
BEA
 WebLogic
Integration�

Programming Messaging
Applications for B2B
Integration
Release 7.0
Document Date: June 2002

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the agreement. This document may not, in whole or in part,
be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form
without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED �AS IS� WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server, BEA
WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Programming Messaging Applications for B2B Integration

Part Number Date Software Version

N/A June 2002 7.0

Contents

About This Document
What You Need to Know .. viii
e-docs Web Site... viii
How to Print the Document... viii
Related Information... ix
Contact Us! .. ix
Documentation Conventions ...x

1. Developing XOCP Applications to Exchange Business
Messages

Introduction ... 1-2
Key Concepts... 1-3

XOCP Applications.. 1-3
XOCP Application Sessions... 1-5
Messaging API Class Library .. 1-5
XOCP Business Messages and Message Envelopes 1-6

Diagram of an XOCP Business Message.. 1-7
Components of an XOCP Business Message 1-7
Information Flow for Message Envelopes .. 1-8

Conversation Initiators and Participants .. 1-9
Conversation Coordinators... 1-11

Global Conversation Coordinator ... 1-11
Local Conversation Coordinators ... 1-12

Trading Partner States .. 1-12
Secure Messaging... 1-13

Key Tasks for XOCP Applications ... 1-13
Creating an XOCP Application Session... 1-13
Programming Messaging Applications for B2B Integration iii

Registering for a Role in a Conversation ... 1-14
Engaging in Conversations with Trading Partners................................... 1-15

Initiating a Conversation and Sending a Business Message 1-15
Participating in a Conversation ... 1-16
Leaving a Conversation... 1-16
Terminating Conversations ... 1-16

Shutting Down an XOCP Application Session .. 1-17
Run-Time Information Flow ... 1-17

Information Flow Diagram... 1-18
Steps in the Information Flow .. 1-19

2. Programming Steps for XOCP Applications
Step 1: Import Packages ... 2-2
Step 2: Implement the MessageListener Interface 2-2
Step 3: Create an XOCP Application Session.. 2-4
Step 4: Create and Register a Message Listener .. 2-4
Step 5: Initiate or Participate in a Conversation... 2-5
Step 6: Exchange Business Messages .. 2-6
Step 7: End the Conversation ... 2-6

Participant Leaves a Conversation .. 2-6
Initiator Terminates a Conversation.. 2-7

Step 8: Shut Down the XOCP Application Session 2-7

3. Sending XOCP Business Messages
Step 1: Create the Business Message .. 3-1

Importing the Required Packages... 3-2
Creating Payload Parts ... 3-2

Creating XML Documents .. 3-3
Creating Attachments.. 3-4

Creating the XOCP Business Message and Adding Payload Parts 3-4
Step 2: Specify the Recipients of the Business Message (Optional) 3-5

Specifying a Particular Trading Partner ... 3-6
Using XPath Expressions to Specify Message Recipient Criteria 3-6

Specifying Standard Trading Partner Attributes 3-7
Specifying an XOCP XPath Expression Using Extended Properties . 3-8
iv Programming Messaging Applications for B2B Integration

Step 3: Specify the Quality of Service for Message Delivery........................... 3-9
Automatic Quality of Service Features .. 3-9
QualityOfService Class .. 3-10

Quality of Service Settings, Options, and Default Values 3-10
Code Example .. 3-12
Setting the Message Delivery Confirmation Level 3-13
Setting the Message Timeout ... 3-14

Timeout Algorithm ... 3-14
Setting the Number of Delivery Retry Attempts...................................... 3-15
Setting the Correlation ID for a Business Message.................................. 3-16

Step 4: Send the XOCP Business Message ... 3-16
Synchronous Message Delivery ... 3-17
Deferred Synchronous Message Delivery.. 3-18

Step 5: Check the Delivery Status of the Business Message........................... 3-19
Message Tokens ... 3-19
Delivery Status Tracking.. 3-20
Message Tracking Locations.. 3-21

Diagram of Message Tracking Locations ... 3-22
Description of Message Tracking Locations 3-22

4. Receiving XOCP Business Messages
How XOCP Business Messages Are Received ... 4-1
Receiving an XOCP Business Message .. 4-2

Index
Programming Messaging Applications for B2B Integration v

vi Programming Messaging Applications for B2B Integration

About This Document

This document describes how to use the Messaging API for BEA WebLogic
Integration B2B integration to develop XOCP protocol messaging applications.

Note: The Messaging API and XOCP business protocol are deprecated as of this
release of WebLogic Integration. For information about the features that are
replacing the Messaging API and XOCP business protocol, see the BEA
WebLogic Integration Release Notes.

This document includes the following topics:

! Chapter 1, �Developing XOCP Applications to Exchange Business Messages,�
discusses the steps required to develop applications that exchange business
messages using the WebLogic Integration eXtensible Open Collaboration
Protocol (XOCP).

! Chapter 2, �Programming Steps for XOCP Applications,� discusses the steps
required to program applications that exchange business messages using the
XOCP protocol.

! Chapter 3, �Sending XOCP Business Messages,� discusses the requirements for
sending XOCP business messages.

! Chapter 4, �Receiving XOCP Business Messages,� discusses requirements for
receiving XOCP business messages.
Programming Messaging Applications for B2B Integration vii

What You Need to Know

This document is intended for independent software vendors (ISVs) who want to
extend their WebLogic Integration environment. It is assumed that the reader has a
familiarity with the BEA WebLogic Integration platform and Java programming.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the �e-docs�
Product Documentation page at http://e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Integration
documentation Home page on the e-docs Web site (and also on the documentation
CD). You can open the PDF in Adobe Acrobat Reader and print the entire document
(or a portion of it) in book format. To access the PDFs, open the WebLogic Integration
documentation Home page, click the PDF files button and select the document you
want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com.
viii Programming Messaging Applications for B2B Integration

Related Information

The following WebLogic Integration documents contain information that will help you
understand how to write messaging applications that take advantage of the B2B
integration functionality provided by WebLogic Integration:

! Administering B2B Integration

! Programming Management Applications for B2B Integration

! Programming Logic Plug-Ins for B2B Integration

For more information about BEA WebLogic Integration and Java, see the WebLogic
Integration documentation available at http://edocs.bea.com/.

Contact Us!

Your feedback on the BEA WebLogic Integration documentation is important to us.
Send us e-mail at docsupport@bea.com if you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and update
the WebLogic Integration documentation.

In your e-mail message, please indicate that you are using the documentation for BEA
WebLogic Integration 2.1 Service Pack 1.

If you have any questions about this version of BEA WebLogic Integration, or if you
have problems installing and running BEA WebLogic Integration, contact BEA
Customer Support through BEA WebSUPPORT at www.bea.com. You can also
contact Customer Support by using the contact information provided on the Customer
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

! Your name, e-mail address, phone number, and fax number

! Your company name and company address

! Your machine type and authorization codes
Programming Messaging Applications for B2B Integration ix

! The name and version of the product you are using

! A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:
#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.
Example:
void commit ()

monospace
italic
text

Identifies variables in code.
Example:
String expr
x Programming Messaging Applications for B2B Integration

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.
Examples:
LPT1
SIGNON
OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:
! That an argument can be repeated several times in a command line
! That the statement omits additional optional arguments
! That you can enter additional parameters, values, or other information
The ellipsis itself should never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
Programming Messaging Applications for B2B Integration xi

xii Programming Messaging Applications for B2B Integration

CHAPTER
1 Developing XOCP
Applications to
Exchange Business
Messages

Note: The Messaging API and XOCP business protocol are deprecated as of this
release of WebLogic Integration. For information about the features that are
replacing the Messaging API and XOCP business protocol, see the BEA
WebLogic Integration Release Notes.

The eXtensible Open Collaboration Protocol (XOCP) is the default business protocol
used by WebLogic Integration for exchanging business messages. This section
includes the following topics:

! Introduction

! Key Concepts

! Key Tasks for XOCP Applications

! Run-Time Information Flow
Programming Messaging Applications for B2B Integration 1-1

1 Developing XOCP Applications to Exchange Business Messages
Introduction

WebLogic Integration provides two means to implement trading partner conversations
that are based on the XOCP protocol:

! Via business process management (BPM) collaborative workflows that you
create using the WebLogic Integration Studio. These workflows define each role
in a conversation, and they specify how business messages are handled and
exchanged by trading partners. For information about creating collaborative
workflows, see Creating Workflows for B2B Integration.

! Via XOCP applications that you create using the WebLogic Integration
Messaging API. An XOCP application implements a trading partner role and
interacts directly with the B2B engine to manage the conversation and handle
business messages as appropriate.

This document explains how to use the Messaging API to create XOCP applications
to conduct and manage conversations among trading partners.

Many of the code examples in this documentation derive from the Messaging API
example. For more information, see the �Messaging API Sample� in Running the B2B
Integration Samples.

Note: The C-Enabler API, which was formerly used for creating XOCP applications
(in WebLogic Integration Release 2.0 and the WebLogic Collaborate product)
is deprecated but still supported. Information about creating applications that
use this deprecated API is available at the following URL:

http://e-docs.bea.com/wlintegration/v2_0/collaborate/devxocp/index.htm

XOCP applications, including those originally written with the WebLogic
Collaborate C-Enabler API for WebLogic Integration Release 2.0, must be run
in a separate Java Virtual Machine (JVM) in nonpersistent mode.
1-2 Programming Messaging Applications for B2B Integration

Key Concepts
Key Concepts

This section describes the following key concepts associated with XOCP applications:

! XOCP Applications

! Messaging API Class Library

! XOCP Business Messages and Message Envelopes

! Conversation Initiators and Participants

! Conversation Coordinators

! Trading Partner States

! Secure Messaging

XOCP Applications

An XOCP application is a user-written Java application that runs on a WebLogic
Integration node that is deployed in a hub-and-spoke configuration and that uses the
XOCP application class to execute a specific role in a conversation definition. In a
hub-and-spoke configuration, a trading partner XOCP application is associated with a
spoke delivery channel, or B2B spoke. This XOCP application allows a trading partner
to communicate with other trading partners at B2B spokes via an intermediary, or
routing proxy, which is configured with a hub delivery channel.

