
BEA
 WebLogic
Integration�

Best Practices in
Designing BPM
Workflows
Release 7.0
Document Date: June 2002

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED �AS IS� WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server,
BEA WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Best Practices in Designing BPM Workflows

Part Number Date Software Version

N/A June 2002 7.0

Contents

About This Document
What You Need to Know .. vi
e-docs Web Site... vi
How to Print the Document... vi
Related Information.. vii
Contact Us! ... vii
Documentation Conventions ... viii

Best Practices in Designing BPM Workflows
Why Follow Best Practices?..2

Design for Your Business Processes..2
Designing Workflows with WebLogic Integration Studio3

Suggested Workflow Designs for Commonly Used Workflow Patterns4
Parallel Execution ..4
Choice of Events ..7
Event with Timeout..9
Cancellation via Event ...11
Execution Timeout ...17
Using Actions With Workflow Patterns...19

Using Task Nodes..20
Guidelines for User Tasks ..20
Guidelines for Automated Tasks..21

Exception Handling ...21
Guidelines for Using the Studio Plug-ins..22

Index

iv Best Practices in Designing BPM Workflows

About This Document

This document describes recommended practices for workflow design and includes
guidelines for constructing workflows according to commonly used programming
patterns. The goal of this document is to provide guidance for creating workflows that
will be easier to migrate to future versions of WebLogic Integration.

This document covers the following topics:

! Why Follow Best Practices? describes the purpose and use of these best
practices guidelines.

! Suggested Workflow Designs for Commonly Used Workflow Patterns introduces
the recommended common workflow patterns.

! Using Task Nodes provides guidance on implementing user task nodes and
automated task nodes in the context of the suggested workflow patterns.

! Exception Handling provides guidelines on structuring exception handling
blocks in your workflows.

! Guidelines for Using the Studio Plug-ins address the question of using the
plug-in framework of the WebLogic Integration Studio when designing
workflows for portability.
Best Practices in Designing BPM Workflows v

What You Need to Know

This document is intended primarily for business analysts, application developers, and
developers who have created existing workflows using the BEA WebLogic Integration
Studio or are planning to design workflows with the Weblogic Integration Studio. It
assumes a familiarity with the Weblogic Integration Studio platform and Java
programming.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the �e-docs�
Product Documentation page at http://e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File�>Print option on your Web browser.

A PDF version of this document is available on the BEA WebLogic Integration
documentation Home page on the e-docs Web site (and also on the documentation
CD). You can open the PDF in Adobe Acrobat Reader and print the entire document
(or a portion of it) in book format. To access the PDFs, open the BEA WebLogic
Integration documentation Home page, click the PDF files button and select the
document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/.
vi Best Practices in Designing BPM Workflows

Related Information

The following BEA WebLogic Integration documents contain information that is
relevant to using these best practices guidelines and understanding how to construct
workflows with the BEA WebLogic Integration Studio.

For more information in general about BEA WebLogic Integration and the BEA
WebLogic Integration Studio in particular, refer to the following sources.

! Introduction to the WebLogic Integration Studio

! Learning to Use BPM with WebLogic Integration

! Using the WebLogic Integration Studio

! Using the WebLogic Integration Worklist

! Programming BPM Client Applications

Contact Us!

Your feedback on the BEA WebLogic Integration documentation is important to us.
Send us e-mail at docsupport@bea.com if you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and update
the BEA WebLogic Integration documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebLogic Integration 7.0 release.

