
BEAWebLogic
Integration™

Using the Application
Integration Design
Console

Version 8.1 Service Pack 4
Document Date: December 2004

Copyright
Copyright © 2004-2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, BEA WebLogic Server, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder,
BEA Campaign Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic
Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Enterprise
Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic JRockit, BEA WebLogic
Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server Process Edition, BEA
WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Using the Application Integration Design Console iii

Contents

1. Introduction to Application Integration
Familiarizing Yourself with Basic Concepts . 1-2

Creating an Interface to an Adapter . 1-2

When to Define an Application View. 1-2

When to Write Custom Code . 1-2

Defining an Application View . 1-3

What Is Defined by an Application View Definition . 1-3

How to Define an Application View. 1-4

Step 1: Log On to the Application Integration Design Console 1-4

Step 2: Define the Application Context for an Application View 1-4

Step 3: Add Folders . 1-5

Step 4: Define Application View. 1-5

Step 5: Create New or Select Existing Connection . 1-5

Step 6: Add Services and Events to the Application View 1-5

Step 7: Perform Final Configuration . 1-5

Step 8: Test Services and Events . 1-6

Step 9: Publish Application View . 1-6

Using an Application View in a Business Process . 1-6

Using an Application View in WebLogic Workshop . 1-6

Using an Application View by Writing Custom Code . 1-7

Choosing a Method for Implementing a Business Process. 1-7

When to Use WebLogic Workshop to Create a Business Process. 1-7

iv Using the Application Integration Design Console

When to Write Custom Java Code . 1-7

Using an Application View Control in Business Processes . 1-8

2. Defining an Application View
Before You Begin . 2-2

Application View Design Considerations . 2-2

High-Level Procedure for Defining an Application View . 2-3

Sample Detailed Procedure for Defining an Application View . 2-5

Step 1: Log On to the Application Integration Design Console 2-5

Step 2: Select an Application . 2-7

Step 3: Add a Folder . 2-8

Step 4: Define an Application View. 2-9

Step 5: Establishing a Browsing Connection . 2-11

Step 5A: Create a New Browsing Connection . 2-12

Step 5B: Reuse an Existing Browsing Connection. 2-15

Step 6: Add Services and Events . 2-17

Step 6A: Add a Service to an Application View. 2-17

Step 6B: Add an Event to an Application View . 2-19

Step 7: Perform Final Configuration Tasks . 2-21

Step 8A: Test an Application View’s Services. 2-26

Step 8B: Test an Application View’s Events . 2-29

If You Select Service. 2-30

If You Select Manual . 2-30

Step 9: Publish an Application View . 2-31

Editing an Application View. 2-33

Setting Transaction Timeout Values for Application Views . 2-33

Environment Variables for Application Views. 2-34

Database-Specific Error Messages . 2-34

Using the Application Integration Design Console v

3. Using Application Views with Business Processes
Before You Begin . 3-1

Integrating Application Views and Business Processes Using a Control 3-2

Sample Application View Control Files . 3-4

Application View Control Interface . 3-4

Application View Control (JCX) and Business Process (JPD) Samples 3-6

Receiving Events . 3-6

Handling Application View Local Transactions in Business Processes 3-8

Local Transaction Management Contracts . 3-9

Connector Support for Local Transactions with No User Defined Transaction

Demarcation . 3-9

Connector Support for XA Transactions . 3-9

4. Using the Application Integration Design Console
Logging On to the Application Integration Design Console. 4-1

Creating a Folder . 4-4

Removing an Application View . 4-5

Removing a Folder . 4-5

Administering an Application View . 4-6

5. Using Application Views by Writing Custom Code
Scenario 1: Creating Connections with Specific Credentials . 5-1

Implementing ConnectionSpec . 5-2

Calling setConnectionSpec() and getConnectionSpec() . 5-2

Using the ConnectionSpec Class. 5-3

Scenario 2: Custom Coding a Business Process . 5-4

About This Scenario . 5-5

Before You Begin . 5-5

vi Using the Application Integration Design Console

Creating the SyncCustomerInformation Class. 5-6

Code for Sample Java Class. 5-8

A. Import-Export Utility . A-1

Migrating Application Views Using the Import-Export Utility . A-2

Import-Export Methods and Command Line . A-2

Invoking the Import-Export Utility from the Command Line A-2

Editing on Import . A-6

Using the Import-Export API. A-8

Connecting to the Server Instance . A-8

Printing Objects in a Namespace . A-8

Exporting Objects . A-8

Importing Objects . A-9

Importing and Editing Objects . A-9

Specify File for Import-Export . A-9

Choosing Where to Print Messages . A-9

Choosing Whether to Print Messages. A-10

Index

Using the Application Integration Design Console 1-1

C H A P T E R 1

Introduction to Application Integration

This document provides instructions for using adapters via application views in a WebLogic
Integration environment. Adapters may be purchased or developed using the BEA WebLogic
Integration Adapter Development Kit (ADK). This document explains how to define application
view services and events and use them in your business processes in a WebLogic Integration
environment.

This section provides the following topics:

Familiarizing Yourself with Basic Concepts

Creating an Interface to an Adapter

Defining an Application View

Using an Application View in a Business Process

Using an Application View Control in Business Processes

Note: Because all adapters and applications are different, the instructions provided in this
document are generic: they are not written for a specific adapter or application. You can
create application views for standards-based BEA WebLogic Adapters for WebLogic
Integration. Documentation for these adapters is available at http://edocs.bea.com.
For details about the DBMS adapters provided with the ADK, see Learning to Develop
Adapters Using the DBMS Sample Adapters in Developing Adapters.

http://edocs.bea.com/wli/docs81/devadapt/dbmssamp.html
http://edocs.bea.com/wli/docs81/devadapt/dbmssamp.html
http://edocs.bea.com
http://edocs.bea.com/wli/docs81/devadapt/index.html

I n t roduct i on to Appl ica t ion In teg ra t i on

1-2 Using the Application Integration Design Console

Familiarizing Yourself with Basic Concepts
If you are not familiar with the basic concepts of application integration, we recommend that you
take the time to read the overview of application integration provided in Introducing Application
Integration. Then you will be ready to learn how to address practical issues, such as when to use
one application integration method rather than another, and how to implement the method you
select.

Creating an Interface to an Adapter
For each adapter to be used in your enterprise, you must provide an interface to the services and
events that it provides. You can create such an interface in either of two ways: by defining
application views or by writing custom code.

Application views provide the most convenient method of accessing an adapter’s resources. In
most situations you will probably choose this method for exposing the application functions
provided by each adapter. However, if you require more control over an adapter’s functions than
that afforded by application views, you may also write custom code.

You are responsible for deciding whether your enterprise can derive greater benefit from
application views or custom code. The following sections provide basic guidelines for choosing
between these two methods. For details, see Chapter 2, “Defining an Application View,” and
Chapter 5, “Using Application Views by Writing Custom Code.”

When to Define an Application View
Most enterprise information system (EIS) applications can be integrated easily by defining
application views. In general, you should define application views if one or more of the following
criteria are true:

You have more than one EIS in your enterprise, and you lack developers with detailed,
thorough knowledge of all systems.

You want to construct business processes using WebLogic Workshop.

You need to be able to update the parameters of an adapter or one of its processes.

When to Write Custom Code
You should write custom code as an interface to an adapter only if one or more of the following
criteria are true:

http://edocs.bea.com/wli/docs81/aiover/index.html
http://edocs.bea.com/wli/docs81/aiover/index.html

Def in ing an App l i cat i on V iew

Using the Application Integration Design Console 1-3

You have only one EIS in your enterprise and your developer has thorough, detailed
knowledge of the EIS involved in the business processes being coded.

You do not need to use the business process management (BPM) functions implemented as
business processes using WebLogic Workshop.

Your code will never require changes.

Defining an Application View
An application view for an adapter is an XML-based interface between WebLogic Server and a
particular EIS application. You must define an application view for each adapter used by your
enterprise.

This section describes:

What Is Defined by an Application View Definition

How to Define an Application View

What Is Defined by an Application View Definition
When you define an application view, you must configure communication parameters for it, and
then add services and/or events to it. The application view’s services and events expose specific
functions of the application. The communication parameters of the application view govern how
the application view connects to the target EIS.

An application view definition specifies:

Where application view information is to be stored

A unique name for the application view

Parameters for the following:

– Application

– Network connections between the application and the application view

– Management of the pool of connections available to the application view

– Load balancing to be performed by the application view

I n t roduct i on to Appl ica t ion In teg ra t i on

1-4 Using the Application Integration Design Console

How to Define an Application View
This section provides a high-level overview of the procedure you must complete to define
application views for adapters. For detailed instructions, see Chapter 2, “Defining an Application
View.”

Defining an application view involves the following steps:

Step 1: Log On to the Application Integration Design Console

Step 2: Define the Application Context for an Application View

Step 3: Add Folders

Step 4: Define Application View

Step 5: Create New or Select Existing Connection

Step 6: Add Services and Events to the Application View

Step 7: Perform Final Configuration

Step 8: Test Services and Events

Step 9: Publish Application View

Step 1: Log On to the Application Integration Design Console
The Application Integration Design Console displays all the application views in your WebLogic
Integration environment, organized in folders. You must log in to view the console. For details
about logging on to the Application Integration Design Console, see “Step 1: Log On to the
Application Integration Design Console” on page 2-5.

Step 2: Define the Application Context for an Application View
Application view files are stored in a file system related to a WebLogic Workshop project. The
first step in defining an application view for an adapter is to define the application context; you
can either specify an existing project or define a new file repository for application view
information.

For details about specifying a project, see “Step 2: Select an Application” on page 2-7.

Def in ing an App l i cat i on V iew

Using the Application Integration Design Console 1-5

Step 3: Add Folders
Folders are provided to help you organize and manage application views. Create or select an
existing folder in which the application view will reside. For details about adding a folder, see
“Step 3: Add a Folder” on page 2-8.

Step 4: Define Application View
Create a new application view for the appropriate adapter. An application view enables business
processes to make use of the specified adapter’s target EIS. For detailed information, see “Step
4: Define an Application View” on page 2-9.

Step 5: Create New or Select Existing Connection
Choose the type of connection factory to associate with the application view. You can select a
connection factory within an existing instance of the adapter or create a connection factory within
new adapter instance.

For details about creating and selecting connections, see the following topics:

“Step 5A: Create a New Browsing Connection” on page 2-12

“Step 5B: Reuse an Existing Browsing Connection” on page 2-15

Step 6: Add Services and Events to the Application View
Services and events support a subset of an application’s business processes by enabling
WebLogic Server clients to interact with the application functions you specify. The services and
events offered by an application view allow specific types of transactions between WebLogic
Server and the EIS application.

For details about adding services and events to an application view, see the following topics:

“Step 6A: Add a Service to an Application View” on page 2-17

“Step 6B: Add an Event to an Application View” on page 2-19

Step 7: Perform Final Configuration
Perform final configuration tasks that will allow you to test services and events. For details about
performing final configuration tasks, see “Step 7: Perform Final Configuration Tasks” on
page 2-21.

I n t roduct i on to Appl ica t ion In teg ra t i on

1-6 Using the Application Integration Design Console

Step 8: Test Services and Events
Verify that your services or events interact properly with the EIS application.

For details about testing services and events, see the following topics:

“Step 8A: Test an Application View’s Services” on page 2-26

“Step 8B: Test an Application View’s Events” on page 2-29

Step 9: Publish Application View
Publish the application view to the target WebLogic Workshop application. For more
information, see “Step 9: Publish an Application View” on page 2-31.

Using an Application View in a Business Process
Once you define an application view in your WebLogic Integration environment, you can deploy
it on WebLogic Server and use it to implement your enterprise’s business processes.

You can use application views in business processes in either of the following ways:

By designing business processes in WebLogic Workshop

By writing custom code

When an application view is used in your business process, the end result is a deployed electronic
representation of your enterprise’s business process. The business process uses the Application
View control to specify the transactions to be performed by your applications to accomplish
specific business tasks. The application views perform the transactions themselves.

Using an Application View in WebLogic Workshop
The most common way to use an application view in your enterprise’s business is by designing
a business process in WebLogic Workshop. A graphical user interface (GUI) is used for
designing business processes. These business processes can include application view services
and events accessed through the Application View control and the Message Broker Subscription
control.

For detailed information about each task, see Chapter 3, “Using Application Views with Business
Processes.”

Usi ng an App l i ca t i on Vi ew in a Bus iness Pr ocess

Using the Application Integration Design Console 1-7

Using an Application View by Writing Custom Code
If you do not implement your business process model by using an application view through a
business process, you must write custom Java code, instead. For instructions, see Chapter 5,
“Using Application Views by Writing Custom Code.”