A user-written XOCP application executes the following tasks:

! Create and shut down XOCP application sessions

! Initiate or participate in conversations

! Exchange XOCP business messages with other trading partners

! Terminate or leave conversations
Programming Messaging Applications for B2B Integration 1-3

1 Developing XOCP Applications to Exchange Business Messages
Note: For complete details on the XOCP application class, see the
com.bea.b2b.protocol.xocp.application class in the BEA WebLogic
Integration Javadoc.

The following figure shows three possible hub-and-spoke configurations for the
delivery channels, the XOCP applications, and the instances of WebLogic Integration
that host the XOCP applications.

Figure 1-1 Possible Hub-and-Spoke Configurations

A WebLogic Integration node can host many XOCP applications. For more
information about configuring hub and spoke delivery channels used with XOCP
applications, see �Configuration Requirements� in Administering B2B Integration.
1-4 Programming Messaging Applications for B2B Integration

Key Concepts
XOCP Application Sessions

An XOCP application session is the means by which an XOCP application is
associated with a collaboration agreement and a delivery channel. An XOCP
application session is created by an application to communicate with a trading partner;
and its scope is bounded by a delivery channel. XOCP applications create an XOCP
application session by invoking the getXOCPApplicationSession method on the
XOCP application class.

An XOCP application can be associated with multiple XOCP application sessions,
enabling the application to participate in multiple conversations simultaneously.

Messaging API Class Library

The Messaging API class library includes the XOCP application class and provides
APIs for exchanging XOCP business messages. It consists of the packages listed in the
following table.

Table 1-1 Messaging API Class Library Packages

Package Name Description

com.bea.b2b.protocol.xocp.application Used for working with XOCP applications
and XOCP application sessions. This
package is designed for applications used by
trading partners configured with a spoke
delivery channel.

com.bea.b2b.protocol.xocp.conversation.local Used for working with conversations based
on XOCP.

com.bea.b2b.protocol.messaging Used for working with messages in a
conversation.

com.bea.b2b.protocol.xocp.messaging Used for working with business messages in
conversations based on XOCP.
Programming Messaging Applications for B2B Integration 1-5

1 Developing XOCP Applications to Exchange Business Messages
For detailed information about these packages, see BEA WebLogic Integration
Javadoc on the WebLogic Integration documentation CD or, on Windows systems,
choose the BEA WebLogic e-Business Platform→WebLogic Integration 2.1→Javadocs
from the Windows Start menu.

XOCP Business Messages and Message Envelopes

An XOCP business message is the basic unit of communication exchanged between
trading partners in an XOCP conversation. An XOCP business message is represented
in the Messaging API class library by the
com.bea.b2b.protocol.xocp.messaging.XOCPMessage class.

A message envelope is a container for a business message. A message envelope
contains information about the sender (such as the sender URL) and recipient (such as
the destination URL). A message envelope is represented in the Messaging API class
library by the com.bea.b2b.protocol.messaging.MessageEnvelope class.
However, only logic plug-ins (not XOCP applications) have programmatic access to
message envelopes. For more information, see �Information Flow for Message
Envelopes� on page 1-8 and �Routing and Filtering Business Messages� in
Programming Logic Plug-Ins for B2B Integration.
1-6 Programming Messaging Applications for B2B Integration

Key Concepts
Diagram of an XOCP Business Message

The following figure shows a message envelope and the components of an XOCP
business message.

Figure 1-2 Components of an XOCP Business Message

Components of an XOCP Business Message

An XOCP business message is a multipart MIME (Multipurpose Internet Mail
Extensions) message. It consists of the following components.

Table 1-2 Components of an XOCP Business Message

Component Description

Message header Message attributes, including information about the sender and recipient, the conversation,
Qualities of Service, and so on.

Payload Container for one or more business documents, one or more attachments, or a combination
of both. The payload component is represented in the Messaging API class library by the
com.bea.b2b.protocol.messaging.PayloadPart interface.

Business
document(s)

XML files in the XML-based part of the payload. Represented in the Messaging API class
library by the com.bea.b2b.protocol.messaging.BusinessDocument class.

Attachment(s) NonXML files in the nonXML-based part of the payload. Binary content. Represented in
the Messaging API class library by the
com.bea.b2b.protocol.messaging.Attachment class.
Programming Messaging Applications for B2B Integration 1-7

1 Developing XOCP Applications to Exchange Business Messages
Information Flow for Message Envelopes

The following figure shows an example of how message envelopes are processed in
WebLogic Integration.

Figure 1-3 Message Envelope Processing in WebLogic Integration
1-8 Programming Messaging Applications for B2B Integration

Key Concepts
Message envelope processing occurs in the following sequence:

1. A trading partner creates and sends a business message from its spoke delivery
channel to the hub delivery channel at the intermediary. (This hub delivery channel
can be configured on a B2B engine collocated with the sending trading partner, on
a standalone machine, or on a B2B engine collocated with a recipient trading
partner, as shown in Figure 1-1.)

2. The business message is received at the hub delivery channel. The B2B engine
wraps the business message with a message envelope, extracting certain sender
and recipient information from the business message.

3. The XOCP router processes the business message, and then validates and
finalizes the list of recipients.

4. The router creates a separate message envelope for each recipient in the list of
recipients, inserts a logical copy of the business message in each message
envelope, and then forwards all message envelopes to the XOCP filter.

As shown in the example in Figure 1-3, the router creates message envelopes for
three recipients.

5. Within the XOCP filter, the applicable filter for each recipient trading partner
evaluates each business message to determine whether it will be sent to the
recipient. The filter forwards accepted messages to the next processing step in the
B2B engine.

In Figure 1-3, the three business messages are evaluated in the filter. Two are
accepted and one is rejected.

6. The B2B engine validates the recipient, and then sends the business message (in
its message envelope) to the recipient trading partner.

7. The recipient trading partner receives the business message.

Conversation Initiators and Participants

In any XOCP conversation, there are two types of trading partner roles:

! Conversation initiator is the trading partner that creates the conversation and
sends the first business message (such as a request) to one or more recipient
trading partners. The conversation initiator usually awaits a reply from each
Programming Messaging Applications for B2B Integration 1-9

1 Developing XOCP Applications to Exchange Business Messages
trading partner and might exchange subsequent business messages. When
finished, the conversation initiator terminates the conversation (unless the
conversation has timed out).

! Conversation participant is a trading partner that is enlisted in the conversation
when it receives the first business message from the conversation initiator. The
conversation participant usually sends a reply to the conversation initiator and,
optionally, might exchange subsequent business messages. When finished, the
conversation participant either leaves the conversation or waits until the
conversation terminates.

Each conversation definition in the repository includes at least both of these types of
roles. A trading partner must be subscribed to the appropriate role in the conversation
to initiate or participate in conversations associated with the associated conversation
definition.

The initiator of a conversation is usually determined by the role in which a trading
partner is registered. For example, in a GetQuote conversation, the trading partner in
the role of the buyer normally initiates a GetQuote conversation. Any trading partner
in the role of the seller normally acts as a conversation participant in the GetQuote
conversation.

The following figure shows some of the tasks that conversation initiators and
conversation participants perform.

Figure 1-4 Conversation Initiators and Participants
1-10 Programming Messaging Applications for B2B Integration

Key Concepts
Conversation Coordinators

WebLogic Integration supports two types of conversation coordinators that manage
conversations at run time: a global conversation coordinator manages active
conversations on the B2B intermediary, and local conversation coordinators
associated with B2B spokes help the global coordinator manage active conversations
locally.

The following figure shows where global and local conversation coordinators work in
the WebLogic Integration architecture.

Figure 1-5 Global and Local Conversation Coordinators

Global Conversation Coordinator

A global conversation coordinator is a service associated with the intermediary, which
is configured with a hub delivery channel. The global conversation coordinator
manages conversation lifecycles according to the rules of XOCP and supports
long-living, durable conversations that span multiple organizational boundaries. The
global conversation coordinator maintains a list of active conversations.

The global conversation coordinator performs the following services:

! Enlists and delists trading partners in a conversation

! Enforces the XOCP conversation termination protocol

! Maintains status information about conversations

! Provides the conversational context for the execution of the business protocol
Programming Messaging Applications for B2B Integration 1-11

1 Developing XOCP Applications to Exchange Business Messages
Local Conversation Coordinators

A local conversation coordinator is a service associated with a B2B spoke. The local
conversation coordinator manages conversations in which the local trading partner
(configured with a spoke delivery channel) is participating and maintains a list of
active conversations. Each XOCP application session has a separate local conversation
coordinator.

The local conversation coordinator performs the following tasks:

! Locally enlists in a conversation when the initial business message in a
conversation is received from the intermediary

! Locally delists from a conversation when the system message that terminates the
conversation is received from the intermediary

Trading Partner States

The following table describes the states assigned to trading partners as they perform
tasks related to XOCP application sessions and conversation participation.

Some of these trading partner states are visible in the WebLogic Integration B2B
Console.

Table 1-3 Trading Partner States

State Description

REGISTERED Connected trading partner has registered for roles in conversations and
is ready to initiate or participate in conversations.

ACTIVE Registered trading partner has participated (that is, has sent or received
a business message) in at least one conversation.

