
BEA
 WebLogic
Integration™

Tutorial: Building Your
First Data Transformation
Version 8.1 Service Pack 2
Document Date: December 2003

Copyright
Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic Commerce
Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Enterprise Security, BEA
WebLogic Express, BEA WebLogic Integration, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA
WebLogic Portal, BEA WebLogic Server, BEA WebLogic Workshop and How Business Becomes E-Business are
trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Contents

1. Tutorial: Building Your First Data Transformation
Tutorial Goals.. 1-3

Steps in This Tutorial .. 1-4

2. Step 1: Getting Started

3. Step 2: Building the Transformation

4. Step 3: Mapping Elements and Attributes

5. Step 4: Mapping a Repeating Element (Join)

6. Understanding the Concepts
Understanding the Transformation.. 6-1

Understanding XML Repeating Nodes ... 6-5
Tutorial: Building Your First Data Transformation iii

iv Tutorial: Building Your First Data Transformation

CHAPTER
1 Tutorial: Building Your
First Data
Transformation

Data transformation is the mapping and conversion of data from one format to another.
For example, XML data can be transformed from XML data valid to one XML Schema
to another XML document valid to a different XML Schema. Other examples include
the data transformation from non-XML data to XML data. This tutorial introduces the
basics of building a data transformation by describing how to create and test a
XML-to-XML data transformation using WebLogic Workshop.

In WebLogic Integration business processes, a data transformation transforms data
using queries (written in the XQuery language). This tutorial describes the steps for
building a query in the XQuery language—a language defined by the World Wide Web
Consortium (W3C) that provides a vendor independent language for the query and
retrieval of XML data.

To learn about the XQuery language, see the XQuery 1.0: An XML Query Language
Specification - W3C Working Draft 16 August 2002 at the web site of the W3C. The
WebLogic XQuery engine invoked by a business process conforms to the August 16,
2002 draft of the XQuery Specification.

To learn more about XML and XML Schemas, see Java and XML Basics.

The data transformation created in this tutorial is invoked in the RequestQuote
business process. This business process is created to meet the business needs of an
enterprise. The enterprise starts the business process as a result of receiving a Request
for Quote from clients, checks the enterprise’s inventory and pricing systems to
Tutorial: Building Your First Data Transformation 1-1

http://www.w3.org/TR/2002/WD-xquery-20020816
http://www.w3.org/TR/2002/WD-xquery-20020816
http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/getstarted/navJavaXMLBasics.html

1 Tutorial: Building Your First Data Transformation
determine whether the order can be filled, and sends a quote for the requested items to
the client. To learn more about creating business processes and the RequestQuote
business process, see Tutorial: Building Your First Business Process.

The following figure shows the flow of data in the RequestQuote business process of
the Tutorial Process application.

The purpose of the RequestQuote business process is to provide price and availability
information for a set of widgets. The flow of the data through the RequestQuote
business process is represented by the following steps:

1. The business process receives the set of widget IDs.

2. The business process gets the price of each of the requested widgets from a
source and places the resulting XML data into the priceQuote business process
variable. (This XML data is valid to the XML Schema in the PriceQuote.xsd
file.)
1-2 Tutorial: Building Your First Data Transformation

http://edocs.bea.com/workshop/docs81/doc/en/integration/tutorial/tutWLIProcessIntro.html

Tutorial Goals
3. The business process gets information about availability for the widgets from
another source and places the resulting XML data into the availQuote business
process variable. (This XML data is valid to the XML Schema in the
AvailQuote.xsd file.)

4. The business process determines the tax rate for the shipment and puts the result
in the taxRate float business process variable.

5. The business process invokes the Combine Price and Avail Quotes node. The
Combine Price and Avail Quotes node calls the myJoin Transformation method
of the Transformation control. This Transformation control is stored in
MyTutorialJoin.dtf file. The business process passes the values of the
priceQuote, availQuote, and taxRate business process variables to the
myJoin method. The myJoin method invokes the query written in the XQuery
language and stored in the myJoin.xq file. The query merges all the price,
availability, and tax rate information into a single set of XML data and returns the
result as the return value of the myJoin method. The data returned from this
myJoin method is valid to the XML Schema in the Quote.xsd file. After the
myJoin method is invoked, the Combine Price and Avail Quotes node assigns
the resulting XML data to the Quote business process variable.

Tutorial Goals

The tutorial provides steps to create and test a transformation using the graphical
environment provided in WebLogic Workshop. Specifically, in this tutorial you will
create the following:

The MyTutorialJoin Transformation Control stored in the
MyTutorialJoin.dtf file.

The myJoin Transformation method in the MyTutorialJoin Transformation
Control.

The query invoked by the myJoin Transformation method. This query is stored
in the XQ file called myJoin.xq.
Tutorial: Building Your First Data Transformation 1-3

1 Tutorial: Building Your First Data Transformation
Steps in This Tutorial

Follow the steps in this tutorial to create and test a data transformation. Specifically,
the steps include:

Chapter 2, “Step 1: Getting Started”
Describes how to load the prepackaged Tutorial Process Application.

Chapter 3, “Step 2: Building the Transformation”
Provides a step-by-step procedure to create and select input and output types
for a Transformation control.

Chapter 4, “Step 3: Mapping Elements and Attributes”
Provides a step-by-step procedure to create mappings between input and
output elements and attributes in a Transformation control.

Chapter 5, “Step 4: Mapping a Repeating Element (Join)”
Provides a step-by-step procedure to add a join between repeating elements
to the Transformation control.
1-4 Tutorial: Building Your First Data Transformation

CHAPTER
2 Step 1: Getting Started

The Business Process and Data Transformation Tutorials both use a prepackaged
Tutorial Process application. The prepackaged Tutorial: Process Application
contains all the business process, XML, XML Schema, DTF, and XQ files, required to
run the tutorial business processes and transformations.

The RequestQuote workfow in the Tutorial Process application invokes a
transformation stored in the TutorialJoin.dtf and join.xq files. The steps in this
Tutorial tell you how to create the same transformation that is prepackaged in the
TutorialJoin.dtf and join.xq files of the Tutorial: Process Application. (You
can use the transformation in the TutorialJoin.dtf and join.xq files as a
reference.) You name the Transformation control file that you build in this tutorial:
MyTutorialJoin.dtf and the XQ file that contains the query: myJoin.xq.

After completing the steps in this Tutorial, you will change the RequestQuote business
process to invoke the transformation you created in this tutorial. In addition, you will
run the RequestQuote business process which will invoke the transformation, as
described in Step 12: Run the Request Quote Business Process of the Business Process
Tutorial.

Note: If you followed the steps described in the Business Process Tutorial, you have
already created an application and can skip the “To Load The Tutorial Process
Application” on page 2-2 task. However, you must open the application. To
open the application, from the WebLogic Workshop menu bar, select
File→Open→Application. The Open Workshop Application is displayed.
Browse for the existing Tutorial_Process_Application and click Open.

