
BEA
 WebLogic
Integration™

Tutorial: Building Your
First Data Transformation
Version 8.1 Service Pack 3
Document Date: June 2004

Copyright
Copyright © 2004 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic Commerce
Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Enterprise Security, BEA
WebLogic Express, BEA WebLogic Integration, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA
WebLogic Portal, BEA WebLogic Server, BEA WebLogic Workshop and How Business Becomes E-Business are
trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Tutorial: Building Your First Data Transformation iii

Contents

Tutorial: Building Your First Data Transformation
Tutorial Goals . 1-3

Steps in This Tutorial . 1-3

Step 1: Getting Started

Step 2: Building the Transformation

Step 3: Mapping Elements and Attributes

Step 4: Mapping Repeating Elements—Creating a Join

Understanding the Concepts
Understanding the Transformation . 6-1

Understanding XML Repeating Nodes . 6-4

iv Tutorial: Building Your First Data Transformation

Tutorial: Building Your First Data Transformation 1-1

C H A P T E R 1

Tutorial: Building Your First Data
Transformation

Data transformation is the mapping and conversion of data from one format to another. For
example, XML data can be transformed from XML data valid to one XML Schema to another
XML document valid to a different XML Schema. Other examples include the data
transformation from non-XML data to XML data. This tutorial introduces the basics of building
a data transformation by describing how to create and test a XML-to-XML data transformation
using WebLogic Workshop.

In WebLogic Integration business processes, a data transformation transforms data using queries
(written in the XQuery language). This tutorial describes the steps for building a query in the
XQuery language—a language defined by the World Wide Web Consortium (W3C) that provides
a vendor independent language for the query and retrieval of XML data.

To learn about the XQuery language, see the XQuery 1.0: An XML Query Language
Specification - W3C Working Draft 16 August 2002 at the W3C web site at the following URL:

http://www.w3.org/TR/2002/WD-xquery-20020816

The WebLogic XQuery engine invoked by a business process conforms to the August 16, 2002
draft of the XQuery Specification.

To learn more about XML and XML Schemas, see Java and XML Basics.

The data transformation created in this tutorial is invoked in the RequestQuote business process.
This business process is created to meet the business needs of an enterprise. The enterprise starts
the business process as a result of receiving a Request for Quote from clients, checks the
enterprise’s inventory and pricing systems to determine whether the order can be filled, and sends
a quote for the requested items to the client. To learn more about creating business processes and
the RequestQuote business process, see Tutorial: Building Your First Business Process.

http://www.w3.org/TR/2002/WD-xquery-20020816
http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/getstarted/navJavaXMLBasics.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/tutorial/tutWLIProcessIntro.html
http://www.w3.org/TR/2002/WD-xquery-20020816
http://www.w3.org/TR/2002/WD-xquery-20020816

1-2 Tutorial: Building Your First Data Transformation

The following figure shows the flow of data in the RequestQuote business process of the Tutorial
Process application.

The purpose of the RequestQuote business process is to provide price and availability
information for a set of widgets. The flow of the data through the RequestQuote business process
is represented by the following steps:

1. The business process receives the set of widget IDs.

2. The business process determines the tax rate for the shipment and puts the result in the
taxRate float business process variable.

3. The business process gets the price of each of the requested widgets from a source and
places the resulting XML data into the priceQuote business process variable. (This XML
data is valid to the XML Schema in the PriceQuote.xsd file.)

4. The business process gets information about availability for the widgets from another
source and places the resulting XML data into the availQuote business process variable.
(This XML data is valid to the XML Schema in the AvailQuote.xsd file.)

Tutor ia l Goa ls

Tutorial: Building Your First Data Transformation 1-3

5. The business process invokes the Combine Price and Avail Quotes node. The Combine
Price and Avail Quotes node calls the myJoin Transformation method stored in the
Transformation file called MyTutorialJoin.dtf file. The business process passes the
values of the priceQuote, availQuote, and taxRate business process variables to the
myJoin method. The myJoin method invokes the query written in the XQuery language
and stored in the myJoin.xq file. The query merges all the price, availability, and tax rate
information into a single set of XML data and returns the result as the return value of the
myJoin method. The data returned from this myJoin method is valid to the XML Schema
in the Quote.xsd file. After the myJoin method is invoked, the Combine Price and Avail
Quotes node assigns the resulting XML data to the Quote business process variable.

Tutorial Goals
The tutorial provides steps to create and test a transformation using the graphical environment
provided in WebLogic Workshop. Specifically, in this tutorial you will create the following:

The MyTutorialJoin Transformation file.

The myJoin Transformation method in the MyTutorialJoin Transformation file.

The query invoked by the myJoin Transformation method. This query is stored in the XQ
file called myJoin.xq.

Steps in This Tutorial
Follow the steps in this tutorial to create and test a data transformation. Specifically, the steps
include:

Chapter 2, “Step 1: Getting Started”
Describes how to load the prepackaged Tutorial Process Application.

Chapter 3, “Step 2: Building the Transformation”
Provides a step-by-step procedure to create and select source and target types for a
Transformation method.

Chapter 4, “Step 3: Mapping Elements and Attributes”
Provides a step-by-step procedure to create mappings between source and target elements
and attributes in a Transformation method.

Chapter 5, “Step 4: Mapping Repeating Elements—Creating a Join”
Provides a step-by-step procedure to add a join between repeating elements to the
Transformation method.

1-4 Tutorial: Building Your First Data Transformation

Tutorial: Building Your First Data Transformation 2-1

C H A P T E R 2

Step 1: Getting Started

The Business Process and Data Transformation Tutorials both use a prepackaged Tutorial
Process application. The prepackaged Tutorial: Process Application contains all the business
process, XML, XML Schema, DTF, and XQ files, required to run the tutorial business processes
and transformations.

The RequestQuote business process in the Tutorial Process application invokes a transformation
stored in the TutorialJoin.dtf and join.xq files. The steps in this Tutorial tell you how to
create the same transformation that is prepackaged in the TutorialJoin.dtf and join.xq files
of the Tutorial: Process Application. (You can use the transformation in the
TutorialJoin.dtf and join.xq files as a reference.) You name the Transformation file that
you build in this tutorial: MyTutorialJoin.dtf and the XQ file that contains the query:
myJoin.xq.

After completing the steps in this Tutorial, you will change the RequestQuote business process
to invoke the transformation you created in this tutorial. In addition, you will run the
RequestQuote business process which will invoke the transformation, as described in Step 12:
Run the Request Quote Business Process of the Business Process Tutorial.

Note: If you followed the steps described in the Business Process Tutorial, you have already
created an application and can skip the “To Load The Tutorial Process Application” on
page 2-2 task. However, you must open the application. To open the application, from
the WebLogic Workshop menu bar, select File→Open→Application. The Open
Workshop Application is displayed. Browse for the existing
Tutorial_Process_Application and click Open.

