
BEA
 WebLogic
Integration™

How Do I?
Version 8.1 Service Pack 2
Document Date: December 2003

Copyright
Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic Commerce
Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Enterprise Security, BEA
WebLogic Express, BEA WebLogic Integration, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA
WebLogic Portal, BEA WebLogic Server, BEA WebLogic Workshop and How Business Becomes E-Business are
trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Contents

1. How Do I . . . ?

2. Getting Started
How Do I: Start WebLogic Workshop? .. 2-1

How Do I: Start and Stop WebLogic Server? ... 2-2

How Do I: Create a New Application?.. 2-3

How Do I: Create a New Project? ... 2-6

How Do I: Create a New Business Process File?.. 2-7

How Do I: Open an Existing Business Process? ... 2-9

How Do I: Use the Design View? ... 2-10

Design View and Source View .. 2-10

Node Builders... 2-11

Palette ... 2-12

Data Palette .. 2-12

Property Editor ... 2-13

How Do I: Learn More About XQuery? ... 2-13

Branching in Business Processes ... 2-14

Data Transformation .. 2-15

Generating a Set of Typed Data Elements for a For Each Loop.............. 2-15

3. Using Keyboard Shortcuts
How Do I: Use Cut/Copy/Paste Shortcuts?... 3-1

How Do I: Use Undo/Redo Shortcuts? ... 3-3

How Do I: Use Arrow Keys? .. 3-3

How Do I: Use Delete/Enter Keys?... 3-4

How Do I: Use Print Shortcuts? .. 3-5
How Do I...? iii

4. Importing Files into the Schemas Project
How Do I: Create a Schemas Project Folder? ... 4-1

How Do I: Import Files into a Schemas Project Folder?................................... 4-3

5. Publishing and Subscribing to Channels
How Do I: Create Message Broker Channels? .. 5-2

Dead Letter Channels ... 5-6

How Do I: Publish to Message Broker Channels? .. 5-7

How Do I: Subscribe to Message Broker Channels?... 5-9

6. Calling Business Processes
How Do I: Call Business Processes? ... 6-1

How Do I: Use a JPD Proxy to a Call Business Process? 6-4

How Do I: Get a JPD Proxy for a Business Process?.. 6-7

How Do I: Use a JPD Proxy From a Java Client?... 6-10

How Do I: Use a JPD Proxy From a JSP?... 6-24

How Do I: Use a JPD Proxy From an EJB? .. 6-25
iv How Do I...?

CHAPTER
1 How Do I . . . ?

These topics provide step-by-step instructions for accomplishing common tasks to get
started building business processes.

Topics Included in This Section

Getting Started
Learn how to start and stop WebLogic Server, create new applications and
files, get started using the WebLogic Workshop graphical design
environment to create your business processes, and so on.

Using Keyboard Shortcuts
Learn about the keyboard shortcuts available to you as you design your
business processes in WebLogic Workshop.

Importing Files into the Schemas Project
Learn about importing XML Schemas, MFL files, and Channel files into a
Schemas project in your integration application.

Publishing and Subscribing to Channels
Learn how to publish and subscribe to Message Broker channels.

Calling Business Processes
Learn about the different approaches that clients can use to communicate with
business processes, including using a JPD Proxy. You can use a JPD Proxy
to communicate with a business process from any Java client, including JSP
pages, servlets, EJBs, and standalone Java clients.
How Do I...? 1-1

1 How Do I . . . ?
1-2 How Do I...?

CHAPTER
2 Getting Started

To learn how to get started with WebLogic Workshop to create business processes, see
the following topics:

How Do I: Start WebLogic Workshop?

How Do I: Start and Stop WebLogic Server?

How Do I: Create a New Application?

How Do I: Create a New Project?

How Do I: Create a New Business Process File?

How Do I: Open an Existing Business Process?

How Do I: Use the Design View?

How Do I: Learn More About XQuery?

How Do I: Start WebLogic Workshop?

To start WebLogic Workshop, complete the procedure appropriate for your operating
system:

To Start WebLogic Workshop on Microsoft Windows

To Start WebLogic Workshop on Linux

To Start WebLogic Workshop on Microsoft Windows

Invoke WebLogic Workshop from the Start menu by choosing:
How Do I...? 2-1

2 Getting Started
Start→Programs→BEA WebLogic Platform 8.1→WebLogic Workshop 8.1

If this is the first time WebLogic Workshop is started since it was installed, the samples
project, which contains sample services installed with WebLogic Workshop, is
displayed. Otherwise, the project which was opened last is displayed.

To Start WebLogic Workshop on Linux

1. Using a file system browser or shell, locate the Workshop start script at:

$HOME/bea/weblogic81/workshop/Workshop.sh

2. Start WebLogic Workshop using one of the following methods:

Use the following command from the command line:

sh Workshop.sh

From a file system browser, double-click Workshop.sh.

Related Topics

How Do I: Start and Stop WebLogic Server?

How Do I: Create a New Application?

How Do I: Start and Stop WebLogic Server?

It is not required that you run WebLogic Server while you are designing a business
process. However, before you run and test your business process, you must start
WebLogic Server. Business Processes you create run on WebLogic Server on your
development machine (at least until you deploy them).

Check the status bar at the bottom of WebLogic Workshop to determine whether
WebLogic Server is running:

If WebLogic Server is running, the following icon is displayed:
2-2 How Do I...?

If WebLogic Server is not running, the following icon is displayed:

To start WebLogic Server, from the WebLogic Workshop menu, choose
Tools→WebLogic Server→Start WebLogic Server.

You can minimize the command prompt windows, leaving only a dialog box
displaying a progress bar. When the server starts, the status bar at the bottom of
WebLogic Workshop indicates that the server is running.

Note: You can view and edit the configuration for your instance of WebLogic Server
by choosing Tools→Application Properties→WebLogic Server from the
WebLogic Workshop menu.

To stop WebLogic Server, choose Tools→WebLogic Server→Stop WebLogic
Server from the WebLogic Workshop menu.

Related Topics

How Do I: Create a New Application?

How Do I: Create a New Application?

A WebLogic Workshop application (displayed as the parent node on the Application
tab) contains one or more projects, which in turn contain the folders and files that make
up your application.

Application—The components of the application you are creating are represented in
a hierarchical tree structure on the Application tab in your WebLogic Workshop
environment. J2EE applications and their components are deployed on WebLogic
Server as Enterprise Application Archive (EAR) files. The name you specify for the
application becomes the name of the EAR file that you use to deploy your application.
How Do I...? 2-3

2 Getting Started
Projects—Projects that are contained in your application represent WebLogic Server
web applications. That is, when you create a project, you are creating a web
application. The name of your project will be included in the URL your clients use to
access your application. For example, if you create a business process
(HelloWorld.jpd) in a project named World, clients can access your business
process via the following URL:

http://host:port/WorldWeb/HelloWorld.jpd

In the preceding URL, host and port represent the name of your host server and the
listening port.

Note: When you name your project folder, the word Web is automatically appended
to the end of the project folder name and used as the Web application name.

Schemas—To make the XML and MFL schemas in your application available in your
business process, you must place them in the Schemas folder. This project folder is
also where you must place your Channel files. The Schemas folder is a child folder of
your business process application folder in WebLogic Workshop. (To learn more
about projects and applications, see the Guide to Building Business Processes topic on
Creating a Business Process Application.)

When you add MFL and XML schemas to the Schemas folder in your business process
project, representations of these schemas are available in some of the panes of
WebLogic Workshop. In addition, Java interfaces for accessing the data represented in
the schemas are generated. To learn more about XML and MFL schemas, see
Importing Schemas and the How do I topics in the Importing Files into the Schemas
Project section.

To Create a New Application

1. From the WebLogic Workshop menu, choose File→New→Application to display
a New Application dialog box.

2. To create a business process application, select Process or Tutorial in the left
pane in the dialog box. In the right pane, select one of the following options:

Process Application—Creates a new business process application, which
contains a basic business process project: A business process file, which
contains only a Start and Finish node (process.jpd). Additional folders that
are used in your application, such as a Schemas project folder, are also
created.
2-4 How Do I...?

Tutorial: Process Application—Creates an application containing
components for the Business Process and Data Transformation tutorials. To
learn about completing the tutorial, see Tutorial: Building Your First
Business Process, and Tutorial: Building Your First Data Transformation.

Tutorial: Hello World Process Application—Creates an application folder,
a project folder (Simple), and a sample business process
(HelloWorld.jpd). A Schemas folder is also created in the application. To
learn about adding XML Schemas to your business process applications, see
Importing Files into the Schemas Project. These template business process
applications are provided to help you get started quickly creating business
process applications.

You can also build an ebXML or RosettaNet participant business process in
WebLogic Workshop by using specially created templates. For more information
about how to create these participant processes, see Building ebXML Participant
Business Processes and Building RosettaNet Participant Business Processes.

3. Specify the directory in which to create the Application folder.

4. Specify a name for your new application.

5. In the Server field, select the integration sample domain or any other WebLogic
Integration domain. Click Browse to browse the file system to find a WebLogic
Server configuration file.

6. Click Create.

Your application is displayed in the Application tab in WebLogic Workshop. An
example of an application created using the New Business Process Application
option is displayed in the following figure.
How Do I...? 2-5

2 Getting Started
Related Topics

Tutorial: Building Your First Business Process

Tutorial: Building Your First Data Transformation

How Do I: Create a New Project?

How Do I: Create a New Business Process File?

Guide to Building Business Processes

Building ebXML Participant Business Processes

Building RosettaNet Participant Business Processes

How Do I: Create a New Project?

When you create a project in WebLogic Workshop, you are also creating a WebLogic
Server web application. The name you specify for your project is visible to clients
when they access the services you provide, so the name should describe the collective
purpose of the services in the project.

An application can include one or more projects. Every project must be inside an
application.

To Create a New Project

1. If the Application tab is not visible in WebLogic Workshop, choose
View→Application from the menu bar.

2. Select the Application tab.

3. Right-click the application to which you want to add the project (WebLogic
Server web application), and choose New→Project.

The New Project dialog box is displayed.
2-6 How Do I...?

Note: When you right-click an application, you can also choose Import Project.
Select Import Project if you want to import a project from outside the
application in which you are currently working.

