BEAWebLogic
Integration~

Developing Adapters

Version 8.1 Service Pack 5
Revised: October 2005

0?7,

r
S’ 7
L/

Copyright

Copyright © 2004-2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA JRockit, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread,
Top End, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA AqualLogic, BEA Aqualogic
Data Services Platform, BEA AquaLogic Enterprise Security, BEA AquaLogic Service Bus, BEA AquaLlogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic
Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic Java Adapter for Mainframe,
BEA WebLogic JDriver, BEA WebLogic JRockit, BEA WebLogic Log Central, BEA WebLogic Personalization Server,
BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server Process Edition, BEA WebLogic WorkGroup
Edition, BEA WebLogic Workshop, and Liquid Computing are trademarks of BEA Systems, Inc. BEA Mission Critical
Support is a service mark of BEA Systems, Inc. All other company and product names may be the subject of intellectual
property rights reserved by third parties.

All other trademarks are the property of their respective companies.

Contents

1. Introduction to the ADK

SeCtion OBJECHIVES . . . o vttt ettt e e 1-1
What Is the ADK? o 1-2
Requirements for Adapter Development 1-2
What the ADK Provides i i 1-3
What Are Adapters?.t e 1-3
ResourceAdapter Interface 1-4
Service CONNECLIONS vttt ettt ettt et 1-4
Event CONNECtiONSttt e 1-5
J2EE-Compliant Adapters Not Exclusive to WebLogic Integration 1-6
Design-Time GUI e e 1-6
ApPPLiCation VIBWS.ottt e 1-6
Packaging Framework 1-7
Before You Begin 1-7

2. Basic Development Concepts

Run Time Versus Design Time e 2-1
Run-Time Framework. 2-2
Design-Time Framework 2-2

Events and Servicesot e 2-3
What Are Events? 2-3
What Are Services?t 2-3

Developing Adapters iii

How Adapters Use Logging i 2-4

Logging ToolKitot e e 2-4
Logging Framework. 2-4
Internationalization and Localization. 2-5
Adapter Logical Namet 2-5
Where the Adapter Logical Name IsUsed 2-6
Use of Adapter Logical Name in Adapter Deployment 2-6

Adapter Logical Name Used as an Organizing Principle.................. 2-7

Adapter Logical Name Used as the Return Value for getAdapterLogicalName 2-8
Enterprise Archive (EAR) Files i 2-8

3. Development Tools

Sample Adapter. 3-1
Why Use the Sample Adapter? 3-1
What Is In the Sample Adapter? 3-2

GenerateAdapterTemplate Utility. i 3-3

ADK Javadoc 3-3

Ant-Based Build Process. 3-3
Why Use Ant? .. .o 3-4

XML TOOIS . oo 3-4

4. Creating a Custom Development Environment

Adapter Setup Worksheet 4-1
Using GenerateAdapterTemplate i 4-2
Step 1. Execute GenerateAdapterTemplate oo .. 4-2
Step2. Rebuild the Tree. e 4-5
Step 3. Testthe Adapter.ot e e 4-6
Step 4. Deploy the Adapter to WebLogic Integration 4-6

iv Developing Adapters

5. Using the Logging Toolkit

Logging ToolKit. e 5-2
Logging Configuration File. 5-2
Logging Conceptsottt e e e e 5-2
Message CateOTIESo oottt ettt et e e e e e 5-3
Message Priority. 5-4
Assigning a Priority toa Category i 5-5
Message ApPpenders 5-5
Message Layout 5-6
Putting the Components Together 5-7
How to Set Up Logging. it e e 5-7
Logging Framework Classest 5-9
com.bea.logging.ILogger. 5-9
com.bea.logging.LogContext. 5-10
com.bea.logging.LogManager i 5-10
Internationalization and Localization of Log Messages 5-13
Saving Contextual Information in a Multithreaded Component. 5-13

6. Developing a Service Adapter

J2EE-Compliant Adapters Not Specific to WebLogic Integration 6-2
Service Connections in a Run-Time Environment 6-2
Flow of EVents. e 6-5
Step 1: Research Your Environment Requirements 6-6
Step 2: Configure the Development Environment. 6-7
Step 2a: Set Up the Directory Structureo, 6-7

The web.xml and weblogic.xml Descriptor Files 6-9
Creating A Development Tree Within the Directory Structure. 6-10

Step 2b: Assign the Adapter Logical Name 6-11

Developing Adapters

vi

Step 2c: Set Up the Build Process i 6-11

Manifest File. 6-11
build.xml Componentst 6-13
Step 2d: Create the Message Bundle 6-23
Step 3: Implement the SPL. 6-23
Basic SPIImplementationt 6-24
ManagedConnectionFactoryttt 6-24
Transaction Demarcation i 6-24
ADK Implementationsuuuuttn ittt 6-25
AbstractManagedConnectionFactory Properties Required at Deployment . . . 6-31
ManagedConnectionc.uunineu et et 6-32
ADK Implementationvn ittt e 6-33
ManagedConnectionMetaData. i 6-33
ADK Implementationuu ittt e 6-33
ConnectionEventListener.ot 6-34
ADK Implementationouut it e 6-34
ConnectioNMAanagerottt et e 6-34
ADK Implementationuu ittt e 6-35
ConnectionRequestInfo 6-35
ADK Implementationouu it e 6-35
LocalTransactionottt 6-35
ADK Implementationovn it e 6-35
Step4: Implement the CCIL e 6-36
How to Use This Section i 6-36
Basic CCI Implementation.ttt 6-36
CONNECHION . . . o\ttt 6-37
ADK Implementationvn ittt e 6-37
Interaction oo 6-38

Developing Adapters

ADK Implementationttt ... 6-38

Using XCCI toImplement the CCI 6-40
S OTVICES . v ittt e e 6-40
DocumentRecord. 6-41
IDocument.ot 6-42
Proper Use of Namespaces in IDocument Instances. 6-44
ADK-Supplied XCCI Classes. . . .« vttt e 6-44
XCCIDesign Pattern.t 6-46

Using NonXML J2EE-Compliant Adapters., 6-46

ConnectionFactory i 6-47
ADK Implementationo. ittt 6-47

ConnectionMetaData i 6-48
ADK Implementationttt 6-48

CONNECHIONSPEC .« vttt et e e e e e e e e e e 6-48
ADK Implementationttt 6-48

INteraCtionSPeC.ottt 6-49
ADK Implementationttt 6-50

LocalTransactionttt 6-50

Record. 6-51
ADK Implementationttt 6-52

ResourceAdapterMetaData. 6-52
ADK Implementationo ittt 6-52

Step 5: Enable Environment Variable Support (Optional) 6-52
Implementing ClientDatalnteractionSpec, 6-53
Extending DocumentlInteractionSpecImpl L 6-53

Step 6: Testthe Adapter e 6-54
Using the Test Harnessottt e 6-54
Test Case Extensions Provided by the ADK 6-55

Developing Adapters vii

sample.spi.NonManagedScenarioTestCase 6-55

sample.event.OfflineEventGeneratorTestCase 6-55
sample.client. ApplicationViewClient. 6-56
Step 7: Deploy the Adapter. 6-56

/. Developing an Event Adapter

Introduction to Event Connections ittt nennnnen... 7-1
Event Adapters in a Run-Time Environment 7-2
Flow of EVents e 7-4
Step 1: Define the Adapter 7-5
Step 2: Configure the Development Environment 7-6
Step 2a: Set Up the File Structure 7-7
Step 2b: Assign a Logical Name tothe Adapter 7-7
Step 2c: Set Up the Build Process i 7-7
Step 2d: Create the Message Bundle 7-8
Step 2e: Configure Logging. 7-8
Create an Event Generation Logging Category 7-8

Step 3: Implement the Adapter 7-9
Step 3a: Create an Event Generator. i, 7-9
How the Data Extraction Mechanism Is Implemented. 7-10

How the Event Generator Is Implemented 7-12

Step 3b: Implement the Data Transformation Method. 7-18
Step 3c: Implement Suspend/Resume Support 7-21
Step 3d: Implement Event Generator and EIS Status Reporting 7-22
Step 3e: Implement Event Generator Instance Support. 7-25
Example: DBMS Sample Adapter 7-25

Why Implement Event Generator Instance Support?.................... 7-27

viii Developing Adapters

Detecting and Responding to Changes in Event Generator Instance Specifications

7-27
Step 3f: Implement Environment Variable Support. 7-29
Step4: Testthe Adapter e 7-32
Step 5. Deploy the Adapter 7-32

8. Developing a Resource Adapter

Introduction to Resource Adaptersttt 8-1
Resource Adapters in a Run-Time Environment. 8-2
Step 1: Define the Adaptero e 8-3
Step 2: Configure the Development Environment. 8-4
Step 2a: Set Up the File Structure, 8-4
Step 2b: Assign a Logical Name to the Adapter 8-4
Step 2c: Set Up the Build Process 8-5
Step 2d: Create the Message Bundle 8-5
Step 2e: Configure Logging oot 8-6
Create an Event Generation Logging Category 8-6

Step 3: Implement the Adaptert 8-6
Step 3a: Create a Resource Adapter., 8-7
Step 3b: Implement the Resource Adapter Properties 8-10
Step 4: Implement the Event and Service Adapters 8-11
Step 5. Deploy the Adaptert 8-11

9. Developing a Design-Time GUI

Introduction to Design-Time Form Processing. 9-2
Form Processing Classesttt i 9-3
RequestHandler. 9-3
ControllerServlet. 9-4
ActionResult 9-4

Developing Adapters ix

Word and Its Descendants. 9-4

AbstractInputTagSupport and Its Descendants. 9-5

Form Processing Sequence i 9-5
PrerequiSitesot e 9-6
Stepsinthe Sequencet 9-6
Design-Time Features. e 9-8
Java Server Pages.o 9-8

