
BEAWebLogic
Integration™

Using the Worklist

Version 8.1 Service Pack 2
Document Date: December 2003

Copyright
Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic Commerce
Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Enterprise Security, BEA
WebLogic Express, BEA WebLogic Integration, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA
WebLogic Portal, BEA WebLogic Server, BEA WebLogic Workshop and How Business Becomes E-Business are
trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Using the Worklist iii

Contents

About This Document
What You Need to Know . ix

e-docs Web Site . ix

How to Print the Document .x

Related Information .x

Contact Us! .x

Documentation Conventions . xi

1. Introduction
What is WebLogic Integration Worklist? . 1-2

Worklist Tasks . 1-3

Task Data Values . 1-3

Due Dates . 1-4

Task State . 1-4

Task Owners . 1-4

Assignees Lists and Claimants . 1-4

Request and Response Documents . 1-5

Operations on Tasks . 1-5

Archiving and Purging Task Information . 1-6

Task Queries . 1-7

Controls and Worklist APIs . 1-7

Task Control . 1-7

iv Using the Worklist

Task Worker Control . 1-7

Callbacks . 1-8

Control Methods . 1-8

Controls are Extensible . 1-8

Administration and Management . 1-8

WebLogic Integration Administration Console . 1-9

Worklist User Interfaces. 1-9

Enterprise JavaBeans API . 1-9

2. Using Worklist Controls
About Worklist Controls . 2-1

Creating a New Task Control . 2-2

Creating a New Task Worker Control. 2-2

Using Task and Task Worker Controls in Business Processes . 2-3

Task Control Active Task Model . 2-4

Creating New Tasks With a Task Control . 2-5

Assigning and Claiming Tasks. 2-5

Reassigning Tasks and Returning Them to Other States . 2-6

Setting Task Data Values . 2-7

Altering State With a Task Control . 2-8

Using Controls to Get Task Status . 2-11

Using XML With the Task Control . 2-11

Creating New Tasks with a TaskCreationXML Document 2-11

Importing the Worklist Schema into Your Application 2-14

The Task Control Properties Sheet. 2-14

Using the Task Control Property Editor. 2-16

Using Callback Methods . 2-17

Permissions and Roles . 2-18

Using the Worklist v

Permissions for Modifying Task Properties . 2-20

Permissions for Reassigning Tasks and Returning Them to Other States 2-20

Permissions for Creating Tasks . 2-21

Modifying Task Data Values . 2-21

Transactions . 2-21

3. Creating and Managing Worklist Tasks
Overview . 3-1

Task Due Dates . 3-2

Claim and Completion Due Dates . 3-2

To Set Task Due Dates Using Absolute Time . 3-3

To Set Task Due Dates Using Business Time . 3-3

To Specify a Calendar to Use When You Set Due Dates . 3-3

Formats for Business Time Duration . 3-4

Task States . 3-4

Assignment Algorithms . 3-7

Task Users and Groups . 3-8

Task Owners . 3-9

Assignee Lists. 3-9

Claimants . 3-9

Integration Administrators . 3-9

Task Creators . 3-10

Tasks and User Permissions . 3-10

Worklist Security . 3-10

Who Has Permission to Create Tasks?. 3-11

Who Has Permission to Modify Task Data Values?. 3-12

Who Has Permission to Invoke Task Operations? . 3-12

Task Data Values. 3-14

vi Using the Worklist

Request and Response Documents . 3-18

Format and Type of Request and Response Documents . 3-19

Task Operations. 3-19

Archiving and Purging Task Information . 3-20

Task History Tables . 3-22

Task Queries . 3-25

To Specify the Criteria for a Query . 3-25

Note About String Patterns . 3-27

To Specify How the Results Are Sorted . 3-27

To Execute a Query . 3-28

To Limit the Results Set. 3-28

The Relationship Between Processes and Tasks. 3-28

4. Worklist User Interface and Enterprise JavaBeans API
Sample Worklist User Interface . 4-1

Samples to Access the Worklist EJB from a Client Application 4-2

5. Advanced Topics
Extending Worklist Controls. 5-1

About Extending Worklist Controls. 5-2

An Example of an Extended Task Control. 5-2

Altering Method Signatures—Request and Response . 5-4

Adding Custom Methods . 5-5

Creating Tasks With the Task Control . 5-5

Updating Tasks Using the Task and Task Worker Controls. 5-8

State Related Updates Using the Task Control . 5-9

State Related Updates Using the Task Worker Control . 5-10

Getting and Setting Task Data Values . 5-11

Using the Worklist vii

Adding Callback Methods . 5-11

Querying Tasks Using the Task Worker Control . 5-13

Search Values and Selectors . 5-13

Querying Tasks With Annotations . 5-15

Querying Tasks With TaskSelectors. 5-16

Using Task Control Factories . 5-16

Index

viii Using the Worklist

Using the Worklist ix

About This Document

This document provides information about using the WebLogic Integration 8.1 Worklist. It
includes the following topics:

Introduction

Using Worklist Controls

Creating and Managing Worklist Tasks

Advanced Topics

What You Need to Know
This document is intended mainly for application developers who have an in-depth knowledge of
Java or other object-oriented programming languages; business process management, especially
business process design; B2B integration; data integration; and WebLogic Server security.
Additionally, you should have a basic understanding of WebLogic Integration 8.1 and WebLogic
Workshop.

e-docs Web Site
BEA product documentation is available on the BEA corporate Web site. From the BEA Home
page, click on Product Documentation or go directly to the “e-docs” Product Documentation page
at http://e-docs.bea.com.

http://e-docs.bea.com

About Thi s Document

iix Using the Worklist

How to Print the Document
You can print a copy of this document from a Web browser, one file at a time, by using the
File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Integration documentation Home
page on the e-docs Web site (and also on the documentation CD). You can open the PDF in
Adobe Acrobat Reader and print the entire document (or a portion of it) in book format. To access
the PDFs, open the WebLogic Integration documentation Home page, click the PDF files button
and select the document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe Web site at
http://www.adobe.com/.

Related Information
The following WebLogic Integration documents contain information that is relevant to building
Worklist applications:

Tutorial: Building a Worklist Application

Worklist Administration in Managing WebLogic Integration Solutions

Business Calendar Configuration in Managing WebLogic Integration Solutions

Contact Us!
Your feedback on the BEA WebLogic Integration documentation is important to us. Send us
e-mail at docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the WebLogic Integration
documentation.

In your e-mail message, please indicate which version of the WebLogic Integration product and
documentation you are using.

If you have any questions about this version of BEA WebLogic Integration, or if you have
problems installing and running BEA WebLogic Integration, contact BEA Customer Support
through BEA WebSupport at www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in the product
package.

When contacting Customer Support, be prepared to provide the following information:

http://www.adobe.com/
http://edocs.bea.com/wli/docs81/wltutorial/index.html
http://edocs.bea.com/wli/docs81/manage/worklist.html
http://edocs.bea.com/wli/docs81/manage/index.html
http://edocs.bea.com/wli/docs81/manage/businesscalendar.html
http://edocs.bea.com/wli/docs81/manage/index.html

Documenta t i on Convent ions

Using the Worklist iixi

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions
The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates items that are displayed on the User Interface.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and their members, data
types, directories, and file names and their extensions. Monospace text also indicates text that
you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

About Thi s Document

iixii Using the Worklist

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]... [-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself should never be typed.

... Indicates one of the following in a command line:

• That an argument can be repeated several times in a command line

• That the statement omits additional optional arguments

• That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]... [-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line. The vertical ellipsis
itself should never be typed.

Convention Item

Using the Worklist 1-1

C H A P T E R 1

Introduction

The BEA WebLogic Integration Worklist addresses the flow of work in an enterprise. It directs
the routing of business-process tasks to personnel and provides management capabilities that
enhance organizational efficiency and responsiveness.

This section includes the following topics:

What is WebLogic Integration Worklist?

Worklist Tasks

Task Data Values

Controls and Worklist APIs

Administration and Management

In t roduc t i on

1-2 Using the Worklist

What is WebLogic Integration Worklist?
The WebLogic Integration Worklist is commonly used for scenarios in which human activity
combines with automated business processing over time. This time can be short or continue for
days or months. The Worklist is designed to direct the flow of work and manage the routing of
tasks to the people in an enterprise. Inherent in the progression of work are actions such as
receiving, approving, modifying, and routing of documents. The documents that accompany
work activities provide the information necessary for people to perform and complete tasks. The
Worklist enables people to collaborate in the accomplishment of work, including assigning tasks,
tracking the status of tasks, handling approvals, and other activities required to manage workflow.

To support Worklist functionality, WebLogic Integration provides two controls built into
WebLogic Workshop, the Task control and the Task Manager control. These controls are
server-side components managed by the Workshop framework. They expose Java interfaces that
can be invoked directly from your business processes. The Task control enables a business
process to create a single Task instance, manage its state and data, and provide callback methods
that report status. The Task Worker control allows specified users to acquire ownership of Tasks,
work on the task, and complete the task. This control also provides administrative privileges, such
as starting, stopping, deleting, and assigning of tasks. Access to the Task Worker control can be
done through a business process or a user interface.

The Worklist user interface enables end users—task creators, task workers, task administrators—
to interact with running business processes, including handling process exceptions, approvals,
and status tracking. For managing the Worklist components of your applications, WebLogic
Integration provides a sample Worklist user interface that you can use to help you develop your
user interfaces.

Important capabilities of the Worklist includes the following:

Worklist allows people to act in specific roles when they work within a business process
and to concentrate on just those parts of work where they add value.

It allows business rules to dictate the routing of documents and work.

It manages permissions for work items. For example, applications can manage who can see
which documents and what work queues, and who has ownership of tasks.

It provides notification to management when the work is completed or when deadlines are
missed.

Management can study the histories of workflows and use this information to fine tune
business processes, increase productivity, and lower response times.

Workl i s t Tasks

Using the Worklist 1-3

Worklist Tasks
The Worklist allows for the creation, manipulation, and management of Tasks. A Task instance
represents a unit of work that requires completion within a certain time period. Examples of tasks
include:

A Manager reading and approving an employee’s vacation request.

Phoning a customer and recording that customer’s complaints.

In the run-time Worklist system, a Task instance is a particular object that represents a work
assignment in the real world. Task instances are part of the WebLogic Integration server and exist
independently of any controls or business processes. Multiple business processes can interact
with a Task throughout its lifecycle concurrently. Tasks remain in the run time indefinitely, either
until they are explicitly deleted or purged by the WebLogic Integration purging process.

After the work is completed, you can use a Task instance to represent a detailed record of that
unit of work.

To learn about controls, see Worklist Controls in the WebLogic Workshop Help.

Task Data Values
Task Instances have built-in data values for defining how work should be performed, who should
do it, by when it needs to be completed, and more. You can also use these data values to capture
what actually was done when work is completed.

Examples of task data values include:

A list of users and group who can work on the task (Assignees List).

The date a task is due to be completed (Task Competition Due Date).

The user who claims the Task and attempts to complete the work (Claimant).

The person who is responsible for managing the process of the work being performed
(Task owner).

Documents that can describe the work to be done and the results of completing the work
(Request and Response documents).

The condition that defines the point at which a Task instance is in its lifecycle (Task State).

A priority that indicates the relative urgency of this task relative to other tasks (Task
Priority).

http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/controlsWorklist.html

In t roduc t i on

1-4 Using the Worklist

Due Dates
Due dates represent the date and time for which tasks should be claimed or completed. The
Worklist stores Due Dates as java.util.Date objects, tracks them, and can trigger callbacks to
business processes that are listening for the Task due dates. Due dates can be set using a specific
date and time, or, they can be set using a business calendar and a business time duration.

Business calendars represent the operating hours of a business. A business calendar specifies a
time zone and a set of time period rules. Time period rules determine the days, dates, and hours
that are available (free) and unavailable (busy) for business activities.

To learn more about Task Due Dates and Business Calendars, see “Task Due Dates” on page 3-2.

Task State
The state of a Task describes the point at which the task is in its lifecycle. Each task instance is
in one of the following states: ASSIGNED, CLAIMED, STARTED, COMPLETED,
SUSPENDED, or ABORTED. Operations on the controls or the API allow you to cause an
instance to transition from its current state to another state.

To learn about Task States, see “Task Due Dates” on page 3-2.

Task Owners
To signify a user or a group of users that play a managerial role with respect to this task, a Task
Instance can have a Task Owner. The owner manages the task and is the person responsible for
getting the Task completed, but not necessarily the person who actually completes the Task. For
example, the manager of a café can be the owner of a Task assigned to a chef to prepare a recently
ordered dish. The manager takes responsibility if the Task does not get done.

The permission to perform certain managerial operations on a Task instance can be restricted to
only the Task Owner or to an administrator.

To learn more about Task Owners, see “Task Users and Groups” on page 3-8 and “Tasks and
User Permissions” on page 3-10.

Assignees Lists and Claimants
A Task Instance has a list of assignees to specify which users can claim the task. The Assignees
List can contain both users and groups. When a user on the Assignees List claims the task, that
user become the claimant. The claimant takes ownership of the task, and performs the work
needed to complete the task. The State of the Task is set to Claimed when a user claims the Task.

Task Data Va lues

Using the Worklist 1-5

To learn more about the Assignees List and claimants, see “Task Users and Groups” on page 3-8
and “Tasks and User Permissions” on page 3-10.

Request and Response Documents
Generally, the Task Request is used to specify what work is done and how the work is done. This
value can be read by the task worker who performs the work and completes the task. In addition,
assignees can view this information to decide whether or not to claim the task.

The Task Response is generally used to specify what actually took place after a user has worked
on the task. It can describe the results of the work, that is what specific actions were performed
to complete a task. Callbacks can pass the Response value to business processes that are waiting
for a particular task state.

For example, the Task Response can capture the agreement made between a Collections Agent
and a delinquent customer after they complete a phone conversation. The process that created the
Task to call that customer can use those results to determine should be done next.

To learn more about request and response documents, see “Request and Response Documents”
on page 3-18.

Operations on Tasks
Operations are used to create new tasks, alter task states or data values, delete tasks, or read
information about an existing task. Some operations allow combinations of these actions in a
single step. Examples of Task operations include:

Operations to Create Tasks
When a new Task Instance is created, the Worklist system assigns a unique ID (a taskID)
to that instance. The Task state can be defined at creation time as Assigned or Claimed,
depending on the operation. Certain Task data values are specified at the time an instance
of a Task is created and cannot be changed after the instance is created.

Operations to Modify Task Properties
Some Task properties can be specified and modified after an instance of a Task is created.

Operations to Get Task Properties
You can use get task operations to access the properties of any Task Instance at any point
in its lifecycle.

In t roduc t i on

1-6 Using the Worklist

Operations to Modify Task State
Task Instances can transition between states based on the operations defined for them.
Some kinds of operations that modify a task’s state are valid depending on the state in
which the task resides before the operation is invoked.

To learn about the operations on Task and Task Worker controls, see “Using Worklist Controls”
on page 2-1.

Archiving and Purging Task Information
WebLogic Integration supports the archiving of tracking data for business-process instance
history, trading-partner message history, and task instance history.