4. Enter a name for your project in the Project name field. Give your project a
name that reflects its function.

Note: When you create a project in WebLogic Workshop, you are creating a
WebLogic Server web application. The name of your project will be
included in the URL your clients use to access your application. To learn
more about the components of your application, see Components of Your
Application.

5. Click Create.

Related Topics

How Do I: Create a New Business Process File?

Guide to Building Business Processes

How Do I: Create a New Business Process
File?

To create a new business process in a project that you have already created, complete
the following steps:

To Create a New Business Process File in an Existing Project

1. Select the Application tab.

2. Select the project to which you want to add the new business process.

3. From the menu, choose File→New→Process File.

The New File dialog box is displayed.
How Do I...? 2-7

2 Getting Started
4. Select Process file from the dialog box as the type of file to create.

Other business process-related files you can create include business process DTF
files and Channel files. To learn about these files, see Guide to Data
Transformation, Designing Start Nodes, Building ebXML Participant Business
Processes, Building RosettaNet Participant Business Processes, and How Do I:
Create Message Broker Channels?

5. Enter a name for your business process in the File name field. Give your
business process a name that reflects its function, for example
RequestQuote.jpd or ProcessPurchaseOrder.jpd.

Note: As indicated by the file extension in the New File dialog box, you create a
new JPD file when you create this business process file. A JPD file is a
JAVA file in that it contains code for a Java class. JPD files also contain
the metadata that describes the business process logic. Because a file with
a JPD extension contains the implementation code intended specifically
for a business process class, the extension gives it special meaning in the
context of WebLogic Server.

6. Click Create.

The new JPD file, which for now consists only of a Start and an Finish node, is
created and displayed in the Design View.
2-8 How Do I...?

Related Topics

Guide to Building Business Processes

How Do I: Open an Existing Business Process?

Building ebXML Participant Business Processes

Building RosettaNet Participant Business Processes

How Do I: Open an Existing Business
Process?

1. If not already open, open the application that contains your business process by
choosing File→Open Application from the WebLogic Workshop menu.

The Open Workshop Application dialog box is displayed.

2. Browse to an application.work file, then click Open.

Where application represents the name of your application.

The application you selected is displayed as a node in the Application tab.
How Do I...? 2-9

2 Getting Started
3. To display one or more project folders, expand the Application node, each of
which contains one or more business processes (JPD files).

4. Double-click a business process JPD file on the Application tab.

Your business process is displayed in the the Design View.

Related Topics

How Do I: Use the Design View?

How Do I: Use the Design View?

Designing a business process in WebLogic Workshop involves creating a graphical
representation of the business process that meets the business requirements for your
project. You represent the business processes you wish to model by drawing and
connecting shapes that make up the flow. Program control is represented visually by
these shapes (nodes) and the connections between them. Effectively, you create a
drawing of your business process and its interactions with clients and other resources.

To help you design your business processes graphically, this section provides a brief
overview of the components provided in the WebLogic Workshop development
environment. To learn how to design specific business process patterns, see Guide to
Building Business Processes.

Design View and Source View

Two tabs are provided on your main work space in the Business Process development
environment: Design View and Source View. You use the Design View as your main
work space when you develop business processes graphically. Your source code is
updated in the Source View to reflect your work in the Design View. Two way editing
is supported—in other words, changes you make in the Source View are reflected in
2-10 How Do I...?

the Design View also. The source code is commented to help you edit the source
correctly. To learn more about the components of your business process source code
(JPD files), see Business Process Source Code.

Node Builders

Node builders provide a task-driven interface that allow you to specify the logic
required at nodes in your business process. You drag nodes from the Palette onto your
business process to represent the business logic required at points in your business
process. Double-click on a node to invoke a node builder, which contains tasks
appropriate for the node. Node builders open in place in your business process—you
can open several at once and move back and forward between them to design your
business process logic.

For example, you can define methods that are invoked by clients to start your business
process, and methods by which the business process responds to clients on Client
nodes. You can specify controls with which your business process node interacts and
the data exchanged in the interaction. You can also invoke the transformation tool to
transform heterogeneous data as it is exchanged between your business process and
resources. For example, the following figure shows the node builder for a Client
Request node:
How Do I...? 2-11

2 Getting Started
Palette

In the Design View, you add business process nodes to create the graphical
representation of your business process that meets the business requirements for your
project. To add nodes to the business process, drag a node from the Palette onto the
business process in the Design View.

If the Palette tab is not visible in WebLogic Workshop, choose
View→Windows→Palette from the menu bar. The Palette displays business process
nodes you can use to design the patterns required for your business process.

As you drag a node onto the Design View, targets appear on your business process.
Each target represents a valid location in the flow where you can place the node. As

you drag the node near a valid location, the target is activated . When this happens,
you can release the mouse button and the node snaps to the business process at the
location indicated by the active target.

Data Palette

If the Data Palette is not visible in WebLogic Workshop, choose
View→Windows→Data Palette from the menu bar.
2-12 How Do I...?

The Data Palette displays the following tabs: Variables and Controls. The Variables
tab displays the business process variables created in your business process, and allows
you to create new variables. To learn how to use the Variables tab, see Business
Process Variables and Data Types.

The Controls tab displays the instances of controls in your project, and allows you to
create new instances. Business Processes interact with resources such as web services,
databases, EJBs, and so on, via controls. To learn about using controls in your business
process, see Interacting With Resources Using Controls.

Property Editor

The Property Editor allows you to view and set properties for the different
components of your application such as controls and business processes, as well as
nodes and groups of nodes in your business process. Each Property Editor looks
different depending on what component you are working with, but one property that
exist in most Property Editor is the notes property. Any notes you enter in the
Property Editor are associated with and displayed for that component throughout the
WebLogic application.

If the Property Editor is not visible in WebLogic Workshop, choose
View→Property Editor from the menu bar.

Related Topics

Guide to Building Business Processes

How Do I: Learn More About XQuery?

You can use WebLogic Workshop to create customized XQuery expressions
imbedded in your business processes. These XQuery expressions provide the
following functionality in business processes:

Branching in Business Processes
How Do I...? 2-13

2 Getting Started
Data Transformation

Generating a Set of Typed Data Elements for a For Each Loop

These XQuery expressions or queries are written in the XQuery language. The XQuery
language, defined by the World Wide Web Consortium (W3C), provides a vendor
independent language for the query and retrieval of XML data.

To learn about the XQuery language, see the XQuery 1.0: An XML Query Language
Specification - W3C Working Draft 16 August 2002 at the web site of the W3C. The
WebLogic Integration XQuery engine conforms to the August 16, 2002 draft of the
XQuery Specification.

XQuery expressions customized to your application, are generated by WebLogic
Workshop for the cases listed below. If your application requires more complex
XQuery expressions than can be generated by WebLogic Workshop, you can edit and
enhance the generated XQuery expressions directly in WebLogic Workshop.

When WebLogic Workshop is used to create business processes, custom XQuery
expressions are generated for the following cases:

Branching in Business Processes

A customized XQuery expression is generated by WebLogic Workshop, as part of the
process of adding a Decision node to business process. When the business process is
run, a generated XQuery expression is run against the data document and based on the
result of that XQuery, the business process branches as shown in the following
diagram:
2-14 How Do I...?

The branching occurs in the Decision node of a business process.

Data Transformation

A customized XQuery expression is generated by WebLogic Workshop for the
transformation of data. Using XQueries, WebLogic can perform complex data
transformation from typed non-XML (MFL) to XML, XML to non-XML, or even
non-XML to non-XML. When the business process is run, the generated XQuery
expression is run against the source document which transforms the data from the
original document (valid to the source schema if typed) to the resulting document
(valid to the target schema if typed) as shown in the following diagram:

Generating a Set of Typed Data Elements for a For Each
Loop

A customized XQuery expression is generated by WebLogic Workshop as part of the
process of adding a For Each node. When the business process is run, the customized
XQuery expression creates a list of typed data elements for the For Each loop. The For
Each loop in the business process iterates through the set of typed data elements
produced by the XQuery. In each iteration, the node(s) contained in the For Each loop
are executed, as shown in the following diagram:
How Do I...? 2-15

2 Getting Started
Related Topics

Transforming Data Using XQuery

Guide to Building Business Processes

Tutorial: Building Your First Data Transformation
2-16 How Do I...?

CHAPTER
3 Using Keyboard
Shortcuts

To learn how to use keyboard shortcuts as you design your business processes in
WebLogic Workshop, see the following topics:

How Do I: Use Cut/Copy/Paste Shortcuts?

How Do I: Use Undo/Redo Shortcuts?

How Do I: Use Arrow Keys?

How Do I: Use Delete/Enter Keys?

How Do I: Use Print Shortcuts?

How Do I: Use Cut/Copy/Paste Shortcuts?

The cut, copy and paste shortcuts are as follows:

Ctrl+X—If you select an item and then type Ctrl+X (or select Cut from a
right-click or the Edit menu) the item you selected is copied to the clipboard and
removed from its original place. If your item is a process node, you can paste it
elsewhere within the current business process, or another business process. If
you selected text, you can paste this text elsewhere within the WebLogic
Workshop or any other application.

Note: When you choose to cut a process node, all non-referenced associated
process language and methods are removed as well. If a method is
How Do I...? 3-1

3 Using Keyboard Shortcuts
referenced by more than one node, then the method will stay in the source
code in its original location until all nodes that reference it are deleted.
Another exception is if the node is a Perform node or if you have modified
the node in the source code. In these cases, the node will also remain in the
source code in its original location.

Ctrl+C—If you select an item and then type Ctrl+C (or select Copy from a
right-click or the Edit menu) the item you selected is copied to the clipboard, but
remain in its original place. If your item is a process node, you can paste
elsewhere within the current business process, or another business process. If
you selected text, you can paste this text elsewhere within the WebLogic
Workshop or any other application.

Ctrl+V—If you have previously copied something to the clipboard, either by
using a cut or copy command, you can paste the content of the clipboard
elsewhere in the WebLogic Workshop application or any other application (if the
clipboard contains text only). To paste an item, select the location where you
want to paste the item and type Ctrl+V. When you are pasting with an expanded
block selected, the new node will be pasted in the beginning of the block. To
paste something at the end of a block: collapse the block before issuing the paste
command.