If you have any questions about this version of BEA WebLogic Integration, or if you
have problems installing and running BEA WebLogic Integration, contact BEA
Customer Support through BEA WebSupport at www.bea.com. You can also contact
Customer Support by using the contact information provided on the Customer Support
Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

! Your name, e-mail address, phone number, and fax number
Best Practices in Designing BPM Workflows vii

! Your company name and company address

! Your machine type and authorization codes

! The name and version of the product you are using

! A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:
#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.
Example:
void commit ()
viii Best Practices in Designing BPM Workflows

monospace
italic
text

Identifies variables in code.
Example:
String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.
Examples:
LPT1
SIGNON
OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:
! That an argument can be repeated several times in a command line
! That the statement omits additional optional arguments
! That you can enter additional parameters, values, or other information
The ellipsis itself should never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
Best Practices in Designing BPM Workflows ix

x Best Practices in Designing BPM Workflows

BEA WEBLOGIC INTEGRATION BPM WORKFLOW DESIGN
Best Practices in
Designing BPM
Workflows

The BEA WebLogic Integration Studio provides the design environment for you to
design and monitor business process workflows. If you have created Studio workflows
or are planning to use the Integration Studio as your workflow management system,
you may want to design your workflows with some best practices in mind. The
following sections provide some guidelines for constructing workflows to provide for
an easier transition to future product releases:

! Why Follow Best Practices?

! Suggested Workflow Designs for Commonly Used Workflow Patterns

! Parallel Execution

! Choice of Events

! Event with Timeout

! Cancellation via Event

! Execution Timeout

! Using Actions With Workflow Patterns

! Using Task Nodes

! Guidelines for Using the Studio Plug-ins
Best Practices in Designing BPM Workflows 1

Best Practices in Designing BPM Workflows
Why Follow Best Practices?

The current WebLogic Integration Studio implementation allows the construction of
unstructured workflows. Both best practices in the workflow management industry
and the emerging, but young, workflow standards encourage the use of structured
workflow design. Future versions of the WebLogic Integration Studio will require the
use of structured workflows, in particular to support workflow standards as they
mature and become ready for use. This document describes structured workflow
patterns for use in the WebLogic Integration Studio today. Following these guidelines
will lead to better designed workflows for easier migration to a structured workflow
paradigm.

Note: These guidelines are NOT intended to suggest how you should implement
your business logic.

Design for Your Business Processes

Workflows definitions encapsulate complex business processes, policies and
procedures. Given their complexity, the best practice guidelines are provided in the
context of common workflow patterns. For certain concepts, we provide the desired
implementation of that concept, together with a list of things that should be avoided.

The provided workflow patterns and programming suggestions should not be taken as
the only way to implement the corresponding concepts. They are intentionally
simplified to readily convey the general design principle or to clearly point out models
or workflow patterns that might not be optimal for automated migration. Clearly, your
business may require different implementations or design variations for some of these
concepts and your workflow designs will probably be more complex than the patterns
presented as examples in this document.

Use the suggested implementations in this guide as a way to evaluate and to estimate
how much you want to optimize your workflow designs. Remember that blindly
following the guidelines suggested here is not suggested as it may result in incorrect
workflows that do not reflect your own business processes.
2 Best Practices in Designing BPM Workflows

Why Follow Best Practices?
Designing Workflows with WebLogic Integration Studio

The desired best practices are defined in the context of designing workflows with the
WebLogic Integration Design Studio component of WebLogic Platform release 7.0.
For complete information about designing workflows using the WebLogic Integration
Studio, refer to the following topics:

! Introduction to the WebLogic Integration Studio

! Learning to Use BPM with WebLogic Integration

! Using the WebLogic Integration Studio

! Using the WebLogic Integration Worklist

! Programming BPM Client Applications
Best Practices in Designing BPM Workflows 3

Best Practices in Designing BPM Workflows
Suggested Workflow Designs for Commonly
Used Workflow Patterns

The following sections describe suggested patterns for constructing workflows. These
guidelines are designed to provide some good approches to common workflow
problems. Common patterns for business processes that are likely to be found in many
workflows include:

! Parallel Execution

! Choice of Events

! Event with Timeout

! Cancellation via Event

! Execution Timeout

The following sections describes these patterns and gives the suggested
implementation of these workflows in detail.

Parallel Execution

The Parallel Execution pattern represents a case in which all the parallel paths coming
out of a workflow node will execute in parallel and rendezvous at an And node where
the parallelism ends. Follow these guidelines to implement this workflow pattern
properly.