The tasks in this step include:

http://edocs.bea.com/workshop/docs81/doc/en/integration/tutorial/tutWLIProcessTest.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/tutorial/tutWLIProcessTest.html

2-2 Tutorial: Building Your First Data Transformation

To Load The Tutorial Process Application

To Explore the Contents of the Application

To Load The Tutorial Process Application

In this task, you load the prepackaged Tutorial: Process Application.

1. From the BEA WebLogic Workshop menu bar, choose File→New→Application....

The New Application dialog box is displayed.

2. In the left pane, select the Tutorial folder, as shown in the following figure.

3. In the right pane, select Tutorial: Process Application, as shown in the following figure.

4. In the Name field, enter Tutorial_Process_Application.

5. From the Server drop-down menu, select the integration server. For example, if you
installed WebLogic Platform in the c:\bea directory on Windows, the integration server is
located at the following path:

c:\bea\weblogic81\samples\domains\integration

6. Click Create.

Tutorial: Building Your First Data Transformation 2-3

Your Tutorial Process application is created and displayed in the Application tab. (If the
Application tab is not visible in WebLogic Workshop, from menu bar choose
View→Application.)

To Explore the Contents of the Application

1. In the Application tab, expand the Schemas folder. (If the Application tab is not visible,
from the WebLogic Workshop menu bar, choose View→Application.)

The XML Schema files for this application are displayed.

2. In the Application tab, expand the Tutorial_Process_ApplicationWeb folder.

The directories and files that make up the Tutorial project are displayed.

3. In the Application tab, expand the Tutorial_Process_ApplicationWeb/requestquote
folder.

The DTF, XQ, and JPD files used in the tutorial are displayed. These files are part of the
Tutorial project.

The Application tab represents the files and resources available in your business process
application. It includes the following components:

Tutorial_Process_Application—The application folder.

Schemas—Contains the XML Schemas used in the business process.

Tutorial_Process_ApplicationWeb—The project folder. Every business process
application contains one or more projects. (Projects represent WebLogic Server Web
applications. That is, when you create a project, you are creating a Web application. The
name of your project will be included in the URL your clients use to access your
application.)

requestquote—Contains your project files and folders:

– services folder contains Web services with which your business process interacts.

– testxml folder contains XML files which you can use to test the completed business
process.

– RequestQuote.jpd—The completed business process. The Business Process Tutorial
walks you through rebuilding this business process. In this tutorial, the prebuilt
RequestQuote business process is used to exercise the transformation stored in the
TutorialJoin.dtf file.

– DTF files (PriceAvailTransformations.dtf, RequestQuoteTransformations.dtf,
TutorialJoin.dtf)—Contains the Transformation files used in RequestQuote.jpd.

2-4 Tutorial: Building Your First Data Transformation

– XQ files—Contains queries (written in the XQuery language) called by the DTF files
used in RequestQuote.jpd. A Transformation file can have one or more methods,
each of which is associated to a query in an XQ file.

– FileQuote.jcx—A File control used by your Request for Quote business process to
write a file to the file system.

Tutorial: Building Your First Data Transformation 3-1

C H A P T E R 3

Step 2: Building the Transformation

In this step, you create a transformation that contains the mapping of different source (input)
types to a single target (output) type. Specifically, this tutorial provides the steps for transforming
a Java primitive and two sets of XML data (valid to two different schemas) to a single set of XML
data valid to a third schema, as shown in the following figure.

3-2 Tutorial: Building Your First Data Transformation

The RequestQuote business process takes as input a set of widget IDs and returns the price and
availability of these widget IDs.

The source parameters to the myJoin Transformation method include the following:

XML data valid to the PriceQuote.xsd file. The RequestQuote business process of the
Tutorial Process application builds a piece of XML data that is valid to the
PriceQuote.xsd XML Schema and stores it in a business process variable called
priceQuote. This piece of XML data contains a set of widget IDs and their price.

XML data valid to the AvailQuote.xsd file. The RequestQuote business process of the
Tutorial Process application builds a piece of XML data that is valid to the
AvailQuote.xsd XML Schema and stores it in a business process variable called
availQuote. This piece of XML data contains a set of widget IDs, a boolean that
represents if the widget is available, and the ship date.

A Java primitive of type float called taxRate.

Tutorial: Building Your First Data Transformation 3-3

The myJoin Transformation method takes these source parameters and invokes a query which
merges the price, availability, and tax rate information into one piece of XML data valid to the
XML Schema in the Quote.xsd file.

The tasks in this step include:

To Create MyTutorialJoin.dtf

To Add a Transformation method to MyTutorialJoin

To Select the Source Types

To Select the Target Type

To Create MyTutorialJoin.dtf

In this task, you create a Transformation file called MyTutorialJoin.dtf. In addition, you
create a Transformation method in the Transformation file. During run time, the business process
will call this method to invoke the transformation.

1. In the Application tab, right-click the requestquote folder and from the drop-down menu,
select New→Transformation File.

2. The New File dialog box is displayed.

3. In the File name field, enter MyTutorialJoin.dtf.

4. In the New File dialog box, click Create.

In the Design View, a graphical representation of the MyTutorialJoin Transformation file
appears, as shown in the following figure.

To Add a Transformation method to MyTutorialJoin

1. In the Design View, right-click in the box representing the MyTutorialJoin Transformation
file. (The box shown in the preceding figure.)

2. From the drop-down menu, select Add Transformation method.

3-4 Tutorial: Building Your First Data Transformation

A Transformation method is created in the MyTutorialJoin Transformation file.

3. Enter myJoin as the method name.

4. Right-click the arrow representing the myJoin method, as shown in the following figure.

5. From the drop-down menu, select Configure XQuery Transformation Method.

The Configure XQuery Transformation Method - myJoin dialog box is displayed.

The Configure XQuery Transformation Method - myJoin dialog box contains the
following two panes:

– Available Source Types—From this pane you select the source (input) types for the
transformation.

– Available Target Types—From this pane you select a target (output) type for the
transformation.

To Select the Source Types
In this task, you select the source types for the transformation in the Configure XQuery
Transformation Method - myJoin dialog box. Source types are the input data types for the
transformation—the data types that are transformed to the target data type.

1. In the Available Source Types pane of the Configure XQuery Transformation Method -
myJoin dialog box, the application XSD files: PriceQuote.xsd, AvailQuote.xsd,
Quote.xsd, and QuoteRequest.xsd are displayed, as shown in following figure.

Tutorial: Building Your First Data Transformation 3-5

Note: If these files are not listed, you probably have not loaded the Tutorial: Process
Application. For instructions on loading this application, see “To Load The Tutorial
Process Application” on page 2-2.

2. In the Available Source Types pane, expand PriceQuote.xsd folder and select the
priceQuote element, as shown in the following figure.

3. Click Add.

The elements and attributes that make up the priceQuote element are displayed in the
Selected Source Types pane.

3-6 Tutorial: Building Your First Data Transformation

4. In the Available Source Types pane, expand AvailQuote.xsd folder and select the
availQuote element.

5. Click Add.

The elements and attributes that make up the availQuote element are displayed in the
Selected Source Types pane.

