
BEA
 WebLogic
Integration™

Guide to Data
Transformation
Version 8.1 Service Pack 2
Document Date: December 2003

Copyright
Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic Commerce
Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Enterprise Security, BEA
WebLogic Express, BEA WebLogic Integration, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA
WebLogic Portal, BEA WebLogic Server, BEA WebLogic Workshop and How Business Becomes E-Business are
trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Contents

1. Guide to Data Transformation

2. Transforming Data Using XQuery
Creating Schemas Projects .. 2-3

Importing Schemas.. 2-5

Creating a Transformation Control and a Transformation Method................... 2-9

Selecting Input and Output Types ... 2-11

Creating and Testing Maps.. 2-18

Link Representations ... 2-22

Adding Constraints to a Transformation ... 2-25

Using Repeatability/Join Option .. 2-25

Using a Conditional Constraint .. 2-33

Using the Union Option ... 2-34

Using the Group by Key Fields Option.. 2-41

Invoking Functions or Operators in a Query... 2-47

Invoking XQuery Functions or Operators in a Query.............................. 2-48

Invoking User Defined Methods in a Query .. 2-51

Invoking Control Methods in a Query ... 2-52

Using Java Classes in Transformations... 2-54

The Association Between XQ and DTF Files ... 2-59

Validating .. 2-62

Validating During Design Time... 2-63

Schema Validating During Run Time.. 2-64

3. Transforming Non-XML Data
Using Non-XML Data in Business Processes ... 3-1

Understanding Transformations That Use Non-XML Data....................... 3-2

Using WebLogic Integration for Transforming Non-XML Data............... 3-3
Guide to Data Transformation iii

Using Format Builder to Create Format Schemas (MFL Files) 3-7

Understanding Data Formats.. 3-8

Analyzing the Data to Be Transformed.. 3-12

Using Format Builder ... 3-13

Importing Existing Metadata to Create Format Schemas (MFL Files) 3-53

Importing a COBOL Copybook ... 3-53

Importing C Structures ... 3-55

Importing an XML Schema.. 3-64

Testing the Format Schemas (MFL Files) ... 3-65

Starting the Format Tester .. 3-65

Using the Format Tester Dialog Box.. 3-67

Testing Format Definitions... 3-74

Debugging Format Definitions... 3-75

4. Transforming Data Using XSLTs

5. Programming Transformations
Java Classes Created From Importing Schemas.. 6-1

Using the MflObject Interface to Transform Non-XML Data Programmatically..
6-5

Transforming Non-XML Data to Typed XML .. 6-7

Create a New Instance of an MflObject From Typed XML Example 6-9

Create a New Instance of an MflObject From Untyped Raw Data Example..
6-10

Getting the TransformException Fault Code Programmatically 6-11

Using the com.bea.WLXT Package (Deprecated)... 6-13
iv Guide to Data Transformation

CHAPTER
1 Guide to Data
Transformation

In WebLogic Workshop business processes, data can be transformed using either a
query or a eXtensible Stylesheet Language Transformation (XSLT). This guide
describes how to use the mapper functionality of WebLogic Workshop to create a data
transformation graphically. From this graphical representation of a data
transformation, WebLogic Workshop generates a query. The generated query is
invoked during run time by the business process to transform data. The query is written
in the XQuery language—a language defined by the World Wide Web Consortium
(W3C) that provides a vendor independent language for the query and retrieval of
XML data.

This guide also describes how to import an existing eXtensible Stylesheet Language
Transformation (XSLT) into WebLogic Workshop for data transformation. An XSLT
is written in the eXtensible Stylesheet Language (XSL)—an older language defined by
the W3C that supports the use of stylesheets for the conversion of XML data. In
WebLogic Workshop, the preferred method for data transformations is to use queries
in the XQuery language. Data transformations using XSL Transformations is
supported primarily for legacy applications.

This guide also describes the design-time and run-time considerations for transforming
non-XML data to other types of data.
Guide to Data Transformation 1-1

1 Guide to Data Transformation
Topics Included in This Section

Chapter 2, “Transforming Data Using XQuery”
Describes how to use the mapper functionality of WebLogic Workshop to
create a query (written in the XQuery language) for transforming data
between XML, non-XML, and Java primitive data sources.

Chapter 4, “Transforming Data Using XSLTs”
Describes how to import a XSLT (eXtensible Stylesheet Language
Transformation) into WebLogic workshop for transforming XML data (valid
to one XML Schema) to XML data (valid to a different schema.)

Chapter 3, “Transforming Non-XML Data”
Describes the design-time and run-time steps required for the transformation
of data between a non-XML format and an XML format in WebLogic
Integration.

Chapter 5, “Programming Transformations”
Describes programming considerations for transformations outside the
mapper functionality of WebLogic Workshop.
1-2 Guide to Data Transformation

CHAPTER
2 Transforming Data
Using XQuery

Data transformation is the mapping and conversion of data from one format to another.
This section describes how to build a data transformation using the mapper
functionality of WebLogic Workshop. To transform data using an existing eXtensible
Stylesheet Language Transformation (XSLT), see “Transforming Data Using XSLTs”
on page 4-1.

The mapper functionality of WebLogic Workshop enables the conversion of data of
different types. For example, XML data can be transformed from XML data valid to
one XML Schema to another XML document valid to a different XML Schema.

The input and output types of a data transformation can be any of the following data
types:

XML Data

Non-XML Data

Java Primitives

Java Classes—To learn more, see “Using Java Classes in Transformations” on
page 2-54.

Multiple input sources to a data transformation is supported, for example you can
transform data from two input data sources to a single target source, as shown in the
following figure:
Guide to Data Transformation 2-1

2 Transforming Data Using XQuery
A data transformation can only have one output type.

This section describes how to use the mapper functionality of WebLogic Workshop to
create a data transformation graphically. From this graphical representation of a data
transformation, WebLogic Workshop generates a query. The query is written in the
XQuery language—a language defined by the W3C that provides a vendor
independent language for the query and retrieval of XML data.

This section contains the following topics:

Creating Schemas Projects

Importing Schemas

Creating a Transformation Control and a Transformation Method

Selecting Input and Output Types

Creating and Testing Maps

Link Representations

Adding Constraints to a Transformation
2-2 Guide to Data Transformation

Invoking Functions or Operators in a Query

Using Java Classes in Transformations

The Association Between XQ and DTF Files

Validating

Related Topics

To learn more about data transformations and for a step-by-step walk through of the
mapping functionality, see Tutorial: Building Your First Data Transformation.

To learn about the XQuery language, see the XQuery 1.0: An XML Query Language
Specification - W3C Working Draft 16 August 2002 at the web site of the W3C. The
WebLogic XQuery engine which is invoked by the Transformation control conforms
to the August 16, 2002 draft of the XQuery Specification.

To learn more about XML and XML Schemas, see Java and XML Basics.

Creating Schemas Projects

When you create a new Process application, by default a project folder named
Schemas is created in the business process application folder of the Application tab
of WebLogic Workshop. Additional project folders of either Schema Project or WLI
System Schemas type can be created in your application folder.

In this document, the phrases a Schemas project folder or the current Schemas project
folder refers to any project folder of either Schema Project or WLI System Schemas
type in the current application. It can have the default name: Schemas or any other
legal project name.

MFL and XSD files can be imported into project folders of either Schema Project or
WLI System Schemas type. You can have one or more project folders of either
Schema Project or WLI System Schemas type in an application folder. For example,
you might want to place schemas that do not change very often into the default project
folder named Schemas and create another Schema Project folder called MySchemas
Guide to Data Transformation 2-3

http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/getstarted/navJavaXMLBasics.html
http://www.w3.org/TR/2002/WD-xquery-20020816/
http://www.w3.org/TR/2002/WD-xquery-20020816/
http://edocs.bea.com/workshop/docs81/doc/en/integration/dttutorial/tutWLIDataTransIntro.html

2 Transforming Data Using XQuery
which contain schemas that change more often. (If a schema file changes in the project
folder all the schemas in that project folder are built again.) Partitioning your schemas
in this way can reduce the schema build time. For example, if a schema keeps changing
in the MySchemas project folder, the schemas in the Schemas project folder will not be
built.

Project folders of either Schema Project or WLI System Schemas type are same
except Project folders of the type WLI System Schemas also contain WebLogic
Integration system XSD files. Importing MFL and XSD schema files into project
folders of either type will make these schemas available in the current application. In
addition, the default project folder named Schemas also contains the WebLogic
Integration system XSD files. (This default project folder named Schemas is created
when a new business process application is created in WebLogic Workshop.)

For example, you may want to create a Project folder of the WLI System Schemas
type, if you deleted a WebLogic Integration system XSD file in the default project
folder named Schemas, and you now want access to that system XSD file in your
application.

This section contains the following tasks:

To Create Business Process Application (Required)

To Create Additional Schema Project or WLI System Schemas Project Folders
(Optional)

To Create Business Process Application (Required)

Open or create a business process project and application. For instructions, see
Creating a Business Process Application. When you create a new business process
application, by default a project folder named Schemas is created. You can use the
project folder named Schemas to import your MFL and XSD files into your business
process application or you can create additional Schema Project or WLI System
Schemas project folders and import your MFL and XSD files into those project folders
as described in the following task.

To Create Additional Schema Project or WLI System Schemas Project Folders
(Optional)

1. In the Application tab, right-click on the top-level application folder. (If the
Application tab is not visible in WebLogic Workshop, choose View→Application
from the menu bar.)

2. From the drop-down menu, select New→Project....
2-4 Guide to Data Transformation

http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideCreate.html

The New Project dialog box is displayed.

3. In the left-most pane of the New Project dialog box, select either Schema folder.

4. In the right-most pane of the New Project dialog box, select either Schema
Project or WLI System Schemas.

5. In the Project name field, enter a name (for example: MySchemas) and click
Create.

6. A new schema project folder is created in the Application tab.

Importing Schemas

In this task, you import your schemas into your application. The following schema
types are supported:

XML Schema—W3C XML Schema files describe and constrain the content of
XML documents. (The XSD files that contain XML Schemas end in the .xsd
extension.) You can create XSD and XML files and validate XML files against
XML Schemas using XML Spy which is bundled with WebLogic Platform. For
instructions on starting XML Spy see How Do I: Start XMLSPY?.)

Note: Multiple namespaces in XML and XSD files are supported in WebLogic
Workshop. For example, you can transform two input XML files valid to
different namespace to another XML file which is valid to a third
namespace. To learn more, see Understanding the Transformation of the
Tutorial: Building Your First Data Transformation.

MFL—MFL (Message Format Language) documents describe and constrain the
content of non-XML data. For example, data coming from COBOL copybooks
and C structure definitions. (MFL files are created using the Format Builder and
end in the .mfl extension. For instructions on using Format Builder, see “Using
Format Builder to Create Format Schemas (MFL Files)” on page 3-7.)

Note: The file name of the MFL document becomes the namespace of the MFL elements.
Guide to Data Transformation 2-5

http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/howdoi/howStartXMLSpy.html

2 Transforming Data Using XQuery
When a schema is imported into your application, representations of these schemas are
available in some of the panes of WebLogic Workshop. In addition, Java interfaces for
accessing the data represented in the schemas are generated. To learn more about these
Java classes see “Java Classes Created From Importing Schemas” on page 5-1.

These representations and Java interfaces are described in the following table:

Importing ... Enables ...

An XSD file (which
contains an XML
Schema)

The creation of XML business process variable of the XML
Schema type from the Data Palette of WebLogic
Workshop. (If the Data Palette is not visible, with a
JPD file active, choose View→Windows→Data
Palette from the menu bar.) To learn more about
business process variables, see Creating Variables.

The ability to select the XML Schema types as an input or
output type for a transformation. To learn more, see “To
Select the Input and Output Types” on page 2-12 and “To
Change the Selected Input or Output Parameters” on page
2-15.

XMLBeans are generated for the XML Schema when the
XML Schema is imported and built.The XML Beans
provides a Java class for accessing the XML data that
conforms to the imported XML Schema. To learn more, see
Getting Started with XMLBeans.
2-6 Guide to Data Transformation

http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideDataTypesCreate.html
http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/xmlbeans/conGettingStartedwithXMLBeans.html

To make the schemas in XSD and MFL files available in your business process
application, you must import them into a Schemas project folder. (To learn more, see
a “Creating Schemas Projects” on page 2-3.) You can import XSD and MFL files into
a Schemas project folder, by following the steps described in one of the following
tasks:

An MFL file The creation of a Non-XML business process variable (that
conforms to the schema in the MFL file) from the Data
Palette of WebLogic Workshop. (If the Data Palette is
not visible, with a JPD file active choose
View→Windows→Data Palette from the menu bar.)
For example, if a StockQuotes.mfl is imported into a
Schemas project a StockQuotes.mfl.xsd node is
visible from the Create Variable pane. To launch the
Create Variable pane, choose Add→Variables in the top
right-hand corner of the Data Palette pane. This is an
internal representation of the XML Schema not available
outside of WebLogic Workshop. To learn more about
business process variables, see Creating Variables.

The ability to select the schema (derived from the MFL file)
as an input or output type for a transformation.

XML Bean classes are generated for the schema in the MFL
file when the MFL is imported. The XML Bean classes
provide methods for access the data that conforms to an
MFL file. (The Java class contains get and set methods
for accessing the MFL data, similar to the XMLBean Java
interface that is generated when a XML Schema is imported
and built.) To learn more about the XML Schema
representations generated from an MFL file see “Java
Classes Created From Importing Schemas” on page 5-1. To
learn more about XMLBeans, see Getting Started with
XMLBeans.

A MflObject Java class is generated for the MFL file. This
Java class provides methods for the conversion between
non-XML and XML data, programmatically outside the
mapper functionality of WebLogic Workshop. To learn
more, see “Java Classes Created From Importing Schemas”
on page 5-1.

Importing ... Enables ...
Guide to Data Transformation 2-7

http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideDataTypesCreate.html
http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/xmlbeans/conGettingStartedwithXMLBeans.html
http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/xmlbeans/conGettingStartedwithXMLBeans.html

2 Transforming Data Using XQuery
To Import an XSD or MFL file Into Your Application Using the Import Option
of the Schemas Folder Drop-Down Menu

To Import an XSD or MFL file Into Your Application Using Drag-And-Drop

To Import an XSD or MFL file Into Your Application Using the Import Option
of the Schemas Folder Drop-Down Menu

In this task, you import XSD or MFL files using the Import option of the drop-down
menu of a Schemas project folder.

1. In the Application tab, right-click on a Schemas project folder. (If the Application
tab is not visible in WebLogic Workshop, choose View→Application from the
menu bar.)

2. From the drop-down menu, select Import... .

The Import Files dialog box is displayed.

3. Browse the file system, and select your XSD file (ends in the.xsd extension) or
MFL file (ends in the.mfl extension), and click Import.

The schema in the XSD or MFL file is imported. This triggers a build of the
current Schemas project folder. (The build verifies that the schema file is well
formed. For XSD files, it also verifies that the element and attribute names in the
XML Schema do not conflict with the XSD files that have already been
imported into the current Schemas project folder.)

Any errors that occur when compiling your XSD and MFL files will be
displayed in the WebLogic Workshop Build tab. For all of the XSD and MFL
files imported into a Schema project, you must fix any reported errors before
you will be able to use these schemas in process definitions.

To Import an XSD or MFL file Into Your Application Using Drag-And-Drop

In this task, you import XSD or MFL files by dragging and dropping them into a
Schemas project folder.

In a Windows Explorer pane, select the XSD or MFL file and drag it into a Schemas
folder. (If the Application tab is not visible in WebLogic Workshop, choose
View→Application from the menu bar.)
2-8 Guide to Data Transformation

The schema in the XSD or MFL file is imported. This triggers a build of the current
Schemas project folder. (The build verifies that the schema file is well formed. For
XSD files, it also verifies that the element and attribute names in the XML Schema do
not conflict with the XSD files that have already been imported into the current
Schemas project folder.)

Any errors that occur when compiling your XSD and MFL files will be displayed in
the WebLogic Workshop Build pane. For all of the XSD and MFL files imported into
a Schema project, you must fix any reported errors before you will be able to use these
schemas in process definitions.

Note: Outside of WebLogic Workshop, you can also copy XSD or MFL files directly
into a Schemas project folder in the file system. For example, if your
application saved in the c:\bea\weblogic81\apps\myApp directory
contains the default Schemas project, you can save the MFL file directly into
this c:\bea\weblogic81\apps\myApp\Schemas directory in the file
system. This will trigger a build of the current Schemas project folder in
WebLogic Workshop.

Creating a Transformation Control and a
Transformation Method

This section describes how to create a Transformation control. When you create a
Transformation control in WebLogic Workshop, a DTF file (ending in the .dtf
extension) is created to store the control. In addition, this section describes how to add
a Transformation method to the Transformation control.

Data Transformations in business processes can be created in the following ways:

While creating a Client Request, Client Response, Control Send, Control
Send with Return, or Control Receive nodes in a specific business process.—
For instructions on creating a transformation from a Client or Control node, see
Interacting With Clients and Interacting With Resources Using Controls,
respectively.

While building a data transformation independent of a specific business process,
from the WebLogic Workshop menu bar—This section describes how to create
Guide to Data Transformation 2-9

http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideClients.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideControls.html

2 Transforming Data Using XQuery
a standalone data transformation from the menu bar and store it in a Process
DTF file. Creating a transformation stored in a standalone DTF allows for the
reuse of the transformation in different nodes of a business process.

This section contains the following tasks:

To Create a Transformation Control From the Menu Bar

To Add a Transformation Method to Transformation Control

To Create a Transformation Control From the Menu Bar

1. Open business process project and application.

Note: You must be active in a business process project, in order for Process DTF
file option to be available from the New File dialog box. (If the
Application tab is not visible in WebLogic Workshop, choose
View→Application from the menu bar.)

2. In the Application tab, select a subfolder of a project folder. (Project folder
names end with the string: Web.)

3. From the WebLogic Workshop menu bar, choose File→New→Transformation
File.

The New File dialog box appears.

4. In the File name field, enter file.dtf, where file represents the file name in
which the Transformation control is stored. In this example, the file name is
dataTrans is entered.

5. Click Create.

In the Design View, a graphical representation of the dataTrans Transformation
control appears, as shown in the following figure:

In addition, a DTF file (ending in the .dtf extension) is created to store the
Transformation control. For this example, the DTF file called dataTrans.dtf is
created and is visible in the Application tab.
2-10 Guide to Data Transformation

To Add a Transformation Method to Transformation Control

1. In the Design View, right-click in the box representing the dataTrans
Transformation control. The box shown in the preceding figure. (Where dataTrans
is the name of the Transformation control.)

2. From the drop-down menu, select Add Transformation Method.

A transformation method is created in the Transformation control.

3. Enter myTransMethod, where myTransMethod represents the method name.

The Transformation method in the Transformation control is created. This task
does not however, create the XQ file to store the query. The XQ file is created in
the following section. XQ files contain queries written in the XQuery language
which end in the .xq extension.

In addition to transformation methods, user defined Java methods can added to a
Transformation control. (User methods are user defined Java methods that can be
called from XQuery code.) For instructions on adding a User method, see “To Add a
User Method to a Transformation Control” on page 2-51.

Selecting Input and Output Types

In the following tasks, you select the Input and Output Types in the Input/Output
pane of the Configure XQuery Transformation Method - methodName dialog box.
(Where methodName represents the current Transformation method.) Input types are
the source data types for the data transformation—the data types that are transformed
to the output data type.

This section contains the following tasks:

To Select the Input and Output Types

To Change the Selected Input or Output Parameters

Updating the Graphical Representation Displayed in the Source View of a XQ
File
Guide to Data Transformation 2-11

2 Transforming Data Using XQuery
To Select the Input and Output Types

1. Select or create a Transformation control.

For instructions on creating a Transformation control see “To Create a
Transformation Control From the Menu Bar” on page 2-10.

To select an existing Transformation control:

a. In the Application tab, expand the folders that contain the Transformation
control. (If the Application tab is not visible in WebLogic Workshop, choose
View→Application from the menu bar.)

b. In the Application tab, double-click the DTF file that contains the
Transformation control.

2. Select or create a method from a Transformation control.

For instructions on creating a method in a Transformation control, see “To Add a
Transformation Method to Transformation Control” on page 2-11.)

To select an existing method, in the Design View of the DTF file, right-click the
arrow representing the method, as shown in the following figure:

3. From the drop-down menu, select Configure XQuery Transformation Method.

The Configure XQuery Transformation Method dialog box is displayed. In
the Available Input Types pane of Configure XQuery Transformation
Method dialog box, the list of available input types are displayed.

Note: In order for schema representations to be available in the Available Input
Types and Available Output Types pane, the XSD and MFL files which
contain these schemas must be imported into a Schemas project folder and
the current application must have completed building. To learn more, see
“Selecting Input and Output Types” on page 2-11.
2-12 Guide to Data Transformation

4. Select the desired input type from the XML, NonXML, and Java options.

5. Specify an input type, by doing one of the following:

To specify an XML, NonXML, or Java primitives input type:

a. In the Available Input Types pane, expand the schema and element
folders, until you find the desired element.

b. Select an input element.

c. If desired, change the default name provided in the Name field. This field
specifies the name the mapper uses to refer to this element.

d. Click Add.

To specify a Java class input type:

a. The Java class for conversion must be available in the current project. To
learn more about including a Java class in your project, see Using Existing
Applications.

b. In the Type field, of the Available Input Types pane, enter the full
package name of the Java class. For example, for a class named Book in the
package named library.org, enter: org.library.Book in the Type field.

c. If desired, change the default name provided in the Name field. This field
specifies the name the mapper uses to refer to this element.

d. Click Add.

To learn more, see “Using Java Classes in Transformations” on page 2-54.

The elements and attributes that make up the selected element are displayed in
the Selected Input Types pane.

Note: Non-XML Types/Untyped/RawData is not supported as an input or output
type for a Transformation method. RawData has no associated structure
and therefore can not be transformed using the mapper. To learn more, see
“Create a New Instance of an MflObject From Untyped Raw Data
Example” on page 5-10.

6. Repeat step 5 for an additional input types.

Note: Multiple input types can be specified.

7. Specify an input type, by doing one of the following:

To specify an XML, NonXML, or Java primitives input type:
Guide to Data Transformation 2-13

http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/howdoi/navUsingExistingApplicationsHowDoI.html
http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/howdoi/navUsingExistingApplicationsHowDoI.html

2 Transforming Data Using XQuery
a. In the Available Output Types pane, expand the schema and element
folders, until you find the desired element.

b. Select an output element.

c. If desired, change the default name provided in the Name field. This field
specifies the name the mapper uses to refer to this element.

d. Click Select.

To specify a Java class input type:

a. The Java class for conversion must be available in the current project. To
learn more about including a Java class in your project, see Using Existing
Applications.

b. In the Type field, of the Available Output Types pane, enter the full
package name of the Java class. For example, for a class named book in the
package named library, enter: library.book in the Type field.

c. If desired, change the default name provided in the Name field. This field
specifies the name the mapper uses to refer to this element.

d. Click Select.

To learn more, see “Using Java Classes in Transformations” on page 2-54.

The elements and attributes that make up the selected element are displayed in
the Selected Output Types pane.

Note: Only one output type can be specified.

8. If desired, in the Transformation Method Parameters pane, select the Schema
Validate Parameters check box. If selected, during run time, the input
parameters are validated against their schema types before the transformation is
executed. To learn more, see “Schema Validating During Run Time” on page
2-64.

9. If desired, in the Transformation Method Return pane, select the Schema
Validate Return check box. If selected, during run time, the output parameter is
validated against its schema type after the transformation is executed. To learn
more, see “Schema Validating During Run Time” on page 2-64.