JSP Templatesottt e 9-9
ADK Library of ISP Tagsot e 9-10

JSP Tag Attributes.o 9-11

The Application VIEWt e e 9-13
File Structure. o 9-13
Flow of EVents e 9-14
Step 1: Defining the Design-Time GUI Requirements. 9-16
Step 2: Defining the Page Flow. 9-17
Page 1: Logging In. o 9-17
Page 2. Managing Application VIEWSttt 9-17
Page 3: Defining the New Application View. 9-17
Page 4: Configuring the Connectiont ennen... 9-18
Page 5: Administering the Application View 9-18
Page 6: Addingan Event 9-19
Page 7: Adding a Service.o 9-19
Page 8: Testing an Application View., 9-20
Publishing an Application View 9-20

Saving an Application VIiewt 9-21

Page 9: Summarizing an Application View. 9-21
Step 3: Configuring the Development Environment. 9-22
Step 3a: Create the Message Bundle 9-22

Developing Adapters

Step 3b: Configure the Environment to Update JSPs Without Restarting WebLogic

SOIVET . ot 9-22
Step 4: Implement the Design-Time GUIL 9-26
Extend AbstractDesignTimeRequestHandler. 9-26
MethodstoInclude 9-26
Step 4a. Supply the ManagedConnectionFactory Class. 9-27
Step 4b. Implement initServiceDescriptor(). 9-27
Step 4c. Implement initEventDescriptor() 9-28
Step 5: Writethe HTML Forms. i 9-28
Step 5a: Create the confconn.jsp Form. 9-29
Including the ADK Tag Library 9-30
Posting the ControllerServlet 9-30
Displaying the Label for the Form Field. 9-31
Displaying the Text Field Size 9-31
Displaying a Submit Buttononthe Form............................. 9-31
Implementing confconn() i 9-32
Step 5b: Create the addevent.jspform 9-32
Including the ADK Tag Library 9-33
Posting the ControllerServlet 9-33
Displaying the Label for the Form Field. 9-33
Displaying the Text Field Size 9-33
Displaying a Submit Buttononthe Form 9-33
Adding Additional Fields 9-34
Step Sc: Create the addserve.jspform 9-34
Including the ADK Tag Library 9-34
Posting the ControllerServlet 9-34
Displaying the Label for the Form Field. 9-35
Displaying the Text Field Size 9-35

Developing Adapters Xi

Displaying a Submit Buttononthe Form............................. 9-35

Adding Additional Fields 9-35

Step 5d: Implement Editing Capability for Events and Services (optional) 9-36
Update the Adapter Properties File. 9-36

Create edtservc.jsp and addServe.jsp oo e i 9-37
Implement Methods 9-38

Step Se: Write the Web Application Deployment Descriptors. 9-39
Step 6. Implement the Look and Feel 9-40
Step 7. Implement Environment Variables. 9-41
Step 7a — Displaying/Editing the Variable Set. 9-42
Step 7b — Using the Variable Set i, 9-43
Step 8. Test the Sample Adapter Design-Time Interface 9-44
Files and Classesttt e e 9-44
Runthe Testso e e 9-45

10.Deploying Adapters

Using Enterprise Archive (EAR) Files 10-1
Using Shared JAR Filesinan EAR File 10-3
EAR File Deployment Descriptor 10-3

Deploying Adapters Using the WebLogic Server Administration Console 10-4

Adapter AUto-re@iStrationottt e 10-5
Using a Naming Conventioniuiuiuninininninenennnn... 10-5
UsingaTextFile 10-6

Editing Web Application Deployment Descriptors 10-6
Deployment Parameters. 10-6
Editing the Deployment Descriptors 10-7

Deploying Adapters in a WebLogic Integration Cluster. 10-9

Redeploying Adapter Instances. i 10-9

Xii Developing Adapters

Creating an Adapter Not Specific to WebLogic Integration

Using This Section. e e e e A-1
Building the Adapter e A-2
Updating the Build Process i e A-2
XML Toolkit

Toolkit Packages oo e B-1
IDOCUMENL . . . o et e B-2
Schema Object Model (SOM)ot e e B-3
How SOM Workso e e e B-3
Creatingthe Schema. B-5
Resulting Schema. B-8
Validating an XML Documentttt B-11
How the Document Is Validated. B-12
Implementing isValid() oo B-12
isValid() Sample Implementation B-13

Adapter Setup Worksheet
Adapter Setup Worksheet C-2

Upgrading Adapters to WebLogic Integration 8.1
Learning to Develop Adapters Using the DBMS Sample

Adapters
Introduction to the DBMS Sample Adapters., E-1
Connection Parameters for DBMS Sample Adapters, E-2
How the DBMS Sample Adapters Work. i E-3
Before YouBegin.o E-3
Accessing the DBMS Sample Adapter., E-4

Developing Adapters Xiii

Xiv

Tour of the DBMS Sample Adapter. E-4

How the DBMS Sample Adapters Were Developed E-26
Step 1: Learn About the DBMS Sample Adapters. E-26
Step 2: Define Your Environment E-26
Step 3: Implement the Server Provider Interface Package. E-29

ManagedConnectionFactorylmpl i E-29
ManagedConnectionImpl E-30
ConnectionMetaDatalmpl. E-31
LocalTransactionImpl. E-32
Step 4: Implement the Common Client Interface Package E-33
ConnectionImpl E-34
InteractionImpl E-35
InteractionSpecImpl E-36
Step 5: Implement the Event Package E-37
EventGenerator.t E-37
Step 6: Deploy the DBMS Sample Adapter., E-38
Step 6a: Set Up Your Environment.o, E-39
Step 6b: Update theraxml File E-39
Step 6¢: Createthe RARFile o E-40
Step 6d: Build the JAR and EARFiles. E-40
Step 6e: Create and Deploy the EARFile E-40

Database-Specific Error Messagest E-42

How the DBMS Sample Adapter Design-Time GUI Was Developed E-43
Step 1: Identify Requirements i E-43
Step 2: Identify Required Java Server Pages E-44
Step 3: Create the Message Bundle E-45
Step 4: Implement the Design-Time GUI E-45
Step 5: Write Java Server Pages. i E-47

Developing Adapters

Use Custom JSPTagso i e E-47

Save an Object’s State.ottt e E-47

Write the WEB-INF/web.xml Deployment Descriptor. E-47
Run-Time Considerationsttt E-48
Changing Event Connections.ottt E-48

Administering a DBMS Sample Adapter Instance Used by Multiple Application Views
E-49
Multiple Event Generators Using the Same DBMS Instance E-49

Index

Developing Adapters XV

Xvi Developing Adapters

Introduction to the ADK

This guide provides instructions for using the WebLogic Integration Adapter Development Kit
(ADK). It shows you how to develop, test, and deploy event and service connections and the
design-time user interface.

This section provides information about the following subjects:

What Is the ADK?

What Are Adapters?

Design-Time GUI

e Before You Begin

Section Objectives

This section serves as an overview to using the ADK to develop event and service connections
and a design-time GUI. You will learn:

e What adapters are and how they are used
e Prerequisites you must meet before beginning adapter development

e Terminology associated with adapter development

Developing Adapters 1-1

Introduction to the ADK

What Is the ADK?

The ADK is a set of tools for implementing the event and service protocols supported by BEA
WebLogic Integration. These tools are organized in a collection of frameworks that support the
development, testing, packaging, and distribution of resource adapters for WebLogic Integration.
Specifically, the ADK includes frameworks for four purposes:

1-2

Design-time operation
Run-time operation
Logging

Packaging

Requirements for Adapter Development

The ADK addresses three requirements for adapter development:

Development environment structure: The organization of a development project is
important in any integrated development and debugging environment (IDDE). With a well
structured development environment, you can begin coding an adapter immediately. The
ADK provides an organized development environment, build process, intuitive class names
and class hierarchy, and test methodology. By using the ADK, you avoid having to spend
time designing and organizing a build process.

Because the ADK encompasses so many advanced technologies, an incremental
development process (code a little, test a little) is the key to success. The ADK test process
allows a developer to make a simple change and test it immediately.

Minimal exposure to peripheral implementation details: Peripheral implementation details
are sections of code that are needed to support the framework in which a robust software
program runs.

For example, the J2EE Connector Architecture specification requires that the
javax.resource.cci.InteractionSpec implementation class provide getter and setter
methods that follow the JavaBeans design pattern. To support the JavaBeans design
pattern, you must, in turn, support PropertyChangeListeners and
VetoableChangeListeners in your implementation class. You do not want to have to
study the JavaBeans specification to learn how to do this. Rather, you want to focus on
implementing the enterprise information system (EIS)-specific details of the adapter. The
ADK provides a base implementation for a majority of the peripheral implementation
details of an adapter.

Developing Adapters

What Are Adapters?

e A clear roadmap to success: Exit criteria enable you to answer the question: “How do I
know my implementation is complete?” The ADK provides a clear methodology for
developing an adapter. The methodology helps you organize your thoughts around a few
key concepts: events, services, design-time operation, and run-time operation. Using this
methodology, you can establish exit criteria that form a roadmap to implementation
completion.

What the ADK Provides

The ADK provides:
e Run-time support for events and services

e An API for integrating an adapter’s user interface with the Application Integration Design
Console

The ADK adds value by making it possible to make adapters an integral part of a single
graphical console application that can be used by business users to construct integration
solutions.

What Are Adapters?

Resource adapters—referred to in this document as adapters—are software components used to
connect applications that were not originally designed to communicate with each other. For
example, an adapter might be needed to enable an order entry system built by one company to
communicate with a customer information system built by another.

By using the ADK, you can create two types of adapters:
e Service adapters, which accept requests and return responses

e Event adapters, which generate messages
You can also create an adapter that supports both services and events. All these types of adapters

include an implementation of a top-level adapter interface

® ResourceAdapter—A top-level container for managing service and event adapters and
connections.

You can also use the ADK to create J2EE-compliant adapters that are not specific to WebLogic
Integration but that comply with the J2EE Connector Architecture Specification.

Developing Adapters 1-3

Introduction to the ADK

1-4

ResourceAdapter Interface

The ResourceAdapter interface is new in WebLogic Integration 8.1. It serves as a single object
to unify both event and service handling. In prior WebLogic Integration releases, the event
adapter and service adapter were treated as separate adapter components. Each was deployed and
configured separately.

In this release, the event and service adapters are unified under the Resourceadapter interface,
and the adapter's implementation of that interface. It provides access to 0 or 1 event connection
(created by the event adapter), and 0 or more service connections (created by the service adapter).
The service connections are sometimes referred to as connection factories.

