
BEA
 WebLogic
Integration�

Implementing cXML for
B2B Integration
Release 7.0
Document Date: June 2002

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED �AS IS� WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server,
BEA WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Implementing cXML for B2B Integration

Part Number Date Software Version

N/A June 2002 7.0

Contents

About This Document
What You Need to Know .. vi
How to Print this Document .. vi
Related Information.. vii
Contact Us! ... vii
Documentation Conventions ... viii

1. Introduction
WebLogic Integration Architecture and cXML .. 1-1

cXML Protocol Layer .. 1-2
cXML API ... 1-3
Business Documents.. 1-3
Digital Signatures and Shared Secrets... 1-4
Message Validation ... 1-5
Limitations... 1-5

2. cXML Administration
Connecting to Other cXML Trading Partners ... 2-1
Collaboration Agreements... 2-3
Security.. 2-3

Configuring Shared Secrets.. 2-4

3. Using the cXML API
cXML Methods ... 3-2

Properties Used to Locate Collaboration Agreements 3-5
cXML Message Structure.. 3-5
cXML DTDs.. 3-6
Implementing cXML for B2B Integration iii

Dealing with Shared Secrets.. 3-7
Processing Incoming Messages ... 3-7

Initialization.. 3-7
Processing the Message.. 3-8

Processing Outgoing Messages ... 3-11
Sending the Message .. 3-11
Code Samples ... 3-13

Sample Buyer .. 3-13
Sample Supplier .. 3-19

4. Using Workflows with cXML
Including cXML in Workflows ... 4-1

Workflow Integration Tasks... 4-2
Programming Task .. 4-2
Administrative Tasks... 4-2
Design Task... 4-3

Designing Workflows for Exchanging Business Messages 4-3
Working with Business Messages ... 4-4

About cXML Business Messages... 4-4
Prerequisite Tasks for Exchanging Business Messages 4-5

Index
iv Implementing cXML for B2B Integration

About This Document

WebLogic Integration supports a routing architecture that allows it to manage and
resolve XOCP, RosettaNet, and cXML messages. This architecture allows WebLogic
Integration to engage in business-to-business conversations using any of these protocol
standards.

This document describes the cXML capabilities of WebLogic Integration.

Note: The cXML and XOCP business protocols are deprecated as of this release of
WebLogic Integration. For information about the features that are replacing
them, see the BEA WebLogic Integration Release Notes.

cXML on WebLogic Integration provides the ability to send and receive cXML
messages as described in the cXML User�s Guide, available at
http://www.cxml.org.

This document is organized as follows:

! Chapter 1, �Introduction,� provides an introduction to cXML on WebLogic
Integration and the architecture used to implement cXML on WebLogic
Integration.

! Chapter 2, �cXML Administration,� describes cXML-specific administration and
security issues for WebLogic Integration.

! Chapter 3, �Using the cXML API,� describes the cXML API and how it is used.

! Chapter 4, �Using Workflows with cXML,� describes how to use the WebLogic
Integration Studio to create workflows for use with cXML.
Implementing cXML for B2B Integration v

What You Need to Know

This document is intended primarily for:

! Business process designers who use the WebLogic Integration Studio to design
workflows that integrate with the WebLogic Integration environment,
specifically focusing on cXML implementations.

! Application developers who use the cXML API to implement buyer or supplier
applications using WebLogic Integration.

! System administrators who set up and administer WebLogic Integration
applications in a cXML environment.

For an overview of the WebLogic Integration architecture, see �Overview� in the
Introducing B2B Integration document.

How to Print this Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File�>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Integration
documentation CD. You can open the PDF in Adobe Acrobat Reader and print the
entire document (or a portion of it) in book format.

If you do not have the Adobe Acrobat Reader installed, you can download it for free
from the Adobe Web site at http://www.adobe.com/.
vi Implementing cXML for B2B Integration

Related Information

For more information about Java 2 Enterprise Edition (J2EE), Extended Markup
Language (XML), and Java programming, see the Javasoft Web site at the following
URL: http://java.sun.com.

You will also find useful information at the BEA edocs Web site at the following URL:
http://edocs.bea.com.

For more information about cXML, visit the cXML.org Web site at the following
URL: http://www.cxml.org.

Contact Us!

Your feedback on the WebLogic Integration documentation is important to us. Send
us e-mail at docsupport@bea.com if you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and update
the WebLogic Integration documentation.

In your e-mail message, please indicate that you are using the documentation for BEA
WebLogic Integration Release 7.0.

If you have any questions about this version of BEA WebLogic Integration, or if you
have problems installing and running BEA WebLogic Integration, contact BEA
Customer Support through BEA WebSUPPORT at www.bea.com. You can also
contact Customer Support by using the contact information provided on the Customer
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

! Your name, e-mail address, phone number, and fax number

! Your company name and company address

! Your machine type and authorization codes

! The name and version of the product you are using
Implementing cXML for B2B Integration vii

! A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:
#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.
Example:
void commit ()

monospace
italic
text

Identifies variables in code.
Example:
String expr
viii Implementing cXML for B2B Integration

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.
Examples:
LPT1
SIGNON
OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:
! That an argument can be repeated several times in a command line
! That the statement omits additional optional arguments
! That you can enter additional parameters, values, or other information
The ellipsis itself should never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
Implementing cXML for B2B Integration ix

x Implementing cXML for B2B Integration

CHAPTER
1 Introduction

Note: The cXML business protocol is deprecated as of this release of WebLogic
Integration. For information about the features that are replacing it, see the
BEA WebLogic Integration Release Notes.

This section introduces the cXML standard for electronic business transactions. cXML
is an extensible e-commerce-oriented XML standard developed by Ariba and widely
used for e-commerce purchasing transactions.

This section describes the following aspects of the cXML standard and its use with
WebLogic Integration:

! WebLogic Integration Architecture and cXML

! cXML API

! Business Documents

! Digital Signatures and Shared Secrets

! Message Validation

! Limitations

WebLogic Integration Architecture and cXML

cXML support provided by WebLogic Integration consists of the following
components:

! cXML protocol layer

! cXML API support
Implementing cXML for B2B Integration 1-1

1 Introduction
cXML integration is provided through the use of business process management (BPM)
business operations and the cXML API. For more information, see Chapter 3, �Using
the cXML API,� and Chapter 4, �Using Workflows with cXML.�

The following diagram illustrates the cXML architecture used by WebLogic
Integration, and shows how WebLogic Integration interacts with other systems using
cXML.