Note: When you paste a process node after copying it to the clipboard, the new
node and the corresponding methods will be duplicated and have a number
appended to their names. If you want two nodes to reference the same
method, you can explicitly specify the method name in the node builder.
However, a special case exists if you are trying to paste a Control Receive
node. Only one Control Receive node can exist in the business process, so
if you are trying to paste a second Control Receive node, nothing will be
added to the process.

Related Topics

How Do I: Use Undo/Redo Shortcuts?

How Do I: Use Arrow Keys?

How Do I: Use Delete/Enter Keys?

How Do I: Use Print Shortcuts?
3-2 How Do I...?

Guide to Building Business Processes

How Do I: Use Undo/Redo Shortcuts?

The undo and redo shortcuts are as follows:

Ctrl+Z—Typing Ctrl+Z (or selecting Undo from a right-click or the Edit menu)
removes the last change you applied to the application. If this was adding a
node, then the node and all corresponding generated code is removed. If this was
deleting a node, then the node and all corresponding generated code is returned.

Ctrl+Y—Typing Ctrl+Y (or selecting Redo from a right-click or the Edit menu)
undoes your latest Undo.

Note: The undo and redo commands are based on the last action that took place in
the Source View, not necessarily the last action that took place in the Design
View.

Related Topics

How Do I: Use Cut/Copy/Paste Shortcuts?

How Do I: Use Arrow Keys?

How Do I: Use Delete/Enter Keys?

How Do I: Use Print Shortcuts?

Guide to Building Business Processes

How Do I: Use Arrow Keys?

The rules for using the tab and arrow keys are as follows:
How Do I...? 3-3

3 Using Keyboard Shortcuts
Up and Down Arrow keys—You can use the up and down arrow keys to
navigate up and down the path of your business process. The downward path of
the business process is as follows:

The main node

The left most branch of the node, if any.

The second branch (counting from left to right), if any.

Any exception, message, or timeout path (starting from the left and traveling
right)

The next node.

Note: Holding down the Shift key while using the up or down arrows, selects the
group of nodes that you are traveling through.

Left and Right Arrow Keys—The left and right arrow keys collapses and
expands nodes. Use the left arrow key to collapse a node and the right arrow key
to expand a node.

Related Topics

How Do I: Use Undo/Redo Shortcuts?

How Do I: Use Cut/Copy/Paste Shortcuts?

How Do I: Use Delete/Enter Keys?

How Do I: Use Print Shortcuts?

Guide to Building Business Processes

How Do I: Use Delete/Enter Keys?

The delete and enter keys have the following functions:

Delete—Pressing the Delete key at any time, deletes the item which was
selected at the time the key was pressed.
3-4 How Do I...?

Note: When you choose to delete a process node, all non-referenced associated
process language and methods are removed as well. If a method is
referenced by more than one node, then the method will stay in the source
code in its original location until all nodes that reference it are deleted.
Another exception is if the node is a Perform node or if you have modified
the node in the source code. In these cases, the node will also remain in the
source code in its original location

Enter—If the active selection is a business process node, pressing the Enter or
Return key has the same functionality as double clicking on that node. I.e., it
will invoke the node builder.

Note: If the active selection is a collapsed process node, pressing the Enter or
Return key will expand the node, not invoke the node builder.

Related Topics

How Do I: Use Undo/Redo Shortcuts?

How Do I: Use Arrow Keys?

How Do I: Use Cut/Copy/Paste Shortcuts?

How Do I: Use Print Shortcuts?

Guide to Building Business Processes

How Do I: Use Print Shortcuts?

You can print your business processes by selecting Edit→Print, or by pressing the
Ctrl+P keys.

Note: You can not print the content of any of the node builders. If you print a
business process with a node builder open, the node builder will appear as a
large white empty block on your print out.
How Do I...? 3-5

3 Using Keyboard Shortcuts
Related Topics

How Do I: Use Undo/Redo Shortcuts?

How Do I: Use Arrow Keys?

How Do I: Use Delete/Enter Keys?

How Do I: Use Cut/Copy/Paste Shortcuts?

Guide to Building Business Processes
3-6 How Do I...?

CHAPTER
4 Importing Files into
the Schemas Project

To learn about importing XML Schemas, MFL files, and Channel files into the
Schemas project in your integration application, see the following topics:

How Do I: Create a Schemas Project Folder?

How Do I: Import Files into a Schemas Project Folder?

How Do I: Create a Schemas Project Folder?

When you create a new Process application, by default a project folder named
Schemas is created in the business process application folder of the Application tab
of WebLogic Workshop. Additional schema project folders can be created in your
application folder.

To Create Additional Schema Project Folders

1. In the Application tab, right-click on the top-level application folder. (If the
Application tab is not visible in WebLogic Workshop, choose View→Application
from the menu bar.)

2. From the drop-down menu, select New→Project....

The New Project dialog box is displayed.

3. In the right-most pane of the New Project dialog box, select one of the
following:
How Do I...? 4-1

4 Importing Files into the Schemas Project
Schema Project—Any XSD or MFL schema files imported into this file will
automatically generate MFL Classes and XML Bean Classes to be used as
schemas representation in the WebLogic Workshop. Select this file if you are
going to add channel files to your schemas folder.

OAG Schemas—This project folder is for Open Application Group schemas.
For more information, see www.openapplications.org

WLI System Schemas—This project folder has the same functionality as a
project folder of type Schema Project. In addition, it contains WebLogic
Integration System XSD files.

For more information about how to import files into your schemas folder and
how to generate MFL Classes and XML Bean Classes, see How Do I: Import
Files into a Schemas Project Folder?

4. In the Project name field, enter a name (for example: MySchemas).

Note: You can name your schemas folder anything you want, except for when
you are going to use the folder for application view channels and schemas.
In that case, the folder has to be named Schemas. For more information see
the Prerequisites for Integration Applications Using WebLogic
Workshop topic in the Application View Control section of Using
Integration Controls.

5. Click Create.

A new project folder is created in the Application tab.

MFL and XSD files can be imported into any schemas project folders. You can have
one or more project folders of either schema type in an application folder. For example,
you might want to place schemas that do not change very often into the default project
folder named Schemas and create another Schema Project folder called MySchemas
which contain schemas that change more often. (If a schema file changes in the project
folder all the schemas in that project folder are built again.) Partitioning your schemas
in this way can reduce the schema build time. For example, if a schema keeps changing
in the MySchemas project folder, the schemas in the Schemas project folder will not be
built. For more information about how to import schemas, see How Do I: Import Files
into a Schemas Project Folder?
4-2 How Do I...?

Related Topics

How Do I: Import Files into a Schemas Project Folder?

Importing Schemas

How Do I: Import Files into a Schemas
Project Folder?

When a schema (XSD or MFL file) is imported into your application, representations
of these schemas are available in some of the panes of WebLogic Workshop. To learn
more about XSD and MFL files, see Importing Schemas. In addition, Java interfaces
for accessing the data represented in the schemas are generated. To learn more about
these Java classes, see the Java Classes Created from Importing Schema topic in
Programming Transformations chapter of Guide to Data Transformations.

The schema project folders are also what you import channel files into. This is to make
sure that your channel files are globally accessible throughout your WebLogic
Workshop application. To learn more about how to create channel files and subscribe
to message broker channels, see Publishing and Subscribing to Channels

To Import a File into a Schemas Project Folder

To make the schemas in XSD and MFL files, as well as Channel files available in your
business process application, you must import them into a Schemas project folder.

1. In the Application tab, right-click on a Schemas folder. (If the Application tab is
not visible in WebLogic Workshop, choose View→Application from the menu
bar.)

2. From the drop-down menu, select Import....

The Import Files dialog box is displayed.

3. Browse the file system, and select the file which you want to import.

4. Click Import.
How Do I...? 4-3

4 Importing Files into the Schemas Project
When a XSD or MFL file is imported, a build of the current Schemas project folder is
triggered. (The build verifies that the schema file is well formed. For XSD files, it also
verifies that the element and attribute names in the XML Schema do not conflict with
the XSD files that have already been imported into the current Schemas project folder.)
For more information about what gets generated when you import schemas, see
Importing Schemas.

Related Topics

How Do I: Create a Schemas Project Folder?

Publishing and Subscribing to Channels

Programming Transformations: Java Classes Created From Importing Schemas

Importing Schemas
4-4 How Do I...?

CHAPTER
5 Publishing and
Subscribing to
Channels

The Message Broker resource provides a publish and subscribe message-based
communication model for WebLogic Workshop business processes, and includes a
powerful message filtering capability.

The Message Broker provides typed channels to which messages can be published and
to which services can subscribe to receive messages. You can design a business
process to subscribe to specific channels, using XML Beans for type-safe methods.

Subscribers to Message Broker channels can filter messages on the channels using
XQuery filters. Business processes can filter documents on channels, based on the type
of document, or on a specific instance of a document type. For example, you can
design a filter that filters on stock symbols in a documents, or one that filters on a
specific purchase order number.

In addition to business processes that can publish messages to Message Broker
channels, WebLogic Integration supports event generators, which can publish external
events to message broker channels. WebLogic Integration provides native event
generators, including JMS, Email, File, and Timer event generators. WebLogic
Integration also works with Application View event generators, which work with
J2EE-CA connectors.

To learn about publishing and subscribing to Message Broker channels, see the
following topics:

How Do I: Create Message Broker Channels?
How Do I...? 5-1

5 Publishing and Subscribing to Channels
How Do I: Publish to Message Broker Channels?

How Do I: Subscribe to Message Broker Channels?

How Do I: Create Message Broker Channels?

Channel files define the Message Broker channels available in a WebLogic Integration
application. Channel files must be placed in a schema project in your application.
Otherwise, they will not be built when you build your application and are not visible
to your application components.

This topic includes the following sections:

To Create Channels Files in Your Application

To Configure Your Template Message Broker Channel File

To Create Channels Files in Your Application

1. Locate the Schemas project in the Application pane.

2. Right-click the Schemas project and choose New→Channel File from the
drop-down menu. The New File dialog box is displayed.

3. In the left pane, select Processes, then in the right pane, select Channel file.

4. Enter a name for the file in the File name field.

Note: As indicated by the file extension in the New File dialog box, the Channel
file is automatically appended with channel as its suffix.