As tasks go through their lifecycle in enterprise processes, their properties are modified, their
states change, their due dates expire, and so forth. Worklist task instances generate events that
can be logged in Worklist history tables in the run-time repository. The records created in the
archive tables are intended for use by reporting applications. Those applications can query the
tables to generate reports or statistical analyses of historical task processing. The following types
of events can be tracked:

Changes in task state and associated values

Expiration of task claim or complete due date

Changes in task owner or assignees

Task requests and task responses

The request and response XML

The tracking data is stored in a database at run time. To optimize performance, you should
minimized the amount of tracking data that is stored. To this end, an administrator can configure
archive and purge processes to run at regular intervals. In addition to configuring the schedule,
the administrator can enable or disable the archiver as follows:

When the archiver is enabled, the process copies the data to an offline database, then
purges it from the run-time database.

When the archiver is disabled, the process purges the data from the run-time database
without copying it.

Archived information can be used for generating reports and compiling statistics about task
processing in your WebLogic Integration application. To learn more about archiving and purging
Task data, see System Configuration in Managing WebLogic Integration Solutions.

http://edocs.bea.com/wli/docs81/manage/system.html

Cont r o ls and Work l i s t AP Is

Using the Worklist 1-7

Task Queries
Task Queries allow an application to find all tasks in the run-time Worklist system that meet a
specified set of criteria. These queries are directly analogous to SQL and Databases Tables. The
results returned by the queries contain information about all tasks that meet the specified criteria.

For example, you can create a custom user-interface to show all tasks in the system that are
assigned to the current user, have a priority equal to one, and are due in the next three days.

Controls and Worklist APIs
The Worklist API provides operations to leverage all of the functionality available in the Worklist
for creating and operating on tasks. WebLogic Integration provides two controls to support the
Worklist system: the Task control and the Task Worker control. Although the Task and Task
Worker controls provide a subset of the available functionality in the API, they provide the
convenience of the WebLogic Workshop controls framework and you can easily use them in your
business processes.

Task Control
In an office environment, manager usually create, specify, and monitor the work that is done. The
Task control is designed to provide the common operations required by the manager of a work
item, such as creating the work, assigning the work, and receiving notifications when work
completes or becomes overdue for completion. The most common usage of the Task Control is
in business processes.

Task Worker Control
The Task Worker control is designed to provide the most common operations needed by the
people who receive assignments and perform the work. For example, workers can query for their
assigned tasks that are due before the end of the week. The Task Worker control allows workers
to mark ownership of a task (that is, claim the task) and mark its completion. In addition, the Task
Worker control has operations of an administrative nature, such as claiming a task on another
user’s behalf. The Task Worker control is most commonly used in the implementation of a
custom Worklist user interface.

In t roduc t i on

1-8 Using the Worklist

Callbacks
Task Controls can notify a process when a Task’s state changes. Common callbacks include the
expiration of a completion due date, aborting the task, or task completion. Callbacks allow
processes to block within their logic, effectively waiting until that event takes place.

Control Methods
Controls methods are the mechanism by which a business process or a user interface create new
tasks, read or alter the task data values, read the current state, cause a transition to a new state, or
delete a task instance.

Controls are Extensible
Task and Task Worker controls have a built-in set of methods and callbacks. Controls are
extensible through Java annotations. For example, you can define custom operations with custom
signatures and custom callbacks for your controls. Through the annotations on these methods,
you can configure a control’s data values, create new tasks, update existing tasks, and so forth.
You can also extend controls in the following ways:

You can alter signatures on methods to take XML Bean types as arguments when the XML
associated with tasks conforms to custom-defined schemas in your application.

You can add new methods to perform several updates at once. For example, you can write
a new method to add an operation to create a task, set its priority and comment, and assign
it to a user whose name is passed in.

You can add callbacks to detect other state change in a task. For example, you can add a
callback to detect when a task is claimed.

Administration and Management
Using the Worklist Administration module in the WebLogic Integration Administration Console,
you can administer and manage the tasks in the Worklist, business calendars, task properties, and
other features. With Worklist controls and the Worklist API, you can create a custom Worklist
client. The Worklist API is available as Enterprise JavaBeans (EJBs) and MBeans. These topics
are discussed more fully in the following sections:

WebLogic Integration Administration Console

Worklist User Interfaces

Admi nis t rat i on and Management

Using the Worklist 1-9

Enterprise JavaBeans API

WebLogic Integration Administration Console
The Worklist Administration module in the WebLogic Integration Administration Console
allows application administrators to administer and monitor the task instances in your WebLogic
Integration application. The Worklist-specific administration and management functions you can
perform include:

View summary or detailed task status for monitoring the progress of task completion with
respect to due dates.

Perform queries to show individual workload.

Reassign tasks to speed progress.

Change task properties, such as state or due date.

Control task routing by creating or changing substitute routing rules.

To learn more about managing your Worklist Tasks, see Worklist Administration in Managing
WebLogic Integraton Solutions.

Worklist User Interfaces
Worklist user interfaces enable end users—task creators, task workers, task administrators—to
interact with running business processes, including handling process exceptions, approvals, and
status tracking. Typically, in real-world applications, people interact with tasks that require
custom user-interfaces. For example, you could add a page to an existing order fulfillment user
interface on a company’s intranet that allows a manager to approve very large orders.

WebLogic Integration contains a sample Worklist user interface. Examine the sample Worklist
user interface and use its design strategies to help you design your custom interfaces.

To learn more about Worklist user interfaces, see Chapter 4, “Worklist User Interface and
Enterprise JavaBeans API.”

Enterprise JavaBeans API
With the EJB API, you can use the Worklist EJB to create and manage tasks independent of the
business processes (JPD) created in WebLogic Workshop. Code samples are included in
Chapter 4, “Worklist User Interface and Enterprise JavaBeans API.”

http://edocs.bea.com/wli/docs81/manage/worklist.html

In t roduc t i on

1-10 Using the Worklist

Using the Worklist 2-1

C H A P T E R 2

Using Worklist Controls

Java Controls are server-side components managed by the Workshop framework. Controls
expose Java interfaces that can be invoked directly from business processes. In other words,
controls are the interfaces between your business processes and other resources.

This section describes the built-in controls provided by WebLogic Integration that support the
integration of business users with business processes. It includes the following topics:

About Worklist Controls

Creating a New Task Control

Creating a New Task Worker Control

Using Task and Task Worker Controls in Business Processes

About Worklist Controls
To support the integration of business users with the Worklist system, WebLogic Integration
provides two build-in Java controls: the Task control and the Task Worker control.

As with other built-in controls in WebLogic Workshop, you use the controls by adding instances
of the controls to your business process and then invoke operations on the controls at the point in
the business process at which you want to integrate the business-user logic.

The underlying control implementation takes care of most of the details of the interaction for you.
Business processes invoke operations on the controls using Control Send and Control Send with
Return nodes. Business processes can block at Control Receive nodes waiting for events to be
returned from controls. In other words, Control Receive nodes are triggered by control callbacks.

Using Work l is t Cont ro ls

2-2 Using the Worklist

You can extend Worklist controls through Java annotations. Common extensions include
implementing callback functions and performing system queries.

The operations invoked on the controls allow the process to create tasks, get information about
tasks, update tasks, and so forth.

The Task control enables a business process or user interface (UI) to create a single Task
instance, manage its state and data, and provide callback methods to report status, such as
when the Task status changes or the Task is overdue. Each Task control operates on a
single active Task instance.

The Task Worker control enables a business process or UI to assume ownership of Tasks,
work on them, and complete them. It offers administrative operations, including operations
to start, stop, delete, assign, and more. Task Worker controls allow operations on several
Task instances simultaneously.

Creating a New Task Control
An instance of a Task control can create one or more Task instances. The single type of Task
control creates a single Task instance. The factory type of Task control creates multiple Task
instances. To learn about creating multiple Task instances, see “Using Task Control Factories”
on page 5-16.

A Task control instance can also interact with a task instance that already exists by setting its
active task ID. After creating or setting the active task ID, your control instance can get
information about that task or update that task in various ways.

You can customize Task controls for different business purposes, by adding new operations or
callbacks, or by altering the signatures of existing operations or callbacks.

For instructions on creating a new Task control, see Creating a New Task Control in the
WebLogic Workshop Help.

Creating a New Task Worker Control
The Task Worker control allows specified users to acquire ownership of Tasks, work on them,
and complete them. It also provides administrative privileges, such as starting, stopping, deleting,
and assigning. Access to the Task Worker control can be done with a business process or through
a user interface. You can customize each Task worker control for different business purposes.

For instructions on creating a new Task Worker control, see Creating a New Task Worker Control
in the WebLogic Workshop Help.

http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/controlsWorkistCreateTask.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/controlsWorklistCreateTaskWorker.html

Us ing Task and Task Worker Cont ro ls in Busi ness P rocesses

Using the Worklist 2-3

Using Task and Task Worker Controls in Business Processes
To design the interaction of a Task or Task Worker control with a business process, you must
decide which methods on the control you want to call from the business process to support the
business logic.

In the same way that you design the interactions between business processes and other controls
in the WebLogic Workshop, you can bind the Worklist control method to the appropriate control
node in your business process (Control Send, Control Receive, and Control Send with
Return). You do this in the Design View by simply dragging a control method from the Data
Palette onto the business process at the point in your business process at which you want to
design the logic.After you create an instance of a Task or Task Worker control, you can invoke
its methods from within your business processes to perform operations on Task Instances. Your
business processes can also wait to receive callbacks from task instances. Note that the Task and
Task Worker controls can be extended to add customized methods and additional callbacks.

This section includes the following topics:

Task Control Active Task Model

Creating New Tasks With a Task Control

Assigning and Claiming Tasks

Reassigning Tasks and Returning Them to Other States

Setting Task Data Values

Altering State With a Task Control

Using Controls to Get Task Status

Using XML With the Task Control

Using the Task Control Property Editor

Using Callback Methods

Permissions and Roles

Modifying Task Data Values

Transactions

Using Work l is t Cont ro ls

2-4 Using the Worklist

Task Control Active Task Model
Each instance of a Task Control only operates on a single task instance. Each task has a unique
ID—the Active Task ID on a control uses this ID to identify the task instance on which a task
control operates. All operations on a task control are performed on the active task.

The Active Task ID is set either by creating a new task, or by invoking the setTaskId method.
When a new task is created, the Active Task ID is automatically set to the ID of the newly created
task. In this way, subsequent operations are performed on the new task.

A consequence of the active task model is that a Task control instance can create a single task
only. However, you can use a Task control factory to create new instances of Task controls
dynamically. This means that you can use a Task control factory to create a new Control instance
every time a new Task is required. To learn more about Task control factories, see “Using Task
Control Factories” on page 5-16.

Because it is possible to use the Task ID to determine which task a control operates or receives
callbacks from, multiple business processes can incorporate controls that operate on the same
task. New processes, that is, processes that are instantiated after a task that already exists can
interact with that task using the setActiveTaskId method.

The Task Worker control does not use the active task model. Instead, to specify which tasks need
to be updated, Task IDs are passed explicitly to methods on the Task Worker control. For
example, the business process shown in the following figure is designed to receive a Task ID
from another business process that created a new task. The business process sets the Active Task

Us ing Task and Task Worker Cont ro ls in Busi ness P rocesses

Using the Worklist 2-5

ID for a Task control, and then waits for the onCompletion callback, which indicates that the
task is completed.

Creating New Tasks With a Task Control
A Task Control can create a new Task with the following operations:

String createTaskByName(String name)

String createTask(TaskCreationXMLDocument xml)

Both operations create a new Task, return the instance ID of that new task, and set the task
control’s Active Task ID to the ID of the new task.

The createTaskByName(String name) method sets the task name to the value specified in the
input parameter; other data values are set to their default values or values specified in the Property
Editor.

The createTask(TaskCreationXMLDocument xml) method first creates a new task and
names it according to the name specified in the XML document. Then it alters the task in some
way, using the elements in the XML document to do so.

Assigning and Claiming Tasks
Worklist controls assign Tasks according the following methods:

Using Work l is t Cont ro ls

2-6 Using the Worklist

assignTaskToUser methods and the ToUser property
These methods and properties place Tasks in a claimed state and set a user as the claimant.

assignTaskToUserInGroup methods and the ToUserInGroup property
These methods and properties accept the name of a group. The method and property use
a load balancing mechanism to select a single user from that group to be the claimant, and
then place the Task in a claimed state.

The load balancing algorithm selects the user with the fewest claimed Tasks that are not
in completed, aborted, or suspended states. If more than one user is identified (that is, if
two or more users in the group have the same number of claimed tasks), then the algorithm
chooses one user randomly.

assignTaskToUsersAndGroups methods and the ToUsersAndGroups property
These methods and properties accept values for the Assignees List, and place a Task in an
assigned state. Any user on the Assignees List can claim the Task.

Although you can assign multiple users and groups to a Task, only one user on the Assignees List
can place a Task in a claimed state. If the Assignees List contains only one user, the Task goes
directly into a claimed state, and that user becomes the claimant.

If you create a Task with no users or groups on the Assignees List, the Task behaves as if it were
unassigned.

Reassigning Tasks and Returning Them to Other States
Worklist controls allow a Task instance to be returned to the assigned state from the claimed state.
The ability to assign a previously claimed Task depends on the privileges of the user initiating
the assignment. To learn about the permissions required for changing Task states, see
“Permissions for Modifying Task Properties” on page 2-20.

You can reassign Tasks, placing them back into the assigned state while changing the Assignees
List, effectively giving them to different users. You can also return Tasks, placing them back into
the assigned state with the same Assignees List. You can return or reassign Tasks for work that
repeats on a continuing basis.

The following methods, among others, allow a Task to be put back into an assigned state:

assignTaskToUsersAndGroups

assignTaskToUserInGroup (through load balancing)

returnTask

resumeTask

Us ing Task and Task Worker Cont ro ls in Busi ness P rocesses

Using the Worklist 2-7

To learn about Task states and operations, see “Task Operations” on page 3-19. To learn more
about the Worklist API, see the com.bea.wli.worklist.api package in the BEA WebLogic
Integration Javadoc.

Setting Task Data Values
The data values for tasks that you can set depend on the permissions you have been granted in the
system. To learn about the Data values for task instances, the permissions you need to alter the
task data, and the valid values for each type of data, see “Task Data Values” on page 3-14.

The Task control supports an operation that takes a TaskUpdateXML document. You can use this
operation to set multiple data values in a single step. To learn how, see Using XML With the Task
Control.

Control operations set values for business dates, such as due dates, completion dates, and claim
dates, to make sure that work in done in a timely manner. To learn more, see “Task Due Dates”
on page 3-2.

Table 2-1 Setting Data Values with Operations

Operation Description

setClaimDueBusinessDate(String
duration, String calendarID)

Sets the claim due date using a business time duration and
a calendar name.

The specified calendar converts the business time duration
to an absolute date. Conversions to absolute dates using the
calendar are done relative to the current time.

setClaimDueBusinessDateSystemCalen
dar(String duration)

Sets the claim due date using a business time duration.

The system calendar is used to convert the business time
duration to an absolute date.

setClaimDueDate(Date date) Sets the claim due date to an absolute date. You can specify
null to unset the due date.

setCompletionDueBusinessDate(Strin
g duration, String calendarID)

Sets the completion due date using a business time duration
and a calendar name.