Figure 1-1 WebLogic Integration cXML Architecture

WebLogic Integration support for cXML is designed to allow seamless integration of
cXML with the standard B2B integration infrastructure. For more information about
the remainder of the B2B integration architecture, see Introducing B2B Integration.

Because of the design environment for cXML, support for hubs other than the Ariba
Commerce Services Network is not provided.

cXML Protocol Layer

The cXML protocol layer provides the ability to send and receive messages via the
Internet, according to the cXML specifications for transport, message packaging, and
security. WebLogic Integration creates individual cXML sessions, each of which
creates and manages a URL where the WebLogic Integration server can receive cXML
1-2 Implementing cXML for B2B Integration

cXML API
messages. You can configure cXML sessions, as needed, by using either the WebLogic
Integration B2B Console or a configuration file. To use a WebLogic Integration
configuration file, create a configuration file based on the WLC.dtd file to configure
cXML sessions as needed. If you choose this approach, use the Bulk Loader to load
the configuration file into the repository.

cXML API

WebLogic Integration includes comprehensive API support for the creation of cXML
user applications. For more information about the cXML API, see Chapter 3, �Using
the cXML API,� and the BEA WebLogic Integration Javadoc.

Business Documents

Business document processing is performed in WebLogic Integration using a
combination of public and private processes. Public processes are processes used to
integrate and manage transactions between trading partners. Private processes are
processes used internally by a trading partner; for example to communicate between a
company�s public processes and its internal ERP and CRM systems. Private processes
are thus not directly exposed for trading partner consumption or use. For further
explanation, see �Managing Business Processes� in �Overview� in Introducing B2B
Integration.

cXML business documents are part of the public processes in which trading partners
participate while performing e-business transactions. For example, a PunchOut is part
of the process that a Customer trading partner performs with a Product Supplier
trading partner to get information from a live repository on the price and availability
of goods that the Customer wants to buy and the Product Supplier wants to sell.
Trading partners planning to use PunchOuts must do the following:

! Implement the public process associated with the PunchOut

! Connect their internal systems, as well as their private processes and workflows,
to the public process
Implementing cXML for B2B Integration 1-3

1 Introduction
WebLogic Integration implements all business documents available within cXML:

! Catalogs

! PunchOuts

! Purchase Orders

! Subscriptions

For further information on cXML business documents, go to the cXML.org Web site
at the following URL:

http://www.cxml.org

Digital Signatures and Shared Secrets

The standard method of securing transactions in cXML is the shared secret. In cXML
terms, a shared secret is typically a username/password combination, exchanged
through secure transport before business communication begins.

WebLogic Integration includes full support for cXML shared secrets. For more
information about implementing and configuring shared secrets, see the Online Help
for the WebLogic Integration B2B Console. In addition, you may optionally use https
transport for your messages.

In cXML v1.2, optional digital signatures based on the Base64-encoded X.509 V3
certificate model were introduced. These digital signatures are not the same as the RSA
CertJ digital signatures implemented in WebLogic Integration. Currently WebLogic
Integration does not support cXML digital signatures. For more information, visit the
cXML.org Web site at the following URL:

http://www.cxml.org
1-4 Implementing cXML for B2B Integration

Message Validation
Message Validation

The cXML standard requires all cXML documents to be valid and to refer to published
cXML Document Type Definitions (DTDs). Validation is not required by the cXML
standard, but it is provided by WebLogic Integration as a service.

Limitations

Several cXML-related features are not supported in this release of WebLogic
Integration:

! Digital Certificates: As discussed earlier, cXML 1.2 digital certificates are not
supported.

! cXML 1.2 attachments are not supported at this time.

! Non-ACSN hub support: No support is provided for any hub other than the
Ariba Commerce Services Network. All hub-based transactions must be routed
through the ACSN. Peer-to-peer support is provided.

! No Sample implementation is provided at this time.
Implementing cXML for B2B Integration 1-5

1 Introduction
1-6 Implementing cXML for B2B Integration

CHAPTER
2 cXML Administration

Note: The cXML business protocol is deprecated as of this release of WebLogic
Integration. For information about the features that are replacing it, see the
BEA WebLogic Integration Release Notes.

Administration of cXML transactions is performed using the WebLogic Integration
B2B Console. The following sections describe the administrative work required to
support cXML transactions:

! Connecting to Other cXML Trading Partners

! Collaboration Agreements

! Security

Connecting to Other cXML Trading Partners

Conversations between cXML trading partners use both peer-to-peer and
hub-and-spoke configurations. While these configurations are discussed in
Introducing B2B Integration as they apply to most situations, cXML varies slightly in
its use of these configurations. The following illustration demonstrates how a routine
cXML transaction uses both topologies simultaneously.
Implementing cXML for B2B Integration 2-1

2 cXML Administration
Figure 2-1 cXML Deployment Configurations

In this illustration, the Ariba Commerce Services Network (ACSN) is the hub. Most
transactions are performed through this hub, with individual trading partners serving
as the related spokes. However, when you browse a partner�s catalog, a PunchOut
trading session is created that connects directly to the remote system. In this case, the
hub-and-spoke topology is bypassed in favor of a peer-to-peer configuration. Once the
PunchOut session is finished, and the Buyer wants to send an Order or a Subscription,
then the system topology reverts to a hub-and-spoke model, and the ACSN again acts
as the hub.

It is important to note that when cXML is used with WebLogic Integration, the ACSN
is the only authorized hub. WebLogic Integration does not provide support for any
other hub-and-spoke deployments, and no other system is capable of acting as a hub
for cXML-based transactions.
2-2 Implementing cXML for B2B Integration

Collaboration Agreements
Collaboration Agreements

Collaboration agreements used with cXML are similar in scope and effect to
collaboration agreements configured for other trading protocols. For more information
about configuring collaboration agreements, see Administering B2B Integration and
Online Help for the WebLogic Integration B2B Console.

The one significant difference in configuring collaboration agreements lies in how
credentials are configured. Because cXML uses the Ariba Commerce Services
Network as the authenticating hub, all credentials are configured in relation to the
ACSN, not in relation to another trading partner.

In practice, this means that your shared secret is always registered with the ACSN,
rather than one that is defined solely and specifically between you and a trading
partner.