Choosing a Method for Implementing a Business Process
WebLogic Integration allows you to implement your business processes by using either of two
methods: by creating a business process in WebLogic Workshop or by writing custom code. Any
business operation can be implemented as a business process.

Custom coding, however, should be attempted only if the target business process is extremely
simple and specialized. In this document, custom coding is described only as an alternate method
to be used in situations that require it. For a list of such situations, see “When to Write Custom
Java Code” on page 1-7.

When to Use WebLogic Workshop to Create a Business Process
Use WebLogic Workshop to implement a business process if one or more of the following criteria
are true:

Your business processes require complicated error management, persistent processes, and
sophisticated conditional branching.

For example, if your business process must receive numerous events, select a subset of
them, perform complex branched actions, generate many complex messages, and send the
messages to various WebLogic Server clients, then you should use WebLogic Workshop.

Your business process requires periodic changes.

WebLogic Workshop reduces the number of required compile/test/debug cycles.

Your developers (like those in most organizations) are valuable and scarce.

When to Write Custom Java Code
Write custom code to implement a business process only if one or more of the following criteria
are true:

Your business process is simple; that is, it includes no complicated error recovery,
long-lived processes, conditional branching, or joining of the process flow.

I n t roduct i on to Appl ica t ion In teg ra t i on

1-8 Using the Application Integration Design Console

For example, if your business process performs a limited set of actions on an incoming
message, and then routes the message to a small number of client applications, you can
safely write custom code for it.

You do not anticipate the need for frequent updates to the business process.

Whenever you update custom code, a full compile/test/debug cycle, which can be costly, is
required.

Your organization can afford to allocate developers for the job of implementing business
processes in code.

Using an Application View Control in Business Processes
A business process developer can use an Application View control to provide users of BEA
WebLogic Workshop with the means to interact with an EIS application. The interaction is
implemented using a Java API. A business process developer is not required to be an expert on
the EIS to use its capabilities. A developer can invoke application view services both
synchronously and asynchronously, and can subscribe to application view events using simple
Java objects. For more information about using Application View controls, see the Building
Integration Applications topic in the WebLogic Workshop Help at the following URL:

http://edocs.bea.com/workshop/docs81/index.html.

http://edocs.bea.com/workshop/docs81/index.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/navIntegration.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/navIntegration.html

Using the Application Integration Design Console 2-1

C H A P T E R 2

Defining an Application View

This section presents the following topics:

Before You Begin

Application View Design Considerations

High-Level Procedure for Defining an Application View

Sample Detailed Procedure for Defining an Application View

Editing an Application View

Setting Transaction Timeout Values for Application Views

Environment Variables for Application Views

Database-Specific Error Messages

Def in ing an App l i ca t i on V iew

2-2 Using the Application Integration Design Console

Before You Begin
When you define an application view, you are creating an XML-based interface between
WebLogic Server and a particular EIS application within your enterprise. Once you create the
application view, a business analyst can use it to create business processes that use the
application. For any adapter, you can create any number of application views, each of which may
contain any number of services and events.

Before you define an application view, make sure the following prerequisites are satisfied:

The appropriate adapter has been purchased or has been developed using the ADK. You
can create and configure application views only for existing, deployed adapters.

Determine which business processes need to be supported by the application view you are
configuring. The required business processes determine the types of services and events
you include in your application views. Therefore, you must gather information about the
application’s business requirements from the business analyst. Once you determine the
necessary business processes, you can define and test the appropriate services and events.

Application View Design Considerations
Before you start defining an application view, please read the following design considerations:

Use a single instance of the design console per client machine—You should only have
one instance of the Application Integration Design Console running on a single client
machine. Running multiple consoles on a single machine may interfere with proper
navigation between screens in your web browser.

Do not use underscores in application view service names—Application views with
services that are published to a WebLogic Workshop application must not contain
underscores in the application view service names. Also, no underscores are allowed in the
Application View control name.

Use short application view and folder names—When you create folders and assign
application view names, you are creating a path that describes a namespace, for example:
FolderOne.FolderTwo.MyAppView. Limit the application view path to no more than 260
characters. Application view path names over 260 characters may cause errors in
compiling the application view.

High-Leve l P rocedure fo r De f in ing an App l i cat i on V iew

Using the Application Integration Design Console 2-3

Assign the system administrator role to Microsoft SQL Server user accounts—To
deploy an application integration event for a Microsoft SQL Server database, the user
account from which event generator tables are created must be assigned the system
administrator role. If the user account is not assigned the system administrator role, the
deployment fails and an error message is generated stating that the tables are invalid
objects.

High-Level Procedure for Defining an Application View
Figure 2-1 summarizes the procedure for defining and configuring an application view.

Figure 2-1 Procedure for Defining and Configuring an Application View

1. Log on to the WebLogic Integration Application Integration Design Console. For detailed
information, see “Step 1: Log On to the Application Integration Design Console” on page 2-5.

Def in ing an App l i ca t i on V iew

2-4 Using the Application Integration Design Console

2. Select an existing application or specify a new application name and root directory.
application view files are stored in a file system related to an application. For detailed
information, see “Step 2: Select an Application” on page 2-7.

3. Add folders as required to help you organize application views. For detailed information,
see “Step 3: Add a Folder” on page 2-8

4. Click Add application view to create a new application view for the appropriate adapter.
An application view enables business processes to make use of the specified adapter’s target
EIS. For detailed information, see “Step 4: Define an Application View” on page 2-9.

5. Choose to create a new connection or to use an existing connection. For detailed
information, see “Step 5: Establishing a Browsing Connection” on page 2-11.

If you choose to create a new connection, you must enter application connection
parameters. The information is validated, and the application view is configured to connect
to the specified system For detailed information, see “Step 5A: Create a New Browsing
Connection” on page 2-12.

If you choose to use an existing connection, you must select an adapter instance and a
connection factory. For detailed information, see “Step 5B: Reuse an Existing Browsing
Connection” on page 2-15.

6. Add services and events that support business processes. For detailed information, see “Step
6: Add Services and Events” on page 2-17.

Click Add Event or Add Service to define the appropriate events and services for this
application view. For detailed information see “Step 6A: Add a Service to an Application
View” on page 2-17 and “Step 6B: Add an Event to an Application View” on page 2-19.

7. Once you have finished adding events and services, display the Connection Information
page to perform final configuration tasks. For detailed information, see “Step 7: Perform
Final Configuration Tasks” on page 2-21.

8. Test all services and events to make sure they can properly interact with the target EIS
application. For detailed information see “Step 8A: Test an Application View’s Services” on
page 2-26 and “Step 8B: Test an Application View’s Events” on page 2-29.

Once your services and events are tested and functioning, you are ready to publish the
application view, allowing it to be used in business processes. For more information on
using application views with business processes, see Chapter 3, “Using Application Views
with Business Processes.”

Sample Detai l ed P rocedure fo r De f in ing an App l i cat i on V iew

Using the Application Integration Design Console 2-5

9. Publish the application view to the target WebLogic Workshop application. This allows
business process developers within the target application to interact with the newly
published application view using an Application View control. For more information, see
“Step 9: Publish an Application View” on page 2-31.

Sample Detailed Procedure for Defining an Application View
This section explains how to define and maintain application views using an EIS adapter for a
hypothetical database EIS called simply DBMS. The steps in the procedure presented here
correspond to the steps shown in Figure 2-1.

When you create application views for your enterprise, they may look different from those shown
in this document. Such differences are to be expected, because the application view’s adapter
determines the information required for each application view page, and each enterprise has its
own specialized adapters. For details about an adapter used in your enterprise, consult the
relevant technical analyst or EIS specialist.

Note: Before performing the following steps, ensure that WebLogic Server is running on your
system.

Step 1: Log On to the Application Integration Design Console
The Application Integration Design Console displays all the application views in your WebLogic
Integration environment, organized in folders.

Warning: You should only have one instance of the Application Integration Design Console
running on a single client machine. Running multiple consoles on a single machine
may interfere with proper navigation between screens in your web browser.

To log on to the Application Integration Design Console:

1. Open a new browser window.

2. Enter the URL for your system’s Application Integration Design Console. The actual URL
you enter depends on your system. It should conform to the following format:

http://host:port/wlai

Note: You can also invoke the Application Integration Design Console from WebLogic
Workshop. Open a WebLogic Workshop application, ensure that WebLogic Server
is running, and then choose Tools−>WebLogic Integration−>Application Integration
Design Console.

The Application Integration Design Console Logon page is displayed.

Def in ing an App l i ca t i on V iew

2-6 Using the Application Integration Design Console

3. Enter your WebLogic Server username and password, then click Login.

The Select Application page is displayed.

Sample Detai l ed P rocedure fo r De f in ing an App l i cat i on V iew

Using the Application Integration Design Console 2-7

A menu bar appears at the top of each page which allows you to navigate to other pages and to
administration consoles. The following table describes the menu items.

Step 2: Select an Application
The Application Integration Design Console stores information about application views in a
file-based repository. Before you create an application view, you must select an application to use
in the design-time session. This determines where application view information is stored.

1. To choose an existing, deployed application, select an application from the Deployed
Applications drop-down list.

Note: WebLogic Workshop does not deploy an application until you add a project. You
must add a project to the application in WebLogic Workshop before the application
appears on the Deployed Applications drop-down list.

Menu Item Action

Application Integration
Server Configuration

Use the WebLogic Integration Administration Console to
set application integration parameters. Open the
WebLogic Integration Administration Console, select the
System Configuration module, and then select the
Application Integration module. See Managing WebLogic
Integration Solutions for more information on setting
application integration parameters.

Switch Application Displays the Select Application page where you can
choose a new application for the design-time session.

WebLogic Server Console Invokes the WebLogic Server Administration Console.

WebLogic Integration
Console

Invokes the WebLogic Integration Administration
Console.

Glossary Invokes a glossary of terms related to application
integration.

Note: The glossary is in progress and will be populated
with more terms in a future release. For additional
glossary terms, see the WebLogic Platform
Glossary.

Logout Logs you out of the current design session and displays the
Logon page.

http://edocs.bea.com/wli/docs81/manage/index.html
http://edocs.bea.com/wli/docs81/manage/index.html
http://edocs.bea.com/common/docs81/glossary/index.html
http://edocs.bea.com/common/docs81/glossary/index.html

Def in ing an App l i ca t i on V iew

2-8 Using the Application Integration Design Console

2. To create a repository for a new application, specify an application name and the root
directory for the application. (You can also enter the application name and root directory for
an existing, deployed application.)

For example, the following figure shows the name and root directory for a new application.

3. Click OK.

The Application View Design Console page is displayed.

Note: If you do not see the Application View Design Console page, consult the WebLogic
Server administrator.

Step 3: Add a Folder
The application views in your enterprise are organized in folders that may contain application
views and subsidiary folders. Once you create a folder, you cannot move it to another folder.
Before removing a folder, you must remove all application views and subfolders. Once you create
an application view in a folder, you can remove the application view, but you cannot move it to
another folder.

The following figure shows the root folder with one application view and two subsidiary folders.

Sample Detai l ed P rocedure fo r De f in ing an App l i cat i on V iew

Using the Application Integration Design Console 2-9

To create a folder:

1. To add a folder, click the new folder icon:

The Add Folder page is displayed.

2. In the New Folder field, enter the folder name. Any valid Java Identifier is allowed in a
name.

Note: The name Root is a reserved word, and cannot be used for a folder name. If you use
Root as a name, you cannot import or export the folder using the import-export utility
described in “Importing and Exporting Application Views” on page A-1.

3. Click Save. The new folder appears on the Application View Design Console page

Step 4: Define an Application View
1. Add a new application view to the current folder by clicking Add Application View.

Note: Make sure you are working in the appropriate folder before performing this step.
Once you define an application view, you cannot move it to another folder.

The Define New Application View page is displayed.

Def in ing an App l i ca t i on V iew

2-10 Using the Application Integration Design Console

2. In the Application View Name field, enter a name. The name should describe the functions
performed by this application. Each application view name must be unique to its adapter.
Any valid Java Identifier is allowed in a name.

The red asterisk next to the Application View Name field indicates that this is a required
field.

Note: The name Root is a reserved word, and cannot be used for an application view name.
If you use Root as a name, you cannot import or export the application view using the
import-export utility.

3. In the Description field, enter any notes that may be helpful to people connecting to this
application view from business processes created in WebLogic Workshop.

4. From the Associated Adapter list, select an adapter to be used to create this application
view.

Note: You can define an application view without selecting the adapter type. This allows
for instances where you realize that an application view is needed, but do not have
sufficient information at the time to fully define the application view. You can create,
name, and enter a description of the required application view without selecting the
adapter type or further defining the application view. When more information is
available, you can continue defining the application view.