6. In the Available Source Types pane, select the Java option.

The available Java Types are displayed in the Available Source Types pane.

7. In the Available Source Types pane, select the float node, as shown in the following
figure.

8. In the Name field of the Available Source Types pane, change the name of the Java source
variable from floatVar to taxRate as shown in the following figure.

Tutorial: Building Your First Data Transformation 3-7

Note: The taxRate mapper variable created in the presiding step is different from the
taxRate business process variable of the RequestQuote business process. The
variables created in the mapper are used in transformations and not in business
processes.

9. Click Add.

To Select the Target Type

In this task, you select a target type for the transformation in the Configure XQuery
Transformation Method -myJoin dialog box.

1. In the Available Target Types pane of the Configure XQuery Transformation Method -
myJoin dialog box, the PriceQuote.xsd, AvailQuote.xsd, Quote.xsd, and
QuoteRequest.xsd files are listed.

2. In the Available Target Types pane, expand Quote.xsd folder and select the quote
element, as shown in the following figure.

3-8 Tutorial: Building Your First Data Transformation

3. Click Add.

The elements and attributes that make up the quote element are displayed in the Selected
Target Types pane.

4. Click Create Transformation.

The file: myJoin.xq is created and displayed in the Design View.

The myJoin Transformation method is added to the MyTutorialJoin Transformation file.
The myJoin method contains the three source parameters selected in the previous steps.

In the Application tab, representations of the MyTutorialJoin.dtf and myJoin.xq files are
displayed as shown in the following figure.

Note: In the Application tab, the myJoin.xq appears indented under the
MyTutorialJoin.dtf. These files are associated and contain references to each other.
To learn more, see The Association Between XQ and DTF Files.

http://edocs.bea.com/workshop/docs81/doc/en/integration/dtguide/dtguidemapperxqanddtf.html

Tutorial: Building Your First Data Transformation 3-9

5. Save the MyTutorialJoin.dtf file. Right-click the MyTutorialJoin.dtf file and in the
drop-down menu select Save.

3-10 Tutorial: Building Your First Data Transformation

Tutorial: Building Your First Data Transformation 4-1

C H A P T E R 4

Step 3: Mapping Elements and
Attributes

In this step, you map source nodes to target nodes. The following figure shows the mapping of
example XML data.

Figure 4-1 Mapping Example

In the preceding figure, the source XML data has a different format than the target XML data.
When building a query invoked by a Transformation method, you map the source nodes to target
nodes as represented by the arrows. During run time, the transformation uses the mappings to
convert the data from the source format to the target format. For example, the arrow labeled 1

4-2 Tutorial: Building Your First Data Transformation

represents the transformation of the priceQuote/customerName element to the quote/name
element.

The mapping of the address data, is a more complex transformation, as represented by the arrow
labeled 2 in the preceding figure. To transform the address information, all the attributes of the
shipAddress element (street, city, state, and zip) must be converted to a single string
XML element called address.

The source XML data is valid to a different XML Schema than the target XML data. As shown
in the preceding figure, the example source XML document called PriceQuote.xml is valid to
the XML Schema in the PriceQuote.xsd file. Additionally, the example source XML document
called Quote.xml is valid to the XML Schema in the Quote.xsd file.

The PriceQuote.xml, AvailQuote.xml, QuoteRequest.xml, QuoteRequest_a.xml, and
Quote.xml files are located in the
Tutorial_Process_ApplicationWeb/requestquote/testxml directory of the application.

Note: The preceding figure shows just one source data type (priceQuote). This is just one of
the three sources to the myJoin method as described in “Step 2: Building the
Transformation” on page 3-1. In this step, the mappings between the XML Schema in the
PriceQuote.xsd file to the XML Schema in the Quote.xsd file are discussed. In the
“Step 4: Mapping Repeating Elements—Creating a Join” on page 5-1, mappings
between the other source types (AvailQuote.xsd and taxRate) are discussed.

Note: The PriceQuote.xml, AvailQuote.xml, QuoteRequest_a.xml,
QuoteRequest.xml, and Quote.xml files are provided as examples and are not used by
the business process during run time. During run time, the business process constructs
the source XML data, and passes it to the transformation as described in the Introduction
of this tutorial.

Complete the following tasks to create, alter, and test mappings between the source and target
data:

To Map a Node From a Source to a Target

To Map Attributes of an Element to Single Element

To View and Save the Generated Simple Query

To Test the Simple Query

To Edit and Retest the Simple Query

To Add an XQuery Function Call to the Query

Tutorial: Building Your First Data Transformation 4-3

To Map a Node From a Source to a Target
In this step, you map the XML string element called customerName from the source
(PriceQuote.xsd) to the XML string element called name in target (Quote.xsd).

1. View myJoin.xq in the Design View:

a. If the Application tab is not visible in WebLogic Workshop, from the menu bar choose
View→Application.

b. In the Application tab, double-click
Tutorial_Process_Application\Tutorial_Process_ApplicationWeb\

requestquote\MyTutorialJoin.dtf\myJoin.xq and select the Design View tab.

The Design View displays the a graphical representation of the selected sources in the
Source pane, as shown in the following figure.

Note: If the priceQuoteDoc, availQuoteDoc, and taxRate nodes are not displayed in your
Source pane, follow the instructions in “To Select the Source Types” on page 3-4.

The nodes displayed in the Source pane correspond to source parameters of the myJoin
method of the MyTutorialJoin Transformation file. The signature of the myJoin method
from the MyTutorialJoin.dtf file is shown in the following Java code segment:

4-4 Tutorial: Building Your First Data Transformation

/**
 * @dtf:transform xquery-ref="myJoin.xq"
 * @dtf:schema-validate return-value="false" parameters="false"
 */
public abstract org.example.quote.QuoteDocument
myJoin(org.example.price.PriceQuoteDocument priceQuoteDoc,
org.example.avail.AvailQuoteDocument availQuoteDoc, float taxRate);

For example, the priceQuoteDoc node displayed in the Source pane, corresponds to the
org.example.price.PriceQuoteDocument priceQuoteDoc parameter in the myJoin
method.

Note: You can view the full source code listing of the MyTutorialJoin Transformation file
by double-clicking MyTutorialJoin.dtf in the Application tab and selecting the
Source View tab.

2. From the Source pane of the myJoin XQ file, drag-and-drop the
priceQuoteDoc/customerName node onto the quote/name node in the Target pane.

A solid line appears between the two elements. This solid line represents a data link
between the two nodes—a link that converts the value of the source node directly to the
value of the target node. This link is shown in the following figure.

This link corresponds to the mapping represented with an arrow (labeled with the number
1) in Figure 4-1.

To Map Attributes of an Element to Single Element
In this step, you will map multiple attributes of one element to another single element.

The XML priceQuoteDoc/shipAddress element contains the following attributes:

street

city

state

zip

All these attributes will be mapped to the single XML quote/address element of type string. This
mapping is represented by the arrow labeled 2 in Figure 4-1.

