
application.

Before using another sample application, enter the following commands to stop the
Secure Simpapp sample application and to remove unnecessary files from the work
directory:

Windows NT

prompt>tmshutdown -y

prompt>nmake -f makefile.nt clean

UNIX
6-26 Using Security

Building and Running the Secure Simpapp Sample Application
ksh prompt>tmshutdown -y

ksh prompt>make -f makefile.mk clean
Using Security 6-27

6 Building and Running the CORBA Sample Applications
6-28 Using Security

CHAPTER
7 Writing a WLE
Enterprise JavaBean
that Implements
Security

This topic includes the following sections:

n Before You Begin

n How Authentication Works with WLE EJBs

n Development Steps

n Step 1: Define security roles for the methods of the WLE EJB.

n Step 2: Specify security roles in the Deployment Descriptor of the EJB.

n Step 3: Define the JNDI environment properties.

n Step 4: Establish the InitialContext.

n Step 5: Use Home to get a WLE EJB.

n Step 6: Use the getCallerPrincipal Method to authenticate a WLE EJB.
Using Security 7-1

7 Writing a WLE Enterprise JavaBean that Implements Security

t
n in

ire
e

the
E

JB.
Before You Begin

This document describes the BEA implementation of the Security feature. The
information in this document supplements the Sun Microsystems, Inc. evolving
Enterprise JavaBeans 1.1 Specification (Public Release, October 18,1999).

Note: Before proceeding with the remainder of this topic, you should be familiar
with the entire content of Sun’s specification, particularly Chapter 15,
“Security Management.”

This topic describes only the integrating security into WLE EJBs. For a complete
description of developing an EJB using the WLE product, see Getting Started in the
WebLogic Enterprise online documentation.

Note: An EJB in the WLE domain that issues a callback to a remote J2EE clien
application cannot propagate the security context of that client applicatio
the callback.

How Authentication Works with WLE EJBs

From the perspective of an EJB container, EJBs are nontrusted entities that requ
authentication. The WLE product uses a JNDI implementation that runs within th
EJB container’s trusted environment. Using the WLEInitialContextFactory JNDI
factory with security environment properties establishes the security context for
WLE client application. The WLE client application authenticates itself with the WL
domain when establishing the JNDI Initial context.

 Development Steps

Table 7-1 lists the development steps required to implement security in a WLE E
7-2 Using Security

Step 1: Define security roles for the methods of the WLE EJB.

lly
Table 7-1 Development Steps for Implementing Security in a WLE EJB

Step 1: Define security roles for the methods
of the WLE EJB.

During the assembly and deployment of an EJB package, you define security roles and
associate roles with methods in the deployment descriptor. Security roles are mapped
to groups of users in the WLE security environment. You can use any of the techniques
described in the Security Management chapter of the Enterprise JavaBeans 1.1
Specification to define security roles for the methods of a WLE EJB.

It is possible that two methods with the same name or name/signature appear in both
the bean’s home and remote interfaces. To handle this case, the optional
<method-intf> element may further restrict the selection to either Home or Remote
interface methods.

In a mandatory access control environment, any method invocation not specifica
authorized is denied. Sometimes a method does not have a defined
<method-permission> element. If the SECURITY parameter in the RESOURCES
section of the UBBCONFIG file is set to MANDATORY_ACL access on a method without
an associated <method-permission> element, access is denied. This is the

Step Description

1 Define security roles for the methods of the WLE EJB.

2 Specify security roles in the Deployment Descriptor of the EJB.

3 Define the JNDI environment properties.

4 Establish the InitialContext.

5 Use Home to get the WLE EJB.

6 Use the getCallerPrincipal method to authenticate the WLE EJB.
Using Security 7-3

7 Writing a WLE Enterprise JavaBean that Implements Security

iptor

 will
recommended setting for production environments. For all other settings of the
SECURITY parameter, access to a method without an associated
<method-permission> element is allowed.

There may be methods that should be available to everyone, even in a mandatory
access control environment. The WLE system defines a special role name * which
means everyone has access to the method.

Step 2: Specify security roles in the
Deployment Descriptor of the EJB.

You specify security roles for the methods of an EJB in the deployment descriptor of
the bean. In the WLE product, there is a one-to-one association between the security
roles defined in the deployment descriptor of the EJB and the groups defined with the
tpgrpadd commands. Role names may be referenced in deployment descriptors
before the corresponding group exists. A run time, if a bean’s deployment descr
references a role that does not have a corresponding group, the role is ignored.

Role names are restricted to any alphanumeric characters, a dash (-), an underscore(
_), the at-sign (@), and a period (.). The maximum length of a role name is 30
characters. If the name of a security role does not conform to these limitations, it
not be possible for users to have the defined security role.

Listing 7-1 includes code that defines a security role.

Listing 7-1 Defining a Security Role for a Method in an EJB

...
<assembly-descriptor>
 <security-role>
 <description>
 “teller” is a role name
 </description>
 </security-role>

<method-permission>
 <role-name>teller</role-name>
7-4 Using Security

Step 3: Define the JNDI environment properties.
 <method>
<ejb-name>Accounting</ejb-name>
<method-name>withdraw</methodname>

 </method>
...

</method-permission>
...

</assembly-descriptor>
...

Step 3: Define the JNDI environment
properties.

The following sections describe the JNDI environment properties that must be set to
enable either Username/Password or certificate-based authentication.

WLEContext.INITIAL_CONTEXT_FACTORY Property

The class com.beasys.jndi.WLEInitialContextFactory is the JNDI Service
Provider Interface (SPI). This initial context provides an entry point into the WLE
domain. Set WLEContext.INITIAL_CONTEXT_FACTORY to
com.beasys.jndi.WLEInitialContextFactory to access the WLE domain.

Listing 7-2 includes code that defines the WLEContext.INITIAL_CONTEXT_FACTORY
property for the WLE environment.

Listing 7-2 WLEContext.INITIAL_CONTEXT_FACTORY Property

Hashtable env = new Hashtable();
/*
*Specify the initial context implementation to use.
*The service provider supplies the factory class.
*/
env.put(WLEContext.INITIAL_CONTEXT_FACTORY,
Using Security 7-5

7 Writing a WLE Enterprise JavaBean that Implements Security

s
 the
 “com.beasys.jndi.WLEInitialContextFactory”);
...

WLEContext.PROVIDER_URL Property

Specifies the entry point into the WLE domain. The value should reflect the host and
port of the IIOP Listener/Handler of the target WLE domain. Use one of the following
URL address formats when specifying the location of the IIOP Listener/Handler:

n corbaloc://hostname:portnumber

Indicates that the IIOP/RMI protocol is to be used to communicate with the
WLE domain. This URL address format only supports Username/Password
authentication.

n corbalocs://hostname:portnumbe r

Indicates that the SSL protocol is to be used to communicate with the WLE
domain. This URL address format supports both Username/password and
certificate-based authentication.

The host and port combination in the URL must match the ISL parameter in the WLE
application’s UBBCONFIG file. The format of the host and port combination as well a
the capitalization must match. If the addresses do not match, communication with
WLE domain fails.

Listing 7-3 includes code that defines the WLEContext.PROVIDER_URL property for
the WLE environment.

Listing 7-3 WLEContext.PROPERTY_URL Property

...

env.put(WLEContext.PROVIDER_URL,
 “corbaloc://”myhost:1000”);

...

A WLE server application that acts as a client application (referred to as a joint
client/server application) must set the WLEContext.PROPERTY_URL as an empty or
null string. The joint client/server application connects to the current application in
which it was booted.
7-6 Using Security

Step 3: Define the JNDI environment properties.

sword
WLEContext.SECURITY_AUTHENTICATION Property

Set this property to indicate the type of authentication to be used. The valid values for
this property are as follows:

n None—Indicates that no authentication is performed

n Simple—Indicates that Username/Password authentication is performed

n Strong—Indicates that certificate-based authentication is performed

See Table 7-2 for additional keys that need to be specified to use Username/Pas
or certificate-based authentication.

Listing 7-4 includes code that defines the WLEContext.SECURITY_AUTHENTICATION

property for the WLE environment.

Listing 7-4 WLEContext.SECURITY_AUTHENTICATION Property

...

env.put(WLEContext.SECURITY_AUTHENTICATION, ”strong”);

...

Table 7-2 WLE Property Keys for Security

Property Key Meaning

WLEContext.SECURITY_PRINCIPAL Specifies the identity of the principal used when authenticating
the caller to the WLE domain.
Using Security 7-7

7 Writing a WLE Enterprise JavaBean that Implements Security
Listing 7-5 includes the WLE keys used to define Username/Password authentication.

Listing 7-5 WLE Keys for Username/Password Authentication

...
 Hashtable env = new Hashtable();
 env.put(Context.PROVIDER_URL, “corbalocs://”myhost:1000”)

env.put(Context.INITIAL_CONTEXT_FACTORY,
 “com.beasys.jndi.WLEInitialContextFactory”);

//Password-Based Authentication
env.put(WLEContext.SECURITY_PRINCIPAL, “milozzi”);
env.put(WLEContext.SYSTEM_CREDENTIALS, “mypassword”);
env.put(WLEContext.CLIENT_NAME, “writers”);
env.put(WLEContext.SECURITY_AUTHENTICATION, ”simple”);
env.put(WLEContext.SYSTEM_PASSWORD, “password”);
...

Listing 7-6 includes the WLE keys used to define certificate-based authentication.

WLEContext.SECURITY_CREDENTIALS Specifies the credentials of the principal when authenticating
the caller to the WLE domain.

n For certificate-based authentication enabled via
SECURITY_AUTHENTICATION=”strong” , it specifies
the pass phrase used to access the private key and
certificate for the EJB.

n For password-based authentication enabled via
SECURITY_AUTHENTICATION=”simple” , it specifies
a string that is the user’s password or an arbitrary object
user_data used by the authentication server (AUTHSVR)
to verify the credentials of the EJB.

WLEContext.CLIENT_NAME Specifies the name of the EJB defined by the -c option of the
tpusradd command. For more information, see “Defining
Authorized Users” on page 4-8

WLEContext.SYSTEM_PASSWORD The system password. Required only when using
Username/Password authentication.

Table 7-2 WLE Property Keys for Security

Property Key Meaning
7-8 Using Security

Step 4: Establish the InitialContext.

ans’s
Listing 7-6 WLE Keys for Certificate-Based Authentication

...
//Certificate-Based Authentication
env.put(WLEContext.SECURITY_AUTHENTICATION, ”strong”);
env.put(WLEContext.SYSTEM_PASSWORD, “SSL”);
env.put(WLEContext.SECURITY_PRINCIPAL, “milozzi”);
env.put(WLEContext.SECURITY_CREDENTIALS, “credentials”);
...

Step 4: Establish the InitialContext.

To access a WLE EJB using JNDI, you establish an InitialContext using the following
code:

Context ctx = new InitialContext(env);

Specifying env as com.beasys.com.jndi.WLEInitialContextFactory . After
the context is created, the client application has access to bean homes in the WLE
domain using WLE as the name service provider.

A WLE EJB is implicitly associated with the security context specified when the
WLEContext object is created. To specify a new security context, the EJB needs to
close the current security context and establish a new security context with new
security attributes. Use the following code to close the current security context:

ctx.close();

Step 5: Use Home to get a WLE EJB.

Client applications use the bean’s home interface to create or find beans. The be
home is obtained by using the lookup method on the InitialContext.
Using Security 7-9

7 Writing a WLE Enterprise JavaBean that Implements Security
Step 6: Use the getCallerPrincipal Method to
authenticate a WLE EJB.

Use the getCallerPrincipal method on the javax.ejb.EJBContext associated
with a WLE EJB to authenticate the principal. You can also use the isCallerInRole
method to determine the role of the client application invoking methods on the EJB.
The default principal is IIOP Client.

Limitations and Restrictions

It is possible to deploy the same EJB more than once with different deployment
descriptors that set different access control policies. In this case access control is based
on the deployment descriptor from which a particular bean is loaded. Security policies
are not considered when the WLE system has a choice of how to route a request to any
particular bean or container.

Example of Using Security in a WLE EJB

Listing 7-7 illustrates using Username/Password authentication in a WLE EJB.

Note: The code example in Listing 7-7 uses the corbalocs URL address format so
that the SSL protocol is used to protect the integrity of the communications.

Listing 7-7 Username/Password Authentication in a WLE EJB

static public Context getInitialContext() throws Exception {
 Hashtable env = new Hashtable ();
 env.put(WLEContext.INITIAL_CONTEXT_FACTORY,
 “com.beasys.jndi.WLEInitialContextFactory”);
7-10 Using Security

Example of Using Security in a WLE EJB
 env.put(WLEContext.PROVIDER_URL, corbalocs://myhost:7002);

return new InitialContext(env);

 //Password-Based Authentication
env.put(WLEContext.SECURITY_AUTHENTICATION, ”simple”);
env.put(WLEContext.SYSTEM_PASSWORD, “RMI”);
env.put(WLEContext.SECURITY_PRINCIPAL, “milozzi);
env.put(WLEContext.CLIENT_NAME, “writers);
env.put(WLEContext.SECURITY_CREDENTIALS, “password”);

Listing 7-8 illustrates using certificate-based authentication in a WLE EJB.