DROPPEDOUT Trading partner has left a conversation.
1-12 Programming Messaging Applications for B2B Integration

Key Tasks for XOCP Applications
Secure Messaging

Communication among trading partners is secured via the Secure Sockets Layer
(SSL). Before allowing trading partners to exchange business messages, the WebLogic
Integration node must authenticate the identity of each trading partner using the trading
partner�s certificate. Once these identities are authenticated, business messages are
exchanged securely among trading partners. For more information about WebLogic
Integration security, see Implementing Security with B2B Integration.

Key Tasks for XOCP Applications

This section introduces the key tasks that XOCP applications perform:

! Creating an XOCP Application Session

! Registering for a Role in a Conversation

! Engaging in Conversations with Trading Partners

! Shutting Down an XOCP Application Session

Creating an XOCP Application Session

Before exchanging business messages, an XOCP application must create an XOCP
application session for the trading partner and its associated delivery channel.

Before a trading partner XOCP application can create an XOCP application session:

! Configuration information about the delivery channel and trading partner must
be defined in the WebLogic Integration repositories for both the hub and spoke
delivery channels associated with the collaboration agreement. For more
information, see �Configuration Requirements� in Administering B2B
Integration.

! The trading partner must be authorized to access the delivery channel.
Programming Messaging Applications for B2B Integration 1-13

1 Developing XOCP Applications to Exchange Business Messages
Note: If the machine hosting the XOCP application associated with the spoke
delivery channel crashes after connecting to a hub delivery channel, the XOCP
application can reconnect to the hub delivery channel upon normal startup.
The previous XOCP application session is discarded and new resources are
assigned to the new XOCP application session. However, the intermediary
cannot deliver business messages while the machine associated with the spoke
delivery channel is down. Undelivered business messages are discarded if the
number of retry attempts is exceeded or if the business message or
conversation times out.

When a trading partner no longer wants to exchange business messages with other
trading partners, the XOCP application shuts down the XOCP application session, as
described in �Shutting Down an XOCP Application Session� on page 1-17.

Registering for a Role in a Conversation

After the XOCP application session has been created, a trading partner needs to
register a message listener for the conversation type to which it is bound by the
collaboration agreement. The message listener must be registered for a conversation
type that defines how the trading partner participates in the conversation.

Role registration requires the following information in the repository associated with
the hub delivery channel:

! The conversation type�is a subset of a conversation definition that defines a
conversation for one trading partner based on the trading partner�s role in the
conversation definition to which it is subscribed.

! A message definition�consists of ordered message parts. A message part
contains a content type (XML or binary) and can contain a document definition.
If the content type for a part is XML, then a document definition is required for
that part. For the binary type, no other information is required.

For an introduction to these concepts, see �Overview� in Introducing B2B Integration.

Before registering a message listener for a conversation type in a collaboration
agreement, the trading partner must first be authorized to register. Authorization is
configured by the administrator of the intermediary and is based on the trading
partner�s subscription to a role in a conversation definition.
1-14 Programming Messaging Applications for B2B Integration

Key Tasks for XOCP Applications
When an XOCP application session attempts to register a message listener for a
specific conversation type in a collaboration agreement, the spoke delivery channel
sends an XOCP system message, register for conversation, to the intermediary. The
intermediary validates the role of the trading partner for the requested conversation
type in the associated delivery channel. If the registration is valid, the trading partner
is then allowed to initiate and participate in conversations associated with the
registered conversation type. At this point, the trading partner is in a REGISTERED state
and is ready to initiate or participate in conversations.

Engaging in Conversations with Trading Partners

Once registered for a role in a conversation, a trading partner can engage in
conversations in accordance with that role. Conversation initiation and participation
occurs on the intermediary itself. However, the XOCP application session maintains
some state information about the conversations in which it is involved.

Conversation initiator XOCP applications and conversation participant XOCP
applications are very similar. However, conversation initiator XOCP applications can
terminate conversations while conversation participant XOCP applications cannot.
Conversation participant XOCP applications can only leave a conversation.

Initiating a Conversation and Sending a Business Message

To initiate a conversation, a conversation initiator XOCP application first creates it.
Optionally, the conversation initiator XOCP application can specify a timeout value,
after which the conversation automatically terminates; this value overrides the timeout
value that is specified in the associated conversation definition in the repository.

The local conversation coordinator on the B2B spoke sends an XOCP system message,
create conversation of the specific collaboration agreement, to the intermediary. The
global conversation coordinator in the intermediary creates a conversation using the
appropriate delivery channel and enlists the trading partner as the conversation
initiator. After the conversation is created, the conversation initiator XOCP application
creates and sends a business message, as described in �Sending XOCP Business
Messages� on page 3-1.
Programming Messaging Applications for B2B Integration 1-15

1 Developing XOCP Applications to Exchange Business Messages
Participating in a Conversation

The global conversation coordinator in the intermediary handles all business messages
that the intermediary receives for a given conversation. After the intermediary delivers
an initial business message to recipient trading partners, the global conversation
coordinator enlists those trading partners in that conversation. Once a trading partner
is enlisted in a conversation, the trading partner is in an ACTIVE state and can send and
receive business messages in that conversation.

When the XOCP application session on a target spoke delivery channel receives the
initial business message in a conversation, it performs the necessary housekeeping
(such as registering the conversation in the local list) before invoking the onMessage
callback on the message listener. For more information, see �Receiving XOCP
Business Messages� on page 4-1.

Once a registered trading partner is enlisted in a conversation, the trading partner is in
an ACTIVE state and can send and receive business messages in that conversation.

Leaving a Conversation

When it has finished participating in a conversation, a conversation participant trading
partner can leave it. When a trading partner leaves a conversation, it is removed, by the
conversation coordinator, from the list of participating trading partners. Subsequent
business messages in that conversation are not sent to that trading partner. After a
trading partner leaves, it is kept in a DROPPEDOUT state for the remainder of that
conversation.

Terminating Conversations

A conversation terminates when the initiating trading partner explicitly terminates the
conversation, or when the conversation times out; whichever occurs first. A trading
partner who initiates a conversation must terminate that conversation at the appropriate
time in a business process.

Note: Only the conversation initiator can terminate a conversation.

When a conversation is terminated, the conversation coordinator sends all of the
participating trading partners an XOCP system message: terminate message. This
message is propagated as the callback onTerminate on registered message listeners
in XOCP application sessions on B2B spokes.
1-16 Programming Messaging Applications for B2B Integration

Run-Time Information Flow
Shutting Down an XOCP Application Session

When a trading partner finishes all the activities in a conversation, the XOCP
application shuts down the XOCP application session. When an XOCP application
shuts down an XOCP application session, the B2B engine associated with the spoke
unregisters with the intermediary all the collaboration agreements associated with this
session. This causes the intermediary to unregister the associated conversation type. In
response, the conversation coordinator automatically terminates all of the
conversations that the trading partner has initiated in the XOCP application session and
delists the trading partner from all other conversations in which it was participating.

When a trading partner shuts down an XOCP application session, the consequences are
as follows:

! The intermediary is stopped from sending any further messages to the trading
partner at the specified delivery channel.

! All conversations initiated by the trading partner are terminated.

! The trading partner leaves any conversations in which it is participating.

! The trading partner reclaims resources allocated in the intermediary for the shut
down XOCP application session.

Run-Time Information Flow

At run time, all XOCP applications perform certain tasks identically: they connect to
a delivery channel, register message listeners, and shut down the application session in
the same way. During individual conversations, however, conversation initiators and
conversation participants perform a series of distinct, interweaving tasks.
Programming Messaging Applications for B2B Integration 1-17

1 Developing XOCP Applications to Exchange Business Messages
Information Flow Diagram

The following figure shows the run-time information flow between a conversation
initiator and a participant.

Figure 1-6 Information Flow Between Conversation Initiator and Participant
1-18 Programming Messaging Applications for B2B Integration

Run-Time Information Flow
This is a simplified example that involves a single conversation and a minimal
exchange of business messages (request and reply). In practice, a trading partner may
participate in multiple conversations after registering a message listener and before
shutting down an XOCP application session. In addition, within a single conversation,
trading partners might exchange many business messages, not just a single request and
a single reply.

Steps in the Information Flow

At run time, the flow of information between trading partners (via XOCP applications
communicating through the intermediary) proceeds in the following sequence:

1. Each trading partner with a specific delivery channel creates an XOCP application
session.

2. Each trading partner XOCP application registers a message listener with the
XOCP application session, which, in turn (with the help of the local conversation
coordinator), registers that trading partner for a given role in a conversation in a
given collaboration agreement maintained by the intermediary.

3. Each trading partner XOCP application gets the collaboration agreement ID, if it
is not known.

4. The conversation starts when it is created by the conversation initiator XOCP
application.

5. The global conversation coordinator adds the conversation instance to its global
conversation list and marks the trading partner as the initiator.

6. The local conversation coordinator in the conversation initiator adds the
conversation instance to its local conversation list.

7. The conversation initiator�s XOCP application creates and sends a business
message (such as a request).

8. The conversation initiator�s XOCP application session delivers the business
message to the hub delivery channel in the intermediary.

9. The intermediary delivers the business message to the conversation participant�s
spoke delivery channel.
Programming Messaging Applications for B2B Integration 1-19

1 Developing XOCP Applications to Exchange Business Messages
10. The global conversation coordinator in the intermediary enlists the participating
trading partner in the conversation, adding it to the conversation instance entry in
the global conversation list.

11. The local conversation coordinator receives the business message and enlists the
trading partner in the conversation locally, adding the conversation instance to the
local conversation list.

12. The onMessage implementation in the conversation participant XOCP
application is invoked and processes the business message.