Tutorial: Building Your First Data Transformation 4-5

Link the multiple shipAddress attributes from the Source pane to the Target pane with a single
drag-and-drop operation, as described in the following procedure:

1. In the Source pane, select the street attribute of priceQuoteDoc/shipAddress node.

2. In the Source pane, press Shift while selecting the zip attribute of the
priceQuoteDoc/shipAddress node.

The street, city, state, and zip attributes are selected. The street, city, and state attributes
are shaded in gray and the zip attribute is shaded in blue as shown in the following figure.

Note: You can also use the Ctrl key to select groups of nodes.

3. Drag-and-drop the attributes from the Source pane to the quote/address node in the Target
pane.

Four new links are displayed, as shown in the following figure.

Figure 4-2 Create Links

The links labeled with numbers in the preceding figure, correspond to the mappings
represented as arrows (labeled with numbers) in Figure 4-1.

To View and Save the Generated Simple Query
A query (in the XQuery language) is generated when you create mapping links from source
elements and attributes to target elements and attributes.

1. Select the Source View tab of the myJoin.xq file.

4-6 Tutorial: Building Your First Data Transformation

The generated query is displayed as shown in the following figure.

Note: The XQuery code labeled with numbers in the preceding figure correspond to the
numbered mappings and links in Figure 4-1 and Figure 4-2, respectively.

2. Save all the files in this application. From the WebLogic Workshop menu bar, choose
File→Save All. You can also save all the files by entering Ctrl+S.

Note: Pressing Ctrl+S saves all the files in the application, not just the current file.

To Test the Simple Query
This section describes the steps necessary to test the query generated in the preceding section. In
this section, you will enter source XML data, run that data against the query, and view the
resulting target XML data.

1. Select the Test View tab of myJoin.xq file.

2. Import PriceQuote.xml as source data for the transformation:

a. From the drop-down menu in the Source Data pane, select $priceQuoteDoc.

b. Click Import... .

The Open File to Test dialog box is displayed.

c. Double-click the requestquote folder.

d. Double-click the testxml folder.

e. Double-click the PriceQuote.xml file.

f. Click Open.

A graphical representation of the PriceQuote.xml file appears in the Source Data pane.

3. In the Result Data pane, click Test.

Tutorial: Building Your First Data Transformation 4-7

If not currently running, the WebLogic Server for the current application will be started.

Note: In order for a query to run, the WebLogic Server for the current application must be
running.

The source XML data in one format is transformed by the query to XML in the target
format and graphically displayed in the Result Data pane, as shown in the following
figure.

The preceding figure shows a graphical representation of the resulting XML data.

To learn more about the transformation occurring in the query including a walk through of
the generated XQuery code, see Understanding the Transformation.

4. To view the resulting data as an XML document, in the Result Data pane select the XML
Source View tab.

The following XML data is displayed:

<?xml version="1.0" encoding="UTF-8"?>
<quot:quote xmlns:quot="http://www.example.org/quote">

<name>Acme Inc</name>
<address>12 Springs RdMorris Plainsnj07960</address>

</quot:quote>

Note: In the preceding XML document, the string: quot is the namespace prefix for the
following namespace URI: xmlns:quot="http://www.example.org/quote". To
learn more about namespace declarations and how this XML data was generated, see
Understanding the Transformation.

To Edit and Retest the Simple Query

This section provides the steps for editing the generated query to add a delimiter between the
street, city, state, and zip code fields of the address element.

1. Select the Design View tab of myJoin.xq file.

http://edocs.bea.com/workshop/docs81/doc/en/integration/dttutorial/tutWLIDataTransExtraTrans.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/dttutorial/tutWLIDataTransExtraTrans.html

4-8 Tutorial: Building Your First Data Transformation

2. Select the link between the zip attribute of the priceQuoteDoc/shipAddress node and the
quote/address node.

In the General Expression pane of the Target Expression tab, the XQuery code between
the nodes is displayed. (If the Target Expression tab is not visible, from the WebLogic
Workshop menu bar, choose View→Windows→Target Expression tab.)

3. In the General Expression pane of the Target Expression tab, add the argument: ",",
between the address attribute parameters of the concat function to delineate between the
different address fields, as shown in the following listing:

concat($priceQuoteDoc/ns0:shipAddress/@street,",",
$priceQuoteDoc/ns0:shipAddress/@city,",",
$priceQuoteDoc/ns0:shipAddress/@state,",",
$priceQuoteDoc/ns0:shipAddress/@zip)

4. Click Apply.

The updated map is displayed as shown in the following figure.

In the proceeding step, you modified the links between shipAddress attributes and the
address element in the query, which causes these links to change from direct data links
(represented as blue lines) to implied links (represented as light gray lines) as show in the
following figure. The mapper parses the XQuery code and determines that there are
implied links between the target and source elements.

5. Select the Test View tab of myJoin.xq file and in the Result Data pane click Test.

In the Result Data pane, the resulting XML data is displayed.

The street, city, state, and zip code fields of the address element will be delineated by a
commas, as shown in the following listing:

<address>12 Springs Rd,Morris Plains,nj,07960</address>

Tutorial: Building Your First Data Transformation 4-9

To Add an XQuery Function Call to the Query
This section provides steps for converting the state field to uppercase by calling a standard W3C
XQuery function from the query.

1. Select the Design View tab of myJoin.xq file.

2. Select the link between the state attribute of the shipAddress element and the
quote/address element.

In the Source pane, the state attribute becomes shaded in gray.

In the General Expression pane of the Target Expression tab, the call to the concat
function is selected, as shown in the following figure.

3. In the General Expression pane, find the following text:

$priceQuoteDoc/ns0:shipAddress/@state

4. In the Palette expand the String Functions folder. (If the Palette is not visible, from the
WebLogic Workshop menu bar, choose View→Windows→Palette.)

5. In the Palette, select the upper-case function, and drag-and-drop it over the
$priceQuoteDoc/ns0:shipAddress/@state attribute in the General Expression pane.

The following is displayed in the General Expression pane, as shown in the following
figure.

Leave $string-var selected in the General Expression pane as shown in the preceding
figure.

4-10 Tutorial: Building Your First Data Transformation

6. In the Source pane select the priceQuoteDoc/shipAddress/state node and drag-and-drop it
over the $string-var parameter of the General Expression pane.

In General Expression pane the following is displayed, as shown in the following figure.

7. Click Apply.

8. Select the Test View tab.

9. Click Test.

In the Result Data pane, the state is displayed in uppercase characters, as shown in the
following listing:

<address>12 Springs Rd,Morris Plains,NJ,07960</address>

Tutorial: Building Your First Data Transformation 5-1

C H A P T E R 5

Step 4: Mapping Repeating
Elements—Creating a Join

In this step, you will add additional mappings to the existing query. In the previous sections, you
mapped some data from the source type defined by the PriceQuote.xsd XML Schema to the
target type defined by the Quote.xsd XML Schema. In this section, you will map additional data
from the source types (defined by the PriceQuote.xsd XML Schema, the AvailQuote.xsd
XML Schema, and the Java float primitive: taxRate) to the target type (defined by the
Quote.xsd XML Schema) as shown in the following figure.