Listing 7-8 Certificate-based Authentication in a WLE EJB

...
 Hashtable env = new Hashtable ();
 env.put(WLEContext.INITIAL_CONTEXT_FACTORY,
 “com.beasys.jndi.WLEInitialContextFactory”);

 env.put(WLEContext.PROVIDER_URL, corbalocs://myhost:7002);

return new InitialContext(env);

//Certificate-Based Authentication
env.put(WLEContext.SECURITY_AUTHENTICATION, ”strong”);
env.put(WLEContext.SECURITY_PRINCIPAL, “milozzi@bigcompany.com”);
env.put(WLEContext.CLIENT_NAME, “writers);
env.put(WLEContext.SYSTEM_PASSWORD, “SSL”);
env.put(WLEContext.SECURITY_CREDENTIALS, “credentials”);
Using Security 7-11

7 Writing a WLE Enterprise JavaBean that Implements Security
7-12 Using Security

CHAPTER
8 Troubleshooting

This topic includes the following sections:

n Using ULOGS and ORB Tracing

n CORBA::ORB_init Problems

n Username/Password Authentication Problems

n Certificate-Based Authentication Problems

n Tobj::Bootstrap:: resolve_initial_references Problems

n IIOP Listener/Handler Startup Problems

n Configuration Problems

n Problems with Using Callbacks Objects with the SSL Protocol

n Troubleshooting Tips for Digital Certificates

Note: The problems in this topic pertain to using the SSL protocol and
certificate-based authentication with WLE CORBA applications.

Using ULOGS and ORB Tracing

In general, Object Request Brokers (ORBs) write important failures to the ULOG file.
When using the CORBA C++ ORB, you can also enable ORB internal tracing which
may provide information in addition to the information that appears in the ULOG file.

When looking the ULOG file, note that remote ORB processes by default do not write
data to the ULOG file in APPDIR.
Using Security 8-1

8 Troubleshooting
n On UNIX, the remote ORB writes information to a ULOG file in the current
directory.

n On Windows NT, the remote ORB writes information to a ULOG file in the
c:\ulog directory.

You can set the ULOGPFX environment variable to control the location of the ULOG file
for remote ORBs (for example, you can set the location of the ULOG file to APPDIR so
that all information is put in the same ULOG file). Set the ULOGPFX environment
variable as follows:

UNIX

setenv ULOGPFX $APPDIR/ULOG

Windows NT

set ULOGPFX=%APPDIR%\ULOG

To enable ORB tracing, perform the following steps:

1. Create a file named trace.dat in APPDIR. The contents of trace.dat should
have all=on.

2. Use the following command to set the OBB_TRACE_INPUT environment variable
to point to the trace.dat file before running the application:

set OBB_TRACE_INPUT=%APPDIR%\trace.dat

If you want ORB tracing sent to separate files, add the following line to the
trace.dat file:

output=obbtrace%p.log

This command sends the trace output to files that are named after each running
process. You may want to do this if you are using ORB tracing on UNIX to an
NFS mounted drive. In this case, trace performance is slow due to the user log
opening, writing, and closing the file for each trace statement.

The CORBA Java ORB logs error messages to the ULOG file in all error situations as
well as puts minor codes to all system exceptions thrown by the ORB. Therefore,
tracing is not necessary.
8-2 Using Security

CORBA::ORB_init Problems
CORBA::ORB_init Problems

Note: This section applies to the CORBA C++ ORB only.

The ORB_init routine does not perform internal ORB tracing so you will not see any
trace output for invalid argument processing. Therefore, you need to double check the
arguments that were passed to the ORB_init routine.

If a CORBA::BAD_PARAM exception occurs when executing the ORB_init routine,
verify that all required arguments have values. Also, check that arguments which
expect a value from a specific set of valid values have the correct value. Note that
values for the arguments of the ORB_init routine are case sensitive.

If a CORBA::NO_PERSMISSION exception occurs and an SSL argument was specified
to the ORB_init routine, make sure the WLE Security Pack is installed. Also, verify
that the specified level of encryption does not exceed the encryption level supported
by the WLE Security Pack.

If a CORBA::IMP_LIMIT exception occurs when executing the ORB_init routine,
verify that the ORBport and ORBSecurePort system properties have the same value.

If a CORBA::Initialize exception occurs when executing the ORB_init routine,
verify that the values for OrbId or configset are valid.

Note: The OrbId and configset values apply to the CORBA C++ ORB only.

If Secure Socket Layer (SSL) arguments are passed to the ORB_init routine, the ORB
attempts to load and initialize the SSL protocol. If no SSL arguments are passed, the
ORB does not attempt to initialize the SSL protocol.

The ORB is not aware of the new URL address formats for the Bootstrap object so if
you specify a corbaloc or corbalocs URL address format, the ORB does not try to load
the SSL protocol during the ORB_init routine.

If SSL arguments were specified to the ORB_init routine, check the following:

n The specified values for the SSL arguments do not conflict with each other or
other ORB arguments.

n Whether or not the ORB is a native process. If the ORB is a native process, SSL
arguments are not supported.
Using Security 8-3

8 Troubleshooting

ent
n That the value specified for the maxCrypto system property is less than the
value specified for the minCrypto system property.

n Application controlled SSL configuration parameters that are not correct. The
ORB_init routine does not perform digital certificate lookups check so look for
missing or corrupted files that would case the dynamic libraries not the loaded.
Also, verify the dynamic libraries are loaded. The ORB trace function will
provide information about whether or not the dynamic libraries are loaded.

If the problem persists, turn on ORB tracing. ORB tracing will log SSL failures that
occur when the liborbssl dynamic library is loaded and initialized.

Username/Password Authentication
Problems

If the client application fails when using the corbalocs URL address format with
Username/Password authentication, check the following:

n The proper configuration steps were performed. See “Configuring the WLE
Environment for the SSL Protocol”and “Defining Security for a WLE CORBA
Application” for the list of the required configuration steps.

n An initialization error occurred. Specify a valid SSL system property to the

ORB_init routine, an error occurs if:

l The IIOP Listener/Handler is not available. The ORB trace log will show
failed connection attempts.

l The IIOP Listener/Handler is available but it does not support the SSL
protocol. The ULOG file will show that a non-GIOP message was received.

l The IIOP Listener/Handler was available and configured for the SSL
protocol but the SSL connection could not be established. This error can
occur when the range of encryption strengths supported by the IIOP
Listener/Handler and the range of encryption strengths required by the cli
application don't match.
8-4 Using Security

Certificate-Based Authentication Problems

ent
ion
t

e

he
Certificate-Based Authentication Problems

If the client application fails when using the corbalocs URL address format with
certificate-based authentication, check the following:

n The proper configuration steps were performed. See “Configuring the WLE
Environment for the SSL Protocol”and “Defining Security for a WLE CORBA
Application” for the list of the required configuration steps.

n Determine whether or not an initialization error occurred.

n Specify a valid SSL system property to the ORB_init routine, an error occurs
if:

l The IIOP Listener/Handler is not available. The ORB trace log will show
failed connection attempts.

l The IIOP Listener/Handler is available but it does not support the SSL
protocol. The ULOG file will show that a non-GIOP message was received.

l The IIOP Listener/Handler was available and configured for the SSL
protocol but the SSL connection could not be established. This error can
occur when the range of encryption strengths supported by the IIOP
Listener/Handler and the range of encryption strengths required by the cli
application don't match. The error can also occur when the client applicat
does not trust the certificate chain of the IIOP Listener/Handler or the clien
application did not receive a certificate from the IIOP Listener/Handler. Th
error will be written to the ULOG file and the error will also show up in the
ORB trace output.

 If an error does not occur, the problem is in the authentication process and t
ULOG file will contain one of the following error statements indicating the
problem:

l Couldn’t connect to an LDAP server

l Couldn’t find a filter that matched the client certificate

l The client certificate was not found in LDAP

l The private key file could not be found

l The passphrase used to open the private key is not correct
Using Security 8-5

8 Troubleshooting

 in

d

ut
 of
 the

d

ame
eed
l The public key from the client certificate did not match
the private key

Additional certificate problems can also occur. See “Tobj::Bootstrap::
resolve_initial_references Problems” for more information about the types of
certificate errors that can occur.

Note: At this point of the initialization process, the failure is not due to a problem
the IIOP Listener/Handler.

Tobj::Bootstrap::
resolve_initial_references Problems

If a failure occurs when performing a
Tobj::Bootstrap::resolve_initial_references with the corbaloc or
corbalocs URL address format, a CORBA::InvalidDomain exception is raised.
This exception may mask CORBA::NO_PERMISSION or CORBA::COMM_FAILURE
exceptions that are raised internally. Look at the ULOG file and turn on ORB tracing to
get more details on the error. The following errors may occur:

n If the IIOP Listener/Handler is not available, the ORB trace log will show faile
connection attempts.

n If the IIOP Listener/Handler is available but it does not support the SSL
protocol, the ULOG file will show that a non-GIOP message was received.

n If the IIOP Listener/Handler is available and configured for the SSL protocol b
the SSL connection could not be established. An error can occur if the range
encryption strengths supported by the IIOP Listener/Handler and required by
client application don't match.

n The IIOP Listener/Handler couldn't map a certificate to a Username/Passwor
user name. Verify that the security level for the WLE application is set to
USER_AUTH and that Username/Password user name matches the principal n
passed into the authenticate call. Also, check that the user name doesn't exc
the 30 character limit.
8-6 Using Security

IIOP Listener/Handler Startup Problems

rs

rd

SSL
d,
t

 is a
not
ts

,
Additional certificate problems can occur. See ““Troubleshooting Tips for Digital
Certificates” on page 8-9” for more information about the types of certificate erro
that can occur.

Note: The Java implementation of the
Tobj_Bootstrap::resolve_initial_references() method does not
throw an InvalidDomain exception. When the corbaloc or corbalocs
URL address formats are used, the
Tobj_Bootstrap::resolve_initial_references() method internally
catches the InvalidDomain exception and throws the exception as a
COMM_FAILURE. The method functions this way in order to provide backwa
compatibility.

IIOP Listener/Handler Startup Problems

This section describes problems that can occur during the startup of the IIOP
Listener/Handler.

If a failure occurs when starting the IIOP Listener/Handler, check the ULOG file for a
description of the error. The IIOP Listener/Hander verifies that the values for the
arguments specified in the CLOPT parameters are valid. If any of the values are invali
the appropriate error is recorded in the ULOG file. This check is similar to the argumen
checking done by the ORB.

The IIOP Listener/Handler will not start its processes unless the -m option is specified.
The ISH is the process that actually loads and initializes the SSL libraries. If there
problem loading and initializing the SSL libraries in the ISH process, the error will
be recorded in the ULOG file until the ISH process starts to handle incoming reques
from client application.

If you suspect a problem with the startup of the IIOP Listener/Handler processes
check the ULOG file.
Using Security 8-7

8 Troubleshooting

Configuration Problems

The following are miscellaneous tips to resolve the common configuration problems
which may occur when using the WLE Security Pack:

n The ORB -ORBpeerValidate command line option or system property and the
-v option of the ISL command do not control the peer validation rules checking.
This system property and option only control the checking of the host name
specified in the peer certificate against the host name of the machine to which
the principal was connected.

n The only way to disable the peer validation rules on an installed kit is to create
an empty file for %TUXDIR%\udataobj\security\certs\peer_val.rul. If
you are writing a script that builds your WLE application, you can also not
register the peer_val.rul file in the script.

n When enabling renegotiation intervals in the IIOP Listener/Handler, check that
the option on the ISL command is -R not -r. If you use an -r, the IIOP
Listener/Handler will use the SSL protocol but the renegotiation interval will not
be used. In addition, the ULOG file will note that an unknown option was
specified on the IIOP Listener/Handler.

Another way to determine if the IIOP Listener/Handler is performing
renegotiations is to enable ORB tracing on the client side and check whether the
cipher suite negotiation callback is being called the configured renegotiation
interval. Note that the client application must be sending requests for in order for
renegotiations to occur.

n If you have defined the SECURITY parameter in the WLE application’s
UBBCONFIG file to be APP_PW or greater and you have configured the IIOP
Listener/Handler to use the SSL protocol but not mutual authentication, you
must use Username/Password authentication with the corbalocs URL address
format to communicate with the IIOP Listener/Handler. If you try to use
certificate-based authentication, the IIOP Listener/Handler will not ask the
principal for a certificate when establishing an SSL connection and the IIOP
Listener/Handler is not able to map the identity of the principal to a TUXEDO
identity.
8-8 Using Security

Problems with Using Callbacks Objects with the SSL Protocol
Problems with Using Callbacks Objects with
the SSL Protocol

If you have a joint client/server application and the client portion of the joint
client/server application specifies security requirements using either the corbalocs
URL address format or by requiring credentials, you must use the -ORBsecurePort
system property with the ORB_init routine to specify that a secure port be used.

If you do not specify the -ORBsecurePort system property, the server registration
will fail with a CORBA::NO_PERMISSION exception. To verify this is the problem,
enable ORB tracing and look for the following trace output:

TCPTransport::Listen: FAILURE: Attempt to listen on clear port
while Credentials require SSL be used

If you want to use the SSL protocol with callback objects, the joint client/server
application must use the
SecurityLevel2::PrincipalAuthenticator::authenticate() method with
certificate-based authentication. Otherwise, the joint client/server application does not
have a certificate with which to identify itself to the IIOP Listener/Handler which in
this case is the initiator of the SSL connection.

Troubleshooting Tips for Digital Certificates

In general, problems with digital certificates occur when:

n One of the digital certificates in the certificate chain of the IIOP
Listener/Handler is not from a certificate authority defined in the trust_ca.cer
file.

n The name the IIOP Listener/Handler connected to the client application does not
match the host name specified in digital certificates of the IIOP Listener/Handler
when a host match is performed. The name of the IIOP Listener/Handler is
specified in the CommonName attribute of the distinguish name of the IIOP
Using Security 8-9

8 Troubleshooting
Listener/Handler. The host name and the CommonName attribute must match
exactly.

You can verify this error by setting the -ORBpeerValidate system property to
none and executing the ORB_init routine again.

n One of the digital certificates in the certificate chain of the IIOP
Listener/Handler does not match the specified peer validation rules.

n The digital certificate of the IIOP Listener/Handler is invalid. The digital
certificate of the IIOP Listener/Handler becomes invalid when the digital
certificate is tampered with, it expires, or the certificate authority that issued the
digital certificate expires.