5. Click Create.

Your new channel file is created and displayed in your Schemas folder, in the
Application tab. It is a template file, which you can edit to define the Message
Broker channels for your application. For information about how to edit your
channel file template, see To Configure Your Template Message Broker Channel
File.

6. To view the contents of the template file, click on the file you created in the
Schemas folder. The file is displayed in the Design View.
5-2 How Do I...?

Channel files are XML files and are valid against an XML Schema. The Schema
is available at the following location in your WebLogic Platform installation:

BEA_HOME\weblogic81\integration\lib\xmlschema\config\ChannelFil
e.xsd

In the preceding line, BEA_HOME represents the directory in which you installed
WebLogic Platform.

To Configure Your Template Message Broker Channel File

Click on the channel file provided for you in your Schemas project. The file is
displayed in the Design View:

You edit this code to create a channel file that is specific to your channel needs.

Note the following characteristics of the channel file:

xmlns="http://www.bea.com/wli/broker/channelfile"

This is a namespace that references the names used in the channel file schema.
Do not edit this line.

channelPrefix="/SamplePrefix"

The channelPrefix is used to uniquely identify the channels in your file across
the entire domain. Change the channelPrefix to something that will identify
your channels. If you want to make sure that you do not accidentally send or
receive messages from other applications, we recommend that you use a
ChannelPrefix that is the same as your Workshop application name. However
if you want to use the Message Broker for inter-application communication,
these two or more applications should use channels with the same prefix, such as
“/sharedChannels”.

xmlns:eg="http://www.bea.com/wli/eventGenerator"

This name space refers to schemas that are used for event generator metadata
references. The schemas are created for you when you create a new process
application, or a new schemas project folder. This line can safely be removed if
you are not going to be using your channels to publish messages via event
generators. To learn more about how to create schemas, see To Create
Additional Schema Project Folders. To learn about creating and managing event
generators using the WebLogic Integration Administration Console, see Using
Event Generators to Publish to Message Broker Channels and Event Generators
in Managing WebLogic Integration Solutions.

xmlns:dp="http://www.bea.com/wli/control/dynamicProperties"
How Do I...? 5-3

../controls/controlsBrokerEventGenerators.html
../controls/controlsBrokerEventGenerators.html

5 Publishing and Subscribing to Channels
This name space refers to schemas that are used by the file event generator to
pass payload for pass-by-filename. The schemas are created for you when you
create a new process application, or a new schemas project folder. This line can
safely be removed if you are not going to be using your channels to publish
messages via file event generators. To learn more about how to create schemas,
see To Create Additional Schema Project Folders.

xmlns:oag="http://www.openapplications.org/003_process_po_007"

This name space refers to schemas that are used by some of the sample channels.
The schemas are created for you when you create a new OAG schemas project
folder. This line can safely be removed if none of the channels in your file refer
to the OAG schemas after editing. To learn more about how to create schemas,
see To Create Additional Schema Project Folders.

Warning: Make sure that the namespaces you reference in your channel files exist
in your application. If they do not, the channel file compiles without
problems, but you will get a run time error when you try to run your
application.

<channel name ="Samples" messageType="none">

Edit the attributes of this element to configure your channel:

name: enter the name of your channel

messageType: specify the message type that will be routed through your
channel, possible choices are:

-xml: for channels routing XML data.

-rawData: for channels routing Raw Data.

-string: for channels routing String messages.

-none: for channels that are not going to be used to route messages but
are used as place holders only.

For example, a simple channel routing XML data would look like:

<channel name ="MyXMLChannel" messageType="xml">

There are several additional attributes which you can add to the <channel>
element:

qualifiedMessageType: Add this attribute specify the message type
qualifier. For example if the message on a channel were element
PROCESS_PO_007 in the
"http://www.openapplications.org/003_process_po_007" (prefixed
5-4 How Do I...?

by oagpo) namespace the qualifiedMessagetype attribute would look
like: qualifiedMessageType=”oagpo:PROCESS_PO_007”.

Note: If your message type is RawData, use the
qualifiedRawDataMessageType attribute instead, described below.

qualifiedRawDataMessageType: If your message type is RawData, use
this attribute to specify the message type qualifier. the name must begin with
“urn:“ and refer to a MFL file in a schema. For example, if the messages
on a channel were described by StockQuotes.mfl in a schemas project
folder, the qualifiedRawDataMessageType attribute would look like:
qualifiedRawDataMessageType="urn:StockQuotes.mfl". To learn
more about MFL files, see Using Format Builder to Create Format Schemas
(MFL Files) in Transforming Non-XML Data.

qualifiedMetadataType: When you are using event generators (or
applications that send metadata) to route messages through your channel, use
this attribute to specify the metadata. All event generators and some
applications send metadata with messages. For example, an email event
generator always sends element “EmailEventGenerator” in the
"http://www.bea.com/wli/eventGenerator" (prefixed by eg)
namespace. The qualifiedMetadataType attribute for different event
generator channels looks like:

-Email event generator:
qualifiedMetadataType=”eg:EmailEventGenerator”.

-File event generator:
qualifiedMetadataType="eg:FileEventGenerator"

-JMS event generator:
qualifiedMetadataType="eg:JmsEventGenerator"

-Timer event generator:
qualifiedMetadataType="eg:TimerEventGenerator"

To learn about creating and managing event generators using the WebLogic
Integration Administration Console, see Event Generators in Managing
WebLogic Integration Solutions.
How Do I...? 5-5

5 Publishing and Subscribing to Channels
Dead Letter Channels

When the Message Broker is unable to determine the URI to which to send a message
(for example, no subscribers are found, or registered subscribers do not match because
filter conditions are not satisfied), the message is not discarded. Rather, it is routed to
one of three dead letter channels, depending on the data type.

When a message is published to a channel and no matching subscribers are found, the
message is republished to the dead letter channel that corresponds to the channel’s
type. WebLogic Integration provides the following dead letter channels:

/deadletter/xml

/deadletter/string

/deadletter/rawData

For example, an unmatched messages published to an XML channel (that is, a channel
that has messageType = “xml”) is routed to the /deadletter/xml channel.

At design time, the dead letter channels are available when you create MB Publish and
MB Subscription controls. Your business processes can publish and subscribe to the
dead letter channels. For example, you can use the dead letter channels when you
design error handling—you can create a business process that includes static
subscriptions to the dead letter channels and design error handling code to handle the
unmatched messages published to those channels.

The Message Broker module in the WebLogic Integration Administration Console
allows you to monitor and manage all the Message Broker channels in your
application, including the dead letter channels. To learn about accessing information
about the dead letter channels and dead letter counts in your deployed application, see
Message Broker in Managing WebLogic Integration Solutions..

Related Topics

Understanding the Message Broker Channels in Your Tutorial Application

Using Event Generators to Publish to Message Broker Channels

Transforming Non-XML Data in Using Format Builder to Create Format Schemas
(MFL Files)
5-6 How Do I...?

../tutorial/tutWLIProcessChannels.html
../controls/controlsBrokerEventGenerators.html
http://edocs.bea.com/wli/docs81/manage/msgbroker.html

How Do I: Publish to Message Broker Channels?

How Do I: Subscribe to Message Broker Channels?

How Do I: Publish to Message Broker
Channels?

To Publish to a Message Broker Channel

You must first create a Message Broker Publish control in your project, then bind a
method from the control to a node in your business process. Complete the following
steps:

1. In the Application pane, click the applicable business process to ensure that it is
displayed in the Design View.

2. If the Data Palette is not visible in WebLogic Workshop, click
View→Windows→Data Palette from the menu bar.

3. On the Data Palette Controls tab, click Add→Integration Controls→MB
Publish. The Insert Control dialog box is displayed.

4. In Step 1, enter the variable name for this control.

5. In Step 2, select Create a new MB Publish control to use. In the New JCX
name field, enter the name for the new JCX file.

6. In Step 3, select the applicable channel from the channel-name field. This
specifies the channel to which your business process publishes the messages it
receives from clients.

Note: The message type field is populated with the data type of the message that
is published to the channel. To learn how the channel is defined, see How
Do I: Create Message Broker Channels?.
How Do I...? 5-7

5 Publishing and Subscribing to Channels
7. Click Create to create an instance of the MB Publish control in your project. The
Insert Control dialog box is closed, the JCX file is created and is visible in the
Application pane. The instance of the MB Publish control you created is
displayed in the Data Palette. (Expand the control to view the individual
methods.)

8. In the Data Palette, select the publish method in the control:

void publish(document_name value)

9. Drag and drop the method onto the applicable business process in the Design
View.

A Control Send node is created. By default, the node is named publish.

10. Double click the publish node to open its node builder. The node builder opens
on the General Settings tab—the control and the publish method are already
selected.

11. Click Send Data to open the second tab in the node builder, in which you can
specify the message to be published to the selected Message Broker channel. The
Method Expects field is populated with the data type of the parameter expected
by the control.

12. In the Select variables to assign field, click the arrow to display the variables in
your project. Then select the applicable variable.

13. Click Apply, then Close to save your specifications and close the node builder
for the publish node.

Related Topics

How Do I: Create Message Broker Channels?

How Do I: Subscribe to Message Broker Channels?

Message Broker Publish Control

Using Event Generators to Publish to Message Broker Channels

Dead Letter Channels
5-8 How Do I...?

../controls/controlsBrokerPublish.html
../controls/controlsBrokerEventGenerators.html

How Do I: Subscribe to Message Broker
Channels?

To Subscribe to a Message Broker Channel

You must create a Message Broker Subscription control in your project, then bind a
method from the control to a node in your business process. Using the Message Broker
Subscription control, or a Subscription Start node (see, Subscription Start
(Asynchronous) and Subscription Start (Synchronous)), your process subscribes to a
channel on which it can receive messages received from clients. Complete the
following steps:

1. Ensure that the applicable business process is displayed in the Design View.

2. On the Data Palette Controls tab, click Add→Integration Controls→MB
Subscription. The Insert Control dialog box is displayed.

3. In Step 1, enter the variable name for this control.

4. In Step 2, select Create a new MB Subscription control to use. In the New
JCX name field, enter the name for the new JCX file.

5. In Step 3:

a. Select the applicable channel from the channel-name field. This specifies the
channel to which your business process subscribes (and the channel to which
the Validation service publishes messages when it determines that an incoming
message is invalid).