The tasks in this step include:

To Load The Tutorial Process Application

To Explore the Contents of the Application
Tutorial: Building Your First Data Transformation 2-1

http://edocs.bea.com/workshop/docs81/doc/en/integration/tutorial/tutWLIProcessTest.html

2 Step 1: Getting Started
To Load The Tutorial Process Application

In this task, you load the prepackaged Tutorial: Process Application.

1. From the BEA WebLogic Workshop menu bar, choose
File→New→Application....

The New Application dialog box is displayed.

2. In the left pane, select the Tutorial folder, as shown in the following figure.

3. In the right pane, select Tutorial: Process Application, as shown in the
following figure.

4. In the Name field, enter Tutorial_Process_Application.

5. Click the arrow beside the Server field to display a list of servers. Then choose
the integration server. For example, if you installed WebLogic Platform in the
c:\bea directory on Windows, the path to the integration server is:

c:\bea\weblogic81\samples\domains\integration

6. Click Create.
2-2 Tutorial: Building Your First Data Transformation

Your Tutorial Process application is created and displayed in the Application
tab. (If the Application tab is not visible in WebLogic Workshop, from menu
bar choose View→Application.)

To Explore the Contents of the Application

1. In the Application tab, expand the Schemas folder. (If the Application tab is not
visible, from the WebLogic Workshop menu bar, choose View→Application.)

The XML Schema files for this application are displayed.

2. In the Application tab, expand the Tutorial_Process_ApplicationWeb folder.

The directories and files that make up the Tutorial project are displayed.

3. In the Application tab, expand the
Tutorial_Process_ApplicationWeb/requestquote folder.

The DTF, XQ, and JPD files used in the tutorial are displayed. These files are
part of the Tutorial project.

The Application tab represents the files and resources available in your business
process application. It includes the following components:

Tutorial_Process_Application—The application folder.

Schemas—Contains the XML Schemas used in the business process.

Tutorial_Process_ApplicationWeb—The project folder. Every business process
application contains one or more projects. (Projects represent WebLogic Server
Web applications. That is, when you create a project, you are creating a Web
application. The name of your project will be included in the URL your clients
use to access your application.)

requestquote—Contains your project files and folders:

services folder contains Web services with which your business process
interacts.

testxml folder contains XML files which you can use to test the completed
business process.

RequestQuote.jpd—The completed business process. The Business Process
Tutorial walks you through rebuilding this business process. In this tutorial,
the prebuilt RequestQuote business process is used to exercise the
transformation stored in the TutorialJoin.dtf file.
Tutorial: Building Your First Data Transformation 2-3

2 Step 1: Getting Started
DTF files (PriceAvailTransformations.dtf,
RequestQuoteTransformations.dtf, TutorialJoin.dtf)—Contains the
Transformation controls used in RequestQuote.jpd.

XQ files—Contains queries (written in the XQuery language) called by the
DTF files used in RequestQuote.jpd. A Data Transformation control can
have one or more methods, each of which is associated to a query in an XQ
file.

FileQuote.jcx—A File control used by your Request for Quote business
process to write a file to the file system.
2-4 Tutorial: Building Your First Data Transformation

CHAPTER
3 Step 2: Building the
Transformation

In this step, you create a transformation that contains the mapping of different input
types to a single output type. Specifically, this tutorial provides the steps for
transforming a Java primitive and two sets of XML data (valid to two different
schemas) to a single set of XML data valid to a third schema, as shown in the following
figure.
Tutorial: Building Your First Data Transformation 3-1

3 Step 2: Building the Transformation
The RequestQuote business process takes as input a set of widget IDs and returns the
price and availability of these widget IDs.

The inputs to the myJoin Transformation method include the following:

XML data valid to the PriceQuote.xsd file. The RequestQuote business
process of the Tutorial Process application builds a piece of XML data that is
valid to the PriceQuote.xsd XML Schema and stores it in a business process
variable called priceQuote. This piece of XML data contains a set of widget
IDs and their price.

XML data valid to the AvailQuote.xsd file. The RequestQuote business
process of the Tutorial Process application builds a piece of XML data that is
valid to the AvailQuote.xsd XML Schema and stores it in a business process
variable called availQuote. This piece of XML data contains a set of widget
IDs, a boolean that represents if the widget is available, and the ship date.

A Java primitive of type float called taxRate.

The myJoin Transformation method takes these inputs and invokes a query which
merges the price, availability, and tax rate information into one piece of XML data
valid to the XML Schema in the Quote.xsd file.

The tasks in this step include:

To Create MyTutorialJoin.dtf

To Add a Transformation method to MyTutorialJoin

To Select the Input Types

To Select the Output Type

To Create MyTutorialJoin.dtf

In this task, you create a Transformation control which is stored in a DTF file called
MyTutorialJoin.dtf. In addition, you create a Transformation method in the
Transformation control. During run time, the business process will call this method to
invoke the transformation.

1. In the Application tab, right-click the requestquote folder and from the
drop-down menu, select New→Transformation File.

2. The New File dialog box is displayed.
3-2 Tutorial: Building Your First Data Transformation

3. In the File name field, enter MyTutorialJoin.dtf.

4. In the New File dialog box, click Create.

In the Design View, a graphical representation of the MyTutorialJoin
Transformation control appears, as shown in the following figure.

To Add a Transformation method to MyTutorialJoin

1. In the Design View, right-click in the box representing the MyTutorialJoin
Transformation control. (The box shown in the preceding figure.)

2. From the drop-down menu, select Add Transformation method.

A Transformation method is created in the MyTutorialJoin Transformation
control.

3. Enter myJoin as the method name.

4. Right-click the arrow representing the myJoin method, as shown in the following
figure.

5. From the drop-down menu, select Configure XQuery Transformation Method.

The Configure XQuery Transformation Method - myJoin dialog box is
displayed.
Tutorial: Building Your First Data Transformation 3-3

3 Step 2: Building the Transformation
To Select the Input Types

In this task, you select the Input Types in the Transformation Method Parameters
pane of the Configure XQuery Transformation Method - myJoin dialog box. Input
types are the source data types for the transformation—the data types that are
transformed to the output data type.

1. In the Available Input Types pane of the Configure XQuery Transformation
Method - myJoin dialog box, the PriceQuote.xsd, AvailQuote.xsd,
Quote.xsd, and QuoteRequest.xsd files are displayed, as shown in following
figure.

Note: If these files are not listed, you probably have not loaded the Tutorial:
Process Application. For instructions on loading this application, see “To
Load The Tutorial Process Application” on page 2-2.

2. In the Available Input Types pane, expand PriceQuote.xsd folder and select the
priceQuote element, as shown in the following figure.
3-4 Tutorial: Building Your First Data Transformation

3. Click Add.

The elements and attributes that make up the priceQuote element are displayed
in the Selected Input Types pane.

4. In the Available Input Types pane, expand AvailQuote.xsd folder and select the
availQuote element.

5. Click Add.

The elements and attributes that make up the availQuote element are displayed
in the Selected Input Types pane.

6. In the Available Input Types pane, select the Java option.

The available Java Types are displayed in the Available Input Types pane.

