
BEAWebLogic
Integration™

Introducing Trading
Partner Integration

Version 8.1 Service Pack 5
Revised: October 2005

Copyright
Copyright © 2004-2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, BEA JRockit, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread,
Top End, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic
Data Services Platform, BEA AquaLogic Enterprise Security, BEA AquaLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic
Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic Java Adapter for Mainframe,
BEA WebLogic JDriver, BEA WebLogic JRockit, BEA WebLogic Log Central, BEA WebLogic Personalization Server,
BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server Process Edition, BEA WebLogic WorkGroup
Edition, BEA WebLogic Workshop, and Liquid Computing are trademarks of BEA Systems, Inc. BEA Mission Critical
Support is a service mark of BEA Systems, Inc. All other company and product names may be the subject of intellectual
property rights reserved by third parties.

All other trademarks are the property of their respective companies.

Introducing Trading Partner Integration iii

Contents

1. Introduction
About Trading Partner Integration . 1-2

Visual Public/Private Process Integration. 1-2

Support for Leading Industry Protocols and Standards . 1-2

Trading Partner Management (TPM) and Repository Access 1-3

Easy Access to Run-Time Information. 1-3

High Performance and Availability . 1-3

High Security, Auditing, and Non-Repudiation . 1-3

Trading Partner Enablement . 1-3

Trading Partner Management Concepts. 1-4

About Trading Partner Management. 1-4

Trading Partners . 1-5

Services, Service Profiles, and Protocol Bindings . 1-8

Exchanging Data in the TPM Repository . 1-9

Default TPM Repository Settings. 1-10

MBean APIs for Third-Party Access . 1-11

Trading Partner Business Process Concepts . 1-11

About Business Processes for Trading Partner Integration 1-12

Conversations and Roles. 1-12

Types of Business Processes. 1-14

Messaging Concepts . 1-18

Messaging Services for Trading Partner Integration . 1-18

iv Introducing Trading Partner Integration

Business Protocols . 1-19

Business Messages . 1-19

Run-Time Processing of Business Messages . 1-20

Run-Time Monitoring Concepts . 1-25

Message Tracking. 1-25

Viewing Run-Time Statistics . 1-27

Summary of Trading Partner Integration Phases. 1-28

Phase 1: Plan the Solution . 1-28

Phase 2: Design, Build, and Test the Solution . 1-28

Phase 3: Deploy the Solution . 1-29

Phase 4: Administer and Tune the Solution . 1-30

Next Steps . 1-31

2. Introducing ebXML Solutions
About ebXML Solutions . 2-2

About ebXML . 2-2

ebXML Support in WebLogic Integration . 2-3

Interoperability with WebLogic Integration – Business Connect 2-4

ebXML Concepts. 2-4

ebXML Protocol Layer. 2-4

ebXML Business Messages . 2-5

Reliable Messaging . 2-7

ebXML Business Processes. 2-8

Guidelines for Building ebXML Business Processes. 2-8

ebXML Initiator Business Processes . 2-10

ebXML Participant Business Processes . 2-11

Tasks for Implementing an ebXML Solution . 2-11

Before You Begin . 2-12

Introducing Trading Partner Integration v

Planning the ebXML Solution . 2-12

Building the ebXML Solution . 2-13

Deploying the ebXML Solution . 2-14

Managing the ebXML Solution . 2-16

3. Introducing RosettaNet Solutions
About RosettaNet Solutions. 3-2

About RosettaNet . 3-2

RosettaNet Support in WebLogic Integration. 3-3

RosettaNet Concepts . 3-5

RosettaNet Protocol Layer . 3-5

Partner Interface Processes (PIPs) . 3-5

Public and Private Business Processes . 3-6

PIP Design Patterns . 3-6

RosettaNet Business Messages . 3-10

RosettaNet Business Processes . 3-15

Guidelines for Designing RosettaNet Business Processes . 3-15

RosettaNet Initiator Business Processes . 3-16

RosettaNet Participant Business Processes. 3-17

Tasks for Implementing a RosettaNet Solution . 3-17

Before You Begin . 3-18

Planning the RosettaNet Solution . 3-18

Building the RosettaNet Solution . 3-19

Deploying the RosettaNet Solution . 3-21

Managing the RosettaNet Solution . 3-22

4. Trading Partner Integration Security
Before You Begin . 4-1

vi Introducing Trading Partner Integration

Security Framework for Trading Partner Integration . 4-2

Summary of WebLogic Security Features . 4-2

WebLogic Server Default Security Configuration . 4-3

Components of Trading Partner Integration Security. 4-3

Default Domain Security Configuration . 4-8

Credential Stores . 4-9

Trading Partner Integration Resources Requiring Security Policies 4-11

Transport-Level Security . 4-12

Authentication . 4-12

Authenticating Remote Users in Two-Way Authentication. 4-23

Verifying Certificates in Two-Way Authentication . 4-27

Authorization . 4-31

Message-Level Security. 4-33

Digital Signatures . 4-33

NonRepudiation . 4-36

Encryption—PKCS7 Enveloped Data for RosettaNet 2.0 . 4-43

Using Proxy Servers with Trading Partner Integration . 4-44

Configuring Trading Partner Integration to Use an Outbound HTTP Proxy Server 4-44

Configuring WebLogic Integration with a Web Server and a WebLogic Proxy Plug-In .

4-46

Implementing Security for Trading Partner Integration . 4-48

To Learn More. 4-50

Security Topics in the WebLogic Platform Documentation Set. 4-50

BEA Security Advisories . 4-50

Reporting Security Issues . 4-50

dev2dev Security Resources. 4-50

Introducing Trading Partner Integration vii

A. Example: ebXML Security Configuration
Before You Begin .A-3

Step 1: Generating a Test Certificate .A-4

Configuring Windows to Run OpenSSL .A-4

Creating a Public/Private Key Pair .A-5

Generating the Test Certificate .A-5

Step 2: Configuring Keystores for WebLogic Integration. .A-5

Step 3: Configuring the Local Trading Partner in WebLogic IntegrationA-9

Configuring the Local Trading Partner. .A-9

Adding the Test Certificate to the Keystore .A-10

Editing the Trading Partner Binding. .A-12

Step 4: Configuring the SSL Settings in WebLogic Server. .A-12

Step 5: Exporting the WebLogic Integration Trading Partner Data A-15

Step 6: Configuring the Company Profile in WebLogic Integration - Business Connect

A-16

Creating and Configuring a Company Profile in WebLogic Integration - Business

Connect .A-16

Exporting the Company Profile Information .A-19

Step 7: Configuring the Remote Trading Partner in WebLogic IntegrationA-19

Step 8: Creating Services and Service Profiles in WebLogic IntegrationA-20

Creating the Trading Partner Service .A-21

Creating the Service Profile .A-21

Step 9: Configuring the iPlanet Server .A-23

Creating the Trust Database .A-23

Requesting a Trial Digital Certificate from Verisign .A-24

Installing the iPlanet Server Certificate .A-25

Requesting a Trusted CA Certificate from Verisign .A-25

viii Introducing Trading Partner Integration

Installing the Trusted CA Certificate .A-26

Installing the WebLogic Integration - Business Connect certificate A-27

Configuring iPlanet for SSL. .A-27

Step 10: Configuring the Partner Profile in WebLogic Integration - Business Connect.A-28

Importing the WebLogic Integration Partner Profile .A-28

Importing the iPlanet Server Certificate. .A-29

Importing the Certificate Authority Certificates .A-30

B. Example: RosettaNet Security Configuration
Keystores Used in the Example. B-3

Before You Begin . B-3

Step 1: Configuring the Local Trading Partner for the Trading Partner 1 Setup B-5

Configuring the Local Trading Partner . B-5

Adding the Certificates. B-6

Editing the Trading Partner Binding . B-8

Enabling the Trading Partner Profile . B-9

Exporting the Trading Partner Data . B-9

Exporting the Server Certificate . B-10

Step 2: Configuring the Local Trading Partner for the Trading Partner 2 Setup B-11

Step 3: Importing the Remote Trading Partner Information . B-12

Step 4: Creating Services and Service Profiles in WebLogic Integration B-13

Testing Tips . B-16

Listing the Keystore Content . B-16

Enabling the Trace Raw Messages Option. B-17

Introducing Trading Partner Integration 1-1

C H A P T E R 1

Introduction

This topic describes basic concepts, architecture, and tasks for creating WebLogic Integration
solutions for trading partner integration. It contains the following sections:

About Trading Partner Integration

Trading Partner Management Concepts

Trading Partner Business Process Concepts

Messaging Concepts

Run-Time Monitoring Concepts

Summary of Trading Partner Integration Phases

Next Steps

For a comprehensive overview of WebLogic Integration, see Introducing WebLogic Integration
at the following URL: http://edocs.bea.com/wli/docs81/overview/index.html. For a hands-on
walkthrough of building and running example ebXML and RosettaNet solutions in WebLogic
Integration, see Tutorials for Trading Partner Integration, which is available at:

Documentation and Example Files

http://dev2dev.bea.com/code/wli.jsp

Documentation Only

http://edocs.bea.com/wli/docs81/tptutorial/index.html

http://edocs.bea.com/wli/docs81/overview/index.html
http://dev2dev.bea.com/code/wli.jsp
http://edocs.bea.com/wli/docs81/tptutorial/index.html
http://edocs.bea.com/wli/docs81/overview/index.html

In t roduc t i on

1-2 Introducing Trading Partner Integration

About Trading Partner Integration
WebLogic Integration allows you to automate and manage relationships with your trading
partners so that you can streamline your business processes (with customers, suppliers,
distributors, and other partners) and get a top-down view of business transactions across the value
chain. Trading partner integration is also known as business-to-business (or B2B) integration.

WebLogic Integration provides the following trading partner integration capabilities:

Visual Public/Private Process Integration

Support for Leading Industry Protocols and Standards

Trading Partner Management (TPM) and Repository Access

Easy Access to Run-Time Information

High Performance and Availability

High Security, Auditing, and Non-Repudiation

Trading Partner Enablement

Visual Public/Private Process Integration
WebLogic Integration leverages the unified programming model and run-time framework of
WebLogic Workshop to provide end-to-end business process integration via easily implemented
controls and templates.

Support for Leading Industry Protocols and Standards
WebLogic Integration supports the following B2B protocols and standards:

ebXML 1.0 and 2.0, which is described in Chapter 2, “Introducing ebXML Solutions.”

RosettaNet 1.1 and 2.0, which is described in Chapter 3, “Introducing RosettaNet
Solutions.”

Web Services, which is described in “TPM Control For Business Processes and Web
Services” on page 1-16, “TPM Repository Lookups Via Process and Service Broker
Controls” on page 1-16, and in “Building Web Services” in the WebLogic Workshop Help,
which is available at the following URL:

http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/navBuildingW
ebServices.html

http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/navBuildingWebServices.html
http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/navBuildingWebServices.html
http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/navBuildingWebServices.html

About T rad ing Par tne r I nt eg ra t i on

Introducing Trading Partner Integration 1-3

Trading Partner Management (TPM) and Repository Access
WebLogic Integration provides sophisticated trading partner management capabilities through
the unified WebLogic Integration Administration Console, which enables administrators to easily
manage a central repository of trading partner profile information, including protocol bindings
used for secure message exchanges between trading partners, services representing public
processes, security, and bulk import / export capabilities. Authorized business processes and web
services can dynamically access trading partner information via easily implemented controls. In
addition to the Administration Console, MBean APIs are also provided so that third-party MBean
clients can be written to access the TPM repository, as described in “MBean APIs for Third-Party
Access” on page 1-11.

Easy Access to Run-Time Information
WebLogic Integration provides flexible run-time tracking, audit, and reporting capabilities to
show a top-down view of trading partner activities and business transactions across the value
chain.

High Performance and Availability
WebLogic Integration provides fast and reliable business message exchanges between trading
partners, supporting the clustered configuration for scalability and fail-over, message persistence
for recovery, low-level acknowledgements and receipts, and transactional integrity.

High Security, Auditing, and Non-Repudiation
WebLogic Integration ensures the private, secure, and reliable business message exchanges
among trading partners using transport level security with SSL and message level security with
digital signature and encryption. The certificates and private keys used for various purposes are
kept in protected keystores while the passwords are kept in encrypted forms in the WebLogic
Integration PasswordStore.

Trading Partner Enablement
WebLogic Integration works with WebLogic Integration – Business Connect, a lightweight B2B
server that is designed for small trading partners who do not have their own B2B server. For
trading partners who want a zero-install solution, WebLogic Integration can be easily extended
to offer a browser or FTP interface.

In t roduc t i on

1-4 Introducing Trading Partner Integration

Trading Partner Management Concepts
The basic building blocks of trading partner integration are trading partner profiles, services, and
service profiles. This topic introduces the concepts you need to understand regarding trading
partner management. It contains the following sections:

About Trading Partner Management

Trading Partners

Services, Service Profiles, and Protocol Bindings

Exchanging Data in the TPM Repository

Default TPM Repository Settings

MBean APIs for Third-Party Access

About Trading Partner Management
All trading partner profile, service, and service profile information resides in the Trading Partner
Management (TPM) repository, which is stored in a relational database. Administrators use the
WebLogic Integration Administration Console to maintain the TPM repository.

The following figure shows the Trading Partner Management home page in the WebLogic
Integration Administration Console, which allows administrators to manage trading partner
profiles, security certificates, protocol bindings, services, message tracking and auditing, trading
partner activity, system defaults, and importing / exporting trading partner profile information.

T rad ing Par tne r Management Concepts

Introducing Trading Partner Integration 1-5

Figure 1-1 Trading Partner Management in the WebLogic Integration Administration Console

For more information about the Trading Partner Management module in the WebLogic
Integration Administration Console, see Trading Partner Management in Managing WebLogic
Integration Solutions, including the following topics:

“About Trading Partner Management”

“Overview of the Trading Partner Management Module”

“Configuring Trading Partner Management”

Trading Partners
In WebLogic Integration, a trading partner is understood to be an entity that has an agreement
with another entity to participate in a specific business transaction, or service, by playing a
predefined role associated with a distinct business purpose. Trading partner applications form the
nodes in system-to-system interactions among business partners.

Types of Trading Partners
A group of trading partners can:

Exist entirely within a company, spanning multiple corporate departments (the business
purpose for such a community might be inventory management, for example)

http://edocs.bea.com/wli/docs81/manage/tpm.html

In t roduc t i on

1-6 Introducing Trading Partner Integration

Span multiple companies across firewalls and over the Internet (the business purpose might
be supply chain management or multistep purchasing interactions, for example)

Include trading partners both within a company and in other companies (one or more of the
trading partners within a company communicates with trading partners in other companies
across the Internet)

Trading Partner Profiles
A trading partner profile includes the trading partner’s identifying information, and any
certificates or protocol bindings required to conduct the business transactions. You use the
WebLogic Integration Administration Console to manage trading partner information. For more
information about managing trading partner profiles, see the following topics in Trading Partner
Management in Managing WebLogic Integration Solutions:

“Adding Trading Partner Profiles”

“Defining Trading Partner Profiles”

“Deleting Trading Partner Profiles”

“Deleting Trading Partner Profiles and Services Using Bulk Delete”

“Viewing and Changing Trading Partner Profiles”

“Listing and Locating Trading Partners”

Basic and Extended Properties
By default, each trading partner has the following set of basic properties:

Table 1-1 Basic Trading Partner Properties

Property Description

Business name Name of the trading partner.

Business ID Used for uniquely identifying trading partners in business processes.

Business ID type Categorizes the type of business ID, such as a DUNs number, customer or
vendor ID number, and so on.

Type Designates whether this trading partner is local to the host system or a
remote trading partner.

http://edocs.bea.com/wli/docs81/manage/tpm.html
http://edocs.bea.com/wli/docs81/manage/tpm.html

T rad ing Par tne r Management Concepts

Introducing Trading Partner Integration 1-7

In addition to these default properties, you can add custom extensions (extended properties) for
individual trading partners in the TPM repository to support application-specific requirements.
For example, you might want to include additional contact information, bank account
information for electronic transfers, or internal vendor IDs to your trading partners. You can
retrieve these properties from business processes and web services using the TPM control and
also by navigating subtrees within an XML document. For more information about managing
extended properties in the WebLogic Integration Administration Console, see the following
topics in Trading Partner Management in Managing WebLogic Integration Solutions:

“Adding a Custom Extension to a Trading Partner”

“Viewing and Changing a Custom Extension”

“Deleting Certificates, Bindings, or Custom Extensions”

Digital Certificates
WebLogic Integration uses digital certificates associated with trading partners to authenticate
their identity during message exchanges. For more information about how digital certificates are
stored and used in WebLogic Integration, see “Transport-Level Security” on page 4-12. For more
information about managing certificates in the WebLogic Integration Administration Console,
see the following topics in Trading Partner Management in Managing WebLogic Integration
Solutions:

“Adding Certificates to a Trading Partner”

Status Makes the trading partner visible (enabled) or hidden (disabled) for certain
operations, such as business process or web service access to the trading
partner information in the TPM repository. For more information, see
“Enabling and Disabling Trading Partner and Service Profiles” in Trading
Partner Management in Managing WebLogic Integration Solutions.

Description Brief description of the trading partner.

Default Trading Partner If selected, then the trading partner is designated the default trading
partner for sending or receiving messages for the local host system in the
absence of specific trading partner information.

Contact information Email, address, phone, and fax information

Table 1-1 Basic Trading Partner Properties

Property Description

http://edocs.bea.com/wli/docs81/manage/tpm.html
http://edocs.bea.com/wli/docs81/manage/tpm.html
http://edocs.bea.com/wli/docs81/manage/tpm.html
http://edocs.bea.com/wli/docs81/manage/tpm.html

In t roduc t i on

1-8 Introducing Trading Partner Integration

“Viewing and Changing Certificates”

“Deleting Certificates, Bindings, or Custom Extensions”

Services, Service Profiles, and Protocol Bindings
This topic describes services, service profiles, and protocol bindings.

Services
A service represents a business process that is either offered by a local trading partner, or a
business process that is being called via a control on a remote trading partner.

In the case of a service offered by a local trading partner, this element directly corresponds
to a web service or process type deployed in the local domain.

In the case of a service called by a local trading partner, the service corresponds to a
control in the local domain that is used to invoke the remote service.

For more information about managing services in the WebLogic Integration Administration
Console, see the following topics in Trading Partner Management in Managing WebLogic
Integration Solutions:

“Adding Services”

“Listing and Locating Services”

“Viewing and Changing Services”

“Deleting Services”

“Deleting Trading Partner Profiles and Services Using Bulk Delete”

Service Profiles
Service profiles encapsulate the concept of an agreement between two trading partners on the
service bindings to be used. Service profiles specify the protocol binding and URL endpoints for
the local and remote trading partners that offer and call the service. For more information about
managing service profiles in the WebLogic Integration Administration Console, see the
following topics in Trading Partner Management in Managing WebLogic Integration Solutions:

“Adding Service Profiles to a Service”

“Viewing and Changing Service Profiles”

http://edocs.bea.com/wli/docs81/manage/tpm.html
http://edocs.bea.com/wli/docs81/manage/tpm.html

T rad ing Par tne r Management Concepts

Introducing Trading Partner Integration 1-9

“Deleting Service Profiles from a Service”

“Enabling and Disabling Trading Partner and Service Profiles”

Protocol Bindings
Protocol bindings specify the business protocol (ebXML 1.0 or 2.0, or RosettaNet 1.1 or 2.0),
transport protocol (such as HTTP 1.0, HTTP 1.1, or HTTPS 1.1), URL end-point, time-outs,
number of retries, retry intervals, digital certificates, and other information. For more information
about managing protocol bindings in the WebLogic Integration Administration Console, see the
following topics in Trading Partner Management in Managing WebLogic Integration Solutions:

“Defining Protocol Bindings”

“Viewing and Changing Bindings”

“Adding Protocol Bindings to a Trading Partner”

“Deleting Certificates, Bindings, or Custom Extensions”

Note: When you are using the ebXML protocol for Trading Partner messaging, the values used
for Retry Number, Retry Interval, and Persist Duration are always the values of the
remote trading partner, not the local Trading Partner.

Exchanging Data in the TPM Repository
WebLogic Integration provides bulk management utilities that simplify the tasks of managing the
TPM repository and exchanging trading partner and service information with other trading
partners or porting the information to other servers. Data is exchanged via an intermediary XML
data file that conforms to the tpm.xsd schema that ships with WebLogic Integration. For trading
partners that use WebLogic Integration – Business Connect, you can also import a single trading
partner profile exported from WebLogic Integration – Business Connect or from WebLogic
Integration using the business connect format. To learn more about exporting profiles from
WebLogic Integration – Business Connect, refer to the WebLogic Integration – Business Connect
documentation, which can be found at the following URL:

http://edocs.bea.com/wlibc/docs81/index.html

http://e-docs.bea.com/wlibc/docs81/index.html
http://edocs.bea.com/wli/docs81/manage/tpm.html

In t roduc t i on

1-10 Introducing Trading Partner Integration

To perform export, import, or bulk delete operations in WebLogic Integration, you can use either
the WebLogic Integration Administration Console or a bulk loader command line utility. For
more information about bulk management of the TPM repository, see the following topics in
Trading Partner Management in Managing WebLogic Integration Solutions:

“TPM Schema”

“Using the Bulk Loader”

“Importing Management Data”

“Exporting Management Data”

“Deleting Trading Partner Profiles and Services Using Bulk Delete”

When you export TPM data using the console or the bulk loader utility, a file suitable for import
is created. To learn more about the required structure, and how the file is used in import, export,
and bulk delete operations, see Using the Bulk Loader in Managing WebLogic Integration
Solutions.

Default TPM Repository Settings
When you create a new WebLogic Integration domain using the BEA WebLogic Platform
Configuration Wizard, the Configuration Wizard automatically populates the Trading Partner
Management (TPM) repository with default trading partners and protocol bindings. For more
information about the Configuration Wizard, see Creating WebLogic Configurations Using the
Configuration Wizard in the WebLogic Platform documentation.

Default Trading Partners
The WebLogic Integration domain provides two preconfigured trading partners for development
and testing:

Table 1-2 Default Trading Partner Configuration in WebLogic Integration Domain

Trading Partner Name Trading
Partner ID

Description

Test_TradingPartner_1 000000001 Default local trading partner. In the tutorials, this trading
partner is usually the initiator of conversations.

Test_TradingPartner_2 000000002 In the tutorials, this trading partner is usually the
participant in conversations.

http://e-docs.bea.com/wli/docs81/manage/bulkloader.html
http://edocs.bea.com/platform/docs81/confgwiz/index.html
http://edocs.bea.com/platform/docs81/confgwiz/index.html
http://edocs.bea.com/wli/docs81/manage/tpm.html

Trad ing Par tne r Business P rocess Concepts

Introducing Trading Partner Integration 1-11

For more information about the Trading Partner Integration tutorials, see Tutorials for Trading
Partner Integration.

Default Protocol Bindings
Each default trading partner comes with the following preconfigured protocol bindings:

ebXML 1.0

ebXML 2.0

RosettaNet Implementation FrameWork (RNIF) 1.1

RNIF 2.0

Each protocol binding (except ebXML 1.0) is marked as default. At run-time, the default binding
can be used automatically in the absence of specific protocol information. If you are using
ebXML 1.0, you need to configure protocol bindings explicitly in the WebLogic Integration
Administration Console.

MBean APIs for Third-Party Access
WebLogic Integration supports user-written applications that use Java Management Extensions
(JMX) Management Beans (MBeans) to access the TPM repository:

Configuration MBean APIs are used to configure settings in the TPM repository.

Monitoring MBean APIs are used to retrieve run-time statistics.

For more information about the MBean APIs, see the WebLogic Integration Javadoc.

Trading Partner Business Process Concepts
This topic introduces the concepts you need to understand regarding trading partner business
processes. It contains the following sections:

About Business Processes for Trading Partner Integration

Conversations and Roles

Types of Business Processes

http://edocs.bea.com/wli/docs81/javadoc/index.html
http://e-docs.bea.com/wli/docs81/tptutorial/index.html
http://e-docs.bea.com/wli/docs81/tptutorial/index.html

In t roduc t i on

1-12 Introducing Trading Partner Integration

About Business Processes for Trading Partner Integration
In WebLogic Integration, trading partners communicate with each other via WebLogic
Workshop business processes that collaborate using the leading B2B protocols—ebXML or
RosettaNet. You build, test, and run business processes using WebLogic Workshop’s unified
programming model and run-time framework. WebLogic Workshop provides controls,
templates, and other mechanisms so that you can implement such business processes easily and
quickly. For an introduction to building business processes in WebLogic Workshop, see the
following topics in the WebLogic Workshop Help:

Tutorial: Building Your First Business Process

Tutorial: Building Your First Data Transformation

Guide to Building Business Processes

Using Integration Controls

For more information about building business processes for particular business protocols, see:

“ebXML Business Processes” on page 2-8

“RosettaNet Business Processes” on page 3-15

Conversations and Roles
This topic describes conversations between trading partners and the roles that trading partners
play in conversations.

Conversations
When trading partners exchange business messages for a business purpose, they participate in a
conversation. A conversation is a series of one or more business messages exchanged between
trading partners. The nature of each conversation is determined by its business purpose—whether
it is a complex or simple conversation, whether it is a long-running or short-lived conversation,
and so on.

Roles: Initiators and Participants
The business messages that can be exchanged between participants in the conversation are
determined by the roles that the trading partners play in the conversation. Each conversation
always involves the following two roles:

http://edocs.bea.com/workshop/docs81/doc/en/integration/tutorial/tutWLIProcessIntro.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/dttutorial/tutWLIDataTransIntro.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideIntro.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/controlsIntro.html

Trad ing Par tne r Business P rocess Concepts

Introducing Trading Partner Integration 1-13

Initiator—The trading partner who begins the business exchange by requesting some
service of a trading partner.

Participant—The trading partner who is responsible for providing the service and
responding to the initiator.

Role-Based Design Patterns
These two roles are fundamental to all business processes involved in conversations, as the design
patterns for initiator and participant business processes are very different. In a conversation, the
business processes perform very different work but in a collaborative manner—the initiator
business process sends a request to the participant, the participant business process receives the
request and sends the response back to the initiator, and so on.

Each trading partner that participates in the conversation in a given role must implement the
collaborative business process required for its role. Collaborative business process encapsulate
the processes required to handle the right business messages at the right time for a given trading
partner’s role in a conversation.

Role Naming
These roles are often named according to the nature of the conversation. For example, if the
conversation involves a supplier sending an invoice to a buyer and getting a confirmation that the
invoice was received, then the supplier is the initiator of the conversation and the buyer is the
participant. The invoice is the request document and the confirmation is the response document.

Collaborative Business Processes
In the WebLogic Integration environment, a collaborative business process is a business process
that implements a role in a conversation for a trading partner. The message choreography for a
conversation is defined by collaborative business process.

Sample Conversation
The following figure shows basic interactive business processes between trading partners. The
Buyer business process sends an order to the Seller using an agreed-upon business protocol
(ebXML or RosettaNet). The Seller business process receives the request, writes the order to a
database, receives an invoice from an internal back-end system, and then sends the invoice to the
Buyer using the same business protocol.

In t roduc t i on

1-14 Introducing Trading Partner Integration

Figure 1-2 Collaborative, Role-Based Business Processes In a Conversation

Types of Business Processes
This section describes different categories of business processes within trading partner
conversations.

Initiator and Participant Business Processes
This topic describes the WebLogic Workshop controls and templates that you can use for initiator
and participant business processes.

Initiator Business Processes and WebLogic Workshop Controls
The following table describes the WebLogic Workshop controls that you use in initiator business
processes to handle communications with participants:

Trad ing Par tne r Business P rocess Concepts

Introducing Trading Partner Integration 1-15

Participant Business Processes and WebLogic Workshop Templates
The following table describes the WebLogic Workshop templates that you use in participant
business processes to handle communications with conversation initiators:

Table 1-3 WebLogic Workshop Controls Used in Initiator Business Processes

Control Name Description

ebXML Control The ebXML control enables WebLogic Workshop business processes to
exchange business messages and data with trading partners via ebXML. The
ebXML control supports both the ebXML 1.0 and ebXML 2.0 messaging
services. You use ebXML controls in only initiator business processes to
manage the exchange of ebXML business messages with participants. For
more information about using the ebXML control, see ebXML Control in the
WebLogic Workshop Help and “ebXML Initiator Business Processes” on
page 2-10.

RosettaNet Control Enables WebLogic Workshop business processes to exchange business
messages and data with trading partners via RosettaNet. You use RosettaNet
controls only in initiator business processes to manage the exchange of
RosettaNet business messages with participants. For more information about
using the RosettaNet control, see RosettaNet Control in the WebLogic
Workshop Help and “RosettaNet Initiator Business Processes” on page 3-16.

http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/controlsRosettaNet.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/controlsebXML.html

In t roduc t i on

1-16 Introducing Trading Partner Integration

TPM Control For Business Processes and Web Services
The TPM (Trading Partner Management) control provides WebLogic Workshop business
processes and web services with query (read-only) access to trading partner and service
information stored in the TPM repository. Access to the TPM repository is restricted to active
trading partners, services, and active service profiles and their children. For more information
about using the TPM control in business processes and web services, see TPM Control in the
WebLogic Workshop Help. For more information about using web services, see “Building Web
Services” in the WebLogic Workshop Help.

TPM Repository Lookups Via Process and Service Broker Controls
Business processes and web services can also access data in the TPM repository via Process and
Service Broker controls. These controls provide the lookupTPMProperties XQuery function
that can be used in selectors. For more information about these controls, see Process Control and
Service Broker Control in the WebLogic Workshop Help.

Public and Private Business Processes
Business processes can span multiple applications, corporate departments, and business partners
(trading partners) behind a firewall and over the Internet. An enterprise’s business processes can
be divided into two broad categories: public and private.

Table 1-4 WebLogic Workshop Templates Used in Participant Business Processes

Business Protocol Description

ebXML participant
business process file

Template provides a head start for building public participant business
processes for ebXML conversations. Although this file is not required to build
ebXML participant business processes, it includes the nodes and business
process annotations needed to integrate easily with ebXML initiator business
processes. For information about using the participant business processes file,
see Building ebXML Participant Business Processes and @jpd:ebxml
Annotation in the WebLogic Workshop Help.

RosettaNet participant
business process file

Template provides a head start for building public participant business
processes for RosettaNet conversations. Although this file is not required to
build RosettaNet participant business processes, it includes the nodes and
business process annotations needed to integrate easily with RosettaNet
initiator business processes. For information about using participant business
processes, see Building RosettaNet Participant Business Processes and
@jpd:rosettanet Annotation in the WebLogic Workshop Help.

http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/controlsProcess.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideRosettaNet.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/controlsService.html
http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/navBuildingWebServices.html
http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/navBuildingWebServices.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideEbXML.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/javadoc-tag/jpd/ebxml.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/javadoc-tag/jpd/ebxml.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/javadoc-tag/jpd/rosettanet.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/controlsTPM.html

Trad ing Par tne r Business P rocess Concepts

Introducing Trading Partner Integration 1-17

Public Business Processes
Public processes are interface processes. Their definitions and designs are known, understood,
and agreed upon by the organizations using them, and may be customized or standardized across
an industry or industry segment, as in the case of RosettaNet Partner Interface Processes (PIPs).
They are part of a formal contract between trading partners that specifies the content and
semantics of message interchanges. These processes can be implemented in different ways by
different trading partners.

In the context of trading partner integration, when collaborative business processes are intended
to be reused in multiple conversations with different trading partners, the business processes
should be designed as public processes.