Note: The message type field is populated with the data type of the message that
is published to the selected channel. To learn how the channel is defined,
see Understanding the Message Broker Channels in Your Tutorial
Application.

b. If you intend to use filters on the channel, select the This subscription will be
filtered check box.
How Do I...? 5-9

../wfguide/wfguideStartSub.html
../wfguide/wfguideStartSub.html
../wfguide/wfguideStartSyncSub.html

5 Publishing and Subscribing to Channels
6. Click Create to create an instance of the MB Subscription control in your
project. The Insert Control dialog box is closed, the new JCX file is created and
is visible in the Application pane. The instance of the Message Broker
Subscription control you created is displayed in the Data Palette.

7. In the Data Palette, select the subscribe method in the control:

void subscribe()

8. Drag and drop the method onto the business process in the Design View.

A Control Send node is created. By default, the node is named subscribe. Note
that the indicates that the specifications on this node are complete—no
further work is required to design this node, unless you selected to use a filter,
then proceed to the To Specify a Filter Value for Your Channel section.

Note: When you created your control, a callback method was created for you
(OnMessage()). You can drop and drag this method from the Data Palette into
your business process to create Control Receive node and configure it to
handle your callback. For an example of this, see Step 14: Designing a
Message Path for Your Business Process of Tutorial: Building Your First
Business Process.

To Specify a Filter Value for Your Channel

If you selected the This subscription will be filtered check box in step 5. in the above
procedure, you must enter a filter value for your subscribeWithFilterValue()
before your filter will work properly. To do so:

1. In the Application pane, double-click the subscription JCX file that you created
earlier. If the Application pane is not visible, select View→Application.

The JCX file is opened in Design View.

2. Click on the arrow pointing to your subscribeWithFilterValue method, as shown
in the figure below.
5-10 How Do I...?

3. In the Property Editor, under the mb-subscription-method section, click the ...
next to {value} in the filter-value-match field.

The Property Text Editor window opens.

4. In the Property Text Editor, replace {value} with the value you want your
subscription control to filter on.

5. Close the Property Text Editor, by clicking the close box in the top right corner.

The valued you entered is displayed in the Property Editor and will be used as
the filter value at run time.

Related Topics

How Do I: Create Message Broker Channels?

How Do I: Publish to Message Broker Channels?

Message Broker Subscription Control

Subscription Start (Asynchronous)

Subscription Start (Synchronous)

Dead Letter Channels
How Do I...? 5-11

../controls/controlsBrokerSubscribe.html
../wfguide/wfguideStartSub.html
../wfguide/wfguideStartSyncSub.html

5 Publishing and Subscribing to Channels
5-12 How Do I...?

CHAPTER
6 Calling Business
Processes

How you call a business process from another application depends on your business
requirements, including whether the client is in the same application as the business
process it calls, and whether the client is a WebLogic Workshop component (Web
service (JWS), business process (JPD), or pageflow (JPF)). To learn about invoking
business processes, see the following topics:

How Do I: Call Business Processes?

How Do I: Use a JPD Proxy to a Call Business Process?

How Do I: Call Business Processes?

Business Processes can expose their functionality to clients in several ways, including
through WSDL files, Process Controls, Service Broker Controls, and JPD Proxies.

You can only use Process controls and Service Broker controls between WebLogic
Workshop components: Web services (JWS), business processes (JPD) or pageflows
(JPF).

The Process control allows a business process (JPD), Web service (JWS) or pageflow
(JPF) to send requests to (and receive callbacks from) a business process. Process
control invocations are Java RMI calls. The target business process must be hosted on
the same WebLogic Server domain as the caller. The Process control is typically used
to call a subprocess from a parent business process. Transaction contexts are
How Do I...? 6-1

6 Calling Business Processes
propagated from the parent processes to the subprocesses over the Process control
calls. In other words, the target business process runs in the same transaction as the
caller.

The Service Broker control allows a business process (JPD) or Web service (JWS) to
invoke and receive callbacks from another service using one of several protocols; the
most commonly used protocol is SOAP over HTTP. (To learn about the protocols, see
Using Dynamic Binding.) The target service must expose a WSDL interface; it can be
a business process (JPD), Web service (JWS), or remote (non-Workshop) Web
service. Because the transport used is HTTP or JMS, the transaction contexts are not
propagated over the Service Broker control calls. Typically, the Service Broker control
calls are to remote services.

To call business processes from non-Workshop clients, use a JPD Proxy. You can use
a JPD Proxy to communicate with a business process from any Java code. When you
invoke a business process using a JPD Proxy, the calls are Java RMI calls. Transaction
contexts are propagated from the client to the business process over the JPD Proxy
calls. In other words, if the client has a transaction context, then the target business
process runs in the same transaction as the client. JPD Proxies are typically used by
non-Workshop J2EE clients or standalone Java clients to invoke business processes.

Depending on the nature of the client and where it is with respect to the target business
processes, clients call the business processes in different ways. The following sections
describe the scenarios:

Workshop Client Invokes a Business Process in a Different Domain

Workshop Client Invokes a Business Process in the Same Workshop Application

Workshop Client Invokes a Business Process in a Different Workshop
Application, in the Same Domain

A Non-Workshop Java Client (EJB, servlet or JSP) Invokes a Business Process

Workshop Client Invokes a Business Process in a Different Domain

If the client is a Workshop client (a Web service (JWS), a business process (JPD), or
a pageflow (JPF)) and the target business process is in a different domain than the
client, use a Service Broker control. In other words, create a Service Broker control
from the target business process and call the business process using that control. To
learn how to create and use Service Broker controls, see Service Broker Control.

You can also use a JPD Proxy in this case. To learn how, see How Do I: Use a JPD
Proxy to a Call Business Process?
6-2 How Do I...?

../controls/controlsService.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/controls/controlsServiceDynBind.html

Workshop Client Invokes a Business Process in the Same Workshop
Application

If the client is a Workshop client (a Web service (JWS), a business process (JPD), or
a pageflow (JPF)) and the target business process is in the same WebLogic Workshop
application, we recommend that you use a Process control. In other words, create a
Process control from the target business process and call the business process using
that control. To learn how to create and use Process controls, see Process Control.

You can also use a Service Broker control in this case. To learn how, see Service
Broker Control.

Workshop Client Invokes a Business Process in a Different Workshop
Application, in the Same Domain

If the client is a Workshop business process (JPD), or a pageflow (JPF), and the
target business process is in another WebLogic Workshop application in the
same domain, we recommend that you use a Process control. You can also use a
Service Broker control in this scenario.

If the client is a Workshop Web service (JWS), and the target business process is
in another WebLogic Workshop application in the same domain, you must use a
Service Broker control.

To learn how to create and use Process and Service Broker controls, see Process
Control and Service Broker Control.

A Non-Workshop Java Client (EJB, servlet or JSP) Invokes a Business Process

If the client is a standalone Java program, a non-workshop J2EE client (EJB, servlet or
JSP), use a JPD Proxy to call the target business process. To learn how, see How Do
I: Use a JPD Proxy to a Call Business Process?

Because JPD Proxy calls are RMI calls, the client and the target business process must
be in the same organization.

WARNING: Business processes that include client callbacks send those callbacks to
the client that started the process. JPD Proxies cannot receive callbacks from business
processes. An error occurs in your business process if it tries to send a client callback
to a JPD Proxy. In other words, if a client uses a JPD Proxy to start a business process
that includes client callbacks, the business process fails at run time when it tries to send
the callback to the client (the JPD Proxy) that started it.
How Do I...? 6-3

../controls/controlsProcess.html
../controls/controlsService.html
../controls/controlsService.html
../controls/controlsProcess.html
../controls/controlsProcess.html
../controls/controlsService.html

6 Calling Business Processes
Related Topics

Starting Your Business Process

Interacting With Clients

How Do I: Use a JPD Proxy to a Call Business Process?

How Do I: Use a JPD Proxy to a Call Business
Process?

You can use a JPD Proxy to call any business process (synchronous and asynchronous,
stateful and stateless) from any Java client, including standalone Java applications,
EJBs, JSPs and Servlets. Using a Java proxy for a business process requires different
steps depending on whether the client application that uses the proxy is in the same
JVM as the target business process.

This topic includes the following sections:

What is a JPD Proxy?

How Do I: Get a JPD Proxy for a Business Process?

How Do I: Use a JPD Proxy From a Java Client?

How Do I: Use a JPD Proxy From a JSP?

How Do I: Use a JPD Proxy From an EJB?
6-4 How Do I...?

http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideStart.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideClients.html

What is a JPD Proxy?

A JPD Proxy is an RMI client to a business process (JPD). An interface that matches a
business process’ client requests is associated with each business process. This
interface is called the JPD public contract. Each method on the JPD public contract
has the same signature as the corresponding client request. A JPD Proxy is a JAR file
containing the compiled class file for the JPD contract. You can use the class file to
access the business process (JPD) as though it were a local Java class. JPD Proxy calls
are over Java RMI. JPD Proxy calls propagate the transaction context from the clients
to the business processes.

You can download the JPD Proxy JAR file from the JPD Proxy link on the WebLogic
Workshop Test Browser Overview page (see How Do I: Get a JPD Proxy for a
Business Process?).

Warning: Business processes that include client callbacks send those callbacks to
the client that started the process. JPD Proxies cannot receive callbacks
from business processes. An error occurs in your business process if it
tries to send a client callback to a JPD Proxy. In other words, if a client
uses a JPD Proxy to start a business process that includes client callbacks,
the business process fails at run time when it tries to send the callback to
the client (the JPD Proxy) that started it.

The JpdProxy class is a factory class for proxies to a WebLogic Integration business
process type. Clients call one of the create() methods on the class to get a proxy
instance. The create() methods take the JPD contract class (java.lang.Class) as
input.

An example JPD contract interface for a business process named RequestQuote.jpd
is shown in the following listing.
How Do I...? 6-5

6 Calling Business Processes
Listing 6-1 Example JPD Contract Interface

package weblogic.wli.jpdproxy;

import org.example.request.QuoteRequestDocument;

public interface RequestQuote {
public void

quoteRequest(org.example.request.QuoteRequestDocument requestXML);
public static final String SERVICE_URI =
"/myApplication/requestquote/RequestQuote.jpd";

}

Note the following characteristics in the preceding example contract interface:

The class name of the interface matches the JPD class name (in this case, you
download a JAR file named RequestQuoteProxy.jar, which contains a class file
named RequestQuote.class).