Configuration of event and service connections are now done under the umbrella of the
ResourceAdapter interface. You will see the term Resource Adapter used in the Application
Integration Design Console to represent a container of event and service connections.

Each adapter must implement ResourceAdapter in a concrete class and package that class into
the adapter's EAR module in order to operate within WebLogic Integration. The ADK provides
an abstract base implementation of the Resourceadapter class in

com.bea.adapter.spi.AbstractWLIResourceAdapter.

To learn how to develop a Resource Adapter implementation, see Chapter 8, “Developing a
Resource Adapter”.

Service Connections

Service connections receive XML request documents from clients and invoke specific functions
in the underlying enterprise information system (EIS). They are consumers of messages; they
may or may not provide a response.

A service may be invoked in either of two ways: asynchronously or synchronously. When a
service is invoked asynchronously, the client application issues a service request and then
proceeds with processing without waiting for the response. When a service is invoked
synchronously, the client waits for the response before proceeding with processing. BEA
WebLogic Integration supports both types of service connection invocations, so you are not
required to provide this functionality.

Service connections perform the following four functions:

e Receive service requests from an external client.

Developing Adapters

What Are Adapters?

e Transform the XML format of a request document into an EIS-specific format. The request
document conforms to the request XML schema for the service. The request XML schema
is based on metadata in the EIS.

e Invoke the underlying function in the EIS and wait for its response.

e Transform the response from the EIS-specific data format to an XML document that
conforms to the response XML schema for the service. The response XML schema is
based on metadata in the EIS.

As with events, the ADK implements the aspects of these four functions that are common to all
service connections.

To learn how to develop a service connection, see Chapter 6, “Developing a Service Adapter.”

Event Connections

Event connections are designed to propagate information from an EIS to WebLogic Server; they
can be described as publishers of information.

There are two basic types of event connections: in-process and out-of-process. In-process event
connections execute within the same process as the EIS. Out-of-process adapters execute in a
separate process. In-process and out-of-process event connections differ only in terms of how
they accomplish the data extraction process.

Event connections running in a WebLogic Integration environment perform the following three

functions:

e Respond to events deemed to be of interest to some external party that occur inside the
running EIS and extract data about such events from the EIS.

e Transform event data from an EIS-specific format to an XML document that conforms to
the XML schema for the event. The XML schema is based on metadata in the EIS.

e Propagate each event to an event message endpoint provided by the application server.

The ADK implements the aspects of these three functions that are common to all event
connections. Consequently, you can focus on the EIS-specific aspects of your adapter. This
concept is the same as the concept behind Enterprise Java Beans (EJB): the container provides
system-level services for EJB developers so they can focus on implementing business application
logic.

To learn how to develop an event connection, see Chapter 7, “Developing an Event Adapter.”

Developing Adapters 1-5

Introduction to the ADK

J2EE-Compliant Adapters Not Exclusive to WebLogic
Integration

These adapters are not designed for WebLogic Integration exclusively; they can be plugged into
any application server that supports the J2EE Connector Architecture specification. These
adapters can be developed by making minor modifications to the procedures given for developing
a service connection. To learn how to develop an adapter that is not specific to WebLogic
Integration, see Appendix A, “Creating an Adapter Not Specific to WebLogic Integration.”

Design-Time GUI

1-6

Along with event and service connections, the ADK’s design-time framework provides tools you
can use to build the Web-based GUI that adapter users need to define, deploy, and test application
views (see “Application Views”). Although each adapter has EIS-specific functionality, all
adapters require a GUI for deploying application views. The design-time framework minimizes
the effort required to create and deploy these interfaces, primarily by using two components:

e A Web application component and a web request handler base class
(AbstractDesignTimeRequestHandler) that allows you to build an HTML-based GUI by
using Java Server Pages (JSP). This component is augmented by tools such as the JSP
templates, the JSP tag library, and the JavaScript library.

e A deployment helper component, called DesignTimeHelper, that provides a simple API
for deploying, undeploying, and editing application views on WebLogic Server.

To learn how to develop a design-time GUI, see Chapter 9, “Developing a Design-Time GUL”

Application Views

While an adapter represents a system-level interface to all the functionality in an application, an
application view represents a business-level interface to a particular set of functions in the
application.

An application view is configured for a single business purpose and contains only services related
to that purpose. These services require only business-relevant data to be specified in the request
document; they return only business-relevant data in the response document. Without user
intervention, the application view combines this business-relevant data with stored metadata
necessary for the adapter. The adapter takes both the business-relevant data and the stored
metadata and executes a system-level function on the application.

Developing Adapters

Packaging Framework

The application view also represents both the events and services that support the specified
business purpose. As a result, the business user can perform all communication with an
application through the application view. Such bidirectional communication is supported by two
adapter components: the event connection and the service connection. The application view
abstracts this fact from users and presents them with a unified business interface to the
application.

For more information about application views, see “Introduction to Using Application
Integration” in Using Application Integration.

Packaging Framework

The ADK packaging framework is a tool set for packaging an adapter for delivery to a customer.
Ideally, all adapters are installed, configured, and uninstalled in the same way on WebLogic
Server. All service connections must be J2EE compliant. The packaging framework simplifies
the creation of a J2EE adapter archive (RAR) file, a Web application archive (WAR) file, an
enterprise archive (EAR) file, and a WebLogic Integration design environment archive.

Before You Begin

Before beginning your development work, make sure WebLogic Integration is installed on your
computer. For more information, see Installing BEA WebLogic Platform and the BEA WebLogic
Integration Release Notes.

Developing Adapters 1-1

Introduction to the ADK

1-8 Developing Adapters

CHAPTERa

Basic Development Concepts

This section describes some basic concepts with which you should become familiar before
attempting to develop an adapter or design-time graphical user interface (GUI). Specifically, it
provides information about the following subjects:

e Run Time Versus Design Time

Events and Services

How Adapters Use Logging

Adapter Logical Name

e Enterprise Archive (EAR) Files

Run Time Versus Design Time

The term adapter activity encompasses both run-time and design-time activity. Run-time activity
is the execution of an adapter’s processes. Design-time activity, performed by an adapter user,
includes the creation, deployment, and testing of an application view.

Run-time and design-time activity are supported by ADK run-time and design-time frameworks,
respectively. The run-time framework comprises tools for developing adapters, while the
design-time framework includes tools for designing Web-based user interfaces. Both types of
activity are discussed in greater detail in the following sections.

Developing Adapters 2-1

Basic Development Concepts

2-2

Run-Time Framework

The run-time framework is a set of tools you can use to develop event and service connections.
To support event connection development, the run-time framework provides a basic, extensible
event generator. For service connection development, the run-time framework provides a
complete J2EE-compliant adapter.

The classes supplied by the run-time framework provide the following benefits:

They allow you to focus on EIS details rather than J2EE details.

They minimize the effort needed to use the ADK logging framework.

They simplify the J2EE Connector Architecture.

They minimize redundant code used in multiple adapters.

In addition, the run-time framework provides abstract base classes to help you implement an
event generator that can leverage the event support provided by the ADK environment.

A key component of the run-time framework is the run-time engine, which hosts the adapter
component responsible for handling service invocations and manages the following WebLogic
Server features:

e Physical connections to the EIS
e Login authentication

e Transaction management

All three features comply with the J2EE Connector Architecture standard.

Design-Time Framework

The design-time framework provides tools for building the Web-based GUI that adapter users
need to define, deploy, and test their application views. Although each adapter has EIS-specific
functionality, all adapters require a GUI for deploying application views. This framework
provides two tools that minimize the effort required to create and deploy such a GUI:

e A Web application component that allows you to build an HTML-based GUI by using
JSPs. This component is augmented by tools such as the JSP templates, the tag library, and
the JavaScript library.

e A deployment helper component that provides a simple API for deploying, undeploying,
and editing application views on WebLogic Server.

Developing Adapters

Events and Services

The design-time interface for each adapter is a J2EE Web application that is bundled as a WAR
file. A Web application is a bundle of . jsp files, .html files, image files, and so on. The Web
application descriptor is web.xml. The descriptor provides the J2EE Web container with
instructions for deploying and initializing the Web application.

Every Web application has a context that is specified during deployment. The context identifies
resources associated with the Web application under the Web container’s document root.

Events and Services

With the ADK you can create both event connections and service connections. Within the ADK
architecture, services and events are defined as self-describing objects (for which a name
indicates a business function) that use XML schema to define input and output.

What Are Events?

An event is an XML document published by an application view when an occurrence of interest
takes place within an EIS. Clients that want to be notified of events request such notification by
registering with an application view. The application view then acts as a broker between the target
application and the client. When a client has subscribed to events published by an application
view, the application view notifies the client whenever an event of interest occurs in the target
application. When an event subscriber is notified that an event of interest has occurred, it is
passed an XML document that describes the event. Application views that publish events can also
provide clients with the XML schema for publishable events.

Note: An application view represents a business-level interface to a specific function in an
application. For more information about this feature, see Introducing Application
Integration.

What Are Services?

A service is a business operation in an application that is exposed by an application view. It serves
as a request/response mechanism: when an application receives a request to invoke a business
service, the application view invokes the service in the target application and then returns (or,
responds with) an XML document that describes the results.

To define a service, you must define input requirements, output expectations, and an interaction
specification.

A service request and response consists of:

Developing Adapters 2-3

Basic Development Concepts

e An interaction specification, containing static mefadata about the request. An example of
this static metadata would be an SQL statement for a DBMS adapter. The end user of the
service never sees the metadata.

e User input, which represents business information the user has obtained and provided as
the request document for this service. This request document can contain variable
information that relates to the metadata in the interaction specification. For example, in a
DBMS adapter based service, the SQL statement is provided in the interaction
specification, and the value of any variables in that SQL statement are provided in the
request document.

e The response from the service conforms to the output expectations described at design-time
for the service.

How Adapters Use Logging

2-4

Logging is an essential feature of an adapter. Most adapters are used to integrate different
applications and do not interact with end-users while processing data. Unlike a front-end
component, when an adapter encounters an error or warning condition, it cannot stop processing
and wait for an end-user to respond.