5. Click Create New Connection to create a new browsing connection.

Sample Detai l ed P rocedure fo r De f in ing an App l i cat i on V iew

Using the Application Integration Design Console 2-11

The Create New Browsing Connection page is displayed, as described in “Step 5A:
Create a New Browsing Connection” on page 2-12.

6. Click Reuse Existing Connection to use an existing browsing connection.

The Select Browsing Connection page is displayed, as described in “Step 5B: Reuse an
Existing Browsing Connection” on page 2-15.

7. Click Cancel to return to the previously displayed folder.

The application view is not created.

Step 5: Establishing a Browsing Connection
You must choose the type of connection factory to associate with the application view. You can
create a connection factory within a new adapter instance or select a connection factory within an
existing instance of the adapter.

An adapter instance acts as a communications gateway between WebLogic Server and your EIS.
This gateway can be unidirectional or bidirectional. Adapter instances include inbound
messaging capabilities (from the EIS to WebLogic Server) that supports events, and connection
factories that support services (outbound requests from WebLogic Server). An application view
uses an adapter instance as a gateway for one of three purposes:

design-time browsing

event delivery

service invocation

You must either create a new adapter instance or select an existing adapter instance that the
application view will use. To enable design-time browsing and service invocation, you must also
designate which connection factory the application view should use to get the connections used
to communicate with the EIS.

When you choose to create a new connection, WebLogic Integration creates the adapter instance
for you, and the connection parameters you define are used to create the connection factory within
the adapter instance. For more information, see “Step 5A: Create a New Browsing Connection”
on page 2-12.

When you choose to reuse an existing connection, you select the adapter instance and factory by
name and do not need to specify connection parameters directly. If you do not know the proper
parameters required to connect to a given EIS, have an EIS specialist set up the adapter instance
and connection factory to use and the select them from the Application Integration Design

Def in ing an App l i ca t i on V iew

2-12 Using the Application Integration Design Console

Console. For more information, see “Step 5B: Reuse an Existing Browsing Connection” on
page 2-15.

When establishing connections, the Application Integration Design Console is optimized for ease
of use by first-time users. When you create a new connection, the browsing connection is also
assigned as the service connection. This saves the first-time user a step in the process. More
advanced users are likely to reuse an existing connection. In this case, the user is more familiar
with the specific connection requirements and must separately assign the service connection.

Step 5A: Create a New Browsing Connection
1. You use the Create New Browsing Connection page to configure the connection properties,

pool parameters, log level, and sign-on behavior of a new connection factory. This creates a
new adapter instance and connection factory within it. The adapter instance and connection
factory are given default names based on the application view name.

The Create New Browsing Connection page indicates whether you need to define
connection parameters. If the connection needs to have adapter-specific properties set, it
indicates this with a Needed label next to the Define button. This label is removed once
you provide connection parameters.

Sample Detai l ed P rocedure fo r De f in ing an App l i cat i on V iew

Using the Application Integration Design Console 2-13

2. In the Connection Name field, accept the default connection name suffix. (The connection
names are assigned by the system and are not editable.)

3. In the Description field, enter a description for the new connection.

4. Click Define to define the connection parameters for the browsing connection.

The Configure Connection Parameters page is displayed.

Def in ing an App l i ca t i on V iew

2-14 Using the Application Integration Design Console

5. Enter the database username and password.

6. Define the network-related information necessary to enable the application view to interact
with the target EIS. You need to enter this information only once per application view.

Note: The fields displayed on the page you see may differ from those shown here. Which
fields are displayed is determined by the adapter. For the required information for any
remaining fields, refer to your adapter documentation. For BEA WebLogic Adapters,
see “Defining Service Connection Parameters” in your adapter User Guide, available
at the following URL:

http://edocs.bea.com/wladapters/docs81/index.html

If you are using an adapter that uses a JDBC DataSource, do not create two Tx Data
Sources that point to the same connection pool. If a transaction uses two different Tx
Data Sources which are both pointed to the same connection pool, you will get an
XA_PROTO error when you try to access the second connection.

For more information on JDBC DataSources and WebLogic Server, see “JDBC
DataSources” in Administration Console Online Help at the following location:

http://edocs.bea.com/wladapters/docs81/index.html

Sample Detai l ed P rocedure fo r De f in ing an App l i cat i on V iew

Using the Application Integration Design Console 2-15

http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc_datasources.html

7. Click Continue in the Configure Connection Parameters page to return to the Create
New Browsing Connection page.

8. Edit the connection pool and log parameters as required.

9. Click OK.

The Application View Administration page is displayed. On the Application View
Administration page, you can add services and events to your application view.

Step 5B: Reuse an Existing Browsing Connection
You use the Select Browsing Connection page to choose an existing connection. You select both
the adapter instance and a connection factory within it, from which connections to the EIS are
obtained. These connections are used for browsing your EIS during design-time editing sessions.

http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc_datasources.html

Def in ing an App l i ca t i on V iew

2-16 Using the Application Integration Design Console

Using an existing connection factory can simplify server administration, especially in cases
where multiple adapters interact with a single EIS. Also, using a shared connection factory allows
an administrator to set the connection factory configuration parameters and direct users to select
an existing connection. In this case, the users do not have to know how to configure connection
parameters.

1. Choose the Selected radio button next to the connection factory you want to reuse.

2. Click OK.

The Application View Administration page is displayed. On the Application View
Administration page, you can add services and events to your application view.

Sample Detai l ed P rocedure fo r De f in ing an App l i cat i on V iew

Using the Application Integration Design Console 2-17

Step 6: Add Services and Events
The Add Service and Add Event pages allow you to add services and events that support specific
business processes. An application view can have multiple services and events. The required
business processes determine the types of services and events you include in your application
views. Work with your business analyst to define the application’s business requirements. Once
you determine the necessary business processes, you can define the appropriate services and
events.

Step 6A: Add a Service to an Application View
1. On the Application View Administration page, click Add in the Services row.

The Add Service page is displayed.

Def in ing an App l i ca t i on V iew

2-18 Using the Application Integration Design Console

Note: The fields displayed on the page you see may differ from those shown here. Which fields
are displayed is determined by the adapter.

2. In the Unique Service Name field, enter a name. The name should describe the function
performed by this service. Each service name must be unique to its application view. Any
valid Java Identifier is allowed in a name.

3. In the Description field, enter any notes which may be helpful to people using this
application view in business processes created in WebLogic Workshop.

4. For the required information for any remaining fields, consult the relevant technical analyst
or EIS specialist, or refer to your adapter documentation.

Note: For BEA WebLogic Adapters, see “Setting Service Properties” in your adapter User
Guide, available at the following URL:

http://edocs.bea.com/wladapters/docs81/index.html

In many cases, this required information consists of an SQL statement for retrieving
information from or updating information in a database. The following sample SQL
statement retrieves customer information from a customer table based on a user-specified
country value:

select * from WEBLOGIC.CUSTOMER_TABLE
where COUNTRY=[country varchar]

http://edocs.bea.com/wladapters/docs81/index.html

Sample Detai l ed P rocedure fo r De f in ing an App l i cat i on V iew

Using the Application Integration Design Console 2-19

The sample application views provided with WebLogic Integration include services which
use SQL statements. Display the Application View Administration page and click the
View Summary link for a service. The Summary page includes an SQL statement.

5. You can optionally specify environment variables for the application view in the Variables
area in the lower portion of the Add Service page. For more information on environment
variables, see “Environment Variables for Application Views” on page 2-34.

To add an environment variable:

a. Enter a name for the environment variable in the Name field.

b. Select a data type for the variable from the Type drop-down list.

c. Optionally specify a default value and a description for the variable.

6. When finished, click Add.

The Application View Administration page is displayed. Note that the new service is
shown along with links which allow you to edit, remove, and view information about the
service.

7. If you are finished adding services and do not plan to add any events, click Save to save the
current application view information. You must create or select connections for services, as
described in “Step 7: Perform Final Configuration Tasks” on page 2-21, before testing and
publishing the application view.

Step 6B: Add an Event to an Application View
1. On the Application View Administration page, click Add in the Events row.

The Add Event page is displayed.

Def in ing an App l i ca t i on V iew

2-20 Using the Application Integration Design Console

Note: The fields displayed on the page you see may differ from those shown here. Which
fields are displayed is determined by the adapter.

2. In the Unique Event Name field, enter a name. Each event name must be unique to its
application view. Any valid Java Identifier is allowed in a name.

3. In the Description field, enter any notes that may be helpful to people using this application
view in business processes created in WebLogic Workshop.

4. For the required information for any remaining fields, consult the relevant technical analyst
or EIS specialist, or refer to your adapter documentation.

Note: For BEA WebLogic Adapters, see “Setting Event Properties” in your adapter User
Guide, available at the following URL:

http://edocs.bea.com/wladapters/docs81/index.html

5. You can optionally specify environment variables for the application view in the Variables
area in the lower portion of the Add Event page. For more information on environment
variables, see “Environment Variables for Application Views” on page 2-34.

http://edocs.bea.com/wladapters/docs81/index.html

Sample Detai l ed P rocedure fo r De f in ing an App l i cat i on V iew

Using the Application Integration Design Console 2-21

To add an environment variable:

a. Enter a name for the environment variable in the Name field.

b. Select a data type for the variable from the Type drop-down list.

c. Optionally specify a default value and a description for the variable.

6. When finished, click Add.

The Application View Administration page is displayed. Note that the new event is
shown along with links which allow you to edit, remove, and view information about the
event.

7. If you are finished adding services and events, click Save to save the current application
view information. You must create or select connections for services and events, as
described in “Step 7: Perform Final Configuration Tasks” on page 2-21, before testing and
publishing the application view.

Step 7: Perform Final Configuration Tasks
Once you have finished adding services and events and have saved your application view, you
must complete final configuration of connections before testing services and events. These
configuration tasks are performed from the Application View Administration page.

Def in ing an App l i ca t i on V iew

2-22 Using the Application Integration Design Console

1. Click Select/Edit.

The Connection Information page is displayed.

Sample Detai l ed P rocedure fo r De f in ing an App l i cat i on V iew

Using the Application Integration Design Console 2-23

The Connection Information page is organized by connection type: service invocation,
event delivery, and design-time browsing connections. (For more information on how
application views use adapter instances and connection factories, see “Step 5: Establishing
a Browsing Connection” on page 2-11.)

2. To edit the connection for services and design-time browsing, click Browsing. (This is the
browsing connection you defined in “Step 5A: Create a New Browsing Connection” on
page 2-12.)

The appropriate Edit Connection page is displayed. Note that only one connection is used
for services and browsing and that changes made on the one Edit Connection page will
appear on the other Edit Connection page.

3. To create a new connection for services and design-time browsing, click Create New. (This
is the connection you defined in “Step 5A: Create a New Browsing Connection” on
page 2-12.)

The appropriate Create New Connection page is displayed.

If no connection parameters have been set for a connection and the Needed label is
displayed nest to the Define button, the connection parameters page is displayed when you
click OK on either the event or service connection page. When you click Continue, the
Event or Service Connection page is displayed without the Needed label.

Def in ing an App l i ca t i on V iew

2-24 Using the Application Integration Design Console

Note: For BEA WebLogic Adapters, see “Defining Service Connection Parameters” in
your adapter User Guide, available at the following URL:

http://edocs.bea.com/wladapters/docs81/index.html

4. To select an existing connection that is different from the current connection, click the
Select Existing... link.

The appropriate Select Connection page is displayed. This page is the same as the page
described in “Step 5B: Reuse an Existing Browsing Connection” on page 2-15.

5. Click Event to configure the connection properties, enable or disable the namespace
enforcement option, and set the log level for your event connection.

The Edit Event Connection page is displayed.

The Edit Event Connection page allows you to define event connection parameters,
enable or disable the namespace enforcement option, and specify what information will be
logged for the connection factory.

http://edocs.bea.com/wladapters/docs81/index.html

Sample Detai l ed P rocedure fo r De f in ing an App l i cat i on V iew

Using the Application Integration Design Console 2-25

6. To enable namespace enforcement, check the Enable event namespace enforcement check
box.

Enable the namespace enforcement option to indicate that the client requires response
documents and event documentst to declare the namespace indicated in the response/event
definitions, and force the proper namespace declaration onto the response/event if needed.

Some legacy adapters do not provide responses/events using the namespace declared in the
response/event schema This option allows clients that perform schema-based XML
checking to use such adapters.

Note: If the adapter returns raw XML text (not parsed), enabling namespace enforcement
has serious performance implications because it forces a parse of the XML text in
order to inject the proper namespace declaration.

