
BEA
 WebLogic
Integration™

Using Integration
Controls
Version 8.1 Service Pack 3
Document Date: June 2004

Copyright
Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic Commerce
Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Enterprise Security, BEA
WebLogic Express, BEA WebLogic Integration, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA
WebLogic Portal, BEA WebLogic Server, BEA WebLogic Workshop and How Business Becomes E-Business are
trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Contents
1. Using Integration Controls

2. Using Controls in Business Processes
Adding Control Nodes to Your Business Process . 2-1

Designing the Communications for Control Nodes . 2-2

Using Integration Controls in Web Services or Page Flows . 2-3

3. Controls and Transactions
Good Practice in Creating Web Service Controls for a Business Process Application . .

3-3

4. Application View Control
Prerequisites for Integrating Applications Using WebLogic Workshop 4-2

Overview: Application Integration . 4-3

Adapters . 4-4

Application Views. 4-4

Application View Control . 4-5

Creating a New Application View Control . 4-5

Application View Control Methods . 4-7

Example: Application View Control. 4-7

Customizing an Application View Control . 4-9

Control Properties . 4-10

Method Properties. 4-10
Using Integration Controls iii

Updating an Application View Control . 4-10

Updating a Control when an Application View Changes . 4-10

Using an Application View Control . 4-11

Using an Existing Application View Control . 4-11

Customizing an Application View Control . 4-12

ApplicationViewControl Interface . 4-12

Related Topics . 4-12

5. ebXML Control
Overview: ebXML Control . 5-2

Creating an ebXML Control . 5-3

Specifying XmlObject and RawData Array Payloads . 5-7

Using an ebXML Control . 5-8

Sending Messages to Participants . 5-9

Handling Responses from Participants . 5-10

Dynamically Specifying Business IDs. 5-11

Example: ebXML Control. 5-13

6. Email Control
Overview: Email Control . 6-2

Configuring an Email Control. 6-2

Customizing an Email Control. 6-3

Using Dynamic Properties for an Email Control . 6-4

Creating a New Email Control . 6-4

Email Control Methods . 6-6

Sample Email Messages . 6-6

Example 1: HTML Body, No Attachments . 6-6

Example 2: Body with Attachments . 6-7
iv Using Integration Controls

Example 3: No Body, One Attachment . 6-8

Exceptions and Errors. 6-9

7. File Control
Overview: File Control . 7-2

Creating a New File Control . 7-2

Creating a New File Control. 7-2

File Control Methods . 7-4

Example: File Control Declaration. 7-4

Using a File Control. 7-5

Setting Default File Control Behavior . 7-6

Using Methods of the FileControl Interface. 7-9

Error Handling When Reading Files . 7-10

Example: File Control . 7-10

8. Http Control
Creating a New Http Control. 8-3

Creating a New Http Control . 8-3

The JCX file for the Http Control. 8-4

Using the Http Control in a Business Process . 8-5

Specifying Http Control Properties . 8-6

Using HTTP Methods to Set Properties . 8-7

Setting Dynamic Http Control Properties. 8-9

Setting Connection Time-out . 8-10

Setting Connection Retry Count. 8-10

Configuring Server-side SSL . 8-10

Configuring Client-side SSL . 8-12

Configuring Proxy Settings . 8-12
Using Integration Controls v

Setting Cookie . 8-12

Setting Headers for HTTP Post . 8-13

Sending an HTTP Get Request . 8-15

Sending Data as HTTP Post. 8-16

Recieving HTTP Response Headers . 8-17

Recieving Cookies From the Server . 8-18

Recieving HTTP Body Data . 8-18

Logging Debug Messages and Exceptions . 8-18

Http Control Caveats. 8-19

The HTTP Event Generator . 8-20

9. Message Broker Controls
Message Broker Publish Control. 9-2

Using Methods of the MB Publish Interface . 9-5

Example Code for MB Publish Control . 9-6

Message Broker Subscription Control . 9-8

Using Methods of the MB Subscription Interface . 9-11

Method Attributes . 9-12

Example Code for MB Subscription Control. 9-13

Note About Static and Dynamic Subscriptions to Message Broker Channels. 9-14

Using Event Generators to Publish to Message Broker Channels 9-14

10.MQSeries Control
Before You Add an MQSeries Control . 10-2

Creating and Configuring a New Instance of MQSeries Control 10-3

The JCX File for an MQSeries Control . 10-5

Using Exit Implementation . 10-7

Implementing MQSeries Exits. 10-7
vi Using Integration Controls

Understanding Transaction Management . 10-9

Implicit Transaction Management . 10-9

Explicit Transaction Management . 10-9

Using Message Descriptors . 10-10

Schema of the MQMDHeaders Document. 10-17

Sample of an MQMDHeaders Document . 10-19

Using XML Beans to Set the MQMDHeader Element Values 10-20

Sending and Receiving Messages . 10-21

Sending Messages . 10-21

Receiving Messages . 10-23

Sending Group messages . 10-24

Retrieving Group Messages . 10-25

Working with MQSeries Message Descriptor Format . 10-28

Setting Dynamic Properties . 10-32

Schema of MQDynamicProperties. 10-33

Sample MQDynamicProperties Document . 10-35

Using the MQSeries Event Generator . 10-35

11.Process Control
Overview: Process Control . 11-2

Setting Process Control Properties . 11-2

Creating a New Process Control . 11-4

Creating a New Process Control Using the Control Wizard 11-4

Process Control Methods . 11-5

Example: Process Control Declaration. 11-5

Creating a Process Control from a Business Process . 11-6

Editing and Testing a Dynamic Selector . 11-6

Using Dynamic Binding . 11-7
Using Integration Controls vii

12.RosettaNet Control
Overview: RosettaNet Control . 12-2

Creating a RosettaNet Control . 12-3

Using a RosettaNet Control. 12-6

Sending Messages to Participants . 12-7

Handling Messages from Participants . 12-8

Retrieving Message Elements . 12-9

Dynamically Specifying Business IDs. 12-12

Example: RosettaNet Control . 12-14

13.Service Broker Control
Overview: Service Broker Control . 13-2

Setting Service Broker Properties . 13-2

Using Dynamic Binding . 13-5

Components Used in Dynamic Binding. 13-5

Quote Processing Example . 13-8

Creating a New Service Broker Control . 13-10

Creating a New Service Broker Control Using the Control Wizard 13-10

Creating a Service Broker Control from a Business Process. 13-12

Editing and Testing a Dynamic Selector. 13-13

14.TPM Control
Overview: TPM Control . 14-2

Creating a TPM Control . 14-3

Using a TPM Control . 14-4

Example: TPM Control . 14-5

15.WLI JMS Control
Overview: Messaging Systems and JMS . 15-2
viii Using Integration Controls

Messaging Systems . 15-2

JMS Queues for Point-to-Point Messaging . 15-3

JMS Topics for Publish and Subscribe Messaging. 15-3

Connection Factories . 15-3

Message Components. 15-4

Messaging Scenarios Supported by the WLI JMS Control . 15-4

Supported Messaging Scenarios. 15-5

Send Messages to a Queue . 15-5

Messaging Scenarios Not Supported by the WLI JMS Control 15-8

Unsupported Scenarios. 15-8

Receive Unsolicited Messages from a Queue . 15-8

Creating a New WLI JMS Control . 15-8

Creating a New WLI JMS Control. 15-9

WLI JMS Control Methods . 15-10

Specifying the Format of The Message Body . 15-12

Specifying Message Headers and Properties . 15-12

Accessing Remote JMS Resources . 15-13

WLI JMS Control Caveats . 15-13

Using an Existing WLI JMS Control. 15-14

Using an Existing WLI JMS Control . 15-14

16.Worklist Controls
Overview: Worklist Controls. 16-2

Creating a New Task Control . 16-4

Creating a New Task Worker Control . 16-7

Using Task and Task Worker Controls in Business Processes . 16-9

Example: Task Control . 16-10
Using Integration Controls ix

17.Using Control Factories

18.Using Message Attachments
x Using Integration Controls

C H A P T E R 1
Using Integration Controls
Controls make it easy to access enterprise resources, such as databases, file systems, Enterprise
Java Beans, and so on, from within your application. The control handles the work of connecting
to the enterprise resource for you, so that you can focus on your business process’ business logic.

Note: In addition to the controls listed in this topic, several extra controls, including a Tuxedo
control, are included in the WebLogic Platform installation. For documentation and
samples for these controls, go to the BEA_HOME\ext_components directory, where
BEA_HOME stands for the BEA Systems installation directory.

Topics Included in This Section
Using Controls in Business Processes

An introduction to working with integration controls.

Controls and Transactions
Describes how controls relate to business process transactions and which controls are
transactional.

Application View Control
Describes how to create Application View controls and use them to allow WebLogic
Integration business processes to access an enterprise application using an Application
View.

ebXML Control
Describes how to create ebXML controls and use them to allow WebLogic Integration
business processes to exchange business messages and data with trading partners via
ebXML.
Using Integration Controls 1-1

Using In tegra t i on Cont r o ls
Email Control
Describes how to create Email controls and use them to allow WebLogic Integration
business processes to send e-mail to a specific destination.

File Control
Describes how to create File controls and use them to read, write, or append to files in a
file system.

Http Control
Describes how to create Http controls and use them to send HTTP or HTTPS (Secure
HTTP) requests to a URL and receive HTTP response header and body data.

Message Broker Controls
Describes the Message Broker resource, which provides a publish and subscribe
message-based communication model for WebLogic Integration business processes. This
section describes Message Broker Publish and Subscription controls, and File, JMS,
Email, and Timer event generators, which facilitate publishing events to Message Broker
channels.

MQSeries Control
Describes how to create MQSeries controls and use them to put and get messages from
MQSeries queues.

Process Control
Describes how to create Process controls and use them to allow WebLogic Integration
business processes to invoke other business processes.
of other services or business processes.

RosettaNet Control
Describes how to create RosettaNet controls and use them to allow WebLogic Integration
business processes to exchange business messages and data with trading partners via
RosettaNet.

Service Broker Control

Describes how to create Service Broker controls and use them to allow WebLogic
Integration business processes to interface with a single control that provides relays, based
upon decision criteria, to any number

TPM Control
Describes how to create TPM controls and use them to provide WebLogic Integration
business processes with query (read-only) access to trading partner and service
information stored in the TPM repository.
1-2 Using Integration Controls

WLI JMS Control
Describes how to create WLI JMS controls and use them to allow WebLogic Integration
business processes to easily interact with messaging systems that provide a JMS
implementation.

Worklist Controls
Describes how to create Worklist controls (Task and Task Worker controls) and use them
to allow WebLogic Integration business processes to interact with a Worklist.

Using Control Factories
Describes how to create controls as control factories.

Using Message Attachments
Describes how message attachments are used in ebXML and RosettaNet business
messages.
Using Integration Controls 1-3

Using In tegra t i on Cont r o ls
1-4 Using Integration Controls

C H A P T E R 2
Using Controls in Business Processes
When you access a resource through a control, your interaction with the resource is greatly
simplified; the underlying control implementation takes care of most of the details for you. You
add an instance of a control to your business process project and then invoke its methods. All
controls expose Java interfaces that can be invoked directly from your business process.

Designing the business process interactions with resources via controls includes:

Adding Control Nodes to Your Business Process

Designing the Communications for Control Nodes

Using Integration Controls in Web Services or Page Flows

Adding Control Nodes to Your Business Process
You add Control nodes to your business process to represent points in the business process at
which you design interactions with resources via controls:

Control Send nodes represent points in business processes at which the business processes
send messages to resources via controls.

Control Receive nodes represent points in business processes at which the business
processes receive asynchronous messages from resources via controls. Business processes
wait at these nodes until they receive a message from the specified control.

Control Send with Return nodes handle synchronous exchange of messages between
business process and resources via controls.
Using Integration Controls 2-1

Using Cont ro ls in Bus iness P rocesses
To learn how to add Control nodes to your business processes, see Create Control Nodes in Your
Business Process.

Designing the Communications for Control Nodes
Node builders provide task-driven interfaces that allow you to specify the logic required at the
nodes in your business process. Control nodes provide control-specific node builders. The tasks
you must complete to design the interaction with your resource depend on which control you use
and the methods it exposes.

Designing the communications between your business process and resources includes adding
instances of controls to your business process project, then designing the interaction with the
controls at the appropriate point in the business process. To learn how, see:

Adding Instances of Controls to Your Business Process Project

Configuring Control Nodes

You can use the ControlContext Interface for access to a control's properties at run time and for
handling control events. Property values set by a developer who is using the control are stored as
annotations on the control's declaration in a JWS, JSP, or JPD file, or as annotations on its
interface, callback, or method declarations in a JCX file.

To help you specify the communication with a given control, customized interfaces are provided
for controls. To learn about specific controls, see the following topics:

Integration controls:

– Application View Control

– ebXML Control

– Email Control

– File Control

– Http Control

– Message Broker Controls

– MQSeries Control

– Process Control

– RosettaNet Control

– Service Broker Control
2-2 Using Integration Controls

../wfguide/wfguideControlsInstance.html
../wfguide/wfguideControlsSpecify.html
../wfguide/wfguideControlsCreate.html

../wfguide/wfguideControlsCreate.html

../../workshop/java-class/com/bea/control/ControlContext.html

Usi ng In teg ra t i on Cont r o l s in Web Se rv i ces or Page F lows
– TPM Control

– WLI JMS Control

– Worklist Controls

Additional built-in controls:

– BEA Tuxedo Control

– Database Control

– EJB Control

– JMS Control

– Liquid Data Control

– Portal Controls

– Timer Control

– Web Service Control

Using Integration Controls in Web Services or Page Flows
You can use a subset of the integration controls in web services and page flows. If you are
licensed to use WebLogic Integration, you can use the following integration controls in a web
service (JWS) or page flow (JPF): Application View, Email, File, Process, Task, and Task
Worker controls.
Using Integration Controls 2-3

../../workshop/guide/controls/service/navServiceControl.html
../../Tuxedo/tuxctrl/overview/wlwint.html
../../workshop/guide/controls/database/navDatabaseControl.html
../../portal/controls/overview/conPortalControlsOview.html
../../workshop/guide/controls/ejb/navEJBControl.html
../../liquiddata/ldcontrol/ld_control.html
../../workshop/guide/controls/timer/navTimerControl.html
../../workshop/guide/controls/jms/navJMSControl.html

Using Cont ro ls in Bus iness P rocesses
2-4 Using Integration Controls

C H A P T E R 3
Controls and Transactions
Business processes in WebLogic Integration are transactional in nature. Every step of a process
is executed within the context of a JTA transaction. To learn about how transactions work within
a business process, see Transaction Boundaries.

Some integration controls are transactional. This means that the control is able to participate in
transactions within a business process. Whether or not a control is transactional depends on both
the underlying resource and the specific control implementation. Also, transactional behavior
differs depending on whether the control call is synchronous or asynchronous. To learn about
synchronous or asynchronous operations in business processes, see Building Synchronous and
Asynchronous Business Processes.

For synchronous control calls:

If the control and associated resource are transactional, the resource participates in the
current process transaction

If the control and associated resource are not transactional, changes to the resource occur
outside the scope of the current transaction and changes are not rolled back in case of
failure

For asynchronous control calls:

The process transaction is never propagated to the resource

Asynchronous control calls are buffered by default

Asynchronous call to the resource are not enqueued until the transaction is committed

On rollback, asynchronous messages are de-queued
Using Integration Controls 3-1

../wfguide/wfguideTransaction.html
../wfguide/wfguideSync.html
../wfguide/wfguideSync.html

Contr o l s and Transact i ons
The Process control is a special case, since it involves processes calling subprocesses.

For synchronous operations:

 The transaction is always propagated to the subprocess

An un-handled exception in a subprocess causes the shared transaction to be marked as
rollback only. In this case, both the subprocess and the calling process are rolled back.

Setting the process property onSyncFailure=rethrow on the subprocess overrides this
behavior and results in the following:

– Failure does not force a rollback

– Subprocess throws an exception

– Calling process catches the exception, just as with any other control exception

For asynchronous operations

The transaction is not propagated to the subprocess

The message is buffered on the subprocess’ queue

The subprocess runs in its own transaction

The control call is successful if the message is properly enqueued on the subprocess’ queue

Failure of the subprocess is not communicated to the calling process. For example, an
unhandled exception causes the subprocess to fail but the caller process is not notified

The following integration controls are transactional:

Application View (if JCA adapter is transactional)

ebXML

Message Broker

MQSeries

Process (see the previously listed qualifications)

RosettaNet

WLI JMS

Worklist
3-2 Using Integration Controls

The following integration controls are not transactional:

File

Email

Http

Service Broker

TPM

Good Practice in Creating Web Service Controls for a Business
Process Application
When you call Web Service controls asynchronously from business processes, it is recommended
that you buffer the asynchronous call. After creating the Web Service control, specify that the
asynchronous calls from the business process to the control are buffered. By doing so, you ensure
that the message sent from the business process to the Web service is enqueued. An asynchronous
call to a resource marks the boundary of a transaction in your business process; a call to a resource
is not enqueued until the transaction is committed. In other words, by buffering the call to the
resource, you ensure that the transaction is committed before any response from the resource is
attempted. If you do not buffer the call, your business process must wait for the HTTP
acknowledgement to occur before the transaction is committed, leaving open the possibility that
the resource attempts to respond to the business process before the HTTP acknowledgement
occurs.

To learn how to buffer the methods, see Buffering Methods and Callbacks. For an example of
buffered asynchronous calls to Web Services, see how the taxCalculation, priceProcessor, and
availProcessor Web Service controls are used in Tutorial: Building Your First Business Process.

Related Topics
Transaction Boundaries

Building Synchronous and Asynchronous Business Processes
Using Integration Controls 3-3

../wfguide/wfguideTransaction.html
../wfguide/wfguideSync.html
../../workshop/guide/controls/service/conBufferingMethodsAndCallbacks.html

../tutorial/tutWLIProcessIntro.html

Contr o l s and Transact i ons
3-4 Using Integration Controls

C H A P T E R 4
Application View Control
Note: The Application View control uses application views defined using the Application
Integration Design Console, provided with WebLogic Integration. The Application View
control is available in WebLogic Workshop only if you are licensed to use WebLogic
Integration.

The Application View control allows your web service or business process to access an enterprise
application using an application view. An application view must be created using the Application
Integration Design Console before it can be referenced using an Application View control. To
learn more about application views and their relationship to enterprise applications, see
Overview: Application Integration.

Like other WebLogic Workshop controls, the Application View control allows WebLogic
Workshop web services and business processes to interact with enterprise applications using
simple Java APIs. They allow a developer to access an enterprise application even if they don't
know any of the details of the application’s implementation.

The Application View control provides a means for a developer to invoke application view
services both synchronously and asynchronously, and start a new business process when an EIS
event occurs. In both the service and event cases, the developer uses XML and mapping tools to
interact with the Application View control. The developer need not to understand the particular
protocol or client API for the enterprise application (hereafter referred to as an Enterprise
Information System or EIS). Events are delivered using the Message Broker Subscription control.
Using Integration Controls 4-1

App l i ca t i on Vi ew Cont ro l
Message Broker integration is provided by publishing all application view events to the Message
Broker through its API.

Topics Included in this Section
Overview: Application Integration

Describes the relationship between enterprise application adapters, WebLogic Integration
application views, and the Application View control.

Creating a New Application View Control
Describes how to create and configure an Application View control.

Updating an Application View Control
Describes how to update an Application View control when the underlying application
view changes.

Using an Application View Control
Describes how to use an existing Application View control from within a business
process.

Prerequisites for Integrating Applications Using WebLogic
Workshop

The WebLogic Workshop Application View control is designed to make it easy for you to use an
existing, deployed application view from within your business process. WebLogic Workshop is
specifically not designed to help you develop and deploy application views. Please consult Using
the Application Integration Design Console to learn how to use the Application Integration
Design Console to create and publish application views.

Any WebLogic Workshop application which uses the application integration capabilities of
WebLogic Integration must contain a project explicitly named Schemas. The Schemas project is
used to store the wlai.channel file and application view schemas (published as XML Bean
classes). If the Schemas project does not exist in the application, you must create it before
publishing application views.

Application views with services that are published to a WebLogic Workshop application must
not contain underscores in the application view service names. Also, no underscores are allowed
in the Application View control name. When building a Control Receive node, WebLogic
Workshop only allows a single underscore in a method name, which is automatically generated
from the control name and the method name.
4-2 Using Integration Controls

Overv iew: App l i cat ion I nt egrat i on
Related Topics
Using Controls in Business Processes

Overview: Application Integration
WebLogic Integration provides a standards-based integration solution for connecting
applications both within and between enterprise applications (also called Enterprise Information
Systems or EISs). An EIS is typically a large-scale business application such as a Customer
Relationship Management (CRM), Enterprise Resource Planning (ERP) or Human Resources
(HR) application. Examples of EISs include SAP, PeopleSoft, or Siebel. WebLogic Integration
provides the following tools for integrating applications:

Adapters

Application Views

Application View Control

The following figure shows how the various application integration components interact.
Using Integration Controls 4-3

App l i ca t i on Vi ew Cont ro l
By using these tools, you can integrate all your enterprise information systems (EIS). Typical IT
organizations use several highly specialized applications. Without a common integration
platform, integration of such applications requires extensive, highly specialized development
efforts.

Adapters
In order to integrate the operations of an enterprise, the data and functions of the various EISs in
an organization must be exposed. In the Java 2 Enterprise Edition (J2EE) model, EIS
functionality is exposed to Java clients using an adapter (sometimes called a resource adapter or
a connector) according to the J2EE Connector Architecture. WebLogic Integration makes use of
adapters to establish a single enterprise-wide framework for integrating current or future
applications. Adapters greatly simplify your integration efforts because they allow you to
integrate each application with a single application server, and thus avoid the need to integrate
every application with every other application. Adapters for popular EISs are available from
applications vendors, from BEA Systems, and from third-party vendors.

As an extension to BEA WebLogic Integration, BEA offers a growing portfolio of BEA
WebLogic Adapters. These adapters completely conform to the J2EE Connector Architecture
specification, and feature enhancements that enable faster, simpler and more robust integration
of your business-critical applications. Each adapter provides bi-directional, request-response
integration with a specific application or technology. User information on specific adapters is
available at http://e-docs.bea.com. Please contact Customer Support for platform support
information.

If your business requires a specialized, custom adapter, WebLogic Integration provides an
Adapter Development Kit. The ADK is a set of tools for implementing the event and service
protocols supported by WebLogic Integration. These tools are organized in a collection of
frameworks that support the development, testing, packaging, and distribution of resource
adapters for WebLogic Integration. Specifically, the ADK includes frameworks for design-time
operation, run-time operation, logging, and packaging. For more information on the ADK, see
Developing Adapters.

Application Views
In addition to defining and implementing adapters, the AI component of WebLogic Integration
enables a developer to create application views. An application view provides a layer of
abstraction on top of an adapter; whereas adapters are closely associated with the specific
functions available in the EIS, an application view is associated with business processes that must
4-4 Using Integration Controls

Creat ing a New App l i cat i on V iew Cont ro l
be accomplished by clients. The application view converts the steps in the business process into
operations on the adapter.

An application view exposes services and events that serve the business process. Each WebLogic
Workshop Application View control is associated with a particular application view, and makes
the services and methods of the application view available to WebLogic Workshop web services
as control methods and callbacks. For information on defining application views, see Using the
Application View Design Console.

A service represents a message that requests a specific action in the EIS. For example, an adapter
might define a service named AddCustomer that accepts a message defining a customer and then
invokes the EIS to create the appropriate customer record.

An event issues messages when events of interest occur in the EIS. For example, an adapter might
define an event that sends messages to interested parties whenever any customer record is
updated in the EIS. Events are delivered using the Message Broker Subscription control. Message
Broker integration is provided by publishing all application view events to the Message Broker
through its API. To learn about the Message Broker Subscription control, see Message Broker
Controls.

Application View Control
You use application view controls in WebLogic Workshop to interact with an EIS through an
application view. Application view controls allow a business process engineer to browse the
hierarchy of application views, invoke a service as an action in a business process, and start a new
business process when an EIS event occurs.

Events are delivered using the Message Broker Subscription control. Message Broker integration
is provided by publishing all Application View events to the Message Broker through its API.

For information on how to add control instances to business processes, see Using Controls in
Business Processes.

Creating a New Application View Control
This topic describes how to create a new Application View control.

To learn about Application View controls, see Application View Control.

To learn about WebLogic Workshop controls, see Using Controls in Business Processes.
Using Integration Controls 4-5

App l i ca t i on Vi ew Cont ro l
To create a new Application View control:

1. Click Add on the Controls tab to display a list of controls that represent the resources with
which your business process can interact.

Note: If the Controls tab is not visible in WebLogic Workshop, click
View→Windows→Data Palette from the menu bar.

2. Choose Integration Controls to display the list of controls used for integrating
applications.

3. Choose ApplicationView to display the Insert ApplicationView dialog.

4. In the Variable name for this control field, type the variable name used to access the new
Application View control instance from your business process. The name you enter must be
a valid Java identifier.

5. In the Step 2 pane, choose the Create a new ApplicationView control to use radio button.

6. In the New JCX name field, type the name of your new JCX file. The .jcx filename
extension is automatically appended to the name you enter.

7. Decide whether you want to make this a control factory and select or clear the Make this a
control factory that can create multiple instances at runtime check box. For more
information about control factories, see Control Factories: Managing Collections of
Controls.

8. In the Step 3 pane, click Browse... The Application Views Browser dialog opens, displaying
application views that are published in the current domain. Application views that have not
been published using the Application Integration Design Console do not appear in the list.

9. Select the published application view you want this Application View control to represent.
Services offered by the selected application view are displayed in the Services to Invoke
Asynchronously list.

10. Select services that will be invoked asynchronously by selecting the check box next to the
name of the service. Selecting a service causes it to be generated in the control’s JCX file as
an asynchronous service. This means it has a call-in with a void return and a callback with
param as the service response type. Click OK.

11. In the Insert ApplicationView dialog, enter the WebLogic Workshop application name in
the Application Name field. The application name is usually the same as that of the current
WebLogic Workshop application.
4-6 Using Integration Controls

../../workshop/guide/controls/conControlFactoriesManagingCollectionsOfControls.html
../../workshop/guide/controls/conControlFactoriesManagingCollectionsOfControls.html

Creat ing a New App l i cat i on V iew Cont ro l
The Application Name parameter allows you to reuse an application view between
WebLogic Workshop applications. You must first define the application view in the context
of the primary application (app1) using the Application Integration Design Console. Then,
define an Application View control in a process or web service within a second application
(app2) and specify app1 in the Application Name field in the Insert ApplicationView
dialog. Because the browse function uses the context of the current application, you cannot
use the browse function to locate application views in another WebLogic Workshop
application. When reusing an application view from another application, all services are
accessed synchronously.

12. Click Create.

Application View Control Methods
To learn about the methods available on the Application View control, see the
com.bea.wlai.control package in the WebLogic Integration Javadoc at the following URL:

http://edocs.bea.com/wli/docs81/javadoc/com/bea/wlai/control/package-summa
ry.html

Example: Application View Control
When you create a new Application File control, it appears in your project directory as a JCX file.
The following is an example of an Application View control:

package FunctionDemo;

import weblogic.jws.*;

import com.bea.wlai.control.ApplicationViewControl;

import com.bea.xml.XmlObject;

/**

 * This ApplicationView provides some simple services to

 * create/get/update customers in the sample CUSTOMER_TABLE table.

 * It also defines an event

 * indicating a customer record has been updated.

 * @jc:av-identity name="FunctionDemo.CustomerMgmt"

 * app="sampleApp"

 */

public interface CustomerMgmtAppView extends

 com.bea.control.ControlExtension, ApplicationViewControl

{
Using Integration Controls 4-7

App l i ca t i on Vi ew Cont ro l
 /**

 * Get a customer record given first and last name.

 * @jc:av-service name="GetCustomer" async="false"

 */

public wlai.functionDemo.

customerMgmtGetCustomerResponse.RowsDocument

GetCustomer(wlai.functionDemo.customerMgmtGetCustomerRequest.

InputDocument request)

 throws Exception;

 /**

 * Update the customer's email address.

 * @jc:av-service name="UpdateCustomer" async="false"

 */

public wlai.functionDemo.customerMgmtUpdateCustomerResponse.

RowsAffectedDocument UpdateCustomer(wlai.functionDemo.

customerMgmtUpdateCustomerRequest.InputDocument request)

 throws Exception;

 /**

 * Select all customers in the customer table.

 * @jc:av-service name="GetAllCustomers" async="true"

 */

 public void GetAllCustomers()

 throws Exception;

 /**

 * Create a new customer given first and last name,

 * and date of birth.

 * @jc:av-service name="CreateCustomer" async="false"

 */

public wlai.functionDemo.

customerMgmtCreateCustomerResponse.RowsAffectedDocument

CreateCustomer(wlai.functionDemo.

customerMgmtCreateCustomerRequest.InputDocument request)

 throws Exception;

 public interface Callback extends

 ApplicationViewControl.Callback
4-8 Using Integration Controls

Customiz ing an App l i cat i on V iew Cont ro l
 {

 /**

 * Async response callback method for

 * GetAllCustomers service.

 */

public void onGetAllCustomersResponse(wlai.functionDemo.

customerMgmtGetAllCustomersResponse.RowsDocument response);

 /**

 * Callback to handle errors with async service requests.

 * Note that only one async request can be in flight

 * for a given control instance at any given time.

 *

 * @param errorMsg

 * The error message text for the failed async request.

 */

 public void onAsyncServiceError(String errorMsg);

 }

}

If a business process or Web service does not implement the onAsyncServiceError callback,
the Application View control does not write errors to the server log. WebLogic Workshop
informs you when you build the application if the onAsyncServiceError callback is not
implemented with warning messages similar to the following:

WARNING: dummy.jpd:35: The Callback interface InsertAsyncCtrl.Callback
defines a method void
onInsertServiceResponse(wlai.dbms.masterApplicationViewInsertServiceResponse.
RowsAffectedDocument), but you don't define an equivalent event handler.

WARNING: dummy.jpd:35: The Callback interface InsertAsyncCtrl.Callback defines a
method void onAsyncServiceError(java.lang.String), but you don't define an
equivalent event handler.

Customizing an Application View Control
You can customize an Application View control in several ways. You may modify the properties
of the control itself or the properties of the control’s methods. Each of these modifications is
described in more detail in the sections that follow.

You can also use the ControlContext interface for access to a control's properties at run time and
for handling control events. Property values set by a developer who is using the control are stored
Using Integration Controls 4-9

../../workshop/java-class/com/bea/control/ControlContext.html

App l i ca t i on Vi ew Cont ro l
as annotations on the control's declaration in a JWS, JSP, or JPD file, or as annotations on its
interface, callback, or method declarations in a JCX file.

Control Properties
The Application View control exposes the av-identity property with the name and app
attributes. For a description of the av-identity property and its attributes, see @jc:av-identity
Annotation.

Method Properties
Each method of an Application View control exposes the av-service property that binds the
Application View control method to an application view service. For a description of the
av-service property and its attributes, see @jc:av-service Annotation.

Related Topics
Using an Application View Control

Using Controls in Business Processes

ControlContext Interface

Updating an Application View Control
Once an application view is designed in the Application Integration Design Console and then
published, control of the Application view is passed to the WebLogic Workshop application. If
changes are required to the design of the application view, you must make them in the
Application Integration Design Console and republish the application view. You must then
regenerate the Application View control to ensure that the design changes are available to the
WebLogic Workshop application.

Updating a Control when an Application View Changes
To update an Application View control when the target application view changes, you must
regenerate the Application View control.

Rename or delete the old Application View control JCX file before generating a new Application
View control with the same name. If you customized control properties, these customizations
must be redone on the new control.
4-10 Using Integration Controls

../javadoc-tag/jc/av-identity.html
../javadoc-tag/jc/av-identity.html
../javadoc-tag/jc/av-service.html
../../workshop/java-class/com/bea/control/ControlContext.html

Us ing an App l i cat i on V iew Cont ro l
Related Topics
Creating a New Application View Control

Using an Application View Control
This topic describes how to use an existing Application View control in your web service.

To learn about controls, see the Using Controls in Business Processes.

To learn about Application View controls, see Application View Control.

To learn how to create a Application View control, see Creating a New Application View
Control.

Using an Existing Application View Control
All controls follow a consistent model. Therefore, most aspects of using an existing Application
View control are identical to using any other existing control. To use an existing Application
View control:

1. Click Add on the Controls tab to display a list of controls that represent the resources with
which your business process can interact.

Note: If the Controls tab is not visible in WebLogic Workshop, click
View→Windows→Data Palette from the menu bar.

2. Choose Integration Controls to display the list of controls used for integrating
applications.

3. Choose ApplicationView to display the Insert ApplicationView dialog.

4. In the Variable name for this control field, type the variable name used to access the
existing Application View control instance from your business process. The name you enter
must be a valid Java identifier.

5. In the Step 2 pane, choose the Use an ApplicationView control already defined by a JCX
file radio button.

6. Click Browse to browse for existing Application View controls. The Select dialog is
displayed. When you find the control you want to use, select it and click Select.

7. Click Create.
Using Integration Controls 4-11

App l i ca t i on Vi ew Cont ro l
Customizing an Application View Control
There are properties that are specific to the Application View control. If you choose to copy and
customize an existing Application View control, the properties you may wish to modify are:

av-identity

For more information, see @jc:av-identity Annotation.

av-service

For more information, see @jc:av-service Annotation.

ApplicationViewControl Interface
All Application View controls are subclassed from the ApplicationViewControl interface. The
interface defines methods that may be called on Application View control instances from a web
service.