One method is available: public void
quoteRequest(org.example.request.QuoteRequestDocument

requestXML).

Note: When you write your client application, you can determine which client
request methods are available for you to use through the JPD Proxy by
reviewing the source code for the business process. To do so, ensure that
the business process (JPD) is open in the WebLogic Workshop graphical
design environment, identify the Client Request calls in the Design View
or the Source View, and open the Source View to view the method names
and signatures.

The JPD contract references a strongly typed XML argument: requestXML is of
type QuoteRequestDocument.

The JPD contract interface includes a SERVICE_URI static final field. The String
value of the SERVICE_URI field is the URI for the business process at the time
the JPD Proxy is downloaded from the WebLogic Workshop test browser. The
client can pass this constant to the create method, or can pass a different value.

A different value for SERVICE_URI is required if the business process (JPD) is
deployed to a different location after the JPD Proxy JAR was generated. For
example, you can create the JPD Proxy from the business process while the
process is deployed in a development environment. Subsequently, the business
process can be moved to a different location for production. Therefore, the
6-6 How Do I...?

business process is accessible through a different URI; clients must pass the new
URI value to the create method.

Related Topics

How Do I: Get a JPD Proxy for a Business Process?

How Do I: Use a JPD Proxy From a Java Client?

How Do I: Get a JPD Proxy for a Business
Process?

1. Open your business process in WebLogic Workshop. Then, click the Start button
 on the menu bar to run the business process. The Workshop Test Browser is

displayed.

Note: To learn about generating JPD Proxies for business processes that are
versioned, see About Versioned Business Processes.

2. On the Workshop Test Browser, click the Overview tab.

3. On the Overview page, locate JPD Proxy in the Process Clients section.

Note: By default, the package is weblogic.wli.jpdproxy. If you want to
specify a different package for the generated JPD Proxy, enter a package
name in the Java package field associated with the JPD Proxy button.

4. Click JPD Proxy. You are prompted to save the file to disk.
How Do I...? 6-7

6 Calling Business Processes
5. Save the file to your disk according to how you want to use the proxy:

To Use the JPD Proxy From a WebLogic Workshop Application (an
EJB, JSP, or Servlet)

Save the JAR file to the WEB-INF/lib directory of the client Web
application, or to the APP-INF/lib directory at the root of your application.

WEB-INF/lib—Save the JAR file to the WEB-INF/lib directory of the Web
application from which you want to use the proxy (the client application). In
the WebLogic Workshop graphical design environment, the JAR file is
displayed in the WEB-INF/lib folder in the Application pane.

APP-INF/lib—If you want to use the JPD Proxy JAR from more than one
project in your (client) application, save the JAR file to the APP-INF/lib
directory at the root of your application. In the WebLogic Workshop
graphical design environment, the JAR file is displayed in the Libraries
folder at the root of your application in the Application pane.

To Use the JPD Proxy From a Standalone Java Application

If you are using the JPD Proxy from a standalone Java client (outside of
WebLogic Server), save the JAR to any location that is convenient for your
client Java application and add the JAR to the client’s CLASSPATH
environment variable.

Note: The default name of the JAR file is
<business-process-name>Proxy.jar, where
business-process-name represents the name of the business process for
which you are generating the JPD Proxy. Accept the default name unless
it conflicts with an existing JAR file.

6. If you plan to use the JPD Proxy from an application running in a different JVM
to that in which the target business process is running, append the following JAR
files to the client’s CLASSPATH environment variable:

<business-process-name>Proxy.jar—the JPD Proxy you downloaded
from the WebLogic Workshop Test Browser (where
business-process-name represents the name of the business process for
which you generated the JPD Proxy).

jpdproxy_client.jar—a support JAR, which contains business
process-independent client-side classes. It is located in the following
directory in your WebLogic Platform installation:

[BEA_HOME]\weblogic81\integration\lib
6-8 How Do I...?

where [BEA_HOME] represents the location at which you installed WebLogic
Platform.

It contains an abstract proxy-factory class called JpdProxy, a proxy
implementation JpdProxyImpl, and other client-side run-time classes.

Schemas.jar—if the JPD Proxy (<business-process-name>Proxy.jar)
file you downloaded contains references to strongly typed XML or MFL
arguments, add the Schemas.jar file to the classpath. (Schemas represents
the name you gave to the Schemas project in your application.) The
Schemas.jar file is available in APP-INF\lib at the root of your
application.

weblogic.jar—weblogic.jar is available in the following location in
your WebLogic Platform installation: \bea\weblogic81\server\lib

wlcipher.jar—If you are using a client with two-way SSL, add the
wlcipher.jar file to the CLASSPATH. wlcipher.jar is available in the
following location in your WebLogic Platform installation:
[BEA_HOME]\weblogic81\server\lib

where [BEA_HOME] represents the location at which you installed WebLogic
Platform.

About Versioned Business Processes

If the target business process is versioned, you can run the active version of the process
to invoke the Test Browser (in this case, the Test Browser is opened on the virtual URI)
or you can run any other version of the process (in which case the Test Browser is
opened on a specific physical URI). To learn about creating versions of business
processes, see Versioning Business Processes.

If you subsequently download a JPD Proxy from the Test Browser, its JPD contract
interface matches the virtual JPD or the physical JPD, accordingly. When you create a
Java client, you pass the JPD contract and a service URI to the proxy factory method.
In most cases the JPD contract interfaces for all versions of a business process are
identical, but a specific version of a business process can extend the public interface of
the original process. In this case, you must ensure that the service URI and JPD
contract interface passed to the proxy factory method are consistent.
How Do I...? 6-9

http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideVersion.html

6 Calling Business Processes
Related Topics

How Do I: Use a JPD Proxy From a Java Client?

Starting Your Business Process

Versioning Business Processes

Interacting With Clients

How Do I: Call Business Processes?

How Do I: Use a JPD Proxy From a Java
Client?

This section uses example code to describe how to use a JPD Proxy from a Java client.
It includes the following topics:

To Use a JPD Proxy From a Java Client

To Use a JPD Proxy From a Java Client With Two-Way SSL

To Use a JPD Proxy From a Java Client

This section describes how to use a JPD Proxy from a Java client. The code listing in
Listing 6-2 is an example of a Java client that invokes a business process using a JPD
Proxy. This example includes basic username/password authentication. A second
example (Listing 6-5) describes how to add two-way SSL to the Java client.

You obtain the JPD Proxy JAR file for the business process by first running the
purchase order business process in WebLogic Workshop to invoke the Test Browser.
Then select the JPD Proxy link on the Overview page of the Test Browser.
6-10 How Do I...?

../wfguide/wfguideStart.html
../wfguide/wfguideClients.html

http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideVersion.html

The following sections reference the code example in Example Java Client to describe
how a JPD Proxy Client is used from a Java client:

Example Java Client

To Import the Proxy Classes

To Use the Proxy Factory (JpdProxy.create()) Method

To Call the Methods on the Target Business Process

About Strongly-Typed XML or MFL Arguments in Business Processes

About Conversation Management

To Run the Java Client

Limitation Using JPD Proxies for Business Processes That Include Client
Callbacks

Example Java Client

The code listing in Listing 6-2 is an example of a Java client that invokes a business
process using a JPD Proxy. It invokes a business process named PoRequest.jpd. This
example includes basic username/password authentication. A second example
(Listing 6-5) describes how to add two-way SSL to the Java client.

Listing 6-2 Example Java Client

package your.package;

// Proxy classes are located in the com.bea.wli.bpm.proxy package.
import com.bea.wli.bpm.proxy.JpdProxy;
import com.bea.wli.bpm.proxy.JpdProxySession;

import weblogic.wli.jpdproxy.PoProcess;

/**
* Import any packages required for your application. For example, if the business
* process uses XML Beans, you must import the appropriate packages.
*/
import requisitionpo.www.purchase.PurchaseDocument;
import requisitionpo.www.purchaserequestreq.PurchaseRequestReqDocument

import javax.naming.Context;
import javax.naming.NamingException;
How Do I...? 6-11

6 Calling Business Processes
import javax.naming.InitialContext;
import weblogic.jndi.Environment;
import java.io.*;

public class startPoProcess
{

public static void main(String[] args)
{

try
{

PoProcess p = (PoProcess)
JpdProxy.create(

PoProcess.class,
PoProcess.SERVICE_URI,

 new JpdProxy.ContextHandler()
{

public Context getContext() throws NamingException
{

Environment env = new Environment();
env.setProviderUrl("t3://localhost:7001");
env.setSecurityPrincipal("weblogic");
env.setSecurityCredentials("weblogic");
return env.getInitialContext();

}
});

PoDocument document = PoDocument.Factory.newInstance();
Po po = document.addNewPo();
po.setSku("abc");

PoReferenceDocument ref = p.processPO(document);
p.done();

}
catch (Exception e) { ... }

}
}

To Import the Proxy Classes

Note that the following packages are imported in our example Java client:

import com.bea.wli.bpm.proxy.JpdProxy;
import com.bea.wli.bpm.proxy.JpdProxySession;
6-12 How Do I...?

Proxy classes are located in the com.bea.wli.bpm.proxy package. Clients can
type-cast proxies returned by JpdProxy.create() to JpdProxySession to set and
get the conversation ID that is used when a business process is invoked. To learn about
setting and getting conversation IDs, see About Conversation Management.

To Use the Proxy Factory (JpdProxy.create()) Method

The proxy factory method (JpdProxy.create()) provides two signatures: one to use
when the client is running in the same WebLogic Server domain as the target business
process (JPD), the other to use when the client is running in a different domain than
the target business process:

Method Detail for the create() Method—Use When the Client is Running in the
Same WebLogic Server Domain as the Target JPD

Method Detail for the create() Method—Use When the Client is Running in a
Different Domain Than the Target JPD

Method Detail for the create() Method—Use When the Client is Running in the
Same WebLogic Server Domain as the Target JPD

The JpdProxy.create() method creates a client proxy for a business process (JPD).
JpdProxy.create() accepts the public contract interface that describes the methods
of the JPD as input. The result of this call can be typecast to the public contract class.
A service URI uniquely identifies the JPD on the server.

