
BEA
 WebLogic
Integration�

Implementing Security
with B2B Integration
Release 7.0
Document Date: June 2002

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED �AS IS� WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server,
BEA WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Implementing Security with B2B Integration

Part Number Date Software Version

N/A June 2002 7.0

Contents

About This Document
What You Need to Know ... vii
How to Print this Document .. viii
Contact Us! .. viii
Documentation Conventions ... ix

1. Introducing WebLogic Integration B2B Security
WebLogic Integration B2B Security Model.. 1-1
Principals, Users, and Groups ... 1-8

About Configuring Trading Partners.. 1-8
About Configuring the WebLogic Integration B2B System User 1-9

Digital Certificates... 1-10
Certificate Authority.. 1-11
SSL Protocol.. 1-13
Configuration Restrictions to Ensure a Secure Environment.......................... 1-14

2. Authenticating and Authorizing Trading Partners
Trading Partner Authentication in WebLogic Integration................................. 2-1

Trading Partner Certificate Verification .. 2-2
Benefits of Certificate Verification... 2-2
Certificate Verification Process .. 2-3
Implementing a Certificate Verification Provider 2-4

Authentication of the Trading Partner Message... 2-6
Trading Partner Authorization in WebLogic Integration B2B.......................... 2-8

Trading Partner Authorization ... 2-8
Conversation Authorization ... 2-10
Implementing Security with B2B Integration iii

3. Configuring the Keystore
About the Keystore ... 3-1

Keystores You Create... 3-2
Steps for Creating and Configuring Keystores... 3-3

Creating the Domain.. 3-4
Creating the Keystores and Inserting the Server Certificates............................ 3-5
Configuring the WebLogic Keystore Provider.. 3-9
Adding Trading Partner Certificates to the Keystore 3-11

Adding the Certificates and Private Keys for a Local Trading Partner.... 3-12
Adding the Certificates for a Remote Trading Partner............................. 3-17
Bulk Loading and Importing Certificates into the Keystore 3-18
Removing Certificates and Private Keys from the Keystore.................... 3-20

Configuring the Domain to Use the Keystore ... 3-22
Using the Keystore in a Multinode Cluster ... 3-23

4. Configuring Security
Configuring the SSL Protocol and Mutual Authentication 4-2
Configuring Access Control Lists for WebLogic Integration 4-7
Configuring Security for the WebLogic Integration B2B Engine................... 4-10
Configuring Trading Partner Security ... 4-14

Configuring Trading Partner Certificates.. 4-15
Configuring a Secure Transport .. 4-26
Configuring a Secure Delivery Channel ... 4-28
Configuring a Secure Document Exchange 4-30

Configuring Message Encryption .. 4-32
How WebLogic Integration Message Encryption Works 4-32
Configuring Message Encryption... 4-33

Configuring Digital Signatures for Nonrepudiation .. 4-35
Customizing the WLCCertAuthenticator Class .. 4-37
Configuring a Certificate Verification Provider Interface............................... 4-38
Configuring WebLogic Integration B2B to Use an Outbound HTTP Proxy Server

4-40
Configuring WebLogic Integration with a Web Server and a WebLogic Proxy

Plug-In .. 4-43
Configuring the Web Server... 4-44
iv Implementing Security with B2B Integration

WebLogic Server User Identity for the Trading Partner.......................... 4-44
Configuring Business Process Management Access to the WebLogic Integration

Repository .. 4-45
Configuring Server-Side Authentication... 4-45

5. Implementing Nonrepudiation
Overview of Nonrepudiation... 5-1

Digital Signature Support... 5-2
Business Protocols with Which You May Use Digital Signature Support

5-3
Configuring Digital Signature Support ... 5-3

Secure Timestamp Service ... 5-3
Configuring the Secure Timestamp Service 5-4

Secure Audit Log Service .. 5-5
Writing to the Audit Log Directly... 5-6
Configuring the Secure Audit Log.. 5-8

Using the Service Provider Interfaces (SPIs) for Nonrepudiation 5-10
Using the SPI for the Secure Timestamp Service 5-10
Using the SPI for the Secure Audit Log... 5-11

Audit Log Messages.. 5-12
Audit Log DTD... 5-12

Index
Implementing Security with B2B Integration v

vi Implementing Security with B2B Integration

About This Document

This document describes how to implement a security scheme for your WebLogic
Integration B2B deployment.

This document is organized as follows:

! Chapter 1, �Introducing WebLogic Integration B2B Security,� provides an
overview of WebLogic Integration B2B security and explains how it is based on
WebLogic Server security.

! Chapter 2, �Authenticating and Authorizing Trading Partners,� describes the
authentication and authorization processes used by the B2B software.

! Chapter 3, �Configuring the Keystore,� explains how to create and configure the
WebLogic Server Keystore, in which you store trading partner certificates used
for SSL authentication and authorization.

! Chapter 4, �Configuring Security,� explains how to configure security for your
B2B trading partners and environment.

! Chapter 5, �Implementing Nonrepudiation,� explains how to implement a
nonrepudiation mechanism in your business processes.

What You Need to Know

This document is intended primarily for:

! Business analysts and programmers who design security mechanisms for their
WebLogic Integration deployments

! System administrators who will set up and administer B2B security
Implementing Security with B2B Integration vii

For an overview of the WebLogic Integration B2B architecture, see Introducing B2B
Integration.

How to Print this Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File�>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Integration
documentation CD. You can open the PDF in Adobe Acrobat Reader and print the
entire document (or a portion of it) in book format.

If you do not have the Adobe Acrobat Reader installed, you can download it for free
from the Adobe Web site at http://www.adobe.com/.

Contact Us!

Your feedback on the WebLogic Integration documentation is important to us. Send
us e-mail at docsupport@bea.com if you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and update
the WebLogic Integration B2B documentation.

In your e-mail message, please indicate that you are using the documentation for the
WebLogic Integration 7.0 release.

When contacting Customer Support, be prepared to provide the following information:

! Your name, e-mail address, phone number, and fax number

! Your company name and company address

! Your machine type and authorization codes

! The name and version of the product you are using

! A description of the problem and the content of pertinent error messages
viii Implementing Security with B2B Integration

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:
#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.
Example:
void commit ()

monospace
italic
text

Identifies variables in code.
Example:
String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.
Examples:
LPT1
SIGNON
OR
Implementing Security with B2B Integration ix

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:
! That an argument can be repeated several times in a command line
! That the statement omits additional optional arguments
! That you can enter additional parameters, values, or other information
The ellipsis itself should never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
x Implementing Security with B2B Integration

CHAPTER
1 Introducing WebLogic
Integration B2B
Security

This topic includes the following sections:

! WebLogic Integration B2B Security Model

! Principals, Users, and Groups

! Digital Certificates

! Certificate Authority

! SSL Protocol

! Configuration Restrictions to Ensure a Secure Environment

WebLogic Integration B2B Security Model

The WebLogic Integration B2B security model incorporates the following primary
features:

! Uses the security features of the underlying BEA WebLogic Server� platform
to perform authentication and authorization of principals before granting access
to B2B resources.
Implementing Security with B2B Integration 1-1

1 Introducing WebLogic Integration B2B Security
! Is extensible by allowing you to incorporate your own or third-party vendor
tools to verify trading partner digital certificates and implement nonrepudiation
support, which is a requirement for critical business messages.

This section describes the WebLogic Server and B2B entities involved in providing the
authentication and authorization features of WebLogic Integration.

You must use WebLogic Server 6.x security realms and compatibility mode of the
WebLogic Server Security Service. For more information about WebLogic Platform
security, see Introducing WebLogic Platform 7.0 Security at the following URL:

http://edocs.bea.com/platform/docs70/secintro/index.html

WebLogic Integration B2B authentication is the process of verifying an identity
claimed by or for a system entity. Authentication is concerned with who an entity is; it
is the association of an identity with an entity. Authorization is concerned with what
that identity is allowed to see and do. WebLogic Integration B2B uses the following
methods to perform authentication:

! Username and password�human users (administrators) use usernames and
passwords to prove their identity.

! Digital certificates�trading partners use digital certificates to prove their
identity to the B2B engine.

! Secure sockets layer (SSL)�the SSL protocol provides data integrity and
confidentiality to the connections between principals.

Authorization is a right or a permission that is granted to a system entity to access a
system resource. The authorization process is a procedure for granting such rights.
Permission to access B2B resources is assigned through access control lists (ACLs)
and roles.

For complete details about how WebLogic Server and WebLogic Integration B2B
work together to authenticate and authorize principals in the WebLogic Integration
B2B engine, see Chapter 2, �Authenticating and Authorizing Trading Partners.�

The following figure shows the entities and features in WebLogic Server and
WebLogic Integration that provide the B2B security model.
1-2 Implementing Security with B2B Integration

WebLogic Integration B2B Security Model
Figure 1-1 WebLogic Integration B2B Security Model

The following table describes each of the features shown in this B2B security model.
Implementing Security with B2B Integration 1-3

1 Introducing WebLogic Integration B2B Security
Table 1-1 Components in the WebLogic Integration B2B Security Model

Component Description

Conversation authorization When a business message arrives for a trading partner, the
B2B engine, as part of the business message authorization
process, examines the contents of the business message to
validate it against the collaboration agreement. That is, the
collaboration agreement defines the business messages a
given trading partner may send and receive. The B2B engine
verifies that the content of the incoming business message is
consistent with the business messages that the trading
partner is bound, by role and conversation definition in the
collaboration agreement, to either send or receive.
This authorization scheme makes sure that only the business
messages that are consistent with the relevant collaboration
agreement have access to B2B engine resources.

Data encryption service The data encryption service encrypts business messages for
the business protocols that require it. Data encryption works
by using a combination of the sender�s certificate, private
key, and the recipient�s certificate to encode the business
message. The message can then be decrypted only by the
recipient using the recipient�s private key.
For details about using the data encryption service, see
�Configuring Message Encryption� on page 4-32.

Authentication in the
transport servlet

A transport servlet is a WebLogic Integration-specific
servlet that serves as the entry point for both HTTP and
HTTPS access to B2B resources, including the following:
! WebLogic Integration repository
! WebLogic Integration workflow templates and

definitions
! JDBC connection pool
! JMS destinations
A transport servlet is dynamically registered in the
WebLogic Server environment for trading partners bound to
a specific collaboration agreement.
1-4 Implementing Security with B2B Integration

WebLogic Integration B2B Security Model
Authentication for outbound
request via the SSL protocol

The B2B engine authenticates the recipient for all outbound
messages using the SSL certificate obtained in the SSL
handshake to ensure that the messages are consistent with
the relevant collaboration agreement to which they are
bound.

WLCCertAuthenticator
class

The WLCCertAuthenticator class maps trading partner
certificates to the corresponding WebLogic Server users that
have been configured for the trading partner. The
WLCCertAuthenticator class implements the
weblogic.security.acl.CertAuthenticator
interface.
You can configure this class to invoke your own or a trusted
third-party vendor�s implementation that verifies trading
partner certificates. For more information, see Chapter 2,
�Authenticating and Authorizing Trading Partners.�

Nonrepudiation framework The B2B security system provides a means to implement
nonrepudiation support. Nonrepudiation is the ability of a
trading partner to prove or disprove having previously sent
or received a particular business message to or from another
trading partner. Nonrepudiation requires the following
services:
! Data encryption
! Digital signatures
! Secure timestamps
! Secure audit log
WebLogic Integration provides out-of-the-box
implementations for nonrepudiation and Service Provider
Interfaces (SPIs) that allow you to incorporate your own or a
trusted third-party�s implementation.
For more information about nonrepudiation, see Chapter 5,
�Implementing Nonrepudiation.�

Table 1-1 Components in the WebLogic Integration B2B Security Model

Component Description
Implementing Security with B2B Integration 1-5

1 Introducing WebLogic Integration B2B Security
Private keystore File in which you can store the private keys, along with
passwords, and certificates that are used in trading partner
collaborations. These keys and passwords are embedded in
the following certificates:
! The client certificate�Digital certificate of the remote

or local trading partner.
! The server certificate�Digital certificate of the remote

trading partner.
! The signature certificate�Used for each trading partner

business message if digital signature support is required.
! The encryption certificate�Used for each trading

partner if business message encryption is required.

Root CA keystore File in which you store all the trusted CA certificates
associated with each trading partner and server certificate
used in the B2B collaborations.

Authentication for inbound
requests via SSL protocol

When an inbound trading partner message arrives, both the
trading partner and the WebLogic Server system exchange
certificates to establish each other�s identity. When the SSL
handshake is completed, the trading partner�s network
connection to the WebLogic Server system is established.
For information about configuring the SSL protocol in
WebLogic Server to provide mutual authentication, see
�Configuring the SSL Protocol and Mutual Authentication�
on page 4-2.

Table 1-1 Components in the WebLogic Integration B2B Security Model

Component Description
1-6 Implementing Security with B2B Integration

WebLogic Integration B2B Security Model
For more information about the WebLogic Server security features used by the B2B
engine, see the following topics:

! �Configuring the SSL Protocol� in Managing WebLogic Security, available at the
following URL:

http://edocs.bea.com/wls/docs70/secmanage/ssl.html

! �Defining ACLs in the Compatibility Realm� in �Using Compatibility Security�
in Managing WebLogic Security, available at the following URL:

http://edocs.bea.com/wls/docs70/secmanage/security6.html

ACLs for WebLogic
resources

ACLs are data structures with multiple entries that guard
access to WebLogic Integration B2B resources. An ACL
grants permission on a resource, or class of resources, to a
list of users and groups. An ACL includes a list of
AclEntries, each with the set of permissions for a
particular user or group.
Permissions represent privileges required for accessing a
resource and are specific to the resource they protect. The
exact permissions available depend on the type of resource
the ACL protects. For example, there are permissions to send
and receive files, delete files, read and write files, and load
servlets.
For information about configuring the ACLs for the JDBC
connection pool, see �Configuring Access Control Lists for
WebLogic Integration� on page 4-7.

WebLogic Keystore provider
Service Provider Interfaces
(SPIs)

Set of interfaces that implement a means to insert and
maintain private keys and certificates in a keystore. The
WebLogic Keystore provider uses the reference Keystore
implementation supplied by Sun Microsystems in the Java
Development Kit. It utilizes the standard �JKS� keystore
type, which implements each keystore as a file.

Table 1-1 Components in the WebLogic Integration B2B Security Model

Component Description
Implementing Security with B2B Integration 1-7

1 Introducing WebLogic Integration B2B Security
Principals, Users, and Groups

Principals are entities that need access to the B2B environment and resources.
WebLogic Integration B2B principals include:

! Trading partners

! Human users�WebLogic Integration B2B administrators

Principals are granted access to the WebLogic Integration B2B engine environment
and resources through authentication and authorization mechanisms. Principals in
WebLogic Integration B2B map to WebLogic Server users.

If the B2B engine can prove the identity of the WebLogic Server user, the B2B engine
associates the user with a thread that executes code on behalf of the user. Before the
thread begins executing code, WebLogic Integration B2B checks pertinent access
control lists (ACLs) to make sure the WebLogic Server user has the proper permission
to continue.