If a digital certificate is rejected for no explainable reason, perform the following steps:

1. Open the digital certificate in a viewer, for example, Windows Explorer.

2. Look at the KeyUsage and BasicConstraints properties of the digital
certificate. A small yellow triangle with an exclamation mark indicates the
property is critical. Any digital certificate with a property marked critical is
rejected by the WLE software.

3. If the none of the properties of the digital certificate are critical, check the
properties of the next digital certificate in the certificate chain. Perform this step
until all the properties of all the digital certificates in the certificate chain have
been verified.
8-10 Using Security

CHAPTER
9 WLE Security Service
APIs

This topic includes the following sections:

n The WLE Security Model

n Functional Components of the WLE Security Service

n The Principal Authenticator Object

n The Credentials Object

n The SecurityCurrent Object

For the C++, Java, and Automation method descriptions for the WLE Security Service,
see the following topics:

n “C++ Security Reference” on page 11-1

n “Java Security Reference” on page 12-1

n “Automation Security Reference” on page 13-1
Using Security 9-1

9 WLE Security Service APIs
The WLE Security Model

The security model in the WLE product defines only a framework for security. The
WLE product provides the flexibility to support different security mechanisms and
policies that can be used to achieve the appropriate level of functionality and assurance
for a particular WLE application.

The security model in the WLE product defines:

n Under what conditions client applications may access objects in a WLE domain

n What type of proof material principals are required to authenticate themselves to
the WLE domain

The security model in the base WLE product is a combination of the security
model defined in the CORBAservices Security Service specification1and the
value-added extensions that provide a focused, simplified form of the security
model found in BEA TUXEDO.

The following sections describe the general characteristics of the WLE security
model.

Authentication of Principals

Authentication of principals (for example, an individual user, a client application, a
server application, a joint client/server application, or an IIOP Listener/Handler)
provides security officers with the ability to ensure that only registered principals have
access to the objects in the system. An authenticated principal is used as the primary
mechanism to control access to objects. The act of authenticating principals allows the
security mechanisms to:

n Make principals accountable for their actions

n Control access to protected objects

1. All references to the CORBAservices Security Service specification in this docu-
ment are to the Revision 1.5, December 1998 edition, published by the Object Man-
agement Group.
9-2 Using Security

The WLE Security Model

ng
n Identify the originator of a request

n Identify the target of request

Controlling Access to Objects

The WLE security model provides a simple framework through which a security
officer can limit access to the WLE domain to authorized users only. Limiting access
to objects allows security officers to prohibit access to objects by unauthorized
principals. The access control framework consists of two parts:

n The object invocation policy that is enforced automatically on object invocation

n An application access policy that the user-written application can enforce

Administrative Control

The system administrator is responsible for setting security policies for the WLE
application. The WLE product provides a set of configuration parameters and utilities.
Using the configuration parameters and utilities, a system administrator can configure
the WLE application to force the principals to be authenticated to access a system on
which WLE software is installed. To enforce the configuration parameters, the system
administrator uses the tmloadcf command to update the configuration file for a
particular WLE application.

For more information about configuring security for your WLE application, see
“Configuring the WLE Environment for the SSL Protocol” on page 3-1 and “Defini
Security for a WLE CORBA Application” on page 4-1.
Using Security 9-3

9 WLE Security Service APIs

f the

.

Functional Components of the WLE Security
Service

The WLE security model is based on the process of authenticating principals to the
WLE domain. The objects of the WLE Security Service are used to authenticate a
principal. The principal provides identity and authentication data, such as a password,
to the client application. The client application uses the Principal Authenticator object
to make the calls necessary to authenticate the principal. The credentials for the
authenticated principal are associated with the security system’s implementation o
SecurityCurrent object and are represented by a Credentials object.

Figure 9-1 illustrates the authentication process used in the WLE security model

Figure 9-1 Authentication Process in the WLE Product

The following sections describe the objects in the WLE security model.

User
Sponsor

Principal
Authenticator

Object

Client
Application

Credentials
Object

Security
Current
Object

ORB
9-4 Using Security

The Principal Authenticator Object
The Principal Authenticator Object

The Principal Authenticator object is used by a principal that requires authentication
but has not been authenticated prior to calling the object system. The act of
authenticating a principal results in the creation of a Credentials object that is made
available as the default credentials for the application.

The Principal Authenticator object is a singleton object; there is only a single instance
allowed in a process address space. The Principal Authenticator object is also stateless.
A Credentials object is not associated with the Principal Authenticator object that
created it.

All Principal Authenticator objects support the
SecurityLevel2::PrincipalAuthenticator interface defined in the
CORBAservices Security Service specification. This interface contains two methods
that are used to accomplish the authentication of the principal. This is because
authentication of principals may require more than one step. The authenticate
method allows the caller to authenticate, and optionally select, attributes for the
principal of this session.

Any invocation that fails because the security infrastructure does not permit the
invocation will raise the standard exception CORBA::NO_PERMISSION. A method that
fails because the feature requested is not supported by the security infrastructure
implementation will raise the CORBA::NO_IMPLEMENT standard exception. Any
parameter that has inappropriate values will raise the CORBA::BAD_PARAM standard
exception. If a timing-related problem raises a CORBA::COMM_FAILURE. The Bootstrap
object maps most system exceptions to CORBA::Invalid_Domain.

The Principal Authenticator object is a locality-constrained object. Therefore, a
Principal Authenticator object may not be used through the DII/DSI facilities of
CORBA. Any attempt to pass a reference to this object outside of the current process,
or any attempt to externalize it using CORBA::ORB::object_to_string, will result
in the raising of the CORBA::MARSHAL exception.
Using Security 9-5

9 WLE Security Service APIs
Using the Principal Authenticator Object with
Certificate-based Authentication

The Principal Authenticator object has been enhanced to support certificate-based
authentication. The use of certificate-based authentication is controlled by specifying
the Security::AuthenticationMethod value of Tobj::CertificateBased as a
parameter to the PrincipalAuthenticator::authenticate operation. When
certificate-based authentication is used, the implementation of the
PrincipalAuthenticator::authenticate operation must retrieve the credentials
for the principal by obtaining the private key and digital certificates for the principal
and registering them for use with the SSL protocol.

The values of the security_name and auth_data parameters of the
PrincipalAuthenticator::authenticate operation are used to open the private
key for the principal. If the user does not specify the proper values for both of these
parameters, the private key cannot be opened and the user fails to be authenticated. As
a result of successfully opening the private key, a chain of digital certificates that
represent the local identity of the principal is built. Both the private key and the chain
of digital certificates must be registered to be used with the SSL protocol.

WLE Extensions to the Principal Authenticator Object

The WLE product extends the Principal Authenticator object to support a security
mechanism similar to the security in BEA TUXEDO. The enhanced functionality is
provided by defining the Tobj::PrincipalAuthenticator interface. This interface
contains methods to provide similar capability to that available from BEA TUXEDO
through the tpinit function. The interface Tobj::PrincipalAuthenticator is
derived from the CORBA SecurityLevel2::PrincipalAuthenticator interface.

The extended Principal Authenticator object adheres to all the same rules as the
Principal Authenticator object defined in the CORBAservices Security Service
specification.

The implementation of the extended Principal Authenticator object requires users to
supply a user name, client name, and additional authentication data (for example,
passwords) used for authentication. Because the information needs to be transmitted
over the network to the IIOP Listener/Handler, it is protected to ensure confidentiality.
The protection must include encryption of any information provided by the user.
9-6 Using Security

The Credentials Object
An extended Principal Authenticator object that supports the
Tobj::PrincipalAuthenticator interface provides the same functionality as if the
SecurityLevel2::PrincipalAuthenticator interface were used to perform the
authentication of the principal. However, unlike the
SecurityLevel2::PrincipalAuthenticator::authenticate method, the
logon method defined on the Tobj::PrincipalAuthenticator interface does not
return a Credentials object.

The Credentials Object

A Credentials object (as shown in Figure 9-2) holds the security attributes of a
principal. The Credentials object provides methods to obtain and set the security
attributes of the principals it represents. These security attributes include its
authenticated or unauthenticated identities and privileges. It also contains information
for establishing security associations.

Credentials objects are created as the result of:

n Authentication

n Copying an existing Credentials object

n Asking for a Credentials object via the SecurityCurrent object
Using Security 9-7

9 WLE Security Service APIs

bject
 this

icate

ality,

Figure 9-2 The Credentials Object

Multiple references to a Credentials object are supported. A Credentials object is
stateful. It maintains state on behalf of the principal for which it was created. This state
includes any information necessary to determine the identity and privileges of the
principal it represents. Credentials objects are not associated with the Principal
Authenticator object that created it, but must contain some indication of the
authentication authority that certified the principal’s identity.

The Credentials object is a locality-constrained object; therefore, a Credentials o
may not be used through the DII/DSI facilities. Any attempt to pass a reference to
object outside of the current process, or any attempt to externalize it using
CORBA::ORB::object_to_string, will result in the raising of the CORBA::MARSHAL
exception.

The Credentials object has been enhanced to allow application developers to ind
the security attributes for establishing secure connections. These attributes allow
developers to indicate whether a secure connection requires integrity, confidenti
or both. To support this capability, two new attributes were added to the
SecurityLevel2::Credentials interface.

n The invocation_options_supported attribute indicates which security
options are allowed when establishing a secure connection.

n The invocation_options_required attribute allows the application
developer to specify the minimum set of security options that must be used in
establishing a secure connection.

Public
Identity

Attributes

Unauthenticated
Attributes

Authenticated
Attributes

Credentials - Containing Security Attributes
9-8 Using Security

The SecurityCurrent Object
The SecurityCurrent Object

The SecurityCurrent object (see Figure 9-3) represents the current execution context at
both the principal and target objects. The SecurityCurrent object represents
service-specific state information associated with the current execution context. Both
client and server applications have SecurityCurrent objects that represent state
associated with the thread of execution and the process in which the thread is
executing.

Figure 9-3 The SecurityCurrent Object

The SecurityCurrent object is a singleton object; there is only a single instance allowed
in a process address space. Multiple references to the SecurityCurrent object are
supported.

The CORBAservices Security Service specification defines two interfaces for the
SecurityCurrent object associated with security:

n SecurityLevel1::Current, which derives from CORBA::Current

n SecurityLevel2::Current, which derives from the
SecurityLevel1::Current interface

Both interfaces give access to security information associated with the execution
context.

At any stage, a client application can determine the default credentials for subsequent
invocations by calling the Current::get_credentials method and asking for the
invocation credentials. These default credentials are used in all invocations that use
object references.

get_credentials

principal_authenticator

CredentialsCredentials

TID Ptr

0

authenticate

Current

PrincipalAuthenticator

Credentials
Using Security 9-9

9 WLE Security Service APIs
When the Current::get_attributes method is invoked by a client application, the
attributes returned from the Credentials object are those of the principal.

The SecurityCurrent object is a locality-constrained object; therefore, a
SecurityCurrent object may not be used through the DII/DSI facilities. Any attempt to
pass a reference to this object outside of the current process, or any attempt to
externalize it using CORBA::ORB::object_to_string, results in a
CORBA::MARSHAL exception.
9-10 Using Security

CHAPTER
10 Security Modules

This topic contains the Object Management Group (OMG) Interface Definition
Language (IDL) definitions for the following modules that are used in the WLE
Security Service:

n CORBA

n TimeBase

n Security

n Security Level 1

n Security Level 2

n Tobj
Using Security 10-1

10 Security Modules
CORBA Module

The OMG added the CORBA::Current interface to the CORBA module to support the
Current pseudo-object. The change enables the CORBA module to support Security
Replaceability and Security Level 2.

Listing 10-1 shows the CORBA::Current interface OMG IDL statements.

Listing 10-1 CORBA::Current Interface OMG IDL Statements

module CORBA {
 // Extensions to CORBA
 interface Current {
 };
};

// This information is taken from CORBAservices: Common Object
// Services Specification, page 15-230. Revised Edition:
// March 31, 1995. Updated: November 1997. Used with permission by
OMG.

TimeBase Module

All data structures pertaining to the basic Time Service, Universal Time Object, and
Time Interval Object are defined in the TimeBase module. This allows other services
to use these data structures without requiring the interface definitions. The interface
definitions and associated enums and exceptions are encapsulated in the TimeBase
module.

Listing 10-2 shows the TimeBase module OMG IDL statements.

Listing 10-2 TimeBase Module OMG IDL Statements

// From time service
module TimeBase {
 // interim definition of type ulonglong pending the
 // adoption of the type extension by all client ORBs.
10-2 Using Security

 struct ulonglong {
 unsigned long low;
 unsigned long high;
 };
 typedef ulonglong TimeT;
 typedef short TdfT;
 struct UtcT {
 TimeT time; // 8 octets
 unsigned long inacclo; // 4 octets
 unsigned short inacchi; // 2 octets
 TdfT tdf; // 2 octets
 // total 16 octets
 };
};

// This information is taken from CORBAservices: Common Object
// Services Specification, p. 14-5. Revised Edition:
// March 31, 1995. Updated: November 1997. Used with permission by
OMG.

Table 10-1 defines the TimeBase module data types.

Note: This information is taken from CORBAservices: Common Object Services
Specification, p. 14-6. Revised Edition: March 31, 1995. Updated: November 1997.
Used with permission by OMG.

Table 10-1 TimeBase Module Data Type Definitions

Data Type Definition

Time
ulonglong

OMG IDL does not at present have a native type representing an unsigned
64-bit integer. The adoption of technology submitted against that RFP will
provide a means for defining a native type representing unsigned 64-bit
integers in OMG IDL.