10. Click Create Transformation.

Note: You do not have to select an input type but you must select an output type.
2-14 Guide to Data Transformation

http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/howdoi/navUsingExistingApplicationsHowDoI.html
http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/howdoi/navUsingExistingApplicationsHowDoI.html

An XQ file (ending in the .xq extension) is created to store the query and
displayed in the Application tab. The query is written in the XQuery language.
XQ files are associated with a particular DTF file and appear indented under the
associated DTF file in the Application tab. To learn more, see “The Association
Between XQ and DTF Files” on page 2-59.

To Change the Selected Input or Output Parameters

If links have been created between Input and Output types in the Design View of an
XQ file, then XQuery code has been generated which refers to the Input and Output
types.

If you change the Input and Output types of the query, the existing XQuery code
remains unchanged and may be referencing the original Input or Output types which
may be no longer valid for this query. The XQuery code in the query may now be
invalid and may require some manual XQuery code clean up as described in the last
step in the following task.

Note: You may be able to minimize the amount of clean-up required by using the
same name for the input variable in both the original and new query. Instead
of having different names for the original and new input variables, for
example: $_oldOrderDoc/po-number and $_newOrderDoc/po-number,
respectively, use the same name: $order/po-number for both.

To change or add input parameters or change the output parameter:

1. Select the Transformation control that contains that Transformation method:

a. In the Application tab, expand the folders that contain the Transformation
control. (If the Application tab is not visible in WebLogic Workshop, choose
View→Application from the menu bar.)

b. In the Application tab, double-click the DTF that contains the Transformation
method.

2. Select the method from a Transformation control. In the Design View of the DTF
file, right-click the arrow representing the method.

3. From the drop-down menu, select Reconfigure XQuery Transformation
Method.

The Configure XQuery Transformation Method dialog box is displayed.
Guide to Data Transformation 2-15

2 Transforming Data Using XQuery
4. Remove and add elements in the Available Input Types and Available Output
Types pane as desired.

5. If desired, in the Transformation Method Parameters pane, select the Schema
Validate Parameters check box. If selected, during run time, the input
parameters are validated against their schema types before the transformation is
executed. To learn more, see “Schema Validating During Run Time” on page
2-64.

6. If desired, in the Transformation Method Return pane, select the Schema
Validate Parameters check box. If selected, during run time, the output
parameter is validated against its schema type after the transformation is
executed. To learn more, see “Schema Validating During Run Time” on page
2-64.

7. Click Edit Transformation.

8. Clean up the XQuery code if required. If you changed the Input and Output types
of the query, the existing XQuery code remains unchanged—the XQuery code is
not regenerated and therefore any references in the XQuery code to the original
Input or Output types remain in the query. These references may be invalid for
this query depending on what Input and Output types were changed as described
in the following guidelines:

If you added an additional Input type, no XQuery code clean up is required.

If you remove an existing Input type, the XQuery code that references the
removed Input type will be invalid and may need to be removed.

If you change the existing Input or Output types, the XQuery code that
references the changed Input or Output type may be invalid depending on
differences between the old and new schemas and may need to be removed.

To view the XQuery source code including any errors:

a. In the Application tab, expand the folders that contain the XQ file. (If the
Application tab is not visible in WebLogic Workshop, choose
View→Application from the menu bar.)

b. In the Application tab, double-click the XQ file that contains XQuery code.

c. Select the Source View tab.

The XQuery code is displayed and the invalid XQuery code is underlined in
red.
2-16 Guide to Data Transformation

9. Fix the errors reported in the Source View. To view a detailed description of an
error, move the mouse over the error in the Source View.

If desired, you can delete all the XQuery code in the Source View of the XQ file
by removing all the XQuery source code after the namespace declaration(s) and
recreating your links in the Design View.

Updating the Graphical Representation Displayed in the Source View of a XQ
File

The following procedure describes how to force the mapper to display an updated
graphical representation of an XQ file if you have manually changed the input or
output parameters of a Transformation control in the Source View of the DTF file. To
update the graphical representation of the XQ file, complete the following steps:

1. View the DTF file that contains the query (stored in the XQ file) in the Design
View:

a. In the Application tab, expand the folders that contain the Transformation
control. (If the Application tab is not visible in WebLogic Workshop, choose
View→Application from the menu bar.)

b. In the Application tab, double-click the DTF file that contains the
Transformation control.

c. Select the Design View tab.

2. Select the desired Transformation method from a Transformation control:

a. Right-click the arrow representing the method.

b. From the drop-down menu, select Reconfigure XQuery Transformation
Method.

The Configure XQuery Transformation Method dialog box is displayed.

3. Click Edit Transformation.

The graphical representation of the object is displayed in the Design View of the
XQ file.
Guide to Data Transformation 2-17

2 Transforming Data Using XQuery
Creating and Testing Maps

In this section, you create and test the maps between the input and output types of a
transformation.

This section contains the following tasks:

To Map Elements

To View a Generated Query

To Test a Query

To Map Elements

To mapping elements, you must have selected at least one input source schema and the
output target schema. For instructions, see “To Select the Input and Output Types” on
page 2-12 and “To Change the Selected Input or Output Parameters” on page 2-15.

1. Select a Transformation control.

For instructions on creating a Transformation control see “To Create a
Transformation Control From the Menu Bar” on page 2-10.

To select an existing Transformation control:

a. In the Application tab, expand the folders that contain the Transformation
control. (If the Application tab is not visible in WebLogic Workshop, choose
View→Application from the menu bar.)

b. In the Application tab, double-click the DTF file that contains the
Transformation control.

2. Select a Transformation method from a Transformation control.

For instructions on creating a method in a Transformation control, see “To Add a
Transformation Method to Transformation Control” on page 2-11.)

To select an existing method, in the Design View of the DTF file:

a. Right-click the arrow representing the method.

b. From the drop-down menu, select Configure XQuery Transformation
Method.
2-18 Guide to Data Transformation

The Configure XQuery Transformation Method dialog box is displayed.

3. Select the Design View tab.

The selected input source documents are listed in the Source Schema pane and
the selected output target document is listed in the Target Schema pane.

Warning: If a schema is not listed in the Source Schema or Target Schema
panes, you will not be able to create links. For instructions to import the
schema, see “To Select the Input and Output Types” on page 2-12 and
“To Change the Selected Input or Output Parameters” on page 2-15.

Note: A schema may not be listed in the Source Schema or Target Schema
panes while an application is building. Wait until the build has completed
before selecting the schema.

The Design View displays the a graphical representation of the selected source
schemas in the Source Schema pane.

4. Drag a node from the Source Schema pane to a node in the Target Schema
pane.

While dragging a node from the Source Schema pane over nodes in the Target
Schema pane, a temporary link (a dashed line) appears between the two nodes.
The color of the dotted line changes depending on the compatibility between the
source and target node, as shown in the following table:

Warning: Be careful when creating links between a Java Strings and a typed
XML parameters. When the XQuery code, which is generated when
you create a map between these two types, is run in the XQuery engine

The Color of the
Dashed Line is . . .

Means . . .

Red No link can be created between the source node and the target
node. The data type of the target node can be converted to the
data type of the source node. (The link represents a legal
mapping.) For example, a node of data type XML string can not
be converted to an XML repeating node.

Green A link can be created between the source node and the target
node. The data type of the target node is compatible with the
data type of the target node.
Guide to Data Transformation 2-19

2 Transforming Data Using XQuery
the result is an empty typed XML output document. The XQuery
engine does not parse the String into a typed XML document.

After the target node has been dropped on the source node, a line representing a
link will be displayed. Depending on the target and source nodes, a dashed line
or a solid line will be displayed. To learn more, see “Link Representations” on
page 2-22.

5. Repeat the preceding step until all the desired nodes are mapped.

Note: To remove an existing link, in the Design View right-click on the link and
From the drop-down menu, select Delete Link.

Note: Instead of mapping nodes, you can create a constant for a node in Target
Schema pane. During run-time, the node will return the value of the constant.
This functionality may be useful during the development of your application.
For example, you might have the transformation return constants, so you can
test the actions that occur after the transformation, before mapping source to
target nodes. To create a constant, right-click a node in the Target Schema
pane and from the drop-down menu, select Create Constant. In the Constant
Value field, enter the value of the constant, and click OK.

To View a Generated Query

A query (in the XQuery language) is generated when you create mapping links from
Source Schema elements and attributes to Target Schema elements and attributes.

1. Select a Transformation control.

For instructions on creating a Transformation control see “To Create a
Transformation Control From the Menu Bar” on page 2-10.

To select an existing Transformation control:

a. In the Application tab, expand the folders that contain the Transformation
control. (If the Application tab is not visible in WebLogic Workshop, choose
View→Application from the menu bar.)

b. In the Application tab, double-click the DTF file that contains the
Transformation control.

2. Select a Transformation method from a Transformation control.

For instructions on creating a method in a Transformation control, see “To Add a
Transformation Method to Transformation Control” on page 2-11.)
2-20 Guide to Data Transformation

To select an existing method, in the Design View of the DTF file:

a. Right-click the arrow representing the method.

b. From the drop-down menu, select Goto XQuery Document.

3. Select the Source View tab.

The generated query is displayed.

For a description of a generated query, see Understanding the Transformation of the
Tutorial: Building Your First Data Transformation.

To Test a Query

1. Select a Transformation control.

For instructions on creating a Transformation control see “To Create a
Transformation Control From the Menu Bar” on page 2-10.

To select an existing Transformation control:

a. In the Application tab, expand the folders that contain the Transformation
control. (If the Application tab is not visible in WebLogic Workshop, choose
View→Application from the menu bar.)

b. In the Application tab, double-click the DTF file that contains the
Transformation control.

2. Select an existing Transformation method from a Transformation control.

For instructions on creating a method in a Transformation control, see “To Add a
Transformation Method to Transformation Control” on page 2-11.)

To select an existing method, in the Design View of the DTF file:

a. Right-click the arrow representing the method.

b. From the drop-down menu, select Goto XQuery Document.

3. Select the Test View tab.

A graphical display of the generated source data is displayed.

You can change the generated source data by double-clicking in the desired the
Node Value field and entering your data. Enter the return key twice after
entering the data.
Guide to Data Transformation 2-21

http://edocs.bea.com/workshop/docs81/doc/en/integration/dttutorial/tutWLIDataTransExtraTrans.html

2 Transforming Data Using XQuery
You can also add additional repeating data nodes to repeating elements.
Right-click on the node and select Insert Child Node.

You can also import data from files:

a. Select the desired Source Data node from the drop-menu.

b. Click Import.

c. Browse for the appropriate XML file or the non-XML data file. Import XML
files as source data for XML Schema nodes and import non-XML files for MFL
nodes. In most cases, the imported file will be valid to the schema associated
with the node. For example, if you had a source node that is valid to the XML
Schema in the quote.xsd file, you import an XML file which is valid to the
quote.xsd file.

Click Open.

4. In the Result Data pane, click Test.

If not currently running, the WebLogic Server for the current application will be
started. In order for a query to run, the WebLogic Server for the current
application must be running.

In the Result Data pane, after the query is run a graphical representation of the
output data is displayed.

5. To view the resulting data as an XML document, in the Result Data pane select
the XML Source View tab.

6. If desired, you can validate the result data against the associated schema. In the
Result Data pane of the Test View, click Validate. To learn more, see
“Validating” on page 2-62.

Link Representations

A data link directly transforms data from a source node to a target node. For example
the following figure shows a data link between the priceQuote/customerName
element and the quote/name element.
2-22 Guide to Data Transformation

Both priceQuote/customerName and quote/name are XML String elements.
During run-time, the data from the priceQuote/customerName element is converted
to the quote/name element as shown in the preceding figure.

The data link between these two elements is represented by a blue line in the mapper
functionality of WebLogic Workshop as shown in the following figure:

If you modify the XQuery code linking these two elements, the link between these
elements changes from a data link (represented as a blue line) to an implied link
(represented as a light gray line) as show in the following figure:

Note: You cannot select and delete implied links as you can for the links created by
dragging and dropping in the mapper.

To delete links created by dragging and dropping, right-click on the link and
from the drop-down menu, select Delete Link.

To delete a single implied link or a set of implied links to the same target node,
select the target node in the Target Schema pane of the Design View and in
the Edit Function pane, click Remove. This will delete the XQuery code
connecting the two nodes.

For an example of modifying the XQuery code between elements, see the task: To Edit
and Retest the Simple Query in the Step 3: Mapping Elements and Attributes in the
Tutorial: Building Your First Data Transformation.
Guide to Data Transformation 2-23

http://edocs.bea.com/workshop/docs81/doc/en/integration/dttutorial/tutWLIDataTransStep3.html

2 Transforming Data Using XQuery
The following table summaries the different link representations.

Is the Link
a Mapper
Generated
Link?

Link Type Description Is the Link
Currently
Selected in
the
Mapper?

Representation of
Link

User uses
mapper to
generate the
link by
dragging and
dropping.

Data Link A link that converts the value of the
source node directly to the value of
the target node.

Not Selected

Selected

Structural
Link

A link between two parent
structures that does not map data
directly.

Not Selected

Selected

Data
Structural
Link

A data structural link is the
combination of the following two
links:

A data link between two
nodes—a link that converts the
value of the source node directly
to the value of the target node.

A structural link—a link
between two structures.

Example: The link between the
child nodes of a repeating element.

Not Selected

Selected

User writes or
modifies the
XQuery
linking the
nodes.

Implied Link A link created or modified using the
Source View of the mapper. (The
mapper parses the XQuery code
and determines the implied links
between the target and source
elements.)

Cannot Select
a Implied Link
2-24 Guide to Data Transformation

Adding Constraints to a Transformation

More complex links can be built with the Constraints tab. You can constrain the
relationship between source and target nodes using the functionally of the Constraints
tab. The following table provides information on which features of the Constraints tab
you should use to depending on how you want to constraint or manipulate your data,
as shown in the following table:

Using Repeatability/Join Option

This section describes how to use the Repeatability/Join option of the mapper
functionality to combine data. This section contains the following topics:

Combining Data From Different Schemas

Merging the Contents of Repeating Elements

If You Want to Manipulate Your Data to . . . As Shown
in . . .

To Learn More, See . . .

Combine the contents of two different schemas.
Sub-elements of the repeating elements are not merged.

Figure 2-1 Combining Data From Different
Schemas in Using Repeatability/Join
Option

Merge the contents of repeating elements. Sub-elements
of repeating elements are merged.

Figure 2-2 Merging the Contents of Repeating
Elements in Using Repeatability/Join
Option

Add a condition constraint which limits the repeating
elements that are returned.

Figure 2-3 Using a Conditional Constraint

Combine sets of data of the same type (same schema) into
larger sets of data. Sub-elements of the repeating elements
are not merged.

Figure 2-4 Using the Union Option

Combine data and repeating elements based on a passed in
key value.

Figure 2-5 Using the Group by Key Fields
Option
Guide to Data Transformation 2-25

2 Transforming Data Using XQuery
Combining Data From Different Schemas

You can use the Repeatability/Join option of the mapper functionality to combine the
contents of two different schemas, as shown in the following figure:

Figure 2-1 Combining Data From Different Schemas

In this case, the customer information is merged with the line-items repeating
element to form one combined XML document.

This section describes how to create a transformation which combines the data from
two different XML Schemas using the Repeatability/Join option. This section shows
how to combine the example XML data shown in the preceding figure.

To Combine Data From Different Schemas

1. Import the two XSD files that contain the XML Schemas for the input types of the
transformation. For instructions, see “Selecting Input and Output Types” on page
2-11.
2-26 Guide to Data Transformation

For this example, import the files: CustInfo.xsd and PO.xsd files. If you
installed WebLogic Platform in the c:\bea directory, import these files from the
c:\bea\weblogic81\workshop\help\doc\en\integration\reffiles\tra

nsform\dataDiffSchemas directory.

2. Import the XSD file that contains the XML Schema for the output type of the
transformation. For instructions, see “Selecting Input and Output Types” on page
2-11.

For this example, import the file: POCustInfo.xsd. If you installed WebLogic
Platform in the c:\bea directory, import this file from the
c:\bea\weblogic81\workshop\help\doc\en\integration\reffiles\tra

nsform\dataDiffSchemas directory.

Importing schemas files triggers a build of the current Schemas project folder.
Wait until the current Schemas project folder is built before proceeding to the
next step. (The representations of the schemas will not be available in Available
Input Types and Available Output Type panes until build is complete.)

3. Create a Transformation Control and a method in the Transformation control to
contain the transformation. For instructions, see “Creating a Transformation
Control and a Transformation Method” on page 2-9.

4. Select the Transformation method from a Transformation control.

To select an existing method, in the Design View of the DTF file:

a. Right-click the arrow representing the method.

b. From the drop-down menu, select Configure XQuery Transformation
Method.

5. Select the input types for the transformation:

a. In the Available Input Types pane, expand the schema and element folders,
until you find the desired element.

b. In the Available Input Types pane, select the desired element.

c. Click Add.

The elements and attributes that make up the selected element are displayed in
the Selected Input Types pane.

For this example, select and add the CustInfo.xsd/customer and
PO.xsd/purchase-order nodes.
Guide to Data Transformation 2-27

http://edocs.bea.com/workshop/docs81/doc/en/integration/reffiles/transform/dataDiffSchemas/CustInfo.xsd
http://edocs.bea.com/workshop/docs81/doc/en/integration/reffiles/transform/dataDiffSchemas/POCustInfo.xsd
http://edocs.bea.com/workshop/docs81/doc/en/integration/reffiles/transform/dataDiffSchemas/PO.xsd

2 Transforming Data Using XQuery
6. Select the output type for the transformation:

d. In the Available Output Types pane, expand the schema and element folders,
until you find the desired element.

For this example, expand the POCustInfo.xsd schema folder.

e. In the Available Input Types pane, select the desired element.

For this example, select the POCustInfo.xsd/purchase-order element.

f. Click Select.

The elements and attributes that make up the selected element are displayed
in the Selected Output Types pane.

7. Click Create Transformation.

The Design View of the XQ file is displayed.

8. Create links between repeating element nodes:

a. In the Source Schema pane, select the repeating element and drag it to the
repeating element in the Target Schema pane.

For this example, link the
$_purchase_orderDoc/line-items/line-item repeating element to the
purchase-order/line-items/line-item repeating element.

A dashed line linking the two repeating elements is displayed. The dashed
line with short dashes represents a structural link—a link between two parent
structures that does not map data directly. The dashed-line representation for
a structural link is shown in the following figure:

To learn more about links, see “Link Representations” on page 2-22.

b. In the Source Schema pane, select each of the sub-elements of the repeating
element and drag them to the analogous sub-element of the repeating element
in the Target Schema pane.

For this example, link the
$_purchase_orderDoc/line-items/line-item/part-no element to the
purchase-order/line-items/line-item/part-no element. In addition,
link the $_purchase_orderDoc/line-items/line-item/quantity
2-28 Guide to Data Transformation

element to the purchase-order/line-items/line-item/quantity
element.

A dashed line linking the two sub-elements is displayed. The dashed line
with long dashes represents a data structural link—a data link that also links
two structures. The dashed-line representation for a data structural link is
shown in the following figure:

To learn more about links, see “Link Representations” on page 2-22.

9. Create links between the second set of nodes.

In the Source Schema pane, select a source node drag it to the target node in the
Target Schema pane.

For this example, select the $_customerDoc node and drag it to the
$_purchase-order/customer node. A structural link between the two nodes is
created.

For this example, the $_customerDoc/customer-id node and drag it to the
$_purchase-order/customer/customer-id node. A data structural link
between the two nodes is created.

For this example, the $_customerDoc/customer-name node and drag it to the
$_purchase-order/customer/customer-name node. A data structural link
between the two nodes is created.

For this example, the $_customerDoc/customer-address node and drag it to
the $_purchase-order/customer/customer-address node. A data structural
link between the two nodes is created.

For this example, the map between the source and target elements is shown in
the following figure:
Guide to Data Transformation 2-29

2 Transforming Data Using XQuery
10. Select the Test View tab.

11. Import XML or non-XML files as input data for the transformation. For more
information, see “Creating and Testing Maps” on page 2-18.

For this example, in the Source Data pane, select the $_purchase_orderDoc
node and import the file: InputPO.xml. In the Source Data pane, select the
$_customerDoc node and import the file: InputCust.xml. If you installed
WebLogic Platform in the c:\bea directory, import these files from the
c:\bea\weblogic81\workshop\help\doc\en\integration\reffiles\tra

nsform\dataDiffSchemas\XML directory.

Note: You can cut and past directory paths into the Name field of the Open File
to Test pane to jump to directory locations. If you installed WebLogic
Platform in the c:\bea directory, you can jump to the directory that
contains the XML files for this example, by pasting the following directory
path into the Name field:
c:\bea\weblogic81\workshop\help\doc\en\integration\reffi

les\transform\dataDiffSchemas\XML and then pressing enter.

12. In the Result Data pane, click Test.

If not currently running, the WebLogic Server for the current application will be
started. In order for a query to run, the WebLogic Server for the current
application must be running.

In the Result Data pane, after the query is run a graphical representation of the
output data is displayed.
2-30 Guide to Data Transformation

http://edocs.bea.com/workshop/docs81/doc/en/integration/reffiles/transform/dataDiffSchemas/XML/InputPO.xml
http://edocs.bea.com/workshop/docs81/doc/en/integration/reffiles/transform/dataDiffSchemas/XML/InputCust.xml

13. If the output data is XML data, in the Result Data pane, you can view the
resulting data as an XML document by selecting the XML Source View tab.

14. If desired, you can validate the result data against the associated schema. In the
the Result Data pane of the Test View, click Validate. To learn more, see
“Validating During Design Time” on page 2-63.

15. Save the current DTF file:

a. In Application tab, select the folder that contains the DTF file. (If the
Application tab is not visible in WebLogic Workshop, choose
View→Application from the menu bar.)

b. Right-click the DTF file and in the drop-down menu select Save file.dtf,
where file represents the name of the current DTF file.

16. Save the current XQ file:

a. In Application tab, select the folder that contains the XQ file. (If the
Application tab is not visible in WebLogic Workshop, choose
View→Application from the menu bar.)

b. Right-click the XQ file and in the drop-down menu select Save file.xq where
file represents the name of the current XQ file.

Merging the Contents of Repeating Elements

You can use the Repeatability/Join option of the mapper functionality to merge the
contents of repeating elements, as shown in the following figure:
Guide to Data Transformation 2-31

2 Transforming Data Using XQuery
Figure 2-2 Merging the Contents of Repeating Elements

The join, shown in the preceding figure, merges the price and availability from the two
input documents to one output document called Quote.xml. Specifically, the price
(element: price) and widget Id (element: widgetId) for the widgets is supplied by
the PriceQuote.xml document and the number of widgets available (element:
requestedQuanity) is supplied by the AvailQuote.xml document. The widgetId
and requestedQuanity elements are part of the availRequest repeating element
and price element is part of the priceRequest repeating element. These
subelements to repeating elements are merged into subelements of the
quoteResponse repeating element.
2-32 Guide to Data Transformation

For this example, a complete merge of the two sets of elements resulting in four
elements as shown in Figure 2-2 is not desired. Instead a conditional constraint is
needed that will return the merged element only if the condition is true. To learn more,
see “Using a Conditional Constraint” on page 2-33.

For a step-by-step walk through of using the mapping functionality to create a join with
a conditional constraint, see Tutorial: Building Your First Data Transformation.
Specifically, the join is created in Step 4: Mapping a Repeating Element (Join) in the
Tutorial: Building Your First Data Transformation.

Using a Conditional Constraint

In “Merging the Contents of Repeating Elements” on page 2-32, both of the input
documents (PriceQuote.xml and AvailQuote.xml) share the common element
widgetId. A constraint (as a condition) can be added to the join that specifies if the
widgetId of the availRequest element is equal to the widgetId of the
priceRequest element the merged repeating element quoteResponse be returned.
Adding this constraint would change the resulting data as shown in Figure 2-2 to the
data shown in Figure 2-3.
Guide to Data Transformation 2-33

http://edocs.bea.com/workshop/docs81/doc/en/integration/dttutorial/tutWLIDataTransIntro.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/dttutorial/tutWLIDataTransStep4.html

2 Transforming Data Using XQuery
Figure 2-3 Using a Conditional Constraint to Merge Data

For a step-by-step walk through of using the mapping functionality to create a join with
a constraint, see Tutorial: Building Your First Data Transformation. Specifically, the
join is created in Step 4: Mapping a Repeating Element (Join) in the Tutorial: Building
Your First Data Transformation.