WebLogic Integration B2B supports the following types of WebLogic Server users:

! Trading partner users on WebLogic Integration

! WebLogic Integration B2B system user

! WebLogic Integration B2B administrator

Groups are sets of WebLogic Server users. Groups provide an efficient way to manage
large numbers of users because an administrator can specify permissions for an entire
group at one time.

About Configuring Trading Partners

When you configure a collaboration agreement in WebLogic Integration, you also
specify the trading partner name bound to that agreement. To associate a user with a
trading partner in the B2B Console, specify the trading partner username, which is a
WebLogic Server username. WebLogic Server maps the digital certificate for that
trading partner to the trading partner user at run time.
1-8 Implementing Security with B2B Integration

Principals, Users, and Groups
Figure 1-2 Mapping a Trading Partner Certificate to a WebLogic Server User

Therefore, when a trading partner message arrives in WebLogic Server, WebLogic
Server is able to match a trading partner to a WebLogic Server user by reading a
trading partner certificate, and the B2B engine authentication process may begin.

About Configuring the WebLogic Integration B2B System
User

Please note the following about the B2B system user, wlisystem:

! This user has access to all B2B resources except the transport servlet. This
restriction prevents an external entity from entering the WebLogic Integration
system as a B2B system user.

! This user is predefined in the sample configuration shipped with the product.
The default password for the wlisystem user is wlisystem. If, however, there
is no BEA system user, create the username wlisystem (password wlisystem)
using the WebLogic Server Administration Console.

! If you want to change the wlisystem password, do so in the B2B Console and
in the fileRealm.properties file. (If the wlisystem password does not
match the one specified in the fileRealm.properties file, a warning is
entered in the system log, and the B2B engine throws an exception.)

Note: You should change the wlisystem password only via the B2B Console. If
you use the WebLogic Server Administration Console to modify the
wlisystem password, the wlisystem password stored in the WebLogic
Integration repository is not updated simultaneously, and subsequent
attempts to start the B2B engine may fail.
Implementing Security with B2B Integration 1-9

1 Introducing WebLogic Integration B2B Security
Digital Certificates

Digital certificates are electronic documents used to uniquely identify principals and
objects over networks such as the Internet. A digital certificate securely binds the
identity of a user or object, as verified by a trusted third party known as a certificate
authority, to a particular public key. The combination of the public key and the private
key provides a unique identity to the owner of the digital certificate.

Digital certificates allow verification of the claim that a specific public key does in fact
belong to a specific user or entity. The recipient of a digital certificate can verify that
the certificate, including the public key of the subject, was issued and signed by a
trusted certificate authority (CA). The recipient does this by using the trusted
certificate authority�s public key to ensure that the digital signature was created using
the corresponding CA private key. If such verification is successful, this chain of
reasoning provides assurance that the corresponding private key is held by the subject
named in the digital certificate, and that the digital signature was created by that
particular certificate authority.

A digital certificate typically includes a variety of information, such as:

! The name of the subject (holder, owner) and other identification information
required to uniquely identify the subject, such as a URL or an e-mail address

! The subject�s public key

! The name of the certificate authority that issued the digital certificate

! A serial number

! The validity period (or lifetime) of the digital certificate (defined by a start date
and an end date)

The most widely accepted format for digital certificates is defined by the ITU-T X.509
international standard. Thus, digital certificates can be read or written by any
application complying with the X.509 standard. The public key infrastructure (PKI) in
WebLogic Server recognizes digital certificates that comply with X.509 version 1
(X.509v1) or version 3 (X.509v3).
1-10 Implementing Security with B2B Integration

Certificate Authority
Certificate Authority

Digital certificates are issued by a certificate authority. Any trusted third-party
organization or company that is willing to vouch for the identities of those to whom it
issues digital certificates and public keys can be a certificate authority. When a
certificate authority creates a digital certificate, the certificate authority signs it with its
private key, to ensure the detection of tampering. The certificate authority then returns
the signed digital certificate to the requesting subject.

The subject can verify the signature of the issuing certificate authority by using the
public key of the certificate authority. The certificate authority makes its public key
available by providing a digital certificate issued from a higher-level certificate
authority attesting to the validity of the public key of the lower-level certificate
authority. This hierarchy of certificate authorities is terminated by a self-signed digital
certificate known as the root certificate, as shown in the following figure.
Implementing Security with B2B Integration 1-11

1 Introducing WebLogic Integration B2B Security
Figure 1-3 Certificate Authority Hierarchy

Before you use a digital certificate, verify a digital signature, or decrypt a business
message, make sure that the digital certificate is issued by a trusted certificate
authority. Regardless of who encrypts the business message, the digital certificate of
the business message must be trusted, which is established by the certificate authority.
1-12 Implementing Security with B2B Integration

SSL Protocol
SSL Protocol

The SSL protocol provides secure connections by enabling two applications linked
through a network connection to authenticate the other�s identity and by encrypting the
data exchanged between the applications. An SSL connection begins with a handshake
during which the applications exchange digital certificates, agree on the encryption
algorithms to use, and generate encryption keys used for the remainder of the session.

The SSL protocol provides the following security features:

! Server authentication�the server uses its digital certificate, issued by a trusted
certificate authority, to authenticate itself to clients.

! Client authentication�optionally, clients might be required to authenticate
themselves to the server by providing their own digital certificates. This type of
authentication is also referred to as mutual authentication. The authentication
model in WebLogic Integration B2B uses mutual authentication.

! Data privacy�all client requests and server responses are encrypted to maintain
the confidentiality of the data exchanged over the network.

! Data integrity�data that flows between a client and server is protected from a
third party�s tampering.

The SSL protocol is used to implement link-level encryption of messages sent between
trading partners.

Administrators use a Web browser to access the B2B Console. You can use the
Hypertext Transfer Protocol with SSL (HTTPS) to secure this type of network
communication.
Implementing Security with B2B Integration 1-13

1 Introducing WebLogic Integration B2B Security
Configuration Restrictions to Ensure a
Secure Environment

WebLogic Integration B2B imposes the restrictions described in this section to ensure
a secure environment. Some of these restrictions are repeated, as appropriate, in
Chapter 4, �Configuring Security.�

! The B2B system user is not authorized to access the transport servlet. This
ensures that no external entity can impersonate the B2B system user.

! Trading partners are not authorized to access B2B resources. (After a trading
partner certificate has been authenticated, the trading partner certificate is
mapped to a WebLogic Server user. Only after the trading partner business
message has also been authenticated, the WebLogic Server user to whom the
trading partner certificate has been mapped accesses the B2B resources on the
trading partner�s behalf.)

! The architecture of the WebLogic Integration environment is designed so that
there is never a need to divulge password information for trading partners
because trading partners are always mapped in the B2B environment from their
digital certificates.

The following figure shows how these security restrictions appear in the WebLogic
Integration B2B security model.
1-14 Implementing Security with B2B Integration

Configuration Restrictions to Ensure a Secure Environment
Figure 1-4 The Secure WebLogic Integration B2B Environment

In the preceding figure, note the following callouts:

1. Any entity named wlisystem attempting to gain access to the B2B transport
servlet is denied access.

2. After the trading partner certificate and business message are validated, the
trading partner certificate is mapped to the corresponding WebLogic Server user.

3. The WebLogic Server user mapped in the previous step accesses the B2B
resources required to service the trading partner business message.
Implementing Security with B2B Integration 1-15

1 Introducing WebLogic Integration B2B Security
1-16 Implementing Security with B2B Integration

CHAPTER
2 Authenticating and
Authorizing Trading
Partners

The topic includes the following sections:

! Trading Partner Authentication in WebLogic Integration

! Trading Partner Authorization in WebLogic Integration B2B

Trading Partner Authentication in WebLogic
Integration

Authentication is the process by which WebLogic Integration B2B engine establishes
the identity of a principal. Digital certificates using the SSL protocol with mutual
authentication (HTTPS) are used between a trading partner and WebLogic Integration.
The B2B engine examines and validates digital certificates against security
information stored in the repository.

WebLogic Integration B2B incorporates a two-level authentication process:

! The first level involves verification of the trading partner certificate.

! The second level involves authentication of the trading partner message.
Implementing Security with B2B Integration 2-1

2 Authenticating and Authorizing Trading Partners
When a trading partner business message has passed both levels of authentication, the
B2B engine performs the authorization process on the business message.

The sections that follow describe both levels of the B2B authentication process.

Trading Partner Certificate Verification

The WebLogic Integration B2B security model provides a Service Provider Interface
(SPI) that allows you to insert a Java class that implements an interface that calls out
to a third-party service to verify trading partner certificates. Such an implementation,
called a certificate verification provider (CVP), can call out to one of the following
certificate verification applications:

! A Certificate Revocation List (CRL) implementation

! An Online Certificate Status Protocol (OCSP) implementation that interacts with
a trusted third-party entity, such as a certificate authority, for real-time certificate
status checking

! Your own certificate verification implementation

Benefits of Certificate Verification

The purpose of trading partner certificate verification is to validate the trading
partner�s digital certificate. For example, verifying a certificate may involve some or
all of the following tasks:

! Traversing the certificate chain to the root certificate authority

! Checking a certificate revocation list (CRL) for all the certificates in the chain to
identify any of those that have been revoked

! Performing a real-time certificate check with a trusted vendor, who can verify
the certificate

! Checking to make sure all dates in the certificate chain are valid

! Verifying the signature of each certificate in the chain

Configuring and using a CVP implementation is optional, but doing so can provide an
additional level of security in the certificate verification process.
2-2 Implementing Security with B2B Integration

Trading Partner Authentication in WebLogic Integration
Certificate Verification Process

The following figure shows the sequence of events that occur during the certificate
verification process in the WebLogic Integration environment.

Figure 2-1 Trading Partner Certificate Verification in WebLogic Integration
Implementing Security with B2B Integration 2-3

2 Authenticating and Authorizing Trading Partners
In the preceding figure, note the following callouts.

Implementing a Certificate Verification Provider

A certificate verification provider (CVP) Java class must implement the
com.bea.b2b.security.CertificateVerificationProvider interface. You
have two choices for what a CVP class can call out to:

Callout Description

1 Certificate verification is used only in SSL. The trading partner and the
WebLogic Server system perform an SSL handshake, during which they
exchange certificates to establish each other�s identity. The Certificate
Authority of the trading partner digital certificate must be trusted in WebLogic
Server. During this handshake, WebLogic Server verifies the following:
! The Certificate Authority of the trading partner certificate must be one that

is trusted in the WebLogic Server environment.
! The trading partner certificate has not expired.
When the SSL handshake is completed, the trading partner�s network
connection to the WebLogic Server system is established.

2 WebLogic Server invokes the WLCCertAuthenticator class in the B2B
engine. The WLCCertAuthenticator class in turn implements the
weblogic.security.acl.CertAuthenticator interface in order to
map the trading partner certificate to the corresponding WebLogic Server user
that has been configured for the trading partner.

3 The WLCCertAuthenticator class invokes the CVP interface to the
implementation that calls out to the third-party certificate verification service.

4 The CVP implementation calls out to the third-party certificate verification
service, which returns the status of the trading partner certificate.

5 The CVP implementation returns the appropriate status of the certificate to the
WLCCertAuthenticator class.

6 If the trading partner certificate is valid, the B2B engine attempts to map the
certificate to a valid trading partner name in the repository. If the certificate
maps to a valid trading partner, WebLogic Integration returns a WebLogic
Server user to WebLogic Server.
2-4 Implementing Security with B2B Integration

Trading Partner Authentication in WebLogic Integration
! A trusted third-party vendor that conforms to the service provider interface, as
described in �Using the Service Provider Interface� on page 2-5.

! Your own certificate verification application.

Regardless of which choice you pick, you need to create a Java implementation of the
CVP SPI that calls out to the application that performs the actual certificate
verification. Creating, compiling, and configuring this CVP application is explained in
the subsections that follow.

Using the Service Provider Interface

WebLogic Integration B2B allows you to implement a CVP via the
com.bea.b2b.security.CertificateVerificationProvider interface, which
provides the CVP service provider interface (SPI). If you implement or use a CVP
using the SPI described in this section, you must later configure this CVP in the
WebLogic Integration B2B Console so that the CVP is invoked properly during run
time.

The com.bea.b2b.security.CertificateVerificationProvider interface has
the following methods, which a CVP application must implement:

! void init()

This method is automatically invoked by the B2B engine to invoke any custom
initialization processes in the class you create that implements this interface.
This method is invoked only once, at the startup of WebLogic Integration.

! String verify(Certificate[] certs)

This method validates the certificate chain obtained during the SSL handshake.
It returns one of the following String values:

" good�the trading partner certificate is valid and not expired.

" revoked�the trading partner certificate has been revoked by one of the
certificate authorities in the certificate chain, or the trading partner certificate
has expired.

" unknown�none of the certificate authorities in the certificate chain is able to
establish the validity of the trading partner certificate.

The implementer can choose the validation procedure performed by this method.
For example, this method can check certificate revocation lists (CRLs) stored in
files, it can check the certificate status in real-time using the Online Certificate
Status Protocol (OCSP), or it can use any other mechanism, as appropriate.
Implementing Security with B2B Integration 2-5

2 Authenticating and Authorizing Trading Partners
Notes: If you implement a CVP, you need to add a default public constructor for the
CVP with no arguments. Neither the constructor nor any methods in the class
should throw any exceptions.

If you do not configure a CVP, any certificate issued by a trusted certificate
authority is considered by the B2B engine to be valid.

Compiling the Certificate Verification Provider Class

If you implement a CVP, note the following:

! After you create the CVP Java class, you must compile it and place it in the
system CLASSPATH.

! You must configure the CVP via the B2B Console or the Bulk Loader utility.
After you configure the CVP, restart WebLogic Server so that the CVP can take
effect. If you do not configure a CVP, any certificate issued by a trusted
certificate authority is considered by the B2B engine to be valid.

Configuring a Certificate Verification Provider with WebLogic Integration B2B

For complete details about using the B2B Console to configure a CVP, see
�Configuring a Certificate Verification Provider Interface� on page 4-38. After you
configure a CVP, restart WebLogic Server so that the CVP can take effect.

Authentication of the Trading Partner Message

After a trading partner�s certificate has been validated by WebLogic Server, the B2B
engine needs to authenticate the trading partner message before the message itself can
be serviced. Authenticating the trading partner message involves verifying that the
sender of the business message is a valid trading partner listed in the WebLogic
Integration repository. After a trading partner message has been authenticated, the
trading partner�s identity becomes recognized for full access to B2B resources.

The following figure shows the process of authenticating a trading partner message.
2-6 Implementing Security with B2B Integration

Trading Partner Authentication in WebLogic Integration
Figure 2-2 Authenticating the Trading Partner Message

In the preceding figure, note the following:

! The transport servlet is the entry point into the B2B engine. When the trading
partner message arrives in the B2B transport servlet, as shown by callout 1, the
transport servlet verifies the trading partner message. Verifying a trading partner
means ensuring that the trading partner name is valid by retrieving its value from
a valid certificate associated with the trading partner.

! When the trading partner message is authenticated, the trading partner is
authorized for access to WebLogic Integration resources, such as the repository
and WebLogic Integration business process management (BPM) templates and
workflows, shown by callout 2. The access is made available via the B2B
system user context.