1. All parallel paths coming out of a node should merge at the same And node.
Parallel paths originating from different nodes cannot merge at the same And node.
In other words, a parallel execution region must have a single point of entry and
exit. These paths can be arbitrarily complex provided that the constructs on these
paths also have a single point of entry and a single point of exit. Figure 1 illustrates
the Parallel Execution workflow pattern.

Note: In BPM, parallel paths are not executed concurrently. The same thread
executes each path, progresses through one until it stops, then switches to
a new path and works along that path until either all paths can no longer
4 Best Practices in Designing BPM Workflows

Suggested Workflow Designs for Commonly Used Workflow Patterns
progress or all are ready for the And node. The choice of the starting path
varies.

Figure - 1 Implementing the Parallel Execution pattern

2. If a subset of the parallel paths need to merge at a different And node, have
them originate from a dummy Task node which simply marks itself as done.
This will effectively create nested parallelism and make sure that the parallel
execution paths have a single entry and exit points.

Figure 2 shows how a workflow with multiple task nodes with multiple entry
points might be changed using a dummy Task node to ensure parallel execution
paths have single entry points and merge to a single And node.
Best Practices in Designing BPM Workflows 5

Best Practices in Designing BPM Workflows
Figure - 2 Use single entry and exit points for nested parallelism

3. Paths cannot vanish. A path vanishes if it reaches a node that does not have a
successor. In order to fix this, simply add a line so that the path transitions
directly to the And node. The diagram on the left in Figure 3 illustrates a
workflow with a vanishing path. The diagram on the right in Figure 3 illustrates
how the workflow should be implemented.

Note: Paths cannot vanish, except as suggested for the workflow described in the
section, Event with Timeout.
6 Best Practices in Designing BPM Workflows

Suggested Workflow Designs for Commonly Used Workflow Patterns
Figure - 3 Use one entry and exit point and have no vanishing paths

Choice of Events

The Choice of Events pattern represents a case in which all the parallel paths coming
out of a node wait for certain events to occur and the first event to occur determines
which path will execute. (See Figure 4). Only one of parallel paths will ever execute
depending on which event has occurred first. (All other paths are suppressed and will
not fire). In order to guarantee mutual exclusion of the execution paths use the Cancel
Event action as described in the following guidelines.
Best Practices in Designing BPM Workflows 7

Best Practices in Designing BPM Workflows
Figure - 4 Implementing the Choice of Events pattern

Use the following steps to properly implement the Choice of Events workflow pattern:

1. All parallel paths coming out of a node should start with an Event node.
Figure 4 illustrates three parallel paths exiting Any Node and each path starting
with the three Event nodes. You can have as many nodes as needed provided they
all start with an Event node.

2. Establish mutual exclusion using a Cancel Event action. The action list
defined for each Event node should contain one Cancel Event action for each
sibling Event node.

Note: Two nodes are siblings if they have the same parent.

a. The Cancel Event actions should not cancel any other event node outside of the
event siblings in this workflow pattern. These actions ensure that only one of
these parallel paths can execute. You can define these Cancel Event actions in
the Actions tab of the Event Node.
8 Best Practices in Designing BPM Workflows

Suggested Workflow Designs for Commonly Used Workflow Patterns
b. Include the Cancel Event actions even if the events are guaranteed to be
mutually exclusive. This will enable the migration tool to more readily migrate
this workflow pattern.

3. Put Cancel Event actions before all other actions that are declared in the
Actions tab of the Event node. Preferably, place any actions other than the
Cancel Event actions in a Task node that is placed after the Event node.

4. All the parallel paths should converge to the same Or node. Figure 4 shows
all parallel paths converging to the same Or node.

5. The execution paths can contain arbitrarily complex constructs (such as
sub-parallelism, nested Choice of Events pattern, and loops).

Event with Timeout

The Event with Timeout pattern represents a case where a set of mutually exclusive
events are required to occur within a certain time frame or before a deadline. The first
event that occurs before the timeout will run to completion, and other paths will be
suppressed, including the timeout path. If, however, no events occur before the
timeout, the timeout path is executed. Any event that occurs after the timeout will not
trigger its corresponding execution path. Although the timeout logic can be
implemented using either a Timed Event action or a Set Task Due Date action, the use
of Set Task Due Date is recommended as it results in a cleaner, and
easier-to-understand implementation. Figure 5 shows the proper implementation of
this workflow pattern. For a description of best practices using Timed Event actions,
see Event with Timeout.