7. Select one of the following settings for the log:

– Log errors and audit messages

– Log warnings, errors, and audit messages

– Log informational, warning, error, and audit messages

– Log all messages

8. Locate Connection Parameters and click Define to set the event delivery parameters.

The Configure Event Delivery Parameters page is displayed.

Def in ing an App l i ca t i on V iew

2-26 Using the Application Integration Design Console

The event delivery parameters you enter on this page enable connection to an EIS instance
and are used when generating events. The properties are specific to the associated adapter
and are defined in the wli-ra.xml file within the base adapter.

Note: For BEA WebLogic Adapters, see “Defining Event Connection Parameters” in your
adapter User Guide, available at the following URL:

http://edocs.bea.com/wladapters/docs81/index.html

9. After you have set the event delivery parameters, click Continue to return to the Edit
Event Connection page and then click OK to return to the Connection Information page.

10. Click Back to return to the Application View Administration page.

Step 8A: Test an Application View’s Services
The purpose of testing an application view service is to evaluate whether or not that service
interacts properly with the target EIS. You can test an application view only if it is deployed and
it contains at least one event or service. To test an application view service:

1. In the Application View Administration page, click Test.

The Summary for Application View page is displayed. Note that the Status is Testing
and a Stop Testing link is displayed.

http://edocs.bea.com/wladapters/docs81/index.html

Sample Detai l ed P rocedure fo r De f in ing an App l i cat i on V iew

Using the Application Integration Design Console 2-27

You can optionally click Set Variables and Test. The Set Variables and Test Application
View page is displayed. You can edit the values of environment variables and then click
Test to test the application view.

2. In the Services area of the Events and Services tab, find the appropriate service and click
Test.

The Test Service page is displayed.

3. If necessary, enter the required data in the appropriate fields.

Def in ing an App l i ca t i on V iew

2-28 Using the Application Integration Design Console

Note: The fields displayed on your Test Service page may differ from those show here.
Which fields are displayed is determined by the application view service. For a
description of all fields, consult the relevant technical analyst or EIS specialist. For
BEA WebLogic Adapters, see “Testing Services” in your adapter User Guide,
available at the following URL:

http://edocs.bea.com/wladapters/docs81/index.html

4. Click Test.

If the application view service correctly processes the input data that you provided in step
3, the test is successful. The Test Result page, on which all input and output documents
are listed, is displayed. If the service fails, the failure will be shown in the response field.

5. Repeat the test procedure (steps 1-4) for each service you want to test.

6. After you finish testing the application view’s services, you may publish the application
view or, if you want to edit it, you may return to the Summary page, click Stop Testing.

http://edocs.bea.com/wladapters/docs81/index.html

Sample Detai l ed P rocedure fo r De f in ing an App l i cat i on V iew

Using the Application Integration Design Console 2-29

Step 8B: Test an Application View’s Events
The purpose of testing your application view events is to evaluate whether or not the application
view responds correctly to the EIS application. You can test an application view only if it is
deployed and it contains at least one event or service. To test an application view event:

1. In the Application View Administration page, click Test.

The Summary for Application View page is displayed. Note that the Status is Testing
and a Stop Testing link is displayed.

2. In the Events area on the Events and Services tab, find your event and click Test.

The Test Event page is displayed.

Note: The fields displayed on your Test Event page may differ from those shown here.
Which fields are displayed is determined by the application view event. For a
description of all fields, consult the relevant technical analyst or EIS specialist. For
BEA WebLogic Adapters, see your adapter User Guide, available at the following
URL:

http://edocs.bea.com/wladapters/docs81/index.html

3. Select a method for generating the test event:

– Service: Select Service when you want to use one of the application view’s own
services to generate a canned event. Then complete the procedure in “If You Select
Service” on page 2-30.

– Manual: Select Manual when you want to generate the event by logging on to an EIS
application and performing the appropriate event-generating function. Then complete
the procedure in “If You Select Manual” on page 2-30.

http://edocs.bea.com/wladapters/docs81/index.html

Def in ing an App l i ca t i on V iew

2-30 Using the Application Integration Design Console

If the application view event responds correctly before the specified amount of time
elapses, the test is successful.

If You Select Service
1. From the Service drop-down list, select a service that triggers the event you are testing. For

example, if you are testing the CustomerInserted event, select a service that invokes it, such
as InsertCustomer.

2. In the Time field, enter a reasonable period of time to wait, specified in milliseconds. (One
minute = 60,000 milliseconds.)

If the specified period elapses before the event succeeds, the test times out and a failure
message is displayed.

3. Click Test. The triggering service is executed.

If the service requires input data, an input page is displayed.

Note: For BEA WebLogic Adapters, see “Testing Events Using a Service” in your adapter
User Guide, available at the following URL:

http://edocs.bea.com/wladapters/docs81/index.html

4. If service input data is required, enter it in the appropriate fields, and click Test.

The service is executed. If the test succeeds, the Test Result page is displayed, showing
the event document, the service input document, and the service output document. If the
test fails, the Test Result page displays only a Timed Out message.

5. Do one of the following:

– If the test succeeds, repeat the test procedure for each remaining event you want to test.

– If the test fails, you have several options for diagnosing the problem. The test may fail
for a number of reasons. If the service fails, the failure is shown in the response field. If
the event does not arrive even though the service succeeded, make sure that you
invoked the service that is known to create the selected event. You can also check the
server log for error messages or contact your system administrator.

6. When finished, save the application view.

If You Select Manual
1. In the Time field, enter a reasonable time to wait, specified in milliseconds. (One minute

= 60,000 milliseconds.)

http://edocs.bea.com/wladapters/docs81/index.html

Sample Detai l ed P rocedure fo r De f in ing an App l i cat i on V iew

Using the Application Integration Design Console 2-31

If this period elapses before the event succeeds, the test times out and a failure message is
displayed.

2. If the application you will use to trigger the event is not already open, open it now.

Note: For BEA WebLogic Adapters, see “Testing Events Manually” in your adapter User
Guide, available at the following URL:

http://edocs.bea.com/wladapters/docs81/index.html

3. Click Test. The test waits for an event to trigger it.

4. Using the triggering application, perform an action that executes the service that, in turn,
tests the application view event.

If the test succeeds, the Test Result page is displayed. This page, in turn, displays the
event document from the application, the service input document, and the service output
document.

If the test fails or takes too long, the Test Result page is displayed, showing a Timed Out
message.

5. Do one of the following:

– If the test fails, edit the event definition, or contact the system administrator or
application manager.

– If the test succeeds, repeat the test procedure for each remaining event you want to test.

6. When you are finished, save the application view.

Step 9: Publish an Application View
From the Summary page, you can publish an application view that has been tested. This
generates an EJB within the application directory, publishes schema files to the WebLogic
Workshop application for use in the XML Mapper, and makes the application view visible within
WebLogic Workshop. The Application View control wizard browses only published application
views.

When you publish an application view, it becomes a part of the WebLogic Workshop application.
After publishing, the application view is controlled by the WebLogic Workshop application
rather than the Application Integration Design Console. You must republish the application view
if you edit it in the Application Integration Design Console.

Note: You must recreate any Application View control that uses an application view that has
been modified in the Application Integration Design Console and republished.

http://edocs.bea.com/wladapters/docs81/index.html

Def in ing an App l i ca t i on V iew

2-32 Using the Application Integration Design Console

When the application view has been published, a message similar to the following is displayed
on the Summary page:

EastCoast.Sales.CustomerManagement published to:
C:\bea\weblogic81\domains\samples\integration\sampleApp\
sampleApp_EastCoast_Sales_CustomerManagement_ApplicationView-ejb.jar

All application integration artifacts (application views, schemas, and namespaces) are contained
in the application view EJB. The EJB is rebuilt as necessary to reflect changes in the application
integration artifact source files. The source files are maintained in the wlai-repository
directory under the EAR root directory. When an application view is published, the schemas
needed by the application view are copied into the Schemas/wlai directory in the WebLogic
Workshop application.

When you publish an application view, testing is automatically stopped before the application
view is published. This ensures that your temporary test application view deployments are
removed from the server and do not interfere with your published application view.

Note: When you publish an application view, schemas are published to the WebLogic
Workshop application. Publishing an application view and opening WebLogic
Workshop may cause the Schema project to be rebuilt. If you edit a business process (for
example, to define a start node) before the Schemas project has finished rebuilding, you
may see an error message similar to the following:

The type for the variable could not be resolved. This may be due to
not entering fully qualified type name. Please go to source to correct
errors.

Make sure that the Schema project has completed its rebuild before editing the business
process.

Published application views can be monitored and managed using the WebLogic Integration
Administration Console. For more information on managing application views and adapter
instances, see Managing WebLogic Integration Solutions.

Note: When you delete a previously published application view, associated wlai.channel
file, and EJB file, the application view ID still appears in the WebLogic Integration
Administration Console and is shown in an Undeployed state after you rebuild the
application. The deleted application view ID is removed from WebLogic Integration
Administration Console when you reboot the system.

http://edocs.bea.com/wli/docs81/manage/index.html

Ed i t ing an App l i cat i on V iew

Using the Application Integration Design Console 2-33

Editing an Application View
When you define an application view, you must configure its connection parameters. After you
add and test services and events, you may want to reconfigure the connection parameters or
remove services and events.

To edit an existing application view:

1. Open the application view.

The Summary for Application View page is displayed.

2. Click the Edit link under Available Actions.

The Application View Administration page is displayed.

3. To reconfigure the application view’s connection parameters, select the Select/Edit link
under Connections.

The Connection Information page is displayed. Follow the instructions in “Step 7:
Perform Final Configuration Tasks” on page 2-21.

4. To add services or events, click Add in the Services or Events area. Follow the instructions
in “Step 6A: Add a Service to an Application View” on page 2-17 or “Step 6B: Add an
Event to an Application View” on page 2-19.

Setting Transaction Timeout Values for Application Views
The current default JTA transaction timeout for domains generated by the Configuration Wizard
is 30 seconds. Typically, many adapter calls can exceed 30 seconds. You can increase the server's
default transaction timeout using the WebLogic Server Administration Console:

1. Open the WebLogic Server Administration Console and log in.

2. In the left pane, select Services−>JTA.

The JTA configuration page is displayed.

3. In the right pane, edit the Timeout Seconds field to reflect a longer timeout value. The
suggested value is 500 seconds.

To implement the increased timeout value, you must republish your application views or
manually change the weblogic-ejb-jar.xml descriptor in your previously published
application views. To manually increase the value, insert the following into

Def in ing an App l i ca t i on V iew

2-34 Using the Application Integration Design Console

weblogic-ejb-jar.xml in the weblogic-enterprise-bean element for both the stateless
and stateful session EJBs for the application view:

<transaction-descriptor>

<trans-timeout-seconds>500</trans-timeout-seconds>

</transaction-descriptor>

Environment Variables for Application Views
Application views contain metadata about associated services and events. This metadata often
contains references to environment-specific resources or data values that may need to be updated
dynamically. Environment variables allow these values to be updated dynamically, without
having to undeploy, edit, and redeploy the application view. Once an environment variable is
created, its value can be specified at time of deployment or dynamically at runtime.

Variable definitions will contain the following:

Variable name

Data type

Default value (optional)

Description (optional)

You can define new variables when adding or editing services or events. The list of existing
variables is also displayed and can be edited on the Application View Administration and
Application View Summary pages.

Once the application view has been published, an administrator can display environment
variables and edit their values in the WebLogic Integration Administration Console. An
administrator can not add or delete environment variables.

Database-Specific Error Messages
When using your published application views, you may see database-specific error messages
written to the log file. The section identifies some of the more common database-specific error
messages.

From time to time, when using Sybase or MSSQL databases, warnings are issued stating that the
active database and/or language has been changed. These warnings come from the Sybase and
MSSQL databases when the active database or language is changed on a connection. Since the

Database-Speci f i c E r ro r Messages

Using the Application Integration Design Console 2-35

catalog is changed at various points in the DBMS sample adapter, users of the sample adapter will
inevitably see these messages. These warnings are harmless and can be ignored.

When an adapter instance in an MSSQL XA environment is automatically suspended and
resumed, error messages similar to the following are thrown.

<Oct 15, 2003 4:40:30 PM PDT> <Error> <JDBC> <BEA-001112>
<Test "SELECT COUNT(*) FROM sysobjects" set up for pool "wlaiPool" failed with
exception: "javax.transaction.xa.XAException: [BEA][SQLServer JDBC Driver]
No more data available to read.".>

This is a JDBC-level error, generated as the JDBC container cleans up existing/dead connections
to the restarted DBMS instance. This type of exception is normal in this case; the EIS is available,
the adapter instance is resumed successfully, and the JDBC container recovers.