Use the following method when the client is running on the same WLS domain as the
target JPD.

Listing 6-3 JpdProxy.create()

public static final Object create(Class publicContract, String serviceUri)
throws JpdProxyException

In the preceding code listing:

publicContract specifies the public contract interface of the JPD

serviceUri specifies the URI of the JPD
How Do I...? 6-13

6 Calling Business Processes
Note: In most cases the public contract interfaces for all versions of a business
process are identical, but a specific version of a business process can extend
the public interface of the original process. In this case, you must ensure that
the service URI and JPD contract interface passed to the proxy factory method
are consistent. To learn about generating JPD Proxies for versioned business
processes, see About Versioned Business Processes.

The method returns a proxy object that can be cast to the public contract
interface

The method throws the JpdProxyException, which wraps the checked
exceptions that are thrown during construction of the proxy

Method Detail for the create() Method—Use When the Client is Running in a
Different Domain Than the Target JPD

This method signature is shown in Listing 6-4, and is used in the example code in
Listing 6-2:

The JpdProxy.create() method creates a client proxy for a business process (JPD).
JpdProxy.create() accepts, as input, the public contract interface that describes the
methods of the business process. The result of this call can be typecast to the public
contract class. A service URI uniquely identifies the business process on the server.
For the case in which your client is running in a different domain than the target JPD,
the JpdProxy.ContextHandler is invoked by the proxy to obtain the JNDI context
used to login to the server and lookup server-side resources.

If you use the version of JpdProxy.create() that does not take a ContextHandler,
then the client's JNDI context is used to look up the ProxyDispatcher EJB.

You need a ContextHandler in the following scenarios:

When the client is running in WebLogic Server but on a different domain that
the target business process

When the client is a standalone Java application

When the client is running in the same WebLogic Server as the target business
process, but the credentials of the client are not appropriate. (For example, the
client may be running as anonymous, and the JPD Proxy dispatcher bean or
business process requires a different set of credentials.)
6-14 How Do I...?

Note: The ProxyDispatcher EJB is a WebLogic Integration system stateless
session bean that handles incoming requests from JPD Proxies. Its scope is the
WebLogic Server domain. ProxyDispatcher is targeted to all managed
servers in a cluster. Administrators can set authentication and authorization
policies on this EJB using the WebLogic Server Administration Console. BEA
recommends using the Java Authentication and Authorization Service (JAAS)
rather than JNDI to associate a User with a security context. To learn more, see
WebLogic JNDI and Using JAAS Authentication in Java Clients in the
WebLogic Server documentation.

The JpdProxy implementation does not explicitly authenticate to the server.
Instead, it relies on JNDI authentication when it looks up the
ProxyDispatcherHome with the JNDI context returned by the
ContextHandler.

Use the following method when you need a ContextHandler:

Listing 6-4 JpdProxy.create()

public static final Object create(Class publicContract, String serviceUri,
JpdProxy.ContextHandler ch) throws JpdProxyException

In the preceding code listing:

publicContract specifies the public contract interface of the JPD

serviceUri specifies the URI of the JPD

ch specifies a context handler. Clients pass an instance of this
JpdProxy.ContextHandler interface to the create method and the proxy
implementation uses this instance at runtime to allocate a JNDI context. This
context is used to login to the server and lookup server side resources that
handle incoming proxy requests.

Listing 6-2 shows the getContext() method used in the Java client.

To learn more about the context handler interface, see Interface
JpdProxy.ContextHandler in the WebLogic Integration Javadoc, which is
available at the following URL:

http://edocs.bea.com/wli/docs81/javadoc/index.html
How Do I...? 6-15

http://e-docs.bea.com/wli/docs81/javadoc/com/bea/wli/bpm/proxy/JpdProxy.ContextHandler.html
http://e-docs.bea.com/wli/docs81/javadoc/com/bea/wli/bpm/proxy/JpdProxy.ContextHandler.html
http://e-docs.bea.com/wls/docs81/jndi/jndi.html
http://e-docs.bea.com/wls/docs81/security/fat_client.html

6 Calling Business Processes
To learn more about creating an initial context, see Class Environment, which is
available at the following URL:

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/jndi/Environ
ment.html

The method returns a proxy object that can be cast to the public contract
interface.

The method throws the JpdProxyException, which wraps checked exceptions
thrown during construction of the proxy.

To Call the Methods on the Target Business Process

To determine which client request methods are available for you to use via the JPD
Proxy, review the source code for the business process. To do so, ensure that the
business process (JPD) is open in the WebLogic Workshop graphical design
environment, identify the Client Request calls in the Design View or the Source View,
and open the Source View to view the method names and signatures. To learn more
about the Client Request and Client Response methods in business processes, see
Designing Start Nodes in Guide to Building Business Processes.

JPD Proxies cannot receive callbacks from business processes. (See Limitation Using
JPD Proxies for Business Processes That Include Client Callbacks.)

About Strongly-Typed XML or MFL Arguments in Business Processes

Business processes can accept (as input) and return typed XML (XML Beans) and
typed binary data (MFL). The JPD contract interface generated from such business
process references these types. (For an example of an XML type referenced in a JPD
contract, see the code listing in What is a JPD Proxy?)

Note that in our example Java client (in Listing 6-2) the following packages are
imported to support the XML Bean types used in the PoProcess business process.

import requisitionpo.www.purchase.PurchaseDocument;
import requisitionpo.www.purchaserequestreq.PurchaseRequestReqDocument

About Conversation Management

You can use the JpdProxySession interface to set and get the conversation ID used
when a business process is invoked. To use the JpdProxySession interface, clients
can simply type-cast proxies returned by JpdProxy.create() to JpdProxySession.
6-16 How Do I...?

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/jndi/Environment.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideStartDesign.html

The dynamic proxy returned by JpdProxy.create() implements the
JpdProxySession interface. The methods on the JpdProxySession interface
include:

String getConversationID()
Returns the current conversation ID in use by the JPD Proxy.

void reset()

Resets the conversation ID to null.

void setConversationID(String conversationID)

Sets the conversation ID for future invocations of the same instance of the
business process.

The conversation ID is initialized to null. If the conversation ID is null when a method
on a business process is invoked through the JPD Proxy, a unique conversation ID is
generated. This unique ID is maintained in the run-time state on the client side. In other
words, the value is maintained for subsequent invocations, until the client specifies a
new conversation ID, or resets it to null.

The same JPD Proxy instance can be used to call methods on different instances of a
business process, but clients should take care to avoid making a call with the wrong
conversation ID. In other words, when a client application is finished invoking an
instance of a business process through its JPD Proxy, and wants to start a new
conversation, it must either explicitly set the conversation ID for the second
conversation, or call JpdProxySession.reset(), which causes the JPD Proxy to
reset the conversation ID to null.

To learn more about the JpdProxySession interface, see Interface JpdProxySession
in the WebLogic Integration Javadoc, which is available at the following URL:

http://edocs.bea.com/wli/docs81/javadoc/index.html

To Run the Java Client

The following command line describes the options that you must set when you run the
example Java client (startPoProcess) shown in Listing 6-2.

java -Dbea.home=C:\bea startPoProcess

where -Dbea.home=C:\bea specifies the location of the BEA license file
(license.bea).
How Do I...? 6-17

http://e-docs.bea.com/wli/docs81/javadoc/com/bea/wli/bpm/proxy/JpdProxySession.html

6 Calling Business Processes
Limitation Using JPD Proxies for Business Processes That Include Client
Callbacks

JPD Proxies cannot receive callbacks from business processes. Business processes that
include client callbacks send those callbacks to the client that started the business
process. If a client uses a JPD Proxy to start a business process that includes client
callbacks, the business process fails at run time when it tries to send the callback to the
client that started it (the JPD Proxy).

To Use a JPD Proxy From a Java Client With
Two-Way SSL

The example described in this section shows how to add two-way SSL to a Java client.
This section also describes the command-line options required to run the Java client so
that the two-way SSL handshake can take place between the Java client and the SSL
server. This section includes the following topics:

Example Java Client With Two-Way SSL

To Run the Java Client

Example Java Client With Two-Way SSL

The following example demonstrates how to add two-way SSL to a Java client. The
example code is explained following the listing.

Listing 6-5 Example Java Client With Two-Way SSL

import weblogic.wli.jpdproxy.MyProcess;
import javax.naming.Context;
import javax.naming.NamingException;
import weblogic.jndi.Environment;
import com.bea.wli.bpm.proxy.JpdProxy;
import java.io.*;
import javax.naming.InitialContext;

public class startMyProcess
{

6-18 How Do I...?

public static void main(String[] args)
{

try {

InputStream key = new
FileInputStream("C:\\certcmds\\qa\\pki\\keys\\newParent.key");

InputStream cert = new
FileInputStream("C:\\keystore\\newParentx509.cer");

final InputStream FStream[] = {key,cert};
MyProcess tm = (MyProcess)
JpdProxy.create(MyProcess.class,MyProcess.SERVICE_URI,

new JpdProxy.ContextHandler()
{

public Context getContext() throws NamingException
{

Environment env = new Environment();
//Use t3s – secure port for ssl
env.setProviderUrl("t3s://localhost:7002");
//Client Certificate and Private Key for that certificate.
env.setSSLClientCertificate(FStream);
env.setSSLClientKeyPassword("testing123");
return env.getInitialContext();

}
});
String str = tm.requestQuote();
System.out.println("Return String = " + str);
}
catch (Exception ex)
{

//Got an exception
System.out.println("Got Exception: " + ex);
ex.printStackTrace();

}
}

}

This example builds on the information provided in the previous section (To Use a JPD
Proxy From a Java Client) by demonstrating how to add two-way SSL to the Java
client. The example code in Listing 6-5 shows a Java client that uses a JPD Proxy to
invoke a business process named MyProcess.jpd.
How Do I...? 6-19

6 Calling Business Processes
The following items describe the lines of code used to set up the two-way SSL between
the client and WebLogic Server:

import weblogic.wli.jpdproxy.MyProcess;

This client accesses the business process via proxy classes found in
MyProcess.jar, in the default package: weblogic.wli.jpdproxy.

final InputStream FStream[] = {key,cert};

To pass the digital certificates to JNDI, an array of InputStreams opened on files
containing DER-encoded1 digital certificates is created. The first element in the
array is a private key file; it is followed by the Java client's digital certificate
file, or files2. (The digital certificate file contains the public key for the Java
client.)