That calendar converts the business time duration to an
absolute date. Conversions to absolute dates using the
calendar are done relative to the current time.

http://edocs.bea.com/wli/docs81/javadoc/index.html
http://edocs.bea.com/wli/docs81/javadoc/index.html

Using Work l is t Cont ro ls

2-8 Using the Worklist

Altering State With a Task Control
Some methods on the Task control cause the state of a task instance to transition to a new state.
Some of these methods also set related data values for the task instance in the business process.
To learn more about Task states, see“Task States” on page 3-4.

setCompletionDueBusinessDateSystem
Calendar(String duration)

Sets the completion due date using a business time
duration. The system calendar converts the business time
duration to an absolute date.

setCompletionDueDate(Date date) Sets the completion due date to an absolute date. You can
specify null to unset the due date.

setComment(String comment) Sets the task comment. You can specify null to unset the
comment.

setOwner(String owner) The specified String sets the Task Owner as the user or
group name. You can specify null to unset the owner,
which means that no owner is specified for the task.

public void setPermissions(Boolean
aborted, Boolean returned, Boolean
reassigned)

Sets the Boolean values that pertain to permissions for a
given task.

setPriority(Integer priority) Sets the task priority. The value you specify for priority
must be a positive integer.

setRequest(XmlObject xml) and
setResponse(XmlObject xml)

Sets the request and response values to contain an XML
document. You can specify null to unset the value.

setProperty(String name, String
value)

Sets a user-defined property with the given name to the
given value. This method creates the specified property if
it does not exist.

You cannot specify null for either the name or the value
parameter.

Operation Description

Us ing Task and Task Worker Cont ro ls in Busi ness P rocesses

Using the Worklist 2-9

Table 2-2 Operations That Affect Task State

Methods Controls Description

abortTask Task

Task Worker

Invokes the abort operation on a task.

assignTaskToUser Task
Task Worker

Assigns tasks to the user whose name you
provide as an argument to the method.

The specified user must belong to the
WebLogic Integration Users Group.

The Assignees List is set accordingly for the
task instance. The task is then automatically
claimed for the specified user.

To learn about users and groups for Worklist
controls, see“Task Users and Groups” on
page 3-8.

assignTaskToUserInGroup Task

Task Worker

Assigns the task to a user in the group whose
name you provide as an argument to the
method.

The Worklist uses a load balancing algorithm
to choose the least busy user in the group.

assignTaskToUsersAndGroups Task

Task Worker

Assigns the task and sets the Assignees List to
contain the users and groups that you provide
as an argument to the method.

The users and groups specified must belong
to the WebLogic Integration Users Group.

resumeTask Task

Task Worker

Invokes the resume operation on the task.

suspendTask Task

Task Worker

Invokes the suspend operation on the task.

updateTask Task Alters the state through assignment.

To learn more about Task properties and
XML, see Using XML With the Task
Control.

Using Work l is t Cont ro ls

2-10 Using the Worklist

archiveTasks Task Worker Causes completed and aborted tasks to be
archived.

To learn more about Task archival, see
System Configuration in Managing
WebLogic Integration Solutions.

purgeTasks Task Worker Purges all archived tasks from the archival
tables.

To learn more about purging Tasks, see
System Configuration in Managing
WebLogic Integration Solutions.

claimTask Task Worker Causes the claim operation to be called. The
currently executing principal claims the task.

claimTaskOnBehalfOf Task Worker Causes the claim operation to be called.
Claims the task on behalf of the user whose
name is specified as an argument to the
method. This is an administrative function.

completeTask Task Worker Invokes the complete operation on a task.

deleteTask Task Worker Removes the task instance completely and
permanently at run time. You can also use the
WebLogic Integration Administration
Console to remove task instances. This is an
administrative function

returnTask Task Worker Invokes the return operation on a task. This
method places Tasks back into the assigned
state and makes no changes to the Assignee
List.

startTask Task Worker Invokes the start operation on a task.

stopTask Task Worker Invokes the stop operation on a task.

Methods Controls Description

Us ing Task and Task Worker Cont ro ls in Busi ness P rocesses

Using the Worklist 2-11

Using Controls to Get Task Status
The Task and Task Worker controls provide operations to access data values associated with a
task instance. You can use these operations to access individual values, to receive a
TaskInfoXMLDocument, and to return a com.bea.wli.worklist.api.TaskInfo object:

A TaskInfoXMLDocument contains a summary of the task and data values in a single
XML document. To learn about the TaskInfoXMLDocument, see Using XML With the
Task Control.

A com.bea.wli.worklist.api.TaskInfo object contains a summary of the task and
data values in a Java object.

Using XML With the Task Control
For ease of use, several operations on the Worklist controls offer an XML interface. These
operations are concise and convenient. They allow you to configure and perform multiple
operations on a Task instance in a single step; they allow you to access the summary for a task
instance in a single document. The real power of these operations is through their use with the
XML mapper.

For example, if a business process contains several variables, all of which contain information
relevant to the creation of a new task, the XML mapper can extract the values from each of these
variables and construct a single XML document that specifies aspects of a new task. You can
review the XML document in the mapper to get an overview of the data values that will be set for
a given task.

Similarly, you can use the mapper to extract several values from a Task Status XML document
to set several values for a business process at once.

Creating New Tasks with a TaskCreationXML Document
You can use a TaskCreationXML document to create a new Task instance and configure that new
instance in a single step. Operations on the Task Control take the document as an argument and
use it to create a Task. Each element in the TaskCreationXML document causes the new Task to
be updated in a different way. This section describes the following methods:

public String createTask(TaskCreationXMLDocument doc)

public TaskInfoXMLDocument getTaskInfoXMLDocument()

public void updateTask(TaskUpdateXMLDocument doc)

Using Work l is t Cont ro ls

2-12 Using the Worklist

public String createTask(TaskCreationXMLDocument doc)
The worklist system calls the following method using the value of the name element in the
TaskCreationXMLDocument:

public String createTask(TaskCreationXMLDocument doc)

The method then parses the document, element by element, invoking a state-related operation or
a data-setting operation on the task instance for each.

The following is an example of an XML document that you can use to create a new task named
My Task, assign it to a user named Bill Smith, set the priority to 5, specify a task comment,
specify the completion due date for 3 business days, and specify that the due date is calculated
based on the CustomerSupport group’s business calendar:

<TaskCreationXML xmlns="http://www.bea.com/wli/worklist/xml">
<name>My Task</name>
<comment>This work is important</comment>
<priority>5</priority>
<completionDueBusinessDate>

<day>3</day>
<calendar>

<userOrGroup>CustomerSupport</userOrGroup>
</calendar>

</completionDueBusinessDate>
<assignee>

<user>BillSmith</user>
<algorithm>ToUser</algorithm>

</assignee>
</TaskCreationXML>

In the preceding listing, note the following elements:

completionDueBusinessDate—Allows optional specification of a Business Calendar,
either specifying the Calendar’s name, or the name of a user or group whose calendar is to
be used. To set the due date as a java.util.Date, this calendar converts the
business-time duration to an absolute time.

assignee—Assign the task directly to a user, a user in a group, or to set the Assignees
List to contain a list of users or groups. The example XML in the preceding listing shows
how to specify the assignee as a single user (assignToUser). The following XML is also
valid to assign a task to a user in a group, and to specify a list of users and groups for the
Assignees list:

– To assignToUserInGroup

<assignee>
<group>CollectionsGroup</ group >

Us ing Task and Task Worker Cont ro ls in Busi ness P rocesses

Using the Worklist 2-13

<algorithm>ToUsnGroup</algorithm>
</assignee>

– To assignToUsersAndGroups

<assignee>
<user>UserA</user>
<user>UserB</user>
<group>GroupA</ group >
<group>GroupB</ group >
<algorithm>ToUsersAndGroups</algorithm>

</assignee>

Setting the request Property for a Task Instance
You can use an XML element to set the request property for the Task Instance. The message
value of this element can be any XML appropriate for the task instance. The mime-type element
is for informational purposes only and can be interpreted by the application. To learn more about
the mime-type elements, see “Request and Response Documents” on page 3-18.

<request>
<message>

<line:line-item xmlns:line="http://www.bea.com/line-item">
<line:name>Widget</line:name>
<line:quantity>100</line:quantity>

</line:line-item>
</message>
<mime-type>LineItem</mime-type>

</request>

public TaskInfoXMLDocument getTaskInfoXMLDocument()
You can use public TaskInfoXMLDocument getTaskInfoXMLDocument() to get a
TaskInfoXMLDocument on the Worklist Controls. It contains the task properties, state, and other
attributes in a single document.

public void updateTask(TaskUpdateXMLDocument doc)
You can use a TaskUpdateXML document as an argument to the following method to update an
existing Task instance in various ways in a single step:

public void updateTask(TaskUpdateXMLDocument doc)

Each element in the TaskUpdateXML document causes the Task to be updated in a different way.
The XML document is similar to the TaskCreationXML document described for public String
createTask(TaskCreationXMLDocument doc).

Using Work l is t Cont ro ls

2-14 Using the Worklist

Importing the Worklist Schema into Your Application
To import the Worklist schema into your application:

1. In the Application tab, right-click the top-level application folder. If the Application tab is
not visible in WebLogic Workshop, choose View →Application from the menu bar.

2. From the drop-down menu, select New →Project....

The New Project dialog box is displayed.

3. In the right-most pane of the New Project dialog box, select WLI System Schemas.

The Schemas project you create contains WebLogic Integration System XSD files,
including Worklist.xsd.

4. In the Project name field, enter a name (for example: Schemas).

Note: You can name your schemas project anything you want, except when you plan to use
the project for application view channels and schemas. In that case, you must name it
Schemas.

The Task Control Properties Sheet
You can use the Task Control Properties Sheet to set property defaults for new task instances
created by a control.

When a new task is created with the control, the values in the properties sheet are used, unless the
creation operation passes a parameter that explicitly overrides the value. If values are not set by
the method parameters and do not exist in the properties sheet, the Worklist defaults are used for
those values.

For example, if the properties sheet specifies values for the task name, task owner, and priority,
and the user creates a new task with a TaskCreationXML document that specifies only the task
description and priority, the following takes place:

The value from the TaskCreationXML for the description is used.

Because the priority is specified in both the XML and the properties sheet, the properties
sheet value is used.

Because the task comment is not specified in the XML or the properties sheet, the system
default is used.

Us ing Task and Task Worker Cont ro ls in Busi ness P rocesses

Using the Worklist 2-15

Table 2-3 Task Control Properties

Property Section Property Purpose Valid Values

Task Name Sets the task name String

Task Description Sets the task description String

Task Comment Sets the task comment String

Task Priority Sets the task priority Integer

Task Owner Sets the task owner String

Assignee Algorithm Specifies how to assign new task Strings: ToUser
ToUserInGroup

Assignee User If algorithm is ToUser, specifies
the user name

String

Assignee Group If algorithm is ToUserInGroup,
specifies the group name

Advanced can-be-reassigned Sets the task property called
canBeReassigned

True or False

Advanced can-be-returned Sets the task property called
canBeReturned.

True or False

Advanced can-be-aborted Sets the task property called
canBeAborted.

True or False

Advanced claim-due-business-date Sets the due date for the task to be
claimed, using a business-time
duration.

String, format
must be valid
business time
duration

Advanced completion-due-business-date Sets the due date for the task to be
completed using a business-time
duration.

String, format
must be valid
business time
duration

Using Work l is t Cont ro ls

2-16 Using the Worklist

Using the Task Control Property Editor
In WebLogic Workshop, the controls you create in your application are represented as JCX files
in the Application pane. Instances of controls that you create in your business process are
displayed in the Data Palette. You can view and edit the properties of control instances and their
parent types in the Property Editor.

To view or edit properties for control instances:

1. In WebLogic Workshop, on the Application pane, click the JPD file you are designing. The
business process is displayed in Design View.

2. In the Data Palette, double-click an instance of a Task control. Its properties are displayed
in the Property Editor.

Note: If the Data Palette or the Property Editor is not visible, from the menu bar, click
View→Windows→Data Palette or View→Property Editor.

Advanced completion-user-calendar Sets the name of the user whose
Business Calendar should be used
to convert the
completion-due-business-date to a
java.util.Date.

String user name

Advanced claim-user-calendar Sets the name of the user whose
Business Calendar should be used
to convert the
claim-due-business-date to a
java.util.Date.

String user name

Advanced completion-calendar Sets the name of the Business
Calendar that should be used to
convert the
completion-due-business-date to a
java.util.Date.

String calendar
name

Advanced claim-calendar Sets the name of the Business
Calendar that should be used to
convert the
claim-due-business-date to a
java.util.Date.

String calendar
name

Property Section Property Purpose Valid Values

Us ing Task and Task Worker Cont ro ls in Busi ness P rocesses

Using the Worklist 2-17

Note that when you open the Property Editor for an instance of a control, the properties
for that instance, are listed at the top of the Property Editor and the properties specified
for the parent control (that is, the control on which the current instance is based) are listed
at the bottom in the Referenced Control section. The properties displayed in the
Referenced Control section are read-only. You can edit the referenced control properties
by opening the JCX file.

To learn how to specify properties for control types versus control instances using the
Property Editor, see Setting Control Properties in the WebLogic Workshop Help.

For example, if you create an instance of a File control in your business process, and name it
taskCTRL, the instance is displayed in the Data Palette. To view the instance, in the Data
Palette, click taskCTRL. The instance is highlighted and its properties are displayed in the
Property Editor.

The following figure shows the Property Editor for the example taskCTRL instance:

Default properties for Task control instances appear encoded in the Worklist control JCX file as
attributes of the @jc (Java control) annotations. For detailed information on the @jc annotations,
see Worklist Control Annotations.

Using Callback Methods
Task controls provide callback methods. Other resources can use the callback interface to receive
notification of events, such as changes in states or properties.

http://edocs.bea.com/workshop/docs81/doc/en/integration/reference/refWorklistAnnotations.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideControlsProperties.html

Using Work l is t Cont ro ls

2-18 Using the Worklist

Table 2-4 Task Control Callback Methods

To learn more about Task states, see “Task States” on page 3-4.

You can also create custom callback methods. To learn more about building your own Worklist
callback methods, see “Querying Tasks Using the Task Worker Control” on page 5-13.

Permissions and Roles
When any operation is invoked on a Task, the Worklist verifies that the current principal that is
executing the operation has the permission to do so. Permission is granted based on the user’s
assigned role, the state of the task, the operation being invoked, and possibly data values
associated with the task instance. To learn more about permissions, see “Tasks and User
Permissions” on page 3-10.

Method Description

onTaskAborted This is a callback method that another resource, such as a
business process, can implement to receive notification when a
Task is in an aborted state.

onTaskCompleted This is a callback method that another resource, such as a
business process, can implement to receive notification when a
Task is in a completed state.

onTaskOverdue This is a callback method that another resource, such as a
business process, can implement to receive notification when a
Task completion due date is past.

Us ing Task and Task Worker Cont ro ls in Busi ness P rocesses

Using the Worklist 2-19

Table 2-5 State Transitions for Tasks

Start States End State Relevant Operations Permitted Users

ASSIGNED,
CLAIMED,
STARTED

ABORTED abortTask Assignees List, if task is
ASSIGNED and canBeAborted
is TRUE.