Note: Only trading partners can be authenticated to use the B2B transport servlet. If
the B2B system user attempts to access the transport servlet to access B2B
resources, the access is denied by WebLogic Server. This mechanism ensures
that no remote entity can gain access to B2B resources assuming the identity
of a B2B system user.
Implementing Security with B2B Integration 2-7

2 Authenticating and Authorizing Trading Partners
Trading Partner Authorization in WebLogic
Integration B2B

Authorization is the process of allowing a B2B principal access to a specific set of B2B
resources. The authorization model in the B2B system is based on an ACL and
permission mechanism and role-based authorization control.

The B2B system incorporates two levels of authorization:

! Authorization of the trading partner for access to the B2B transport servlet

! Authorization of the conversation associated with the trading partner business
message

Trading Partner Authorization

This level of authorization is performed by WebLogic Server. When the trading
partner message arrives in WebLogic Server, and the trading partner and WebLogic
Server complete the mutual authentication procedure, the trading partner becomes
authorized to access the B2B transport servlet.

The path of the transport servlet is dynamic, so you need to edit the web.xml file to
allow trading partners to access the URL of the transport servlet. You cannot
preconfigure this because of the dynamic nature of the URL corresponding to the
transport servlet in the B2B environment.

You need to specify transport servlet ACLs in the web.xml file. The following
example shows a web.xml file that specifies the ACLs for a transport servlet named
wlctransport.
2-8 Implementing Security with B2B Integration

Trading Partner Authorization in WebLogic Integration B2B
Listing 2-1 Example Transport Servlet ACL

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 1.2//EN
" "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app>
...
...
<!-- Authentication -->
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>wlctransport</web-resource-name>
 <url-pattern>*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>TradingPartnerGroupA</role-name>
 </auth-constraint>
 </security-constraint>

 <login-config>
 <auth-method>CLIENT-CERT</auth-method>
 </login-config>

 <security-role>
 <role-name>TradingPartnerGroupA</role-name>
 </security-role>
</web-app>

In the preceding code example:

! wlctransport is the transport servlet whose endpoint is defined in the
WebLogic Integration repository.

! TradingPartnerGroupA is a WebLogic Server user group in which all the
trading partner WebLogic Server users are members.

! CLIENT-CERT specifies that the mode of authentication required to access the
transport servlet is SSL with mutual authentication.
Implementing Security with B2B Integration 2-9

2 Authenticating and Authorizing Trading Partners
Conversation Authorization

When the B2B engine performs conversation authorization, the server examines the
content of the trading partner business message with respect to the collaboration
agreement to which the trading partner is bound. That is, for a given role and party
specified in a collaboration agreement, a trading partner may send only a specific set
of business messages. The B2B engine validates the business message against the
following information specified in the collaboration agreement for a particular
conversation:

! Party information (trading partner and role)

! Conversation definition

! Document exchange ID

Once the conversation authorization is complete for an incoming business message,
access to the B2B resources is dictated by ACLs.
2-10 Implementing Security with B2B Integration

Implementing Security with B2B Integration 3-1

CHAPTER

3 Configuring the
Keystore

This topic includes the following sections:

! About the Keystore

! Creating the Domain

! Creating the Keystores and Inserting the Server Certificates

! Configuring the WebLogic Keystore Provider

! Adding Trading Partner Certificates to the Keystore

! Configuring the Domain to Use the Keystore

! Using the Keystore in a Multinode Cluster

For general information about configuring WebLogic Integration B2B, see �Basic
Configuration Tasks� in Administering B2B Integration.

About the Keystore

A keystore is a protected database that holds keys and certificates. If you have keys and
certificates and use message encryption, digital signatures, or SSL, we recommend that
you use a keystore for storing those keys and certificates and make the keystore

3 Configuring the Keystore

3-2 Implementing Security with B2B Integration

available to applications that may need it for authentication or signing purposes, such
as a B2B application. To create a keystore and make it available, you need a keystore
provider, which has been introduced in the WebLogic Server 7.0 security architecture.

The WebLogic Keystore provider uses the reference Keystore implementation
supplied by Sun Microsystems in the Java Development Kit. The WebLogic Keystore
provider:

! Utilizes the JDK bundled Java KeyStore (JKS) provider, which implements the
keystore as a file

! Protects each private key with an individual password

! Protects the entire keystore with a password

Keystores You Create

When you set up a WebLogic Integration domain for B2B collaborations, you
configure the WebLogic Keystore provider to create the following keystores:

! Private keystore

Stores the trading partners� certificates and private keys, such as for the client,
server, signature, and encryption certificates typically required for B2B
collaborations. The B2B engine retrieves private keys and certificates from this
keystore to use for SSL, message encryption, and digital signatures. You can use
the JavaSoft JDK keytool utility or the WebLogic Server ImportPrivateKey
utility to create this keystore and to add private keys and their associated
certificates to it.

! Root CA keystore

Stores the certificates of all the trusted certificate authorities (CAs). The
WebLogic Keystore provider creates a trusted CA keystore that WebLogic
Server uses by default to locate the trusted CAs used by SSL to verify client,
server, signature, and encryption certificates.

About the Keystore

Implementing Security with B2B Integration 3-3

Steps for Creating and Configuring Keystores

Complete the following basic steps to create and configure the keystores required for
your B2B collaborations:

1. Create the B2B domain.

2. Create the keystores and insert the server certificates and keys required by SSL.

3. Configure the WebLogic Keystore provider.

4. Add trading partner certificates to the keystore.

5. Add trusted certificate authority certificates to the CA keystore.

6. Configure the domain to use the keystores.

This topic also includes a discussion about using keystore files in a multinode cluster.

For background information about keystores, certificates, and keys, see the following:

! For details about the WebLogic Keystore provider, see �The WebLogic Security
Providers� in Introduction to WebLogic Security, available at the following URL:

http://edocs.bea.com/wls/docs70/secintro/model.html

! For details about certificates and keys, see:

" �Security Fundamentals� in Programming WebLogic Security, available at
the following URL:
http://edocs.bea.com/wls/docs70/security/concepts.html

3 Configuring the Keystore

3-4 Implementing Security with B2B Integration

Creating the Domain

We recommend that you use the BEA Configuration Wizard to create the WebLogic
Integration B2B domain for which you will be configuring security. To create a
WebLogic Integration domain, complete the following steps:

1. Start the Configuration Wizard as described in Using the Configuration Wizard,
available at the following URL:

http://edocs.bea.com/platform/docs70/confgwiz/index.html

2. Complete the configuration of the WebLogic Integration domain, which can be
any of the following:

" WebLogic Integration BPM Domain

" WebLogic Integration EAI Domain

" WebLogic Integration Domain

Note: Make sure you select a WebLogic Integration template for creating the
new domain; do not use a WebLogic Server or a WebLogic Portal
template. By using a WebLogic Integration template, you can ensure that
the domain created in this step is based on the WebLogic Server 6.x
security realm in compatibility mode. The new WebLogic Server 7.0
realm, based on LDAP, is not supported with WebLogic Integration. If you
create a new domain by selecting a WebLogic Server template, the new
domain uses the new WebLogic Server 7.0 security realm, which is based
on LDAP.

3. After you exit from the Configuration Wizard, bring the following file from the
newly created custom domain into a text editor:

DOMAIN_HOME/config.xml

In the preceding line, DOMAIN_HOME represents the path for the directory
containing the custom domain. For example, the value of DOMAIN_HOME on
Windows is:

c:\bea\user_projects\mydomain

Creating the Keystores and Inserting the Server Certificates

Implementing Security with B2B Integration 3-5

4. Disable the automatic deployment of the WebLogic Integration application
created in the custom domain. To do so, set the Deployed attribute of the
WLIapplication element in the config.xml file to false, as in the following
example:

<Application Deployed="false" Name="WLIApplication"
Path="<%WLI_HOME%\lib>” TwoPhase="true">

Creating the Keystores and Inserting the
Server Certificates

This section explains how to create the private keystores for storing the server
certificates and keys required to use SSL, and the associated CA keystores for CA
certificates. For a description of how to add trading partner certificates to the private
keystores, see �Adding Trading Partner Certificates to the Keystore� on page 3-11.

We strongly recommend that you use SSL for trading partner authentication. If you do
so, however, you should also configure SSL for each machine in your B2B domain.
When you configure SSL, you need to provide a certificate and private key for the local
instance of WebLogic Server. This certificate is known as the server certificate. We
recommend that you store the server certificate and private key for the local server in
the keystore. This section explains how to add the server certificate and private key to
the keystore.

During the trading partner authentication and authorization process, the SSL layer in
the relevant WebLogic Server instance uses the keystores for obtaining the following:

! The local server�s certificate and private key from the private keystore

! The trusted CA certificates from the root CA keystore

For instructions on configuring WebLogic Server to use SSL, see �Configuring the
SSL Protocol and Mutual Authentication� on page 4-2.

3 Configuring the Keystore

3-6 Implementing Security with B2B Integration

Because the WebLogic Integration security service is built on WebLogic Server, only
JKS-provider based keystores are currently certified for use with WebLogic
Integration. To create the keystores you need for B2B collaborations, you can use
either of the following utilities:

! JavaSoft JDK keytool utility

For information about this utility, see keytool�Key and Certificate Management
Tool, published by Sun Microsystems, at the following URL:

http://java.sun.com/products/jdk/1.2

! WebLogic Server ImportPrivateKey utility

For information about this utility, see �Using the WebLogic Java Utilities� in the
WebLogic Server Administration Guide, at the following URL:

http://edoc.bea.com/wls/docs70/adminguide/utils.html

To create the keystore required for your WebLogic Integration B2B domain, complete
the following steps:

1. Open a command window.

2. Go to the root directory of the domain. For example, on Windows:

c:\> cd bea\user_projects\b2bdomain

3. Obtain or create the following files:

" Server certificates and private keys

A server certificate and private key is required by SSL for authentication and
authorization. You can create a server certificate and private key using the
CertGen utility. We recommend that you use certificates and keys created by
CertGen for testing purposes only; they are not meant to be used in a
production environment. For more information about the CertGen utility, see
�Using the WebLogic Java Utilities� in the WebLogic Server Administration
Guide, at the following URL:

http://edocs.bea.com/wls/docs70//adminguide/utils.html

" Root CA certificate and private key

If necessary, you can use the CA keystore from the JDK bundled with
WebLogic Server. This keystore, cacerts, resides in the following location:

JAVA_HOME/jre/lib/security

Creating the Keystores and Inserting the Server Certificates

Implementing Security with B2B Integration 3-7

4. Use either the keytool or ImportPrivateKey utility to create the private
keystore, inserting the server certificate(s) and private key(s).

Note: The command for creating a keystore is the same as that for inserting a
certificate and key. If the keystore does not exist when you insert a
certificate and key, it is created when you enter the command.

The ImportPrivateKey command for creating a private keystore has the
following syntax:

java utils.ImportPrivateKey keystoreName keystorepass alias
keypass certfile keyfile

Note: When you run the ImportPrivateKey command, make sure that BEA
WebLogic Platform is included in your classpath.

The following table describes the arguments available for the
ImportPrivateKey utility.

Table 3-1 ImportPrivateKey Command Arguments

Command Argument Description

keystoreName Defines the name of the keystore file. A new keystore is created
if one does not exist.

keystorepass Defines the password needed to open the keystore file.

alias Defines the name used to look up the certificate and key in the
keystore. Note: We recommend you note the strength of the
encryption used in the alias: domestic or export.

keypass Defines the password used to unlock the private key file and to
protect the private key in the keystore. If you created the server
certificate using CertGen, this is the password with which you
created it.

certfile Defines the name of the certificate associated with the private
key

keyfile Define the name of the file holding the protected private key.
Note: We recommend that you include the encryption strength
in the name of the keyfile. For example: keyDomestic.pem
or keyExport.pem.

3 Configuring the Keystore

3-8 Implementing Security with B2B Integration

Execute the ImportPrivateKey or keytool command for each server
certificate and key you want to add to the private keystore.

5. Create the root CA keystore. The root CA keystore is created at the time you
insert the initial CA certificate (just as it is created when you create the private
keystore).

To create the root CA keystore, run the keytool command with the following
arguments:

keytool -import -keystore keystoreName -trustcacerts -alias
aliasName -file cert_file -storepass keystorepw -noprompt

The following table describes the arguments available for the keytool utility.

6. Repeat steps 4 and 5 for each machine in the domain, using the same filenames
and relative paths.

Table 3-2 keytool Command Arguments

Command Argument Description

-import Reads the certificate or certificate chain with the alias
aliasName from the file cert_file, and stores it in the
keystore keystoreName.pem.

-keystore
keystoreName

Identifies the pathname of the keystore.

-trustcacerts Specifies the trusted certificates in a file named cacerts,
which resides in the JAVA_HOME/jre/lib/security
directory.

-alias aliasName Specifies the alias for the certificate.

-file cert_file Specifies the file, represented here as cert_file, that
contains the certificate for the root CA.

-storepass
keystorepw

Specifies the password, represented here as keystorepw, for
the root CA keystore.

-noprompt Disables the keytool utility from prompting for additional
command arguments.

Configuring the WebLogic Keystore Provider

Implementing Security with B2B Integration 3-9

Note: To make sure that SSL authentication and authorization work properly, be
sure that you use the same filenames and paths for the keystores,
certificates, keys, and so on, on each machine.

7. If you are deploying your B2B domain in a multinode cluster, configure the Node
Manager, as explained in �Managing Server Availability with Node Manager� in
Creating and Configuring WebLogic Server Domains, at the following URL:

http://edocs.bea.com/wls/docs70/admin_domain/nodemgr.html

Configuring the WebLogic Keystore Provider

To configure the WebLogic Keystore provider with the keystores you created in
�Creating the Keystores and Inserting the Server Certificates� on page 3-5, complete
the following steps:

1. Start WebLogic Server in the newly-created custom domain. For example, on
Windows, choose Start→ BEA WebLogic Platform7.0→ UserProjects→ domain→
servername.

2. Start the WebLogic Server Administration Console, as described in �Starting the
WebLogic Server Administration Console� in �WebLogic Integration
Administration and Design Tools� in Starting, Stopping, and Customizing BEA
WebLogic Integration.

3. In the navigation pane on the left, choose Security→ Realms→
CompatibilityRealm→ Providers→ Key Stores.

3 Configuring the Keystore

3-10 Implementing Security with B2B Integration

Figure 3-1 Choosing Keystores in the Navigation Pane

The WebLogic Server Administration Console displays a window in which you
can configure a new default keystore, as shown in the following figure.

Figure 3-2 Configuring a New Default Keystore

4. Click Configure a new Default Key Store.

The General tab, in which you can configure the keystore, is displayed as shown
in the following figure.

Adding Trading Partner Certificates to the Keystore

Implementing Security with B2B Integration 3-11

Figure 3-3 General Tab for Configuring a Default Keystore

5. On the General tab, specify pathnames for the following:

" The private keystore file

" The root CA keystore file

6. Click Create.

7. Shut down WebLogic Server and restart it.

Adding Trading Partner Certificates to the
Keystore

To populate the keystore with trading partner certificates, complete the steps described
in this section. For complete details about each trading partner certificate, see
�Configuring Trading Partner Certificates� on page 4-15.