To learn more, see Application View Control Interface.

Related Topics
Creating a New Application View Control
4-12 Using Integration Controls

../javadoc-tag/jc/av-identity.html
../javadoc-tag/jc/av-service.html

C H A P T E R 5
ebXML Control
Note: The ebXML control is available in WebLogic Workshop only if you are licensed to use
WebLogic Integration.

The ebXML protocol (Electronic Business using eXtensible Markup Language) is a modular
suite of specifications that enables enterprises of any size and in any geographical location to
conduct business over the Internet. It is sponsored by UN/CEFACT and OASIS. To learn about
ebXML, see http://www.ebXML.org.

The ebXML control enables WebLogic Workshop business processes to exchange business
messages and data with trading partners via ebXML. The ebXML control supports both the
ebXML 1.0 and ebXML 2.0 messaging services. You use ebXML controls in initiator business
processes to manage the exchange of ebXML business messages with participants. For an
introduction to ebXML solutions, see Introducing Trading Partner Integration at the following
URL:

http://edocs.bea.com/wli/docs81/tpintro/index.html

Topics Included in This Section
Overview: ebXML Control

Describes the ebXML control.
Using Integration Controls 5-1

ebXML Cont ro l
Creating an ebXML Control
Describes how to create and configure a ebXML control.

Using an ebXML Control
Describes how to use an ebXML control in a business process.

Example: ebXML Control
Provides links to ebXML examples.

Related Topics
Using Built-In Java Controls

Introducing Trading Partner Integration at
http://edocs.bea.com/wli/docs81/tpintro/index.html

Trading Partner Management at http://edocs.bea.com/wli/docs81/manage/tpm.html

EBXMLControl Interface

Tutorial: Building ebXML Solutions at
http://edocs.bea.com/wli/docs81/tptutorial/ebxml.html

Building ebXML Participant Business Processes

@jpd:ebXML Annotation

@jpd:ebXML method Annotation

Overview: ebXML Control
You use ebXML controls in initiator business processes to exchange ebXML business messages
with participants. The ebXML control provides methods for sending and receiving business
messages, as described in EBXMLControl Interface. Callbacks handle ebXML messages,
acknowledgements, and errors received from the participant.

You should not use ebXML controls in participant business processes to respond to incoming
messages. Instead, you use Client Request nodes to handle incoming business messages from
the initiator and Client Response nodes to handle outgoing business messages to the initiator. To
learn about building participant business processes that use ebXML, see Building ebXML
Participant Business Processes.To learn about designing business processes that use ebXML, see
Introducing Trading Partner Integration at the following URL:

http://edocs.bea.com/wli/docs81/tpintro/index.html
5-2 Using Integration Controls

../../workshop/guide/controls/navControlsOverview.html
../java-class/com/bea/control/EBXMLControl.html
../wfguide/wfguideEbXML.html
../javadoc-tag/jc/ebxml.html
../wfguide/wfguideEbXML.html
../wfguide/wfguideEbXML.html
../javadoc-tag/jc/ebxml-method.html
../java-class/com/bea/control/EBXMLControl.html

Creat ing an ebXML Cont ro l
At run-time, the ebXML control relies on trading partner and service information stored in the
TPM repository. To learn about the TPM repository, see Introducing Trading Partner Integration
at the following URL:

http://edocs.bea.com/wli/docs81/tpintro/index.html.

To learn about adding or updating information in the TPM repository, see Trading Partner
Management in Managing WebLogic Integration Solutions at the following URL:

http://edocs.bea.com/wli/docs81/manage/tpm.html

Related Topics
Creating an ebXML Control

Using an ebXML Control

Example: ebXML Control

Creating an ebXML Control
This topic describes how to create a new ebXML control. Each ebXML control instance
represents a single ebXML conversation. For each separate ebXML conversation in a business
process, you must add a separate ebXML control instance. To learn about ebXML controls, see
ebXML Control.

To create a new ebXML control

1. If you are not in Design View, click the Design View tab.

2. On the Controls section of the Data Palette, click Add.

Note: If the Controls tab is not visible in WebLogic Workshop, choose
View→Windows→Data Palette from the menu bar. Instances of controls already
available in your project are displayed in the Controls tab.

3. In the pop-up menu, click Integration Controls to display a drop-down list of controls that
represent the resources with which your business process can interact.

4. Click ebXML to display the Insert Control - Insert ebXML dialog box.
Using Integration Controls 5-3

ebXML Cont ro l
5. In the Step 1 pane, in the Variable name for this control field, type the variable name used
to access the new ebXML control instance from your business process. The name you enter
must be a valid Java identifier.

6. In the Step 2 pane, select one of the following options:

– Use an ebXML control already defined by a JCX file

Enter the name of the JCX file, or click the Browse button to find and select it.

– Create a new ebXML control to use

Enter the name of the new JCX file to create.

7. If you are creating a new control, in the Step 3 pane, specify the following information:
5-4 Using Integration Controls

Creat ing an ebXML Cont ro l
Field Description

ebxml-service-name Required. Name of an ebXML service. For initiator and
participant business processes that participate in the same
conversation, the settings for ebxml-service-name must be
identical. This service name corresponds to the
eb:Service entry in the ebXML message envelope.

from Optional. Business ID for the initiator in this conversation. One
of the following values:

• Empty—Uses the default trading partner.

• Static Value—Business ID of the initiating trading partner.
The specified business ID must be configured in the TPM
repository.

To specify the initiator business ID dynamically, use selectors or
use the setProperties method in a Control Send node, as
described in Dynamically Specifying Business IDs.

You can also obtain this value by using XQuery selectors on
process variables or method parameters in an incoming
message.

to Optional. Business ID for the participant in this conversation.
One of the following values

• Empty—Uses the default trading partner.

• Static Value—Business ID of the participating trading
partner. The specified business ID must be configured in the
TPM repository.

To specify the participant business ID dynamically, use
selectors or use the setProperties method in a Control
Send node, as described in Dynamically Specifying Business
IDs.

You can also obtain this value by using XQuery selectors on
process variables or method parameters in an incoming
message.
Using Integration Controls 5-5

ebXML Cont ro l
method-arg-type Required. Type of attachment. One of the following values:

• XmlObject—Default. Represents data in untyped XML
format. The XML data is not specified at design time.

• XmlObject[]—Array containing one or more XmlObject
elements.

Note: The XmlObject[] option is not available from the
drop-down menu on the control wizard window. It has
to be specified in source view, see Specifying
XmlObject and RawData Array Payloads

• RawData—Represents any non-XML structured or
unstructured data for which no MFL file (and therefore no
known schema) exists.

• RawData[]—Array containing one or more RawData
elements.

Note: The RawData[] option is not available from the
drop-down menu on the control wizard window. It has
to be specified in source view, see Specifying
XmlObject and RawData Array Payloads.

• MessageAttachment[]—Array containing one or more
parts of an ebXML business message. Message parts can be
untyped XML data (XmlObject data type) or non-XML
data (RawData data type). Used when sending different
kinds of payloads (XML and non-XML) in the same
message. The actual number of message parts might not be
known until processed.

To learn about working with MessageAttachment objects,
see Using Message Attachments.

To learn more about data types, see Working with Data Types.
5-6 Using Integration Controls

../wfguide/wfguideDataTypesWorking.html

Creat ing an ebXML Cont ro l
8. Click the Create button.

9. If you are prompted, select a subfolder in which to save the JCX file.

An ebXML control instance is displayed in the Controls tab.

After you create the JCX file, the name of the JCX file becomes available as a service on the
Services tab in the WebLogic Integration Administration Console.

Specifying XmlObject and RawData Array Payloads
The XmlObject[] and RawData[] payload options are only available in source view. You can
configure your ebXML control to use these options after you have created it.

To Specify the Payload in Source View

1. Open your control definition file (JCX file). You can do this by double-clicking on the file in
the Application pane.

ebxml-action-mode Action mode for this ebXML control. Determines the value
specified in the eb:Action element in the message header of
the ebXML message, which becomes important in cases where
multiple message exchanges occur within the same
conversation. One of the following values:

• default—Sets the eb:Action element to
SendMessage (default name).

• non-default—Sets the eb:Action element to the
name of the method (on the ebXML control) that sends the
message in the initiator business process. For sending a
message from the initiator to the participant, this name must
match the method name of the Client Request node in the
corresponding participant business process. For sending a
message from the participant to the initiator, the method
name in the callback interface for the client callback node in
the participant business process must match the method
name (on the ebXML control) in the control callback
interface in the initiator business process. Using
non-default is recommended to ensure recovery and
high availability.

If unspecified, the ebxml-action-mode is set to
non-default.
Using Integration Controls 5-7

ebXML Cont ro l
2. Click the Source View tab.

3. In the request and response methods, change the payload specified to the payload type
that you want to use.

The following restrictions apply to payload specifications:

– If an array of any type is used, an argument of the same type cannot follow that array in
the argument list. In other words, an array must be the last argument specified of that
type.

– If a MessageAttachment[] type is one of your arguments, no other array (including a
MessageAttachment[]) is allowed in the argument list.

4. After you have applied your changes, save and close your control definitions file.

Note: The order of arguments which you used in the control definition file and the order of the
arguments in the node on the participant business process which is listening for your
message must match.

To learn more about the request and response methods, see EBXMLControl Interface.

Related Topics
Overview: ebXML Control

Using an ebXML Control

Example: ebXML Control

Using an ebXML Control
All WebLogic Workshop controls follow a consistent model. Many aspects of using ebXML
controls are identical or similar to using other WebLogic Workshop controls. To learn about
WebLogic Workshop controls, see Using Built-In Java Controls.

After you have added an ebXML control to an initiator business process, you can use methods on
the control to exchange ebXML messages with participant trading partners. In the Design View,
you expand the node for the ebXML control in the Data Palette to expose its methods, and then
drag and drop the methods you want onto the business process. Common tasks include:

Sending Messages to Participants

Handling Responses from Participants

Dynamically Specifying Business IDs
5-8 Using Integration Controls

../../workshop/guide/controls/navControlsOverview.html
../java-class/com/bea/control/EBXMLControl.html

Us ing an ebXML Cont ro l
To learn more about these methods, see ebXML Control Interface.

The ebXML control is a JCX file. To learn about using JCX files, see JCX Files: Extending
Controls.

Sending Messages to Participants
To send an ebXML message to a participant, you use a send message method in a Control Send
node. By default, the JCX instance includes a generated send method named request. To add
the Control Send node to a business process, you drag this method from the Data Palette onto
the business process. For business processes that involve multiple round-trips, you need to create
a separate Control Send node for each operation that involves sending an ebXML message to the
participant.

Note: The default return type for the request method is void. However, you can also specify
the return type to be XmlObject. If you use XmlObject as the return type, the content
the XmlObject is the ebXML envelope data.

After creating the Control Send node, you need to specify the payload parts and their Java data
types. Valid data types include:

Attachments can also be typed XML or typed MFL data as long as you specify the corresponding
XML Bean or MFL class name in the parameter.

Type Description

XmlObject Data in untyped XML format.

XmlObject[] An array containing one or more XmlObject elements.

RawData Any non-XML structured or unstructured data for which no MFL
file (and therefore no known schema) exists.

RawData[] An array containing one or more RawData elements

MessageAttachment
[]

Array containing one or more parts of an ebXML business
message. Message parts can be untyped XML data (XmlObject
data type) or non-XML data (RawData data type). Used when
sending different kinds of payloads (XML and non-XML) in the
same message. The actual number of message parts might not be
known until processed. To learn about working with
MessageAttachment[] objects, see Using Message
Attachments.
Using Integration Controls 5-9

../../workshop/guide/devenv/conJwiFiles.html
../../workshop/guide/devenv/conJwiFiles.html
../java-class/com/bea/control/EBXMLControl.html

ebXML Cont ro l
If you use arrays as attachment type, certain restrictions apply to the order of your arguments. For
more informations, see Specifying XmlObject and RawData Array Payloads.

You can specify business IDs statically (using the @jc:ebxml Annotation) or dynamically.
To learn about specifying business IDs dynamically, see Dynamically Specifying Business IDs.

Handling Responses from Participants
Participants can respond to initiator requests in the following ways:

acknowledge that the request was received

reply to the request

notify that an error occurred

To handle responses from participants, initiator business processes use the following callback
methods:

To receive an ebXML message from a participant, you use the appropriate method. To add the
method to a business process, you drag it from the Data Palette onto the business process, which
creates a Control Receive node. For business processes that involve multiple round-trips, you
need to create a separate Control Receive node for each operation that involves receiving an
ebXML message from the participant.

For the response method, if you specify non-default in the ebxml-action-node, you can
rename the Control Receive node to make it more descriptive, such as getInvoice. However,
if you specify default in the ebxml-action-node, you must use the default name (onMessage)
and the business process can have only one onMessage Control Receive node.

For the response method, after creating the Control Receive node, you need to specify the
payload parts and their Java data type for the incoming message. To learn about valid data types,
see Sending Messages to Participants.

Method Name Description

onAck Handles the acknowledgement of the message receipt from the
participant.

onError Handles an error sent by the participant.

response Handles the message reply sent by the participant.
5-10 Using Integration Controls

../javadoc-tag/jc/ebxml.html

Us ing an ebXML Cont ro l
The onError and onAck methods are system-level methods. Both use the EnvelopeDocument
argument, which will contain an ebXML envelope when the message is received. As they are
system-level methods, these arguments are not seen in the default control but you can drag them
onto the business process from the Data Palette. If your application contains a schema project that
includes the envelope.xsd file, and if the schema is already built, you can extract the values you
want by creating a query (in the XQuery language) using the mapper functionality of WebLogic
Workshop. To learn about creating queries with the mapper functionality, see Transforming Data
Using XQuery.

You can retrieve the message envelope of an incoming ebXML message by using the envelope
annotation in the @jc:ebxml-method tag. To learn more about the envelope annotation, see
@jc:ebxml-method Annotation.

Dynamically Specifying Business IDs
The ebXML control adds the capability of dynamically binding business IDs for the initiator
(from property) and the participant (to property) of the control. Dynamic binding of properties
can be achieved the following ways:

Using selectors

Using the setProperties() method

Order of Precedence
The hierarchy of property settings is as follows, starting with the approach having the highest
precedence:

1. properties dynamically bound using selectors (@jc:ebxml-method Annotation) and the
DynamicProperties.xml file

2. properties set using the setProperties() method

3. properties set at the JCX instance level using the @jc:ebxml Annotation annotation in the
JPD

4. properties set at JCX class level using @jc:ebxml Annotation annotation in the JCX

Dynamic selectors have a higher precedence than static selectors.
Using Integration Controls 5-11

../dtguide/dtguideMapper.html
../dtguide/dtguideMapper.html
../javadoc-tag/jc/ebxml-method.html
../javadoc-tag/jc/ebxml-method.html
../javadoc-tag/jc/ebxml.html
../javadoc-tag/jc/ebxml.html

ebXML Cont ro l
Using Selectors
Using a dynamic selector, ebXML controls allow you to decide at run time which one of multiple
trading partners to send a business message to. When you specify a dynamic selector, you build
and test an XQuery that retrieves the business ID you need.

To use a dynamic selector

1. Display the business process in Design View that contains the ebXML control for which you
want to specify a dynamic selector.

2. In Design View, select the ebXML control node in the Data Palette.

3. Locate the from-selector or to-selector property in the Property Editor and select the
associated xquery parameter. Click the button next to the xquery field indicated by three
dots (...). The Dynamic Selector query builder is displayed.

4. In the Start Method Schema area, select an element from the schema to associate it with
the start method of the control. The resulting query appears in the XQuery area.

5. Click OK.

Using setProperties
The setProperties method accepts an ebXMLPropertiesDocument parameter. The
ebXMLPropertiesDocument type is an XML Beans class that is generated out of the
corresponding schema element defined in DynamicProperties.xsd. The
DynamicProperties.xsd file is located in the system folder of New Process Applications or in
the system folder of the Schemas project.

If your application contains a schema project that includes the DynamicProperties.xsd file,
and if the schema is already built, you can extract the values you want by creating a query (in the
XQuery language) using the mapper functionality of WebLogic Workshop. To learn about
creating queries with the mapper functionality, see Transforming Data Using XQuery.

To set business IDs dynamically using the setProperties method

1. Verify that your application contains a schema project that includes the
DynamicProperties.xsd file, and that the schema is already built. To learn about importing
schemas, see How do I: Import Schemas into a Project Schemas Folder.

2. Create a Control Send node in a business process.
5-12 Using Integration Controls

../dtguide/dtguideMapper.html
../howdoI/howSchemasImport.html

Example : ebXML Cont ro l
3. From the Data Palette, drag the setProperties method and drop it onto the Control
Send node.

4. In the Send Data tab, select Transformation, specify variables that contain the to and
from values, and then create a transformation to map them to the corresponding elements in
ebXMLPropertiesDocument.

To display the current property settings, use the getProperties() method.

Related Topics
Overview: ebXML Control

Creating an ebXML Control

Example: ebXML Control

Example: ebXML Control
For examples of how to use the ebXML control, see Tutorial: Building ebXML Solutions at the
following URL:

http://edocs.bea.com/wli/docs81/tptutorial/ebxml.html

Related Topics
Overview: ebXML Control

Creating an ebXML Control

Using an ebXML Control
Using Integration Controls 5-13

ebXML Cont ro l
5-14 Using Integration Controls

C H A P T E R 6
Email Control
Note: The Email control is available in WebLogic Workshop only if you are licensed to use
WebLogic Integration.

The Email control enables WebLogic Integration business processes to send e-mail to a specific
destination. To receive e-mail, you must use the Email Event Generator. Use the WebLogic
Integration Administration Console to create and manage event generators. To learn about
creating and managing event generators, see Event Generators in Managing WebLogic
Integration Solutions at the following URL:

http://edocs.bea.com/wli/docs81/manage/evntgen.html

For information on how to add control instances to business processes, see Using Controls in
Business Processes.

Topics Included in This Section
Overview: Email Control

Provides an overview of the Email control.

Configuring an Email Control
Describes how to configure an existing Email control.
Using Integration Controls 6-1

Emai l Cont ro l
Creating a New Email Control
Describes how to create and configure an Email control.

Sample Email Messages
Provides sample e-mail messages with different formats.

Overview: Email Control
The Email control enables WebLogic Workshop web services and business processes to send
e-mail to a specific destination. The body of the e-mail message can be text (plain, HTML, or
XML) or can be an XML object. The control is customizable, allowing you to specify e-mail
transmission properties in an annotation or to use dynamic properties passed as an XML variable.

The Email control is flexible, allowing you to send a variety of content types and various
combinations of body and attachments. For examples of e-mail messages that can be sent using
the Email control, see Sample Email Messages.

Related Topics
EmailControl Interface

Email Control Annotations

Configuring an Email Control
When you add an Email control to your business process, you can use an existing Email control
extension file (.jcx) or create a new one. Depending on the data type of the message body you
select, the .jcx file includes one of the following sendEmail utility methods. (Note the different
body types in the two methods.) You can specify the values for the fields as class annotations in
the .jcx file.

/**

 * @jc:send-email to="{to}"

 * cc="{cc}"

 * bcc="{bcc}"

 * subject="{subject}"

 * body="{body}"

 * attachments="{attachments}"

 * content-type="text/plain"

 */
6-2 Using Integration Controls

../javadoc-tag/jc/emailcontrolannotations.html
../java-class/com/bea/control/EmailControl.html

Conf i gur i ng an Emai l Cont ro l
void sendEmail(String to, String cc, String bcc, String subject,

 String body, String attachments);

/**

 * @jc:send-email to="{to}"

 * cc="{cc}"

 * bcc="{bcc}"

 * subject="{subject}"

 * body="{body}"

 * attachments="{attachments}"

 * content-type="text/xml"

 */

void sendEmail(String to, String cc, String bcc, String subject,

 XmlObject body, String attachments);

Customizing an Email Control
Depending on the needs of your application, you can customize the base control. When extending
the base control, you can add a method that specifies e-mail transmission properties in the
annotation. The customized method does not require the user to supply as many parameters.

/*

 * A custom Email control.

 * @jc:email

 * smtp-address = "smtp.myorg.com:25"

 * from-address = "joe.user@myorg.com"

 * from-name = "Joe User"

 * reply-to-address = "reply@myorg.com"

 * reply-to-name = "Customer Service"

 * header-encoding=""

 * username=""

 * password=""

 */

public interface MyEmailControl extends

EmailControl,com.bea.control.ControlExtension

{

 /**

 * @jc:send-email to="{to}"
Using Integration Controls 6-3

Emai l Cont ro l
 * subject="Thanks for your order"

 * body="{body}"

 * attachments="/weblogic/samples/order.txt"

 *

 */

 public void sendOrderConfirmation(String to,

 String body);

}

Using Dynamic Properties for an Email Control
You can override class-level annotations for an Email control by using dynamic properties. To
use dynamic properties, pass an XML variable that conforms to the control’s dynamic-property
schema to the control’s setProperties() method. You can retrieve the current property
settings using the getProperties() method.

The setProperties() method accepts an EmailControlPropertiesDocument parameter. The
EmailControlPropertiesDocument type is an XML Beans class that is generated out of the
corresponding schema element defined in DynamicProperties.xsd. The
DynamicProperties.xsd file is located in the system folder of New Process Applications or in
the system folder of the Schemas project.

The following is an example of an XML variable used to set dynamic properties:

<EmailControlProperties>

 <smtp-address>myorg.mymailserver.com:25</smtp-address>

 <from-name>Joe User</from-name>

 <from-address>joe.user@myorg.com</from-address>

 <reply-to-address>reply@myorg.com</reply-to-address>

 <reply-to-name>Joe User</reply-to-name>

</EmailControlProperties>

Related Topics
EmailControl Interface

Email Control Annotations

Creating a New Email Control
This topic describes how to create a new Email control.
6-4 Using Integration Controls

../java-class/com/bea/control/EmailControl.html
../javadoc-tag/jc/emailcontrolannotations.html

Creat ing a New Emai l Cont ro l
To learn about Email controls, see Email Control.

To learn about WebLogic Workshop controls, see Using Controls in Business Processes.

To create a new Email control:

1. If you are not in Design View, click the Design View tab.

2. Click Add on the Controls tab to display a drop-down list of controls that represent the
resources with which your business process can interact.

Note: If the Controls tab is not visible in WebLogic Workshop, choose
View→Windows→Data Palette from the menu bar. Instances of controls available
to your project are displayed in the Controls tab.

3. Choose Integration Controls to display the list of controls used for integrating
applications.

4. Choose Email from the list to display the Insert Control - Email dialog box.

5. In the Step 1 pane, in the Variable name for this control field, type the variable name used
to access the new Email control instance from your business process or web service. The
name you enter must be a valid Java identifier.

6. In the Step 2 pane, choose the Create a new Email control to use radio button.

7. In the New JCX name field, type the name of your new JCX file. The .jcx filename
extension is automatically appended to the name you enter.

8. Decide whether you want to make this a control factory and select or clear the Make this a
control factory that can create multiple instances at runtime check box. For more
information about control factories, see Control Factories: Managing Collections of
Controls.

9. In the Step 3 pane, enter the following name and address parameters:

– smtp-address—The address of the SMTP server in host:port or host form. If the port
is not specified, the standard SMTP port of 25 is used.

– from-address—The originating e-mail address

– from-name—The Display name for the originating e-mail address

10. Select the type of data contained in the message body using the body-type menu.

11. Click Create.
Using Integration Controls 6-5

../../workshop/guide/controls/conControlFactoriesManagingCollectionsOfControls.html
../../workshop/guide/controls/conControlFactoriesManagingCollectionsOfControls.html

Emai l Cont ro l
If you need to specify reply information (name and address) or SMTP authentication parameters
(username and password or password alias), assign values to the following optional parameters
using the Property Editor:

reply-to-address—The e-mail address to reply to

reply-to-name—The display name for the reply to address

header-encoding—A string specifying the encoding to be used for the mail headers as
specified by from-name, reply-to-name, to, bc, bcc, subject, and attachments. If no
header encoding is specified, the system default encoding is used.

username—The username for servers that require authentication to send.

password—The password associated with the smtp-username.

password-alias—The password alias associated with the smtp-username. The alias is
used to look up the password in the password store. This attribute is mutually exclusive
with the smtp-password attribute.

Email Control Methods
To learn about the methods available on the Email control, see the EmailControl Interface.

Sample Email Messages
The following samples show what types of messages can be sent using the Email control.

Example 1: HTML Body, No Attachments
If the supplied String body is an HTML document, you can set the content-type annotation
attribute to generate the following e-mail.

To: user@myorg.com

Subject: Thanks for your order

Content-Type: text/html

<html>

<head>

<title>Thanks for your order</title>

...
6-6 Using Integration Controls

../java-class/com/bea/control/EmailControl.html

Sample Emai l Messages
Example 2: Body with Attachments
For a message body with attachments, the Email Control generates a multipart/mixed message
with the message body as the first part. Attachments are added as MIME parts with content types
in accordance with their file name suffix. The following table lists commonly used file suffixes.

Attachments with unknown extensions receive the application/octet-stream MIME type.
The Email control also base64 encodes attachments which include binary data, as shown in the
following example:

To: user@myorg.com

Subject: Thanks for your order

Content-Type: multipart/mixed;

boundary="------------F141E40DDE2763DF92513DD4"

------------F141E40DDE2763DF92513DD4

Content-type: text/plain; charset=us-ascii

Dear Sir,

Please see the attached diagram and brochure.

Suffix Content-Type

.doc application/msword

.gif image/gif

.html text/html

.jar application/java-archive

.jpg image/jpeg

.pdf application/pdf

.txt text/plain

.xls application/msexcel

.xml application/xml or text/xml

.zip application/x-zip-compressed
Using Integration Controls 6-7

Emai l Cont ro l
Thanks,

Customer Service

------------F141E40DDE2763DF92513DD4

Content-type: image/jpeg;

 name="picture.jpg"

Content-Disposition: attachment; filename="picture.jpg"

Content-transfer-encoding: base64

/9j/4AAQSkZJRgABAgAAZABkAAD/7AARRHVja3kAAQAEAAAAPAAA/+4ADkFkb2JlA

...

------------F141E40DDE2763DF92513DD4

Content-Type: application/pdf;

 name="brochure.pdf"

Content-Transfer-Encoding: base64

Content-Disposition: inline;

 filename="brochure.pdf"

JVBERi0xLjIgDSXi48/TDQogDTEwIDAgb2JqDTw8DS9MZW5ndGggMTEgMCBSDS9Ga

...

------------F141E40DDE2763DF92513DD4

Example 3: No Body, One Attachment
An Email control send action with no body and one attachment does not generate an
multipart/mixed message. This supports interchange scenarios that require the XML
document to be in the message body.

To: inbox@myorg.com

Subject: new XML order

Content-Type: application/xml

<?xml version="1.0" ?>

<PurchaseOrder>

...
6-8 Using Integration Controls

Sample Emai l Messages
Exceptions and Errors
You can use an exception handler to catch and deal with any exceptions that are thrown by the
Email control.

If one or more of the To or cc recipients is determined to be invalid by the local mail server, an
exception may be thrown immediately. However, if the invalid recipients can only be detected by
the destination mail server, this is out of the scope of the Email control. We recommend that the
From address be a mailbox for handling messages bounced back to the sender.

If one or more of the attachment file names is not found, an exception is thrown.
Using Integration Controls 6-9

Emai l Cont ro l
6-10 Using Integration Controls

C H A P T E R 7
File Control
Note: The File control is available in WebLogic Workshop only if you are licensed to use
WebLogic Integration.

A File control makes it easy to read, write, or append to a file in a file system. The topics in this
section describe how to work with the File control. For information on how to add control
instances to business processes, see Using Controls in Business Processes.

Topics Included in This Section
Overview: File Control

Provides an overview of the File control.

Creating a New File Control
Describes how to create a new File control using the WebLogic Workshop graphical
design interface.

Using a File Control

Describes how to use a File control in your business processes. Describes the default
methods and the methods you can customize.

Example: File Control
Provides an example of a File control in the context of a business process.
Using Integration Controls 7-1

Fi l e Cont ro l
Overview: File Control
A File control makes it easy to read, write, or append to a file in a file system. The files can be
one of the following types: XmlObject, RawData (binary), or String. When creating a File
control, select the file type that matches the files present in the specified directory.

In addition, the File control supports file manipulation operations such as copy, rename, and
delete. You can also retrieve a list of the files stored in the specified directory.

Creating a New File Control
A File control performs an operation on a file. Each File control is customized to perform certain
operations.

This topic describes how to create a new File control and provides an example of the File
control’s declaration in the JCX file.

For information on how to add control instances to business processes, see Using Controls in
Business Processes.

Creating a New File Control
1. Click Add on the Controls tab to display a list of controls that represent the resources with

which your business process can interact.

Note: If the Controls tab is not visible in WebLogic Workshop, click
View→Windows→Data Palette from the menu bar.

2. Choose Integration Controls to display the list of controls used for integrating
applications.

3. Choose File to display the Insert Control - File dialog box.

4. In the Variable name for this control field, enter the name of the new control. The name
you enter must be a valid Java identifier.

5. Select Create a new File control to use and enter a name for the JCX file which will define
the control in the New JCX name field.

You can use an existing control by selecting Use a File control already defined by a JCX
file and entering a filename in the JCX file field.
7-2 Using Integration Controls

Creat ing a New F i l e Cont ro l
6. Choose whether or not you want to make this a control factory by selecting or clearing the
Make this a control factory that can create multiple instances at runtime checkbox. For
more information about control factories, see Control Factories: Managing Collections of
Controls.

7. In the directory-name field, enter the name of the directory where the File control looks for
files. Alternatively, you can click the Browse button to locate a directory on your hard disk.

A directory name is the absolute path name for the directory; it includes the drive
specification as well as the path specification. For example, the following are valid
directory names:

C:\directory (Windows)

/directory (Unix)

\\servername\sharename\directory (Win32 UNC)

You can also enter a period (.), which specifies the current working directory. When you
enter a forward slash (/) in the directory-name field, it is interpreted as follows:

– UNIX systems—the root directory

– Windows systems—the root of the user directory (for example, C: if the user directory
is C:\bea).

The directory-name field is required. Leaving the directory-name field empty results in
an error.

Note: When writing files locally, if the specified directory does not already exist, it is
created and the file is written into the new directory.

8. In the file-mask field, enter the file name filter, either a file name or file mask. Use file
names for read, write and append operations. If the file-mask field contains a wild-card
character, such as an asterisk (*), it is treated as a file mask. A wild-card character is
specified to get the list of files in a directory. Wild-card characters are not valid for any
other operation.

The file-mask field is optional when inserting a control, but this property must then be set
dynamically before performing a file operation.

9. Select the type of data contained in the file using the file-type menu. The file type indicates
the type of files present in the directory specified in the directory-name field. Based on this
type, appropriate methods (such as write(String data) or write(XmlObject data) or
write(RawData data)) are generated for the File control. For example, if the directory
Using Integration Controls 7-3

Fi l e Cont ro l
contains XML documents, the type should be set to XmlObject so that read/write methods
generated for the control will accept XmlObject variables. The same is true for RawData
and String types.

10. If you are operating on a file of type String or XmlObject, you can optionally specify the
character set encoding by entering the character set code in the encoding field. This option
can not be used with the large files option.

11. If the specified directory contains files you want to read one line at a time, select the button
labeled The directory contains large files to be processed. The resulting readLine()
method is created with support for large files.

If a record size is specified in the record-size field, the file is read that number of bytes at
a time. If no record size is specified, the file is processed one line at a time. A line is
considered to be terminated by any one of a line feed ('\n'), a carriage return ('\r'), or a
carriage return followed immediately by a linefeed. This style of file processing can be
used with any size file.

12. Click Create.

File Control Methods
To learn about the methods available on the File control, see the FileControl Interface.

Example: File Control Declaration
When you create a new File control, its declaration appears in the JCX file. The following code
snippet is an example of what the declaration looks like when you choose the The directory
contains large files to be processed option:

import weblogic.jws.*;

import com.bea.control.*;

import java.io.*;

import com.bea.data.RawData;

import com.bea.xml.XmlObject;

 ...

 /**

 * @jc:file directory-name="C:\directory"

 * file-mask="tax_file.txt"

 *

 */

 public interface TaxFileControl extends
7-4 Using Integration Controls

../java-class/com/bea/control/FileControl.html

Us ing a F i l e Cont ro l
 FileControl,com.bea.control.ControlExtension

 {

 /**

 * @jc:file-operation io-type="readline"

 * record-size="80"

 */

 RawData readLine();

 }

The actual attributes that are present on the @jc:file and @jc:file-operation annotations
depend on the values you entered in the Insert Control dialog.

The @jc:file annotation controls the behavior of the File control. All of the attributes of the
@jc:file annotation are optional and have default values.

To learn more, see @jc:file Annotation.

The File control, named TaxControlFile in the example above, is declared as an extension of
FileControl. The @jc:file-operation annotations indicate that the file operation is readline
(read tax_file.txt record by record) and specifies the record size.

Related Topics
 @jc:file Annotation

Using a File Control
A File control performs operations on a file such as reading a file, writing a file, and appending
data to a file. You can also use the File control to copy, rename, and delete files.

You usually configure a separate File control for each file you want to manipulate. You can
specify settings for a File control in several different ways. One way is to set the File control’s
properties in Design view. Another way is to call the setProperties method of the
FileControl interface. You can change File control configuration properties dynamically. To
get the current property settings, use the getProperties() method.

You can also use the ControlContext interface for access to a control's properties at run time and
for handling control events. Property values set by a developer who is using the control are stored
as annotations on the control's declaration in a JWS, JSP, or JPD file, or as annotations on its
interface, callback, or method declarations in a JCX file.