Private Business Processes
Participants in a conversation can also implement private, non-collaborative business processes,
which can integrate their back-end processing. Private processes are the business processes
conducted within an organization. Their definitions and designs are specific to that organization
and are not visible outside it. Within trading partner enterprises, private processes interface with
public processes and with back-end business systems. In the context of public processes, private
processes can be thought of as sub-business processes or subprocesses that implement tasks that
are part of the public business process. For example, a trading partner may implement a private
business process that works in conjunction with a collaborative business process and that
implements the processes that occur locally to a trading partner, but that are not necessarily
dictated by the service agreement.

Success and Failure Paths
In a conversation, business processes have two ultimate outcomes—success or failure:

The success path involves sending a business message and receiving an acknowledgement
from the remote trading partner that the business message was received.

The failure path handles problem scenarios, such as:

– The remote trading partner did not receive a business message that was sent.

– The local trading partner did not receive an acknowledgement that the remote trading
partner received the business message.

– The remote trading partner sends an error (the business message was rejected or some
other error occurred).

– The remote trading partner takes too long to reply (the business process expires).

In t roduc t i on

1-18 Introducing Trading Partner Integration

Business processes need to fully implement and account for all of these possible scenarios using
such WebLogic Workshop mechanisms as timer controls, retry loops, parallel branches, and so
on.

Each failed business message is saved to a file and the file URI and other information
(MessageID, FromTP, ToTP, ProcessURI, ProcessInstance, and Timestamp), if available, is
enqueued to a dedicated JMS queue named wli.b2b.failedmessage.queue. Custom queue
listeners or event generator can be created to handle message failures.

Messaging Concepts
This topic introduces the concepts you need to understand how WebLogic Integration handles the
delivery of business messages to and from trading partners. It contains the following sections:

Messaging Services for Trading Partner Integration

Business Protocols

Business Messages

Run-Time Processing of Business Messages

Message Tracking

Messaging Services for Trading Partner Integration
WebLogic Integration provides reliable, role-based XML messaging that supports enhanced send
and receive capabilities, including support for large messages. To support the fast and reliable
exchange of business messages among trading partners, WebLogic Integration provides the
following messaging services at run-time:

Generating and processing all non-content message headers (for RosettaNet) or envelopes
(for ebXML)

MIME packing and unpacking of the message

Message encryption / decryption

Digital signature generation / validation

XML validation

Message persistence for recovery purposes

Messag ing Concepts

Introducing Trading Partner Integration 1-19

Duplicate message detection

Maintaining a history of messaging activity

Support for a cluster environment for scalability

Business Protocols
A business protocol is associated with a business process, which governs the exchange of
business information between trading partners. It specifies the structure of business messages,
how to process the messages, and how to route them to the appropriate recipients. A business
protocol may also specify characteristics of messages related to persistence and reliability.

Business Messages
A business message is the basic unit of communication among trading partners and is exchanged
as part of a conversation. A business message contains one or more XML business documents,
one or more attachments, or a combination of both.

Business Message Formats
The contents and format of a business message depend on the business protocol chosen for the
conversation. For more information about specific message formats, see the following topics:

“RosettaNet Business Messages” on page 3-10

“ebXML Business Messages” on page 2-5

Attachments
Business messages can include attachments in XML and non-XML formats. WebLogic
Workshop business process support the following Java types for attachments:

Table 1-5 Types of Attachments in Business Messages

Data Type Description

XmlObject Default. Represents data in untyped XML format. The XML
data is not specified at design time.

XmlObject[] An array of one or more XmlObject elements. Only available
for ebXML messages.

In t roduc t i on

1-20 Introducing Trading Partner Integration

Note: Attachments can also be typed XML or typed MFL data as long as you specify the
corresponding XML Bean or MFL class name in the parameter.

To learn more about these data types, see Working with Data Types in the WebLogic Workshop
Help.

To expedite the processing of business messages in JMS queues at run-time, WebLogic
Integration stores larger attachments temporarily in a Document Store database.

Run-Time Processing of Business Messages
This section describes how ebXML and RosettaNet business messages are processed at runtime.
Inbound and outbound business messages traverse different paths. The overall flow is the same
regardless of the underlying business protocol, although WebLogic Integration’s messaging
infrastructure provides specialized underlying components to handle ebXML and RosettaNet
business messages separately.

Outgoing Message Path
The following figure shows the path of an outgoing business message:

RawData Represents any non-XML structured or unstructured data.
Examples include PDF, DOC, GIF, JPG, and other binary files.

RawData[] An array of one or more RawData elements. Only available for
ebXML messages.

MessageAttachment[] Array containing one or more parts of an ebXML or RosettaNet
business message. Message parts can be untyped XML data
(XmlObject data type) or non-XML data (RawData data
type). Used when sending different kinds of payloads (XML
and non-XML) in the same message. The actual number of
message parts might not be known until processed. To learn
about working with MessageAttachment objects, see
Using Message Attachments in the WebLogic Workshop Help.

Table 1-5 Types of Attachments in Business Messages (Continued)

Data Type Description

http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideDataTypesWorking.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/controls/controlsMsgAttachment.html

Messag ing Concepts

Introducing Trading Partner Integration 1-21

Figure 1-3 Path for Outgoing Trading Partner Messages

The preceding figure illustrates the following process flow:

1. A business message is sent from a WebLogic Integration business process.

– For initiator business processes, the business message is sent via a particular method on
the applicable (ebXML or RosettaNet) control.

– For participant business processes, the business message is sent via a method on the
business process callback.

2. The applicable encoder (RosettaNet or ebXML) packages the message appropriately using
input from:

– the outgoing business message

– any protocol-specific properties specified in annotations, such as the protocol name and
version

– trading partner and service information retrieved from the TPM repository

Packaging differs based on the business protocol used and settings configured in the TPM
repository. For example, the encoder handles encryption (for RosettaNet), digital
signatures, generation of required message headers, MIME packaging, message
persistence, and so on.

In t roduc t i on

1-22 Introducing Trading Partner Integration

3. The message is persisted in the WebLogic Integration document store and forwarded it to
the applicable JMS queue:

– ebXML: wli.internal.b2b.ebxmlencoder.queue

– RosettaNet: wli.internal.b2b.rosettanetencoder.queue

4. The message-driven bean associated with the queue sends the message out asynchronously
over HTTP(S) to the endpoint URL for the remote trading partner.

– ebXML: WLI-B2B ebXML

– RosettaNet: WLI-B2B RosettaNet

5. Message tracking information for the outbound message is sent to the message tracking
queue (wli.internal.msgtracking.queue). A message-driven bean that listens to this
queue updates the various message tracking tables based on the tracking level set in the
Trading Partner Management module of the WebLogic Integration Administration Console.

For configuration instructions, see “Configuring the Mode and Message Tracking” in
Trading Partner Management in Managing WebLogic Integration Solutions.

http://edocs.bea.com/wli/docs81/manage/tpm.html

Messag ing Concepts

Introducing Trading Partner Integration 1-23

Path for Incoming Trading Partner Messages
The following figure shows the path of an incoming business message:

Figure 1-4 Incoming Message Path

The preceding figure illustrates the following process flow:

1. An incoming trading message, sent to the local trading partner, is received by the Transport
Servlet Filter, which is specified in B2BdefaultWebApp/WEB-INF/web.xml.

2. The Transport Servlet Filter inspects the URL and determines whether the incoming request
is a TPI URL / request.

– If it is destined for TPI, then the Transport Servlet Filter authenticates the remote
trading partner (ensuring that the trading partner name is valid by retrieving its value
from a valid certificate associated with the trading partner), and then forwards the
message to the Transport Servlet, WLI-B2B HTTP Transport (packaged in b2b.war).

– If it is not destined for TPI, the message continues on to other filters and the final
destination servlet.

3. The Transport Servlet sends the message to the applicable decoder (RosettaNet or ebXML),
which unpacks the message.

In t roduc t i on

1-24 Introducing Trading Partner Integration

Unpacking differs based on the business protocol used and settings configured in the TPM
repository. For example, the decoder disassembles the various MIME parts of the message,
validating the XML components (for RosettaNet), handles any required decryption (for
RosettaNet), handles any digital signature verification, and so on.

4. The decoder persists the message (payload in ebXML, or Service Content in RosettaNet),
plus any attachments, in the WebLogic Integration Document Store.

5. The decoder determines the destination and originator parties, the service name, and other
relevant information that helps in dispatching the message.

6. The decoder dispatches the message to the Async Dispatcher Queue.

– If the decoder determines that this message is part of a new exchange, a new process
instance will be requested.

– If this message is part of an ongoing exchange, the decoder will request that the
message be dispatched to a particular receive node within an existing process instance.

The message parts will be packaged as appropriate for the receive node’s method signature.

7. For RosettaNet, the decoder also responds to the sending trading partner that the business
message was received.

Note: For ebXML, the decoder does a similar thing, but it depends on which reliable
message option you have selected.

8. The Async Dispatcher Module dispatches the message to the appropriate receive node on
the business process.

9. Message tracking information for an inbound message is sent to the Message Tracking
queue (wli.internal.msgtracking.queue). The message-driven bean listening to this
queue will update the various message tracking tables based on the tracking level set in the
Trading Partner Management module of the WebLogic Integration Administration Console.
For configuration instructions, see “Configuring the Mode and Message Tracking” in
Trading Partner Management in Managing WebLogic Integration Solutions.

http://edocs.bea.com/wli/docs81/manage/tpm.html

Run-T i me Moni to r ing Concepts

Introducing Trading Partner Integration 1-25

Run-Time Monitoring Concepts
WebLogic Integration the following run-time monitoring capabilities for trading partner
integration:

Message Tracking

Viewing Run-Time Statistics

Message Tracking
WebLogic Integration tracks the flow and state information of business messages that are sent to,
or retrieved from, other trading partners. You can view run-time data and statistics on the
Message Tracking module in the WebLogic Integration Administration Console to perform
real-time monitoring, process analysis, troubleshooting, and reporting for business messages.

The following example shows a summary of business messages:

In t roduc t i on

1-26 Introducing Trading Partner Integration

The following example shows the details of a single business message:

WebLogic Integration maintains message history information in the run-time repository. You
configure the message tracking level for individual services profiles, as described in “Adding
Service Profiles to a Service” in Trading Partner Management in Managing WebLogic
Integration Solutions. WebLogic Integration maintains message history information in the
run-time database, for which you can schedule periodic archives and purges. For more
information about message tracking, see “Monitoring Messages” in Trading Partner Management
in Managing WebLogic Integration Solutions.

http://edocs.bea.com/wli/docs81/manage/tpm.html
http://edocs.bea.com/wli/docs81/manage/tpm.html

Run-T i me Moni to r ing Concepts

Introducing Trading Partner Integration 1-27

Viewing Run-Time Statistics
The Statistics module in the WebLogic Integration Administration Console displays run-time
statistics for the system and for service profiles. The following example shows system summary
statistics:

The following example shows service profile statistics:

For more information, see “Viewing Statistics” in Trading Partner Management in Managing
WebLogic Integration Solutions.

http://edocs.bea.com/wli/docs81/manage/tpm.html

In t roduc t i on

1-28 Introducing Trading Partner Integration

Summary of Trading Partner Integration Phases
This topic provides an overview of the phases, tasks, and tools involved in implementing trading
partner integration solutions. It includes the following sections:

Phase 1: Plan the Solution

Phase 2: Design, Build, and Test the Solution

Phase 3: Deploy the Solution

Phase 4: Administer and Tune the Solution

Phase 1: Plan the Solution
The first phase is to plan the solution, which involves:

Determining the trading partners with which you want to integrate.

Define the business processes that you want to implement with each trading partner.

Determine the business protocol(s) used to communicate with each trading partner.

For more information, see the following topics:

“Planning the RosettaNet Solution” on page 3-18

“Planning the ebXML Solution” on page 2-12

Phase 2: Design, Build, and Test the Solution
Once you understand the high-level requirements for your trading partner integration solution,
you design, build, and test the solution using the following tools:

WebLogic Workshop, which provides a unified programming model and run-time
framework to provide end-to-end business process integration via easily implemented
controls and templates. Before you begin using WebLogic Workshop, it is recommended
that you complete the following tutorials so that you know how to build business processes
and create data transformations in WebLogic Workshop:

– Tutorial: Building Your First Business Process, which is available at:

http://edocs.bea.com/workshop/docs81/doc/en/integration/tutorial/tut
WLIProcessIntro.html

– Tutorial: Building Your First Data Transformation, which is available at:

http://edocs.bea.com/workshop/docs81/doc/en/integration/tutorial/tutWLIProcessIntro.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/tutorial/tutWLIProcessIntro.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/tutorial/tutWLIProcessIntro.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/dttutorial/tutWLIDataTransIntro.html

Summary of T rading Par tne r In teg ra t i on Phases

Introducing Trading Partner Integration 1-29

http://edocs.bea.com/workshop/docs81/doc/en/integration/dttutorial/t
utWLIDataTransIntro.html

BEA WebLogic Platform Configuration Wizard, which you use to create a domain for
your RosettaNet solution based on the WebLogic Integration domain template. The
Configuration Wizard automatically populates the Trading Partner Management (TPM)
repository with default trading partners and protocol bindings (described in “Default TPM
Repository Settings” on page 1-10) and default security settings (described in “Default
Domain Security Configuration” on page 4-8). For more information about the
Configuration Wizard, see Creating WebLogic Configurations Using the Configuration
Wizard in the WebLogic Platform documentation.

XMLSPY (optional), which is packaged with WebLogic Platform, to convert the
RosettaNet PIP DTDs to XSD files, if you want to use the WebLogic Workshop visual
mapper tools for data transformation. For more information, see “Converting RosettaNet
DTD Schemas to XSD Schemas” in “Tutorial: Building RosettaNet Solutions” in Tutorials
for Trading Partner Integration, which is available at:

http://dev2dev.bea.com/code/wli.jsp

For more information about the tasks associated with each business protocol, see the following
topics:

“Building the RosettaNet Solution” on page 3-19

“Building the ebXML Solution” on page 2-13

Phase 3: Deploy the Solution
Once you have designed, built, and tested the trading partner integration solution, you deploy it
in a production environment using the following tools:

WebLogic Integration Administration Console, which provides sophisticated trading
partner management capabilities, enabling administrators to easily manage a central
repository of trading partner profile information, including protocol bindings used for
secure message exchanges between trading partners, services representing public processes,
security, and bulk import / export capabilities. For detailed instructions on using the
WebLogic Integration Administration Console, see Managing WebLogic Integration
Solutions, which is available at the following URL:

http://edocs.bea.com/wli/docs81/manage/index.html

WebLogic Server Administration Console, which provides crucial functionality for
configuring and managing WebLogic domains, including clustering, high availability /

http://edocs.bea.com/workshop/docs81/doc/en/integration/dttutorial/tutWLIDataTransIntro.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/dttutorial/tutWLIDataTransIntro.html
http://edocs.bea.com/wli/docs81/tptutorial/rosettanet.html
http://dev2dev.bea.com/code/wli.jsp
http://edocs.bea.com/platform/docs81/confgwiz/index.html
http://edocs.bea.com/platform/docs81/confgwiz/index.html
http://edocs.bea.com/wli/docs81/manage/intro.html

In t roduc t i on

1-30 Introducing Trading Partner Integration

fail-over, security, application deployment, and other key services. For detailed
information, see the “Administration Console Online Help” at the following URL:

http://edocs.bea.com/wls/docs81/ConsoleHelp/index.html

Bulk Loader, which provides import / export capabilities for trading partner information
stored in the TPM repository. For instructions on using the bulk loader, see “Using the
Trading Partner Bulk Loader” in Managing WebLogic Integration Solutions at the
following URL:

http://edocs.bea.com/wli/docs81/manage/bulkloader.html

For more information, see the following topics:

For comprehensive information about deploying WebLogic Integration, see Deploying
WebLogic Integration Solutions, which is available at the following URL:

http://edocs.bea.com/wli/docs81/deploy/index.html

For detailed information about resources that you deploy in the production environment,
see “Trading Partner Integration Resources” in the “Introduction” to Deploying WebLogic
Integration Solutions, which is available at the following URL:

http://edocs.bea.com/wli/docs81/deploy/intro.html

For more information about the tasks associated with each business protocol, see the
following topics:

– “Deploying the RosettaNet Solution” on page 3-21

– “Deploying the ebXML Solution” on page 2-14

Phase 4: Administer and Tune the Solution
Once you have deployed a trading partner integration solution in a production environment, you
use the same tools—the WebLogic Integration Administration Console and the WebLogic Server
Administration Console—to monitor and tune your deployment.

For more information, see the following topics:

Managing WebLogic Integration Solutions, which is available at the following URL:

http://edocs.bea.com/wli/docs81/manage/index.html

“Managing the RosettaNet Solution” on page 3-22

“Managing the ebXML Solution” on page 2-16

http://edocs.bea.com/wli/docs81/manage/index.html
http://edocs.bea.com/wli/docs81/deploy/intro.html
http://edocs.bea.com/wli/docs81/deploy/index.html
http://edocs.bea.com/wli/docs81/deploy/intro.html
http://edocs.bea.com/wli/docs81/manage/bulkloader.html
http://edocs.bea.com/wls/docs81/ConsoleHelp/index.html

Next S teps

Introducing Trading Partner Integration 1-31

Next Steps
At this point, you can proceed to the following topics:

For an introduction to using the ebXML business protocol for trading partner integration,
see Chapter 2, “Introducing ebXML Solutions.”

For an introduction to using the RosettaNet business protocol for trading partner
integration, see Chapter 3, “Introducing RosettaNet Solutions.”

For an overview of security in trading partner integration solutions, see Chapter 4,
“Trading Partner Integration Security.”

In t roduc t i on

1-32 Introducing Trading Partner Integration

Introducing Trading Partner Integration 2-1

C H A P T E R 2

Introducing ebXML Solutions

This topic provides an introduction to implementing ebXML solutions with WebLogic
Integration. It contains the following sections:

About ebXML Solutions

ebXML Concepts

ebXML Business Processes

Tasks for Implementing an ebXML Solution

This topic focuses on information that is relevant to ebXML solutions only. Before you begin, be
sure to read the Chapter 1, “Introduction” to learn basic concepts for integrating trading partners
using WebLogic Integration. In addition, for a hands-on walkthrough of building example
ebXML solutions, see “Tutorial: Building ebXML Solutions,” in Tutorials for Trading Partner
Integration, which is available at:

Documentation and Example Files

http://dev2dev.bea.com/code/wli.jsp

Documentation Only

http://edocs.bea.com/wli/docs81/tptutorial/ebxml.html

http://dev2dev.bea.com/code/wli.jsp
http://edocs.bea.com/wli/docs81/tptutorial/ebxml.html

I n t roduc ing ebXML Sol ut ions

2-2 Introducing Trading Partner Integration

About ebXML Solutions
An ebXML solution is any WebLogic Integration solution that involves exchanging business
messages with trading partners using the ebXML business protocol. This topic describes ebXML
and how it is supported in WebLogic Integration. It contains the following sections:

About ebXML

ebXML Support in WebLogic Integration

Interoperability with WebLogic Integration – Business Connect

About ebXML
The ebXML business protocol is sponsored by UN/CEFACT and OASIS. The ebXML Web site
(http://www.ebxml.org) describes ebXML as “a modular suite of specifications that enables
enterprises of any size and in any geographical location to conduct business over the Internet.
Using ebXML, companies now have a standard method to exchange business messages, conduct
trading relationships, communicate data in common terms and define and register business
processes.”

ebXML Specifications
WebLogic Integration supports the following ebXML specifications:

ebXML Message Service Specification v2.0

ebXML Message Service Specification v1.0

These specification defines the message envelope and header document schema used to transfer
ebXML messages with a communication protocol such as HTTP. They provide a set of layered
extensions to the base Simple Object Access Protocol (SOAP) and SOAP Messages with
Attachments specifications. The ebXML Message Service provides security and reliability
features that are not provided in the specifications for SOAP and SOAP Messages with
Attachments. For more information about these and other ebXML specifications, see the
http://www.ebxml.org/specs/index.htm page on the ebXML web site.

SOAP Specifications
Information about SOAP, including the following documents, can be found at the World Wide
Web Consortium (W3C) Web site (http://www.w3c.org):

Simple Object Access Protocol (SOAP) 1.1at the following URL:

http://www.ebxml.org
http://www.ebxml.org/specs/index.htm
http://www.w3c.org

About ebXML So lut ions

Introducing Trading Partner Integration 2-3

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

SOAP Messages with Attachments at the following URL:

http://www.w3.org/TR/2000/NOTE-SOAP-attachments-20001211

ebXML Support in WebLogic Integration
This topic describes supported and unsupported ebXML features in this release of WebLogic
Integration.

Supported ebXML 1.0 and 2.0 Features
WebLogic Integration supports the following ebXML 1.0 and ebXML 2.0 features:

Unsupported ebXML 2.0 Features
This release of WebLogic Integration does not support certain optional features of ebXML2.0,
including:

Message Status Service

Table 2-1 WebLogic Integration Support for ebXML 1.0 and 2.0 Features

Feature Support

Packaging For ebXML 1.0 and 2.0—SOAP, SOAP headers, and
attachments

Security • Transport-level security: HTTP/S

• Message-level security: digital signatures (XML DSig) for
protection of the entire message from message tampering
(ebXML 1.0 and 2.0).

For more information, see Chapter 4, “Trading Partner
Integration Security.”

Reliable Messaging • ebXML 1.0: Best effort, and Once and only once

• ebXML 2.0: At least once, At most once, Best effort, and
Once and only once

For more information, see “Reliable Messaging” on page 2-7.

Clustering, High
Availability, and Recovery

For ebXML 1.0 and 2.0

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2000/NOTE-SOAP-attachments-20001211

I n t roduc ing ebXML Sol ut ions

2-4 Introducing Trading Partner Integration

Synchronous reply mode of communication

Message Order Module

Multi-Hop Module

This release does not provide XML DSIG at each payload level of an ebXML message.

Interoperability with WebLogic Integration – Business
Connect
WebLogic Integration – Business Connect is a lightweight client that implements the ebXML
business protocol. WebLogic Workshop business processes can exchange ebXML business
messages with trading partners that use WebLogic Integration – Business Connect. For more
information about WebLogic Integration – Business Connect, see the following URL:

http://edocs.bea.com/wlibc/docs81/index.html

Note: When exchanging ebXML messages with a trading partner that uses WebLogic
Integration - Business Connect, you can only use one version of the ebXML Message
Service protocol (either ebXML 1.0 or ebXML 2.0). WebLogic Integration - Business
Connect uses the same HTTP endpoint for a given trading partner regardless of the
ebXML version. You cannot configure more than one protocol binding for a given
partner in WebLogic Integration that uses the same HTTP endpoint.

In addition, XML Digital Signatures cannot be used to when receiving ebXML messages
from WLI Business Connect using ebXML MS 1.0. Instead, ebXML MS 2.0 should be
used.

ebXML Concepts
This topic describes ebXML concepts that you need to understand before implementing ebXML
business processes in WebLogic Integration. It contains the following sections:

ebXML Protocol Layer

ebXML Business Messages

Reliable Messaging

ebXML Protocol Layer
The ebXML protocol layer provides the ability to send and receive messages via the Internet
according to the ebXML Message Service specifications for transport, message packaging, and

http://edocs.bea.com/wlibc/docs81/index.html

ebXML Concepts

Introducing Trading Partner Integration 2-5

security. The ebXML 1.0 and 2.0 message service specifications are independent of the
communication protocol used. WebLogic Integration supports the HTTP(S) communication
protocol.

ebXML Business Messages
A business message is the basic unit of communication between trading partners. Business
messages are exchanged as part of a conversation. The roles in a conversation are implemented
by business processes, which choreograph the exchange of business messages.

Diagram of an ebXML Business Message
The following figure represents the structure of a business message exchanged in a conversation
based on the ebXML business protocol.

Figure 2-1 ebXML Business Message

An ebXML business message contains one XML business document and one or more
attachments. An ebXML message is a communication protocol-independent MIME/Multipart
message envelope, referred to as a message package. All message packages are structured in
compliance with the SOAP Messages with Attachments specification.

I n t roduc ing ebXML Sol ut ions

2-6 Introducing Trading Partner Integration

Logical MIME Parts of an ebXML Business Message
The message package shown in the preceding figure illustrates the following logical MIME parts:

Header Container—Logical container in which one SOAP 1.1-compliant message is
stored. This SOAP message is an XML document; its root element is the SOAP Envelope,
which, in turn, contains the following elements:

– SOAP Header—Contains ebXML-specific header elements, including the ebXML
MessageHeader element that specifies details such as from and to business IDs,
service that relates to the business process, and action that relates to a node in the
business process. The SOAP Header is a generic mechanism for adding features to a
SOAP message.

– SOAP Body—Container for message service handler control data and information
related to the payload parts of the message.

Payload Container—Zero or more payloads. Each payload can contain XML or
non-XML (binary) data.

WebLogic Integration provides a mechanism in WebLogic Workshop business processes for
retrieving the ebXML message envelope that relates to the Header container from incoming
business messages. For more information, see jpd:ebxml-method Annotation and jc:ebxml
Annotation in the WebLogic Workshop Help.

Message Attachments
An ebXML message can have any combination of payloads. The payloads can be all binary, all
XML, or a mixture of both. Any payload is sent as a MIME attachment to the SOAP message—
the SOAP body is not used to carry the payload.

WebLogic Integration provides a MessageAttachment[] data type that business processes can
use to retrieve payloads from an ebXML message, particularly when payloads consist of mixed
data types or when the number of payloads or the order of payloads is not known in advance. It
provides methods for determining the content of a payload (isXmlObject and isRawData) and
retrieving the contents of the payload (getXmlObject and getRawData) as untyped XML data
(XmlObject data type) or non-XML data (RawData data type). To learn about working with
MessageAttachment objects, see Using Message Attachments in the WebLogic Workshop
Help.

http://edocs.bea.com/workshop/docs81/doc/en/integration/javadoc-tag/jpd/ebxml-method.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/javadoc-tag/jc/ebxml.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/javadoc-tag/jc/ebxml.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/controls/controlsMsgAttachment.html

ebXML Concepts

Introducing Trading Partner Integration 2-7

Reliable Messaging
The ebXML business protocol supports reliable messaging, an optional but important capability
that allows you to configure different levels of quality of delivery service. Reliable messaging has
a reliability versus performance trade-off, as increasing the level of guarantee increases run-time
requirements on system resources. You configure reliable messaging in the WebLogic
Integration Administration Console, as described in “Defining an ebXML 1.0 or 2.0 Binding” in
“Defining Protocol Bindings” in Trading Partner Management in Managing WebLogic
Integration Solutions.

Of the eight qualities of service policies defined in the ebXML 2.0 Specification, WebLogic
Integration supports the following four (non-multihop) policies, which determine how
acknowledgements and duplicate messages are handled:

Table 2-2 Supported Reliable Messaging Policies

Policy Description

Best Effort (ebXML 1.0
and 2.0)

Best effort. No reliable messaging (no acknowledgement or duplicate
elimination).

Once and Only Once
(ebXML 1.0 and 2.0)

Requires acknowledgement and duplicate elimination. If a message is not
acknowledged, it is resent. If a duplicate message is received, it is ignored.
If this policy is selected, you can specify:

• Number of Retries—Number of times WebLogic Integration resends
a message in specific situations, such as timeouts, network failures,
and so on.

• Interval—Number of seconds that WebLogic Integration waits before
trying to resend a message.

• Persistence Duration—(Optional) Amount of time the message will be
kept in the repository. After this time, the message will be deleted and
any subsequent message sent with same ID will not be considered a
duplicate. If specified, the configured persistence duration must be
greater than the internally set TimeToLive, which is calculated as:

((Retries +1) * RetryInterval) < TimeToLive < Persistence Duration

Atleast Once
(ebXML 2.0 only)

Requires acknowledgement, but not duplicate elimination. If selected, you
can specify the number of retries and persistence duration.

Atmost Once
(ebXML 2.0 only)

Requires duplicate elimination, but not acknowledgement.

http://edocs.bea.com/wli/docs81/manage/tpm.html

I n t roduc ing ebXML Sol ut ions

2-8 Introducing Trading Partner Integration

ebXML Business Processes
This topic describes WebLogic Workshop business processes that implement ebXML
conversations. It contains the following sections:

Guidelines for Building ebXML Business Processes

ebXML Initiator Business Processes

ebXML Participant Business Processes

Guidelines for Building ebXML Business Processes
When designing business processes for ebXML solutions, consider the following guidelines:

You should thoroughly understand the content, choreography, roles, and other aspects of
the business processes that you want to implement. For example, you should understand:

– the design pattern

– the number and nature of business messages exchanged

– the contents of each business message

– the success path for the conversation (such as request / response sends and receipt
acknowledgements)

– the possible failure paths, such as retries, timeouts, and errors

You should thoroughly understand data transformations, if any, that occur between the
ebXML business message and back-end systems. For each transformation, you use a
transformation control to convert the service content of the ebXML business message to /
from the format(s) used in the private processes. For more information, see “Creating a
Transformation Control and a Transformation Method” in the WebLogic Workshop Help.

Initiator business processes can have multiple conversations with different participants.
Within a single business process, each ebXML conversation requires its own separate
ebXML control instance. If the conversation needs to involve a different participant, or if it
involves the same participant with different reliable messaging or security, create a
different ebXML control JCX file. Each ebXML control JCX in the initiator business
process and each business process JDP on participant side represents a service in the TPM
repository.

Decide which action mode you want to use for the initiator and participant business
processes. The action mode determine the value specified in the eb:Action element in the

http://edocs.bea.com/workshop/docs81/doc/en/integration/dtguide/dtguidemappercreatecontrolmethod.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/dtguide/dtguidemappercreatecontrolmethod.html

ebXML Busi ness P rocesses

Introducing Trading Partner Integration 2-9

message header of the ebXML message, which becomes important in cases where multiple
message exchanges occur within the same conversation. You can use one of the following
values in the ebxml-action-mode business process property:

– default—Sets the eb:Action element to SendMessage (default name) and
onMessage is the control callback method name.

– non-default—Sets the eb:Action element to the name of the method (on the
ebXML control) that sends the message in the initiator business process. For sending a
message from the initiator to the participant, this name must match the method name of
the Client Request node in the corresponding participant business process. For sending
a message from the participant to the initiator, the method name in the callback
interface for the client callback node in the participant business process must match the
method name (on the ebXML control) in the control callback interface in the initiator
business process.

Using non-default is recommended to ensure recovery and high availability.
If unspecified, the ebxml-action-mode element is set to non-default.

Determine how you want to specify the business process properties:

– Statically—using hard-coded annotations (jc:ebxml Annotation on the ebXML control
in initiator business processes and the @jpd:ebxml Annotation in participant business
processes).

– Dynamically—using pass-in values, such as business IDs, and calling the
setProperties method (only applicable to the ebXML control using jc:ebxml
Annotation).

Note: To ensure proper routing, the ebXML service name specified in the initiator and
participant business processes must match. In addition, for non-default action mode,
the method names in the ebXML control instance in the initiator business process
must match the method names in the corresponding participant business process.

To explicitly handle acknowledgements and errors, you can use onAck and onError nodes.

– For default Action mode, you must use an Event Choice node, as the order in which
acks and messages arrive is not guaranteed. For more information about the Event
Choice node, see “Receiving Multiple Events” in Guide to Building Business Processes
(available at
http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfgu

ideIntro.html).