Mappings created in this section will create a join between repeating elements in the source and
target XML Schemas. Complete the following tasks to create, test, and alter the join:

5-2 Tutorial: Building Your First Data Transformation

Create a User-Defined Java Method to Invoke From the Join Query

To Join Two Sets of Repeating Elements

Add Links to Populate the quoteResponse Element

Call the calculateTotalPrice User Method From the Query

To View the Generated Query

To Test the Query

Create an Instance of the MyTutorialJoin Control

Edit the Node That Invokes the Transformation

To Run the Business Process

Create a User-Defined Java Method to Invoke From the Join Query
In this task, you will create a user-defined Java method in the MyTutorialJoin Transformation
file that calculates the total price of the widgets requested including tax. In “Call the
calculateTotalPrice User Method From the Query” on page 5-9, you will change the query to
invoke this method.

1. View MyTutorialJoin.dtf in the Design View:

a. If the Application tab is not visible in WebLogic Workshop, from the menu bar choose
View→Application.

b. In the Application tab, double-click
Tutorial_Process_Application\Tutorial_Process_ApplicationWeb\request

quote\MyTutorialJoin.dtf and select the Design View tab.

The graphical representation of the MyTutorialJoin Transformation file is displayed,
as shown in the following figure:

Tutorial: Building Your First Data Transformation 5-3

2. Right-click in the box representing the MyTutorialJoin Transformation file. (The box
shown in the preceding figure.)

3. From the drop-down menu, select Add User Method.

A User method is created in the MyTutorialJoin Transformation file.

4. Enter calculateTotalPrice as the method name.

The methods that make up the MyTutorialJoin Transformation file are displayed, as
shown in the following figure.

5. Right-click the arrow representing the calculateTotalPrice method.

6. From the drop-down menu, select Edit in source view.

7. In Source View, edit the MyTutorialJoin Transformation file and replace the following
generated calculateTotalPrice Java method:

public String calculateTotalPrice()
{

return ““;
}

With the following calculateTotalPrice Java method:

public float calculateTotalPrice(float taxRate, int quantity, float
price, boolean fillOrder)
{

float totalTax, costNoTax, totalCost;
if (fillOrder)
{

// Calculate the total tax
totalTax = taxRate * quantity * price;
// Calculate the total cost without tax
costNoTax = quantity * price;
// Add the tax and the cost to get the total cost
totalCost = totalTax + costNoTax;

}

5-4 Tutorial: Building Your First Data Transformation

else
{

totalCost = 0;
}
return totalCost;

}

Warning:Make sure you change the return type of the calculateTotalPrice function
from String to float.

8. Save all the files in this application. From the WebLogic Workshop menu bar, choose
File→Save All.

To Join Two Sets of Repeating Elements

1. View myJoin.xq in the Design View:

a. If the Application tab is not visible in WebLogic Workshop, from the menu bar choose
View→Application.

b. In the Application tab, double-click
Tutorial_Process_Application\Tutorial_Process_ApplicationWeb\request

quote\MyTutorialJoin.dtf\myJoin.xq and select the Design View tab.

2. Collapse the shipAddress node.

3. From the Source pane, drag-and-drop the priceQuoteDoc\priceRequests\priceRequest
node onto the quote\quoteResponse node in the Target pane.

These nodes are both repeating nodes. A repeating node means more than one instances of
this node can be specified. The + symbol to the right of the node indicates these nodes are
repeating nodes.

Warning: You must select the priceRequest node and not the priceRequests node.

A dashed line linking the two repeating nodes is displayed, as shown in the following
figure.

The dashed line with short dashes represents a structural link—a link between two parent
structures that does not map data directly.

To learn more about XML repeating nodes, see “Understanding XML Repeating Nodes”
on page 6-4.

4. From the Source pane, drag-and-drop the availQuoteDoc\availRequest node onto the
quote\quoteResponse node in the Target pane.

Tutorial: Building Your First Data Transformation 5-5

A dashed line linking the two repeating elements is displayed, as shown in the following
figure.

5. Select the Source View tab to view the changes to the query.

6. Expand prolog.

The following query is displayed in the Source View:

{-- requestquote/MyTutorialJoin.dtf#myJoin --}
declare namespace ns0 = "http://www.example.org/price"
declare namespace ns1 = "http://www.example.org/avail"
declare namespace ns2 = "http://www.example.org/quote"
<ns2:quote>

<name>{ data($priceQuoteDoc/ns0:customerName) }</name>
<address>{ concat($priceQuoteDoc/ns0:shipAddress/@street , ",",

$priceQuoteDoc/ns0:shipAddress/@city ,",",
xf:upper-case($priceQuoteDoc/ns0:shipAddress/@state) , ",",
$priceQuoteDoc/ns0:shipAddress/@zip) }</address>

{
for $priceRequest in

$priceQuoteDoc/ns0:priceRequests/ns0:priceRequest,
$availRequest in $availQuoteDoc/ns1:availRequest

return
<quoteResponse/>

}
</ns2:quote>

5-6 Tutorial: Building Your First Data Transformation

In the preceding query, there are no data links between the children of the repeating nodes,
so the quoteResponse element is empty. (The string: <quoteResponse/> is an empty
node.)

The structural links between the repeating nodes generates the for loop which is shown in
bold in the preceding query listing. This XQuery for loop iterates through the set of
priceRequest and availReqest repeating elements. For example, if the source XML
data to this query contains three instances of the priceRequest element and three
instances of the availRequest element, the for loop would execute a total of nine times
with the following combinations:

– The first instance of the priceRequest element with the first instance of
availRequest element.

– The first instance of the priceRequest element with the second instance of
availRequest element.

– The first instance of the priceRequest element with the third instance of
availRequest element.

– The second instance of the priceRequest element with the first instance of
availRequest element.

– The second instance of the priceRequest element with the second instance of
availRequest element.

– The second instance of the priceRequest element with the third instance of
availRequest element.

– The third instance of the priceRequest element with the first instance of
availRequest element.

– The third instance of the priceRequest element with the second instance of
availRequest element.

– The third instance of the priceRequest element with the third instance of
availRequest element.

For some transformations, you may want the query to generate all the possible
combinations but for others, you may want to constrain the combinations as described in
the following steps.

7. Select the Design View tab.

8. In the Source pane, drag-and-drop the
priceQuoteDoc/priceRequests/priceRequest/widgetId node onto the target
availQuote/availRequest/widgetId node.

Tutorial: Building Your First Data Transformation 5-7

Note: Both of these elements are in the Source pane.

A line between the two widgetId nodes is displayed, as shown in the following figure.