The following sections describe how to configure the File control.
Using Integration Controls 7-5

../../workshop/java-class/com/bea/control/ControlContext.html
../javadoc-tag/jc/file.html
../javadoc-tag/jc/file.html

Fi l e Cont ro l
Setting Default File Control Behavior
You can specify the behavior of a File control in Design View by setting the control’s properties
in the Property Editor. These properties correspond to attributes of the @jc:file and
7-6 Using Integration Controls

Us ing a F i l e Cont ro l
@jc:file-operation annotations, which identify the File control in your code. The following
attributes specify class- and method-level configuration attributes for the File control.
Using Integration Controls 7-7

Fi l e Cont ro l
Annotation Attribute Description

@jc:file directory-name The absolute path name for the directory. (When writing
files locally, if the specified directory does not already
exist, it is created and the file is written into the new
directory.)

file-mask Either a file name or a file mask.

suffix-name Suffix to be used with a timestamp or incrementing index
for creating file names.

suffix-type Specifies whether a timestamp or an incrementing index
should be used as a suffix for file names.

create-mode Specifies whether a file is overwritten or renamed when
a new file of the same name is created.

Note: When you use create-mode="rename=old" to
rename a file, make sure that you mention the
suffix-name and the suffix-type attributes for
the new file name. If the suffix attributes are not
indicated, then the File control overwrites the old file,
instead of renaming it.

ftp-host-name Name of the FTP host, for example,
ftp://ftp.bea.com.

ftp-user-name Name of the FTP user.

ftp-password FTP user’s password. If you specify this attribute, you
cannot specify the ftp-password-alias attribute.

ftp-password-
alias

Alias for a user’s password. The alias is used to look up
a password in a password store. If you specify this
attribute, you cannot specify the ftp-password
attribute.

ftp-local-
directory

Directory used for transferring files between the remote
file system and the local file system. When reading a
remote file, the file is copied from the remote system to
the local directory and then read. Similarly, when writing
to a remote file system, the file is written to the local
directory and then copied to the remote system.
7-8 Using Integration Controls

Us ing a F i l e Cont ro l
To learn more about specifying default File control behavior with attributes of the @jc:file
annotation, see @jc:file Annotation.

Using Methods of the FileControl Interface
Once you have declared and configured a File control, you can invoke its methods from within
your application to perform file operations and to change its configuration. For complete
information on each method, see the FileControl Interface.

Use the following methods of the FileControl interface to perform file operations and reconfigure
the File control.

@jc:file-
operation

io-type Type of file operation (read, readline, write, or append).

file-content Contents of the identified variable which will be written
to the file.

record-size Size of an individual record (in bytes) within a file to be
processed record by record.

encoding Character set encoding of the file.

Annotation Attribute Description

Method Description

setProperties Sets the properties for the control

getProperties Gets the properties for the control

getFiles Returns the FileControlFileListDocument XML
Beans document defined in DynamicProperties.xsd

rename Renames the current file

delete Deletes the current file

copy Copies the current file to a different location

reset Reset the control by closing any operations in progress,
such as readLine, readRecord and append.
Using Integration Controls 7-9

../javadoc-tag/jc/file.html
../java-class/com/bea/control/FileControl.html

Fi l e Cont ro l
The File control does not provide callbacks to wait for a file to appear. If the business process
needs to wait for a file to appear, use the File Event Generator functionality. The business process
can use the Message Broker Subscribe control to subscribe to a channel if it is interested in
processing the files in a given directory. A File Event Generator is then configured so that when
a file appears in that directory, it publishes a message to the associated channel containing the
contents of the file.

Error Handling When Reading Files
The File control invokes an error handler when exceptions are encountered in read() methods.
(Exceptions can occur when the contents of the file are invalid.) The error handler moves the file
to an error directory. However, if the error directory is not configured, the error handler throws
the following exception: File or Directory does not exist. To ensure that useful information about
the exception is available, the exception thrown by the error handler is logged and appears on the
WebLogic Server Console and the original exception is rethrown.

Related Topics
FileControl Interface

 @jc:file Annotation

Example: File Control
This section provides an example of a File control used in the context of a business process. In
this case, the File control instance writes a file to a specified location, triggered by a user request.
This example assumes that you have created a new business process containing a client request
node.

The business process is shown in the following figure:
7-10 Using Integration Controls

../javadoc-tag/jc/file.html
../java-class/com/bea/control/FileControl.html

Exampl e : F i l e Cont ro l
The business process starts with a client request node, File Request, representing a point in the
process at which a client sends a request to a process. In this case, the client invokes the
fileRequest() method on the process to write a file with information on a new customer to the
file system.

Complete the following tasks to design your business process to write the requested file to your
file system:

To Create an Instance of a File Control in Your Project

To Design a Control Send Node in Your Business Process to Interact With Your File
Control

To Create an Instance of a File Control in Your Project

In this scenario, you add one instance of the File control to your business process.

1. Click Add on the Data Palette Controls tab to display a list of controls that represent the
resources with which your business process can interact.

2. Click Integration Controls, then choose File. The Insert Control dialog box is displayed.

3. In the Insert File Control dialog box:

a. In Step 1, enter myFile as the variable name for this control.
Using Integration Controls 7-11

Fi l e Cont ro l
b. In Step 2, ensure that the following option is selected: Create a new File control to use.
Then, enter myFile in the New JCX name field.

c. In Step 3, enter values in the following fields:

directory-name—Enter the location in which you want the File control to write the
file. You can use any location on your file system. In this case, the directory name is
C:/temp/customers.

file-mask—Enter a name for the file. For example, enter CustFile.xml.

file-type—Select XmlObject from the drop-down list.

d. Click Create to close the Insert Control dialog box.

An instance of a File control, named myFile, is created in your project and displayed in
the Controls tab.

4. Select File→Save to save your work.

To Design a Control Send Node in Your Business Process to Interact With Your File Control

1. Expand the myFile control instance in the Data Palette. Then click the following method:

FileControlPropertiesDocument write(com.bea.xml.XmlObject someData)

2. Drag the method from the Data Palette and drop it on your FileWrite business process in
the Design View, placing it immediately after the File Request node. The node is named
write by default.

3. Rename the node, replacing write with Write CustFile.

4. Double-click the Write CustFile node. Its node builder opens on the General Settings tab.

5. Confirm that myFile is displayed in the Control field and that the following method is
selected in the Method field:

FileControlPropertiesDocument write(com.bea.xml.XmlObject someData)

6. Click Send Data to open the second tab in the node builder. The Method Expects field is
populated with the data type expected by the write() method: XmlObject someData.

7. In the Select variables to assign field, click the arrow to display the list of variables in your
project. Then choose requestCustFile(InputDocument). If the variable does not already
exist, you can choose Create new variable... to create it now.

8. Click Apply and Close.
7-12 Using Integration Controls

Exampl e : F i l e Cont ro l
9. Double click on the client request node (File Request) to open the node builder.

10. Click Receive Data to open the second tab on the node builder. The Method Expects field
is populated with the data type expected, in this case InputDocument CustFile. In the
Select variables to assign field, click the arrow to display the list of variables in your
project. Then choose requestCustFile(InputDocument).

11. Click Apply and Close.

This step completes the design of your File control node.

At run time, pass a variable of type XmlObject to the Client Request method. The customer
document is written to your file system in the location specified.
Using Integration Controls 7-13

Fi l e Cont ro l
7-14 Using Integration Controls

C H A P T E R 8
Http Control
Note: The Http control is available in WebLogic Workshop only for licensed users of
WebLogic Integration.

Hyper-Text Transfer Protocol (HTTP) is the globally-accepted method of communicating web
pages across the internet. It is a stateless, application-level protocol. The currently defined
version of HTTP is 1.1. HTTP protocol is a synchronous protocol, that is, each request message
sent from the client to a server is followed by a response message returned from the server to the
client.

The Http control’s purpose is to provide outgoing HTTP access to WebLogic Workshop clients.
The Http control complements the other controls provided in WebLogic Integration and can be
used with WebLogic Workshop and business processes to work with HTTP requests and process
responses. The Http control is built using the features of the WebLogic Platform control
architecture. The Http control source file is a wrapper around the Jakarta Commons HttpClient
package. The Http control conforms to HTTP/1.1 specific features.

The Http control supports two types of request methods for data transfer, namely Get and Post.
By using the Get mode, you can send your business data along with the URL. By using Post
mode, you can send large amount of information like Binary, XML and String documents to the
server within the body of the request.
Using Integration Controls 8-1

Http Cont ro l
You can specify Http control properties in an annotation, or pass dynamic properties via an XML
variable. Inbound HTTP requests can be processed with the HTTP event generator. The HTTP
event generator is a servlet which takes an HTTP request, checks for the content type and then
publishes the message to the message broker. For more information on the HTTP event generator,
see The HTTP Event Generator.

Using the Http control, you can send an HTTP or HTTPS (Secure HTTP) request to a URL and
receive specific HTTP response header and body data, as follows:

Send Business data using HTTP Get and receive the HTTP response code and the message
corresponding to the response code in an XML document.

Set HTTP header values for the HTTP Post mode.

Send Binary, XML, and String type data using HTTP Post and receive the HTTP response
code and the message corresponding to the response code in an XML document.

Configure cookies for both the HTTP Get and HTTP Post modes.

Communicate via a secure HTTP (HTTPS) connection with both client-side and
server-side authentication enabled.

Use a proxy server for sending an HTTP or HTTPS request.

Receive response headers in an XML document conforming to a pre-defined schema.

Receive response body data of type Binary, XML or String.

Receive cookies in an XML document conforming to a pre-defined schema.

Topics Included in This Section
Creating a New Http Control

Describes how to create a new Http control

Using the Http Control in a Business Process
Describes how to create a new Http control and use it in a business process.

Specifying Http Control Properties
Describes Http control properties and the method to specify and edit these properties.

Using HTTP Methods to Set Properties
Describes the various HTTP methods used to specify header properties, cookies, and so
on.
8-2 Using Integration Controls

Creat ing a New Ht tp Cont ro l
Logging Debug Messages and Exceptions
Describes the method used to log debug messages.

Http Control Caveats
Lists out the known limitations and caveats of the WebLogic Integration Http control.

The HTTP Event Generator
Describes the HTTP event generator briefly, with a link to a more detailed information
source.

Creating a New Http Control
This topic describes how to create a new Http control.

Creating a New Http Control
You can create a new Http control and add it to your business process. To define a new Http
control:

1. Click Add on the Data Palette Controls tab to display a list of controls that represent the
resources with which your business process can interact.

Note: If the Controls tab is not visible in WebLogic Workshop, click
View→Windows→Data Palette from the menu bar.

2. Choose Integration Controls to display the list of controls used for integrating
applications.

3. Choose Http to display the Insert Control - Http dialog.

4. In Step 1, in the Variable name for this control field, enter the name for your Http control.

5. In Step 2, select the Create a new Http control to use radio button.

6. In the New JCX name field, provide a name for the new file that you are about to create.

7. Decide whether you want to make this a control factory and select or clear the Make this a
control factory that can create multiple instances at runtime check box. For more
information about control factories, see Control Factories: Managing Collections of
Controls.

8. In Step 3, specify the target URL for your Http control, for example,
http://www.bea.com, https://www.verisign.com or
http://localhost:7001/console.
Using Integration Controls 8-3

../../workshop/guide/controls/conControlFactoriesManagingCollectionsOfControls.html
../../workshop/guide/controls/conControlFactoriesManagingCollectionsOfControls.html
../../workshop/guide/controls/conControlFactoriesManagingCollectionsOfControls.html

Http Cont ro l
9. Select the HTTP mode that you want to use. You can select either the Get, or the Post mode.

10. From the Sending Body Data Type drop-down list, select the data type. You can send your
data as an XML object, String, or byte stream. This option is applicable only to the HTTP
Post mode.

11. From the Receiving Body Data Type drop-down list, select the data type in which you
want to receive data. You can choose to receive data in a different format. For example, if
you select the Byte data type for sending data and you want to receive the data as an XML
object, you can do it.

12. Click Create. Alternatively, you may create a Http control JCX file manually. For example,
you may copy an existing Http control JCX file and modify the copy.

The JCX file for the Http Control
When you create a new Http control, you create a new JCX file in your project. The following is
an example of a JCX file

package processes;

import com.bea.control.*;

import com.bea.wli.control.httpResponse.ResponseDocument;

import com.bea.wli.control.httpParameter.ParametersDocument;

import com.bea.xml.XmlObject;

/*

* A custom Http control.

*/

/**

* @jc:httpsend-data url-name="http://localhost:7001/console"

*/

public interface GET extends HttpControl, com.bea.control.ControlExtension

{

/*

* A version number for this JCX. This will be incremented in new versions of

this control to ensure that conversations for instances of earlier versions

were invalid.

*/

static final long serialVersionUID = 1L;

ResponseDocument sendDataAsHttpGet(ParametersDocument parameters,String
8-4 Using Integration Controls

Creat ing a New Ht tp Cont ro l
charset);

byte[] getResponseBodyData();

The contents of the Http control's JCX file depend on the selections made in the Insert Http
dialog. The given example was generated in response to selection of byte[] from the Body Type
drop-down list.

Using the Http Control in a Business Process
The business process starts with a client request node, representing a point in the process at which
a client sends a request to a process. In this case, the client invokes the setProperties method
on the process to specify a dynamic property for your Http control.

Complete the following tasks to design your business process to send and receive data using your
Http control, using a dynamic property setting that specifies the target URL to send and receive
data.

Create an instance of the Http control, and call it MyHttpControl. Use the steps provided in
Creating a New Http Control.

Your new Http control will be visible under the Controls tab in the Data Palette. Expand
MyHttpControl to see the Http methods that you can use in your business process.

Design a Control Send Node in your business process and specify a dynamic property to be
used during run time.

To Design a Control Send Node in Your Business Process

1. Expand the MyHttpControl control instance in the Data Palette. Then click the following
method:

setProperties(HttpControlPropertiesDocument propsDoc)

2. Drag the method from the Data Palette and drop it on your business process in the Design
View, placing it immediately after the Client Request node.

3. Double-click the SetProperties node. Its node builder opens on the General Settings tab.

4. Confirm that MyHttpControl is displayed in the Control field and that the following
method is selected in the Method field:

setProperties(HttpControlPropertiesDocument propsDoc)
Using Integration Controls 8-5

Http Cont ro l
5. Click Send Data to open the second tab in the node builder. The Control Expects field is
populated with the data type expected by the setProperties method:
HttpControlPropertiesDocument.

6. In the Select variables to assign field, choose Create new variable... using the name
dynamicprop. Close the window.

7. Double click on the client request node to open the node builder.

8. Open the General Settings tab of the node builder and create a variable of type
com.bea.wli.control.dynamicProperties.HttpControlPropertiesDocument.

9. Open the Receive Data tab. The Client Sends field in this tab populated with the variables
that have been created in the General Settings tab, in this case,
HttpControlPropertiesDocument x0. In the Select variables to assign field, click the
arrow to display the list of variables in your project and choose dynamicprop as the
variable to assign.

This step completes the design of your Http control node.

At run time, the dynamic property that you defined will override the static property defined using
the Property Editor.

Specifying Http Control Properties
Most aspects of a Http control can be configured from the Properties Editor in Design View. You
can also specify run-time properties that define the way your Http control is used during run time.
For more information on how to use run time, or dynamic properties, see Setting Dynamic Http
Control Properties.

You can define the control properties in the Property Editor, or, you can change the properties in
the Source View of the Http control's JCX file. For more information on the JCX file for the Http
control, see The JCX file for the Http Control.

When you modify properties for your Http control using the Property Editor, your changes are
reflected in the Source View of the control's JCX file, and vice versa. However, the properties
that you specify during run time override the properties set using the Property Editor in the
Design view. For more information on setting properties, see Using HTTP Methods to Set
Properties.
8-6 Using Integration Controls

Us ing HTTP Methods to Set P rope r t ies
Using HTTP Methods to Set Properties
You can specify the behavior of an Http control in Design View by setting the control’s properties
in the Property Editor. The following attributes specify class- and method-level configuration
attributes for the Http control.

This topic defines the various HTTP methods that you can use to specify properties. Each method
is described briefly in Http Control MethodsTable 8-1, and detailed in subsequent sections that
are referenced to the methods outlined in the table.

You can use the following methods with the Http control:

Table 8-1 Http Control Methods

Purpose of Method Description Method

Setting Dynamic Http
Control Properties.

This method sets the Http control
properties at run time. Dynamic
properties always override the static
properties set in the Property Editor.

void
setProperties(HttpControlP
ropertiesDocument
propsDoc)

Setting Connection
Time-out.

This method sets the connection time
out for an HTTP request. Set this
property to define the maximum time
you want your Http control to
establish a connection. A time-out
value of zero (zero is the default
value) indicates that the connection
time-out has not been used.

void
setConnectionTimeOut(int
timeoutInMilliSeconds)

Setting Connection Retry
Count.

This method defines the number of
times your Http control will try to
establish connection with the target.

void
setConnectionRetrycount(in
t retryCount)

Setting Cookie This method allows you to set cookies
for your Http control

void
setCookies(CookiesDocument
cookies)

Configuring Proxy
Settings.

This method allows you to specify
proxy settings such as String host,
initial port, String user name, and
String password.

void setProxyConfig
setProxyConfig (String
host, int port, String
userName, String password)
Using Integration Controls 8-7

Http Cont ro l
Configuring Server-side
SSL

This property allows you to configure
server-side Secure Socket Layer
authentication process.

void
setServerSideSSL(String
trustStoreLocation,
boolean
hostVerificationFlag)

Configuring Client-side
SSL

This property allows you to set
client-side authentication.

void
setClientSideSSL(String
keyStoreType, String
keyStoreLocation, String
keyStorePassword, String
keyPassword)

Sending an HTTP Get
Request

This method allows you to send an
HTTP request using the HTTP Get
mode and receive the HTTP response
code from the server.

ResponseDocument
sendDataAsHttpGet(Paramete
rsDocument
parameters,String charset)

Setting Headers for HTTP
Post

This method allows you to set the
header properties for the HTTP Post
mode.

void
setHeadersForHttpPost(Head
erDocument headers)

Sending Data as HTTP
Post

This method allows you to send body
data as HTTP Post and receive the
response code.

Depending on the body data type that
you select while configuring the Http
control, the appropriate method is
populated in the JCX file.

ResponseDocument
sendDataAsHttpPost(String
bodyData)

ResponseDocument
sendDataAsHttpPost
(XmlObject bodyData)

ResponseDocument
sendDataAsHttpPost (byte[]
bodyData)

Recieving HTTP Response
Headers

This method allows you to get the
headers of an HTTP response.

HeadersDocument
getResponseHeaders()

Table 8-1 Http Control Methods (Continued)

Purpose of Method Description Method
8-8 Using Integration Controls

Us ing HTTP Methods to Set P rope r t ies
Setting Dynamic Http Control Properties
Method: void setProperties(HttpControlPropertiesDocument propsDoc)

To use dynamic properties, pass an XML variable that conforms to the Http control's
dynamic-property schema to the Http control's setProperties() method.

Example of an XML Variable to Set Dynamic Properties
<?xml version="1.0" encoding="UTF-8"?>

<xyz:HttpControlProperties

xmlns:xyz="http://www.bea.com/wli/control/dynamicProperties">

<xyz:URLName>http://localhost:7001/console</xyz:URLName>

</xyz:HttpControlProperties>

Schema for Http Control Properties
<?xml version="1.0" encoding="UTF-8"?>

<xs:schema

targetNamespace="http://www.bea.com/wli/control/dynamicProperties"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns="http://www.bea.com/wli/control/dynamicProperties"

elementFormDefault="qualified">

<xs:element name="HttpControlProperties">

<xs:complexType>

<xs:sequence>

<xs:element name="URLName" type="xs:string"/>

Recieving Cookies From
the Server

This method allows you to receive
cookies from an HTTP response.

CookiesDocument
getCookies()

Recieving HTTP Body
Data

 Depending on the body data type that
you select while configuring the Http
control, the appropriate method is
populated in the JCX file.

String
getResponseBodyAsString()

XmlObject
getResponseBodyAsXML()

byte[]
getResponseBodyAsBytes()

Table 8-1 Http Control Methods (Continued)

Purpose of Method Description Method
Using Integration Controls 8-9

Http Cont ro l
</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

Setting Connection Time-out
Method: setConnectionTimeOut (int timeoutInMilliSeconds)

This method sets the connection time out for an HTTP request. The connection time-out is
maximum time that a control is allowed to establish a connection - the connection fails after this
time elapses. The parameter time-out is set in milliseconds. A time-out value of zero (zero is the
default value) indicates that the connection time-out has not been used.

Setting Connection Retry Count
Method: setConnectionRetrycount (int retryCount)

This method sets the retry count, that is, the number of times your application will retry for the
HTTP request. If this value is not specified, then the application will try to connect only once. If
a connection is not established in the first try, the second attempt is likely to succeed. It is
recommended that you set this property so that your HTTP requests go through in the second
attempt, if not the first one.

Configuring Server-side SSL
Method: setServerSideSSL (String trustStoreLocation, boolean
hostVerificationFlag)

The Http control provides complete support for HTTP over Secure Sockets Layer (SSL) and
Transport Layer Security (TLS), by leveraging the Java Secure Socket Extension (JSSE). JSSE
is integrated into JDK1.4, which is shipped along with WebLogic Integration Platform.

When you run this method, the configuration for server-side authentication is set. By default,
JSSE uses (jdk142_04\jre\lib\security\cacerts) as its Trust Store location, which
includes some well-known certificate authorities such as Verisign and CyberTrust. Therefore,
you do not need to specify any Trust Store locations for the certificates, which are issued by the
certification authority.

Additionally, you can provide a host-name verification flag that ensures that the SSL session’s
server host-name matches with the host name returned in the server certificates Common Name
field of the SubjectDN entry. By default this entry is set to False.
8-10 Using Integration Controls

Us ing HTTP Methods to Set P rope r t ies
For example, if you specify https://www.verisign.com/ as the URL for authentication, you
do not have to specify the Trust Store location, as Verisign is a trusted authority in certificates of
JSSE.

To accept self-signed or SSL certificates that are not trusted, you need to import the server
certificates into its Trust Store Location. For more information on JSSE, see the Java Secure
Socket Extension (JSSE) Reference Guide at the following location:

http://java.sun.com/j2se/1.4.2/docs/guide/security/jsse/JSSERefGuide.html

The following example shows how to create a store, import a server certificate, and to specify the
parameters for this method:

1. Run the following Keytool command to create a new Keystore.

keytool -genkey -alias aliasname -keyalg rsa -keystore keystore name

The following is an example of the command, including user-input values:

keytool -genkey -alias teststore -keyalg rsa -keystore
c:\teststore.jks

For more information, see Creating a Keystore to Use with JSSE, at the following location:

http://java.sun.com/j2se/1.4.2/docs/guide/security/jsse/JSSERefGuide.ht
ml

2. Launch an HTTPS site to copy the certificate. For example, you can launch the WebLogic
Server Console of the localhost or any other machine using the
https://host:port/console format. When you are prompted for the server certificate,
click the View Certificate button, navigate to the Details tab, and then click Copy to File.

3. Import the certificate that you copied to the Keystore that you created in Step 1, using the
following command:

keytool -import -alias aliascertname -file certificatename -keystore
keystore_name

For example:

keytool -import -alias testcer -file c:\test.cer -keystore
c:\teststore.jks

4. In the setServerSideSSL method, specify the Trust Store location as C:\teststore.jks
and the URL to which you send a request as https://host:port/console. To verify the
host name, set the host-name verification flag as true.
Using Integration Controls 8-11

Http Cont ro l
Configuring Client-side SSL
Method: setClientSideSSL (String keyStoreType, String keyStoreLocation,
String keyStorePassword, String keyPassword)

This method sets the configuration for client-side authentication. You should use this method
when both server-side and client-side authentication are required. Before configuring this
method, you must configure Configuring Server-side SSL.

In this method, both the keyStoreType and keyPassword fields are optional. If you do not
specify the keyStoreType, the method uses the default Keystore type (which is specified in the
java.security file).

For some Keystores, the Keystore password differs from the key password. In such cases, you
must specify both the Keystore password and key password.

If you want both server-side and client-side configuration, the server certificate should be in the
Client Trust Store. Similarly, the client certificate should be in the Server Trust Store and the
client should specify the Keystore location and passwords appropriately.

Configuring Proxy Settings
Method: setProxyConfig (String host, int port, String userName, String
password)

This method configures parameters for a proxy server. To send an HTTP request using a proxy
server, you must properly configure the host, port, user name, and password.

Note: The Http control supports the Basic Scheme protocol. It does not support NTLM
protocol. You need to configure your proxy settings accordingly.

Setting Cookie
Method: setCookies(CookiesDocument cookies)

The Http control allows you to manually set the cookies sent to the server. To send cookies to the
server with an HTTP request, you have to pass a XML variable that conforms to the Http control's
cookies document schema.

Example: XML Variable Used to Set Cookies
<?xml version="1.0" encoding="UTF-8"?>

<Cookies xmlns="http://www.bea.com/wli/control/HttpCookies">

<Cookie>
8-12 Using Integration Controls

Us ing HTTP Methods to Set P rope r t ies
<Name>CookieName1</Name>

<Value>CookieValue1</Value>

</Cookie>

<Cookie>

<Name>CookieName2</Name>

<Value>CookieValue2</Value>

</Cookie>

</Cookies>

Schema for Setting Cookie
<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns="http://www.bea.com/wli/control/HttpCookies"

elementFormDefault="qualified"

targetNamespace="http://www.bea.com/wli/control/HttpCookies">

<xs:element name="Cookies">

<xs:complexType>

<xs:sequence>

<xs:element name="Cookie" minOccurs="0"

maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element name="Name" type="xs:string"

minOccurs="0"/>

<xs:element name="Value" type="xs:string" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

Setting Headers for HTTP Post
Method: setHeadersForHttpPost (HeadersDocument headers)
Using Integration Controls 8-13

Http Cont ro l
This method sets the request header for an HTTP Post. To set the request header, you have to pass
an XML variable that conforms to the Http control's headers document schema. You can
overwrite the default header’s values by specifying them in the following manner:

User-agent, Content-Type, and so on.

Example: XML Variable Used to Set the Headers
<?xml version="1.0" encoding="UTF-8"?>

<xyz:Headers xmlns:xyz="http://www.bea.com/wli/control/HttpHeaders">

<xyz:Header>

<xyz:name>Content-Type</xyz:name>

<xyz:value>text/*</xyz:value>

</xyz:Header>

<xyz:Header>

<xyz:name>header</xyz:name>

<xyz:value>h1</xyz:value>

</xyz:Header>

</xyz:Headers>

Schema for Setting HTTP Post Headers
<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns="http://www.bea.com/wli/control/HttpHeaders"

elementFormDefault="qualified"

targetNamespace="http://www.bea.com/wli/control/HttpHeaders">

<xs:element name="Headers">

<xs:complexType>

<xs:sequence>

<xs:element name="Header" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element name="name" type="xs:string" minOccurs="0"/>

<xs:element name="value" type="xs:string" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>
8-14 Using Integration Controls

Us ing HTTP Methods to Set P rope r t ies
</xs:element>

</xs:schema>

Sending an HTTP Get Request
Method: ResponseDocument sendDataAsHttpGet(ParametersDocument
parameters,String charset)

Use this method when you want to send an HTTP Get request. The Get request is mostly used for
accessing static resources such as HTML documents from a Web Server and also can be used to
retrieve dynamic information by using additional parameters in the request URL.

With Get requests, the request parameters are transmitted as a query string appended to the
request URL. To include multi-byte character parameters in the URL, the Http control encodes
the parameters to the characters as defined by the charset field of this method. If you do not
specify any character set, then the Http control will send the parameter data URL encoded in
“UTF-8”. To send the parameters with a URL, you must pass the parameters in an XML variable
that conforms to the Http control's parameter document schema.

Example: XML Variable Used to Set Parameters in HTTP Get
<?xml version="1.0" encoding="UTF-8"?>

<xyz:Parameters xmlns:xyz="http://www.bea.com/wli/control/HttpParameter">

<xyz:Parameter>

<xyz:Name>Customer Id</xyz:Name>

<xyz:Value>1000</xyz:Value>

</xyz:Parameter>

<xyz:Parameter>

<xyz:Name>Customer Name</xyz:Name>

<xyz:Value>Robert</xyz:Value>

</xyz:Parameter>

</xyz:Parameters>

Schema for Sending Parameters for HTTP Get
<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns="http://www.bea.com/wli/control/HttpParameter"

elementFormDefault="qualified"

targetNamespace="http://www.bea.com/wli/control/HttpParameter">

<xs:element name="Parameters">
Using Integration Controls 8-15

Http Cont ro l
<xs:complexType>

<xs:sequence>

<xs:element name="Parameter" minOccurs="0"

maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element name="Name" type="xs:string"

minOccurs="0"/>

<xs:element name="Value" type="xs:string"

minOccurs="0"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

Sending Data as HTTP Post
Method: ResponseDocument sendDataAsHttpPost (String/XmlObject/byte[]
bodyData)

Use the HTTP Post method to post data to a server. The Http control allows you to post data of
three different data types: String, XmlObject, and byte.

The HTTP Post method returns the HTTP response, that is, the HTTP response code and
corresponding message in a ResponseDocument. The schema of the response document is the
same as described in Schema for Sending Parameters for HTTP Get.

HTTP Post requests are meant to transmit information that is request-dependent, and are used
when you need to send large amounts of information to the server. The Http control allows you
to post data of three different data types: String, XmlObject, and Byte stream.

In the HTTP protocol, servers and clients use MIME (Multipurpose Internet Mail Extensions)
headers to indicate the type of content present in requests and responses. Http control also uses
the MIME header(Content-Type), while transmitting data in body of the requests, to describe the
type of data being sent. So while posting String or XmlObject data type, you should set the
Content-Type header appropriately by using the Http control's setHeadersForHttpPost()
8-16 Using Integration Controls

Us ing HTTP Methods to Set P rope r t ies
method. The Content-Type header contains a charset attribute that indicates the character set
of the message body.

If you do not set any charset attribute, then the Http control uses the default HTTP encoding
(ISO-8859-1) to encode the message.

The following examples provide more information on how to send data using the HTTP Post
mode:

Example 1 - Request body with String data-type
To post a string message of encoding Shift-JIS, you should set the charset attribute in the
Content-Type request header, by calling the Http control's setHeadersForHttpPost method,
as follows:

Content-type="text/*; charset=Shift-JIS"

Example 2 - Request body with XmlObject data type
While sending request messages of XML data type, you have to set the charset attribute in
Content-Type header appropriately.

If you do not specify the character encoding in the Content-Type header, then the Http control
uses the default encoding as specified in rfc3023.

For example, to post an XML document of encoding EUC-JP, you need to set the request type
header as follows:

Content-Type="text/xml; charset=EUC-JP"

If you do not specify any charset attribute in the request header, the Http control uses us-ascii
as default encoding to encode the message.

Note: To avoid garbling of body data while posting String or Xml data types, you should
always specify the charset attribute in the Content-Type header.

The HTTP Post method returns the HTTP response, that is, the HTTP response code and
corresponding message in a ResponseDocument. The schema of the response document is the
same as described in Schema for Sending Parameters for HTTP Get.

Recieving HTTP Response Headers
Method: HeadersDocument getResponseHeaders

Use this method to receive the HTTP response headers. The response headers are returned in an
XML variable of a pre-defined schema.
Using Integration Controls 8-17

Http Cont ro l
The schema for the response headers is same as request headers schema described in Setting
Headers for HTTP Post.

Recieving Cookies From the Server
Method: CookiesDocument getCookies

Use this method to receive the cookies from the server. The cookies are returned in an XML
document of a pre-defined schema.

The schema for the response cookies is same as the request cookies schema described in Schema
for Setting Cookie.

Recieving HTTP Body Data
Method: String getResponseBodyAsString / XmlObject getResponseBodyAsXml /
byte[] getResponseBodyAsBytes

In HTTP, in response to a HTTP request, the server sends the body content that corresponds to
the resource specified in the request. If you want to receive the response body data, then you
should use this method.

The Http control can return the response data in three different data types: String, XmlObject, and
Byte[]. You should set the response data type appropriately, depending upon the response data
that you expect from the server. If the response body is not available or cannot be read, the control
returns a null value.

Note: While parsing the response body of data type String or XmlObject, the Http control uses
the character encoding specified in the Content-Type response header. If character
encoding is not specified in the Content-Type header, the Http control uses the default
HTTP content encoding ISO-8859-1 for String and US-ASCII encoding for
XmlObject.

To avoid garbling of data, you should always set the charset attribute in the
Content-Type response header.

Logging Debug Messages and Exceptions
During run time, the Http control checks for different parameters, null value, and method return
types. If validation fails at any point, a control exception is thrown to the Business Process
Management (BPM). You can log debug messages, review them, and resolve exceptions if
required.
8-18 Using Integration Controls

Http Cont ro l Caveats
To log debug messages, edit the WebLogic Workshop log properties file. You can find the
workshop log properties file, workshopLogCfg.xml, in the
WL_HOME\weblogic81\common\lib\ folder.