Moreover, many business applications connected by adapters are mission-critical. For example,
an adapter might be required to keep an audit report of every transaction with an EIS.
Consequently, adapter components should provide both accurate logging and auditing
information. The ADK’s logging framework is designed to accommodate both logging and
auditing.

Logging Toolkit

The ADK provides a toolkit that allows you to log localized messages to multiple output
destinations. The logging toolkit leverages the work of the Apache Log4j open source project.

The logging toolkit wraps the critical classes in Log4j to provide added functionality when you
are building J2EE-compliant adapters. The toolkit is provided in the logtoolkit.jar file.

For information about using the logging toolkit, see Chapter 5, “Using the Logging Toolkit.”

Logging Framework

With the ADK, logging of adapter activity is accomplished by implementing the logging
framework. This framework gives you the ability to log internationalized and localized messages

Developing Adapters

Adapter Logical Name

to multiple output destinations. It provides a range of configuration parameters you can use to
tailor message category, priority, format, and destination.

The logging framework uses a categorical hierarchy to allow inheritance of logging configuration
by all packages and classes within an adapter. The framework allows parameters to be modified
easily during run time.

Internationalization and Localization

The logging framework allows you to internationalize log messages. Internationalized
applications are easy to tailor to the idioms and languages of end-users around the world without
rewriting the code. Localization is the process of adapting software for a specific region or
language by adding locale-specific components and text. The logging framework uses the
internationalization and localization facilities provided by the Java platform.

Adapter Logical Name

Every adapter must have an adapter logical name: a unique identifier that represents an
individual adapter and serves as the organizing principle for all adapters. An adapter logical name
is the means by which both an individual adapter and the following related items are identified:

e Message bundle
e Logging configuration

e [og categories

An adapter logical name is formed by combining the vendor name, the type of EIS connected to
the adapter, and the version number of the EIS. By convention, this information is expressed as
vendor_ EIS-type EIS-version. For example, in the adapter logical name
BEA_WLS_SAMPLE_ADK:

e BEA_WLS is the vendor and product
e saMPLE is the EIS type

e ADK is the EIS version

You may use another format for this information, if you prefer, as long as you include the required
data.

Developing Adapters 2-5

Basic Development Concepts

2-6

Where the Adapter Logical Name Is Used

The adapter logical name is used with adapters in the following ways:
e It is used during adapter deployment as part of the WAR, RAR, JAR, and EAR filenames.

e It is used as an organizing principle, as described in “Adapter Logical Name Used as an
Organizing Principle” on page 2-7.

e It is used as a return value to the abstract method getAdapterLogicalName () in
com.bea.adapter.web, as described in “Adapter Logical Name Used as the Return Value
for getAdapterLogicalName” on page 2-8.

Use of Adapter Logical Name in Adapter Deployment

To assign an adapter logical name, specify it as the value of the Name attribute of the
<Application> element that contains the <ConnectiorComponent> element. This value is the
key used by WebLogic Integration to associate an application view with a deployed resource
adapter, as shown for a sample adapter in Listing 2-1.

Listing 2-1 Name Attribute of the ConnectorComponent Element

<Application Deployed="true" Name="BEA_WLS_DBMS_ADK"
Path="<WLI_HOME>/adapters/dbms/1lib/BEA_WLS_DBMS_ADK.ear"
TwoPhase="true">

<ConnectorComponent Name="BEA_WLS_DBMS_ADK" Targets="myserver"
URI="BEA_WLS_DBMS_ADK.rar"/>

<WebAppComponent Name="DbmsEventRouter" Targets="myserver"
URI="BEA_WLS_DBMS_ADK_EventRouter.war"/>

<WebAppComponent Name="BEA_WLS_DBMS_ADK_ Web" Targets="myserver"
URI="BEA_WLS_DBMS_ADK_Web.war"/>

</Application>

Note: The use of the adapter logical name as the name of the RAR file is an optional
convention; such naming is not required in the URI attribute.

When an application view is deployed, it is associated with a J2EE Connector Architecture CCI
connection factory deployment. For example, if a user deploys the abc . xyz application view,

Developing Adapters

Adapter Logical Name

WebLogic Integration deploys a new ConnectionFactory and binds it to the following JNDI

location:

com.bea.wlai.connectionFactories.abc.xyz.connectionFactoryInstance

Adapter Logical Name Used as an Organizing Principle

Table 2-1 lists the types of functionality that use the adapter logical name as an organizing

principle.

Table 2-1 How an Adapter Logical Name Is Used as an Organizing Principle

In this area of
functionality . . .

Adapter logical names are used as follows . . .

Logging

The adapter logical name is used as the base log category name for all log messages that
are unique to the adapter. Consequently, the adapter logical name is passed as the value
for the RootLogContext parameters in the following XML documents:

e WLI_HOME/adapters/ADAPTER/src/rar/META-INF/ra.xml

e WLI_HOME/adapters/ADAPTER/src/rar/META-INF/weblogic-ra.xml
e WLI_HOME/adapters/ADAPTER/src/war/WEB-INF/web.xml

In these pathnames, ADAPTER represents the name of your adapter. For example:
WLI_HOME/adapters/dbms/src/war/WEB-INF/web.xml

In addition, the adapter logical name is used as the base for the name of the Log4J
configuration file for the adapter; the name is completed by the addition of the .xm1
suffix.

.xml is appended to the name. For example, the Log4J configuration file for the sample
adapter is BEA_WLS_SAMPLE_ADK.xml.

Localization

The logical name of the adapter is used as the base name for message bundles for the
adapter. For example, the default message bundle for the sample adapter is
BEA_WLS_SAMPLE_ADK.properties. Consequently, the adapter logical name is
passed as the value for the MessageBundleBase parameters in the following XML
documents:

e WLI_HOME/adapters/ADAPTER/src/rar/META-INF/ra.xml

e WLI_HOME/adapters/ADAPTER/src/rar/META-INF/weblogic-ra.xml
e WLI_HOME/adapters/ADAPTER/src/war/WEB-INF/web.xml

In these pathnames, the value of ADAPTER is the name of your adapter. For example:
WLI_HOME/adapters/dbms/src/war/WEB-INF/web.xml

Developing Adapters 2-1

Basic Development Concepts

Adapter Logical Name Used as the Return Value for getAdapterLogicalName

Lastly, the adapter logical name is used as the return value to the abstract method
getAdapterLogicalName () on the com.bea.adapter.web.
AbstractDesignTimeRequestHandler. This return value is used during the deployment of
application views as the value of the RootLogContext for a connection factory.

Enterprise Archive (EAR) Files

2-8

The ADK uses Enterprise Archive files, or EAR files, for deploying adapters. A single . ear file
contains the WAR and RAR files necessary to deploy an adapter. An example of an EAR file is
shown in Listing 2-2.

Listing 2-2 EAR File Structure

adapter.ear
META-INF
application.xml
sharedJar.jar
adapter.jar
adapter.rar
META-INF
ra.xml
weblogic-ra.xml
MANIFEST .MF

designtime.war

WEB-INF
web . xml
META-INF

MANIFEST .MF

The EAR file for the sample adapter is shown in Listing 2-3.

Developing Adapters

Enterprise Archive (EAR) Files

Listing 2-3 Sample Adapter EAR File

sample.ear
META-INF
application.xml
shared.jar (shared .jar between .war and .rar)
BEA_WLS_SAMPLE_ADK.war (Web application with
META-INF/MANIFEST.MF entry Class-Path: shared.jar
BEA_WLS_SAMPLE_ADK.rar (Resource Adapter
META-INF/MANIFEST.MF entry Class-Path: shared.jar

Notice that neither the RAR nor WAR files include any shared JAR files; rather, both refer to the
shared JAR files located in the root directory of the EAR file.

For more information about using EAR files to deploy adapters, see Chapter 10, “Deploying
Adapters.”

Developing Adapters 2-9

Basic Development Concepts

2-10 Developing Adapters

Development Tools

The ADK provides a set of robust tools to assist you in developing adapters and the design-time
GUI. This section describes these tools. Specifically, it includes information about the following
subjects:

Sample Adapter

GenerateAdapterTemplate Utility

ADK Javadoc

e Ant-Based Build Process

e XML Tools

Sample Adapter

To help you start building an adapter, the ADK provides a sample adapter with code examples
that are not specific to EIS. Do not confuse this sample adapter with the DBMS sample adapters
that are also provided by WebLogic Integration; the DBMS sample adapters are documented in
Appendix E, “Learning to Develop Adapters Using the DBMS Sample Adapters.” You can find
the DBMS sample adapters in wWLI_HOME/adapters/dbms.

Why Use the Sample Adapter?

The purpose of the sample adapter is to free you from much of the coding necessary to build an
adapter. It provides concrete implementations of key abstract classes that require customization
only to meet the requirements of the EIS you are using. In addition, the ADK provides

Developing Adapters 3-1

Development Tools

GenerateAdapterTemplate, a utility with which you can quickly clone the sample adapter
development tree for use by the adapter you are developing. See “GenerateAdapterTemplate
Utility” on page 3-3.

What Is In the Sample Adapter?

The sample adapter contains:

sample.cci.ConnectionImpl
A concrete implementation of the Connection interface that represents an
application-level handle used by a client to access the underlying physical connection.

sample.cci.InteractionImpl
A class that demonstrates how to implement a design pattern using the
DesignTimeInteractionSpecImpl class.

sample.cci.InteractionSpecImpl
An interface that provides a base implementation that you can extend by using getter and
setter methods for the standard interaction properties.

sample.client.ApplicationViewClient
A class that demonstrates how to invoke a service and listen for an event on an application
view.

sample.eis.EIS
sample.eis.EISConnection
sample.eis.EISEvent
sample.eis.EISListener
Classes that represent, for demonstration purposes, a simple EIS.

sample.event.EventGenerator
A concrete extension to AbstractPullEventGenerator that shows how to extend the
ADK base class to construct an event generator.

sample.event.0fflineEventGeneratorTestCase
A class you can use to test the inner workings of your event generator outside WebLogic
Server.

sample.spi.ManagedConnectionFactoryImpl
A concrete extension to AbstractManagedConnectionFactory that you can customize
for a specific EIS.

sample. spi.ManagedConnectionImpl
A concrete extension to AbstractManagedConnection that you can customize for a
specific EIS.