9. Select the Source View tab to view the changes to the query.

The following query is displayed in the Source View:

{-- requestquote/MyTutorialJoin.dtf#myJoin --}
declare namespace ns0 = "http://www.example.org/price"
declare namespace ns1 = "http://www.example.org/avail"
declare namespace ns2 = "http://www.example.org/quote"
<ns2:quote>

<name>{ data($priceQuoteDoc/ns0:customerName) }</name>
<address>{ concat($priceQuoteDoc/ns0:shipAddress/@street , ",",

$priceQuoteDoc/ns0:shipAddress/@city , ",",
xf:upper-case($priceQuoteDoc/ns0:shipAddress/@state) , ",",
$priceQuoteDoc/ns0:shipAddress/@zip) }</address>

{
for $priceRequest in

$priceQuoteDoc/ns0:priceRequests/ns0:priceRequest,
$availRequest in $availQuoteDoc/ns1:availRequest

where data($priceRequest/ns0:widgetId) =
data($availRequest/ns1:widgetId)

return
<quoteResponse/>

}
</ns2:quote>

5-8 Tutorial: Building Your First Data Transformation

The link between the widgetId nodes generates the where clause in the for loop, as
shown in bold in the preceding query listing. This where clause constrains or limits the
output of the for loop. Specifically, the where clause specifies that if the expression in the
where clause is true, the for loop will output the contents of the return. For this
example, if the widgetId of the availRequest element is equal to the widgetId of the
priceQuest element, the following XML data is returned:

<quoteResponse/>

An empty quoteReponse element isn’t very useful. In the following task: “Add Links to
Populate the quoteResponse Element” on page 5-8, you will add data links that will
populate the quoteResponse element.

Add Links to Populate the quoteResponse Element

1. Select the Design View tab.

2. From the Source pane, drag-and-drop the
priceQuoteDoc/priceRequests/priceRequest/widgetId node onto the
quote/quoteResponse/widgetId node in the Target pane.

3. From the Source pane, drag-and-drop the
priceQuoteDoc/priceRequests/priceRequest/price node onto the
quote/quoteResponse/unitPrice node in the Target pane.

4. From the Source pane, drag-and-drop the
availQuoteDoc/availRequest/requestedQuantity node onto the
quote/quoteResponse/requestedQuantity node in the Target pane.

5. From the Source pane, drag-and-drop the availQuoteDoc/availRequest/quantityAvail
node onto the quote/quoteResponse/fillOrder node in the Target pane.

6. From the Source pane, drag-and-drop the availQuoteDoc/availRequest/shipDate node
onto the quote/quoteResponse/shipDate node in the Target pane.

7. From the Source pane, drag-and-drop the taxRate Java primitive onto the
quote/quoteResponse/taxRate node in the Target pane.

8. From the Source pane, drag-and-drop the taxRate Java primitive onto the
quote/quoteResponse/totalCost node in the Target pane.

Note: In the next section, you will edit the link between the taxRate Java primitive and the
quote/quoteResponse/totalCost node to calculate the total cost of the order.

In the Design View the following links are displayed as shown in the following figure.

Tutorial: Building Your First Data Transformation 5-9

9. Save all the files in this application. From the WebLogic Workshop menu bar, choose
File→Save All.

Call the calculateTotalPrice User Method From the Query

1. Select the Design View tab.

2. Select the link between the taxRate Java primitive and the quote/quoteResponse/totalCost
node.

3. In the Palette find the User Functions section. (If the Palette is not visible, from the
WebLogic Workshop menu bar, choose View→Windows→Palette.)

4. In the User Functions section of the Palette, select the calculateTotalPrice function, and
drag-and-drop it into the General Expression pane.

Leave $float-var selected in the General Expression pane.

5. In the Source pane select the taxRate node and drag-and-drop it onto the $float-var
parameter of the General Expression pane.

In the General Expression pane, the default argument: $float_var is replaced with the
$taxRate argument and the next argument becomes selected, as shown in the following
figure.

5-10 Tutorial: Building Your First Data Transformation

Leave $int-var selected in the General Expression pane.

6. In the Source pane select availQuoteDoc/availRequest/requestedQuantity and
drag-and-drop it onto the selected $int-var argument in the General pane.

In the General Expression pane, the default argument: $int_var is replaced with the
$availRequest/ns1:requestedQuantity argument and the next argument becomes selected,
as shown in the following figure.

Leave $float-var selected in the General Expression pane.

7. In the Source pane, select priceQuoteDoc/priceRequests/priceRequest/price and
drag-and-drop it onto the selected $float-var argument in the General Expression pane.

In the General Expression pane, the default argument: $float_var is replaced with the
$priceRequest/ns0:price argument and the next argument becomes selected, as shown in
the following figure.

Tutorial: Building Your First Data Transformation 5-11

Leave $boolean-var selected in the General Expression pane.

8. In the Source pane, select availQuoteDoc/availRequest/quantityAvail and drag-and-drop
it onto the selected $boolean-var argument in the General Expression pane.

In the General Expression pane, the default argument: $boolean_var is replaced with the
$availRequest/ns1:quantityAvail argument, as shown in the following figure.

9. Click Apply.

In the Design View, the following is displayed, as shown in the following figure.

5-12 Tutorial: Building Your First Data Transformation

10. Save all the files in this application. From the WebLogic Workshop menu bar, choose
File→Save All.

To View the Generated Query

1. Select the Source View tab to view the changes to the query.

2. Expand prolog.

The following query is displayed in Source View:

{-- requestquote/MyTutorialJoin.dtf#myJoin --}
declare namespace ns0 = "http://www.example.org/price"
declare namespace ns1 = "http://www.example.org/avail"
declare namespace ns2 = "http://www.example.org/quote"
<ns2:quote>

<name>{ data($priceQuoteDoc/ns0:customerName) }</name>
<address>{ concat($priceQuoteDoc/ns0:shipAddress/@street , ",",

$priceQuoteDoc/ns0:shipAddress/@city , ",",
xf:upper-case($priceQuoteDoc/ns0:shipAddress/@state) , ",",
$priceQuoteDoc/ns0:shipAddress/@zip) }</address>

{
for $priceRequest in

$priceQuoteDoc/ns0:priceRequests/ns0:priceRequest,
$availRequest in $availQuoteDoc/ns1:availRequest

where data($priceRequest/ns0:widgetId) =
data($availRequest/ns1:widgetId)

return
<quoteResponse>

<widgetId>{ data($priceRequest/ns0:widgetId) }</widgetId>
<unitPrice>{ data($priceRequest/ns0:price) }</unitPrice>
<requestedQuantity>{

data($availRequest/ns1:requestedQuantity) }</requestedQuantity>
<fillOrder>{ data($availRequest/ns1:quantityAvail)

}</fillOrder>
{

for $shipDate in $availRequest/ns1:shipDate
return

<shipDate>{ data($shipDate) }</shipDate>
}
<taxRate>{ $taxRate }</taxRate>
<totalCost>{ calculateTotalPrice($taxRate,

$availRequest/ns1:requestedQuantity,
$priceRequest/ns0:price,
$availRequest/ns1:quantityAvail) }</totalCost>

</quoteResponse>
}
</ns2:quote>

Tutorial: Building Your First Data Transformation 5-13

The links added in the preceding task generate the additional XQuery source code listed between
the <quoteResponse> and </quoteResponse> tags highlighted in bold in the preceding query
listing.