To log all the debug statements for HttpControlImpl and HttpResource class files, add the
following lines to the workshopLogCfg.xml file:

<category name="com.bea.control.HttpControl">

<!-- NOTE: DO NOT CHANGE THIS PRIORITY LEVEL W/O WLI DEV APPROVAL -->

<!-- Debug-level log information is frequently the only tool available to

diagnose failures! -->

<priority value="debug"/>

<appender-ref ref="SYSLOGFILE"/>

<appender-ref ref="SYSERRORLOGFILE"/>

</category>

<category name="com.bea.control.HttpResource">

<!-- NOTE: DO NOT CHANGE THIS PRIORITY LEVEL W/O WLI DEV APPROVAL -->

<!-- Debug-level log information is frequently the only tool available to

diagnose failures! -->

<priority value="debug"/>

<appender-ref ref="SYSLOGFILE"/>

<appender-ref ref="SYSERRORLOGFILE" />

</category>

All debug statements are logged into workshop_debug.log file in the corresponding domain
where the application runs.

Http Control Caveats
The following are the known limitations of the Http control:

The Http control doesn't expose any specific method for posting a multi-part document.
However, you can write the code to construct a multi-part message and then convert it into
byte stream and use the sendDataAsHttpPost(byte[] bodyData) method to post data.

The Http control does not support Microsoft Proxy Server. This is because Microsoft Proxy
Server uses NT Lan Manager (NTLM) authentication, which is proprietary to Microsoft.
Using Integration Controls 8-19

Http Cont ro l
The HTTP Event Generator
The HTTP event generator is a servlet that takes an HTTP request, checks for the content type in
the HTTP request, and then appropriately publishes the message to the Message Broker.

The HTTP event generator supports two message data types (XML and binary). The data-type is
determined from the Content-Type header of the HTTP request, property name, and matching
values, as well as other handling criteria are specified in the channel rules of the event generator.

You need to configure event generator channels for different data types, using a Message Broker
channel name, which instructs that any HTTP request coming to that servlet will publish the
message to that channel.

To learn more, see Event Generators in Managing WebLogic Integration Solutions, which is
located at the following URL:

http://edocs.bea.com/wli/docs81/manage/evntgen.html
8-20 Using Integration Controls

C H A P T E R 9
Message Broker Controls
Note: The Message Broker controls are available in WebLogic Workshop only if you are
licensed to use WebLogic Integration.

Messaging systems are often used in enterprise applications to communicate with legacy systems,
or for communication between software components. A client of a messaging system can send
messages to, and receive messages from, any other client.

The Message Broker resource provides a publish and subscribe message-based communication
model for WebLogic Integration business processes, and includes a powerful message filtering
capability.

The Message Broker provides typed channels, to which messages can be published, and to which
services can subscribe to receive messages. You can design a business process to subscribe to
specific channels, using XML Beans for type-safe methods.

Subscribers to Message Broker channels can filter messages on the channels using XQuery
filters. WebLogic Integration supports a powerful mapping tool that allows you to create XQuery
filters for channels. Business processes can filter documents on channels, based on document
type or document content. For example, you can design a filter that filters on stock symbol
documents, or one that filters on a specific purchase order number.

In addition to business processes that can publish messages to Message Broker channels,
WebLogic Integration supports event generators, which can publish external events to message
Using Integration Controls 9-1

Message B roker Cont ro l s
broker channels. WebLogic Integration provides native event generators, including Email, File,
HTTP, JMS, MQ, and Timer event generators. These event generators allow you to start or
continue a business process based on events, such as the receipt of email or a new file appearing
in a directory. WebLogic Integration also works with Application View event generators, which
work with J2EE-CA connectors. To learn about creating and managing event generators using the
WebLogic Integration Administration Console, see Event Generators in Managing WebLogic
Integration Solutions at the following URL:
http://edocs.bea.com/wli/docs81/manage/evntgen.html

To learn more about defining channels, publishing or subscribing to channels, and creating
subscription filters, see:

Publishing and Subscribing to Channels

“Note About Static and Dynamic Subscriptions” in @jpd:mb-static-subscription
Annotation

You can customize Message Broker controls in several ways. You may modify the properties of
the control. These modifications is described in more detail in the sections that follow.

You can use the ControlContext Interface for access to a control's properties at run time and for
handling control events. Property values set by a developer who is using the control are stored as
annotations on the control's declaration in a JWS, JSP, or JPD file, or as annotations on its
interface, callback, or method declarations in a JCX file.

Topics Included in This Section
Message Broker Publish Control

Message Broker Subscription Control

Using Event Generators to Publish to Message Broker Channels

Message Broker Publish Control
Two Message Broker controls are available from your business processes: Publish and
Subscription. Your business process uses a Publish control to publish messages to Message
Broker channels. You bind the Message Broker channel to the Publish control when you declare
the control, but it can be overridden dynamically. You can add additional methods to your
extension (subclass) of the Message Broker Publish control.

For information on how to add control instances to business processes, see Using Controls in
Business Processes.
9-2 Using Integration Controls

../../workshop/java-class/com/bea/control/ControlContext.html
../howdoI/howPubSub.html
../javadoc-tag/jpd/mb-static-subscription.html
../javadoc-tag/jpd/mb-static-subscription.html

Message Broke r Publ ish Cont ro l
The following topics provide information about creating and using Message Broker Publish
controls:

To Create an Instance of a Message Broker Publish Control

Using Methods of the MB Publish Interface

Example Code for MB Publish Control

To Create an Instance of a Message Broker Publish Control

1. Click Add on the Controls tab to display a list of controls that represent the resources with
which your business process can interact.

Note: If the Controls tab is not visible in WebLogic Workshop, click
View→Windows→Data Palette from the menu bar.

2. Choose Integration Controls to display the list of controls used for integrating
applications.

3. Choose MB Publish. The Insert Control dialog box is displayed.

4. In the Insert Control dialog box (Step 1), enter a name for the instance of this control. The
name you enter must be a valid Java identifier.

5. In the Insert Control dialog box (Step 2), select one of the following options:

– Use a MB Publish control already defined by a JCX file

Enter a filename for the MB control in the JCX file field, or click Browse to find the
JCX file in your file system.

– Create a new MB Publish control to use

Enter a filename in the New JCX name field.

6. In the Insert Control dialog box (Step 3), specify the channel name as follows:

– channel-name—Select a channel to which you want your business process to publish.

Note: If no options are available in the channel-name field, you must create a channel file,
which defines the channels to which your business process can publish and subscribe.
To learn how to create this file, see How Do I: Create Message Broker Channels?.

– message type—This read-only field displays the type of data published to the specified
channel: String, XmlObject, RawData.
Using Integration Controls 9-3

../howdoI/howChannel.html

Message B roker Cont ro l s
– metadata type—This read-only field displays the metadata type value if
qualifiedMetadataType is set in the channel definition.

7. Click Create to close the Insert Control dialog box.

An instance of a MB Publish control is created in your project and displayed in the
Controls tab. The following figure shows an example instance of a MB Publish control
displayed in the Controls tab:

JCX File for Your MB Publish Control
When you create a new MB Publish control, you create a new JCX file in your project. The
following example JCX file is automatically created by the control wizard:

import com.bea.control.PublishControl;

import com.bea.data.RawData;

import com.bea.xml.XmlObject;

/**

 * Defines a new Publish control.

 *

 * @jc:mb-publish-control channel-name="/controls/channe1"

 */

public interface mbPublish extends PublishControl,

 com.bea.control.ControlExtension

 /**

 * @jc:mb-publish-method message-body="{value}"

 */

 void publish(String value);

 /**

 * @jc:mb-publish-method message-metadata="{metadata}"

message-body="{value}"

 */
9-4 Using Integration Controls

Message Broke r Publ ish Cont ro l
 void publishWithMetadata(XmlObject metadata, String value);

}

Using Methods of the MB Publish Interface
This section describes the MB Publish control interface. Use the methods from within your
application to publish to Message Broker channels.

MB Publish Control Interface

package com.bea.control;

import com.bea.wli.control.dynamicProperties.PublishControlPropertiesDocument;
import org.w3c.dom.Element;
import weblogic.jws.control.Control;

/**
 * Message Broker Publish control base interface
 */

public interface PublishControl extends Control {

 /**
 * Temporarily sets the message headers to use in the next publish operation
 * @param headers headers to set
 */

 void setOutputHeaders(Element[] headers);

 /**
 * Sets the dynamic properties for the control
 * @param props the dynamic properties for the control
 */

 void setProperties(PublishControlPropertiesDocument props);
 /**
 * Sets the dynamic properties for the control
 * @return the current properties for the control
 */

 PublishControlPropertiesDocument getProperties();
}

The PublishControlPropertiesDocument XML Bean is defined in
DynamicProperties.xsd which is located in the Schemas folder of each process application.

To learn more about the methods available on the MB Publish control, see the PublishControl
Interface Javadoc.
Using Integration Controls 9-5

../java-class/com/bea/control/PublishControl.html
../java-class/com/bea/control/PublishControl.html

Message B roker Cont ro l s
Method Attributes
The following method attributes determine the behavior of the MB Publish control.

Class attributes include:

channel-name
The name of the Message Broker channel to which the MB Publish control publishes
messages.

message-metadata
By default, this XML header is included in messages published with this control. Valid
values include a string containing XML.

Method attributes include:

message-metadata
XML header to include in messages published with the control method to which it is
associated. Valid values include a string containing XML, or a method parameter in curly
braces. For example: {parameter1}.

message-body
Valid values include a string containing text that is used as the message body in the
published message, or a method parameter in curly braces. For example: {parameter2}.

Example Code for MB Publish Control
The Publish control allows you to override class-level annotations with dynamic properties. To
do so, use an XML variable that conforms to the control’s dynamic property schema.

The following is an example of an XML variable you can use to specify the dynamic properties:

<PublishControlProperties>

 <channel-name>potopic</channel-name>

 <message-metadata>

 <custom-header>ACME Corp</custom-header>

 <message-metadata>

</PublishControlProperties>

The XML Schema for the MB Publish control dynamic properties is shown in the following
listing. You can obtain this schema by adding the WLI Schemas project template to you
application. You can get and set these properties using the getProperties and setProperties
methods.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.bea.com/wli/control/dynamicProperties"
9-6 Using Integration Controls

Message Broke r Publ ish Cont ro l
xmlns="http://www.bea.com/wli/control/dynamicProperties"
elementFormDefault="qualified">
 <xs:element name="PublishControlProperties">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="channel-name" type="xs:string"
 minOccurs="0" maxOccurs="1" />
 <xs:element name="message-metadata" type="header"
 minOccurs="0" maxOccurs="1" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

<!-- The following complex-type represents any arbitrary sequence of XML content
-->

 <xs:complexType name="header">
 <xs:sequence>
 <xs:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xs:sequence>
 </xs:complexType>
</xs:schema>

Example Code
MB Publish controls must be extended. The following is an example of how to code a MB Publish
control in your JPD file.

/*

 * @jc:mb-publish-control channel-name="/controls/potopic"

 */

interface MyPublishControl extends

PublishControl,com.bea.control.ControlExtension {

 /**

 * @jc:mb-publish-method

 * message-metadata="<custom-header>ACME Corp</custom-header>"

 * message-body="{myMsgToSend}"

 */

 void publishPO(XmlObject myMsgToSend);

}

/*

 * @common:control
Using Integration Controls 9-7

Message B roker Cont ro l s
 */

private MyPublishControl pubCtrl;

// publish a message

void sendIt(XmlObject myMsgToSend) {

 pubCtrl.publishPO(myMsgToSend);

}

Message Broker Subscription Control
Two Message Broker controls are available from your business processes: Publish and
Subscription. Your business process uses a Subscription control to dynamically subscribe to
channels and receive messages. You bind the channel and optionally, an XQuery expression for
filtering messages, when you create an instance of the control for your business process. The
bindings cannot be overridden dynamically.

The Subscription control interface includes methods that allow your business process to
subscribe to and unsubscribe from the bound Message Broker channel.

Subscribe operations are part of the larger XA transaction, as with other business process
operations. This allows subscribe operations to be rolled back if the business process operation
fails. Because a subscription is in a transaction, you have to commit the transaction to make it
durable. If you’re doing non-transactional work, that is, if a subscribe operation must be
committed before performing an action that might trigger a return message, use
<transaction/> blocks in the flow to commit the current business process state, including the
subscription.

For information on how to add control instances to business processes, see Using Controls in
Business Processes.

The following topics provide information about creating and using Message Broker Subscription
controls:

To Create an Instance of a Message Broker Subscription Control

Using Methods of the MB Subscription Interface

Example Code for MB Subscription Control

Note About Static and Dynamic Subscriptions to Message Broker Channels
9-8 Using Integration Controls

Message Broke r Subsc r ip t ion Cont ro l
To Create an Instance of a Message Broker Subscription Control

1. Click Add on the Controls tab to display a list of controls that represent the resources with
which your business process can interact.

Note: If the Controls tab is not visible in WebLogic Workshop, click
View→Windows→Data Palette from the menu bar.

2. Choose Integration Controls to display the list of controls used for integrating
applications.

3. Choose MB Subscription. The Insert Control dialog box is displayed.

4. In the Insert Control dialog box (Step 1), enter a name for the instance of this control. The
name you enter must be a valid Java identifier.

5. In the Insert Control dialog box (Step 2), select one of the following options:

– Use a MB Subscription control already defined by a JCX file

Enter a filename for the MB control in the JCX file field, or click Browse to find the
JCX file in your file system.

– Create a new MB Subscription control to use

Enter a filename in the New JCX name field.

6. In the Insert Control dialog box (Step 3), specify the channel name as follows:

– channel-name—Select a channel to which you want your business process to
subscribe.

Note: If no options are available in the channel-name field, you must create a channel file,
which defines the channels to which your business process can publish and subscribe.
To learn how to create this file, see How Do I: Create Message Broker Channels?.

– message type—This read-only field displays the type of data received from the
specified channel: String, XmlObject, RawData.

– metadata type—This read-only field displays the metadata type value if
qualifiedMetadataType is set in the channel definition.

7. Select the This subscription will be filtered check box if you want to subscribe using filter
values.

8. Click Create to close the Insert Control dialog box.
Using Integration Controls 9-9

../howdoI/howChannel.html

Message B roker Cont ro l s
An instance of a MB Subscription control is created in your project and displayed in the
Controls tab. The following figure shows an example instance of a MB Subscription
control displayed in the Controls tab:

The control declaration is written to your JPD source file.

/**

 * @common:control

 */

 private processes.mbSubscribe mbSubscribe;

JCX File for Your MB Subscription Control
When you create a new MB Subscription control, you create a new JCX file in your project. The
following example JCX file is automatically created by the control wizard:

import com.bea.control.SubscriptionControl;

import com.bea.data.RawData;

import com.bea.xml.XmlObject;

/**

 * Defines a new Subscription control.

 *

 * @jc:mb-subscription-control channel-name="/controls/channel1"

 */

public interface mbSubscribe extends SubscriptionControl,

 com.bea.control.ControlExtension

{

 /**

 * @jc:mb-subscription-method filter-value-match="{value}"

 */

 void subscribeWithFilterValue(String value);

 interface Callback extends SubscriptionControl.Callback {

 /**

 * @jc:mb-subscription-callback message-body="{message}"

 */
9-10 Using Integration Controls

Message Broke r Subsc r ip t ion Cont ro l
 void onMessage(XmlObject message);

 }

}

You must select the This subscription will be filtered check box to ensure that the
subscribeWithFilterValue() method in included in the JCX file. The onMethod method on
the Calback interface uses the message type defined in the channel file.

Using Methods of the MB Subscription Interface
This section describes the MB Subscription control interface.The methods you can use to
subscribe to Message Broker channels are available from within your application.

Class Interface
package com.bea.control;

import weblogic.jws.control.Control;

/**
 * Message Broker Subscription control base interface
 */

public interface SubscriptionControl extends Control
{

/**
 * Subscribes the control to the message broker. If the subscription
 * uses a filter expression, then the default filter value will be
 * used. If no default filter value is defined in the annotations,
 * then a <tt>null</tt> filter value will be used, meaning that any
 * filter result will trigger a callback.
 */

 void subscribe();

 /**
 * Unsubscribes the control from the message broker, stopping
 * further events (messages) from being delivered to the control.
 */

 void unsubscribe();

 interface Callback {
 /**

 * Internal callback method used to implement user-defined callbacks.
 * JPDs cannot and should not attempt to implement this callback method.
Using Integration Controls 9-11

Message B roker Cont ro l s
 *
 * @param msg the message that triggered the subscription
 * @throws Exception
 *
 void _internalCallback(Object msg) throws Exception;
 */
 }
}

Note: If the subscription uses a filter, you must define custom subscription methods to specify
the filter value to be matched at run time.

The Subscription control does not define callback methods for you. You must define a custom
callback to specify how the business process expects to receive the event messages. (Event
messages can be XML, raw data, or string.)

To learn more about the methods available on the MB Subscription control, see the
SubscriptionControl Interface Javadoc.

Method Attributes
This section describes the class and method attributes supported for the Subscription control.

Class attributes include:

channel-name
The name of the Message Broker channel to which the control subscribes. This is a
required class-level annotation that cannot be overridden.

xquery
The XQuery expression that is evaluated for each message published to a subscribed
channel. Messages that do not satisfy this expression are not dispatched to a subscribing
business process. This is an optional class-level annotation that cannot be overridden.

Method attributes include:

filter-value-match
The filter-value that the XQuery expression results must match for the message to be
dispatched to a subscribing business process. This is an optional method-level annotation.
Valid values for the filter-value-match annotation include a string constant that is
compared directly to the XQuery results, or a method parameter in curly braces. For
example: {parameter1}

Callback method attributes include:
9-12 Using Integration Controls

../java-class/com/bea/control/SubscriptionControl.html

Message Broke r Subsc r ip t ion Cont ro l
message-metadata
The name of a parameter in the callback method that receives the metadata from the
message that triggered the subscription. This parameter must be of type XmlObject (or a
typed XML Bean class).

message-body
The name of a parameter in the callback method that receives the body from the message
that triggered the subscription. This parameter must be of type XmlObject (or a typed
XML Bean class), String, RawData, or a non-XML MFL class (a subclass of
MflObject).

Example Code for MB Subscription Control
MB Subscription controls must be extended. The following is an example of how to code a MB
Subscription control in your JPD file.

/*
 * @jc:mb-subscription-control
 * channel-name="/controls/stocks"
 * xquery="$message/StockSymbol/text()"
 */
interface MySubscriptionControl extends SubscriptionControl, ControlExtension {
 /**
 * @jc:mb-subscription-method
 * filter-value-match="BEA"
 */
 void subscribeToBEA();
 /**
 * @jc:mb-subscription-method
 * filter-value-match="{symbol}"
 */
 void subscribeToSymbol(String symbol);
 interface Callback {
 /**
 * @jc:mb-subscription-callback message-body="{myMsgReceived}"
 */
 onXMLMessage(XmlObject myMsgReceived);
 }
}
.
.
.
/*
 * @common:control
 */
Using Integration Controls 9-13

Message B roker Cont ro l s
 MySubscriptionControl subCtrl;
// subscribe to a message

void subscribeIt() {
 subCtrl.subscribeToBEA();
}
// receive a message after subscribing
subCtrl_onXMLMessage(XmlObject myMsgReceived)
{
}

Note About Static and Dynamic Subscriptions to Message
Broker Channels
In addition to the dynamic subscriptions you design at Control nodes in your business process,
you can design static subscriptions at Start nodes to receive messages from Message Broker
channels.

To learn how to design static subscriptions to Message Broker channels at business process Start
nodes, see Designing Start Nodes.

Using Event Generators to Publish to Message Broker Channels
Event generators publish messages to Message Broker channels. WebLogic Integration supports
the following event generators:

Email event generators

File event generators

HTTP event generators

JMS event generators

MQSeries event generators

Timer event generators

To learn about creating and managing event generators using the WebLogic Integration
Administration Console, see Event Generators in Managing WebLogic Integration Solutions at
the following URL:

http://edocs.bea.com/wli/docs81/manage/evntgen.html
9-14 Using Integration Controls

../wfguide/wfguideStartDesign.html

C H A P T E R 10
MQSeries Control
Note: The MQSeries control is available in WebLogic Workshop only for licensed users of
WebLogic Integration.

MQSeries is a middleware product from IBM that runs on multiple platforms and enables
applications to send messages to other applications. The sending application PUTs a message on
a Queue, and the receiving application GETs the message from the Queue. The sending and
receiving applications do not have to be on the same platform, and do not have to be executing at
the same time. MQSeries takes care of all the storage, logging and communications details
required to guarantee delivery of the message to the destination queue.

The MQSeries control enables WebLogic Integration business processes to work with MQSeries
for sending and receiving messages, to and from MQSeries queues. Using the MQSeries control,
you can send and receive Binary, XML, and String messages. You can specify MQSeries control
properties while configuring the MQSeries control. These properties can also be dynamically set
at run time. You can also set the transaction boundaries for the MQSeries business operations.

The MQSeries control complements the other controls provided in WebLogic Integration, and
can be used with other WebLogic Integration business processes.

The MQSeries Event Generator can be used for polling specific MQSeries queues for incoming
messages. For more information, see Using the MQSeries Event Generator.
Using Integration Controls 10-1

MQSer ies Cont ro l
For information on how to add control instances to business processes, see Using Controls in
Business Processes.

Topics Included in This Section
Before You Add an MQSeries Control

Describes the tasks to be carried out before a new MQSeries control can be created.

Creating and Configuring a New Instance of MQSeries Control
Describes the tasks to be carried out to create and configure a new MQSeries control.

Using Exit Implementation
Describes how to implement the Exit functionality in the MQSeries control

Understanding Transaction Management
Describes the modes of transaction management that are supported within MQSeries
control.

Using Message Descriptors
Describes how the message descriptor attributes of the message can be set and retrieved.

Sending and Receiving Messages
Describes the methods used to send and receive messages.

Working with MQSeries Message Descriptor Format
Describes the method used to send messages of built-in MQSeries formats.

Setting Dynamic Properties
Describes how to modify the MQSeries control properties at run time.

Using the MQSeries Event Generator
Describes the MQSeries Event Generator in brief, with a reference to more information.

Before You Add an MQSeries Control
Before you add an MQSeries control to WebLogic Platform, you need to complete the following
tasks:

1. Install the WebSphere MQSeries client on your machine.

2. Add the com.ibm.mq.jar file from the MQSeries client installation to the system
environment CLASSPATH variable.
10-2 Using Integration Controls

Creat ing and Conf i gur i ng a New Instance of MQSer ies Cont ro l
3. Enable MQSeries control logging, by adding the following lines to the
workshopLogCfg.xml file:

<category “name=com.bea.control.MQControl”>
<!-- NOTE: DO NOT CHANGE THIS PRIORITY LEVEL W/O WLI SUPPORT APPROVAL
-->
<!-- Debug-level log information is frequently the only tool available
to diagnose failures! -->
<priority value="debug"/>
<appender-ref ref="SYSLOGFILE"/>
<appender-ref ref="SYSERRORLOGFILE" />
</category>

The MQSeries control uses the workshop debugger for logging messages.

Note: You need to enable logging before you start the WebLogic server.

4. Import the com.ibm.mq.jar file from the MQSeries client installation, into the Libraries
folder of the WebLogic Workshop application where the MQSeries control is used.

Go ahead and add a new MQSeries control to send and receive messages.

Creating and Configuring a New Instance of MQSeries Control
This topic describes how to create and configure a new instance of MQSeries control.

You can create a new instance of MQSeries control and add it to your business process. To define
a new MQSeries control:

1. Click Add on the Controls tab to display a list of controls that represent the resources with
which your business process can interact.

Note: If the Controls tab is not visible in WebLogic Workshop, click
View→Windows→Data Palette from the menu bar.

2. Choose Integration Controls to display the list of controls used for integrating
applications.

3. Choose MQSeries Control to display the Insert Control - MQSeries dialog

4. In Step 1, in the Variable name for this control field, enter the name for your MQSeries
control.

5. In Step 2, select the Create a new MQSeries control to use radio button.

Note: If you want to use an existing MQSeries control, click the Browse button to select the
JCX file from your system. When you use an existing MQSeries control, the
Using Integration Controls 10-3

MQSer ies Cont ro l
properties that were originally selected for the existing control will be populated in
the JCX file. You cannot modify the properties using the Insert Control - MQSeries
Control dialog. However, you can modify the dynamic properties during run time.
For more information, see Setting Dynamic Properties.

6. In the New JCX name field, enter the name of the new file.

7. Decide whether you want to make this a control factory and select or clear the Make this a
control factory that can create multiple instances at runtime check box. For more
information about control factories, see Control Factories: Managing Collections of
Controls.

8. In Step 3, in the General tab, from the Connection Type drop-down list, select the type of
connection that you want to establish. You can select either Bindings or TCP as your
connection type. Using the Bindings mode, you can obtain connection to queue managers
present in the local system only. Using the TCP connection mode, you can obtain
connections to remote queue managers also.

9. In the MQ Pool Size text box, specify the number of MQSeries connections to be
maintained in the MQSeries connection pool.

10. In the Connection Timeout (Seconds) field, type the number of seconds after which the
connection should time out.

11. From the Require MQ Authorization drop-down list, select either Yes or No. MQ
authorization is applicable only in the TCP mode. If you require MQ authorization, the
MQSeries user name and password must be provided in the Authorization tab.

12. By default, the Implicit Transaction Required option is selected. When selected,
MQSeries control handles transactions implicitly for each Put and Get, individually, without
the need for an explicit transaction boundary. When this option is not selected, you need to
explicitly set the transaction boundaries. For more information, see Understanding
Transaction Management.

13. In the Default Queue Name field, type in the default queue name which is to be used by
the MQSeries control for sending and receiving messages.

14. In the Connection tab, in the Queue Manager Name field, specify the name of the Queue
Manager to which the connection is to be obtained.
10-4 Using Integration Controls

../../workshop/guide/controls/conControlFactoriesManagingCollectionsOfControls.html
../../workshop/guide/controls/conControlFactoriesManagingCollectionsOfControls.html

Creat ing and Conf i gur i ng a New Instance of MQSer ies Cont ro l
15. If you have selected TCP as your connection mode, you need to specify TCP Settings as
follows:

a. In the Host field, type in the host name of The host name of the machine containing the
queue manager to connect to.

b. In the Port field, enter the port number on which the queue manager is available for
connection.

c. In the Channel field, type the MQSeries server connection channel configured in the
queue manager.

d. In the CCSID field, type the Coded Character Set to be used while when connection is
established. The CCSID is used mainly for i18n (Internationalization) support.

16. Click the Test Connection button to ensure that the values entered are correct and that you
are able to connect to the queue manager.

17. If you have requested MQ authorization, you need to specify the MQ user name and
password in the Authorization tab.

Note: The Authorization tab is enabled only if you have selected the TCP connection mode.

18. In the Exits tab, in the Send Exit Class field, type in the fully qualified name of the class
implementing the MQSeries MQSendExit interface.

19. In the Receive Exit Class field, type in the fully qualified name of the class implementing
the MQSeries MQReceiveExit interface.

20. In the Security Exit Class field, type in the fully qualified name of the class implementing
the MQSeries MQSecurityExit interface.

For more information on the Exit functionality, see Using Exit Implementation.

Note: The Exits tab is enabled only if you have selected the TCP connection mode.
However, the fields in this tab are not mandatory.

21. Click Create.

The JCX File for an MQSeries Control
When you create a new instance of MQSeries control, you create a new JCX file in your project.
The following is an example JCX file for an MQSeries control:

package processes;

import com.bea.control.*;
Using Integration Controls 10-5

MQSer ies Cont ro l
import com.bea.xml.XmlCursor;

import com.bea.control.MQControl;

import com.bea.wli.control.mqmdHeaders.MQMDHeadersDocument;

import

com.bea.wli.control.mqDynamicProperties.MQDynamicPropertiesDocument;

import javax.resource.ResourceException;

import com.bea.xml.XmlObject;

/*

* A custom MQ control.

*/

/**

* @jc:MQConnectionType connectionType="Bindings"

* @jc:MQConnectionPoolProps mqPoolSize="20"

* @jc:ConnectionPoolTimeout conTimeout="3600"

* @jc:MQQueueManager queueManager="QM_bea_aruna"

* @jc:MQAuthorization requireAuthorization="No"

* @jc:TCPSettings host=""

port="1414"

channel=""

ccsid="819"

user=""

password=""

sendExit=""

receiveExit=""

securityExit=""

* @jc:DefaultQueue defaultQueueName="default"

* @jc:ImplicitTransaction implicitTransactionRequired="true" */

public interface newjcx extends MQControl, com.bea.control.ControlExtension

{

/*

* A version number for this JCX. This will be incremented in new versions of

* this control to ensure that conversations for instances of earlier

* versions were invalid.

*/

static final long serialVersionUID = 1L;

}

The contents of the MQSeries control's JCX file depend on the selections
10-6 Using Integration Controls

Us ing Ex i t Impl ementa t i on
made in the Insert MQSeries dialog. The example above was generated in

response to selection of Bindings type of connection.

Using Exit Implementation
The MQSeries control allows you to provide your own send, receive, and security exits.

To implement an exit, you define a new Java class that implements the appropriate interface.
Three exit interfaces are defined in the WebSphere MQ package:

MQSendExit

The MQSeries MQSendExit interface allows you to examine and possibly alter the data
sent to the queue manager by the WebSphere MQ Client for Java.

MQReceiveExit

The MQSeries MQReceiveExit interface allows you to examine and possibly alter the data
received from the queue manager by the WebSphere MQ Client for Java.

MQSecurityExit

The MQSeriesSecurityExit interface allows you to customize the security flows that occur
when an attempt is made to connect to a queue manager.

Notes: User Exits are supported for TCP connections only; they are not supported for bindings
connections.

User Exits are used to modify the data that is transmitted between the MQSeries queue
manager and the MQSeries client application. This data is in the form of MQSeries
headers and does not involve the contents of the actual message being put and received
from the queue.

Implementing MQSeries Exits
In order to implement MQSeries Exits, perform the following tasks:

1. Create the Java class that implements the com.ibm.mq.MQSendExit,
com.ibm.mq.MQReceiveExit and com.ibm.mq.MQSecurityExit interfaces for the send,
receive and security exits, as shown in the following example:

package com.bea.UserExit;
import com.ibm.mq.*;
public class MQUserExit implements MQSendExit, MQReceiveExit,
MQSecurityExit {
public MQUserExit()
Using Integration Controls 10-7

MQSer ies Cont ro l
{
}
public byte[] sendExit(MQChannelExit channelExit,MQChannelDefinition
channelDefnition,byte[] agentBuffer)
{
return agentBuffer;
}
public byte[] receiveExit(MQChannelExit channelExit,MQChannelDefinition
channelDefnition,byte[] agentBuffer)
{
return agentBuffer;
}
public byte[] securityExit(MQChannelExit channelExit,MQChannelDefinition
channelDefnition,byte[] agentBuffer)
{
return agentBuffer;
}
}

You may implement these interfaces in a single class or in separate classes as required.

For a Send exit, the agentBuffer parameter contains the data that is about to be sent. For
a Receive exit or a Security exit, the agentBuffer parameter contains the data that has
just been received.

For the Send and Security exits, your exit code should return the byte array that you want
to send to the server. For a Receive exit, your exit code must return the modified data that
you want WebSphere MQ Client for Java to interpret.

2. Bundle the given class in a Jar file, for example, mquserexits.jar.

3. Place the Jar in the WebLogic classpath, by editing the setDomainEnv.cmd file, which is
present in the WebLogic domain directory. To do this, locate the following line in the
setDomainEnv.cmd file:

set CLASSPATH=%ARDIR%\ant\ant.jar;%JAVA_HOME%\jre\lib\rt.jar

and append the following line to it:

;%EXIT_DIR%\mquserexits.jar

Before you append the code containing the Jar file name to the CLASSPATH, you can
define the directory in which the Jar file resides, as follows:

set EXIT_DIR=D:\UserExits
10-8 Using Integration Controls

Unders tand ing T ransact ion Management
Understanding Transaction Management
There are two modes of transaction management supported by the MQSeries control, as follows:

Implicit Transaction Management

Explicit Transaction Management

Implicit Transaction Management
The implicit transaction mode is selected by default. When this mode is on, the MQSeries control
handles the transaction for each MQSeries Get or Put function. The following diagram describes
the how an implicit transaction is handled by the MQSeries control.

When you use implicit transaction, you cannot group several Get and Put functions together as a
part of a transactional unit. Implicit transaction handles each Get or Put individually within a
transaction boundary.

Explicit Transaction Management
The explicit transaction mode is enabled if you choose not to use implicit transaction while
configuring the MQSeries control. In the explicit transaction mode, you need to set the
transaction boundaries explicitly, using the Begin and Commit (or Rollback) MQSeries control
functions.
Using Integration Controls 10-9

MQSer ies Cont ro l
The following flow diagram describes the process of creating a workflow using the explicit
transaction mode.

Using Message Descriptors
A Message Descriptor is an attribute representing a property of the message, that is either being
sent or received. For example, the Message Type of the message, the Message ID of the message,
and the Priority of the message. For a detailed listing of all the message descriptors that are
supported by the MQSeries control, see Table 10-1, “Elements of the MQMDHeaders XML
document”.

Using the MQSeries control, you can set Message Descriptors for each message while sending
the message using the putMessage function. You can also get the message descriptors of the
message that are retrieved from the queue. This facility is supported with the help of the
MQMDHeaders document which is provided as an input to the putMessage and getMessage
functions. The MQMDHeaders document is represented using an XMLBean, which conforms to
the MQMDHeaders schema which is present in the MQSchemas.jar.
10-10 Using Integration Controls

Us ing Message Desc r ip to rs
The following elements of the MQMDHeaders XML document can be set as part of the MQMD
parameters:

Table 10-1 Elements of the MQMDHeaders XML document

Element Name Description Permissible Values Relevance

MessageType Message type of message 8-Datagram

1-Request

2-Reply

Other positive integers
are also accepted, if they
are within the
Application or System
defined ranges specified
by MQSeries.