– For non-default Action mode, these nodes can be modeled in any form, including
sequentially.

http://edocs.bea.com/workshop/docs81/doc/en/integration/javadoc-tag/jc/ebxml.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/javadoc-tag/jpd/ebxml.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideMulti.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideIntro.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideIntro.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideIntro.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/javadoc-tag/jc/ebxml.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/javadoc-tag/jc/ebxml.html

I n t roduc ing ebXML Sol ut ions

2-10 Introducing Trading Partner Integration

To retrieve message envelopes for incoming business messages, use the jpd:ebxml-method
Annotation (for participant business processes) and jc:ebxml Annotation (in the callback of
the ebXML control for initiator business processes). For example:

– For a participant business process:

@jpd:ebxml-method message-envelope="{env}"
public void request(XmlObject payload, XmlObject env) {
}

– For an initiator business process:

@jc:ebxml-method envelope="{env}"
public void onMessage(MessageAttachment[] reply, XmlObject env);

To retrieve message envelopes for outgoing business messages, you specify the return
value of the send method as XMLObject and provide explicit casting in the business
process, as in the following example:

– For an initiator business process:

public XmlObject send(messageAttachement[] msg)
XmlObject envelope = (XmlObject) control.send(msg)

– For a participant business process:

public XmlObject send(messageAttachement[] msg)
XmlObject envelope = (XmlObject) callback.send(msg)

Thoroughly test the implementation by simulating the choreography between the initiator
and participant business processes with sample data. By default, the Trading Partner
Management module runs in Test (development) mode, which allows you to run business
processes on the same machine (collocated) using preconfigured trading partners and a
default binding that uses the ebXML 2.0 protocol. The endpoints for both partners use
127.0.0.1:7001. The delivery-semantics is Once and Only Once. The ebxml service
name can be anything as long as it is same for both the initiator and participant business
processes. For more information, see “Default TPM Repository Settings” on page 1-10.

ebXML Initiator Business Processes
In WebLogic Integration, initiator business process use an ebXML control to enable WebLogic
Workshop business processes to exchange business messages and data with trading partners via
ebXML. You use ebXML controls only in initiator business processes to manage the exchange
of ebXML business messages with participants. The ebXML control provides methods for
sending business messages, acknowledgements, and errors, and it provides callback methods to
handle responses from participants.

http://edocs.bea.com/workshop/docs81/doc/en/integration/javadoc-tag/jpd/ebxml-method.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/javadoc-tag/jpd/ebxml-method.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/javadoc-tag/jc/ebxml.html

Tasks fo r Implement ing an ebXML Solu t i on

Introducing Trading Partner Integration 2-11

For detailed information about using the ebXML control in business processes, see the following
topics in ebXML Control in the WebLogic Workshop Help:

Overview: ebXML Control

Creating an ebXML Control

Using an ebXML Control

ebXML Control Interface

jc:ebxml Annotation

For an introduction to initiator business processes, see “Initiator and Participant Business
Processes” on page 1-14.

ebXML Participant Business Processes
In WebLogic Integration, you can easily create a new ebXML participant business process using
a WebLogic Workshop template, the ebXML participant business process file. This template
provides a head start for building public participant business processes for ebXML conversations.
Although this file is not required to build ebXML participant business processes, it includes the
nodes and business process annotations needed to integrate easily with ebXML initiator business
processes, as well as standard choreography patterns such as acknowledgements, time-outs,
retries, and errors. For information about using participant business processes, see Building
ebXML Participant Business Processes and @jpd:ebxml Annotation in the WebLogic Workshop
Help. For an introduction to participant business processes, see “Initiator and Participant
Business Processes” on page 1-14.

Tasks for Implementing an ebXML Solution
This topic provides a high-level, end-to-end overview of the tasks involved with implementing
an ebXML solution. It includes the following topics:

Before You Begin

Planning the ebXML Solution

Building the ebXML Solution

Deploying the ebXML Solution

Managing the ebXML Solution

http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/controlsebXMLOverview.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/controlsebXML.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/controlsebXMLCreate.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/controlsebXMLUsing.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideEbXML.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideEbXML.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/javadoc-tag/jpd/ebxml.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/java-class/com/bea/control/EBXMLControl.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/javadoc-tag/jc/ebxml.html

I n t roduc ing ebXML Sol ut ions

2-12 Introducing Trading Partner Integration

Note: This topic describes, in a general way, the tasks that are typically involved in
implementing an ebXML solution. The process of implementing ebXML solutions is
iterative, and it can vary in scope and sequence depending on your unique business
requirements and environment.

Before You Begin
Before you begin implementing an ebXML solution, we recommend that you review the
following documents:

Chapter 1, “Introduction,” to learn basic concepts for integrating trading partners using
WebLogic Integration.

This chapter, to learn basic concepts that are unique to ebXML solutions.

“Tutorial: Building ebXML Solutions” in Tutorials for Trading Partner Integration, which
is available at:

http://dev2dev.bea.com/code/wli.jsp

Planning the ebXML Solution
Once you have decided to use ebXML as the business protocol for your trading partner
integration (as described in “Phase 1: Plan the Solution” on page 1-28), you need to plan the
solution by determining certain factors in your implementation:

With which trading partners will you integrate?

For each trading partner, you need to determine:

– Which business process(es) will you integrate?

– What information about that trading partner is required for your implementation (for
example, their business ID and other basic profile information). For more information,
see “Trading Partner Profiles” on page 1-6.

For each business process, you need to determine:

– Which ebXML version (1.0 or 2.0) is required for exchanging business messages?

– What role (initiator or participant role) will your organization play in the business
message exchange?

– Do you need to create business processes for just your role, or for both roles in the
business process?

http://edocs.bea.com/wli/docs81/tptutorial/ebxml.html
http://dev2dev.bea.com/code/wli.jsp

Tasks fo r Implement ing an ebXML Solu t i on

Introducing Trading Partner Integration 2-13

– What are the back-end integration requirements for each business process? Will you
use private business processes, and if so, what private business processes are required?
What is the data format of, and connections with, associated back-end systems?

– Does your implementation need to meet legal standards for nonrepudiation, which is
described in “NonRepudiation” on page 4-36?

– What qualities of service are required for reliable messaging, as described in “Reliable
Messaging” on page 2-7?

The Tutorials for Trading Partner Integration provide examples of different ebXML solutions.
To learn more, see Tutorial: Building ebXML Solutions available at
http://edocs.bea.com/wli/docs81/tptutorial/ebxml.html

Building the ebXML Solution
After planning your ebXML solution, you build the business processes that implement the design
patterns you are using. For more information about design-time tools, see “Phase 2: Design,
Build, and Test the Solution” on page 1-28. For conceptual information about ebXML business
processes, see “ebXML Business Processes” on page 2-8.

The “Tutorial: Building ebXML Solutions” in Tutorials for Trading Partner Integration
(available at http://dev2dev.bea.com/code/wli.jsp) provides a detailed examples of the typical
tasks required to build an ebXML solution.

To build an ebXML solution, you would typically complete the following steps:

1. Using the BEA WebLogic Platform Configuration Wizard, create a new domain based on the
WebLogic Integration domain template. For instructions, see Creating WebLogic
Configurations Using the Configuration Wizard in the WebLogic Platform documentation.

2. From the Tutorials for Trading Partner Integration, copy the example implementation
associated with the design pattern that you want to use, if available.

3. Change the ebXML annotations for the new business processes:

– For initiator business processes, you change the ebxml-service-name attribute (and
others if needed) in the @jc:ebXML Annotation, which is described at the following
URL:

http://edocs.bea.com/workshop/docs81/doc/en/integration/javadoc-tag/
jc/ebxml.html

– For participant business processes, you change the ebxml-service-name attribute
(and others if needed) in the @jpd:ebxml Annotation, which is described at the
following URL.

http://edocs.bea.com/wli/docs81/tptutorial/ebxml.html
http://dev2dev.bea.com/code/wli.jsp
http://edocs.bea.com/platform/docs81/confgwiz/index.html
http://edocs.bea.com/platform/docs81/confgwiz/index.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/javadoc-tag/jc/ebxml.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/javadoc-tag/jc/ebxml.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/javadoc-tag/jpd/ebxml.html
http://edocs.bea.com/wli/docs81/tptutorial/ebxml.html
http://edocs.bea.com/wli/docs81/tptutorial/ebxml.html

I n t roduc ing ebXML Sol ut ions

2-14 Introducing Trading Partner Integration

http://edocs.bea.com/workshop/docs81/doc/en/integration/javadoc-tag/
jpd/ebxml.html

4. Rename the JPD and JCX files and change the names of other components to be more
descriptive of the new business process implementation, if you want.

– For more information about modifying the ebXML control in initiator business
processes, see ebXML Control in the WebLogic Workshop Help, which is available at:

http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/con
trolsebXML.html

– For more information about building ebXML participant business processes, see
Building ebXML Participant Business Processes in the WebLogic Workshop Help,
which is available at the following URL:

http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfgu
ideEbXML.html

5. Ensure that the ebXML Service name is the same for both the initiator and participant
business processes.

6. For non-default Action mode, ensure that method names are the same for both the initiator
and participant business processes.

7. Change the implementation of any back-end integration as needed.

8. Make any other changes to the business processes as needed.

9. Test the ebXML solution using the default TPM repository configuration (described in
“Default TPM Repository Settings” on page 1-10) and security settings (described in
“Default Domain Security Configuration” on page 4-8).

Deploying the ebXML Solution
Once you have built and tested your ebXML solution, you deploy the solution in a production
environment. For more information about deployment tools, see “Phase 3: Deploy the Solution”
on page 1-29. For detailed information about deploying WebLogic Integration solutions, see
Deploying WebLogic Integration Solutions, which is available at the following URL:

http://edocs.bea.com/wli/docs81/deploy/index.html

To deploy an ebXML solution, you would typically complete the following steps:

1. If necessary, using the BEA WebLogic Platform Configuration Wizard, create a new domain
based on the WebLogic Integration domain template. For instructions, see Creating

http://edocs.bea.com/platform/docs81/confgwiz/index.html
http://edocs.bea.com/wli/docs81/deploy/index.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/javadoc-tag/jpd/ebxml.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/controlsebXML.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/controlsebXML.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideEbXML.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideEbXML.html

Tasks fo r Implement ing an ebXML Solu t i on

Introducing Trading Partner Integration 2-15

WebLogic Configurations Using the Configuration Wizard in the WebLogic Platform
documentation.

2. Start WebLogic Server in production mode.

3. Using the WebLogic Integration Administration Console, complete the following tasks:

Note: If you have already defined trading partner information in your development
environment, you can export this information to an external file, and then import this
file into the production environment. For instructions, see “Exporting Management
Data” and “Importing Management Data” in Trading Partner Management.

a. Add trading partners to the TPM repository, including basic profile information, such as
trading partner IDs. For instructions, see “Adding Trading Partner Profiles” in Trading
Partner Management in Managing WebLogic Integration Solutions.

b. For each trading partner, define the protocol bindings (including ebXML version—1.0 or
2.0—and other settings) to be used for message exchanges with this trading partner.
For instructions, see “Defining an ebXML 1.0 or 2.0 Binding” in Trading Partner
Management.

c. For protocol bindings, you can (optionally) define signature transforms, as described in
“Configuring Signature Transforms for ebXML Bindings” in Trading Partner
Management.

d. Define the services that you will use in your deployment. For instructions, see “Adding
Services” in Trading Partner Management.

e. For each trading partner, define the service profiles (protocol bindings and URL endpoints
for local and remote trading partners) associated with each service. For instructions, see
“Adding Service Profiles to a Service” in Trading Partner Management.

4. Using the WebLogic Server Administration Console and WebLogic Integration
Administration Console, implement security for your deployment, as described in
“Implementing Security for Trading Partner Integration” on page 4-48.

5. Configure your domain (clustering, high availability, load balancing, fail-over, and so on) as
needed for your production environment. For instructions, see Deploying WebLogic
Integration Solutions, which is available at the following URL:

http://edocs.bea.com/wli/docs81/deploy/index.html

6. Deploy the application and other WebLogic Integration resources associated with your
ebXML solution. For instructions, see Deploying WebLogic Integration Solutions, which is
available at the following URL:

http://edocs.bea.com/wli/docs81/manage/tpm.html
http://edocs.bea.com/wli/docs81/deploy/index.html
http://edocs.bea.com/platform/docs81/confgwiz/index.html
http://edocs.bea.com/wli/docs81/manage/tpm.html
http://edocs.bea.com/wli/docs81/manage/tpm.html
http://edocs.bea.com/wli/docs81/manage/tpm.html
http://edocs.bea.com/wli/docs81/manage/tpm.html
http://edocs.bea.com/wli/docs81/manage/tpm.html
http://edocs.bea.com/wli/docs81/manage/tpm.html
http://edocs.bea.com/wli/docs81/manage/tpm.html
http://edocs.bea.com/wli/docs81/manage/tpm.html

I n t roduc ing ebXML Sol ut ions

2-16 Introducing Trading Partner Integration

http://edocs.bea.com/wli/docs81/deploy/index.html

Managing the ebXML Solution
Once you have deployed your ebXML solution, you would typically monitor run-time
performance, message volumes, resource utilization, and other factors to ensure optimum
operation on your solution. For more information about monitoring tools, see “Phase 4:
Administer and Tune the Solution” on page 1-30.

For instructions on monitoring trading partner integration resources, see the following topics in
in Trading Partner Management in Managing WebLogic Integration Solutions:

“Viewing Statistics”

“Monitoring Messages”

http://edocs.bea.com/wli/docs81/manage/tpm.html
http://edocs.bea.com/wli/docs81/deploy/index.html

Introducing Trading Partner Integration 3-1

C H A P T E R 3

Introducing RosettaNet Solutions

This topic provides an introduction to implementing RosettaNet solutions with WebLogic
Integration. It contains the following sections:

About RosettaNet Solutions

RosettaNet Concepts

RosettaNet Business Processes

Tasks for Implementing a RosettaNet Solution

This topic focuses on information that is relevant to RosettaNet solutions only. Before you begin,
be sure to read the Chapter 1, “Introduction” to learn basic concepts for integrating trading
partners using WebLogic Integration. In addition, for a hands-on walkthrough of example
RosettaNet solutions, see “Tutorial: Building RosettaNet Solutions,” in Tutorials for Trading
Partner Integration, which is available at:

Documentation and Example Files

http://dev2dev.bea.com/code/wli.jsp

Documentation Only

http://edocs.bea.com/wli/docs81/tptutorial/rosettanet.html

http://dev2dev.bea.com/code/wli.jsp
http://edocs.bea.com/wli/docs81/tptutorial/rosettanet.html

In t roduc ing Rose t taNe t So lut ions

3-2 Introducing Trading Partner Integration

About RosettaNet Solutions
A RosettaNet solution is any WebLogic Integration solution that involves exchanging business
messages with trading partners using the RosettaNet business protocol. This topic describes
RosettaNet and how it is supported in WebLogic Integration. It contains the following sections:

About RosettaNet

RosettaNet Support in WebLogic Integration

About RosettaNet
RosettaNet is a business protocol that enables enterprises to conduct business over the Internet.
The RosettaNet Consortium (http://www.rosettanet.org) is an independent, nonprofit
consortium of major information technology, electronic component, and semiconductor
manufacturing companies working to create and implement industry-wide, open process
standards. These processes are designed to standardize the electronic business interfaces used
between participating supply chain partners. The RosettaNet Implementation Framework (RNIF)
specification (available at http://www.rosettanet.org) is a guideline for applications that
implement RosettaNet Partner Interface Processes (PIPs). These PIPs are standardized
electronic business processes used between trading partners. For a list of PIPs, see
http://www.rosettanet.org.

Understanding RosettaNet
The following RosettaNet documents are necessary reading if you want to implement your own
PIP using the support for RosettaNet provided by WebLogic Integration, and recommended
reading if you want to fully understand the sample RosettaNet PIP implementations. These
documents are available at http://www.rosettanet.org:

RosettaNet Implementation Framework v1.1 (RNIF 1.1) —The RNIF is an open, common
networked-application framework designed to allow RosettaNet supply chain and solution
partners to collaborate in executing RosettaNet PIPs.

RosettaNet Implementation Framework v2.0 (RNIF 2.0)

RNIF Technical Advisories—RNIF Technical Advisories are updates and additional
information for RNIF 1.1 and RNIF 2.0.

RNIF Technical Recommendations—Technical Recommendations describe features or
enhancements not yet available in a published version of the RNIF v1.1. Implementation of
Technical Recommendations is optional.

http://www.rosettanet.org
http://www.rosettanet.org
http://www.rosettanet.org
http://www.rosettanet.org

About Rose t taNe t So lut ions

Introducing Trading Partner Integration 3-3

RNIF Business Signals, Service Header & Preamble—The RNIF business signals, service
header & preamble document contains message guidelines and XML document type
definitions (DTDs) for the RNIF business signals, service header, and preamble.

Understanding a PIP Blueprint—reference for PIP blueprint components and evaluation.
Available under Supporting Documents in the Standards Section.

PIPs of interest—PIPs are specialized system-to-system, XML-based dialogs that define
business processes between supply chain companies. Each PIP includes a technical
specification based on the RosettaNet Implementation Framework (RNIF), a Message
Guideline document with a PIP-specific version of the Business Dictionary, and XML
document type definitions (DTDs) for PIP-specific messages.

RosettaNet Support in WebLogic Integration
This topic describes supported and unsupported RosettaNet features in this release of WebLogic
Integration.

Supported RosettaNet 1.1 and 2.0 Features
WebLogic Integration supports the following RosettaNet 1.1 and RosettaNet 2.0 features:

Table 3-1 WebLogic Integration Support for RosettaNet 1.1 and 2.0 Features

Feature Supported (X=Yes)

RNIF 1.1 RNIF 2.0

Packaging

• RosettaNet Objects (RNO) X

• RosettaNet Business Message (RBM) with standard multipart MIME /
headers

X

• Attachments X X

Security

• Transport-level security (HTTP/S) X X

• Message-level security (digital signatures) to protect messages from
tampering

X X

• Standard S/MIME and encryption for message privacy X

In t roduc ing Rose t taNe t So lut ions

3-4 Introducing Trading Partner Integration

Unsupported RosettaNet Features
This release of WebLogic Integration does not support the following RNIF 2.0 features:

Message Handling

• Duplicate message removal X X

• Message persistence X X

• High-level ACK X X

• High-level retry X X

• Message status returned X X

• Explicit choreography. X X

Performance and Availability

• Clustering X X

• High Availability X X

• Recovery X X

Table 3-2 Unsupported RosettaNet Features

Feature Support

Synchronous response
messages

This WebLogic Integration release supports asynchronous one-action
and two-action activities only. It does not support synchronous
one-action and two-action activities.

Use of SMTP transport
with RNIF 2.0

While strongly biased toward HTTP transport, the RNIF 2.0 is
transport independent and includes documentation showing how
SMTP transport might be used. This WebLogic Integration release
supports HTTP and HTTPS transport but not SMTP.

Table 3-1 WebLogic Integration Support for RosettaNet 1.1 and 2.0 Features (Continued)

Feature Supported (X=Yes)

RNIF 1.1 RNIF 2.0

Roset taNet Concepts

Introducing Trading Partner Integration 3-5

RosettaNet Concepts
This topic describes RosettaNet concepts that you need to understand before implementing PIPs
in WebLogic Integration. It contains the following sections:

RosettaNet Protocol Layer

Partner Interface Processes (PIPs)

Public and Private Business Processes

PIP Design Patterns

RosettaNet Business Messages

RosettaNet Protocol Layer
The RosettaNet protocol layer provides the ability to send and receive messages by way of the
Internet according to the RNIF 1.1 and RNIF 2.0 specifications for transport, message packaging,
and security.

When a WebLogic Integration trading partner receives a RosettaNet message, the transport
servlet forwards the message to the RosettaNet decoder. The RosettaNet decoder processes the
protocol-specific message headers, identifies the trading partner that sent the message, and
forwards the RosettaNet message to a JMS queue. When a WebLogic Integration trading partner
sends a RosettaNet message, the RosettaNet encoder takes the message from the send-side JMS
outbound event queue and forwards it to the transport service.

Partner Interface Processes (PIPs)
RosettaNet PIPs define the public processes in which trading partners participate while
performing transactions. A PIP defines the roles, choreography, contents of business messages,
and other design details for a particular RosettaNet message exchange. For example, PIP 3A2
(Query Price and Availability) defines the process that a Customer trading partner performs with
a Product Supplier trading partner to get information about the price and availability of goods
that the Customer wants to buy and the Product Supplier wants to sell. Trading partners
participating in PIPs need to implement the public process defined by their role in the PIP, and
they need to connect their internal systems, as well as their private processes and business
processes, to the public process.

In t roduc ing Rose t taNe t So lut ions

3-6 Introducing Trading Partner Integration

Public and Private Business Processes
RosettaNet business processes follow the RosettaNet design strategy of separating public and
private business processes. Public business processes provide for the exchange of business
messages between trading partners, while private business processes interact with internal,
back-end systems. Public business processes have standardized, highly structured PIP
choreographies, while private business processes are highly customized to a trading partner’s
internal environment. Private processes communicate with public processes via well-defined
interfaces, typically based on JMS queues. For more information, see “Public and Private
Business Processes” on page 1-16.

PIP Design Patterns
RosettaNet PIPs follow one of the following design patterns:

Asynchronous single-action activity

Asynchronous two-action activity

Synchronous single-action /two-action activity

In WebLogic Integration, RosettaNet PIPs are implemented as public business processes.
Because the RosettaNet PIPs follow just a few general design patterns, once you have
implemented a single PIP, you can easily implement other PIPs with similar design patterns by
copying the implementation and making a few changes (such as changing the business message
schema definitions and business process properties).

For more information about RosettaNet design patterns and choreography, see the RosettaNet
Implementation Framework Core Specification (version V02.00.01) at
http://www.rosettanet.org.

Asynchronous Single-Action Activity
The asynchronous single-action (or one-action) activity design pattern involves a single action
(business message) from the sender and a signal (a protocol response, such as an
acknowledgement, ack-reject, or error) from the recipient back to the sender:

1. The initiator sends a business message to the participant.

2. Upon receiving the request business message, the participant sends a receipt
acknowledgement to the initiator.

http://www.rosettanet.org

Roset taNet Concepts

Introducing Trading Partner Integration 3-7

This design pattern is typical of one-way sends with acknowledgements, such as notifications
from one trading partner to another. An example of this design pattern is PIP3B2 (Notify of
Advance Shipment), which is described at http://www.rosettanet.org.

The following figure shows an example of how, in WebLogic Integration, public and private
business processes might be involved in an asynchronous one-action collaboration.

Figure 3-1 Public and Private Business Processes in an Asynchronous One-Action Activity Design Pattern

In this sample scenario, the message flow proceeds along the following path:

1. The initiator’s private business process creates the notification document (in some internal
data format) and submits it to the public business process.

2. The initiator’s public business process receives the notification document, converts it to the
appropriate PIP format, and sends it to the participant trading partner.

Note: For outbound and inbound messages, WebLogic Integration automatically handles
the packaging of the non-payload portion of RosettaNet business messages (such as
the version, content length, headers, and digital signatures), as well as transport-level
security and message-level security.

3. On the participant side, WebLogic Integration handles the process of receiving the
RosettaNet business message from the initiator, validating the contents of the inbound
business message, and forwarding the document to the appropriate public business process.

4. The participant’s public business process receives the notification document from the
initiator and sends an acknowledgement of receipt to the initiator.

http://www.rosettanet.org

In t roduc ing Rose t taNe t So lut ions

3-8 Introducing Trading Partner Integration

5. The participant’s public business process converts the document from the PIP format to the
appropriate internal data format, and then submits the document to the private business
process.

Alternatively, the private business processes on either end could handle the conversion from the
private data format to the appropriate RosettaNet PIP. In addition, private and public business
processes might use internal means to indicate whether or not the overall process succeeded.

Asynchronous Two-Action Activity
The asynchronous two-action activity design pattern involves two actions—a single action
(business message) from the sender to the recipient, and a single action (business message) from
the recipient back to the sender, and their corresponding signals (protocol responses, such as
acknowledgements, ack-rejects, or errors) to each other:

1. The initiator sends a business message request to the participant.

2. The participant sends a receipt acknowledgement to the initiator.

3. The participant sends a business message response to the initiator.

4. The initiator sends a receipt acknowledgement to the participant.

This design pattern is typical of two-way, bi-directional communications between trading
partners, such as a request / reply activities, that require mutual confirmation. An example of this
design pattern in PIP3A4 (Request Purchase Order), which is described at
http://www.rosettanet.org.

The following figure shows an example of how, in WebLogic Integration, public and private
business processes might be involved in an asynchronous two-action collaboration.

http://www.rosettanet.org

Roset taNet Concepts

Introducing Trading Partner Integration 3-9

Figure 3-2 Public and Private Business Processes in an Asynchronous Two-Action Activity Design Pattern

In this sample scenario, the message flow proceeds along the following path:

1. The initiator’s private business process creates the request (in some internal data format) and
submits it to the public business process.

2. The initiator’s public business process receives the request, converts it to the appropriate
PIP format, and sends it to the participant trading partner.

Note: For outbound and inbound messages, WebLogic Integration automatically handles
the packaging of the non-payload portion of RosettaNet business messages (such as
the version, content length, headers, and digital signatures), as well as transport-level
security and message-level security.

3. On the participant side, WebLogic Integration handles the process of receiving the
RosettaNet business message from the initiator, validating the contents of the inbound
business message, and forwarding the document to the appropriate public business process.

4. The participant’s public business process receives the request document from the initiator
and sends an acknowledgement of receipt to the initiator.

5. The participant’s public business process converts the request document from the PIP
format to the appropriate internal data format, and then submits the request to the private
business process.

6. The participant’s private business process handles the request, creates a response in some
internal format, and sends the response to the participant’s public business process.

In t roduc ing Rose t taNe t So lut ions

3-10 Introducing Trading Partner Integration

7. The participant’s public business process converts the response from the internal data
format to the PIP format, and then sends the response document to the initiator.

8. On the initiator side, WebLogic Integration handles the process of receiving the RosettaNet
business message from the initiator, validating the contents of the inbound business
message, and forwarding the document to the appropriate public business process.

9. The participant’s public business process receives the response document and sends an
acknowledgement of receipt to the participant.

10. The initiator’s public business process converts the response document from the PIP format
to the appropriate internal data format, and then submits the response to the private business
process.

As with the single-action activity design pattern, the private business processes on either end
could handle the conversion from the private data format to the appropriate RosettaNet PIP. In
addition, private and public business processes might use internal means to indicate whether or
not the overall process succeeded.

Synchronous One-Action / Two-Action Activity
RosettaNet also specifies synchronous versions of the asynchronous design patterns, in which an
immediate response is required. The current release of WebLogic Integration does not support
synchronous design patterns.

RosettaNet Business Messages
WebLogic Integration supports sending and receiving RosettaNet messages according to the
RosettaNet Implementation Framework (RNIF) 1.1 and 2.0. A business message exchanged via
the RosettaNet 1.1 protocol is called a RosettaNet Object (RNO). The business message
exchanged via the RosettaNet 2.0 protocol is called a RosettaNet Business Message (RBM).

Note: In this document, we refer to both RNOs and RBMs as RosettaNet business messages.

The RNIF provides exchange protocols for implementation of the PIPs. The RNIF specifies
information exchange between trading partner servers using XML, covering transport, routing
and packaging, security, signals, and trading partner agreements. Some elements of RosettaNet
messages are common across all RosettaNet messages, while other elements are unique to
specific PIPs. To ensure that RosettaNet messages are structured and processed in a consistent
manner, each PIP comes with a message guideline and XML document type definition (DTD).

Note: WebLogic Integration supports character encoding for sending messages. WebLogic
Integration uses UTF-8 character encoding in all RosettaNet messages.

Roset taNet Concepts

Introducing Trading Partner Integration 3-11

Components of a RosettaNet Business Message
This section describes the components of RosettaNet business messages.

RosettaNet Object (RNO) for RNIF 1.1
The following figure shows the components of a RosettaNet business message for RNIF 1.1.

Figure 3-3 Components of a RosettaNet Object (RNO) for RNIF 1.1

The following table describes the components of an RNO:

Table 3-3 Components of an RNO

Component Description

Version Specifies the RNIF version (1.1), in binary format.

Content Length Length of the multi-part MIME message, in binary format.

In t roduc ing Rose t taNe t So lut ions

3-12 Introducing Trading Partner Integration

RosettaNet Business Message (RBM) for RNIF 2.0
The RosettaNet Implementation Framework 2.0 introduced the following notable differences in
the composition of a RosettaNet Business Message (RBM):

In RNIF 2.0, the Delivery Header was added.

In RNIF 2.0 (but not in RNIF 1.1), the Service Header and Content can be encrypted.
Using the WebLogic Integration Administration Console, you can configure the system to
encrypt the Service Content, Service Header, and any attachments when a message is sent.
For more information about encryption, see “Encryption—PKCS7 Enveloped Data for
RosettaNet 2.0” on page 4-43.

The following figure shows the components of an RBM:

Headers Includes the following headers:

• Preamble Header

• Service Header

Content
(Payload)

Includes the following components:

• Service Content—contains either an action or a signal message.

• Attachments—Optional. Can contain zero or more attachments, which consist of
XML and non-XML (binary) data. Examples of possible attachments include
Word documents, GIF images, PDF files, and so on. The information for each
attachment is contained in the Service Header of the message.

Digital Signature
(Optional)

Optional. Digital signature.

• Length of the signature in binary format.

• Signature (PKCS7) in binary format.

Table 3-3 Components of an RNO (Continued)

Component Description

Roset taNet Concepts

Introducing Trading Partner Integration 3-13

Figure 3-4 Components of a RosettaNet Business Message for RNIF 2.0

The following table describes the components of a RBM:

Table 3-4 Components of an RBM

Component Description

Headers Includes the following headers:

• Preamble Header

• Delivery Header

• Service Header

Payload Includes the following components:

• Service Content—Contains either an action or a signal message.

• Attachments—Optional. Can contain zero or more attachments, which consist of
XML and non-XML (binary) data. Examples of possible attachments include
Word documents, GIF images, PDF files, and so on. The information for each
attachment is contained in the Service Header of the message.

In t roduc ing Rose t taNe t So lut ions

3-14 Introducing Trading Partner Integration

WebLogic Integration Handles the Non-Payload Portion of RosettaNet Messages
When sending and receiving RosettaNet business messages, WebLogic Integration automatically
handles the non-payload portion (version, content length, headers, and digital signatures) of the
business message, as well as packaging, transport-level security, and message-level security, so
that WebLogic Workshop business processes can focus on Service Content and attachments.

Validation of RosettaNet Business Messages
The RosettaNet PIP definitions contain detailed validation rules for messages exchanged in the
PIP. These rules are significantly more stringent than the validation expressed within an XML
Document Type Definition (DTD). The required validation rules are expressed in XML schema
documents (XSD), which are based on the World Wide Web Consortium (W3C) 2000 XML
Schema Definitions (XSD) schema.

WebLogic Integration provides message validation services for both RNIF 1.1 and RNIF 2.0
messages. The validation performed depends on the following factors:

 The validateServiceHeader variable settings. If this is set to true, the service header of all
messages sent and received for a template are validated. The type of validation performed is
dependent on the validation settings of the business process.

The validation options specified in the business process.

Schema validation according to the XSD schemas you have included in your project.