Pending the adoption of that technology, you can use this structure to
represent unsigned 64-bit integers, understanding that when a native type
becomes available, it may not be interoperable with this declaration on all
platforms. This definition is for the interim, and is meant to be removed when
the native unsigned 64-bit integer type becomes available in OMG IDL.

Time TimeT TimeT represents a single time value, which is 64 bit in size, and holds the
number of 100 nanoseconds that have passed since the base time. For
absolute time, the base is 15 October 1582 00:00.
Using Security 10-3

10 Security Modules
Security Module

The Security module defines the OMG IDL for security data types common to the
other security modules. This module depends on the TimeBase module and must be
available with any ORB that claims to be security ready.

Listing 10-3 shows the data types supported by the Security module.

Listing 10-3 Security Module OMG IDL Statements

module Security {
 typedef sequence<octet> Opaque;

 // Extensible families for standard data types
 struct ExtensibleFamily {
 unsigned short family_definer;
 unsigned short family;
 };

 //security attributes
 typedef unsigned long SecurityAttributeType;

Time TdfT TdfT is of size 16 bits short type and holds the time displacement factor in
the form of seconds of displacement from the Greenwich Meridian.
Displacements east of the meridian are positive, while those to the west are
negative.

Time UtcT UtcT defines the structure of the time value that is used universally in the
service. When the UtcT structure is holding, a relative or absolute time is
determined by its history. There is no explicit flag within the object holding
that state information. The inacclo and inacchi fields together hold a
value of type InaccuracyT packed into 48 bits. The tdf field holds time
zone information. Implementation must place the time displacement factor
for the local time zone in this field whenever it creates a Universal Time
Object (UTO).

The content of this structure is intended to be opaque; to be able to marshal
it correctly, the types of fields need to be identified.

Table 10-1 TimeBase Module Data Type Definitions (Continued)

Data Type Definition
10-4 Using Security

 // identity attributes; family = 0
 const SecurityAttributeType AuditId = 1;
 const SecurityAttributeType AccountingId = 2;
 const SecurityAttributeType NonRepudiationId = 3;

 // privilege attributes; family = 1
 const SecurityAttributeType Public = 1;
 const SecurityAttributeType AccessId = 2;
 const SecurityAttributeType PrimaryGroupId = 3;
 const SecurityAttributeType GroupId = 4;
 const SecurityAttributeType Role = 5;
 const SecurityAttributeType AttributeSet = 6;
 const SecurityAttributeType Clearance = 7;
 const SecurityAttributeType Capability = 8;

 struct AttributeType {
 ExtensibleFamily attribute_family;
 SecurityAttributeType attribute_type;
 };

 typedef sequence <AttributeType> AttributeTypeLists;
 struct SecAttribute {
 AttributeType attribute_type;
 Opaque defining_authority;
 Opaque value;
 // The value of this attribute can be
 // interpreted only with knowledge of type
 };

 typedef sequence<SecAttribute> AttributeList;

 // Authentication return status
 enum AuthenticationStatus {
 SecAuthSuccess,
 SecAuthFailure,
 SecAuthContinue,
 SecAuthExpired
 };

 // Authentication method
 typedef unsigned long AuthenticationMethod;

 enum CredentialType {
 SecInvocationCredentials;
 SecOwnCredentials;
 SecNRCredentials
Using Security 10-5

10 Security Modules
 // Pick up from TimeBase
 typedef TimeBase::UtcT UtcT;
};

// This information is taken from CORBAservices: Common Object
// Services Specification, pp. 15-193 to195. Revised Edition:
// March 31, 1995. Updated: November 1997. Used with permission by
OMG.

Table 10-2 describes the Security module data type.

Security Level 1 Module

This section defines those interfaces available to client application objects that use
only Level 1 Security functionality. This module depends on the CORBA module and
the Security and TimeBase modules. The Current interface is implemented by the
ORB.

Listing 10-4 shows the Security Level 1 module OMG IDL statements.

Listing 10-4 Security Level 1 Module OMG IDL Statements

module SecurityLevel1 {
 interface Current : CORBA::Current {// PIDL
 Security::AttributeList get_attributes(
 in Security::AttributeTypeList attributes
);
 };
};

// This information is taken from CORBAservices: Common Object
// Services Specification, p. 15-198. Revised Edition:

Table 10-2 Security Module Data Type Definition

Data Type Definition

sequence<octet> Data whose representation is known only to the Security Service
implementation.
10-6 Using Security

// March 31, 1995. Updated: November 1997. Used with permission by
OMG.

Security Level 2 Module

This section defines the additional interfaces available to client application objects that
use Level 2 Security functionality. This module depends on the CORBA and Security
modules.

Listing 10-5 shows the Security Level 2 module OMG IDL statements.

Listing 10-5 Security Level 2 Module OMG IDL Statements

module SecurityLevel2 {
 // Forward declaration of interfaces
 interface PrincipalAuthenticator;
 interface Credentials;
 interface Current;

 // Interface Principal Authenticator
 interface PrincipalAuthenticator {
 Security::AuthenticationStatus authenticate(
 in Security::AuthenticationMethod method,
 in string security_name,
 in Security::Opaque auth_data,
 in Security::AttributeList privileges,
 out Credentials creds,
 out Security::Opaque continuation_data,
 out Security::Opaque auth_specific_data
);

 Security::AuthenticationStatus
 continue_authentication(
 in Security::Opaque response_data,
 inout Credentials creds,
 out Security::Opaque continuation_data,
 out Security::Opaque auth_specific_data
);
 };

 // Interface Credentials
 interface Credentials {
Using Security 10-7

10 Security Modules
 attribute Security::AssociationOptions
 invocation_options_supported;

attribute Security::AssociationOptions
invocation_options_required;

Security::AttributeList get_attributes(
 in Security::AttributeTypeList attributes
);
 boolean is_valid(
 out Security::UtcT expiry_time
);
 };

 // Interface Current derived from SecurityLevel1::Current
 // providing additional operations on Current at this
 // security level. This is implemented by the ORB.
 interface Current : SecurityLevel1::Current { // PIDL
 void set_credentials(
 in Security::CredentialType cred_type,
 in Credentials cred
);

 Credentials get_credentials(
 in Security::CredentialType cred_type
);
 readonly attribute PrincipalAuthenticator
 principal_authenticator;
 };
};

// This information is taken from CORBAservices: Common Object
// Services Specification, pp. 15-198 to 200. Revised Edition:
// March 31, 1995. Updated: November 1997. Used with permission by
// OMG.

Tobj Module

This section defines the Tobj module interfaces.

This module provides the interfaces you use to program the BEA TUXEDO style of
authentication.

Listing 10-6 shows the Tobj module OMG IDL statements.
10-8 Using Security

Listing 10-6 Tobj Module OMG IDL Statements

//Tobj Specific definitions

 //get_auth_type () return values
 enum AuthType {
 TOBJ_NOAUTH,
 TOBJ_SYSAUTH,
 TOBJ_APPAUTH
 };

 typedef sequence<octet> UserAuthData;

 interface PrincipalAuthenticator :
 SecurityLevel2::PrincipalAuthenticator { // PIDL
 AuthType get_auth_type();

 Security::AuthenticationStatus logon(
 in string user_name,
 in string client_name,
 in string system_password,
 in string user_password,
 in UserAuthData user_data
);
 void logoff();

 void build_auth_data(
 in string user_name,
 in string client_name,
 in string system_password,
 in string user_password,
 in UserAuthData user_data,
 out Security::Opaque auth_data,
 out Security::AttributeList privileges
);
 };
};
Using Security 10-9

10 Security Modules
10-10 Using Security

CHAPTER
11 C++ Security Reference

This topic contains the C++ method descriptions for the WLE Security Service.
Using Security 11-1

11 C++ Security Reference

for

:
SecurityLevel1::Current::get_attributes

Synopsis Returns attributes for the Current interface.

OMG IDL
Definition

Security::AttributeList get_attributes(
in Security::AttributeTypeList attributes

);
};

Argument attributes

The set of security attributes (privilege attribute types) whose values are
desired. If this list is empty, all attributes are returned.

Description This method gets privilege (and other) attributes from the principal’s credentials
the Current interface.

Return Values The following table describes valid return values.

Note: The other attribute types are never returned. The defining_authority field
is always empty.

Note: This information is taken from CORBAservices: Common Object Services
Specification, pp. 15-103, 104. Revised Edition: March 31, 1995. Updated
November 1997. Used with permission by OMG.

Table 11-1

Return Value Meaning

Security::Public Empty (Public is returned when no authentication was
performed)

Security::AccessId Null terminated ASCII string containing the WLE
user name

Security::PrimaryGroupId Null terminated ASCII string containing the WLE
name of the principal
11-2 Using Security

).
ser
e

p a
asis

e

he

ipal.

sed
SecurityLevel2::Current::authenticate

Synopsis Authenticates the principal and optionally obtains credentials for the principal.

OMG IDL
Definition

Security::AuthenticationStatus
 authenticate(
 in Security::AuthenticationMethod method,
 in Security::SecurityName security_name,
 in Security::Opaque auth_data,
 in Security::AttributeList privileges,
 out Credentials creds,
 out Security::Opaque continuation_data,
 out Security::Opaque auth_specific_data);

Arguments method

The security mechanism to be used. Valid values are
Tobj::TuxedoSecurity and Tobj::CertificateBased.

security_name

The principal’s identification information (for example, logon information
The value must be a pointer to a NULL-terminated string containing the u
name of the principal. The string is limited to 30 characters, excluding th
NULL character.
When using certificate-based authentication, this name is used to look u
certificate in the LDAP-enabled directory service. It is also used as the b
for the name of the file in which the private key is stored. For example:
milozzi@company.com is email address used to look up a certificate in th
LDAP-enabled directory service and milozzi_company.pem is the name of
the private key file.

auth_data

The principals’ authentication, such as their password or private key. If t
Tobj:TuxedoSecurity security mechanism is specified, the value of this
argument is dependent on the configured level of authentication. If the
Tobj::CertificateBased argument is specified, the value of this
argument is the pass phrase used to decrypt the private key of the princ

privileges

The privilege attributes requested.

creds

The object reference of the newly created Credentials object.The object
reference is not fully initialized; therefore, the object reference cannot be u
until the return value of the SecurityLevel2::Current::authenticate
method is SecAuthSuccess.
Using Security 11-3

11 C++ Security Reference
continuation_data

If the return value of the SecurityLevel2::Current::authenticate
method is SecAuthContinue, this argument contains the challenge
information for the authentication to continue. The value returned will always
be empty.

auth_specific_data

Information specific to the authentication service being used. The value
returned will always be empty.

Description The SecurityLevel2::Current::authenticate method is used by the client
application to authenticate the principal and optionally request privilege attributes that
the principal requires during its session with the WLE domain.

If the Tobj::TuxedoSecurity security mechanism is to be specified, the same
functionality can be obtained by calling the
Tobj::PrincipalAuthenticator::logon operation, which provides the same
functionality but is specifically tailored for use with the TUXEDO-style authentication
security mechanism.

Return Values The following table describes the valid return values.

Table 11-2

Return Value Meaning

SecAuthSuccess The object reference of the newly created Credentials
object returned as the value of the creds argument is
initialized and ready to use.

SecAuthFailure The authentication process was inconsistent or an error
occurred during the process. Therefore, the creds argument
does not contain an object reference to a Credentials object.

If the Tobj::TuxedoSecurity security mechanism is
used, this return value indicates that authentication failed or
that the client application was already authenticated and did not
call either the
Tobj::PrincipalAuthenticator::logoff or
Tobj_Bootstrap::destroy_current operation.
11-4 Using Security

SecAuthContinue Indicates that the authentication procedure uses a
challenge/response mechanism. The creds argument
contains the object reference of a partially initialized
Credentials object. The continuation_data indicates
the details of the challenge.

SecAuthExpired Indicates that the authentication data contained some
information, the validity of which had expired; therefore, the
creds argument does not contain an object reference to a
Credentials object.

If the Tobj::TuxedoSecurity security mechanism is
used, this return value is never returned.

CORBA::BAD_PARAM The CORBA::BAD_PARAM exception occurs if:

n Values for the security_name, auth_data, or
privileges arguments are not specified.

n The length of an input argument exceeds the maximum
length of the argument.

n The value of the method argument is
Tobj::TuxedoSecurity and the content of the
auth_data argument contains a username or a
clientname as an empty or a NULL string.

Table 11-2

Return Value Meaning
Using Security 11-5

11 C++ Security Reference
SecurityLevel2::Current::set_credentials

Synopsis Sets credentials type.

OMG IDL
Definition

void set_credentials(

 in Security::CredentialType cred_type,

 in Credentials creds

);

Arguments cred_type

The type of credentials to be set; that is, invocation, own, or non-repudiation.

creds

The object reference to the Credentials object, which is to become the default.

Description This method can be used only to set SecInvocationCredentials; otherwise,
set_credentials raises CORBA::BAD_PARAM. The credentials must have been
obtained from a previous call to SecurityLevel2::Current::get_credentials
or SecurityLevel2::PrincipalAuthenticator::authenticate.

Return Values None.

Note: This information is taken from CORBAservices: Common Object Services
Specification, p. 15-104. Revised Edition: March 31, 1995. Updated:
November 1997. Used with permission by OMG.
11-6 Using Security

SecurityLevel2::Current::get_credentials

Synopsis Gets credentials type.

OMG IDL
Definition

Credentials get_credentials(

 in Security::CredentialType cred_type

);

Argument cred_type

The type of credentials to get.

Description This call can be used only to get SecInvocationCredentials; otherwise,
get_credentials raises CORBA::BAD_PARAM. If no credentials are available,
get_credentials raises CORBA::BAD_INV_ORDER.

Return Values Returns the active credentials in the client application only.