To Test the Query

1. Select the Test View tab.

2. There are three import parameters to the myJoin Transformation method:
$priceQuoteDoc, $availQuoteDoc, and $taxRate. In the task: “To Test the Simple
Query” on page 4-6, you imported PriceQuote.xml as source data for the
$priceQuoteDoc parameter. In this step, you import AvailQuote.xml for the source
parameter: $availQuoteDoc:

a. From the drop-down menu in the Source Data pane, select $availQuoteDoc.

b. Click Import... .

The Open XML File to Test dialog box is displayed.

c. Double-click the requestquote folder.

d. Double-click the testxml folder.

e. Double-click the AvailQuote.xml file.

A graphical representation of the AvailQuote.xml file appears in the Source Data pane.

3. From the drop-down menu in the Source Data pane, select $taxRate .

4. In the Node Value field of the $taxRate node, double-click on the existing value, and enter:
0.08 and click Enter.

5. In the Result Data pane click Test.

The query is run with the test XML data. A graphical representation of the resulting XML
data is shown in the Result Data pane, as shown in the following figure.

5-14 Tutorial: Building Your First Data Transformation

This query joins the two sets of source repeating elements (availRequest and
priceRequest) to a single repeating element (quoteResponse).

6. To view resulting data as XML, in the Result Data pane select the XML Source View tab.

7. To check that the resulting XML data from the query is valid against the associated XML
Schema, in the Result Data pane click Validate.

The Target pane will show whether the XML data is valid to the target XML Schema. In
this example, the resulting XML data is checked against the XML Schema in the
Quote.xsd file. To learn more, see Validating.

http://edocs.bea.com/workshop/docs81/doc/en/integration/dtguide/dtguidemappervalidating.html

Tutorial: Building Your First Data Transformation 5-15

Create an Instance of the MyTutorialJoin Control
In this task, you create an instance of the MyTutorialJoin.dtf control.

1. View the RequestQuote business process in the Design View:

a. If the Application tab is not visible in WebLogic Workshop, from the menu bar choose
View→Application.

b. In the Application tab, double-click
Tutorial_Process_Application\Tutorial_Process_ApplicationWeb\request

quote\RequestQuote.jpd and select the Design View tab.

2. Click Add on the Controls tab and choose Integration Controls→Transformation from
the drop-down menu. (If the Controls pane is not visible in WebLogic Workshop, from the
menu bar choose View→Windows→Data Palette. The Controls pane is at the bottom of
the Data Palette.)

Note: The Data Palette associated with business processes is different than the Data
Palette associated with the mapper.

The Insert Control dialog box is displayed.

3. In the Insert Control dialog box, complete the following steps:

a. In Step 1, enter myTutorialJoin as the variable name for the control.

b. In Step 2, ensure that the following option is selected: Use a Transformation already
defined by a DTF file.

c. Click Browse beside the DTF file field, expand the requestquote folder, select
MyTutorialJoin.dtf and click Select to close the file browser.

The following in displayed in the Insert Control dialog box:

5-16 Tutorial: Building Your First Data Transformation

4. Click Create to close the Insert Control dialog box.

An instance called myTutorialJoin is created in your project and displayed in the
Controls pane as shown by the following figure:

Edit the Node That Invokes the Transformation
In this task, you edit the Combine Price and Avail Quotes node in the RequestQuote business
process and change the instance that gets invoked by this node from an instance of the
TutorialJoin.dtf to an instance of the MyTutorialJoin.dtf. Additionally, you change the
design of the Combine Price and Avail Quotes node to call the myJoin() method on the
MyTutorialJoin control. The myJoin() method combines the data returned to your business
process from different systems and creating a single XML response document (quote), which is
subsequently returned to the business process’s client.

1. In the RequestQuote business process, double-click the Combine Price and Avail Quotes
node to open its node builder.

Tutorial: Building Your First Data Transformation 5-17

The node builder opens on the General Settings pane.

2. From the drop-down menu in the Control field select myTutorialJoin.

3. Select QuoteDocument myJoin() from the Method field.

4. Click Send Data to open the second pane of the node builder.

The Select variables to assign fields are populated with default variables. The data types
match the data type expected in the source parameters to the myJoin() method as shown in
the following figure.

priceQuote holds the price quote data, which is returned from the PriceProcessor
service in the For Each loop in your business process.

availQuote holds the availability quote data, which is returned from the AvailProcessor
service in the For Each loop in your business process.

taxRate holds the rate of sales tax applied to the quote, based on the shipping address,
which is returned to your business process from the taxCalculation service.

The Method Expects fields are populated with the data type expected by the myJoin()
method on the MyTutorialJoin control, as shown in the following figure.

5. Click Receive Data to open the third pane of the node builder.

The Select variables to assign field is populated with the default variable: Quote. The
data type matches the data type expected in the target parameter to the myJoin() method as
shown in the following figure.

On the Receive Data tab, the Method Expects field is populated with the data type
returned by the myJoin() method: QuoteDocument, as shown in the following figure.

5-18 Tutorial: Building Your First Data Transformation

6. In the node builder, click X in the top right hand corner to save your specifications and
close the node builder.

7. Save all the files in this application, including the RequestQuote business process. From the
WebLogic Workshop menu bar, choose File→Save All.

To Run the Business Process
In this tutorial, you entered the XML data that is run against the query. During run time, the
business process builds the XML data and passes it to the query that was built in this tutorial. To
run the business process and invoke the query, follow the instructions in Step 12: Run the
RequestQuote Business Process in the Tutorial: Building Your First Business Process.

http://edocs.bea.com/workshop/docs81/doc/en/integration/tutorial/tutlogic/tutWLIProcessTest.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/tutorial/tutlogic/tutWLIProcessTest.html

Tutorial: Building Your First Data Transformation 6-1

C H A P T E R 6

Understanding the Concepts

This section is optional and provides detailed conceptual information about the following topics:

Understanding the Transformation

Understanding XML Repeating Nodes

Understanding the Transformation
The transformation occurring in the query built in “Step 3: Mapping Elements and Attributes” on
page 4-1 is shown in the following figure:

6-2 Tutorial: Building Your First Data Transformation

The query generated in “To Map Attributes of an Element to Single Element” on page 4-4 is
shown in the following listing:

{-- requestquote/MyTutorialJoin.dtf#myJoin --}

declare namespace ns0 = "http://www.example.org/price"

declare namespace ns1 = "http://www.example.org/avail"

declare namespace ns2 = "http://www.example.org/quote"

<ns2:quote>

<name>{ data($priceQuoteDoc/ns0:customerName) }</name>

<address>{ concat($priceQuoteDoc/ns0:shipAddress/@street ,

$priceQuoteDoc/ns0:shipAddress/@city ,

$priceQuoteDoc/ns0:shipAddress/@state ,

$priceQuoteDoc/ns0:shipAddress/@zip) }</address>

</ns2:quote>

The first three lines of this query are namespace declarations. These namespace declarations are
part of the query prolog. For each namespace in the source and target XML Schema, the mapper
generates a namespace declaration. For example, the mapper generates the namespace
declaration: ns0 for the namespace URI (http://www.example.org/price) defined in the
XML Schema of the PriceQuote.xsd file. Namespaces are used to uniquely distinguish
elements in XML Schema from elements in another XML Schema.