Security

WebLogic Integration provides support for the security model embodied in cXML 1.1,
which uses the concept of shared secrets to verify message authenticity. Shared secrets
are passwords or other text strings used to verify the identity of a given partner. Like
a password, a given trading partner entity is linked to a specific shared secret,
providing one-to-one identity mapping. There is no provision to prevent multiple
trading partners from using identical shared secrets, however.

cXML 1.2 introduces a specific implementation of digital signatures based on the
Base64-encoded X.509 V3 certificate model. Currently, WebLogic Integration does
not support this implementation of digital signatures.
Implementing cXML for B2B Integration 2-3

2 cXML Administration
Configuring Shared Secrets

Use the WebLogic Integration B2B Console to configure shared secrets. For more
information about this procedure, see Online Help for the WebLogic Integration B2B
Console.
2-4 Implementing cXML for B2B Integration

CHAPTER
3 Using the cXML API

Note: The cXML business protocol is deprecated as of this release of WebLogic
Integration. For information about the features that are replacing it, see the
BEA WebLogic Integration Release Notes.

The following sections describe some key programming issues for the cXML API:

! cXML Methods

! cXML Message Structure

! cXML DTDs

! Dealing with Shared Secrets

! Processing Incoming Messages

! Processing Outgoing Messages

For more information about programming business operations, see Creating
Workflows for B2B Integration.
Implementing cXML for B2B Integration 3-1

3 Using the cXML API
cXML Methods

The following table describes the methods available for cXML message manipulation.

Table 3-1 Public cXML Methods

Method Package Description

onMessage com.bea.b2b.protocol.cxml.
CXMLListener

Receives an incoming CXMLMessage

deregister com.bea.b2b.protocol.cxml.
CXMLManager

Deregisters the application with this
CXMLManager. Uses a set of properties
to select the registration.

getInstance com.bea.b2b.protocol.cxml.
CXMLManager

Gets an instance of the CXMLManager.

getSharedSecret com.bea.b2b.protocol.cxml.
CXMLManager

Gets the Shared Secret for this Trading
Partner. Uses the Trading Partner name to
find the Shared Secret.

register com.bea.b2b.protocol.cxml.
CXMLManager

Registers the application with this
CXMLManager. Uses a set of properties
to select the collaboration agreement for
this Trading Partner.
Use for sending cXML messages.

getHttpStatusCode com.bea.b2b.protocol.cxml.
CXMLHttpStatusException

Returns the HTTP Status code from the
exception.

getAsString com.bea.b2b.protocol.cxml.
messaging.CXMLDocument

Gets the cXML part as a String.

getDocument com.bea.b2b.protocol.cxml.
messaging.CXMLDocument

Gets the associated XML Document.

getFromCredentialDo
mains

com.bea.b2b.protocol.cxml.
messaging.CXMLDocument

Gets the From Credential Domains from
the document header.

getFromCredentialId
entities

com.bea.b2b.protocol.cxml.
messaging.CXMLDocument

Gets the From Credential Identities from
the document header.
3-2 Implementing cXML for B2B Integration

cXML Methods
getIdentifier com.bea.b2b.protocol.cxml.
messaging.CXMLDocument

Gets either the document identifier or the
message identifier, as appropriate.

getNodeValue com.bea.b2b.protocol.cxml.
messaging.CXMLDocument

Gets the value of a document node using
the specified XPath expression to locate
the node. If multiple nodes match the
XPath expression, then only the first node
is used.

getSenderCredential
Domain

com.bea.b2b.protocol.cxml.
messaging.CXMLDocument

Gets the Sender Credential Domain from
the document header.

getSenderCredential
Identity

com.bea.b2b.protocol.cxml.
messaging.CXMLDocument

Gets the Sender Credential Identity from
the document header.

getSenderSharedSecr
et

com.bea.b2b.protocol.cxml.
messaging.CXMLDocument

Gets the Sender Credential Shared Secret
from the document header.

getSenderUserAgent com.bea.b2b.protocol.cxml.
messaging.CXMLDocument

Gets the Sender User Agent from the
document header.

getTimeStamp com.bea.b2b.protocol.cxml.
messaging.CXMLDocument

Gets either the document timestamp or
the message timestamp, as appropriate.

getToCredentialDoma
in

com.bea.b2b.protocol.cxml.
messaging.CXMLDocument

Gets the To Credential Domain from the
document header.

getToCredentialIden
tity

com.bea.b2b.protocol.cxml.
messaging.CXMLDocument

Gets the To Credential Identity from the
document header.

getVersion com.bea.b2b.protocol.cxml.
messaging.CXMLDocument

Gets the document version.

setDocument com.bea.b2b.protocol.cxml.
messaging.CXMLDocument

Sets the associated XML document.

setNodeValue com.bea.b2b.protocol.cxml.
messaging.CXMLDocument

Sets the value of a document node using
the specified XPath expression to locate
the node.

Table 3-1 Public cXML Methods

Method Package Description
Implementing cXML for B2B Integration 3-3

3 Using the cXML API
For more information about individual methods, see the BEA WebLogic Integration
Javadoc.

reply com.bea.b2b.protocol.cxml.
messaging.CXMLMessage

Replies to the request message. This
method is only valid when this object is
used as a parameter to
CXMLListener.onMessage(). The
reply may be sent asynchronously after
the method has been called.

getReplyDocument com.bea.b2b.protocol.cxml.
messaging.CXMLMessage

Gets the reply cXML document.

getRequestDocument com.bea.b2b.protocol.cxml.
messaging.CXMLMessage

Gets the request cXML document.

send com.bea.b2b.protocol.cxml.
messaging.CXMLMessage

Sends a request message. This method
blocks until a reply is received. The reply
can be accessed via
getReplyDocument().

setCollaborationAgr
eement

com.bea.b2b.protocol.cxml.
messaging.CXMLMessage

Sets the Collaboration Agreement ID for
the collaboration agreement to which this
message belongs. Uses a set of properties
to select the Collaboration Agreement.

setReplyDocument com.bea.b2b.protocol.cxml.
messaging.CXMLMessage

Sets the reply cXML document.

setRequestDocument com.bea.b2b.protocol.cxml.
messaging.CXMLMessage

Sets the request cXML document.

getHttpStatusCode com.bea.b2b.protocol.cxml.
messaging.CXMLMessageToken

Gets the HTTP status code.

Table 3-1 Public cXML Methods

Method Package Description
3-4 Implementing cXML for B2B Integration

cXML Message Structure
Properties Used to Locate Collaboration Agreements

cXML uses a set of defined properties to locate unique collaboration agreements.
When attempting to locate a specific collaboration agreement, you must supply values
for all of the following properties:

! BusinessProcessName

! BusinessProcessVersion

! DeliveryChannel

! toRole

! fromTradingPartner

! toTradingPartner

cXML Message Structure

A cXML message is based on the message envelope. The message envelope includes
the following data structures.