3 Configuring the Keystore

3-12 Implementing Security with B2B Integration

Notes: Even if your keystores are already populated with required certificates and
private keys, you still need to perform the following tasks to populate the
WebLogic Integration repository with the necessary information.

WebLogic Integration does not validate any of the trading partner certificates
against a trusted Certificate Authority as you load them into the keystore.

1. Enable automatic deployment of the WebLogic Integration application created in
the B2B domain by setting the Deployed attribute of the WLI application element
in the config.xml file to true, as in the following example:

<Application Deployed="true" Name="WLI" Path="<%WLI_HOME%\lib>”
TwoPhase="true">

2. Start the B2B Console, as described in �Starting the B2B Console� in �WebLogic
Integration Administration and Design Tools� in Starting, Stopping, and
Customizing BEA WebLogic Integration.

This section presents the following procedures for populating the private keystore for
B2B collaborations:

! Adding the Certificates and Private Keys for a Local Trading Partner

! Adding the Certificates for a Remote Trading Partner

! Bulk Loading and Importing Certificates into the Keystore

! Removing Certificates and Private Keys from the Keystore

Adding the Certificates and Private Keys for a Local
Trading Partner

A local trading partner requires the following certificates and private keys:

! Client certificate and private key

! Encryption certificate and private key

! Signature certificate and private key

To add these certificates and private keys to the private keystore, complete the steps
described in this section.

Adding Trading Partner Certificates to the Keystore

Implementing Security with B2B Integration 3-13

Note: Do not configure a server certificate for a local trading partner. Although the
encryption and signature certificates are optional, the client certificate is
required if you are using SSL with mutual authentication. For complete details
about local trading partner certificates, see �Configuring Trading Partner
Certificates� on page 4-15. For information about using server-side, or
one-way authentication, which does not require the use of a client certificate,
see �Configuring Server-Side Authentication� on page 4-45.

1. In the navigation pane on the left, choose B2B→Trading Partners.

2. Click the name of the local trading partner for whom you are adding certificates.
The General configuration tab is displayed.

3 Configuring the Keystore

3-14 Implementing Security with B2B Integration

Figure 3-4 General Configuration Page for a Local Trading Partner

3. Select the Certificates tab. The Certificates configuration page is displayed.

Adding Trading Partner Certificates to the Keystore

Implementing Security with B2B Integration 3-15

Figure 3-5 Certificates Configuration Page for a Local Trading Partner

4. Click Create a Certificate Entry. The console displays a page on which you can
specify details about the certificate you are adding for your local trading partner.

3 Configuring the Keystore

3-16 Implementing Security with B2B Integration

Figure 3-6 Creating a Certificate Entry for a Local Trading Partner

5. For each trading partner certificate, enter the following information:

" A name or alias for the certificate. If the keystore has already been populated
with this certificate, the alias that you specify must match the one used for
this certificate�s initial entry in the keystore.

" The certificate type. For a local trading partner, valid types are Client
Certificate, Signature Certificate, and Encryption Certificate.

" The certificate�s location. If you are deploying WebLogic Integration on a
cluster, the location you specify needs to be the same on each machine.

" The location of the private key associated with the certificate. If you are
deploying WebLogic Integration on a cluster, the location you specify needs
to be the same on each machine.

" The password for the private key. This password is used by the server when
it reads the contents of the private key and when it stores the private key in
the keystore. The password itself is not stored or retained anywhere in the
system. If the keystore has already been populated, the password that you
specify must match the one used to store the private key in the keystore.

Adding Trading Partner Certificates to the Keystore

Implementing Security with B2B Integration 3-17

Note: When importing a plain-text (or unprotected) private key using the B2B
Console, specify the password of the private keystore in the field labeled
Private Key Password.

6. Click Add to add the certificate and private key to the WebLogic Integration
repository.

7. Select the Save Certificate to Keystore check box to add the certificate and
private key to the private keystore.

Adding the Certificates for a Remote Trading Partner

A remote trading partner has the following certificates:

! Client certificate

! Encryption certificate

! Signature certificate

! Server certificate

Note: Do not specify private keys for remote trading partner certificates. Although
the encryption and signature certificates are optional, the client and server
certificates are required for using mutual authentication with SSL. For
complete details about remote trading partner certificates, see �Configuring
Trading Partner Certificates� on page 4-15. For information about using
server-side, or one-way authentication, which does not require the use of a
client certificate, see �Configuring Server-Side Authentication� on page 4-45.

To add these certificates to the private keystore, complete the following steps:

1. Start the B2B Console, if necessary.

2. In the navigation pane on the left, choose B2B→ Trading Partners.

3. Click the name of the remote trading partner for whom you are adding
certificates. The General configuration tab is displayed.

4. Select the Certificates tab. The Certificates configuration page is displayed.

3 Configuring the Keystore

3-18 Implementing Security with B2B Integration

5. Click the Create a Certificate Entry link. The console displays a page on which
you can specify details about the certificate you are adding for your remote
trading partner.

Figure 3-7 Creating a Certificate Entry for a Remote Trading Partner

6. Enter the name, location, and type of each certificate you are adding for the
remote trading partner.

7. Click Add to add the certificate to the WebLogic Integration repository.

8. Select the check box labeled Save Certificate to Keystore to add the certificate to
the private keystore.

Bulk Loading and Importing Certificates into the
Keystore

When you use the Bulk Loader utility (from either the B2B Console or the command
line) to configure certificates in the WebLogic Integration repository, trading partner
certificates are not imported into the keystore. However, the repository contains
configuration information about the certificates so that it can import the certificates
into the keystore during startup of the B2B engine.

Adding Trading Partner Certificates to the Keystore

Implementing Security with B2B Integration 3-19

Before the B2B engine can import trading partner certificates into the keystore, you
must have automatic migration enabled in the startWeblogic script. To enable
automatic migration, complete the following steps:

1. Shut down the WebLogic Server instance in the B2B domain created in �Creating
the Domain� on page 3-4. You can do so by executing the stopWeblogic script,
which is located in the B2B domain�s root directory. For example:

" Windows:

cd DOMAIN_HOME
stopWeblogic.cmd

" UNIX:

cd DOMAIN_HOME
stopWebLogic.sh

In the preceding examples, DOMAIN_HOME is the root directory of the B2B
domain.

2. Add the Java system property wli.keystore.automigrate to the Java
command line in the startWeblogic script, and set the property value to true,
as shown in the following listing. The wli.keystore.automigrate property is
shown in bold.

%JAVA_HOME%\bin\java %DB_JVMARGS% -Xmx256m -classpath %WLISERVERCP%
-Dbea.home=%BEA_HOME% -Dwli.bpm.server.evaluator.supportsNull=false
-Dweblogic.Domain=mydomain -Dweblogic.Name=myserver
-Dweblogic.management.username= -Dweblogic.management.password=
-Dweblogic.ProductionModeEnabled=true -Dweblogic.management.discover=false
-Djava.security.policy==%WL_HOME%\lib\weblogic.policy weblogic.Server
-Dwli.keystore.automigrate=true

3. Save your changes.

When WebLogic Server is restarted in the domain, the certificates and keys are
imported.

3 Configuring the Keystore

3-20 Implementing Security with B2B Integration

Removing Certificates and Private Keys from the
Keystore

When you remove a certificate, and, if applicable, a private key, using the B2B
Console, references to that certificate and private key are removed from the WebLogic
Integration repository. You can also remove the certificates and their associated keys
from the private keystore at the same time.

To remove a certificate, complete the following steps:

1. Start the B2B Console, if necessary.

2. In the navigation pane on the left, choose B2B→Trading Partners.

3. Click the name of the trading partner for whom you are removing a certificate
and private key. The General configuration tab is displayed.

4. Select the Certificates tab. The Certificates configuration page is displayed.

Adding Trading Partner Certificates to the Keystore

Implementing Security with B2B Integration 3-21

Figure 3-8 Removing a Certificate from the Keystore

5. Choose the type of certificate you want to remove.

6. Select the alias for the certificate in the list box.

7. Click Remove to remove the certificate and, if applicable, private key, from the
WebLogic Integration repository.

8. To remove the certificate and private key from the keystore, as well as from the
repository, make sure the box labeled Remove Certificate from Keystore is
checked, and click Remove.

3 Configuring the Keystore

3-22 Implementing Security with B2B Integration

Configuring the Domain to Use the Keystore

To configure your B2B domain to use the keystores you have created, you need to
modify the startWeblogic script that resides in the root directory for your domain.
To modify this script, complete the following steps:

1. Go to the root directory for the domain, as shown in the following examples.

" Windows:

c:\bea\user_projects\domain

" UNIX:

/usr/bin/bea/user_projects/domain

In the preceding pathnames, domain represents the name of your B2B domain.

2. In a text editor, open the startWebLogic.cmd script (for Windows) or the
startWebLogic.sh script (for UNIX).

3. Locate the line on which the java command is issued to start WebLogic Server,
as shown in the following example.

%JAVA_HOME%\bin\java %DB_JVMARGS% -Xmx256m -classpath %WLISERVERCP%
-Dbea.home=%BEA_HOME% -Dwli.bpm.server.evaluator.supportsNull=false
-Dweblogic.Domain=mydomain -Dweblogic.Name=myserver
-Dweblogic.management.username= -Dweblogic.management.password=
-Dweblogic.ProductionModeEnabled=true -Dweblogic.management.discover=false
-Djava.security.policy==%WL_HOME%\lib\weblogic.policy weblogic.Server

4. To this java command, add the system property that specifies the private key
passwords for the signature and message encryption certificates, using the
following syntax:

-DKey.certificate-name.password=key_password *

In the preceding syntax:

" certificate-name represents the name or alias of the certificate that is
added to the keystore in �Adding Trading Partner Certificates to the
Keystore� on page 3-11.

" key_password represents the private key password specified for the
certificate when the certificate is added to the keystore. Note that you do not

Using the Keystore in a Multinode Cluster

Implementing Security with B2B Integration 3-23

need to specify a password for plain-text private keys; the B2B engine uses
the password of the keystore to retrieve such private keys.

5. Also to this java command, add the system properties that specify the passwords
for the private keystore and the root CA keystore, using the following syntax:

-Dwli.privateKeystore.password=keystore_pass
-Dwli.caKeystore.password=caKeystore_pass

In the preceding syntax:

" privateKeystore represents the private keystore created as described in
�Creating the Keystores and Inserting the Server Certificates� on page 3-5.

" keystore_pass represents the password for the private keystore.

" caKeystore represents the root CA keystore, created as described in
�Creating the Keystores and Inserting the Server Certificates� on page 3-5.

" caKeystore_pass represents the password for the root CA keystore.

Note: We recommend that you set passwords in environment variables, rather than
hard-coding the passwords into scripts such as startWeblogic. When
environment variables are used, scripts can obtain the values for passwords
from the environments in which the scripts run.

Using the Keystore in a Multinode Cluster

If you are deploying your B2B domain on a multinode cluster, you need to do the
following:

1. Replicate the private and root CA keystores on each machine in the cluster. These
keystores must be in the same relative location on every machine.

2. Make sure that the server certificate is stored in the same relative location on
every machine. To meet the requirements of SSL support, the server certificate
location must be identified in the domain�s config.xml file.

3. Configure the private and root CA keystores with the WebLogic Keystore
provider on the administration server, as described in �Configuring the WebLogic
Keystore Provider� on page 3-9.

3 Configuring the Keystore

3-24 Implementing Security with B2B Integration

4. Make sure that the server certificate is configured on the administration server, as
described in �Configuring the SSL Protocol and Mutual Authentication� on page
4-2.

As each managed server in the domain is started, with the help of the administration
server, the WebLogic Keystore provider configuration is automatically propagated to
it.

For more information about managing B2B security in a multinode cluster, see
Deploying BEA WebLogic Integration Solutions.

Implementing Security with B2B Integration 4-1

CHAPTER

4 Configuring Security

This topic includes the following sections:

! Configuring the SSL Protocol and Mutual Authentication

! Configuring Access Control Lists for WebLogic Integration

! Configuring Security for the WebLogic Integration B2B Engine

! Configuring Trading Partner Security

! Configuring Message Encryption

! Configuring Digital Signatures for Nonrepudiation

! Customizing the WLCCertAuthenticator Class

! Configuring a Certificate Verification Provider Interface

! Configuring WebLogic Integration B2B to Use an Outbound HTTP Proxy Server

! Configuring WebLogic Integration with a Web Server and a WebLogic Proxy
Plug-In

! Configuring Business Process Management Access to the WebLogic Integration
Repository

! Configuring Server-Side Authentication

Before you configure B2B security, make sure you have configured your Keystores as
described in Chapter 3, �Configuring the Keystore.� For general information about
configuring WebLogic Integration, see �Basic Configuration Tasks� in Administering
B2B Integration.

4 Configuring Security

4-2 Implementing Security with B2B Integration

Configuring the SSL Protocol and Mutual
Authentication

To configure WebLogic Server to use the SSL protocol and mutual authentication,
complete the following steps:

1. Obtain a digital certificate for WebLogic Server, as described in �Configuring the
SSL Protocol� in Managing WebLogic Security at the following URL:

http://edocs.bea.com/wls/docs70/secmanage/ssl.html

2. Start the WebLogic Server Administration Console, as described in �Starting the
WebLogic Server Administration Console� in �WebLogic Integration Design and
Administration Tools� in Starting, Stopping, and Customizing BEA WebLogic
Integration.

3. In the navigation tree (in the left pane) of the WebLogic Server Administration
Console, choose Servers→ myserver for the domain you are configuring, as
shown in the following figure.

Figure 4-1 Choosing a Domain

The Configuration page for WebLogic Server is displayed, as shown in the
following figure.

Configuring the SSL Protocol and Mutual Authentication

Implementing Security with B2B Integration 4-3

Figure 4-2 WebLogic Server Administration Console Configuration Page

4. Select the Connections tab. The following page is displayed.

4 Configuring Security

4-4 Implementing Security with B2B Integration

Figure 4-3 Connections Page

5. Select the SSL tab to display the Secure Sockets Layer (SSL) configuration page,
shown in the following figure.

Configuring the SSL Protocol and Mutual Authentication

Implementing Security with B2B Integration 4-5

Figure 4-4 SSL Configuration Page

6. The following table describes the information that you enter on the SSL
configuration page.

Table 4-1 SSL Configuration Page Fields

Field Description

Enabled check box Enables SSL connections between WebLogic
Integration and trading partners.

Listen Port Enabled check box Enables use of the SSL protocol on the default port
(7002) on the server. You can change the port on
which WebLogic Server listens for SSL connections
by setting the Listen Port attribute.

Listen Port Specifies the dedicated port on which WebLogic
Integration listens for SSL connections.

Server Private Key Alias Alias for the keystore entry for a server private key.

4 Configuring Security

4-6 Implementing Security with B2B Integration

Server Private Key Passphrase Specifies a passphrase for a key in the keystore. (A
passphrase is required for every key. In addition, you
may also assign a passphrase to the keystore itself.)