Claimant if canBeAborted is true.
Task Owner and Integration
Administrator

ASSIGNED,
CLAIMED,
STARTED

SUSPENDED suspendTask Task Owner and Integration
Administrator

SUSPENDED The Task State
when suspended

resumeTask Task Owner and Integration
Administrator

ASSIGNED ASSIGNED assignToUsersAndGroups Assignees List if
canBeReassigned is TRUE.
Task Owner and Integration
Administrator

COMPLETED or
ABORTED

ASSIGNED assignToUsersAndGroups Task Owner and Integration
Administrator

ASSIGNED CLAIMED claimTask Assignees List. Task Owner and
Integration Administrator

CLAIMED ASSIGNED returnTask Claimant if canBeReturned is
TRUE. Task Owner and Integration
Administrator

ASSIGNED CLAIMED assignToUserInGroup,
assignToUser

Assignees List if
canBeReassigned is TRUE.
Task Owner and Integration
Administrator

COMPLETED or
ABORTED

CLAIMED assignToUserInGroup,
assignToUser

Task Owner and Integration
Administrator

CLAIMED STARTED startTask Claimant. Task Owner and
Integration Administrator

Using Work l is t Cont ro ls

2-20 Using the Worklist

Permissions for Modifying Task Properties
Whether a user has permission to modify a Task property depends on factors including the state
of the task, the current user that is executing the Task, and the particular property to be modified.
The following list provides the details:

Some properties can be modified only by the Task Owner or an Integration Administrator,
regardless of the state of the Task.

Properties cannot be modified on Tasks that are in any of the following states:
SUSPENDED, COMPLETED, and ABORTED. If you need to modify the properties for a
task in any of these states, you must first transition it out of that state. To do so, you can
resume the task, or reassign it, and claim it.

Only the task owner, a member of the Assignees List, or an Integration Administrator can
modify Task properties for tasks that are in the assigned state.

Only the claimant, the task owner, or an Integration Administrator can modify Task
properties for tasks that are in the claimed or started states.

For learn about Task states and moving Tasks between states, see “Task States” on page 3-4.

Permissions for Reassigning Tasks and Returning Them to Other States
Task owners and Integration Administrators are always granted the permission to reassign and
return Tasks. Additionally, Worklist controls provide the following Boolean properties that
specify whether an assignee or claimant can reassign or return a Task:

can-be-reassigned (valid values are true and false)

can-be-returned (valid values are true and false)

STARTED CLAIMED stopTask Claimant. Task Owner and
Integration Administrator

STARTED COMPLETED completeTask Claimant. Task Owner and
Integration Administrator

ANY DOES NOT
EXIST

deleteTask Task Owner and Integration
Administrator

Start States End State Relevant Operations Permitted Users

http://edocs.bea.com/wli/docs81/worklist/tasks.html#1060886

Us ing Task and Task Worker Cont ro ls in Busi ness P rocesses

Using the Worklist 2-21

To learn about the methods provided on the Worklist controls that allow a Task to be put back
into an assigned state, see “Task Operations” on page 3-19.

Permissions for Creating Tasks
Only certain users can create tasks. For learn more, see “Task Users and Groups” on page 3-8 and
“Tasks and User Permissions” on page 3-10.

Modifying Task Data Values
Which users and groups are granted permissions to modify a task property depend on several
factors: the state of the task, the current user executing the operation, and the property to be
modified, as described in the following list:

Some data values can be modified only by the Task Owner or an Integration
Administrator, regardless of the state of the task.

Data values cannot be modified for states in the SUSPENDED, COMPLETED, and
ABORTED states. The task must be resumed or reassigned and claimed before you can
modify data values on tasks in these states.

To modify Task Data values for tasks that are in the ASSIGNED state, the current user
must be on the Assignees List, be the task owner, or be an Integration Administrator.

Only the claimant, task owner, and Integration Administrators can modify task data values
for tasks that are in the CLAIMED and STARTED states.

To learn about the data values and the permissions required to modify them, see “Task Data
Values” on page 3-14.

Transactions
Task instances work with transaction contexts in the following ways:

Method invocation made within a Transaction Context
The invocation of a method on the Worklist API or a control operation is done within the
context of the current transaction. If the transaction rolls back, the effects of the operations
on the task are undone.

Method invocation made outside of a Transaction Context
The Worklist system starts a new transaction when a new method is called. The
transaction is committed on successful completion of that method.

Using Work l is t Cont ro ls

2-22 Using the Worklist

All operations on Task instances behave like an EJB operation with a required transaction
attribute.

Using the Worklist 3-1

C H A P T E R 3

Creating and Managing Worklist Tasks

Task Instances have properties that define what work needs to be done, who does the work, how
the work is performed, and so on. This section describes the details of working with task
instances. It includes the following topics:

Overview

Task Due Dates

Task States

Task Users and Groups

Tasks and User Permissions

Task Data Values

Task Operations

Archiving and Purging Task Information

Task Queries

The Relationship Between Processes and Tasks

Overview
Task instances are part of the WebLogic Integration server and exist independently of Worklist
controls or specific business processes. Tasks remain in the run-time engine indefinitely, until

Creat ing and Manag ing Work l i s t Tasks

3-2 Using the Worklist

they are either explicitly deleted or purged by the WebLogic Integration purging process. You
create, delete, and manage Tasks through the following mechanisms:

The Task and Task Worker controls in WebLogic Workshop.

The Worklist module the WebLogic Integration Administration Console.

The public Worklist API, using Enterprise Java Beans, and Message Beans.

There are no task types, all task instance lifecycles conform to the same state diagram and have
the same types of data associated with them. In other words, task instances cannot be extended
(in the Object Oriented sense).

Task Due Dates
Business processes can take actions to address overdue work by setting and tracking Task due
dates. For example, a purchase order business process can email the manager assigned to approve
the purchase order if that manager takes more than three business days to do so.

This section describes Task Dates and calendars. It contains the following topics:

Claim and Completion Due Dates

To Set Task Due Dates Using Absolute Time

To Set Task Due Dates Using Business Time

To Specify a Calendar to Use When You Set Due Dates

Formats for Business Time Duration

Claim and Completion Due Dates
Worklist provides the option to set one or both of the following due dates for a Task Instances:

Claim Due Date—specifies the deadline for a task to be Claimed by a user on the
Assignees List. Setting claimDueDate to null indicates that there is no due date.

Completion Due Date—specifies the deadline for a task to have reached the Completed
state. Setting completionDueDate to null indicates that there is no due date.

Due Dates are stored as java.util.Date values. They mark a precise instant in time. You can
specify Due Dates using Business Time or system time. To learn about business time, see “To Set
Task Due Dates Using Business Time” on page 3-3.

Task Due Dates

Using the Worklist 3-3

At run time, when Worklist detects that a due date has passed, it checks whether the associated
task is claimed or completed. If the task is not claimed or completed, Worklist invokes callbacks
on any Task controls that are blocking on the task becoming overdue. Business processes can
incorporate these callbacks that are invoked when due dates expire, allowing the processes to
execute logic when the task becomes overdue.

To Set Task Due Dates Using Absolute Time
You can set Task due dates by specifying a java.util.Date. The due date is a specific instant
of time. You can unset Task due dates by passing null for the java.util.Date.

To Set Task Due Dates Using Business Time
You can set Task due dates by specifying a duration of business time. Business Time durations
are strings that define a period of time relative to a specified Business Calendar. Business
calendars are required to convert business time durations to real time. In other words,
business-time durations have no meaning if they are not associated with a business calendar that
converts the durations to real time. The Worklist system uses the addBusinessTime method to
calculate the due dates.

For example, a business calendar defines business hours as Monday, Tuesday, and Wednesday
from 9AM to 5PM. If on Saturday the 16th, you set a Task’s duration for four business days, the
resulting due date is Monday the 25th (Monday the 18th, Tuesday the 19th, Wednesday the 20th,
Monday the 25th).

To learn more about business calendars and the WebLogic Integration Administration Console,
see Business Calendar Configuration in Managing WebLogic Integration Solutions

To Specify a Calendar to Use When You Set Due Dates
If you use a business time duration, but do not specify a business calendar to use, the WebLogic
Integration System Business Calendar is used. To specify a business calendar for the system to
use when it calculates due dates, do one of the following:

Explicitly pass the name of the business calendar to a Task control. To learn how, see
“Specify a Due Date for Completion of the Task” in Step 4. Create Task and Assign to
User in Tutorial: Building a Worklist Application.

Specify a user or group. In this case, the business calendar associated with that user or
group is used to calculate the due date. To learn how to associate business calendars with

http://edocs.bea.com/wli/docs81/wltutorial/createtask.html
http://edocs.bea.com/wli/docs81/wltutorial/createtask.html
http://edocs.bea.com/wli/docs81/manage/businesscalendar.html

Creat ing and Manag ing Work l i s t Tasks

3-4 Using the Worklist

users and groups in your system, see “Assigning Business Calendars to Users and Groups”
in Business Calendar Configuration in Managing WebLogic Integration Solutions

Formats for Business Time Duration
Business-time durations are strings that use the following format: X d Y h Z min. You can specify
days, hours, or minutes, or a subset of these values. For example, you can specify just days, or
just hours and minutes:

3 business days = 3 d

2 business hours and 30 business minutes = 2 h 30 min.

To learn more about the business calendar options of the WebLogic Integration Administration
Console, see Business Calendar Configuration in Managing WebLogic Integration Solutions.

Task States
The Task and Task Worker controls allow a business process or Worklist UI to cause a Task
Instance to transition from one state to another. Operations on the controls, or the API, guide the
task through its lifecycle.

A Task can be in one of the states defined in Table 3-1. Many of the methods on Worklist controls
make changes to states or properties of a Task instance. The transitional state operations for
Worklist controls are defined in Table 3-2.

Note: The operations that can be invoked for a given Task depend on the state of the task and
user permissions. To learn about user permissions, see “Tasks and User Permissions” on
page 3-10.

http://edocs.bea.com/wli/docs81/manage/businesscalendar.html
http://edocs.bea.com/wli/docs81/manage/businesscalendar.html

Task S tat es

Using the Worklist 3-5

Table 3-1 Task States

State Description

ASSIGNED New tasks begin in the ASSIGNED state. The Assignees List is important in this
state, as is specifies which users are allowed to become the claimant through the act
of claiming the task.

Note that the Assignees List may be empty, in which case the task is assigned to
nobody, effectively unassigned.

CLAIMED Claiming an ASSIGNED task causes the state to become CLAIMED. The claimed
state specifies that a user on the Assignees List has taken ownership of the task, and
intends to complete the task. The claimant value will be set when a Task is
CLAIMED.

Although the claimant has ownership of the work, the claimant may not yet have
started working on it.

STARTED The STARTED state indicates that the claimant started working on the task, that is,
is currently spending time on the work required to complete the task. The
STARTED state exists for reporting purposes, allowing companies to track
precisely how much time users spend working on individual tasks.

There can be significant time between declaring ownership of work (claiming the
task) and starting doing that work.

COMPLETED The COMPLETED state indicates that the work required to complete the task is
finished, or as much of the work as is possible to do is finished.

You can use the response document to record the details of how work was done or
the results of doing work.

SUSPENDED A SUSPENDED task is frozen—it cannot be worked on. SUSPENDED tasks can
be resumed at a later time, returning to the state previous to their suspension.

The SUSPENDED state can be used to temporarily mark that a task cannot progress
for some reason.

ABORTED An ABORTED task is effectively cancelled. The ABORTED state is generally used
to indicate that something went wrong while work was being done on the task.

This state can also be used to mark work that should be permanently abandoned.

Creat ing and Manag ing Work l i s t Tasks

3-6 Using the Worklist

Table 3-2 Control Methods That Operate on Task States

Operation Description

create Creates a new task instance in the ASSIGNED state.

Some data values, such as the description, can be set only when this operation
is invoked. Note that the currently executing principal must belong to a group
that is specific to the Worklist system before permissions are granted to create
a new task.

assign Causes a task to move to the ASSIGNED state. The Assignees List must be set
when this operation is performed and specify which users can claim the task.

This operation can be performed on tasks in a final state, such as COMPLETED
or ABORTED. This allows the task can be worked on again.

This operation can unassign or reassign a task. Assignment can be performed
on a single task instances multiple times throughout its lifecycle. When
assigning a task, an algorithm must be specified to determine how to set the
Assignees List. To learn about the algorithms, see “Assignment Algorithms” on
page 3-7.

This operation is performed by the task owner, task creator, an assignee, or an
administrator.

claim Causes a task in the ASSIGNED state to become CLAIMED. A user that is on
the Assignees List is set as the claimant of the task. This signifies that a user on
the Assignees List has marked ownership of the task and intends to complete it.
This operation is performed by a user who wishes to become the claimant for a
task, or by an administrator or task owner on behalf of another user.

start Causes a task in the CLAIMED state to become STARTED. It signifies that the
claimant is starting to work on the task. This operation is performed by the
claimant, or by an administrator or task owner on behalf of a claimant.

stop Causes a task in the STARTED state to return to the CLAIMED state. It
signifies that the claimant is stopping work on the task, possibly temporarily.
They can start it again when they are ready to continue working. This operation
is performed by the claimant, or by an administrator or task owner on behalf of
the claimant.

Task S tat es

Using the Worklist 3-7

Assignment Algorithms
Whenever a Task is assigned, one of the following assignment methods must be specified:
assignToUser, assignToUserInGroup, or assignToUsersAndGroups. The methods
described in the following table specify how the Assignees List is set.

complete Causes a task in the STARTED state to become COMPLETED.

It signifies that the claimant has finished the work required to complete the task,
or as much of the work as is possible to do is finished. This operation is
performed by the claimant, or by an administrator or task owner on behalf of
the claimant.

suspend Causes a task to become SUSPENDED. It signifies that the task no longer
progresses and should not be worked on, possibly temporarily. The task can be
resumed (using the resume operation) when work should continue. This
operation is performed by an administrator or task owner.

resume Causes a SUSPENDED task to return to the state it was in previous to its
suspension. This operation is performed by an administrator or by the task
owner.

abort Causes a task to become ABORTED. It signifies that the task should be
cancelled and should not complete. In other words, work on the task is no
longer necessary and should cease. This operation is performed by the
claimant, an administrator, or the task owner.

Operation Description

Creat ing and Manag ing Work l i s t Tasks

3-8 Using the Worklist

Table 3-3 Assignment Algorithms

Task Users and Groups
People and systems may be play various roles with respect to a task instance. They can be the
Task Owner in the role of managing the task, a user on the Assignees List who may claim the
task, the claimant who has declared ownership and intent to complete the task, or an WLI
Administrator.

The following list describes the roles in which a given user can be with respect a task instance.
These roles determine what operations they are permitted to perform on a Task instance.

To learn more about the permissions that allow different groups and users to create and manage
task instances, see “Tasks and User Permissions” on page 3-10.

Task Owners

Assignee Lists

Claimants

Integration Administrators

Task Creators

Method Description

assignToUser Sets the Assignees List to a specific IntegrationUser. The name of the user
must be specified. Because this user is the only one on the Assignees List,
this operation automatically causes the task to be claimed for the specified
user. For examples of how to use this method, see Step 4. Create Task and
Assign to User in the Tutorial: Building a Worklist Application.

assignToUserInGroup Behaves in the same way as the assignToUser method. However, when
you use the assignToUserInGroup method, a load balancing
algorithm is used to select the user in the specified group that has the
fewest claimed tasks that are not completed, aborted, or suspended. A
group name must be specified for this method.

assignToUsersAndGroups Sets the Assignees List to contain the users and groups specified. This
operation requires a list of user names, or a list of group names, or both.
Any of the users on the Assignees List can then claim the task.

http://edocs.bea.com/wli/docs81/wltutorial/createtask.html
http://edocs.bea.com/wli/docs81/wltutorial/createtask.html

Task User s and Groups

Using the Worklist 3-9

Task Owners
The Task Owner is the user or group with managerial responsibility for the work required to
complete a Task Instance. For example, a dispatcher at a taxi company can be the task owner for
tasks assigned to drivers to deliver a patron to his required destination.