Figure 3-1 cXML Message Architecture
Implementing cXML for B2B Integration 3-5

3 Using the cXML API
The message data structures are as follows:

! Header�Contains addressing and validation information, including the From,
To, and Sender data arrays. These data arrays provide information on the various
parties to the transaction, as well as validation information for each of the
participants.

! Payload�All the business documents and attachments that make up the body of
a message.

Your application should be able to deal with all of the messaging objects included in
the payload:

! Business document�One or more cXML documents, each containing cXML
data, each part of which can be validated using cXML DTDs.

! cXML document�A cXML-standard document containing data. cXML
documents can be validated individually using cXML DTDs.

! Attachment�An optional MIME-encoded binary attachment. WebLogic
Integration does not support cXML attachments. If you want to use them,
however, you can configure a private process to resolve MIME-encoded
attachments.

cXML DTDs

The DTDs you will need are available at the following locations:

! cXML DTDs are available from the cXML.org Web site at the following URL:
http://xml.cxml.org/schemas/cXML/version/cXML.dtd

Here, version represents the full cXML version number (such as 1.1, 1.2, and
so on).

! The Confirmation and Ship Notice transactions are contained in a separate DTD,
located at the following URL:
http://xml.cxml.org/schemas/cXML/version/Fulfill.dtd

Here, version represents the full cXML version number (such as 1.1, 1.2, and
so on).
3-6 Implementing cXML for B2B Integration

Dealing with Shared Secrets
Validation using these DTDs is not required when you send a cXML message.
However, one assumption of the cXML messaging structure is that any message you
send has been validated. Therefore it is a good idea to validate your messages routinely
against the DTDs, at least while you are testing interoperability with a new trading
partner. Once you are comfortable with your trading partner, you may optionally turn
off message validation to enhance performance.

Dealing with Shared Secrets

The cXML API provides access to the value of the shared secret stored in the
repository. The GetSharedSecret method allows you to retrieve the shared secret
from the repository for comparison to the shared secret stored in incoming documents,
or for use in outgoing cXML documents.

For incoming documents, your business operation code must perform verification of
the shared secret of an incoming message by matching its value with the value
specified in the configuration stored in the repository.

In each outgoing cXML document, your business operation code must insert the shared
secret in the Credential node.

Processing Incoming Messages

To process an incoming message, you must first initialize it. The registration function
associates a collaboration agreement with either a listener or a sending application. The
token returned by the initialization process is used in the cXML message when the
message is sent or received.

Initialization

To initialize an incoming message:
Implementing cXML for B2B Integration 3-7

3 Using the cXML API
1. Get a copy of the listener object.

2. Define the return token:
private static CXMLToken token;

3. Retrieve an instance of the cXML Manager class
com.bea.b2b.protocol.cxml.CXMLManager:

private static CXMLManager cxmlm = CXMLManager.getInstance();

4. Define a set of properties to register this application and listener. The properties
are used to locate and map a unique collaboration agreement. For more
information about the properties needed to map a unique collaboration
agreement, see �Properties Used to Locate Collaboration Agreements� on page
3-5.

prop.setProperty("BusinessProcess", businessProcess);
prop.setProperty("BusinessProcessVersion",
businessProcessVersion);
prop.setProperty("DeliveryChannel", deliveryChannel);
prop.setProperty("thisTradingPartner", myTradingPartnerName);
prop.setProperty("otherTradingPartner",
otherTradingPartnerName);
prop.setProperty("toRole", toRole);
prop.setProperty("Party", "duns4");

5. Invoke the register method from the CXMLManager class:
token = cxmlm.register(prop);

Processing the Message

Once you have initiated an incoming message, as described in the �Initialization�
section, you can process it. To do so, your application must:

1. Get the request cXML document from the received cXML message using the
onMessage() callback method. This method passes the received cXML message
from the WebLogic Integration run time to your application code.

2. Get the XML DOM document from the cXML document:

// Get the cXML document
 CXMLDocument reqMsgDoc = cmsg.getRequestDocument();

 // Get the XML DOM doc
 Document reqXMLDoc = reqMsgDoc.getDocument();
3-8 Implementing cXML for B2B Integration

Processing Incoming Messages
3. Process the request document based on the payload.

4. Retrieve the shared secret from the incoming message. The shared secret for the
trading partner is defined in the message, in:
//cXML/Header/From/Credential.

String otherSharedSecret =
cxmlm.getSharedSecret(otherTradingPartnerName);

5. Verify that the shared secret from the message matches the shared secret defined
in the configuration for the trading partner:

debug("Stored Shared Secret for " + otherTradingPartnerName + ":
" + otherSharedSecret);

If the transaction is peer-to-peer, then the trading partner is the buyer or supplier.
If the transaction is being conducted through the hub, then the trading partner is
the hub.

The following comparison failure options may occur.

6. Create the reply XML DOM implementation document:

DOMImplementationImpl domi = new DOMImplementationImpl();

DocumentType dType =
domi.createDocumentType("request", null, "cXML.dtd");

Table 3-2 Verification Failure Options

Result Reason

No comparison was performed The shared secret has not been configured for the
trading partner.

Message was rejected with 400 (bad
request) http status code.

Request message could not be parsed. This problem
should be resolved in the WebLogic Integration run
time.

Message was rejected with 401
(unauthorized access) http status
code.

Shared secrets do not match.

Message was rejected with 500
(Unable to forward request) http
status code.

The listener was not properly configured. This
should be resolved in the WebLogic Integration run
time.
Implementing cXML for B2B Integration 3-9

3 Using the cXML API
org.w3c.dom.Document punchoutDoc = new DocumentImpl(dType);
CxmlElementFactory cf = new CxmlElementFactory(punchoutDoc);

7. Create the reply cXML document:

Element request = punchoutDoc.createElement("Request");

8. Create the header elements in the document:

// header
cf.createHeaderElement(
// from
cf.createFromElement(
cf.createCredentialElement(
"DUNS",
myTradingPartnerName,
null)),
// to
cf.createToElement(
cf.createCredentialElement(
"DUNS",
otherTradingPartnerName,
null)),
// sender
cf.createSenderElement(
cf.createCredentialElement(
"AribaNetworkUserId",
"admin@acme.com",
otherSharedSecret),
"Ariba ORMS 5.1P4")),

9. Set the XML document in the cXML document:

CXMLDocument replyMsgDoc = new CXMLDocument();
replyMsgDoc.setDocument(replyXMLDoc);