When using an application view with a Microsoft SQL Server or Sybase database, use the
WebLogic Server Administration Console to enable the TestReservedConnection parameter
for the connection pool used for application integration. If the parameter is not enabled, the auto
resume or manual resume features do not work and a SQLException similar to the following is
thrown:

java.sql.SQLException: [BEA][SQLServer JDBC Driver]No more data
available to read

Def in ing an App l i ca t i on V iew

2-36 Using the Application Integration Design Console

Using the Application Integration Design Console 3-1

C H A P T E R 3

Using Application Views with Business
Processes

This section presents the following topics:

Before You Begin

Integrating Application Views and Business Processes Using a Control

Sample Application View Control Files

Receiving Events

Handling Application View Local Transactions in Business Processes

Before You Begin
After you create all the application view services and events that are required for your enterprise,
you can use the resulting application views to execute your business processes. The simplest way
to do this is by using WebLogic Workshop to design business processes that use your application
view services and events.

WebLogic Workshop provides a graphical user interface (GUI) for designing business processes
as well as web services. These business processes can include application view services and
events defined using the Application Integration Design Console.

Business Processes are integrated with application views through the Application View control.
The Application View control allows a business process engineer to browse the hierarchy of
application views, invoke a service as a business process action, and to start a new business
process when an event occurs. For details, see the Application View Control topic in the
WebLogic Workshop Help at the following URL:

Using Appl i ca t ion V iews w i th Business P rocesses

3-2 Using the Application Integration Design Console

http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/controlsA
ppView.html

Before you can invoke an application view service or receive an application view event in a
business process, you must make sure the following prerequisites have been met:

You have created an application view, defined services and events for it, and published the
application view as described in “Defining an Application View” on page 2-1.

The application view and its adapter are functional and saved. If you plan to call
application view services and events from a running business process, the application view
must be deployed, as well.

WebLogic Workshop and application integration functionality are available.

You have received information about the required business logic for the business processes
you are defining from the appropriate business analyst.

Integrating Application Views and Business Processes Using a
Control

The Application View control allows users of WebLogic Integration, WebLogic Workshop, and
WebLogic Portal to invoke functions within enterprise applications using simple Java APIs or
XML documents. This allows users who are not experts in the use of a given enterprise system
to use its capabilities in a manner a Java programmer can understand.

The Application View control provides a means for a business process developer to invoke
application view services both synchronously and asynchronously. Synchronous services are
represented as simple methods with a single parameter and a non-void return value.
Asynchronous services are represented as both a method with a single parameter (the request),
and a callback method with a single parameter (the response).

Application view events are delivered through the Message Broker. To receive application view
events, use a Message Broker Subscription control or static subscription (from business processes
only). For more information on handling events, see “Receiving Events” on page 3-6.

http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/controlsAppView.html

I nt eg rat ing App l i cat i on V iews and Busi ness P rocesses Us ing a Cont ro l

Using the Application Integration Design Console 3-3

Perform the following steps to use an application view from within a business process:

1. Define an application in WebLogic Workshop. For more information, see the WebLogic
Workshop Help.

Any WebLogic Workshop application which uses the application integration capabilities of
WebLogic Integration must contain a project explicitly named Schemas. The Schemas
project is used to store the wlai.channel file and application view schemas (published as
XML Bean classes). If the Schemas project does not exist in the application, you must
create it before publishing application views.

2. Select the WebLogic Workshop application in the Application Integration Design Console
using the drop-down application list. For more information, see “Step 2: Select an
Application” on page 2-7.

3. Define the application view and add services and events. For more information, see “Step 4:
Define an Application View” on page 2-9 through “Step 6B: Add an Event to an
Application View” on page 2-19.

4. Test the application view. For more information, see “Step 8A: Test an Application View’s
Services” on page 2-26 and “Step 8B: Test an Application View’s Events” on page 2-29.

5. Publish the application view using the Publish button on the Application View Summary
page. This generates an application view EJB at the root of the WebLogic Workshop
application. For more information, see “Step 9: Publish an Application View” on page 2-31.

The published application view EJB is added to the Modules list in the WebLogic
Workshop application tree. This deploys the application view EJB and, in turn, the
application view.

Note: When you publish an application view, schemas are published to the WebLogic
Workshop application. Publishing an application view and opening WebLogic
Workshop may cause the Schema project to be rebuilt. If you edit a business process
(for example, to define a start node) before the Schemas project has finished
rebuilding, you may see an error message similar to the following:

The type for the variable could not be resolved. This may be due
to not entering fully qualified type name. Please go to source to
correct errors.

Make sure that the Schema project has completed its rebuild before editing the
business process.

Using Appl i ca t ion V iews w i th Business P rocesses

3-4 Using the Application Integration Design Console

6. Add an Application View control to your business process using the New−>Integration
Controls−>ApplicationView option in the Data Palette. For more information, see the
Application View Control topic in the WebLogic Workshop Help at the following URL:

http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/contro

lsAppView.html

7. Test your business process. For more information, see the WebLogic Workshop Help.

When you create an Application View control, you specify or select the following:

A variable name associated with the control instance.

Whether to use an existing Application View control or define a new control.

– If you choose to use an existing Application View control, the associated application
view and service are already defined in the JCX file for that control.

– If you choose to create a new control, you must specify a name for the new JCX file.
You then browse for the desired application view and select a service that is
asynchronously invoked by the control.

Sample Application View Control Files
Application View control instances are stored as JCX files. Each Application View control
instance is a Java interface that extends the base Application View control interface
(com.bea.wlai.control.ApplicationViewControl).

Application View Control Interface
The following code shows the base Application View control interface.

Listing 3-1 Application Control Base Interface

package com.bea.wlai.control;

import com.bea.control.XMLControl;
import com.bea.control.Extensible;
import com.bea.xml.XmlObject;

/**
* ApplicationView Control base interface
*/
public interface ApplicationViewControl

http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/controlsAppView.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/controlsAppView.html

Sample Appl ica t i on V iew Cont ro l F i l es

Using the Application Integration Design Console 3-5

extends XMLControl
{
// -------------------------
// Async methods
// -------------------------

/**
* Is this control instance currently processing an async request?
*/
public boolean isAsyncRequestActive();

/**
* Return the ID of the active asynchronous request being processed by
* this control instance, or null if no async request is active.
*/
public String getActiveAsyncRequestID();

// -------------------------
// Local transaction methods
// -------------------------

/**
* Begin a local transaction on this control. This will begin a local
* transaction on the underlying ApplicationView instance. All work done
* by this control instance between this call, and a call to
* commitLocalTransaction() or rollbackLocalTransaction() will be
* committed or rolled back, respectively, as a unit. If the underlying
* adapter used by the ApplicationView for this control does not support
* local transactions, an exception is thrown.
*/
public void beginLocalTransaction()

throws Exception;

/**
* Commit the active local transaction for this control. All work done
* since the last call to beginLocalTransaction() will be committed into
* the EIS's permanent state. If the underlying
* adapter used by the ApplicationView for this control does not support
* local transactions, an exception is thrown.
*/
public void commitLocalTransaction()

throws Exception;

/**
* Rollback the active local transaction for this control. All work done
* since the last call to beginLocalTransaction() will be discarded.
* If the underlying adapter used by the ApplicationView for this control does
not support local transactions, an exception is thrown.
*/

Using Appl i ca t ion V iews w i th Business P rocesses

3-6 Using the Application Integration Design Console

public void rollbackLocalTransaction()
throws Exception;

/**
* Callback interface that defines the generic events that can be delivered
* to any ApplicationView control instance. Note, no client-visible events
* are defined here. They see only those events defined in the control
* interface (JCX file).
*/
public interface Callback

{
/**
* Private/internal callback handler for handling async responses.
* Clients of ApplicationViewControl should NOT implement this type
* of handler.
* @exclude
*/
public void internalCallbackMethod(Object asrObj)
throws Exception;

}
}

Application View Control (JCX) and Business Process (JPD)
Samples
For sample Application View controls and business processes, use WebLogic Workshop to open
the sample application located in:

SAMPLES_HOME/integration/sampleApp/sampleApp.work

For instructions on running the samples, use WebLogic Workshop to open the following HTML
file:

SAMPLES_HOME/integration/sampleApp/docs/index.html

Receiving Events
The JCX file for an Application View control instance does not represent events from the
associated application view. Business processes receive events from application views by using
an instance of the Subscribe Control for the Message Broker. When an application view which
has events is published to WebLogic Workshop, a wlai.channel file is automatically generated.
The channel file defines the channels available for subscription by business processes.

Rece iv i ng Events

Using the Application Integration Design Console 3-7

For more information on Message Broker Subscription controls, see the Message Broker
Subscription Control topic in the WebLogic Workshop Help at the following URL:

http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/controlsB
rokerSubscribe.html

The following in an example of a wlai.channel file., consisting of subscriptions for two events.

Listing 3-2 Sample wlai.channel File

<?xml version="1.0" encoding="UTF-8"?>

<mb:channels channelPrefix="/wlai"

xmlns:mb="http://www.bea.com/wli/broker/channelfile">

<mb:channel messageType="none"

name="InsertBasedEvents">

<mb:channel messageType="xml"

name="CustomerInsertEvent"

qualifiedMessageType="et:CUSTOMER_TABLE.insert"

xmlns:et="wlai/CustomerInsertEvent_CUSTOMER_TABLE_insert"/>

</mb:channel>

<mb:channel messageType="none"

name="FunctionDemo">

<mb:channel messageType="none"

name="CustomerMgmt">

<mb:channel messageType="xml"

name="CustomerUpdated"

qualifiedMessageType="et:CUSTOMER_TABLE.update"

xmlns:et="wlai/FunctionDemo/CustomerMgmt_CustomerUpdated_event"/>

</mb:channel>

</mb:channel>

</mb:channels>

To enable a business process to receive events from an application view, create an instance of a
Message Broker Subscription control as follows:

1. Start WebLogic Workshop.

2. Open the business process which will receive application view events.

http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/controlsBrokerSubscribe.html

Using Appl i ca t ion V iews w i th Business P rocesses

3-8 Using the Application Integration Design Console

3. On the Controls tab of the Data Palette, click Add−>Integration Controls−>MB
Subscription to invoke the control wizard.

4. Enter a variable name for the control.

5. Select the radio button to create a new MB Subscription control to use and enter a name for
the control.

6. Select a channel from the channel-name drop-down list that represents the event you want
to receive. Look for events with a channel prefix of wlai, indication that the channels are
defined in the generated wlai.channel file.

When you select a channel, the associated message type and, if specified, metadata type
are displayed.

7. If you want to filter the message, select the This subscription will be filtered checkbox.

8. Click OK

The control is created using the name supplied in step 5.

Once the control is created, you can use the Property Editor to define a filter at either the class or
method level.

Note: You can start a business process on receiving an event. This feature is available from the
process Start node, where you can select Subscribe to Message Broker Channel and
select your event from the Channel Name drop-down list..

Handling Application View Local Transactions in Business
Processes

The LocalTransaction interface is exposed to adapter clients via the Common Client Interface
(CCI) Connection class. Currently the application view interface does not use the CCI
LocalTransaction interface. To manage a local transaction, a user must first acquire a
LocalTransaction from the Connection object.

Hand l ing App l icat ion V iew Loca l T ransac t ions in Busi ness P rocesses

Using the Application Integration Design Console 3-9

Local Transaction Management Contracts
A local transaction management contract is created when an adapter implements the
javax.resource.spi.LocalTransaction interface to provide support for local transactions
that are performed on the system’s underlying resource manager. This type of contract enables
an application server to provide the infrastructure and run-time environment for transaction
management. Application components rely on this transaction infrastructure to support their
component-level transaction model.

For more information about transaction demarcation support, see:

http://java.sun.com/blueprints/guidelines/designing_enterprise_application

s/transaction_management/platform/index.html

Connector Support for Local Transactions with No User
Defined Transaction Demarcation
The following is a scenario for supporting application view local transactions within WebLogic
Workshop. This scenario is similar to TX_REQUIRES_NEW for EJB transactions because the
connector supports only local transactions.

In this scenario, the Connector supports only local transactions and the BPM designer does not
explicitly demarcate the start and end of a local transaction. WebLogic Integration allows the
Connector to participate in the global transaction by providing an XA Wrapper around the
LocalTransaction object. The XA Wrapper no-ops all methods on the XAResource interface that
can not be delegated to the LocalTransaction instance. WebLogic Integration allows only one non
XA resource in the transaction chain. As a result, a user can have only one application view
LocalTransaction within a business process.