Using the Union Option

You can use the Union option of the mapper functionality to combine sets of data of
the same type into larger sets of data, as shown in the following figure:
2-34 Guide to Data Transformation

http://edocs.bea.com/workshop/docs81/doc/en/integration/dttutorial/tutWLIDataTransIntro.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/dttutorial/tutWLIDataTransStep4.html

Figure 2-4 Combining Sets of the Same Data

In this union, repeating elements of the same type are combined into a larger set but in
the preceding join example in “Merging the Contents of Repeating Elements” on page
2-31, the contents of repeating elements are merged.

This section describes how to create a transformation which combines two sets of
repeating elements using the Union option. This section shows how to combine the
example XML data shown in the preceding figure.

To Combine Sets of Data of the Same Type

1. Create a Transformation Control and a method in the Transformation control to
contain the transformation. For instructions, see “Creating a Transformation
Control and a Transformation Method” on page 2-9.
Guide to Data Transformation 2-35

2 Transforming Data Using XQuery
2. Import the XSD file that contains the XML Schema for the input and output types
of the transformation. For instructions, see “Selecting Input and Output Types”
on page 2-11.

For this example, import the file: PO.xsd. If you installed WebLogic Platform in
the c:\bea directory, import this file from the
c:\bea\weblogic81\workshop\help\doc\en\integration\reffiles\tra

nsform\union directory. The PO.xsd file is used as both the input and output
type.

Importing schemas files triggers a build of the current Schemas project folder.
Wait until the current Schemas folder is built before proceeding to the next step.
(The representations of the schemas will not be available in Available Input
Types and Available Output Type panes until build is complete.)

3. Select the Transformation method from a Transformation control.

To select an existing method, in the Design View of the DTF file:

a. Right-click the arrow representing the method.

b. From the drop-down menu, select Configure XQuery Transformation
Method.

4. Select the input types for the transformation:

a. In the Available Input Types pane, expand the schema and element folders,
until you find the desired element.

b. In the Available Input Types pane, select the desired element.

c. Click Add.

The elements and attributes that make up the selected element are displayed in
the Selected Input Types pane.

For this example, add the PO.xsd/purchase-order element twice.

5. Select the output type for the transformation:

a. In the Available Output Type pane, expand the schema and element folders,
until you find the desired element.

For this example, expand the PO.xsd schema folder.

b. In the Available Input Types pane, select the desired element.

For this example, select the PO.xsd/purchase-order element.
2-36 Guide to Data Transformation

http://edocs.bea.com/workshop/docs81/doc/en/integration/reffiles/transform/union/PO.xsd
http://edocs.bea.com/workshop/docs81/doc/en/integration/reffiles/transform/union/PO.xsd

c. Click Select.

The elements and attributes that make up the selected element are displayed
in the Selected Output Type pane.

6. Click Create Transformation.

The Design View of the XQ file is displayed.

7. Create links between the first set of repeating element nodes:

a. In the Source Schema pane, select each of the sub-elements of the repeating
element and drag them to the analogous sub-element of the repeating element
in the Target Schema pane.

A dashed line linking the two sub-elements is displayed. The dashed line
with long dashes represents a data structural link—a data link that also links
two structures. The dashed-line representation for a data structural link is
shown in the following figure:

To learn more about the links, see “Link Representations” on page 2-22.

For this example, link the nodes shown in the following table:

b. In the Source Schema pane, select the repeating element and drag it to the
repeating element in the Target Schema pane.

A dashed line linking the two repeating elements is displayed. The dashed
line with short dashes represents a structural link—a link between two parent
structures that does not map data directly. The dashed-line representation for
a structural link is shown in the following figure:

Drag This Element From the Source
Schema Pane . . .

To This Element in the Target Schema Pane . . .

$_purchase_orderDoc1/line-items/line
-item/part-no

purchase-order/line-items/line-item/lin
e-no

$_purchase_orderDoc1/line-items/line
-item/quantity

purchase-order/line-items/line-item/qua
ntity
Guide to Data Transformation 2-37

2 Transforming Data Using XQuery
To learn more about links, see “Link Representations” on page 2-22.

For this example, link the
$_purchase_orderDoc1/line-items/line-item repeating element in the
Source Schema pane to the purchase-order/line-items/line-item
repeating element in the Target Schema pane.

At this point, in the Constraint Type pane of the Constraints tab, the
Repeatability/Join option is selected.

8. Create a structural link between the second set of repeating element nodes. In the
Source Schema pane, select the repeating element and drag it to the repeating
element in the Target Schema pane.

In the Constraint Type pane, the Union option becomes active because the
mapper induces that a union between the first and the second set of repeating
elements is possible. A union is possible because the repeating elements contain
the same set of sub-elements.

For this example, link the $_purchase_orderDoc2/line-items/line-item
repeating element in the Source Schema pane to the
purchase-order/line-items/line-item repeating element in the Target
Schema pane.

9. In the Constraint Type pane of the Constraints tab, select the Union option.

Data structural links between the second set of subelements is generated as
shown in the following figure:
2-38 Guide to Data Transformation

10. Select the Test View tab.

11. Import XML or non-XML files as input data for the transformation. For more
information, see “Creating and Testing Maps” on page 2-18.

For this example, in the Source Data pane, select the $_purchase_orderDoc1
node and import the file: InputPO1.xml. In the Source Data pane, select the
$_purchase_orderDoc2 node and import the file: InputPO2.xml. If you
installed WebLogic Platform in the c:\bea directory, import these files from the
c:\bea\weblogic81\workshop\help\doc\en\integration\reffiles\tra

nsform\union\XML directory.

12. In the Result Data pane, click Test.

If not currently running, the WebLogic Server for the current application will be
started. In order for a query to run, the WebLogic Server for the current
application must be running.

In the Result Data pane, a graphical representation of the output data is
displayed.

13. If the resulting data is XML data, in the Result Data pane you can view the
resulting data as an XML document by selecting the XML Source View tab.

14. If desired, you can validate the result data against the associated schema. In the
the Result Data pane of the Test View, click Validate.
Guide to Data Transformation 2-39

http://edocs.bea.com/workshop/docs81/doc/en/integration/reffiles/transform/union/XML/InputPO1.xml
http://edocs.bea.com/workshop/docs81/doc/en/integration/reffiles/transform/union/XML/InputPO2.xml

2 Transforming Data Using XQuery
15. Save the current DTF file:

a. In Application tab, select the folder that contains the DTF file. (If the
Application tab is not visible in WebLogic Workshop, choose
View→Application from the menu bar.)

b. Right-click the DTF file and in the drop-down menu select Save file.dtf,
where file represents the name of the current DTF file.

16. Save the current XQ file:

a. In Application tab, select the folder that contains the XQ file. (If the
Application tab is not visible in WebLogic Workshop, choose
View→Application from the menu bar.)

b. Right-click the XQ file and in the drop-down menu select Save file.xq where
file represents the name of the current XQ file.

Note: The nodes are being joined in the union and not the data in the nodes. For
example, if you are merging repeating elements in which the value of the
part-no element is equal to 1, both part-no elements appear in the output as
shown in the following figure:
2-40 Guide to Data Transformation

The query returns both repeating elements because it determines the repeating
nodes are unique, even if the values of the part-no element are both equal to
1.

Using the Group by Key Fields Option

You can use the Group by Key Fields option of the mapper functionality to group data
based on a key value, as shown in the following figure:
Guide to Data Transformation 2-41

2 Transforming Data Using XQuery
Figure 2-5 Merging Data Using a Key Value

In the example shown in the preceding figure, the in-warehouse-id element is the
key field that is used to group the output. Both the first and third instances of the
in-line-item repeating element in the input document contain the same value of the
in-warehouse-id element (Warehouse1), so these elements are grouped together in
the output document.

This section describes how to group data by a key field using the Group by Key Fields
option. This section shows how to group the example XML data shown in the
preceding figure.

To Group Sets of Data Based on a Key Field

1. Create a Transformation Control and a method in the Transformation control to
contain the transformation. For instructions, see “Creating a Transformation
Control and a Transformation Method” on page 2-9.
2-42 Guide to Data Transformation

2. Import the XSD file that contains the XML Schema for the input and output types
of the transformation. For instructions, see “Selecting Input and Output Types”
on page 2-11.

For this example, import the files: GroupKeyFldIn.xsd and
GroupKeyFldOut.xsd. If you installed WebLogic Platform in the c:\bea
directory, import these files from the
c:\bea\weblogic81\workshop\help\doc\en\integration\reffiles\tra

nsform\groupKeyFields directory.

Importing schemas files triggers a build of the current Schemas project folder.
Wait until the current Schemas folder is built before proceeding to the next step.
(The representations of the schemas will not be available in Available Input
Types and Available Output Type panes until build is complete.)

3. Select the input type(s) for the transformation:

a. In the Available Input Types pane, expand the schema and element folders,
until you find the desired element.

b. In the Available Input Types pane, select the desired element.

c. Click Add.

The elements and attributes that make up the selected element are displayed in
the Selected Input Types pane.

For this example, complete this step for the
GroupKeyFldIn.xsd/in-warehouse-inventory element.

4. Select the output type for the transformation:

d. In the Available Output Type pane, expand the schema and element folders,
until you find the desired element.

For this example, expand the GroupKeyFldOut.xsd schema folder.

e. In the Available Input Types pane, select the desired element.

For this example, select the GroupKeyFldOut.xsd/out-inventory
element.

f. Click Select.

The elements and attributes that make up the selected element are displayed
in the Selected Output Type pane.
Guide to Data Transformation 2-43

http://edocs.bea.com/workshop/docs81/doc/en/integration/reffiles/transform/groupKeyFields/GroupKeyFldIn.xsd
http://edocs.bea.com/workshop/docs81/doc/en/integration/reffiles/transform/groupKeyFields/GroupKeyFldOut.xsd

2 Transforming Data Using XQuery
5. Click Create Transformation.

The Design View of the XQ file is displayed.

6. Create all the data links.

For this example, make the following links:

From the Source Schema pane, drag the
$_in_warehouse_inventoryDoc/in-line-item/in-warehouse-id
element to the
out-inventory/out-warehouse-inventory/out-warehouse-id
repeating element in the Target Schema pane.

From the Source Schema pane, drag the
$_in_warehouse_inventoryDoc/in-line-item/in-location-desc
element to the
out-inventory/out-warehouse-inventory/out-location-desc
element in the Target Schema pane.

From the Source Schema pane, drag the
$_in_warehouse_inventoryDoc/in-line-item/in-part-no element to
the
out-inventory/out-warehouse-inventory/out-line-item/out-part

-no element in the Target Schema pane.

From the Source Schema pane, drag the
$_in_warehouse_inventoryDoc/in-line-item/in-quality element to
the
out-inventory/out-warehouse-inventory/out-line-item/out-quan

tity element in the Target Schema pane.

7. Create a link between input repeating element and the inner-most output
repeating element. (See Figure 2-5 for an example of an inner-most and
outer-most repeating elements.) In the Source Schema pane, drag the input
repeating element to the inner-most output repeating element in the Target
Schema pane.

A dashed line linking the two repeating elements is displayed. The dashed line
with short dashes represents a structural link—a link between two parent
structures that does not map data directly. The dashed-line representation for a
structural link is shown in the following figure:

To learn more about links, see “Link Representations” on page 2-22.
2-44 Guide to Data Transformation

For this example, link the $_in_warehouse_inventoryDoc/in-line-item
repeating element to the out-inventory/out-line-item repeating element.

8. In the Source Schema pane, drag the input repeating element that contains the
key field(s) to the outer-most output repeating element that will contain the key
field(s) in the Target Schema pane.

A dashed line linking the two repeating elements is displayed. The dashed line
with short dashes represents a structural link—a link between two parent
structures that does not map data directly. The dashed-line representation for a
structural link is shown in the following figure:

To learn more about links, see “Link Representations” on page 2-22.

At this point, in the Constraint tab, the Constraint Type is Repeatability/Join
but in a preceding step, the Constraint Type will be set to Group by Key
Fields)

For this example, link the $_in_warehouse_inventoryDoc/in-line-item
repeating element to the out-inventory/out-warehouse-inventory
repeating element.

Keep this link selected for the next step.

9. In the bottom half of the Design View for the XQ file, in the Constraints tab
select the Group by Key Fields option.

10. In the Select Group Key pane, select the in-warehouse-id node and click
Add.

The following is displayed in the Design View as shown in the following figure:
Guide to Data Transformation 2-45

2 Transforming Data Using XQuery
11. Select the Test View tab.

12. Import XML or non-XML files as input data for the transformation. For more
information, see “Creating and Testing Maps” on page 2-18.

For this example, in the Source Data pane, select the
$_in_warehouse_inventoryDoc node and import the file:
GroupKeyFldIn.xml. If you installed WebLogic Platform in the c:\bea
directory, import this file from the
c:\bea\weblogic81\workshop\help\doc\en\integration\reffiles\tra

nsform\groupKeyFields\XML directory.

13. In the Result Data pane, click Test.

If not currently running, the WebLogic Server for the current application will be
started. In order for a query to run, the WebLogic Server for the current
application must be running.

In the Result Data pane, a graphical representation of the output data is
displayed.
2-46 Guide to Data Transformation

http://edocs.bea.com/workshop/docs81/doc/en/integration/reffiles/transform/groupKeyFields/XML/GroupKeyFldIn.xml

14. If the resulting data is XML data, in the Result Data pane you can view the
resulting data as an XML document by selecting the XML Source View tab.

15. If desired, you can validate the result data against the associated schema. In the
the Result Data pane of the Test View, click Validate.

16. Save the current DTF file:

a. In Application tab, select the folder that contains the DTF file. (If the
Application tab is not visible in WebLogic Workshop, choose
View→Application from the menu bar.)

b. Right-click the DTF file and in the drop-down menu select Save file.dtf,
where file represents the name of the current DTF file.

17. Save the current XQ file:

a. In Application tab, select the folder that contains the XQ file. (If the
Application tab is not visible in WebLogic Workshop, choose
View→Application from the menu bar.)

b. Right-click the XQ file and in the drop-down menu select Save file.xq where
file represents the name of the current XQ file.

Invoking Functions or Operators in a Query

This section describes how to use the features of the Functions tab of the mapper
functionality. You can use the Functions Tab to insert calls to functions into a query
(written in the XQuery language).

This section contains the following topics:

Invoking XQuery Functions or Operators in a Query

Invoking User Defined Methods in a Query

Invoking Control Methods in a Query
Guide to Data Transformation 2-47

2 Transforming Data Using XQuery
Invoking XQuery Functions or Operators in a Query

A set of standard W3C XQuery functions and operators are provided in the mapper
functionality of WebLogic Integration. When you use the mapper functionality to
design a transformation, a query (written in the XQuery language) is generated that
does actual data conversion. In the generated query, you can add function calls to this
set of standard XQuery functions. For example, as part of your transformation you
might want to convert the XML String to uppercase characters.

The procedure below describes how to add a function call to a simple link between a
XML String source node and an XML String target node. Adding a function to a more
complicated query is described in the Step 3: Mapping Elements and Attributes in the
Tutorial: Building Your First Data Transformation.

For listings and detailed descriptions of the XQuery functions and operators available
in the mapper functionality of WebLogic Workshop, see XQuery Reference.

In addition to the XQuery functions available in the mapper functionality, a larger set
functions is provided. You can manually add invocations to these functions to queries
in the Source View of the mapper functionality. For a list of these additional functions,
see the XQuery 1.0 and XPath 2.0 Functions and Operators - W3C Working Draft 16
August 2002.

To Add a XQuery Function or Operator Call to a Query

1. Create or open a business process project and application that contains the query
stored as a method in the Transformation Control.

For instructions on creating a new business process project and application, see
Creating a Business Process Application.

To open an existing application that contains the query:

a. From the WebLogic Workshop menu bar, choose File→Open→Application.

b. In the Open Workshop Application dialog box, browse for the desired
application and click Open.

2. Create or open the Transformation control which contains the query.

For instructions on creating a new Transformation Control, see “Creating a
Transformation Control and a Transformation Method” on page 2-9.

To open an existing Transformation Control that contains the query:
2-48 Guide to Data Transformation

http://edocs.bea.com/workshop/docs81/doc/en/integration/dttutorial/tutWLIDataTransStep3.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/refXQuery/refXQueryIntro.html

http://www.w3.org/TR/2002/WD-xquery-operators-20020816/
http://www.w3.org/TR/2002/WD-xquery-operators-20020816/
http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideCreate.html

a. In the Application tab, browse and select for the desired DTF file which
contains the Transformation control. (If the Application tab is not visible in
WebLogic Workshop, choose View→Application from the menu bar.)

b. Double-click the DTF file.

c. Choose the Design View tab.

3. Create or open the method which contains the query.

For instructions on creating a new method in a Transformation control, see “To
Add a Transformation Method to Transformation Control” on page 2-11.

To open an existing method which contains the query:

a. Right-click the arrow representing the method that contains the query.

b. From the drop-down menu, select Configure XQuery Transformation
Method.

The Design View of the XQ file is displayed.

4. In the Design View, select the link to add the function or operator call.

The link between these two nodes becomes blue.

Adding a function or an operator to a link means that during run time, as part of
the transformation of the data between the source node and the target node, the
function will be invoked.

5. In the bottom pane of the Design View, choose the Functions tab.

6. In the Select Function pane, from the drop-down menu select XQuery
Functions or XQuery Operators.

7. In the Select Function pane, collapse and expand the folders to find the desired
function.

For this example, from the String Functions folder select the upper-case
function.

8. In the XQuery Functions pane, select the desired function, and drag it into the
Edit Function pane.

For this example, the following text is displayed in the Edit Function pane, as
shown in the following figure:
Guide to Data Transformation 2-49

2 Transforming Data Using XQuery
9. Leave the parameter selected (in this example: $string-var) in the Edit
Function pane as shown in the preceding figure. In the Select Parameters
drop-down list, select the desired source variable. (The variable that contains the
source node for the link.)

10. In the Select Parameters pane, select the source node and drag it into the Edit
Function pane.

For this example, the following text is displayed in the Edit Function pane, as
shown in the following figure:

11. Click Apply.

During run time, this function will convert all the characters of the
customer-name element to upper case.

12. Save the current DTF file:

a. In Application tab, select the folder that contains the DTF file. (If the
Application tab is not visible in WebLogic Workshop, choose
View→Application from the menu bar.)

b. Right-click the DTF file and in the drop-down menu select Save file.dtf,
where file represents the name of the current DTF file.

13. Save the current XQ file:

a. In Application tab, select the folder that contains the XQ file. (If the
Application tab is not visible in WebLogic Workshop, choose
View→Application from the menu bar.)
2-50 Guide to Data Transformation

b. Right-click the XQ file and in the drop-down menu select Save file.xq where
file represents the name of the current XQ file.

Invoking User Defined Methods in a Query

This section describes the following tasks:

To Add a User Method to a Transformation Control

To Add a User Defined Method Call to a Query

To Add a User Method to a Transformation Control

A User method is a user-defined Java method that can be called from a query (written
in the XQuery language). You can add User Methods to Transformation controls and
then add invocations to these User methods in queries. Adding a User method to a
Transformation control is described in Create a User Defined Java Method to Invoke
From the Join Query in Step 4: Mapping a Repeating Element (Join) in the Tutorial:
Building Your First Data Transformation.

To Add a User Defined Method Call to a Query

Before you can add a user defined method call to a query, the method must already
have been created in the Transformation Control. For instructions, see “To Add a User
Method to a Transformation Control” on page 2-51.

Calling a User method from a query is described in Call the calculateTotalPrice User
Method From the Query task in Step 4: Mapping a Repeating Element (Join) in the
Tutorial: Building Your First Data Transformation.

You may want to add an exception path to the node in the business process which calls
the Transformation control. To learn more, see “Getting the TransformException Fault
Code Programmatically” on page 5-11.

Warning: The User method you call from the query should contain only stateless
functionality. You cannot call a User method which returns a void from a
query.
Guide to Data Transformation 2-51

http://edocs.bea.com/workshop/docs81/doc/en/integration/dttutorial/tutWLIDataTransStep4.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/dttutorial/tutWLIDataTransStep4.html

2 Transforming Data Using XQuery
Invoking Control Methods in a Query

To Add a Control Function Call to a Query

A query can call a function in a Control. Before adding a control function call to a
query, the Control and the function in a Control must already exist in the current
application.

Warning: When you select a Control in Select Functions pane as described in the
following procedure, all the functions in a Control are listed. You should
however, only use the Control functions in queries with look-up,
read-only stateless functionality. For example, a query could call a
read-only function, which accepts as a parameter a record id and returns
the string associated with the record id. This read-only function does not
change or add any values in the database. It just reads a values from the
database. Control functions that are stateful should not be called from
queries. For example, a Database control function that adds a record to the
the database should not be called from a query. Functions that are stateful
or modify the database should be called from the business process
directly.

1. Create or open a business process project and application that contains the query
stored as a method in the Transformation Control.

For instructions on creating a new business process project and application, see
Creating a Business Process Application.

To open an existing application that contains the query:

a. From the WebLogic Workshop menu bar, choose File→Open→Application.

b. In the Open Workshop Application dialog box, browse for the desired
application and click Open.

2. Create or open the Transformation control which contains the query.

For instructions on creating a new Transformation Control, see “Creating a
Transformation Control and a Transformation Method” on page 2-9.

To open an existing Transformation Control that contains the query:
2-52 Guide to Data Transformation

http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideCreate.html

a. In the Application tab, browse and select for the desired DTF file which
contains the Transformation control. (If the Application tab is not visible in
WebLogic Workshop, choose View→Application from the menu bar.)

b. Double-click the DTF file.

c. Choose the Design View tab.

3. Create or open the method which contains the query.

For instructions on creating a new method in a Transformation control, see “To
Add a Transformation Method to Transformation Control” on page 2-11.

To open an existing method which contains the query:

a. Right-click the arrow representing the method that contains the query.

b. From the drop-down menu, select Configure XQuery Transformation
Method.

The Design View of the XQ file is displayed.

4. In the Design View, select the link to add the function call.

The link between these two nodes becomes blue.

Adding a function to a link means that during run time, as part of the
transformation of the data between the source node and the target node, the
function will be invoked.

5. In the bottom pane of the Design View, choose the Functions tab.

6. In the Select Function pane, from the drop-down menu select Control
Functions.

7. In the Select Functions pane, collapse and expand the folders to find the desired
function.

8. In the Select Functions pane, select the desired function, and drag it into the Edit
Function pane.

Warning: Control functions that are stateful should not be called from a query. To
learn more see the warning, at “To Add a Control Function Call to a
Query” on page 2-52.
Guide to Data Transformation 2-53

2 Transforming Data Using XQuery
9. Leave the parameter selected in the Edit Function pane. In the Select Variable
drop-down list, select the desired source variable. (The variable that contains the
source node for the link.)

10. In the Select Parameters pane, select the source node and drag it into the Edit
Function pane.

11. Click Apply.

During run time, the query will invoke this function.

12. Save the current DTF file:

a. In Application tab, select the folder that contains the DTF file. (If the
Application tab is not visible in WebLogic Workshop, choose
View→Application from the menu bar.)

b. Right-click the DTF file and in the drop-down menu select Save file.dtf,
where file represents the name of the current DTF file.

13. Save the current XQ file:

a. In Application tab, select the folder that contains the XQ file. (If the
Application tab is not visible in WebLogic Workshop, choose
View→Application from the menu bar.)

b. Right-click the XQ file and in the drop-down menu select Save file.xq where
file represents the name of the current XQ file.