Developing Adapters

GenerateAdapterTemplate Utility

sample.spi.ConnectionMetaDataImpl
A concrete extension to AbstractConnectionMetaData that you can customize for a
specific EIS.

sample. spi.NonManagedScenarioTestCase
A class you can use to test your SPI and CCI classes in an unmanaged scenario.

sample.spi.ResourceAdapterImpl
A concrete extension to AbstractWLIResourceAdapter that you can customize for a
specific EIS.

sample.web.DesignTimeRequestHandler
A concrete extension to AbstractDesignTimeRequestHandler that shows how to add
an event or service at design time.

Note: For details about the classes extended by those in the sample adapter, see the ADK
Javadocs at the following URL:

http://e-docs.bea.com/wli/docs81/javadoc/adk/

GenerateAdapterTemplate Utility

To facilitate use of the sample adapter, the ADK provides GenerateAdapterTemplate, a
command-line utility you can use to create a new adapter development tree by cloning the sample
tree. For complete instructions on using this tool, see Chapter 4, “Creating a Custom
Development Environment.”

ADK Javadoc

ADK classes, interfaces, methods, and constructors are defined in the development kit’s Javadoc.
The ADK Javadoc is located at the following URL:

http://e-docs.bea.com/wli/docs81/javadoc/adk/

The Javadoc for the ADK is not specific to a single adapter. For additional information on
specific sample adapter, refer to comments in the adapter source code provided in
WLI_HOME/adapters/ADAPTER/src where ADAPTER is the specific adapter directory.

Ant-Based Build Process

The ADK employs a build process based on Ant, a 100% pure Java-based build tool. For the
ADK, Ant does the following:

e Creates a Java archive (JAR) file for the adapter.

Developing Adapters 3-3

http://e-docs.bea.com/wli/docs81/javadoc/adk/
http://e-docs.bea.com/wli/docs81/javadoc/adk/

Development Tools

e Creates a WAR file for an adapter’s Web application.
e Creates a RAR file for a J2EE-compliant adapter.

e Bundles the other components in this list into an EAR file for deployment.

Why Use Ant?

Traditionally, build tools are shell-based. Like shell commands, they evaluate a set of
dependencies and then execute various tasks. While the advantage of such tools is that it is simple
to extend them by using or writing any program for your operating system (OS), the disadvantage
is that you are limited to that OS.

Ant is preferable to shell-based make tools for the following reasons:
e Itis extended with Java classes instead of shell-based commands.

e The configuration files are based on XML instead of shell commands: they invoke a target
tree in which various tasks get executed. Each task is run by an object that implements a
particular task interface. While this arrangement removes some of the expressive power
inherent in the ability to construct a shell command, it makes your application portable
across platforms.

e Ant allows you to execute various OS-specific shell commands.

For complete instructions for setting up Ant, see “Step 2c: Set Up the Build Process” on
page 6-11.

XML Tools

The ADK includes the XML Toolkit, a set of two XML development tools that are considered
part of the metadata support layer for the design-time framework:

e XML Schema API—Based on the Schema Object Model (SOM), this API is used to build
XML schemas programmatically. The SOM is a set of tools that enables you to extract
many common details, such as the syntactical complexities of XML schema operations, so
you can focus on the more fundamental aspects of a schema.

e XML Document API—Based on IDocument, this API provides the x-path interface to a
document object model (DOM) document.

For instructions on using these tools, see Appendix B, “XML Toolkit.”

WebLogic Integration provides Javadoc for both APIs:

3-4 Developing Adapters

XML Tools

e For SOM Javadoc, go to the WebLogic Integration Javadoc at
http://e-docs.bea.com/wli/docs81/javadoc/ and select the com.bea . schema
package

e For IDocument Javadoc, go to the WebLogic Integration Javadoc at
http://e-docs.bea.com/wli/docs81/javadoc/ and select the com.bea.document
package

Developing Adapters 3-5

http://e-docs.bea.com/wli/docs81/javadoc/
http://e-docs.bea.com/wli/docs81/javadoc/

Development Tools

3-6 Developing Adapters

CHAPTERa

Creating a Custom Development
Environment

Warning: We strongly recommend that you do not alter the sample adapter directly. Instead,
use the GenerateAdapterTemplate utility described in this chapter to make a copy
of the adapter, and then make any changes you want to your copy. Modifying the
sample adapter itself (or trying to create a copy of it without using
GenerateAdapterTemplate) might result in unexpected and unsupported
behavior.

To facilitate the use of the sample adapter (see “Sample Adapter” on page 3-1), the ADK
provides GenerateAdapterTemplate, a command-line utility you can use to create a new
adapter development tree by cloning the sample tree.

This section provides information about the following subjects:
e Adapter Setup Worksheet

e Using GenerateAdapterTemplate

Adapter Setup Worksheet

The adapter setup worksheet is a questionnaire designed to help you identify and collect critical
information about the adapter you are developing. You can find this questionnaire in Appendix C,
“Adapter Setup Worksheet.”

This worksheet is a set of 20 questions that can help you identify critical adapter information,
such as EIS type, vendor, and version, locale and national language of the deployment, the
adapter logical name, and whether or not the adapter supports services. When you run

Developing Adapters 4-1

Creating a Custom Development Environment

GenerateAdapterTemplate, you are prompted to enter this information. When the information
is processed, a custom development tree for your adapter is created.

Using GenerateAdapterTemplate

This section explains how to use GenerateaAdapterTemplate. You must perform the following
steps:

e Step 1. Execute GenerateAdapterTemplate
e Step 2. Rebuild the Tree
e Step 3. Test the Adapter

e Step 4. Deploy the Adapter to WebLogic Integration

Step 1. Execute GenerateAdapterTemplate

To use this tool, do the following:
1. Open a command line from the WLI_HOME/adapters/utils directory and execute one the
following commands:
— For Windows NT: GenerateAdapterTemplate.cmd
— For UNIX: GenerateAdapterTemplate.sh
The system responds:

R R R R R S S R R R R R R S R R R R R AR R R R ok

Welcome! This program helps you generate a new adapter development tree
by cloning the ADK's sample adapter development tree.

Do you wish to continue? (yes or no); default='yes':

For Windows systems, proceed to step 2. After completing step 2, the system displays the
prompt shown in step 3.

For non-Windows systems, proceed to step 3.

2. Select yes by pressing Enter. For Windows systems only, select your console's codepage
value from the following codepage list:

Cp437 - United States

Cp850 - Multilingual (Latin I)
Cp852 - Slavic (Latin II)
Cp855 - Cyrillic (Russian)

4-2 Developing Adapters

Using GenerateAdapterTemplate

Cp857 - Turkish

Cp860 - Portuguese

Cp861 - Icelandic

Cp863 - Canadian-French

Cp865 - Nordic

Cp866 - Russian

Cp869 - Modern Greek

MS932 - Japanese

Enter your console's codepage; default='Cpd37':

If you do not know your codepage, launch a new DOS console prompt and enter chcp at
your console prompt. Depending on the Windows version, this command displays your
console’s codepage value.

Select yes by pressing Enter.
The system responds:

Please choose a name for the root directory of your adapter development
tree (NOTE: this directory will be created under WLI_HOME/adapters) :

Enter a unique, easy-to-remember directory name (dir_name) and press Enter.
The system responds:

created directory WLI_HOME/adapters/dir name

Enter the EIS type for your adapter:

In the pathname specified in the system output, dir_name is the name of the new
directory.

Note: If you enter the name of an existing directory, the system responds:

WLI_HOME/adapters/dir name already exists, please choose
a new directory that does not already exist!

Please choose a name for the root directory of your adapter
development tree:

Enter an identifier for the EIS type to which your adapter will connect. Press Enter.
The system responds:

Enter a short description for your adapter:

Enter a short, meaningful description of the adapter you are about to develop and press
Enter.

The system responds:

Developing Adapters 4-3

Creating a Custom Development Environment

4-4

10.

11.

Enter the major version number for your adapter; default='1':

Either press Enter to accept the default, or enter the appropriate version number and then
press Enter.

The system responds:
Enter the minor version number for your adapter; default='0':

Either press Enter to accept the default, or type the appropriate minor version number and
then press Enter.

The system responds:

Enter the vendor name for your adapter:

Enter the vendor’s name and press Enter.

The system responds:

Enter an adapter logical name; default='default_name':

Either press Enter to accept the default or type the adapter logical name you want to use.
Press Enter. The default adapter logical name ('default_name ‘) is based on the format
recommended for WebLogic Integration:

vendor name_EIS-type_version-number.

The system responds:

Enter the Java package base name for your adapter
(e.g. sample adapter's is sample): Java package base name

Enter the base name of the Java package, in package format, and press Enter. A name in
package format consists of the following strings, separated by dots:

— The extension used in the URL for your organization’s Web site (such as .com, .org,
or.edu)

— The name of your company
— Additional adapter identifiers. For example: com.your_co.adapter.EIS.

The system responds:

The following information will be used to generate your new
adapter development environment:

EIS Type = 'SAP R/3'

Description = 'description'

Major Version = '1'

Minor Version = '0'

Vendor = 'vendor_name'

Developing Adapters

Using GenerateAdapterTemplate

Adapter Logical Name = 'adapter.__logical_name'

Java Package Base = 'com.java.package.base'

Are you satisfied with these values? (enter yes or no or d to quit);
default='yes':

12. To confirm the information, press Enter.
The system responds by displaying the appropriate build information.

Note: If you enter no, you are routed back to step 4. If you enter g (quit), the application
terminates.

Step 2. Rebuild the Tree

After completing the clone process, go to the new directory and use Ant, the ADK’s build tool,
to rebuild the entire tree. For more information about Ant, see “Ant-Based Build Process” on
page 3-3.

Note: You must explicitly enter the file extension when running Ant commands on UNIX
systems. For example, enter ant . sh release. Entering ant release on UNIX
systems does not locate ant . sh.