Although a Task Owner usually does not complete the task, they can perform managerial
operations on the task. For example, the manager in a collections office can reassign the task of
calling a delinquent customer to a different collections officer when the officer originally
assigned to the task (the claimant) is on vacation.

Task owners have administrative privileges for the tasks they own. They are effectively in the role
of the WebLogic Integration Administrator when permissions are checked in the event an
operation is invoked on that task. Note that the Task Owner is set automatically to the current user
when a task is created, unless a different Task Owner is explicitly specified at creation time.

Assignee Lists
The Assignees List specifies the users or groups that are permitted to take ownership of a task by
claiming it. All instances of Tasks have an associated Assignee List. When a task is assigned or
reassigned, the Assignees List is updated and the state of the Task is set to ASSIGNED.

The Assignees List that is associated with a task can specify several users or groups (or both), but
only one user can claim a Task to perform the work. For a user to be on the Assignees List, either
the user name is explicitly listed or a group to which the user belongs is explicitly on the list. The
user in the Assignees List that claims the task, becomes the claimant.

Claimants
A Claimant is the users from the Assignees List who claims a Task and performs the work needed
to complete the Task. Certain Task operations require a user to be the claimant.

Any user in the Assignee List can claim a task, thereby becoming the Claimant. The State of the
Task is set to Claimed when a user claims the Task.

Integration Administrators
WebLogic Integration server users with administrative privileges can perform any operation on
a Task, including the creation of new Tasks. To learn about the default roles and groups in
WebLogic Integration, see User Management in Managing WebLogic Integraton Solutions.

http://edocs.bea.com/wli/docs81/manage/users.html

Creat ing and Manag ing Work l i s t Tasks

3-10 Using the Worklist

Task Creators
Task Creators are users who, like the Integration Administrators, have permissions to create new
Tasks.

WebLogic Integration provides a default group that defines which users can create new tasks. By
default, the anonymous user is a member of this group in a new domain. To learn how you can
enforce strict restraints on who can create new tasks, see Worklist Administration in Managing
WebLogic Integration Solutions.

Tasks and User Permissions
Only Integration Administrators and users in the TaskCreationRole can create Tasks and
simultaneously set new Task properties. The Worklist system verifies that the user attempting to
create tasks and invoke operations on Tasks has the required permissions to do so. This section
includes:

Worklist Security

Who Has Permission to Create Tasks?

Who Has Permission to Modify Task Data Values?

Who Has Permission to Invoke Task Operations?

Worklist Security
The Worklist relies on the WebLogic Server security framework and authentication provider to
enforce security.

If more than one security provider is defined in the active realm of the domain, the Worklist
gathers information from all of them. These authentication providers can or can not implement
some of the MBeans that are used by Worklist.

If the following MBeans are not present, some features are deactivated, but the Worklist is still
functional:

UserReaderMBean—used to validate users when assigning a Task or setting the Task
owner.

GroupReaderMBean—used to validate a group when assigning a Task to a group or setting
the Task Owner.

http://edocs.bea.com/wli/docs81/manage/worklist.html

Tasks and Use r Pe rmiss ions

Using the Worklist 3-11

GroupMemberListerMBean—used when assigning a Task using the algorithm
ToUserInGroup.

If UserReaderMBean or GroupReaderMBean is not present, all the users and groups validations
for the task owner and task assignee are deactivated. If GroupMemberListerMBean is not present
you cannot use the algorithm ToUserInGroup when assigning a task. Additionally, you cannot
select all the tasks whose assignee is in a specific group.

Who Has Permission to Create Tasks?
Only Integration Administrators and users in the TaskCreationRole can create Tasks and
simultaneously set new Task properties.

Default WebLogic Integration Users—Any domain that supports WebLogic Integration
includes a set of default WebLogic Integration roles and groups. Default security policies define
the roles authorized to access specific WebLogic Integration resources. You must be logged in as
a member of one of the following groups to make changes to task states:
IntegrationAdministrators, IntegrationUsers, or IntegrationOperators. To learn about the default
roles and groups in WebLogic Integration, see User Management in Managing WebLogic
Integraton Solutions.

You can configure the TaskCreationRole using the WebLogic Integration Administration
Console. To do so, complete the following steps:

1. Open the WebLogic Integration Administration Console.

2. From the Home page, select the System Configuration module.

3. From the left panel, select Worklist.

4. On the View Worklist Configuration page, click Configure.

5. From the Task Creation Role drop-down list, select the role.

6. Click Submit to update the setting and return to the View Worklist Configuration page.

By default, the TaskCreationRole role contains the WebLogic Server Anonymous role. Thus,
anonymous users have the permissions to create tasks. You can change this specification if you
want more stringent control over the creation of tasks.

http://edocs.bea.com/wli/docs81/manage/users.html

Creat ing and Manag ing Work l i s t Tasks

3-12 Using the Worklist

Who Has Permission to Modify Task Data Values?
Whether a user can change Task properties after the Task is created depends on the following
parameters:

The state of the Task. You can not change the value of a Task property if the Task is in an
aborted, suspended, or completed state.

The role and group identification of the user executing the property change. Integration
Administrators are never denied permissions to change Task properties in any
circumstances where the operation is allowed; they have no restrictions.

The status of the user executing the property change with respect to the Task:

– For a Task that is in the assigned state, the user who modifies the Task must be an
assignee, the Task owner, or an Integration Administrator.

– For a Task that is in the claimed or started state, the user who modifies the Task must
be the claimant, the Task owner, or an Integration Administrator.

Who Has Permission to Invoke Task Operations?
Any operation on a Task requires the Worklist system to verify that the current principal
executing the operation has the permissions to perform that operation.

Whenever an operation is invoked on a task instance, the Worklist system checks if the currently
executing principal has the permission to do so. The decision to grant a permission is a function
of the role of the current principal with respect to the task, the state of the task, the operation being
invoked, and possibly some of the task data values, such as the value of canBeReassigned.

A user can take on one of several roles when interacting with a task instance. These roles are
described in “Task Users and Groups” on page 3-8. The following table presents the permissions
that different users have to perform the operations on Tasks that result in a change to the state of
a task. Each row presents the possibilities for a given starting Task state.

Tasks and Use r Pe rmiss ions

Using the Worklist 3-13

Table 3-4 User Roles and Task Operations

Starting State Ending State Relevant Operations Permitted Users

Assigned

Claimed

Completed

Started

Aborted abortTask Assignee list users and groups (if
can-be-aborted property true)

Claimant (if can-be-aborted property true)

Task Owner

Integration Administrator

Assigned,
Claimed Started

Aborted abortTask Assignees List, if task is ASSIGNED and
canBeAborted is TRUE. Claimant if
canBeAborted is true. Task Owner and
Integration Administrator

Assigned,
Claimed, Started

Suspended suspendTask Task Owner and Integration Administrator

Suspended Whatever the
Task State was
when suspended

resumeTask Task Owner and Integration Administrator

Assigned Assigned assignToUsersAndGroups Assignees List if canBeReassigned is
TRUE. Task Owner and Integration
Administrator

Completed or
Aborted

Assigned assignToUsersAndGroups Task Owner and Integration Administrator

Assigned Claimed claimTask Assignees List. Task Owner and
Integration Administrator

Claimed Assigned returnTask Claimant if canBeReturned is true. Task
Owner and Integration Administrator

Assigned Claimed assignToUserInGroup,
assignToUser

Assignees List if canBeReassigned is
TRUE. Task Owner and Integration
Administrator

Completed or
Aborted

Claimed assignToUserInGroup,
assignToUser

Claimant if canBeReassigned is TRUE.
Task Owner and Integration Administrator

Claimed Started startTask Claimant.Task Owner and Integration
Administrator

Creat ing and Manag ing Work l i s t Tasks

3-14 Using the Worklist

Task Data Values
There are various data values associated with Task Instances. They provide a mechanism for
describing the work that needs to be done to complete a task. They also describe work that is
already done, who should do the work, by when, the results of work, and so on.

Some of these values are specified only at the time a new Task is created; some values can be
modified throughout the lifecycle of the instance. Each data value has rules that specify the users
that have permissions to modify the value.

The following table describes the Task Instance data values.

Table 3-5 Task Instance Data Values

Started Claimed stopTask Claimant.Task Owner and Integration
Administrator

Started Completed completeTask Claimant. Task Owner and Integration
Administrator

Any Not Existing deleteTask Task Owner and Integration Administrator

Starting State Ending State Relevant Operations Permitted Users

Name Purpose How to Set Type Unset
Value

Default Notes Only
Admin.
Can
Modify

TaskId Identifies Task
instance.

Unique Value

System
sets at
creation
time, user
cannot set.

String Always
non-null

NA NA

Name Any String. Set by user
at creation
time only.

String Always
non-null

NA NA

Description Description of
the task.

Set by user
at creation
time only.

String Can be
null

Null NA

Task Data Va lues

Using the Worklist 3-15

ParentProcessURI The business
process type
that created the
task, if any.

System
sets at
creation
time, user
cannot set

String Can be
null

NA NA

ParentProcessId The instance ID
of the process
that created the
task, if any.

System
sets at
creation
time, user
cannot set

String Can be
null

NA NA

Assignees The Assignees
List for the
task, that is,
those users that
can claim it.

Set by user
using an
assignment
operation.

String
Array

Can be
empty
list, but
non-null

Empty List of user
and group
names. All
should be
members of
Integration
Users
group

NA

Claimant Tracks who
claimed the
task. This user
completes the
task.

Set by user
using a
claim(…)
operation.

String Can be
null

Null Must be a
user name,
a user that
is on the
Assignees
List, or a
member of
a group on
the
Assignees
List.

NA

Comment Any Set by user String Can be
null

Null False

Name Purpose How to Set Type Unset
Value

Default Notes Only
Admin.
Can
Modify

Creat ing and Manag ing Work l i s t Tasks

3-16 Using the Worklist

Priority Can be any
integer greater
than 0.
Worklist does
not do anything
with this value;
the application
can interpret or
ignore.

Set by user Integer Always
non-null

1 True

CreationDate When the task
was created.

Set by
Worklist
system

java.util.
Date

Always
non-null

NA NA

CanBeReassigned Allows a user
on the
Assignees List
assign to
reassign the
task. Otherwise
requires
administrative
privileges.

Set by user Boolean Always
non-null

True True

CanBeReturned Allows the
claimant to
return the task
after claiming
it; otherwise
requires
administrative
privileges.

Set by user Boolean Always
non-null

True True

Name Purpose How to Set Type Unset
Value

Default Notes Only
Admin.
Can
Modify

Task Data Va lues

Using the Worklist 3-17

CanBeAborted Allows the
claimant to
abort the task;
otherwise
requires
administrative
privileges.

Set by user Boolean Always
non-null

True True

Request Can describe
what work
should be done,
how to do it, or
what
information is
needed to
complete the
work.

Set by user Byte
array
can hold
XML,
String,
RawDat
a, and so
on.

Can be
null

Null False

Response Can describe
what was done,
how the work
was done, what
problems were
encountered,
and so on.

Set by user Byte
array
can hold
XML,
String,
RawDat
a, and so
on.

Can be
null

Null False

State Describes
where in the
Task life cycle
the task is
currently:
ASSIGNED,
CLAIMED,
STARTED,
COMPLETED,
ABORTED,
SUSPENDED.

System
maintains
this;
operations
cause it to
change.

String Always
non-null

NA NA

Name Purpose How to Set Type Unset
Value

Default Notes Only
Admin.
Can
Modify

Creat ing and Manag ing Work l i s t Tasks

3-18 Using the Worklist

Request and Response Documents
Documents can be associated with task instances: the documents describe what work needs to be
performed to complete the task, the progress of the work, or the results of what was attempted or
completed for the task. These documents populate the request and response data values, as
described in the preceding table.

Request Type and
Response Type

Can be used to
describe the
format of the
Request or
Response value
of this task
instance.

Set by user
when
Request or
Response
are set.

String Can be
null

NA System
does
nothing
with this
value;
application
can
interpret
and use.

False

Owner Can be user or
group name

Set by user String Can be
null

princip
al
executi
ng
when
task is
created

User or
Group must
be member
of
Integration
Users
group

True

ClaimDueDate Deadline for
some user to
have claimed
the task

Set by user java.util.
Date

Can be
null

Null Null means
no due date

True

CompletionDueDate Deadline for
claimant to
have completed
the task

Set by user java.util.
Date

Can be
null

Null Null means
no due
date.

True

Arbitrary, User
Defined Properties

Any Set by user String Can be
null

NA True

Name Purpose How to Set Type Unset
Value

Default Notes Only
Admin.
Can
Modify

Task Operat ions

Using the Worklist 3-19

You use a Task Request to specify what work needs to be done to complete a task, or how to do
the work. For example, a Task Request can contain a Purchase Order document that needs to be
approved by a user. This value of a Task Request can be read by the person who performs the
work and completes the task. In addition, assignees can view this information to decide whether
or not to claim the task.

The Task Response can specify the work that took place after a user worked on the task, or the
resulting data generated as the result of the work performed to complete the task, or both.
Callbacks can return the Response value to business processes that are waiting for a particular
task state.

For example, the Task Response can capture the agreement made between a collections agent and
a delinquent customer after a telephone conversation. The process that created the Task to call
that customer can use those results to decide what to do next.

Format and Type of Request and Response Documents
The Request and Response documents are stored as byte arrays in the Worklist system. This
means that they can hold any type of object. Methods and callbacks on the controls can set or get
these values as XmlObjects, Strings, Raw Data Types, or XML Bean types.

For example, you can create a Task that matches purchase orders with receipts, and include an
electronic version of a purchase order as request data. When the Task completes, it can include a
matching receipt with the purchase order, along with a document that explains any differences,
as response data.

The RequestType and ResponseType task properties can specify the data assigned to the Request
or Response type. The values of RequestType and ResponseType are provided for the
interpretation of the application; they are not used by the Worklist system.

For example, the RequestType can be set to xml, string, word document, or
com.xyz.PurchaseOrder. A custom Worklist UI can use these values to determine how to
display a request or response value to the user.

Task Operations
You use operations to create new tasks, alter task states or properties, delete tasks, or read
information about an existing task. Some operations allow combinations of these actions in a
single step. Examples of Task operations are contained in the following table.

Creat ing and Manag ing Work l i s t Tasks

3-20 Using the Worklist

Table 3-6 Task Operations

Archiving and Purging Task Information
WebLogic Integration supports the archiving of tracking data for business-process instance
history, trading-partner message history, and task instance history.

As tasks go through their lifecycle in enterprise processes, their properties are modified, their
states change, their due dates expire, and so on. Worklist task instances generate events that can
be logged in Worklist history tables in the runtime repository. The following types of events can
be tracked:

Changes in task state and associated values
The type of transition and associated values. For example, a task is reassigned or claimed.
In this case, the change in state and identity of the new assignee or claimant can be
tracked.