7. In the Available Input Types pane, select the float node, as shown in the
following figure.
Tutorial: Building Your First Data Transformation 3-5

3 Step 2: Building the Transformation
8. Click Add.

To Select the Output Type

In this task, you select an Output Type in the Transformation Method Return pane
of the Configure XQuery Transformation Method -myJoin dialog box.

1. In the Available Output Types pane of the Configure XQuery Transformation
Method - myJoin dialog box, the PriceQuote.xsd, AvailQuote.xsd,
Quote.xsd, and QuoteRequest.xsd files are listed.

2. In the Available Output Types pane, expand Quote.xsd folder and select the
quote element, as shown in the following figure.

3. Click Select.
3-6 Tutorial: Building Your First Data Transformation

The elements and attributes that make up the quote element are displayed in the
Selected Output Types pane.

4. Click Create Transformation.

The file: myJoin.xq is created and displayed in the Design View.

The myJoin Transformation method is added to the MyTutorialJoin
Transformation control. The myJoin method contains the three input parameters
selected in the previous steps.

In the Application tab, representations of the MyTutorialJoin.dtf and
myJoin.xq files are displayed as shown in the following figure.

Note: In the Application tab, the myJoin.xq appears indented under the
MyTutorialJoin.dtf. These files are associated and contain references to
each other. To learn more, see The Association Between XQ and DTF
Files.

5. Save the MyTutorialJoin.dtf file. Right-click the MyTutorialJoin.dtf file
and in the drop-down menu select Save.
Tutorial: Building Your First Data Transformation 3-7

http://edocs.bea.com/workshop/docs81/doc/en/integration/dtguide/dtguidemapperxqanddtf.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/dtguide/dtguidemapperxqanddtf.html

3 Step 2: Building the Transformation
3-8 Tutorial: Building Your First Data Transformation

CHAPTER
4 Step 3: Mapping
Elements and
Attributes

In this step, you map input (Source Schema) nodes to output (Target Schema) nodes.
The following figure shows the mapping of example XML data.

Figure 4-1 Mapping Example
Tutorial: Building Your First Data Transformation 4-1

4 Step 3: Mapping Elements and Attributes
In the preceding figure, the input XML data has a different format than the output
XML data. When building a query invoked by a Transformation method, you map the
input nodes to output nodes as represented by the arrows. During run time, the
transformation uses the mappings to convert the data from the input format to the
output format. For example, the arrow labeled 1 represents the transformation of the
priceQuote/customerName element to the quote/name element.

The mapping of the address data, is a more complex transformation, as represented by
the arrow labeled 2 in the preceding figure. To transform the address information, all
the attributes of the shipAddress element (street, city, state, and zip) must be
converted to a single string XML element called address.

The input XML data is valid to a different XML Schema than the output XML data.
As shown in the preceding figure, the example input XML document called
PriceQuote.xml is valid to the XML Schema in the PriceQuote.xsd file.
Additionally, the example input XML document called Quote.xml is valid to the
XML Schema in the Quote.xsd file.

The PriceQuote.xml, AvailQuote.xml, QuoteRequest.xml,
QuoteRequest_a.xml, and Quote.xml files are located in the
Tutorial_Process_ApplicationWeb/requestquote/testxml directory of the
application.

Note: The preceding figure shows just one input data type (priceQuote). This is just
one of the three inputs to the myJoin method as described in “Step 2: Building
the Transformation” on page 3-1. In this step, the mappings between the XML
Schema in the PriceQuote.xsd file to the XML Schema in the Quote.xsd
file are discussed. In the “Step 4: Mapping a Repeating Element (Join)” on
page 5-1, mappings between the other input types (AvailQuote.xsd and
taxRate) are discussed.

Note: The PriceQuote.xml, AvailQuote.xml, QuoteRequest_a.xml,
QuoteRequest.xml, and Quote.xml files are provided as examples and are
not used by the business process during run time. During run time, the business
process constructs the input XML data, and passes it to the transformation as
described in the Introduction of this tutorial.

Complete the following tasks to create, alter, and test mappings between the input and
output data:

To Map a Node From a Source Schema to a Target Schema

To Map Attributes of an Element to Single Element
4-2 Tutorial: Building Your First Data Transformation

To View and Save the Generated Simple Query

To Test the Simple Query

To Edit and Retest the Simple Query

To Add an XQuery Function Call to the Query

To Map a Node From a Source Schema to a Target Schema

In this step, you map the XML string element called customerName from the source
schema (PriceQuote.xsd) to the XML string element called name in target schema
(Quote.xsd).

1. View myJoin.xq in the Design View:

a. If the Application tab is not visible in WebLogic Workshop, from the menu bar
choose View→Application.

b. In the Application tab, double-click
Tutorial_Process_Application\Tutorial_Process_ApplicationWeb

\requestquote\MyTutorialJoin.dtf\myJoin.xq and select the Design
View tab.

The Design View displays the a graphical representation of the selected source
schemas in the Source Schema pane, as shown in the following figure.
Tutorial: Building Your First Data Transformation 4-3

4 Step 3: Mapping Elements and Attributes
Note: If the $_priceQuote Doc, $_quote Quote Doc, and $_floated nodes are
not displayed in your Source Schema pane, follow the instructions in “To
Select the Input Types” on page 3-4.

The nodes displayed in the Source Schema pane correspond to input parameters
of the myJoin method of the MyTutorialJoin Transformation control. The
signature of the myJoin method from the MyTutorialJoin.dtf file is shown in
the following Java code segment:

/**
 * @dtf:transform xquery-ref="myJoin.xq"
 * @dtf:schema-validate return-value="false" parameters="false"
 */
public abstract org.example.quote.QuoteDocument
myJoin(org.example.price.PriceQuoteDocument _priceQuoteDoc,
org.example.avail.AvailQuoteDocument _availQuoteDoc, float
_floatDoc);

For example, the $_priceQuoteDoc node displayed in the Source Schema
pane, corresponds to the org.example.price.PriceQuoteDocument
_priceQuoteDoc parameter in the myJoin method.

Note: You can view the full source code listing of the MyTutorialJoin
Transformation control by double-clicking MyTutorialJoin.dtf in the
Application tab and selecting the Source View tab.
4-4 Tutorial: Building Your First Data Transformation

2. From the Source Schema pane drag the $_priceQuoteDoc/customerName node
to the quote/name node in the Target Schema pane.

A dark solid line appears between the two elements. This solid line represents a
data link between the two nodes—a link that converts the value of the source
node directly to the value of the target node. This link is shown in the following
figure.

This link corresponds to the mapping represented with an arrow (labeled with
the number 1) in Figure 4-1.

To Map Attributes of an Element to Single Element

In this step, you will map multiple attributes of one element to another single element.

The XML $_priceQuoteDoc/shipAddress element contains the following attributes:

street

city

state

zip

All these attributes will be mapped to the to the single XML quote/address element of
type string. This mapping is represented by the arrow labeled 2 in Figure 4-1.

1. From the Source Schema pane drag the street attribute of
$_priceQuoteDoc/shipAddress node to the quote/address node in the Target
Schema pane.