Server Certificate File Name Specifies the full pathname of the digital certificate
for WebLogic Server. This location is also known as
the root certificate authority, or root CA.

Client Certificate Enforced check box Enables mutual authentication between WebLogic
Integration and trading partners accessing WebLogic
Integration resources.

Cert Authenticator Specifies the certificate authenticator to be used to
determine the validity of the trading partner digital
certificate.

Client Certificate Enforced check box Enables mutual authentication between WebLogic
Integration and trading partners accessing WebLogic
Integration resources.

Table 4-1 SSL Configuration Page Fields (Continued)

Field Description

Configuring Access Control Lists for WebLogic Integration

Implementing Security with B2B Integration 4-7

Configuring Access Control Lists for
WebLogic Integration

The access control list (ACL) for a WebLogic Integration resource determines whether
a user or group can access that resource. To define ACLs, you do the following:

1. In the WebLogic Server Administration Console, click Create a new ACL and
specify the name of the resource.

2. Specify the permission for the resource.

3. Grant the permission to a specified set of users and groups.

For complete information about defining ACLs, see �Defining ACLs in the
Compatibility Realm� in �Using Compatibility Security� in Managing WebLogic
Security at the following URL:

http://edocs.bea.com/wls/docs70/secmanage/security6.html

For a B2B resource, one or more permissions can be granted.

The sample configuration shipped with WebLogic Integration provides a pre-set ACL
for the JDBC connection pool. In this ACL, three permissions are set for the
wlcSamplesUser user on this resource: reserve, shrink, and reset.

The following steps provide an example of the procedure you must complete to change
the ACL permissions. In this example, we adjust the reset permissions on the JDBC
connection pool in the domain WLIdomain:

1. Configure and start the instance of WebLogic Server in the WLI domain. For
instructions, see �Configuring and Starting Domains� in �Getting Started� in
Starting, Stopping, and Customizing BEA WebLogic Integration.

2. Start the WebLogic Server Administration Console, if it is not already running.
(The default system administrator in WLIdomain has the username system and
the password security.)

3. In the navigation tree, choose 6.x Security→ ACLs.

4 Configuring Security

4-8 Implementing Security with B2B Integration

Figure 4-5 Choosing ACLs in the Navigation Tree

The Access Control Lists configuration page is displayed. The ACLs configured
for WebLogic Server are listed on this page.

4. Find the row containing the entry for the WebLogic Integration JDBC connection
pool ACL, as shown in the following figure.

Figure 4-6 ACL for the JDBC Connection Pool

5. In the Permissions column of that row, click the reset link. A dialog box in
which you can adjust the reset permission on the JDBC connection pool ACL is
displayed, as shown in the following figure.

Configuring Access Control Lists for WebLogic Integration

Implementing Security with B2B Integration 4-9

Figure 4-7 ACL Dialog Box

6. To provide reset permissions for a user or group, enter the name of the user or
group in the appropriate field, and click Apply. To remove reset permissions
from any of the Grantees listed in the dialog box, select the appropriate user or
group name, and click Apply.

For more information about access control lists, see �Defining ACLs in the
Compatibility Realm� in �Using Compatibility Security� in Managing WebLogic
Security at the following URL:

http://edocs.bea.com/wls/docs70/secmanage/security6.html

4 Configuring Security

4-10 Implementing Security with B2B Integration

Configuring Security for the WebLogic
Integration B2B Engine

The WebLogic Integration repository contains security information about the
WebLogic Integration security system and the trading partners that access B2B
resources. You can configure repository information either by using the WebLogic
Integration B2B Console, or by specifying the information in a data file that you then
import into the repository using the Bulk Loader.

Note: Before importing a WebLogic Integration 2.1 or WebLogic Integration 2.1
SP1 repository data file into the WebLogic Integration 7.0 repository, you
must change the system-password attribute of the WLC element in the
repository data file to reflect the current password of wlisystem. For more
information about migrating the repository, see �Step 12. Start and Test Your
WebLogic Integration Application� in �Migrating WebLogic Integration 2.1
to WebLogic Integration 7.0� in BEA WebLogic Integration Migration Guide.

For the B2B security system, you need to configure the following as required:

! B2B system password

! Audit log class

! Certificate verification class

! Secure timestamp class

! Certificate authority directory

To configure these entities in the B2B security system, complete the following steps:

1. Start the B2B Console.

2. In the main pane of the B2B Console, click the link under WebLogic Integration,
as shown in the following figure.

Configuring Security for the WebLogic Integration B2B Engine

Implementing Security with B2B Integration 4-11

Figure 4-8 WebLogic Integration B2B Console Main Window

The B2B configuration tabs are displayed, as shown in the following figure.

4 Configuring Security

4-12 Implementing Security with B2B Integration

Figure 4-9 B2B Configuration Tabs

3. Select the Security tab. The Security configuration page for the WebLogic
Integration system is displayed, as shown in the following figure.

Configuring Security for the WebLogic Integration B2B Engine

Implementing Security with B2B Integration 4-13

Figure 4-10 WebLogic Integration Security Configuration Page

4. The following table describes the fields in the Security tab of the Configuration
panel that you may need to configure. Note that the new configuration takes
effect after the WebLogic Integration system is restarted.

Table 4-2 Configuring the WebLogic Integration Security System

Field Description

System Password Password for the WebLogic Integration system user. This
password is set when you install the WebLogic Integration
software; by default, it is wlisystem. However, if you want to
change it, you can enter a new password in this field.

4 Configuring Security

4-14 Implementing Security with B2B Integration

Configuring Trading Partner Security

Configuring trading partner security involves setting the following for each trading
partner:

! Certificates

! Transport security properties

! Document exchange security

Audit Log Class Java class that implements audit logging, which is used for
nonrepudiation. You can use the audit log to reconstruct the
sequence of events that have occurred during a conversation,
along with the data exchanged. Depending on how you configure
the audit log, the audit log may store each business message
exchanged among trading partners along with digital signatures,
timestamps, and other data. For more information about auditing,
see �Secure Audit Log Service� on page 5-5.

Certificate Verification
Class

Java class that calls out to software that verifies that a digital
certificate submitted by a remote trading partner is valid. This
class can call out to either the Online Certificate Status Protocol
(OCSP) application that WebLogic Integration provides, or
certificate verification provider software that you obtain from a
trusted security vendor. For more information about the
certificate verification class, see �Trading Partner Certificate
Verification� on page 2-2.

Secure Timestamp Class Java class that provides secure timestamping of business
messages exchanged among trading partners. Timestamping is
used for nonrepudiation. For more information about secure
timestamping, see �Secure Timestamp Service� on page 5-3.

Certificate Authority
Directory

Location that contains the Certificate Authorities of all the trading
partner certificates configured in the WebLogic Integration
repository.

Table 4-2 Configuring the WebLogic Integration Security System (Continued)

Field Description

Configuring Trading Partner Security

Implementing Security with B2B Integration 4-15

! Delivery channel security

The following subsections describe how to configure trading partner security for each
of these components.

Note: If you use the Bulk Loader to import data into the WebLogic Integration
repository, the WebLogic Server users that represent each trading partner
configured in the repository are not automatically created. You need to create
these WebLogic Server users manually. For more information, see �Working
with the Bulk Loader� in Administering B2B Integration.

Configuring Trading Partner Certificates

WebLogic Integration provides a means to configure the following trading partner
certificates.

Table 4-3 Trading Partner Certificates Configured in WebLogic Integration

Certificate Description

Client certificate Digital certificate of the remote or local trading partner.
Configuring the client certificate is required when using the SSL
protocol.
Certificate is:
! Type X.509 version 1 or 3
! Privacy Enhanced Mail (PEM) or Definite Encoding Rules

(DER) encoded. (The filename extension specifies the
encoding type: .pem or .der.)

! Required for all trading partner types when HTTPS with
mutual authentication is used.

Private Key is:
! PEM or DER encoded. (The filename extension specifies the

encoding type: .pem or .der.)
! Required only for local trading partner type
! Password-protected or plain text

Note: When importing a plain-text private key using the B2B
Console, use the password of the private keystore.

4 Configuring Security

4-16 Implementing Security with B2B Integration

Server certificate Digital certificate of the remote trading partner. Configuring the
server certificate is required when using the SSL protocol.
Certificate is:
! Type X.509 version 1 or 3
! PEM or DER encoded. (The filename extension specifies the

encoding type: .pem or .der.)
! Required for remote trading partner types when HTTPS is

used with mutual authentication

Signature certificate Certificate required of each trading partner if digital signature
support, a requirement for nonrepudiation, is configured for the
e-market. For a description of digital signature support, see
�Digital Signature Support� on page 5-2.
Certificate is:
! Type X.509 version 1 or 3
! DER encoded
! Read by using the RSA CertJ package
! Required for all trading partner types that use a digital

signature service
Private Key is:
! Presented only in PKCS8 format
! Always password-protected. (You specify the password as a

system property in the startWeblogic script.)

Table 4-3 Trading Partner Certificates Configured in WebLogic Integration

Certificate Description

Configuring Trading Partner Security

Implementing Security with B2B Integration 4-17

Note the following general rules about configuring trading partner certificates:

! Each trading partner may have one client certificate and an unlimited number of
encryption and signature certificates. A remote trading partner also has a server
certificate for the system on which it is hosted. The name of this server
certificate must be specified when you configure that trading partner.

! For each certificate, there is a trading partner type: Local or Remote. The
contents of each certificate configuration tab depends on the trading partner type.
For example, the tab for configuring a remote trading partner does not contain
fields for entering information about private keys because information about
private keys should be set only for local trading partners.

! For local trading partners, you do not configure a server certificate.

! When configuring a local trading partner, you do not need to provide a
WebLogic Server username for that trading partner. The one exception to this
rule is if the local trading partner is a trading partner lightweight client.

! Passwords are required for all private keys for signature and message encryption
certificates for a local trading partner. The password for the private key is set

Encryption certificate Certificate required of each trading partner when business
message encryption is configured for the e-market. Note that
encryption support is available only with the RosettaNet
protocols. For a description of message encryption, see
�Configuring Message Encryption� on page 4-33.
Certificate is:
! Type X.509 version 1 or 3
! DER encoded
! Read by using the RSA CertJ package
! Required for all trading partner types that use an encryption

service
Private Key is:
! Presented only in PKCS8 format
! Always password-protected. (You specify the password as a

system property in the startWeblogic script.)

Table 4-3 Trading Partner Certificates Configured in WebLogic Integration

Certificate Description

4 Configuring Security

4-18 Implementing Security with B2B Integration

when the certificate is imported into the keystore. At run time the password for
the private key must match the one specified during the import. The private key
password is specified as a system property on the java command line.

The following example shows the java command that starts WebLogic Server for the
Hello Partner sample application:

%JAVA_HOME%\bin\java -classic -ms64m -ms64m -classpath %START_WL_CLASSPATH%
 -Dbea.home=%BEA_HOME% -Dweblogic.home=%WL_HOME%
 -Dweblogic.system.home=%WLC_SAMPLES_HOME% -Dweblogic.Domain=samples
 -Dweblogic.management.password=%SYSTEM_PASSWORD%
 -Dweblogic.Name=myserver
 -Djava.security.policy=%WL_HOME%\lib\weblogic.policy
 -DKey.certificate-name.password=%PASSWORD% weblogic.Server

In the preceding example, certificate-name represents the name of the certificate
for which a private key password is being specified, and %SYSTEM_PASSWORD% and
%PASSWORD% represent values of those two environment variables.

Note: We recommend that you set passwords in environment variables, rather than
hard-coding the passwords into scripts, such as startWeblogic. When
environment variables are used, the scripts obtain the values for the passwords
from the environment in which the scripts run.

To configure trading partner certificates, complete the following steps:

1. Display the main trading partner configuration page, which you can do in one of
two ways:

" Click Trading Partners in the navigation tree of the B2B Console.

Figure 4-11 Trading Partners Entry in the Navigation Tree

" Click the Trading Partners link in the right pane.

Configuring Trading Partner Security

Implementing Security with B2B Integration 4-19

Figure 4-12 Accessing the Trading Partners Configuration Page

The main Trading Partners configuration page, on which you can add, modify,
and remove trading partners, is shown in the following figure.

4 Configuring Security

4-20 Implementing Security with B2B Integration

Figure 4-13 Main Trading Partners Configuration Page

Note: In the instructions that follow, we assume the following:

! The trading partner has already been created and, with the exception of
security parameters, it has been configured. For complete details about
configuring trading partners, see �Basic Configuration Tasks� in
Administering B2B Integration.

! If you are using a keystore for storing trading partner certificates, we
assume that you have created and configured the required keystores on
the local system, as explained in Chapter 3, �Configuring the Keystore.�

2. Click the name of the trading partner for which you want to add certificates. The
General configuration page for that trading partner is displayed, as shown in the
following figure.

Configuring Trading Partner Security

Implementing Security with B2B Integration 4-21

Figure 4-14 General Configuration Page for Trading Partner

3. Select the Certificates tab. The page on which you configure trading partner
certificates is displayed, as shown in the following figure.

4 Configuring Security

4-22 Implementing Security with B2B Integration

Figure 4-15 Trading Partner Certificates Configuration Page

The Certificates page allows you to assign available certificates to each
certificate type you are configuring for a trading partner, or to add new
certificates for the trading partner.

4. To add a new trading partner certificate, select Create a New Certificate. The
page on which you add a new trading partner certificate is displayed, as shown in
the following figure.

Configuring Trading Partner Security

Implementing Security with B2B Integration 4-23

Figure 4-16 Adding a New Trading Partner Certificate

5. To configure each trading partner certificate, complete the steps listed in the
following table.

4 Configuring Security

4-24 Implementing Security with B2B Integration

Table 4-4 Configuring Trading Partner Certificates

To configure . . . Complete the following steps . . .

Client certificate If you are configuring a local or remote trading partner:
1. In the Certificate Type selection box, select Client Certificate.
2. In the Certificate Name field, enter the name of the client

certificate.
3. In the Certificate Location field, enter the pathname of the client

certificate on your WebLogic Integration machine.
4. In the Private Key Location field, enter the pathname, on your

WebLogic Integration machine, of the local trading partner�s
private key. (This step applies only to local trading partners.)

5. Click Add/Apply to add the certificate to the WebLogic
Integration repository.

6. Select the check the box for Save Certificate to Keystore. The
certificate is added to the private keystore.

Note: You may configure only one client certificate for a given
trading partner.

Server certificate If you are configuring a remote trading partner:
1. In the Certificate Type selection box, select Server Certificate.
2. In the Certificate Name field, enter the name of the server

certificate for the remote trading partner�s WebLogic
Integration system.

3. In the Certificate Location field, enter the pathname, on your
machine, of the trading partner�s server certificate.

4. Click Add/Apply to add the certificate to the WebLogic
Integration repository.

5. Select the check box for Save Certificate to Keystore to add the
certificate to the private keystore.

Note: You may configure only one server certificate for a given
remote trading partner.