Configuring RosettaNet Message Validation
To configure these options in the WebLogic Integration Administration Console:

1. Add a service for RosettaNet, as described in “Adding Services” in Trading Partner
Management.

2. Edit this service, as described in “Viewing and Changing Services” in Trading Partner
Management.

3. On the View and Edit Service Details page, click Add Defaults.

4. Configure validation options for RosettaNet business messages.

Further Reading on RosettaNet Message Validation
For more information about RosettaNet message validation, see the following documents:

http://edocs.bea.com/wli/docs81/manage/tpm.html
http://edocs.bea.com/wli/docs81/manage/tpm.html
http://edocs.bea.com/wli/docs81/manage/tpm.html
http://edocs.bea.com/wli/docs81/manage/tpm.html

Rose t taNet Busi ness P rocesses

Introducing Trading Partner Integration 3-15

The RosettaNet Implementation Framework (RNIF) specification, which provides an
explanation of the exception handling process, is available at the following URL:

http://www.rosettanet.org

Information about XML schema tools, usage, specifications, and development is available
at the following URL:

http://www.w3.org/XML/Schema

The XML Schema Part 0: Primer, which provides useful descriptions of the features and
capabilities of XML schema, is available at the following URL:

http://www.w3.org/TR/xmlschema-0/

RosettaNet Business Processes
This topic describes WebLogic Workshop business processes that implement RosettaNet PIPs.
It contains the following sections:

Guidelines for Designing RosettaNet Business Processes

RosettaNet Initiator Business Processes

RosettaNet Participant Business Processes

Guidelines for Designing RosettaNet Business Processes
The specification for each RosettaNet PIP is highly structured. It specifies roles, message
choreography, business message structure, and other design details. Implementing a RosettaNet
business process requires adherence to the PIP specification for that PIP role. Therefore, when
designing business processes for RosettaNet solutions, consider the following guidelines:

You should thoroughly understand the schema, choreography, roles, and other aspects of
the PIP that you want to implement. For example, you should understand:

– the design pattern (asynchronous one-action and two-action activities)

– the number and nature of business messages exchanged

– the schema for each business message

– the success path for the message exchange (such as request / response sends and receipt
acknowledgements)

– the possible failure paths, such as retries, timeouts, errors, rejections, and notifications
of failure

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/XML/Schema
http://www.rosettanet.org

In t roduc ing Rose t taNe t So lut ions

3-16 Introducing Trading Partner Integration

For a list of PIPs, see http://www.rosettanet.org.

You should obtain every provided DTD schema that the PIP provides for business
messages. You might need to convert this DTD schema to an XSD schema for WebLogic
Integration, as described in “Converting RosettaNet DTD Schemas to XSD Schemas” in
“Tutorial: Building RosettaNet Solutions” in Tutorials for Trading Partner Integration,
which is available at:

http://dev2dev.bea.com/code/wli.jsp

You should thoroughly understand the data transformation between any private processes
and the Service Content exchanged in the public (PIP) business processes. For each
transformation, you use a transformation control to convert the Service Content and
attachments of the RosettaNet business message to / from the format(s) used in the private
processes. For more information, see Creating a Transformation Control and a
Transformation Method in the WebLogic Workshop Help.

Determine how you want to specify the business process properties:

– Statically—using hard-coded annotations (jc:rosettanet Tag on the RosettaNet control
in initiator business processes and the @jpd:rosettanet Annotation in participant
business processes). This is recommended for specifying certain static information
about the PIP, such as the PIP name and version.

– Dynamically—using passed-in values, such as DUNS numbers, for initiator and
participant IDs, and then calling the setProperties method. You can also use
XQuery selectors to extract the business IDs and other information from incoming
messages.

Thoroughly test the implementation by simulating the choreography between the initiator
and participant business processes with sample data. By default, WebLogic Integration runs
in Test (development) mode, which allows you to run business processes on the same
machine (collocated) using preconfigured trading partners and a default binding that uses
either the RNIF 1.1 or 2.0 protocol. The endpoints for both partners use 127.0.0.1:7001.
For more information, see “Default TPM Repository Settings” on page 1-10.

RosettaNet Initiator Business Processes
In WebLogic Integration, initiator business processes use a RosettaNet control to enable
WebLogic Workshop business processes to exchange business messages and data with trading
partners via RosettaNet. You use RosettaNet controls only in initiator business processes to
manage the exchange of RosettaNet business messages with participants. The RosettaNet control

http://edocs.bea.com/workshop/docs81/doc/en/integration/dtguide/dtguidemappercreatecontrolmethod.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/dtguide/dtguidemappercreatecontrolmethod.html
http://dev2dev.bea.com/code/wli.jsp
http://edocs.bea.com/wli/docs81/tptutorial/rosettanet.html
http://www.rosettanet.org
http://edocs.bea.com/workshop/docs81/doc/en/integration/javadoc-tag/jc/rosettanet.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/javadoc-tag/jpd/rosettanet.html

Tasks f or Imp lement ing a Roset taNet So lu t i on

Introducing Trading Partner Integration 3-17

provides methods for sending business messages, acknowledgements, and errors, and it provides
callback methods to handle responses from participants.

For detailed information about using the RosettaNet control in business processes, see the
following topics in RosettaNet Control in the WebLogic Workshop Help:

Overview: RosettaNet Control

Creating a New RosettaNet Control

Using a RosettaNet Control

RosettaNet Control Interface

jc:rosettanet Annotation

For an introduction to initiator business processes, see “Initiator and Participant Business
Processes” on page 1-14.

RosettaNet Participant Business Processes
In WebLogic Integration, you can easily create a new RosettaNet participant business process
using a WebLogic Workshop template (the RosettaNet participant business process file). This
template provides a head start for building public participant business processes for RosettaNet
message exchanges. Although this file is not required to build RosettaNet participant business
processes, it includes the nodes and business process annotations needed to integrate easily with
RosettaNet initiator business processes, as well as standard choreography patterns such as
acknowledgements, time-outs, retries, and errors. For information about creating participant
business processes, see:

 Building RosettaNet Participant Business Processes and @jpd:rosettanet Annotation in the
WebLogic Workshop Help

“Tutorial: Building RosettaNet Solutions” in Tutorials for Trading Partner Integration
(available at http://dev2dev.bea.com/code/wli.jsp)

For an introduction to participant business processes, see “Initiator and Participant Business
Processes” on page 1-14.

Tasks for Implementing a RosettaNet Solution
This topic provides a high-level, end-to-end overview of the tasks involved with implementing a
RosettaNet solution. It includes the following topics:

http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/controlsRosettaNet.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/controlsRosettaNetOverview.html

http://edocs.bea.com/workshop/docs81/doc/en/integration/java-class/com/bea/control/RosettaNetControl.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/javadoc-tag/jc/rosettanet.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/controlsRosettaNetCreate.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/controlsRosettaNetUse.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideRosettaNet.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/javadoc-tag/jpd/rosettanet.html
http://edocs.bea.com/wli/docs81/tptutorial/rosettanet.html
http://dev2dev.bea.com/code/wli.jsp

In t roduc ing Rose t taNe t So lut ions

3-18 Introducing Trading Partner Integration

Before You Begin

Planning the RosettaNet Solution

Building the RosettaNet Solution

Deploying the RosettaNet Solution

Managing the RosettaNet Solution

Note: This topic describes, in a general way, the tasks that are typically involved in
implementing a RosettaNet solution. The process of implementing RosettaNet solutions
is iterative, and it can vary in scope and sequence depending on your unique business
requirements and environment.

Before You Begin
Before you begin implementing a RosettaNet solution, we recommend that you review the
following documents:

Chapter 1, “Introduction,” to learn basic concepts for integrating trading partners using
WebLogic Integration.

This chapter, to learn basic concepts that are unique to RosettaNet solutions.

“Tutorial: Building RosettaNet Solutions” in Tutorials for Trading Partner Integration,
which is available at:

http://dev2dev.bea.com/code/wli.jsp

Planning the RosettaNet Solution
Once you have decided to use RosettaNet as the business protocol for your trading partner
integration (as described in “Phase 1: Plan the Solution” on page 1-28), you need to plan the
solution by determining certain factors in your implementation:

With which trading partners will you integrate?

For each trading partner, you need to determine:

– Which business process(es) will you integrate?

– What information about that trading partner is required for your implementation (for
example, their DUNS number and other profile information). For more information, see
“Trading Partner Profiles” on page 1-6.

http://dev2dev.bea.com/code/wli.jsp
http://edocs.bea.com/wli/docs81/tptutorial/rosettanet.html

Tasks f or Imp lement ing a Roset taNet So lu t i on

Introducing Trading Partner Integration 3-19

For each business process, you need to determine:

– Which RosettaNet PIP(s) are used? Which version of the PIPs will be implemented?

– Which RNIF version (1.1 or 2.0) is required for exchanging business messages?

– What role (RosettaNet role name) will your organization play in the PIP?

– Do you need to create business processes for just your role, or for both roles in the
business process?

– What are the back-end integration requirements for each PIP? What private business
processes are required? What is the data format of, and connections with, associated
back-end systems?

– Does your implementation need to meet legal standards for nonrepudiation, which is
described in “NonRepudiation” on page 4-36?

The Tutorials for Trading Partner Integration provide examples of different RosettaNet
solutions. To learn more, see Tutorial: Building RosettaNet Solutions available at
http://edocs.bea.com/wli/docs81/tptutorial/rosettanet.html

Building the RosettaNet Solution
After planning your RosettaNet solution, you build the business processes that implement the
PIP(s) according to the RosettaNet PIP specifications. For more information about design-time
tools, see “Phase 2: Design, Build, and Test the Solution” on page 1-28. For conceptual
information about RosettaNet business processes, see “RosettaNet Business Processes” on
page 3-15.

The “Tutorial: Building RosettaNet Solutions” in Tutorials for Trading Partner Integration
(available at http://dev2dev.bea.com/code/wli.jsp) provides a detailed walkthrough of the typical
tasks that are required to build a RosettaNet solution.

To build a RosettaNet solution, you would typically complete the following steps:

1. Using the BEA WebLogic Platform Configuration Wizard, create a new domain based on the
WebLogic Integration domain template. For instructions, see Creating WebLogic
Configurations Using the Configuration Wizard in the WebLogic Platform documentation.

2. Download the PIP distribution, including the specification and any DTDs, from the
RosettaNet web site at http://www.rosettanet.org.

3. Optionally, convert any DTDs to XSD files, as described in “Converting RosettaNet DTD
Schemas to XSD Schemas” in “Tutorial: Building RosettaNet Solutions” in Tutorials for
Trading Partner Integration.

http://edocs.bea.com/wli/docs81/tptutorial/rosettanet.html
http://dev2dev.bea.com/code/wli.jsp
http://edocs.bea.com/platform/docs81/confgwiz/index.html
http://edocs.bea.com/platform/docs81/confgwiz/index.html
http://www.rosettanet.org
http://edocs.bea.com/wli/docs81/tptutorial/rosettanet.html
http://edocs.bea.com/wli/docs81/tptutorial/rosettanet.html
http://edocs.bea.com/wli/docs81/tptutorial/rosettanet.html

In t roduc ing Rose t taNe t So lut ions

3-20 Introducing Trading Partner Integration

4. From the Tutorials for Trading Partner Integration, copy the example PIP implementation
associated with the design pattern that you want to use. For more information about design
patterns, see “PIP Design Patterns” on page 3-6.

5. In WebLogic Workshop, import the schema for the new PIP into the project and then
change the schema definition to the new PIP.

6. Change the RosettaNet annotations for the new PIP:

– For public initiator business processes, you change the pip and pip-version
attributes (and others if needed) in the @jc:rosettanet Annotation, which is described at
the following URL:

http://edocs.bea.com/workshop/docs81/doc/en/integration/javadoc-tag/
jc/rosettanet.html

– For public participant business processes, you change the pip-name and pip-version
attributes (and others if needed) in the @jpd:rosettanet Annotation, which is described
at the following URL:

http://edocs.bea.com/workshop/docs81/doc/en/integration/javadoc-tag/
jpd/rosettanet.html

7. Rename the JPD and JCX files and change the names of other components to be more
descriptive of the new PIP implementation, if you want.

– For more information about modifying the RosettaNet control in initiator business
processes, see RosettaNet Control in the WebLogic Workshop Help, which is available
at:

http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/con
trolsRosettaNet.html

– For more information about building RosettaNet participant business processes, see
Building RosettaNet Participant Business Processes in the WebLogic Workshop Help,
which is available at the following URL:

http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfgu
ideRosettaNet.html

8. Change the implementation of any private business processes as needed.

9. Make any other changes to the business processes as needed.

10. Test the RosettaNet solution using the default TPM repository configuration (described in
“Default TPM Repository Settings” on page 1-10) and security settings (described in
“Default Domain Security Configuration” on page 4-8).

http://edocs.bea.com/workshop/docs81/doc/en/integration/javadoc-tag/jc/rosettanet.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/javadoc-tag/jc/rosettanet.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/javadoc-tag/jpd/rosettanet.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/javadoc-tag/jpd/rosettanet.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/controlsRosettaNet.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/controlsRosettaNet.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideRosettaNet.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideRosettaNet.html

Tasks f or Imp lement ing a Roset taNet So lu t i on

Introducing Trading Partner Integration 3-21

Note: When you first set up connections to RosettaNet trading partners, it is a good idea to run
your configuration in Test mode to take advantage of the additional debugging features
provided by this mode. To run your Web Logic Integration RosettaNet configurations in
Test mode, you specify two annotations in the setProperties method:

-Set global-usage-code to Test.

-Set debug-mode to true.

For more information about the setProperties method, see RosettaNet Control
Interface, available at:
http://edocs.bea.com/workshop/docs81/doc/en/integration/java-class/
com/bea/control/RosettaNetControl.html

Deploying the RosettaNet Solution
Once you have built and tested your RosettaNet solution, you deploy the solution in a production
environment. For more information about deployment tools, see “Phase 3: Deploy the Solution”
on page 1-29. For detailed information about deploying WebLogic Integration solutions, see
Deploying WebLogic Integration Solutions, which is available at the following URL:

http://edocs.bea.com/wli/docs81/deploy/index.html

To deploy a RosettaNet solution, you would typically complete the following steps:

1. If necessary, using the BEA WebLogic Platform Configuration Wizard, create a new domain
based on the WebLogic Integration domain template. For instructions, see Creating
WebLogic Configurations Using the Configuration Wizard in the WebLogic Platform
documentation.

2. Start WebLogic Server in production mode.

3. Using the WebLogic Integration Administration Console, complete the following tasks:

Note: If you have already defined trading partner information in your development
environment, you can export this information to an external file, and then import this
file into the production environment. For instructions, see “Exporting Management
Data” and “Importing Management Data” in Trading Partner Management.

a. Add trading partners to the TPM repository, including basic profile information, such as
the DUNS number used for trading partner IDs. For instructions, see “Adding Trading
Partner Profiles” in Trading Partner Management in Managing WebLogic Integration
Solutions.

http://edocs.bea.com/wli/docs81/deploy/index.html
http://edocs.bea.com/wli/docs81/manage/tpm.html
http://edocs.bea.com/wli/docs81/manage/tpm.html
http://edocs.bea.com/platform/docs81/confgwiz/index.html
http://edocs.bea.com/platform/docs81/confgwiz/index.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/java-class/com/bea/control/RosettaNetControl.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/java-class/com/bea/control/RosettaNetControl.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/java-class/com/bea/control/RosettaNetControl.html

In t roduc ing Rose t taNe t So lut ions

3-22 Introducing Trading Partner Integration

b. For each trading partner, define the protocol bindings (including RNIF version—1.1 or
2.0—and other settings) to be used for message exchanges with this trading partner.
For instructions, see “Defining a RosettaNet 1.1 or 2.0 Binding” in Trading Partner
Management.

c. Define the PIP Notification of Failure roles, as described in “Configuring PIP Notification
of Failure Roles for RosettaNet Bindings” in Trading Partner Management.

d. Define the services that you will use in your deployment. For instructions, see “Adding
Services” in Trading Partner Management.

e. For each trading partner, define the service profiles (protocol bindings and URL endpoints
for local and remote trading partners) associated with each service. For instructions, see
“Adding Service Profiles to a Service” in Trading Partner Management.

4. Using the WebLogic Server Administration Console and WebLogic Integration
Administration Console, implement security for your deployment, as described in
“Implementing Security for Trading Partner Integration” on page 4-48.

5. Configure your domain (clustering, high availability, load balancing, fail-over, and so on) as
needed for your production environment. For instructions, see Deploying WebLogic
Integration Solutions, which is available at the following URL:

http://edocs.bea.com/wli/docs81/deploy/index.html

6. Deploy the application and other WebLogic Integration resources associated with your
RosettaNet solution. For instructions, see Deploying WebLogic Integration Solutions, which
is available at the following URL:

http://edocs.bea.com/wli/docs81/deploy/index.html

Managing the RosettaNet Solution
Once you have deployed your RosettaNet solution, you would typically monitor run-time
performance, message volumes, resource utilization, and other factors to ensure optimum
operation on your solution. For more information about monitoring tools, see “Phase 4:
Administer and Tune the Solution” on page 1-30.

For instructions on monitoring trading partner integration resources, see the following topics in
in Trading Partner Management in Managing WebLogic Integration Solutions:

“Viewing Statistics”

“Monitoring Messages”

http://edocs.bea.com/wli/docs81/manage/tpm.html
http://edocs.bea.com/wli/docs81/deploy/index.html
http://edocs.bea.com/wli/docs81/deploy/index.html
http://edocs.bea.com/wli/docs81/manage/tpm.html
http://edocs.bea.com/wli/docs81/manage/tpm.html
http://edocs.bea.com/wli/docs81/manage/tpm.html
http://edocs.bea.com/wli/docs81/manage/tpm.html
http://edocs.bea.com/wli/docs81/manage/tpm.html

Tasks f or Imp lement ing a Roset taNet So lu t i on

Introducing Trading Partner Integration 3-23

In t roduc ing Rose t taNe t So lut ions

3-24 Introducing Trading Partner Integration

Introducing Trading Partner Integration 4-1

C H A P T E R 4

Trading Partner Integration Security

This topic describes security concepts and tasks in WebLogic Integration trading partner
integration solutions. It includes the following sections:

Before You Begin

Security Framework for Trading Partner Integration

Transport-Level Security

Message-Level Security

Using Proxy Servers with Trading Partner Integration

Implementing Security for Trading Partner Integration

Before You Begin
Before you begin implementing WebLogic Integration security for trading partner integration, be
sure to read the following documents:

“Using WebLogic Integration Security” in Deploying WebLogic Integration Solutions at the
following URL:

http://edocs.bea.com/wli/docs81/deploy/secure.html

Introduction to WebLogic Security at the following URL:

http://edocs.bea.com/wls/docs81/secintro/index.html

Security in WebLogic Platform 8.1 at the following URL:

http://edocs.bea.com/wls/docs81/secintro/index.html
http://edocs.bea.com/wli/docs81/deploy/secure.html
http://edocs.bea.com/wli/docs81/deploy/secure.html
http://edocs.bea.com/wls/docs81/secintro/index.html
http://edocs.bea.com/platform/docs81/secintro/index.html

Trad ing Par tne r In teg ra t i on Secur i t y

4-2 Introducing Trading Partner Integration

http://edocs.bea.com/platform/docs81/secintro/index.html

Security summary page, which provides a compendium of WebLogic security topics at the
following URL:

http://edocs.bea.com/wls/docs81/security.html

To learn about the basic concepts for trading partner integration in WebLogic Integration,
see the Chapter 1, “Introduction.”

Security Framework for Trading Partner Integration
This topic describes the WebLogic Integration security framework for trading partner integration.
It includes the following sections:

Summary of WebLogic Security Features

WebLogic Server Default Security Configuration

Components of Trading Partner Integration Security

Default Domain Security Configuration

Credential Stores

Trading Partner Integration Resources Requiring Security Policies

Summary of WebLogic Security Features
WebLogic Integration leverages certain functionality from the WebLogic Server security
framework and provides additional features for trading partner integration. WebLogic Integration
supports secure business transactions between trading partners through:

Transport-level security, including authentication via userID/passwords and digital
certificates, and role and policy based access control to WebLogic Integration resources

Message-level security, including the use of digital signatures, encryption (for RosettaNet
2.0 only), and support for other non-repudiation features such as secure audit logs and
timestamp providers

Integrated trading partner management and security management capabilities in the
WebLogic Integration Administration Console

Default security configurations in WebLogic Integration domains

Embedded LDAP support

http://edocs.bea.com/wls/docs81/security.html
http://edocs.bea.com/platform/docs81/secintro/index.html

Secur i t y F ramework fo r T rad ing Par tne r I nt eg ra t i on

Introducing Trading Partner Integration 4-3

WebLogic Server Default Security Configuration
WebLogic Integration security is based on the WebLogic Server security framework—namely,
the Default Security Configuration. For more information, see “The Default Security
Configuration in WebLogic Server” in “Overview of Security Management” in Managing
WebLogic Security at the following URL:

http://edocs.bea.com/wls/docs81/secmanage/overview.html

Components of Trading Partner Integration Security
The WebLogic security model for trading partner integration:

Uses the security features of the underlying BEA WebLogic Server™ platform to perform
authentication and authorization of principals before granting access to trading partner
integration resources.

Is extensible by allowing you to incorporate your own or third-party vendor tools to verify
trading partner digital certificates and implement nonrepudiation support, which is a
requirement for critical business messages.

The following figure shows the entities and features in WebLogic Server and WebLogic
Integration that support trading partner integration.

http://edocs.bea.com/wls/docs81/secmanage/overview.html

Trad ing Par tne r In teg ra t i on Secur i t y

4-4 Introducing Trading Partner Integration

Figure 4-1 WebLogic Security Model for Trading Partner Integration

The following table describes the features in this security model.

Secur i t y F ramework fo r T rad ing Par tne r I nt eg ra t i on

Introducing Trading Partner Integration 4-5

Table 4-1 Components in the Trading Partner Integration Security Model

Component Description

Service authorization The service profile defines the business messages that a given trading
partner may send and receive. When a business message arrives for a trading
partner, WebLogic Integration, as part of the business message authorization
process, examines the contents of the business message to validate it against
the service profile. WebLogic Integration verifies that the content of the
incoming business message is consistent with the business messages that the
trading partner is bound, by the service profile, to either send or receive.
This authorization scheme ensures that only the business messages that are
consistent with the relevant service profile have access to trading partner
integration resources. For more information, see “Service Authorization” on
page 4-32.

User management The User Management module of the WebLogic Integration Administration
Console to manage the users, groups, and roles defined in the default
security realm. For instructions on configuring users, groups, and roles in the
WebLogic Integration Administration Console, see User Management in
Managing WebLogic Integration Solutions.

Data encryption service The data encryption service encrypts business messages for the business
protocols that require it. Data encryption works by using a combination of
the sender’s certificate, private key, and the recipient’s certificate to encode
the business message. The message can then be decrypted only by the
recipient using the recipient’s private key. For details about using the data
encryption service, see “SSL Protocol” on page 4-12.

http://edocs.bea.com/wli/docs81/manage/users.html

Trad ing Par tne r In teg ra t i on Secur i t y

4-6 Introducing Trading Partner Integration

Authentication and
authorization in the
Transport Servlet Filter
(in B2BDefaultWebApp)

The Transport Servlet Filter is a WebLogic Integration-specific servlet filter
that serves as the entry point for both HTTP and HTTPS access to trading
partner integration resources, including:

• WebLogic Workshop business processes

• JDBC connection pools and MBeans that are used to access the TPM
repository

• JMS destinations

For more information about these resources, see “Trading Partner
Integration Resources Requiring Security Policies” on page 4-11.

The Transport Servlet Filter performs either basic or mutual authentication
and it authorizes access to URL (Web) resources. A Transport Servlet Filter
is dynamically registered in the WebLogic Server environment for trading
partners bound to a specific service profile. For more information, see:

• “Authenticating Trading Partner Messages” on page 4-21

• “URL (Web) and EJB (Enterprise JavaBean) Resources” and
“Application Resources” in “Types of WebLogic Resources” in
Securing WebLogic Resources at the following URL:
http://edocs.bea.com/wls/docs81/secwlres/types.ht
ml

Authentication for
outbound request via the
SSL protocol

WebLogic Integration authenticates the recipient for all outbound messages
(using the SSL certificate obtained in the SSL handshake) to ensure that the
messages are consistent with the relevant service profile to which they are
bound. For more information, see “Authentication” on page 4-12.

TPMUserNameMapper
class

The TPMUserNameMapper class maps a trading partner certificate to the
corresponding WebLogic Server user that has been configured for the
trading partner. The TPMUserNameMapper class implements the
weblogic.security.providers.authentication.UserNameM
apper interface. You can configure this class or write your own class.
For more information, see “Authenticating Remote Users in Two-Way
Authentication” on page 4-23 and reference information for the
UserNameMapper interface at the following URL:

http://edocs.bea.com/wls/docs81/javadocs/weblogic/se
curity/providers/authentication/UserNameMapper.html

Table 4-1 Components in the Trading Partner Integration Security Model

Component Description

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/security/providers/authentication/UserNameMapper.html
http://edocs.bea.com/wls/docs81/secwlres/types.html
http://edocs.bea.com/wls/docs81/secwlres/types.html

Secur i t y F ramework fo r T rad ing Par tne r I nt eg ra t i on

Introducing Trading Partner Integration 4-7

Nonrepudiation
framework

The trading partner integration security system provides a means to
implement nonrepudiation support. Nonrepudiation is the ability of a trading
partner to approve or disapprove having previously sent or received a
particular business message to or from another trading partner.
Nonrepudiation requires the following services:

• Digital signatures

• Secure timestamps

• Secure audit log

WebLogic Integration provides Service Provider Interfaces (SPIs) that allow
you to incorporate your own or a trusted third-party’s implementation. In
addition, WebLogic Integration provides an audit log provider that can be
used for demo / development purposes. For more information about
nonrepudiation, see “NonRepudiation” on page 4-36.

Identity keystore Store private keys for local trading partners and certificates for both the local
and remote trading partners. These certificates are of the following types:

• Client certificate—Digital certificate of the remote or local trading
partner.

• Server certificate—Digital certificate of the remote trading partner.

• Signature certificate—Used for each trading partner business message if
digital signature support is required.

• Encryption certificate—Used for each trading partner if business
message encryption is required.

For more information about these certificates, see “Types of Digital
Certificates” on page 4-17. For more information about the identity
keystore, see “Keystore for Private Keys and Certificates” on page 4-9.

Trust keystore Store all the trusted CA certificates associated with any certificate used in
WebLogic Integration in this KeyStore. For more information, see
“Keystore for Private Keys and Certificates” on page 4-9.

PasswordStore All passwords are kept in encrypted form in the WebLogic Integration
PasswordStore, which uses the JCE security provider. For more information,
see “WebLogic Integration PasswordStore for Encrypted Passwords” on
page 4-9.

Table 4-1 Components in the Trading Partner Integration Security Model

Component Description

Trad ing Par tne r In teg ra t i on Secur i t y

4-8 Introducing Trading Partner Integration

Default Domain Security Configuration
When you create a new domain using the WebLogic Platform Configuration Wizard and the
WebLogic Integration template, the new domain contains default security settings, including:

Default WebLogic Integration roles and groups. Default security policies define the roles
authorized to access specific WebLogic Integration resources. For more information, see
“Default Groups, Roles, and Security Policies” in User Management in Managing
WebLogic Integration Solutions.

B2BDefaultWebApp, on which you can configure policies for access control in trading
partner authorization, which is described in “Authenticating Trading Partner Messages” on
page 4-21. For configuration instructions, see “URL (Web) and EJB (Enterprise JavaBean)
Resources” and “Application Resources” in “Types of WebLogic Resources” in Securing
WebLogic Resources at the following URL:

http://edocs.bea.com/wls/docs81/secwlres/types.html

PasswordStore, which is described in “WebLogic Integration PasswordStore for Encrypted
Passwords” on page 4-9.

Default identity and trust keystores, which are described in “Keystore for Private Keys and
Certificates” on page 4-9.

Authentication for
inbound requests via SSL
protocol

When an inbound trading partner message arrives, both the trading partner
and the WebLogic Server system exchange certificates to establish each
other’s identity. When the SSL handshake is completed, the trading
partner’s network connection to the WebLogic Server system is established.

For information about configuring the SSL protocol in WebLogic Server to
provide mutual authentication, see “SSL Protocol” on page 4-12.

Policies for WebLogic
resources

A security policy is an association between a WebLogic resource and one or
more users, groups, or security roles that is designed to protect the
WebLogic resource against unauthorized access. For more information, see
“Security Policies” in Securing WebLogic Resources at the following URL:

http://edocs.bea.com/wls/docs81/secwlres/sec_poly.ht
ml

Table 4-1 Components in the Trading Partner Integration Security Model

Component Description

http://edocs.bea.com/wli/docs81/manage/users.html
http://e-docs.bea.com/wls/docs81/secwlres/sec_poly.html
http://edocs.bea.com/wls/docs81/secwlres/types.html
http://e-docs.bea.com/wls/docs81/secwlres/sec_poly.html
http://edocs.bea.com/wls/docs81/secwlres/types.html

Secur i t y F ramework fo r T rad ing Par tne r I nt eg ra t i on

Introducing Trading Partner Integration 4-9

Default trading partners and services profiles, described in “Default TPM Repository
Settings” on page 1-10, which you can use for development and testing (in Test mode).
You can configure one trading partner as local and the other as remote, and you can add
test certificates to these trading partners for testing purposes, as described in “Keystore for
Private Keys and Certificates” on page 4-9.

Credential Stores
WebLogic Integration provides the following credential stores to store passwords, private keys,
and certificates:

WebLogic Integration PasswordStore for Encrypted Passwords

Keystore for Private Keys and Certificates

WebLogic Integration PasswordStore for Encrypted Passwords
All passwords are kept in encrypted form in the PasswordStore. WebLogic Integration does not
require clear-text passwords. The PasswordStore uses the JCE security provider. Configuration
of passwords is controlled through an MBean API and passwords are accessed using
password-aliases.

You use the WebLogic Integration Administration Console to manage passwords in the
PasswordStore. For more information, see the following topics in System Configuration in
Managing WebLogic Integration Solutions:

“Adding Passwords to the Password Store”

“Listing and Locating Password Aliases”

“Changing the Password for a Password Alias”

“Deleting Passwords from the PasswordStore”

Keystore for Private Keys and Certificates
WebLogic Integration requires that you use keystores to store all private keys and certificates.
A keystore is a protected database that holds keys and certificates. If you have keys and
certificates and use message encryption, digital signatures, or SSL, you must use a keystore for
storing those keys and certificates and make the keystore available to applications that might need
it for authentication or signing purposes.

http://edocs.bea.com/wli/docs81/manage/system.html

Trad ing Par tne r In teg ra t i on Secur i t y

4-10 Introducing Trading Partner Integration

Types of Keystores
When you set up a WebLogic Integration domain for trading partner integration, the following
keystores are configured:

Default Keystores for the Test Environment
When you create a new domain using the WebLogic Platform Configuration Wizard and the
WebLogic Integration template, the new domain contains Demo Keystores of type JKS.

Utilizes the JDK bundled Java KeyStore (JKS) provider, which implements the keystore as
a file

Protects each private key with an individual password

Protects the entire keystore with a password

Keystores in a Production Environment
You can use the Demo keystores in a development / testing environment, but you must explicitly
create new identity and trust keystores for a production environment. To create a keystore and
make it available for trading partner integration:

1. If the identity and trust keystores do not already exist in your domain, create them according
to the instructions in “Storing Private Keys, Digital Certificates, and Trusted Certificate
Authorities” in “Configuring SSL” in Managing WebLogic Security at the following URL:

http://edocs.bea.com/wls/docs81/secmanage/ssl.html

Table 4-2 Types of Certificates Used in WebLogic Integration

Type of Certificate Description

Identity keystore Stores private keys for local trading partners and certificates for both the local
trading partner and remote trading partners. Certificates are of the following
types: client, server, signature, and encryption certificates. WebLogic
Integration retrieves private keys and certificates from this keystore to use for
SSL, message encryption, and digital signatures. For more information about
certificates, see “Digital Certificates” on page 4-15.

Trust keystore WebLogic Server uses the trust keystore to locate trusted CAs for SSL.
WebLogic Integration uses it to locate the trusted CAs while verifying
signature and encryption.

http://edocs.bea.com/wls/docs81/secmanage/ssl.html
http://edocs.bea.com/wls/docs81/secmanage/ssl.html

Secur i t y F ramework fo r T rad ing Par tne r I nt eg ra t i on

Introducing Trading Partner Integration 4-11

2. Configure the keystores using the WebLogic Server Administration Console according to
the instructions in “Configuring KeyStores” in “Configuring SSL” in Managing WebLogic
Security at the following URL:

http://edocs.bea.com/wls/docs81/secmanage/ssl.html

3. Add trading partner certificates to the identity keystore.

4. Add trusted certificate authority certificates to the trust keystore.

For information about refreshing the keystore using the WebLogic Integration Administration
Console, see “Refreshing the Keystore” in Trading Partner Management in Managing WebLogic
Integration Solutions.