13. The conversation participant XOCP application creates and sends a business
message (such as a reply) back to the conversation initiator.

14. The XOCP application session associated with the conversation participant
delivers the business message to the intermediary.

15. The intermediary receives the business message and delivers it to the
conversation initiator.

16. The conversation initiator receives the business message.

17. The onMessage implementation in the conversation initiator XOCP application
is invoked and processes the business message.

18. To end the conversation, the conversation initiator XOCP application terminates
it.

Note: A conversation might terminate automatically if the conversation timeout
is exceeded.

19. The local conversation coordinator in the conversation initiator delivers
notification of termination to the global conversation coordinator in the
intermediary.

20. The global conversation coordinator in the intermediary delists the conversation
participant from the global conversation list and delivers notification of
termination to the local conversation coordinator associated with the conversation
participant.

21. The local conversation coordinator associated with the conversation participant
receives the termination notification and delists the conversation from the local
conversation list.
1-20 Programming Messaging Applications for B2B Integration

Run-Time Information Flow
22. The onTerminate implementation in the conversation participation XOCP
application is invoked.

23. The global conversation coordinator in the intermediary marks the conversation
terminated and informs the conversation initiator by sending a conversation
termination confirmation.

24. The conversation initiator receives the conversation termination confirmation.

25. The local conversation coordinator on the conversation initiator receives the
termination notification and delists the conversation from the local conversation
list.

26. The onTerminate implementation in the conversation initiator XOCP
application is invoked.

27. Each trading partner XOCP application shuts down its respective XOCP
application session.

For more information about these steps, see �Key Tasks for XOCP Applications� on
page 1-13.
Programming Messaging Applications for B2B Integration 1-21

1 Developing XOCP Applications to Exchange Business Messages
1-22 Programming Messaging Applications for B2B Integration

CHAPTER
2 Programming Steps for
XOCP Applications

The following sections describe each step in the procedure that a developer usually
provides in an XOCP application:

! Step 1: Import Packages

! Step 2: Implement the MessageListener Interface

! Step 3: Create an XOCP Application Session

! Step 4: Create and Register a Message Listener

! Step 5: Initiate or Participate in a Conversation

! Step 6: Exchange Business Messages

! Step 7: End the Conversation

! Step 8: Shut Down the XOCP Application Session

Each section includes example code from the Messaging API sample, which is fully
described in Running the B2B Integration Samples.

Note: Before you can run an XOCP application, the administrator must specify a
collaboration agreement for the trading partners who participate in the
conversation associated with that XOCP application. For more information,
see �Configuration Requirements� in Administering B2B Integration. For
information about backward compatibility with XOCP applications created
with earlier versions of WebLogic Integration, see Migrating to BEA
WebLogic Integration Release 2.1.
Programming Messaging Applications for B2B Integration 2-1

2 Programming Steps for XOCP Applications
Step 1: Import Packages

XOCP applications import the required packages from the Messaging API class
library. For a description of these packages, see �Messaging API Class Library� on
page 1-5.

The following example listing shows the type of packages that must be imported.

Listing 2-1 Importing Packages

import java.util.Properties;
import com.bea.b2b.protocol.xocp.application.*;
import com.bea.b2b.protocol.xocp.messaging.*;
import com.bea.b2b.protocol.conversation.ConversationType;
import com.bea.b2b.protocol.messaging.PayloadPart;
import com.bea.b2b.protocol.xocp.conversation.local.Conversation;
import com.bea.eci.logging.*;

Step 2: Implement the MessageListener Interface

To receive messages, an XOCP application must implement the following interface:

com.bea.b2b.protocol.xocp.messaging.XOCPMessageListener

This interface provides the onMessage and onTerminate methods that are used to
handle incoming business messages and conversation termination notifications,
respectively. The onMessage method is invoked when a B2B spoke receives a
business message. The onTerminate method is invoked when a B2B spoke receives
notification of a conversation termination.

The message listener is required in order for the trading partner to receive business
messages in a conversation. An XOCP application session supports one message
listener per collaboration agreement.
2-2 Programming Messaging Applications for B2B Integration

Listing 2-2 Implementation of the MessageListener Interface

public class Partner1MessageListener
 implements XOCPMessageListener{

 public void onMessage(XOCPMessage rmsg){

 counter ++;

 QualityOfService qos = rmsg.getQoS();

 // Received reply, time to wake up waiter

 synchronized(waiter){

 debug("onMessage in waiter counter = " + counter);

 PayloadPart[] payload = rmsg.getPayloadParts();
 // we are using a single part document
 if (payload != null && payload.length > 0){
 BusinessDocument bd = (BusinessDocument)payload[0];
 waiter.reply = bd.getDocument();
 }
 waiter.done = true;
 waiter.notify();
 }
 }

 public void onTerminate(Conversation conv, int result)
 }
 }

For detailed information about the XOCPMessageListener interface, see BEA
WebLogic Integration Javadoc on the WebLogic Integration documentation CD or, in
Windows systems, choose the BEA WebLogic e-Business Platform→WebLogic
Integration 2.1→Javadocs from the Windows Start menu.
Programming Messaging Applications for B2B Integration 2-3

2 Programming Steps for XOCP Applications
Step 3: Create an XOCP Application Session

To initiate or participate in conversations, a trading partner creates an XOCP
application session associated with a local B2B spoke delivery channel. Each XOCP
application session enables the associated trading partner to exchange messages with
other trading partners in a conversation.

To create a new XOCP application session or to get an existing one, use the
com.bea.b2b.protocol.xocp.application.XOCPApplication class. The
following listing is an example of getting the MdmApp1 XOCP application session,
based on the trading partner name (Partner 1) and the delivery channel
(Partner1-Channel0).

Listing 2-3 Obtaining an XOCP Application Session

XOCPApplication app = XOCPApplication.getXOCPApplication("MdmApp1");
XOCPApplicationSession es = app.getXOCPApplicationSession("Partner1",
"Partner1-Channel0");

Step 4: Create and Register a Message Listener

To participate in a conversation, an XOCP application must register a message listener.
A message listener is implemented by the application; the developer is responsible for
using it as needed.

To register a message listener, an XOCP application calls the
registerMessageListener method on the XOCPApplicationSession instance,
passing the collaboration agreement ID, the conversation role of the trading partner,
and the message listener object as parameters.

The following example listing shows how to register a message listener for a requestor
role (generally a conversation initiator) in the verifierConversation conversation.
Note that the required collaboration agreement ID and role must be specified in the
repositories of the trading partner and the intermediary respectively.
2-4 Programming Messaging Applications for B2B Integration

Listing 2-4 Registering a Message Listener

Partner1MessageListener ml = new Partner1MessageListener();

 Properties prop = new Properties();
 prop.setProperty("BusinessProcessName", "verifierConversation");
 prop.setProperty("BusinessProcessVersion", "1.0");
 prop.setProperty("otherTradingPartner", "Hub");
 prop.setProperty("toRole", "replier");
 String caId = es.getCAId(prop);

 String myRole = "requestor";

 es.registerMessageListener(caId, myRole, ml);

Step 5: Initiate or Participate in a Conversation

A conversation initiator application explicitly starts a conversation. To initiate a
conversation, the initiating trading partner calls the createConversation method on
the com.bea.b2b.protocol.xocp.application.XOCPApplicationSession
instance, passing the collaboration agreement ID, the trading partner role, and,
optionally, the conversation timeout value, which is specified in seconds. (The default
value is zero, or no timeout, if the configured timeout is also zero in the conversation
definition in both the trading partner�s and intermediary�s respective repositories.) The
trading partner must be registered in the initiator role in the conversation definition.

The following example listing shows how a conversation is initiated.

Listing 2-5 Initiating a Conversation

 long timeout = 0;
 Conversation c = es.createConversation(caId, myRole, timeout);
Programming Messaging Applications for B2B Integration 2-5

2 Programming Steps for XOCP Applications
Step 6: Exchange Business Messages

After the conversation initiator application has created the conversation, it can begin
exchanging business messages with other trading partners in the conversation.

Initially, the conversation initiator application creates and sends a business message
(such as a request) to one or more trading partners in the conversation. When a trading
partner receives the business message, its conversation participant application
processes the business message and (usually) creates and sends a reply business
message. Trading partners may send and receive several business messages in the
course of a conversation. For more information about exchanging business messages,
see �Sending XOCP Business Messages� on page 3-1 and �Receiving XOCP Business
Messages� on page 4-1.

Step 7: End the Conversation

A conversation can end after trading partners finish exchanging business messages in
that conversation. The way in which a trading partner ends its involvement in a
conversation depends on its role in the conversation.

Participant Leaves a Conversation

Participant trading partners can leave a conversation. To leave a conversation, a
participant XOCP application calls the leave method on the Conversation instance,
passing false. No messages are retained in the intermediary while the participant is
not participating.

Note: In this release, only the false argument is supported.

The following example listing shows how a participant leaves a conversation.

Listing 2-6 Leaving a Conversation

c.leave(false);
2-6 Programming Messaging Applications for B2B Integration

Initiator Terminates a Conversation

Conversation initiators can explicitly terminate a conversation or wait until the
conversation times out. (The conversation initiator can specify a timeout value when
it creates the conversation, or it can specify zero to use the timeout value defined for
the conversation in the trading partner�s and intermediary�s repositories.) When a
conversation terminates, the conversation initiator and all participating trading
partners are delisted from the conversation, any undelivered business messages are
discarded, and associated system resources are released.

To terminate a conversation explicitly, the initiating XOCP application calls the
terminate method in its implementation of the Conversation interface, as shown in
the following listing.