Note: This information is taken from CORBAservices: Common Object Services
Specification, p. 15-105. Revised Edition: March 31, 1995. Updated:
November 1997. Used with permission by OMG.
Using Security 11-7

11 C++ Security Reference
SecurityLevel2::Current::principal_authenticator

Synopsis Returns the PrincipalAuthenticator.

OMG IDL
Definition

readonly attribute PrincipalAuthenticator

 principal_authenticator;

Description The PrincipalAuthenticator returned by the principal_authenticator
attribute is of actual type Tobj::PrincipalAuthenticator. Therefore, it can be
used both as a Tobj::PrincipalAuthenticator and as a
SecurityLevel2::PrincipalAuthenticator.

Note: This method raises CORBA::BAD_INV_ORDER if it is called on an invalid
SecurityCurrent object.

Return Values Returns the PrincipalAuthenticator.
11-8 Using Security

ess.

 its
SecurityLevel2::Credentials

Synopsis Represents a particular principal’s credential information that is specific to a proc
A Credentials object that supports the SecurityLevel2::Credentials interface is a
locality-constrained object. Any attempt to pass a reference to the object outside
locality, or any attempt to externalize the object using the
CORBA::ORB::object_to_string() operation, results in a CORBA::Marshall
exception.

OMG IDL
Definition

#ifndef _SECURITY_LEVEL_2_IDL
#define _SECURITY_LEVEL_2_IDL

#include <SecurityLevel1.idl>

#pragma prefix “omg.org”

module SecurityLevel2
 {
 interface Credentials
 {
 attribute Security::AssociationOptions
 invocation_options_supported;
 attribute Security::AssociationOptions
 invocation_options_required;
Security::AttributeList
 get_attributes(
 in Security::AttributeTypeList attributes);

 boolean
 is_valid(
 out Security::UtcT expiry_time);

};
 };
#endif /* _SECURITY_LEVEL_2_IDL */

C++ Declaration class SecurityLevel2
 {
 public:
 classCredentials;
 typedefCredentials *Credentials_ptr;

 class Credentials : public virtual CORBA::Object
 {
 public:
Using Security 11-9

11 C++ Security Reference
 static Credentials_ptr _duplicate(Credentials_ptr obj);
 static Credentials_ptr _narrow(CORBA::Object_ptr obj);
 static Credentials_ptr _nil();

 virtual Security::AssociationOptions
 invocation_options_supported() = 0;
 virtual void
 invocation_options_supported(
 const Security::AssociationOptions options) = 0;
 virtual Security::AssociationOptions
 invocation_options_required() = 0;
 virtual void
 invocation_options_required(
 const Security::AssociationOptions options) = 0;

 virtual Security::AttributeList *
 get_attributes(
 const Security::AttributeTypeList & attributes) = 0;

 virtual CORBA::Boolean
 is_valid(Security::UtcT_out expiry_time) = 0;

 protected:
 Credentials(CORBA::Object_ptr obj = 0);
 virtual ~Credentials() { }

 private:
 Credentials(const Credentials&) { }
 void operator=(const Credentials&) { }
 }; // class Credentials
 }; // class SecurityLevel2
11-10 Using Security

SecurityLevel2::Credentials::get_attributes

Synopsis Gets the attribute list attached to the credentials.

OMG IDL
Definition

Security::AttributeList get_attributes(

 in AttributeTypeList attributes

);

Argument attributes

The set of security attributes (privilege attribute types) whose values are
desired. If this list is empty, all attributes are returned.

Description This method returns the attribute list attached to the credentials of the principal. In the
list of attribute types, you are required to include only the type value(s) for the
attributes you want returned in the AttributeList. Attributes are not currently
returned based on attribute family or identities. In most cases, this is the same result
you would get if you called SecurityLevel1::Current::get_attributes(),
since there is only one valid set of credentials in the principal at any instance in time.
The results could be different if the credentials are not currently in use.

Return Values Returns attribute list.

Note: This is information taken from CORBAservices: Common Object Services
Specification, p. 15-97. Revised Edition: March 31, 1995. Updated: November
1997. Used with permission by OMG.
Using Security 11-11

11 C++ Security Reference

es
n
SecurityLevel2::Credentials::invocation_options_supported

Synopsis Indicates the maximum number of security options that can be used when establising
an SSL connection to make an invocation on an object in the WLE domain.

OMG IDL
Definition

attribute Security::AssociationOptions(

 invocation_options_supported;

Argument None.

Description This method should be used in conjunction with the
SecurityLevel2::Credentials::invocation_options_required method.

The following security options can be specified:

Table 11-3

Security Option Description

NoProtection The SSL protocol does not provide message protection.

Integrity The SSL protocol provides an integrity check of messages. Digital signatures
are used to protect the integrity of messages.

Confidentiality The SSL connection protects the confidentiality of messages. Crytography is
used to protect the confidentiality of messages.

DetectReplay The SSL protocol provides replay detection. Replay occurs when a message is
sent repeatedly with no detection..

DetectMisordering The SSL protocol provides sequence error detection for requests and request
fragments.

EstablishTrustInTarget Indicates that the target of a request authenticates itself to the initiating
principal.

EstablishTrustinTarget Indicates that the initiating principal authenticates itself to the target of the
request.

NoDelegation Indicates that the principal permits an intermediate object to use its privileges
for the purpose of access control decisions. However, the principal’s privileg
are not delegated so the intermediate object cannot use the privileges whe
invoking the next object in the chain.
11-12 Using Security

Return Values The list of defined security options.

If the Tobj::TuxedoSecurity security mechanism is used to create the security
association, only the NoProtection, EstablishTrustInClient, and
SimpleDelegation security options are returned. The EstablishTrustInClient
security option appears only if the security level of the WLE application is defined to
require passwords to access the WLE domain.

Note: A CORBA::BAD_PARAM exception is returned if the security options specified
are not supported by the security mechanism defined for the WLE application.
This exception can also occur if the security options specified have less
capabilities than the security options specified by the
SecurityLevel2::Credentials::invocation_options_required
method.

A Credentials object with a security mechanism of Tobj::TuxedoSecurity
always returns the CORBA::BAD_PARAM exception.

SimpleDelegation Indicates that the principal permits an intermediate object to use its privileges
for the purpose of access control decisions, and delegates the privileges to the
intermediate object. The target object receives only the privileges of the client
application and does not know the identity of the intermediate object. When
this invocation option is used without restrictions on the target object, the
behavior is known as impersonation.

CompositeDelegation Indicates that the principal permits the intermediate object to use its
credentials and delegate them. The privileges of both the principal and the
intermediate object can be checked.

Table 11-3

Security Option Description
Using Security 11-13

11 C++ Security Reference
SecurityLevel2::Credentials::invocation_options_required

Synopsis Specifies the minimum number of security options to be used when establishing an
SSL connection to make an invocation on a target object in the WLE domain.

OMG IDL
Definition

attribute Security::AssociationOptions(

 invocation_options_required;

Argument None.

Description Use this method to specify that communication between principals and the WLE
domain should be protected. After using this method, a Credentials object makes an
invocation on a target object using the SSL protocol with the defined level of security
options. This method should be used in conjunction with the
SecurityLevel2::Credentials::invocation_options_supported method.

The following security options can be specified:

Table 11-4

Security Option Description

NoProtection The SSL protocol does not provide message protection.

Integrity The SSL protocol provides an integrity check of messages. Digital signatures
are used to protect the integrity of messages.

Confidentiality The SSL connection protects the confidentiality of messages. Crytography is
used to protect the confidentiality of messages.

DetectReplay The SSL protocol provides replay detection. Replay occurs when a message is
sent repeatedly with no detection..

DetectMisordering The SSL protocol provides sequence error detection for requests and request
fragments.

EstablishTrustInTarget Indicates that the target of a request authenticates itself to the initiating
principal.

EstablishTrustinTarget Indicates that the initiating principal authenticates itself to the target of the
request.
11-14 Using Security

es
n

es
 the
nt
n

Return Values The list of defined security options.

If the Tobj::TuxedoSecurity security mechanism is used to create the security
association, only the NoProtection, EstablishTrustInClient, and
SimpleDelegation security options are returned. The EstablishTrustInClient
security option appears only if the security level of the WLE application is defined to
require passwords to access the WLE domain.

Note: A CORBA::BAD_PARAM exception is returned if the security options specified
are not supported by the security mechanism defined for the WLE application.
This exception can also occur if the security options specified have more
capabilities than the security options specified by the
SecurityLevel2::Credentials::invocation_options_supported
method.

A Credentials object with a parameter of Tobj::TuxedoSecurity always
returns the CORBA::BAD_PARAM exception.

NoDelegation Indicates that the principal permits an intermediate object to use its privileges
for the purpose of access control decisions. However, the principal’s privileg
are not delegated so the intermediate object cannot use the privileges whe
invoking the next object in the chain.

SimpleDelegation Indicates that the principal permits an intermediate object to use its privileg
for the purpose of access control decisions, and delegates the privileges to
intermediate object. The target object receives only the privileges of the clie
application and does not know the identity of the intermediate object. Whe
this invocation option is used without restrictions on the target object, the
behavior is known as impersonation).

CompositeDelegation Indicates that the principal permits the intermediate object to use its
credentials and delegate them. The privileges of both the principal and the
intermediate object can be checked.

Table 11-4

Security Option Description
Using Security 11-15

11 C++ Security Reference
SecurityLevel2::Credentials::is_valid

Synopsis Checks status of credentials.

OMG IDL
Definition

boolean is_valid(

 out Security::UtcT expiry_time

);

Description This method returns TRUE if the credentials used are active at the time; that is, you did
not call Tobj::PrincipalAuthenticator::logoff or
Tobj_Bootstrap::destroy_current. If this method is called after
Tobj::PrincipalAuthenticator::logoff(), FALSE is returned. If this method is
called after Tobj_Bootstrap::destroy_current(), the CORBA::BAD_INV_ORDER
exception is raised.

Return Values The expiration date returned contains the maximum unsigned long long value in
C++ and maximum long in Java. Until the unsigned long long datatype is adopted,
the ulonglong datatype is substituted. The ulonglong datatype is defined as follows:

 // interim definition of type ulonglong pending the
 // adoption of the type extension by all client ORBs.
 struct ulonglong {
 unsigned long low;
 unsigned long high;
 };

Note: This information is taken from CORBAservices: Common Object Services
Specification, p. 15-97. Revised Edition: March 31, 1995. Updated: November
1997. Used with permission by OMG.
11-16 Using Security

SecurityLevel2::PrincipalAuthenticator

Synopsis Allows a principal to be authenticated. A Principal Authenticator object that supports
the SecurityLevel2::PrincipalAuthenticator interface is a
locality-constrained object. Any attempt to pass a reference to the object outside its
locality, or any attempt to externalize the object using the
CORBA::ORB::object_to_string() operation, results in a CORBA::Marshall
exception.

OMG IDL
Definition

#ifndef _SECURITY_LEVEL_2_IDL
#define _SECURITY_LEVEL_2_IDL

#include <SecurityLevel1.idl>

#pragma prefix “omg.org”

module SecurityLevel2
 {
 interface PrincipalAuthenticator
 { // Locality Constrained
 Security::AuthenticationStatus authenticate (
 in Security::AuthenticationMethod method,
 in Security::SecurityName security_name,
 in Security::Opaque auth_data,
 in Security::AttributeList privileges,
 out Credentials creds,
 out Security::Opaque continuation_data,
 out Security::Opaque auth_specific_data
);

 Security::AuthenticationStatus continue_authentication (
 in Security::Opaque response_data,
 in Credentials creds,
 out Security::Opaque continuation_data,
 out Security::Opaque auth_specific_data
);
 };
 };
#endif // SECURITY_LEVEL_2_IDL

#pragma prefix "beasys.com"
module Tobj
 {
 const Security::AuthenticationMethod
 TuxedoSecurity = 0x54555800;
Using Security 11-17

11 C++ Security Reference
 CertificateBased = 0x43455254;
 };

C++ Declaration class SecurityLevel2
 {
 public:
 classPrincipalAuthenticator;
 typedefPrincipalAuthenticator * PrincipalAuthenticator_ptr;

 class PrincipalAuthenticator : public virtual CORBA::Object
 {
 public:
 static PrincipalAuthenticator_ptr
 _duplicate(PrincipalAuthenticator_ptr obj);
 static PrincipalAuthenticator_ptr
 _narrow(CORBA::Object_ptr obj);
 static PrincipalAuthenticator_ptr _nil();

 virtual Security::AuthenticationStatus
 authenticate (
 Security::AuthenticationMethod method,
 const char * security_name,
 const Security::Opaque & auth_data,
 const Security::AttributeList & privileges,
 Credentials_out creds,
 Security::Opaque_out continuation_data,
 Security::Opaque_out auth_specific_data) = 0;

 virtual Security::AuthenticationStatus
 continue_authentication (
 const Security::Opaque & response_data,
 Credentials_ptr & creds,
 Security::Opaque_out continuation_data,
 Security::Opaque_out auth_specific_data) = 0;

 protected:
 PrincipalAuthenticator(CORBA::Object_ptr obj = 0);
 virtual ~PrincipalAuthenticator() { }

 private:
 PrincipalAuthenticator(const PrincipalAuthenticator&) { }
 void operator=(const PrincipalAuthenticator&) { }
 }; // class PrincipalAuthenticator
 };
11-18 Using Security

SecurityLevel2::PrincipalAuthenticator::continue_authentication

Synopsis Always fails.

OMG IDL
Definition

Security::AuthenticationStatus continue_authentication(

 in Security::Opaque response_data,

 inout Credentials creds,

 out Security::Opaque continuation_data,

 out Security::Opaque auth_specific_data

);

Description Because the WLE software does authentication in one step, this method always fails
and returns Security::AuthenticationStatus::SecAuthFailure.