Note: In a clustered domain, you need to create and configure a separate keystore for each
WebLogic server.

Trading Partner Integration Resources Requiring Security
Policies
You can configure security policies for trading partner integration resources, such as:

B2BDefaultWebApp and endpoint URIs of protocol bindings of local trading partners in
the TPM repository

WebLogic Workshop business processes

JDBC connection pools (bpmarchpool and cgpool) and MBeans that are used to access
the TPM repository

JMS destination (for message tracking, asynchronous dispatcher queues for trading partner
integration business processes)

For more information, see Securing WebLogic Resources at the following URL:

http://edocs.bea.com/wls/docs81/secwlres/index.html

http://edocs.bea.com/wli/docs81/manage/tpm.html
http://edocs.bea.com/wls/docs81/secwlres/index.html
http://edocs.bea.com/wls/docs81/secmanage/ssl.html
http://edocs.bea.com/wls/docs81/secmanage/ssl.html
http://e-docs.bea.com/wls/docs81/secwlres/

Trad ing Par tne r In teg ra t i on Secur i t y

4-12 Introducing Trading Partner Integration

Transport-Level Security
Transport-level security involves authentication and encryption at the transport level
(HTTP/HTTPS) and authorization at the endpoint. This topic describes transport-level security
concepts and tasks for trading partner integration. It contains the following sections:

Authentication

Authenticating Remote Users in Two-Way Authentication

Verifying Certificates in Two-Way Authentication

Authorization

Authentication
In WebLogic Integration, authentication is the process of verifying an identity claimed by—or
for—a system entity. Authentication is concerned with who an entity is—it is the association of
an identity with an entity. WebLogic Integration examines and validates digital certificates
against security information stored in the TPM repository.

For trading partner integration, WebLogic Integration uses the following approaches to
authentication:

Username and password—Human users (administrators) as well as trading partners use
usernames and passwords as credentials to prove their identity. For more information, see
“Types of Authentication” on page 4-13.

Digital certificates—Trading partners use digital certificates to prove their identity to
WebLogic Integration. For more information, see “Digital Certificates” on page 4-15.

Trading partner authentication is configured in the protocol bindings that define communications
between trading partners. For more information, see “Defining Protocol Bindings” in Trading
Partner Management in Managing WebLogic Integration Solutions.

SSL Protocol
The SSL protocol provides secure connections by enabling two applications linked through a
network connection to authenticate the other’s identity and by encrypting the data exchanged
between the applications. An SSL connection begins with a handshake during which the
applications exchange digital certificates, agree on the encryption algorithms to use, and generate
encryption keys used for the remainder of the session.

http://edocs.bea.com/wli/docs81/manage/tpm.html
http://edocs.bea.com/wli/docs81/manage/tpm.html

Transpo r t -Leve l Secu r i t y

Introducing Trading Partner Integration 4-13

The SSL protocol provides the following security features that WebLogic Integration supports:

Server authentication—The server uses its digital certificate, issued by a trusted
certificate authority, to authenticate itself to clients.

Client authentication—Optionally, clients might be required to authenticate themselves to
the server by providing their own digital certificates. This type of authentication is also
referred to as mutual authentication. The authentication model in Trading Partner
Integration uses mutual authentication.

Both types of authentication can be used while exchanging business messages between trading
partners. In addition, administrators can use HTTPS from a Web Browser to access the WebLogic
Integration Administration Console and WebLogic Server Administration Console.

Administrators use a Web browser to access the WebLogic Integration Administration Console.
You can use the Hypertext Transfer Protocol with SSL (HTTPS) to secure this type of network
communication. For more information about SSL, see:

 “Configuring SSL” in Managing WebLogic Security at the following URL:

http://edocs.bea.com/wls/docs81/secmanage/ssl.html

“Example: ebXML Security Configuration” on page A-1

Types of Authentication
WebLogic Integration supports the following types of authentication:

http://edocs.bea.com/wls/docs81/secmanage/ssl.html

Trad ing Par tne r In teg ra t i on Secur i t y

4-14 Introducing Trading Partner Integration

Authentication Levels
Trading Partner Integration incorporates a two-level authentication process:

Verification of the trading partner certificate, which is described in “Authenticating Remote
Users in Two-Way Authentication” on page 4-23.

Authentication of the incoming trading partner message, which is described in
“Authenticating Trading Partner Messages” on page 4-21.

Both levels are required for end-to-end access control (authorization) on WebLogic Integration
resources. After a trading partner business message has passed both levels of authentication,
WebLogic Integration performs the authorization process on the business message. To protect

Table 4-3 Trading Partner Certificates Configured in Trading Partner Integration

Authentication Type Description

Basic With basic authentication, a user ID and password are requested from the user
and sent to WebLogic Server. WebLogic Server checks the information and, if
it is trustworthy, grants access to the protected WebLogic resource. For example:

• WebLogic Integration will provide information for outgoing messages

Configuration—TPM repository and Web Application Servlets

• WLS will authenticate for incoming messages

Configuration—User management in the WebLogic Integration
Administration Console, deployment descriptor of B2BDefaultWebApp

One-Way
(Server-Side)
Authentication

With one-way (server-side) authentication, the server provides its identity to the
client via a certificate. The client is not authenticated, and therefore the
application does not have any access to the identity of the client. This mechanism
is primarily used for transport-level encryption only to provide privacy of the
message. You might want to use server-side authentication, however, if you do
not want to require certificate-based authentication among your trading partners.
This is the default authentication for WebLogic Integration domains.

One-Way
(Server-Side) Plus
Basic Authentication

With one-way (server-side) plus basic authentication, the server provides its
identity to the client via a certificate, and the client provides its identity to the
server via a user ID and password. You would use this type of authentication to
have client authentication as well as transport-level encryption.

Two-Way (Mutual)
Authentication

With two-way (mutual) authentication, both the client and the server are
required to authenticate themselves to each other by means of digital certificates
or other forms of proof material.

Transpo r t -Leve l Secu r i t y

Introducing Trading Partner Integration 4-15

trading partner integration resources, the authorization process requires at least basic or mutual
authentication, which are described in “Types of Authentication” on page 4-13.

Digital Certificates
Digital certificates are electronic documents used to verify the unique identities of principals and
entities over networks such as the Internet. A digital certificate securely binds the identity of a
user or entity, as verified by a trusted third party (known as a certificate authority), to a particular
public key. The combination of the public key and the private key provides a unique identity to
the owner of the digital certificate.

Digital certificates allow verification of the claim that a specific public key does in fact belong to
a specific user or entity. The recipient of a digital certificate can verify that the certificate,
including the public key of the subject, was issued and signed by a trusted certificate authority
(CA). The recipient does this by using the trusted certificate authority’s public key to ensure that
the digital signature was created using the corresponding CA private key. If such verification is
successful, this chain of reasoning provides assurance that the corresponding private key is held
by the subject named in the digital certificate, and that the digital signature was created by that
particular certificate authority.

Digital certificates are stored in the identity keystore. For more information, see “Keystore for
Private Keys and Certificates” on page 4-9.

Information in Digital Certificates
A digital certificate typically includes a variety of information, such as:

The name of the subject (holder, owner) and other identification information required to
uniquely identify the subject, such as a URL or an e-mail address

The subject’s public key

The name of the certificate authority that issued the digital certificate

A serial number

The validity period (or lifetime) of the digital certificate (defined by a start date and an end
date)

The most widely accepted format for digital certificates is defined by the ITU-T X.509
international standard. Thus, digital certificates can be read or written by any application
complying with the X.509 standard. The public key infrastructure (PKI) in WebLogic Server

Trad ing Par tne r In teg ra t i on Secur i t y

4-16 Introducing Trading Partner Integration

recognizes digital certificates that comply with X.509 version 1 (X.509v1) or version 3
(X.509v3).

Certificate Authorities
Digital certificates are issued by a certificate authority. Any trusted third-party organization or
company that is willing to vouch for the identities of those to whom it issues digital certificates
and public keys can be a certificate authority. When a certificate authority creates a digital
certificate, the certificate authority signs it with its private key, to ensure the detection of
tampering. The certificate authority then returns the signed digital certificate to the requesting
subject.

The subject can verify the signature of the issuing certificate authority by using the public key of
the certificate authority. The certificate authority makes its public key available by providing a
digital certificate issued from a higher-level certificate authority attesting to the validity of the
public key of the lower-level certificate authority. This hierarchy of certificate authorities is
terminated by a self-signed digital certificate known as the root certificate, as shown in the
following figure.

Transpo r t -Leve l Secu r i t y

Introducing Trading Partner Integration 4-17

Figure 4-2 Certificate Authority Hierarchy

Before you use a digital certificate, verify a digital signature, or decrypt a business message, make
sure that the digital certificate is issued by a trusted certificate authority. Regardless of who
encrypts the business message, the digital certificate of the business message must be trusted,
which is established by the certificate authority.

Types of Digital Certificates
WebLogic Integration supports the following types of certificates in trading partner integration:

Trad ing Par tne r In teg ra t i on Secur i t y

4-18 Introducing Trading Partner Integration

Table 4-4 Certificates Supported in Trading Partner Integration

Type Description

Client
certificate

Digital certificate of the remote or local trading partner. Configuring the client certificate
is required when using the SSL protocol.

Certificate is:

• Type X.509 version 1 or 3

• Privacy Enhanced Mail (PEM) or Definite Encoding Rules (DER) encoded. (The
filename extension specifies the encoding type: .pem or .der.)

• Required for all trading partner types when HTTPS with mutual authentication is
used.

Private Key is:

• PEM or DER encoded. (The filename extension specifies the encoding type: .pem
or .der.)

• Required only for local trading partner type

• Password-protected or plain text

Note: When importing a plain-text private key using the WebLogic Integration
Administration Console, use the password of the identity keystore.

Server
certificate

Digital certificate of the remote trading partner. Configuring the server certificate is
required when using the SSL protocol.

Certificate is:

• Type X.509 version 1 or 3

• PEM or DER encoded. (The filename extension specifies the encoding type: .pem
or .der.)

• Required for remote trading partner types when HTTPS is used with mutual
authentication

Transpo r t -Leve l Secu r i t y

Introducing Trading Partner Integration 4-19

Guidelines for Using Trading Partner Certificates
Note the following general rules about configuring trading partner certificates:

Each trading partner may have one client certificate and an unlimited number of encryption
and signature certificates. A remote trading partner also has a server certificate for the
system on which it is hosted. The name of this server certificate must be specified when
you configure that trading partner.

Signature
certificate

Certificate required of each trading partner if digital signature support, a requirement for
nonrepudiation, is configured. Used in message-level security. For a description of
digital signature support, see “Digital Signatures” on page 4-33.

Certificate is:

• Type X.509 version 1 or 3

• DER encoded (ebXML or RosettaNet) or PEM encoded (ebXML only)

• Read by using the RSA CertJ package (for RosettaNet) or RSA/DSA for (ebXML
XMLDSIG)

• Required for all trading partner types that use a digital signature service

Private Key is:

• Presented only in PKCS8 format

• Always password-protected.

Encryption
certificate

Certificate required of each trading partner when business message encryption is
configured. Used in message-level security. Note that encryption support is available
only with the RosettaNet protocols. For a description of message encryption, see “SSL
Protocol” on page 4-12.

Certificate is:

• Type X.509 version 1 or 3

• DER encoded

• Read by using the RSA CertJ package

• Required for all trading partner types that use an encryption service

Private Key is:

• Presented only in PKCS8 format

• Always password-protected.

Table 4-4 Certificates Supported in Trading Partner Integration (Continued)

Type Description

Trad ing Par tne r In teg ra t i on Secur i t y

4-20 Introducing Trading Partner Integration

For each certificate, there is a trading partner type: Local or Remote. In the WebLogic
Integration Administration Console, configuration options differ between local and remote
trading partners. For example, the tab for configuring a remote trading partner does not
contain fields for entering information about private keys because information about
private keys should be set only for local trading partners.

For local trading partners, you do not configure a server certificate in the Trading Partner
Management module of the WebLogic Integration Administration Console. However, the
Server PrivateKey alias and pass phrase should be configured in the WebLogic Server
Administration Console.

Passwords are required for private keys of the local trading partner. If no password is
provided, WebLogic Integration uses the KeyStore password to store the private keys in the
identity keystore.

You can configure certificates using the default trading partners described in “Default
Domain Security Configuration” on page 4-8. For example, you can configure TP1 as the
local trading partner and TP2 as the remote trading partner. If you configure TP2 as the
remote trading partner, you can configure certificates on the local machine and export them
to the different machine (using the TPM import / export features described in “Exporting
Management Data” and “Importing Management Data” in Trading Partner Management in
Managing WebLogic Integration Solutions). However, before importing on the remote
machine, you must first create the private key in the keystore on the remote machine—you
cannot copy the private key configuration to the remote machine.

Digital Certificates for Local and Remote Trading Partners
Configuration requirements regarding digital certificates differ between local and remote trading
partners.

For local trading partners, you configure:

– client certificates plus private keys

– signature certificates plus private keys

– encryption certificates plus private keys

You do not configure a server certificate for a local trading partner. A client certificate, as
well as encryption and signature certificates, are required if mutual authentication with
SSL is used. All of these certificates require associated private keys. You can use the same
certificate and private key pair for all of these functions, as long as the key-usage in the
certificate covers these functions.

http://edocs.bea.com/wli/docs81/manage/tpm.html

Transpo r t -Leve l Secu r i t y

Introducing Trading Partner Integration 4-21

For remote trading partners, you configure the following certificates only:

– client certificates

– server certificates

– signature certificates

– encryption certificates

You do not specify private keys for remote trading partner certificates. If you are using
mutual authentication with SSL, then encryption and signature, client, and server
certificates are required.

Configuring Digital Certificates
You use the WebLogic Integration Administration Console to configure digital certificates.
Digital certificates are stored in the identity keystore. Before you can configure digital
certificates, the trading partner must be defined in the TPM repository and the identity keystore
must be configured. For more information, see “Keystore for Private Keys and Certificates” on
page 4-9.

For configuration instructions, see the following topics in Trading Partner Management in
Managing WebLogic Integration Solutions:

“Adding Certificates to a Trading Partner”

“Viewing and Changing Certificates”

“Deleting Certificates, Bindings, or Custom Extensions”

Note: WebLogic Integration does not validate any of the trading partner certificates against a
trusted Certificate Authority as you load them into the keystore.

Authenticating Trading Partner Messages
As described in “Authentication Levels” on page 4-14, after a trading partner’s certificate has
been validated by WebLogic Server, WebLogic Integration needs to authenticate the trading
partner message before the message itself can be serviced. Authenticating the trading partner
message involves verifying that the sender of the business message is a valid trading partner listed
in the TPM repository. After a trading partner message has been authenticated, the trading
partner’s identity is recognized and access to various trading partner integration resources is
provided—based on the configured policies—while processing that message.

The following figure shows the process of authenticating a trading partner message.

http://edocs.bea.com/wli/docs81/manage/tpm.html

Trad ing Par tne r In teg ra t i on Secur i t y

4-22 Introducing Trading Partner Integration

Figure 4-3 Authenticating a Trading Partner Message

In the preceding figure, note the following:

The Transport Servlet Filter is the entry point into WebLogic Integration. When the trading
partner message arrives in the Transport Servlet Filter, as shown by callout 1, the Transport
Servlet Filter verifies the trading partner message, ensuring that the trading partner name is
valid by retrieving its value from a valid certificate associated with the trading partner.

When the trading partner message is authenticated, the trading partner is authorized for
access to WebLogic Integration resources, such as business processes, the TPM repository,
and other resources described in “Trading Partner Integration Resources Requiring Security
Policies” on page 4-11.

Transpo r t -Leve l Secu r i t y

Introducing Trading Partner Integration 4-23

Authenticating Remote Users in Two-Way Authentication
This section describes the TPMUserNameMapper class, which helps find the association between
a remote trading partner’s identity and a WebLogic Server user.

Note: TPMUserNameMapper applies only to two-way authentication. If your deployment uses a
different authentication mechanism, you can skip this section.

About the TPMUserNameMapper Class
Note: TPMUserNameMapper applies only to remote—not local—trading partners. When

configuring a local trading partner, you do not need to provide a WebLogic Server
username for that trading partner.

The TPMUserNameMapper class helps find the association between a remote trading partner’s
identity and a WebLogic Server user. When you configure a trading partner profile in WebLogic
Integration, you also specify the trading partner name bound to that profile. To associate a user
with a trading partner in the WebLogic Integration Administration Console, specify the trading
partner username, which is a WebLogic Server username.

At run time, WebLogic Server maps the digital certificate for that trading partner to the trading
partner user, as shown in the following figure.

Figure 4-4 Mapping a Trading Partner Certificate to a WebLogic Server User

Trad ing Par tne r In teg ra t i on Secur i t y

4-24 Introducing Trading Partner Integration

If mutual authentication is used (CLIENT-CERT in web.xml and SSL configured for mutual
authentication in WebLogic Server), the TPMUserNameMapper uses two schemes to find the
certificate to the user mapper in the following manner. When a trading partner message arrives
in WebLogic Server from a remote trading partner, TPMUserNameMapper is invoked just before
completing the SSL handshake. First, it looks into the TPM repository for a trading
partner-WebLogic Server user association using the fingerprint of the client certificate of the
remote trading partner. If not found, it tries to map an attribute of the client certificate to the WLS
user.

Configuring the DefaultIdentityAsserter to Use TPMUserNameMapper
You need to configure the DefaultIdentityAsserter settings in WebLogic Server to use
TPMUserNameMapper so that the WebService/SOAP, ebXML and RosettaNet protocols can use
the same UserNameMapper in WebLogic Integration.

To configure the TPMUserNameMapper:

1. Start WebLogic Server in the WebLogic Integration domain you are using for trading partner
integration.

2. Start the WebLogic Server Administration Console.

3. In the left navigation pane, navigate to the WebLogic Integration domain you are using for
trading partner integration, and then choose:

Security→Realms→myrealm→Providers→Authentication→DefaultIdentityAsserter

The WebLogic Server Administration Console displays the configuration tabs for the
DefaultIdentityAsserter.

Transpo r t -Leve l Secu r i t y

Introducing Trading Partner Integration 4-25

4. In the User Name Mapper Class Name field, type
com.bea.b2b.security.TPMUserNameMapper.

5. From the list of available types, select X.509 and click the right arrow.

6. Optionally, you can configure WebLogic Integration to attempt to map an attribute of the
client certificate to a WLS user if WebLogic Integration cannot find the association in the
TPM repository. To configure this functionality:

a. Click the Details tab.

Trad ing Par tne r In teg ra t i on Secur i t y

4-26 Introducing Trading Partner Integration

b. Make sure that the Use Default User Name Mapper checkbox is cleared (unchecked).

c. Select the Default User Name Mapper Attribute Type (C, CN, E, L, O, or OU), which is
the attribute of the subject distinguished name (DN) in a digital certificate used to create
a username.

d. Select the Default User Name Mapper Attribute Delimiter, which is the delimiter that ends
the user name. (The User Name Mapper uses everything to the left of the delimiter to
create a username).

7. Click Apply.

8. Restart WebLogic Server.

Implementing a Custom UserNameMapper
The com.bea.b2b.security.TPMUserMapper class implements the WebLogic Server
weblogic.security.providers.authentication.UserNameMapper interface. You could
create your own implementation of this API, if you wanted, but using the TPMUserNameMapper
class provides you access to the TPM repository as well. For more information, see “Interface
UserNameMapper” at the following URL:

http://edocs.bea.com/wls/docs81/javadocs/weblogic/security/providers

/authentication/UserNameMapper.html

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/security/providers/authentication/UserNameMapper.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/security/providers/authentication/UserNameMapper.html

Transpo r t -Leve l Secu r i t y

Introducing Trading Partner Integration 4-27

Verifying Certificates in Two-Way Authentication
To verify a trading partner’s digital certificate in WebLogic Integration, you use a certificate
verification provider (CVP). The Trading Partner Integration security framework provides a
Service Provider Interface (SPI) that allows you to insert a Java class implementing SPI that can
call out to a third-party service to verify trading partner certificates. Such an implementation,
called a certificate verification provider, can call out to one of the following certificate
verification applications:

A Certificate Revocation List (CRL) implementation

An Online Certificate Status Protocol (OCSP) implementation that interacts with a trusted
third-party entity, such as a certificate authority, for real-time certificate status checking

Your own certificate verification implementation

If you are using a certificate verification provider (CVP), you need to configure it in the
WebLogic Integration Administration Console, as described in “Specifying the Certificate
Verification Provider” in Trading Partner Management in Managing WebLogic Integration
Solutions.

Benefits of Certificate Verification
The purpose of trading partner certificate verification is to validate the trading partner’s digital
certificate. For example, verifying a certificate may involve some or all of the following tasks:

Traversing the certificate chain to the root certificate authority

Checking a certificate revocation list (CRL) for all the certificates in the chain to identify
any of those that have been revoked

Performing a real-time certificate check with a trusted vendor, who can verify the
certificate

Checking to make sure all dates in the certificate chain are valid

Verifying the signature of each certificate in the chain

Configuring and using a CVP implementation is optional, but doing so can provide an additional
level of security in the certificate verification process.

When WebLogic Integration Uses the Certificate Verification Provider
The CVP is used by WebLogic Integration in the following cases:

http://edocs.bea.com/wli/docs81/manage/tpm.html

Trad ing Par tne r In teg ra t i on Secur i t y

4-28 Introducing Trading Partner Integration

inbound SSL and mutual authentication

outbound SSL and mutual authentication

Certificate Verification Process
The following figure is an example of the sequence of events that occur during the certificate
verification process in WebLogic Integration for an incoming message using SSL and mutual
authentication.

Figure 4-5 Trading Partner Certificate Verification in WebLogic Integration

Transpo r t -Leve l Secu r i t y

Introducing Trading Partner Integration 4-29

Note the following callouts in the preceding figure.

Implementing a Certificate Verification Provider
A certificate verification provider (CVP) Java class must implement the
com.bea.wli.security.verification.CertificateVerificationProvider interface.
You have two choices for what a CVP class can call out to:

A trusted third-party vendor that conforms to the service provider interface, as described in
“Using the Service Provider Interface” on page 4-30.

Your own certificate verification application.

Regardless of which choice you pick, you need to create a Java implementation of the CVP SPI
that calls out to the application that performs the actual certificate verification. Creating,
compiling, and configuring this CVP application is explained in the subsections that follow.

Callout Description

1 Certificate verification is used in SSL. The trading partner and the WebLogic Server system
perform an SSL handshake, during which they exchange certificates to establish each other’s
identity. The Certificate Authority of the trading partner digital certificate must be trusted in
WebLogic Server. During this handshake, WebLogic Server verifies the following:

• The Certificate Authority of the trading partner certificate must be one that is trusted in
the WebLogic Server environment.

• The trading partner certificate has not expired.

When the SSL handshake is completed, the trading partner’s network connection to the
WebLogic Server system is established.

2 WebLogic Server dispatches the message to WebLogic Integration which verifies the
following:

• The validity of the certificate (lifetime).

• That the keyusage is a valid and specified in WebLogic Integration.

3 WebLogic Integration invokes the CVP interface to the implementation that calls out to the
third-party certificate verification service.

4 The CVP implementation calls out to the third-party certificate verification service, which
returns the status of the trading partner certificate.

5 The CVP implementation returns the appropriate status of the certificate to WebLogic
Integration.

Trad ing Par tne r In teg ra t i on Secur i t y

4-30 Introducing Trading Partner Integration

Using the Service Provider Interface
Trading Partner Integration allows you to implement a CVP via the
com.bea.wli.security.verification.CertificateVerificationProvider interface,
which provides the CVP service provider interface (SPI). If you implement or use a CVP using
the SPI described in this section, you must later configure this CVP in the WebLogic Integration
Administration Console so that the CVP is invoked properly during run time.

The com.bea.wli.security.verification.CertificateVerificationProvider
interface has the following methods, which a CVP application must implement:

void init()

This method is automatically invoked by WebLogic Integration to invoke any custom
initialization processes in the class you create that implements this interface. This method
is invoked only once, at the startup of WebLogic Integration.

String verify(Certificate[] certs)

This method validates the certificate chain obtained during the SSL handshake. It should
return one of the following String values:

– good—the trading partner certificate is valid and not expired.

– revoked—the trading partner certificate has been revoked by one of the certificate
authorities in the certificate chain, or the trading partner certificate has expired.

– unknown—none of the certificate authorities in the certificate chain is able to establish
the validity of the trading partner certificate.

The implementer can choose the validation procedure performed by this method. For
example, this method can check certificate revocation lists (CRLs) stored in files, it can
check the certificate status in real-time using the Online Certificate Status Protocol
(OCSP), or it can use any other mechanism, as appropriate.

Notes: If you implement a CVP, you need to add a default public constructor for the CVP with
no arguments. Neither the constructor nor any methods in the class should throw any
exceptions.

If you do not configure a CVP, any certificate issued by a trusted certificate authority is
considered by WebLogic Integration to be valid.

Compiling the Certificate Verification Provider Class
If you implement a CVP, after you create the CVP Java class, you must compile it and place it in
the system CLASSPATH.

Transpo r t -Leve l Secu r i t y

Introducing Trading Partner Integration 4-31

Configuring a Certificate Verification Provider with Trading Partner Integration
You must configure the CVP via the WebLogic Integration Administration Console or the Bulk
Loader utility. After you configure the CVP, restart WebLogic Server so that the CVP can take
effect. If you do not configure a CVP, any certificate issued by a trusted certificate authority is
considered by WebLogic Integration to be valid.

You use the WebLogic Integration Administration Console to configure a CVP. For more
information, see “Specifying the Certificate Verification Provider” in Trading Partner
Management in Managing WebLogic Integration Solutions.

After you configure a CVP, restart WebLogic Server so that the CVP can take effect.

Note: When you are running WebLogic Integration in iterative development mode, no security
verification settings are active. The CVP is only active in development mode.

Authorization
Authorization determines whether access is provided to trading partner integration resources,
such as:

B2BDefaultWebApp and endpoint URIs of protocol bindings of local trading partners in
the TPM repository

WebLogic Workshop business processes

JDBC connection pools (bpmarchpool and cgpool) and MBeans that are used to access
the TPM repository

JMS destination (for message tracking, asynchronous dispatcher queues for trading partner
integration business processes)

Roles and Policies
Permission to access trading partner resources is assigned through policies and roles—for any
resource that needs to be protected, its security policy will be defined based on roles. Individual
users/entity will thus be able to get access depending upon the roles that they belong to. Whereas
authentication is concerned with who an entity is—it is the association of an identity with an
entity—authorization is concerned with what that identity is allowed to see and do.

Note: Authorization is available (but not required) with basic, one-way plus basic, and mutual
authentication.

http://edocs.bea.com/wli/docs81/manage/tpm.html
http://edocs.bea.com/wli/docs81/manage/tpm.html

Trad ing Par tne r In teg ra t i on Secur i t y

4-32 Introducing Trading Partner Integration

Authorization Levels
For trading partner integration, WebLogic Integration incorporates two levels of authorization:

Authorization of the trading partner for access to the Transport Servlet Filter.

Authorization in the service associated with the trading partner business message.

Trading Partner Authorization
WebLogic Server performs trading partner authorization. When the trading partner message
arrives in WebLogic Server, and the trading partner and WebLogic Server complete the mutual
or basic (username and password) authentication procedure, authorization is performed by
WebLogic Server to access the Transport Servlet Filter.

The preferred way to configure the B2BDefaultWebApp is to use the WebLogic Server
Administration Console to set policies on the B2BDefaultWebApp for access to URLs. For
instructions, see “URL (Web) and EJB (Enterprise JavaBean) Resources” in “Types of
WebLogic Resources” in Securing WebLogic Resources at the following URL:

http://edocs.bea.com/wls/docs81/secwlres/types.html

In addition to configuring B2BDefaultWebApp, you can also configure other trading partner
integration resources (such as the JDBC connection pool and MBeans used to access the TPM
repository, WebLogic Workshop business processes, and JMS destinations) that need to be
configured as well. For more information, see “Authorization” on page 4-31.

Service Authorization
When WebLogic Integration performs service authorization, the server examines the content of
the trading partner business message with respect to the service profile to which the trading
partner is bound. That is, for a service profile, a trading partner may send only a specific set of
business messages. WebLogic Integration validates the business message against the following
information specified in the service profile for a particular service:

Party information (trading partner)

Service name

Protocol binding

Once the service authorization is complete for an incoming business message, access to the B2B
resources is dictated by WebLogic resource policies.

http://edocs.bea.com/wls/docs81/secwlres/types.html
http://e-docs.bea.com/wls/docs81/secwlres/
http://e-docs.bea.com/wls/docs81/secwlres/

Message-Leve l Secu r i t y

Introducing Trading Partner Integration 4-33

Message-Level Security
Message-level security involves digital signatures, encryption, and non-repudiation for individual
business messages. This topic describes message-level security concepts and tasks for trading
partner integration. It contains the following sections:

Digital Signatures

NonRepudiation

Encryption—PKCS7 Enveloped Data for RosettaNet 2.0

Using digital signatures prevents tampering with business messages. Using encryption ensures
message privacy. Nonrepudiation allows trading partners to prove or disprove having previously
sent or received a particular business message to or from another trading partner.

Message-level security is configured in the protocol bindings that define communications
between trading partners. For more information, see “Defining Protocol Bindings” in Trading
Partner Management in Managing WebLogic Integration Solutions.

Digital Signatures
Digital signatures provide a means of preventing anyone or anything from tampering with the
contents of a business message, especially when the business message is in transit between two
trading partners. After verifying a signature, WebLogic Integration uses a Certificate Verification
Provider (if two-way authentication is configured), as described in “Authenticating Remote
Users in Two-Way Authentication” on page 4-23. Digital signatures are required for
nonrepudiation, which is described at “NonRepudiation” on page 4-36.

WebLogic Integration Support for Digital Signatures
WebLogic Integration supports the following types of digital signatures:

XML Digital Signatures (XMLDSig) for ebXML 1.0 and ebXML 2.0

Public Key Cryptography Standard 7 (PKCS7) Enveloped Data for RosettaNet 1.1 and 2.0.

Note: XML Digital Signatures cannot be used when receiving ebXML messages from WLI
Business Connect using ebXML MS 1.0. Instead, ebXML MS 2.0 should be used.

http://edocs.bea.com/wli/docs81/manage/tpm.html
http://edocs.bea.com/wli/docs81/manage/tpm.html

Trad ing Par tne r In teg ra t i on Secur i t y

4-34 Introducing Trading Partner Integration

About Digital Signatures
A digital signature itself is a set of data appended to a business message consisting of an
encrypted, one-way hash value of data packaged in a specific format (for example, PKCS7
SignedData or XMLDSIG signature). A digital signature:

Validates that the contents of a digitally signed message have not been tampered with.

Contains the identity of the sender of the business message.

The data required to create a digital signature is obtained from the trading partner configuration
data in the TPM repository. The information required to create a digital signature also includes
the following:

Trading partner signature certificate and private key

Certificate authority certificate for the trading partner signature certificate

For ebXML, an XPath transform (optional)

You can configure whether to sign business messages or not in the protocol bindings that define
communications between trading partners. For more information, see “Defining Protocol
Bindings” in Trading Partner Management in Managing WebLogic Integration Solutions.

After validating a signature, WebLogic Integration invokes the certificate verification provider
(CVP), which is described in “Certificate Verification Process” on page 4-28.