Put Request, Put Response,
Get Response

MessageId Message Id of message Hexadecimal string Put Request, Put Response,
Get Request, Get Response

CorrelationId Correlation Id of the
message

Hexadecimal string Put Request, Put Response,
Get Request, Get Response

GroupMessage This element is required
while sending and
receiving group messages.

Put Request, Put Response,
Get Request, Get Response

GroupId Group Id of the message Hexadecimal string Put Request, Put Response,
Get Request, Get Response

Priority Priority of the message 0-9 Put Request, Put Response,
Get Response

Format Format of the message String values
representing valid
built-in MQSeries
Formats or user-defined
Formats. The string
values are present in
MQC.MQFMT_*.

Put Request, Put Response,
Get Response

CharacterSet Character Set of the
message

Valid MQSeries
Characterset

Put Request, Put Response,
Get Response
Using Integration Controls 10-11

MQSer ies Cont ro l
Persistence Persistence property of
the message

0-for a non-persistent
message.

1-for persistent message

Put Request, Put Response,
Get Response

Segmentation Segmentation property of
the message

0-for segmentation not
allowed.

1-for segmentation
allowed.

Put Request

Expiry Expiry of the message Any positive integer or -1
(for unlimited expiry)

g Request, Put Response,
Get Response

UserId User Id of the message Any string Put Request, Put Response,
Get Response

MessageSequenceNumb
er

Message Sequence
Number of the message

Any positive integer
other than 0

Put Request, Put Response,
Get Request, Get Response

GroupOptions In the Put Request this
element should be
provided only if the
message being Put is a
group message. In the Get
Response, this element
appears only if the
message retrieved is a
group message.

Put Request, Get Response

IsLastMessage Identifies the last message
of a group message. this
element accepts boolean
values.

True or False Put Request, Get Response

ReportOptions Identifies the report
options to be set while
sending a message.

Put request

Table 10-1 Elements of the MQMDHeaders XML document (Continued)

Element Name Description Permissible Values Relevance
10-12 Using Integration Controls

Us ing Message Desc r ip to rs
COA Confirmation on Arrival.

COA Report options

COA-only the COA
report without any data of
the original message.

COAWithData-the COA
report with the first 100
bytes of the original
message.

COAWithFullData-the
COA report with all the
data of the original
message

COA, COAWithData,
COAWithFullData,
None

Put Request

COD Confirmation of Delivery

COD Report options

COD-only the COD
report without any data of
the original message.

CODWithData-the COD
report with the first 100
bytes of the original
message.

CODWithFullData-the
COD report with all the
data of the original
message.

COD, CODWithData,
CODWithFullData,
None

Put request

Table 10-1 Elements of the MQMDHeaders XML document (Continued)

Element Name Description Permissible Values Relevance
Using Integration Controls 10-13

MQSer ies Cont ro l
Exception Exception Report options

Exception-only the
Exception report without
any data of the original
message.

ExceptionWithData-the
Exception report with the
first 100 bytes of the
original message.

ExceptionWithFullData-t
he Exception report with
all the data of the original
message.

Exception,
ExceptionWithData,
ExceptionWithFullData,
None

Put request

Expiration Expiration Report options

Expiration-only the
Expiration report without
any data of the original
message.

ExpirationWithData-the
Expiration report with the
first 100 bytes of the
original message.

ExpirationWithFullData -
The expiration report with
all the data of the original
message.

Expiration,
ExpirationWithData,
ExpirationWithFullData,
None

Put request

Feedback Feedback of the message Positive integer value Put Request, Put Response,
Get Response

ReplyToQueueName The queue to which the
reports or the reply (only
in the case of request
message) should be sent.

String representing a
valid queue name

Put Request, Put Response,
Get Response

ReplyToQueueManager The queue manager
containing the reply to
queue.

String representing a
valid queue manager
name

Put Request, Put Response,
Get Response

Table 10-1 Elements of the MQMDHeaders XML document (Continued)

Element Name Description Permissible Values Relevance
10-14 Using Integration Controls

Us ing Message Desc r ip to rs
WaitInterval The interval to lapse (in
milliseconds) before
getting a message.

Any positive integer, or
-1 for unlimited wait
interval

Get request

ApplicationIdData String value Put request, Put response
and Get response.

ApplicationOriginData String value Put request, Put response
and Get response.

PutApplType Put application type of the
message

Positive integer value Put request, Put response
and Get response.

PutApplName Put application name of
the message

String value Put request, Put response
and Get response.

PutDateTime Put date and time of the
message

String value Put response and Get
response

AccountingToken Accounting information
for the message

Byte array Put request, Put response
and Get response.

Version Version information of
the message descriptor

2 or 1 Put request, Put response
and Get response.

Table 10-1 Elements of the MQMDHeaders XML document (Continued)

Element Name Description Permissible Values Relevance
Using Integration Controls 10-15

MQSer ies Cont ro l
MessageConsumption Message consumption
option for the
getMessage function.

Browse-Retrieve the
message from the queue
(without deleting the
message).

Delete-Delete the
message from the queue
after retrieving it.

Browse, Delete Get Request

MQGMO_CONVERT Specify whether data
conversion is required for
the message during a Get
operation.

This element needs to be
set to True for retrieving
messages of the EBCDIC
characterset.

True or False Get request

Table 10-1 Elements of the MQMDHeaders XML document (Continued)

Element Name Description Permissible Values Relevance
10-16 Using Integration Controls

Us ing Message Desc r ip to rs
Schema of the MQMDHeaders Document
<?xml version="1.0"?>

<xs:schema targetNamespace="http://www.bea.com/wli/control/MQMDHeaders"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns="http://www.bea.com/wli/control/MQMDHeaders"

elementFormDefault="qualified">

<xs:element name="MQMDHeaders">

<xs:complexType>

<xs:sequence>

<xs:element name="MessageType" type="xs:string" minOccurs="0"

maxOccurs="1"/>

<xs:element name="MessageId" type="xs:string" minOccurs="0" maxOccurs="1"/>

<xs:element name="CorrelationId" type="xs:string" minOccurs="0"

maxOccurs="1"/>

<xs:element name="GroupMessage" minOccurs="0" maxOccurs="1">

<xs:complexType>

<xs:sequence>

<xs:element name="GroupId" type="xs:string" minOccurs="1" maxOccurs="1"/>

Table 10-2 Attributes of the MQMDHeaders document

Attribute Name Under Element Description Values Relevance

waitForAllMsgs GroupMessage Used while retrieving group messages to
specify that no message of the group
should be retrieved until all the messages
of the group are available in the queue.
This attribute is normally specified only
while retrieving the first message of the
group.

True or
False

Get request and
Get response

logicalOrder GroupMessage Used while retrieving group messages to
specify that the messages of the group
should be retrieved in the order of their
Message Sequence Number irrespective
of the order in the queue. This option is
specified while retrieving all the
messages of the group.

True or
False

Get request and
Get response
Using Integration Controls 10-17

MQSer ies Cont ro l
</xs:sequence>

<xs:attribute name="waitForAllMsgs" type="xs:boolean" use="optional"/>

<xs:attribute name="logicalOrder" type="xs:boolean" use="optional"/>

</xs:complexType>

</xs:element>

<xs:element name="Priority" type="xs:string" minOccurs="0" maxOccurs="1"/>

<xs:element name="Format" type="xs:string" minOccurs="0" maxOccurs="1"/>

<xs:element name="CharacterSet" type="xs:string" minOccurs="0"

maxOccurs="1"/>

<xs:element name="Persistence" type="xs:string" minOccurs="0"

maxOccurs="1"/>

<xs:element name="Segmentation" type="xs:string" minOccurs="0"

maxOccurs="1"/>

<xs:element name="Expiry" type="xs:string" minOccurs="0" maxOccurs="1"/>

<xs:element name="UserId" type="xs:string" minOccurs="0" maxOccurs="1"/>

<xs:element name="MessageSequenceNumber" type="xs:string" minOccurs="0"

maxOccurs="1"/>

<xs:element name="GroupOptions" minOccurs="0" maxOccurs="1">

<xs:complexType>

<xs:sequence>

<xs:element name="IsLastMessage" type="xs:boolean"

minOccurs="1" maxOccurs="1"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="ReportOptions" minOccurs="0" maxOccurs="1">

<xs:complexType>

<xs:sequence>

<xs:element name="COA" type="xs:string" minOccurs="0" maxOccurs="1"/>

<xs:element name="COD" type="xs:string" minOccurs="0" maxOccurs="1"/>

<xs:element name="Exception" type="xs:string" minOccurs="0"

maxOccurs="1"/>

<xs:element name="Expiration" type="xs:string" minOccurs="0"

maxOccurs="1"/>

</xs:sequence>

</xs:complexType>

</xs:element>
10-18 Using Integration Controls

Us ing Message Desc r ip to rs
<xs:element name="Feedback" type="xs:int" minOccurs="0" maxOccurs="1"/>

<xs:element name="ReplyToQueueName" type="xs:string" minOccurs="0"

maxOccurs="1"/>

<xs:element name="ReplyToQueueManager" type="xs:string" minOccurs="0"

maxOccurs="1"/>

<xs:element name="WaitInterval" type="xs:string" minOccurs="0"

maxOccurs="1"/>

<xs:element name="ApplicationIdData" type="xs:string" minOccurs="0"

maxOccurs="1"/>

<xs:element name="ApplicationOriginData" type="xs:string" minOccurs="0"

maxOccurs="1"/>

<xs:element name="PutApplType" type="xs:int" minOccurs="0" maxOccurs="1"/>

<xs:element name="PutApplName" type="xs:string" minOccurs="0"

maxOccurs="1"/>

<xs:element name="PutDateTime" type="xs:string" minOccurs="0"

maxOccurs="1"/>

<xs:element name="AccountingToken" type="xs:base64Binary" minOccurs="0"

maxOccurs="1"/>

<xs:element name="Version" type="xs:string" minOccurs="0" maxOccurs="1"/>

<xs:element name="MessageConsumption" type="xs:string" minOccurs="0"

maxOccurs="1"/>

<xs:element name="MQGMO_CONVERT" type="xs:boolean" minOccurs="0"

maxOccurs="1"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

Sample of an MQMDHeaders Document
The following is a sample MQMDHeaders document that contains most of the message
descriptors that you can set using MQSeries control:

<?xml version="1.0"?>

<even:MQMDHeaders xmlns:even="http://www.bea.com/wli/control/MQMDHeaders">

<even:MessageType>8</even:MessageType>

<even:MessageId>1111</even:MessageId>

<even:CorrelationId>2222</even:CorrelationId>

<even:GroupMessage>
Using Integration Controls 10-19

MQSer ies Cont ro l
<even:GroupId>3333</even:GroupId>

</even:GroupMessage>

<even:Priority>9</even:Priority>

<even:Format>MQSTR</even:Format>

<even:CharacterSet>819</even:CharacterSet>

<even:Persistence>1</even:Persistence>

<even:Segmentation>1</even:Segmentation>

<even:Expiry>5000</even:Expiry>

<even:UserId>WebLogic</even:UserId>

<even:MessageSequenceNumber>1</even:MessageSequenceNumber>

<even:GroupOptions>

<even:IsLastMessage>true</even:IsLastMessage>

</even:GroupOptions>

<even:ReportOptions>

<even:COA>COAWithFullData</even:COA>

<even:COD>CODWithFullData</even:COD>

<even:Exception>ExceptionWithFullData</even:Exception>

<even:Expiration>ExpirationWithFullData</even:Expiration>

</even:ReportOptions>

<even:Feedback>1</even:Feedback>

<even:ReplyToQueueName>trial</even:ReplyToQueueName>

<even:ReplyToQueueManager>QM_itpl_025051</even:ReplyToQueueManager>

<even:ApplicationIdData>App_ID_025051</even:ApplicationIdData>

<even:ApplicationOriginData>Windows_app_025051</even:ApplicationOriginData

> <even:PutApplType>1</even:PutApplType>

<even:PutApplName>MQSeriesClient</even:PutApplName>

<even:Version>2</even:Version>

</even:MQMDHeaders>

Using XML Beans to Set the MQMDHeader Element Values
The MQSeries control MQMDHeaders document element values can be set and the return values
can be retrieved, programmatically, by using XML beans. An example for setting the
MQMDHeader element values prior to the putMessage function call is as follows:

headers =

com.bea.wli.control.mqmdHeaders.MQMDHeadersDocument.Factory.newInstance();

com.bea.wli.control.mqmdHeaders.MQMDHeadersDocument.MQMDHeaders header =

headers.addNewMQMDHeaders();
10-20 Using Integration Controls

Sendi ng and Recei v ing Messages
header.setMessageType(MQC.MQMT_DATAGRAM);

header.setPriority(8);

header.setExpiry(5000);

header.setPersistence(MQC.MQPER_PERSISTENT);

header.getReportOptions().setCOA("COA");

header.setReplyToQueueName("ReportQueue");

header.setApplicationIdData("Testing");

header.setApplicationOriginData("AAAA");

header.setPutApplName("Websphere MQ 2");

header.setPutApplType(MQC.MQAT_JAVA);

Sending and Receiving Messages
You can send and receive messages using the MQSeries control, by using the Put and Get
functions. You can send and receive messages in the form of Bytes, String or XML data.

Sending Messages
Depending on the data type of the message that you want to send, you can use any of the
following putMessage functions:

MQMDHeadersDocument putMessageAsBytes (byte[] message,
java.lang.String queue, MQMDHeadersDocument mqmd) throws
ResourceException;

MQMDHeadersDocument putMessageAsString (String message,
java.lang.String queue, MQMDHeadersDocument mqmd) throws
ResourceException;

MQMDHeadersDocument putMessageAsXml (XmlObject message,
java.lang.String queue, MQMDHeadersDocument mqmd) throws
ResourceException;

The first parameter that is passed to the function is the message to be put into the queue. The
possible types for this parameter are byte[], XmlObject and String for sending Binary, XML and
plain text messages respectively.

The second parameter that is passed to the function is the queue to which the message needs to
be Put. If no value is provided during runtime, that is, if the value is null, the default queue name
mentioned in the control property is used.

The third parameter that is passed to the function is the XML bean representing the
MQMDHeadersDocument provided as an XML document during runtime, which conforms to
Using Integration Controls 10-21

MQSer ies Cont ro l
the MQMDHeaders schema. The values provided in this document are used for setting the
MQMD attributes of the message being sent.

The return value of the function is the MQMDHeadersDocument representing the MQMD
attributes of the message Put into the queue.

Using the putMessage Function In a Business Process
The following sample procedure describes how to add any MQSeries control putMessage
function to a business process.

1. Open the Client Request node.

2. In the General Settings tab, provide a name for the new method.

3. Click Add, and select MQMDHeadersDocument from the XML Types list. Provide a
name for the variable in the Name field. Click OK to add your selection to the Client
Request node. This represents the input MQMDHeaders document for the putMessage
function.

4. Click Add again, and select String from the Java datatype list. Provide a name for the
variable in the Name field. Click OK to add your selection to the Client Request node.
This represents the queue name for the putMessage function.

5. Click Add again, and select String from the Java datatype list. Provide a name for the
variable in the Name field. Click OK to add your selection to the Client Request node.
This represents the message for the putMessage function.

6. In the Receive Data tab, create a new variable for each of the three parameters that you
created in the General Settings tab of the Client Request node. You need to provide
variable names for all the three variables. The variable type is pre-defined, based on the
parameters to which you are assigning the variable.

7. Close the Client Request node.

8. Drag and drop the putMessageAsString function from the Controls tab in the Data
Palette into your business process, just below the Client Request node.

9. Open the Send Data tab of the putMessageAsString function node. From the Select
variables to assign drop-down list, assign the variables that you created in the Receive
Data tab of the Client Request node, to the corresponding parameter of the
putMessageAsString function listed in the Control Expects column.
10-22 Using Integration Controls

Sendi ng and Recei v ing Messages
10. Open the Receive Data tab of the putMessageAsString function node. From the Select
variables to assign drop-down list, create a new variable to store the output of the
putMessageAsString function which is the MQMDHeaders document, which represents
the attributes of the message that was sent.

You can use similar steps to send messages using putMessageAsBytes or putMessageAsXml
functions.

Receiving Messages
Depending on the data type of the message that you want to receive, you can use any of the
following getMessage functions:

byte[] getMessageAsBytes(java.lang.String queue, MQMDHeadersDocument
mqmd) throws ResourceException;

String getMessageAsString(java.lang.String queue, MQMDHeadersDocument
mqmd) throws ResourceException;

XmlObject getMessageAsXml(java.lang.String queue, MQMDHeadersDocument
mqmd) throws ResourceException;

The first parameter of the function is the queue from which the message is to be received. If no
value is provided during runtime, that is, if the value is null, the default queue name mentioned
in the control property is used.

The second parameter to this function is the XML bean representing the
MQMDHeadersDocument provided as an XML document during runtime, which conforms to
the MQMDHeaders schema. The values provided in this document are used for retrieving the
message corresponding to the MQMD attributes specified in the document. The MQMD
attributes of the message obtained from the queue are updated in this XML bean object itself.

The return value of the function is the message obtained from the queue. The data type of the
message depends on the getMessage function added. The values may be byte[], XmlObject or
String depending on whether the message obtained is to be processed as a Binary, XML or plain
text message.

Using the getMessage Function In a Business Process
The following sample procedure describes how to add any MQSeries control getMessage
function to a business process.

1. Open the Client Request node.

2. In the General Settings tab, provide a name for the new method.
Using Integration Controls 10-23

MQSer ies Cont ro l
3. Click Add, and select MQMDHeadersDocument from the XML Types list. Provide a
name for the variable in the Name field. Click OK to add your selection to the Client
Request node. This represents the input MQMDHeaders document for the getMessage
function.

4. Click Add again, and select String from the Java datatype list. Provide a name for the
variable in the Name field. Click OK to add your selection to the Client Request node.
This represents the queue name for the getMessage function.

5. In the Receive Data tab, create a new variable for each of the two parameters that you
created in the General Settings tab of the Client Request node. You need to provide
variable names for the two variables. The variable type is pre-defined, based on the
parameters to which you are assigning the variable.

6. Close the Client Request node.

7. Drag and drop the getMessageAsString function from the Controls tab in the Data
Palette into your business process, just below the Client Request node.

8. Open the Send Data tab of the getMessageAsString function node. From the Select
variables to assign drop-down list, assign the variables that you created in the Receive
Data tab of the Client Request node, to the corresponding parameter of the
getMessageAsString function listed in the Control Expects column.

9. Open the Receive Data tab of the getMessageAsString function node. From the Select
variables to assign drop-down list, create a new variable to store the output of the
getMessageAsString function which is a String that represents the message that was
retrieved from the queue.

The Message Descriptor attributes of the message that was retrieved from the queue are
updated in the MQMDHeaders document that was provided as input to the
getMessageAsString function.

You can use similar steps to retrieve messages using getMessageAsBytes or
getMessageAsXml functions.

Sending Group messages
You can send Group Messages by configuring your business process containing the putMessage
function of the MQSeries control, within a loop configured using one of the While do, Do While,
and For Each process nodes.
10-24 Using Integration Controls

Sendi ng and Recei v ing Messages
To send group messages, provide the GroupOptions element in the MQMDHeadersDocument.
You need to provide this element in the input MQMDHeaders XML document only if a group
message is to be sent.

In the MQMDHeaders document, set the IsLastMessage element within GroupOptions to
False, for all messages except the last message, for which the IsLastMessage element has to
be set to True.

If you specify a GroupId for the first message, the MQSeries control assigns this Id to the group
message. If you do not specify a GroupId for the first message, the MQSeries queue manager
assigns a group Id to the first message. This Id is returned in the output MQMDHeaders document
of the putMessage function.

The Group Id assigned to the first message must be used for all the subsequent messages of the
group. The MessageSequenceNumber of the first message of the group should be 1; the
MessageSequenceNumber of the second message should be 2, and so on.

Retrieving Group Messages
You can retrieve group Messages by configuring your business process containing the
getMessage function of the MQSeries control, within a loop configured using one of the While
do, Do While, and For Each process nodes.

Setting the logicalorder Attribute
The MQSeries control supports retrieving group messages in a logical order. To configure
MQSeries control to retrieve group messages in a logical order, set the logicalOrder attribute of
the GroupMessage element to True.

You can retrieve messages in a logical order only if you are using the explicit transaction mode.
The following figure depicts a sample workflow for retrieving group messages in logical order:
Using Integration Controls 10-25

MQSer ies Cont ro l
The loop can be continued until the IsLastMessage element within the GroupOptions element
is set to True in the response MQMDHeaders document of the getMessage function.

Note: The GroupOptions element will not appear in the Get Response MQMDHeaders
document if the retrieved message is not a part of a group.

The logicalOrder attribute must be set to True in each call of the Get service to get all the
messages of the group in their logical order (in the order of their message sequence number
starting from 1 for the first message).

Setting the logicalOrder to False in the midst of getting group messages, when its value was
True in the previous Get service call would disturb the logical ordering.
10-26 Using Integration Controls

Sendi ng and Recei v ing Messages
Setting the logicalOrder attribute to False or not providing this attribute in the Get request
document would mean that the control would get the first message of the group as it appears on
the queue irrespective of its message sequence number.

The Get Request MQMDHeaders document for retrieving group messages in logical order and
also wait for all messages of the group, looks as follows:

<?xml version="1.0"?>

<even:MQMDHeaders xmlns:even="http://www.bea.com/wli/control/MQMDHeaders">

<even:GroupMessage waitForAllMsgs="true" logicalOrder="true">

<even:GroupId></even:GroupId>

</even:GroupMessage>

<even:MessageConsumption>Delete</even:MessageConsumption>

</even:MQMDHeaders>

Setting the waitForAllMsgs Attribute
You can configure MQSeries control to wait for all messages of the group to be present in the
queue before retrieving any message within the group. To configure MQSeries control to wait for
all messages, set the waitForAllMsgs attribute of the GroupMessage element to True.

Note: The waitForAllMsgs and the logicalOrder attribute are optional and can be set to
either True or False.

You can set the waitForAllMsgs to True while retrieving the first message of the group. After
you retrieve the first message in the group, you can set this attribute to True again, for retrieving
the other messages of the group, provided that you have also set the logicalOrder attribute to
True.

Setting the waitForAllMsgs attribute to False or not providing this attribute in the Get request
document would mean that the control can still get group messages from the queue even when
not all of the messages of the group are present in the queue.

Setting the GroupId element
The GroupId is an optional element that you can set under the GroupMessage element and its
value may not be provided if the hexadecimal group id of the group message is not known. In
case there are multiple group messages in the queue, the first group message appearing in the
queue is retrieved. The GroupId value may be specified, if known. If specified, and there are
multiple group messages in the queue, the group message matching the group id is retrieved.
Using Integration Controls 10-27

MQSer ies Cont ro l
Retrieving Group Messages Using MessageSequenceNumber Element
Group Messages can also be retrieved by specifying the MessageSequenceNumber element and
the GroupId. But this can be used only if the logicalOrder attribute value is False or is not
provided. When the MessageSequenceNumber and the GroupId are provided, the message of
the group matching the MessageSequenceNumber is retrieved. So the group messages can still
be retrieved in a loop by providing the GroupId and incrementing the MessageSequenceNumber
by 1 in each Get function call in the loop, the MessageSequenceNumber of the first message
being 1.

Working with MQSeries Message Descriptor Format
Format is a message descriptor attribute. Messages of a particular Format conform to a specific
structure which depends on Format type. For example, CICS, IMS, MQRFH2 and so on. The
structure for each built-in MQSeries Format is different and is defined by MQSeries. For more
information on MQSeries Formats, see the online MQSeries documentation at the following
URL:

http://www.ibm.com

Using MQSeries control you can send messages that correspond to both built-in MQSeries
formats as well as user-defined formats. This is possible only by using the putMessageAsBytes
function.

To send a message that conforms to an MQSeries Format, you need to write Java code in the
process JPD file, as shown in the following examples.

Example: Sending a message that conforms to the CICS Format (using the putMessage function)

1. Declare a variable, for example, putin, in the JPD file of your process project in the
application, as follows:

public com.bea.wli.control.mqmdHeaders.MQMDHeadersDocument putin;

This variable represents the input MQMDHeaders document XMLBean variable for the
putMessage function.

2. Drag and drop the Perform node from the Palette, into the business process, just below the
Client Request node.

3. Open the Perform node in the Source View and add the following lines of code to it.

public void perform() throws Exception
{
putin.getMQMDHeaders().setFormat(MQC.MQFMT_CICS);
10-28 Using Integration Controls

Working wi th MQSer ies Message Descr i pt or Fo rmat
bytmsg = getCICSHeader();
}
public byte[] getCICSHeader() throws Exception {
ByteArrayOutputStream bstream = new ByteArrayOutputStream();
DataOutputStream ostream = new DataOutputStream (bstream);
ostream.writeChars("CIH "); // Struct id

ostream.writeInt(1); // Version
ostream.writeInt(164); // StrucLength
ostream.writeInt(273); // Encoding
ostream.writeInt(819); // CodedCharSetId
ostream.writeChars(" "); // Format
ostream.writeInt(0); //Flags
ostream.writeInt(0); //ReturnCode
ostream.writeInt(0); //CompCode
ostream.writeInt(0); //Reason
ostream.writeInt(273); //UOWControl
ostream.writeInt(-2); //GetWaitInterval
ostream.writeInt(1); //LinkType
ostream.writeInt(-1); //OutputDataLength
ostream.writeInt(0); //FacilityKeepTime
ostream.writeInt(0); //ADSDescriptor
ostream.writeInt(0); //ConversationalTask
ostream.writeInt(0); //TaskEndStatus
ostream.writeBytes("\0\0\0\0\0\0\0\0"); //Facility
ostream.writeChars(" "); //Function
ostream.writeChars(" "); //AbendCode
ostream.writeChars(" "); //Authenticator
ostream.writeChars(" "); //Reserved1
ostream.writeChars(" "); //ReplyToFormat
ostream.writeChars(" "); //RemoteSysId
ostream.writeChars(" "); //RemoteTransId
ostream.writeChars(" "); //TransactionId
ostream.writeChars(" "); //FacilityLike
ostream.writeChars(" "); //AttentionId
ostream.writeChars(" "); //StartCode
ostream.writeChars(" "); //CancelCode
ostream.writeChars(" "); //NextTransactionId
ostream.writeChars(" "); //Reserved2
ostream.writeChars(" "); //Reserved3
ostream.writeChars("HelloWorld");
ostream.flush();
byte[] bArr = bstream.toByteArray();
return bArr;
}

These lines of code set the Format element in the input MQMD Headers document of the
putMessage function, to MQC.MQFMT_CICS represented by the String "MQCICS ".
Using Integration Controls 10-29

MQSer ies Cont ro l
The getCICSHeader function writes the fields present in the CICS header structure to a
byte array output stream and returns an array of bytes. The values of the fields that have
been given in this example can be modified as required. The actual message can be
appended to this byte array at the end and can be Put into the MQSeries queue. This byte
array can be provided as the first parameter to the putMessageAsBytes function which is
added to the process JPD file, after the Perform node. For more information on the
putMessage function, see Sending and Receiving Messages.

Example: Sending a message that conforms to the IMS Format (using the putMessage function)

1. Declare a variable, for example, putin, in the JPD file of your process project in the
application, as follows:

public com.bea.wli.control.mqmdHeaders.MQMDHeadersDocument putin;

This variable represents the input MQMDHeaders document XMLBean variable for the
putMessage function.

2. Drag and drop the Perform node from the Palette, into the business process, just below the
Client Request node.

3. Open the Perform node in the Source View and add the following lines of code to it.

public void perform() throws Exception
{
putin.getMQMDHeaders().setFormat(MQC.MQFMT_IMS);
bytmsg = getIMSHeader();
}
public byte[] getIMSHeader() throws Exception {
ByteArrayOutputStream bstream = new ByteArrayOutputStream();
DataOutputStream ostream = new DataOutputStream (bstream);

ostream.writeBytes("IIH "); // Struct id
ostream.writeInt(1); // Version
ostream.writeInt(84); // Length
ostream.writeInt(0); // Encoding
ostream.writeInt(0); // CodedCharacterSet
ostream.writeBytes(" "); // Format (8 characters)
ostream.writeInt(0); // Flags
ostream.writeBytes(" "); // LTermOverride
ostream.writeBytes(" "); // MFSMapName
ostream.writeBytes(" "); // ReplyToFormat
ostream.writeBytes(" "); // Authenticator
ostream.writeBytes("\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"); //
TransInstanceId
ostream.writeBytes(" "); //Transtate
ostream.writeBytes("1"); // CommitMode
ostream.writeBytes("F"); // Security Scope
10-30 Using Integration Controls

Working wi th MQSer ies Message Descr i pt or Fo rmat
ostream.writeBytes(" "); // Resrved
ostream.writeChars("HelloWorld");
ostream.flush();
byte[] bArr = bstream.toByteArray();
return bArr;
}

These lines of code set the Format element in the input MQMD Headers document of the
putMessage function, to MQC.MQFMT_IMS represented by the String "MQIMS ".

The getIMSHeader function writes the fields present in the IMS header structure to a byte
array output stream and returns an array of bytes. The values of the fields that have been
given in this example can be modified as required. The actual message can be appended to
this byte array at the end and can be Put into the MQSeries queue. This byte array can be
provided as the first parameter to the putMessageAsBytes function which is added to the
process JPD file, after the Perform node. For more information on the putMessage
function, see Sending and Receiving Messages.

Example: Sending a message that conforms to the MQRFH2 Format (using the putMessage
function)

1. Declare a variable, for example, putin, in the JPD file of your process project in the
application, as follows:

public com.bea.wli.control.mqmdHeaders.MQMDHeadersDocument putin;

This variable represents the input MQMDHeaders document XMLBean variable for the
putMessage function.

2. Drag and drop the Perform node from the Palette, into the business process, just below the
Client Request node.

3. Open the Perform node in the Source View and add the following lines of code to it.

public void perform() throws Exception
{
putin.getMQMDHeaders().setFormat(MQC.MQFMT_RF_HEADER_2);
bytmsg = getMQRFH2Header();
}
public byte[] getMQRFH2Header() throws Exception {
ByteArrayOutputStream bstream = new ByteArrayOutputStream();
DataOutputStream ostream = new DataOutputStream (bstream);
String strVariableData =
"<mcd><Msd>jms_text</Msd></mcd><jms><Dst>someplace</Dst></jms>";
int iStrucLength = MQC.MQRFH_STRUC_LENGTH_FIXED_2 +
strVariableData.getBytes().length;
while(iStrucLength % 4 != 0)
{

Using Integration Controls 10-31

MQSer ies Cont ro l
strVariableData = strVariableData + " ";
iStrucLength = MQC.MQRFH_STRUC_LENGTH_FIXED_2 +
strVariableData.getBytes().length;
}
ostream.writeChars(MQC.MQRFH_STRUC_ID);//StrucID
ostream.writeInt(MQC.MQRFH_VERSION_2);//Version
ostream.writeInt(iStrucLength);//StrucLength
ostream.writeInt(273);//Encoding
ostream.writeInt(1208);//CodedCharSetID
ostream.writeChars(MQSTR);//Format
ostream.writeInt(MQC.MQRFH_NO_FLAGS);//Flags
ostream.writeInt(1208);//NameValueCCSID
ostream.writeInt(strVariableData.getBytes().length);//NameValueLength
ostream.writeChars(strVariableData); //NameValueData
ostream.writeChars(“HelloWorld“);
ostream.flush();
byte[] bArr = bstream.toByteArray();
return bArr;
}

These lines of code set the Format element in the input MQMD Headers document of the
putMessage function, to MQC.MQFMT_RF_HEADER_2 represented by the String "MQHRF2 ".

The getMQRFH2Header function writes the fields present in the MQRFH2 header structure
to a byte array output stream and returns an array of bytes. The values of the fields that
have been given in this example can be modified as required. The actual message can be
appended to this byte array at the end and can be Put into the MQSeries queue. This byte
array can be provided as the first parameter to the putMessageAsBytes function which is
added to the process JPD file, after the Perform node. For more information on the
putMessage function, see Sending and Receiving Messages.

Setting Dynamic Properties
You can change the MQSeries control properties dynamically at runtime. The MQSeries control
properties that you can modify are specified in the MQDynamicProperties document. This
document conforms to the MQDynamicProperties schema, which is available in the
MQSchemas.jar file.

To change properties dynamically, perform the following tasks

1. Open the Client Request node. In the General Settings tab, add a variable of type
MQDynamicProperties document.
10-32 Using Integration Controls

Se t t ing Dynamic P rope r t ies
2. In the Receive Data tab, create a new variable for the parameter that you created in the
General Settings tab of the Client Request node. You need only to provide a variable
name for the variable. The variable type is pre-defined, based on the parameter to which
you are assigning the variable.

3. Drag and drop the setDynamicProperties function from the Controls tab of the Data
Palette, into your business process.

4. Open the Send Data tab of the setDynamicProperties function node. From the Select
variables to assign drop-down list, assign the variable that you created in the Receive Data
tab of the Client Request node, to the corresponding parameter of the
setDynamicProperties function listed in the Control Expects column. All MQSeries Get
and Put operations following the setDynamicProperties function in the business process
will use the properties that you specify in the MQDynamicProperties document.

5. While executing your business process at runtime, provide the MQDynamicProperties
document as input.

Caution: When you use the Explicit Transaction mode, the setDynamicProperties function
should always be called before the Begin function or after Commit or Rollback
functions. If this sequence is not followed, the business process will throw an
exception during runtime.