Using Java Classes in Transformations

This section describes how to use Java classes as input or output types in
transformations.

To Use a Java Class in Transformations

1. Create or open a business process project and application.

For instructions on creating a new business process project and application, see
Creating a Business Process Application.

To open an existing application that contains the query:
2-54 Guide to Data Transformation

http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideCreate.html

a. From the WebLogic Workshop menu bar, choose File→Open→Application.

b. In the Open Workshop Application dialog box, browse for the desired
application and click Open.

2. The Java class for conversion must be available in the current project. To learn
more about including a Java class in your project, see Using Existing
Applications.

For the example shown in this procedure, create a Java file called Book.java in
a subfolder named processes in the project folder:

a. Right-click the project folder or a subfolder in the project folder.

b. From the drop-down menu, select New→Java Class.

The New File dialog box appears.

c. In the Field Name field, enter Book.java.

d. Click Create.

e. Paste the following code segment in between the starting and ending curly
brackets of the Book class:

public String title; // Will convert to xsd type
public Author[] authors; // Will convert to xsd type
private int copiesPrinted; // Private member with no get/set
methods; will not convert to xsd type
private int copiesSold; // Private member with get/set
methods will convert to xsd
public int getCopiesSold(){

return copiesSold;
}
public void setCopiesSold(int in){

copiesSold = in;
}
public HashMap stores; // Will not convert to xsd type,
HashMap not supported

To learn more about which fields are supported in Java classes, see Java
Class Conversion.

f. Add the following import definition in the second line of the Book.java file:

import java.util.HashMap;

g. Save the Book.java file.
Guide to Data Transformation 2-55

http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/howdoi/navUsingExistingApplicationsHowDoI.html
http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/howdoi/navUsingExistingApplicationsHowDoI.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/reference/refJavaClassConversion.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/reference/refJavaClassConversion.html

2 Transforming Data Using XQuery
In Application tab, expand the your application folder. (If the Application
tab is not visible in WebLogic Workshop, from the menu bar choose
View→Application.)

Expand the myprojectWeb project folder, where myproject represents the
name of your project folder.

If required, expand the folder(s) that contain the Book.java file.

Right-click the Book.java file and in the drop-down menu select Save.

You also need to create a Java file called Author.java in the processes
subfolder:

a. Right-click the project folder or a subfolder in the project folder.

b. From the drop-down menu, select New→Java Class.

The New File dialog box appears.

c. In the Field Name field, enter Author.java.

d. Click Create.

e. Paste the following code segment in between the starting and ending curly
brackets of the Author class:

public String lastname; // Will convert to xsd type
public String firstname; // Will convert to xsd type

f. Save the Author.java file.

In Application tab, expand the your application folder. (If the Application
tab is not visible in WebLogic Workshop, from the menu bar choose
View→Application.)

Expand the myprojectWeb project folder, where myproject represents the
name of your project folder.

If required, expand the folder(s) that contain the Author.java file.

Right-click the Author.java file and in the drop-down menu select Save.

3. Import the necessary XSD and MFL files for the other input or output parameters
of the Transformation method into a Schemas project folder. To learn more, see
“Selecting Input and Output Types” on page 2-11.

For the example in this procedure, import the Book.xsd file. For example, if
you installed WebLogic Platform in the c:\bea directory, import the Book.xsd
2-56 Guide to Data Transformation

http://edocs.bea.com/workshop/docs81/doc/en/integration/reffiles/transform/javaClass/Book.xsd

file from the
C:\bea\weblogic81\workshop\help\doc\en\integration\reffiles\tra

nsform\javaClass directory.

The XML Schema in the Book.xsd file is the output type for this example
transformation.

Importing schemas files triggers a build of the current Schemas project folder.
Wait until the Schemas project folder is built before proceeding to the next step.
(The representations of the schemas will not be available in Available Input
Types and Available Output Type panes until build is complete.)

4. Create a Transformation control and Transformation method.

For instructions on creating a new Transformation Control, see “Creating a
Transformation Control and a Transformation Method” on page 2-9.

5. Open the Transformation method which contains the query.

For instructions on creating a new method in a Transformation control, see “To
Add a Transformation Method to Transformation Control” on page 2-11.

To open an existing method which contains the query:

a. Right-click the arrow representing the method that contains the query.

b. From the drop-down menu, select Configure Transformation Method.

The Configure XQuery Transformation Method dialog box is displayed.

6. Select the input and output parameters for the Transformation method. For
detailed instructions, see “Selecting Input and Output Types” on page 2-11.

For this example, in the Available Input Types pane, select the XML option,
select Typed/Book.xsd/Book element as the output parameter, and click Add.

For this example, in the Available Output Types pane, select the Java option,
enter: processes.Book in the Type field, and click Select.

Click Create Transformation.

7. View the XQ file in the Design View:

a. If the Application tab is not visible in WebLogic Workshop, from the menu bar
choose View→Application.

b. In the Application tab, double-click XQ file and select the Design View tab.
Guide to Data Transformation 2-57

http://edocs.bea.com/workshop/docs81/doc/en/integration/reffiles/transform/javaClass/Book.xsd

2 Transforming Data Using XQuery
A graphical representation of the Java class and XML Schema is displayed in
the Design View.

Note: Not all the fields in the Book.java class are displayed. Only supported
public members or private members with JavaBean style get and set
methods are displayed. In this example, the private member: copiesSold
is displayed because the associated JavaBeans set and get methods for
this member are provided. Also, the class member stores is not displayed
because it is of type: java.util.HashMap which is not a supported type.
To learn more about which fields of a Java class are supported in
transformations, see Java Class Conversion.

8. In the Source Schema pane select a node and drag it into the Target Schema
pane.

A link represented by a line between the two nodes is displayed.

Repeat this step as necessary to create additional links.

For this example, in the Source Schema pane select the $_BookDoc/Title node
and drag it to the Book/title node in the Target Schema pane.

For this example, in the Source Schema pane select the $_BookDoc/Author
node and drag it to the Book/authors node in the Target Schema pane. These
nodes are both repeating nodes. A repeating node means more than one instances
of this node can be specified. In the Source Schema pane, repeating nodes are
represented with a + symbol to the right of the node. A dashed line linking the
two repeating nodes is displayed.

For this example, in the Source Schema pane select the
$_BookDoc/Authors/LastName node and drag it to the
Book/authors/Author/lastname node in the Target Schema pane. A solid line
linking the two nodes is displayed.

In the Source Schema pane select the $_BookDoc/Author/FirstName node and
drag it to the Book/authors/firstname node in the Target Schema pane. A solid
line linking the two nodes is displayed.

In the Source Schema pane select the $_BookDoc/CopiesSold node and drag it
to the Book/copiesSold node in the Target Schema pane. A solid line linking
the two nodes is displayed.

9. Save the DTF and the XQ file. From the menu bar, choose File→Save All.

10. Test the query:
2-58 Guide to Data Transformation

http://edocs.bea.com/workshop/docs81/doc/en/integration/reference/refJavaClassConversion.html

a. Select the Test View tab.

b. In the Result Data pane, click Test.

c. The query is run with the default test data. A graphical representation of the
resulting XML data is shown in the Result Data pane.

d. To view resulting data as XML, in the Result Data pane, select the XML
Source View tab.

The Association Between XQ and DTF Files

Associated DTF and XQ files have references to each other in their source code. For
example, if you create a Transformation control named union which contains a
Transformation method called convert and you create maps between the source and
target nodes of the Transformation method the following files are generated:

A DTF file called union.dtf

A XQ file called convert.xq

In the Application tab, the following is displayed:

These two files are associated with each other, the union.dtf refers to the
convert.xq file and the convert.xq refers to the union.dtf file. If you change the
name of either of these files or the transformation method name you must update the
reference to it in the other file.

For the preceding example, the following transform annotation is displayed in the
Source View of the union.dtf file, as shown in the following figure:
Guide to Data Transformation 2-59

2 Transforming Data Using XQuery
The following comment is displayed in the Source View of the convert.xq file, as
shown in the following figure:

This section contains the following topics:

Rename the DTF File and References in Associated XQ Files

Rename the XQ File and References In the Associated DTF File

Rename the DTF File and References in Associated XQ Files

1. Save the DTF and the associated XQ file(s). From the menu bar, choose
File→Save All.

2. In the Application tab, right-click the DTF file and from the drop-down menu,
select Rename.

For this example, select the union.dtf file.
2-60 Guide to Data Transformation

3. Enter the new name and enter the return key.

For this example, replace union with myunion.

In the Application tab, the DTF file is renamed to myunion.dtf and the
associated XQ file (convert.xq) no longer appears under the myunion.dtf file
as shown in the following figure:

4. For each of the XQ files associated with a DTF file:

a. In the Application tab, double-click a XQ file associated with the renamed
DTF file.

For this example, in the Application tab double-click convert.xq.

b. Select the Source View tab of the XQ file.

For this example, select the Source View tab of the convert.xq file.

c. In the first line of the XQ file, change the listed DTF file to the new name.

The red underline in the first line of the XQ file disappears.

For this example, change the first line from the following code:

{-- test/union.dtf#convert --}

To this code:

{-- test/myunion.dtf#convert --}

5. Save the DTF and the associated XQ file(s). From the menu bar, choose
File→Save All.

Rename the XQ File and References In the Associated DTF File

1. Save the DTF and the associated XQ file(s). From the menu bar, choose
File→Save All.

2. In the Application tab, right-click the XQ file and from the drop-down menu,
select Rename.

For this example, select the convert.xq file.

3. Enter the new name and enter the return key.
Guide to Data Transformation 2-61

2 Transforming Data Using XQuery
For this example, replace convert with myconvert.

4. In the Application tab, double-click the DTF file associated with the renamed
XQ file.

For this example, in the Application tab double-click union.dtf.

5. Select the Source View tab of the DTF file.

For this example, select the Source View tab of the union.dtf file.

6. In the DTF file, change the listed XQ file in the transform annotation to the new
name.

The red underline under the XQ name disappears.

For this example, change the annotation from the following code:

/**
 * @dtf:transform xquery-ref="convert.xq"
 * @dtf:schema-validate return-value="false" parameters="false"
 */

To the following annotation:

/**
 * @dtf:transform xquery-ref="myconvert.xq"
 * @dtf:schema-validate return-value="false" parameters="false"
 */

7. Save the DTF and the associated XQ file(s). From the menu bar, choose
File→Save All.

Validating

The schema validating done during run time is different than the validate done when
you click Validate in the Test View tab of the XQ file during design time. The Schema
validating done on XML and non-XML typed data during run time can actually modify
the resulting data while the validating during design time does not modify the resulting
data but it does report if any required elements or attributes defined in the schema are
not present.

This section provides the following topics:
2-62 Guide to Data Transformation

Validating During Design Time

Schema Validating During Run Time

Validating During Design Time

During design time, the Validate button in the Source Data and Result Data panes in
the Test View tab of an XQ file will be active if the selected input and output
parameters are typed XML. For example, if a typed XML parameter is selected in the
Source Data pane, Validate will be active as shown in the following figure:

For MFL types, the non-typed XmlObject and XmlObjectList, or Java primitives,
Validate will not be active as shown in the following figure:
Guide to Data Transformation 2-63

2 Transforming Data Using XQuery
If you click Validate in either the Source Data and Result Data panes in the Test
View tab of an XQ file, the displayed XML is checked against it schema and any errors
are reported during design time. The validating done during design time in the Test
View is not the same as the schema validating that occurs during run time. The
validating during design time does not modify the resulting XML document but it does
check if any required elements or attributes defined in the schema are not present.

Schema Validating During Run Time

In the Transformation Method Parameters pane, if the Schema Validate
Parameters checkbox is selected, during run time the input parameters that have an
associated schema will be validated against their schema types before the
transformation is executed. All typed XML parameters will be schema validated
against their XML Schema and typed non-XML parameters will be validated against
the schema in the MFL file. Input parameters which are untyped or are Java primitives
will not be validated because they do not have an associated schema. The Schema
Validate Parameters checkbox will be ignored for these parameters.

In the Transformation Method Return pane, if the Schema Validate Return
checkbox is selected, during run time the output parameter is schema validated against
its schema type after the transformation is executed.

The Schema validating done on typed XML or non-XML data during run time can
actually modify the resulting data. For XML data, if default attributes and elements are
specified in the XML Schema and these attributes and elements do not have values in
the input document, the resulting XML will have these defaults specified. To learn
more about XML schema validating, see Occurrence Constraints.

If schema validating fails during run time, the
com.bea.transform.TransformException exception is thrown. How the
exception is handled depends on the node that invokes the transformation. If there is
an exception path associated with node at the node level, group level or globally for
the business process, the exception path is invoked. If there is no exception path
associated with the node, the exception will force the business process to fail. To learn
about exception paths in business processes, see Handling Exceptions.
2-64 Guide to Data Transformation

http://www.w3.org/TR/xmlschema-0/#OccurrenceConstraints
http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideException.html

CHAPTER
3 Transforming
Non-XML Data

This section describes design-time and run-time steps required for creating and
executing transformations involving non-XML data sources. It also describes how to
create schemas (MFL files) for non-XML data using an included WebLogic
Integration utility called Format Builder.

This section covers the following topics:

Using Non-XML Data in Business Processes

Using Format Builder to Create Format Schemas (MFL Files)

Importing Existing Metadata to Create Format Schemas (MFL Files)

Testing the Format Schemas (MFL Files)

Using Non-XML Data in Business Processes

Non-XML data that is sent to or received from legacy applications is often
platform-specific information organized in a format unique to the machine on which
the information originated. Non-XML data is not self-describing, so to be understood
by an application, information about the format (metadata) of this data must be
embedded within each application that uses non-XML data from a legacy application.

This section covers the following topics:

Understanding Transformations That Use Non-XML Data
Guide to Data Transformation 3-1

3 Transforming Non-XML Data
Using WebLogic Integration for Transforming Non-XML Data

Understanding Transformations That Use Non-XML Data

Data transformation is the mapping and conversion of data from one format to another.
For example, data in a non-XML format can be transformed to an XML format and the
converse is also true, data in an XML format can be transformed to an non-XML
format. In order to transform data, you must create a schema which contains a
description (metadata) for each of the data fields in the non-XML data. During the
transformation of data from a non-XML format to an XML format, each field of
non-XML data is transformed to XML according to the metadata defined for that field.
The metadata you specify must include the name of the field, the data type, the size,
and an indication of whether the field is always present or optional. This description of
the non-XML data is used to transform the data to XML, as shown in the following
figure:

WebLogic Integration can also transform data from XML to non-XML format, as
shown in the following figure:
3-2 Guide to Data Transformation

Using Non-XML Data in Business Processes
WebLogic Integration can also transform data from one non-XML format to another
non-XML format, as shown in the following figure:

Using WebLogic Integration for Transforming Non-XML
Data

WebLogic Integration facilitates the integration of data from diverse enterprise
applications by supporting the transformation of non-XML legacy system data to other
data types (XML and Java primitives). Once legacy data is available as XML or a Java
primitive, it can be used directly by WebLogic Integration business processes.
WebLogic Integration supports transformations with non-XML data using the
following data integration tools:

Design-Time Component
Guide to Data Transformation 3-3

3 Transforming Non-XML Data
Format Builder

WebLogic Workshop

Run-Time Component

Steps 1-8 occur at design-time and step 9 occurs during run time, as shown in the
following two figures.

The steps for an example non-XML to XML data transformation is shown in the
following figure:

The steps for an example XML to non-XML transformation is shown in the following
figure:
3-4 Guide to Data Transformation

Using Non-XML Data in Business Processes
Steps 2-3 are done in the Format Builder tool and steps 4-8 are done in WebLogic
Workshop.

Design-Time Component

Format Builder

A design-time component of WebLogic Integration is a Java application called Format
Builder. In the first design-time phase (steps 2-3 in preceding figures), you use the
Format Builder to create descriptions of non-XML data records. Specifically, you
describe the layout and hierarchy of the non-XML data (the schema) in the Format
Builder so it can be transformed to or from other data sources, like XML.

You can describe sequences of bytes as fields and specify, for each field, the type of
data (floating point, string, and so on), the size of the data, and the name of the field.
You can further define sets of fields (groups), multiple instances of fields and groups,
and aggregation.
Guide to Data Transformation 3-5

3 Transforming Non-XML Data
The description you create is saved in an XML grammar called Message Format
Language (MFL). MFL documents contain metadata that describes the structure of the
non-XML document. Once the non-XML document has been described via an MFL
document, it can be used in XQuery data transformations just like XML documents
that have been described by XML Schema (XSD) files.

You can also use Format Builder to retrieve, validate, and edit stored MFL documents
and to test message format definitions with your own data. MFL documents are stored
in the file system.

The test feature allows you to verify the MFL documents created in Format Builder by
transforming a sample XML file to non-XML format, or transforming a sample
non-XML file to XML format. You can save the transformed data in a file for future
testing.

Note: To learn more about using Format Builder, see “Using Format Builder to
Create Format Schemas (MFL Files)” on page 3-7.

WebLogic Workshop

In this second design-time phase, you use WebLogic Workshop to create an
application, project, and business process. For instructions on creating applications,
projects, and business processes, see Creating a Business Process Application.

In order to map non-XML data in a transformation, you must first import an MFL file
which describes the non-XML data into WebLogic Workshop. For instructions, see
“Selecting Input and Output Types” on page 2-11.

You also use WebLogic Workshop to create a Transformation control, a method in the
control, and a Client or Control node in a business process. The method contains a
transformation, which when invoked by the business process during run time, maps
data types. You design Control or Client nodes in your business process to call a
method in a Transformation control, as shown in steps 6-8 in the preceding figures.

The following table lists the Client or Control nodes that can be added to a business
process:

Client Request

Client Response

Control Send

Control Send with Return
3-6 Guide to Data Transformation

http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideCreate.html

Using Format Builder to Create Format Schemas (MFL Files)
Control Receive

For instructions on add Client and Control nodes to a business process with
Transformations, see Interacting With Clients and Interacting With Resources Using
Controls, respectively.

Run-Time Component

If you design a Client and Control node to call a method in a Transformation control,
during run time, the business process invokes the node and then that node invokes the
method that contains the transformation. For example, a Client Receive node could
receive non-XML data and pass that data to the transformation method, which
transforms the non-XML data to XML data, as shown in the following figure:

Using Format Builder to Create Format
Schemas (MFL Files)

WebLogic Integration uses MFL files to represent the schemas of non-XML
documents, just as XSD files are used to represent the schemas of XML documents. At
run-time WebLogic Integration uses these MFL files to carry out transformation
operations involving non-XML data. This section provides information about creating
these MFL files using Format Builder.

It includes the following topics:
Guide to Data Transformation 3-7

http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideClients.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideControls.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideControls.html

3 Transforming Non-XML Data
Understanding Data Formats

Analyzing the Data to Be Transformed

Using Format Builder

Understanding Data Formats

To understand how to use the Format Builder, it helps to understand the following
format and document types:

Non-XML Data

XML Documents

MFL Documents

Non-XML Data

Because computers are based on the binary numbering system, a binary format is often
used in applications to represent data. A file stored in binary format can be read by a
computer, but not necessarily by a human. Binary formats are used for executable
programs and numeric data; text formats are used for pure text. Many files contain a
combination of binary and text formats. Non-XML data refers to both binary and text
formatted data.

Note: The term non-XML data replaces the term Binary data that was used in
previous versions of WebLogic Integration. (WebLogic Integration 7.0 or
earlier.)

Unlike XML data, non-XML data is not self-describing. In other words, non-XML
data does not include a description of how the data is grouped, divided into fields, or
otherwise arranged. Non-XML data is a sequence of bytes that can be interpreted as an
integer, a string, or a picture, depending on the intent of the application that generates
that sequence.

For example, consider the following non-XML data string:

2231987

You can interpreted it in many different ways. For example:
3-8 Guide to Data Transformation

Using Format Builder to Create Format Schemas (MFL Files)
As a date: 2/23/1987

As a phone number (223-1987)

Without a clear understanding of the purpose of this data string, the application cannot
interpret the string appropriately.

In order for non-XML data to be understood by an application, the layout of the data
must be embedded in the application itself. The character set used to encode the
character data included in a non-XML file may also vary. For example, character data
on an IBM mainframe is usually encoded using the EBCDIC character set, while data
from a desktop computer is either ASCII or unicode.

You can use Format Builder to create a Message Format Language (MFL) file that
describes the layout or schema of your non-XML data. MFL is an XML language that
includes elements for describing each field of data, as well as groupings of fields
(groups), repetition, and aggregation. The hierarchy of a non-XML record, the layout
of fields, and the grouping of fields and groups are expressed in an MFL document.
This MFL document is used at run time to transform non-XML data to and from an
XML document.

Listing 3-1 Example of Non-XML Data

1234;88844321;SUP:21Sprockley's Sprockets01/15/2000123 Main St.;
Austin;TX;75222;555 State St.;Austin;TX;75222;PO12345678;666123;150;
Red Sprocket;

XML Documents

The eXtensible Markup Language (XML) is the universal format for structured
documents and data. Unlike non-XML data, XML data is self-describing; it makes use
of tags (words bracketed by '<' and '>') that signal the start and end of each block of
data. These tags define the hierarchy of related data components that constitute the
elements in a structured document.

The properties of XML make it suitable for representing and structuring data in a
platform-neutral manner. By making the structure explicit, XML can simplify the task
of exchanging data between applications. Because the data is presented in a standard
form, applications on disparate systems can interpret it using XML parsing tools,
instead of having to interpret data in proprietary binary formats.
Guide to Data Transformation 3-9

3 Transforming Non-XML Data
The following listing shows an example XML document:

<?xml version="1.0"?>
<PurchaseRequest>
 <PR_Number>1234</PR_Number>
 <Supplier_ID>88844321</Supplier_ID>
 <Supplier_Name>Sprockley's Sprockets</Supplier_Name>
 <Requested_Delivery_Date>2000-01-15T00:00:00:000</Requested_Delivery_Date>
 <Shipping_Address>
 <Address>
 <Street>123 Main St.</Street>
 <City>Austin</City>
 <State>TX</State>
 <Zip>75222</Zip>
 </Address>
 </Shipping_Address>
 </PurchaseRequest>

MFL Documents

A Message Format Language (MFL) document (also known simply as a message
format document) is a specialized XML document used to describe the layout of
non-XML data. When you use Format Builder to define the hierarchy of a non-XML
record, the layout of fields, and the grouping of fields and groups, the information is
saved as an MFL document that can then be used to perform run-time transformations.
The information captured in the MFL document can also be used to generate a DTD
that describes the content model for the output generated by the MFL document.

The top-level element of a message format document is the MessageFormat element,
which defines the message format name and version. For example, the following is the
root element of the sample po.mfl document installed with WebLogic Integration:

<MessageFormat name='PurchaseRequest' version='2.01'>

WebLogic Integration supports Message Format Language Version 2.02. This version
supports new features related to padding, truncation, and trimming. Message Format
Language Version 2.01 is still supported.

The name assigned to the message format document becomes the root element in the
XML instances that are generated based on the MFL document. For example, The
following is the root element of any XML document generated based on the sample
po.mfl document:

<PurchaseRequest>
3-10 Guide to Data Transformation

Using Format Builder to Create Format Schemas (MFL Files)
The other elements and attributes available in an MFL document are used to define the
following:

Fields and Field Formats – A field is a sequence of bytes that is meaningful in
the context of an application and that defines the format of a field. (For example,
the field EMPNAME contains an employee name.) You can define the following
formatting parameters:

Tagged – Indicates that a literal precedes the data field, denoting the
beginning of the field.

Length – Indicates that a numeric value precedes the data field, denoting the
length of this field.

Occurrence – Indicates the number of times the field is shown in the message
format. You can specify the number of times the field is to be shown, or
define a delimiter that indicates the end of the repeating field.