XMLDSig for ebXML 1.0 and ebXML 2.0
WebLogic Integration supports XMLDSig for ebXML 1.0 and ebXML 2.0 message exchanges
between trading partners.

Supported XMLDSig Features
WebLogic Integration supports the following XMLDSig features:

Digital signatures for multipart messages

– ebXML SOAP Envelope

– One or more part(s)

Signed acknowledgements (ebXML 2.0 only)

Sender verification

http://edocs.bea.com/wli/docs81/manage/tpm.html

Message-Leve l Secu r i t y

Introducing Trading Partner Integration 4-35

For more information about XMLDSig, see “XML-Signature Syntax and Processing” on the
W3C web site at the following URL:

http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/Overview.html

Supported XMLDSig Algorithms
WebLogic Integration uses the following algorithms for XMLDSig:

Signature Algorithm

– DSA-SHA1

http://www.w3.org/2000/09/xmldsig#dsa-sha1

– RSA-SHA1

http://www.w3.org/2000/09/xmldsig#rsa-sha1

Digest Algorithm

SHA1 http://www.w3.org/2000/09/xmldsig#sha1

Canonicalization Algorithm

http://www.w3.org/TR/2001/REC-xml-c14n-20010315

Transform Algorithms

– Enveloped Signature

http://www.w3.org/2000/09/xmldsig#enveloped-signature

– Xpath

http://www.w3.org/TR/1999/REC-xpath-19991116

– Canonicalization

http://www.w3.org/TR/2001/REC-xml-c14n-20010315

Digital Signature with PKCS7 Enveloped Data for RosettaNet 1.1 and
RosettaNet 2.0
For RosettaNet 1.1 and 2.0, WebLogic Integration supports digital signature with PKCS7
Enveloped Data.

Supported PKCS7 Enveloped Data Digital Signature Features
WebLogic Integration supports PKC7 enveloped data for digital signatures for RosettaNet 1.1
and 2.0. Digital signatures for multipart messages apply to:

http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/Overview.html

Trad ing Par tne r In teg ra t i on Secur i t y

4-36 Introducing Trading Partner Integration

Service Header (optional)

Service Content

One or more attachments

Supported PKCS7 Enveloped Data Digital Signature Algorithms
WebLogic Integration supports the following PKC7 enveloped data algorithms:

Hash algorithm name: SHA1 and MD5

Signature algorithm name: RSA

NonRepudiation
Nonrepudiation, or the ability to provide legal evidence of the involvement of a denying party, is
a legal requirement for critical business messages. Nonrepudiation is the ability of a trading
partner to prove or disprove having previously sent or received a particular business message to
or from another trading partner. WebLogic Integration supports:

Nonrepudiation of origin—Links the message received and the sender of the message. It
provides legal evidence that you have sent a business message.

Nonrepudiation of receipt—Links the message processed and the recipient of the
message. It provides legal evidence that you have received a business message.

Nonrepudiation is configured in the protocol bindings that define communications between
trading partners. For more information, see “Defining Protocol Bindings” in Trading Partner
Management in Managing WebLogic Integration Solutions.

Nonrepudiation Example
Trading Partner A has agreed to purchase 1000 ergonomic chairs from Trading Partner B. In the
course of this agreement, Trading Partner A has sent a business message to Trading Partner B
agreeing to buy the chairs at a set price. Later, though, Trading Partner A disputes the original
price and denies having sent a message in which they agreed to pay that price.

If a reliable nonrepudiation system has been in place, Trading Partner B can disprove Trading
Partner A’s claim by producing a document from Trading Partner A specifying the amount
Trading Partner A agreed to pay. Further, if this original document is digitally signed,
timestamped, recorded, and secured by a trusted third-party source, the validity of this document
has full legal recourse.

http://edocs.bea.com/wli/docs81/manage/tpm.html
http://edocs.bea.com/wli/docs81/manage/tpm.html

Message-Leve l Secu r i t y

Introducing Trading Partner Integration 4-37

Nonrepudiation Services
To support nonrepudiation, WebLogic Integration provides the following services:

Digital signatures—Used to digitally sign a business document before it is sent to the
recipient.

Secure Audit log SPI—Used to store digitally signed business messages with a secure
timestamp. Audit logging is necessary for nonrepudiation.

Secure timestamp SPI—Used to sequence the occurrence of events in the business
transaction.

Digital Signatures
Digital signatures are required for nonrepudation because they provide a means of preventing
anyone or anything from tampering with the contents of a business message, especially when the
business message is in transit between two trading partners. For more information, see “Digital
Signatures” on page 4-33.

Secure Audit Log
A secure audit log is required for nonrepudation because it typically stores each business message
with its digital signature and secure timestamp, allowing a trading partner to reconstruct the
sequence of messages and other system events that have occurred during the exchange of
business messages with other trading partners, along with the data exchanged.

The default audit log provider
(com.bea.wli.security.audit.DefaultAuditLogProvider) logs to a file named
secureaudit.log. This file is based on the logging subsystem and is protected by only the
underlying operating system’s file permissions system. This file is not digitally signed or
encrypted. It should be used only for demo or development purposes, not in a production
environment.

You enable and disable the audit log and specify the audit log class in the WebLogic Integration
Administration Console. For more information, see “Configuring Secure Audit Logging” in
Trading Partner Management in Managing WebLogic Integration Solutions.

Audit Log Messages
All log messages correspond to the DTD log-message.dtd, which defines the contents for each
message type.

All audit log messages have the following three identifiers:

http://edocs.bea.com/wli/docs81/manage/tpm.html

Trad ing Par tne r In teg ra t i on Secur i t y

4-38 Introducing Trading Partner Integration

Location—the location, in WebLogic Integration, in which the message is stored

Type—the message type

Data—the actual information that is being logged

The following table describes the contents of the data for each of the message types. All the log
messages contain the timestamp obtained from the timestamp provider that is configured in
WebLogic Integration.

Audit Log DTD
The following code example shows the log-message.dtd file:

Listing 4-1 Sample log-message.dtd file

<!ELEMENT LOG (non-repudiation-origin| non-repudiation-receipt |

application)>

<!ATTLIST LOG time-stamp CDATA #REQUIRED >

<!ATTLIST LOG location CDATA #IMPLIED >

<!ATTLIST LOG Principal CDATA #IMPLIED >

<!ELEMENT non-repudiation-origin (#PCDATA)>

<!ELEMENT non-repudiation-receipt (#PCDATA)>

<!ELEMENT application (#PCDATA)>

Message Type Description

NRR Nonrepudiation of receipt. Contains that name of the trading partner
receiving the business message and the application data.

NRO Nonrepudiation of origin. Contains the name of the trading partner
sender, the business message, and the application data.

APP Is logged from any trading partner Java class via the
Audit.log(byte[] data) method.The data format for this
message type is any stringified XML document. Because the
application is logging the message, the contents of the data are
controlled by the application itself.

Message-Leve l Secu r i t y

Introducing Trading Partner Integration 4-39

Using the SPI for the Secure Audit Log
WebLogic Integration provides a Service Provider Interface (SPI) for you to configure a trusted,
third-party provider of the secure audit log. If you incorporate a secure audit log service from a
trusted third-party provider, you need to create a class that implements the
com.bea.wli.security.audit.AuditLogProvider interface. In the methods of your class
(for example, log), you call out to the third party audit log provider.

Note: If you implement an audit log service using the SPI described in this section, you must
configure this service later in the WebLogic Integration Administration Console so that
the service is invoked properly during run time.

The com.bea.wli.security.audit.AuditLogProvider interface has the following
methods, which a secure audit log application must implement:

void init()

This method initializes the audit log.

void log (java.lang.String component,
 java.lang.String type,
 byte[] data,
 java.lang.String principal)

This method is invoked to log a message in the secure audit log. It has the following
parameters:

– java.lang.String component

Contains the component that is logging the message

– java.lang.String type

Specifies the type of the nonrepudiation message

– byte[] data

Contains the data to be logged

– java.lang.String principal

Contains the name of the trading partner who is logging this message

Your implementation of the secure audit interface must include a default public constructor with
no arguments. Neither the constructor nor any methods in the class that implements the
AuditLogProvider interface should throw any exceptions.

Trad ing Par tne r In teg ra t i on Secur i t y

4-40 Introducing Trading Partner Integration

Writing to the Audit Log Directly
As an alternative to writing a Java implementation of the
com.bea.wli.security.audit.AuditLogProvider interface to call out to an application
that writes to the audit log, you can write an application that writes to the audit log directly via an
invocation to the com.bea.wli.security.audit.Audit.log(byte[] data) method, as
shown in the following code example from a business process. In this example, the bolded code
shows the statements that have been added to show writing to the audit log.

Listing 4-2 Example of Writing to the Audit Log Directly

package orderprocessing;
import com.bea.jpd.JpdContext;
import com.bea.xml.XmlObject;
import com.bea.data.MessageAttachment;
// Import the Audit class from the WLI security package
import com.bea.wli.security.audit.Audit;
/**
 * @jpd:process process::
 * <process name="ServerBuyer">
 * <clientRequest name="Receive order request from client" method="start"/>
 * <controlSend name="Send PO to enterprise server seller"
method="sendOrder"/>
 * <controlReceive name="Receive PO receipt from enterprise server seller"
method="orderService_onMessage"/>
 * <clientCallback name="sendAck" method="sendAck"/>
 * </process>::
 *
 */
public class EnterpriseServerBuyer implements com.bea.jpd.ProcessDefinition
{
 public com.bea.tutorial.b2B.order.OrderDocument pcOrder;
 /**
 * @jc:ebxml ebxml-service-name="SecureOrderService" from="BEA-IT-id"
to="SUN-id" ebxml-action-mode="default"
 * @common:control
 */
 private SecureOrderServiceControl orderService;
 /**
 *@common:context
 */
 JpdContext context;
 public void start(String str)
 {
 //create an order

Message-Leve l Secu r i t y

Introducing Trading Partner Integration 4-41

 pcOrder = ...
 }
 public void sendOrder()
 {
 //#START: CODE GENERATED - PROTECTED SECTION - you can safely add code
above this comment in this method. #//
 // input transform
 // method call
 orderService.sendOrder(pcOrder);
 // output transform
 // output assignments
 //#END : CODE GENERATED - PROTECTED SECTION - you can safely add code
below this comment in this method. #//

 }
 public void orderService_onMessage(MessageAttachment[] reply)
 {
 //assume only one object of type XmlObject in reply
 XmlObject xo = reply[reply.length - 1].getXmlObject();
 if(Audit.isEnabled()) {
 Audit.log(xo.toString().getBytes());
 }
 }
 public Callback callback;
 public interface Callback {
 public void onAck(String reply);
 }
 void sendAck() {
 callback.onAck("This is an ACK from ServerBuyer.jpd.");
 }
}

Timestamp Provider
A timestamp provider is required for nonrepudation because a secure timestamp service attaches
a Coordinated Universal Time (UTC) timestamp to the secure audit log when business messages
are also logged to the secure audit log, providing precise time and date information.

For example, when a trading partner receives a business message, a timestamp is entered as a
nonrepudiation of receipt (NRR) message in the audit log. When a trading partner sends a
business message, a timestamp is entered as a nonrepudiation of origin (NRO) message in the
audit log.

Trad ing Par tne r In teg ra t i on Secur i t y

4-42 Introducing Trading Partner Integration

You configure the timestamp provider in the WebLogic Integration Administration Console. For
more information, see “Configuring Secure Audit Logging” in Trading Partner Management in
Managing WebLogic Integration Solutions.

Exclusive and Default Timestamps
WebLogic Integration prohibits more than one secure timestamp provider from being registered
in WebLogic Integration. This restriction ensures that all timestamps created in WebLogic
Integration are ordered chronologically.

Note: If you do not configure a secure timestamp service provider in WebLogic Integration,
system time is used for timestamping system events and signatures if the default log
provider is used.

Using the SPI for the Secure Timestamp Service
Trading Partner Integration includes a Service Provider Interface (SPI) so that you can
incorporate a secure timestamp service from a trusted third-party provider.

If you incorporate a secure timestamp service from a trusted third-party provider, you need to
create a Java class that implements the com.bea.wli.security.time.TimestampProvider
interface. In the methods (for example, getTimestamp) of your class implementing the
com.bea.wli.security.time.TimestampProvider interface, you call out to the third party
timestamp provider.

Trading Partner Integration allows you to create a customized secure timestamp service by
implementing the com.bea.wli.security.time.TimestampProvider interface. If you
implement a timestamp using the SPI described in this section, you must configure this service
later in the WebLogic Integration Administration Console so that the service is invoked properly
during run time.

The com.bea.wli.security.time.TimestampProvider interface has the following
methods, which a timestamp application must implement:

String getTimestamp()

This method returns a string specifying the time in Coordinate Universal Time (UTC)
format.

long getTimestampInMillis()

This method returns a string specifying the UTC time in milliseconds.

http://edocs.bea.com/wli/docs81/manage/tpm.html

Message-Leve l Secu r i t y

Introducing Trading Partner Integration 4-43

Your implementation of the timestamp interface must include a default public constructor with
no arguments. Neither the constructor nor any methods in the class that implements the
TimeStampProvider interface should throw any exceptions.

Encryption—PKCS7 Enveloped Data for RosettaNet 2.0
WebLogic Integration encrypts business messages for the business protocols that require it. In
this WebLogic Integration release, message encryption is supported only for RosettaNet 2.0.

Note: To use message encryption, you must have a valid license for using the encryption
service.

How WebLogic Integration Handles Data Encryption
The following figure shows how data encryption is performed using the public and private keys.

Figure 4-6 Message Encryption in Trading Partner Integration

Data encryption works by using a combination of the sender’s certificate, private key, and the
recipient’s certificate to encode a business message. The message can then be decrypted only by
the recipient using the recipient’s private key.

Note: WebLogic Integration encryption is controlled by licensing (Encryption/Domestic or
Encryption/Export), but the decryption of a business message is not. If WebLogic

Trad ing Par tne r In teg ra t i on Secur i t y

4-44 Introducing Trading Partner Integration

Integration does not have a valid encryption license, WebLogic Integration disables the
encryption service. However, WebLogic Integration can always decrypt business
messages that are received.

Supported Encryption Algorithms
The WebLogic Integration message encryption service supports the following algorithms:

RC5

For more information, see the RSA web site at: http://www.rsasecurity.com/

Data Encryption Standard (DES)

Triple Data Encryption Standard (3DES)

You use the WebLogic Integration Administration Console to enable or disable business
messages encryption in the protocol bindings that define communications between trading
partners. For more information, see “Defining Protocol Bindings” in Trading Partner
Management in Managing WebLogic Integration Solutions.

Using Proxy Servers with Trading Partner Integration
This topic describes how to use proxy servers with trading partner integration. It includes the
following sections:

Configuring Trading Partner Integration to Use an Outbound HTTP Proxy Server

Configuring WebLogic Integration with a Web Server and a WebLogic Proxy Plug-In

Configuring Trading Partner Integration to Use an Outbound
HTTP Proxy Server
If you are using WebLogic Integration in a security-sensitive environment, you may want to use
WebLogic Integration behind a proxy server. A proxy server allows trading partners to
communicate across intranets or the Internet without compromising security. A proxy server is
used to:

Hide, from external hackers, the local network addresses of the WebLogic Servers that host
WebLogic Integration

Restrict access to the external network

Monitor external network access to the WebLogic Servers that host WebLogic Integration

http://edocs.bea.com/wli/docs81/manage/tpm.html
http://edocs.bea.com/wli/docs81/manage/tpm.html

Using P roxy Se rve rs w i th T rad ing Par tne r I nt eg ra t i on

Introducing Trading Partner Integration 4-45

When proxy servers are configured on the local network, network traffic is tunneled through, or
delegated to, the proxy server and then to the external network. The following figure illustrates
how a proxy server might be used in the WebLogic Integration environment.

Figure 4-7 Proxy Server

To configure a proxy server in the WebLogic Integration Administration Console, see
“Configuring a Proxy Host” in Trading Partner Management in Managing WebLogic Integration
Solutions.

Note: If you configure a proxy server, you also need to add permissions to read and write the
ssl.proxyHost and ssl.proxyPort system properties for the WebLogic Server.
These system properties are stored in the weblogic.policy file, which is located in the
directory where you installed WebLogic Server. Add the following lines to the grant
section of the weblogic.policy file:

permission java.util.PropertyPermission "ssl.proxyHost", "read, write";
permission java.util.PropertyPermission "ssl.proxyPort", "read, write";

In addition, you need to specify the following WebLogic Web Server system properties:

-http.proxyHost

-http.proxyPort

-https.proxyHost (if proxy server is configured for SSL tunneling)
-https.proxyPort (if proxy server is configured for SSL tunneling)

The weblogic.common.ProxyAuthenticator interface is used to obtain
authentication information to communicate with the proxy. For more information, see
Interface ProxyAuthenticator available at

http://edocs.bea.com/wli/docs81/manage/tpm.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/common/ProxyAuthenticator.html

Trad ing Par tne r In teg ra t i on Secur i t y

4-46 Introducing Trading Partner Integration

http://edocs.bea.com/wls/docs81/javadocs/weblogic/common/ProxyAuthe

nticator.html.

Configuring WebLogic Integration with a Web Server and a
WebLogic Proxy Plug-In
You can configure WebLogic Integration with a Web server, such as an Apache server, that is
programmed to service business messages from a remote trading partner. A Web server can
provide the following services:

Receive business messages from a remote trading partner

Authenticate a trading partner digital certificate

Services Provided by WebLogic Proxy Plug-In
The Web server uses the WebLogic proxy plug-in, which you can configure to provide the
following services:

Forward business messages received by the Web server to WebLogic Integration, which is
running inside a secure internal network.

Extract the remote trading partner certificate from the Web server and forward it to
WebLogic Server for authentication. WebLogic Integration can then authenticate the
trading partner certificate and business message.

Topology Using WebLogic Proxy Plug-In
The following figure shows the topology of an environment that uses a Web server, the
WebLogic proxy plug-in, and WebLogic Integration.

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/common/ProxyAuthenticator.html

Using P roxy Se rve rs w i th T rad ing Par tne r I nt eg ra t i on

Introducing Trading Partner Integration 4-47

Figure 4-8 Using a Web Server and the WebLogic Proxy Plug-In

When using the WebLogic Proxy Plug-In, note that:

Even though the proxy plug-in uses HTTP, you must configure WebLogic Integration to
use the HTTPS protocol when using the proxy plug-in to forward business messages.

If a trading partner in a conversation uses Microsoft IIS as a proxy server, all the
certificates used in the conversation must be trusted by a well-known Certificate Authority,
such as VeriSign or Entrust. The use of self-signed certificates will cause a request passed
through the IIS proxy server to fail. This is a restriction in IIS, not WebLogic Integration.

Configuring the Web Server
To configure the Web server, see Configuring Web Server Functionality for WebLogic Server in
Configuring and Managing WebLogic Server at the following URL:

http://edocs.bea.com/wls/docs81/adminguide/web_server.html

The following code example provides the segment of httpd.conf (for an Apache server) needed
to configure the proxy plug-in:

LoadModule foo_module libexec/mod_foo.so

LoadModule weblogic_module libexec/mod_wl_ssl.extension

<Location /weblogic>

 SetHandler weblogic-handler

 PathTrim /weblogic

 WebLogicHost myhost

 WebLogicPort 80

</Location>

http://edocs.bea.com/wls/docs81/adminguide/web_server.html
http://edocs.bea.com/wls/docs81/adminguide/web_server.html

Trad ing Par tne r In teg ra t i on Secur i t y

4-48 Introducing Trading Partner Integration

Here, extension is the file extension used by your Unix installation.

Implementing Security for Trading Partner Integration
For development and testing purposes, you use the default security configuration that is generated
when you create a new WebLogic Integration domain using the WebLogic Platform
Configuration Wizard. For more information, see “Default Domain Security Configuration” on
page 4-8.

For a production environment, you need to configure security as part of your deployment. This
topic provides a summary of the tasks that you need to complete. It contains the following
sections:

Configure Users, Groups, and Roles

Configure Trading Partner Profiles

Configure the Keystores

Configure Certificates

Configure SSL

Configure Transport-Level and Message-Level Options in Service Profiles

Configure Users, Groups, and Roles
You use the User Management module of the WebLogic Integration Administration Console to
manage the users, groups, and roles defined in the default security realm. For instructions on
configuring users, groups, and roles in the WebLogic Integration Administration Console, see
User Management in Managing WebLogic Integration Solutions.

Configure Trading Partner Profiles
You need to configure the profiles for trading partners with whom you will exchange business
messages. For an introduction to trading partner profiles, see “Trading Partner Profiles” on
page 1-6. For instructions on configuring trading partner profiles in the WebLogic Integration
Administration Console, see the following topics in Trading Partner Management in Managing
WebLogic Integration Solutions:

“Adding Trading Partner Profiles”

“Defining Trading Partner Profiles”

http://edocs.bea.com/wli/docs81/manage/tpm.html
http://edocs.bea.com/wli/docs81/manage/users.html

Imp lement ing Secur i t y fo r T rad ing Par tne r I nt eg ra t i on

Introducing Trading Partner Integration 4-49

“Deleting Trading Partner Profiles”

Configure the Keystores
You need to create and configure the identity and trust keystore for certificates and private keys.
For an introduction to the keystore, see “Keystore for Private Keys and Certificates” on page 4-9.
For instructions on creating and configuring the keystore, see the following topics:

If the identity and trust keystores do not already exist, create them according to the
instructions in “Storing Private Keys, Digital Certificates, and Trusted Certificate
Authorities” in “Configuring SSL” in Managing WebLogic Security at the following URL:

http://edocs.bea.com/wls/docs81/secmanage/ssl.html

Configure the keystores using the WebLogic Server Administration Console according to
the instructions in “Configuring KeyStores” in “Configuring SSL” in Managing WebLogic
Security at the following URL:

http://edocs.bea.com/wls/docs81/secmanage/ssl.html

Configure Certificates
You need to add digital certificates to trading partners. For an introduction to certificates, see
“Digital Certificates” on page 4-15. For instructions on configuring certificates in the WebLogic
Integration Administration Console, see the following topics in Trading Partner Management in
Managing WebLogic Integration Solutions:

“Adding Certificates to a Trading Partner”

“Viewing and Changing Certificates”

“Deleting Certificates, Bindings, or Custom Extensions”

Configure SSL
You need to configure SSL for transport-level security using the WebLogic Server
Administration Console. For an introduction, see “SSL Protocol” on page 4-12. For configuration
instructions, see “Configuring SSL” in Managing WebLogic Security at the following URL:

http://edocs.bea.com/wls/docs81/secmanage/ssl.html

Configure Transport-Level and Message-Level Options in Service Profiles
You need to decide the transport-level security and message-level security options that you want
to use in your message exchanges, and then configure those options in the service profile for each

http://edocs.bea.com/wls/docs81/secmanage/ssl.html
http://edocs.bea.com/wls/docs81/secmanage/ssl.html
http://edocs.bea.com/wli/docs81/manage/tpm.html
http://edocs.bea.com/wls/docs81/secmanage/ssl.html
http://edocs.bea.com/wls/docs81/secmanage/ssl.html
http://edocs.bea.com/wls/docs81/secmanage/ssl.html
http://edocs.bea.com/wls/docs81/secmanage/ssl.html

Trad ing Par tne r In teg ra t i on Secur i t y

4-50 Introducing Trading Partner Integration

trading partner. For example, you might use mutual authentication with one trading partner and
basic authentication with another. Similarly, you might implement nonrepudiation with a
customer or vendor, but not with a trading partner that is within your organization.

For instructions on how to managing service profiles in the WebLogic Integration Administration
Console, see the following topics in Trading Partner Management in Managing WebLogic
Integration Solutions.

“Adding Service Profiles to a Service”

“Viewing and Changing Service Profiles”

“Deleting Service Profiles from a Service”

“Enabling and Disabling Trading Partner and Service Profiles”

To Learn More

Security Topics in the WebLogic Platform Documentation Set
The WebLogic Platform documentation set contains several additional security topics. For a
comprehensive table of these topics, see the “WebLogic Platform Documentation Topics” table
in the “Where to Find More Information” section of Security in WebLogic Platform 8.1 available
at http://edocs.bea.com/platform/docs81/secintro/info.html

BEA Security Advisories
To keep you informed of the latest security advisories and to make sure you have access to
security-related patches as soon as they become available, BEA maintains the BEA Advisories
& Notifications page at:

http://dev2dev.bea.com/advisories

Reporting Security Issues
If you discover a possible security issue with WebLogic Platform 8.1 or any of its components,
BEA recommends that you report it to secalert@bea.com.

dev2dev Security Resources
The BEA dev2dev Web site includes a Web page that provides links to several security-specific
resources, including:

http://edocs.bea.com/wli/docs81/manage/tpm.html
http://edocs.bea.com/platform/docs81/secintro/info.html
http://edocs.bea.com/platform/docs81/secintro/info.html
http://edocs.bea.com/platform/docs81/secintro/index.html
http://dev2dev.bea.com/advisories

To Lea rn More

Introducing Trading Partner Integration 4-51

Security code samples

Training

Newsgroups

For the list of security topics recommended on the dev2dev Web site, see:

http://dev2dev.bea.com/products/wlplatform81/security.jsp

The dev2dev site also hosts a Web page that provides answers to frequently asked questions
(FAQ) about BEA WebLogic Platform and other BEA products. The site is updated monthly. To
visit the dev2dev FAQ page, see:

http://dev2dev.bea.com/topitems/topsolutions/index.jsp

http://dev2dev.bea.com/products/wlplatform81/security.jsp
http://dev2dev.bea.com/topitems/topsolutions/index.jsp

Trad ing Par tne r In teg ra t i on Secur i t y

4-52 Introducing Trading Partner Integration

Introducing Trading Partner Integration A-1

C H A P T E R A

Example: ebXML Security Configuration

This example demonstrates how to configure the security settings for ebXML message exchange
between trading partners over HTTPS protocol through a proxy server. Although any proxy
server can be used in this configuration, the example demonstrates how to configure the iPlanet
Web Server 6.0 (Sun ONE 6.0) as the proxy server. A demonstration version of this server is
available for download at http://wwws.sun.com/software/download/products/3f186391.html.

This example involves two trading partners. Trading Partner 1 is configured in WebLogic
Integration and Trading Partner 2 is configured in WebLogic Integration - Business Connect as
shown in the following figure:

In the preceding figure:

Messages are sent from Trading Partner 1 to Trading Partner 2 using HTTPS protocol
through a secure connection.

Acknowledgements and responses are sent from the participant to the initiator through an
iPlanet proxy server.

http://wwws.sun.com/software/download/products/3f186391.html

Example : ebXML Secur i t y Conf igura t i on

A-2 Introducing Trading Partner Integration

Note: In production scenarios, firewalls are usually configured between WebLogic Integration
and the proxy server and between the proxy server and WebLogic Integration - Business
Connect. To keep the IP addresses simple in this sample, the firewalls are left out of the
examples.

The following topics is discussed in this section:

“Before You Begin” on page A-3
This topic provides links to suggested tutorial which you can complete before starting on
this sample if you are unfamiliar with WebLogic Integration and WebLogic Server
concepts.

“Step 1: Generating a Test Certificate” on page A-4
To be able to run this example, you need to generate a test certificate to use as client and
server certificate for WebLogic Integration and WebLogic Server. This section describes
how to generate this certificate using the OpenSSL tool.

“Step 2: Configuring Keystores for WebLogic Integration” on page A-5
Before you can import the test certificate you created in the previous section, you need to
configure the keystores accordingly. This section will show you how to do just that.

“Step 3: Configuring the Local Trading Partner in WebLogic Integration” on page A-9
In this section, you configure the default trading partner Test_TradingPartner_1 to be your
local trading partner in WebLogic Integration. You then edit the trading partner bindings
and add the appropriate certificates to the trading partner and keystore. Lastly, you export
the trading partner information into a file which you later on use to configure the Partner
Profile in WebLogic Integration - Business Connect.

“Step 4: Configuring the SSL Settings in WebLogic Server” on page A-12
After you have loaded the certificates into the keystore, you need to go back to the
WebLogic Server Console and configure the SSL settings with the appropriate aliases for
the certificates in the keystore. This section provides a step by step procedure for how to
configure the correct server SSL settings.

“Step 5: Exporting the WebLogic Integration Trading Partner Data” on page A-15
In this section, you export the local trading partner information from WebLogic
Integration into an xml file. Later on, you use this xml file to configure the remote trading
partner in WebLogic Integration - Business Connect.

“Step 6: Configuring the Company Profile in WebLogic Integration - Business Connect” on
page A-16

In this step, you create a Company Profile in WebLogic Integration - Business Connect
and configure that profile with local trading partner information. You then export the

Befor e You Beg in

Introducing Trading Partner Integration A-3

Company Profile into a file which you later on use to configure the remote trading
partner in WebLogic Integration.

“Step 7: Configuring the Remote Trading Partner in WebLogic Integration” on page A-19
In this section, you import the file which you exported from WebLogic Integration -
Business Connect in the preceding section and configure the information imported to be
used as the remote trading partner profile.

“Step 8: Creating Services and Service Profiles in WebLogic Integration” on page A-20
In this step, you configure the Services and the Service profiles for the local and the
remote trading partner profiles in WebLogic Integration.

“Step 9: Configuring the iPlanet Server” on page A-23
In this procedure, you complete the iPlanet proxy server configuration install the
appropriate server and trusted certificates needed for the message exchange between
your two trading partners.

“Step 10: Configuring the Partner Profile in WebLogic Integration - Business Connect” on
page A-28

In this last step, you complete the configuration of the WebLogic Integration - Business
Connect by importing the trading partner profile which you previously exported from
WebLogic Integration. You then import the appropriate client, server, and trusted
certificates needed for the message exchange between your two trading partners.

Related Topics
Managing WebLogic Security

Using WebLogic Integration - Business Connect

Trading Partner Integration Security

Guide to Building Business Processes

Using WebLogic Integration - Business Connect

Before You Begin
The instructions in this sample is geared towards users that are already familiar with WebLogic
Integration tasks and procedures.

If you are new to WebLogic Integration, consider completing Tutorial: Building Your First
Business Process before using this sample.

http://e-docs.bea.com/wls/docs81/secmanage/
http://edocs.bea.com/wlibc/docs81/admin/index.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideIntro.html
http://edocs.bea.com/wlibc/docs81/index.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/tutorial/tutWLIProcessIntro.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/tutorial/tutWLIProcessIntro.html

Example : ebXML Secur i t y Conf igura t i on

A-4 Introducing Trading Partner Integration

If you are also new to ebXML business processes, consider completing Tutorial: Building
ebXML Solutions before proceeding.

Step 1: Generating a Test Certificate
Before you can configure and run this example, you need to generate a certificate which you will
later on import into your WebLogic Integration keystore. Once the certificate is imported into the
keystore, you can use it as an encryption, a signature, or a client certificate for WebLogic
Integration and also as a WebLogic Server certificate. In a production environment, you would
most likely have several certificates, but since this example is for testing only, you use one
certificate for both client and server purposes.

You can generate the test certificate using any tool, however, the procedures in this section
describe how to generate the certificates using OpenSSL. This is an open source tool which can
be downloaded from www.openssl.org.

Before you create the certificate, you need to create the a Public/Private key pair that you then
use to create the test certificate. If you are running OpenSSL in a Windows environment, you
must first complete the “Configuring Windows to Run OpenSSL” below, before you can create
the key pair.

This step includes the following procedures:

“Configuring Windows to Run OpenSSL” on page A-4

“Creating a Public/Private Key Pair” on page A-5

“Generating the Test Certificate” on page A-5

Configuring Windows to Run OpenSSL
The following steps should be completed to configure your Windows environment to run
OpenSSL:

1. In a DOS command window, type the following to set the OPENSSL_CONF environment
variable to point to the OpenSSL configuration file:

$ set OPENSSL_CONF=c:\openssl-[X.X.X]-src\apps\gencert.conf

Where [X.X.X] is the version of your OpenSSL installation, for example 0.9.7.