Return Values Always returns Security::AuthenticationStatus::SecAuthFailure.

Note: This information is taken from CORBAservices: Common Object Services
Specification, pp. 15-92, 93. Revised Edition: March 31, 1995. Updated:
November 1997. Used with permission by OMG.
Using Security 11-19

11 C++ Security Reference
Tobj::PrincipalAuthenticator::get_auth_type

Synopsis Gets the type of authentication expected by the WLE domain.

OMG IDL
Definition

AuthType get_auth_type();

Description This method returns the type of authentication expected by the WLE domain.

Note: This method raises CORBA::BAD_INV_ORDER if it is called with an invalid
SecurityCurrent object.

Return Values A reference to the Tobj_AuthType enumeration. The following table describes the
valid return values.

Returns the type of authentication required to access the WLE domain.

Table 11-5

Return Value Meaning

TOBJ_NOAUTH No authentication is needed; however, the client
application can still authenticate itself by specifying
a user name and a client application name. No
password is required.

To specify this level of security, specify the NONE
value for the SECURITY parameter in the
RESOURCES section of the UBBCONFIG file.

TOBJ_SYSAUTH The client application must authenticate itself to the
WLE domain, and must specify a user name, a name,
and a password for the client application.

To specify this level of security, specify the APP_PW
value for the SECURITY parameter in the
RESOURCES section of the UBBCONFIG file.

TOBJ_APPAUTH The client application must provide proof material
that authenticates the client application to the WLE
domain.The proof material may be a password or a
digital certificate.

To specify this level of security, specify the
USER_AUTH value for the SECURITY parameter in
the RESOURCES section of the UBBCONFIG file.
11-20 Using Security

Tobj::PrincipalAuthenticator::logon

Synopsis Authenticates the principal.

OMG IDL
Definition

Security::AuthenticationStatus logon(
 in string user_name,
 in string client_name,
 in string system_password,
 in string user_password,
 in UserAuthData user_data
);

Arguments user_name

The WLE user name. The authentication level is TOBJ_NOAUTH. If
user_name is NULL or empty, or exceeds 30 characters, logon raises
CORBA::BAD_PARAM.

client_name

The WLE name of the client application. The authentication level is
TOBJ_NOAUTH. If the client_name is NULL or empty, or exceeds 30
characters, logon raises the CORBA::BAD_PARAM exception.

system_password

The WLE client application password. The authentication level is
TOBJ_SYSAUTH. If the client name is NULL or empty, or exceeds 30
characters, logon raises the CORBA::BAD_PARAM exception.

Note: The system_password must not exceed 30 characters.

user_password

The user password (needed for use by the default WLE authentication
service). The authentication level is TOBJ_APPAUTH.

user_data

Data that is specific to the client application (needed for use by a custom
WLE authentication service). The authentication level is TOBJ_APPAUTH.

Note: TOBJ_SYSAUTH includes the requirements of TOBJ_NOAUTH, plus a client
application password. TOBJ_APPAUTH includes the requirements of
TOBJ_SYSAUTH, plus additional information, such as a user password or
user data.

Note: The user_password and user_data arguments are mutually exclusive,
depending on the requirements of the authentication service used in the
configuration of the WLE domain. The WLE default authentication
service expects a user password. A customized authentication service may
Using Security 11-21

11 C++ Security Reference
require user data. The logon call raises the CORBA::BAD_PARAM exception
if both user_password and user_data are specified.

Description This method authenticates the principal via the IIOP Listener/Handler so that the
principal can access a WLE domain. This method is functionally equivalent to
SecurityLevel2::PrincipalAuthenticator::authenticate, but the
arguments are oriented to TUXEDO-style authentication.

Note: This method raises CORBA::BAD_INV_ORDER if it is called with an invalid
SecurityCurrent object.

Return Values The following table describes the valid return values.

Table 11-6

Return Value Meaning

Security::AuthenticationStatus::
SecAuthSuccess

The authentication succeeded.

Security::AuthenticationStatus::
SecAuthFailure

The authentication failed, or the client application was
already authenticated and did not call one of the
following methods:
Tobj::PrincipalAuthenticator:logoff

Tobj_Bootstrap::destroy_current

CORBA::INVALID_DOMAIN The method was used with the corbaloc or
corbalocs URL address format.
11-22 Using Security

Tobj::PrincipalAuthenticator::logoff

Synopsis Discards the security context associated with the principal.

OMG IDL
Definition

void logoff();

Description This call discards the security context, but does not close the network connections to
the WLE domain. Logoff also invalidates the current credentials. After logging off,
invocations using existing object references fail if the authentication type is not
TOBJ_NOAUTH.

If the principal is currently authenticated to a WLE domain, calling
Tobj_Bootstrap::destroy_current() calls logoff implicitly.

Note: This method raises CORBA::BAD_INV_ORDER if it is called with an invalid
SecurityCurrent object.

Return Values None.
Using Security 11-23

11 C++ Security Reference
Tobj::PrincipalAuthenticator::build_auth_data

Synopsis Creates authentication data and attributes for use by
SecurityLevel2::PrincipalAuthenticator::authenticate.

OMG IDL
Definition void build_auth_data(

 in string user_name,

 in string client_name,

 in string system_password,

 in string user_password,

 in UserAuthData user_data,

 out Security::Opaque auth_data,

 out Security::AttributeList privileges

);

Arguments user_name

The WLE user name.

client_name

The WLE client name.

system_password

The WLE client application password.

user_password

The user password (default WLE authentication service).

user_data

Client application-specific data (custom WLE authentication service).

auth_data

For use by authenticate.

privileges

For use by authenticate.

Note: If user_name, client_name, or system_password is NULL or empty, or
exceeds 30 characters, the subsequent authenticate method invocation
raises the CORBA::BAD_PARAM exception.
11-24 Using Security

Note: The user_password and user_data parameters are mutually exclusive,
depending on the requirements of the authentication service used in the
configuration of the WLE domain. The WLE default authentication
service expects a user password. A customized authentication service may
require user data. If both user_password and user_data are specified,
the subsequent authentication call raises the CORBA::BAD_PARAM
exception.

Description This method is a helper function that creates authentication data and attributes to be
used by SecurityLevel2::PrincipalAuthenticator::authenticate.

Note: This method raises CORBA::BAD_INV_ORDER if it is called with an invalid
SecurityCurrent object.

Return Values None.
Using Security 11-25

11 C++ Security Reference
11-26 Using Security

CHAPTER
12 Java Security
Reference

For information about the security package application programming interface (API),
see the WLE Javadoc.
Using Security 12-1

12 Java Security Reference
12-2 Using Security

CHAPTER
13 Automation Security
Reference

This topic contains the Automation method descriptions for the WLE Security service.
In addition, the topic contains programming examples that illustrate using the
Automation methods to implement security in an ActiveX client application.

Note: The Automation security methods do not support certificate-based
authentication or the use of the SSL procotol.
Using Security 13-1

13 AUTOMATION SECURITY REFERENCE
Method Descriptions

This section describes the Automation Security Service methods.

DISecurityLevel2_Current

The DISecurityLevel2_Current object is a BEA implementation of the CORBA
Security model. In this release of the WLE software, the get_attributes(),
set_credentials(), get_credentials(), and Principal_Authenticator()
methods are supported.
13-2 Using Security

METHOD DESCRIPTIONS
DISecurityLevel2_Current.get_attributes

Synopsis Returns attributes for the Current interface.

MIDL Mapping HRESULT get_attributes(
 [in] VARIANT attributes,
 [in,out,optional] VARIANT* exceptionInfo,
 [out,retval] VARIANT* returnValue);

Automation
Mapping

Function get_attributes(attributes, [exceptionInfo])

Parameters attributes

The set of security attributes (privilege attribute types) whose values are
desired. If this list is empty, all attributes are returned.

exceptioninfo

An optional input argument that allows the client application to get additional
exception data if an error occurs. For the ActiveX client applications, all
exception data is returned in the OLE Automation Error Object.

Description This method gets privilege (and other) attributes from the credentials for the client
application from the Current interface.

Return Values A variant containing an array of DISecurity_SecAttribute objects. The following
table describes the valid return values.

Return Value Meaning

Security::Public Empty (Public is returned when no authentication
was performed.)

Security::AccessId Null-terminated ASCII string containing the WLE
user name

Security::PrimaryGroupId Null-terminated ASCII string containing the WLE
name of the client application
Using Security 13-3

13 AUTOMATION SECURITY REFERENCE
DISecurityLevel2_Current.set_credentials

Synopsis Sets credentials type.

MIDL Mapping HRESULT set_credentials(
 [in] Security_CredentialType cred_type,
 [in] DISecurityLevel2_Credentials* cred,
 [in,out,optional] VARIANT* exceptionInfo);

Automation
Mapping

Sub set_credentials(cred_type As Security_CredentialType,
 cred As DISecurityLevel2_Credentials,
 [exceptionInfo])

Description This method can be used only to set SecInvocationCredentials; otherwise,
set_credentials raises CORBA::BAD_PARAM. The credentials must have been
obtained from a previous call to DISecurityLevel2_Current.get_credentials.

Arguments cred_type

The type of credentials to be set; that is, invocation, own, or nonrepudiation.

cred

The object reference to the Credentials object, which is to become the default.

exceptioninfo

An optional input argument that allows the client application to get additional
exception data if an error occurs. For the ActiveX client applications, all
exception data is returned in the OLE Automation Error Object.

Return Values None.
13-4 Using Security

METHOD DESCRIPTIONS
DISecurityLevel2_Current.get_credentials

Synopsis Gets credentials type.

MIDL Mapping HRESULT get_credentials(
 [in] Security_CredentialType cred_type,
 [in,out,optional] VARIANT* exceptionInfo,
 [out,retval] DISecurityLevel2_Credentials** returnValue);

Automation
Mapping

Function get_credentials(cred_type As Security_CredentialType,
 [exceptionInfo]) As DISecurityLevel2_Credentials

Description This call can be used only to get SecInvocationCredentials; otherwise,
get_credentials raises CORBA::BAD_PARAM. If no credentials are available,
get_credentials raises CORBA::BAD_INV_ORDER.

Arguments cred_type

The type of credentials to get.

exceptioninfo

An optional input argument that allows the client application to get additional
exception data if an error occurs. For the ActiveX client application, all
exception data is returned in the OLE Automation Error Object.

Return Values A DISecurityLevel2_Credentials object for the active credentials in the client
application only.
Using Security 13-5

13 AUTOMATION SECURITY REFERENCE
DISecurityLevel2_Current.principal_authenticator

Synopsis Returns the PrincipalAuthenticator.

MIDL Mapping HRESULT principal_authenticator([out, retval]
 DITobj_PrincipalAuthenticator** returnValue);

Automation
Mapping

Property principal_authenticator As DITobj_PrincipalAuthenticator

Description The PrincipalAuthenticator returned by the principal_authenticator
property is of actual type DITobj_PrincipalAuthenticator. Therefore, it can be
used as a DISecurityLevel2_PrincipalAuthenticator.

Note: This method raises CORBA::BAD_INV_ORDER if it is called on an invalid
SecurityCurrent object.

Return Values A DITobj_PrincipalAuthenticator object.
13-6 Using Security

METHOD DESCRIPTIONS
DITobj_PrincipalAuthenticator

The DITobj_PrincipalAuthenticator object is used to log in to and log out of the
WLE domain. In this release of the WLE software, the authenticate,
build_auth_data(), continue_authentication(), get_auth_type(),
logon(), and logoff() methods are implemented
Using Security 13-7

13 AUTOMATION SECURITY REFERENCE
DITobj_PrincipalAuthenticator.authenticate

Synopsis Authenticates the client application.

MIDL Mapping HRESULT authenticate(
 [in] long method,
 [in] BSTR security_name,
 [in] VARIANT auth_data,
 [in] VARIANT privileges,
 [out] DISecurityLevel2_Credentials**

creds,
 [out] VARIANT* continuation_data,
 [out] VARIANT* auth_specific_data,
 [in,out,optional] VARIANT* exceptionInfo,
 [out,retval] Security_AuthenticationStatus* returnValue);

Automation
Mapping

Function authenticate(method As Long, security_name As String,
 auth_data, privileges, creds As DISecurityLevel2_Credentials,
 continuation_data, auth_specific_data,
 [exceptionInfo]) As Security_AuthenticationStatus

Arguments method

Must be Tobj::TuxedoSecurity. If method is invalid, authenticate
raises CORBA::BAD_PARAM.

security_name

The WLE user name.

auth_data

As returned by DITobj_PrincipalAuthenticator.build_auth_data. If
auth_data is invalid, authenticate raises CORBA::BAD_PARAM.

privileges

As returned by DITobj_PrincipalAuthenticator.build_auth_data.
If privileges is invalid, authenticate raises CORBA::BAD_PARAM.

creds

Placed into the SecurityCurrent object.

continuation_data

Always empty.
13-8 Using Security

METHOD DESCRIPTIONS
auth_specific_data

Always empty.

exceptioninfo

An optional input argument that allows the client application to get additional
exception data if an error occurs. For the ActiveX client application, all
exception data is returned in the OLE Automation Error Object.

Description This method authenticates the client application via the IIOP Listener/Handler so that
it can access a WLE domain.

Return Values A Security_AuthenticationStatus Enum value. The following table describes
the valid return values.

Return Value Meaning

Security::Authentication
Status::
SecAuthSuccess

The authentication succeeded.

Security::Authentication
Status::
SecAuthFailure

The authentication failed, or the client
application was already authenticated and did
not invoke
Tobj::PrincipalAuthenticator:logoff or
Tobj_Bootstrap::destroy_current.
Using Security 13-9

13 AUTOMATION SECURITY REFERENCE
DITobj_PrincipalAuthenticator.build_auth_data

Synopsis Creates authentication data and attributes for use by
DITobj_PrincipalAuthenticator.authenticate.