Schema of MQDynamicProperties
<?xml version="1.0"?>

<xs:schema xmlns="http://www.bea.com/wli/control/MQDynamicProperties"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.bea.com/wli/control/MQDynamicProperties"

elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:element name="MQDynamicProperties">

<xs:complexType>

<xs:sequence>

<xs:element name="connectionType" type="connType" minOccurs="0"

maxOccurs="1"/>

<xs:element name="queueManager" type="xs:string" minOccurs="0"

maxOccurs="1"/>

<xs:element name="requireAuthorization" type="authType" minOccurs="0"

maxOccurs="1"/>

<xs:element name="host" type="xs:string" minOccurs="0" maxOccurs="1"/>
Using Integration Controls 10-33

MQSer ies Cont ro l
<xs:element name="port" type="xs:string" minOccurs="0" maxOccurs="1"/>

<xs:element name="channel" type="xs:string" minOccurs="0" maxOccurs="1"/>

<xs:element name="ccsid" type="xs:string" minOccurs="0" maxOccurs="1"/>

<xs:element name="user" type="xs:string" minOccurs="0" maxOccurs="1"/>

<xs:element name="password" type="xs:string" minOccurs="0" maxOccurs="1"/>

<xs:element name="sendExit" type="xs:string" minOccurs="0" maxOccurs="1"/>

<xs:element name="receiveExit" type="xs:string" minOccurs="0"

maxOccurs="1"/>

<xs:element name="securityExit" type="xs:string" minOccurs="0"

maxOccurs="1"/>

<xs:element name="defaultQueueName" type="xs:string" minOccurs="0"

maxOccurs="1"/>

<xs:element name="implicitTransactionRequired" type="transType"

minOccurs="0" maxOccurs="1"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:simpleType name="connType">

<xs:restriction base="xs:string">

<xs:enumeration value="Bindings"></xs:enumeration>

<xs:enumeration value="TCP"></xs:enumeration>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="authType">

<xs:restriction base="xs:string">

<xs:enumeration value="Yes"></xs:enumeration>

<xs:enumeration value="No"></xs:enumeration>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="transType">

<xs:restriction base="xs:string">

<xs:enumeration value="true"></xs:enumeration>

<xs:enumeration value="false"></xs:enumeration>

</xs:restriction>

</xs:simpleType>

</xs:schema>
10-34 Using Integration Controls

Using the MQSer ies Event Gene ra to r
Sample MQDynamicProperties Document
The following is a sample MQDynamicProperties document. You need to provide this document
at runtime, when you execute your business process:

<?xml version="1.0"?>

<even:MQDynamicProperties

xmlns:even="http://www.bea.com/wli/control/MQDynamicProperties">

<even:connectionType>TCP</even:connectionType>

<even:queueManager>newqm</even:queueManager>

<even:requireAuthorization>Yes</even:requireAuthorization>

<even:host>localhost</even:host>

<even:port>1869</even:port>

<even:channel>chn</even:channel>

<even:ccsid>437</even:ccsid>

<even:user>WebLogic</even:user>

<even:password>WebLogic</even:password>

<even:defaultQueueName>errqueue</even:defaultQueueName>

</even:MQDynamicProperties>

Using the MQSeries Event Generator
The MQSeries event generator polls the MQSeries queue for messages and publishes them to
WebLogic message broker channels. The MQSeries event generator supports three different data
types, that is, Bytes, String and XML.

You can configure event generator channels for different data types, using a Message Broker
channel name, which instructs that any message coming into the specified MQSeries queue will
be published to that message broker channel.

Similar to the MQSeries control, the MQSeries event generator also provides two modes of
connections, that is, TCP-IP and Bindings. You can also implement content-filters to filter
messages based on the specific content that you want. By doing this, you can ensure that you
generate events only for the messages that you require.

The MQSeries event generator can also spawn multiple threads of events. Each thread can
separately poll the MQSeries queue. You can configure the number of messages to be picked by
the event generator thread in each poll.

To learn more, see Event Generators in Managing WebLogic Integration Solutions, which is
located at the following URL:
Using Integration Controls 10-35

MQSer ies Cont ro l
http://edocs.bea.com/wli/docs81/manage/evntgen.html
10-36 Using Integration Controls

C H A P T E R 11
Process Control
Note: The Process control is available in WebLogic Workshop only if you are licensed to use
WebLogic Integration.

The Process control is used to send requests to and receive callbacks from another business
process. The Process control is typically used to call a subprocess from a parent process.

For information on how to add control instances to business processes, see Using Controls in
Business Processes.

Topics Included in This Section
Overview: Process Control

Describes the Process control

Creating a New Process Control
Describes how to create and configure a new Process control.

Editing and Testing a Dynamic Selector
Describes how to edit and test a dynamic selector for a Process control.

Using Dynamic Binding
Describes how to customize a Process control.
Using Integration Controls 11-1

Process Cont ro l
Overview: Process Control
The Process control is used to send requests to and receive callbacks from another business
process. It’s capabilities are similar to those of the Service Broker control. Unlike the Service
Broker control, the Process control is only used to target other business processes in the same
domain using Java/RMI (Remote Method Invocation). The target of the call can be dynamically
specified. The Process control is typically used to call a subprocess from a parent process.

The first step in using a Process control is to create a JCX file. The JCX can be automatically
generated from a target business process using WebLogic Workshop, or can be created using the
control wizard. The methods and callbacks on the JCX correspond to operations and callbacks of
the target business process. An instance of this JCX is used by a parent process to call the target
process. Process control JCX files can have selector annotations only on start methods or, for
stateless target services, on any method.

To learn about creating a Process control, see Creating a New Process Control.

Setting Process Control Properties
The Process control adds the capability of dynamically binding some properties of the control.
Dynamic binding of properties can be achieved the following ways:

Using selectors

Using the setProperties() API

Using setter methods for individual properties, such as setEndPoint().

To retrieve the current property settings, except for username and password, use the
getProperties() method.

The hierarchy of property settings is as follows, starting with the method with the highest
precedence:

1. Properties dynamically bound using the jc:selector tag and the
DynamicProperties.xml file

2. Properties set using the setProperties() method or other setter methods inherited from
the Process control (setConversationID, setTargetURI, setPassword, and
setUsername)

3. Properties set using static annotations
11-2 Using Integration Controls

Overv iew : P rocess Cont ro l
The ProcessControlProperties type is an XML Beans class that is generated out of the
corresponding schema element defined in DynamicProperties.xsd. The
DynamicProperties.xsd file is located in the system folder of New Process Applications or in
the system folder of the Schemas project.

The setProperties() method uses this XML Bean class to set properties on a control instance.
A selector on a Process control method returns an XML document that conforms to the
ProcessControlProperties element. The following sample shows how to programmatically
set the username property for control. You add the bold code lines to the code generated when
the control is created, overriding properties set using dynamic binding and static annotations:

import com.bea.wli.control.dynamicProperties.
ProcessControlPropertiesDocument;

import com.bea.wli.control.dynamicProperties.
ProcessControlPropertiesDocument.ProcessControlProperties;

 ProcessControlPropertiesDocument props= null;
 ProcessControlProperties sprops = null;

 public void sBC8InvokeSetProperties() throws Exception

 {

 props = ProcessControlPropertiesDocument.Factory.newInstance();
 sprops = props.addNewProcessControlProperties();

 sprops.setUsername("smith");

Some control properties can be specified both in annotations (statically) on the JCX file or
dynamically. For example, the Process control allows you to specify the target process in the
jc:location annotation at the top of the JCX or dynamically using the TargetURI element in
DynamicProperties.xml. In all such cases, a dynamically bound value for the property takes
precedence over the static annotation.

Dynamic properties can also be specified by calling setProperties on the control, or by calling
one of the setter methods, such as ProcessControl.setUsername().

Properties applied using selectors remained bound until one of the following conditions occurs:

A method marked finish on the JCX is invoked

A start method is invoked again

The property is programmatically set by calling setProperties or a setter method.
Using Integration Controls 11-3

Process Cont ro l
ProcessControl.reset() resets all dynamically set properties (in addition to all
conversational state). Programmatically specified properties remain bound until reset() is
invoked.

You can also use the ControlContext interface for access to a control's properties at run time and
for handling control events. Property values set by a developer who is using the control are stored
as annotations on the control’s declaration in a JWS, JSP, or JPD file, or as annotations on its
interface, callback, or method declarations in a JCX file.

Related Topics
Service Broker Control

Using Dynamic Binding

ProcessControl Interface

Creating a New Process Control
This topic describes how to create a new Process control.

To learn about Process controls, see Process Control.

Creating a New Process Control Using the Control Wizard
You can create a new Process control and add it to your business process by using the Insert
Process dialog. If you are not in Design View, click the Design View tab.

To define a new Process control

1. Click Add on the Controls tab to display a list of controls that represent the resources with
which your business process can interact.

Note: If the Controls tab is not visible in WebLogic Workshop, click
View→Windows→Data Palette from the menu bar.

2. Choose Integration Controls to display the list of controls used for integrating
applications.

3. Choose Process to display the Insert Control - Process dialog.

4. In Step 1, in the Variable name for this control field, type the name for your Process
control.

5. In Step 2, select the Create a new Process control to use radio button.
11-4 Using Integration Controls

../java-class/com/bea/control/ProcessControl.html
../../workshop/java-class/com/bea/control/ControlContext.html

Creat ing a New P rocess Cont ro l
6. In the New JCX name field, type the name of the new file.

7. In Step 3a, select the business process you want to access by selecting the name of a
business process (.jpd) file.

8. In Step 3b, select a start method from the Start Method menu. Only those start methods
contained in the specified business process are displayed.

9. Step 3c is optional. Process controls allow you to decide at run time which one of multiple
subprocesses to call using a dynamic selector. For simple cases, where you know at design
time which subprocess you want to call, no selector is necessary.

To specify a dynamic selector, enter a query in the Query field or click the Query Builder
button to display the Dynamic Selector query builder.

If you invoked the Dynamic Selector query builder, perform the following steps to build
and test a query:

a. Select the type of lookup function for the query by choosing the LookupControl or TPM
radio button. Choose LookupControl to bind lookup values to dynamic properties
specified in a domain-wide DynamicProperties.xml file. Choose TPM to bind lookup
values to properties in the TPM repository.

b. In the Start Method Schema area, select an element from the schema to associate it with
the start method of the control. Only XML elements are displayed; non-XML elements
are not supported. The resulting query appears in the XQuery area.

c. Click OK.

10. Click Create. Alternatively, you may create a Process control JCX file manually. For
example, you may copy an existing Process control JCX file and modify the copy.

Process Control Methods
To learn about the methods available on a Process control, see the ProcessControl Interface.

Example: Process Control Declaration
When you create a new Process control using the control wizard and drag a method from the
control onto a business process, its declaration appears in the JPD file. The following code
snippet is an example of what the declaration looks like:

 /**

 * @common:control
Using Integration Controls 11-5

../java-class/com/bea/control/ProcessControl.html

Process Cont ro l
 */

 private FunctionDemo.callprocess callProcess;

Creating a Process Control from a Business Process
You can also create a Process control from an existing business process.

1. Right-click a JPD filename in the Application Pane and choose Generate Process Control.

2. A new JCX file is displayed, indented beneath the selected JPD file. The name is generated
by appending PControl to the JPD name, For example, if you generate a Process control
JCX file from CustomerMaster.jpd, the resulting JCX file is named
CustomerMasterPControl.jcx.

3. Double click the Process control JCX file in the Application Pane to display the control in
Design View.

4. Use the Property Editor to edit the dynamic selector as described in Editing and Testing a
Dynamic Selector.

Editing and Testing a Dynamic Selector
Process controls allow you to decide at run time which one of multiple subprocesses to call using
a dynamic selector. To edit and test a dynamic selector

1. Display the business process in Design View that contains the Process control with the
dynamic selector you want to edit or test.

2. Select the desired Control node in the business process.

3. Locate the selector property in the Property Editor and select the associated xquery
parameter. Click the button next to the xquery field indicated by three dots (...). The
Dynamic Selector query builder is displayed

4. Select the type of lookup function for the query by choosing the LookupControl or TPM
radio button. Choose LookupControl to bind lookup values to dynamic properties
specified in a domain-wide DynamicProperties.xml file. Choose TPM to bind lookup
values to properties in the TPM repository.

5. In the Start Method Schema area, select an element from the schema to associate it with the
start method of the control. The resulting query appears in the XQuery area.
11-6 Using Integration Controls

Us ing Dynamic B inding
6. Click the Test tab to display the Source XML and Result XML areas, then click the Test
button to test the execution of the query. Execution status messages are displayed at the
bottom of the Query Builder.

7. Click OK.

Using Dynamic Binding
In many cases, control attributes are statically defined using annotations. Some controls provide
a Java API to dynamically change certain attributes. Dynamic controls, including the Service
Broker and Process controls, provide the means to dynamically set control attributes. Attributes
are determined at runtime using a combination of lookup rules and lookup values, a process called
dynamic binding. Controls that support dynamic binding are called dynamic controls. The
business process developer specifies lookup rules using WebLogic Workshop while the
administrator specifies look-up values using the WebLogic Integration Administration Console.
This powerful feature means that control attributes can be completely decoupled from the
application and can be reconfigured for a running application, without redeployment.

To learn about dynamic binding, see How the Service Broker Uses Dynamic Binding.
Using Integration Controls 11-7

Process Cont ro l
11-8 Using Integration Controls

C H A P T E R 12
RosettaNet Control
Note: The RosettaNet control is available in WebLogic Workshop only if you are licensed to
use WebLogic Integration.

RosettaNet is a consortium of major companies working to create and implement industry-wide,
open e-business process standards. These standards form a common e-business language,
aligning processes between supply chain partners on a global basis. RosettaNet is a subsidiary of
the Uniform Code Council, Inc. (UCC). To learn about RosettaNet, see
http://www.rosettanet.org.

The RosettaNet control enables WebLogic Workshop business processes to exchange business
messages and data with trading partners via RosettaNet. You use RosettaNet controls only in
initiator business processes to manage the exchange of RosettaNet business messages with
participants. For an introduction to RosettaNet solutions, see Introducing Trading Partner
Integration at the following URL:

http://edocs.bea.com/wli/docs81/tpintro/index.html

Topics Included in This Section
Overview: RosettaNet Control

Describes the RosettaNet control.
Using Integration Controls 12-1

Rose t taNe t Cont ro l
Creating a RosettaNet Control
Describes how to create and configure a RosettaNet control.

Using a RosettaNet Control
Describes how to use a RosettaNet control in a business process.

Example: RosettaNet Control
Provides links to examples of how to use the RosettaNet control.

Related Topics
Using Built-In Java Controls

Introducing Trading Partner Integration at
http://edocs.bea.com/wli/docs81/tpintro/index.html

Trading Partner Management at http://edocs.bea.com/wli/docs81/manage/tpm.html

RosettaNetControl Interface

Tutorial: Building RosettaNet Solutions at
http://edocs.bea.com/wli/docs81/tptutorial/rosettanet.html

Building RosettaNet Participant Business Processes

@jpd:rosettanet Annotation

Overview: RosettaNet Control
You use RosettaNet controls in initiator business processes to exchange RosettaNet business
messages with participants. The RosettaNet control provides methods for sending and receiving
business messages, as described in the RosettaNetControl Interface Javadoc. Callbacks handle
RosettaNet messages, acknowledgements, rejections, and errors received from the participant.

You should not use RosettaNet controls in participant business processes to respond to incoming
messages. Instead, you use client request nodes to handle incoming business messages from the
initiator and client response nodes to handle outgoing business messages to the initiator. To learn
about building participant business processes that use RosettaNet, see Building RosettaNet
Participant Business Processes. To learn about designing business processes that use RosettaNet,
see Introducing Trading Partner Integration at
http://edocs.bea.com/wli/docs81/tpintro/index.html.

At run-time, the RosettaNet control relies on trading partner and service information stored in the
TPM repository. To learn about the TPM repository, see Introducing Trading Partner Integration
at http://edocs.bea.com/wli/docs81/tpintro/index.html. To learn about adding or
12-2 Using Integration Controls

../../workshop/guide/controls/navControlsOverview.html
../java-class/com/bea/control/RosettaNetControl.html
../java-class/com/bea/control/RosettaNetControl.html
../wfguide/wfguideRosettaNet.html
../javadoc-tag/jpd/rosettanet.html
../wfguide/wfguideRosettaNet.html
../wfguide/wfguideRosettaNet.html

Creat ing a Rose t taNe t Cont ro l
updating information in the TPM repository, see Trading Partner Management in Managing
WebLogic Integration Solutions at http://edocs.bea.com/wli/docs81/manage/tpm.html.

Related Topics
Creating a RosettaNet Control

Using a RosettaNet Control

Example: RosettaNet Control

Creating a RosettaNet Control
This topic describes how to create a new RosettaNet control. You add one RosettaNet control per
public initiator business process. To learn more about public vs. private processes see, “Types of
Business Processes” in “Trading Partner Business Process Concepts” in Introducing Trading
Partner Integration at http://edocs.bea.com/wli/docs81/tpintro/index.html. To
learn about RosettaNet controls, see RosettaNet Control.

To create a new RosettaNet control

1. If you are not in Design View, click the Design View tab.

2. On the Controls section of the Data Palette, click Add.

Note: If the Controls tab is not visible in WebLogic Workshop, choose
View→Windows→Data Palette from the menu bar. Instances of controls already
available in your project are displayed in the Controls tab.

3. In the pop-up menu, click Integration Controls to display a drop-down list of controls that
represent the resources with which your business process can interact.

4. Click RosettaNet to display the Insert Control - Insert RosettaNet dialog box.
Using Integration Controls 12-3

Rose t taNe t Cont ro l
5. In the Step 1 pane, in the Variable name for this control field, type the variable name used
to access the new RosettaNet control instance from your business process. The name you
enter must be a valid Java identifier.

6. In the Step 2 pane, select one of the following options:

– Use a RosettaNet control already defined by a JCX file

Enter the name of the JCX file, or click the Browse button to find and select it.

– Create a new RosettaNet control to use
12-4 Using Integration Controls

Creat ing a Rose t taNe t Cont ro l
Enter the name of the new JCX file to create.

7. If you are creating a new control, in the Step 3 pane, specify the following information:

Note: Where applicable, the values entered here must match their corresponding settings in
the TPM repository.

Field Description

from Sender’s DUNS number. Must be defined in the TPM repository.

to Recipient’s DUNS number. Must be defined in the TPM repository.

rnif-version Version of the RNIF (RosettaNet Implementation Framework). One
of the following values:

• 1.1

• 2.0

pip RosettaNet PIP code, such as 3B2. Must be a valid PIP code as
defined in http://www.rosettanet.org/pipdirectory.

pip-version RosettaNet PIP version. Must be a valid version number associated
with the PIP.

from-role RosettaNet role name for the sender as defined in the PIP
specification, such as Buyer, Initiator, Shipper, and so on. A PIP
request might be rejected if an incorrect value is specified.
Using Integration Controls 12-5

Rose t taNe t Cont ro l
8. Click the Create button.

9. If you are prompted, select a subfolder in which to save the JCX file.

A RosettaNet control instance is displayed in the Controls tab.

Related Topics
Overview: RosettaNet Control

Using a RosettaNet Control

Example: RosettaNet Control

Using a RosettaNet Control
All WebLogic Workshop controls follow a consistent model. Many aspects of using RosettaNet
controls are identical or similar to using other WebLogic Workshop controls. To learn about
WebLogic Workshop controls, see Using Built-In Java Controls.

to-role RosettaNet role name for the recipient as defined in the PIP
specification, such as Seller, Participant, Receiver, and so on. A PIP
request might be rejected if an incorrect value is specified.

method-arg-type Required. Type of attachment. Includes the standard RNIF XML
parts. One of the following values:

• XmlObject—Default. Represents data in untyped XML
format. The XML data is not specified at design time.

• RawData—Represents any non-XML structured or
unstructured data and for which no MFL file (and therefore no
known schema) exists. Not recommended, as the payload
includes standard RNIF XML parts.

• MessageAttachment[]—Array containing one or more
parts of a business message. Message parts can be untyped XML
data (XmlObject data type) or non-XML data (RawData data
type). Used when sending different kinds of payloads (XML and
non-XML) in the same message. The actual number of message
parts might not be known until processed. To learn about
working with MessageAttachment objects, see Using
Message Attachments.

To learn more about data types, see Working with Data Types.
12-6 Using Integration Controls

../../workshop/guide/controls/navControlsOverview.html
../wfguide/wfguideDataTypesWorking.html

Using a Rose t taNe t Cont ro l
After you have added a RosettaNet control to an initiator business process, you can use methods
on the control to exchange RosettaNet messages with participant trading partners. In the Design
View, you expand the node for the RosettaNet control in the Data Palette to expose its methods,
and then drag and drop the methods you want onto the business process. Common tasks include:

Sending Messages to Participants

Handling Messages from Participants

Retrieving Message Elements

Dynamically Specifying Business IDs

To learn more about these methods, see RosettaNetControl Interface.

The RosettaNet control is a JCX file. To learn about using JCX files, see JCX Files: Extending
Controls.

Sending Messages to Participants
The RosettaNet control provides methods for sending the initial request message to a participant
and also for responding to the participant’s reply. To add the method to a business process, you
drag it from the Data Palette onto the business process, which creates a Control Send node.

Sending a Request Message
You use the sendMessage method to send a RosettaNet request message to participants. After
creating the Control Send node in the business process, you need to specify the payload parts
and their Java data types. Valid data types include:

Note: Attachments can also be typed XML or typed MFL data as long as you specify the
corresponding XML Bean or MFL class name in the parameter.

Type Description

XmlObject Data in untyped XML format.

RawData Any non-XML structured or unstructured data for which no MFL
file (and therefore no known schema) exists.

MessageAttachment Data in both untyped XML and non-XML format. To learn about
working with MessageAttachment objects, see Using
Message Attachments.
Using Integration Controls 12-7

../../workshop/guide/devenv/conJwiFiles.html
../../workshop/guide/devenv/conJwiFiles.html
../java-class/com/bea/control/RosettaNetControl.html

Rose t taNe t Cont ro l
Responding to Participant Replies
After sending a RosettaNet message, the initiator business process awaits a response from the
participant. After receiving the participant’s response to the request, a business process can either
acknowledge and accept the response, reject the response, or notify the participant that an error
has occurred. The RosettaNet control provides the following methods for responding to
participant replies:

Handling Messages from Participants
Participants can respond to initiator requests in the following ways:

acknowledge that the request was received

reply to the request

notify that an error has occurred

To handle responses from participants, initiator business processes use the following callback
methods:

To receive a RosettaNet message from a participant, you use the appropriate method. To add the
method to a business process, you drag it from the Data Palette onto the business process, which
creates a Control Receive node.

Method Name Description

sendAck Sends a RosettaNet acknowledgement of receipt to the participant.

sendError Sends a RosettaNet error to the participant.

sendReject Sends a RosettaNet rejection to the participant.

Method Name Description

onAck Handles the acknowledgement of the message receipt from the
participant.

onError Handles an error sent by the participant.

onMessage Handles the message reply sent by the participant.
12-8 Using Integration Controls

Using a Rose t taNe t Cont ro l
For the onMessage method, after creating the Control Receive node, you need to specify the
payload parts and their Java data types for the incoming message. To learn about valid data types,
see Sending Messages to Participants.

The onError and onAck methods are system-level methods. Both use the XmlObject argument,
which will contain a RosettaNet payload. These arguments are not seen in the default control but
you can drag them onto the business process from the Data Palette. If your application contains
a schema project that includes the Exception schema file (for RNIF2.0), and if the schema is
already built, you can extract the values you want by creating a query (in the XQuery language)
using the mapper functionality of WebLogic Workshop. To learn about creating queries with the
mapper functionality, see Transforming Data Using XQuery.

Retrieving Message Elements
You can retrieve specific message elements from your RosettaNet messages by using the
RosettaNetContext XMLBean. The following message elements can be retrieved and are
returned as java.lang.string:

Element Name Description

from Sender’s DUNS number.

to Recipient’s DUNS number.

pip RosettaNet PIP code specified for the message.

pip-version PIP version specified for the message.

from-role RosettaNet role name for the sender as defined
in the PIP specification. Examples include:
Buyer, Initiator, Shipper, and so on.

to-role RosettaNet role name for the recipient as
defined in the PIP specification. Examples
include: Seller, Participant, Receiver, and so on.

failure-report-administrator Trading partner id of the trading partner which
is specified to be the failure administrator. (In
WebLogic Integration, this is specified in the
sender trading partner’s binding).

global-usage-code Indicates whether the message was sent in test
or production mode.
Using Integration Controls 12-9

../../dtguide/dtguideMapper.html

Rose t taNe t Cont ro l
When you use the RosettaNetContext XMLBean, be sure to import the following classes:

com.bea.wli.control.rosettanetContext.RosettaNetContextDocument;
com.bea.wli.control.rosettanetContext.RosettaNetContextDocument.RosettaNet
Context;

The following are code examples of how to use RosettaNetContext:

Note: If you use the code samples provided in this section, remember to also modify the the
return type of your corresponding methods in your RosettaNet control definition file
(JCX file). In other words, public void sendMessage() needs to be changed to
public RosettaNetContextDocument sendMessage().

Initiator business process receiving a message:

public void rn_onMessage(RosettaNetContextDocument doc,
XmlObject msg)

{
System.out.println(">>>>> ContextInitiator.rn_onMessage()");
RosettaNetContextDocument.RosettaNetContext context =

debug-mode Returns true if the message was sent in debug
mode.

message-tracking-id Instance id of the action to which this message
is in reply.

protocol-name Name of the protocol used.

protocol-version Version of the protocol used.

conversation-id Id of the conversation.

process-instance-id Instance id of the receiving process.

process-uri URI of the receiving process.

business-action The business action of the message, such as:
Purchase Order Request, Purchase Order
Confirmation, etc.

document-datetimestamp The time and date the document was created.

proprietary-identifier A unique number which tracks the document.

Element Name Description
12-10 Using Integration Controls

Using a Rose t taNe t Cont ro l
doc.getRosettaNetContext();
System.out.println(" from=" + context.getFrom());
System.out.println(" to=" + context.getTo());
System.out.println(" pip=" + context.getPip());
System.out.println(" failure-report-admin=" +

context.getFailureReportAdministrator());
}

Initiator business process sending a message:

public void rnSendMessage() throws Exception
{

String rnInfo = "Service Content";
XmlObject xObj = XmlObject.Factory.parse(rnInfo);
RosettaNetContextDocument doc = rn.sendMessage(xObj);
System.out.println(doc.toString());

}

Where Service Content is the service content of your RosettaNet message.

Participant business process receiving a message:

public void onMessage(RosettaNetContextDocument doc, XmlObject msg)
{

System.out.println(">>>>> ContextParticipant.onMessage()");
RosettaNetContext context = doc.getRosettaNetContext();
System.out.println(" from=" + context.getFrom());
System.out.println(" to=" + context.getTo());
System.out.println(" pip=" + context.getPip());
System.out.println(" failure-report-admin=" +

context.getFailureReportAdministrator());
}

Participant business process interface for callbacks:

public interface Callback
{

/**
* @common:message-buffer enable="false"
*/
public RosettaNetContextDocument sendReply(XmlObject msg);
/**
* @common:message-buffer enable="false"
*/
public void sendReceiptAcknowledgement();
/**
* @common:message-buffer enable="false"
*/
Using Integration Controls 12-11

Rose t taNe t Cont ro l
public void sendError(String msg);
}

public Callback callback;

Participant business process sending a reply:

public void reply()
{

XmlObject xObj = null;
try {
xObj = XmlObject.Factory.parse("Service Content");

} catch (Exception e) {
e.printStackTrace();

}

RosettaNetContextDocument doc= callback.sendReply(xObj);
System.out.println(doc.toString());

}

Where Service Content is the service content of your RosettaNet message.

Dynamically Specifying Business IDs
The RosettaNet control adds the capability of dynamically binding business IDs for the initiator
(from property) and the participant (to property) of the control. Dynamic binding of properties
can be achieved the following ways:

Using selectors

Using the setProperties() method

Order of Precedence
The hierarchy of property settings is as follows, starting with the approach having the highest
precedence:

1. properties dynamically bound using selectors (@jc:rosettanet Annotation) and the
DynamicProperties.xml file

2. properties set using the setProperties() method

3. properties set at the JCX instance level using the @jc:rosettanet Annotation annotation in
the JPD

4. properties set at JCX class level using @jc:rosettanet Annotation annotation in the JCX
12-12 Using Integration Controls

../javadoc-tag/jc/rosettanet.html
../javadoc-tag/jc/rosettanet.html
../javadoc-tag/jc/rosettanet.html

Using a Rose t taNe t Cont ro l
Dynamic selectors have a higher precedence than static selectors.

Using Selectors
Using a dynamic selector, RosettaNet controls allow you to decide at run time which one of
multiple trading partners to send a business message to. When you specify a dynamic selector,
you build and test an XQuery that retrieves the business ID you need.

To use a dynamic selector

1. Display the business process in Design View that contains the RosettaNet control for which
you want to specify a dynamic selector.

2. In Design View, select the RosettaNet control node in the Data Palette.

3. Locate the from-selector or to-selector property in the Property Editor and select the
associated xquery parameter. Click the button next to the xquery field indicated by three
dots (...). The Dynamic Selector query builder is displayed.

4. In the Start Method Schema area, select an element from the schema to associate it with
the start method of the control. The resulting query appears in the XQuery area.

5. Click OK.

Using setProperties
The setProperties method accepts a RosettaNetPropertiesDocument parameter. The
RosettaNetPropertiesDocument type is an XML Beans class that is generated out of the
corresponding schema element defined in DynamicProperties.xsd. The
DynamicProperties.xsd file is located in the system folder of New Process Applications or in
the system folder of the Schemas project.

If your application contains a schema project that includes the DynamicProperties.xsd file,
and if the schema is already built, you can extract the values you want by creating a query (in the
XQuery language) using the mapper functionality of WebLogic Workshop. To learn about
creating queries with the mapper functionality, see Transforming Data Using XQuery.

To set business IDs dynamically using the setProperties method

1. Verify that your application contains a schema project that includes the
DynamicProperties.xsd file, and that the schema is already built. To learn about importing
schemas, see How do I: Import Schemas into a Project Schemas Folder.

2. Create a Control Send node in a business process.
Using Integration Controls 12-13

../../dtguide/dtguideMapper.html
../howdoI/howSchemasImport.html

Rose t taNe t Cont ro l
3. From the Data Palette, drag the setProperties method and drop it onto the Control
Send node.

4. In the Send Data tab, select Transformation, specify variables that contain the to and
from values, and then create a transformation to map them to the corresponding elements in
RosettaNetPropertiesDocument.

To display the current property settings, use the getProperties() method.

Related Topics
RosettaNet Control

Overview: RosettaNet Control

Creating a RosettaNet Control

Example: RosettaNet Control

Example: RosettaNet Control
For examples of how to use the RosettaNet control, see Tutorials: Building RosettaNet Solutions,
which is located in the following directory:

http://edocs.bea.com/wli/docs81/tptutorial/rosettanet.html

Related Topics
Overview: RosettaNet Control

Creating a RosettaNet Control

Using a RosettaNet Control
12-14 Using Integration Controls

C H A P T E R 13
Service Broker Control
Note: The Service Broker control is available in WebLogic Workshop only if you are licensed
to use WebLogic Integration.

The Service Broker control allows a business process to send requests to and receive callbacks
from another business process, a web service, or a web service or business process defined in a
WSDL file.

The Service Broker control lets you dynamically set control attributes. This allows you to
reconfigure control attributes without having to redeploy the application.

For information on how to add control instances to business processes, see Using Controls in
Business Processes.

Topics Included in This Section
Overview: Service Broker Control

Describes the purpose of the Service Broker control.

Using Dynamic Binding
Describes how to dynamically set control attributes.
Using Integration Controls 13-1

Serv ice B roke r Cont ro l
Creating a New Service Broker Control
Describes how to create a new Service Broker control by using the control wizard or by
automatically generating the control from a business process or web service.

Editing and Testing a Dynamic Selector
Describes how to edit and test a dynamic selector for a Service Broker control.

Overview: Service Broker Control
The Service Broker control allows a business process to send requests to and receive callbacks
from another business process, a web service, or a remote web service or business process. The
Service Broker control is an extension of the Web Service control.

A remote web service or business process is accessed using web services and is described in a
WSDL file. A WSDL file describes the methods and callbacks that a web service implements,
including method names, parameters, and return types. You can generate a WSDL file for any
business process by right clicking on a JPD file in the Application pane and choosing Generate
WSDL File. To learn more about WSDL files, see WSDL Files: Web Service Descriptions.

The first step in using a Service Broker control is to create a JCX file. The JCX can be
automatically generated from a target service (web service, business process, or WSDL file)
using WebLogic Workshop, or can be created using the Insert Service Broker dialog box. The
methods and callbacks on the JCX correspond to operations and callbacks of the target service.
An instance of this JCX is used by a parent service to call the target service. Service Broker
control JCX files can have selector annotations only on start methods or for stateless target
services on any method.

Note: The parent process and the target process must both be configured to use the same
protocol. Protocol matching and enabling is not handled automatically.

To learn about creating a Service Broker control, see Creating a New Service Broker Control.

Setting Service Broker Properties
The Service Broker control adds the capability of dynamically binding some properties of the
control. Dynamic binding of properties can be achieved the following ways:

Using selectors

Using the setProperties() API

Using setter methods for individual properties, such as setEndPoint(). These setter
methods are inherited from the Web Service control interface.
13-2 Using Integration Controls

../../workshop/guide/devenv/conWsdlFiles.html

Overv iew: Se rv ice Broke r Cont ro l
package com.bea.control;

public interface ServiceBrokerControl extends ServiceControl {

 void setProperties(ServiceBrokerControlProperties props)

 throws Exception;

}

To retrieve the current properties settings, use the getProperties() method. Note that this
method does not return security-related settings such as username/password,
keyAlias/keyPassword, and keyStoreLocation/keyStorePassword.