10. Set the cXML document in the reply cXML message:

cmsg.setReplyDocument(replyMsgDoc);

11. Set the collaboration agreement in the cXML message:

cmsg.setCollaborationAgreement(prop);

12. Send the reply message to dispatch the outgoing cXML message from your
application to the WebLogic Integration run time:

cmsg.reply();
3-10 Implementing cXML for B2B Integration

Processing Outgoing Messages
Processing Outgoing Messages

You must initialize outgoing messages before you send them. To do so:

1. Define the return token:

private static CXMLToken token;

2. Retrieve an instance of the cXML Manager class:
com.bea.b2b.protocol.cxml.CXMLManager.

private static CXMLManager cxmlm = CXMLManager.getInstance();

3. Define a set of properties to register this application. The properties are used to
locate and map a unique collaboration agreement. For more information about the
properties needed to map a unique collaboration agreement, see �Properties Used
to Locate Collaboration Agreements� on page 3-5.

prop.setProperty("BusinessProcess", businessProcess);
prop.setProperty("BusinessProcessVersion",
businessProcessVersion);
prop.setProperty("DeliveryChannel", deliveryChannel);
prop.setProperty("thisTradingPartner", myTradingPartnerName);
prop.setProperty("otherTradingPartner",
otherTradingPartnerName);
prop.setProperty("toRole", toRole);
prop.setProperty("Party", "duns4");

4. Invoke the register method:

token = cxmlm.register(prop);

Sending the Message

To send a message, your application must perform the following actions:

1. Create a cXML message:

DOMImplementationImpl domi = new DOMImplementationImpl();

DocumentType dType =
domi.createDocumentType("request", null, "cXML.dtd");
Implementing cXML for B2B Integration 3-11

3 Using the cXML API
org.w3c.dom.Document punchoutDoc = new DocumentImpl(dType);
CxmlElementFactory cf = new CxmlElementFactory(punchoutDoc);

2. Create the XML DOM request document:

Element request = punchoutDoc.createElement("request");
Element trans =
punchoutDoc.createElement(“PunchoutSetupRequest”);
request.appendchild(trans);

3. Create the header elements in the request document:

punchoutDoc.appendChild(
cf.createCxmlElement(
// header
cf.createHeaderElement(
// from
cf.createFromElement(
cf.createCredentialElement(
"DUNS",
myTradingPartnerName,
null)),
// to
cf.createToElement(
cf.createCredentialElement(
"DUNS",
otherTradingPartnerName,
null)),
// sender
cf.createSenderElement(
cf.createCredentialElement(
"AribaNetworkUserId",
"admin@acme.com",
otherSharedSecret),
"Ariba ORMS 5.1P4")),

4. Retrieve the receiving trading partner�s shared secret from the appropriate trading
partner profile. For peer-to-peer messages, this will be the actual receiving
trading partner�s shared secret. For messages routed through a hub, this will be
the hub�s shared secret.

The value of the receiving trading partner�s shared secret (defined in
//cXML/Header/To/Credential) is updated to the sender�s shared secret
element (defined in //cXML/Header/Sender/Credential):

String otherSharedSecret =
cxmlm.getSharedSecret(otherTradingPartnerName);
debug("Stored Shared Secret for " + otherTradingPartnerName + ":
" + otherSharedSecret);
3-12 Implementing cXML for B2B Integration

Processing Outgoing Messages
5. Create the cXML document:

CXMLDocument reqMsgDoc = new CXMLDocument();

6. Set the cXML document in the cXML message:

reqMsgDoc.setDocument(reqXMLDoc);
cmsg.setRequestDocument(reqMsgDoc);

7. Set the collaboration agreement in the cXML message:

cmsg.setCollaborationAgreement(prop);

8. Send the message:

CXMLMessageToken sendToken = (CXMLMessageToken) cmsg.send();

9. Get the reply document:

CXMLDocument replyMsgDoc = cmsg.getReplyDocument();

10. Extract the XML document:

org.w3c.dom.Document replyXMLDoc = replyMsgDoc.getDocument();

11. Verify the response.

Code Samples

This section shows examples of code used by buyers and suppliers to process
messages. These examples are provided solely to illustrate the operation of the cXML
classes; they are not intended for execution. The examples below are configured for
peer-to-peer operation.

For more information about cXML classes, see BEA WebLogic Integration Javadoc.

Sample Buyer

Listing 3-1 Code for Sample Buyer

/*
 * Copyright (c) 2001 BEA
 * All rights reserved
*/
package examples.ibcxmlverifier;
Implementing cXML for B2B Integration 3-13

3 Using the cXML API
import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

import org.w3c.dom.*;
import org.apache.html.dom.*;
import org.apache.xml.serialize.*;
import org.apache.xerces.dom.*;

import com.bea.b2b.protocol.cxml.messaging.*;
import com.bea.b2b.protocol.cxml.*;

import com.bea.eci.logging.*;

/**
 * This example provides a simple test that will verify message flow of cXML
 * peer-to-peer sending and receiving a cXML document.
 * The two peers (Partner1 and Partner2) are running on a single WLS.
 * Partner1 sends a PunchoutRequest to Partner2. Partner2 generates a
 * PunchoutSetupResponse and returns it to Partner1. Shared Secrets are verified
 * at both ends.
 */
public class Partner1Servlet extends HttpServlet
{
 static final boolean DEBUG = true;

 private final static String businessProcess = "PunchoutSetup";
 private final static String businessProcessVersion = "1.1.009";
 private final static String deliveryChannel = "CXMLPartnerVerifier1";
 private final static String myTradingPartnerName = "CXMLPartnerVerifier1";
 private final static String otherTradingPartnerName = "CXMLPartnerVerifier2";
 private final static String toRole = "Supplier";
 private final static String expectedURL = "http://xyz/abc?from=" +
myTradingPartnerName;
 private DocSerializer ds;

 // Create the token for this application
 private static CXMLToken token;

 // Get the manager instance
 private static CXMLManager cxmlm = CXMLManager.getInstance();

 private static Properties prop = new Properties();

 public void init(ServletConfig sc) {
 try {
 debug("Initializing servlet for Partner1");
3-14 Implementing cXML for B2B Integration