Use the following guidelines to properly implement the Event with Timeout workflow
pattern:

1. Start all but one path with an Event node.Each Event node should set a variable
indicating that some event has happened. Figure 5 illustrates two Event nodes, E1
and E2.

2. Use a Task node, (refered to here as the Timeout Task node), to start the only
other path. Use a Decision node following the Timeout Task node to test the
value of the variable set by the Event node. In Figure 5, this Decision node is
labeled �event occurred�. Guidelines for using the Timeout Task node are as
follows:
Best Practices in Designing BPM Workflows 9

Best Practices in Designing BPM Workflows
a. The only action in the activated-list of the Timeout Task Node should be a Set
Task Due Date. It must set the due date for the Timeout Task node. The Timeout
Task node should not contain any action in its Executed- or Done-list.

b. The last sub-action, (the timeout action), should mark the Timeout Task node
as done. See the right branch of Figure 5 for an example of this usage. Use the
Mark Task as Done action so that the execution continues from the Timeout
Task node after the timeout is triggered. There should not be any other
sub-action.

3. The execution paths must converge to the same Or node.

4. Check whether the timeout has indeed occurred: The path starting with the
Timeout Task node will start execution when the due date has arrived, regardless
of whether the an event has already occurred. If an event has indeed occurred,
execution along the timeout path should stop. You accomplish this stop by
inserting a Decision node after the Timeout Task node. The Decision node should
test the value of a variable that is set by the events. If the variable is set, it
indicates that an event has already happened. In that case, have the corresponding
branch of the Decision node vanish, simply by not specifying the next node for
that branch. The false branch of the Decision node should transition into the next
node. (See the branch after the �event occured� Decision node in Figure 5.)

5. Cancel other events when the timeout has occurred: Place Cancel Event
actions on the timeout path, to cancel the events so that they will not trigger.
Ideally, you should place these actions at a Task node immediately after the
Decision node. Figure 5 illustrates this implementation with two Cancel Events,
E1 and E2, occurring after the Decision node.
10 Best Practices in Designing BPM Workflows

Suggested Workflow Designs for Commonly Used Workflow Patterns
Figure - 5 Implementing the Event with Timeout pattern

Cancellation via Event

The Cancellation via Event pattern represents a case in which an execution path is
cancelled by an event (e.g., the arrival of a message that cancels an order that has been
placed previously.) Two variations are possible depending on whether the execution
path can be cancelled in the middle of its execution:

1. All-or-nothing: The cancellation event prevents the execution path from executing
if it has not started already. If the execution path has already started execution, the
cancellation event will not have an effect, and the execution path will run to
completion.

2. Interrupt-based: The cancellation event will be effective throughout the
execution of the path that is subject to cancellation. In other words, the execution
path can be stopped in the middle if a cancellation event has been received.
Best Practices in Designing BPM Workflows 11

Best Practices in Designing BPM Workflows
Depending on your business logic, it may be necessary to do some cleanup in
order to reverse (i.e., undo) the portion of the work that has been performed prior
to receiving the cancellation event.

You should decide which one of these two variations more closely reflects your
business logic and implement it as suggested in the following guidelines. The first
approach, All-or-nothing, is simpler to implement as there is no need for a cleanup
work to undo the partially completed work. The second one, Interrupt-based, is more
powerful, and may be the only choice if the execution path that is subject to
cancellation runs for a long time.