2. From the Source Schema pane drag the city attribute of
$_priceQuoteDoc/shipAddress node to the quote/address node in the Target
Schema pane.

3. From the Source Schema pane drag the state attribute of
$_priceQuoteDoc/shipAddress node to the quote/address node in the Target
Schema pane.
Tutorial: Building Your First Data Transformation 4-5

4 Step 3: Mapping Elements and Attributes
4. From the Source Schema pane drag the zip attribute of
$_priceQuoteDoc/shipAddress node to the quote/address node in the Target
Schema pane.

Four new links are displayed, as shown in the following figure.

Figure 4-2 Create Links

The links labeled with numbers in the preceding figure, correspond to the
mappings represented as arrows (labeled with numbers) in Figure 4-1.

To View and Save the Generated Simple Query

A query (in the XQuery language) is generated when you create mapping links from
Source Schema elements and attributes to Target Schema elements and attributes.

1. Select the Source View tab of the myJoin.xq file.

The generated query is displayed as shown in the following figure.

Note: The lines of the query labeled with numbers in the preceding figure,
correspond to the mappings represented as arrows in Figure 4-1 and the
4-6 Tutorial: Building Your First Data Transformation

corresponding links in Figure 4-2, both of which are also labeled with
numbers.

2. Save all the files in this application. From the WebLogic Workshop menu bar,
choose File→Save All. You can also save all the files by entering Ctrl+S.

Note: Pressing Ctrl+S saves all the files in the application, not just the current
file.

To Test the Simple Query

This section describes the steps necessary to test the query generated in the preceding
section. In this section, you will enter input XML data, run that data against the query,
and view the resulting output XML data.

1. Select the Test View tab of myJoin.xq file.

2. Import PriceQuote.xml as input data for the transformation:

a. From the drop-down menu in the Source Data pane, select $_priceQuoteDoc.

b. Click Import... .

The Open File to Test dialog box is displayed.

c. Double-click the requestquote folder.

d. Double-click the testxml folder.

e. Double-click the PriceQuote.xml file.

A graphical representation of the PriceQuote.xml file appears in the Source
Data pane.

3. In the Result Data pane, click Test.

If not currently running, the WebLogic Server for the current application will be
started.

Note: In order for a query to run, the WebLogic Server for the current application
must be running.

The input XML data in one format is transformed by the query to XML in the
output format and graphically displayed in the Result Data pane, as shown in
the following figure.
Tutorial: Building Your First Data Transformation 4-7

4 Step 3: Mapping Elements and Attributes
The preceding figure shows a graphical representation of the resulting XML
data.

To learn more about the transformation occurring in the query including a walk
through of the generated XQuery code, see Understanding the Transformation.

4. To view the resulting data as an XML document, in the Result Data pane select
the XML Source View tab.

The following XML data is displayed:

<?xml version="1.0" encoding="UTF-8"?>
<quot:quote xmlns:quot="http://www.example.org/quote">
<name>Acme Inc</name>
<address>12 Springs RdMorris Plainsnj07960</address>
</quot:quote>

Note: In the preceding XML document, the string: quot is the namespace prefix
for the following namespace URI:
xmlns:quot="http://www.example.org/quote". To learn more
about namespace declarations and how this XML data was generated, see
Understanding the Transformation.

To Edit and Retest the Simple Query

This section provides the steps for editing the generated query to add a delimiter
between the street, city, state, and zip code fields of the address element.

1. Select the Source View tab of myJoin.xq file.

2. To delineate between the different address fields, add the argument: ",",
between the address attribute parameters of the concat function, as shown in the
following listing:
4-8 Tutorial: Building Your First Data Transformation

http://edocs.bea.com/workshop/docs81/doc/en/integration/dttutorial/tutWLIDataTransExtraTrans.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/dttutorial/tutWLIDataTransExtraTrans.html

<address>{concat($_priceQuoteDoc/ns0:shipAddress/@street,",",
$_priceQuoteDoc/ns0:shipAddress/@city,",",
$_priceQuoteDoc/ns0:shipAddress/@state,",",
$_priceQuoteDoc/ns0:shipAddress/@zip)}</address>

3. Select the Design View tab of the myJoin.xq file.

The generated query is displayed as shown in the following figure.

In the proceeding step, you modified the links between shipAddress attributes
and the address element in the query, which causes these links to change from
direct data links (represented as blue lines) to implied links (represented as light
gray lines) as show in the following figure. The mapper parses the XQuery code
and determines that there are implied links between the target and source
elements.

4. Select the Test View tab of myJoin.xq file and in the Result Data pane click
Test.

In the Result Data pane, the XML output is displayed.

The street, city, state, and zip code fields of the address element will be
delineated by a commas, as shown in the following listing:

<address>12 Springs Rd,Morris Plains,nj,07960</address>

To Add an XQuery Function Call to the Query

This section provides steps for converting the state field to uppercase by calling a
standard W3C XQuery function from the query.

1. Select the Design View tab of myJoin.xq file.

2. In the XML Map pane, select the link between the state attribute of the
shipAddress element and the quote/address element.
Tutorial: Building Your First Data Transformation 4-9

4 Step 3: Mapping Elements and Attributes
In the Source Schema pane, the state attribute becomes selected. (A gray box
appears around the state attribute.)

3. Select the Functions tab in the bottom left-hand part of the screen.

In the Functions tab, the Edit Function pane is displayed, as shown in the
following figure.

4. In the Select Function pane, expand the String Functions folder.

5. In the Edit Function pane, select the following text:

$_priceQuoteDoc/ns0:shipAddress/@state

Warning: Do not select any commas.

In the Edit Function pane the following is displayed as shown in the following
figure.

6. In the Select Function pane, select the upper-case function, and drag it into the
Edit Function pane.

The following is displayed in the Edit Function pane, as shown in the following
figure.
4-10 Tutorial: Building Your First Data Transformation

7. Leave $string-var selected in the Edit Function pane as shown in the
preceding figure. In the Select Parameter drop-down list, select
$_priceQuoteDoc.

8. In the Select Parameter pane, select state and drag it into the Edit Function
pane.

The following is displayed in the Edit Function pane, as shown in the following
figure.

9. Click Apply.

10. Select the Test View tab.

11. Click Test.

In the Result Data pane, the state is displayed in uppercase characters, as shown
in the following listing:

<address>12 Springs Rd,Morris Plains,NJ,07960</address>
Tutorial: Building Your First Data Transformation 4-11

4 Step 3: Mapping Elements and Attributes
4-12 Tutorial: Building Your First Data Transformation

CHAPTER
5 Step 4: Mapping a
Repeating Element
(Join)

In this step, you will add additional mappings to the existing query. In the previous
sections, you mapped data from the Input Type defined by the PriceQuote.xsd XML
Schema to the Output Type defined by the Quote.xsd XML Schema. In this section,
you will map data from the Input Types defined by the AvailQuote.xsd XML
Schema and the Java float primitive: taxRate to the Output Type defined by the
Quote.xsd XML Schema, as shown in the following figure.
Tutorial: Building Your First Data Transformation 5-1

5 Step 4: Mapping a Repeating Element (Join)
Mappings created in this section will create a join between repeating elements in the
Input and Output XML Schemas. Complete the following tasks to create, test, and alter
the join:

Create a User-Defined Java Method to Invoke From the Join Query

To Join Two Sets of Repeating Elements

Add Links to Populate the quoteResponse Element

Call the calculateTotalPrice User Method From the Query

To View the Generated Query

To Test the Query

Create an Instance of the MyTutorialJoin Control

Edit the Node That Invokes the Transformation

To Run the Business Process

Create a User-Defined Java Method to Invoke From the Join Query

In this task, you will create a user-defined Java method in the MyTutorialJoin
Transformation control that calculates the total price of the widgets requested
including tax. In “Call the calculateTotalPrice User Method From the Query” on page
5-9, you will change the query to invoke this method.