The hierarchy of property settings is as follows, starting with the method with the highest
precedence:

1. properties dynamically bound using the jc:selector tag and the
DynamicProperties.xml file

2. properties set using the setProperties() method or other setter methods inherited from
the Service control (setConversationID, setEndPoint, setOutputHeaders,
setPassword, and setUsername)

3. properties set using static annotations

The ServiceBrokerControlProperties type is an XML Beans class that is generated out of
the corresponding schema element defined in DynamicProperties.xsd. The
DynamicProperties.xsd file is located in the system folder of New Process Applications or in
the system folder of the Schemas project.

The setProperties() method uses this XML Bean class to set properties on a control instance.
A selector on a Service Broker control method returns an XML document that conforms to the
ServiceBrokerControlProperties element. The following sample shows how to
programmatically set the endpoint property for control. You add the bold code lines to the code
generated when the control is created, overriding properties set using dynamic binding and static
annotations:

import com.bea.wli.control.dynamicProperties.
ServiceBrokerControlPropertiesDocument;

import com.bea.wli.control.dynamicProperties.
ServiceBrokerControlPropertiesDocument.ServiceBrokerControlProperties;

 ServiceBrokerControlPropertiesDocument props= null;
 ServiceBrokerControlProperties sprops = null;
Using Integration Controls 13-3

Serv ice B roke r Cont ro l
 public void sBC8InvokeSetProperties() throws Exception

 {

 props = ServiceBrokerControlPropertiesDocument.Factory.newInstance();
 sprops = props.addNewServiceBrokerControlProperties();

 sprops.setEndpoint("http://localhost:7001/BVTAppWeb/ServiceBrokerControl
 /SBC8DynPropHierarchyChild_2.jpd");

Some control properties can be specified both in annotations (statically) on the JCX file or
dynamically. For example, the Service Broker control allows you to specify the http-url of the
target service in the jc:location annotation at the top of the JCX or dynamically using the
endpoint element in DynamicProperties.xml. In all such cases, a dynamically bound value for
the property takes precedence over the static annotation.

Dynamic properties can also be specified by calling setProperties on the control, or by calling
one of the setter methods, such as ServiceBrokerControl.setEndPoint(). Properties
specified in this way take precedence over properties bound by selectors or annotations.

Properties applied using selectors remained bound until one of the following conditions occurs:

A method marked finish on the JCX is invoked

A start method is invoked again

The property is programmatically set by calling setProperties or a setter method.

ServiceControl.reset() is overwritten by the Service Broker control to reset all dynamically
set properties (in addition to all conversational state). Programmatically specified properties
remain bound until reset() is invoked.

You can also use the ControlContext interface for access to a control's properties at run time and
for handling control events. Property values set by a developer who is using the control are stored
as annotations on the control's declaration in a JWS, JSP, or JPD file, or as annotations on its
interface, callback, or method declarations in a JCX file.

Related Topics
Using Dynamic Binding

Creating a New Service Broker Control

ServiceBrokerControl Interface
13-4 Using Integration Controls

../../workshop/java-class/com/bea/control/ControlContext.html
../java-class/com/bea/control/ServiceBrokerControl.html

Us ing Dynamic B inding
Using Dynamic Binding
In many cases, control attributes are statically defined using annotations. Some controls provide
a Java API to dynamically change certain attributes. Dynamic controls, including the Service
Broker and Process controls, provide the means to dynamically set control attributes. Attributes
are determined at runtime using a combination of lookup rules and lookup values, a process called
dynamic binding. Controls that support dynamic binding are called dynamic controls. The
business process developer specifies lookup rules using WebLogic Workshop while the
administrator specifies look-up values using the WebLogic Integration Administration Console.
This powerful feature means that control attributes can be completely decoupled from the
application and can be reconfigured for a running application, without redeployment.

How the Service Broker Uses Dynamic Binding
The following scenario shows how the Service Broker uses dynamic binding. POService.jpd
needs to call an external service to obtain a quote on a specific item. Several vendors offer this
service. The administrator needs to be able to access multiple implementations of the outside
service without changing or redeploying POService.jpd.

Components Used in Dynamic Binding
This topic describes the capabilities that provide dynamic binding to the quote service using the
Service Broker control.

@jc:selector Tag
The method-level annotation, @jc:selector, allows dynamic definition of certain properties of
the control. The selector has an attribute, xquery, which is an XQuery expression, as shown in
the following example:

 /**
 * @jc:conversation phase="start"
 * @jc:selector xquery ::
 * lookupControlProperties($request/vendorID) ::
 */
 public void requestQuote(PurchaseRequest request);

The value of the selector’s XQuery expression is an XML document with a schema that contains
control property values. If you are accessing a TPM repository, the XQuery expression appears
as follows:
Using Integration Controls 13-5

Serv ice B roke r Cont ro l
 /**
 * @jc:conversation phase="start"
 * @jc:selector xquery ::
 * lookupTPMProperties($request/vendorID) ::
 */
 public void requestQuote(PurchaseRequest request);

When invoking a method on the control, the system looks for a selector annotation. If one is
present, the XQuery expression is evaluated, possibly binding arguments of the Java call to
arguments of the XQuery expression. The result of the XQuery expression is a String value that
defines dynamic properties for the control.

Built-In XQuery Functions
Two types of XQuery functions are supplied to help you write selector expressions:
lookupControlProperties and lookupTPMProperties. The lookupControlProperties
function looks up values for dynamic properties specified in a domain-wide
DynamicProperties.xml file. The lookupTPMProperties function looks up values from
properties in the TPM (Trading Partner Management) repository.

To learn about the TPM repository, see Introducing Trading Partner Integration at
http://edocs.bea.com/wli/docs81/tpintro/index.html. To learn about adding or
updating information in the TPM repository, see Trading Partner Management in Managing
WebLogic Integration Solutions at http://edocs.bea.com/wli/docs81/manage/tpm.html.
The TPM control provides WebLogic Workshop business processes and web services with query
(read-only) access to trading partner and service information stored in the TPM repository. To
learn about the TPM control, see TPM Control.

If the selector expression uses the lookupControlProperties function, the fully-qualified
class name of the JCX together with the result of evaluating the selector are used as a lookup key
into the DynamicProperties.xml file. If a match is found, the dynamic properties are applied
before making the call to the target service.

DynamicProperties.xml File
DynamicProperties.xml is an XML file managed through the WebLogic Integration
Administration Console. It contains mappings between values from the message payload (the
lookup key) and corresponding control properties. It is a domain-wide file shared by all
WebLogic Integration applications in the domain. This file allows you to administer dynamic
properties without redeploying the application. The file is located in a subdirectory of the domain
root named wliconfig. To learn about managing dynamic selectors, see Processes
13-6 Using Integration Controls

Us ing Dynamic B inding
Configuration in Managing WebLogic Integration Solutions at
http://edocs.bea.com/wli/docs81/manage/processconfig.html.

DynamicProperties.xml contains a sequence of <control> elements, one for each dynamic
control JCX file. Each <control> element has a name attribute whose value is the fully-qualified
Java class name of a JCX file. Nested inside the <control> element is a sequence of <key>
elements which map arbitrary string values to dynamic properties, as shown in the following
example:

<DynamicProperties

 xmlns="http://www.bea.com/wli/control/dynamicProperties">

 <control name="quote.QuoteProcessor"

 controlType="ServiceBrokerControl">

 <key value="QuoteCom">

 <ServiceBrokerControlProperties>

 <endpoint>http://www.quotecom.com/quotes/QuoteService</endpoint>

 </ServiceBrokerControlProperties>

 </key>

 <key value="WebQuote">

 <ServiceBrokerControlProperties>

<endpoint>http://www.webquote.com/quoteEngine/getQuote</endpoint>

 </ServiceBrokerControlProperties>

 </key>

 </control>

 <control name="quote.InternalQuote"

controlType="ProcessControl">

 <key value="OurQuote">

 <ProcessControlProperties>

 <targetURI>http://acme/myApp/PublicProcess.jpd</targetURI>

 </ProcessControlProperties>

 </key>

 </control>

</DynamicProperties>

The WebLogic Integration Administration Console allows an administrator to view and edit
entries in the DynamicProperties.xml file.
Using Integration Controls 13-7

Serv ice B roke r Cont ro l
Quote Processing Example
This section shows how dynamic controls and selectors can help to implement the quote
processing scenario. The following figure shows the components that participate in the dynamic
binding:

To achieve the required dynamic binding to the target service, the business process defined in
POService.jpd uses a Service Broker control, QuoteProcessor.jcx, to call the quote service.
Since the target is dynamically specified, the @jc:location tag is not used. The Service Broker
control is defined by the following JCX file:

import com.bea.control.ServiceBrokerControl;

import com.bea.control.ControlExtension;

import org.applications.PurchaseRequest;

import org.applications.PurchaseReply;

public interface QuoteProcessor

 extends ServiceBrokerControl, ControlExtension
13-8 Using Integration Controls

Us ing Dynamic B inding
{

 public interface Callback

 {

 public void infoReady (PurchaseReply reply);

 }

 /**

 * @jc:conversation phase="start"

 * @jc:selector xquery ::

 * lookupControlProperties($request/vendorID)

 * ::

 */

 public void requestQuote (PurchaseRequest request);

}

At runtime, the control container needs to bind the proxy represented by the control to the proper
implementation. This is driven by selector XQuery expression tagged on the start method of the
Service Broker control interface (@jc:selector).

Note: For controls representing stateless components, each method can have a selector. For
methods without selectors, the default location defined in the annotation is used. If the
target location is not resolved after applying the selector, a runtime exception is raised.

The selector returns an XML fragment that contains the dynamic properties of the control. For
example:

<ServiceBrokerControlProperties>

 <endpoint>

http://www.quotecom.com/quotes/QuoteService/endpointURI>

 </endpoint>

 <username>fred</username>

 <password>@$%&*</password>

</ServiceBrokerControlProperties>

In this example, the selector uses a standard XQuery function called
lookupControlProperties(). This function looks up the control properties from the
DynamicProperties.xml file based on the key passed to it. In the example, the key is the
vendor ID that is extracted from the payload. The result passed back by
lookupControlProperties() is a <ServiceBrokerControlProperties> element.
Using Integration Controls 13-9

Serv ice B roke r Cont ro l
The key-attribute mapping information used by lookupControlProperties() is stored in the
DynamicProperties.xml file. The schema for the dynamic properties file can handle all the
attributes that are valid for dynamic controls. You can define selectors when you create the
control or by directly editing the JCX source code.

An administrator can define the mapping between the selector value and the implementation
using the WebLogic Integration Administration Console. The WebLogic Integration
Administration Console allows an administrator to specify the following properties:

Endpoint URI

Protocol to use when making the call: http-soap, http-xml, jms-soap, jms-xml, form-get and
form-post. The default is http-soap.

Note: The parent process and the target process must both be configured to use the same
protocol. Protocol matching and enabling is not handled automatically.

Any credentials needed to make the call:

– User name and password to invoke the remote service (base authentication)

– Certificate alias and password, if the remote service requires SSL with two-way
authentication

– Certificate alias and password, if digital signature is required

– Keystore location, password and type, in case a client certificate is required

Creating a New Service Broker Control
This topic describes how to create a new Service Broker control.

To learn about Service Broker controls, see Overview: Service Broker Control.

Creating a New Service Broker Control Using the Control
Wizard
You can create a new Service Broker control and add it to your web service or business process
by using the Insert Control - Service Broker dialog.

Notes: When creating a Service Broker control that references a business process (JPD), the
business process must be in the current WebLogic Workshop application.

If you are not in Design View, click the Design View tab.
13-10 Using Integration Controls

Creat ing a New Se rv ice Broke r Cont ro l
To define a new Service Broker control:

1. Click Add on the Controls tab to display a list of controls that represent the resources with
which your business process can interact.

Note: If the Controls tab is not visible in WebLogic Workshop, click
View→Windows→Data Palette from the menu bar.

2. Choose Integration Controls to display the list of controls used for integrating
applications.

3. Choose ServiceBroker to display the Insert Control - ServiceBroker dialog.

4. In Step 1, in the Variable name for this control field, type the name for your Service
Broker control.

5. In Step 2, select the Create a new Service Broker control to use radio button.

6. In the New JCX name field, type the name of the new file.

7. In Step 3a, browse for the file (.jpd, .jws, or .wsdl) representing the specific service you
want to access.

8. In Step 3b, select a start method from the Start Method menu. Only those start methods
contained in the specified service are displayed.

9. In Step 3c, enter a query in the Query field or click the Query Builder button to display
the Dynamic Selector query builder. This step is optional. If you only plan to use the
setProperties() method to define properties, you do not need to define a dynamic
selector.

If you invoked the Dynamic Selector query builder, perform the following steps to build
and test a query:

a. Select the type of lookup function for the query by choosing the LookupControl or TPM
radio button. Choose LookupControl to bind lookup values to dynamic properties
specified in a domain-wide DynamicProperties.xml file. Choose TPM to bind lookup
values to properties in the TPM repository.

b. In the Start Method Schema area, select an element from the schema to associate it with
the start method of the control. Only XML elements are displayed; non-XML elements
are not supported. The resulting query appears in the XQuery area.

c. Click OK. The Insert Service Broker dialog is displayed with the query shown in the
Query field.
Using Integration Controls 13-11

Serv ice B roke r Cont ro l
10. Click Create. Alternatively, you may create a Service Broker control JCX file manually.
For example, you may copy an existing Service Broker control JCX file and modify the
copy.

Creating a Service Broker Control from a Business Process
You can create a Service Broker control from an existing business process

1. Right-click a JPD filename in the Application Pane and choose Generate Service Broker
Control. The Dynamic Selector Generation dialog is displayed.

2. Select a start method from the Start Method menu. Only those start methods contained in
the specified business process are displayed.

3. To specify a dynamic selector, enter a query in the Query field or click the Query Builder
button to display the Dynamic Selector query builder.

If you invoked the Dynamic Selector query builder, perform the following steps to build
and test a query:

a. Select the type of lookup function for the query by choosing the LookupControl or TPM
radio button. Choose LookupControl to bind lookup values to dynamic properties
specified in a domain-wide DynamicProperties.xml file. Choose TPM to bind lookup
values to properties in the TPM repository.

b. In the Start Method Schema area, select an element from the schema to associate it with
the start method of the control. The resulting query appears in the XQuery area.

c. Click OK.

4. A new JCX file is displayed, indented beneath the selected JPD file. The Service Broker
control JCX file is named using a prefix of SB to help distinguish it from Service controls.
For example, if the associated JPD file is MyProcess.jpd, the generated Service Broker
control JCX file is named MyProcessSBControl.jcx.

Related Topics
Overview: Service Broker Control

Using Dynamic Binding

ServiceBrokerControl Interface
13-12 Using Integration Controls

../java-class/com/bea/control/ServiceBrokerControl.html

Ed i t ing and Tes t ing a Dynamic Se lec to r
Editing and Testing a Dynamic Selector
Service Broker controls allow you to decide at run time which one of multiple subprocesses to
call using a dynamic selector. To edit and test a dynamic selector

1. Display the business process in Design View that contains the Service Broker control with the
dynamic selector you want to edit or test.

2. Select the desired Control node in the business process.

3. Locate the selector property in the Property Editor and select the associated xquery
parameter. Click the button next to the xquery field indicated by three dots (...). The
Dynamic Selector query builder is displayed

4. Select the type of lookup function for the query by choosing the LookupControl or TPM
radio button. Choose LookupControl to bind lookup values to dynamic properties
specified in a domain-wide DynamicProperties.xml file. Choose TPM to bind lookup
values to properties in the TPM repository.

5. In the Start Method Schema area, select an element from the schema to associate it with the
start method of the control. The resulting query appears in the XQuery area.

6. Click the Test tab to display the Source XML and Result XML areas, then click the Test
button to test the execution of the query. In addition to the XML elements displayed, you
can also select Java class types as a source or result. Execution status messages are
displayed at the bottom of the Query Builder.

7. Click OK.
Using Integration Controls 13-13

Serv ice B roke r Cont ro l
13-14 Using Integration Controls

C H A P T E R 14
TPM Control
Note: The TPM control is available in WebLogic Workshop only if you are licensed to use
WebLogic Integration.

The TPM (trading partner management) control provides WebLogic Workshop business
processes and web services with query (read-only) access to trading partner and service
information stored in the TPM repository.

All WebLogic Workshop controls follow a consistent model. Many aspects of using TPM
controls are identical or similar to using other WebLogic Workshop controls.

Topics Included in This Section
Overview: TPM Control

Describes the TPM control.

Creating a TPM Control
Describes how to create a TPM control.

Using a TPM Control
Describes how to use an existing TPM control from within a business process or web
service.
Document Templates for FrameMaker 6.0 New Design 14-1

TPM Cont r o l
Example: TPM Control
Provides an example of how to use the TPM control.

Related Topics
Using Built-In Java Controls

Introducing Trading Partner Integration at
http://edocs.bea.com/wli/docs81/tpintro/index.html

Trading Partner Management at http://edocs.bea.com/wli/docs81/manage/tpm.html

TPMControl Interface

Overview: TPM Control
The TPM control allows WebLogic Workshop business processes and web services to obtain the
following trading partner and service information stored in the TPM repository:

trading partner by name or business ID

default trading partner

basic and extended trading partner properties

default bindings (ebXML or RosettaNet)

services, service profiles, and service profile bindings (ebXML, RosettaNet, or web service
bindings)

Note: Access to the TPM repository is restricted to active trading partners and active profile
services only. To learn about activating trading partners and services, see the WebLogic
Integration Administration Console Online Help.

You use methods on the TPM control to retrieve information stored in the TPM repository. These
methods return XML documents that conform to the TPM schema associated with importing and
exporting trading partner data in the WebLogic Integration Administration Console and the Bulk
Loader command line utility. To learn about the TPM schema, see TPM Schema in Managing
WebLogic Integration Solutions at
http://edocs.bea.com/wli/docs81/manage/tpmschema.html.

The TPM control provides read-only access to the TPM repository. Therefore, you cannot use
TPM controls to modify trading partner and service information. Instead, you must use the
WebLogic Integration Administration Console to modify trading partner and service information.
To learn more about modifying the TPM repository, see Trading Partner Management in
14-2 Document Templates for FrameMaker 6.0 New Design

../../workshop/guide/controls/navControlsOverview.html
../java-class/com/bea/control/TPMControl.html

Creat ing a TPM Cont ro l
Managing WebLogic Integration Solutions at
http://edocs.bea.com/wli/docs81/manage/tpm.html.

TPM controls cannot initiate transactions. To learn more about transactions in business
processes, see Transaction Boundaries.

For initiator business processes that use RosettaNet or ebXML to exchange business messages,
you can retrieve certain information from the TPM repository—settings for process time-out,
retry count, and retry interval—using methods on the RosettaNet or ebXML control instead of
the TPM control. To learn about these methods, see RosettaNet Control and ebXML Control.

Related Topics
TPM Control

Creating a TPM Control

Using a TPM Control

Example: TPM Control

Creating a TPM Control
This topic describes how to create a new TPM control. To learn about TPM controls, see TPM
Control.

To create a new TPM control

1. If you are not in Design View, click the Design View tab.

2. On the Controls section of the Data Palette, click Add.

Note: If the Controls tab is not visible in WebLogic Workshop, choose
View→Windows→Data Palette from the menu bar. Instances of controls already
available in your project are displayed in the Controls tab.

3. In the pop-up menu, click Integration Controls to display a drop-down list of controls that
represent the resources with which your business process can interact.

4. Click TPM to display the Insert Control - Insert TPM dialog box.
14-3 Document Templates for FrameMaker 6.0 New Design 14-3

../wfguide/wfguideTransaction.html

TPM Cont r o l
5. In the Variable name for this control field, type the variable name used to access the new
TPM control instance from your business process. The name you enter must be a valid Java
identifier.

6. Click the Create button.

A TPM control instance is displayed in the Controls tab.

Related Topics
TPM Control

Overview: TPM Control

Using a TPM Control

Example: TPM Control

Using a TPM Control
After you have added a TPM control to a business process or web service, you can use methods
on the control to retrieve information in the TPM repository. For a description of the methods
available in the TPM control interface, see the TPM Control Interface.

To use methods in a TPM control

1. Verify that your application contains a schema project that includes the TPM.xsd file, and that
the schema is already built. To learn about importing schemas, see Importing Schemas.

2. In the Design View, expand the node for the TPM control in the Data Palette to expose its
methods.

3. Drag and drop any methods you want onto the business process.

Each method you add becomes a Control Send with Return node, which will perform a
synchronous query request on the TPM repository.
14-4 Document Templates for FrameMaker 6.0 New Design

../java-class/com/bea/control/TPMControl.html
../../dtguide/dtguidemapperimportschemas.html

Example : TPM Cont ro l
4. Extract the values you want by creating a query (in the XQuery language) using the mapper
functionality of WebLogic Workshop. To learn about creating queries with the mapper
functionality, see Transforming Data Using XQuery.

Related Topics
TPM Control

Overview: TPM Control

Creating a TPM Control

Example: TPM Control

TPMControl Interface

Example: TPM Control
For an example of how to use the TPM Control, see “Step 7: Using the TPM Control and
Callbacks” in Tutorial: Building ebXML Solutions, which is located at the following URL:

http://edocs.bea.com/wli/docs81/tptutorial/ebxml.html
14-5 Document Templates for FrameMaker 6.0 New Design 14-5

../../dtguide/dtguideMapper.html
../java-class/com/bea/control/TPMControl.html

TPM Cont r o l
14-6 Document Templates for FrameMaker 6.0 New Design

C H A P T E R 15
WLI JMS Control
Note: The WLI JMS control is available in WebLogic Workshop only if you are licensed to use
WebLogic Integration.

JMS (Java Message Service) is a Java API for communicating with messaging systems.
Messaging systems are often packaged as products known as Message-Oriented Middleware
(MOMs). WebLogic Server includes built in messaging capabilities via WebLogic JMS, but can
also work with third-party MOMs. Messaging systems are often used in enterprise applications
to communicate with legacy systems, or for communication between business components
running in different environments or on different hosts.

The WLI JMS control enables WebLogic Workshop business processes to easily interact with
messaging systems that provide a JMS implementation. A specific WLI JMS control is associated
with particular facilities of the messaging system. Once a WLI JMS control is defined, business
processes may use it like any other WebLogic Workshop control.

The WLI JMS control is an extension of the JMS control, providing additional features such as
RawData message type support, dynamic property configuration, and the ability to control
whether to start a new transaction or remain within the calling transaction. You can use the JMS
Event Generator to poll for and consume messages produced by the WLI JMS control.

For information on how to add control instances to business processes, see Using Controls in
Business Processes.
Using Integration Controls 15-1

WLI JMS Cont ro l
Topics Included in This Section
Overview: Messaging Systems and JMS

Describes messaging services in general and the Java Message Service in particular

Messaging Scenarios Supported by the WLI JMS Control
Describes appropriate scenarios in which the WLI JMS control may be used.

Messaging Scenarios Not Supported by the WLI JMS Control
Describes scenarios in which the WLI JMS control may not be used.

Creating a New WLI JMS Control
Describes how to create and configure a WLI JMS control.

Using an Existing WLI JMS Control
Describes how to use an existing WLI JMS control from within a web service or business
process.

Overview: Messaging Systems and JMS
This topic describes the characteristics of messaging systems that are accessible via JMS (Java
Message Service), and therefore via the WLI JMS control.

To learn about the WLI JMS control, see WLI JMS Control.

To learn about specific messaging scenarios that are supported by the WLI JMS control, see
Messaging Scenarios Supported by the WLI JMS Control.

Messaging Systems
Messaging systems provide communication between software components. A client of a
messaging system can send messages to, and receive messages from, any other client. Each client
connects to a messaging server that provides facilities for sending and receiving messages.
WebLogic JMS, which is a component of WebLogic Server is an example of a messaging server.
WebLogic Server also supports third party messaging systems.

Messaging systems provide distributed communication that is asynchronous. A component sends
a message to a destination. A message recipient can retrieve messages from a destination. The
sender and receiver do not communicate directly. The sender only knows that a destination exists
to which it can send messages, and the receiver also knows there is a destination from which it
can receive messages. As long as they agree what message format and what destination to use,
the messaging system will manage the actual message delivery.
15-2 Using Integration Controls

Overv iew: Messagi ng Sys tems and JMS
Messaging systems also may provide reliability. The specific level of reliability is typically
configurable on a per-destination or per-client basis, but messaging systems are capable of
guaranteeing that a message will be delivered, and that it will be delivered to each intended
recipient exactly once.

JMS supports two basic styles of message-based communications: point-to-point and publish and
subscribe.

JMS Queues for Point-to-Point Messaging
Point-to-point messaging is accomplished with JMS queues. A queue is a specific named
resource that is configured in a JMS server.

A JMS client, of which the WLI JMS control is an example, may send messages to a queue or
receive messages from a queue. Point-to-point messages have a single consumer. Multiple
receivers may listen for messages on the same queue, but once any receiver retrieves a particular
message from the queue that message is consumed and is no longer available to other potential
consumers.

A message consumer acknowledges receipt of every message it receives.

The messaging system will continue attempting to resend a particular message until a
predetermined number of retries have been attempted.

JMS Topics for Publish and Subscribe Messaging
Publish and subscribe messaging is accomplished with JMS topics. A topic is a specific named
resource that is configured in a JMS server.

A JMS client, of which the WLI JMS control is an example, may publish messages to a topic or
subscribe to a topic. Published messages have multiple potential subscribers. All current
subscribers to a topic receive all messages published to that topic after the subscription becomes
active.

Connection Factories
Before a JMS client can send or receive messages to a queue or topic, it must obtain a connection
to the messaging system. This is accomplished via a connection factory. A connection factory is
a resource that is configured by the message server administrator. The names of connection
factories are stored in a JNDI directory for lookup by clients wishing to make a connection.
Using Integration Controls 15-3

WLI JMS Cont ro l
There is a default connection factory pre-configured in WebLogic Workshop, named
cgConnectionFactory. This connection factory is used for all WLI JMS controls that do not
explicitly override it. If you use a connection factory other than the default connection factory,
the factory must have the following setting:

userTransactionsEnabled="true"

Message Components
The components of a JMS message are as follows: a set of standard header fields, a set of
application-specific properties, and a message body. Every JMS message contains a standard set
of header fields that is included by default and available to message consumers. Some fields can
be set by the message producers. The property fields of a message contain header fields added by
the sending application. The properties are standard Java name/value pairs. A message body
contains the content being delivered from producer to consumer. You can manipulate the content
of these components using the following annotations:

@jc:jms-headers Annotation

@jc:jms-property Annotation

Related Topics
WLI JMS Control

WLI JMS Control Interface

@jc:jms-headers Annotation

@jc:jms-property Annotation

Messaging Scenarios Supported by the WLI JMS Control
This topic describes specific messaging scenarios that are supported by the WLI JMS control.

To learn more about JMS, the Java Message Service, see Overview: Messaging Systems and
JMS.

To learn more about the WLI JMS control, see WLI JMS Control.
15-4 Using Integration Controls

../java-class/com/bea/control/WliJMSControl.html
../../workshop/javadoc-tag/jc/jms-headers.html
../../workshop/javadoc-tag/jc/jms-property.html
../../workshop/javadoc-tag/jc/jms-headers.html
../../workshop/javadoc-tag/jc/jms-property.html

Messagi ng Scenar i os Suppor ted by the WLI JMS Cont ro l
Supported Messaging Scenarios
The JMS specification supports a wide variety of messaging scenarios. Some scenarios that are
possible in standalone applications are not possible in the WebLogic Workshop environment due
to the nature of web services.

The messaging scenarios in the following sections are supported by the WLI JMS control. For
descriptions of messaging scenarios that are not supported by the WLI JMS control, see
Messaging Scenarios Not Supported by the WLI JMS Control.

Send Messages to a Queue
A business process, via a WLI JMS control, may send messages to a JMS queue. The business
process will not receive a reply. The queue must exist and be registered in the JNDI registry. The
administrator who configures the target JMS queue determines the delivery guarantee policies.

To implement this example scenario:

1. On the WLI JMS control, specify the name of the target JMS queue as the value of the
send-jndi-name attribute of the WLI JMS control's @jc:jms property. Also, specify the
send-type attribute as queue. To learn how to create a WLI JMS control, see Creating a New
WLI JMS Control.

2. From your web service, call the WLI JMS control's default method depending on the
message type selected when the control was created, or call a custom method you have
defined for the WLI JMS control. The default method by message type is as follows:

Two-Way Messaging with Queues
A business process, via a WLI JMS control, may send messages to one queue and receive reply
messages on another queue. A single WLI JMS control may have both send and receive queues
configured, and business processes may then send and receive via the same control.

Message Type Default Method

Text/XMLBean sendTextMessage

Object sendObjectMessage

Raw Data sendBytesMessage

JMS Message sendRawMessage
Using Integration Controls 15-5

WLI JMS Cont ro l
Note: Two-way messaging requires correlation of every received messages with the instance of
the business process that sent the original outgoing message. The WLI JMS control
ensures that the conversation ID of the sender is sent on the
send_correlation_property of the outgoing message. To learn more about message
correlation, see the explanation of the send-correlation-property and
receive-correlation-property attributes in @jc:jms Annotation.

To implement this example scenario:

1. On the WLI JMS control, specify the name of the JMS queue to which you want to send
messages as the value of the send-jndi-name attribute of the JMS control's @jc:jms
annotation. Also, specify the send-type attribute as queue.

2. Specify the name of the JMS queue from which you want to receive messages as the value
of the receive-jndi-name attribute of the WLI JMS control's @jc:jms annotation. Also,
specify the receive-type attribute as queue.

3. From your web service, call the WLI JMS control's default method depending on the
message type selected when the control was created, or call a custom method you have
defined for the WLI JMS control. The default method by message type is as follows:

4. To be notified when messages are received on the receive queue, implement a callback
handler for the WLI JMS control’s callback (receiveTextMessage,
receiveBytesMessage, receiveObjectMessage or receiveRawMessage depending on
the message type selected when the control was created); or a custom callback you have
defined for the WLI JMS control.

Publish to a Topic
A business process, via a WLI JMS control, may publish messages to a JMS topic. The business
process will not receive a reply. The topic must exist and be registered in the JNDI registry.

To implement this example scenario:

Message Type Default Method

Text/XMLBean sendTextMessage

Object sendObjectMessage

Raw Data sendBytesMessage

JMS Message sendRawMessage
15-6 Using Integration Controls

../../workshop/javadoc-tag/jc/jms.html

Messagi ng Scenar i os Suppor ted by the WLI JMS Cont ro l
1. On the WLI JMS control, specify the name of the target JMS topic as the value of the
send-jndi-name attribute of the WLI JMS control's @jc:jms property. Also, specify the
send-type attribute as topic.

2. From your business process, call the WLI JMS control's default method
(sendTextMessage, sendBytesMessage, sendObjectMessage or sendRawMessage
depending on the message type selected when the control was created); or a custom method
you have defined for the WLI JMS control.

Subscribe to a Topic
A business process, via a WLI JMS control, may subscribe to messages on a JMS topic. The topic
must exist and be registered in the JNDI registry. Only messages sent after the business process
has subscribed to the topic will be received.

To implement this example scenario:

1. On the WLI JMS control, specify the name of the target JMS topic as the value of the
receive-jndi-name attribute of the WLI JMS control's @jc:jms annotation. Also, specify
the receive-type attribute as topic.

2. From your business process, call the WLI JMS control's subscribe method.

3. To be notified when messages are received on the receive topic, implement a callback
handler for the WLI JMS control’s callback (receiveTextMessage,
receiveBytesMessage, receiveObjectMessage or receiveRawMessage depending on
the message type selected when the control was created); or a custom callback you have
defined for the WLI JMS control.

4. To stop being notified when messages are received on the receive topic, call the WLI JMS
control’s unsubscribe method.

The following is an example of this scenario:

Related Topics
Overview: Messaging Systems and JMS

Messaging Scenarios Not Supported by the WLI JMS Control

WLI JMS Control Interface

@jc:jms Annotation

@jc:jms-headers Annotation
Using Integration Controls 15-7

../java-class/com/bea/control/WliJMSControl.html
../../workshop/javadoc-tag/jc/jms.html
../../workshop/javadoc-tag/jc/jms-headers.html

WLI JMS Cont ro l
@jc:jms-property Annotation

Messaging Scenarios Not Supported by the WLI JMS Control
This topic describes specific messaging scenarios that are not supported by the WLI JMS control.

To learn more about the WLI JMS control, see WLI JMS Control.

Unsupported Scenarios
The JMS specification supports a wide variety of messaging scenarios. Some scenarios that are
possible in standalone applications are not possible in the WebLogic Workshop environment due
to the nature of web services.

The messaging scenarios in the following section are not supported by the WLI JMS control. For
descriptions of messaging scenarios that are supported by the WLI JMS control, see Messaging
Scenarios Supported by the WLI JMS Control.

Receive Unsolicited Messages from a Queue
A business process may not, via a WLI JMS control, specify a receive queue and subsequently
receive unsolicited messages from that queue.

A business process must be performing work on behalf of a specific client and, in asynchronous
situations, as part of a specific conversation. When an unsolicited messages is received from a
queue, it is not possible for the WLI JMS control to determine the appropriate conversation or
client with which to correlate unsolicited incoming messages.