To rebuild the tree by using Ant, do the following:

1. Edit antEnv.cmd (Windows) or antEnv.sh (UNIX) in
WLI_HOME/adapters/ADAPTER/utils.

2. Set the following variables to valid paths:

— BEA_HOME - The top-level directory for your BEA products, such as c: /bea.

WLI_HOME - The location of your WebLogic Integration directory.

WL_HOME - The location of your WebLogic Server directory.

JAVA_HOME - The location of your Java Development Kit.
— ANT_HOME - The location of your Ant directory, typically wLI_HOME/adapters/utils.
Note: The installer performs this step for you, but you should be aware that these settings

control the Ant process.

On a UNIX system, execute permission for all must be set for the Ant file in
WLI_HOME/adapters/utils. To add execute permission, enter the following
command:

chmod u+x ant.sh

Developing Adapters 4-5

Creating a Custom Development Environment

4-6

3. Execute antEnv.cmd (Windows) or antEnv.sh (UNIX) from the command line to set the
necessary environment variables for your shell.

4. Execute ant.cmd release (Windows) or ant.sh release (UNIX) from the
WLI_HOME/adapters/ADAPTER/project directory to build the adapter. (Replace ADAPTER
with the name of the new adapter development root.)

When you execute ant release, Javadoc is generated for the adapter. You can view the
Javadoc by going to:

WLI_HOME/adapters/ADAPTER/docs/overview.html

This file provides environment-specific instructions for deploying your adapter in a
WebLogic Integration environment. Specifically, it provides config.xml entries and
replacements for the path already created. In addition, the file provides mapping
information.

To facilitate adapter deployment, as described in “Step 4. Deploy the Adapter to WebLogic
Integration” on page 4-6, you can copy the contents of overview.html directly into
config.xml.

Step 3. Test the Adapter

Before deploying the adapter, you should test the behavior of the adapter. Create a service and an
event and test them. You can use the steps described in “Learning to Develop Adapters Using the
DBMS Sample Adapters” on page E-1 as a guide to using the adapter. Once testing is
successfully complete, you are ready to customize the cloned adapter to meet the needs of the
EIS.

Step 4. Deploy the Adapter to WebLogic Integration

You can deploy the adapter either manually or from the WebLogic Server Administration
Console. See Chapter 10, “Deploying Adapters,” for complete information.

Developing Adapters

Using the Logging Toolkit

Logging is an essential feature of an adapter component. Most adapters are used to integrate
different applications; they do not interact with end users while data is being processed. Unlike a
front-end component, when an adapter encounters an error or warning condition, it cannot stop
processing and wait for an end-user to respond.

With the ADK, you can log adapter activity by implementing a logging framework. This
framework gives you the ability to log internationalized and localized messages to multiple
output destinations. It provides a range of configuration parameters you can use to tailor message
category, priority, format, and destination.

This section contains information about the following subjects:
e Logging Toolkit
e Logging Configuration File

e Logging Concepts

How to Set Up Logging

Logging Framework Classes

e Internationalization and Localization of Log Messages

Saving Contextual Information in a Multithreaded Component

Developing Adapters 5-1

Using the Logging Toolkit

Logging Toolkit

The ADK logging toolkit allows you to log internationalized messages to multiple output
destinations. The logging toolkit leverages the work of the Apache Log4j open source project.
This product includes software developed by the Apache Software Foundation
(http://www.apache.org).

The logging toolkit is a framework that wraps the necessary Log4j classes to provide added
functionality for J2EE-compliant adapters. It is provided in the logtoolkit.jar file under
wLI_HoME/1lib. This JAR file depends on DOM, XERCES, and Log4j. The XERCES
dependency is satisfied by the weblogic.jar and xmlx.jar files provided with WebLogic
Server. The required version of Log4j, 1og4j.jar, is provided in WL_HOME/common/1ib.

The Log4j package is distributed under the Apache public license, a full-fledged open source
license certified by the open source initiative. The latest Log4j version, including full-source
code, class files, and documentation, can be found at the Apache Log4j Web site
(http://www.apache.org).

Logging Configuration File

Throughout this section, you will see references to and code excerpts from the logging
configuration file. This file is an .xm1 file that is identified by the adapter logical name, such as
BEA_WLS_DBMS_ADK.xml. It contains the base information for the four logging concepts
discussed in “Logging Concepts” on page 5-2 and can be modified for your specific adapter.

The ADK provides a basic logging configuration file, BEA_WLS_SAMPLE_ADK.xml, in
WLI_HOME/adapters/sample/src. To modify this file for your adapter, run
GenerateAdapterTemplate. This utility customizes the sample version of the logging
configuration file with information pertinent to your new adapter and places the customized
version in the new adapter’s development environment. For more information about
GenerateAdapterTemplate, see Chapter 4, “Creating a Custom Development Environment.”

Logging Concepts

Before using the logging toolkit provided with the ADK, you should understand a few key
concepts of the logging framework. Logging has four main components:

e Message Categories
e Message Priority

e Message Appenders

5-2 Developing Adapters

http://www.apache.org
http://www.apache.org

Logging Concepts

e Message Layout

These components work together to enable you to log messages according to message type and
priority, and to control, at run time, how these messages are formatted and where they are
reported.

Message Categories

Categories identify log messages according to criteria you define and are a central concept of the
logging framework. In the ADK, a category is identified by its name, such as
BEA_WLS_SAMPLE_ADK.DesignTime.

Categories are hierarchically defined and any category can inherit properties from a parent

category. The hierarchy is defined as follows:

e A category is an ancestor of another category if its name, followed by a dot, is a prefix of
the descendant category name.

e A category is a parent of a child category if there are no ancestors between itself and the
descendant category.

For example, BEA_WLS_SAMPLE_ADK.DesignTime is a descendant of BEA_WLS_SAMPLE_ADK
which, in turn, is a descendant of the root category, as shown in the following diagram.

Developing Adapters 5-3

Using the Logging Toolkit

ROOT CATEGORY

|—>BEA_WLS_SAMPLE_ADK

| ->BEA_WLA_SAMPLE.ADK.DesignTime
The root category resides at the top of the hierarchy; it cannot be deleted or retrieved by name.

When you create categories, you should name them according to components in the adapter to
which they belong. For example, if an adapter has a design-time user interface component, the
adapter might have a category with the following name: BEA_WLS_SAMPLE_ADK.DesignTime.

Message Priority

Every message has a priority that indicates its importance. Message priority is determined by the
ILogger interface method used to log the message. For example, if you call the debug method on
an [Logger instance, a debug message is generated.

The logging toolkit supports five possible priorities for a given message. These priorities are
listed, in descending order of importance, in Table 5-1.

Table 5-1 Logging Toolkit Priorities

Priority Indicates

AUDIT An extremely important log message related to the business processing
performed by an adapter. Messages with this priority are always written to the
log.

ERROR An error in the adapter. Error messages are internationalized and localized for
the user.

WARN A situation that is not an error, but that might cause problems in the adapter.

Warning messages are internationalized and localized for the user.

INFO An informational message that is internationalized and localized for the user.

DEBUG A debug message, that is, information used to determine how the internals of
acomponent are working. Debug messages are typically not internationalized.

The BEA_WLS_SAMPLE_ADK category has priority WARN because of the following child element:

<priority value='WARN' class='com.bea.logging.LogPriority'/>

5-4 Developing Adapters

Logging Concepts

The class for the priority must be com.bea.logging.LogPriority.

Assigning a Priority to a Category

You can assign a priority to a category. If a given category is not assigned a priority, it inherits
one from its closest ancestor with an assigned priority; that is, the inherited priority for a given
category is equal to the first non-null priority above the given category in the hierarchy.

A log message is sent to the log destination if its priority is higher than or equal to the priority of
its category. Otherwise, the message is not written to the log. A category without an assigned
priority inherits one from the hierarchy. To ensure that all categories can eventually inherit a
priority, the root category always has an assigned priority. A log statement of priority p, in a
category with inherited priority g, is enabled if p >= q. This rule is based on the assumption that
priorities are ordered as follows: DEBUG < INFO < WARN < ERROR < AUDIT.

Message Appenders

The logging framework allows an adapter to log messages to multiple destinations by using an
interface called an appender. Log4j provides appenders for:

e Console
e Files

Remote socket servers

NT event loggers

Remote UNIX Syslog daemons

In addition, the ADK logging toolkit provides an appender that you can invoke to send a log
message to your WebLogic Server log.

A category may refer to multiple appenders. Each enabled logging request for a given category
is forwarded to all the appenders in that category, as well as all the appenders higher in the
hierarchy. In other words, appenders are inherited cumulatively from the category hierarchy.

For example, if a console appender is added to the root category, then all enabled logging requests
are displayed, at a minimum, on the console. If, in addition, a file appender is added to category
C, then enabled logging requests for C and C’s children are printed in a file and displayed on the
console. It is possible to override this default behavior (that is, to stop appender inheritance from
being cumulative) by setting the additivity flag to false.

Developing Adapters 5-5

Using the Logging Toolkit

5-6

Note: If you also add the console appender directly to C, you get two messages—one from C
and one from root—on the console. The root category always logs to the console.

Listing 5-1 shows an appender for the WebLogic Server log.

Listing 5-1 Sample Code Showing an Appender for the WebLogic Server Log

<!--
A WeblogicAppender sends log output to the Weblogic log. If running outside
of WebLogic, the appender writes messages to System.out
-—>
<appender name="WebLogicAppender"
class="com.bea.logging.WeblogicAppender" />

</appender>

Message Layout

Log4j enables you to customize the format of a log message by associating a layout with an
appender. The layout determines the format of a log message, while an appender directs the
formatted message to its destination. The logging toolkit typically uses PatternLayout to format
its log messages. PatternLayout, part of the standard Log4;j distribution, lets you specify the
output format according to conversion patterns similar to the C language print£ function.

For example, if you invoke PatternLayout with the conversion pattern $-5p%d{DATE} %c{4} %x
- %m%n, a message such as the following is generated:

AUDIT 21 May 2001 11:00:57,109 BEA_WLS_SAMPLE_ADK - admin opened connection
to EIS

In this conversion pattern:

e The value of %-5p is the priority of the message; in the example shown here, the priority is
AUDIT.

e The value of $a{DATE} is the date of the message; in the example shown here, the date is
21 May 2001 11:00:57,100.

e The value of $c {4} is the category for the log message; in the example shown here, the
category is BEA_WLS_SAMPLE_ADK.