Processing Outgoing Messages
 // Set the properties for finding the Collaboration Agreement
 prop.setProperty("BusinessProcess", businessProcess);
 prop.setProperty("BusinessProcessVersion", businessProcessVersion);
 prop.setProperty("DeliveryChannel", deliveryChannel);
 prop.setProperty("thisTradingPartner", myTradingPartnerName);
 prop.setProperty("otherTradingPartner", otherTradingPartnerName);
 prop.setProperty("toRole", toRole);
 prop.setProperty("Party", "duns4");

 // Register the buyer with the manager using properties
 token = cxmlm.register(prop);

 } catch (Exception e) {
 debug("CXMLPartnerVerifier1 init exception: " + e);
 e.printStackTrace();
 }
 }

 private org.w3c.dom.Document getBusinessDocument() {
 DOMImplementationImpl domi = new DOMImplementationImpl();

 DocumentType dType =
 domi.createDocumentType("request", null, "cXML.dtd");

 org.w3c.dom.Document punchoutDoc = new DocumentImpl(dType);
 CxmlElementFactory cf = new CxmlElementFactory(punchoutDoc);

 try {
 String otherSharedSecret = cxmlm.getSharedSecret(otherTradingPartnerName);
 debug("Stored Shared Secret for " + otherTradingPartnerName + ": " +
otherSharedSecret);

 // Header
 Element request = punchoutDoc.createElement("Request");
 Element trans = punchoutDoc.createElement("PunchoutSetupRequest");
 request.appendChild(trans);

 punchoutDoc.appendChild(
 cf.createCxmlElement(
 // payload
 "1233444-200@ariba.acme.com",

 // header
 cf.createHeaderElement(
 // from
 cf.createFromElement(
 cf.createCredentialElement(
 "DUNS",
Implementing cXML for B2B Integration 3-15

3 Using the cXML API
 myTradingPartnerName,
 null)),
 // to
 cf.createToElement(
 cf.createCredentialElement(
 "DUNS",
 otherTradingPartnerName,
 null)),
 // sender
 cf.createSenderElement(
 cf.createCredentialElement(
 "AribaNetworkUserId",
 "admin@acme.com",
 otherSharedSecret),
 "Ariba ORMS 5.1P4")),
 // request
 request));

 }
 catch(Exception e) {
 debug("MessageDeliveryException: " + e.toString());
 e.printStackTrace();
 }
 return punchoutDoc;
 }

 /**
 * The actual work is done in this routine. Construct a message document,
 * publish the message, wait for a reply, terminate and report back.
 */
 public void service(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException
 {
 try {

 // setup for the reply display to client
 res.setContentType("text/html");
 PrintWriter pw = res.getWriter();
 pw.println("<HTML><BODY BGCOLOR=#ff0000>");
 pw.println("<P><IMG SRC=logo.jpg WIDTH=185 HEIGHT=156"+
 " ALIGN=TOP BORDER=0 NATURALSIZEFLAG=3></P>");
 pw.println("<P>Partner1 process flow:
");
 pw.println("Starting Partner1...");

 debug("Starting Partner1: get Document...");

 CXMLMessage cmsg = new CXMLMessage();

 org.w3c.dom.Document reqXMLDoc = getBusinessDocument();
3-16 Implementing cXML for B2B Integration

Processing Outgoing Messages
 CXMLDocument reqMsgDoc = new CXMLDocument();
 reqMsgDoc.setDocument(reqXMLDoc);
 cmsg.setRequestDocument(reqMsgDoc);

 DocSerializer ds = new DocSerializer();

 debug("buyer: request document:\n" +
 ds.docToString(reqXMLDoc, true) + "\n");

 // Set the CA with the properties
 cmsg.setCollaborationAgreement(prop);

 // Send the message and get the reply
 CXMLMessageToken sendToken = (CXMLMessageToken) cmsg.send();
 CXMLDocument replyMsgDoc = cmsg.getReplyDocument();

 debug("Got document");
 if (replyMsgDoc == null) {
 debug("replyMsgDoc bad");
 }
 org.w3c.dom.Document replyXMLDoc = replyMsgDoc.getDocument();

 debug("buyer: reply document:\n" +
 ds.docToString(replyXMLDoc, true) + "\n");

 // Verify we get the correct response
 String punchoutURL = replyMsgDoc.getNodeValue(
 "//cXML/Response/PunchoutSetupResponse/StartPage/URL");
 if (punchoutURL.equals(expectedURL)) {
 debug("Correct response received");
 pw.println("<P>Correct response received");
 }
 else {
 debug("Unexpected response received");
 pw.println("<P>Unexpected response received");
 }

 // Verify that the shared secret is mine
 String dss = replyMsgDoc.getSenderSharedSecret();
 debug("Document Shared Secret for " + myTradingPartnerName + ": " + dss);

 String sss = cxmlm.getSharedSecret(myTradingPartnerName);
 debug("Stored Shared Secret for " + myTradingPartnerName + ": " + sss);

 if (dss.equals(sss)) {
 debug("Shared Secret match");
 pw.println("<P>Shared Secret match");
 } else {
Implementing cXML for B2B Integration 3-17

3 Using the cXML API
 debug("Shared Secret mismatch");
 pw.println("<P>Shared Secret mismatch");
 }
 }
 catch(Exception e) {
 debug("MessageDeliveryException: " + e.toString());
 e.printStackTrace();
 }
 }

 /**
 * A simple routine that writes to the wlc log
 */
 private static void debug(String msg){
 if (DEBUG)
 UserLog.log("***Partner1Servlet: " + msg);
 }
}

3-18 Implementing cXML for B2B Integration

Processing Outgoing Messages
Sample Supplier

Listing 3-2 Code for Sample Supplier

/*
 * Copyright (c) 20001 BEA
 * All rights reserved
*/
package examples.ibcxmlverifier;

import java.io.*;
import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

import org.w3c.dom.*;
import org.apache.html.dom.*;
import org.apache.xml.serialize.*;
import org.apache.xerces.dom.*;

import com.bea.b2b.protocol.messaging.*;
import com.bea.b2b.protocol.cxml.messaging.*;
import com.bea.b2b.protocol.cxml.CXMLListener;
import com.bea.b2b.protocol.cxml.*;

import com.bea.eci.logging.*;

/**
 * This example provides a simple test that will verify message flow of cXML
 * peer-to-peer sending and receiving a cXML document.
 * The two peers (Partner1 and Partner2) are running on a single WLS.
 * Partner1 sends a PunchoutRequest to Partner2. Partner2 generates a
 * PunchoutSetupResponse and returns it to Partner1. Shared Secrets are verified
 * at both ends.
 */
public class Partner2Servlet extends HttpServlet {

 static final boolean DEBUG = true;

 private final static String businessProcess = "PunchoutSetup";
 private final static String businessProcessVersion = "1.1.009";
 private final static String deliveryChannel = "CXMLPartnerVerifier2";
 private final static String myTradingPartnerName = "CXMLPartnerVerifier2";
 private final static String otherTradingPartnerName = "CXMLPartnerVerifier1";
 private final static String toRole = "Buyer";
Implementing cXML for B2B Integration 3-19