All-or-Nothing Variation

Figure 6 shows the suggested implementation for the Cancellation via Event workflow
pattern, in which the path that is subject to cancellation runs only if the cancellation
event has not been received by the time it has started execution. Follow the steps given
below to implement this variation properly.
12 Best Practices in Designing BPM Workflows

Suggested Workflow Designs for Commonly Used Workflow Patterns
Figure - 6 Implementing the Cancel via Event pattern: All-or-Nothing variation

1. The cancellation path should start with an Event node that waits for the
cancellation event (referred to as CE).

2. To allow the Event node to register properly, and trigger it immediately if a
cancellation message has been received, the normal execution path should
start with a Task node that blocks (i.e., enters quiescent state) for a short
duration. Entering the quiescent state, will make sure that the Event node is
registered. If a cancellation event has been received it will trigger the Event node
that waits for it.
Best Practices in Designing BPM Workflows 13

Best Practices in Designing BPM Workflows
3. Add an action in the Event node that sets a variable. The value of this variable
will be inspected by the normal execution path, immediately after the quiescent
state is exited, in order to determine whether to continue along the normal
execution path or not.

4. Add a Decision node after the Timeout node that tests the value of the
variable mentioned in Step 3. If the variable is set, have the true branch of the
Decision node simply vanish, by not defining the �next� node for that branch.
Have the false branch, transition into the node that starts the normal execution.
Figure 6 illustrates this guideline with a false branch occuring after the event
occured Decision node.

5. Once the normal execution path starts executing, the Event node must be
prevented from subsequently firing. Disable the Event node by adding a
Cancel Event action that cancels the cancellation event. This action should be
positioned as the first action after the Decision node. Figure 6 illustrates a Task
node and its associated Cancel Event (CE) action after the Decision node.

6. Both paths must converge to an Or node.

The All-or-Nothing variaton on a Cancel via Event is a pattern designed to check
whether an event occured before proceeding to perform certain critical tasks. A simple
example of this pattern can be seen in an order processing workflow (See Figure 7).
The tasks in an order processing workflow might be as follows:

1. Check customer status

2. Perform order status

3. Check on validity of order

Note: At any point prior to the next step, the order can be cancelled. As shown in
Figure 7, a Cancel Event node can be inserted prior to the set of protected
tasks that handle the execution of the submitted order.

4. Tell the order management system to execute the order.
14 Best Practices in Designing BPM Workflows

Suggested Workflow Designs for Commonly Used Workflow Patterns
Figure - 7 Implementing the All-or-Nothing variation in Order Processing

Interrupt-based Variation

Figure 8 shows the suggested implementation for the Interrupt-based variation.The
implementation of this variation, however, requires a greater level of coordination
between the normal execution path that is subject to cancellation, and the cancellation
path, so that the cleanup logic is implemented correctly.

In general, the cancellation path should perform the necessary cleanup logic.The
cleanup logic might be different depending upon how far the normal execution path
was able to progress. Detecting the amount of progress on the normal execution path
can be done by setting certain variables in the normal execution path and then
inspecting them on the cancellation path when the cancellation event occurs.Similarly,
the normal execution path may need to detect that the cancellation path has been
activated and perform certain cleanup actions that are not done by the cancellation
Best Practices in Designing BPM Workflows 15

Best Practices in Designing BPM Workflows
path. It is up to you to implement the proper coordination in order to ensure that the
resulting workflow reflects your business process accurately. We suggest you do the
cleanup on one path.

Figure 8 shows only the skeleton implementation of the Interrupt-based Variation.
Details of the cancellation/cleanup logic are not included.

Figure - 8 Implementing the Cancel via Event pattern: Interrupt-based variation

The following general steps demonstrate how to implement this workflow pattern
properly.

1. The cancellation path should start with an Event node that waits for the
cancellation event (referred to as CE).

2. As in the �All-or-Nothing Variation� on page 12, start the normal execution
path with a Task node that blocks for a short duration,. This enables the
Event node to register properly.
16 Best Practices in Designing BPM Workflows

Suggested Workflow Designs for Commonly Used Workflow Patterns
3. The last action of the normal execution path should disable the Event node
by canceling the cancellation event (CE) through use of a Cancel Event
action. This will prevent the Event node from firing once the normal execution
path completes its execution and reaches the Or node. In Figure 8, this is
accomplished by using a Task node at the end of the branch for completing the
Event node.