MIDL Mapping HRESULT build_auth_data(
 [in] BSTR user_name,
 [in] BSTR client_name,
 [in] BSTR system_password,
 [in] BSTR user_password,
 [in] VARIANT user_data,
 [out] VARIANT* auth_data,
 [out] VARIANT* privileges,
 [in,out,optional] VARIANT* exceptionInfo);

Automation
Mapping

Sub build_auth_data(user_name As String, client_name As String,
 system_password As String, user_password As String, user_data,
 auth_data, privileges, [exceptionInfo])

Arguments user_name

The WLE user name.

client_name

A name of the WLE client application.

system_password

The password for the WLE client application.

user_password

The user password (default WLE authentication service).

user_data

Client application-specific data (custom WLE authentication service).

auth_data

For use by authenticate.

privileges

For use by authenticate.

exceptioninfo

An optional input argument that allows the client application to get additional
exception data if an error occurs. For the ActiveX client application, all
exception data is returned in the OLE Automation Error Object.
13-10 Using Security

METHOD DESCRIPTIONS
Note: If user_name, client_name, or system_password is NULL or empty, or
exceeds 30 characters, the subsequent authenticate method invocation
raises the CORBA::BAD_PARAM exception.

Note: The user_password and user_data parameters are mutually exclusive,
depending on the requirements of the authentication service used in the
configuration of the WLE domain. The WLE default authentication
service expects a user password. A customized authentication service may
require user data. If both user_password and user_data are specified,
the subsequent authentication call raises the CORBA::BAD_PARAM
exception.

Description This method is a helper function that creates authentication data and attributes to be
used by DITobj_PrincipalAuthenticator.authenticate.

Note: This method raises CORBA::BAD_INV_ORDER if it is called with an invalid
SecurityCurrent object.

Return Values None.
Using Security 13-11

13 AUTOMATION SECURITY REFERENCE
DITobj_PrincipalAuthenticator.continue_authentication

Synopsis Always returns Security::AuthenticationStatus::SecAuthFailure.

MIDL Mapping HRESULT continue_authentication(
 [in] VARIANT response_data,
 [in,out] DISecurityLevel2_Credentials** creds,
 [out] VARIANT* continuation_data,
 [out] VARIANT* auth_specific_data,
 [in,out,optional] VARIANT* exceptionInfo,
 [out,retval] Security_AuthenticationStatus* returnValue);

Automation
Mapping

Function continue_authentication(response_data,
 creds As DISecurityLevel2_Credentials, continuation_data,
 auth_specific_data, [exceptionInfo]) As
 Security_AuthenticationStatus

Description Because the WLE software does authentication in one step, this method always fails
and returns Security::AuthenticationStatus::SecAuthFailure.

Return Values Always returns SecAuthFailure.
13-12 Using Security

METHOD DESCRIPTIONS
DITobj_PrincipalAuthenticator.get_auth_type

Synopsis Gets the type of authentication expected by the WLE domain.

MIDL Mapping HRESULT get_auth_type(

 [in, out, optional] VARIANT* exceptionInfo,

 [out, retval] Tobj_AuthType* returnValue);

Automation
Mapping

Function get_auth_type([exceptionInfo]) As Tobj_AuthType

Argument exceptioninfo

An optional input argument that allows the client application to get additional
exception data if an error occurs. For the ActiveX client application, all
exception data is returned in the OLE Automation Error Object.

Description This method returns the type of authentication expected by the WLE domain.

Note: This method raises CORBA::BAD_INV_ORDER if it is called with an invalid
SecurityCurrent object.

Returned
Values

A reference to the Tobj_AuthType enumeration. The following table describes the
valid return values.

Return Value Meaning

TOBJ_NOAUTH No authentication is needed; however, the client
application can still authenticate itself by specifying
a user name and a client application name. No
password is required.

To specify this level of security, specify the NONE
value for the SECURITY parameter in the
RESOURCES section of the UBBCONFIG file.
Using Security 13-13

13 AUTOMATION SECURITY REFERENCE
TOBJ_SYSAUTH The client application must authenticate itself to the
WLE domain, and must specify a user name, a name,
and a password for the client application.

To specify this level of security, specify the APP_PW
value for the SECURITY parameter in the
RESOURCES section of the UBBCONFIG file.

TOBJ_APPAUTH The client application must provide proof material
that authenticates the client application to the WLE
domain.The proof material may be a password or a
digital certificate.

To specify this level of security, specify the
USER_AUTH value for the SECURITY parameter in
the RESOURCES section of the UBBCONFIG file.

Return Value Meaning
13-14 Using Security

METHOD DESCRIPTIONS
DITobj_PrincipalAuthenticator.logon

Synopsis Logs in to the WLE domain. The correct input parameters depend on the authentication
level.

MIDL Mapping HRESULT logon(

 [in] BSTR user_name,

 [in] BSTR client_name,

 [in] BSTR system_password,

 [in] BSTR user_password,

 [in] VARIANT user_data,

 [in,out,optional] VARIANT* exceptionInfo,

 [out,retval] Security_AuthenticationStatus*

 returnValue);

Automation
Mapping

Function logon(user_name As String, client_name As String,
 system_password As String, user_password As String,
 user_data, [exceptionInfo]) As Security_AuthenticationStatus

Description For remote WLE client applications, this method authenticates the client application
via the IIOP Listener/Handler so that the remote client application can access a WLE
domain. This method is functionally equivalent to
DITobj_PrincipalAuthenticator.authenticate, but the parameters are
oriented to WLE security.

Arguments user_name

The WLE user name. This parameter is required for TOBJ_NOAUTH,
TOBJ_SYSAUTH, and TOBJ_APPAUTH authentication levels.

client_name

The name of the WLE client application. This parameter is required for
TOBJ_NOAUTH, TOBJ_SYSAUTH, and TOBJ_APPAUTH authentication levels.

system_password

A password for the WLE client application. This parameter is required for
TOBJ_SYSAUTH and TOBJ_APPAUTH authentication levels.

user_password

The user password (default WLE authentication service). This parameter is
required for the TOBJ_APPAUTH authentication level.
Using Security 13-15

13 AUTOMATION SECURITY REFERENCE
user_data

Application-specific data (custom authentication service). This parameter is
required for the TOBJ_APPAUTH authentication level.

Note: If user_name, client_name, or system_password is NULL or empty, or
exceeds 30 characters, the subsequent authenticate method invocation
raises the CORBA::BAD_PARAM exception.

Note: If the authorization level is TOBJ_APPAUTH, only one of user_password
or user_data may be supplied.

exceptioninfo

An optional input argument that allows the client application to get additional
exception data if an error occurs. For the ActiveX client application, all
exception data is returned in the OLE Automation Error Object.

Return Values The following table describes the valid return values.

Return Value Meaning

Security::AuthenticationStatus::
SecAuthSuccess

The authentication succeeded.

Security::AuthenticationStatus::
SecAuthFailure

The authentication failed, or the client application was
already authenticated and did not call one of the
following methods:
Tobj::PrincipalAuthenticator:logoff

Tobj_Bootstrap::destroy_current
13-16 Using Security

METHOD DESCRIPTIONS
DITobj_PrincipalAuthenticator.logoff

Synopsis Discards the current security context associated with the WLE client application.

MIDL Mapping HRESULT logoff([in, out, optional] VARIANT* exceptionInfo);

Automation
Mapping

Sub logoff([exceptionInfo])

Description This call discards the context associated with the WLE client application, but does not
close the network connections to the WLE domain. Logoff also invalidates the current
credentials. After logging off, calls using existing object references fail if the
authentication type is not TOBJ_NOAUTH.

If the client application is currently authenticated to a WLE domain, calling
Tobj_Bootstrap.destroy_current() calls logoff implicitly.

Argument exceptioninfo

An optional input argument that allows the client application to get additional
exception data if an error occurs. For the ActiveX client applications, all
exception data is returned in the OLE Automation Error Object.

Return Values None.

DISecurityLevel2_Credentials

The DISecurityLevel2_Credentials object is a BEA implementation of the
CORBA Security model. In this release of the WLE software, the get_attributes()
and is_valid() methods are supported.
Using Security 13-17

13 AUTOMATION SECURITY REFERENCE
DISecurityLevel2_Credentials.get_attributes

Synopsis Gets the attribute list attached to the credentials.

MIDL Mapping HRESULT get_attributes(
 [in] VARIANT attributes,
 [in,out,optional] VARIANT* exceptionInfo,
 [out,retval] VARIANT* returnValue);

Automation
Mapping

Function get_attributes(attributes, [exceptionInfo])

Arguments attributes

The set of security attributes (privilege attribute types) whose values are
desired. If this list is empty, all attributes are returned.

exceptioninfo

An optional input argument that allows the client application to get additional
exception data if an error occurs. For the ActiveX client application, all
exception data is returned in the OLE Automation Error Object.

Description This method returns the attribute list attached to the credentials of the client
application. In the list of attribute types, you are required to include only the type
value(s) for the attributes you want returned in the AttributeList. Attributes are not
currently returned based on attribute family or identities. In most cases, this is the same
result you would get if you called
DISecurityLevel2.Current::get_attributes(), since there is only one valid
set of credentials in the client application at any instance in time. The results could be
different if the credentials are not currently in use.

Return Values A variant containing an array of DISecurity_SecAttribute objects.
13-18 Using Security

METHOD DESCRIPTIONS
DISecurityLevel2_Credentials.is_valid

Synopsis Checks the status of credentials.

MIDL Mapping HRESULT is_valid(
 [out] IDispatch** expiry_time,
 [in,out,optional] VARIANT* exceptionInfo,
 [out,retval] VARIANT_BOOL* returnValue

Automation
Mapping

Function is_valid(expiry_time As Object,
 [exceptionInfo]) As Boolean

Description This method returns TRUE if the credentials used are active at the time; that is, you did
not call DITobj_PrincipalAuthenticator.logoff or destroy_current. If this
method is called after DITobj_PrincipalAuthenticator.logoff(), FALSE is
returned. If this method is called after destroy_current(), the
CORBA::BAD_INV_ORDER exception is raised.

Return Values The output expiry_time as a DITimeBase_UtcT object set to max.
Using Security 13-19

13 AUTOMATION SECURITY REFERENCE
Programming Example

This section contains the portions of an ActiveX client application that implement the
following:

t Using the Bootstrap object to obtain the SecurityCurrent object

t Getting the Principal Authenticator object from the SecurityCurrent object

t Using TUXEDO-style authentication

t Logging off the WLE domain

Listing 13-1 ActiveX Client Application That Uses TUXEDO-Style
Authentication

Set objSecurityCurrent = objBootstrap.CreateObject(“Tobj.SecurityCurrent”)
Set objPrincipalAuthenticator = objSecurityCurrent.principal_authenticator

 AuthorityType = objPrincipalAuthenticator.get_auth_type
 If AuthorityType = TOBJ_APPAUTH Then logonStatus =
 oPrincipalAuthenticator.Logon(
 UserName,_
 ClientName,_
 SystemPassword,_
 UserPassword
 User Data)
End If

 objPrincipalAuthenticator.logoff()
13-20 Using Security

Index

A
administration steps

certificate-based authentication 1-17
link-level encryption 1-4
the SSL protocol 1-12
username/password authentication 1-8

authentication
certificate-based 1-14
username/password 1-4

authorized users
defining 4-8

AUTHSRV
code example 4-3
configuring 4-2
described 1-5
use with username/password

authentication 1-8

B
building

Secure Simpapp sample application 6-11
Security sample application 6-2

C
certificate authorities

defined 2-8
obtaining a digital certificate for 2-8

certificate-based authentication
administration steps 1-17

C++ code example 5-18
configuration illustrated 1-19
configuring 3-3
defining JNDI environment

 properties 7-5
described 1-14
development process 1-17
how it works 1-15
illustrated 1-14
Java code example 5-20
programming steps 1-17
requirements 1-16
sample UBBCONFIG file 4-7
writing the client application 5-18

cipher suites
supported by the WLE product 3-7

compiling
client applications

Secure Simpapp sample
application 6-19

Security sample
application 6-9

server applications
Secure Simpapp sample

application 6-19
Security sample

application 6-9
concepts

AUTHSRV 1-5
certificate-based authentication 1-14
digital certificates 1-9
Using Security I-1

link-level encryption 1-3
SSL protocol 1-9
username/password authentication 1-4

configuring
a port for SSL communications 3-2
certificate-based authentication 3-3
host matching 3-3
setting session renegotiation 3-8
setting the encyrption strength 3-5
the SSL protocol

CORBA C++ ORB 3-2
CORBA Java ORB 3-2
IIOP Listener/Handler 3-2

CORBA C++ client applications
starting

Secure Simpapp sample
application 6-19

Security sample
application 6-10

CORBA C++ ORB
defining a port for SSL

communications 3-2
enabling certificate-based

authentication 3-3
enabling host matching 3-4
setting the encryption strength 3-5