Listing 2-7 Terminating a Conversation

c.terminate(Conversation.SUCCESS);

Step 8: Shut Down the XOCP Application Session

To shut down an XOCP application session and leave the conversation, an application
uses the shutDown method in its implementation of the XOCPApplicationSession
interface. The following example listing shows how an XOCP application session is
shut down.

Listing 2-8 Shutting Down an XOCP Application Session

es.shutDown();

If an XOCP application shuts down an XOCP application session, the trading partner
leaves the conversation automatically and permanently.
Programming Messaging Applications for B2B Integration 2-7

2 Programming Steps for XOCP Applications
2-8 Programming Messaging Applications for B2B Integration

CHAPTER
3 Sending XOCP
Business Messages

The following sections describe how an XOCP application sends XOCP business
messages to one or more trading partners in a conversation:

! Step 1: Create the Business Message

! Step 2: Specify the Recipients of the Business Message (Optional)

! Step 3: Specify the Quality of Service for Message Delivery

! Step 4: Send the XOCP Business Message

! Step 5: Check the Delivery Status of the Business Message

To send an XOCP business message, an XOCP application constructs a business
document, creates a business message, specifies message routing criteria and Quality
of Service delivery options, and sends the business message to the intermediary for
processing. The XOCP application can also check the delivery status of the business
message, including whether it was successfully delivered. For an introduction to
XOCP business messages, see �XOCP Business Messages and Message Envelopes�
on page 1-6.

Step 1: Create the Business Message

To create a business message, an XOCP application first creates a message payload,
which consists of any business documents and attachments to be sent.
Programming Messaging Applications for B2B Integration 3-1

3 Sending XOCP Business Messages
The creation of a payload involves three steps:

1. Importing the Required Packages

2. Creating Payload Parts

3. Creating the XOCP Business Message and Adding Payload Parts

This section describes these three steps. For an introduction to the components of a
business message, see �XOCP Business Messages and Message Envelopes� on page
1-6.

Importing the Required Packages

To create a business message, an XOCP application imports the necessary packages,
as shown in the following listing.

Listing 3-1 Importing Packages for Business Message Creation

class java.io.FileInputStream;
import org.apache.xerces.dom.*;
import com.bea.b2b.protocol.xocp.application.*;
import com.bea.b2b.protocol.xocp.messaging.*;
import com.bea.b2b.protocol.messaging.Attachment;
import com.bea.eci.logging.*;

Creating Payload Parts

An XOCP application next creates a message payload, which includes business
documents and/or attachments.
3-2 Programming Messaging Applications for B2B Integration

Step 1: Create the Business Message
Creating XML Documents

A business message can contain one or more business documents. A business
document is the XML-based payload part of a business message. A business document
is an instance of the com.bea.b2b.protocol.messaging.BusinessDocument
class.

A BusinessDocument object contains an XML document, which is an instance of the
org.w3c.dom.Document class in the org.w3c.dom package published by the World
Wide Web Consortium (www.w3.org). An XOCP application can also use a
third-party implementation of that package, such as the org.apache.xerces.dom
package provided by The Apache XML Project (www.apache.org), which is used by
the Messaging API sample to create and process XML documents.

Note: The document type parameters specified in each XML document must map to
a part content type of message definition associated with the conversation
definition in the repository.

The following code from the MdmTp1Servlet of the Messaging API application
creates a request in the form of an XML document.

Listing 3-2 Creating an XML Document

// Create a request document
DOMImplementationImpl domi = new DOMImplementationImpl();
DocumentType dType =
 domi.createDocumentType("request", null, "request.dtd");
org.w3c.dom.Document rq1 = new DocumentImpl(dType);
Element root1 = rq1.createElement("request");
String sendStr1 = "FIRST MESSAGE"; // the actual string data to be
 // processed by the other partner
root1.appendChild(rq1.createTextNode(sendStr1));
rq1.appendChild(root1);

After creating an XML document, an XOCP application creates a BusinessDocument
object, passing the XML document (payload[0]) as a parameter to the constructor,
as shown in the following listing.
Programming Messaging Applications for B2B Integration 3-3

3 Sending XOCP Business Messages
Listing 3-3 Creating a BusinessDocument

BusinessDocument bd = (BusinessDocument)payload[0];

Creating Attachments

A business message can contain one or more attachments. An attachment is a
nonXML-based payload part of a business message that contains binary content. An
attachment is an instance of the com.bea.b2b.protocol.messaging.Attachment
class. For more information, see the BEA WebLogic Integration Javadoc.

The following example listing shows how to create an attachment.

Listing 3-4 Creating an Attachment

FileInputStream fis = new FileInputStream("somefile");
Attachment att = new Attachment (fis);

Creating the XOCP Business Message and Adding
Payload Parts

After creating a message payload, an XOCP application creates an XOCP business
message and adds the payload parts to it. The
com.bea.b2b.protocol.xocp.messaging.XOCPMessage class represents an
XOCP business message. For more information, see the BEA WebLogic Integration
Javadoc.

To construct the business message, an XOCP application:

1. Creates an instance of the XOCPMessage class.

2. Adds the payload parts to the business message by calling either of the following
methods on the XOCPMessage message object:

" addPayLoadPart, which adds a single business document or attachment to
the business message
3-4 Programming Messaging Applications for B2B Integration

Step 2: Specify the Recipients of the Business Message (Optional)
" addPayLoadParts, which adds multiple business documents or attachments
to the business message

In the following listing an XOCP business message is created and a payload part is
added to it.

Listing 3-5 Creating a Business Message and Adding Payload Parts

XOCPMessage smsg1 = new XOCPMessage("");
smsg1.addPayloadPart(new BusinessDocument(rq1));

Note: The XOCP application clones the XOCPMessage content (except its payload
parts) before sending it to the intermediary. Therefore, a payload part must not
be changed after the application invokes the send or sendAndWait method on
the XOCPMessage.

Step 2: Specify the Recipients of the
Business Message (Optional)

After creating a business message, an XOCP application may specify the trading
partner to which the message will be sent. An XOCP application might send the
business message to a specific trading partner (a point-to-point exchange), such as
when it replies to a request received from a conversation initiator. Alternatively, an
XOCP application might send a business message to a set of trading partners (via
multicasting) when certain business criteria (represented by XOCP XPath expressions)
are met. For example, an application might send a message via multicasting when a
buyer sends a bid request to multiple sellers of a particular product.

Either way, the set of eligible trading partners is limited to those who are subscribed to
the appropriate role in the conversation definition. In addition, router and filter
expressions defined in the intermediary repository may also affect message delivery to
particular trading partners. For more information, see �Advanced Configuration
Tasks� in Administering B2B Integration.
Programming Messaging Applications for B2B Integration 3-5

3 Sending XOCP Business Messages
Specifying a Particular Trading Partner

If an XOCP business message is sent to a single, known trading partner, an XOCP
application can call the setRecipient method on the XOCPMessage object, passing
the trading partner name as the parameter. The specified trading partner must be
defined in the intermediary repository.

The following example listing shows how a trading partner named ChipMaker is
specified as the recipient of a business message.

Listing 3-6 Specifying a Single Trading Partner

String tradingPartnerName = "ChipMaker";
XOCPMessage msg = new XOCPMessage();
msg.setRecipient(tradingPartnerName);

Using setRecipient for a business message expedites message delivery because the
intermediary does not perform the usual router processing, such as the evaluation of
trading partner or intermediary XPath expressions. However, the business message is
still subject to applicable filtering in the intermediary. For more information, see
�Advanced Configuration Tasks� in Administering B2B Integration.

Using XPath Expressions to Specify Message Recipient
Criteria

An XOCP application can use XPath expressions to specify the criteria for a set of
trading partners that are to receive a business message. XPath expressions are used to
address parts of an XML document. For more information, see �Advanced
Configuration Tasks� in Administering B2B Integration.

An XPath expression should be specific to the document format of the intermediary
repository and should define a node-specific set of trading-partner elements. The
XPath expression selects recipient trading partners based on the following attributes,
which are defined in the intermediary repository:
3-6 Programming Messaging Applications for B2B Integration

Step 2: Specify the Recipients of the Business Message (Optional)
! Standard attributes, such as the trading partner name or a postal code

! Extended properties: custom attributes, elements, and text defined by the
administrator of the intermediary

The XPath expression is passed, as part of the message header in the business message,
from the XOCP application to the intermediary. The intermediary uses this XPath
expression, along with other XPath expressions defined in the intermediary repository,
to determine the set of message recipients for the business message.

If applicable trading partner and intermediary XPath expressions are defined in the
intermediary repository, the B2B engine hosting the intermediary evaluates these
expressions after it receives the business message. Depending on how they are
configured, these XPath expressions might override or append the XOCP XPath
expression that the XOCP application specifies. For more information, see �Advanced
Configuration Tasks� in Administering B2B Integration.

To specify an XOCP XPath expression for an XOCP business message, the XOCP
application calls the setExpression method on the XOCPMessage object, passing the
XPath expression as the parameter.

Note: Apache Xalan v 1.0.1 supports single quotes, but not double quotes, to delimit
string literals.

Before the business message is delivered, it undergoes applicable router and filter
processing in the intermediary.

Specifying Standard Trading Partner Attributes

The following listing shows an XOCP XPath expression that selects the trading partner
with the specified name.

Listing 3-7 XOCP XPath Expression Specifying a Trading Partner Name

smsg1.setExpression("//trading-partner[@name=\'Partner2\']");

The following listing shows an XOCP XPath expression that selects the trading partner
with an address that contains the string San.
Programming Messaging Applications for B2B Integration 3-7

3 Sending XOCP Business Messages
Listing 3-8 XOCP XPath Expression Specifying a Trading Partner Address

msg.setExpression("//trading-partner[contains(address,\'San\')]");

Specifying an XOCP XPath Expression Using Extended Properties

Extended properties are user-defined elements, attributes, and text that can be
associated with trading partners in the repository in the intermediary. These properties
provide application extensions to the standard predefined attributes in the repository.
The extended property sets are modeled in the repository such that they can be
retrieved as subtrees within an XML document. Extended properties are configured on
the Trading Partners tab in the WebLogic Integration B2B Console. For more
information, see �Using Advanced Trading Partner Configuration Options� in
�Configuring B2B Integration� in Online Help for the WebLogic Integration B2B
Console.