Expiration of task claim or complete due date
The task is unclaimed or incomplete on the due date for claiming or completing.

Changes in task owner or assignees
The type of change and new values can be tracked.

Operation Description

Create Tasks When a new Task Instance is created, the Worklist system assigns a unique
ID (a taskId) to that instance. Depending on the operation, the Task State
can be defined at creation time either as Assigned or Claimed.

Note: Some Task Properties are specified at the time an instance of a
Task is created and cannot be changed after the instance is created.

Modify Task Properties Some Task Properties can be specified and modified after an instance of a
Task is created.

Get Task Properties You can use Get Task operations to access the properties of any Task
Instance at any point during its lifecycle.

Modify Task State Task Instances can transition between states based on the operations
defined for them. Different operations to modify a Task’s State are valid
depending on the State in which the task is to start.

Arch iv i ng and Purg ing Task In fo rmat i on

Using the Worklist 3-21

Task requests and task responses
The request and response XML.

The Task Worker controls provide the following methods for archiving and deleting Tasks:

archiveTask—for placing Task instance information into Task history tables for any Task
in the completed or aborted state. See “Task History Tables” on page 3-22.

deleteTask—for permanently removing Tasks from the WebLogic Integration server. The
deleteTask method can be used for a Task that is in any state, including the suspended
state.

Warning: Use the deleteTask method with caution. No mechanism exists for rollback or
retrieval of deleted Tasks.

purgeTask—for deleting all archived Tasks from run time.

The archiveTask and purgeTask methods function according to the settings of the process
archiver in the WebLogic Integration Administration Console, as follows:

If the process archiver is off, the archiveTasks method does not function and the
purgeTasks method removes all completed and aborted archived Tasks that have existed
longer than the purgeDelay setting.

If the process archive is on, the purgeTasks method removes all the aborted and
completed Tasks that are in existence longer than the time specified by the purgeDelay
setting that were previously archived.

The process archiver provides the following tracking settings: Basic, Full, None. The
achiveTask method works with the process archiver according to the task tracking
settings:

– Basic—the process archiver archives all the Tasks in the completed or aborted states as
well as all the Task operations and state transitions.

– Full—the process archiver archives the tasks, operations, and state transitions
according to the Basic setting. It also archives all the requests and responses.

– None—the process archiver does nothing.

To learn more about configuring your application for archiving and purging Task data, see
System Configuration in Managing WebLogic Integraton Solutions.

To learn about the Task states and the operations available for archival, see “Task Operations”
on page 3-19.

http://edocs.bea.com/wli/docs81/manage/system.html

Creat ing and Manag ing Work l i s t Tasks

3-22 Using the Worklist

To optimize performance, the amount of tracking data stored in the run-time database should be
kept to a minimum. To this end, the archive and purge process can be configured to run at regular
intervals set by an administrator. In addition to configuring the schedule, the administrator can
enable or disable the archiver, as follows:

When the archiver is enabled, the process copies the data to an offline database, then
purges it from the run-time database.

When the archiver is disabled, the process purges the data from the run-time database
without copying it.

Archived information can be used for generating reports and compiling statistics about task
processing in your WebLogic Integration application. To learn more about configuring your
application for archiving and purging Task data, see System Configuration in Managing
WebLogic Integraton Solutions.

Task History Tables
As described in the preceding section, worklist task instances generate events that can be logged
in worklist history tables in the run-time repository. By default, the archiveTask method stores
Task instance information in the following history tables:

wli_task_archiving

wli_task_data_archiving

The following tables show the task information that can be stored in the history tables.

Table 3-7 Data in the Task History Tables

Name Description

task_id The unique Task ID.

process_instance The ID of the business process that created the Task.
(Only for Tasks created by business processes.)

action_type An integer that represents the action recorded. For more
information, see Table 3-8.

state_type An integer that represents the state of the Task. For more
information, see Table 3-8.

http://edocs.bea.com/wli/docs81/manage/system.html

Arch iv i ng and Purg ing Task In fo rmat i on

Using the Worklist 3-23

The following table presents the action types and state types (see action_type and state_type
in the preceding table) that can be archived, along with the integer that represents the action type
or state type in the history tables.

action_time The time of the action.

action_user The user for which the action happens.

details Any other relevant information.

Name Description

Creat ing and Manag ing Work l i s t Tasks

3-24 Using the Worklist

Table 3-8 Integers That Represent Action and State Types in the History Tables

Action Type Integer State Type 1 Integer

create 0 assigned 0

assign 1 claimed 1

claim 2 started 2

suspend 3 suspended 3

resume 4 completed 4

complete 5 aborted 5

abort 6

return 7

start 8

stop 9

updateComment 10

updatePriority 11

updateExpirationDate 12

updateClaimDate 13

updateOwner 14

updateCanBeReassigned 15

updateCanBeReturned 16

updateCanBeAborted 17

updateRequest 18

updateResponse 19

addListener 20

removeListener 21

claimExpire 22

expire 23

Task Quer ies

Using the Worklist 3-25

Task Queries
Task Queries allow a business process or UI to find tasks in the Worklist system that meet
user-defined criteria. This is analogous to SQL queries executed on Database Tables. The
application defines the criteria, executes the query, and is returned results for each task that
matches the criteria.

Business processes can use the task query mechanism to find tasks relevant to the business
process, and then perform work on the tasks that are returned. For example, a manufacturing
application can find all tasks related to a cancelled order and abort them.

You can create custom UI Pages that use the query mechanism to find tasks relevant to the user
that is using the page, and display information about those tasks. For example, a bug tracking UI
can allow users to query for tasks that are assigned to them, have a certain priority or higher, and
are due within a certain number of days.

This section includes the following topics:

To Specify the Criteria for a Query

To Specify How the Results Are Sorted

To Execute a Query

To Limit the Results Set

To Specify the Criteria for a Query
The criteria you specify when you define a query determine the tasks that are returned by the
query. When you specify a query, you can set the following criteria:

1. State types can be used in queries using the @jc:selector
annotation tag or TaskSelector objects. To learn more about queries, see
“Querying Tasks Using the Task Worker Control” on page 5-13.

Creat ing and Manag ing Work l i s t Tasks

3-26 Using the Worklist

Table 3-9 To Specify Criteria for a Query

Query Criteria Description

Task Ids Returns only those tasks for which the instance ID is matched.

Task Name Returns only those tasks for which the name matches the value passed in.
Optionally, you can specify that the value matches a pattern. For example:
OrderNumber%. See the Note About String Patterns

Comment Returns only those tasks for which the comment matches the value passed
in. Optionally, you can specify that the value matches a patterns.

Description Returns only those tasks for which the description matches the value
passed in. Optionally, you can specify that the value matches a pattern.

Owners Returns only those tasks for which the task owner is on the specified list.
Optionally, you can specify a list of user and group names.

Claimant Returns only those tasks for which the claimant is on the specified list. You
can specify a list of user and group names.

Assignee Returns only those tasks for which the associated Assignees List contains
the specified assignee.

State Returns only those tasks for which the state is on the list of specified values.

ParentProcessId Returns only those tasks that were created by one of the processes whose
ID is in the specified list.

ParentProcessURI Returns only those tasks that were created by a processes whose URI
matches the value passed in. Optionally, you can specify that the value
matches a pattern. Example: %PurchaseOrderProcess%

Completion Due Date You can specify whether the date should be before or after the specified
date.

ClaimDueDate Returns only those tasks whose date is before or after the specified
java.util.Date.

Creation Date Returns only those tasks that were created before or after the specified
java.util.Date. You can specify whether the date should be before or
after the specified date.

canBeReassigned Returns only those tasks whose data value matches the boolean specified.

Task Quer ies

Using the Worklist 3-27

Note About String Patterns
Some query criteria can be patterns that match strings with wildcards. These strings can contain
the following wildcards:

% characters to match any sequence of characters

_ characters to match any single character.

For example:

A query for task names like %Process_ returns PurchaseOrderProcess1, but not
PurchaseOrderProcess23455.

If you want to apply patterns checking, the query must specify that explicitly. Special characters
can be escaped using a back slash: \%, or _.

To Specify How the Results Are Sorted
A query can return results that are sorted according to the specified criteria. To define the sort
order, you set an integer value for each sort criteria. Values are sorted in an descending manner.

For example, if you specify the sort value for name to be 1, and the sort value for comment to be
2, the results of the query are sorted first by name, then by comment. The values are returned
sorted first by the lowest number, then the second lowest, and so on.

By default, all the criteria are set to the same value. In this way, they are all weighted equally in
the sort. Specifically, the default sort value is set as java.lang.short.MAX_VALUE.

canBeAborted

canBeReturned

Priority You can specify a maximum and minimum range. Returns only those tasks
for which the priority falls within the specified range.

User Defined Property
Name

Returns only those tasks with a named property defined—the name is
specified in the query.

User Defined Property
Value

Returns only those tasks for which a named property has a value equal to
the String specified.

Query Criteria Description

Creat ing and Manag ing Work l i s t Tasks

3-28 Using the Worklist

To Execute a Query
The Task Worker control can execute a query and return results. The API also provides
operations on the com.bea.wli.worklist.api.WorklistManager interface to execute
queries. For more information, see the BEA WebLogic Integration Javadoc.

To Limit the Results Set
You can specify a maximum results value for a query. It limits the maximum number of results
returned by the query.

Results can be returned as either an array of TaskInfo objects or an array of Task Ids. TaskInfo
objects contain a summary of the state and data values of a task instance.

The Relationship Between Processes and Tasks
For the case in which a business process creates a task, the Worklist tracks not only the task, but
also the business process that created it. For example, the Worklist tracks business processes that
are blocking, that is, waiting for a callback from a particular task instance.

You can view and manage tracking information using the WebLogic Integration Administration
Console. For a particular task instance, the console reports the business processes that are
currently blocking that task instance. For a particular business process, the console reports the
tasks that are blocking that business process.

The Worklist Task system in WebLogic Integration keeps track of the relationships between task
instances and process instances, as follows:

Which business processes are blocking on a given Task

Which business processes, if any, created each Task instance

In your queries, you can access information about the task instances for which the specified
processes are listening, or access information about tasks that were created by the specified
processes with the following IDs and URIs:

listeningProcessIds—identifies the process ID of a listening process such as a URI

listeningProcessUri—identifies the type of the URI invoking a control

parentProcessIds—identifies the process ID of the parent process that invokes a control

parentProcessUri—identifies the URI of any parent processes that invoke a control

http://edocs.bea.com/wli/docs81/javadoc/com/bea/wli/worklist/api/WorklistManager.html

The Rela t i onship Be tween Pr ocesses and Tasks

Using the Worklist 3-29

To learn how to extend to a Task Worker control to query WebLogic Integration Tasks instance
properties, see “Querying Tasks Using the Task Worker Control” on page 5-13.

Creat ing and Manag ing Work l i s t Tasks

3-30 Using the Worklist

Using the Worklist 4-1

C H A P T E R 4

Worklist User Interface and Enterprise
JavaBeans API

WebLogic Integration Worklist user interfaces (UI) enable end users to interact with running
business processes. Generally, people interact with Tasks in WebLogic Integration through
custom-user interfaces. A typical example is a mortgage loan processing interface for loan
origination, underwriting, closing, funding, and delivery.

With the Enterprise JavaBeans (EJB) API, you can use the Worklist EJB to create and manage
tasks independent of the business process (JPD) created in WebLogic Workshop.

This section included the following information:

Sample Worklist User Interface

Samples to Access the Worklist EJB from a Client Application

Sample Worklist User Interface
WebLogic Integration contains a sample Worklist user interface. Examine the sample Worklist
user interface and use its design strategies to help you design your custom interfaces.

You can create a custom Worklist user interface using the Worklist controls and the Worklist
API. The Worklist controls and API provide the following operations needed to design custom
user interface pages:

Query for tasks that meet certain criteria.

Access and present detailed information about particular tasks.

Collect data on screen and use it to perform operations on tasks to update them.

Work l i s t User In ter face and Ente rp r ise JavaBeans AP I

4-2 Using the Worklist

Additionally, you can use NETUI to leverage the Worklist controls in your custom-user
interfaces and use the Worklist API with JavaServer Pages (JSPs).

To learn more about the Worklist API, see the com.bea.wli.worklist.api package in the
BEA WebLogic Integration Javadoc.

WebLogic Workshop controls can be invoked from a Web page. You can create a custom
Worklist user interface or portal using the WebLogic Workshop tools to manage Web
applications using JSPs and Page Flows. For more information, see Developing Web
Applications and Page Flows and JSPs in the WebLogic Workshop online help.

To access the sample Worklist user interface in your installation of WebLogic Platform, take the
following steps:

1. Start WebLogic Workshop.

2. From the WebLogic Workshop menu, select Tools→WebLogic Server→Start WebLogic
Server

3. When the server is running, start the sample Worklist UI by selecting the following options
from the WebLogic Workshop menu:

Tools→WebLogic Integration→Worklist

4. Login to the Worklist—the username and password for the Worklist in the sample
integration domain are weblogic/weblogic.

A JSP page is displayed. It allows you to view and manage the tasks in your application.

Samples to Access the Worklist EJB from a Client Application
The worklist public API is in the package com.bea.wli.worklist.api. To learn more about
the Worklist API, see this package in the BEA WebLogic Integration Javadoc.

The following sample code shows you how to access the Worklist interfaces from a client
application.

1. Define a standard method to create an initial context:

protected Context getInitialContext(String url, String user, String
password)

throws Exception
{

Properties h = new Properties();
h.put(Context.INITIAL_CONTEXT_FACTORY,

"weblogic.jndi.WLInitialContextFactory");

http://edocs.bea.com/wli/docs81/javadoc/com/bea/wli/worklist/api/package-summary.html
http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/netui/guide/navDevelopingWebApplications.html
http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/netui/guide/navDevelopingWebApplications.html
http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/howdoi/navPageFlowsAndJSPsHowDoI.html
http://edocs.bea.com/wli/docs81/javadoc/com/bea/wli/worklist/api/package-summary.html

Samples to Access the Work l i s t E JB f rom a C l i en t Appl ica t i on

Using the Worklist 4-3

h.put(Context.PROVIDER_URL, url);
h.put(Context.SECURITY_PRINCIPAL, user);
h.put(Context.SECURITY_CREDENTIALS, password);
h.put(Context.SECURITY_AUTHENTICATION, "simple");
return new InitialContext(h);

}

2. Create the Worklist EJB:

public WorklistManager getWorkListManager()
throws Exception

{
RemoteWorklistManagerHome home;
Object ref;
Context ctx = getInitialContext("t3://localhost:7001",
"installadministrator", "installadministrator");

// Obtain a reference to the RemoteWorklistItemManagerHome

ref = ctx.lookup("RemoteWorklistManagerBean");

// Cast object returned by the JNDI lookup to the appropriate datatype

home = (RemoteWorklistManagerHome) PortableRemoteObject.narrow(ref,
RemoteWorklistManagerHome.class);

// Use the home interface to create a new instance of the bean.

return(WorklistManager)
PortableRemoteObject.narrow(home.create(),
RemoteWorklistManager.class);

}

3. To get an instance of the WorkSubstituteManager, you do exactly the same thing as you did
in step 2:

public WorkSubstituteManager getWorkSubstituteManager()
throws Exception

{
RemoteWorklistManagerHome home;
Object ref;
Context ctx = getInitialContext("t3://localhost:7001",
"installadministrator", "installadministrator");

// Obtain a reference to the RemoteWorklistItemManagerHome

ref = ctx.lookup("RemoteWorklistManagerBean");

// Cast object returned by the JNDI lookup to the appropriate datatype

Work l i s t User In ter face and Ente rp r ise JavaBeans AP I

4-4 Using the Worklist

home = (RemoteWorklistManagerHome) PortableRemoteObject.narrow(ref,
RemoteWorklistManagerHome.class);

// Use the home interface to create a new instance of the bean.

return(WorkSubstituteManager)
PortableRemoteObject.narrow(home.create(),
RemoteWorklistManager.class);

}

Caution: You may be tempted to use the remote WorklistManager instance directly. This is
generally not a good idea because the RemoteWorklistManager interface extends the
both the WorkSubstituteManager and WorklistManager interfaces. This interface
contain specific methods that are not intended to be public and therefore are not
supported by BEA. If used incorrectly, these methods may hamper the Worklist
system.