Configuring Trading Partner Security

Implementing Security with B2B Integration 4-25

Signature certificate For trading partners using digital signature support:
1. In the Certificate Type selection box, select Signature

Certificate.
2. In the Certificate Name field, enter the name of the signature

certificate.
3. In the Certificate Location field, enter the pathname, on your

machine, of the signature certificate.
4. In the Private Key Location field, enter the pathname, on your

machine, for the local trading partner private key. (This step
applies only to local trading partners.)

5. Click Add/Apply to add the certificate to the WebLogic
Integration repository.

6. Select the check box for Save Certificate to Keystore to add the
certificate to the private keystore.

Note: You may configure multiple signature certificates for a
given trading partner.

Encryption certificate For trading partners using RosettaNet-based business message
encryption:
1. In the Certificate Type selection box, select Encryption

Certificate.
2. In the Certificate Name field, enter the name of the encryption

certificate.
3. In the Certificate Location field, enter the pathname, on your

machine, of the encryption certificate.
4. In the Private Key Location field, enter the pathname, on your

machine, of the local trading partner�s private key. (This step
applies only to local trading partners.)

5. Click Add/Apply to add the certificate to the WebLogic
Integration repository.

6. Select the check box for Save Certificate to Keystore to add the
certificate to the private keystore.

Note: You may configure multiple encryption certificates for a
given trading partner.

Table 4-4 Configuring Trading Partner Certificates (Continued)

To configure . . . Complete the following steps . . .

4 Configuring Security

4-26 Implementing Security with B2B Integration

Notes: When you create a trading partner in WebLogic Integration, a WebLogic
Server user is created for that trading partner at run time, with a username that
you specify. When you delete a trading partner from the WebLogic Integration
repository, however, the corresponding WebLogic Server user is not
automatically deleted. When you delete a trading partner, be sure that you also
manually delete the corresponding WebLogic Server user.

For a list of resources that you might find helpful in managing WebLogic
Integration B2B resources, visit BEA dev2dev Online at the following URL:

http://dev2dev.bea.com/index.jsp

Here you can find links to sites that provide useful utilities, such as tools for
manipulating digital certificates and private keys.

Configuring a Secure Transport

When you configure a transport for a trading partner, you bind the trading partner�s
transport to a transport security protocol. For example, if a trading partner is
configured to use SSL certificates, you must bind that trading partner�s transport to a
transport protocol that uses SSL. When a secure transport is configured, the client
certificate is used for outbound SSL. Because WebLogic Integration allows only one
client certificate, there is no need to select the client certificate while configuring a
secure transport.

To configure a secure transport for a trading partner, complete the following steps:

1. Select the Transport tab. The Transport configuration page is displayed. The top of
this page is shown in the following figure.

Configuring Trading Partner Security

Implementing Security with B2B Integration 4-27

Figure 4-17 Trading Partner Transport Configuration Page

2. Enter the information described in the following table.

Table 4-5 Configuring the Trading Partner Transport

Field Description

Transport Name The name of the trading partner transport. You can enter a name, or
choose from the list of available transports displayed in the box
labeled Available Transports. Note that each of the available
transports has a security protocol bound to it, so if you choose from
this list, the transport and security protocols are set automatically.
For more information about specifying the transport name, see the
online help for the Transport tab by clicking the question mark in the
upper right.

4 Configuring Security

4-28 Implementing Security with B2B Integration

3. Click Add/Apply.

Configuring a Secure Delivery Channel

When you configure a trading partner�s delivery channel, you have the option of
making the delivery channel secure by binding it to the secure transport configured in
�Configuring a Secure Transport� on page 4-26.

To configure a secure channel, complete the following steps:

1. Select the Delivery Channels tab. The Delivery Channels configuration page is
displayed, as shown in the following figure.

Transport Protocol The security protocol for the transport. You can choose between
HTTP-1.1 and HTTPS-1.1. The HTTPS-1.1 protocol uses SSL.
Note that if you choose HTTPS-1.1, the security protocol is
displayed in the nonmodifiable field labeled Security Protocol.

URI Endpoint The URI for the transport on the trading partner�s B2B system. To
specify the URI endpoint, you can enter a URI in this field, or choose
from one of the available URIs displayed in the box below this field.
When you enter the URI endpoint, click Set, to establish the URI, or
Remove, to clear an existing entry in the URI Endpoint field. For
more information about specifying the URI endpoint, see the online
help for the Transport tab by clicking the question mark in the upper
right.

Table 4-5 Configuring the Trading Partner Transport (Continued)

Field Description

Configuring Trading Partner Security

Implementing Security with B2B Integration 4-29

Figure 4-18 Trading Partner Delivery Channels Configuration Page

2. Enter the information described in the following table.

Table 4-6 Configuring a Trading Partner Delivery Channel

Field Description

Delivery Channel Name The delivery channel name. You can enter a name in this field,
or choose from the delivery channels listed in the Available
Delivery Channels box below. For more information about
specifying a delivery channel name, see the online help for the
Delivery Channels page by clicking the question mark in the
upper right.

Transport The name of the transport configured in the trading partner
transport tab. This field gives you an opportunity to bind the
delivery channel to a transport that you secured when
configuring the transport properties, as described in
�Configuring a Secure Transport� on page 4-26.

4 Configuring Security

4-30 Implementing Security with B2B Integration

3. Click Add/Apply.

Configuring a Secure Document Exchange

When you configure the trading partner document exchange, you can associate a
document exchange with a business protocol binding that provides digital signature
support or message encryption. Digital signature support is available with all the
business protocols supported in WebLogic Integration; however, message encryption
is available only with the RosettaNet protocol.

To enable digital signature or message encryption support, complete the following
steps:

1. Select the Document Exchange tab. The Document Exchange configuration page
is displayed, as shown in the following figure.

Document Exchange The name of the document exchange to which you want to bind
the delivery channel. For more information about binding a
document exchange to a delivery channel, see the online help
for the Delivery Channels page by clicking the question mark
in the upper right.

Routing Proxy Check this box if you want the trading partner delivery to act as
a routing proxy (hub). For more information about proxy
servers, see �Configuring WebLogic Integration B2B to Use an
Outbound HTTP Proxy Server� on page 4-40.

Table 4-6 Configuring a Trading Partner Delivery Channel (Continued)

Field Description

Configuring Trading Partner Security

Implementing Security with B2B Integration 4-31

Figure 4-19 Trading Partner Document Exchange Configuration Page

2. Enter the information described in the following table.

3. For information about specifying data in the fields labeled Document Exchange
Name, End Point Type, Confirmed Delivery, Message History, and Retries, see
the online help for the Document Exchange page by clicking the question mark in
the upper right.

Table 4-7 Configuring a Trading Partner Document Exchange

In the field labeled . . . Choose the following information . . .

Business Protocol Binding The business protocol and version that supports the digital
signature or message encryption capabilities that you want. The
protocol you choose becomes bound to the trading partner
document exchange identified at the top of the page.

Business Protocol
Definition

The business protocol associated with the business protocol
binding chosen in the preceding selection box.

4 Configuring Security

4-32 Implementing Security with B2B Integration

4. For information about configuring digital signature information, see
�Configuring Message Encryption� on page 4-32.

5. For information about configuring message encryption information, see
�Configuring Digital Signatures for Nonrepudiation� on page 4-35.

Configuring Message Encryption

As mentioned in Chapter 1, �Introducing WebLogic Integration B2B Security,� the
B2B message encryption service encrypts business messages for the business
protocols that require it. Currently, message encryption is supported only for the
RosettaNet 2.0 protocol.

How WebLogic Integration Message Encryption Works

Data encryption works by using a combination of the sender�s certificate, private key,
and the recipient�s certificate to encode a business message. The message can then be
decrypted only by the recipient using the recipient�s private key.

Note: The B2B message encryption feature is controlled by licensing
(Encryption/Domestic or Encryption/Export), but the decryption of a business
message is not. If WebLogic Integration does not have a valid encryption
license, the B2B engine disables the encryption service. However, the B2B
engine can always decrypt business messages that are received.

The WebLogic Integration message encryption service supports the following
algorithms:

! Rivest-Shamir-Adleman (RSA)

! Data Encryption Standard (DES)

! Triple Data Encryption Standard (3DES)

The following figure shows how data encryption is performed using the public and
private keys.

Configuring Message Encryption

Implementing Security with B2B Integration 4-33

Figure 4-20 WebLogic Integration Message Encryption Service

Note: To use message encryption, you must have a valid license for using the
encryption service.

Configuring Message Encryption

To configure message encryption for business messages exchanged by trading partners
in a RosettaNet 2.0-based conversation definition, complete the following steps:

1. Configure the trading partner as described in �Basic Configuration Tasks� in
Administering B2B Integration.

2. Configure security for the trading partner delivery channel, as described in
�Configuring a Secure Delivery Channel� on page 4-28. Be sure to configure the
delivery channel using a transport that uses the appropriate RosettaNet 2.0
protocol binding.

3. Configure the trading partner document exchange, as described in �Configuring a
Secure Document Exchange� on page 4-30. Be sure to configure the document
exchange to support the appropriate RosettaNet 2.0 business protocol binding.

4 Configuring Security

4-34 Implementing Security with B2B Integration

Notice that when you select a RosettaNet business protocol binding on the Doc
Exchange configuration tab, the Encryption box is displayed in the lower left
corner of the tab. The following figure shows the Doc Exchange configuration
tab, with the Encryption box.

Figure 4-21 Configuration Box for Message Encryption on Doc Exchange
Configuration Page

4. In the Encryption box, select the information described in the following table.

Table 4-8 Message Encryption Configuration Settings

Field Description

Encryption Certificate Enter the name of the encryption certificate configured in
�Configuring Trading Partner Certificates� on page 4-15.

Encryption Level Enter the parts of the business message that you want to have
encrypted. Choose PAYLOAD if you want to encrypt only the
XML business document(s) part of the message. Choose
ENTIRE_PAYLOAD if you want to encrypt the business
documents and all attachments in the message.

Configuring Digital Signatures for Nonrepudiation

Implementing Security with B2B Integration 4-35

5. Click Add/Apply.

Note: If cipher strength is specified in the repository data file, it is ignored at run
time.

Configuring Digital Signatures for
Nonrepudiation

Digital signature support (described in detail in �Implementing Nonrepudiation� on
page 5-1) provides a means to prevent anyone or anything from tampering with the
contents of a business message, especially when the business message is in transit
between two trading partners. Digital signature support is a requirement for
nonrepudiation.

If you are implementing nonrepudiation, you need to configure digital signature
support in the B2B engine, which you can do by completing the following steps:

1. Configure the trading partner, as described in �Basic Configuration Tasks� in
Administering B2B Integration.

2. Configure the trading partner signature certificate, as described in �Configuring
Trading Partner Certificates� on page 4-15.

Cipher Algorithm A nonmodifiable information field containing the
name of the cipher algorithm used. In WebLogic
Integration, the available cipher algorithms are:
! Rivest-Shamir-Adleman (RSA)
! Data Encryption Standard (DES)
! Triple Data Encryption Standard (3DES)

Table 4-8 Message Encryption Configuration Settings (Continued)

Field Description

4 Configuring Security

4-36 Implementing Security with B2B Integration

3. Configure the trading partner delivery channel security, as described in
�Configuring a Secure Delivery Channel� on page 4-28. Be sure to configure the
delivery channel using a transport that uses the appropriate protocol binding.

4. Configure the trading partner document exchange, as described in �Configuring a
Secure Document Exchange� on page 4-30. Be sure to configure the document
exchange to support the appropriate business protocol binding.

5. In the Doc Exchange tab, notice the box labeled Digital Signature
(Nonrepudiation) in the lower right. In this box, choose the trading partner
signature certificate identified in �Configuring Trading Partner Certificates� on
page 4-15.

When you choose a signature certificate, notice the data displayed in the
nonmodifiable fields that are associated with the signature certificate, as shown
in the lower right in the following figure.

Figure 4-22 Configuring Nonrepudiation

These nonmodifiable fields are used for the following purposes.

Customizing the WLCCertAuthenticator Class

Implementing Security with B2B Integration 4-37

" Nonrepudiation protocol�identifies the business protocol associated with the
signature certificate.

" Hash Function�identifies the function used for encrypting passwords
exchanged among trading partners. The hash function used by both the
RosettaNet and XOCP protocols in WebLogic Integration is SHA1.

" Signature Algorithm�identifies the algorithm used for encrypting the
signature certificates exchanged among trading partners. The signature
algorithm used by both the RosettaNet and XOCP protocols in WebLogic
Integration is RSA.

Customizing the WLCCertAuthenticator Class

The WLCCertAuthenticator class is an implementation of the WebLogic Server
CertAuthenticator class. The default implementation of the
WLCCertAuthenticator class maps the digital certificate of the trading partner to the
corresponding trading partner user defined in the WebLogic Integration repository.
You may want to extend this functionality to use mutual authentication for users other
than trading partners. For example, you may want to modify the class to map a Web
browser or Java client to a WebLogic Server user.

The WLCCertAuthenticator class is invoked by WebLogic Server after an SSL
connection between the trading partner and WebLogic Server has been established.
The class can extract data from a digital certificate to determine the trading partner
name that corresponds to the digital certificate.

The following code example, in which the WebLogic default realm for retrieving users
is used, shows how the WLCCertAuthenticator class is customized:

public User authenticate(String userName, Certificate[] certs, boolean ssl)
{

String user = null;

// If not using SSL, return
if (ssl == false)
{
return null;
}

4 Configuring Security

4-38 Implementing Security with B2B Integration

// Verify that the certificate is either a c-hub certificate or a trading partner
// certificate, then return the corresponding WLS user.

if ((user = Security.isValidWLCCertificate(certs))!= null)
{
return realm.getUser(user);
}
// Certificate is not a valid WLC certificate.
// Check here for non-WLC certificate and return the corresponding user.
}

Configuring a Certificate Verification
Provider Interface

As explained in �Trading Partner Certificate Verification� on page 2-2, you use a
certificate verification provider to validate a trading partner�s digital certificate. If you
are using a certificate verification provider (CVP), you need to configure it in the B2B
Console, using the steps described in this section.

To configure a CVP:

1. Start the B2B Console.

2. In the main page of the B2B Console, click the link under WebLogic Integration,
as described in �Configuring Security for the WebLogic Integration B2B Engine�
on page 4-10.

3. In the B2B Configuration panel, select the Security tab. This displays the page
shown in the following figure.

Configuring a Certificate Verification Provider Interface

Implementing Security with B2B Integration 4-39

Figure 4-23 WebLogic Integration System Security Configuration Page

4. In the field labeled Certificate Verification Class, enter the fully qualified name
of the Java class that implements the CVP.

5. Click Apply.

Note: You can load a certificate verification provider via the Bulk Loader. For more
information, see �Working with the Bulk Loader� in Administering B2B
Integration.

4 Configuring Security

4-40 Implementing Security with B2B Integration

Configuring WebLogic Integration B2B to
Use an Outbound HTTP Proxy Server

If you are using WebLogic Integration in a security-sensitive environment, you may
want to use WebLogic Integration behind a proxy server. A proxy server allows
trading partners to communicate across intranets or the Internet without compromising
security. A proxy server is used to:

! Hide, from external hackers, the local network addresses of the WebLogic
Servers that host WebLogic Integration

! Restrict access to the external network

! Monitor external network access to the WebLogic Servers that host WebLogic
Integration

When proxy servers are configured on the local network, network traffic (SSL and
HTTP) is tunneled through the proxy server to the external network. The following
figure illustrates how a proxy server might be used in the WebLogic Integration
environment.