Optional – Indicates that the field may or may not be included in the format
of the named message.

Code Page – Identifies the type of character encoding used for the data in the
field.

Note: You must specify unique field names in a single MFL document. To learn
more, see “A Note of Caution—Must Specify Unique Field and Group
Names in the Same MFL File” on page 3-35.

Groups and Group Formats – A group is a collection of fields, comments, and
other groups or references that are related in some way (for example, the fields
PAYDATE, HOURS, and RATE belong to the PAYINFO group). The parameters you
can define for a group include:

Tagged – Means that a literal precedes the other content of the group, which
may be other groups or fields.

Occurrence – Indicates either the number of times the group is to be repeated
in the message format, or a delimiter that marks the end of the repeated
group. For more information about delimiters, see “Specifying Delimiters”
on page 3-27.

Choice of Children – Indicates that only one item in the group will appear in
the message format.

Optional – Indicates that the data in this structure may or may not be
included in the named message format.
Guide to Data Transformation 3-11

3 Transforming Non-XML Data
Note: You must specify unique group names in a single MFL document. To learn
more, see “A Note of Caution—Must Specify Unique Field and Group
Names in the Same MFL File” on page 3-35.

References and Reference Formats – A reference indicates that another instance
of the field or group format exists in the data. The format of a reference field or
group is the same as the format original field or group, but you can change the
optional setting and the occurrence setting for the reference field or group. For
example, if your data includes a bill to address and a ship to address and the
same format is used for both addresses, you can create the address format once,
and then reference it. That is, you can create the an address definition for the bill
to address and reference it for the ship to address.

Comments – Notes containing additional information about the message format.

Analyzing the Data to Be Transformed

Before a message format can be created, the layout of the non-XML data must be
understood. Sample data for a legacy purchase order, with corresponding MFL and
XML documents for a purchase order record, are installed with WebLogic Integration.
The sample purchase order illustrates how WebLogic Integration transforms data from
one format to another.

For more information about this sample data, see Non-XML Data Mapping Sample.

The key to transforming non-XML data to and from XML is to create an accurate
description of it. For non-XML data (data that is not self-describing), you must identify
the following elements:

Hierarchical groups

Group attributes, such as name, optional, repeating, delimited

Data fields

Data field attributes, such as name, data type, length/termination, optional,
repeating

Use Format Builder to incorporate these elements into the format definitions used for
data transformations.
3-12 Guide to Data Transformation

http://edocs.bea.com/workshop/docs81/doc/en/integration/samples/sampleMap.html

Using Format Builder to Create Format Schemas (MFL Files)
Using Format Builder

Format Builder helps you create format descriptions for non-XML data and store them
in MFL documents. Your description should include hierarchical and structural
information derived from a detailed analysis of your data. These format descriptions
are stored in an MFL document. You can also use Format Builder to test your format
descriptions before applying them to your data.

WebLogic Integration also provides utilities that allow you to import COBOL
copybooks, import XML Schemas, and convert C structure definitions into MFL files.
To learn more about these utilities, see “Importing Existing Metadata to Create Format
Schemas (MFL Files)” on page 3-53.

Starting Format Builder

You can launch Format Builder using one of the following options:

To Start Format Builder From WebLogic Workshop

To Start Format Builder on Windows Without Launching WebLogic Workshop

To Start Format Builder on Linux Without Launching WebLogic Workshop

To Start Format Builder From WebLogic Workshop

1. Start WebLogic Workshop: choose Start→Programs→BEA WebLogic
Platform 8.1→WebLogic Workshop 8.1.

2. The main WebLogic Workshop window is displayed.

3. From the WebLogic Workshop menu bar, choose Tools→WebLogic
Integration→Format Builder.

The Format Builder main window is displayed.

To Start Format Builder on Windows Without Launching WebLogic
Workshop

Choose Start→Programs→BEA WebLogic Platform 8.1→Other Development
Tools→Format Builder.

The Format Builder main window is displayed.
Guide to Data Transformation 3-13

3 Transforming Non-XML Data
To Start Format Builder on Linux Without Launching WebLogic Workshop

1. In command line shell, go to the WebLogic Integration bin directory. For example,
if WebLogic Platform is installed in the /usr2/bea directory, go to the
/usr2/bea/weblogic81/integration/bin directory as shown here:

cd /usr2/bea/weblogic81/integration/bin

2. Run the Format Builder start script, as shown here:

./fb.sh

The Format Builder main window is displayed.

Using the Format Builder Window

The Format Builder window is split into two vertical panes. The left pane contains the
navigation tree which shows the structural relationship of the groups and fields defined
in the active MFL document. The right pane displays the properties that define the
item.

Information about the file you are editing is displayed in the title bar of the Format
Builder window.

The structure of the non-XML data is defined in the navigation tree through a
combination of fields and groups that match the target data.

The following topics explain how to use the various tools provided in the Format
Builder window to navigate and execute commands:

Using the Navigation Tree

Using the Format Builder Menu Bar

Using the Toolbar

Using Drag and Drop
3-14 Guide to Data Transformation

Using Format Builder to Create Format Schemas (MFL Files)
Using the Shortcut Menus

Note: For additional information about Format Builder, see the help included with
the Format Builder executable. (To access the Format Builder help, start the
Format Builder as described in “Starting Format Builder” on page 3-13 and
then from the Format Builder menu bar, choose Help→Help Topics.)

Using the Navigation Tree

The navigation tree represents the structure of the non-XML data in a hierarchical
layout. The root node of the navigation tree, the Message node, corresponds to the
MFL document being created or edited. Child nodes are labeled with the names of
groups or fields. Fields are represented by leaf nodes in the navigation tree. Groups
contain fields or other groups and are represented by non-leaf nodes in the navigation
tree.

The icon for each node encapsulates the following information about the node:
whether the node represents a message, a group, a field, a comment, or a reference;
whether a group or field is repeating; whether a group is a Choice of Children; and
whether a group or field is optional or mandatory.

You can add, delete, move, copy, or rename nodes in the navigation tree though menus
or the toolbar. (For details, see “Using the Format Builder Menu Bar” on page 3-17
and “Using the Toolbar” on page 3-17.)

The following table describes the icons displayed in the navigation tree.

Table 3-1 Navigation Tree Icons

Tree Icon Icon Name Description

Message Format The top-level element.

Group Collections of fields, comments, and other groups or references
that are related in some way. (For example, the fields PAYDATE,
HOURS, and RATE belong to the PAYINFO group.) Defines the
formatting for all items in the group.

Optional Group A group that may or may not be included in the message format.
Guide to Data Transformation 3-15

3 Transforming Non-XML Data
Repeating Group A group that is included one or more times.

Optional Repeating Group A group that may or may not be included, but if included, may
occur more than once.

Group Reference Indicates the existence of another instance of the group in the data.
The format of a reference group is the same as that of the original
group, but you can change the optional setting and the occurrence
setting for the reference group.

Group Choice Indicates that only one of the items in the group is included in the
message format.

Field Sequence of bytes that is meaningful in the context of the
application and that defines the formatting for the field. (For
example, the field EMPNAME contains an employee name.)

Optional Field A field that may or may not be included in the message format.

Repeating Field A field is included one or more times.

Optional Repeating Field A field that may or may not be included, but, if included, may
occur more than once in the message format.

Field Reference Indicates the existence of another instance of the field in the data.
The format of a reference field is the same as that of the original
field, but you can change the optional setting and the occurrence
setting for the reference field.

Comment Contains notes about the message format or the data transformed
by the message format.

Table 3-1 Navigation Tree Icons (Continued)

Tree Icon Icon Name Description
3-16 Guide to Data Transformation

Using Format Builder to Create Format Schemas (MFL Files)
Using the Format Builder Menu Bar

The menu bar provides quick access to Format Builder functions.

The items available in a menu depend on the actions you have taken and the node
currently selected in the navigation tree. If a menu item is not available, it is shown in
gray in the menu.

You can display a menu in either of two ways:

Click the name of the menu in the menu bar.

On your keyboard, press Alt + key, where key is the first letter in the menu
name. For example, press Alt + F to select the File menu option.

To execute a command, select it from the menu. Some commands can also be executed
via the keyboard shortcut indicated on the menu (For example, a Ctrl + key sequence.)
The commands available on each menu are described in “Format Builder Menus” on
page 3-49.

Using the Toolbar

The toolbar is a menu of icons that provide alternative ways to access frequently used
commands.

To execute a command, click the appropriate icon in the toolbar. If a command is
unavailable, the icon for it appears grayed-out.

Collapse A minus sign next to an item indicates that the specified item can
be collapsed.

Expand A plus sign next an item indicates that the specified item can be
expanded to show child items.

Table 3-1 Navigation Tree Icons (Continued)

Tree Icon Icon Name Description
Guide to Data Transformation 3-17

3 Transforming Non-XML Data
The following table describes the icons in the Format Builder tool bar.

Table 3-2 Format Builder Toolbar Icons

Toolbar Icon Name Description

New Creates a new message format.

Open Opens an existing message format.

Save Saves the current message format.

Cut Removes the item currently selected in the left pane,
and its child objects, from the navigation tree. The item
can be pasted elsewhere in the navigation tree.

Note: This action is not available if the message
format (root) item is selected.

Copy Makes a copy of the item currently selected in the left
pane for insertion elsewhere in the navigation tree.

Note: This action is not available if the message
format (root) item is selected.

Paste as
Sibling

Inserts the cut or copied item as a sibling object of the
selected item.

Paste as
Reference

Inserts a reference to the cut or copied item as a sibling
object of the selected item.

Undo Reverses the previous action. The tool tip indicates the
action that can be undone. For example, if you change
the name of a field to Address and click Apply, the tool
tip displays the following message: Undo Apply Field
Address.

Format Builder supports multiple undoing of previous
actions.
3-18 Guide to Data Transformation

Using Format Builder to Create Format Schemas (MFL Files)
Redo Reverses the effects of an Undo command. The tool tip
indicates the action that can be redone. For example, if
you change the name of a field to Address and then
Undo that change, the Redo tool tip displays the
following message: Redo Apply Field Address.

Format Builder supports multiple redoing of previous
actions.

Insert Field Inserts a field as a sibling of the item selected in the
navigation tree.

Insert Group Inserts a group as a sibling of the item selected in the
navigation tree.

Insert
Comment

Inserts a comment as a sibling of the item selected in the
navigation tree.

Move Up Moves the selected item up one position under its
parent.

Move Down Moves the selected item down one position under its
parent.

Promote item Assigns the selected item to the next highest level in the
navigation tree. For example, suppose Field1 is a child
object of Group1. If you select Field1 and click the
Promote tool, you make Field1 a sibling of Group1.

Demote item Assigns the selected item to the next lower level in the
navigation tree. For example, suppose Group1 is the
sibling of Field1 and it is listed immediately after
Group1 in the navigation tree. If you select Field1 and
click the Demote tool, you make Field11 a child of
Group1.

Table 3-2 Format Builder Toolbar Icons (Continued)

Toolbar Icon Name Description
Guide to Data Transformation 3-19

3 Transforming Non-XML Data
Using the Shortcut Menus

When you right-click an item in the navigation tree, a menu of the most frequently used
commands for that item is displayed. The following table describes the commands that
are available from the shortcut menus.

Note: The availability of a command depends on the item you select and the previous
actions you have taken.

Expand All Expands all the items in the navigation tree to show
child items.

Collapse All Collapses the navigation tree to show first-level items
only.

Format Tester Opens the Format Tester window.

Table 3-2 Format Builder Toolbar Icons (Continued)

Toolbar Icon Name Description

Command Description

Cut Removes the item currently selected in the left pane, and its child objects,
from the navigation tree.

Copy Makes a copy of the item currently selected in the left pane for insertion
elsewhere in the navigation tree.

Paste Inserts the cut or copied item. An additional menu is displayed when you
select Paste. You can paste the item as either a child or a sibling of the
selected item. In addition, you can paste a reference to the cut or copied item
as a sibling of the selected item.

Insert Group Inserts a new group as either a child or a sibling of the selected item,
depending on your specification.
3-20 Guide to Data Transformation

Using Format Builder to Create Format Schemas (MFL Files)
Using Drag and Drop

You can drag and drop to copy and paste, or move items in the navigation tree.

Note: The node being copied or moved is always inserted as a sibling of the selected
node during the drag-and-drop process. If you drag and drop the node onto the
Message Format node, it is inserted as the last child.

To move an item:

1. Select the item you want to move.

2. Press and hold the left mouse button while you drag the item to the desired node.

3. When the item is in the desired location, release the left mouse button. The item
is moved to the new location.

To copy and paste an item:

1. Select the item you want to copy.

2. Press and hold the Ctrl key.

3. Keeping the Ctrl key depressed, press and hold the left mouse button while you
drag the item to the desired node.

4. With the sibling object selected, release the left mouse button. A copy of the item
is pasted the new location.

Insert Field Inserts a new field as either a child or a sibling of the selected item,
depending on your specification.

Insert
Comment

Inserts a comment as either a child or a sibling of the selected item,
depending on your specification.

Duplicate Makes a copy of the currently selected item and pastes it as a sibling. The
duplicate item contains the same values and child objects as the original.
The name of the duplicate is the same as that of the original, with the
addition of a prefix: New. Thus, for example, if the name of the original item
is MyGroup1, then the name of the duplicate is NewMyGroup1.

Delete Deletes the selected item.

Command Description
Guide to Data Transformation 3-21

3 Transforming Non-XML Data
Creating Message Formats

The first step in creating a message format definition file is to create a message format
(the root node of a message format file).

To create a message format:

1. Choose File→New. The detail window for the message format is displayed the
right pane.

2. Enter the name of the message format in the Name/XML root field.

Note: The entry in the Name/XML Root field becomes the name of the root
element of each XML instance generated based on this message format
document. Therefore, the entry must comply with the conventions
described in the following section, “XML Element Naming Conventions”
on page 3-23.

3. Click one of the following:

Apply—updates the message format properties.

Reset—discards your changes to the detail window and resets all fields to
the values that were last applied.

Help—displays online help information for the message format detail
window.

Note: The Apply and Reset options are enabled only after changes are made in
the detail window.
3-22 Guide to Data Transformation

Using Format Builder to Create Format Schemas (MFL Files)
XML Element Naming Conventions

The names you assign to the root node, fields, groups, and references in a message
format document are transformed to XML element names in the XML instances
generated based on the message format document. Therefore, the names must comply
with the following XML naming rules:

A name must start with a letter or underscore.

A name can contain letters, digits, periods, hyphens, or underscores.

The following strings are examples of valid names:

MyField

MyField1

MyField_again

MyField-again

The following strings are examples of invalid names:

1MyField (starts with a digit)

My>Field (includes a greater-than sign (>), which is an illegal character)

My Field (includes a space, which is not permitted)

Creating Groups

A group is a collection of fields, comments, references, and other groups that are
related in some way. For example, the fields PAYDATE, HOURS, and RATE might all
belong to the PAYINFO group. You can create a group as a child of the message format
item, as a child of another group, or as a sibling of a group or field.

Note: You must specify unique field names in a single MFL document. To learn
more, see “A Note of Caution—Must Specify Unique Field and Group
Names in the Same MFL File” on page 3-35.

To create a group:

1. Select the an item in the navigation tree.

2. Choose one of the following:
Guide to Data Transformation 3-23

3 Transforming Non-XML Data
If the selected item is the root node, or another group, and you want to create
the group as the child of the selected item, choose Insert→Group→As
Child.

If you want to create the group as a sibling the selected item, choose
Insert→Group→As Sibling.

The detail window for the group is displayed the right pane.

3. Define the properties for the group as described in the following table:

Table 3-3 Group Properties

Category Property Description

Group Description Name The name of the group. The entry must comply with the conventions
described in “XML Element Naming Conventions” on page 3-23.

Optional Select Optional if the group is optional.

Choice of
Children

Select Choice of Children if only one of the items in the group will be
included in the message format.
3-24 Guide to Data Transformation

Using Format Builder to Create Format Schemas (MFL Files)
Group Occurrence

(Unless defined as
Optional in the
Group Description,
all groups occur at
least once.)

Once Select this option to indicate that the group appears only once.

Repeat
Delimiter

Select this option to indicate that the group will repeat until the specified
delimiter is encountered.

Repeat Field Select this option to indicate that the group will repeat the number of
times specified in the field selected as the repeat field.

Repeat
Number

Select this option to indicate that the group will repeat the specified
number of times.

Unlimited Select this option to indicate that the group will repeat an unlimited
number of times.

Table 3-3 Group Properties (Continued)

Category Property Description
Guide to Data Transformation 3-25

3 Transforming Non-XML Data
Group Attributes Group is
Tagged

Select this option if the group is tagged, that is, if a literal precedes the
other content of the group, which may be other groups or fields.

Group
Delimiter

The termination point of a group can be specified by a delimiter: a string
of characters that marks the end of a group of fields. The group continues
until delimiter characters are encountered.

Note: Normally, groups are not delimited. They are usually parsed by
content; the group ends when all child objects have been parsed.
For more information about delimiters, see “Specifying
Delimiters” on page 3-27.

Select from among the following options to specify the group delimiter
attributes:

None Select this option if there is no delimiter for the group.

Delimited Select this option if the termination point of the group is
marked with a delimiter character string, then enter the
delimiter characters in the Value field.

Delimiter
Field

Select this option if the termination point of the group is
marked by a field that contains a delimiter character string.
When you select this option, you are prompted to provide
the following:

Field—select the field that contains the delimiter character
string. A list of valid fields is presented in a drop-down list.

Default—enter the default delimiter character used if the
selected field is not included in the data. This value is
required.

Delimiter
is Shared

Select this option to indicate that the delimiter marks both
the end of the group of data, and the end of the last field of
the group. The delimiter is shared by the group, and the last
field of the group, to indicate the end of the data.

Table 3-3 Group Properties (Continued)

Category Property Description
3-26 Guide to Data Transformation

Using Format Builder to Create Format Schemas (MFL Files)
4. Click one of the following:

Apply—updates the group properties.

Duplicate—makes a copy of the group currently displayed and pastes it as a
sibling.

The duplicate group contains the same values and child objects as the
original. The name of the duplicate is the same as that of the original, with
the addition of a prefix: New. Thus, for example, if the name of the original
group is MyGroup1, then the name of the duplicate is NewMyGroup1.

Reset—discards your changes to the detail window and resets all fields to
the values that were last applied.

Help—displays online help information for the detail window.

Note: The Apply and Reset options are enabled only after changes are made in
the detail window.

Specifying Delimiters

You can specify delimiters in Format Builder by entering the correct syntax. For
example, if you want to specify a tab character as a delimiter (‘\u009’), you must enter
the construct \t to match it.

The following tables maps characters you can use as delimiters to the constructs you
must use to designate these characters as delimiters.

Table 3-4 Character Delimiters

Use this
construct . . .

To designate the following character as a delimiter . . .

x x

\\ \ (backlash)

\0n Character with octal value 0n (<= n <= 7)

\0nn Character with octal value 0nn (0 <= n <= 7)

\0mnn Character with octal value 0mnn (0 <= m <= 3, 0 <= n <= 7)

\xhh Character with hexadecimal value 0xhh
Guide to Data Transformation 3-27

3 Transforming Non-XML Data
To learn more, see the java.util.regex.Pattern class decription.

Creating Fields

A field is a sequence of bytes that is meaningful to an application. (For example, the
field EMPNAME contains an employee name.) You can create a field as a child of the
message format node, as a child of a group, or as a sibling of a group or another field.
Field names are used as element names in the XML output; they must comply with the
conventions described in “XML Element Naming Conventions” on page 3-23.

To create a field:

1. Select an item in the navigation tree.

2. Choose one of the following:

If you want to create the field as the child of the selected item, choose
Insert→Field→As Child.

If you want to create the field as the sibling of the selected item choose
Insert→Field→As Sibling.

The detail window for the field is displayed the right pane.

\uhhhh Character with hexadecimal value 0xhhhh

\t Tab character ('\u0009')

\n Newline (line feed) character ('\u000A')

\r Carriage-return character ('\u000D')

\f Form-feed character ('\u000C')

\a Alert (bell) character ('\u0007')

\e Escape character ('\u001B')

\cx Control character corresponding to x

Table 3-4 Character Delimiters (Continued)

Use this
construct . . .

To designate the following character as a delimiter . . .
3-28 Guide to Data Transformation

http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html

Using Format Builder to Create Format Schemas (MFL Files)
3. Define the properties for the field as described in the following table:
Guide to Data Transformation 3-29

3 Transforming Non-XML Data
Table 3-5 Field Properties

Category Property Description

Field Description Name The name of the field. The entry must comply with the conventions
described in “XML Element Naming Conventions” on page 3-23 and “A
Note of Caution—Must Specify Unique Field and Group Names in the
Same MFL File” on page 3-35.

Optional Select this option if this is an optional field. Optional means that the data
for the field may or may not be present.

Type Select the data type of the field from the drop-down list. The default is
String.

Note: Which field type you select dictates which field data options are
displayed.

For a list of data types supported by WebLogic Integration, see the online
help of Format Builder.

Field Occurrence

(Unless defined as
Optional in the
Field Description,
all fields occur at
least once.)

Once Select this option to indicate that the field appears only once.

Repeat
Delimiter

Select this option to indicate that the field will repeat until the specified
delimiter is encountered.

Repeat Field Select this option to indicate that the field will repeat the number of times
specified in the field selected as the repeat field.

Repeat
Number

Select this option to indicate that the field will repeat the specified number
of times.

Unlimited Select this option to indicate that the field will repeat an unlimited number
of times.
3-30 Guide to Data Transformation

Using Format Builder to Create Format Schemas (MFL Files)
Field Attributes

(The Field
Attributes
properties that are
displayed are
dependent on the
Type specified in
the Field
Description)

Field is
Tagged

Select this option if the field is tagged, that is, if a literal proceeds the data,
indicating that the data is present. You must also choose the data type of
the tag field from the drop-down list. For example in the following:

SUP:ACME INC

SUP: is a tag and ACME INC is the field data.

If you select the Field is Tagged option, enter the tag in the field to the right
of the check box.

Field Default
Value

Select this option to specify a value for the data in field that is inserted into
the non-XML data if the field is not included in the XML.

If the field is not included in the non-XML data and it is not optional, then
the non-XML data fails to parse, even if a default value is given.

Data Base
Type

If the field is a date or time field, the base type indicates the type of
characters (ASCII, EBCDIC, or Numeric) used to represent the data.

Year Cutoff If the field is a date field with a 2-digit year, the year cutoff attribute allows
the 2-digit year to be converted to a 4-digit year. If the 2-digit year is
greater than or equal to the year cutoff value, a prefix of 19 is added to the
year value. Otherwise a prefix of 20 is used.

Code Page The character encoding of the field data. The default code page is set by
choosing Tools→Options and selecting the default encoding from the
Default Field Code Page drop down list.

Value The value displayed in a literal field.

Table 3-5 Field Properties (Continued)

Category Property Description
Guide to Data Transformation 3-31

3 Transforming Non-XML Data
Field Attributes
(Continued)

Termination Select from among the following options to specify the group delimiter
attributes:

Length Select this option to set the length of variable-sized data
types to a fixed value. When you select this option, you are
prompted to provide the following:

Length—enter the number of bytes in the field.

Trim Leading/Trailing—removes the specified data from
the leading or trailing edge of the data.

Pad—if the XML data is shorter than the specified length,
appends the specified data to correct its length. Select one of
the following padding options:

Select the Trailing option to append padding at the end
of a field.

Select the Leading option to append padding at the
beginning of a field.

Truncate—remove a specified number of characters from a
field. Select any combination of the following truncation
options:

Select the Truncate First option to remove the specified
number of characters from the beginning of the field.

Select the Truncate After option to remove the specified
number of characters from the end of the field.

If you select both truncation options, the Truncate First
option is implemented initially, and the Truncate After
option is invoked on the remaining characters.