Connector Support for XA Transactions
In this scenario, application view services are not called within a local transaction. Each service
invocation is automatically enlisted in the Global XA transaction because the resource adapter
supports XA.

http://java.sun.com/blueprints/guidelines/designing_enterprise_applications/transaction_management/platform/index.html

Using Appl i ca t ion V iews w i th Business P rocesses

3-10 Using the Application Integration Design Console

Using the Application Integration Design Console 4-1

C H A P T E R 4

Using the Application Integration
Design Console

The Application Integration Design Console is a graphical user interface (GUI) that offers an easy
way to access, organize, and edit all the application views in your enterprise. You can use the
Application Integration Design Console to create new folders and to add new application views
to them. By storing your application views in folders, you can organize them according to your
own navigation scheme, regardless of the adapters to which the individual application views
belong.

This section presents the following topics:

Logging On to the Application Integration Design Console

Creating a Folder

Removing an Application View

Removing a Folder

Logging On to the Application Integration Design Console
Note: Before performing the following steps, ensure that WebLogic Server is running on your

system.

Warning: You should only have one instance of the Application Integration Design Console
running on a single client machine. Running multiple consoles on a single machine
may interfere with proper navigation between screens in your web browser.

Using the App l i ca t i on In tegrat i on Des ign Conso le

4-2 Using the Application Integration Design Console

To log on to the Application Integration Design Console:

1. Launch a browser window.

2. Enter the URL for your system’s Application Integration Design Console in the following
format:

http://your_server:your_port/wlai

For example: http://wli1:7001/wlai

Note: You can also invoke the Application Integration Design Console from WebLogic
Workshop. Open a WebLogic Workshop application, ensure that WebLogic Server
is running, and then choose Tools−>WebLogic Integration−>Application Integration
Design Console.

The logon page is displayed.

3. Enter your WebLogic Server username and password, then click OK. The Context
Definition page is displayed.

Logg ing On to the Appl i ca t ion In tegra t i on Des ign Console

Using the Application Integration Design Console 4-3

4. The Application Integration Design Console stores information about application views in a
file-based repository. Before you create an application view, you must define the context for
the design-time session. This determines where application view information is stored.

To choose an existing, deployed application, select an application from the Deployed
Applications menu.

To create a repository for a new application, specify an application name and the root
directory for the application.

5. When you have defined the context for the design session, click OK. The Application
Integration Design Console is displayed.

Using the App l i ca t i on In tegrat i on Des ign Conso le

4-4 Using the Application Integration Design Console

Creating a Folder
The application views in your enterprise are organized in folders that may contain application
views and subsidiary folders. Once you create a folder, you cannot move it to another folder.
Before removing a folder, you must remove all application views and subfolders.

Once you create an application view in a folder, you can remove the application view, but you
cannot move it to another folder.

To create a folder:

1. While logged on to the Application Integration Design Console, navigate to the folder in
which you want to create the new folder.

2. Click the new folder icon:

The Add Folder page is displayed.

3. In the New Folder field, enter a name. Any valid Java Identifier is allowed in a name.

Note: The name Root is a reserved word, and cannot be used for a folder name. If you use
Root as a name, you cannot import or export the folder using the import-export utility.

4. Click Save.

Remov ing an App l i cat i on V iew

Using the Application Integration Design Console 4-5

Removing an Application View
Remove application views when they become obsolete or when the application to which they
belong is retired.

You can remove an application view only if you are logged on to WebLogic Server with a user
account with the appropriate write privileges.

To remove an application view:

1. While logged on to the Application Integration Design Console, navigate to the folder in
which the target application view is located.

2. Choose an application view and click Remove. A confirmation page is displayed. Click
Confirm to delete the application view.

Note: When you delete a previously published application view, associated wlai.channel
file, and EJB file, the application view ID still appears in the WebLogic Integration
Administration Console and is shown in an Undeployed state after you rebuild the
application. The deleted application view ID is removed from WebLogic Integration
Administration Console when you reboot the system.

Removing a Folder
Remove folders that are no longer needed. To remove a folder:

1. Remove all application views and subfolders from the target folder.

2. Log on to the Application Integration Design Console and go to the folder in which the
target folder resides.

3. Click Remove. A confirmation page is displayed.

Using the App l i ca t i on In tegrat i on Des ign Conso le

4-6 Using the Application Integration Design Console

4. Click Confirm. The folder is deleted.

Administering an Application View
You can perform administration tasks on application views using the Application View
Administration page. To administer an application view:

1. Log on to the Application View Design Console, select and application, and go to the folder
containing the desired application view.

2. Click the application view name. The Application View Summary page is displayed.

3. Click Edit. The Application View Administration page is displayed.

Admin is te r ing an App l i cat i on V iew

Using the Application Integration Design Console 4-7

4. Choose an administration task to perform:

– Click Edit at the end of the Description field to edit the application view description.

– Click Select/Edit to the right of the Connections label to configure connections, assign
existing connections for services and events, or create new service or browsing
connections.

– Use the buttons in the services and events rows to add, edit, or remove services or
events.

Using the App l i ca t i on In tegrat i on Des ign Conso le

4-8 Using the Application Integration Design Console

Using the Application Integration Design Console 5-1

C H A P T E R 5

Using Application Views by Writing
Custom Code

If you are a developer, you may want to modify an application view by writing custom code. You
can use most application view features through the Application Integration Design Console, but
some features can be used only by writing custom code.

This section presents two sample scenarios in which custom code is used:

Scenario 1: Creating Connections with Specific Credentials

Scenario 2: Custom Coding a Business Process

Scenario 1: Creating Connections with Specific Credentials
If you need to assign a security level to an application view before invoking services on it, you
can do so by setting credentials for the appropriate EIS. To do so, use the ApplicationView
methods setConnectionSpec() and getConnectionSpec(). Both methods use a
ConnectionSpec object.

You can instantiate a ConnectionSpec object in either of two ways: you can use the
ConnectionRequestInfoMap class provided by the BEA WebLogic Integration Adapter
Development Kit (ADK), or you can implement your own class. If you implement your own
class, you must include the following four interfaces: ConnectionSpec,
ConnectionRequestInfo, Map, and Serializable.

Using Appl i ca t ion V iews by Wr i t ing Custom Code

5-2 Using the Application Integration Design Console

Implementing ConnectionSpec
Before you can use setConnectionSpec() or getConnectionSpec(), you must instantiate a
ConnectionSpec object. Use the ConnectionRequestInfoMap class provided by the ADK, or
derive your own class.

To implement ConnectionSpec:

1. Decide whether to use the ConnectionRequestInfoMap class, provided by the ADK, or to
implement your own class.

2. If you are implementing your own ConnectionSpec class, include the following interfaces:

– ConnectionSpec (JCA class)

– ConnectionRequestInfo (JCA class)

– Map (SDK class)

– Serializable (SDK class)

Calling setConnectionSpec() and getConnectionSpec()
After you implement the ConnectionSpec class and instantiate a ConnectionSpec object, you
can use both with the following ApplicationView methods:

setConnectionSpec()

getConnectionSpec()

The following listing provides the code for setConnectionSpec().

Listing 5-1 Complete Code for setConnectionSpec()

/**

* Sets the connectionSpec for connections made to the EIS. After the

* ConnectionSpec is set it will be used to make connections to the

* EIS when invoking a service. To clear the connection spec, and use

* the default connection parameters, call this method using null.

*

* @params connectionCriteria connection criteria for the EIS.

*/

public void setConnectionSpec(ConnectionSpec connectionCriteria)

{

Scenar io 1 : C reat ing Connec t ions wi th Spec i f i c C redent ia ls

Using the Application Integration Design Console 5-3

m_connCriteria = connectionCriteria;

}

The following listing provides the code for getConnectionSpec().

Listing 5-2 Complete Code for getConnectionSpec()

/**

* Returns the ConnectionSpec set by setConnectionSpec. If no

* ConnectionSpec has been set null is returned.

*

* @returns ConnectionSpec

*/

public ConnectionSpec getConnectionSpec()

{

return m_connCriteria;

}

Using the ConnectionSpec Class
To set the ConnectionSpec class, pass it a properly initialized ConnectionSpec object. To
clear the ConnectionSpec class, pass it a ConnectionSpec object with a null value.

Listing 5-3 shows an example of how ConnectionSpec is used.

Listing 5-3 Example Use of ConnectionSpec Class

Properties props = new Properties();
ApplicationView applicationView = new
ApplicationView(getInitialContext(props),"appViewTestSend");

ConnectionRequestInfoMap map = new ConnectionRequestInfoMap();
// map properties here
map.put("PropertyOne","valueOne");
map.put("PropertyTwo","valueTwo");
.

Using Appl i ca t ion V iews by Wr i t ing Custom Code

5-4 Using the Application Integration Design Console

.

.
//set new connection spec
applicationView.setConnectionSpec(map);

IDocumentDefinition requestDocumentDef =
applicationView.getRequestDocumentDefinition("serviceName");

SOMSchema requestSchema = requestDocumentDef.getDocumentSchema();

DefaultDocumentOptions options = new DefaultDocumentOptions();
options.setForceMinOccurs(1);
options.setRootName("ROOTNAME");
options.setTargetDocument(DocumentFactory.createDocument());
IDocument requestDocument = requestSchema.createDefaultDocument(options);

requestDocument.setStringInFirst("//ROOT/ElementOne","value");
requestDocument.setStringInFirst("//ROOT/ElementTwo","value");
.
.
.
// the service invocation will use the connection spec set to connect to the EIS
IDocument result = applicationView.invokeService("serviceName",
requestDocument);
System.out.println(result.toXML());

Scenario 2: Custom Coding a Business Process
Although the simplest way of using application views in business processes is to include an
Application View control, you always have the alternative of writing custom Java code to
represent your business processes. If you are a developer who writes custom code, we
recommend that you familiarize yourself with the simple example presented in this section to
demonstrate how a custom business process can be written.

For a thorough comparison of the two methods for using application views, see “Choosing a
Method for Implementing a Business Process” on page 1-7.

Scenar io 2 : Cus tom Cod ing a Bus iness Pr ocess

Using the Application Integration Design Console 5-5

About This Scenario
Suppose your company uses a customer relationship management (CRM) system and an order
processing (OP) system. Management wants to make sure that whenever a customer is created on
the CRM system, the creation of a corresponding customer record on the OP system is triggered.
Therefore, they ask you, their Java developer, to create a business process that keeps the
information maintained by these two systems synchronized. The attached Java class,
SyncCustomerInformation, implements this business logic.

This example does not cover everything you can do using custom code. It simply demonstrates
the basic steps required to implement your organization’s business processes and serves as a
template you can use for custom coding your own business processes.

This scenario uses a concrete example class called SyncCustomerInformation to explain how
to write custom code. In general, you must perform the following two steps to create custom code
that uses an application view in a business process:

1. Make sure you have a Java class representing the application that implements the business
process.

2. Within this Java class, supply code that implements your business logic.

Before You Begin
The following prerequisites must be met before you start writing custom code to implement a
business process:

Create an application view and define one or more events or services within the application
view.

Obtain information, from the appropriate business analyst, about the required business
logic for the business process you are defining. Make sure you also get all the information
needed to connect to WebLogic Server, including the host server name and port number,
and a user ID and password.

In addition, this scenario is based on the assumption that the following prerequisites have been
met:

Application views for the source CRM system and the target OP system are defined and
working. For details about defining application views, see “Defining an Application View”
on page 2-1.

Using Appl i ca t ion V iews by Wr i t ing Custom Code

5-6 Using the Application Integration Design Console

Both application views reside in the East Coast folder. The source application view is
named East Coast.Customer Mgmt and the target application view is named East
Coast.Order Processing.

Note: Your organization must have its own folders and application views.

You are familiar with the application integration API, or you are working closely with a
Java programmer who is familiar with it.

You have all the information necessary to connect to the application integration server that
hosts the application views.

Note: Get the information specific to your organization from your system administrator.

Creating the SyncCustomerInformation Class
Before you can start writing custom code, you must have a Java class representing each
application required for the business process. If the necessary Java classes do not exist, create
them now. This example calls for one application class called SyncCustomerInformation. Of
course, you will use different variable names in your own code. To create the
SyncCustomerInformation Java class:

1. See “Code for Sample Java Class” on page 5-8 for the complete source code for the Java
application class.

Note: For your own projects, use the SyncCustomerInformation code as a template or
guide. The SyncCustomerInformation example code is annotated with detailed
comments.

2. Create code to listen for East Coast.New Customer.

3. Obtain references to the NamespaceManager (variable name m_namespaceMgr) and
ApplicationViewManager (variable name m_appViewMgr) within WebLogic Server. To
perform this step, use a JNDI lookup from WebLogic Server.

4. Using the NamespaceManager to call nm.getRootNamespace(), obtain a reference to the
root namespace. This reference is stored in a variable called root.