Note: Due to the fact that Internet Explorer uses files of the type .cnf for Speed Dial
configuration files, the OpenSSL configuration file might appear without the .cnf
suffix and may have a shortcut icon.

http://e-docs.bea.com/wli/docs81/tptutorial/ebxml.html
http://e-docs.bea.com/wli/docs81/tptutorial/ebxml.html
http://www.openssl.org

Step 2 : Conf igur ing Keys to res f or WebLog ic I nt egra t i on

Introducing Trading Partner Integration A-5

2. Randomly select any five large files on your hard drive and then copy them to a folder
where you intend to create the keys and certificates.

3. Rename the files to file1, file2, file3, file4, and file5. These files will be used by
the OpenSSL facility to create the public/private key pair.

4. Verify that your path includes c:\openssl\bin.

You are now ready to create a public/private key pair using OpenSSL.

Creating a Public/Private Key Pair
The following section describes how to create 1024-bit RSA public/private key pair using
OpenSSL:

In a DOS command window, type the following:

$ openssl genrsa rand file1:file2:file3:file4:file5 out WLCert.key 1024

where file1:file2:file3:file4:file5 represents the five large files you created in
“Configuring Windows to Run OpenSSL” on page A-4.

You are now ready to create any type of X.509 certificate using OpenSSL.

Generating the Test Certificate
To generate the self-signed test certificate, complete the following procedure:

1. In a DOS command window, type the following:

$ openssl req new key WLCert.key out WLCert.csr

2. In a DOS command window, type the following:

$ openssl x509 req days 30 -in WLCert.csr signkey WLCert.key
-outWLCert.crt

You should now have two new files, WLCert.key and WLCert.crt, in your directory.

Step 2: Configuring Keystores for WebLogic Integration
Digital certificates are stored in two types of keystores in WebLogic Integration:

Identity keystore—the keystore which stores private keys for local trading partners and
certificates for both the local and remote trading partners.

Example : ebXML Secur i t y Conf igura t i on

A-6 Introducing Trading Partner Integration

Trust keystore—the keystore which stores the trusted certificate authority certificates
associated with any certificates used in WebLogic Integration.

This example assumes that you have created your own keystores and trusts. However, you can
also complete this example by using the demonstration keystore file (DemoIdentity.jks) and
the demonstration trust (DemoTrust.jks) that are part of your WebLogic Server installation and
therefore WebLogic Integration installation. These Java Key Store files are located in the
following location:

BEA_HOME\weblogic81\server\lib\

where BEA_HOME is the directory in which you installed your product.

Since the underlying server used by WebLogic Integration is the WebLogic Server application,
this section demonstrates how to use the WebLogic Server Administration Console to configure
the keystores.

To configure the keystores:

1. Start your WebLogic Server:

2. Open the WebLogic Server Console.

From WebLogic Integration, you do this by selecting Tools→WebLogic
Server→WebLogic Console.

3. Login using the username and password specified when you created the WebLogic
Integration domain. (The default username and password for the default domains is
weblogic/weblogic.)

4. In the left pane, navigate to Servers→server_name

Where server_name is the name of your WebLogic Server.

5. Select the Keystores & SSL tab.

6. Click Change, as shown in the following figure:

Step 2 : Conf igur ing Keys to res f or WebLog ic I nt egra t i on

Introducing Trading Partner Integration A-7

The Configure Keystore screen appears.

7. From the Keystores drop-down menu, select Custom Identity And Custom Trust, as
shown in the following figure:

8. Click Continue.

The Configure Keystore Properties screen appears.

9. In the fields described, enter the following information:

Custom Identity

– Custom Identity Key Store File Name: The fully qualified path to your identity
keystore.
If you are using the demonstration keystores, enter
BEA_HOME\weblogic81\server\lib\DemoIdentity.jks

Where BEA_HOME is the directory in which you installed WebLogic Server.

– Custom Identity Key Store Type: The type of the keystore. Generally, this attribute is
JKS. If this attribute is not specified, the default keystore type defined in the security
policy file for the JDK is used.
If you are using the demonstration keystores, enter JKS.

– Custom Identity Store Pass Phrase: The password defined when creating the
keystore. Confirm the password.
If you are using the demonstration keystores, enter
DemoIdentityKeyStorePassPhrase.

Note: This attribute is optional or required depending on the type of keystore. All
keystores require the passphrase in order to write to the keystore. Some keystores do

Example : ebXML Secur i t y Conf igura t i on

A-8 Introducing Trading Partner Integration

not require the passphrase to read from the keystore. Whether or not you define this
property depends on the requirements of the keystore. For example, WebLogic Server
only reads from the keystore so a passphrase is not required, however, WebLogic
Integration writes to keystores and therefore requires a passphrase.

Custom Trust

– Custom Trust Store File Name: The fully qualified path to your trust keystore.
If you are using the demonstration keystores, enter
BEA_HOME\weblogic81\server\lib\DemoTrust.jks.

Where BEA_HOME is the directory in which you installed WebLogic Server.

– Custom Trust Key Store Type: The type of the keystore. Generally, this attribute is
JKS. If this attribute is not specified, the default keystore type defined in the security
policy file for the JDK is used.
If you are using the demonstration keystores, enter JKS.

– Custom Trust Key Store Pass Phrase: The password defined when creating the
keystore. Confirm the password.
If you are using the demonstration keystores, enter DemoTrustKeyStorePassPhrase.

Note: This attribute is optional or required depending on the type of keystore. All
keystores require the passphrase in order to write to the keystore. Some keystores do
not require the passphrase to read from the keystore. Whether or not you define this
property depends on the requirements of the keystore. For example, WebLogic Server
only reads from the keystore so a passphrase is not required, however, WebLogic
Integration writes to keystores and therefore requires a passphrase.

10. Click Continue.

The Review SSL Private Key Settings screen appears. You use this screen to configure the SSL
configuration for your WebLogic Server. However, since you need to load the private key you
created in “Creating a Public/Private Key Pair” on page A-5 into the keystore before you can
configure the SSL settings, you can minimize this window for now. Instead restart your
WebLogic Server and continue to the next section, “Step 3: Configuring the Local Trading
Partner in WebLogic Integration,” which includes loading the private key into the keystore.

To learn more about the setting you just entered, see “Configuring Keystores” in Configuring
SSL.

http://e-docs.bea.com/wls/docs81/secmanage/ssl.html
http://e-docs.bea.com/wls/docs81/secmanage/ssl.html

Step 3 : Conf igur ing the Local Trad ing Par tner in WebLog ic I nt eg ra t i on

Introducing Trading Partner Integration A-9

Step 3: Configuring the Local Trading Partner in WebLogic
Integration

WebLogic Integration contains two default trading partners named Test_TradingPartner_1 and
Test_TradingPartner_2. In this section, you configure Test_TradingPartner_1 to be your local
trading partner in WebLogic Integration. You then export the trading partner data into a
WebLogic Integration - Business Connect format file. This file, you use later to configure the
remote trading partner in WebLogic Integration - Business Connect.

Note: Before you start any of the procedures in this section, you must have configured your
keystores as described in “Step 2: Configuring Keystores for WebLogic Integration” on
page A-5 and restarted your WebLogic Server after completing the keystore
configuration.

This section contains the following procedures:

“Configuring the Local Trading Partner” on page A-9

“Adding the Test Certificate to the Keystore” on page A-10

“Editing the Trading Partner Binding” on page A-12

Configuring the Local Trading Partner
The following procedure describes how to configure the default trading partner
Test_TradingPartner_1 to act as the local trading partner in your WebLogic Integration
application:

1. If it is not already running, start your WebLogic Server.

2. Open the WebLogic Integration Administration Console.

3. Navigate to Trading Partner Management→Profile Management

The View and Edit Trading Partner Profiles screen appears with the two trading partners
Test_TradingPartner_1 and Test_TradingPartner_2 listed, as shown in the following figure:

Example : ebXML Secur i t y Conf igura t i on

A-10 Introducing Trading Partner Integration

o

Since you are going to import the configuration for the remote trading partner from
WebLogic Integration - Business Connect later on, you can delete Test_TradingPartner_2
from the list.

4. Select Test_TradingPartner_2 by clicking on the option box next to it.

5. Click Delete.

You now need to add the appropriate certificates to your local trading partner so that they will be
imported into the keystore.

Adding the Test Certificate to the Keystore
The following procedure describes how to add the certificate, which you created in “Generating
the Test Certificate” on page A-5, to your local trading partner configuration:

1. Click Test_TradingPartner_1.

The details of your trading partner, including general information, bindings, and certificates
are displayed. Note that there are no certificates configured for this trading partner.

2. Click Add Certificate

The Add Certificate (Step 1 of 2) screen appears.

3. Select the Import certificate from file option.

4. Click Next >

The Add Certificate (Step 2 of 2) screen appears. You use this screen to import a client
certificate file to be stored in the key store and used by the local trading partner. However,
before you can create the client certificate, you have to create a pass word alias.

Step 3 : Conf igur ing the Local Trad ing Par tner in WebLog ic I nt eg ra t i on

Introducing Trading Partner Integration A-11

5. Click Add alias..., as shown in the following figure.

The Add New Password Alias screen appears.

6. In the Password Alias Name field, enter TP1-client.

7. Enter TP1Client as password to use for this alias and confirm it.

8. Click Submit.

The Add Certificate (Step 2 of 2) screen appears again, with the alias values you just
entered.

9. In the Name field, enter TP1ClientCert.

10. From the Type drop-down list, select CLIENT.

11. Next to the Import Certificate Location, click Browse.

12. Navigate to the WLCert.crt file which you created in “Generating the Test Certificate” on
page A-5.

13. Next to the Private Key Location, click Browse.

14. Navigate to the WLCert.key file which you created in “Generating the Test Certificate” on
page A-5.

15. Make sure that the Import Certificate in Keystore option is selected.

16. Click Create certificate.

By selecting CLIENT from the Type drop-down list, you specified the certificate to be a client
certificate. You can add a signature certificate by using this same procedure, but instead selecting
SIGNATURE from the Type drop-down list.

You can review all your configurations of the Test_TradingPartner_1 trading partner by
navigating to Trading Partner Management→Profile Management and clicking on the
Test_TradingPartner_1 trading partner.

The next step is to edit the protocol bindings for your trading partner.

Example : ebXML Secur i t y Conf igura t i on

A-12 Introducing Trading Partner Integration

Editing the Trading Partner Binding
The default trading partner you just configured to be the local trading partner for WebLogic
Integration, contains two ebXML default bindings. The following steps describes how to edit the
ebXML 2.0 binding with the correct transport protocol and signature settings:

1. In the left pane, click Bindings.

2. From the Name drop-down list, select Test_TradingPartner_1.

3. Click Go.

The Edit Binding screen appears.

4. In the list of bindings, click TP1-ebxml20-binding.

The View Binding Details screen appears

5. Click Edit Binding.

6. Make the following edits:

Transport Configuration

– Transport Protocol: HTTPS

– End Point: specify the URL to use https instead of http protocol and change the port
number to the SSL port number to the port number of your WebLogic Server
domain.This is usually the even number immediately following your local port number.
For example, for local port number 7001, the SSL port number is 7002.

7. Click Submit.

Your new binding settings are saved. To learn more about how to configure ebXML bindings
including how to configure signatures and signature transforms, see “Adding Protocol Bindings
to a Trading Partner” in Trading Partner in Trading Partner Management.

Since you have completed the configuration of the local trading partner and have imported the
test certificate into the keystore, you can now return to the WebLogic Server console and
configure the SSL settings.

Step 4: Configuring the SSL Settings in WebLogic Server
Although you specified the certificate you loaded into the keystore as a client certificate when
you configured the WebLogic Integration, for testing purposes you can also use this certificate as

http://edocs.bea.com/wli/docs81/manage/tpm.html

Step 4 : Conf igur ing the SSL Se t t ings in WebLog ic Se rve r

Introducing Trading Partner Integration A-13

the server certificate for WebLogic Server. You just have to configure the server with the correct
alias in the SSL settings.

You configure the SSL settings on the WebLogic Server in the WebLogic Console:

1. If the console window you opened in “Step 2: Configuring Keystores for WebLogic
Integration” on page A-5 is still opened, return to it. If not, complete the following procedure:

a. If not already started, start your WebLogic Server:

b. Open the WebLogic Server Console.

From WebLogic Integration, you do this by selecting Tools→WebLogic
Server→WebLogic Console.

c. Login using the username and password specified when you created the WebLogic
Integration domain. (The default username and password for the default domains is
weblogic/weblogic.)

d. In the left pane, navigate to Servers→server name
Where server name is the name of your WebLogic Server.

e. Select the Keystores & SSL tab.

f. Scroll down to the SSL Configuration part of the screen and click Change.

g. From the Identity and Trust Locations drop-down menu, select Key Stores.

h. Click Continue.

2. On the Review SSL Private Key Settings screen, enter the following information:

– Private Key Alias: TP1-client

This is the alias you specified when loading the private key for WebLogic Server from
the keystore in “Adding the Test Certificate to the Keystore” on page A-10.

– Passphrase: TP1Client

This is the password specified when loading the private key for WebLogic Server into
the keystore in “Adding the Test Certificate to the Keystore” on page A-10.

3. Click Continue.

An alert screen appears, which informs you that you need to restart your server. You can
ignore this for now, instead restart your server after you have completed all the SSL
configuration steps.

Example : ebXML Secur i t y Conf igura t i on

A-14 Introducing Trading Partner Integration

4. Click Finish.

The Keystore Configuration screen appears.

5. Scroll to the end of the screen and click Show to display the Advanced Options. The
Advanced options is where you configure mutual authentication.

6. From the Two Way Client Cert Behavior, select Client Certs Requested And Enforced.
This option assures mutual authentication behavior.

7. Click Apply.

To learn more about the settings you just entered, see “Configuring Two-Way SSL” in
Configuring SSL.

8. If you have not already done so, restart the WebLogic Server.

9. If the keystores are configured correctly, you should see details similar to the following in
the WebLogic Sever Log:

<Sep 29, 2003 12:23:32 PM PDT> <Notice> <Security> <BEA-090170>
<Loading the private key stored under the alias TP1-client from the
jks keystore file C:\bea\wli\81\sp1\server\lib\DemoIdentity.jks.>
<Sep 29, 2003 12:23:32 PM PDT> <Notice> <Security> <BEA-090171>
<Loading the identity certificate stored under the alias TP1-client
from the jks keystore file
C:\bea\wli\81\sp1\server\lib\DemoIdentity.jks.>
<Sep 29, 2003 12:23:32 PM PDT> <Info> <WebLogicServer> <BEA-000310>
<Using low strength (exportable) SSL.>
<Sep 29, 2003 12:23:32 PM PDT> <Notice> <Security> <BEA-090169>
<Loading trusted certificates from the jks keystore file
C:\bea\wli\81\sp1\server\lib\DemoTrust.jks.>
<Sep 29, 2003 12:23:32 PM PDT> <Notice> <Security> <BEA-090169>
<Loading trusted certificates from the jks keystore file
C:\bea\JDK141~1\jre\lib\security\cacerts.>
<Sep 29, 2003 12:23:32 PM PDT> <Info> <WebLogicServer> <BEA-000307>
<Exportable key maximum lifespan set to 500 uses.>
<Sep 29, 2003 12:23:32 PM PDT> <Info> <WebLogicServer> <BEA-000300>
<Certificate contents: 1 certificate(s):
.
.
.

You have now completed the WebLogic Server configuration. To learn more about WebLogic
Server SSL configuration, see Configuring SSL. The next step is to export the
Test_TradingPartner_1 data so that you can import this data later on when you configure the
remote trading partner in WebLogic Integration-Business Connect.

http://e-docs.bea.com/wls/docs81/secmanage/ssl.html
http://e-docs.bea.com/wls/docs81/secmanage/ssl.html

Step 5 : Expor t ing the WebLogi c In teg ra t i on T radi ng Par tne r Data

Introducing Trading Partner Integration A-15

Step 5: Exporting the WebLogic Integration Trading Partner
Data

Instead of configuring both the company profile and partner profile by going through the
configuration screens in WebLogic Integration-Business Connect, you can import data that has
been exported from WebLogic Integration directly into WebLogic Integration-Business Connect
and have the partner profile automatically configured To export the WebLogic Integration trading
partner data into a WebLogic Integration-Business Connect compatible format, complete the
following procedure:

1. If it is not already running, start your WebLogic Server.

2. Open the WebLogic Integration Administration Console.

3. Navigate to Trading Partner Management→Profile Management

4. In the left pane, click Import/Export.

5. In the Import/Export pane, select Export.

6. Select the Trading Partner option.

7. Click Browse next to Trading Partner.

8. Deselect all but the Test_TradingPartner_1 trading partner.

9. Click Done.

10. For the Format option, select Business Connect.

11. Click Export.

12. If a File Download dialogue opens, click Save.

13. In the Save As window navigate to a location in which you want to save the exported file
to.

14. Enter TP1.xml as the filename and click Save.

Note: Remember the navigation path to the file. You will need this when you import your
trading partner information into the WebLogic Integration - Business Connect
application.

Example : ebXML Secur i t y Conf igura t i on

A-16 Introducing Trading Partner Integration

You have completed the WebLogic Integration local trading partner configuration. To learn more
about creating, configuring, and managing trading partners in WebLogic Integration, see Trading
Partner Management.

You can create your remote trading partner in WebLogic Integration using the procedures you
just completed for Test_TradingPartner_1. However, in this example you take a short cut by
importing the company profile settings from WebLogic Integration - Business Connect and use
that as the remote trading partner.

The next step shows you how to configure a trading partner named Test_TradingPartner_2 as the
company profile partner in the WebLogic Integration - Business Connect application and how to
export the company profile information into a file that you can then import into WebLogic
Integration.

Step 6: Configuring the Company Profile in WebLogic
Integration - Business Connect

In WebLogic Integration - Business Connect, creating trading partners involves setting up a
company profile and then configure certificates for that profile. You can then export the profile
to be used later when you configure the remote trading partner in WebLogic Integration. This
section contains the following procedures:

“Creating and Configuring a Company Profile in WebLogic Integration - Business
Connect” on page A-16

“Exporting the Company Profile Information” on page A-19

Creating and Configuring a Company Profile in WebLogic
Integration - Business Connect
In this section, you create and configure a company profile of in the WebLogic Integration -
Business Connect:

1. Start the Weblogic Integration - Business Connect Administration tool by selecting
Start→Programs→BEA WebLogic Integration - Business Connect 8.1→Administrator.

2. Log in.

3. On the Administrator bar, click Company Profiles.

The Company Profiles information viewer opens.

4. Click New

http://edocs.bea.com/wli/docs81/manage/tpm.html
http://edocs.bea.com/wli/docs81/manage/tpm.html

Step 6 : Conf igur ing the Company P ro f i l e in WebLog ic In tegrat i on - Business Connec t

Introducing Trading Partner Integration A-17

The New Company Profile dialog window opens.

5. Enter the following:

– Name: Test_TradingPartner_2

– ID: 000000002

6. Click OK.

The Company Profile window opens with the Identity tab selected.

7. Configure the company profile with the details shown in the following figure:

8. Select the Inbound Protocols tab.

9. Click Add.

The Add Protocol window opens.

10. From the Select the protocol to add drop-down menu, select ebXML.

11. From the Select the transport to use drop-down menu, select HTTPS.

Example : ebXML Secur i t y Conf igura t i on

A-18 Introducing Trading Partner Integration

12. Click OK.

The HTTPS Transport Options window opens with the following values displayed:

– Port— is the port number where the WebLogic Integration - Business Connect HTTPS
server is listening for inbound HTTPS documents. You must have a separate HTTPS
port for each company profile that uses bundled HTTPS. The default port is 1443.

– Authenticate— enables two-way SSL. That is, this option require your partners'
HTTPS clients to authenticate the SSL connection with you using their certificates.

– URL—is the system-defined alias for the bundled HTTPS server in WebLogic
Integration - Business Connect. You cannot change the value in the field. The alias is
used for security for your system. If WebLogic Integration - Business Connect is
installed behind a firewall, see “Editing URLs to compensate for firewalls” in
Company Profiles in Using WebLogic Integration – Business Connect.

Note: WebLogic Integration - Business Connect obtains the computer name in the URL
from the host name field on the General tab in Tools→Preferences. The host name
is the computer that is running the Server application.

13. Click OK.

The New Company Certificate dialog window opens.

14. Click Yes.

The New Certificate window opens.

15. Select Generate self-signed certificates to generate a certificate that can be used both as
the WebLogic Integration - Business Connect server and client certificate. Since it is
self-signed, CA is embedded in the certificate.

16. Click Next.

The New Certificate Key, Select Key Type window opens.

17. Accept the defaults and click Next.

The New Certificate, Summary Window opens.

18. Click Finish.

You have completed the company profile configuration. The next step is to export the company
profile information so that you can use this to create the remote trading partner in WebLogic
Integration and the server certificate in the iPlanet proxy server.

http://edocs.bea.com/wlibc/docs81/admin/company.html

Step 7 : Conf igur ing the Remote Trad ing Par tner in WebLog ic I nt eg ra t i on

Introducing Trading Partner Integration A-19

Exporting the Company Profile Information
The following steps describes the exporting procedure:

1. On the Administrator bar, click Company Profiles.

The Company Profiles information viewer opens.

2. Right-click on the Test_TradingPartner_2 profile and select Export from the menu.

The Export Company Profile window opens.

3. Select XML partner profile.

4. Enter TP2.xml as the export file name and remember the path to the export file location.
You will need this when you import the information into WebLogic Integration and iPlanet.

5. Click OK.

You have successfully exported the company profile from WebLogic Integration - Business
Connect. To learn more about WebLogic Integration - Business Connect company profiles and
certificates, see Using WebLogic Integration - Business Connect.

Before you can configure the remote trading partner information in a Partner Profile for
WebLogic Integration - Business Connect, you need to install and configure the iPlanet Proxy
Server. This is because some of the certificates you need for the Partner Profile are created during
the iPlanet configuration. So for now, you leave WebLogic Integration - Business Connect and
complete the WebLogic Integration remote trading partner configuration and then proceed to the
iPlanet configuration.

Step 7: Configuring the Remote Trading Partner in WebLogic
Integration

In this section, you create a remote trading partner in the WebLogic Integration application by
importing the company profile information which you exported from WebLogic Integration -
Business Connect in “Exporting the Company Profile Information” on page A-19.

The following steps describes the importing procedure:

1. If it is not already running, start your WebLogic Server.

2. Open the WebLogic Integration Administration Console.

3. Navigate to Trading Partner Management→Profile Management

http://edocs.bea.com/wlibc/docs81/admin/index.html

Example : ebXML Secur i t y Conf igura t i on

A-20 Introducing Trading Partner Integration

4. In the Import/Export pane, click Import.

5. In the File Name field, enter the path to TP2.xml location to the file you exported from
WebLogic Integration - Business Connect in “Exporting the Company Profile Information”
on page A-19.

6. Select Business Connect as the Import Format.

7. Click Import.

After successfully importing the trading partner information, remember to review the new trading
partner profile and make sure that the end point URL is correct. You do this by navigating to
Profile Management, clicking on Test_TradingPartner_2, and clicking on its binding. When you
click on Test_TradingPartner_2, note that three certificates (client, server, signature) were
automatically created in the Company Profile in WebLogic Integration - Business Connect and
imported into WebLogic Integration.

Now that you have configured both the local and the remote trading partner for WebLogic
Integration, the next step is to add services and service profiles to those trading partners.

Step 8: Creating Services and Service Profiles in WebLogic
Integration

Once the Test_TradingPartner_1 and Test_TradingPartner_2 configurations are completed, you
have to create services and corresponding service profiles for those trading partners.

In WebLogic Integration:

A service represents a business process that is either offered by a local trading partner, or a
business process that is being called via a control on a remote trading partner.

Service profiles encapsulate the concept of an agreement between two trading partners on
the service bindings to be used. Service profiles specify the protocol binding and URL
endpoints for the local and remote trading partners that offer and call the service.

To be able to configure the services correctly, the business process which initiates the ebXML
message exchange must be currently deployed. This section contains the following procedures:

“Creating the Trading Partner Service” on page A-21

“Creating the Service Profile” on page A-21

Step 8 : C reat ing Se rv ices and Se rv ice P ro f i l es in WebLog ic I nt eg ra t i on

Introducing Trading Partner Integration A-21

Creating the Trading Partner Service
Complete the following steps to add a service to your trading partner profiles.

1. Deploy your ebXML initiator business process.

If you are not familiar with how to build and deploy ebXML business processes, consider
completing one of the exercises in Tutorials: Building ebXML Solutions.

2. In the WebLogic Integration Administration Console, navigate to Trading Partner
Management→Service Management.

3. In the left pane, click Create New.

The Add Service screen appears.

4. Click Browse and navigate to the appropriate service control.

5. From the Type drop-down menu, select Service Control.

6. From the Business Protocol drop-down menu, select EBXML.

7. Click Add Service.

Your service is created and the View And Edit Service Details screen appears on which you add
the service profile.

Creating the Service Profile
After you have created the trading partner service, you create a service profile which specify the
protocol binding and URL endpoints for the local and remote trading partners that offer and call
the service. The following procedure describes how to add a service profile:

1. On the View And Edit Service Details screen, click Add Service Profile.

The Add Service Profile screen appears.

2. From the Name drop-down menus, select your LOCAL and REMOTE trading partners as
shown in the following figure.

http://edocs.bea.com/wli/docs81/tptutorial/ebxml.html

Example : ebXML Secur i t y Conf igura t i on

A-22 Introducing Trading Partner Integration

3. Specify your LOCAL and REMOTE trading partners according to the following table:

Note: Make sure you change the endpoint URLs to use https, not http. If they are set to the
wrong protocol, follow the directions in “Editing the Trading Partner Binding” on
page A-12 to select the correct one.

4. Click Submit.

5. On the next screen, click Yes to begin configuring authentication.

6. From the Choose type of Authentication Mode options, select Mutual for both the
LOCAL and REMOTE trading partners.

Note: Although it is not enforced, typically the same type of authentication is selected for
both the local and remote trading partner.

7. Click Next.

8. On the next screen, select:

a. TP1-clt as the client certificate for the LOCAL trading partner.

b. xxxx-client as the client certificate for the REMOTE trading partner.

c. xxxx-server as the server certificate for the REMOTE trading partner.

Where xxxx is a number which was randomly generated when you imported the
WebLogic Integration-Business Connect self-signed certificate file.

9. To preview to the configuration, click Preview config.

10. Click Add.

Authentication is added and the View and Edit Service Details page is displayed.

Note: If there is an error, the Add Authentication page is redisplayed. A message indicating
the problem is displayed above the input requiring correction.

LOCAL REMOTE

Name Test_TradingPartner_1 Test_TradingPartner_2

Binding wli-ebxml20-secure-binding wli-ebxml20-secure-binding

Step 9 : Conf i gur i ng the iP lanet Se rve r

Introducing Trading Partner Integration A-23

You have now created a service and its service profile. To learn more about services and service
profiles, see “Adding Services” and “Adding Service Profiles to a Service” in Trading Partner
Management. The next step is to configure the iPlanet SSL settings and then proceed to complete
the configuration of WebLogic Integration - Business Connect.

Step 9: Configuring the iPlanet Server
This section describes how to configure your iPlanet Web Server as the proxy server for this
sample.

If you do not already have iPlanet Web Server installed, you can download it from Sun’s website
the following location:
http://wwws.sun.com/software/download/products/3f186391.html

Refer to the product documentation to install and start the iplanet admin and managed server.

This section contains the following procedures:

“Creating the Trust Database” on page A-23

“Requesting a Trial Digital Certificate from Verisign” on page A-24

“Installing the iPlanet Server Certificate” on page A-25

“Requesting a Trusted CA Certificate from Verisign” on page A-25

“Installing the Trusted CA Certificate” on page A-26

“Installing the WebLogic Integration - Business Connect certificate” on page A-27

“Configuring iPlanet for SSL” on page A-27

Creating the Trust Database
Before you can configure your iPlanet server certificates, you have to create a trust database in
which to store the certificates. To do so, complete the following procedure:

1. Open the iPlanet administration console.

2. Navigate to Servers→Mange Servers.

3. Select a managed server and click Manage.

The Managed Server Configuration screen appears.

4. Select the Security tab.

http://edocs.bea.com/wli/docs81/manage/tpm.html
http://edocs.bea.com/wli/docs81/manage/tpm.html
http://wwws.sun.com/software/download/products/3f186391.html

Example : ebXML Secur i t y Conf igura t i on

A-24 Introducing Trading Partner Integration

5. Click Create Database.

6. Enter and confirm a password for the database.

7. Click OK.

A dialog window confirming the successful initialization appears. The next step is to request a
trial digital certificate from Verisign which you use as the server certificate for iPlanet and also
imported later on into the Partner Profile in WebLogic Integration - Business Connect.

Requesting a Trial Digital Certificate from Verisign
You can request a trial digital certificate from Verisign to use for testing purposes. The certificate
is valid for a limited number of days. To request a certificate, complete the following steps:

1. Navigate to Managed Server Console→Security→Request a Certificate.

2. Select the New certificate option.

3. From the Submit to Certificate Authority via option, select CA Email Address and enter
your email address.

4. From the Cryptographic Module drop-down list, select internal.

5. In the Key Pair File Password field, enter the password you want to use as the iPlanet
server private key password.

6. Enter your name and contact information details in the remaining fields.

7. Click OK.

A confirmation message is displayed in the Managed Server Console.

8. Copy all the text between -----BEGIN NEW CERTIFICATE REQUEST----- and -----END
NEW CERTIFICATE REQUEST----- and paste it into a text file. This is your certificate
request which you send to a certificate authority such as Verisign.

9. Using a web browser, navigate to
http://www.verisign.com/products/srv/trial/step1.html.

10. Follow the directions on the Verisign site.

After you complete the request, Verisign will send you an email with the digital certificate.
Copy the content and save it in a file named iPlanetServer.pem. This file is your digital
certificate for the iPlanet Server.

http://www.verisign.com/products/srv/trial/step1.html

Step 9 : Conf i gur i ng the iP lanet Se rve r

Introducing Trading Partner Integration A-25

You have completed the trial digital certificate request process. The next step is to install the
digital trial certificate as the iPlanet server certificate.

Installing the iPlanet Server Certificate
You are now ready to install the server certificate for iPlanet. The following procedure describes
the steps to complete:

1. Navigate to Managed Server Console→Security→Install Certificate

The Install a Server Certificate screen appears.

2. Enter the following information:

– Certificate For: This Server

– Cryptographic Module: internal

– Key Pair File Password: the same password as in “Requesting a Trial Digital
Certificate from Verisign” on page A-24.

– Message text (with headers): enter the contents of the iPlanetServer.pem file that
you created in “Requesting a Trial Digital Certificate from Verisign” on page A-24.

3. Click OK.

The Add Server Certificate screen appears with the details of the certificate you are adding.

4. Click Add Server Certificate.

You have successfully added the server certificate. The next step is to download and convert the
trusted CA server certificate.

Requesting a Trusted CA Certificate from Verisign
In addition to the server certificate you just installed, you also need a trusted certificate from an
Certificate Authority such as Verisign. To request a trusted certificate from Verisign, complete
the following procedure:

1. Using a web browser, navigate to
http://www.verisign.com/server/trial/faq/index.html to retrieve a CA
certificate for the iPlanet server from Verisign.

2. Click Accept.

3. Save the certificate on your local drive as a file named iPlanetCA.der.

http://www.verisign.com/server/trial/faq/index.html

Example : ebXML Secur i t y Conf igura t i on

A-26 Introducing Trading Partner Integration

The server certificate is in binary format. Before you can use it with iPlanet, you must convert it
to PEM format. The der2pem command line utility included with WebLogic Server can be used
to convert the certificate. To learn how to use the utility, see “der2pem” in Using the WebLogic
Server Java Utilities in the WebLogic Server Command Reference at the following URL:

http://edocs.bea.com/wls/docs81/admin_ref/utils.html

Follow the procedure described to convert the iPlanetCA.der file to iPlanetCA.pem.