4. Both paths must converge to an Or node.Keep in mind that a cancellation
event/message can activate the Event node only when the normal execution path
enters a quiescent state rather than at an arbitrary point. This simplifies the
cleanup logic since there usually are only a few points where the normal
execution path enters quiescent state. This means there will be few combinations
of �undo/cleanup� work.

Execution Timeout

The Execution Timeout pattern is similar to the Cancellation via Event pattern in that
a timeout, rather than an event, will cause the cancellation of execution along a path.
Figure 9 shows the suggested implementation for this workflow pattern.

The Execution Timeout pattern may require a certain level of coordination between the
normal execution path and the timeout path, in case the timeout is triggered. Moreover,
complex cleanup logic may be required. (See the Cancellation via Event section for a
related discussion.) It is up to you to implement the necessary workflow actions for
cleanup. This section only gives the skeleton implementation of this workflow pattern.

Follow these steps when implementing the Execution Timeout pattern.

1. The timeout path must start with a Task node that contains the timeout action.
Although timeout can be implemented using both the Timed Event action and Set
Task Due Date action, we recommend using the Set Task Due Date action, as this
results in cleaner code. Both the normal execution path and the timeout path can be
arbitrarily complex, provided that the constructs contained in these paths have a
single point of entry and exit.

2. Both paths must converge to an Or node.

3. The timeout path must be disabled once the normal execution path has
finished its execution (i.e., reached the Or node). In order to do this, set a
variable at the end of the normal execution path, and place a Decision node after
the Timeout node that checks the value of this variable. In Figure 9, a Boolean
Best Practices in Designing BPM Workflows 17

Best Practices in Designing BPM Workflows
variable named �timeout_disabled� is set to true at the end of the execution path,
and this value is subsequently checked by the Decision node. The timeout path
proceeds if the timeout path is not disabled.

Figure - 9 Implementing the Execution Timeout pattern
18 Best Practices in Designing BPM Workflows

Suggested Workflow Designs for Commonly Used Workflow Patterns
Using Actions With Workflow Patterns

Table 1 lists actions that are associated with the workflow patterns presented in prior
sections of this document. To optimize your workflows for automated migration,
follow the guidelines in Table 1 when using these particular actions in your workflows:

Note: Do not define any action (such as Start Workflow) other than Set Task as Done
in the callback action list for asynchronous actions.

Table 1 Guidelines for Using Workflow Actions

Action Usage

Cancel Event Use this action only for establishing mutual exclusion
when implementing Choice of Events, Event with
Timeout, or Cancellation via Event patterns.

Mark Task as Done Use this action only for marking "self" as done or when
implementing Event with Timeout pattern.

Unmark Task Done Avoid using this action.

Set Task Due Date Use this action only when implementing the timeout logic
in the Event with Timeout pattern or Execution Timeout
pattern.

Execute Task Use this action only to auto-execute self.

Or Join Use Or Join only when implementing the workflow
patterns mentioned previously, or for joining multiple
Start nodes.

And Join Use And Join only when implementing the Parallel
Execution pattern.
Best Practices in Designing BPM Workflows 19

Best Practices in Designing BPM Workflows
Using Task Nodes

The WebLogic Integration Studio Task nodes can contain an arbitrary number of
actions in their Created, Activated, Executed, and Marked Done lists. You define these
lists in the Task Properties dialog of the WebLogic Integration Studio. For detail
information about the Task Properties dialog, see Using the WebLogic Integration
Studio.

In general, there are two kinds of tasks:

Guidelines for User Tasks

Use of the following guidelines when implementing user tasks:

1. Place pre-assignment tasks in the Activated list. The last action in the activated list
must be one of three task assignment actions. These three actions are:

a. Assign Task to User

b. Assign Task to Role

c. Assign Task Using Routing Condition

2. Place post-assignment tasks in the Executed list. These actions are executed when
the user explicitly executes the task. The last action in the Executed list must be a
Mark Task as Done action, so that the task is marked done.