Developing Adapters

How to Set Up Logging

The text after the dash (-) is the message of the statement.

Putting the Components Together

Listing 5-2 declares a new category for the sample adapter, assigns a priority to the new category,
and declares an appender in order to specify the type of file to which log messages should be sent.

Listing 5-2 Sample XML Code for Declaring a New Log Category

<!-

IMPORTANT!!! ROOT Category for the adapter; making this unique prevents other
adapters from logging to your category
-—>

<category name='BEA_ WLS_SAMPLE_ADK' class='com.bea.logging.LogCategory'>
<!-
Default Priority Level; may be changed at runtime
DEBUG means log all messages from the adapter's code base
INFO means log informationals, warnings, errors, and audits
WARN means log warnings, errors, and audits
ERROR means log errors and audits
AUDIT means log audits only
-—>

<priority value='WARN' class='com.bea.logging.LogPriority'/>
<appender-ref ref='WebLogicAppender'/>

</category>

Note: YOuInuMSpeCﬁytheCkwsaScom.bea.logging.LogCategory.

How to Set Up Logging

Note: The following procedure is based on the assumption that you have cloned a development
environment by running the GenerateAdapterTemplate utility. For more information
about this utility, see Chapter 4, “Creating a Custom Development Environment.”

To set up the logging framework for your adapter:

Developing Adapters 5-7

Using the Logging Toolkit

5-8

1.

Identify all the basic components used in the adapter. For example, if your adapter has an
EventGenerator, you might want an EventGenerator component; if it supports a design-time
GUI, you need a design-time component.

Open the base log configuration file from the cloned adapter. This file is found in
WLI_HOME/adapters/ADAPTER/src/. Its name includes the .xml extension. For example,
the DBMS sample adapter configuration file is
WLI_HOME/adapters/dbms/src/BEA_WLS_DBMS_ADK.xml.

In the base log configuration file, add the category elements for all adapter components you
identified in step 1. For each category element, establish a priority. Listing 5-3 shows how a
category for an EventGenerator with a priority of DEBUG is added.

Listing 5-3 Sample Code for Adding an EventGenerator Log Category with a Priority of DEBUG

<category name='BEA_WLS_DBMS_ADK.EventGenerator'
class="'com.bea.logging.LogCategory'>
<priority value='DEBUG'
class='com.bea.logging.LogPriority'/>
</category>

Determine which appender is needed and specify it in the configuration file. If necessary,
add message formatting information. Listing 5-4 shows how a basic file appender is added
within the <appender> element. Instructions within the <layout> element identify the
message format.

Note: By default, webLogicAppender is used in all sample adapters provided by
WebLogic Integration.

Listing 5-4 Sample Code for Adding a File Appender and Layout Pattern

<!-- A basic file appender -->

<appender name='FileAppender'
class="'org.apache.Log4j.FileAppender'>

<!-- Send output to a file -->
<param name='File' value='BEA_WLS_DBMS_ADK.log'/>

<!-- Truncate existing -->

Developing Adapters

Logging Framework Classes

<param name="Append" value="true"/>
<!-- Use a basic LOG4J pattern layout -->
<layout class='org.apache.Log4j.PatternLayout'>
<param name='ConversionPattern' value='%$-5p $d{DATE} %$c{4}
$x - Sm&n'/>

</layout>

</appender>

At this point, you should check the setting in the following configuration files:

® WLI_HOME/adapters/ADAPTER/src/rar/META-INF/ra.xml and weblogic-ra.xml—
The AbstractManagedConnectionFactory uses the logging information entered in the
base configuration file to configure the log framework at initialization time.

® WLI_HOME/adapters/ADAPTER/src/war/web-inf/web.xml—The RequestHandler
(the parent of AbstractDesignTimeRequestHandler) uses the logging information
entered in the base configuration file to configure the log framework at initialization time.

In the preceding paths, ADAPTER represents the name of your adapter. For example, the name of
the DBMS sample adapter appears in the pathname for the associated configuration file, as
follows:

WLI_HOME/adapters/dbms/src/rar/META-INF/ra.xml

Logging Framework Classes

In addition to understanding the basic concepts of the logging framework, you also need to
understand the three main classes provided in the logging toolkit:

® com.bea.logging.ILogger
® com.bea.logging.LogContext

® com.bea.logging.LogManager

com.bea.logging.lLogger

This class is the main interface to the logging framework. It provides numerous convenience
methods for logging messages.

Developing Adapters 5-9

Using the Logging Toolkit

5-10

The “How to Set Up Logging” procedure explains how you can configure logging in the base log
configuration file. You can also configure logging programmatically by implementing the

following logging methods:

logger.setPriority (“DEBUG”) changes the minimum priority of messages printed from
the current ILogger.

logger.addRuntimeDestination (writer) adds the appender that is used when the
container passes its PrintWriter to the adapter.

logger.warn (“Some message”, true) logsa message with the priority level of WARN,
without using the ResourceBundle. The boolean indicates that the string is a message, not
a key.

logger.warn (“someKey”) logs a message with the priority level warN, by looking it up
with “someKey” in ResourceBundle.

logger.info(“someKey”, anObjArray) logs a message with the priority level of INFO
by looking up a template with someKey in ResourceBundle and filling in the blanks with
the elements of anoObjArray.

logger .error (exception) logs a message with the priority level of ERROR, by passing
an exception (Throwable) to this method. It calls getMessage () and includes a stack
trace. (All logging methods that take a Throwable as an argument log a stack trace.)

com.bea.logging.LogContext

This class encapsulates the information needed to identify an ILogger instance in the logging
framework. Currently, the LogContext class encapsulates a log category name and a locale, such
as en_Us. This class is the primary key for uniquely identifying an ILogger instance in the log
manager.

com.bea.logging.LogManager

This class provides a method that allows you to configure the logging framework and gain access
to ILogger instances.

To ensure that you can properly configure the logging toolkit for your adapter, the ADK
implements the LogManager's configure () method with the arguments shown in Listing 5-5.

Developing Adapters

Logging Framework Classes

Listing 5-5 Sample Code for Configuring the Logging Toolkit

public static LogContext

configure(String strLogConfigFile,

String strRootLogContext,

String strMessageBundleBase,

Locale locale,

ClassLoader classLoader)

Table 5-2 describes the arguments passed by configure ().

Table 5-2 configure() Arguments

Argument

Description

strLogConfigFile

File that contains the log configuration information for
your adapter. The file’s location should be included in
the classpath. We recommend that you include this file
in your adapter’s main JAR file so that it can be
included in the WAR and RAR files for your adapter.
This file should conform to the Log4j .dtd. The
Log43j .dtd file is provided in the Log4j . jarfile
provided with WebLogic Integration.

strRootLogContext

Name of the logical root of the category hierarchy for
your adapter. For the sample adapter, its value is
BEA_WLS_SAMPLE_ADK.

strMessageBundleBase

Base name of the message bundles for your adapter.
The ADK requires the use of message bundles. For the
sample adapter, its value is BEA_WLS_SAMPLE_ADK.

locale

Nation and language of the users. The logging toolkit
organizes categories into different hierarchies, based on
locale. For example, if your adapter supports two
locales, en_US and fr_CA, the logging toolkit
maintains two hierarchies: one for en_US and one for
fr CA.

classLoader

ClassLoader that should be used by the
LogManager to load resources, such as
ResourceBundles and log configuration files.

Developing Adapters

5-11

Using the Logging Toolkit

Once the configuration is complete, you can retrieve ILogger instances for your adapter by
supplying a LogContext object.

Listing 5-6 Sample Code for Supplying a LogContext Object

LogContext logContext = new LogContext ("BEA_WLS_SAMPLE_ADK",

java.util.Locale.US) ;

ILogger logger = LogManager.getLogger (logContext); logger.debug("I'm

logging now!");

The ADK hides most of the log configuration and setup from you. The
com.bea.adapter.spi.AbstractManagedConnectionFactory class configures the logging
toolkit for service connections and the AbstractEventGenerator configures the logging
toolkit for event connections. In addition, all of the Client Connector Interface (CCI) and Service
Provider Interface (SPI) base classes included in the ADK provide access to an ILogger and the
LogContext associated with it.

An adapter may also include layers that support the CCI/SPI layer, such as a socket layer used for
establishing communication with the EIS. To make it possible for such adapters to access the
correct ILogger object, you can take either of two approaches:

e The CCI/SPI layers can pass the LogContext object into the lower layers. This method
works, but it adds overhead.

e The CCI layer can establish the LogContext for the current running thread at the earliest
possible place in the code. The ADK’s
com.bea.adapter.cci.ConnectionFactoryImpl class sets the LogContext for the
current running thread in the getConnection () methods. The getConnection ()
methods are the first point of contact between a client program and your adapter.
Consequently, lower layers in an adapter can safely access the LogContext for the current
running thread by using the following code:

Listing 5-7 Code Accessing LogContext for the Current Thread

public static LogContext getLogContext (Thread t)
throws IllegalStateException, IllegalArgumentException

5-12 Developing Adapters

Internationalization and Localization of Log Messages

Additionally, we supply the following convenience method on LogManager:
public static ILogger getLogger () throws IllegalStateException

This method provides an ILogger for the current running thread. There is one caveat to
using this approach: lower layers should not store LogContext or ILogger as members.
Rather, they should dynamically retrieve them from LogManager. An
IllegalStateException is thrown if this method is called before a LogContext is set for
the current running thread.

Internationalization and Localization of Log Messages

Internationalization (I18N) and localization (L10N) are central concepts to the ADK logging
framework. All logging convenience methods on the ILogger interface, except the debug
methods, allow I18N. The implementation follows the Java Internationalization standards, using
ResourceBundle objects to store locale-specific messages or templates. Sun Microsystems
provides a good online tutorial on using the I18N and L10N standards of the Java language.