3 Using the cXML API
 // Create the token for this application
 private static CXMLToken token;

 // Get the manager instance
 private static CXMLManager cxmlm = CXMLManager.getInstance();

 private static Properties prop = new Properties();

 public void init(ServletConfig sc) {
 try {
 debug("Initializing servlet for Partner2");

 // Set the properties for finding the Collaboration Agreement
 prop.setProperty("BusinessProcess", businessProcess);
 prop.setProperty("BusinessProcessVersion", businessProcessVersion);
 prop.setProperty("DeliveryChannel", deliveryChannel);
 prop.setProperty("thisTradingPartner", myTradingPartnerName);
 prop.setProperty("otherTradingPartner", otherTradingPartnerName);
 prop.setProperty("toRole", toRole);
 prop.setProperty("Party", "duns5");

 // Register the supplier listener with the manager using properties
 token = cxmlm.register(new Partner2MessageListener(), prop);

 debug("Partner2 waiting for message...");
 } catch (Exception e) {
 debug("CXMLPartnerVerifier2 init exception: " + e);
 e.printStackTrace();
 }
 }

 /**
 * This routine starts the peer
 */
 public void service(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException{
 debug("Starting Partner2");
 }

 /**
 * A simple routine that writes to the wls log
 */
 private static void debug(String msg){
 if (DEBUG)
 UserLog.log("***Partner2Servlet: " + msg);
 }

 public class Partner2MessageListener
 implements CXMLListener
3-20 Implementing cXML for B2B Integration

Processing Outgoing Messages
 {
 public void onMessage(CXMLMessage cmsg) {
 XPathHelper xp = new XPathHelper();

 try {
 debug("Partner2 received message");
 // QualityOfService qos = cmsg.getQoS();

 CXMLDocument reqMsgDoc = cmsg.getRequestDocument();
 if (reqMsgDoc == null){
 throw new Exception("Did not get a request payload");
 }
 Document reqXMLDoc = reqMsgDoc.getDocument();
 if (reqXMLDoc == null){
 throw new Exception("Did not get a request document");
 }
 String from = reqMsgDoc.getNodeValue(
 "//cXML/Header/From/Credential/Identity");
 if (from == null) {
 from = "nobody";
 }
 debug("Received request from " + from);

 DocSerializer ds = new DocSerializer();

 debug("supplier: request document:\n" +
 ds.docToString(reqXMLDoc, true) + "\n");

 debug("Building reply document");

 DOMImplementationImpl domi = new DOMImplementationImpl();
 DocumentType dType =
 domi.createDocumentType("response", null, "cXML.dtd");

 org.w3c.dom.Document replyXMLDoc = new DocumentImpl(dType);
 CxmlElementFactory cf = new CxmlElementFactory(replyXMLDoc);

 String otherSharedSecret = cxmlm.getSharedSecret(otherTradingPartnerName);
 debug("Stored Shared Secret for " + otherTradingPartnerName + ": " +
otherSharedSecret);

 replyXMLDoc.appendChild(
 cf.createCxmlElement(
 // payload
 "1233444-200@ariba.acme.com",

 // header
 cf.createHeaderElement(
 // from
Implementing cXML for B2B Integration 3-21

3 Using the cXML API
 cf.createFromElement(
 cf.createCredentialElement(
 "DUNS",
 myTradingPartnerName,
 null)),
 // to
 cf.createToElement(
 cf.createCredentialElement(
 "DUNS",
 otherTradingPartnerName,
 null)),
 // sender
 cf.createSenderElement(
 cf.createCredentialElement(
 "AribaNetworkUserId",
 "admin@acme.com",
 otherSharedSecret),
 "Ariba ORMS 5.1P4")),
 // body
 cf.createResponseElement(
 "200",
 "ok",
 cf.createPunchoutSetupResponseElement(
 "http://xyz/abc?from=" + from))));

 CXMLDocument replyMsgDoc = new CXMLDocument();
 replyMsgDoc.setDocument(replyXMLDoc);

 cmsg.setReplyDocument(replyMsgDoc);

 debug("supplier: reply document:\n" +
 ds.docToString(replyXMLDoc, true) + "\n");

 // Verify that the shared secret is mine
 String dss = reqMsgDoc.getSenderSharedSecret();
 debug("Document Shared Secret for " + myTradingPartnerName + ": " + dss);

 String sss = cxmlm.getSharedSecret(myTradingPartnerName);
 debug("Stored Shared Secret for " + myTradingPartnerName + ": " + sss);

 if (dss.equals(sss)) {
 debug("Shared Secret match");
 } else {
 debug("Shared Secret mismatch");
 }

 // Set the CA with the properties
 cmsg.setCollaborationAgreement(prop);
 cmsg.reply();
3-22 Implementing cXML for B2B Integration

Processing Outgoing Messages
 debug("Partner2 sent reply");
 } catch(Exception e) {
 debug("Exception errors" + e);
 e.printStackTrace();
 }
 }

 public void onTerminate(Message msg) throws Exception {
 debug(" received terminate notification for " + msg.getConversationId());

 // Deregister with the manager
 cxmlm.deregister(prop);
 }
 }
}

Implementing cXML for B2B Integration 3-23

3 Using the cXML API
3-24 Implementing cXML for B2B Integration

CHAPTER
4 Using Workflows with
cXML

Note: The cXML business protocol is deprecated as of this release of WebLogic
Integration. For information about the features that are replacing it, see the
BEA WebLogic Integration Release Notes.

WebLogic Integration allows you to use business process management (BPM)
workflows to exchange normal business messages. While there is no cXML plug-in for
WebLogic Integration, you can nonetheless integrate cXML business documents
through the use of business operations.

The following sections describe how to exchange cXML business messages in
WebLogic Integration, using workflows and the cXML API-driven interface:

! Including cXML in Workflows

! Designing Workflows for Exchanging Business Messages

! Working with Business Messages

For more information about developing workflows using WebLogic Integration, see
Creating Workflows for B2B Integration.