Note:
1If you have PEM-encoded data, you can wrap your InputStreams in
PEMInputStream classes before passing them in. To do so, add the
following lines of code after you create instances of the PEM-encoded key
and certificates in your file:

// wrap input streams if key/cert are in pem files
key = new PEMInputStream(key);
cert = new PEMInputStream(cert);

The weblogic.security.PEMInputStream class reads digital certificates
stored in PEM files.

2The private key is the first input stream in the array; subsequent input
streams in the array can be a single certificate (as in our example) or a chain
of X.509 certificates.

Environment env = new Environment();

You must create a new Environment object for each call to the
getInitialContext() method. Once you specify a User object and security
credentials, both the user and their associated credentials remain set in the
Environment object.

Specify the following parameters. The WebLogic JNDI Environment class
creates a hash table to store these parameters:

env.setProviderURL—The client calls this method to specify the URL of
the WebLogic Server instance acting as the SSL server. In this example, the
URL specifies the t3s protocol which is a WebLogic Server proprietary
protocol built on the SSL protocol.
6-20 How Do I...?

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/security/PEMInputStream.html

Note: In addition to the t3 and t3s protocols, WebLogic Server clients can
use the RMI over IIOP protocol. To learn about using RMI over IIOP, see
Programming WebLogic RMI over IIOP in the WebLogic Server
documentation.

env.setSSLClientCertificate—specifies a certificate (or a chain of
certificates) to use for the SSL connection. You use this method to specify
the input stream array that consists of a private key and a certificate.

env.setSSLClientKeyPassword—Sets the password for an encrypted RSA
private key If you aren't using an encrypted private key then you don't need
to set this value.

return env.getInitialContext();

When the JNDI getInitialContext() method is called, the Java client and
WebLogic Server execute mutual authentication. An exception is thrown if the
digital certificates cannot be validated or if the Java client's digital certificate
cannot be authenticated in the default (active) security realm. The authenticated
user object is stored on the Java client's server thread and is used for checking
the permissions governing the Java client's access to any protected WebLogic
resources.

To Run the Java Client

The following command line describes the options that you must set when you run the
example Java client (startMyProcess) shown in Listing 6-5. Setting these options
ensures that the two-way SSL handshake can take place between the Java client and
WebLogic Server.

java -Dbea.home=C:\bea
-Djava.protocol.handler.pkgs=com.certicom.net.ssl
-Dweblogic.security.SSL.ignoreHostnameVerification=true
-Dweblogic.security.TrustKeyStore=CustomTrust
-Dweblogic.security.CustomTrustKeyStoreFileName=c:\keystore\trustCA.jks
-Dweblogic.security.CustomTrustKeyStoreType=jks
startMyProcess

The command line options you use depend on the type of trust set up on WebLogic
Server. In this example, WebLogic Server was set up with a Custom Trust. (Other
options include the WebLogic Server Demo Trust and Java Standard Trust.)

In the preceding command line:

-Dbea.home=C:\bea—Specifies the location of the BEA license file
(license.bea).
How Do I...? 6-21

http://e-docs.bea.com/wls/docs81/rmi_iiop/index.html

6 Calling Business Processes
-Djava.protocol.handler.pkgs—Specifies the protocol handler.

Note: SSL Client License Requirement: Any stand-alone Java client that uses
WebLogic SSL classes (weblogic.security.SSL) to invoke an Enterprise
Java Bean (EJB) must use the BEA license file. When you run your client
application, you must set the -Dbea.home and the
-Djava.protocol.handler.pkgs system properties on the command
line:

-Dweblogic.security.SSL.ignoreHostnameVerification—Disables
host-name verification. In other words, the client does not verify that the host
name that the SSL server returns in its digital certificate matches the host name
of the URL used to connect to the SSL server. We recommend that you enable
hostname verification when you run your application in production.

-Dweblogic.security.TrustKeyStore—Specifies the keystore used by the
the server instance to which you want to connect. In this example, the server is
using a custom keystore: CustomTrust.

-Dweblogic.security.CustomTrustKeyStoreFileName—Specifies the fully
qualified path to the trust keystore.

-Dweblogic.security.CustomTrustKeyStoreType—This optional
command-line argument specifies the type of the keystore. The value defaults to
the keystore type specified in the JDK’s java.security file. Generally, the
value is jks.

Note: If the custom keystore is protected by a password, include
-Dweblogic.security.CustomTrustKeystorePassPhrase=password

Our example trusts the CA certificates in a custom keystore. The command line
options you use depend on the type of trust set up on WebLogic Server. For example:

To trust only the CA certificates in the Java Standard Trust keystore
(SDK_HOME\jre\lib\security\cacerts), you do not need to specify
command-line arguments, unless the keystore is protected by a password. If the
Java Standard Trust keystore is protected by a password, use the following
command-line argument:

-Dweblogic.security.JavaStandardTrustKeystorePassPhrase=password

To trust both the CA certificates in the Java Standard Trust keystore and in the
demonstration trust keystore (WL_HOME\server\lib\DemoTrust.jks), include
the following argument:
6-22 How Do I...?

-Dweblogic.security.TrustKeyStore=DemoTrust

This argument is required if the server instance to which you want to connect is
using the demonstration identity and certificates. If the Java Standard Trust
keystore is protected by a password, include the following command-line
argument:

-Dweblogic.security.JavaStandardTrustKeystorePassPhrase=password

To learn more about using SSL authentication in Java clients, see Configuring
Keystores and SSL and Using SSL Authentication in Java Clients in the WebLogic
Server documentation.

Related Topics

How Do I: Get a JPD Proxy for a Business Process?

Using SSL Authentication in Java Clients

Weblogic JNDI Environment Class

weblogic.Admin Command-Line Reference

Starting Your Business Process

Interacting With Clients

How Do I: Call Business Processes?
How Do I...? 6-23

http://e-docs.bea.com/wls/docs81/admin_ref/cli.html
../wfguide/wfguideStart.html
../wfguide/wfguideClients.html
http://e-docs.bea.com/wls/docs81/security/SSL_client.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/jndi/Environment.html
http://e-docs.bea.com/wls/docs81/ConsoleHelp/security_7x.html
http://e-docs.bea.com/wls/docs81/ConsoleHelp/security_7x.html
http://e-docs.bea.com/wls/docs81/security/SSL_client.html

6 Calling Business Processes
How Do I: Use a JPD Proxy From a JSP?

To Create a JSP file that Calls a Business Process Using the JPD Proxy

1. In your JSP file, add an import statement for the JPD Proxy package as shown in
the following lines:

<%@ page import="com.bea.wli.bpm.proxy.JpdProxy"%>
<%@ page import="com.bea.wli.bpm.proxy.JpdProxySession"%>

To learn about using the JpdProxySession interface, see “To Import the Proxy
Classes.”

2. Create an instance of the proxy class. Using the same example as we used in How
Do I: Use a JPD Proxy From a Java Client?, the code should resemble the
following code:

try
{

PoProcess p = (PoProcess)
JpdProxy.create(

PoProcess.class,
PoProcess.SERVICE_URI,

 new JpdProxy.ContextHandler()
{

public Context getContext() throws NamingException
{

Environment env = new Environment();
env.setProviderUrl("t3://localhost:7001");
env.setSecurityPrincipal("weblogic");
env.setSecurityCredentials("weblogic");
return env.getInitialContext();

}
});

PoDocument document = PoDocument.Factory.newInstance();
Po po = document.addNewPo();
po.setSku("abc");

PoReferenceDocument ref = p.processPO(document);
p.done();

}
catch (Exception e) { ... }

}
%>
</html>
6-24 How Do I...?

Note: To learn about the signatures of the JpdProxy.create() class, see To Use
the Proxy Factory (JpdProxy.create()) Method.

Related Topics

How Do I: Get a JPD Proxy for a Business Process?

How Do I: Use a JPD Proxy From a Java Client?

How Do I: Use a JPD Proxy From an EJB?

You can use a JPD Proxy to invoke a business process from an EJB in the same way
as you use a JPD Proxy from any Java file. To learn how, see How Do I: Use a JPD
Proxy From a Java Client?

To learn about developing EJBs in WebLogic Workshop, see Developing Enterprise
JavaBeans.

Related Topics

How Do I: Get a JPD Proxy for a Business Process?

How Do I: Use a JPD Proxy From a Java Client?
How Do I...? 6-25

../../wls/navEJB.html
../../wls/navEJB.html

6 Calling Business Processes
6-26 How Do I...?

	1 How Do I . . . ?
	2 Getting Started
	How Do I: Start WebLogic Workshop?
	How Do I: Start and Stop WebLogic Server?
	How Do I: Create a New Application?
	How Do I: Create a New Project?
	How Do I: Create a New Business Process File?
	How Do I: Open an Existing Business Process?
	How Do I: Use the Design View?
	Design View and Source View
	Node Builders
	Palette
	Data Palette
	Property Editor

	How Do I: Learn More About XQuery?
	Branching in Business Processes
	Data Transformation
	Generating a Set of Typed Data Elements for a For Each Loop

	3 Using Keyboard Shortcuts
	How Do I: Use Cut/Copy/Paste Shortcuts?
	How Do I: Use Undo/Redo Shortcuts?
	How Do I: Use Arrow Keys?
	How Do I: Use Delete/Enter Keys?
	How Do I: Use Print Shortcuts?

	4 Importing Files into the Schemas Project
	How Do I: Create a Schemas Project Folder?
	How Do I: Import Files into a Schemas Project Folder?

	5 Publishing and Subscribing to Channels
	How Do I: Create Message Broker Channels?
	Dead Letter Channels

	How Do I: Publish to Message Broker Channels?
	How Do I: Subscribe to Message Broker Channels?

	6 Calling Business Processes
	How Do I: Call Business Processes?
	How Do I: Use a JPD Proxy to a Call Business Process?
	How Do I: Get a JPD Proxy for a Business Process?
	How Do I: Use a JPD Proxy From a Java Client?
	How Do I: Use a JPD Proxy From a JSP?
	How Do I: Use a JPD Proxy From an EJB?