1. View MyTutorialJoin.dtf in the Design View:

a. If the Application tab is not visible in WebLogic Workshop, from the menu bar
choose View→Application.

b. In the Application tab, double-click
Tutorial_Process_Application\Tutorial_Process_ApplicationWeb

\requestquote\MyTutorialJoin.dtf and select the Design View tab.

The graphical representation of the MyTutorialJoin Transformation control
is displayed, as shown in the following figure:
5-2 Tutorial: Building Your First Data Transformation

2. Right-click in the box representing the MyTutorialJoin Transformation control.
(The box shown in the preceding figure.)

3. From the drop-down menu, select Add User Method.

A User method is created in the MyTutorialJoin Transformation control.

4. Enter calculateTotalPrice as the method name.

The methods that make up the MyTutorialJoin Transformation control are
displayed, as shown in the following figure.

5. Right-click the arrow representing the calculateTotalPrice method.

6. From the drop-down menu, select Edit in source view.

7. In the Design View of the MyTutorialJoin Transformation control, replace the
generated calculateTotalPrice Java method.

Replace the following generated calculateTotalPrice Java method:

public void calculateTotalPrice()
{
}

With the following calculateTotalPrice Java method:

public float calculateTotalPrice(float taxRate, int quantity,
float price, boolean fillOrder)
{

Tutorial: Building Your First Data Transformation 5-3

5 Step 4: Mapping a Repeating Element (Join)
float totalTax, costNoTax, totalCost;
if (fillOrder)
{

// Calculate the total tax
totalTax = taxRate * quantity * price;
// Calculate the total cost without tax
costNoTax = quantity * price;
// Add the tax and the cost to get the total cost
totalCost = totalTax + costNoTax;

}
else
{

totalCost = 0;
}
return totalCost;

}

Warning:Make sure you change the return type of the calculateTotalPrice
function from void to float.

8. Save all the files in this application. From the WebLogic Workshop menu bar,
choose File→Save All.

To Join Two Sets of Repeating Elements

1. View myJoin.xq in the Design View:

a. If the Application tab is not visible in WebLogic Workshop, from the menu bar
choose View→Application.

b. In the Application tab, double-click
Tutorial_Process_Application\Tutorial_Process_ApplicationWeb

\requestquote\MyTutorialJoin.dtf\myJoin.xq and select the Design
View tab.

2. Collapse the shipAddress node.

3. Select the $_priceQuoteDoc\priceRequests\priceRequest node and drag it to
the quote\quoteResponse node.

These nodes are both repeating nodes. A repeating node means more than one
instances of this node can be specified. The + symbol to the right of the node
indicates these nodes are repeating nodes.

Warning: You must select the priceRequest node and not the priceRequests
node.
5-4 Tutorial: Building Your First Data Transformation

A dashed line linking the two repeating nodes is displayed, as shown in the
following figure.

The dashed line with short dashes represents a structural link—a link between
two parent structures that does not map data directly.

To learn more about XML repeating nodes, see “Understanding XML Repeating
Nodes” on page 6-5.

4. Select the $_availQuoteDoc\availRequest node and drag it to the
quote\quoteResponse node.

A dashed line linking the two repeating elements is displayed, as shown in the
following figure.

5. Select the Source View tab to view the changes to the query.

The following query is displayed in the Source View:

{-- requestquote/MyTutorialJoin.dtf#myJoin --}

declare namespace ns0 = "http://www.example.org/price"
declare namespace ns1 = "http://www.example.org/avail"
declare namespace ns2 = "http://www.example.org/quote"

<ns2:quote>
<name>{ data($_priceQuoteDoc/ns0:customerName) }</name>
<address>{
Tutorial: Building Your First Data Transformation 5-5

5 Step 4: Mapping a Repeating Element (Join)
concat($_priceQuoteDoc/ns0:shipAddress/@street,",",$_priceQuote
Doc/ns0:shipAddress/@city,",",
xf:upper-case($_priceQuoteDoc/ns0:shipAddress/@state),",",$_pri
ceQuoteDoc/ns0:shipAddress/@zip) }</address>

{
for $priceRequest in

$_priceQuoteDoc/ns0:priceRequests/ns0:priceRequest,
$availRequest in $_availQuoteDoc/ns1:availRequest

return
<quoteResponse/>

 }
</ns2:quote>

In the preceding query, there are no data links between the children of the
repeating nodes, so the quoteResponse element is empty. (The string:
<quoteResponse/> is an empty node.)

The structural links between the repeating nodes generates the for loop which is
shown in bold in the preceding query listing. This XQuery for loop iterates
through the set of priceRequest and availReqest repeating elements. For
example, if the input XML data to this query contains three instances of the
priceRequest element and three instances of the availRequest element, the
for loop would execute a total of nine times with the following combinations:

The first instance of the priceRequest element with the first instance of
availRequest element.

The first instance of the priceRequest element with the second instance of
availRequest element.

The first instance of the priceRequest element with the third instance of
availRequest element.

The second instance of the priceRequest element with the first instance of
availRequest element.

The second instance of the priceRequest element with the second instance
of availRequest element.

The second instance of the priceRequest element with the third instance of
availRequest element.

The third instance of the priceRequest element with the first instance of
availRequest element.

The third instance of the priceRequest element with the second instance of
availRequest element.
5-6 Tutorial: Building Your First Data Transformation

The third instance of the priceRequest element with the third instance of
availRequest element.

For some transformations, you may want the query to generate all the possible
combinations but for others, you may want to constrain the combinations as
described in the following steps.

6. Select the Design View tab.

7. Select the $_priceQuoteDoc/priceRequests/priceRequest/widgetId node and
drag it to the $_availQuote/availRequest/widgetId node.

Note: Both of these elements are in the Source Schema pane.

A line between the two widgetId nodes is displayed, as shown in the following
figure.