The following steps describe the transformation that occurs when the source XML data is run
against the preceding query:

1. The fifth line of the query is shown in the following listing:

<ns2:quote>

This line of the query becomes the first line of the XML output, as shown in the following
listing:

<quot:quote xmlns:quot="http://www.example.org/quote">

During the transformation, the namespace prefix for the quote element changes. In the
query, the namespace prefix associated with http://www.example.org/quote
namespace URI is ns2. However, in the resulting XML data, the namespace prefix
generated for the http://www.example.org/quote namespace URI is quot. This
namespace declaration is highlighted in bold in the preceding listing.

2. The sixth line of the query is shown in the following listing:

<name>{data($priceQuoteDoc/ns0:customerName)}</name>

Tutorial: Building Your First Data Transformation 6-3

This line of the query transforms the customerName element of the priceQuote element
to the name element of the quote element.

The following steps describe the transformation that occurs on this line of XQuery code:

a. The <name> and </name> tags transform directly to XML output.

b. Characters between curly braces {} are interpreted in a special way by the XQuery engine.
That is, characters surrounded by curly braces are not transformed directly into XML.
Specifically, in this example, the curly braces surrounding the data method specify that
the data function of the XQuery language should be executed.

The data function returns the value of the passed in XML node. For this example, the
argument to the data function is the following XPath expression:
$priceQuoteDoc/ns0:customerName. The $priceQuoteDoc variable contains the
contents of the priceQuote element, including its subelements. This XPath expression
returns the customerName node of the priceQuote element. (The / XPath operator
delineates parent nodes from child nodes.)

The XQuery data function takes customerName node and returns the value of the
node, the string: Acme Inc. This string is placed between the <name> and </name>
tags resulting in the following line of output XML data, as shown in the following
listing:

<name>Acme Inc</name>

3. The seventh line in the query is shown in the following listing:

<address>{ concat($priceQuoteDoc/ns0:shipAddress/@street,
$priceQuoteDoc/ns0:shipAddress/@city,
$priceQuoteDoc/ns0:shipAddress/@state,
$priceQuoteDoc/ns0:shipAddress/@zip) }</address>

The following steps describe the transformation that occurs on this line of XQuery code.

a. The <address> and </address> tags transform directly to XML output.

b. Characters between curly braces {} are interpreted in a special way by the XQuery engine.
That is, characters surrounded by curly braces are not transformed directly into XML.
Specifically, in this example, the curly braces surrounding the data method specify that
the data function of the XQuery language should be executed.

c. The concat function takes the values of all its arguments, concatenates these values
together, and returns them as a string. For this example, the concat function takes the
values of the all the XPath expressions and concatenates them together in one address
string. Additionally, all the arguments in this concat function are XPath expressions that
return the value of specified attribute, as shown in the following table.

6-4 Tutorial: Building Your First Data Transformation

The return string of the concat function is placed between the <address> and
<address> tags resulting in the following line of XML data, as shown in the following
listing:

<address>12 Springs RdMorris Plainsnj07960</address>

4. The last line of the query is shown in the following listing:

</ns2:quote>

The last line of the query becomes the last line of the XML output, as shown in the
following listing:

</quot:quote>

The resulting address element has no delimiter between the street, city, state, and zip code
fields, making the address difficult to read and parse. For instructions on adding delimiters to this
query, return to “To Edit and Retest the Simple Query” on page 4-7 in the main section of this
tutorial.

Understanding XML Repeating Nodes
A repeating node means that more than one instance of this node can be specified. For example,
in the following XML data there are three instances of the priceRequest node, as shown in the
following listing:

<?xml version="1.0"?>
<priceQuote xmlns="http://www.example.org/price">

<customerName>Acme Inc</customerName>

The Following XPath
Expression

Returns The String

$priceQuoteDoc/ns0:sh
ipAddress/@ns0:street

The value of the street attribute
of the shipAddress element.

12 Springs Rd

$priceQuoteDoc/ns0:sh
ipAddress/@ns0:city

The value of the city attribute of
the shipAddress element.

Morris Plains

$priceQuoteDoc/ns0:sh
ipAddress/@ns0:state

The value of the state attribute
of the shipAddress element.

nj

$priceQuoteDoc/ns0:sh
ipAddress/@ns0:zip

The value of the zip attribute of
the shipAddress element.

07960

Tutorial: Building Your First Data Transformation 6-5

<shipAddress street="12 Springs Rd" city="Morris Plains" state="nj"
zip="07960"/>

<priceRequests>
<priceRequest>

<widgetId>12</widgetId>
<price>1.00</price>

</priceRequest>
<priceRequest>

<widgetId>134</widgetId>
<price>34.10</price>

</priceRequest>
<priceRequest>

<widgetId>211</widgetId>
<price>10.00</price>

</priceRequest>
</priceRequests>

</priceQuote>

A segment of the XML Schema for the preceding XML data is shown in the following listing:

<?xml version="1.0"?>
<xsd:schema . . . >
. . .

<xsd:element name="widgetId" type="xsd:integer"/>
<xsd:element name="price" type="xsd:float"/>
<xsd:element name="priceRequest">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref="pri:widgetId"/>
<xsd:element ref="pri:price"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="priceRequests">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref="pri:priceRequest" minOccurs="1"
maxOccurs="10"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
. . .

<xsd:element name="priceQuote">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="pri:customerName" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="pri:shipAddress" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="pri:priceRequests"/>

</xsd:sequence>

6-6 Tutorial: Building Your First Data Transformation

</xsd:complexType>
</xsd:element>

</xsd:schema>

The minOccurs="1" and maxOccurs="10" settings, in the definition of the priceRequest
element (highlighted in bold in the preceding listing), specify that there can be one to ten
instances of the priceRequest element. This defines priceQuote as a repeating element.

To View the Full listing of the XML Schema, Open the PriceQuote.xsd file

1. In the Application tab, expand Schemas folder. (If the Application tab is not visible in
WebLogic Workshop, from the menu bar choose View→Application.)

2. Double-click the PriceQuote.xsd icon.

The PriceQuote.xsd file is displayed.

3. Return to the Design View of the myJoin.xq file:

a. In the Application tab, double-click
Tutorial_Process_Application\Tutorial_Process_ApplicationWeb\
requestquote\MyTutorialJoin.dtf\myJoin.xq

b. Select the Design View tab.

	Tutorial: Building Your First Data Transformation
	Tutorial Goals
	Steps in This Tutorial

	Step 1: Getting Started
	Step 2: Building the Transformation
	Step 3: Mapping Elements and Attributes
	Step 4: Mapping Repeating Elements—Creating a Join
	Understanding the Concepts