Table 2 Kinds of Tasks

Tasks Usage

User Tasks Those tasks that are assigned to a user.User tasks block
until they are explicitly executed by a user or a role.

Automated Tasks Tasks that do not require user intervention. Automated
Tasks typically execute a set of actions without the user
intervention and cause the execution to proceed to the
next node by marking themselves as Done.
20 Best Practices in Designing BPM Workflows

Exception Handling
3. Place actions that are related to the task (such as the Set Task Comment and Set
Task Due Date) just before the �Assign Task...� action.

Guidelines for Automated Tasks

Use of the following guidelines when implementing automated tasks:

1. All actions must be placed in the Activated list.

2. Do not place any actions in the Executed list.

3. The last action in the Activated list must mark the task as done using the Mark
Task as Done action.

Exception Handling

Future versions of WebLogic Integration will use structured exception handling. To
provide for an easier transition to future WebLogic Integration product releases, you
should consider the following suggestions when setting exception handlers:

1. When setting an exception handler in the middle of a workflow, set it back to the
default exception handler at the earliest node such that the setting- and unsetting-
nodes define a proper block with no paths in and out of the block. The following
figure, Figure 10, illustrates this type of exception handler block. In general, try to
reduce the scope in which the exception handler is active.

2. Do not change and/or set the exception handler in the timeout path when using
the Event with Timeout pattern or the Execution Timeout pattern.

3. Do not change the exception handler in the exception path when using the
Cancellation via Event pattern.
Best Practices in Designing BPM Workflows 21

Best Practices in Designing BPM Workflows
Figure - 10 Example of an Exception Handler Block

Guidelines for Using the Studio Plug-ins

The WebLogic Integration Studio features support for plug-ins to extend the
functionality of selected workflow components. Although plug-ins will continue to
work, whenever possible you should use EJBs over customized plug-ins to optimize
your workflows for automated migration. See Programming BPM Plug-Ins for
WebLogic Integration.
22 Best Practices in Designing BPM Workflows

Index

A
action

and join 1-19
cancel event 1-19
execute task 1-19
mark task as done 1-19, 1-21
or join 1-19
set task due date 1-19
unmark task done 1-19

actions
usage 1-19

automated tasks
guidelines 1-21

C
Cancel via Event

all or nothing variation 1-13, 1-14
interrupt-based variation 1-16

cancelation via event
all or nothing varation 1-11

cancellation via event 1-11
all-or-nothing variation 1-12
interrupt-based 1-11
interrupt-based variation 1-15

choice of events 1-7
customer support contact information vii

D
documentation, where to find it vi

E
event with timeout 1-9
exception handling 1-21
execution timeout 1-17

P
parallel execution 1-4
paths

parallel 1-6
vanishing 1-7

patterns
cancellation via Event 1-11
choice of events 1-7
event with timeout 1-9
execution timeout 1-17
parallel execution 1-4

plug-ins
guidelines 1-22

printing product documentation vi

R
related information vii

S
support

technical vii
Best Practices in Designing BPM Workflows I-1

T
task nodes

best practices 1-20
user, usage guidelines 1-20

tasks
automated 1-20
user 1-20

timeouts
execution 1-17

U
user tasks

activated list 1-20
assignments 1-20

W
WebLogic Integration

Design Studio 1-3
workflow

actions 1-19
choice of events 1-8
event with timeout 1-11
parallel execution 1-5

workflows
structured 1-2
I-2 Best Practices in Designing BPM Workflows

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	Best Practices in Designing BPM Workflows
	Why Follow Best Practices?
	Design for Your Business Processes
	Designing Workflows with WebLogic Integration Studio

	Suggested Workflow Designs for Commonly Used Workflow Patterns
	Parallel Execution
	Choice of Events
	Event with Timeout
	Cancellation via Event
	All-or-Nothing Variation
	Interrupt-based Variation

	Execution Timeout
	Using Actions With Workflow Patterns

	Using Task Nodes
	Guidelines for User Tasks
	Guidelines for Automated Tasks

	Exception Handling
	Guidelines for Using the Studio Plug-ins

	Index