8. Select the Source View tab to view the changes to the query.

The following query is displayed in the Source View:

{-- requestquote/MyTutorialJoin.dtf#myJoin --}
declare namespace ns0 = "http://www.example.org/price"
declare namespace ns1 = "http://www.example.org/avail"
declare namespace ns2 = "http://www.example.org/quote"

<ns2:quote>
<name>{ data($_priceQuoteDoc/ns0:customerName) }</name>
Tutorial: Building Your First Data Transformation 5-7

5 Step 4: Mapping a Repeating Element (Join)
<address>{ concat($_priceQuoteDoc/ns0:shipAddress/@street,
",", $_priceQuoteDoc/ns0:shipAddress/@city,",",
 xf:upper-case($_priceQuoteDoc/ns0:shipAddress/@state),
",",$_priceQuoteDoc/ns0:shipAddress/@zip) }</address>

{
for $priceRequest in

$_priceQuoteDoc/ns0:priceRequests/ns0:priceRequest,
$availRequest in $_availQuoteDoc/ns1:availRequest

where data($availRequest/ns1:widgetId) =
data($priceRequest/ns0:widgetId)

return
<quoteResponse/>

}
</ns2:quote>

The link between the widgetId nodes generates the where clause in the for
loop, as shown in bold in the preceding query listing. This where clause
specifies that if the expression in the where clause is true, the for loop will
output the contents of the return. For this example, if the widgetId of the
availRequest element is equal to the widgetId of the priceQuest element,
the following XML data is returned:

<quoteResponse/>

An empty quoteReponse element isn’t very useful. In the following task: “Add
Links to Populate the quoteResponse Element” on page 5-8, you will add data
links that will populate the quoteResponse element.

Add Links to Populate the quoteResponse Element

1. Select the Design View tab.

2. From the Source Schema pane, drag the
$_priceQuoteDoc/priceRequests/priceRequest/widgetId node to the
quote/quoteResponse/widgetId node in the Target Schema pane.

3. From the Source Schema pane, drag the
$_priceQuoteDoc/priceRequests/priceRequest/price node to the
quote/quoteResponse/unitPrice node in the Target Schema pane.

4. From the Source Schema pane, drag the
$_availQuoteDoc/availRequest/requestedQuanity node to the
quote/quoteResponse/requestedQuanity node in the Target Schema pane.

5. From the Source Schema pane, drag the
$_availQuoteDoc/availRequest/quanityAvail node to the
quote/quoteResponse/fillOrder node in the Target Schema pane.
5-8 Tutorial: Building Your First Data Transformation

6. From the Source Schema pane, drag the
$_availQuoteDoc/availRequest/shipDate node to the
quote/quoteResponse/shipDate node in the Target Schema pane.

7. From the Source Schema pane, drag the $_floatDoc Java primitive to the
quote/quoteResponse/taxRate node in the Target Schema pane.

8. From the Source Schema pane, drag the $_floatDoc Java primitive to the
quote/quoteResponse/totalCost node in the Target Schema pane.

In the Design View the following links are displayed as shown in the following
figure.

9. Save all the files in this application. From the WebLogic Workshop menu bar,
choose File→Save All.

Call the calculateTotalPrice User Method From the Query

1. Select the Design View tab.

2. In the XML Map pane, select the link between the $_floatDoc Java primitive
and the quote/quoteResponse/totalCost node.
Tutorial: Building Your First Data Transformation 5-9

5 Step 4: Mapping a Repeating Element (Join)
In the XML Map pane, the link between these two nodes becomes black.

3. Select the Functions tab in the bottom left-hand part of the screen.

4. In the Select Function pane, from the drop-down menu select User Functions.

5. In the XQuery Functions pane, select the calculateTotalPrice function, and
drag it into the Edit Function pane.

6. Leave $float-var selected in the Edit Function pane and in the Select
Parameter drop-down list select $_floatDoc.

7. In the Select Parameter pane, select $_floatDoc and drag it into the Edit
Function pane.

In the Edit Function pane, the default parameter: $float_var is replaced with
the $_floatDoc parameter, as shown in the following figure.

8. Leave $int-var selected in the Edit Function pane and in the Select
Parameter drop-down list select $_availQuoteDoc.

9. In the Select Parameter pane, select
$_availQuoteDoc/availRequest/requestedQuanity and drag it into the Edit
Function pane.

In the Edit Function pane, the default parameter: $int_var is replaced with the
$_availQuoteDoc/availRequest/requestedQuanity parameter, as shown in the
following figure.

10. Leave $float-var selected in the Edit Function pane and in the Select
Parameter drop-down list select $_priceQuoteDoc.
5-10 Tutorial: Building Your First Data Transformation

11. In the Select Parameter pane, select
$_priceQuoteDoc/priceRequests/priceRequest/price and drag it into the Edit
Function pane.

In the Edit Function pane, the default parameter: $float_var is replaced with
the $_priceQuoteDoc/priceRequests/priceRequest/price parameter, as shown
in the following figure.

12. In the Select Parameter pane, select
$_availQuoteDoc/availRequest/quantityAvail and drag it into the Edit
Function pane.

In the Edit Function pane, the default parameter: $boolean_var is replaced with
the $_availQuoteDoc/availRequest/quantityAvail parameter, as shown in the
following figure.

13. Click Apply.

14. Save all the files in this application. From the WebLogic Workshop menu bar,
choose File→Save All.

To View the Generated Query

Select the Source View tab to view the changes to the query.

The following query is displayed in Source View:

{-- requestquote/MyTutorialJoin.dtf#myJoin --}

declare namespace ns0 = "http://www.example.org/price"
declare namespace ns1 = "http://www.example.org/avail"
Tutorial: Building Your First Data Transformation 5-11

5 Step 4: Mapping a Repeating Element (Join)
declare namespace ns2 = "http://www.example.org/quote"

<ns2:quote>
<name>{ data($_priceQuoteDoc/ns0:customerName) }</name>
<address>{ concat($_priceQuoteDoc/ns0:shipAddress/@street, ",",

$_priceQuoteDoc/ns0:shipAddress/@city,",",
 xf:upper-case($_priceQuoteDoc/ns0:shipAddress/@state),
",",$_priceQuoteDoc/ns0:shipAddress/@zip) }</address>

{
for $priceRequest in $_priceQuoteDoc/ns0:priceRequests/ns0:priceRequest,

$availRequest in $_availQuoteDoc/ns1:availRequest
where data($availRequest/ns1:widgetId) = data($priceRequest/ns0:widgetId)
return

<quoteResponse>
<widgetId>{ data($priceRequest/ns0:widgetId) }</widgetId>
<unitPrice>{ data($priceRequest/ns0:price) }</unitPrice>
<requestedQuanity>{ data($availRequest/ns1:requestedQuanity)

}</requestedQuanity>
<fillOrder>{ data($availRequest/ns1:quanityAvail) }</fillOrder>
{

for $shipDate in $availRequest/ns1:shipDate
return

<shipDate>{ data($shipDate) }</shipDate>
}
<taxRate>{ $_floatDoc }</taxRate>
<totalCost>{ calculateTotalPrice($_floatDoc,

 $availRequest/ns1:requestedQuanity, $priceRequest/ns0:price,
 $availRequest/ns1:quanityAvail) }</totalCost>

</quoteResponse>
}

</ns2:quote>

The links added the preceding task generate the additional XQuery source listed
between the <quoteResponse> and </quoteResponse> tags highlighted in bold in
the preceding query listing.