CORBA Java client applications
starting

Secure Simpapp sample
application 6-19

Security sample
application 6-10

CORBA Java ORB
defining a port for SSL

communications 3-2
enabling certificate-based

authentication 3-3
enabling host matching 3-4
example of configuring

the SSL protocol 3-10

CORBA module
described 10-2

CORBA Module IDL 10-2
corbaloc URL Address format

described 5-5
corbalocs URL Address format

described 5-5
Credentials object

described 9-7

D
Data types

security module 10-4
deployment descriptor

specifying security roles 7-4
development process

certificate-based authentication 1-17
for security in EJBs 7-2
the SSL protocol 1-12
username/password authentication 1-7

digital certificates
certificate-based authentication 1-14
for principals 2-6
obtaining 2-5
publishing in LDAP 2-5
SSL protocol 1-9
troubleshooting 8-9

directory location of source files
Secure Simpapp sample

application 6-12, 6-14
Security sample application 6-3

E
EJBs

assigning security roles to methods 7-3
code example

certificate-based
authentication 7-10

username/password
I-2 Using Security

authentication 7-10
depoyment descriptor 7-4
description of security 7-2
how authentication works 7-2
property keys for security 7-7
specifying certificate-based

authentication 7-7
specifying username/password

authentication 7-7
steps for adding security to 7-2
using URL Address formats 7-6

encryption
defining in the UBBCONFIG file 4-5
setting encryption strength 3-5
values 3-6

environment variables
APPDIR 6-5, 6-17
JAVA_HOME 6-5, 6-16
JDKDIR 6-6, 6-17
Secure Simpapp sample

application 6-5, 6-16
Security sample application 6-5
TOBJADDR 6-17
TUXCONFIG 6-6, 6-17
TUXDIR 6-5, 6-16

F
file protections

Secure Simpapp sample application 6-16
Security sample application 6-7

H
host matching

enabling 3-3
values 3-4

I
IIOP Listener/Handler

configuring session renegotiation 3-8
defining a port for SSL

communications 3-2
enabling certificate-based

authentication 3-3
enabling host matching 3-4
SEC_PRINCIPAL_LOCATION

parameter 3-9
SEC_PRINCIPAL_NAME

parameter 3-9
SEC_PRINCIPAL_PASSVAR

parameter 3-9
setting security parameters 3-8
setting the encryption strength 3-5
use with certificate-based

authentication 1-14
use with the SSL protocol 1-9

invocation_options_required method
C++ code example 5-22
described 5-21
Java code example 5-23

ISL command
configuring session renegotiation 3-8
enabling certificate-based

authentication 3-3
enabling host matching 3-4
example 3-9
setting the encryption strength 3-5
specifying a port for SSL

communications 3-2
ISL parameter

Security sample application 6-10

J
JAVA_HOME parameter

Secure Simpapp sample
application 6-5, 6-16
Using Security I-3

JDKDIR parameter
setenv file 6-6, 6-17

JNDI environment properties
for certificate-based

authentication 7-5
for username/password

 authentication 7-5
WLEContext.INITIAL_CONTEXT

_FACTORY 7-5
WLEContext.PROVIDER_URL 7-6
WLEContext.SECURITY

_AUTHENTICATION 7-7
JNDI factory

use in authentication 7-2
joint client/server applications

using the SSL protocol 3-2

L
LDAP directory service

directory structure 2-3
search filter file 2-3
use with certificate-based

authentication 1-16
use with the SSL protocol 1-11
use with WLE security 2-2

LDAP Search Filter file
modifying 2-3
stanzas used by SSL protocol 2-4
stanzas used for certificate-based

authentication 2-4
tags 2-4

link-level encryption
administration steps 1-4
described 1-3
development process 1-4
how it works 1-3
illustrated 1-3

loading the UBBCONFIG file
Security sample application 6-8

M
makefile

Secure Simpapp sample application 6-15
Security sample application 6-9

O
OMG IDL

CORBA module 10-2
Security Level 2 module 10-7
Security module 10-4
SecurityLevel 1 module 10-6
TimeBase module 10-2
Tobj module 10-7

P
Peer Rules file

described 2-10
elements 2-10
example 2-10
syntax 2-11

PrincipalAuthenticator object
certificate-based authentication 9-6
described 9-5
using in client applications 5-6
WLE extensions 9-6

private keys
example 2-7
for principals 2-6
format 2-6
location 2-6

protocols
link-level encryption 1-3
SSL 1-9

R
runme command

description 6-19
files generated by 6-20, 6-21
I-4 Using Security

S
SEC_PRINCIPAL_LOCTION parameter

defined 3-9
SEC_PRINCIPAL_NAME parameter

defined 3-9
SEC_PRINCIPAL_PASSVAR parameter

defined 3-9
Secure Simpapp sample application

building 6-11
changing protection on files 6-16
compiling the Java client

application 6-19
compiling the Java server

 application 6-19
description 5-16
development process 5-17
illustrated 5-16
loading the UBBCONFIG file 6-19
locations of files 6-12
required environment variables 6-5, 6-16
runme command 6-19
setting up the work directory 6-12
source files 6-12, 6-14
starting the Java client application 6-24
starting the Java server application 6-24
using the client applications 6-24

Security Level 2 module
described 10-7

Security module
described 10-4

SECURITY parameter
defining in UBBCONFIG file 4-4
setting for username/password

authentication 1-8
values for 4-4

security roles
assigning to EJB methods 7-3
defining in deployment descriptor 7-4
syntax rules 7-4

Security sample application
building 6-9
changing protection on files 6-7
compiling client applications 6-9
compiling server application 6-9
description 5-6
illustrated 5-7
initializing the database 6-8
ISL parameter 6-10
loading the UBBCONFIG file 6-8
location of files 5-7
makefile 6-9
PrincipalAuthenticator object 5-6
SecurityCurrent object 5-6
setenv file 6-8
setting up the work directory 6-3
source files 6-3
tmloadcf command 6-8

SecurityCurrent object
described 9-9
using in client applications 5-6

SecurityLevel 1 module
described 10-6

source files
Secure Simpapp sample

application 6-14
Security sample application 6-3

SSL parameters
SEC_PRINCIPAL_LOCATION 1-12
SEC_PRINCIPAL_NAME 1-12
SEC_PRINCIPAL_PASSVAR 1-12

SSL protocol
administration steps 1-12
configuration illustrated 1-13
described 1-9
development process 1-12
how it works 1-9
illustrated 1-9
requirements 1-11

support
documentation xiv
Using Security I-5

technical xiv

T
TimeBase module

described 10-2
TimeBase Module IDL 10-2
tmboot command

Secure Simpapp sample application 6-24
Security sample application 6-9

tmloadcf command
Secure Simpapp sample application 6-19
Security sample application 6-8

Tobj module
described 10-7

tpgrpadd command
defining security groups 1-8, 4-9

tpusradd command
defining users for security 1-8, 4-9

troubleshooting
bootstrapping problems 8-6
callback objects 8-9
certificate-based authentication

problems 8-5
configuration problems 8-8
digital certificates 8-9
IIOP Listener/Handler startup problems

8-7
ORB initialization problems 8-3
tracing 8-1
Ulog file 8-1
username/password

authentication problems 8-4
Trusted Certificate Authority file

described 2-8
example 2-8

TUXCONFIG parameter
setenv file 6-6, 6-17

TUXDIR parameter
Secure Simpapp sample

application 6-5, 6-16

U
UBBCONFIG file

configuring the authentication
server 4-2

defining a security level 4-3
defining link-level encryption 1-4
defining security parameters for

the IIOP Listener/Handler 3-9
example of certificate-based

authentication 4-7
example of username/password

authentication 4-5
link-level encryption 1-4
Secure Simpapp sample application 6-19
Security sample application 6-4
setting parameters for security 4-2
setting the encryption 4-5
username/password authentication 1-8

URL Address formats
certifcate-based authentication 1-15
corbaloc 5-2, 5-5
corbalocs 5-2, 5-5
described 5-2
Host and Port 5-4
syntax 5-3
the SSL protocol 1-10
username/password authentication 1-22
using with EJBs 7-6

username/password authentication
administration steps 1-7
application password 1-5
C++ example

SecurityLevel2
PrincipalAuthenticator 5-9

Tobj PrincipalAuthenticator 5-12
defining JNDI environment

properties 7-5
defining users and groups 1-8
described 1-4
development process 1-7
I-6 Using Security

how it works 1-5
illustrated 1-5
interfaces explained 5-8
Java example

SecurityLevel2
PrincipalAuthenticator
5-10

Tobj PrincipalAuthenticator 5-14
programming steps 1-7
sample UBBCONFIG file 4-5
system authentication 1-5
writing the client application 5-7

W
WLE domain

adding security to 5-6
WLE Security model

accessing objects 9-3
administrative control 9-3
authenticating principals 9-2
components 9-4

Credentials object 9-7
PrincipalAuthenticator object 9-5
SecurityCurrent object 9-9

described 9-2
WLE Security Pack

described 2-2
use with certificate-based authentication

1-16
use with SSL protocol 1-11

WLEContext.
INITIAL_CONTEXT_FACTORY
property 7-5

WLEContext.
PROVIDER_URL property 7-6

WLEContext.
SECURITY_AUTHENTICATION
property 7-7
Using Security I-7

	Copyright
	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Overview of WLE Security
	WLE Security Features
	Link-Level Encryption
	How LLE Works
	Development Process

	Username/Password Authentication
	How Username/Password Authentication Works
	Development Process for Username/Password Authentication

	The SSL Protocol
	How the SSL Protocol Works
	Requirements for Using the SSL Protocol
	Development Process for the SSL Protocol

	Certificate-Based Authentication
	How Certificate-based Authentication Works
	Requirements for Using Certificate-Based Authentication
	Development Process for Certificate-Based Authentication

	Commonly Asked Questions about WLE Security
	Do I have to Change the Security in an Existing WLE Application?
	Can I Use the SSL Protocol in an Existing WLE Application?
	When Should I Use Mutual Certificate-Based Authentication?

	2 Managing Certificates and Keys
	Installing the WLE Security Pack
	Using the LDAP Directory Service with Your WLE Application
	Editing the LDAP Search Filter File
	Publishing a Certificate for the Certificate Authority
	Obtaining Digital Certificates and Private Keys for Principals
	Storing the Private Keys in a Common Location
	Defining the Trusted Certificate Authorities
	Creating a Peer Rules File

	3 Configuring the WLE Environment for the SSL Protocol
	Setting Parameters for the SSL Protocol
	Defining a Port for SSL Communications
	Enabling Certificate-based Authentication
	Enabling Host Matching
	Setting the Encryption Strength
	Setting the Interval for Session Renegotiation
	Defining Security Parameters for the IIOP Listener/Handler
	Example of Setting Parameters on the ISL System Process
	Example of Setting Command Line Options on the CORBA C++ ORB
	Example of Setting System Properties on the CORBA Java ORB

	4 Defining Security for a WLE CORBA Application
	Setting Parameters for Security in the UBBCONFIG File
	Configuring the Authentication Server
	Defining a Security Level
	Setting the Level of Encryption
	Sample UBBCONFIG File for Username/Password Authentication
	Sample UBBCONFIG File for Certificate-Based Authentication

	Defining Authorized Users

	5 Writing a WLE CORBA Application That Implements Security
	Understanding the Address Formats of the Bootstrap Object
	Using the Host and Port Address Format
	Using the corbaloc URL Address Format
	Using the corbalocs URL Address Format

	Using Username/Password Authentication
	The Security Sample Application
	Writing the Client Application

	Using Certificate-based Authentication
	The Secure Simpapp Sample Application
	Writing the Client Application

	Using the Invocations_Options_Required() Method

	6 Building and Running the CORBA Sample Applications
	Building and Running the Security Sample Application
	Step 1: Copy the files for the Security sample application into a work directory.
	Step 2: Verify the settings of the environment variables.
	Step 3:Change the Protection on the Files for the Security Sample Application.
	Step 4: Set the Environment Variables
	Step 5: Initialize the Database
	Step 6: Load the UBBCONFIG File
	Step 7: Compile the Security Sample Application
	Step 8: Start the server application
	Step 8: Start the C++ client application
	Step 9: Start the Java client application.

	Building and Running the Secure Simpapp Sample Application
	Step 1: Copy the Files for the Secure Simpapp Sample Application into a Work Directory
	Step 2: Change the protection attribute on the files for the Secure Simpapp sample application.
	Step 3: Verify the settings of the environment variables.
	Step 4: Execute the runme command.
	Using the Secure Simpapp Sample Application

	7 Writing a WLE Enterprise JavaBean that Implements Security
	Before You Begin
	How Authentication Works with WLE EJBs
	Development Steps
	Step 1: Define security roles for the methods of the WLE EJB.
	Step 2: Specify security roles in the Deployment Descriptor of the EJB.
	Step 3: Define the JNDI environment properties.
	WLEContext.INITIAL_CONTEXT_FACTORY Property
	WLEContext.PROVIDER_URL Property
	WLEContext.SECURITY_AUTHENTICATION Property

	Step 4: Establish the InitialContext.
	Step 5: Use Home to get a WLE EJB.
	Step 6: Use the getCallerPrincipal Method to authenticate a WLE EJB.
	Limitations and Restrictions
	Example of Using Security in a WLE EJB

	8 Troubleshooting
	Using ULOGS and ORB Tracing
	CORBA::ORB_init Problems
	Username/Password Authentication Problems
	Certificate-Based Authentication Problems
	Tobj::Bootstrap:: resolve_initial_references Problems
	IIOP Listener/Handler Startup Problems
	Configuration Problems
	Problems with Using Callbacks Objects with the SSL Protocol
	Troubleshooting Tips for Digital Certificates

	9 WLE Security Service APIs
	The WLE Security Model
	Authentication of Principals
	Controlling Access to Objects
	Administrative Control

	Functional Components of the WLE Security Service
	The Principal Authenticator Object
	Using the Principal Authenticator Object with Certificate-based Authentication
	WLE Extensions to the Principal Authenticator Object

	The Credentials Object
	The SecurityCurrent Object

	10 Security Modules
	CORBA Module
	TimeBase Module
	Security Module
	Security Level 1 Module
	Security Level 2 Module
	Tobj Module

	11 C++ Security Reference
	SecurityLevel2::Credentials
	SecurityLevel2::PrincipalAuthenticator

	12 Java Security Reference
	13 Automation Security Reference
	Method Descriptions
	DISecurityLevel2_Current
	DITobj_PrincipalAuthenticator
	DISecurityLevel2_Credentials

	Programming Example