Including cXML in Workflows

Workflows intended to use cXML must make use of an externally-created business
operation class to encapsulate the cXML API used by WebLogic Integration.
Implementing cXML for B2B Integration 4-1

4 Using Workflows with cXML
The result of this development process is a workflow that, when executed, allows the
methods defined in the wrapper class to be invoked. These methods perform the
defined cXML business operation.

Workflow Integration Tasks

Using cXML with BPM workflows requires a specific combination of administrative,
design, and programming tasks to be performed.

Programming Task

Externally created business operation classes use the cXML API to perform a specific
business operation. For example, you might create a class that implements the
PunchoutSetupRequest functionality for a workflow. For more information, see the
cXML User�s Guide at:

http://www.cxml.org

If you plan to pass parameters using the workflow, you must first create a class that can
accept such parameters. Next, you must pass parameters into the class using workflow
variables. The parameters can then be used to set up your cXML output.

To configure the class, its methods, and any parameters that you have defined, open
the WebLogic Integration Studio and select Business Operations from the Configure
menu. For more information, see Using the WebLogic Integration Studio.

Within theWebLogic Integration Studio, you can then invoke the business operation
used to invoke the cXML process operation as a workflow action. When you add an
action, select Perform Business Operations from the Integration Actions folder of the
Add Actions dialog box. This option allows you to map workflow variables to the
method parameters used by the cXML wrapper class. For more information, see Using
the WebLogic Integration Studio.

Administrative Tasks

Before you start using cXML with workflows, you must complete the following
administrative tasks. These tasks are in addition to those that you normally perform
while using the WebLogic Integration Studio to generate workflows for use with
WebLogic Integration:
4-2 Implementing cXML for B2B Integration

Designing Workflows for Exchanging Business Messages
! Using the WebLogic Integration B2B Console, create and configure the entities
that will be involved in your cXML transactions in the WebLogic Integration
repository, including trading partners, collaboration agreements, and so on. For
more information, see Administering B2B Integration.

! After you create a Business Operation class, create a Business Operation within
the WebLogic Integration Studio to make use of the Business Operation class.
For more information about creating a Business Operation class, see Chapter 3,
�Using the cXML API.�

Design Task

In addition to the design work required to create a workflow for use with WebLogic
Integration, you must do some extra design work if you want to use cXML in your
workflow. Specifically, you must design your workflow to use a Business Operation
to execute all cXML functionality. For each cXML function you need to execute, you
must create a separate Business Operation.

Designing Workflows for Exchanging
Business Messages

To use workflows to exchange business messages in WebLogic Integration, design
workflow template definitions by using the WebLogic Integration Studio. For
information about creating workflows, see Using the WebLogic Integration Studio and
Creating Workflows for B2B Integration.

As discussed previously, use of cXML in workflows requires the creation of business
operation classes to implement the cXML API. In the previous section, we discuss the
creation of these business operation classes. In this section, we discuss the use of
business operation classes to manipulate cXML messages within the BPM component
of WebLogic Integration.
Implementing cXML for B2B Integration 4-3

4 Using Workflows with cXML
Working with Business Messages

The WebLogic Integration Studio allows you to enable trading partners to exchange
business messages. cXML is one method by which this task may be performed.

The following sections describe how to work with cXML business messages
exchanged using workflows:

! About cXML Business Messages

! Prerequisite Tasks for Exchanging Business Messages

About cXML Business Messages

A cXML business message is the basic unit of communication exchanged by trading
partners in a conversation. A cXML business message is a multipart MIME message
that consists of the following:

! A business document, which represents the XML-based payload part of a
business message. The payload is the business content of a business message.

! An attachment, which represents the nonXML payload part of the business
message. Attachments are optional entities within the cXML1.2 standard, and
are not available with cXML 1.1 implementations.

As with other forms of business messages, you can access the contents
programmatically, as described in Creating Workflows for B2B Integration. Unlike
with XOCP and RosettaNet business messages, however, the WebLogic Integration
implementation of cXML does not allow you to use any other method to access the
contents of a business message when using cXML.
4-4 Implementing cXML for B2B Integration

Working with Business Messages
Prerequisite Tasks for Exchanging Business Messages

Before you can send and receive business messages, you must define the following
actions in the workflow template, using the WebLogic Integration Studio:

! To define the sending of a business message, define a Manipulate Business
Message action to construct the business message and a Send Business Message
action to send the message.

! To define the reception of a business message, define a Manipulate Business
Message action to process an incoming business message.

For more information, see Creating Workflows for B2B Integration.
Implementing cXML for B2B Integration 4-5

4 Using Workflows with cXML
4-6 Implementing cXML for B2B Integration

Index

B
business messages

about business messages 4-4
exchanging 4-5

C
collaboration agreement

locating 3-5
collaboration agreements 2-3
customer support contact information vii
cXML

business documents 1-3
components 1-1
DTDs 3-6
message processing 3-7
message processing code samples 3-13
message structure 3-5
message validation 1-5
protocol layer 1-2
security 1-4

cXML API
methods 3-2

cXML trading partners
connecting to 2-1

D
digital signatures 1-4

P
printing product documentation vi

R
related information vii

S
security 2-3

digital signatures 1-4
shared secrets 1-4, 3-7

shared secrets 1-4, 3-7

W
WebLogic Integration BPM component

administrative tasks 4-2
design tasks 4-3
integration tasks 4-2
programming tasks 4-2

workflow template definitions
business messages

defining 4-5
Implementing cXML for B2B Integration I-1

I-2 Implementing cXML for B2B Integration

	About This Document
	1 Introduction
	WebLogic Integration Architecture and cXML
	cXML Protocol Layer

	cXML API
	Business Documents
	Digital Signatures and Shared Secrets
	Message Validation
	Limitations

	2 cXML Administration
	Connecting to Other cXML Trading Partners
	Collaboration Agreements
	Security
	Configuring Shared Secrets

	3 Using the cXML API
	cXML Methods
	Properties Used to Locate Collaboration Agreements

	cXML Message Structure
	cXML DTDs
	Dealing with Shared Secrets
	Processing Incoming Messages
	Initialization
	Processing the Message

	Processing Outgoing Messages
	Sending the Message
	Code Samples
	Sample Buyer
	Sample Supplier

	4 Using Workflows with cXML
	Including cXML in Workflows
	Workflow Integration Tasks
	Programming Task
	Administrative Tasks
	Design Task

	Designing Workflows for Exchanging Business Messages
	Working with Business Messages
	About cXML Business Messages
	Prerequisite Tasks for Exchanging Business Messages

	Index