Saving Contextual Information in a Multithreaded Component

Most real-world systems must manage multiple clients simultaneously. In a typical multithreaded
implementation of such a system, different threads handle different clients. Logging is especially
well suited to tracing and debugging complex distributed applications. A common way of
differentiating between the logging output of two clients is to instantiate a separate category for
each client. This approach has a drawback however: categories proliferate and the overhead
required to manage them increases.

A lighter technique is to stamp each log request initiated from the same client interaction with a
unique identifier. Neil Harrison describes this method in “Patterns for Logging Diagnostic
Messages” in Pattern Languages of Program Design 3, edited by R. Martin, D. Riehle, and F.
Buschmann (Addison-Wesley, 1997).

To stamp each request with a unique identifier, the user pushes contextual information into the
Nested Diagnostic Context (NDC). The logging toolkit provides a separate interface for
accessing NDC methods. The interface is retrieved from the ILogger by using the
getNDCInterface () method.

NDC printing is turned on in the XML configuration file (with the symbol %x). Every time a log
request is made, the appropriate logging framework component includes the entire NDC stack for
the current thread in the log output. The user does not need to intervene in this process. In fact,
the user is responsible only for placing the correct information in the NDC by using the push and
pop methods at a few well-defined points in the code.

Developing Adapters 5-13

Using the Logging Toolkit

Listing 5-8 Sample Code

public void someAdapterMethod(String aClient) {
ILogger logger = getLogger () ;
INestedDiagnosticContext ndc = logger.getNDCInterface() ;
// I'm keeping track of this client name for all log messages
ndc.push ("User name=" + aClient);
// method body ..
ndc.pop () ;

}

A good place to use the NDC is in your adapter’s CCI Interaction object.

5-14 Developing Adapters

GHAPTERa

Developing a Service Adapter

A service connection receives an XML request document from a client and invokes the associated
function in the underlying EIS. Service connections are consumers of messages; they may or may
not provide responses. They perform the following four functions:

e They receive service requests from an external client.

e They transform an XML request document into the EIS-specific format. The request
document conforms to the request XML schema for the service. The request XML schema
is based on metadata in the EIS.

e They invoke the underlying function in the EIS and wait for a response from that function.

e They transform the response from the EIS-specific data format to an XML format that
conforms to the response XML schema for the service. The response XML schema is
based on metadata in the EIS.

This section contains information about the following subjects:
e Service Connections in a Run-Time Environment
e Flow of Events

e Step 1: Research Your Environment Requirements

Step 2: Configure the Development Environment

Step 3: Implement the SPI

Step 4: Implement the CCI

Developing Adapters 6-1

Developing a Service Adapter

e Step 5: Enable Environment Variable Support (Optional)
e Step 6: Test the Adapter

e Step 7: Deploy the Adapter

J2EE-Compliant Adapters Not Specific to WebLogic Integration

The steps outlined in this section are directed primarily at developing adapters for use with
WebLogic Integration. You can also use the ADK to develop adapters for use outside the
WebLogic Integration environment, however, by following the same steps with certain
modifications. For instructions, see Appendix A, “Creating an Adapter Not Specific to WebLogic
Integration.”

Service Connections in a Run-Time Environment

6-2

Figure 6-1 and Figure 6-2 show the processes that are executed when a service connection is used
in a run-time environment. Figure 6-1 shows an asynchronous service connection; Figure 6-2, a
synchronous adapter.

Figure 6-1 Asynchronous Service Connection in a Run-Time Environment

Developing Adapters

Service Connections in a Run-Time Environment

Azynch Azynch Azynch Asynich
" " App Wiew Service Reqguest Message Responze : " Responze
Cligrt A g Bean Responze Gueue Reqguest Message RSEN'CE App View Gueue
Listener Handller Listener eSnonse
| | | | | | | |
\%1) sterd | | | | I | |
create ; | o |
I'—O—“I potually eredted UG) 1 { This is the client's This s a thread This is 8 S |
ome instance and is implementstion of dedicated to the Message Listener
| | accessed via EJB | IMEleMErtatian A Vi g |
i Wiew
| | . . | the AzynchService . that forwards |
remate interface. This - deployment (only if N
	s & stateless session	Responze Listener N AzynchService					
		Interface. asynch is enabled). Response to an					
		T	AsynchService				
							Responzelistener.
: ey »				i			
invoklaServiceAsynchlE"Svm ",IDocumeFl‘rt, listener) : : : : : : :							
		nkwiliztener)					
1 1 1 I 1 1 - 1 1 1							
			cresteGueugReceivermsaligtenear)		Ny		
I T T T T T T =1							
				receive			
				I			
invokeServikeAaynoh" a1, "Svel” IDocument)							
R —							
	build AsynchServiceReguest						
	A Send(asybchReques{) »						
			retprn asynchREﬂupst				
: : : : : extract 441, Svct, IDoc:unJluent :	:						

| | | | | ! | | |
1 1 1 1 1 1 | new 1 l 1
I I I I I I ; T > I
1 | 1 1 1 1) # o w el | 1
					invokeService"Svel", IDPc:ument) »		
							1
				I retugn responze IDocyment			
				I T]			
! ! ! ! ! ! new respoﬁse IDocumert !	!						
				I + >			
					I	.	
					send(phjecitessage(asynchServiceRegponse) o		
! ! ! ! ! ! ! onMeskage(object meskage) !							
						- + t i	
					extract asynchServiceResponze		
!						I	
			1				
		opAsyncherviceResponse(asynchServiceResponge)					
		e T T 1					
		check return §tatus, process document					
		I } } .					
						I	

Figure 6-2 Synchronous Service Connection in a Run-Time Environment

Developing Adapters

6-3

Developing a Service Adapter

Client App. Viewy

Connec- Inter-
Al View JHDI tion Connec- rer- action Bs
Factory Spec

T
rlew(Contes, "A1) :
created()

b CIPEEAL)

Invoke#ervice(“Svﬂ " ‘Documem)
™
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I

eturn IDocument)
e —

|

|

|
InvokeBervice"Swct ", Document)

T T T
| |
1 1 1
This is actually created
using Home instance
and Is accessed via
EJB remate interface.
Thiz iz a stateless

e

Thiz iz the workhorse
object. it defines the
behavior of the adapter
available to the client.

This contains any
EIS specific
properties and is
the "personality” of
the service tt was

Thiz step effectively
combines the ixSpec
property data and XML
data in IDocument into

r%ﬁurn IDocumen1

Developing Adapters

|
|
|
|
|
|
|
'
|
|
|

!

|

|

| b

| Thiz step takes the
| native Els

| response dats

| stream and

! converts it to XML
| in an IDocumert.
|

|

|

|

|

|

|

|

|

|
|
|
|
|
|
|
I i |
| | sessian BB, 1 | placed into Jpi
| 1 1 1 1 1 | ouring App i
deployment.
| okup(Ay1-=Sve)) \ \ | | o
L . :
| | | I retrisve deployet! InteractionSped |
1 1 t t t t Ll
| | " | returnli=Spec | |
| | P ™ T T T 1
g hurm Spes					
lookypl &1 -=connFagtary)					
»					
		retrieve			
1 1	returnct	1 1 1			
1 — 1 1 1 1					
	"				
I gatCDnr{ectlon() o					
: : 1 lereate o retrievd : :					
	i				
e return c#nnecﬂnn h					
		"			
H	getinteraction()	»l			
I I I I [I					
[Ireturn irteraction					
1 3 T T 1	I a native EIS data				
		execute(ixSpec, Document)	o	atream	
T T T T ful					
1 1	1 petFunctioniame)				
		Data passed to the EIS	I		
			function iz & combination of		yetPropertyyalues
		ixSpec property data and	1		
			the Document dats passed Iaxtract.l’conver‘t vt from IDocum#nt(}(ML)		
I I I	by the user. Since the data		[
		cortert required by any I . I			
	I [given function iz & constant, function(ngtive data)				
		putting maore dats into I 1 fl			
! ! ! ixSpec means less data ! ML respon%e as native data					
	I	that the user must specify			
		extracticondert from native dbta			
s t					

Flow of Events

Flow of Events

Figure 6-3 outlines the steps required to develop a service connection.

Figure 6-3 Flow of Events in Service Connection Development Process

Devel t C iderations

You wilf!

Determine the EIS and appropriate service
Determine the connection

Determine the security needs

Determine the transaction support

2

Configure D Envi

You will:

Set up file structure

Assign Adapter Logical Mame
Create and update files

Set up the build process

3
Implement the Service Provider Interface

You will:

Implement the interfaces that comprise the SPI
including the

ManagedConnectionFactory

4
Implement the Client Connection Interface
Yoo wilf:
Implement the interfaces that comprise the CCT

including the
Connection interface and the Interaction interface

Test the Adapter

ou witl:
Ernplay the ADK Test Harness to test the
adapter
6
Deploy the Adapter
You will!

Update the RA.KML file
Create the RAR file
Create the EAR file
Deploy the EAR file

Developing Adapters 6-5

Developing a Service Adapter

Step 1: Research Your Environment Requirements

Before you start developing your service connection, you must identify the resources needed in
your environment to support it. This section provides a high-level description of the prerequisites
for a development environment. For a complete list of required resources, see Appendix C,
“Adapter Setup Worksheet.”

e Identify the required EIS and the service appropriate for it.

Based on your knowledge of the EIS, identify the interface to the back-end functionality.

o Identify the expensive connection object.

An expensive connection object is an object required to invoke a function within the EIS.
This function, in turn, is required for communicating with the EIS.

An expensive connection object requires an allocation of system resources, such as a
socket connection or DBMS connection. A valuable benefit of using the J2EE Connector
Architecture is that the application server pools these objects. Because the object for your
adapter will be pooled by the application server, you need to identify it.

o Identify your security needs.

To pass connection authentication across the connection request path, your adapter must
implement a ConnectionRequestInfo class. To facilitate such an implementation, the
ADK provides the class ConnectionRequestInfoMap. You can use this class to map
authorization information, such as username and password, to the connection.

The ADK conforms to the J2EE Connector Architecture Specification 1.0. For more
information about connection architecture security, see the “Security” section of that
document. You can download the specification in PDF format (for easy printing) from the
following URL.:

http://java.sun.com/j2ee/
e Identify the type of transaction support needed for your adapter.

Decide which of