5. Using the root variable to call root.getNamespaceObject(“East Coast”), obtain a
reference to the East Coast namespace. This reference is stored in a variable called
eastCoast.

6. Using the eastCoast variable, obtain a temporary reference to the Customer Management
ApplicationView and store it in a variable called custMgmtHandle.

Scenar io 2 : Cus tom Cod ing a Bus iness Pr ocess

Using the Application Integration Design Console 5-7

7. Use this custMgmtHandle temporary reference to obtain a reference to an
ApplicationView instance for Customer Management. Specifically, call the
ApplicationViewManager as avm.getApplicationViewInstance
(custMgmtHandle.getQualifiedName()). Store the returned reference in a variable
called custMgmt.

8. Begin listening for New Customer events by calling custMgmt.addEventListener(“New
Customer”, listener), replacing listener with the name of an object that can respond
to New Customer events. (See the application integration API for a full discussion of event
listeners and the EventListener interface.)

9. Implement the onEvent method of the listener class.

When a New Customer event is received, the onEvent method of the listener is called.

The onEvent method calls a method to respond to the event. In this example, the onEvent
method provides the event object that contains the data associated with the event. The
method called to respond to the event is called handleNewCustomer.

10. Implement the handleNewCustomer method that will respond to the New Customer event.
Specifically, write code that implements the following sequence of actions:

a. The handleNewCustomer method transforms the XML document referenced in the event
to the form expected by the East Coast.Order Processing.Create Customer service. This
transformation may be performed using XSLT or manually, using custom transformation
code. The end result of the transformation is an XML document that conforms to the
schema for the request document of the East Coast.Order Processing.Create Customer
service. Store this document in a variable called createCustomerRequest.

b. handleNewCustomer obtains a reference to an instance of the East Coast.Order
Processing application view in the same way described for the East Coast.Customer
Management application view. This reference is stored in a variable called orderProc.

c. handleNewCustomer invokes the Create Customer service on the East Coast.Order
Processing application view by calling orderProc.invokeService(“Create
Customer”, createCustomerRequest). Recall that createCustomerRequest is the
variable holding the request document for the Create Customer service. The response
document for this service is stored in a variable named createCustomerResponse.

d. handleNewCustomer finishes executing and becomes available for the next incoming
New Customer event.

Using Appl i ca t ion V iews by Wr i t ing Custom Code

5-8 Using the Application Integration Design Console

Once you complete this final step, you have a new Java class called
SyncCustomerInformation. This class implements the Sync Customer Information
business logic. The SyncCustomerInformation class uses the application integration API
to get events from the CRM system and to invoke services on the OP system.

Code for Sample Java Class
The following listing contains the full source code for the SyncCustomerInformation Java
class. This code implements the business logic for the scenario described earlier in this section.
Use it as a template for writing code to implement your enterprise’s business processes.

Listing 5-4 Full Class Source Code for SyncCustomerInformation

import java.util.Hashtable;
import javax.naming.*;
import java.rmi.RemoteException;
import com.bea.wlai.client.*;
import com.bea.wlai.common.*;
import com.bea.document.*;

/**
 * This class implements the business logic for the 'Sync Customer Information'
 * business process. It uses the WLAI API to listen to events from the CRM
 * system, and to invoke services on the OP system. It assumes that there
 * are two ApplicationViews defined and deployed in the 'EastCoast'
 * namespace. The application views and their required events and services
 * are shown below.
 *
 * CustomerManagement
 * events (NewCustomer)
 * services (none)
 *
 * OrderProcessing
 * events (none)
 * services (CreateCustomer)
 */

public class SyncCustomerInformation
 implements EventListener
{
 /**
 * Main method to start this application. No args are required.
 */
 public static void

Scenar io 2 : Cus tom Cod ing a Bus iness Pr ocess

Using the Application Integration Design Console 5-9

 main(String[] args)
 {
 // Check that we have the information needed to connect to the server.

 if (args.length != 3)
 {
 System.out.println("Usage: SyncCustomerInformation ");
 System.out.println(" <server url> <user id> <password>");
 return;
 }

 try
 {
 // Create an instance of SyncCustomerInformation to work with

 SyncCustomerInformation syncCustInfo =
 new SyncCustomerInformation(args[0], args[1], args[2]);

 // Get a connection to WLAI

 InitialContext initialContext = syncCustInfo.getInitialContext();

 // Get a reference to an instance of the 'EastCoast.CustomerManagement'
 // application view

 ApplicationView custMgmt =
 new ApplicationView(initialContext, "EastCoast.CustomerManagement");

 // Add the listener for 'New Customer' events. In this case we have
 // our application class implement EventListener so it can listen for
 // events directly.

 custMgmt.addEventListener("NewCustomer", syncCustInfo);

 // Process up to 10 events and then quit.

 syncCustInfo.setMaxEventCount(10);
 syncCustInfo.processEvents();
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }

 return;
 }

 /**
 * EventListener method to respond to 'New Customer' events

Using Appl i ca t ion V iews by Wr i t ing Custom Code

5-10 Using the Application Integration Design Console

 */
 public void
 onEvent(IEvent newCustomerEvent)
 {
 try
 {
 // Print the contents of the incoming 'New Customer' event.

 System.out.println("Handling new customer: ");
 System.out.println(newCustomerEvent.toXML());

 // Handle it

 IDocument response = handleNewCustomer(newCustomerEvent.getPayload());

 // Print the response

 System.out.println("Response: ");
 System.out.println(response.toXML());

 // If we have processed all the events we want to, quit.

 m_eventCount++;
 if (m_eventCount >= m_maxEventCount)
 {
 quit();
 }
 }
 catch (Exception e)
 {
 e.printStackTrace();
 System.out.println("Quitting...");
 quit();
 }
 }

 /**
 * Handles any 'New Customer' event by invoking the 'Create Customer'
 * service on the 'Order Processing' ApplicationView. The response
 * document from the service is returned as the return value of this
 * method.
 */
 public IDocument
 handleNewCustomer(IDocument newCustomerData)
 throws Exception
 {
 // Get an instance of the 'OrderProcessing' ApplicationView.
 if (m_orderProc == null)
 {

Scenar io 2 : Cus tom Cod ing a Bus iness Pr ocess

Using the Application Integration Design Console 5-11

 m_orderProc =
 new ApplicationView(m_initialContext, "EastCoast.OrderProcessing");
 }

 // Transform the data in newCustomerData to be appropriate for the
 // request document for 'Create Customer' on the 'Order Processing'
 // ApplicationView.

 IDocument createCustomerRequest =
 transformNewCustomerToCreateCustomerRequest(newCustomerData);

 // Invoke the service

 IDocument createCustomerResponse =
 m_orderProc.invokeService("CreateCustomer", createCustomerRequest);

 // Return the response

 return createCustomerResponse;
 }

 // ---
 // Member Variables
 // ---

 /**
 * The url for the WLAI server (e.g. t3://localhost:7001)
 */
 private String m_url;

 /**
 * The user id to use when logging into WLAI.
 */
 private String m_userID;

 /**
 * The password to use when logging in to WLAI as the user given in
 * m_userID.
 */
 private String m_password;

 /**
 * The initial context to use when communicating with WLAI
 */
 private InitialContext m_initialContext;

 /**
 * An instance of the 'East Coast.Order Processing' ApplicationView for

Using Appl i ca t ion V iews by Wr i t ing Custom Code

5-12 Using the Application Integration Design Console

 * use in handleNewCustomer.
 */
 private ApplicationView m_orderProc;

 /**
 * Hold the maximum number of events to be processed in handleNewCustomer
 */
 private int m_maxEventCount;

 /**
 * Count of the events processed in handleNewCustomer
 */
 private int m_eventCount;

 /**
 * A monitor variable to enable us to wait until we are asked to quit
 */
 private String m_doneMonitor = new String("Done Monitor");

 /**
 * A flag indicating we are done or not.
 */
 private boolean m_done = false;

 // --
 // Utility Methods
 // --

 /**
 * Constructor.
 */
 public SyncCustomerInformation(String url, String userID, String password)
 {
 m_url = url;
 m_userID = userID;
 m_password = password;
 }

 /**
 * Establish an initial context to WLAI.
 */
 public InitialContext
 getInitialContext()
 throws NamingException
 {
 // Set up properties for obtaining an InitialContext to the WLAI server.

 Hashtable props = new Hashtable();

Scenar io 2 : Cus tom Cod ing a Bus iness Pr ocess

Using the Application Integration Design Console 5-13

 // Fill in the properties with the WLAI host, port, user id, and password.

 props.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 props.put(Context.PROVIDER_URL, m_url);
 props.put(Context.SECURITY_PRINCIPAL, m_userID);
 props.put(Context.SECURITY_CREDENTIALS, m_password);

 // Connect to the WLAI server

 InitialContext initialContext = new InitialContext(props);

 // Store this for later

 m_initialContext = initialContext;

 return initialContext;
 }

 /**
 * Transform the document in the 'New Customer' event to the document
 * required by the 'Create Customer' service.
 */
 public IDocument
 transformNewCustomerToCreateCustomerRequest(IDocument newCustomerData)
 throws Exception
 {
 // We could do an XSLT transform here, or manually move data from the
 // source to the target document. The details of this transformation
 // are out of the scope of this sample. For information on XSLT see
 // http://www.w3.org/TR/xslt. For more information on manually moving
 // data between documents, see the JavaDoc documentation for the
 // com.bea.document.IDocument interface.

 return newCustomerData;
 }

 /**
 * Event processing/wait loop
 */
 public void
 processEvents()
 {
 synchronized(m_doneMonitor)
 {
 while (!m_done)
 {
 try

Using Appl i ca t ion V iews by Wr i t ing Custom Code

5-14 Using the Application Integration Design Console

 {
 m_doneMonitor.wait();
 }
 catch (Exception e)
 {
 // ignore
 }
 }
 }
 }

 /**
 * Sets the max number of events we want to process.
 */
 public void
 setMaxEventCount(int maxEventCount)
 {
 m_maxEventCount = maxEventCount;
 }

 /**
 * Method to force this application to exit (cleanly)
 */
 public void
 quit()
 {
 synchronized(m_doneMonitor)
 {
 m_done = true;
 m_doneMonitor.notifyAll();
 }
 }
}

Using the Application Integration Design Console A-1

A P P E N D I X A

Importing and Exporting Application
Views

This section presents the following topics:

Import-Export Utility

Migrating Application Views Using the Import-Export Utility

Import-Export Methods and Command Line

Import-Export Utility
WebLogic Integration provides a simple import-export utility for application views that can be
executed from the command line, and incorporated into your code with the import-export API for
application views. The output of the utility is a JAR file containing all artifacts owned by the
application view. You must manually import or export any artifacts that are used but not owned
by the application view.

The import-export utility allows you to export application integration metadata objects from the
file repository and to import those objects back into the file repository. The utility allows you to
import-export the following objects:

Application views

Schemas

Namespaces

Impo r t i ng and Expo r t ing App l icat ion V iews

A-2 Using the Application Integration Design Console

All exported objects for a given invocation of the utility are stored in a JAR archive. When a
previously exported JAR is imported, all objects in the JAR are imported, too. You can also
append objects to an existing exported JAR, and deploy application views and connection
factories on import.

Migrating Application Views Using the Import-Export Utility
Use the Import-Export utility to migrate application views from a WebLogic Integration 7.0
environment to a WebLogic Integration 8.1 environment. As part of the migration, the utility
removes the ACLs from the application view and converts the use of connection factories to use
of resource adapters. The migrated application views are loaded into the file-based repository.

Note: You must define a project in WebLogic Workshop before migrating application views.
The project determines the location of the repository.

Import-Export Methods and Command Line
The utility is available as an API and as a command-line tool. In both cases, the server must be
running. The scripts used to run the utility are located as follows:

WLI_HOME/bin/aiimportexport (cmd or sh)

The following sections describe the command-line parameters and the methods on the
import-export utility.

Invoking the Import-Export Utility from the Command Line
The following is the command-line syntax for the import-export utility:

aiimportexport <appname> <root_dir> <file>

[-codepage=Cp<codepage_number>] [-dump=< <namespace> | <'Root'> >]

[-append] [-overwrite] [-publish]

< [-export [object_name]*] | [-import [edit-on-import_filename]

[-eventProps=<connection_factory_name>,<properties_file_name>]*] >

The following table shows the command-line parameters for the import-export utility.

Impo r t -Expo r t Methods and Command L i ne

Using the Application Integration Design Console A-3

Parameter Description

appname The name of J2EE application to which artifacts will be
imported, or from which artifacts will be exported.

root_dir The root directory of the AI repository within the given
application.

file Name of the JAR file to be created on export or to be imported
into the repository.