Table 3-5 Field Properties (Continued)

Category Property Description
3-32 Guide to Data Transformation

Using Format Builder to Create Format Schemas (MFL Files)
Field Attributes
(Continued)

Termination
(Continued)

Embedded
Length

Select this option to indicate that the termination point of a
variable-sized data type is specified by an embedded length.
An embedded length precedes the data field and indicates
the number of bytes in the data. When you select this option,
you are prompted to provide the following:

Type—specifies the data type and, if necessary, the
length or delimiter for termination.

Tag/Length Order—specifies the order of the tag and
length fields when both are included. The default order
is: tag, length.

Trim Leading/Trailing—removes the specified data
from the leading or trailing edge of the data.

Truncate—remove a specified number of characters
from a field. For more information, see the description
of the Truncate option for the Length option.

Delimiter Select this option to indicate that the termination point of a
variable-sized data type is specified by a delimiter: a value
that marks the end of the field. The field data continues until
the delimiter is encountered. When you select this option,
you are prompted to provide the following:

Value—enter the delimiter that marks the end of the
field data.

Trim Leading/Trailing—removes the specified data
from the leading or trailing edge of the data.

Truncate—remove a specified number of characters
from a field. For more information, see the description
of the Truncate option for the Length option.

Table 3-5 Field Properties (Continued)

Category Property Description
Guide to Data Transformation 3-33

3 Transforming Non-XML Data
4. Click one of the following:

Apply—updates the field properties.

Duplicate—makes a copy of the field currently displayed and pastes it as a
sibling.

The duplicate field contains the same values as the original. The name of the
duplicate is the same as that of the original, with the addition of a prefix:
New. Thus, for example, if the name of the original field is MyField1, then
the name of the duplicate is NewMyField1.

Reset—discards your changes to the detail window and resets all fields to
the values that were last applied.

Help—displays online help information for the field detail window.

Note: The Apply and Reset options are enabled only after changes are made in
the detail window.

Field Attributes
(Continued)

Termination
(Continued)

Delimiter
Field

Select this option if the termination point of a variable-sized
data type is specified by a field that contains a delimiter
value. When you select this option, you are prompted to
provide the following:

Field—select the field that contains the delimiter.

Default—enter a default delimiter that can be used
when the delimiter field is not present. You must enter
a value in this field.

Trim Leading/Trailing—removes the specified data
from the leading or trailing edge of the data.

Truncate—remove a specified number of characters
from a field. For more information, see the description
of the Truncate option for the Length option.

For more information about delimiters, see “Specifying
Delimiters” on page 3-27.

Decimal
Position

Specifies the number of digits (0-16) to the left of the
decimal point.

Table 3-5 Field Properties (Continued)

Category Property Description
3-34 Guide to Data Transformation

Using Format Builder to Create Format Schemas (MFL Files)
Padding Mandatory Fields

Prior to the WebLogic Integration 7.0 release, no padding was performed on
mandatory fields when data for the field did not exist at run time. For the WebLogic
Integration 7.0 release and all subsequent releases, during an XML to non-XML
transformation, a mandatory field that does not contain data is padded with the default
value, if a default value has been specified. If no default value is specified and a field
does not contain data at transformation time, an error occurs.

Note: Padding of mandatory fields is not supported for non-XML to XML
transformations.

This feature is useful when a group is specified multiple times, but data is provided for
only one occurrence. When padding of mandatory fields is invoked, all occurrences of
a group for which data are not provided are padded with default values, if specified.

A Note of Caution—Must Specify Unique Field and Group Names in the Same
MFL File

You must specify unique field (FieldFormat) and group (StructFormat) format
names in a single MFL file. Format Builder allows the creation of duplicate field and
group format names in the same MFL file but when an MFL file with duplicate names
is imported into WebLogic Workshop causing the schemas project is built, errors will
be reported, as shown in the following examples.

If the following example MFL file is imported into WebLogic Workshop, the build of
the schema project fails because the field name: StockSymbol is used in two different
groups:

<?xml version='1.0' encoding='windows-1252'?>
<!DOCTYPE MessageFormat SYSTEM 'mfl.dtd'>
<MessageFormat name='StockPrices' version='2.01'>

<StructFormat name='PriceQuoteOne' repeat='*'>
<FieldFormat name='StockSymbol' type='String' delim=':'

codepage='windows-1252'/>
<FieldFormat name='StockPrice' type='String' delim='|'

codepage='windows-1252'/>
</StructFormat>
<StructFormat name='PriceQuoteTwo' repeat='*'>

<FieldFormat name='StockSymbol' type='String' delim=':'
codepage='windows-1252'/>

<FieldFormat name='StockPrice' type='String' delim='|'
codepage='windows-1252'/>
Guide to Data Transformation 3-35

3 Transforming Non-XML Data
</StructFormat>
</MessageFormat>

The following schema build error is reported:

ERROR: Error compiling MFL file
-C:\bea\weblogic81\DTGuide\Schemas\StockQuotesSameStructFormat.mfl:
FieldFormat already defined: StockSymbol

If the following example MFL file is imported into WebLogic Workshop, the build of
the schema project fails because the group name: PriceQuote is used twice, even
though the first PriceQuote is nested in the group: Level:

<?xml version='1.0' encoding='windows-1252'?>
<!DOCTYPE MessageFormat SYSTEM 'mfl.dtd'>
<MessageFormat name='StockPrices' version='2.01'>

<StructFormat name='Level' repeat='*'>
<StructFormat name='PriceQuote' repeat='*'>

<FieldFormat name='StockSymbol' type='String' delim=':'
codepage='windows-1252'/>

<FieldFormat name='StockPrice' type='String' delim='|'
codepage='windows-1252'/>

</StructFormat>
</StructFormat>
<StructFormat name='PriceQuote' repeat='*'>

<FieldFormat name='StockSymbol' type='String' delim=':'
codepage='windows-1252'/>

<FieldFormat name='StockPrice' type='String' delim='|'
codepage='windows-1252'/>

</StructFormat>
</MessageFormat>

The following schema build error is reported:

ERROR: Error compiling MFL file -
C:\bea\weblogic81\DTGuide\Schemas\StockQuotesSameNameInDiffGroup.mfl:
 StructFormat already defined: PriceQuote

Note: You can, however, use the same field and group names in different MFL files
because the file name of the MFL document becomes the namespace for the field or
group format names in WebLogic Workshop, making the field and group format names
unique from file to file. For example, the StockPrice field in the Stock.mfl file
is prefixed with the namespace:Stocks making it unique from the StockPrice
field in the Price.mfl file which is prefixed with the namespace: Price.
3-36 Guide to Data Transformation

Using Format Builder to Create Format Schemas (MFL Files)
Creating Comments

Comments are notes about the message format or the data transformed by the message
format. Comments are included in the message format definition for documentation
and informational purposes only; they are unnumbered and are not transformed to
XML or non-XML data. You can create a comment as a child or sibling of any message
format, group, or field.

Note: Conventionally, a comment precedes the node it annotates.

To create a comment:

1. Select an item in the navigation tree.

2. Choose one of the following:

If you want to create the comment as the child of the selected item, choose
Insert→Comment→As Child.

If you want to create the comment as the sibling of the selected item, choose
Insert→Comment→As Sibling.

3. Enter the comment text in the Comment Details field.

4. Click one of the following:

Apply—updates the comment text.

Reset—discards your changes to the detail window and resets all fields to the
values that were last applied.

Help—displays online help information for the comment detail window.

Note: The Apply and Reset options are enabled only after changes are made in
the detail window.
Guide to Data Transformation 3-37

3 Transforming Non-XML Data
Creating References

References allow you to reuse an existing field or group format in a new context. When
you create a reference to an existing field or group, the same format is used, but you
can modify the optional and occurrence properties for the reference field or group.

For example, if your data includes a bill to address and a ship to address and the same
format is used for both addresses, you can create the address format once, and then
reference it. That is, you can create the an address definition for the bill to address and
reference it for the ship to address.

Note: A reference item is given exactly the same name as the original item, therefore,
you should use a generic name, such as address, when you create a field or
group that is be referenced. For instance, in the previous example, you can
create an address group as a child of the bill_to group and then reference
the address group from within the ship_to group.
3-38 Guide to Data Transformation

Using Format Builder to Create Format Schemas (MFL Files)
To create a reference:

1. Select the item to be referenced in the navigation tree.

2. Choose Edit→Copy.

3. Select an item at the desired location for the reference. When you paste the item
as a reference in the next step, the reference is pasted as a sibling of the selected
item.

4. Choose Edit→Paste→As Reference.

The detail window for the reference is displayed. For example, the following
figure shows the detail window for a Field Reference:

5. Define the properties for the reference as described in the following table:

Table 3-6 Reference Properties

Category Property Description

Field or Group
Reference
Description

Name The name of the field or group for which you created this reference. This
value cannot be changed.

Optional Select this option if the reference is optional.
Guide to Data Transformation 3-39

3 Transforming Non-XML Data
6. Click one of the following:

Apply—updates the reference properties.

Reset—discards your changes to the detail window and resets all fields to the
values that were last applied.

Edit Reference—displays the detail window for the original item to allow
you to edit the item.

Help—displays online help information for the reference detail window.

Note: The Apply and Reset options are enabled only after changes are made in
the detail window.

Working with the Palette

The Format Builder palette allows you to store commonly used message format
components so they are available whenever you need to insert them into your message
format definitions.

The default palette, palette.xml, is an MFL document which is stored in the
WebLogic Integration installation directory. The default palette contains common date
formats, literals, and strings. You can use these items in the message formats you
create, as well as add your own items to the default palette. You can also create your
own MFL documents for use in the palette, or open and use items from any existing
MFL document.

Field or Group
Reference
Occurrence

(Unless defined as
Optional all
referenced items
occur at least once.)

Once Select this option to indicate that the referenced item appears only once.

Repeat
Delimiter

Select this option to indicate that the referenced item will repeat until the
specified delimiter is encountered.

Repeat Field Select this option to indicate that the referenced item will repeat the
number of times specified in the field selected as the repeat field.

Repeat
Number

Select this option to indicate that the referenced item will repeat the
specified number of times.

Unlimited Select this option to indicate that the referenced item will repeat an
unlimited number of times.

Table 3-6 Reference Properties

Category Property Description
3-40 Guide to Data Transformation

Using Format Builder to Create Format Schemas (MFL Files)
The following topics provide the information you need to use the palette:

Opening the Palette

Using the Palette File Menu

Using the Palette Shortcut Menu

Copying Items From the Active Message Format to the Palette

Deleting Items From the Palette

Copying Palette Items from the Palette to the Active Message Format

Opening the Palette

To open the palette:

1. Start Format Builder.

2. Choose View→Show Palette.

The Palette window displays the default palette.

You can copy items from the navigation tree to the palette, and vice versa. You can use
drag and drop, or the commands available on the shortcut menu, to organize items in
the palette. The contents of the palette are automatically saved when you exit Format
Builder.

Note: Only copying items, whether from the navigation tree to the palette or vice
versa, is allowed. You cannot move items between the windows.
Guide to Data Transformation 3-41

3 Transforming Non-XML Data
Using the Palette File Menu

The commands described in the following table are available from the Palette File
menu.

Using the Palette Shortcut Menu

A shortcut menu is displayed when you right-click an item or folder in the palette. The
following table describes the commands available from the shortcut menu.

Note: Some commands may be unavailable, depending on the item you select.

Table 3-7 Palette File Menu Commands

Command Description

Open Displays the Open dialog box to allow you to select and open an existing
MFL document in the palette.

Save Saves any changes you have made to the MFL document currently open in
the palette.

Hide Palette Closes the Palette window.

Table 3-8 Palette Shortcut Menu Commands

Command Description

Insert Inserts a new folder. When you select this command, you are prompted
to supply the name of the folder.

Rename Renames a folder. When you select this command, you are prompted to
supply the new name.

Delete Deletes the selected item.

Move Up Moves the selected item up one position under its parent.

Move Down Moves the selected item down one position under its parent.

Promote Assigns the selected item to the next level up in the hierarchy. For
example, suppose Field1 is a child of Group1. If you select Field1 and
click the Promote tool, then Field1 becomes a sibling of Group1.
3-42 Guide to Data Transformation

Using Format Builder to Create Format Schemas (MFL Files)
Copying Items From the Active Message Format to the Palette

To copy an item from the document currently open in Format Builder to the palette:

1. If it is not already displayed, choose View→Show Palette.

2. In the navigation tree, select the item you want to add to the palette.

3. Drag the item to palette window, then drop it in the desired location in the
hierarchy.

The item is copied to the selected location.

Note: You cannot add an item that depends on the existence of another item to
the palette. For example, you cannot add a field or group reference, and
you cannot add an item for which a Repeat Field is specified.

Adding comments is possible, but not recommended because comments do not
have unique names and therefore are indistinguishable on the palette.

Deleting Items From the Palette

To delete an item from the palette:

1. Right-click the item to be deleted to display the shortcut menu.

2. Select Delete.

You are prompted to confirm the deletion.

3. Click OK to delete the item.

Demote Assigns the selected item to the next lower level in the hierarchy. When
you demote an item, it becomes a child of the sibling that immediately
precedes it. For example, suppose Field1 is a sibling of Group1, and that
it and immediately follows Group1. If you select Field1 and click the
Demote tool, Field1 becomes a child of Group1.

Table 3-8 Palette Shortcut Menu Commands (Continued)

Command Description
Guide to Data Transformation 3-43

3 Transforming Non-XML Data
Copying Palette Items from the Palette to the Active Message Format

To copy an item from the palette to a message format document currently open in
Format Builder:

1. If it is not already displayed, choose View→Show Palette to display the palette.

2. In the palette window, select the item you want to add to your message format.

3. Drag the item to navigation tree, then drop it in the desired location in the
hierarchy.

The item is copied to the selected location in the message format.

Saving a Message Format

You can either save your MFL files directly into a Schemas folder in the file system or
you can save the MFL file to the file system and later import the MFL file into a
Schemas folder as described in the preceding bullets:

You can save MFL files directly into a Schemas project folder in the file system.
For example, if your application saved in the
c:\bea\weblogic81\apps\myApp directory contains the default Schemas
project, you can save the MFL file directly into this
c:\bea\weblogic81\apps\myApp\Schemas directory in the file system.

You can save a message format document to your file system as described in this
section and later when creating a transformation, you import this MFL file into a
Schemas folder of a business process application. To learn more, see “Importing
Schemas” on page 2-5.

To save a message format file for the first time:

1. In the Format builder menu bar, choose File→Save As.

The Save As dialog box is displayed as shown in the following figure:
3-44 Guide to Data Transformation

Using Format Builder to Create Format Schemas (MFL Files)
2. Navigate to the folder in which you want to save the file.

3. Enter the name you want to assign to the file in the File Name field.

Note: If you do not include an extension in your filename, Format Builder
automatically assigns the default extension:.mfl.

4. Click Save As to save the file in the specified location with the specified name
and extension.

To save changes to an existing file, choose File→Save.

To save an existing file to a new name, choose File→Save As and follow steps 2
through 4 in the preceding procedure.

Opening an Existing Message Format File

You can open a message format document on your file system as described in the this
section.

To open an existing message format file:

1. In the Format Builder menu bar, choose File→Open.

The Open dialog box is displayed as shown in the following figure:
Guide to Data Transformation 3-45

3 Transforming Non-XML Data
2. Locate and select the desired file.

3. Click Open.

Using Internationalization Features

You can use the internationalization features in Format Builder by changing the
options for an individual message file or by setting the default Format Builder options
to include internationalization. For details, see:

“Changing Options for a Message Format” on page 3-46

“Setting Format Builder Options” on page 3-47

Changing Options for a Message Format

To change options for a message format file:

1. Select the root node of the message format in the navigation tree.

2. Choose File→Properties.

The File Properties dialog box displays the Message Format Version and the
Default Message Format (MFL) Encoding.
3-46 Guide to Data Transformation

Using Format Builder to Create Format Schemas (MFL Files)
3. Select a type of character encoding for the MFL document from the list of
encoding names and descriptions for this file. (To change the default settings for
all new message format documents, choose Tools→Options.)

4. Click OK.

Your changes are reflected in the MFL document when you test it using Format
Tester.

Setting Format Builder Options

You can set several options to control the overall operation of Format Builder.

To set Format Builder options:

1. Choose Tools→Options.

The Options dialog box is displayed.
Guide to Data Transformation 3-47

3 Transforming Non-XML Data
2. Enter data in the fields as described in the following table:

Table 3-9 Format Builder Options

Category Option Description

N/A Default Message
Format Version

Select the version to be associated with new MFL documents.

Note: Each message format document is associated with its own
message format version. The version specified for a message
format can be changed from the default from the File Properties
dialog box described in the preceding section “Changing
Options for a Message Format.”.

Character
Encoding
Options

Default Message
Format (MFL)
Encoding

Select the character encoding to be associated with new MFL documents.
The character encoding associated with an MFL document specifies the
encoding used for the MFL document itself, and the XML output it
generates.

Default Field Code
Page

Select the code page, from the list of non-XML formats, to be used as the
default code page for each field created in your MFL documents. A code
page specifies the character encoding of the non-XML data in the field.

XML
Formatting
Options

Initial Indent Enter the number of spaces by which to indent the root element when
generating the XML output.

New Line Indent Enter the number of spaces by which to indent a new child element when
generating the XML output.
3-48 Guide to Data Transformation

Using Format Builder to Create Format Schemas (MFL Files)
3. Click one of the following:

OK—saves your changes and dismisses the dialog box.

Cancel—discards your changes and dismisses the dialog box.

Format Builder Menus

The following menus are available in Format Builder: File, Edit, Insert, View, Tools,
and Help.

The commands available on each menu are described in the following sections.

Note: Some commands may be unavailable, depending on which actions you have
taken and what is selected in the navigation tree.

File Menu

The following commands are available from the File menu.

XML Content
Model
Options

Auto-generate DTD Generates a DTD document which captures the content model defined in
the MFL document. If you specify Auto-generate DTD, when you save
an MFL document to the file system, the DTD is saved in the same
directory.

Table 3-9 Format Builder Options (Continued)

Category Option Description

Table 3-10 File Menu Commands

Command Description

New Creates a new message format document.

Open Opens an existing message format document.

Close Closes the current message format document.

Save Saves the current message format document.

Save As Saves the current message format under a different name.
Guide to Data Transformation 3-49

3 Transforming Non-XML Data
Edit Menu

The following commands are available from the Edit menu.

Properties Opens the File Properties dialog box for the active message format
document. This dialog allows you to set options for the active MFL
document (see “Changing Options for a Message Format” on page 3-46).
Choose Tools→Option to set defaults for the application (see “Setting
Format Builder Options” on page 3-47).

Exit Exits the Format Builder.

Table 3-10 File Menu Commands (Continued)

Command Description

Table 3-11 Edit Menu Commands

Command Description

Undo action Reverses the previous action. The Undo command on the Edit menu is
constantly refreshed to indicate the action most recently performed that
can be nullified. For example, if you change the name of a field to Field1
and click Apply, the listing for the Undo command contains the following
text: Undo Apply Field Field1.

Format Builder supports multiple undoing of previous actions.

Redo action Reverses the effects of the Undo command. The Redo command in the
Edit menu is constantly refreshed to indicate the action that can be
redone. For example, if you change the name of a field to Field1 and then
click Undo, the listing for the Redo command contains the following text:
Redo Apply Field Field1.

Format Builder supports multiple redoing of actions previously undone.

Cut Removes the selected item along with its child objects. The item is placed
in the clipboard and can be pasted in a new location.

Note: This action is not available if the Message Format (root) item is
selected.
3-50 Guide to Data Transformation

Using Format Builder to Create Format Schemas (MFL Files)
Insert Menu

The following commands are available from the Insert menu.

Copy Makes a copy of the selected item along with its child objects. The copy
is placed in the clipboard and can be pasted in a new location.

Note: This action is not available if the Message Format (root) item is
selected.

Paste Inserts the current contents of the clipboard. When you select Paste, the
following Paste menu options are displayed:

As Child

As Sibling

As Reference

Duplicate Makes a copy of the currently selected item and pastes it as a sibling. The
duplicate item contains the same values and child objects as the original.
The name of the duplicate is the same as that of the original, with the
addition of a prefix: New. Thus, for example, if the name of the original
item is MyField1, then the name of the duplicate is NewMyField1.

Delete Deletes the item selected in the navigation tree, as well as all child objects
of that item.

Move Up Moves the selected item up one position under its parent.

Move Down Moves the selected item down one position under its parent.

Promote Assigns the selected item to the next level up in the hierarchy. For
example, suppose Field1 is a child of Group1. If you select Field1 and
select Promote, then Field1 becomes a sibling of Group1 and is inserted
immediately after Group1.

Demote Assigns the selected item to the next lower level in the hierarchy. When
you demote an item, it becomes a child of the group that immediately
precedes it. For example, suppose Field1 is a sibling of Group1 and
immediately follows Group1. If you select Field1 and select Demote,
Field1 becomes a child of Group1.

Table 3-11 Edit Menu Commands (Continued)

Command Description
Guide to Data Transformation 3-51

3 Transforming Non-XML Data
View Menu

The following commands are available from the View menu.

Tools Menu

The following commands are available from the Tools menu.

Table 3-12 Insert Menu Commands

Command Description

Field Inserts a new field. You can insert the field as either a child or sibling of
the item selected in the navigation tree.

Group Inserts a new group. You can insert the group as either a child or sibling
of the item selected in the navigation tree.

Comment Inserts a comment. You can insert the comment as either a child or sibling
of the item selected in the navigation tree.

Table 3-13 View menu Commands

Command Description

Show Palette Displays the Palette window.

Expand All Expands the entire navigation tree to show the child objects of all items
in the navigation tree.

Collapse All Collapses the entire navigation tree to show only the root message format.

Table 3-14 Tools Menu Commands

Command Description

Import Displays a list of the installed importers. Choose the importer from which
you want to import a message.

Test Opens the Format Tester.

Options Displays the Format Builder Options dialog box.
3-52 Guide to Data Transformation

Importing Existing Metadata to Create Format Schemas (MFL Files)
Help Menu

The following commands are available from the Help menu.

Importing Existing Metadata to Create
Format Schemas (MFL Files)

WebLogic Integration provides utilities that allow you to import COBOL copybooks,
import XML Schemas, and convert C structure definitions into MFL files. The
following topics explain how to perform these import operations:

Importing a COBOL Copybook

Importing C Structures

Importing a COBOL Copybook

WebLogic Integration includes a feature that allows you to import a COBOL
copybook into Format Builder by creating a message definition to transform the
COBOL data. When importing a copybook, you can use comments to document the
imported copybook and the Groups and Fields it contains.

To import a COBOL copybook:

Table 3-15 Help Menu Commands

Command Description

Help Topics Displays the online help in your default browser.

How Do I Displays a list of common Format Builder tasks. Click a task to view the
step-by-step instructions.

About Displays version and copyright information for the Format Builder and
the JDK you are running.
Guide to Data Transformation 3-53

3 Transforming Non-XML Data
1. Choose Tools→Import→COBOL Copybook Importer.

The COBOL Copybook Importer dialog box is displayed.

2. Designate the properties, as described in the following table:

3. Click one of the following:

OK—imports the COBOL Copybook using the settings you defined.

Table 3-16 COBOL Copybook Importer Properties

Property Value Description

File Name text string Type the full pathname of the file you want to import or use the
Browse button to navigate to the location of the file.

Byte Order Big Endian Select this option for IBM 370, Motorola, and most RISC
designs (IBM mainframes and most UNIX platforms).

Little Endian Select this option for Intel, VAX, and Unisys processors
(Windows, VMS, Digital, UNIX, and Unisys)

Character Set

Note: The character
set is an attribute of
the originating host
machine.

EBCDIC Select this option to set the character set to EBCDIC.

US-ASCII Select this option to set the character set to US-ASCII.