Figure 4-24 Proxy Server

Configuring WebLogic Integration B2B to Use an Outbound HTTP Proxy Server

Implementing Security with B2B Integration 4-41

To configure a proxy server for WebLogic Integration, complete the following steps:

1. Display the configuration tabs in the right pane of the B2B Console window, as
shown in the following figure.

Figure 4-25 Configuration Tabs in the WebLogic Integration B2B Console

2. Select the Proxy tab. The Proxy configuration page is displayed, as shown in the
following figure.

4 Configuring Security

4-42 Implementing Security with B2B Integration

Figure 4-26 WebLogic Integration Proxy Server Configuration Page

3. In the field labeled Host, enter the address of the proxy server used for the
WebLogic Integration server, if any. For example:

myproxy.mycompany.com.

4. In the field labeled Port, enter the port number for the proxy server.

5. Click Apply.

6. Add permissions to read and write the ssl.proxyHost and ssl.proxyPort
system properties for the WebLogic Server. These system properties are stored in
the weblogic.policy file, which is located in the directory where you installed
WebLogic Server. Add the following lines to the grant section of the
weblogic.policy file:

permission java.util.PropertyPermission "ssl.proxyHost", "read, write";
permission java.util.PropertyPermission "ssl.proxyPort", "read, write";

Configuring WebLogic Integration with a Web Server and a WebLogic Proxy Plug-In

Implementing Security with B2B Integration 4-43

Configuring WebLogic Integration with a
Web Server and a WebLogic Proxy Plug-In

You can configure WebLogic Integration with a Web server, such as an Apache server,
that is programmed to service business messages from a remote trading partner. A Web
server can provide the following services:

! Receive business messages from a remote trading partner

! Authenticate a trading partner digital certificate

The Web server uses the WebLogic proxy plug-in, which you can configure to provide
the following services:

! Forward business messages received by the Web server to WebLogic Integration,
which is running inside a secure internal network.

! Extract the remote trading partner certificate from the Web server and forward it
to WebLogic Server for authentication. WebLogic Integration can then
authenticate the trading partner certificate and business message.

The following figure shows the topology of an environment that uses a Web server, the
WebLogic proxy plug-in, and WebLogic Integration.

Figure 4-27 Using a Web Server and the WebLogic Proxy Plug-In

4 Configuring Security

4-44 Implementing Security with B2B Integration

Notes: Even though the proxy plug-in uses HTTP, you must configure WebLogic
Integration to use the HTTPS protocol when using the proxy plug-in to
forward business messages.

If a trading partner in a conversation uses Microsoft IIS as a proxy server, all
the certificates used in the conversation must be trusted by a well-known
Certificate Authority, such as Verisign or Entrust. The use of self-signed
certificates will cause a request passed through the IIS proxy server to fail.
This is a restriction in IIS, not WebLogic Integration.

Configuring the Web Server

To configure the Web server, see �Configuring WebLogic Server Web Components�
in the BEA WebLogic Server Administration Guide at the following URL:

http://edocs.bea.com/wls/docs70/adminguide/web_server.html

The following code example provides the segment of httpd.conf (for an Apache
server) needed to configure the proxy plug-in:

LoadModule foo_module libexec/mod_foo.so
LoadModule weblogic_module libexec/mod_wl_ssl.<suffix>

<Location /weblogic>
 SetHandler weblogic-handler
 PathTrim /weblogic
 WebLogicHost myhost
 WebLogicPort 80
</Location>

WebLogic Server User Identity for the Trading Partner

The WebLogic Server user identity is optional when you configure the remote trading
partner. If a particular WebLogic Integration deployment has stringent security
requirements, we recommend the following:

! Configure the ACLs for the transport servlet to enable permissions for the
WebLogic Server users that map to the remote trading partner certificates.

Configuring Business Process Management Access to the WebLogic Integration Repos-

Implementing Security with B2B Integration 4-45

! Disable guest users so that users with unknown or invalid certificates are unable
to enter the WebLogic Server system.

Configuring Business Process Management
Access to the WebLogic Integration
Repository

If you plan to use the business process management (BPM) functionality provided by
WebLogic Integration, you need to make sure that BPM users can share access to the
WebLogic Integration repository. To support such access, you need to configure BPM
with permissions for using the repository: add the WebLogic Server group wlpiUsers
to the ACL for the JDBC connection pool used by the WebLogic Integration
repository.

In addition, if a user of the WebLogic Integration Studio or Worklist utility needs
access to workflow templates stored in the WebLogic Integration repository, you need
to add that user to the appropriate ACLs for the WebLogic Server administration
MBeans. To do so, specify the following ACLs on the WebLogic Server MBeans for
the user. In these settings, replace <user> with the name of the BPM user:

acl.access.weblogic.admin.mbean.MBeanHome=<user>
acl.lookup.weblogic.admin.mbean.MBeanHome=<user>

For information about configuring ACLs for B2B resources, see �Configuring Access
Control Lists for WebLogic Integration� on page 4-7.

Configuring Server-Side Authentication

By default, WebLogic Integration uses two-way SSL authentication. You might want
to use server-side authentication, however, if you do not want to require
certificate-based authentication among your trading partners.

4 Configuring Security

4-46 Implementing Security with B2B Integration

To configure server-side authentication, complete the following steps:

1. Stop the server running in your B2B domain.

2. Go to the root directory for the domain. For example:

c:\bea\user_projects\domain

3. Bring the config.xml file into a text editor.

4. Set the WebLogic Server SSL parameter ClientCertificateEnforced to
false.

5. Set the WebLogic Server SSL parameter TwoWaySSLEnabled to true.

6. Save your changes to the config.xml file.

7. Start the server in your B2B domain, and start the B2B Console.

8. Remove the client certificate for each remote trading partner, as described in
�Removing Certificates and Private Keys from the Keystore� on page 3-20.

CHAPTER
5 Implementing
Nonrepudiation

This topic includes the following sections:

! Overview of Nonrepudiation

! Using the Service Provider Interfaces (SPIs) for Nonrepudiation

Overview of Nonrepudiation

Nonrepudiation is the ability of a trading partner to prove or disprove having
previously sent or received a particular business message to or from another trading
partner. Consider the following example.

Trading Partner A has agreed to purchase 1000 ergonomic chairs from Trading Partner
B. In the course of this agreement, Trading Partner A has sent a business message to
Trading Partner B agreeing to buy the chairs at a set price. Later, though, Trading
Partner A disputes the original price and denies having sent a message in which they
agreed to pay that price.

If a reliable nonrepudiation system has been in place, Trading Partner B can disprove
Trading Partner A�s claim by producing a document from Trading Partner A
specifying the amount Trading Partner A agreed to pay. Further, if this original
document is digitally signed, timestamped, recorded, and secured by a trusted
third-party source, the validity of this document has full legal recourse.
Implementing Security with B2B Integration 5-1

5 Implementing Nonrepudiation
Nonrepudiation, or the ability to provide legal evidence of the involvement of a
denying party, is a requirement for critical business messages. WebLogic Integration
B2B supports both nonrepudiation of origin and nonrepudiation of receipt:

! Nonrepudiation of origin links the business message and the sender of the
message. It provides legal evidence that you have sent a business message.

! Nonrepudiation of receipt links the business message and the recipient of the
message. It provides legal evidence that you have received a business message.

To support nonrepudiation, the B2B engine incorporates the following services:

! Digital signatures

! Secure timestamps

! Secure audit logs

The remaining sections in this topic describe each of these services and explain how to
incorporate them into your B2B environment.

Digital Signature Support

The purpose of digital signature support is to provide a means to prevent anyone or
anything from tampering with the contents of a business message, especially when the
business message is in transit between two trading partners. The B2B engine provides
digital signature support that conforms to the Public Key Cryptography Standard 7
(PKCS7) packaging for digital signatures.

A digital signature itself is a set of data appended to a business message consisting of
an encrypted, one-way hash value of data packaged in a specific format (for example,
PKCS7 SignedData). A digital signature:

! Validates that the contents of a digitally signed message have not been tampered
with.

! Contains the identity of the sender of the business message.

The data required to create a digital signature is obtained from the trading partner
configuration data in the repository. The information required to create a digital
signature also includes the following:

! Trading partner signature certificate and private key
5-2 Implementing Security with B2B Integration

Overview of Nonrepudiation
! Certificate authority certificate for the trading partner signature certificate

! Hash algorithm name: SHA1

! Signature algorithm name: RSA

Business Protocols with Which You May Use Digital Signature Support

WebLogic Integration provides digital signature support for messages that use the
following business protocols:

! RosettaNet 1.1

! RosettaNet 2.0

! XOCP 1.1

Configuring Digital Signature Support

When you configure WebLogic Integration, you have the option of specifying a digital
signature service. To use a digital signature service, you must configure it as described
in �Configuring Digital Signatures for Nonrepudiation� on page 4-35.

Secure Timestamp Service

If nonrepudiation is being used, secure timestamp services are required to attach a
Coordinated Universal Time (UTC) timestamp to the secure audit log when business
messages are also logged to the secure audit log. For example, when you receive a
business message, a timestamp is entered as a nonrepudiation of receipt (NRR)
message in the audit log. When you send a business message, a timestamp is entered
as a nonrepudiation of origin (NRO) message in the audit log. WebLogic Integration
B2B includes a Service Provider Interface (SPI) so that you can incorporate a secure
timestamp service from a trusted third-party provider.

If you incorporate a secure timestamp service from a trusted third-party provider, you
need to create a Java class file that implements the
com.bea.b2b.security.TimestampProvider interface. In the class methods (for
example, getTimestamp) of your class implementing the
Implementing Security with B2B Integration 5-3

5 Implementing Nonrepudiation
com.bea.b2b.security.TimestampProvider interface, you call out to the third
party timestamp provider. For details about creating this application, see �Using the
SPI for the Secure Timestamp Service� on page 5-10.

The B2B engine prohibits more than one secure timestamp provider from being
registered in WebLogic Integration. This restriction ensures that all timestamps
created in the WebLogic Integration are ordered chronologically.

Note: If you do not configure a secure timestamp service provider in WebLogic
Integration, system time is used for timestamping system events and
signatures.

For details about the secure timestamp SPI, see �Using the SPI for the Secure
Timestamp Service� on page 5-10.

Configuring the Secure Timestamp Service

To configure the secure timestamp service, complete the following steps:

1. Start the WebLogic Integration B2B Console and display the B2B configuration
page, as described in �Configuring Security for the WebLogic Integration B2B
Engine� on page 4-10.

2. Select the Security tab. The B2B Security configuration page is displayed, as
shown in the following figure.
5-4 Implementing Security with B2B Integration

Overview of Nonrepudiation
Figure 5-1 B2B Security Configuration Page

3. In the field labeled Secure Timestamp Class, enter the fully qualified name of the
Java class that implements the secure timestamp interface.

4. Restart WebLogic Server so that the new configuration takes effect.

Secure Audit Log Service

A secure audit log is also required for nonrepudiation. This log typically stores each
business message with its digital signature and secure timestamp. You use an audit log
to reconstruct the sequence of messages and other system events that have occurred
during the exchange of business messages among trading partners.

As with the timestamp service, the B2B engine provides a Service Provider Interface
(SPI) for you to configure a trusted, third-party provider of the secure audit log. If you
incorporate a secure audit log service from a trusted third-party provider, you need to
Implementing Security with B2B Integration 5-5

5 Implementing Nonrepudiation
create a class file that implements the com.bea.b2b.security.AuditLogProvider
interface. In the class methods of your class implementing the
com.bea.b2b.security.AuditLogProvider interface (for example, log), you call
out to the third party audit log provider. For details about creating this implementation,
see �Using the SPI for the Secure Audit Log� on page 5-11.

Note: If you do not configure a third-party provider for a secure audit log service, the
B2B system provides a default audit log in a file named secureaudit.log,
which you can enable by setting the system property bea.secureaudit to on.
This file is based on the logging subsystem in B2B, and is protected by only
the underlying operating system�s file permissions system. This file is not
digitally signed or encrypted.

Writing to the Audit Log Directly

As an alternative to writing a Java implementation of the
com.bea.b2b.security.AuditLogProvider interface to call out to an application
that writes to the audit log, you can write an application that writes to the audit log
directly via an invocation to the com.bea.b2b.security.Audit.log(byte[]
data) method, as shown in the code example provided in this section.

This example is a modification of the HelloPartnerServlet.java class, which is
located in the following directory, where SAMPLES_HOME represents the directory in
which the sample applications are installed:

! Windows

%SAMPLES_HOME%\integration\samples\HelloPartner\src\wlcsamples\servlets

! UNIX

$SAMPLES_HOME/integration/samples/HelloPartner/src/wlcsamples/servlets

In this example, the bolded code shows the statements that have been added to show
writing to the audit log.
5-6 Implementing Security with B2B Integration

Overview of Nonrepudiation
Listing 5-1 Example of Writing to the Audit Log Directly

package wlcsamples.servlets;
import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.lang.*;
import javax.transaction.*;
import javax.naming.*;
import javax.jms.*;
import weblogic.jms.extensions.WLTopicSession;
import weblogic.jms.extensions.XMLMessage;
import org.w3c.dom.*;
import org.apache.html.dom.*;
import org.apache.xml.serialize.*;
import org.apache.xerces.dom.*;
import org.apache.xerces.parsers.DOMParser;
import org.xml.sax.*;
import com.bea.eci.logging.*;

//Import the Audit class from security package.
import com.bea.b2b.security.Audit;
...
protected void printResultHTML(PrintWriter pw, Document resultDoc)
{
try {
pw.println("<P><CENTER><P>
 Hello Partner Sample
");
if(resultDoc != null) {
Element root = resultDoc.getDocumentElement();
NodeList productList =
root.getElementsByTagName("integer-product");

NodeList noteList =
root.getElementsByTagName("note");

Node childProduct = productList.item(0);
Node childNote = noteList.item(0);
if(childProduct == null || childNote == null) {
pw.println("
 The Replier Partner has responded
with a document of unexpected structure...");

else {
String product = ((Text)childProduct.
getFirstChild()).getData();

String note = ((Text)childNote.getFirstChild()).
getData();

// Log the note to the Audit log
byte[] ba = note.getBytes();
Audit.log(ba);
//String strXMLDoc = DocSerializer.docToString
Implementing Security with B2B Integration 5-7

5 Implementing Nonrepudiation
(resultDoc);
pw.println("
 The Replier Partner has responded
with the following result...
 ");

pw.println("
 Product: " + product + "");
pw.println("
 Note: " + note + "<P>

</CENTER>");

pw.println("<CENTER><IMG SRC=\"Hello4.gif\"
WIDTH=650 HEIGHT=220

 BORDER=0 NATURALSIZEFLAG=3></CENTER>");
}

}
else {
pw.println("
 ERROR: ");
pw.println("
 The Requestor Trading Partner's private
workflow did not return a result.<P>

</CENTER>");

pw.println("<CENTER><IMG SRC=\"Hello1.gif\" WIDTH=650
HEIGHT=220 BORDER=0 NATURALSIZEFLAG=3></CENTER>");

}
pw.println("<P><CENTER>

 ");
pw.println("<P><CENTER>
Click Here to Run Again</CENTER></P>");

} catch (Exception e) {
e.printStackTrace();

}
}

Configuring the Secure Audit Log

To configure the secure audit log, complete the following steps:

1. Start the B2B Console and display the WebLogic Integration B2B configuration
page, as described in �Configuring Security for the WebLogic Integration B2B
Engine� on page 4-10.