Now that you know how to access the Worklist EJB API, here are some short examples:

This following method returns all the task IDs of the tasks whose name starts with an “a”.

public String[] getIds() throws Exception {
try {

WorklistManager wm = getWorklistManager();
TaskSelector selector = new TaskSelector();
selector.setTaskName("a%", true);
return wm.getTaskIds(selector);

} catch (Exception ex) {}
}

Note: To learn more about selection patterns, see the TaskSelector in the BEA WebLogic
Integration Javadoc.

The following example shows you how to create a task, set a request message XML, assign it to
the user Joe, and return the taskId.

public String createTestTask() throws Exception {
try {

WorklistManager wm = getWorklistManager();
String id = wm.createTask("test");
XmlObject request = XmlObject.Factory.parse("<TaskRequest/>");
wm.setTaskRequestAsXmlObject(request, "xml/test", id);
wm.assignToUser("joe", id);
return id;
} catch (Exception ex) {}

}

http://edocs.bea.com/wli/docs81/javadoc/com/bea/wli/worklist/api/package-summary.html
http://edocs.bea.com/wli/docs81/javadoc/com/bea/wli/worklist/api/package-summary.html

Using the Worklist 5-1

C H A P T E R 5

Advanced Topics

This section provides information about the following topics:

Extending Worklist Controls

Querying Tasks Using the Task Worker Control

Using Task Control Factories

Extending Worklist Controls
This section contains information about extending the Task and Task Worker controls. It contains
information on the following topics:

About Extending Worklist Controls

An Example of an Extended Task Control

Altering Method Signatures—Request and Response

Adding Custom Methods

Creating Tasks With the Task Control

Updating Tasks Using the Task and Task Worker Controls

State Related Updates Using the Task Control

State Related Updates Using the Task Worker Control

Getting and Setting Task Data Values

Advanced Top ics

5-2 Using the Worklist

Adding Callback Methods

About Extending Worklist Controls
In WebLogic Workshop, when a new Task or Task Worker control is created from the Data
Palette, it provides a standard interface for operations and callbacks. These basic signatures offer
the most common operations used by the processes that create, configure and manage tasks, and
by those who actually take ownership of tasks and perform their work.

You can extend the control instances and customize them in the following ways:

Signatures can be altered to accept specific data types as arguments. For example, you can
design methods to accept XML Beans created from schemas specific to your application.

New methods can be added to incorporate several different task modifications into a single
method.

Additional callbacks can be added to detect different types of state changes within a
business process.

An Example of an Extended Task Control
The following listing shows a customized Task control for managing tasks related to an
automated taxi dispatching system.

Listing 5-1 Customized Task Control

/**

* @jc:task

*/

public interface AutoTaxiDispatcher

extends TaskControl, com.bea.control.ControlExtension

{

/**

* @jc:task-create

* name="Pick up {passengerName}"

* description="Find customer at {pickupAddress}"

* claim-due-business-date="5 min"

* claim-calendar="24by7Calendar"

* completion-due-business-date="15 min"

Extend ing Work l i s t Cont r o ls

Using the Worklist 5-3

* completion-calendar="24by7Calendar"

* request="<destination>{destinationAddress}</destination>"

* request-type="taxiRideDestination.xsd"

* @jc:task-assign

* group="{locality}Group"

* algorithm="ToUsersAndGroups"

*/

public String passengerReady(String passengerName,

String destinationAddress, String pickupAddress, String locality);

/**

* @jc:task-abort enabled="true"

*/

public void cancelPickup();

/**

* @jc:task-update

* request="<destination>{destinationAddress}</destination>"

*/

public void changeDestination(String dest);

public interface Callback extends TaskControl.Callback {

/**

* @jc:task-event event-type="claim"

* time="{time}" user="{driver}"

*/

void passengerClaimed(Date time, String driver);

/**

* @jc:task-event event-type="complete"

* time="{time}" user="{driver}"

*/

void passengerPickup(Date time, String driver);

/**

* @jc:task-event event-type="claimExpire" time="{time}"

response="{location}"

*/

void nobodyClaimedPassenger(Date time, XmlObject location);

Advanced Top ics

5-4 Using the Worklist

/**

* @jc:task-event event-type="expire" time="{time}"

response="{location}"

*/

void nobodyPickedUpPassenger(Date time, XmlObject location);

}

}

Altering Method Signatures—Request and Response
Operations can have arguments that take, as input, the value of a Request or Response document.
Callbacks can have return types that return those values.

Because the Request and Response can consist of various formats, operation and callback
signatures can be modified to enforce specific types of Request and Response content. The
enforcement of the data types can be done either when these values are set or when the values
already set are returned.

The method parameters that you use to set the Request or Response, and Return types in method
signatures that are used to return the value of the Request or the Response, can be set to the
following types:

XmlObject

XML Beans

String

RawData

byte[]

It is the responsibility of the application to ensure that callbacks return Request or Response types
that are compatible with the signatures in the relevant controls. The Worklist must cast the value
that is stored in the system, a mismatch causes an exception to be thrown.

The application can determine the type of data stored in the Request or Response using the
request type and the response type data values. You can also design an application to use this
information in other ways.

Extend ing Work l i s t Cont r o ls

Using the Worklist 5-5

The following code examples show how to write a method that sets the request and response
using different data types. They also show you how to design a callback that returns the Response
as a Purchase Order XML Bean.

This method sets the request and the response as different data types:

/**
* @jc:task-update
* request={req}
* response={res}
*/
public void setRequestAndResponse(XmlObject req, String res);

This shows a callback that returns the response as a purchase order XML bean:

/**
* @jc:task-event event-type="complete" response="{response}"
*/
void onTaskCompleted(com.bea.purchaseOrderDocument response);

Adding Custom Methods
Methods on controls can create or update Tasks. Creating or updating Tasks can involve altering
data values or affecting the task’s state. Custom methods can be added to the controls to
incorporate several update steps into a single operation.

To do this, first define your method, passing the parameters needed to create or update the task.
Then you ensure that the method annotations specify to the Worklist system which aspects of the
task to alter using each parameter.

You can use constants to alter the task in a fixed way. For example, you can set the task name to
CallDelinquentCustomer for every new task created. In this way, you do not need to provide
the same value as input to the method, repeatedly—the value you provide is a constant.

Note that the default methods on a new Task control or Task Worker control use the annotations
mechanism. You can look at the default methods on the controls and use them as an example of
how to create custom methods.

Note that, in addition to creating new methods for a control, you can customize a control by
deleting some of its default methods.

Creating Tasks With the Task Control
Methods that create new tasks can also configure the new tasks in several ways. Operations that
allow you to create and configure new tasks are identified by the @jc:task-create annotation.

Advanced Top ics

5-6 Using the Worklist

The annotation identified by @jc:task-create contains a sequence of annotations that specify
the way or ways in which the new task is to be configured. Each annotation can specify a
parameter to be used to set a particular aspect of the task instance.

Each annotation can specify which parameter should be used to set that particular aspect of the
task instance, as shown in the following table.

Table 5-1 Annotations to Use For Creating and Configuring Tasks

Aspect of Task to
Modify

Annotation Parameter Type Notes

Name name1 String Required annotation

Description description String

Comment comment String

Priority priority int

Claim claim-due-date java.util.Date Use this annotation or the
claim-due-business-date
annotation.

claim-due-business-date String Business time format.

Use this or the claim-due-date
annotation.

claim-calendar String Name of the business calendar
to use when specifying a
calendar in the method call.

Only used with
claim-due-business-date.

claim-user-calendar String Name of the user whose
calendar to use when
specifying a calendar in the
method call.

Only used with
claim-due-business-date.

Extend ing Work l i s t Cont r o ls

Using the Worklist 5-7

Completion completion-due-date java.util.Date Use this annotation or the
claim-due-business-date
annotation.

completion-due-business-date String Business time format.

Use this annotation or the
claim-due-date annotation.

completion-calendar String Name of the business calendar
to use when specifying a
calendar in the method call.

Only used with
claim-due-business-date.

completion-user-calendar String Name of the user whose
calendar to when specifying a
calendar in the method call.

Only used with
claim-due-business-date.

canBeReassigned can-be-reassigned Boolean

canBeAborted can-be-aborted Boolean

canBeReturned can-be-returned Boolean

Owner owner String Name of user or group.

Request request See section on
parameter types.

Request content.

Request Type request-mime-type String Use only if you use the request
annotation.

1. Note the name annotation is required when you create new tasks; other annotations are optional. To
specify a parameter to use as input to the annotations, enter the name of the parameter in curly braces.

Aspect of Task to
Modify

Annotation Parameter Type Notes

Advanced Top ics

5-8 Using the Worklist

The following code examples show you how to associate annotations with the methods that create
and configure tasks:

Creates a Task and sets the name, description, comment, and priority:

/**
* @jc:task-create
* name="{name}"
* description="{desc}"
* comment="{comment}"
* priority="{priority}"
*/
public String newCollectionsTask (String name, String desc, int
priority, String comment);

Create a Task and set the due dates using an absolute date and referencing a calendar:

/**
* @jc:task-create
* name="{name}"
* claim-due-date="{claimDate}"
* completion-due-business-date="{completeDuration}"
* completion-calendar="{completeCal}"
*/
public String createNewTask (String name, Date claimDate, String
completeCal, String completeDuration);

Create a Task, and specifies the request and request-mime-type:

/**
* @jc:task-create
* name="{name}"
* request="{req}"
* request-mime-type="{reqType}"
*/
public String createWithRequest(String name, XmlObject req, String
reqType);

Updating Tasks Using the Task and Task Worker Controls
In addition to the ability to create and configure new tasks, you can update existing tasks in
multiple ways using a single custom method. With the exception of name and description, the
same annotations are supported for update operations as for create operations on the Task
Control, and you use them in the same way. Annotations associated with update methods are
identified with the following annotation: jc:task-update.

Extend ing Work l i s t Cont r o ls

Using the Worklist 5-9

Note that response and response-type annotations are supported for update operations. They are
analogous to request and request-type annotations for create operations. The following example
code shows the use of the response and response-mime-type annotations.

/**

* @jc:task-update

* comment="{comment}"

* response="{resp}"

* response-mime-type="{ respType }"

*/

public String responseAndComment(String comment, XmlObject resp,

String respType);

State Related Updates Using the Task Control
You can use annotations to configure methods that alter task state. Task controls and Task
Worker controls use different annotations. The following table lists the annotations to use with
state transition operations for Task controls.

Table 5-2 Annotations to Use With State Transition Operations for Task Controls

State
Transition

Annotation Parameter
Type

Notes

Assignment jc:task-assign NA Assign the task

user String If algorithm is ToUser, use a String value.

If algorithm is ToUsersAndGroups, you can
use a String[] value.

group String If algorithm is ToUser, use a String value.

If algorithm is ToUsersAndGroups, you can
use a String[] value.

algorithm String Must specify ToUser, ToUserInGroup, or
ToUsersAndGroups.

Resume jc:task-resume Resume the task.

Advanced Top ics

5-10 Using the Worklist

State Related Updates Using the Task Worker Control
You can use annotations to configure methods that alter task state. Task controls and Task
Worker controls use different annotations. The following table lists the annotations to use with
state transition operations for Task Worker controls.

Table 5-3 Annotations to Use With State Transition Operations for Task Worker Controls

Suspend jc:task-suspend Suspend the task.

Abort jc:task-abort Abort the task.

State
Transition

Annotation Parameter
Type

Notes

State
Transition

Annotation Parameter
Type

Notes

Assignment jc:task-assign NA Assign the task.

user String If algorithm is ToUser, use a String value.

If algorithm is ToUsersAndGroups, you can
use a String[] value.

group String If algorithm is ToUser, use a String value.

If algorithm is ToUsersAndGroups, you can
use a String[] value.

algorithm String Must specify ToUser, ToUserInGroup, or
ToUsersAndGroups.

Resume jc:task-resume Resume the task.

Suspend jc:task-suspend Suspend the task.

Abort jc:task-abort Abort the task.

Claim jc:task-claim Claim the task.

claimant Use with task-claim, when claiming on behalf of
another user.

Extend ing Work l i s t Cont r o ls

Using the Worklist 5-11

Getting and Setting Task Data Values
The default methods on the Task and Task Worker controls can get, set, and remove control data
values. To learn about the data values you can set and get for these controls, see “Task Data
Values” on page 3-14. The following examples show annotations you can use with get, set, and
remove methods on the controls:

Get example:

/**
* @jc:task-get-property name="{name}"
*/
public String getProperty(String name);

Set example:

/**
* @jc:task-set-property name="{name}" value="{value}"
*/
public void setProperty(String name, String value);

Remove example:

/**
* @jc:task-remove-property name="{name}"
*/
public void removeProperty(String name);

Adding Callback Methods
Callbacks provide a way for a control to asynchronously notify a client that an event has occurred.
A callback is a method signature that is defined by a control and for which the method

Delete jc:task-delete Delete the task.

Return jc:task-return Return the task.

Start jc:task-start Start the task.

Stop jc:task-stop Stop the task.

Complete jc:task-complete Complete the task.

State
Transition

Annotation Parameter
Type

Notes

Advanced Top ics

5-12 Using the Worklist

implementation is provided by the client. For example, a business process can implement a
callback handler to enable reception of a callback from a control.

You can extend Task controls with callback methods to report state or property changes, or
events. You can implement callback methods only on Task controls, not on Task Worker
controls, because only Task controls identify with a single active instance of a Task.

Optionally, callbacks can return up to three arguments, as follows:

user—the user who executes the operation to make the state transition

time—the time the due date expired or the operation was invoked

response—the response document

The following example displays the user, time, and response annotations associated with a
callback method:

/**
* @jc:task-event event-type="complete"
* response="{response}"
* time="{time}"
* user="{user}"
*/
void onTaskCompleted(XmlObject response, Date time, String user);

To specify the state transition that triggers the callback, set the event-type annotation. Use the
appropriate annotation for the type of event that triggers your method. The following table
describes the types of events and the associated annotations.