To Test the Query

1. Select the Test View tab.

2. There are three import parameters to the myJoin Transformation method:
$_priceQuoteDoc, $_availQuoteDoc, and $_floatDoc. In the task: “To Test
the Simple Query” on page 4-7, you imported PriceQuote.xml as input for the
$_priceQuoteDoc parameter. In this step, you import AvailQuote.xml for the
input parameter: $_availQuoteDoc:

a. From the drop-down menu in the Source Data pane, select $_availQuoteDoc.
5-12 Tutorial: Building Your First Data Transformation

b. Click Import... .

The Open XML File to Test dialog box is displayed.

c. Double-click the requestquote folder.

d. Double-click the testxml folder.

e. Double-click the AvailQuote.xml file.

A graphical representation of the AvailQuote.xml file appears in the Source
Data pane.

3. From the drop-down menu in the Source Data pane, select $_floatDoc .

4. In the Node Value field of the $_floatDoc node, double-click on the existing
value, enter: 0.08, and press the Enter key twice.

5. In the Result Data pane click Test.

The query is run with the test XML data. A graphical representation of the
resulting XML data is shown in the Result Data pane. This query joins the two
sets of input repeating elements (availRequest and priceRequest) to a single
repeating element (quoteResponse).

6. To view resulting data as XML, in the Result Data pane select the XML Source
View tab.

7. To check that the resulting XML data from the query is valid against the
associated XML Schema, in the Result Data pane click Validate. In this
example, the resulting XML data is checked against the XML Schema in the
Quote.xsd file. To learn more, see Validating.

Create an Instance of the MyTutorialJoin Control

In this task, you create an instance of the MyTutorialJoin.dtf control.

1. View the RequestQuote business process in the Design View:

a. If the Application tab is not visible in WebLogic Workshop, from the menu bar
choose View→Application.

b. In the Application tab, double-click
Tutorial_Process_Application\Tutorial_Process_ApplicationWeb

\requestquote\RequestQuote.jpd and select the Design View tab.
Tutorial: Building Your First Data Transformation 5-13

http://edocs.bea.com/workshop/docs81/doc/en/integration/dtguide/dtguidemappervalidating.html

5 Step 4: Mapping a Repeating Element (Join)
2. Click Add on the Controls tab and choose Integration
Controls→Transformation from the drop-down menu. (If the Controls pane is
not visible in WebLogic Workshop, from the menu bar choose
View→Windows→Data Palette. The Controls pane is at the bottom of the
Data Palette.)

The Insert Control dialog box is displayed.

3. In the Insert Control dialog box, complete the following steps:

a. In Step 1, enter myTutorialJoin as the variable name for the control.

b. In Step 2, ensure that the following option is selected: Use a Transformation
control already defined by a DTF file.

c. Click Browse beside the DTF file field, expand the requestquote folder, select
MyTutorialJoin.dtf and click Select to close the file browser.

The following in displayed in the Insert Control dialog box:

4. Click Create to close the Insert Control dialog box.

An instance of a Transformation control, named myTutorialJoin, is created in
your project and displayed in the Controls pane.

You can view the Transformation controls and their methods in the Controls tab,
which at this point, should resemble the following figure:
5-14 Tutorial: Building Your First Data Transformation

Edit the Node That Invokes the Transformation

In this task, you edit the Combine Price and Avail Quotes node in the RequestQuote
business process and change the Transformation control that gets invoked by this node
from an instance of the TutorialJoin.dtf control to an instance of the
MyTutorialJoin.dtf control. Additionally, you change the design of the Combine
Price and Avail Quotes node to call the myJoin() method on the MyTutorialJoin
control. The myJoin() method combines the data returned to your business process
from different systems and creating a single XML response document (quote), which
is subsequently returned to the business process’s client.

1. In the RequestQuote business process, double-click the Combine Price and Avail
Quotes node to open its node builder.

The node builder opens on the General Settings tab.

2. From the drop-down menu in the Control field and select myTutorialJoin.

3. Select myJoin() from the Method panel and click Apply.

4. Click Send Data to open the second tab in the node builder.

The Select variables to assign fields are populated with default variables. The
data types match the data type expected in the input parameters to the myJoin()
method as shown in the following figure.

priceQuote holds the price quote data, which is returned from the
PriceProcessor service in the For Each loop in your business process.

availQuote holds the availability quote data, which is returned from the
AvailProcessor service in the For Each loop in your business process.

taxRate holds the rate of sales tax applied to the quote, based on the
shipping address, which is returned to your business process from the
taxCalculation service.
Tutorial: Building Your First Data Transformation 5-15

5 Step 4: Mapping a Repeating Element (Join)
The Method Expects fields are populated with the data type expected by the
myJoin() method on the MyTutorialJoin control, as shown in the following
figure.

5. Click Receive Data to open the third tab in the node builder.

The Select variables to assign field is populated with the default variable:
Quote. The data type matches the data type expected in the output parameter to
the myJoin() method as shown in the following figure.

On the Receive Data tab, the Method Expects field is populated with the data
type returned by the myJoin() method: QuoteDocument, as shown in the
following figure.

6. Click Close to save your specifications and close the node builder.

7. Save all the files in this application, including the RequestQuote business
process. From the WebLogic Workshop menu bar, choose File→Save All.

To Run the Business Process

In this tutorial, you entered the XML data that is run against the query. During run
time, the business process builds the XML data and passes it to the Transformation
control and the associated query that was built in this tutorial. To run the business
process and invoke the query, follow the instructions in Step 12: Run the
RequestQuote Business Process in the Tutorial: Building Your First Business Process.
5-16 Tutorial: Building Your First Data Transformation

http://edocs.bea.com/workshop/docs81/doc/en/integration/tutorial/tutWLIProcessTest.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/tutorial/tutWLIProcessTest.html

CHAPTER
6 Understanding the
Concepts

This section is optional and provides detailed conceptual information about the
following topics:

Understanding the Transformation

Understanding XML Repeating Nodes

Understanding the Transformation

The transformation occurring in the query built in “Step 3: Mapping Elements and
Attributes” on page 4-1 is shown in the following figure:
Tutorial: Building Your First Data Transformation 6-1

6 Understanding the Concepts
The query generated in “To Map Attributes of an Element to Single Element” on page
4-5 is shown in the following listing:

{-- requestquote/MyTutorialJoin.dtf#myJoin --}
declare namespace ns0 = "http://www.example.org/price"
declare namespace ns1 = "http://www.example.org/avail"
declare namespace ns2 = "http://www.example.org/quote"
<ns2:quote>

<name>{ data($_priceQuoteDoc/ns0:customerName) }</name>
<address>{ concat($_priceQuoteDoc/ns0:shipAddress/@street,

$_priceQuoteDoc/ns0:shipAddress/@city,
 $_priceQuoteDoc/ns0:shipAddress/@state, $_priceQuoteDoc/ns0:shipAddress/@zip)
}</address>
</ns2:quote>

The first three lines of this query are namespace declarations. These namespace
declarations are part of the query prolog. For each namespace in the input and output
XML Schema, the mapper generates a namespace declaration. For example, the
mapper generates the namespace declaration: ns0 for the namespace URI
(http://www.example.org/price) defined in the XML Schema of the
PriceQuote.xsd file. Namespaces are used to uniquely distinguish elements in XML
Schema from elements in another XML Schema.