XOCP XPath expressions can refer to these extended properties to assist with business
message routing. For example, suppose the administrator for the intermediary adds an
extended property called Maximum Order Quantity so that sellers can indicate, in the
intermediary repository, the largest quantity that they can accommodate. With this
property defined, a buyer with a large order can specify an XOCP XPath expression
that sends the business message only to sellers that are qualified to process the order.

The following code listing shows an XML document generated from the repository
with an extended property set for a given seller.

Listing 3-9 Extended Property Set in XML Document Generated from the
Repository

<hub context="message-router">
. . .
<trading-partner name="ABC Seller"
email="orderprocessing@somedomain.com"
phone="999-999-9999">
<address>123 Main St., San Jose, CA 95131</address>
<extended-property-set name="Capacity">

<max-order-quantity>1000</max-order-quantity>
</extended-property-set>
</trading-partner>
3-8 Programming Messaging Applications for B2B Integration

Step 3: Specify the Quality of Service for Message Delivery
. . .
</hub>

The following listing shows an XOCP XPath expression that selects trading partners
that can accommodate orders larger than 500 units.

Listing 3-10 XOCP XPath Expression Specifying an Order Size

msg.setExpression("//trading-partner[extended-property-set/(@max-
order-qty > \'500\')]")

Because the seller can accommodate orders of up to 1000 units, it is selected as a
recipient of this business message.

Step 3: Specify the Quality of Service for
Message Delivery

The B2B engine messaging service allows XOCP applications to define the Quality of
Service (QoS), or level of reliability, to enforce when delivering a business message to
recipient trading partners. Quality of Service settings are stored in the message header
of the business message. The messaging service supports the reliable delivery of
messages in the event of network-link or node failures. The messaging service
provides other capabilities to support reliable messaging, such as message logging and
tracking, correlation of messages, delivery retry attempts, message timeouts, and
choice of message-delivery methods.

Automatic Quality of Service Features

The B2B engine messaging service provides certain automatic Quality of Service
features that do not require input from XOCP applications:
Programming Messaging Applications for B2B Integration 3-9

3 Sending XOCP Business Messages
! The B2B engine prevents duplicate message delivery.

! The B2B engine affixes a timestamp to every business message when it arrives
at an intermediary or an XOCP application node. Timestamps can be helpful for
taking performance measurements and with debugging applications.

QualityOfService Class

The com.bea.b2b.protocol.xocp.messaging.QualityOfService class
represents Quality of Service settings for business messages. The QualityOfService
class defines the level of reliability required from the B2B engine messaging service
when it delivers a specific message. It also identifies, to the B2B engine messaging
service, the XOCP application�s expectation of how the business message will be
delivered.

An XOCP application creates an instance of this class and calls methods on this
instance to specify various Quality of Service settings. It then calls the setQoS method
on the message instance, passing the QualityOfService object as a parameter, to
associate the settings with the message. If an XOCP application does not specify
Quality of Service settings, the B2B engine messaging service uses default values
where applicable.

Quality of Service Settings, Options, and Default Values

The following table describes the available Quality of Service settings, options, and
default values.
3-10 Programming Messaging Applications for B2B Integration

Step 3: Specify the Quality of Service for Message Delivery
Table 3-1 Quality of Service Settings, Options, and Default Values

QoS Setting / Description Options Default Value(s)

CONFIRMED_DELIVERY_TO_APPLICATION

! Provides confirmation of application delivery up to the
receiving application.

! Provides complete status of delivery to each destination,
including receipt timestamp, list of router-selected trading
partners, final list of recipient trading partners, and so on.

! Provides complete message tracking information (of all
potential locations) for the intermediary administrator and
the administrator of the trading partner sending the
message.

Not Applicable Not Applicable

CONFIRMED_DELIVERY_TO_DESTINATION(S)

! Provides complete status of delivery to each destination,
including receipt timestamp, list of router-selected trading
partners, final list of recipient trading partners, and so on.

! Provides complete message tracking information (of all
potential locations) for the intermediary administrator and
the administrator of the trading partner sending the
message.

Not applicable Not applicable

CONFIRMED_ROUTING

! Provides information from the XOCP router on the
intermediary about the trading partners selected to receive
the business message.

! Provides message tracking for the administrator of the
trading partner sending the messages (until the business
message reaches the intermediary�s XOCP router).

Not applicable Not applicable

CONFIRMED_DELIVERY_TO_HUB

(Default)
! Verifies that the message reached the intermediary.
! No message tracking for the administrator of the trading

partner sending the message.

Not applicable Not applicable

TIMEOUT Timeout, in
milliseconds, after send

Ignored
Programming Messaging Applications for B2B Integration 3-11

3 Sending XOCP Business Messages
The following table describes how each Quality of Service setting affects message
tracking and delivery acknowledgments.

If the CONFIRMED_DELIVERY_TO_DESINATION(S)setting is used, then complete
message tracking is available and acknowledgments are used to make sure that the
message is delivered reliably to its destination(s).

If the CONFIRMED_DELIVERY_TO_HUB setting is used, then no message tracking is
available and no acknowledgments are sent from recipient trading partners.

Code Example

The following example listing shows how to set the Quality of Service for a business
message.

RETRY_ATTEMPTS 0-n As configured for
the intermediary

CORRELATION_ID Application-defined
field

Ignored

Table 3-1 Quality of Service Settings, Options, and Default Values (Continued)

QoS Setting / Description Options Default Value(s)

Table 3-2 How QoS Settings Affect Message Tracking and Acknowledgment

Quality of Service Setting Message Tracking
(Y/N)?

Acknowledgment
(Y/N)?

CONFIRMED_DELIVERY_TO_APPLICATIONS Y Y

CONFIRMED_DELIVERY_TO_DESINATION(S) Y Y

CONFIRMED_DELIVERY_TO_ROUTER Y N

CONFIRMED_DELIVERY_TO_HUB N N
3-12 Programming Messaging Applications for B2B Integration

Step 3: Specify the Quality of Service for Message Delivery
Listing 3-11 Setting the Quality of Service for a Business Message

// Relevant imports
import com.bea.b2b.protocol.xocp.messaging.XOCPMessage;
import com.bea.b2b.protocol.xocp.messaging.QualityOfService;

XOCPMessage msg = . . .
// Create QoS object
QualityOfService qos = new QualityOfService();
// Specify confirmed delivery to destination(s)
qos.setConfirmedDeliveryToDestination(true);
msg.setQoS(qos);

Setting the Message Delivery Confirmation Level

To specify the level of message delivery confirmation, an XOCP application calls one
of the following methods on the QualityOfService instance, passing the Boolean
true parameter to enable the desired option.

The following example listing shows how to set the message confirmation level up to
its destination.

Table 3-3 Message Delivery Confirmation Levels

Durability Level Description

setConfirmedDeliveryToDestination Specifies whether to confirm message delivery up to its
destination (true) or only up to the intermediary (false).

setConfirmedDeliveryToHub Specifies whether to confirm message delivery up to the
intermediary (true) or not (false).

setConfirmedDeliveryToRouter Specifies whether to confirm message delivery up to the
XOCP router in the intermediary (true) or only up to the
intermediary (false).

setConfirmedDeliveryToApplication Sets the Quality of Service for this business message,
specifying whether to confirm message delivery up to the
target application (true) or only up to the intermediary
(false).
Programming Messaging Applications for B2B Integration 3-13

3 Sending XOCP Business Messages
Listing 3-12 Setting the Message Delivery Confirmation Level

qos.setConfirmedDeliveryToDestination(true);

For more information about confirming message delivery, see �Step 5: Check the
Delivery Status of the Business Message� on page 3-19.

Setting the Message Timeout

If specified, the message timeout determines how long a sender waits for
acknowledgments. If a business message expires (times out), the recipient does not
process it, and all other processing of it, including acknowledgment processing and
delivery retries, is abandoned.

Timeout Algorithm

The B2B engine does not synchronize the different clocks used by its components,
which can reside in different machines at different locations. Instead, the B2B engine
uses a relative time algorithm.

Based on this algorithm, the amount of time remaining before the timeout of a business
message (relative to the absolute time at which the component finished processing the
business message) is specified in the business message when that message is sent to
another component.

In the receiving component, the timeout calculations are based on the amount of time
remaining to process the message, expressed through both an absolute time (indicating
the arrival of the message) and a relative time (embedded in the message itself). This
algorithm at least ensures that the actual message timeout in the system always occurs
after the original timeout specified by the application.

Message Timeout on the Hub = Message timeout specified by the XOCP
application when sending a message

Message Timeout on the Sending XOCP Application = Message Timeout
on the Hub + N x Delta

In these settings:
3-14 Programming Messaging Applications for B2B Integration

Step 3: Specify the Quality of Service for Message Delivery
! N = A predefined number in the system, such as 10

! Delta = Estimated amount of time required for a message to travel, round-trip,
between the sending trading partner and the intermediary

Setting the Number of Delivery Retry Attempts

If an attempt to deliver a business message fails due to intermittent network failures,
the B2B engine messaging service attempts to retry sending the business message
repeatedly until one of the following occurs:

! The business message is delivered (that is, delivery succeeds).

! The number of retry attempts is exceeded.

! The message times out.