-codepage Sets the codepage used when writing to the console. This insures
that characters are displayed correctly. The default value is
Cp437, which is used in the United States. Other valid values
include:

Cp850 Multilingual (Latin I)
Cp852 Slavic (Latin II)
Cp855 Cyrillic (Russian)
Cp857 Turkish
Cp860 Portuguese
Cp861 Icelandic
Cp863 Canadian-French
Cp865 Nordic
Cp866 Russian
Cp869 Modern Greek
MS932 Japanese

The value specified must match your console's codepage. On
Windows systems, use the chcp command to display the
console's codepage.

-dump Prints a list of all objects within both the specified namespace
and other namespaces nested within it. To print a list of objects
for the entire folder structure, specify Root.

-append Appends exported items to the file specified by file instead of
overwriting the file. This option should only be used when
-export is specified.

Impo r t i ng and Expo r t ing App l icat ion V iews

A-4 Using the Application Integration Design Console

-overwrite Overwrites items already in the repository and contained in the
archive being imported. This option should only be used when
-import is specified.

-publish Publishes any application views after they are imported. This
option should only be used when -import is specified.

-export Specifies an export operation and the name of the objects
(namespaces and application views) to be exported into file.
When specifying an object within a namespace use a dot (.) as
the delimiter, for example, mynamespc.myappview.

Wildcards are allowed in object names. To export the entire
folder structure, include Root in the list of object names.

-import Specifies that objects contained in file should be imported
into the repository. If an edit-on-import file is specified, objects
are edited according to the instructions in the file. Edits are
performed before the object is added to the repository and before
deployment (if requested).

Parameter Description

Impo r t -Expo r t Methods and Command L i ne

Using the Application Integration Design Console A-5

-eventProps This option is used only when importing a WebLogic
Integration 7.0 or earlier export JAR. This option defines a
mapping between the connection factory (qualified) name and a
properties file that provides the properties needed for event
generation within the adapter instance generated for the named
connection factory. Multiple -eventProps arguments may be
used as needed. These properties were specified in WebLogic
Integration 7.0 within the EventRouter WAR file’s web.xml.

When creating the properties file for the -eventProps
arguments, you should take the property name/value pairs from
the init-param elements in the web.xml of the adapter's
EventRouter WAR file. You can ignore the following properties
from the web.xml file, and exclude them from the
-eventProps properties file:

eventGeneratorClassName

RootLogContext

AdditionalLogContext

LogConfigFile

LogLevel

MessageBundleBase

LanguageCode

CountryCode

If no –eventProps argument is found that maps a properties
file to the qualified name for a connection factory, then when the
connection factory is imported, the adapter instance generated
has inbound messaging disabled. To specify event properties for
the adapter instance at a later time, use the Edit Adapter Instance
page of the Application Integration Design Console.

Parameter Description

Impo r t i ng and Expo r t ing App l icat ion V iews

A-6 Using the Application Integration Design Console

Editing on Import
When an edit-on-import file is specified, you can execute editing commands on the text for
objects to be imported. The resulting editing is done before the object is stored in the repository
or deployed. Otherwise, the method is used as described in “Importing Objects” on page A-9.

The document specified must conform to the following DTD:

<!ELEMENT ApplicationView (replace*)>

<!ATTLIST ApplicationView name NMTOKEN #REQUIRED

newName NMTOKEN #IMPLIED>

<!ELEMENT ConnectionFactory (replace*)>

<!ATTLIST ConnectionFactory name NMTOKEN #REQUIRED

newName NMTOKEN #IMPLIED>

<!ELEMENT Schema (replace*)>

<!ATTLIST Schema name NMTOKEN #REQUIRED

newName NMTOKEN #IMPLIED>

<!ELEMENT replace EMPTY>

<!ATTLIST replace xpath CDATA #REQUIRED

old CDATA #REQUIRED

new CDATA #REQUIRED

The edit-on-import document contains sections, indicated by the <ELEMENT> tag, for each object
to be edited. You can edit ApplicationView and Schema objects. Each section identifies an object
by name and specifies the elements to be replaced. Optionally, each section can specify a
newName attribute that can be used to assign a new name to an object.

Each replace element specifies the following:

An xpath expression used to identify the nodes to be edited, among all the nodes in the
object’s XML descriptor

An old value to search for in the selected nodes. The old value can be a Perl5 regular
expression. If you specify an empty string ("") as the old value, all text in the selected
nodes is matched.

A new value with which to replace the old value. The new value must be a simple string.

Impo r t -Expo r t Methods and Command L i ne

Using the Application Integration Design Console A-7

Example Edit-on-Import Document
The following edit-on-import descriptor document describes how to edit an application view
named DBMS.DBMS1 and rename it to DBMS.DBMS1a. The XML document illustrates three
replacements for the application view and one replacement for the connection factory.

<?xml version="1.0"?>
<!DOCTYPE edit SYSTEM "ImportExportEditOnImport.dtd">
<edit>

<ApplicationView name="DBMS.DBMS1" newName="DBMS.DBMS1a">
<replace xpath="/applicationView/@connectionFactory"

old=""
new="com.bea.wlai.connectionFactories.DBMS.

DBMS1a_connectionFactoryInstance"/>
<replace xpath="/applicationView/@connectionFactoryName"

old=""
new="DBMS.DBMS1a_connectionFactory"/>

<replace xpath="/applicationView/service[@name='Service1']/
interactionSpecProperty[@name='sql']"

old="CAJUN."
new="PBPUBLIC."/>

</ApplicationView>

<ConnectionFactory name="DBMS.DBMS1_connectionFactory"
newName="DBMS.DBMS1a_connectionFactory">
<replace xpath="/connection-factory-dd/jndi-name"

old=""
new="com.bea.wlai.connectionFactories.DBMS.

DBMS1a_connectionFactoryInstance"/>
</ConnectionFactory>

</edit>

The first replacement edits the connectionFactory attribute of the application view descriptor
and changes the text in this attribute to the new value. Note the use of an empty string as the old
value to match all text in the node.

The second replacement edits the connectionFactoryName attribute of the application view
descriptor and changes the text in this attribute to the new value.

The third replacement edits the service descriptor for the service named Service1 and changes
the interactionSpecProperty element named sql by replacing CAJUN. with PBPUBLIC.
wherever it occurs.

The fourth replacement edits the jndi-name attribute of the connection factory descriptor and
changes the text in this attribute to the new value.

Impo r t i ng and Expo r t ing App l icat ion V iews

A-8 Using the Application Integration Design Console

Using the Import-Export API
The following sections describe the methods included in the import-export API. The class name
for the import-export API is com.bea.wlai.client.ImportExport.

Connecting to the Server Instance
connect(<multiple signatures>)

The connect() method establishes a connection method with the server instance. Depending on
where you initiate connections, you may need to specify different arguments for connect().

Printing Objects in a Namespace
dumpNamespace(String namespaceName)

The dumpNamespace() method takes a string that represents the qualified name of a namespace,
and prints out all objects within that namespace, as well as any other namespaces embedded in it.

Exporting Objects
exportNamespaceObjects(Set objectNames, boolean append, List errors)

The exportNamespaceObjects() method takes a list of object names (qualified names as
strings) and exports them to the specified output file (see “Specify File for Import-Export”). All
objects listed for export are examined for dependencies. Any objects that are used but not owned
by an application view are also exported.

When an application view is exported, the ConnectionFactory and all the Schema objects on
which the application view depends are also exported. When a Namespace is exported, all objects
in the namespace (including other namespaces) are also exported.

If you are initiating connections. . . Then you must specify these
arguments. . .

Within the same server No arguments

From a remote client without InitialContext URL (as a string), username, and
password

From a remote client with InitialContext InitialContext

Impo r t -Expo r t Methods and Command L i ne

Using the Application Integration Design Console A-9

To append the exported file to an existing archive, or to overwrite or create the file, set append
to true.

Any nonfatal errors encountered during the export are stored as Exception objects in the specified
errors List object.

Importing Objects
importNamespaceObjects(boolean overwrite, boolean deploy, List errors)

The importNamespaceObjects() method takes all entries in the specified input file (see
“Specify File for Import-Export” on page A-9) and imports them into the repository. Set
overwrite to true to overwrite existing metadata in the repository. Set deploy to true to deploy
connection factories and application views on import.

Any nonfatal errors encountered during the import are stored as Exception objects in the specified
errors List object.

Importing and Editing Objects
importNamespaceObjects(IDocument editOnImportDoc boolean overwrite,
boolean deploy, List errors)

When an edit-on-import document is specified, the importNamespaceObjects() method allows
you to execute editing commands on the text for objects to be imported. The resulting editing is
done before the object is stored in the repository or deployed. Otherwise, the method is used as
described in “Importing Objects” on page A-9.

The document specified in the editOnImportDoc argument must conform to the DTD shown in
“Editing on Import” on page A-6.

Specify File for Import-Export
setFile(File filename)

The setFile() method designates the file to be used as the export destination or import source.

Choosing Where to Print Messages
setPrintWriter(PrintWriter out)

The setPrintWriter() method designates a PrintWriter object to be used when messages (such
as status, diagnostic, and error messages) are generated.

Impo r t i ng and Expo r t ing App l icat ion V iews

A-10 Using the Application Integration Design Console

Choosing Whether to Print Messages
setQuiet(boolean quiet)

The setQuiet() method specifies whether to print progress and information messages. To print
messages, set quiet to false. To disable message printing, set quiet to true.

Using the Application Integration Design Console Index-1

Index

A
Adapter Development Kit (ADK) 1-1
Application Integration Design Console 4-1
application view events

adding 2-19
testing manually 2-30
testing with a service 2-30

application view folders
creating 4-4
removing 4-5

application view services
adding 2-17

application views
adding events to 2-19
adding services to 2-17
editing 2-33
removing 4-5
testing events 2-29
users of 1-6
using by writing custom code 1-7
using in WebLogic Workshop 1-6
when to define 1-2

B
business process management (BPM)

using 3-1
when to use 1-7

business processes 1-6
using custom code 1-7

C
custom code

for business processes
when to use 1-7
writing 5-1

for defining application views 1-2

E
events

See application view events

J
Java

custom coding in 5-1

N
namespace enforcement option 2-24

W
WebLogic Workshop

using 3-1
when to use 1-7

Workshop
See WebLogic Workshop

Index-2 Using the Application Integration Design Console

	Copyright
	Introduction to Application Integration
	Familiarizing Yourself with Basic Concepts
	Creating an Interface to an Adapter
	When to Define an Application View
	When to Write Custom Code

	Defining an Application View
	What Is Defined by an Application View Definition
	How to Define an Application View

	Using an Application View in a Business Process
	Using an Application View in WebLogic Workshop
	Using an Application View by Writing Custom Code
	Choosing a Method for Implementing a Business Process

	Using an Application View Control in Business Processes

	Defining an Application View
	Before You Begin
	Application View Design Considerations
	High-Level Procedure for Defining an Application View
	Sample Detailed Procedure for Defining an Application View
	Step 1: Log On to the Application Integration Design Console
	Step 2: Select an Application
	Step 3: Add a Folder
	Step 4: Define an Application View
	Step 5: Establishing a Browsing Connection
	Step 6: Add Services and Events
	Step 7: Perform Final Configuration Tasks
	Step 8A: Test an Application View’s Services
	Step 8B: Test an Application View’s Events
	Step 9: Publish an Application View

	Editing an Application View
	Setting Transaction Timeout Values for Application Views
	Environment Variables for Application Views
	Database-Specific Error Messages

	Using Application Views with Business Processes
	Before You Begin
	Integrating Application Views and Business Processes Using a Control
	Sample Application View Control Files
	Application View Control Interface
	Application View Control (JCX) and Business Process (JPD) Samples

	Receiving Events
	Handling Application View Local Transactions in Business Processes
	Local Transaction Management Contracts
	Connector Support for Local Transactions with No User Defined Transaction Demarcation
	Connector Support for XA Transactions

	Using the Application Integration Design Console
	Logging On to the Application Integration Design Console
	Creating a Folder
	Removing an Application View
	Removing a Folder
	Administering an Application View

	Using Application Views by Writing Custom Code
	Scenario 1: Creating Connections with Specific Credentials
	Implementing ConnectionSpec
	Calling setConnectionSpec() and getConnectionSpec()

	Scenario 2: Custom Coding a Business Process
	About This Scenario
	Before You Begin
	Creating the SyncCustomerInformation Class
	Code for Sample Java Class

	Importing and Exporting Application Views
	Import-Export Utility
	Migrating Application Views Using the Import-Export Utility
	Import-Export Methods and Command Line
	Invoking the Import-Export Utility from the Command Line
	Editing on Import
	Using the Import-Export API

	Index