The following steps describe the transformation that occurs when the input XML data
is run against the preceding query:

1. The fifth line of the query is shown in the following listing:

<ns2:quote>
6-2 Tutorial: Building Your First Data Transformation

This line of the query becomes the first line of the XML output, as shown in the
following listing:

<quot:quote xmlns:quot="http://www.example.org/quote">

During the transformation, the namespace prefix for the quote element changes.
In the query, the namespace prefix associated with
http://www.example.org/quote namespace URI is ns2. However, in the
resulting XML data, the namespace prefix generated for the
http://www.example.org/quote namespace URI is quot. This namespace
declaration is highlighted in bold in the preceding listing.

2. The sixth line of the query is shown in the following listing:

<name>{data($_priceQuoteDoc/ns0:customerName)}</name>

This line of the query transforms the customerName element of the priceQuote
element to the name element of the quote element.

The following steps describe the transformation that occurs on this line of
XQuery code:

a. The <name> and </name> tags transform directly to XML output.

b. Characters between curly braces {} are interpreted in a special way by the
XQuery engine. That is, characters surrounded by curly braces are not
transformed directly into XML. Specifically, in this example, the curly braces
surrounding the data method specify that the data function of the XQuery
language should be executed.

The data function returns the value of the passed in XML node. For this
example, the argument to the data function is the following XPath
expression: $_priceQuoteDoc/ns0:customerName. The
$_priceQuoteDoc variable contains the contents of the priceQuote
element including its subelements. This XPath expression returns the
customerName node of the priceQuote element. (The / XPath operator
delimitates parent nodes from child nodes.)

The XQuery data function takes customerName node and returns the value
of the node, the string: Acme Inc. This string is placed between the <name>
and </name> tags resulting in the following line of output XML data, as
shown in the following listing:

<name>Acme Inc</name>

3. The seventh line in the query is shown in the following listing:
Tutorial: Building Your First Data Transformation 6-3

6 Understanding the Concepts
<address>{
concat($_priceQuoteDoc/ns0:shipAddress/@street,$_priceQuoteDoc/
ns0:shipAddress/@city,
$_priceQuoteDoc/ns0:shipAddress/@state,$_priceQuoteDoc/ns0:ship
Address/@zip) }</address>

The following steps describe the transformation that occurs on this line of
XQuery code.

a. The <address> and </address> tags transform directly to XML output.

b. Characters between curly braces {} are interpreted in a special way by the
XQuery engine. That is, characters surrounded by curly braces are not
transformed directly into XML. Specifically, in this example, the curly braces
surrounding the data method specify that the data function of the XQuery
language should be executed.

c. The concat function takes the values of all its arguments, concatenates these
values together, and returns them as a string. For this example, the concat
function takes the values of the all the XPath expressions and concatenates
them together in one address string. Additionally, all the arguments in this
concat function are XPath expressions that return the value of specified
attribute, as shown in the following table.

The return string of the concat function is placed between the <address>
and <address> tags resulting in the following line of XML data, as shown
in the following listing:

The Following XPath
Expression

Returns The String

$_priceQuoteDoc/ns0:s
hipAddress/@ns0:stree
t

The value of the street attribute
of the shipAddress element.

12 Springs Rd

$_priceQuoteDoc/ns0:s
hipAddress/@ns0:city

The value of the city attribute of
the shipAddress element.

Morris Plains

$_priceQuoteDoc/ns0:s
hipAddress/@ns0:state

The value of the state attribute
of the shipAddress element.

nj

$_priceQuoteDoc/ns0:s
hipAddress/@ns0:zip

The value of the zip attribute of
the shipAddress element.

07960
6-4 Tutorial: Building Your First Data Transformation

<address>12 Springs RdMorris Plainsnj07960</address>

4. The last line of the query is shown in the following listing:

</ns2:quote>

The last line of the query becomes the last line of the XML output, as shown in
the following listing:

</quot:quote>

The resulting address element has no delimiter between the street, city, state, and zip
code fields, making the address difficult to read and parse. For instructions on adding
delimiters to this query, return to “To Edit and Retest the Simple Query” on page 4-8
in the main section of this tutorial.

Understanding XML Repeating Nodes

A repeating node means that more than one instance of this node can be specified. For
example, in the following XML data there are three instances of the priceRequest
node, as shown in the following listing:

<?xml version="1.0"?>
<priceQuote xmlns="http://www.example.org/price">

<customerName>Acme Inc</customerName>
<shipAddress street="12 Springs Rd" city="Morris Plains" state="nj"

zip="07960"/>
<priceRequests>

<priceRequest>
<widgetId>12</widgetId>
<price>1.00</price>

</priceRequest>
<priceRequest>

<widgetId>134</widgetId>
<price>34.10</price>

</priceRequest>
<priceRequest>

<widgetId>211</widgetId>
<price>10.00</price>

</priceRequest>
</priceRequests>

</priceQuote>
Tutorial: Building Your First Data Transformation 6-5

6 Understanding the Concepts
A segment of the XML Schema for the preceding XML data is shown in the following
listing:

<?xml version="1.0"?>
<xsd:schema . . . >
. . .

<xsd:element name="widgetId" type="xsd:integer"/>
<xsd:element name="price" type="xsd:float"/>
<xsd:element name="priceRequest">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref="pri:widgetId"/>
<xsd:element ref="pri:price"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="priceRequests">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref="pri:priceRequest" minOccurs="1" maxOccurs="10"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

. . .
<xsd:element name="priceQuote">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref="pri:customerName" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="pri:shipAddress" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="pri:priceRequests"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:schema>

The minOccurs="1" and maxOccurs="10" settings, in the definition of the
priceRequest element (highlighted in bold in the preceding listing), specify that
there can be one to ten instances of the priceRequest element. This defines
priceQuote as a repeating element.

To View the Full listing of the XML Schema, Open the PriceQuote.xsd file

1. In the Application tab, expand Schemas folder. (If the Application tab is not
visible in WebLogic Workshop, from the menu bar choose View→Application.)

2. Double-click the PriceQuote.xsd icon.

The PriceQuote.xsd file is displayed.
6-6 Tutorial: Building Your First Data Transformation

3. Return to the Design View of the myJoin.xq file:

a. In the Application tab, double-click
Tutorial_Process_Application\Tutorial_Process_ApplicationWeb
\requestquote\MyTutorialJoin.dtf\myJoin.xq

b. Select the Design View tab.
Tutorial: Building Your First Data Transformation 6-7

6 Understanding the Concepts
6-8 Tutorial: Building Your First Data Transformation

	1 Tutorial: Building Your First Data Transformation
	Tutorial Goals
	Steps in This Tutorial

	2 Step 1: Getting Started
	3 Step 2: Building the Transformation
	4 Step 3: Mapping Elements and Attributes
	5 Step 4: Mapping a Repeating Element (Join)
	6 Understanding the Concepts