Note: You may receive unsolicited messages in a business process via the JMS Event Generator
and the Message Broker capabilities. To learn how to use the Message Broker controls
and the JMS Event Generator, see Message Broker Controls.

Related Topics
Overview: Messaging Systems and JMS

Messaging Scenarios Supported by the WLI JMS Control

Creating a New WLI JMS Control
This topic describes how to create a new WLI JMS control.

To learn about WLI JMS controls, see WLI JMS Control.
15-8 Using Integration Controls

../../workshop/javadoc-tag/jc/jms-property.html

Creat ing a New WLI JMS Cont ro l
Creating a New WLI JMS Control
You can create a new WLI JMS control and add it to your business process. To define a new WLI
JMS control:

1. Click Add on the Controls tab to display a list of controls that represent the resources with
which your business process can interact.

Note: If the Controls tab is not visible in WebLogic Workshop, click
View→Windows→Data Palette from the menu bar.

2. Choose Integration Controls to display the list of controls used for integrating
applications.

3. Choose WLI JMS to display the Insert Control - WLI JMS dialog

4. In Step 1, in the Variable name for this control field, enter the name for your JMS control.

5. In Step 2, select the Create a new WLI JMS control to use radio button.

6. In the New JCX name field, enter the name of the new file.

7. Decide whether you want to make this a control factory and select or clear the Make this a
control factory that can create multiple instances at runtime check box. For more
information about control factories, see Control Factories: Managing Collections of
Controls.

8. In Step 3, from the Message type drop-down list, select the type of message you want to
process. For more information about the types of messages, see Specifying the Format of
The Message Body.

9. From the JMS send destination type drop-down list, select either Queue or Topic,
depending on the kind of messaging service you will be connecting to. For more
information about messaging services, see Overview: Messaging Systems and JMS.

10. In the send-jndi-name field, type the name of the queue or topic that will send messages. If
you do not know the name, click Browse and choose from the available list. You must
specify the name of the send queue if the control is to be used to send messages.

11. From the JMS receive destination type drop-down list, select either Queue or Topic,
depending on the kind of messaging service you will be connecting to. For more
information about messaging services, see Overview: Messaging Systems and JMS.
Using Integration Controls 15-9

../../workshop/guide/controls/conControlFactoriesManagingCollectionsOfControls.html
../../workshop/guide/controls/conControlFactoriesManagingCollectionsOfControls.html

WLI JMS Cont ro l
12. In the receive-jndi-name field, type the name of the queue or topic that will receive
messages. If you do not know the name, click Browse and choose from the available list.
You must specify the name of the receive queue if the control is to be used to receive
messages.

13. In the connection-factory field, type the name of the connection factory to create
connections to the queue or topic. If you do not know the name, click Browse and choose
from the available list.

14. Click Create. Alternatively, you may create a WLI JMS control JCX file manually. For
example, you may copy an existing WLI JMS control JCX file and modify the copy.

WLI JMS Control Methods
To learn about the methods available on the WLI JMS control, see the WliJMSControl Interface.

The JCX File for a WLI JMS Control
When you create a new WLI JMS control, you create a new JCX file in your project. The
following is an example JCX file:

package FunctionDemo;

import com.bea.control.*;
import com.bea.xml.*;
import java.io.Serializable;

/**
 * @jc:jms send-type="queue" send-jndi-name="myqueue.async.request"
 * receive-type="queue" receive-jndi-name="myqueue.async.response"
 * connection-factory-jndi-name="weblogic.jws.jms.QueueConnFactory"
 */
public interface SimpleQueueControl extends
 WliJMSControl,com.bea.control.ControlExtension
{
 /**
 * this method will send a javax.jms.TextMessage to send-jndi-name
 */
 public void sendTextMessage(XmlObject payload);

/**
* this method will send a javax.jms.TextMessage to send-jndi-name
*/
public void sendAnotherTextMessage(String payload);

/**
15-10 Using Integration Controls

../java-class/com/bea/control/WliJMSControl.html

Creat ing a New WLI JMS Cont ro l
* If your control specifies receive-jndi-name,
 * that is your process expects to receive messages
 * from this control, you will need to implement callback handlers.
 */

interface Callback extends WliJMSControl.Callback
 {
 /**
 * Define only 1 callback method here.
 *
 * This method defines a callback that can handle
 * text messages from receive-jndi-name
 */
 public void receiveTextMessage(XmlObject payload);
 }
}

The JCX file contains the declaration of a Java interface with the name specified in the dialog.
The interface extends the control base interface. Invoking any method in the JCX interface, other
than the callback, results in a JMS message being sent to the specified queue or topic.

The contents of the WLI JMS control's JCX file depend on the selections made in the Insert WLI
JMS dialog. The example above was generated in response to selection of Text/XML Bean as
the Message type drop-down list.

Configuring the Properties of a JMS Control
Most aspects of a WLI JMS control can be configured from the Properties Editor in Design View.
These properties are encoded in the JMS control's JCX file as attributes of the @jc:jms
annotation. To retrieve current parameter settings, use the getControlProperties() method.
(Note that this is a different method from the getProperties() method on the base JMS control
which is used to get the JMS properties of the last message received.)

For detailed information on the @jc:jms annotation and its attributes, see @jc:jms Annotation.

You can also use the ControlContext interface for access to a control's properties at run time and
for handling control events. Property values set by a developer who is using the control are stored
as annotations on the control's declaration in a JWS, JSP, or JPD file, or as annotations on its
interface, callback, or method declarations in a JCX file.

To learn how to create, configure and register JMS queues, topics and connection factories, see
Programming WebLogic JMS at the following URL:

http://edocs.bea.com/wls/docs81/jms/index.html

Two queues are configured when WebLogic Workshop is installed, in order to support WLI JMS
control samples. These are named SimpleJmsQ and CustomJmsCtlQ. The connection factory
Using Integration Controls 15-11

../../workshop/java-class/com/bea/control/ControlContext.html
../../workshop/javadoc-tag/jc/jms.html

WLI JMS Cont ro l
that provides connections to these queues has the JNDI name
weblogic.jws.jms.QueueConnectionFactory. These resources may be used for
experimentation.

Note: Every WLI JMS control deployed on a server should listen on a unique queue. If multiple
WLI JMS controls on the same server are simultaneously listening on the same queue,
the results may be unpredictable. See the WLI JMS Control Caveats section below for
more information.

Specifying the Format of The Message Body
Within a WLI JMS control, you may define multiple methods and one callback. All methods will
send or publish to the queue or topic named by send-jndi-name, if present.

JMS defines several message types that may be sent and or published. The WLI JMS control can
send the JMS message types TextMessage, ObjectMessage, BytesMessage, and JMSMessage.
The WLI JMS control dynamically determines which type of message to send based on the
configuration of the WLI JMS control method that was called. XML Object and XML typed
variables use the text/XMLBean message type.

Note: You can send or receive any message type through send and receive methods that take a
javax.jms.Message argument. (All message types extend javax.jms.Message.) To
send an ObjectMessage, for example, call myControl.getSession() to get the JMS
session, then call session.createObjectMessage(), and then send the message.

If the WLI JMS control method takes a single String or XMLObject argument, a
javax.jms.TextMessage is sent.

If the WLI JMS control method takes a single argument of type java.lang.Object, a
javax.jms.ObjectMessage is sent.

If the WLI JMS control method takes a single argument of type javax.jms.BytesMessage, a
javax.jms.BytesMessage is sent.

If the WLI JMS control method takes a single argument of type javax.jms.Message, a JMS
Message object is sent directly.

Specifying Message Headers and Properties
To edit the parameter list controlling the message headers and message properties, display the
control in the Design view, select a method, and edit the parameters using the Property Editor
pane. You can set parameters programatically using the setProperties() method. To display
current parameter settings, use the getControlProperties() method.
15-12 Using Integration Controls

Creat ing a New WLI JMS Cont ro l
You can send additional properties using key-values pairs, using the annotation
@jc:jms-property for each pair. You can also edit the parameters directly in the Source view.

Accessing Remote JMS Resources
The JNDI names specified for send-jndi-name, receive-jndi-name and
connection-factory may refer to remote JMS resources. The fully specified form of a JMS
resource names is:

jms:{provider-host}/{factory-resource}/

{dest-resource}?{provider-parameters}

For example:

jms://host:7001/cg.jms.QueueConnectionFactory/

jws.MyQueue?URI=/drt/Bank.jws

or:

jms://host:7001/MyProviderConnFactory/

MyQueue?SECURITY_PRINCIPAL=foo&SECURITY_CREDENTIALS=bar

WLI JMS Control Caveats
Bear in mind the following caveats when you work with WLI JMS controls:

If you have multiple web services (multiple types, not instances) that reference the same
receive-jndi-name for a queue, you must use the receive-selector attribute such
that the web services partition all received messages into disjoint sets. If this is not handled
properly, messages for a particular conversation may be sent to a control instance that does
not participate in that conversation. Note that if you rename a web service that uses a JMS
control without undeploying the initial version, the initial version and the new version will
be using an identically configured WLI JMS control and will violate this caveat.

You may have only one callback defined for any WLI JMS control instance
(receiveTextMessage, receiveBytesMessage, receiveObjectMessage or
receiveJMSMesage, or a developer-defined callback).

Note the difference between the getControlProperties() method used to get WLI JMS
control properties and the getProperties() method on the base JMS control which is
used to get the JMS properties of the last message received.

If the underlying WLI JMS control infrastructure receives a message that it cannot deliver
to a control instance (e.g. no conversation ID for a control that listens to a queue), it will
Using Integration Controls 15-13

WLI JMS Cont ro l
throw an exception from the JMSControl.onMessage method. This will cause the current
transaction to be rolled back. The behavior after that depends on how the administrator set
up the JMS destination. Ideally, it should be set up to have a small retry count and an error
destination.

Note: If the destination is configured with a large (or no) retry count and no error destination,
the WLI JMS control infrastructure will continue attempting to process the message
(unsuccessfully) forever. For information on setting the redelivery limit, see
the“Programming WebLogic JMS at
http://edocs.bea.com/wls/docs81/jms/index.html.

Related Topics
Overview: Messaging Systems and JMS

WLI JMS Control Interface

@jc:jms-headers Annotation

@jc:jms-property Annotation

Using an Existing WLI JMS Control
This topic describes how to use an existing WLI JMS control in your web service.

To learn about WLI JMS controls, see WLI JMS Control.

To learn how to create a WLI JMS control, see Creating a New WLI JMS Control.

Using an Existing WLI JMS Control
All controls follow a consistent model. Therefore, most aspects of using an existing WLI JMS
control are identical to using any other existing control. To use an existing WLI JMS control:

1. Click Add on the Controls tab to display a list of controls that represent the resources with
which your business process can interact.

Note: If the Controls tab is not visible in WebLogic Workshop, click
View→Windows→Data Palette from the menu bar.

2. Choose Integration Controls to display the list of controls used for integrating
applications.

3. Choose WLI JMS to display the Insert Control - WLI JMS dialog.
15-14 Using Integration Controls

../java-class/com/bea/control/WliJMSControl.html
../../workshop/javadoc-tag/jc/jms-headers.html
../../workshop/javadoc-tag/jc/jms-property.html

Us ing an Ex ist ing WLI JMS Cont ro l
4. In the Variable name for this control field, type the variable name used to access the
existing WLI JMS control instance from your business process. The name you enter must
be a valid Java identifier.

5. In the Step 2 pane, choose the Use a WLI JMS control already defined by a JCX file
radio button.

6. Click Browse to browse for existing WLI JMS controls. The Select dialog is displayed.
When you find the control you want to use, select it and click Select.

7. Click Create.

Related Topics
Overview: Messaging Systems and JMS

WliJMSControl Interface
Using Integration Controls 15-15

../java-class/com/bea/control/WliJMSControl.html

WLI JMS Cont ro l
15-16 Using Integration Controls

C H A P T E R 16
Worklist Controls
WebLogic Integration Worklist provides the capability to direct the flow of work and manage the
routing of tasks to the people in an enterprise. Integral to the flow of work are actions such as
receiving, approving, modifying, and routing documents. The documents that accompany work
activities provide the information necessary for people to perform and complete tasks. The
Worklist enables people to collaborate in business processes including assigning tasks, tracking
the status of tasks, handling approvals, and other activities required to manage workflow.

To support the Worklist functionality, WebLogic Integration provides two controls in WebLogic
Workshop, the Task control and the Task Manager control. These controls expose Java interfaces
that can be invoked directly from your business processes. The Task control enables a business
process to create a single Task instance, manage its state and data, and provide callback methods
that report status. The Task Worker control allows specified users to acquire ownership of Tasks,
work on them, and complete them. It also provides administrative privileges, such as starting,
stopping, deleting, and assigning. Access to the Task Worker control can be done with a business
process or through a user interface (UI).
Using Integration Controls 16-1

Work l is t Cont ro ls
Topics Included in This Section
Overview: Worklist Controls

Describes what Tasks are and provides an overview of the Worklist controls.

Creating a New Task Control
Describes how to create a new Task control using the WebLogic Workshop graphical
design interface.

Creating a New Task Worker Control
Describes how to create a new Task Worker control using the WebLogic Workshop
graphical design interface.

Using Task and Task Worker Controls in Business Processes
Provides information about using the Worklist controls in business processes.

Example: Task Control
Provides a link to the Tutorial: Building a Worklist Application, which shows an example
of using a Task Control.

Related Topics
TaskControl Interface

TaskWorkerControl Interface

Worklist Control Annotations

Using the Worklist at http://edocs.bea.com/wli/docs81/worklist/index.html

 Tutorial: Building a Worklist Application at
http://edocs.bea.com/wli/docs81/wltutorial/index.html

Worklist Administration in Managing WebLogic Integration Solutions at
http://edocs.bea.com/wli/docs81/manage/worklist.html

Using Built-In Java Controls

BEA WebLogic Integration Javadoc at
http://edocs.bea.com/wli/docs81/javadoc/index.html

Overview: Worklist Controls
Worklist controls enable the automated manipulation, creation, and management of Tasks. A
Task instance represents a unit of work that requires completion within a certain time period.
16-2 Using Integration Controls

http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/controls/navControlsOverview.html
../java-class/com/bea/control/TaskControl.html
../java-class/com/bea/control/TaskWorkerControl.html
../javadoc-tag/jc/worklistcontrolannotations.html

Overv iew: Work l i s t Cont r o ls
After the work is completed, you can use a Task instance to represent a detailed record of that
unit of work.

A Task instance is a particular object in the run-time Worklist system that represents a work
assignment in the real world. Task instances are part of the WebLogic Integration server and exist
independently of any controls or business processes. Multiple business processes can interact
with a Task throughout its lifecycle concurrently. Tasks remain in the run time indefinitely, either
until they are explicitly deleted or purged by the WebLogic Integration purging process.You can
create, delete, and manage Tasks through the following mechanisms:

The Task and Task Worker controls in WebLogic Workshop

The Worklist area of the WebLogic Integration Administration Console

The public Worklist API, using Enterprise Java Beans, and Message Beans

Task instances, or simply Tasks, offer a variety of properties that describe the work to be done
and the state of the work. Task instance properties can describe the following:

Tasks have the following characteristics, qualities and behaviors that can be defined, configured or used:

Property Description

Assignees List The list of users and groups that have permission to claim the
task and work on it.

Completion Due Date The date the work is due.

Task Owner The user who manages the process of getting the work done.

Claimant The user who has claimed the Task and completes the work.

Request and response
documents

The records that describe the work to be done and the results.
Using Integration Controls 16-3

Work l is t Cont ro ls
The following Worklist controls are provided for building a Worklist system with WebLogic
Integration:

Task Control—creates a single Task instance, manages its state and data, and provides
callback methods to report status of the Task. Each Task control operates on a single active
Task instance.

Task Worker Control—assumes ownership of Tasks, works on them, completes them,
and provides administrative privileges—starting, stopping, deleting, and assigning, among
other functions. Task Worker controls allow operations upon several Task instances at the
same time.

Worklist controls are extensible. Common extensions include implementing callback functions
and performing system queries. Extensibility is provided by Java annotations.

Related Topics
Creating a New Task Control

Creating a New Task Worker Control

Creating a New Task Control
An instance of a Task control can create a single task instance. If multiple tasks need to be
created, use a factory type of Task control. To learn about factories, see “Using Task Control
Factories” in Advanced Topics in Using the Worklist, which is located at the following URL:

http://edocs.bea.com/wli/docs81/worklist/advanced.html

Characteristics Description

Task Due Dates Due dates can be set to track how long it should take for a Task
to get claimed by a user or for the claimant to actually complete
the task. Due dates can be set with actual dates, or using business
time with a business calendar.

Task States States can describe such things as whether a Task is complete,
started, or aborted.

Task Operations Tasks depend on users to invoke operations that make changes
to properties and states. For example, an operation could
indicate that a Task is complete or to assign a Task to a new user.
16-4 Using Integration Controls

Creat ing a New Task Cont ro l
A Task control instance can also interact with a task instance that already exists by setting its
active task ID. After creating or setting the active task ID, your control instance can get
information about that task or update that task in various ways.

You can customize Task controls for different business purposes, by adding new operations or
callbacks, or by altering the signatures of existing operations or callbacks.

To create a new Task control:

1. Open your WebLogic Integration application in WebLogic Workshop.

2. In the Application pane, double-click the business process (JPD file) to which you want to
add the logic to integrate business users using the Worklist system. The business process is
displayed in the Design View.

3. On the Data Palette, in the Controls tab, click Add→Integration Controls to display a
list of integration controls that represent the resources with which your business process can
interact.

Note: If the Controls tab is not visible, from the menu bar, click View→Windows→Data
Palette.

4. Choose Task. The Insert Control dialog box is displayed.

5. In the Insert Control dialog box (Step 1), enter a name for the instance of this control. The
name you enter must be a valid Java identifier.

6. In the Insert Control dialog box (Step 2), select one of the following options:

– Use a Task control already defined by a JCX file.
Using Integration Controls 16-5

Work l is t Cont ro ls
Enter a filename for the Task control in the JCX file field, or click Browse to find the
JCX file in your file system.

– Create a new Task control to use.

Enter a filename in the New JCX name field.

7. Choose whether you want to make this a control factory by selecting or clearing the Make
this a control factory that can create multiple instances at runtime check box.

To learn about factories, see “Using Task Control Factories” in Advanced Topics in Using
the Worklist, which is located at the following URL:

http://edocs.bea.com/wli/docs81/worklist/advanced.html

8. Click Create. A new Task control and an instance of it are created and the Insert Control
dialog box is closed.

A new JCX file is created and displayed in the Application tab in WebLogic Workshop.
(You can double-click any JCX file to view or edit it in the Design or Source View.) The
instance of the control is displayed on the Controls tab of the Data Palette.

9. To display the base methods provided on a Task control, expand the control instance by
clicking the + beside its name on the Data Palette.

10. After you create an instance of the Task control in your business process, you can design
the interaction of the business process with the Task control by simply dragging and
dropping the Task control methods from the Data Palette onto the Design View at the point
in your business process at which you want to design the interaction.

For examples of designing interactions between a business process and an instance of a
Task control, see Using Task and Task Worker Controls in Business Processes.

11. After you create a Task control in your business process, you can view and edit the
properties of the control type or the instance of that control type in the Property Editor.
The control type is represented as a JCX file in the Application pane and the instance is
represented in the Data Palette.

Task Instances have data values associated with them, many of which are set when the task
is created. You can use the Property Editor on a Task control to set the default values for
16-6 Using Integration Controls

Creat ing a New Task Worke r Cont ro l
some of these data values. These values are used whenever that control instance creates a
new task. Note that the properties set on a factory type Task control propagate to any Task
control instances created from that factory.

To learn about factories, see “Using Task Control Factories” in Advanced Topics in Using
the Worklist, which is located at the following URL:

http://edocs.bea.com/wli/docs81/worklist/advanced.html

Note: To learn how to use the Property Editor for specifying properties for control types
versus control instances, see Setting Control Properties.

Creating a New Task Worker Control
The Task Worker control allows specified users to acquire ownership of Tasks, work on them,
and complete them. It also provides administrative privileges, such as starting, stopping, deleting,
and assigning. Access to the Task Worker control can be done with a business process or through
a user interface (UI). You can customize each Task worker control for different business
purposes.

This topic describes how to create a new Task Worker control. Task Worker controls do not have
any properties to configure.

1. Open your WebLogic Integration application in WebLogic Workshop

2. If you are not in Design View, click the Design View tab.

3. On the Data Palette, in the Controls tab, click Add→Integration Controls. A list of
controls representing the resources with which your business process can interact is
displayed.

Note: If the Controls tab is not visible, from the menu bar, click View→Windows→Data
Palette.

4. Choose Task Worker. The Insert Task Worker dialog box is displayed.
Using Integration Controls 16-7

../wfguide/wfguideControlsProperties.html

Work l is t Cont ro ls
5. In the Insert Control dialog box (Step 1), enter a name for the instance of this control. The
name you enter must be a valid Java identifier.

6. In the Insert Control dialog box (Step 2), select one of the following options:

– To use a Task Worker control already defined by a JCX file, in the JCX file field, enter
a filename for the Task Worker control, or click Browse to find the JCX file in your
file system.

– To Create a new Task Worker control to use, in the New JCX name field, enter a
filename.

7. Click Create to close the Insert Control dialog box.

When you click create, the control JCX file is displayed in the Application tab. In both
Design and Source View, you can double-click any JCX file to view or edit it. The
instance of the control is displayed on the Controls tab of the Data Palette.

8. To display the base methods provided for the control instance, click the + beside its name
on the Data Palette. The following figure shows an example of a Task Worker control
instance displayed on the Controls tab in the Data Palette.
16-8 Using Integration Controls

Us ing Task and Task Worker Cont ro ls in Busi ness P rocesses
9. After you create an instance of the Task control in your business process, you can design
the interaction of the business process with the Task control by simply dragging and
dropping the Task control methods from the Data Palette onto the Design View at the point
in your business process at which you want to design the interaction.

For examples of designing interactions between a business process and an instance of a
Task control, see Using Task and Task Worker Controls in Business Processes.

Using Task and Task Worker Controls in Business Processes
Before you begin working with the Task and Task Worker controls, you should be familiar with
the features and components of the Worklist. To learn more about the Worklist, see Using the
Worklist, which is located at the following URL:

http://edocs.bea.com/wli/docs81/worklist/index.html

To design the interaction of a Task or Task Worker control with a business process, you must
decide which methods on the control you want to call from the business process to support the
business logic.

In the same way that you design the interactions between business processes and other controls
in the WebLogic Workshop, you can bind the Worklist control method to the appropriate control
node in your business process (Control Send, Control Receive, and Control Send with
Return). You do this in the Design View by simply dragging a control method from the Data
Palette onto the business process at the point in your business process at which you want to
design the logic.

Related Topics
Tutorial: Building a Worklist Application at
http://edocs.bea.com/wli/docs81/wltutorial/index.html

 Introduction in Using the Worklist at
http://edocs.bea.com/wli/docs81/worklist/intro.html

Using Worklist Controls in Using the Worklist at
http://edocs.bea.com/wli/docs81/worklist/controls.html

Creating and Managing Worklist Tasks in Using the Worklist at
http://edocs.bea.com/wli/docs81/worklist/tasks.html

Advanced Topics in Using the Worklist at
http://edocs.bea.com/wli/docs81/worklist/advanced.html
Using Integration Controls 16-9

Work l is t Cont ro ls
“Using the Task Control Property Editor” in “Using Task and Task Worker Controls in Business
Processes” in Using Worklist Controls in Using the Worklist at
http://edocs.bea.com/wli/docs81/worklist/controls.html

Example: Task Control
To see an example of using a Task control in a business process, see Tutorial: Building a Worklist
Application, which is located at the following URL:

http://edocs.bea.com/wli/docs81/wltutorial/index.html
16-10 Using Integration Controls

C H A P T E R 17
Using Control Factories
When creating some controls, you specify whether you want to make the control instance a
control factory. A control factory allows a single application to manage multiple instances of the
same control. File, Email, WLI JMS, Application View, TPM, and Worklist controls can be
implemented as control factories.

To make a control a control factory, select the Make this a control factory that can create
multiple instances at runtime check box when creating the control. When you add a control to
a business process, if the control is a factory, the first argument of the control receive method is
the controltype. This is displayed in the node builder assignment and mapping panel and you can
assign and map to it.

For more information about control factories, see Control Factories: Managing Collections of
Controls.
Using Integration Controls 17-1

../../workshop/guide/controls/conControlFactoriesManagingCollectionsOfControls.html
../../workshop/guide/controls/conControlFactoriesManagingCollectionsOfControls.html

Using Cont ro l Fac to r ies
17-2 Using Integration Controls

C H A P T E R 18
Using Message Attachments
Business processes can exchange business messages with trading partners via ebXML or
RosettaNet. These business messages include one or more attachments containing XML or
non-XML data.

Note: For ebXML messages, each attachment represents a single payload in the ebXML
message.

Attachments can be any of the following Java types:

Type Description

XmlObject Represents untyped XML format data.

XmlObject[] Used for ebXML only—an array containing one or more
XmlObject elements.

RawData Represents any non-XML structured or unstructured data for
which no MFL file (and therefore no known schema) exists.

RawData[] Used for ebXML only—an array containing one or more
RawData elements

MessageAttachment[] Represents either untyped XML or non-XML data in a
message attachment. Used for payloads in business messages
that contain both untyped XML and non-XML data.
Using Integration Controls 18-1

Using Message At tachments
Attachments can also be typed XML or typed MFL data as long as you specify the corresponding
XML Bean or MFL class name in the parameter.

If you use arrays as attachment type, certain restrictions apply to the order of your arguments. For
more informations, see “Specifying XmlObject and RawData Array Payloads” on page 5-7.

For business messages containing both untyped XML and non-XML data, the message payload is
represented as an array of MessageAttachment objects: MessageAttachment[]

The following APIs in the com.bea.data package provide access to individual
MessageAttachment objects within the array:

For more information about using the message attachment APIs, see the interfaces listed in the
bea.com.data package in the Java Class Reference.

Related Topics

Guide to Building Business Processes

ebXML Control

RosettaNet Control

Introducing Trading Partner Integration at
http://edocs.bea.com/wli/docs81/tpintro/index.html

WebLogic Workshop Reference

Java Class Reference

Object Description

MessageAttachment
Interface

Represents part of a message attachment in an ebXML or
RosettaNet business message. Provides methods for
retrieving untyped XML or non-XML data from an
attachment.

MessageAttachment.Factory
Class

Factory for creating MessageAttachment instances.
Provides methods for creating MessageAttachment
instances from untyped XML or non-XML data.
18-2 Using Integration Controls

../java-class/javaClassIntro.html
../wfguide/wfguideIntro.html
controlsebXML.html
controlsRosettaNet.html
../../workshop/reference/navCajunRef.html
../java-class/javaClassIntro.html

	Using Integration Controls
	Using Controls in Business Processes
	Adding Control Nodes to Your Business Process
	Designing the Communications for Control Nodes
	Using Integration Controls in Web Services or Page Flows

	Controls and Transactions
	Good Practice in Creating Web Service Controls for a Business Process Application

	Application View Control
	Prerequisites for Integrating Applications Using WebLogic Workshop
	Overview: Application Integration
	Adapters
	Application Views
	Application View Control

	Creating a New Application View Control
	Application View Control Methods
	Example: Application View Control

	Customizing an Application View Control
	Control Properties
	Method Properties

	Updating an Application View Control
	Updating a Control when an Application View Changes

	Using an Application View Control
	Using an Existing Application View Control
	Customizing an Application View Control
	ApplicationViewControl Interface
	Related Topics

	ebXML Control
	Overview: ebXML Control
	Creating an ebXML Control
	Specifying XmlObject and RawData Array Payloads

	Using an ebXML Control
	Sending Messages to Participants
	Handling Responses from Participants
	Dynamically Specifying Business IDs
	Order of Precedence
	Using Selectors
	Using setProperties

	Example: ebXML Control

	Email Control
	Overview: Email Control
	Configuring an Email Control
	Customizing an Email Control
	Using Dynamic Properties for an Email Control

	Creating a New Email Control
	Email Control Methods

	Sample Email Messages
	Example 1: HTML Body, No Attachments
	Example 2: Body with Attachments
	Example 3: No Body, One Attachment
	Exceptions and Errors

	File Control
	Overview: File Control
	Creating a New File Control
	Creating a New File Control
	File Control Methods
	Example: File Control Declaration

	Using a File Control
	Setting Default File Control Behavior
	Using Methods of the FileControl Interface
	Error Handling When Reading Files

	Example: File Control

	Http Control
	Creating a New Http Control
	Creating a New Http Control
	The JCX file for the Http Control
	Using the Http Control in a Business Process

	Specifying Http Control Properties
	Using HTTP Methods to Set Properties
	Setting Dynamic Http Control Properties
	Example of an XML Variable to Set Dynamic Properties
	Schema for Http Control Properties

	Setting Connection Time-out
	Setting Connection Retry Count
	Configuring Server-side SSL
	Configuring Client-side SSL
	Configuring Proxy Settings
	Setting Cookie
	Example: XML Variable Used to Set Cookies
	Schema for Setting Cookie

	Setting Headers for HTTP Post
	Example: XML Variable Used to Set the Headers
	Schema for Setting HTTP Post Headers

	Sending an HTTP Get Request
	Example: XML Variable Used to Set Parameters in HTTP Get
	Schema for Sending Parameters for HTTP Get

	Sending Data as HTTP Post
	Recieving HTTP Response Headers
	Recieving Cookies From the Server
	Recieving HTTP Body Data

	Logging Debug Messages and Exceptions
	Http Control Caveats
	The HTTP Event Generator

	Message Broker Controls
	Message Broker Publish Control
	JCX File for Your MB Publish Control
	Using Methods of the MB Publish Interface
	Method Attributes

	Example Code for MB Publish Control

	Message Broker Subscription Control
	JCX File for Your MB Subscription Control
	Using Methods of the MB Subscription Interface
	Class Interface

	Method Attributes
	Example Code for MB Subscription Control
	Note About Static and Dynamic Subscriptions to Message Broker Channels

	Using Event Generators to Publish to Message Broker Channels

	MQSeries Control
	Before You Add an MQSeries Control
	Creating and Configuring a New Instance of MQSeries Control
	The JCX File for an MQSeries Control

	Using Exit Implementation
	Implementing MQSeries Exits

	Understanding Transaction Management
	Implicit Transaction Management
	Explicit Transaction Management

	Using Message Descriptors
	Schema of the MQMDHeaders Document
	Sample of an MQMDHeaders Document
	Using XML Beans to Set the MQMDHeader Element Values

	Sending and Receiving Messages
	Sending Messages
	Using the putMessage Function In a Business Process

	Receiving Messages
	Using the getMessage Function In a Business Process

	Sending Group messages
	Retrieving Group Messages
	Setting the logicalorder Attribute
	Setting the waitForAllMsgs Attribute
	Setting the GroupId element
	Retrieving Group Messages Using MessageSequenceNumber Element

	Working with MQSeries Message Descriptor Format
	Setting Dynamic Properties
	Schema of MQDynamicProperties
	Sample MQDynamicProperties Document

	Using the MQSeries Event Generator

	Process Control
	Overview: Process Control
	Setting Process Control Properties

	Creating a New Process Control
	Creating a New Process Control Using the Control Wizard
	Process Control Methods
	Example: Process Control Declaration
	Creating a Process Control from a Business Process

	Editing and Testing a Dynamic Selector
	Using Dynamic Binding

	RosettaNet Control
	Overview: RosettaNet Control
	Creating a RosettaNet Control
	Using a RosettaNet Control
	Sending Messages to Participants
	Sending a Request Message
	Responding to Participant Replies

	Handling Messages from Participants
	Retrieving Message Elements
	Dynamically Specifying Business IDs
	Order of Precedence
	Using Selectors
	Using setProperties

	Example: RosettaNet Control

	Service Broker Control
	Overview: Service Broker Control
	Setting Service Broker Properties

	Using Dynamic Binding
	Components Used in Dynamic Binding
	@jc:selector Tag
	Built-In XQuery Functions
	DynamicProperties.xml File

	Quote Processing Example

	Creating a New Service Broker Control
	Creating a New Service Broker Control Using the Control Wizard
	Creating a Service Broker Control from a Business Process

	Editing and Testing a Dynamic Selector

	TPM Control
	Overview: TPM Control
	Creating a TPM Control
	Using a TPM Control
	Example: TPM Control

	WLI JMS Control
	Overview: Messaging Systems and JMS
	Messaging Systems
	JMS Queues for Point-to-Point Messaging
	JMS Topics for Publish and Subscribe Messaging
	Connection Factories
	Message Components

	Messaging Scenarios Supported by the WLI JMS Control
	Supported Messaging Scenarios
	Send Messages to a Queue
	Two-Way Messaging with Queues
	Publish to a Topic
	Subscribe to a Topic

	Messaging Scenarios Not Supported by the WLI JMS Control
	Unsupported Scenarios
	Receive Unsolicited Messages from a Queue

	Creating a New WLI JMS Control
	Creating a New WLI JMS Control
	WLI JMS Control Methods
	The JCX File for a WLI JMS Control
	Configuring the Properties of a JMS Control

	Specifying the Format of The Message Body
	Specifying Message Headers and Properties
	Accessing Remote JMS Resources
	WLI JMS Control Caveats

	Using an Existing WLI JMS Control
	Using an Existing WLI JMS Control

	Worklist Controls
	Overview: Worklist Controls
	Creating a New Task Control
	Creating a New Task Worker Control
	Using Task and Task Worker Controls in Business Processes
	Example: Task Control

	Using Control Factories
	Using Message Attachments