Other Select character encoding of the field data by using a list of
code pages.
3-54 Guide to Data Transformation

Importing Existing Metadata to Create Format Schemas (MFL Files)
Cancel—closes the dialog box and returns you to Format Builder without
importing.

About—displays information about the COBOL Copybook importer,
including the version being used and copybook features that are supported.

After you import a copybook, you can work in the same way you work with any
message format definition. If you find an error or unsupported data type in the
copybook, a message is displayed, informing you of the error. You can choose to have
the error displayed or saved in a log file for future reference.

The following table provides a listing and descriptions of the sample files installed for
the COBOL copybook importer. All directory names are relative; the specified
directories are under the WL_HOME\integration\samples\di directory where
WL_HOME is the top-level directory of your WebLogic Platform installation. (For
example, if you installed WebLogic Platform in the c:\bea directory, the di directory
is located at the following location:
c:\bea\weblogic81\integration\samples\di.)

Importing C Structures

WebLogic Integration includes a C struct importer utility that converts a C struct
definition into an MFL message definition by generating the following types of output
data:

MFL document

C code

Whichever type of output you want, you must first specify a .c or .h input file, which
must be parsed, and then select the desired structure. Then you can choose between
MFL (default) or C code for your output.

Table 3-17 Sample COBOL Copybook Files

Directory File Description

COBOL\ emprec5.cpy Sample copybook file

COBOL\ emprec5.data Test data corresponding to emprec5.cpy
Guide to Data Transformation 3-55

3 Transforming Non-XML Data
All input to the parser must be valid C code. In addition, all external references, such
as #include, #define, and typedef statements, must be resolved before you can use
them. You can resolve them by editing them manually or by using the compiler’s
preprocessor.

Various platform-specific parameters may affect the description of data for C code. For
example, the length of a long on a particular platform affects the non-XML data that
conforms to a particular structure definition.

Two methods are available for dealing with these platform dependencies, depending
on whether or not MFL is generated directly into Format Builder. If you want to
generate MFL and have that MFL displayed immediately in Format Builder, you must
supply the platform-dependent parameters in a configuration file.

Alternately, if you choose to generate your source in C, you may compile the C code
on the desired machine. The compiler on that machine accounts for the necessary
platform-dependent information. This approach allows you to produce an executable
file that, when run, produces two files: an MFL document and non-XML data that
conforms to that MFL. The MFL document can be opened in Format Builder and the
non-XML data file can be opened in Format Tester.

Generating MFL directly into Format Builder requires platform configuration
parameters found in an existing configuration file or a new configuration file created
with the hardware profile editor. The hardware profile editor allows you to specify an
existing profile that can be loaded, updated, and saved.

The source code for a utility that generates hardware profiles according to your needs
is provided in the WL_HOME\integration\samples\di\CFG directory where
WL_HOME is the top-level directory of your WebLogic Platform installation. (For
example, if you installed WebLogic Platform in the c:\bea directory, the cfg
directory is located at the following location:
c:\bea\weblogic81\integration\samples\di\CFG.)

Sample C Struct Importer Files

The following table provides a listing and descriptions of the sample files installed for
the C struct importer. All directory names are relative; the specified directories are
under WL_HOME\integration\samples\di directory where WL_HOME is the
top-level directory of your WebLogic Platform installation. (For example, if you
installed WebLogic Platform in the c:\bea directory, the di directory is located at the
following location: c:\bea\weblogic81\integration\samples\di.)
3-56 Guide to Data Transformation

Importing Existing Metadata to Create Format Schemas (MFL Files)
Starting the C Struct Importer

To start the C Struct Importer:

1. Start Format Builder. For instructions, see “Starting Format Builder” on page 3-13.

Table 3-18 Sample C Struct Importer Files

Directory File Description

C emprec5.h C version of the emprec5.cpy sample Copybook
file, with some typedefs.

C emprec5n.h Variant of the emprec5.h file in which a nested
struct definition, but no typedef is used.

C emprec5s.h Simple version of the emprec5.h file.

C ntfsez.h Small sample, extracted from the ntfs.h file,
designed to test recursive typedefs.

Cfg cprofile.c Source code for the cprofile.c utility; designed
to generate profiles on various platforms.

The following .cfg files were generated by the cprofile program on various platforms.
Each .cfg file contains a value for DESCRIPTION.

Cfg dec8cc.cfg DEC Alpha 1091, Digital UNIX 4.0e, cc compiler

Cfg hp5cc.cfg HP-UX B.11.00, cc compiler

Cfg nt4bcc5.cfg Windows NT 4.0, Borland 5.x compiler, default
switches

Cfg nt4vc6.cfg Windows NT 4.0, Visual C++ 6.x compiler, default
switches

Cfg sun7cc.cfg SunOS 5.8, cc compiler

Cfg w95bcc5.cfg Windows 95, Borland 5.x compiler, default
alignment

Cfg w95vc5.cfg Windows 95, Visual C++ 5.x compiler, default
alignment
Guide to Data Transformation 3-57

3 Transforming Non-XML Data
2. Choose Tools→Import→C Struct Importer.

The C Struct Importer dialog box is displayed.

The C Struct Importer dialog box allows you to specify import properties, as
described in the following table:

Note: Initially, MFL is specified as the default output type.

Table 3-19 C Struct Importer Properties

Category Property Description

Input Input File Type the full pathname of the file you want to import or use the
Browse button to navigate to the location of the file.

Structure Drop-down list of structures found in the input file after parsing
is successful.

Parse Select this option to parse the input file. If successful, the
Structure list box is populated with the list of structures found
in the input file.
3-58 Guide to Data Transformation

Importing Existing Metadata to Create Format Schemas (MFL Files)
3. Click one of the following:

OK—saves your hardware profile changes.

Cancel—dismisses your hardware profile changes.

About—displays information about the C Struct Importer, including the
version number and the release date.

Output MFL If you select this option, you can generate MFL from a structure
definition and a hardware configuration file. The Hardware
Profile dialog box is displayed with the following options.

Name—Specify an existing profile either by entering the
file name or using the Browse option. The prebuilt
hardware profiles may be found in the samples\di\cfg
directory.

Save—saves the current hardware profile.

Save As—allows you to save the current hardware profile
under another name.

Edit—allows you to edit the current hardware profile.

New—allows you to create a new hardware profile.

C Code If you select this option, you can generate C source code to
compile on the target machine and execute to produce MFL.
The C Code File Names dialog box is displayed with the
following options.

MFL Gen—specifies the C source code file name that must
be compiled on the target machine to generate MFL. Use
the Browse option to navigate to the directory where you
want the file to reside.

Data Gen—specifies the C source code file name that must
be compiled on the target machine for generating test data.
Use the Browse option to navigate to the directory where
you want the file to reside.

Table 3-19 C Struct Importer Properties (Continued)

Category Property Description
Guide to Data Transformation 3-59

3 Transforming Non-XML Data
Understanding Hardware Profiles

The hardware profiles used by the C Struct Importer contain data size and alignment
information for specific hardware and compiler combinations and are used to generate
MFL for C structures. They are stored in configuration files that can be created, loaded,
updated, and saved.

The cprofile.c source file in the WL_HOME\integration\samples\di\CFG
directory is used to generate these profiles for any platform. This code is designed to
be compiled and executed on the target platform with the compiler normally used. You
should be able to compile and execute it on any platform with an ANSI standard C
compiler in order to generate a profile configuration file that can be imported into the
C Struct Importer. (Where WL_HOME is the top-level directory of your WebLogic
Platform installation. For example, if you installed WebLogic Platform in the c:\bea
directory, the CFG directory is located at the following location:
c:\bea\weblogic81\integration\samples\di\CFG.)

Building the Hardware Profile Utility

To produce acceptable parser input, execute the appropriate commands for your
platform:

On Windows NT, use the VC++ preprocessor:

VC++ Compiler
cl /P cprofile.c (output in cprofile.i)

GNU Compiler
gcc -P -E cprofile.c>cprofile.i

On UNIX

cc -P cprofile.c (output in cprofile.i)

Running the Hardware Profile Utility

To execute the cprofile program and specify a hardware profile name, enter the
following text at a command prompt:

cprofile configfilename [DESCRIPTION]

A description is optional. If you decide to provide one, put it in the configuration file
as the value of DESCRIPTION. If the description contains embedded blanks, enclose it
in quotes.
3-60 Guide to Data Transformation

Importing Existing Metadata to Create Format Schemas (MFL Files)
Generating MFL

To generate MFL:

1. Enter a filename in the Input File field, or click Browse and select a file from the
list that is displayed.

2. Click Parse to parse the file.

Upon completion, the Structure list is populated with the structures found in the
input file.

Note: If your file does not parse correctly, we recommend that you proceed in
one of two ways:

Run your .h or .c source code through the compiler, preprocessor, and
then run the processor output through the parser.

Comment out the character creating the parsing failure and attempt to
parse again. Please note that the parser fails at the first instance of
incompatible data it encounters. Therefore, repetition of this step may be
required.

3. Select the desired structure from the Structure drop-down list.

At this point, you must provide some profile configuration data to generate the
MFL directly. You can do this by either creating a new hardware profile or
specifying an existing profile.

4. Specify an existing profile or create a new one by performing one of the
following procedures:

Specify an existing profile in one of the following ways: enter the filename
in the Hardware Profile Name field, or click Browse to select a file from
the list that is displayed.

Click Edit to open the hardware profile editor if you need to view or edit the
profile parameters.

Note: Hardware profiles for common configurations are prebuilt and may be
found in the WL_HOME\integration\samples\di\CFG directory.
(Where WL_HOME is the top-level directory of your WebLogic Platform
installation. For example, if you installed WebLogic Platform in the
c:\bea directory, the CFG directory is located at the following location:
c:\bea\weblogic81\integration\samples\di\CFG.)
Guide to Data Transformation 3-61

3 Transforming Non-XML Data
Click New to create a new hardware profile. The Hardware Profile editor is
displayed with the default parameters loaded. Specify a name and description
for the new profile, and modify the primitive data types and byte order as
required.

5. Click OK to save your hardware profile changes and return to the C Struct
Importer dialog box.

6. Click OK to generate your MFL. If the generation is successful, you are returned
to Format Builder with an MFL object listed in the navigation tree. The MFL
object reflects the same name as the input file used in the parse operation.

If errors are detected during the generation process, the MFL Generation Errors
dialog box is displayed providing you with an opportunity to view or file the
error log.
3-62 Guide to Data Transformation

Importing Existing Metadata to Create Format Schemas (MFL Files)
7. Click one of the following:

Display Error Log—to view any errors encountered,

Save Error Log—to save the error log to the location of your choice, or

Cancel—to dismiss the MFL Generation Errors dialog box.

After you determine which errors were generated, you can return to the C Struct
Importer and repeat the applicable steps.

Generating C Code

To generate C code:

1. Enter a filename in the Input File field, or click Browse and select a file from the
list that is displayed.

2. Click Parse to parse the file.

Upon completion, the Structure list is populated with the structures found in the
input file.

Note: If your file does not parse correctly, we recommend that you proceed in
one of two ways:

Run your .h or .c source code through the compiler, preprocessor, and
then run the processor output through the parser.

Comment out the character creating the parsing failure and attempt to
parse again. Please note that the parser fails at the first instance of
incompatible data it encounters. Therefore, repetition of this step may be
required.

3. Select the desired structure from the Structure drop-down list.

4. Select the C Code option.
Guide to Data Transformation 3-63

3 Transforming Non-XML Data
5. Enter a filename in either the MFL Gen or Data Gen field, or click Browse and
select a file from the list that is displayed.

6. Click OK.

Messages are displayed if you are about to overwrite an existing file or if the
code generation has succeeded or failed.

7. Copy the generated source code to the target platform, compile and execute it.

Note: You must copy the input file containing the struct declarations, as well.
When compiled, both programs accept the name of the output file as an
argument.

8. Copy the generated MFL or data back to the platform on which Format Builder is
running.

Importing an XML Schema

WebLogic Integration includes a feature that allows you to import an XML Schema
into Format Builder. The imported XML Schema provides a starting point for creating
the MFL message definitions used for transforming data between XML and non-XML
formats.

To import a XML Schema from an XSD file:

1. Choose Tools→Import→XML Schema Importer.

The Select XSD File & Root Element dialog box is displayed.

2. In the XML Schema Definition field, select an XSD file (ends in the .xsd
extension.)

3. In the Root Element drop-down menu, select a root element.

4. Enter a value in the MFL Field Delimiter Default field.

A delimiter is a character that marks the end of the data field.

5. Click OK.

Note: Imported Element attributes are not converted.
3-64 Guide to Data Transformation

Testing the Format Schemas (MFL Files)
Testing the Format Schemas (MFL Files)

After you build a format schema, you can test it using the Format Tester. The Format
Tester parses and reformats data as a validation test and then generates sample
non-XML or XML data. This sample data can be edited, searched, and debugged to
produce the expected results. Format Tester uses the data transformation run-time
engine to perform the test transformation.

This section discusses the following topics:

Starting the Format Tester

Using the Format Tester Dialog Box

Testing Format Definitions

Debugging Format Definitions

Starting the Format Tester

To start Format Tester:

1. Start Format Builder is not already running. For instructions, see “Starting Format
Builder” on page 3-13.

2. Choose Tools→Test.

The Format Tester dialog box is displayed as shown in the following figure:
Guide to Data Transformation 3-65

3 Transforming Non-XML Data
The Format Tester dialog box is divided into three windows: the Non-XML
window, the XML window, and the Debug window. Resize bars divide the
windows. You can drag the resize bar to adjust window size, or click an arrow
on the bar to show or hide a window. For example, you can click the left arrow
on the bar dividing the Non-XML and XML windows to hide the Non-XML
window. If a window is hidden, you can drag the bar or click the appropriate
arrow to restore the window.

Note: When you open the Format Tester for the first time in a session, only the
Non-XML and XML windows are visible. To open the Debug window,
use the resize bar at the bottom of the Format Test dialog box, or choose
Display→Debug to toggle the Debug window on and off.
3-66 Guide to Data Transformation

Testing the Format Schemas (MFL Files)
Using the Format Tester Dialog Box

The following topics explain how to use various tools provided in the Format Tester
dialog box to navigate and execute commands:

Using the Non-XML Window

Using the XML Window

Using the Debug Window

Using the Resize Bars

Using the Menu Bar

Using the Shortcut Menus

The following topics explain how to use each of these features to help you accomplish
your task.

Using the Non-XML Window

The Non-XML window can contain sample data that has been:

Generated based on the active MFL document.

Transformed from the contents of the XML window.

Specifically designed to test the active MFL document.

You can open an existing non-XML data file, edit or save the contents of the window,
or clear the window as required for your test situation. For details, see “Using the Menu
Bar” on page 3-69 and “Using the Shortcut Menus” on page 3-73.

The Non-XML window of the Format Tester dialog box serves as a non-XML file
editor. The window contains the following tabs:

Hex—displays data offsets, the hex value of individual bytes, and the
corresponding text, which can be displayed in either ASCII or EBCDIC format.

Text—Text only display.

The editor allows you to edit a hex byte or a text value. If a hex data value is modified,
the corresponding text value is updated, and vice versa.
Guide to Data Transformation 3-67

3 Transforming Non-XML Data
Using the Data Offset Feature

The data offset feature of the Hex tab allows you to display the data offsets as
hexadecimal or decimal addresses.

To change the format of the data offsets:

1. Choose Display→Hex.

The following two data offset options are displayed:

Offsets as Hexadecimal

Offsets as Decimal

2. Select an option that best suits your needs. The data offset portion of the
Non-XML window changes dynamically to reflect your choice.

Using the Text Feature

The Text tab of the Non-XML window displays the printable characters (usually in the
form of words and numbers) and certain control characters (carriage return, tab, and so
on). For example, carriage returns are shown as line breaks. Non-printable characters,
are displayed as small squares.

Using the XML Window

The XML window can contain sample XML that has been:

Generated based on the active MFL document.

Transformed from the contents of the Non-XML window.

Specifically designed to test the active MFL document.

You can open an existing XML file, edit or save the contents of the window, or clear
the window as required for your test situation. For details, see “Using the Menu Bar”
on page 3-69 and “Using the Shortcut Menus” on page 3-73.

When XML is generated, the XML Formatting Options specified in the Format
Builder options dialog box are used. For additional information, see “Setting Format
Builder Options” on page 3-47.
3-68 Guide to Data Transformation

Testing the Format Schemas (MFL Files)
Using the Debug Window

The Debug window displays the actions that occur during a transformation, any errors
that are encountered, and field and group values, along with delimiters. To determine
the cause of an error, identify the last field that parsed successfully and examine the
properties of the field listed after it in the navigation tree.

When you open the Format Tester for the first time in a session, only the Non-XML
and XML windows are visible. To open the Debug window, choose Display→Debug
to toggle the Debug window on and off. The Debug window opens below the
Non-XML and XML windows.

Debug output is restricted to the most recent 64 KB of messages. This restriction
prevents large debug output from causing a JVM out of memory event.

The debug log feature allows you to save all debugging information in a file. For
details, see “Using the Debug Log” on page 3-77.

Note: Use of the Debug window or log file increases the time required to transform
from XML to non-XML.

Using the Resize Bars

You can change the dimensions of any window in the Format Tester by using the resize
bars located between the Non-XML, XML, and Debug windows. To change the size
of a window, select a resize bar and drag in the appropriate direction (up or down or to
the left or right) to enlarge one of the windows and reduce the other.

Each resize bar also contains two directional buttons. Click the appropriate button to
show or hide any of the three windows.

Using the Menu Bar

Format Tester functions can be accessed from the five menus listed in the menu bar at
the top of the main window.

You can expand a Format Tester menu in either of two ways:

Click the name of the menu in the menu bar.
Guide to Data Transformation 3-69

3 Transforming Non-XML Data
On your keyboard, press Alt + key, where key is the underlined letter in the
menu name.

To execute a command, select it from the menu. Some commands can also be executed
via the keyboard shortcut indicated on the menu (For example, a Ctrl + key sequence.)
The commands available on each menu are described in the following sections.

File Menu

The following commands are available from the File menu.

Edit Menu

The following commands are available from the Edit menu.

Table 3-20 File Menu Commands

Command Description

Open Non-XML Displays the Open dialog box to allow you to select and open a file in the
Non-XML window.

Note: The default file extension for non-XML files is .DATA.

Open XML Displays the Open dialog box to allow you to select and open a file in the
XML window.

Note: The default file extension for XML files is .XML.

Save Non-XML Displays the Save dialog box to allow you to save the contents of the
Non-XML window.

Save XML Displays the Save dialog box to allow you to save the contents of the
XML window.

Debug Log Displays the Save dialog box to allow you to save the debugging
information in a text file.

Close Closes the Format Tester window.
3-70 Guide to Data Transformation

Testing the Format Schemas (MFL Files)
Display Menu

The following commands are available from the Display menu.

Table 3-21 Edit Menu Commands

Command Description

Cut Removes the currently selected text and places it on the clipboard for
pasting in another location.

Copy Copies the currently selected text and places it on the clipboard for
pasting in another location.

Paste Inserts the cut or copied text at the cursor location.

Find Allows you to search for a hex or text value. This command applies to the
content of the Non-XML window only.

Note: The text search is case sensitive.

Find Next Repeats the last Find from the current cursor position. This command
applies to the content of the Non-XML window only.

Go To Allows you to move the cursor to a specified byte offset in the Non-XML
window.

Table 3-22 Display Menu Commands

Command Description

XML checkbox Check to display the XML window, uncheck to hide the window. When
unchecked, the Non-XML window expands to fill the Format Tester
dialog box.

Debug checkbox Check to display the Debug window, uncheck to hide the window.

Clear→Non-X
ML

Clears the contents of the Non-XML window.

Clear→XML Clears the contents of the XML window.

Clear→Debug Clears the contents of the Debug window.
Guide to Data Transformation 3-71

3 Transforming Non-XML Data
Generate Menu

The following commands are available from the Generate menu.

Transform Menu

The following commands are available from the Transform menu.

Hex→Offsets as
Hexadecimal
option button

Displays the offset values as hexadecimal. Mutually exclusive with the
Hex→Offsets as Decimal option.

Hex→Offsets as
Decimal option
button

Displays the offset values as decimal. Mutually exclusive with the
Hex→Offsets as Hexadecimal option.

Table 3-22 Display Menu Commands (Continued)

Command Description

Table 3-23 Generate Menu Commands

Command Description

Non-XML Generates non-XML data to match the MFL document specification.

XML Generates XML data to match the MFL document specification.

Prompt while
generating data
check box

If checked, you are prompted to specify the following during the
generation process:

Whether or not to include optional fields or groups in the output.

Which choice of children to include in the output.

The number of times to include repeating fields or groups in the
output.

Table 3-24 Transform Menu Commands

Command Description

Non-XML to
XML

Based on the MFL document specification, converts the contents of the
Non-XML window to XML. The XML output is displayed in the XML
window.
3-72 Guide to Data Transformation

Testing the Format Schemas (MFL Files)
Using the Shortcut Menus

When you right-click in the Non-XML, XML, or Debug window, a menu of the most
frequently used commands for that window is displayed. The following table describes
the commands that are available from the shortcut menus.

XML to
Non-XML

Based on the MFL document specification, converts the contents of the
XML window to non-XML data. The non-XML output is displayed in the
Non-XML window.

Table 3-24 Transform Menu Commands

Command Description

Table 3-25 Non-XML, XML, and Debug Shortcut Menu Commands

Command Description

Cut Removes the currently selected text and places it on the clipboard for
pasting in another location.

Copy Copies the currently selected text and places it in the clipboard for pasting
in another location.

Paste Inserts the cut or copied text at the cursor location.

Clear Clears the contents of the Non-XML, XML, or Debug window.

Generate Generates non-XML or XML data to match the MFL document
specification. This command is only available on the Non-XML and
XML shortcut menus.

To XML Converts the contents of the Non-XML window to XML. This command
is only available on the Non-XML shortcut menu.

To Non-XML Converts the contents of the XML window to non-XML. This command
is only available on the XML shortcut menu.

Text in ASCII Changes the character set used for the text displayed in the text portion of
the Hex tab to ASCII.

Text in EBCDIC Changes the character set used for the text displayed in the text portion of
the Hex tab to EBCDIC.
Guide to Data Transformation 3-73

3 Transforming Non-XML Data
Testing Format Definitions

To test a message format definition:

1. Start Format Builder.

2. Open a Message Format file.

3. Start Format Tester.

4. Choose File→Open Non-XML, or File→Open XML to load the file you want
to transform and view, or enter your own data in one of the two data windows.

5. Choose Display→Debug if you want to view the actions that take place during
the transformation operation. This step is optional. If you want to be able to view
debugging information later, you must open the Debug window before starting
the transformation operation.

6. Choose Transform→Non-XML to XML, or Transform→XML to Non-XML
to transform your data to the appropriate format.

The transformed data is displayed in the Non-XML or XML window as shown
in the following figure:
3-74 Guide to Data Transformation

Testing the Format Schemas (MFL Files)
7. Correct any errors and test the transformation again.

8. Repeat steps 6 and 7 until the transformation is successful.

Note: You can leave Format Tester open while you modify the message format
document in Format Builder. Changes to the document are detected
automatically by Format Tester.

Debugging Format Definitions

The following topics explain how to use three Format Tester features to debug and
correct your data:

Searching for Values

Positioning to an Offset

Using the Debug Log

Searching for Values

The Find command allows you to search for hex or text values in the non-XML data.

To search for a hex or text value:

1. In the Format Tester dialog box, choose File→Non-XML to open the non-XML
data file you want to search.

2. Choose Edit→Find to open the Find dialog box.

3. Enter the target of the search in the Value field.
Guide to Data Transformation 3-75

3 Transforming Non-XML Data
4. Select the Text or Hex option button to specify the value type.

5. Select the Forwards or Backwards option button to specify the search direction.

6. Select the Beginning of File, Current Position, or End of File option button to
specify the search starting position.

7. Click OK to dismiss the Find dialog box and execute the specified search.

If the value is found, the cursor moves the location of the value. If the value is
not found, the following message is displayed: The specified search string was
not found.