Table 5-4 Event Types and Annotations

Type of Event Annotation

CREATE create

ASSIGN assign

CLAIM claim

SUSPEND suspend

RESUME resume

COMPLETE complete

Quer y ing Tasks Us ing the Task Worke r Cont ro l

Using the Worklist 5-13

Querying Tasks Using the Task Worker Control
This section explains how to extend a Task Worker control to query WebLogic Integration tasks.
The @jc:select annotation accepts values to search for Tasks, including TaskSelector
objects, and returns a set of Task IDs. It contains the following topics:

Search Values and Selectors

Querying Tasks With Annotations

Querying Tasks With TaskSelectors

Search Values and Selectors
The Java annotations for a Task Worker control provide a set of properties that you can use to
query with the @jc:select annotation.

Table 5-5 Task Control Properties to Use with @jc:select
.

ABORT abort

RETURN return

START start

STOP stop

CLAIM_EXPIRE claimExpire

EXPIRE expire

Type of Event Annotation

Search Property Description

assigned-group Search by groups in the Assignee List for a Task.

assigned-user Search by users in the Assignee List for a Task.

claimant Search by the claimant for a Task.

claim-due-date-after Search by Tasks with a due date after the value you provide.

Advanced Top ics

5-14 Using the Worklist

claim-due-date-before Search by Tasks with a claim due date before the value you
provide.

comment Search by the Task comments.

completion-due-date-after Search by Tasks with a completion due date after the value you
provide.

completion-due-date-before Search by Tasks with a completion due date before the value you
provide.

creation-date-after Search by Tasks with a creation date after the value you provide.

creation-date-before Search by Tasks with a creation date before the value you
provide.

max-property Search by Tasks with no greater priority than the value you
provide.

min-priority Search by Tasks with no lesser priority of the value you provide.

owner Search by The Task owner.

property-name Search by Tasks with a given property.

property-value Search by Tasks with a given value for the property defined by
property-name.

selector Search by the configuration of the TaskSelector object that
you provide for this value.

To learn more about using this value to pass arguments to
TaskSelector objects, see Querying Tasks With
TaskSelectors.

states Search by Tasks by state. Values can be as follows:

• A String or String array of valid state types, such as
completed or assigned.

• An Integer or Integer array representation of state
types.

• A com.bea.wli.worklist.api.StateType or
StateType array.

Search Property Description

Quer y ing Tasks Us ing the Task Worke r Cont ro l

Using the Worklist 5-15

Querying Tasks With Annotations
To provide a method for your custom query, you must extend the Task Worker control. You can
start by taking a method that already uses the @jc:select annotation tag to perform a search and
modify this method.

For example, the Task Worker control provides the following @jc:select tag and method:

/**
* @jc:task-get-info enabled="true"
* @jc:select task-id="{taskIds}"
*/
public TaskInfoXMLDocument[] getTaskInfoXML(String[] taskIds);

The TaskInfoXMLDocument method allows you to search through Tasks by Task ID. You can
extend this control to search through Tasks by an additional attribute, such as the claimant. To do
so, you can take advantage of the extensibility built into the TaskInfoXMLDocument method,
which allows you to pass additional arguments to the method, as shown in the following example.

In the following example, the previous example code (TaskInfoXMLDocument) is extended to
query for a claimant. The bold text indicates the additions made to the example.

/**
* @jc:task-get-info enabled="true"
* @jc:select claimant="James Gosling" task-id="{taskIds}"
*/
public TaskInfoXMLDocument[] getTaskInfoXML(String user,String[]
taskIds);

You can extend your control without setting a default value for the claimant. For example, you
can provide a value within curly brackets to indicate the claimant must be a user. You must pass
a value for the user parameter to the method at run time.

/**
* @jc:task-get-info enabled="true"
* @jc:select claimant="{user}" task-id="{taskIds}"
*/
public TaskInfoXMLDocument[] getTaskInfoXML(String user,String[]
taskIds);

task-id Search by the unique Task ID.

task-name Search by the groups on the Assignees List for a Task.

Search Property Description

Advanced Top ics

5-16 Using the Worklist

To learn more about Worklist control annotations, see Worklist Control Annotations in the
WebLogic Workshop online help.

Querying Tasks With TaskSelectors
The Worklist API provides the functionality for creating more advanced search functionality than
described in the preceding section that used the @jc:select Java annotation. You can query on
all Task instance properties by making a call to a TaskSelector object. This allows you to order
the results of queries, find parent process IDs, use regular expressions, and more.

To use a TaskSelector, you must include the selector annotation and argument with a
method. The following code shows a method in the Task Worker control that you can use as a
starting point to extend your control.

/**
* @jc:task-get-info
* @jc:select selector="{selector}"
*/
public TaskInfoXMLDocument[] getTaskIdsWithSelector(TaskSelector
selector);

The method described in the preceding example expects, as input, a TaskSelector that is
defined to query by Task ID. The method returns a TaskInfoXMLDocument array of resulting
Task properties with Task IDs that match your query.

For more information about the constructor and methods of the TaskSelector class, see Class
TaskSelector in the com.bea.wli.worklist.api package, in the BEA WebLogic Integration
Javadoc.

Using Task Control Factories
There are two circumstances in which you must use a Factory type of Task Control.

You are creating multiple tasks in a loop, or you want the number of tasks created to be
specified at run time.

You are interacting with multiple existing tasks in a loop, or with a number of tasks that is
not known until run time.

Task Control properties can be useful when using factory type Task Controls. Defining the
control’s properties in the Property Editor specifies default values for new tasks that are created
by any control instance that was created from that factory.

http://edocs.bea.com/workshop/docs81/doc/en/integration/reference/refWorklistAnnotations.html
http://edocs.bea.com/wli/docs81/javadoc/com/bea/wli/worklist/api/TaskSelector.html
http://edocs.bea.com/wli/docs81/javadoc/com/bea/wli/worklist/api/TaskSelector.html
http://edocs.bea.com/wli/docs81/javadoc/index.html
http://edocs.bea.com/wli/docs81/javadoc/index.html

Us ing Task Cont ro l Fact or ies

Using the Worklist 5-17

For example, say that your business process loops over a sequence of order elements that creates
a new task to approve each order in the body of the loop. Additionally, the task name changes on
each iteration, but the assignee is always the same manager. In this case you can set the assignee
in the factory control’s properties using the Property Editor. You need not specify it when
creating a new task, that default assignee will be used.

The basic pattern is to create two Task controls in your business process: one that is a factory type
and the other that is not a factory type. The following example describes a scenario for which you
want to create a task for each iteration through a loop in a business process:

1. From the Data Palette, create a new Task control called MyTaskCtrl and name the Task
control instance: factoryCtrl.

2. Make this control a factory that can create multiple instances at run time.

3. Create another Task Control from the Data Palette.

a. This time, in the Insert Control dialog box, select the option to Use a task control
already defined by a JCX file, and specify the existing MyTaskCtrl.jcx file.

b. Name the Task control instance: myTaskCtrl.

c. Do not select the option to make this control a control factory.

The controls variables in the business process are written as shown in the following code.

/**
* @common:control
*/
private processes.MyTaskCtrlFactory factoryCtrl

/**
* @common:control
*/
private processes.MyTaskCtrl myTaskCtrl;

4. Open the business process in Design View.

5. In the body of a loop (or any other place you want to create a new task or want to do work
on an existing task), create a new control instance using factoryCtrl and store it in a
variable named myTaskCtrlVariable. You create this logic in a Perform node. The code
for the Perform node should resemble the following:

public void factoryCreate() throws Exception
{

this.myTaskCtrl = this.factoryCtrl.create();
}

Advanced Top ics

5-18 Using the Worklist

In this way, you create a new control that you can use to create a new task or set the Task
Id (setTaskId (String id)) to the ID of an existing task

Because you are designing the process to create a new control instance in a loop, you must
create the instance using the factory control.

The following figure shows the simple business process described in this example:

Using the Worklist Index-1

Index

Symbols
@jc:select, Task control properties table 5-13

A
access Worklist user interface from client
application 4-2
active task model 2-4
adding callback methods 5-11
adding custom methods 5-5
administration and management, overview 1-8
administrators 3-9
altering method signatures 5-4
altering state with Task control 2-8
annotations

for creating and configuring tasks 5-6
for querying tasks 5-15
for state transition operations using Task

control 5-9
for state transitions operations using Task

Worker controls 5-10
archiving task data 1-6
ask instances

reassigning 2-6
assignees list 3-9
assigning tasks 2-5
assignToUser 3-8
assignToUserInGroup 3-8
assignToUsersAndGroups 3-8

B
business calendar, specifying 3-3

business processes, using Worklist controls with
2-3
business-time durations 3-4

C
callback methods

adding 5-11
using 2-17

callbacks, overview 1-8
capabilities of Worklist 1-2
changing method signatures 5-4
claim due date 3-2
claimants 3-9
claiming tasks 2-5
completion due date 3-2
control callback methods table 2-18
control methods

assignment methods 3-7
overview 1-8
task state operations 3-6

controls
get task status 2-11
overview 2-1
updating tasks 5-8

creating task
Task control 5-5
with Task control 5-5

creating tasks 2-11
new 2-5

creators, task 3-10
custom methods, adding 5-5

1-2 Using the Worklist

D
default WebLogic Integration users 3-11
due dates 1-4
durations, business time 3-4

E
event types and annotations table 5-12
examples

getting task values 5-11
setting task values 5-11
using Task control factory 5-17

extending
Task control, example 5-2
Worklist controls, overview 5-2

G
getting task status 2-11
getting task values, examples 5-11
groups 3-8

I
importing Worklist schema 2-14
integration administrators 3-9

task creation 3-11
invoking task operations 3-12

J
java.util.Date 3-2

M
MBeans for security 3-10
modifying task data values 2-21, 3-12
modifying task properties 2-20

O
obtaining task status 2-11

operations on tasks, overview 1-5

P
permissions 2-18, 3-10

for invoking task operations 3-12
for modifying task properties 2-20
for reassigning tasks 2-20
for returning tasks to other states 2-20
for task data values 3-12

purging task data 1-6

Q
querying tasks 5-13

with annotations 5-15
with TaskSelectors 5-16

R
request and reponse documents

altering method signatures 5-4
overview 1-5

roles 2-18, 3-8

S
sample code for accessing Worklist user
interface 4-2
sample Worklist user interface 4-2
security 3-10
setting data values

for tasks 2-7
table 2-7

setting task values, examples 5-11
specify business calendar 3-3
starting Worklist user interface 4-2
state transitions for tasks table 2-19
states, overview 1-4

Using the Worklist Index-3

T
tables

annotations for state transition operations
using Task control 5-9

annotations for state transitions operations
using Task Worker control 5-10

control callback methods 2-18
event types and annotations 5-12
setting data values 2-7
state transitions for tasks 2-19
Task control properties 2-15
Task control properties with @jc:select 5-13
task instance data values 3-14
task state operations 2-9
user roles and task operations 3-13

task
assignees list 3-9
assigning and claiming 2-5
claimants 1-4, 3-9
creating 2-5
creators 3-10
due dates 1-4
invoking operations 3-12
modifying data values 3-12
overview of assignees lists 1-4
overview of data values 1-3
overview of operations 1-5
overview of request and response documents

1-5
overview of task owners 1-4
overview of task queries 1-7
setting data values 2-7
state changes and callbacks 1-8
states 1-4, 3-5
users 3-8

Task control
about 2-2
altering state 2-8
creating 2-2
description 1-7
extending sample 5-2

factories 5-16
properties sheet 2-14
properties table 2-15
state related updates 5-9
using property editor 2-16
using xml 2-11

task due dates
absolute time 3-3
business time 3-3

task instances
data values 1-3
data values table 3-14
definition 3-1
overview 3-1
returning to other states 2-6

task state
control methods 3-6
operations table 2-9

Task Worker control
about 2-2
creating 2-2
description 1-7
querying tasks 5-13
state related updates 5-10

TaskCreationXML document 2-11
transactions 2-21

U
updating tasks with controls 5-8
user interface, sample 4-2
user permissions 3-10
user roles and task operations table 3-13

V
view or edit properties for control instances 2-16

W
Worklist

administration module 1-9

1-4 Using the Worklist

capabilities 1-2
overview of tasks 1-3
security 3-10

Worklist API
controls 1-7
overview 1-8
querying tasks with TaskSelectors 5-16

Worklist controls
overview 2-1, 5-2
using in business processes 2-3

Worklist schema, importing 2-14
Worklist user interfaces 1-9, 4-1

X
xml, using with Task control 2-11

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	Introduction
	What is WebLogic Integration Worklist?
	Worklist Tasks
	Task Data Values
	Due Dates
	Task State
	Task Owners
	Assignees Lists and Claimants
	Request and Response Documents
	Operations on Tasks
	Archiving and Purging Task Information
	Task Queries

	Controls and Worklist APIs
	Task Control
	Task Worker Control
	Callbacks
	Control Methods
	Controls are Extensible

	Administration and Management
	WebLogic Integration Administration Console
	Worklist User Interfaces
	Enterprise JavaBeans API

	Using Worklist Controls
	About Worklist Controls
	Creating a New Task Control
	Creating a New Task Worker Control
	Using Task and Task Worker Controls in Business Processes
	Task Control Active Task Model
	Creating New Tasks With a Task Control
	Assigning and Claiming Tasks
	Reassigning Tasks and Returning Them to Other States
	Setting Task Data Values
	Altering State With a Task Control
	Using Controls to Get Task Status
	Using XML With the Task Control
	Creating New Tasks with a TaskCreationXML Document
	Importing the Worklist Schema into Your Application

	The Task Control Properties Sheet
	Using the Task Control Property Editor
	Using Callback Methods
	Permissions and Roles
	Permissions for Modifying Task Properties
	Permissions for Reassigning Tasks and Returning Them to Other States
	Permissions for Creating Tasks

	Modifying Task Data Values
	Transactions

	Creating and Managing Worklist Tasks
	Overview
	Task Due Dates
	Claim and Completion Due Dates
	To Set Task Due Dates Using Absolute Time
	To Set Task Due Dates Using Business Time
	To Specify a Calendar to Use When You Set Due Dates
	Formats for Business Time Duration

	Task States
	Assignment Algorithms

	Task Users and Groups
	Task Owners
	Assignee Lists
	Claimants
	Integration Administrators
	Task Creators

	Tasks and User Permissions
	Worklist Security
	Who Has Permission to Create Tasks?
	Who Has Permission to Modify Task Data Values?
	Who Has Permission to Invoke Task Operations?

	Task Data Values
	Request and Response Documents
	Format and Type of Request and Response Documents

	Task Operations
	Archiving and Purging Task Information
	Task History Tables

	Task Queries
	To Specify the Criteria for a Query
	Note About String Patterns

	To Specify How the Results Are Sorted
	To Execute a Query
	To Limit the Results Set

	The Relationship Between Processes and Tasks

	Worklist User Interface and Enterprise JavaBeans API
	Sample Worklist User Interface
	Samples to Access the Worklist EJB from a Client Application

	Advanced Topics
	Extending Worklist Controls
	About Extending Worklist Controls
	An Example of an Extended Task Control
	Altering Method Signatures—Request and Response
	Adding Custom Methods
	Creating Tasks With the Task Control
	Updating Tasks Using the Task and Task Worker Controls
	State Related Updates Using the Task Control
	State Related Updates Using the Task Worker Control
	Getting and Setting Task Data Values
	Adding Callback Methods

	Querying Tasks Using the Task Worker Control
	Search Values and Selectors
	Querying Tasks With Annotations
	Querying Tasks With TaskSelectors

	Using Task Control Factories

	Index