! The conversation in which the business message is sent either terminates or
times out.

The default values for message timeouts and retry intervals are defined in the
repository in the intermediary and are retrieved by an XOCP application when the
XOCP application session is created. The B2B engine messaging service waits for the
configured interval before attempting to resend a business message.

To override the default retry attempt limit, an XOCP application invokes the
setTimeout method on the QualityOfService instance, passing the timeout value
(number of milliseconds) as a parameter, as shown in the following listing.

Listing 3-13 Specifying the Message Timeout

qos.setTimeout(10000);
Programming Messaging Applications for B2B Integration 3-15

3 Sending XOCP Business Messages
Setting the Correlation ID for a Business Message

An XOCP application can specify a unique correlation ID for a business message so
that it can correlate business messages (such as replies to a request) received from
trading partners in response to a previously sent message (such as a request). The
correlation ID accompanies the business message to its destination. The recipient
trading partner can use this value to unambiguously identify the reply message sent
back to the originating trading partner.

To specify the correlation ID, an XOCP application invokes the setCorrelationId
method on the QualityOfService instance, passing a string representing the
correlation ID as a parameter, as shown in the following listing.

Listing 3-14 Specifying the Correlation ID for a Business Message

qos.setCorrelationId("ABC123");

Step 4: Send the XOCP Business Message

After specifying the recipients of a business message and the Quality of Service, an
XOCP application sends the business message in one of the following ways:

! Synchronous message delivery

! Deferred synchronous message delivery

When sending an XOCP business message with either synchronous or deferred
synchronous delivery, you need to set the following values:

! The collaboration agreement ID associated with that message

! The conversation
3-16 Programming Messaging Applications for B2B Integration

Step 4: Send the XOCP Business Message
Synchronous Message Delivery

With synchronous message delivery, the application waits until the message is
delivered to the destinations. The B2B engine messaging service returns control to the
application once the outcome of the activity of sending the message is known. The
application waits until one of the following events occurs:

! Acknowledgments are received from all potential destinations.

! The message times out.

! The conversation in which the message was sent terminates.

To send a business message synchronously, an XOCP application invokes the
following methods on the XOCPMessage instance:

! The setCAId method, which sets the collaboration agreement ID

! The setConversation method, which sets the conversation in which to send
the business message

! The sendAndWait method, which specifies the amount of time to wait (in
milliseconds) before timing out. If you specify zero (0), the XOCP application
waits until the business message reaches its respective destinations.

The following example shows how to send an XOCP business message using
synchronous message delivery.

Listing 3-15 Sending a Message Using Synchronous Message Delivery

smsg1.setCAId(caId);
smsg1.setConversation(c);
MessageToken token = msg.sendAndWait(0);
Programming Messaging Applications for B2B Integration 3-17

3 Sending XOCP Business Messages
Deferred Synchronous Message Delivery

With deferred synchronous message delivery, the B2B engine messaging service
returns control to the XOCP application immediately after a message is sent, and
returns a message token that the XOCP application can use to check the status of
message delivery. Once a message token is accessed, the application waits for a
specified time or until any of the following events occurs:

! Acknowledgments are received from all potential destinations.

! The message times out.

! The conversation in which the message was sent either terminates or times out.

To send a business message asynchronously, an XOCP application invokes the
following methods on the XOCPMessage instance:

! The setCAId method, which sets the collaboration agreement ID

! The setConversation method, which specifies the conversation in which to
send the business message

! The send method, which sends the message

The XOCP application continues executing business logic, and then checks the status
by calling the waitForACK method on the MessageToken instance, as shown in the
following listing.

Listing 3-16 Sending a Message Using Deferred Synchronous Message Delivery

smsg1.setCAId(caId);
smsg1.setConversation(c);
token = msg.send();
...
token.waitForACK();

The waitForAck method blocks until the status of the business message is available
(if no timeout is specified) or until the specified timeout (in milliseconds) is exceeded.
3-18 Programming Messaging Applications for B2B Integration

Step 5: Check the Delivery Status of the Business Message
Step 5: Check the Delivery Status of the
Business Message

Both the send and sendAndWait methods invoked on the XOCPMessage instance
return a message token that an XOCP application can query to check the delivery status
of the associated business message.

Message Tokens

A message token is an instance of the
com.bea.b2b.protocol.xocp.messaging.XOCPMessageToken class. A message
token has the following attributes.

Table 3-4 Message Token Information

Attribute Description

Message ID Unique ID of the business message.

Exception If applicable, any exception that occurred before the
business message left the sending XOCP application. An
exception is usually returned when the message is sent;
but for deferred synchronous message delivery, the
business message might be kept in an internal send queue
temporarily before being delivered to the intermediary.

Elapsed Time Amount of time taken to deliver the business message to
all destinations. This information is available only after
acknowledgments have been received from all message
destinations. Availability is subject to the specified
Quality of Service delivery option.

Delivery Status Delivery status from recipient destinations. This
information depends on the availability of such
information. Availability is subject to the specified
Quality of Service delivery option.
Programming Messaging Applications for B2B Integration 3-19

3 Sending XOCP Business Messages
If the business message is sent using the synchronous send delivery option, then the
message token cannot be used to wait for acknowledgments. Instead, the send method
returns immediately.

Delivery Status Tracking

When a business message reaches its destination (the receive queue of the destination
trading partner node), a system message is returned to the sender (by the B2B engine
messaging service) to acknowledge the message delivery if an acknowledgment is
required by the Quality of Service setting.

An XOCP application can use either of the following methods to obtain the delivery
status:

! getAllDeliveryStatus if the business message was sent to multiple recipients

! getDeliveryStatus if the business message was sent to a single recipient

Both methods return a DeliveryStatus object, an instance of the
com.bea.b2b.protocol.messaging.DeliveryStatus class that provides the
following information:

! Recipient (name of the recipient trading partner or message tracking location)

! Timestamp for the receipt of the business message

! Status code, valid values for which are shown in the following table

Number of Recipients (Router) Number of recipient trading partners after the business
message has been processed by the XOCP router in the
intermediary. Availability is subject to the specified
Quality of Service delivery option.

Number of Recipients (Filter) Number of recipient trading partners after the business
message has been processed by the XOCP filter in the
intermediary. Availability is subject to the specified
Quality of Service delivery option.

Table 3-4 Message Token Information (Continued)

Attribute Description
3-20 Programming Messaging Applications for B2B Integration

Step 5: Check the Delivery Status of the Business Message
Message Tracking Locations

The B2B engine messaging service provides tracking features that allow
administrators to check the progress of a business message as it moves through various
predefined locations en route to its destination. The B2B Console can display status
information as a business message passes through these tracking points.
Administrators can use message tracking information for debugging and identifying
bottlenecks in applications.

Note: The availability of message tracking locations depends on the configuration of
the WebLogic Integration system and the specified Quality of Service for a
given business message, such as
CONFIRMED_DELIVERY_TO_DESTINATION(S). (For a description of Quality
of Service settings, see Table 3-1). For example, if the XOCP application and
the intermediary are collocated on the same node, some locations are not
available. Similarly, some tracking locations may not be available for
synchronous message delivery.

Table 3-5 Message Delivery Status Codes

Status Code Description

SUCCESS Business message was successfully delivered to the
destination. No errors or exceptions occurred.

FAILURE An error occurred during delivery of the business message
to the destination.

RETRIES_EXHAUSTED All delivery retry attempts were exhausted and the
business message was discarded.

TIMEDOUT Timeout occurred before message delivery and the
business message was discarded.
Programming Messaging Applications for B2B Integration 3-21

3 Sending XOCP Business Messages
Diagram of Message Tracking Locations

The following figure shows the message tracking locations in the B2B engine
messaging service.

Figure 3-1 Message Tracking Locations

Description of Message Tracking Locations

The following message tracking locations are potentially visible in the B2B Console.

Table 3-6 Message Tracking Locations

Location Description of Location Activity Performed

ENABLER_SEND_QUEUE Send queue in the XOCP application
session of the sending trading partner

Message is enqueued for sending.

HUB_RECEIVE_QUEUE Receive queue for the sending trading
partner in the intermediary

Message is enqueued in the receive
queue of the sending trading partner
in the intermediary.
3-22 Programming Messaging Applications for B2B Integration

Step 5: Check the Delivery Status of the Business Message
HUB_ROUTER XOCP router in the intermediary Message has reached the XOCP
router.

HUB_SEND_QUEUE Send queue of the receiving trading
partner in the intermediary

Message is enqueued for delivery in
the target trading partner�s queue in
the intermediary.

ENABLER_RECEIVE_QUEUE Receive queue in the XOCP
application session of the receiving
trading partner

Message is enqueued in the queue of
the listener thread of the target trading
partner�s XOCP application session.

Table 3-6 Message Tracking Locations (Continued)

Location Description of Location Activity Performed
Programming Messaging Applications for B2B Integration 3-23

3 Sending XOCP Business Messages
3-24 Programming Messaging Applications for B2B Integration

CHAPTER
4 Receiving XOCP
Business Messages

The following sections describe how to receive XOCP business messages in an XOCP
application:

! How XOCP Business Messages Are Received

! Receiving an XOCP Business Message

How XOCP Business Messages Are Received

XOCP applications must implement the onMessage method in the MessageListener
interface to receive and process business messages. The signature for the onMessage
method is as follows.

Listing 4-1 Signature for onMessage Method

public void onMessage(XOCPMessage msg)

Whenever a business message arrives, the XOCP application invokes the onMessage
method, passing the business message as an input parameter. The XOCP application
retrieves the XOCPMessage object containing the business message and then calls
methods on that instance to process the message.
Programming Messaging Applications for B2B Integration 4-1

4 Receiving XOCP Business Messages
If an XOCP application receives multiple business documents in a conversation, the
onMessage implementation first determines the type of document received (such as a
bid request or bid reward), and then processes the document accordingly.