8. To repeat the search from the current cursor position, choose Edit→Find Next.

Positioning to an Offset

The Go To command allows you to move the cursor to a specified hexidecimal or
decimal address (offset).

To move to a specified offset:

1. In the Format Tester dialog box, choose Edit→Go To to display the Go To dialog
box.

2. Enter the target offset in the Offset field.

3. Select the Dec or Hex option button to specify the type of offset.

4. Select the Forwards or Backwards option button to specify the direction.

5. Select the Beginning of File, Current Position, or End of File option button to
specify the starting position.

6. Click OK to dismiss the dialog box and move the cursor to the specified offset.
3-76 Guide to Data Transformation

Testing the Format Schemas (MFL Files)
Using the Debug Log

Although debugging information is not saved by default, the Format Tester dialog
box allows you to specify a debug log file. When you specify a debug log file, all
debugging information generated during your testing session is appended to the
specified file.

To specify a debug log file:

1. In the Format Tester dialog box, choose the File→Debug Log to display the Save
dialog box.

Note: The Debug Log checkbox on the File menu is toggled upon selection. If
the checkbox is checked, choosing File→Debug Log turns off logging to
the file.

2. Select the desired directory, and then do one of the following:

To create a new log file, enter the name in the File name field and then click
Save.

To use an existing log file, select the file and then click Save.

If you select an existing file, the new debug information is appended to the end
of the existing file.
Guide to Data Transformation 3-77

3 Transforming Non-XML Data
3-78 Guide to Data Transformation

CHAPTER
4 Transforming Data
Using XSLTs

In WebLogic Workshop business processes, XML data can be transformed using
either XQuery expressions or eXtensible Stylesheet Language Transformations
(XSLTs). An XQuery expression or query, is written in the XQuery language—a
language defined by the World Wide Web Consortium (W3C) that provides a vendor
independent language for the query and retrieval of XML data. An XSLT is written in
the eXtensible Stylesheet Language (XSL)—an older language defined by the W3C
that supports the use of stylesheets for the conversion of XML data.

To learn about XSLT, see the XSL Transformations (XLST) Version 1.0-W3C
Recommendation 16 November 1999 at the web site of the W3C. The XSLT processor
which is invoked by the Transformation control conforms to the November 16, 2002
Recommendation of the XSLT Specification.

WebLogic Workshop provides functionality for executing existing XSLTs in business
processes. However, in WebLogic Workshop, the preferred method for data
transformations is to use queries in the XQuery language. To learn more about adding
queries to your business process, see “Transforming Data Using XQuery” on page 2-1.
Data transformation using XSLT is supported primarily for customers who have
upgraded from prior versions of WebLogic Integration and wish to continue using their
XSLT-based maps without modification.

This section contains the following tasks:

To Import an Existing XSLT file

To Add a Data Transformation to a Business Process Using an XSLT

To Import an Existing XSLT file

This task describes how to import an XSLT file into your project.
Guide to Data Transformation 4-1

http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt

4 Transforming Data Using XSLTs
1. In the Application tab, right-click any project folder (project folder names end
with the string: Web) or product sub-folder. (If the Application tab is not visible in
WebLogic Workshop, choose View→Application from the menu bar.)

Warning: Do not import the XSLT file into a Schemas project folder. (To learn
more, see a “Creating Schemas Projects” on page 2-3.)

2. From the drop-down menu, select Import... .

The Import Files dialog box is displayed.

3. Browse the file system, select your XLST file (files that end with the .xsl
extension), and click Import.

The XSLT file is imported into the project.

To Add a Data Transformation to a Business Process Using an XSLT

1. Select or create a Transformation control. (For instructions on creating a
Transformation control see “Creating a Transformation Control and a
Transformation Method” on page 2-9.

In the Application tab, expand the folders that contain the Transformation
control. (If the Application tab is not visible in WebLogic Workshop, choose
View→Application from the menu bar.)

2. Select or create a Transformation method in a Transformation control. (For
instructions on creating a method in a Transformation control, see “Creating a
Transformation Control and a Transformation Method” on page 2-9.)

In the Design View, right-click the arrow representing the method.

3. From the drop-down menu, select Configure XSLT Transformation Method.

The XSLT Transformation dialog box is displayed.

4. From the XSLT Transform drop-down menu, select the appropriate XSLT file.

5. If your XSLT accepts parameters, add parameters to the Transformation method.

Repeat the following steps for each parameter of the XSLT:

a. In the Parameter Name field, enter the name of the XSLT parameter as it
appears in the XSLT file.

b. From the Parameter Type drop-down menu, select the appropriate Parameter
Type.
4-2 Guide to Data Transformation

c. Click Add.

Note: The parameter name entered in the Parameter Name field, must match the
parameter name specified in the XSLT file. For example, if taxrate is
specified as a parameter in the XSLT source file, the same name
(taxrate) must be specified in the Parameter Name field. The following
segment of an example XSLT file shows the declaration of the variable
taxrate:

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet xmlns:xsl="http://www.acme.com/trans"
version="1.0">
<xsl:output method="update" indent="yes" />
<xsl:param name="taxrate"/>
...

Note: In the XSLT Transformation dialog box, the order of the parameters
specified is not significant. The parameters of the XSLT are matched to the
parameters of the Transformation method by name.

6. Click OK.

This links the XSLT file with the selected method in the Transformation control.
During run time, if the business process invokes this method, this XSLT is
invoked.
Guide to Data Transformation 4-3

4 Transforming Data Using XSLTs
4-4 Guide to Data Transformation

CHAPTER
5 Programming
Transformations

This section describes programming considerations for transformations outside the
mapper functionality of WebLogic Workshop.

This section contains the following topics:

Java Classes Created From Importing Schemas

Using the MflObject Interface to Transform Non-XML Data Programmatically

Getting the TransformException Fault Code Programmatically

Using the com.bea.WLXT Package (Deprecated)

Java Classes Created From Importing
Schemas

When a schema is imported into your application, representations of these schemas are
available in some of the panes of WebLogic Workshop. To learn more, see “Selecting
Input and Output Types” on page 2-11.

In addition, Java classes for accessing the data represented in the schemas are
generated, as shown in the following figure:
Guide to Data Transformation 5-1

5 Programming Transformations
The generated Java classes are described in the following table:

Importing . . . Generates . . . Example

An XSD file
(contains an
XML Schema)

An XML Bean class it generated
for the XML Schema when the
XML Schema is imported and
built. The XML Bean class
provides methods for accessing the
XML data that conforms to the
imported XML Schema. To learn
more, see Getting Started with
XMLBeans.

If an XML Schema file with the
document or root level elements:
price and widgitId is imported
into a Schemas project folder with
a namespace of
http://www.example.org/q
uote, the classes:
PriceDocument and
WidgetIdDocument are
generated into the
org/example/quote folder.
5-2 Guide to Data Transformation

http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/xmlbeans/conGettingStartedwithXMLBeans.html
http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/xmlbeans/conGettingStartedwithXMLBeans.html

An MFL file
(contains a
schema which
describes
non-XML data)

A top-level MflObject container
class is generated for the MFL file.
This Java class provides methods
for the conversion between
non-XML and XML data,
programmatically outside the
mapper functionality of WebLogic
Workshop.

If the MFL file:
StockQuotes.mfl, that
specifies the MessageFormat
name of StockPrices, is
imported into a Schemas project
folder, the
StockPricesMflObject Java
class is generated in the
Schemas/MFL
Classes/stockquotes folder.
To learn more, see “Using the
MflObject Interface to Transform
Non-XML Data
Programmatically” on page 5-5

A top-level XML Bean class based
on the main MessageFormat name
is generated from the MFL file
when the MFL is imported. The
XML Bean class contains get and
set methods for accessing the
data, similar to the XML Bean
class that is generated when a XML
Schema is imported and built. To
learn more about XML Beans, see
Getting Started with XMLBeans.

Before using the get and set
methods of the XML Bean class,
the non-XML data must first be
converted to XML data. To learn
more, see“Transforming
Non-XML Data to Typed XML”
on page 5-7.

The file name of the MFL
document becomes the namespace
of the MFL elements in the XML
Bean class.

If the MFL file:
StockQuotes.mfl which
specifies a MessageFormat name
of StockPrices is imported into
a Schemas project folder, the class
StockPricesDocument is
generated under the folder named
stockquotes.

Importing . . . Generates . . . Example
Guide to Data Transformation 5-3

http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/xmlbeans/conGettingStartedwithXMLBeans.html

5 Programming Transformations
For example if the following StockQuotes.mfl file is imported into a Schemas
folder:

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE MessageFormat SYSTEM 'mfl.dtd'>
<MessageFormat name='StockPrices' version='2.01'>

<StructFormat name='PriceQuote' repeat='*'>
<FieldFormat name='StockSymbol' type='String' delim=':'

codepage='windows-1252'/>
<FieldFormat name='StockPrice' type='String' delim='|'

codepage='windows-1252'/>
</StructFormat>

</MessageFormat>

The following is displayed in the current Schemas folder as shown in the following
figure:

One or more XML Bean classes
that correspond to the
StructFormat element(s) that
are children of the main
MessageFormat element in the
MFL file.

StructFormat elements are
equivalent to root or document
level elements in XML Schemas.

The file name of the MFL
document becomes the namespace
of the MFL elements in the XML
Bean class. In addition, if the MFL
is stored in a subfolder of the
Schemas folder, the subfolders
pathname becomes the package
name of the namespace. For
example, if the
StockQuotes.mfl file is stored
in the Schemas/trading folder,
the full namespace for the
generated XML Beans class is
trading/stockquotes.

If the MFL file:
StockQuotes.mfl contains a
single StructFormat element
named PriceQuote, which is a
child of the MessageFormat
element named StockPrices the
following XML Beans classes are
generated in the Schemas/XML
Bean Classes/stockquotes
folder:

PriceQuoteDocument

PriceQuoteDocument.Price
Quote

StockPricesDocument

StockPricesDocument.Stoc
kPrices

Importing . . . Generates . . . Example
5-4 Guide to Data Transformation

When schemas are imported into your application, representations of these schemas
are available in some panes of the WebLogic Workshop. To learn more, see “Selecting
Input and Output Types” on page 2-11.

Using the MflObject Interface to Transform
Non-XML Data Programmatically

When an MFL is imported into a Schema project folder, a corresponding MflObject
Java class is generated. The name of the generated Java class file is derived from the
MessageFormat name specified in the MFL file as shown in the following example
StockQuotes.mfl file:

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE MessageFormat SYSTEM 'mfl.dtd'>
<MessageFormat name='StockPrices' version='2.01'>

<StructFormat name='PriceQuote' repeat='*'>
<FieldFormat name='StockSymbol' type='String' delim=':'

codepage='windows-1252'/>
<FieldFormat name='StockPrice' type='String' delim='|'
Guide to Data Transformation 5-5

5 Programming Transformations
codepage='windows-1252'/>
</StructFormat>

</MessageFormat>

For example, if the preceding StockQuotes.mfl file, which specifies the
MessageFormat name of StockPrices is imported into the Schemas project folder,
a StockPricesMflObject.class file is generated with following methods:

public final class StockPricesMflObject extends MflObject {
public StockPricesDocument convertToXml() {}
public static StockPricesMflObject newInstance(StockPricesDocument xml) {}
public static StockPricesMflObject newInstance(byte[] bytes) {}
public static StockPricesMflObject newInstance(InputStream in) {}
public static StockPricesMflObject newInstance(String in) {}
public static StockPricesMflObject newInstance(RawData in) {}
}

You can use these methods to programmatically convert non-XML data to and from
XML data outside the mapper functionality of WebLogic Workshop. The following
table lists the available MflObject methods and describes functionality provided with
each method. In the following table, MFName represents the specified
MessageFormat name. (In the preceding example, the specified MessageFormat name
was StockPrices.)

Method Name and Signature Functionality

public MFNameDocument
convertToXml()

Transforms the non-XML data, valid to the schema in
the MFL file, to an instance of the associated
XMLBeans Java interface. The XMLBeans Java
interface can then be used to access this data in the
XML document. To learn more about XMLBeans, see

Getting Started with XMLBeans.

For an example of using this interface see
“Transforming Non-XML Data to Typed XML” on
page 5-7.

public static
MFNameMflObject
newInstance(MFNameDocume
nt xml)

Transforms an instance of the associated XMLBeans
(XML data) to non-XML data that is valid to the
schema in the MFL file.
5-6 Guide to Data Transformation

http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/xmlbeans/conGettingStartedwithXMLBeans.html

The following section shows three different examples of using the
StockPricesMflObject class:

Transforming Non-XML Data to Typed XML

Create a New Instance of an MflObject From Typed XML Example

Create a New Instance of an MflObject From Untyped Raw Data Example

Transforming Non-XML Data to Typed XML

The example in this section shows a business process programmatically converting an
incoming typed non-XML message to an typed XML representation of that data.

This example assumes the StockPrice.mfl file is imported into a Schemas project folder
and the following XML Bean classes were generated:

PriceQuoteDocument

PriceQuoteDocument.PriceQuote

StockPricesDocument

public static
MFNameMflObject
newInstance(byte[]
bytes)

Transforms byte non-XML data to an instance of the
MflObject

public static
MFNameMflObject
newInstance(InputStream
in)

Transforms the non-XML input stream to an instance of
the MflObject.

public static
MFNameMflObject
newInstance(String in)

Transforms non-XML data as a string to an instance of
the MflObject.

public static
MFNameMflObject
newInstance(RawData in)

Transforms non-XML data as raw data to an instance of
the MflObject.

Method Name and Signature Functionality
Guide to Data Transformation 5-7

5 Programming Transformations
StockPricesDocument.StockPrices

To learn more about the Java classes that are generated when MFL files are imported, see “Java
Classes Created From Importing Schemas” on page 5-1. For a listing of the StockPrice.mfl,
see “Java Classes Created From Importing Schemas” on page 5-1.

The business process executes the following steps:

1. A Client Request start node receives an non-XML message of type:
stockquotes.StockPricesMflObject and stores in a typed non-XML variable
called stockPriceIn.

2. In a Perform node of the business process following the Client Request start
node, the typed non-XML data is transformed to the XML Beans representation
of the data by calling the convertToXml function as shown in the first line of the
perform method of the following Process Definition for Java (JPD) code listing:

package processes;
public class convertToXMLExample implements com.bea.jpd.ProcessDefinition
{

public stockquotes.StockPricesDocument stockPriceXML;
public stockquotes.PriceQuoteDocument.PriceQuote priceQuoteXML;
public stockquotes.StockPricesMflObject stockPriceIn;

...
public void perform() throws Exception
{

stockPriceXML = stockPriceIn.convertToXml();
priceQuoteXML = stockPriceXML.getStockPrices().addNewPriceQuote();
priceQuoteXML.setStockPrice("10.99");

}

3. The second line in the perform function executes the following steps:

a. From the XML representation of the non-XML data, the
stockquotes.StockPricesDocument XML Beans class gets the current
instance, as shown in the following section of code:

stockPricesXML.getStockPrices()

b. Adds a new instance of PriceQuote using the addNewPriceQuote method of
the stockquotes.StockPricesDocument XML Beans class, as shown in the
following section of code:

stockPricesXML.getStockPrices().addNewPriceQuote()
5-8 Guide to Data Transformation

4. The last line in the perform function sets the StockPrice element to the string:
10.99 using the setStockPrice method of the
stockquotes.StockPricesDocument XML Beans class, as shown in the
following section of code:

priceQuoteXML.setStockPrice("10.99");

Create a New Instance of an MflObject From Typed XML
Example

The example in this section shows a business process creating a new instance of an
MflObject from incoming typed XML data.

This example assumes the StockPrice.mfl file is imported into a Schemas project folder
and the following XML Bean classes were generated:

PriceQuoteDocument

PriceQuoteDocument.PriceQuote

StockPricesDocument

StockPricesDocument.StockPrices

To learn more about the Java classes that are generated when MFL files are imported, see “Java
Classes Created From Importing Schemas” on page 5-1. For a listing of the StockPrice.mfl,
see “Java Classes Created From Importing Schemas” on page 5-1.

The business process executes the following steps:

1. The Client Request start node receives an XML message of type:
StockPricesDocument and stores in a typed XML variable called
stockPriceXML.

2. In the perform node, an instance of the stockquotes.StockPricesMflObject
is created from the typed XML data by calling the static newInstance function
which accepts a parameter of type: StockPricesDocument as shown in the
following Process Definition for Java (JPD) code listing:

package processes;
public class newInstanceFromXMLExample implements com.bea.jpd.ProcessDefinition
{

public stockquotes.StockPricesDocument stockPriceXML;
Guide to Data Transformation 5-9

5 Programming Transformations
...
public void perform() throws Exception
{

stockquotes.StockPricesMflObject stockPriceMFLObj =
stockquotes.StockPricesMflObject.newInstance(stockPriceXML);

}
}

Create a New Instance of an MflObject From Untyped
Raw Data Example

The example in this section shows a business process creating a new instance of an
MflObject from incoming raw data (a stream of non-XML data that is untyped and has
no known structure).

This example assumes the StockPrice.mfl file is imported into a Schemas project folder
and the following XML Bean classes were generated:

PriceQuoteDocument

PriceQuoteDocument.PriceQuote

StockPricesDocument

StockPricesDocument.StockPrices

To learn more about the Java classes that are generated when MFL files are imported, see “Java
Classes Created From Importing Schemas” on page 5-1. For a listing of the StockPrice.mfl,
see “Java Classes Created From Importing Schemas” on page 5-1.

The business process executes the following steps:

1. The Client Request start node receives an untyped non-XML data message and
stores in a RawData variable called stockPriceRaw.

2. In the perform node, an instance of the stockquotes.StockPricesMflObject
is created from the untyped non-XML data by calling the static newInstance
function which accepts a parameter of type: RawData as shown in the following
Process Definition for Java (JPD) code listing:

package processes;
public class newInstanceFromXMLExample implements com.bea.jpd.ProcessDefinition
{

public com.bea.data.RawData stockPriceRaw;
5-10 Guide to Data Transformation

...
public void perform() throws Exception
{

stockquotes.StockPricesMflObject stockPriceMFLObj =
stockquotes.StockPricesMflObject.newInstance(stockPriceRaw);

}
}

Getting the TransformException Fault Code
Programmatically

In the mapper functionality of WebLogic Workshop, you create transformations that
transform data from one format to another. From these transformations, queries
(written in the XQuery) language are generated. You can use the mapper functionality
to edit these queries to add invocations to standard XQuery functions and operators,
User functions, or Controls functions. To learn more, see Invoking Functions or
Operators in a Query.

During run time, these queries may throw a TransformException exception with an
associated fault code. (For example, your query might call one of the provided standard
XQuery functions, which may throw an exception.) The fault code provides
information about why the TransformException was thrown. You may want to add
Java code to business process to get the fault code of the TranformException and do
some action in the code based on the fault code. You may also display the description
string associated with the fault code in the console using a System.out.println
function. You add this code to the Process Definition for Java (JPD) file which
contains the Java code for the business process.

Note: If you are only interested in the fault code string, use the Exception pane of
the Workshop Test Browser or the Test View pane of the mapper
functionality of WebLogic Workshop to display the error string associated
with the fault code.

For example, a business process whose Start node is a Client Receive node invokes a
Transformation method of a Transformation control. The Client Receive node has an
exception path with a Perform node to catch exception, as shown in the following
figure:
Guide to Data Transformation 5-11

5 Programming Transformations
The Transformation method invokes a query, which invokes the standard XQuery
function xf:date. During run time when the query is executed, the date function is
invoked with the string: 2003-8-16. This string is not a legal date format because the
month is not specified with two digits. This causes the date function to thrown a
TransformException exception with the
TransformFaultCodes.RT_ILLEGAL_CAST fault code. The Perform node retrieves
the information about the exception that invoked it, checks that the exception is a
TransformException, and then prints out fault code number and sting that describes the
fault code, as shown in the following JPD code segment:

import com.bea.jpd.JpdContext;
import com.bea.data.RawData;
import com.bea.xml.XmlObject;
import com.bea.transform.TransformException;
import com.bea.transform.TransformFaultCodes;
...
public class TransformExceptionExample implements com.bea.jpd.ProcessDefinition
{

...
public void perform() throws Exception
{

Exception e;
com.bea.transform.TransformException te;
e = this.context.getExceptionInfo().getException();
System.out.println("Caught exception in transformation: " + e.toString());
5-12 Guide to Data Transformation

if (e instanceof TransformException)
{

te = (TransformException) e;
System.out.println("Fault Code Number=" + te.getFaultCode());
System.out.println("Fault Code String=" + te.getCause());

 switch (te.getFaultCode()) {
case TransformFaultCodes.RT_ILLEGAL_CAST:
// Add code here to do some action based on the error code.
break;

default:
break;

}
}

}
}

For example, if some corrective action should occur if the returned fault code is equal
to the TransformFaultCodes.RT_ILLEGAL_CAST fault code, replace the comment
that starts with the string: //Add code here with the corrective Java code.

For a list of the supported fault codes, see the JavaDoc for the TransformFaultCodes
class.

Note: The following two import lines must be added manually in the Source View
of the JPD file:

import com.bea.transform.TransformException;
import com.bea.transform.TransformFaultCodes;

Using the com.bea.WLXT Package
(Deprecated)

The public methods provided in the com.bea.WLXT package are deprecated. This
deprecated package will be removed from the product in a future release. You should
migrate your application away from using this package to using the functionality
provided in WebLogic Integration 8.1 for transforming data between non-XML and
XML formats. To learn more, see “Transforming Non-XML Data” on page 3-1.
Guide to Data Transformation 5-13

http://edocs.bea.com/wli/docs81/javadoc/com/bea/transform/TransformFaultCodes.html
http://edocs.bea.com/wli/docs81/javadoc/com/bea/wlxt/package-summary.html

5 Programming Transformations
5-14 Guide to Data Transformation

	1 Guide to Data Transformation
	2 Transforming Data Using XQuery
	Creating Schemas Projects
	Importing Schemas
	Creating a Transformation Control and a Transformation Method
	Selecting Input and Output Types
	Creating and Testing Maps
	Link Representations
	Adding Constraints to a Transformation
	Using Repeatability/Join Option
	Using a Conditional Constraint
	Using the Union Option
	Using the Group by Key Fields Option

	Invoking Functions or Operators in a Query
	Invoking XQuery Functions or Operators in a Query
	Invoking User Defined Methods in a Query
	Invoking Control Methods in a Query

	Using Java Classes in Transformations
	The Association Between XQ and DTF Files
	Validating
	Validating During Design Time
	Schema Validating During Run Time

	3 Transforming Non-XML Data
	Using Non-XML Data in Business Processes
	Understanding Transformations That Use Non-XML Data
	Using WebLogic Integration for Transforming Non-XML Data

	Using Format Builder to Create Format Schemas (MFL Files)
	Understanding Data Formats
	Analyzing the Data to Be Transformed
	Using Format Builder

	Importing Existing Metadata to Create Format Schemas (MFL Files)
	Importing a COBOL Copybook
	Importing C Structures
	Importing an XML Schema

	Testing the Format Schemas (MFL Files)
	Starting the Format Tester
	Using the Format Tester Dialog Box
	Testing Format Definitions
	Debugging Format Definitions

	4 Transforming Data Using XSLTs
	5 Programming Transformations
	Java Classes Created From Importing Schemas
	Using the MflObject Interface to Transform Non-XML Data Programmatically
	Transforming Non-XML Data to Typed XML
	Create a New Instance of an MflObject From Typed XML Example
	Create a New Instance of an MflObject From Untyped Raw Data Example

	Getting the TransformException Fault Code Programmatically
	Using the com.bea.WLXT Package (Deprecated)