2. Select the Security tab. The B2B Security configuration page is displayed, as
shown in the following figure.
5-8 Implementing Security with B2B Integration

Overview of Nonrepudiation
Figure 5-2 WebLogic Integration B2B Security Configuration Page

3. In the field labeled Audit Log Class, enter the fully qualified name of the Java
class that implements the secure audit log.

4. Restart WebLogic Server so that the new configuration takes effect.
Implementing Security with B2B Integration 5-9

5 Implementing Nonrepudiation
Using the Service Provider Interfaces (SPIs)
for Nonrepudiation

This section describes the SPIs for the following nonrepudiation services:

! Secure Timestamp Service

! Secure Audit Log Service

Using the SPI for the Secure Timestamp Service

WebLogic Integration B2B allows you to create a customized secure timestamp
service by implementing the com.bea.security.TimeStampProvider interface. If
you implement a timestamp using the SPI described in this section, you must configure
this service later in the B2B Console so that the service is invoked properly during run
time.

The com.bea.b2b.security.TimeStampProvider interface has the following
methods, which a timestamp application must implement:

! String getTimestamp()

This method returns a string specifying the time in Coordinate Universal Time
(UTC) format.

! long getTimestampInMillis()

This method returns a string specifying the UTC time in milliseconds.

Your implementation of the timestamp interface must include a default public
constructor with no arguments. Neither the constructor nor any methods in the class
that implements the TimeStampProvider interface should throw any exceptions.
5-10 Implementing Security with B2B Integration

Using the Service Provider Interfaces (SPIs) for Nonrepudiation
Using the SPI for the Secure Audit Log

WebLogic Integration B2B allows you to create a secure audit log service by
implementing the com.bea.security.AuditLogProvider interface. If you
implement an audit log service using the SPI described in this section, you must
configure this service later in the B2B Console so that the service is invoked properly
during run time.

The com.bea.b2b.security.AuditLogProvider interface has the following
methods, which a secure audit log application must implement:

! void init()

This method initializes the audit log.

! void log (java.lang.String component,
 java.lang.String type,
 byte[] data,
 java.lang.String principal)

This method is invoked to log a message in the secure audit log. It has the
following parameters:
" java.lang.String component

Contains the component that is logging the message
" java.lang.String type

Specifies the type of the nonrepudiation message
" byte[] data

Contains the data to be logged
" java.lang.String principal

Contains the name of the trading partner who is logging this message

Your implementation of the secure audit interface must include a default public
constructor with no arguments. Neither the constructor nor any methods in the class
that implements the AuditLogProvider interface should throw any exceptions.
Implementing Security with B2B Integration 5-11

5 Implementing Nonrepudiation
Audit Log Messages

All log messages correspond to the DTD log-message.dtd, which defines the
contents for each message type.

All audit log messages have the following three identifiers:

! Location�the location, in WebLogic Integration, in which the message is stored

! Type�the message type

! Data�the actual information that is being logged

The following table describes the contents of the data for each of the message types.
All the log messages contain the timestamp obtained from the timestamp provider that
is configured in WebLogic Integration.

Audit Log DTD

The following code example shows the log-message.dtd file:

<!ELEMENT LOG (non-repudiation-origin| non-repudiation-receipt | application)>
<!ATTLIST LOG time-stamp CDATA #REQUIRED >
<!ATTLIST LOG location CDATA #IMPLIED >
<!ATTLIST LOG Principal CDATA #IMPLIED >
<!ELEMENT non-repudiation-origin (#PCDATA)>
<!ELEMENT non-repudiation-receipt (#PCDATA)>
<!ELEMENT application (#PCDATA)>

Message Type Description

NRR Nonrepudiation of receipt. Contains that name of the trading partner
receiving the business message and the application data.

NRO Nonrepudiation of origin. Contains the name of the trading partner
sender, the business message, and the application data.

APP Is logged from any trading partner Java class via the
Audit.log(byte[] data) method.The data format for this
message type is any stringified XML document. Because the
application is logging the message, the contents of the data are
controlled by the application itself.
5-12 Implementing Security with B2B Integration

Index

Numerics
3DES 4-32

A
access control list

see ACL
ACLs

defining 4-7
MBeans 4-45

algorithms, supported cipher 4-34
Apache server

using with WebLogic Integration 4-43
application, disabling automatic deployment

3-4
audit log class

specifying location of 4-10
audit log service

description 5-5
DTD 5-12
messages 5-12
writing to directly 5-6

authentication
client 1-13
configuring 4-2
definition 1-2
description 2-1
of business messages 2-6
one-way 4-45
server 1-13
server-side 4-45

trading partner (overview) 2-1
authorization

conversation 1-1
conversations 2-10
definition 1-2
description 2-8
trading partner (about) 2-8

automatic deployment, disabling 3-4
automigrate, enabling 3-18

B
bulk loading certificates 3-18
Bulk Migrator 4-10
business messages

authenticating 2-6
configuring encryption of 4-33
encrypting 4-32

C
CA

about 3-2
certificate authorities 1-11, 3-2

specifying directory for 4-10
Certificate Revocation List

see CRL 2-2
certificate verification

process of 2-3
certificate verification provider

see CVP
certificates
Implementing Security with B2B Integration I-1

adding to keystore for trading partner
3-11

alias 3-16
bulk loading 3-18
client (description) 4-15
description of types 4-15
encryption (description) 4-15
location 3-16
removing from keystore 3-20
server (description) 4-15
signature (description) 4-15
trading partners

specifying location for 4-14
verification of 2-2

cipher algorithms, supported 4-34
client authentication 1-13
client certificates

description 4-15
not requiring 4-45

clusters, using keystores in 3-23
com.bea.b2b.CertificateVerificationProvider

interface 2-5
com.bea.b2b.security.AuditLogProvider

interface 5-11
com.bea.b2b.security.TimeStampProvider

interface 5-3
configuring

a CVP interface 4-38
a WebLogic proxy plug-in 4-43
ACLs for WebLogic Integration B2B

4-7
an outbound HTTP proxy server 4-40
digital signatures for nonrepudiation

4-35
HTTP proxy server 4-40
JDBC connection pool ACL 4-7
message encryption 4-32
mutual authentication 4-2
secure audit log 5-8
secure delivery channel 4-28
secure document exchange 4-30

secure timestamp service 5-4
secure transport 4-26
SSL 4-2
trading partner certificates 4-15
trading partner security (about) 4-14
WebLogic Integration repository 4-45
webserver 4-44

conversation
authorization of 1-1, 2-10

Coordinated Universal Time stamp 5-3
CRL

overview 2-2
customer support contact information viii
CVP

implementing 2-4
overview 2-3
using SPI for 2-5

CVP class
compiling 2-6
configuring 2-6, 4-38
specifying location of 4-10

D
data

integrity 1-13
privacy 1-13

defining
access control lists 4-7

delivery channel
configuring a secure 4-28

DER
description 4-15

DES 4-32
digital certificates 1-10
digital signatures

configuring 4-35
description 5-2
using 5-2

document exchange
configuring a secure 4-30
I-2 Implementing Security with B2B Integration

domains
and compatibility security 3-4
and LDAP 3-4
configuring to use keystore 3-22
creating for B2B 3-4

E
encryption

configuring 4-33
message (description) 4-32

encryption certificates
description 4-15
specifying private key password 4-17

endpoint
URI 4-26

environment
making secure 1-14

G
groups

definition 1-8

H
HTTP proxy server 4-40

using 4-40

I
ice 5-3
ImportPrivateKey utility 3-6
integrity 1-13

J
Java KeysStore provider

see JKS
JDBC connection pool

configuring ACL for 4-45
JKS

about 3-1
and WebLogic Server 3-1

K
keystores

about 3-1
adding trading partner certificates 3-11
and bulk loading 3-18
configuring for domain 3-22
inserting server certificates into 3-5
private, about 3-2
removing certificates and keys 3-20
root CA, about 3-2
steps for creating 3-5
steps for creating and configuring 3-3
using in a cluster 3-23
using the keytool utility keystores

using the ImportPrivateKey utility
3-6

keytool utility 3-6

M
MBeans

setting ACLs for 4-45
message encryption 4-32

configuring 4-33
how it works 4-32

migrating repository security information
4-10

mutual authentication 4-2

N
Node Manager 3-9
nonrepudiation

of origin 5-12
of receipt 5-12
overview 5-1

NRO 5-3
Implementing Security with B2B Integration I-3

NRR 5-3

O
OCSP

overview 2-2
one-way authentication 3-12, 4-45
Online Certificate Status Protocol

see OSCP
outbound HTTP proxy server

using 4-40

P
passwords

encryption certificate
specifying private key 4-17

signature certificate
specifying private key 4-17

system 4-10
PEM

description 4-15
principals 1-8
printing product documentation viii
privacy 1-13
private keys

adding for local trading partner 3-12
password 3-16
plain text (or unprotected) 3-16
removing from keystore 3-20

Protocol 4-2
proxy plug-in

WebLogic 4-43
proxy server

configuring an outbound 4-40

R
repository

sharing with WebLogic Integration BPM
4-45

restrictions
security 1-14

RSA 4-32, 4-35

S
secure audit log service

configuring 5-8
description 5-5
DTD 5-12
messages 5-12
using SPI for 5-11

secure timestamp class
specifying location of 4-10

secure timestamp service
configuring 5-4
overview 5-3
using SPI for 5-10

security
ACLs, defining 4-7
authentication, client 1-13
authentication, definition 1-2
authentication, description 2-1
authentication, mutual 4-2
authentication, server 1-13
authorization, definition 1-2
authorization, description 2-8
certificate authorities 1-11
data integrity 1-13
data privacy 1-13
digital certificates 1-10
groups, definition 1-8
HTTP proxy server 4-40
principals, definition 1-8
SSL, configuring 4-2
SSL, description 1-13
users, definition 1-8
WLCCertAuthenticator class 4-37

server authentication 1-13
server certificates

adding for remote trading partner 3-17
I-4 Implementing Security with B2B Integration

and local trading partner 3-12
description 4-15
inserting into keystore 3-5

server-side authentication 3-12
service provider interface

see SPI
SHA1 4-35
signature certificates

description 4-15
specifying private key password 4-17

SPI
for CVP 2-5

SSL
configuring 4-2
description 1-13
one-way 4-45

system
password 4-10
securing WebLogic Integration 4-10

system user
WebLogic Integration B2B 1-9

T
timestamp service

configuring 5-4
secure 5-3

trading partners
adding certicate for remote 3-17
authenticating message from 2-6
authentication (overview) 2-1
authorization (about) 2-8
certificate types 4-15
configuring security for 4-14
mapping to a WebLogic Server user 1-8
process of verifying 2-3
verifying 2-2

transport
configuring a secure 4-26
protocol

choosing a secure 4-26

servlet
ACL (example) 2-8

U
unprotected private key 3-16
URI endpoint

choosing 4-26
URLs

transport servlet 2-8
users

definition 1-8
UTC timestamp 5-3

W
web.xml file 2-8
WebLogic Integration B2B

about configuring system user 1-9
WebLogic Integration BPM

sharing repository access with 4-45
WebLogic Integration system

securing 4-10
WebLogic Keystore provider, about 3-1
WebLogic Keystore provider, configuring

3-9
WebLogic MBeans

setting ACLs for 4-45
WebLogic proxy plug-in 4-43
WebLogic Server users

and trading partner mapping 1-8
webserver

using with WebLogic Integration 4-43
WLCCertAuthenticator class 4-37

overview 1-1
wlpiUsers 4-45
Implementing Security with B2B Integration I-5

I-6 Implementing Security with B2B Integration

	About This Document
	What You Need to Know
	How to Print this Document
	Contact Us!
	Documentation Conventions

	1 Introducing WebLogic Integration B2B Security
	WebLogic Integration B2B Security Model
	Principals, Users, and Groups
	About Configuring Trading Partners
	About Configuring the WebLogic Integration B2B System User

	Digital Certificates
	Certificate Authority
	SSL Protocol
	Configuration Restrictions to Ensure a Secure Environment

	2 Authenticating and Authorizing Trading Partners
	Trading Partner Authentication in WebLogic Integration
	Trading Partner Certificate Verification
	Benefits of Certificate Verification
	Certificate Verification Process
	Implementing a Certificate Verification Provider

	Authentication of the Trading Partner Message

	Trading Partner Authorization in WebLogic Integration B2B
	Trading Partner Authorization
	Conversation Authorization

	3 Configuring the Keystore
	About the Keystore
	Keystores You Create
	Steps for Creating and Configuring Keystores

	Creating the Domain
	Creating the Keystores and Inserting the Server Certificates
	Configuring the WebLogic Keystore Provider
	Adding Trading Partner Certificates to the Keystore
	Adding the Certificates and Private Keys for a Local Trading Partner
	Adding the Certificates for a Remote Trading Partner
	Bulk Loading and Importing Certificates into the Keystore
	Removing Certificates and Private Keys from the Keystore

	Configuring the Domain to Use the Keystore
	Using the Keystore in a Multinode Cluster

	4 Configuring Security
	Configuring the SSL Protocol and Mutual Authentication
	Configuring Access Control Lists for WebLogic Integration
	Configuring Security for the WebLogic Integration B2B Engine
	Configuring Trading Partner Security
	Configuring Trading Partner Certificates
	Configuring a Secure Transport
	Configuring a Secure Delivery Channel
	Configuring a Secure Document Exchange

	Configuring Message Encryption
	How WebLogic Integration Message Encryption Works
	Configuring Message Encryption

	Configuring Digital Signatures for Nonrepudiation
	Customizing the WLCCertAuthenticator Class
	Configuring a Certificate Verification Provider Interface
	Configuring WebLogic Integration B2B to Use an Outbound HTTP Proxy Server
	Configuring WebLogic Integration with a Web Server and a WebLogic Proxy Plug-In
	Configuring the Web Server
	WebLogic Server User Identity for the Trading Partner

	Configuring Business Process Management Access to the WebLogic Integration Repository
	Configuring Server-Side Authentication

	5 Implementing Nonrepudiation
	Overview of Nonrepudiation
	Digital Signature Support
	Business Protocols with Which You May Use Digital Signature Support
	Configuring Digital Signature Support

	Secure Timestamp Service
	Configuring the Secure Timestamp Service

	Secure Audit Log Service
	Writing to the Audit Log Directly
	Configuring the Secure Audit Log

	Using the Service Provider Interfaces (SPIs) for Nonrepudiation
	Using the SPI for the Secure Timestamp Service
	Using the SPI for the Secure Audit Log
	Audit Log Messages
	Audit Log DTD

	Index