In addition, the onMessage implementation might contain code that constructs and
sends a business message. For example, a conversation participant XOCP application
might implement onMessage to receive a request, process the request, and then create
and send a reply document.

Receiving an XOCP Business Message

Listing 4-2 shows how the onMessage method is implemented in the MdmTp2Servlet
of the Messaging API sample application. This onMessage implementation processes
the initial business document (a request) sent from the MsmTp1Servlet. It then creates
and sends a reply document back to the conversation initiator.

The following listing is the onMessage implementation in the MdmTp2Servlet of the
Messaging API sample application.

Listing 4-2 onMessage Implementation in MdmTp2Servlet

public void onMessage(XOCPMessage rmsg) {
 try{

 QualityOfService qos = rmsg.getQoS();

 PayloadPart[] payload = rmsg.getPayloadParts();
 Document rq = null;

 // we are using a single part document
 if (payload != null && payload.length > 0){
 BusinessDocument bd = (BusinessDocument)payload[0];
 rq = bd.getDocument();
 }
 if (rq == null){
 throw new Exception("Did not get a request document");
 }
 Conversation conv = rmsg.getConversation();
4-2 Programming Messaging Applications for B2B Integration

Receiving an XOCP Business Message
 Element root = rq.getDocumentElement();
 String name = root.getNodeName();
 Text revStr = (Text)root.getFirstChild();

 // create the return document
 DOMImplementationImpl domi = new DOMImplementationImpl();
 DocumentType dType = domi.createDocumentType("reply", null, "reply.dtd");
 rq = new DocumentImpl(dType);
 root = rq.createElement("reply");
 String sendStr = new String(revStr.getData());
 sendStr="Partner2 -- " + sendStr;
 root.appendChild(rq.createTextNode(sendStr.toLowerCase()));
 rq.appendChild(root);

 XOCPMessage smsg = new XOCPMessage("");
 smsg.addPayloadPart(new BusinessDocument(rq));

 smsg.setQoS(qos);

 //TradingPartnerFilter filter = new TradingPartnerFilter("Partner1");
 smsg.setExpression("//trading-partner[@name=\'Partner1\']");
 smsg.setCAId(rmsg.getCAId());
 smsg.setConversation(conv);

 smsg.sendAndWait(0);

 }catch(Exception e){
 e.printStackTrace();
 }
 }

The onMessage code performs the following tasks:

1. Retrieves the Quality of Service setting for the business message by calling the
getQoS method on the XOCPMessage instance.

The application uses the same Quality of Service settings used in the original
message to send the reply message.

2. Retrieves the payload parts of the business message by calling the
getPayloadParts method on the XOCPMessage instance.

3. Retrieves the first (and only) business document in the PayloadPart[] array.

4. Extracts the associated XML document by calling the getDocument method on
the BusinessDocument instance.
Programming Messaging Applications for B2B Integration 4-3

4 Receiving XOCP Business Messages
5. Retrieves and examines parts of the XML document by using methods on the
Document instance. The latter is an instance of the org.w3c.dom.Document
class in the org.w3c.dom package published by the World Wide Web
Consortium (www.w3.org).

An XOCP application can also use a third-party implementation of that package,
such as the org.apache.xerces.dom package provided by The Apache XML
Project (www.apache.org). This package is used by the Messaging API sample
application to create and process business documents.

6. Retrieves the data string ("ABCDEFGHI") embedded in the business document and
converts it to all lowercase letters.

7. Constructs a reply document and specifies the same Quality of Service setting
specified for the request document.

8. Sets the collaboration agreement ID and conversation, and sends the document to
the trading partner called Partner 1.
4-4 Programming Messaging Applications for B2B Integration

Index

A
ACTIVE state 1-12
APIs

Messaging API 1-5
attachments

creating 3-4

B
business messages

about business messages 1-6
creating 3-1
receiving 4-1
sending 3-16

C
com.bea.b2b.protocol.xocp.application

package 1-5
confirmation of message delivery 3-13
conversations

coordinators 1-11
initiating 1-16
initiators 1-9
leaving 1-16
participants 1-9
participating in 1-15
registering for a role in 1-14
terminating 1-16

correlation ID 3-16
creating

attachments 3-4
payload parts 3-2
XML documents 3-3
XOCP business messages 3-4

customer support contact information ix

D
deferred synchronous message delivery 3-18
delivery

attempts 3-15
status, tracking 3-20

DROPPED OUT state 1-12

E
enlisting trading partners 1-16
extended properties 3-8

G
global conversation coordinator 1-11

I
implementing interfaces in the Messaging

API class library 2-2
initiating conversations 1-15, 1-16

L
leaving
Programming Messaging Applications for B2B Integration I-1

conversations 1-16
local conversation coordinators 1-12

M
message

timeouts 3-14
tokens 3-19
tracking locations 3-21

message delivery
confirmation 3-13
deferred synchronous 3-18
synchronous 3-17

message envelopes
about message envelopes 1-6
information flow 1-8

Messaging API class library
about 1-5
enlisting trading partners 1-16
implementing interfaces 2-2

P
packages

com.bea.b2b.protocol.xocp.application
1-5

participating in conversations 1-15
payload parts

adding 3-4
creating 3-2

printing product documentation viii

Q
Quality of Service

automatic features 3-9
correlation ID 3-16
message delivery confirmation 3-13
message timeouts 3-14
options 3-10
QualityOfService class 3-10

retry attempts 3-15
settings 3-10
values 3-10

R
receiving

business messages 4-1
recipients

specifying 3-5
trading partner 3-6
XPath expressions 3-6

REGISTERED state 1-12
registering

for a role in a conversation 1-14
related information ix
retry

attempts 3-15

S
secure messaging 1-13
Secure Sockets Layer (SSL) 1-13
sending

business messages 3-16
states, trading partners 1-12
support

technical ix
synchronous message delivery 3-17

T
terminating conversations 1-16
timeouts

message timeouts 3-14
tracking

delivery status 3-20
trading partners

enlisting 1-16
states 1-12
I-2 Programming Messaging Applications for B2B Integration

X
XML documents, creating 3-3
XOCP application sessions

creating 1-13
XOCP applications

about XOCP applications 1-3
application steps 2-1
creating an XOCP application session

1-13
creating attachments 3-4
creating business messages 3-1
creating XML documents 3-3
creating XOCP Business Messages 3-4
initiating conversations 1-16
initiating conversations conversations

initiating 1-15
key tasks 1-13
leaving conversations 1-16
Messaging API 1-5
registering for a role in a conversation

1-14
run-time information flow 1-18
specifying a trading partner 3-6
specifying recipients 3-5
specifying XPath expressions 3-6
terminating conversations 1-16

XOCP business messages
components of 1-7
diagram of 1-7

XPath expressions 3-6
Programming Messaging Applications for B2B Integration I-3

I-4 Programming Messaging Applications for B2B Integration

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Developing XOCP Applications to Exchange Business Messages
	Introduction
	Key Concepts
	XOCP Applications
	XOCP Application Sessions
	Messaging API Class Library
	XOCP Business Messages and Message Envelopes
	Diagram of an XOCP Business Message
	Components of an XOCP Business Message
	Information Flow for Message Envelopes

	Conversation Initiators and Participants
	Conversation Coordinators
	Global Conversation Coordinator
	Local Conversation Coordinators

	Trading Partner States
	Secure Messaging

	Key Tasks for XOCP Applications
	Creating an XOCP Application Session
	Registering for a Role in a Conversation
	Engaging in Conversations with Trading Partners
	Initiating a Conversation and Sending a Business Message
	Participating in a Conversation
	Leaving a Conversation
	Terminating Conversations

	Shutting Down an XOCP Application Session

	Run-Time Information Flow
	Information Flow Diagram
	Steps in the Information Flow

	2 Programming Steps for XOCP Applications
	Step 1: Import Packages
	Step 2: Implement the MessageListener Interface
	Step 3: Create an XOCP Application Session
	Step 4: Create and Register a Message Listener
	Step 5: Initiate or Participate in a Conversation
	Step 6: Exchange Business Messages
	Step 7: End the Conversation
	Participant Leaves a Conversation
	Initiator Terminates a Conversation

	Step 8: Shut Down the XOCP Application Session

	3 Sending XOCP Business Messages
	Step 1: Create the Business Message
	Importing the Required Packages
	Creating Payload Parts
	Creating XML Documents
	Creating Attachments

	Creating the XOCP Business Message and Adding Payload Parts

	Step 2: Specify the Recipients of the Business Message (Optional)
	Specifying a Particular Trading Partner
	Using XPath Expressions to Specify Message Recipient Criteria
	Specifying Standard Trading Partner Attributes
	Specifying an XOCP XPath Expression Using Extended Properties

	Step 3: Specify the Quality of Service for Message Delivery
	Automatic Quality of Service Features
	QualityOfService Class
	Quality of Service Settings, Options, and Default Values

	Code Example
	Setting the Message Delivery Confirmation Level
	Setting the Message Timeout
	Timeout Algorithm

	Setting the Number of Delivery Retry Attempts
	Setting the Correlation ID for a Business Message

	Step 4: Send the XOCP Business Message
	Synchronous Message Delivery
	Deferred Synchronous Message Delivery

	Step 5: Check the Delivery Status of the Business Message
	Message Tokens
	Delivery Status Tracking
	Message Tracking Locations
	Diagram of Message Tracking Locations
	Description of Message Tracking Locations

	4 Receiving XOCP Business Messages
	How XOCP Business Messages Are Received
	Receiving an XOCP Business Message

	Index