Note: A DER format file contains binary data and can only be used for a single certificate. A
PEM format file supports multiple digital certificates. For example, a certificate chain
can be included. The order of the files is important, they should be in the order of trust.
The server digital certificate should be the first digital certificate in the file, the issuer of
the digital certificate should be next, and so on, until you get to the self-signed root
certificate authority certificate.

After you have completed the conversion, the next step is to install the trusted CA certificate.

Installing the Trusted CA Certificate
To install the trusted certificate you just requested, do the following:

1. Navigate to Managed Server Console→Security→Install Certificate

2. Enter the following information:

– Certificate For: Trusted Certificate Authority (CA)

– Cryptographic Module: internal

– Certificate Name: Verisign CA.

– Message is in this file: enter the location of the iPlanetCA.pem file you created in
“Requesting a Trusted CA Certificate from Verisign” on page A-25

3. Click OK.

The Add Server Certificate screen appears with the details of the certificate you are adding.

4. Click Add Server Certificate.

You have successfully installed the trusted CA certificate.

The next step is to install the WebLogic Integration - Business Connect certificate.

http://edocs.bea.com/wls/docs81/admin_ref/utils.html
http://edocs.bea.com/wls/docs81/admin_ref/utils.html
http://edocs.bea.com/wls/docs81/admin_ref/utils.html

Step 9 : Conf i gur i ng the iP lanet Se rve r

Introducing Trading Partner Integration A-27

Installing the WebLogic Integration - Business Connect
certificate
Use the procedures described in “Installing the Trusted CA Certificate” on page A-26 to import
the TP2.xml file which you exported in “Exporting the Company Profile Information” on
page A-19 to create WebLogic Integration - Business Connect CA certificate for your iPlanet
server.

You have now successfully installed the necessary iPlanet certificates. There is just one final step
required to get the iPlanet configuration to work with SSL.

Configuring iPlanet for SSL
1. Open the iPlanet administration console.

2. Navigate to Servers→Mange Servers.

3. Select Preference→Edit Listen Sockets.

4. In the Security column, select On.

5. Click OK.

6. Click Attributes.

7. In the Client Authorization column, click Off to change it to On. This assures mutual
authentication.

8. As the final configuration step, you need to modify two of the installed iPlanet
configuration files:

– To your obj.conf file add the following lines of code:

<Object name="myProxy" ppath="*">
PathCheck fn="get-client-cert" method="(GET|POST)" dorequest="1"
Service fn=wl_proxy FileCaching="OFF" Debug="ALL"
KeepAliveEnabled=false DebugConfigInfo="ON"
WebLogicHost=172.16.17.183\
WebLogicPort=7001 WLLogFile="C:/depot/newlog.txt" SecureProxy="OFF"
WLProxySSL="ON" RequireSSLHostMatch="False"
</Object>

– To your magnus.conf file, add the following lines of code:

Init fn="load-modules"
shlib="D:/iPlanet/Servers/bin/https/bin/proxy36.dll"

Example : ebXML Secur i t y Conf igura t i on

A-28 Introducing Trading Partner Integration

funcs="wl_proxy,wl_init"
Init fn="wl_init"

This concludes the iPlanet configuration step. To learn more about the settings you just
configured, see Installing and Configuring the Netscape Enterprise Server Plug-In in Using Web
Server Plug-Ins With WebLogic Server at the following URL:

http://edocs.bea.com/wls/docs81/plugins/nsapi.html

The next step is to configure a remote trading partner in WebLogic Integration - Business
Connect by importing the trading partner information that you exported from WebLogic
Integration in “Step 5: Exporting the WebLogic Integration Trading Partner Data” on page A-15
into a Partner Profile and then configure the appropriate client, server, and trusted certificates for
that Partner Profile.

Step 10: Configuring the Partner Profile in WebLogic
Integration - Business Connect

Instead of creating a new partner profile for Test_TradingPartner_1, you import the file you
previously exported from the WebLogic Integration application into your WebLogic Integration
Business Connect application. When you import the trading partner information, the company
profile and the corresponding client certificate is automatically created for you.

Since you are using iPlanet as a proxy server, iPlanet takes care of the mutual authentication when
WebLogic Integration - Business Connect sends a message. Therefore, you have to configure an
iPlanet server certificate and also load the corresponding CA certificates.

This section contains the following procedures:

“Importing the WebLogic Integration Partner Profile” on page A-28

“Importing the iPlanet Server Certificate” on page A-29

“Importing the Certificate Authority Certificates” on page A-30

Importing the WebLogic Integration Partner Profile
This procedure describes how to import the WebLogic Integration trading partner data directly
into a partner profile:

1. Start the Weblogic Integration - Business Connect Administration tool by selecting
Start→Programs→BEA WebLogic Integration - Business Connect 8.1→Administrator.

2. Log in.

http://e-docs.bea.com/wls/docs81/plugins/nsapi.html
http://edocs.bea.com/wls/docs81/plugins/nsapi.html

Step 10 : Conf igur ing the Par tne r P ro f i l e in WebLog ic In tegrat ion - Business Connec t

Introducing Trading Partner Integration A-29

3. On the Administrator bar, click Partner Profiles.

The Partner Profiles information viewer opens.

4. In the Partner Profiles information viewer, select File→Import.

The Import Partner Profile window opens.

5. Navigate to and select the TP1.xml file you exported from the WebLogic Integration
application in “Step 5: Exporting the WebLogic Integration Trading Partner Data” on
page A-15.

6. Click Open.

A message displays when the partner profile imports successfully.

7. Click OK.

8. If not already selected, click the Outbound Protocol Tab.

9. Click Add.

10. From the Select the protocol to add drop-down menu, select ebXML.

11. From the Select the transport to add drop-down menu, select HTTPS.

12. Click OK.

13. Enter the iPlanet proxy server’s IP address and port for the partner profile endpoint URL.
For example:
https://iplanet_ip:iplanet_ssl_port/ebxml2.0/Test_TradingPartner_1
where iplanet_ip is the IP address of your iPlanet server and iplanet_ssl_port is the
port number.

14. Click OK.

You have now completed creating the remote trading partner company profile. The next step is
to import a server certificate for iPlanet and load the corresponding CA certificates.

Importing the iPlanet Server Certificate
Complete the following procedure to import an iPlanet server certificate for your WebLogic
Integration-Business Connect application:

1. In the WebLogic Integration - Business Connect, navigate to Certificates→Partner
Profiles→Test_TradingPartner_1.

Example : ebXML Secur i t y Conf igura t i on

A-30 Introducing Trading Partner Integration

2. Right click on the profile and select Import... from the menu, as show in the following
figure:

.

3. Navigate to the iPlanetServer.pem file which you created in “Requesting a Trial Digital
Certificate from Verisign” on page A-24 and click Import.

You have now installed the iPlanet server certificate. The next step is to load the CA certificates
for iPlanet and for WebLogic Integration - Business Connect.

Importing the Certificate Authority Certificates
This procedure describes how to import the CA certificates into WebLogic Integration-Business
Connect:

1. In the WebLogic Integration - Business Connect, navigate to Certificates→Partner
Profiles→Test_TradingPartner_1.

2. Right click on the profile and select Trusted Roots... from the menu, as shown in the
following figure:

Step 10 : Conf igur ing the Par tne r P ro f i l e in WebLog ic In tegrat ion - Business Connec t

Introducing Trading Partner Integration A-31

The Trusted Roots window opens.

3. Select the BEA Signature and Trusted Key and the Verisign Test Root Signature and
Trusted Key certificates and click Import.

You have completed WebLogic Integration - Business Connect remote trading partner
configuration. To learn more about configuring certificates in WebLogic Integration - Business
Connect, see Keys and Certificates in Using WebLogic Integration – Business Connect.

This concludes this security example. Before you run the example, it is a good idea to restart all
your servers.

http://edocs.bea.com/wlibc/docs81/admin/certificates.html

Example : ebXML Secur i t y Conf igura t i on

A-32 Introducing Trading Partner Integration

Introducing Trading Partner Integration B-1

A P P E N D I X B

Example: RosettaNet Security
Configuration

This example demonstrates how to configure the security settings for RosettaNet message
exchange between trading partners over HTTPS protocol, using mutual authentication. In this
example, both trading partners are configured on WebLogic Integration as shown in the figure
below:

In the preceding figure:

Messages (and acknowledgements) are sent from Trading Partner 1 to Trading Partner 2
through mutual authentication HTTPS.

Acknowledgements and responses are sent from Trading Partner 2 process through mutual
authentication HTTPS.

The following topics are discussed in this section:

“Keystores Used in the Example” on page B-3
This section discusses the use of keystores in WebLogic Integration and describes the
demonstration keystores used in this example.

Example : Rose t taNet Secur i t y Conf igura t i on

B-2 Introducing Trading Partner Integration

“Before You Begin” on page B-3
If you are unfamiliar with WebLogic Integration concepts, you may want to complete the
tutorials and read the resources listed in this section before you attempt to complete this
example.

“Step 1: Configuring the Local Trading Partner for the Trading Partner 1 Setup” on
page B-5

In this section, you configure the default trading partner Test_TradingPartner_1 to be the
local trading partner for the initiator business process. You then add certificates to the
trading partner and configure the binding for that trading partner. Lastly, you export the
trading partner data into an XML file which, you later import as the remote trading partner
for the Trading Partner 2 setup.

“Step 2: Configuring the Local Trading Partner for the Trading Partner 2 Setup” on
page B-11

This section describes how to configure all the trading partner data that you completed on
the Trading Partner 1 machine, on the Trading Partner 2 machine. Once you have
completed this section, both of your remote trading partners are configured.

“Step 3: Importing the Remote Trading Partner Information” on page B-12
Instead of going through all the configuration steps that you did for the local trading
partners for the remote trading partners, you just import the previously exported trading
partner data into your WebLogic Integration application. The importing procedure
configure the remote trading partner for you automatically. This section describes how to
import your trading partner data files.

“Step 4: Creating Services and Service Profiles in WebLogic Integration” on page B-13
Once you have set up all the trading partner configurations, you need to create services
and service profiles for the trading partners. The procedures in this section describes how
to do just that.

“Testing Tips” on page B-16
This section contains useful tips and tools that you can use when you test your RosettaNet
applications.

Related Topics
Managing WebLogic Security

Trading Partner Integration Security

Tutorial: Building RosettaNet Solutions

http://e-docs.bea.com/wls/docs81/secmanage/
http://edocs.bea.com/wli/docs81/tptutorial/rosettanet.html

Keyst or es Used in the Example

Introducing Trading Partner Integration B-3

Guide to Building Business Processes

Keystores Used in the Example
The procedures in this example uses the demonstration keystore which is included in your
WebLogic Integration installation. This keystore file can only to be used for testing purposes.
This Java Key Store files is located in the following location:

BEA_HOME\weblogic81\server\lib\DemoIdentity.jks

where BEA_HOME is the directory in which you installed your product.

You can use any other keystore to complete the example, however, the demonstration keystore
already has some of the certificates necessary loaded into it. If you need details about how to
create and load certificates into your custom keystore, see “Step 1: Generating a Test Certificate”
on page A-4 and “Step 2: Configuring Keystores for WebLogic Integration” on page A-5 in
“Example: ebXML Security Configuration” on page A-1.

In this sample, the following terminology is used:

Client certificate—the digital certificate used in mutual authentication.

Encryption certificate—the certificate used for encryption.

Signature certificate—the certificate used to sign messages for authenticity of the sender
and integrity of messages.

Server certificate—the digital certificate of the server on which the remote application is
running.

Note: WebLogic Integration requires remote trading partners to have both a client and server
certificate configured while local trading partners only need a client certificate.

Identity keystore—the keystore which stores private keys for local trading partners and
certificates for both the local and remote trading partners.

Trust keystore—the keystore which stores the trusted certificate authority certificates
associated with any certificates used in WebLogic Integration.

Before You Begin
The instructions in this sample is geared towards users that are already familiar with the basic
WebLogic Server and WebLogic Integration tasks and procedures. If you are new to these
WebLogic applications, consider completing Tutorial: Building Your First Business Process

http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideIntro.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/tutorial/tutWLIProcessIntro.html

Example : Rose t taNet Secur i t y Conf igura t i on

B-4 Introducing Trading Partner Integration

before using this sample. It is further assumed that you are familiar with RosettaNet concepts and
how to configure RosettaNet business processes in WebLogic Integration. If you are new to
RosettaNet business processes, consider completing Tutorial: Building RosettaNet Solutions
before proceeding.

This sample configuration involves a participant process and a initiator process created and
deployed in WebLogic Integration, either on two different computers or on two different domains
on the same machine. Before you can start the security configuration part of this sample, you must
complete the following:

1. If you are going to run the Trading Partner 1 and the Trading Partner 2 processes on the same
computer, create two domains with different port numbers. Be sure to make the domains SSL
enabled.

For instructions of how to create a domain, see “Creating and Extending Domains Using
the Configuration Wizard” in Creating WebLogic Configurations Using the Configuration
Wizard.

When you create a new WebLogic Integration domain using the Configuration Wizard, the
Configuration Wizard automatically populates the Trading Partner Management (TPM)
repository with default trading partners and bindings. You will use these default trading
partners in this sample.

If you are using a point based database, you will have to configure your second domain to
point to a different database instance, i.e. use a different port number, since local and
remote trading partners are not allowed to use the same database in WebLogic Integration.
You do this by changing the default port number from 9093 to, for example, 9090 in the
following files:

– config.xml (2 instances)

– URLS.dat

– If you are using a Windows operating system: startWeblogic.cmd and
stopWeblogic.cmd

– If you are using an Unix operating system: startWeblogic.sh and
stopWeblogic.sh.

These files are all located in: BEA_HOME\user_projects\domains\domainName
where BEA_HOME is the directory in which you installed WebLogic Integration (such as
c:\bea) and domainName is the name of your second domain (such as tptutorial2).

2. Create the initiator process.

3. Create the participant process.

http://edocs.bea.com/wli/docs81/tptutorial/rosettanet.html
http://edocs.bea.com/platform/docs81/confgwiz/intro.html
http://edocs.bea.com/platform/docs81/confgwiz/intro.html

Step 1 : Conf igur ing the Loca l T rad ing Par tne r f or the Trad ing Par tner 1 Se tup

Introducing Trading Partner Integration B-5

For instructions on how to create business processes, see Tutorial: Building Your First
Business Process. To learn more about RosettaNet processes, see Tutorial: Building
RosettaNet Solutions.

If you are running both processes on one computer in different domains, both domains use
the same keystores. It is important that you only have the current process and
corresponding domain running when you are configuring trading partner information, or
simultaneous updates to the keystore may occur and overwrite each other.

Step 1: Configuring the Local Trading Partner for the Trading
Partner 1 Setup

In this section, you configure the default trading partner Test_TradingPartner_1 to be the local
trading partner for the initiator business process. You then add certificates to the trading partner
and configure the binding for that trading partner. Lastly, you export the trading partner data into
an XML file which, you later import as the remote trading partner for the participant. This section
contains the following procedures:

“Configuring the Local Trading Partner” on page B-5

“Adding the Certificates” on page B-6

“Editing the Trading Partner Binding” on page B-8

“Enabling the Trading Partner Profile” on page B-9

“Exporting the Trading Partner Data” on page B-9

“Exporting the Server Certificate” on page B-10

Configuring the Local Trading Partner
To configure Test_TradingPartner_1 to be your local trading partner, complete the following
procedure:

1. Start WebLogic Workshop.

2. Open the application which contains the initiator process that you created in “Before You
Begin” on page B-3

3. If you are running both processes on the same computer in different domains, navigate to
Tools→Application Properties....

The Application Properties window opens.

http://edocs.bea.com/workshop/docs81/doc/en/integration/tutorial/tutWLIProcessIntro.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/tutorial/tutWLIProcessIntro.html
http://edocs.bea.com/wli/docs81/tptutorial/rosettanet.html
http://edocs.bea.com/wli/docs81/tptutorial/rosettanet.html

Example : Rose t taNet Secur i t y Conf igura t i on

B-6 Introducing Trading Partner Integration

4. Select the domain that you want to use from the Server Home Directory drop-down menu
or by using the Browse... button.

5. Click OK.

6. If it is not already running, start your WebLogic Server.

7. Open the WebLogic Integration Administration Console.

8. Navigate to Trading Partner Management→Profile Management.

The View and Edit Trading Partner Profiles screen appears with the two trading partners
Test_TradingPartner_1 and Test_TradingPartner_2 listed, as shown in the following figure:

Since you are going to import the configuration for the remote trading partner later on, you
delete Test_TradingPartner_2 from the list at this point.

9. Select Test_TradingPartner_2 by clicking on the option box next to it.

10. Click Delete.

You now need to add the appropriate certificates—client, encryption, and digital signature—to
your local trading partner.

Adding the Certificates
To add the appropriate certificates to your local trading partner:

1. Click Test_TradingPartner_1.

The details of your trading partner, including general information, bindings, and certificates
are displayed. Note that there are no certificates configured for this trading partner.

2. Click Add Certificate

Step 1 : Conf igur ing the Loca l T rad ing Par tne r f or the Trad ing Par tner 1 Se tup

Introducing Trading Partner Integration B-7

The Add Certificate (Step 1 of 2) screen appears.

3. Select the Generate a certificate for TEST USE only option.

Note: The certificates you create in this sample is only for demo use and should never be
used in production mode.

4. Click Next >

The Add Certificate (Step 2 of 2) screen appears. You use this screen to create a client
certificate to be stored in the keystore and used by the local trading partner. However,
before you can create the client certificate, you have to create a password alias.

5. Click Add alias..., as shown in the following figure.

The Add New Password Alias screen appears.

6. In the Password Alias Name field, enter init-rn20-clt.

7. Enter and confirm a password to use for this alias.

8. Click Submit.

The Add Certificate (Step 2 of 2) screen appears again, with the alias values you just
entered.

9. In the Name field, enter init-clt.

10. If not already selected, from the Type drop-down list, select CLIENT.

11. If not already selected, select the Import Certificate in Keystore option.

12. Click Create certificate.

By selecting CLIENT from the Type drop-down list, you specified the certificate to be a client
certificate. Using the instructions in step 2-6, create:

A digital SIGNATURE certificate named init-sig.

An ENCRYPTION certificate named init-enc.

You have completed adding the three certificates. The next step is to edit the binding for the
Test_TradingPartner_1 trading partner.

Example : Rose t taNet Secur i t y Conf igura t i on

B-8 Introducing Trading Partner Integration

Editing the Trading Partner Binding
To edit the default bindings for your local trading partner:

1. In the left pane, click Bindings.

2. From the Name drop-down list, select Test_TradingPartner_1.

3. Click Go.

The Edit Binding screen appears.

4. In the list of bindings, click TP1-rn20-binding.

The View Binding Details screen appears

5. Click Edit Binding.

6. Make the following edits:

Transport Configuration

– Transport Protocol: HTTPS

– End Point: specify the URL to use https instead of http protocol and change the port
number to the SSL port number you specified in “Before You Begin” on page B-3
when you created your domain.This is usually the even number immediately following
your local port number. For example, for local port number 7001, the SSL port number
is 7002.

Message Level Encryption Configuration

– Encryption Certificate: init-enc

– Encryption Level: Entire Payload

– Cipher Algorithm: 3DES

Digital Signature Configuration for Non Repudiation

– Signature Certificate: init-sig

– Signature Required: select this option

– Signature Receipt Required: select this option

– Hash Function: SHA1

7. Click Submit.

Step 1 : Conf igur ing the Loca l T rad ing Par tne r f or the Trad ing Par tner 1 Se tup

Introducing Trading Partner Integration B-9

You have completed editing the binding information. Before you proceed further, make sure that
the trading partner profile you just configured is enabled.

Enabling the Trading Partner Profile
Complete the following procedure to enable the trading partner profile that you just created and
configured:

1. Navigate to Trading Partner Management→Profile Management.

2. In the Status column, make sure that a green ball is displayed:

3. If a red ball is showing in the Status column, select the trading partner and click Enable.

Rather than entering all the Test_TradingPartner_1 configuration data again for the participant
business process computer/domain, you export the data from the initiator process
computer/domain and then import it as the remote trading partner configuration for the
participant.

Exporting the Trading Partner Data
To import the trading partner data from the local trading partner:

1. In the left pane, click Import/Export.

2. In the Import/Export pane, select Export.

3. Select the Trading Partner option.

4. Click Browse next to Trading Partner.

5. Deselect all but the Test_TradingPartner_1 trading partner.

6. Click Done.

7. For the Format option, select WLI Standard.

8. Click Export.

9. If a File Download dialog opens, click Save.

10. In the Save As window navigate to the location which you want to save the exported file to.

Example : Rose t taNet Secur i t y Conf igura t i on

B-10 Introducing Trading Partner Integration

11. Enter TradingPartner1 as a filename and click Save.

Note: Remember the navigation path to the file. You will need this when you import your
trading partner information later on.

12. Open TradingPartner1.xml in a text editor.

13. Change all instances of LOCAL to REMOTE.

14. In the trading-partner element, set the is-default attribute to false.

15. Save and close the file.

You have now completed the configuration of your the initiator local trading partner. The next
section explains how to use the keytool utility to export the Test_TradingPartner_1 server
certificate which, you will import later when setting up services and service profiles for the
participant computer/domain.

Exporting the Server Certificate
1. At the command line prompt, navigate to BEA_HOME\weblogic81\server\lib where

BEA_HOME is the directory in which you installed your WebLogic Integration installation.

2. Enter the following: keytool -export -alias demoidentity -file
servercert1.crt -keystore DemoIdentity.jks -storepass
DemoIdentityKeyStorePassPhrase

This exports your server certificate into a file named servercert1.crt.

Note: If you are running both business processes on the same computer in different
domains, both domains are accessing the same keystore. To avoid any problems
associated with this configuration, create a copy of the servercert1.crt and name
it servercert2.crt which, and use it as the second domains server certificate.

You have now completed the Test_TradingPartner_1 configuration. To learn more about
creating, configuring, and managing trading partners in WebLogic Integration, see Trading
Partner Management.

The next step is to configure the local trading partner information for the participant side of the
sample.

http://edocs.bea.com/wli/docs81/manage/tpm.html
http://edocs.bea.com/wli/docs81/manage/tpm.html

Step 2 : Conf igur ing the Loca l T rad ing Par tne r f or the Trad ing Par tner 2 Se tup

Introducing Trading Partner Integration B-11

Step 2: Configuring the Local Trading Partner for the Trading
Partner 2 Setup

You configure the trading partner profile for the participant side of the sample in much the same
way that you created the initiator side. Use the instructions in “Step 1: Configuring the Local
Trading Partner for the Trading Partner 1 Setup” on page B-5 to complete the following:

1. If you are running two domains on the same computer, stop the WebLogic Server which is
running on your initiator domain.

2. Open the participant business process that you created in “Before You Begin” on page B-3.

3. If you are running both processes on the same computer, make sure that the participant
process is configured to use the domain that is not the one used by the initiator process.

4. Start your WebLogic Server.

5. Deploy your participant process.

6. Open the WebLogic Administration Console.

7. Navigate to Trading Partner Management→Profile Management.

8. Delete Test_TradingPartner_1.

9. Select Test_TradingPartner_2 to be the default trading partner:

a. Click on Test_TradingParnter_2 to view its profile settings.

b. If Default Trading Partner is not already set to true, click Edit Profile and select the
Default Trading Partner option.

10. In the Test_TradingPartner_2 profile create the following test certificates:

– A CLIENT certificate named part-clt

– A digital SIGNATURE certificate named part-sig.

– An ENCRYPTION certificate named part-enc

Note: This step is similar to “Adding the Certificates” on page B-6, but you need to use the
port numbers of the second computer/domain for your configuration.

11. Configure the binding for Test_TradingPartner_2.

12. Make sure that the trading partner is enabled.

Example : Rose t taNet Secur i t y Conf igura t i on

B-12 Introducing Trading Partner Integration

13. Export the trading partner information to a file named TradingPartner2.xml.

14. In the TradingPartner2.xml file, change all instances of LOCAL to REMOTE and in the
trading-partner element, set the is-default attribute to false.

15. If you are using a two computer configuration, use the JDK keytool utility to export the
Test_TradingPartner_2 server certificate.

You have completed configuring Test_TradingPartner_2. The next step is to import the remote
trading partner profiles for the two trading partners.

Step 3: Importing the Remote Trading Partner Information
Rather than recreating the information that you already created for each local trading partners
when you create the remote trading partners, you import the XML files that you exported in “Step
1: Configuring the Local Trading Partner for the Trading Partner 1 Setup” on page B-5 and “Step
2: Configuring the Local Trading Partner for the Trading Partner 2 Setup” on page B-11.

This set of instructions are the same for both Trading Partner 1 and Trading Partner 2. Go through
this section twice, once for your Trading Partner 1 configuration and once for your Trading
Partner 2 configuration.

To import the trading partner data:

1. Navigate to Trading Partner Management→Profile Management.

2. In the left pane, click Import/Export.

The Import Trading Partner Management Data screen is displayed.

3. Click Browse and navigate to the file which corresponds to your trading partner according
to the following table:

4. Select WLI Standard as the Import Format.

5. Click Import.

Current Local Trading Partner Import File

Test_TradingPartner_1 TradingPartner2.xml

Test_TradingPartner_2 TradingPartner1.xml

Step 4: C reat ing Se rv ices and Se rv ice P ro f i l es in WebLog ic I nteg ra t i on

Introducing Trading Partner Integration B-13

After successfully importing the trading partner information, remember to review the new trading
partner profile and make sure that the end point URL is correct. If they need to be changed, edit
your bindings as described in “Editing the Trading Partner Binding” on page B-8.

Step 4: Creating Services and Service Profiles in WebLogic
Integration

Once the local and remote trading partner configurations are completed, you have to create
services and corresponding service profiles for those trading partners. In WebLogic Integration,
a service represents a business process that is either offered by a local trading partner, or a
business process that is being called via a control on a remote trading partner. Service profiles
specify the protocol binding and URL endpoints for the local and remote trading partners that
offer and call the service.

Note: Make sure that the process that you want to create the service and service profile for is
deployed before you start this procedure.

This section is the same for both trading partner configuration. Complete the following procedure
twice, once for your Trading Partner 1 configuration and once for your Trading Partner 2
configuration:

1. Deploy the process that has the trading partner you want to configure and open your
administration console.

Note: If you are running both trading partner configurations on the same machine in
different domains, it is important that you only have the server that you are currently
configuring running. Otherwise, you could end up with simultaneous updates to the
keystores that could overwrite each, since both domains access the same keystore.

2. In the WebLogic Integration Administration Console, navigate to Trading Partner
Management→Service Management.

3. In the left pane, click Create New.

The Add Service screen appears.

4. Click Browse and navigate to one of the following:

– If you are configuring Test_TradingPartner_1, the service control which corresponds
to your initiator process,

– If you are configuring Test_TradingPartner_2, your deployed participant process,

5. From the Type drop-down menu select one of the following:

Example : Rose t taNet Secur i t y Conf igura t i on

B-14 Introducing Trading Partner Integration

– Service Control, if you are configuring Test_TradingPartner_1.

– Process, if you are configuring Test_TradingPartner_2.

6. From the Business Protocol drop-down menu, select RosettaNet.

7. Click Add Service.

The View and Edit Service Details screen appears.

8. Click Add Service Profile.

The Add Service Profile screen appears.

9. From the Name drop-down menus, select your LOCAL and REMOTE trading partners
according to the following table:

10. From the Binding drop-down menus, select your LOCAL and REMOTE bindings
according to the following table:

11. Click Submit.

12. On the next screen, click Yes.

The Add Authentication (Step 1 of 2) screen appears.

13. From the Choose type of Authentication Mode options, select Mutual for both the
REMOTE and LOCAL trading partner.

Process Currently
Deployed

Local Trading Partner Remote Trading Partner

Initiator Process Test_TradingPartner_1 Test_TradingPartner_2

Participant Process Test_TradingPartner_2 Test_TradingPartner_1

Process Currently
Deployed

Local Binding Remote Binding

Initiator Process TP1-rn20-binding TP2-rn20-binding

Participant Process TP2-rn20-binding TP1-rn20-binding

Step 4: C reat ing Se rv ices and Se rv ice P ro f i l es in WebLog ic I nteg ra t i on

Introducing Trading Partner Integration B-15

Note: Although it is not enforced, typically the same type of authentication is selected for
both the local and remote trading partner.

14. Click Next.

The Add Authentication (Step 2 of 2) screen appears. On this screen, you import the server
certificate for your remote trading partner.

15. Next to the Server Certificate drop-down list, click Add Certificate....

16. Select Import certificate from file.

17. Click Next.

18. Click Add alias....

The Add New Password Alias screen appears.

19. In the Password Alias Name field, enter any name.

20. Enter and confirm a password to use for this alias.

21. Click Submit.

22. Next to the Import Certificate Location field, click Browse.

23. Navigate to one of the following:

– servercert1.crt, if you are configuring Test_TradingPartner_2

– servercert2.crt, if you are configuring Test_TradingPartner_1.

24. Click Create Certificate.

Authentication is added and the View and Edit Service Details page is displayed.

Note: If there is an error, the Add Authentication page is redisplayed. A message indicating
the problem is displayed above the input requiring correction.

25. Make sure that all of your trading partners and your service profiles are enabled.

You have successfully created a service and its service profile. To learn more about services and
service profiles, see “Adding Services” and “Adding Service Profiles to a Service” in Trading
Partner Management.

This concludes this sample. To test your sample you simply run the two processes that you
created in “Before You Begin” on page B-3. Before you test your sample, you may want to
review “Testing Tips” on page B-16.

http://edocs.bea.com/wli/docs81/manage/tpm.html
http://edocs.bea.com/wli/docs81/manage/tpm.html

Example : Rose t taNet Secur i t y Conf igura t i on

B-16 Introducing Trading Partner Integration

Testing Tips
Before you test your sample, you can use the keytool utility to make sure that your keystore
entries are properly configured. If you want to test that your encryption works properly, you can
use the Trace Raw Messages option to save the raw messages that are sent to a specific location
in your file system.

Note: When you first set up connections to RosettaNet trading partners, it is a good idea to run
your configuration in Test mode to take advantage of the additional debugging features
provided by this mode. To run your Web Logic Integration RosettaNet configurations in
Test mode, you specify two annotations in the setProperties method:

-Set global-usage-code to Test.

-Set debug-mode to true.

For more information about the setProperites method, see RosettaNet Control
Interface, available at:
http://edocs.bea.com/workshop/docs81/doc/en/integration/java-class/
com/bea/control/RosettaNetControl.html

This section contains the following testing tips:

“Listing the Keystore Content” on page B-16

“Enabling the Trace Raw Messages Option” on page B-17

Listing the Keystore Content
You can use the JDK keytool utility to make sure that your key store entries are properly
configured. The keystore used in this sample, is the demo keystore, DemoIdentity.jks, which
is installed automatically when you install your product.

1. At the command line prompt, navigate to BEA_HOME\weblogic81\server\lib\
where BEA_HOME is the directory in which you installed WebLogic Server

2. Enter the following keytool command: keytool -list -keystore DemoIdentity.jks
-storepass DemoIdentityKeyStorePassPhrase

The resulting list should look similar to the following:

Keystore type: jks
Keystore provider: SUN

Your keystore contains 9 entries:

http://edocs.bea.com/workshop/docs81/doc/en/integration/java-class/com/bea/control/RosettaNetControl.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/java-class/com/bea/control/RosettaNetControl.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/java-class/com/bea/control/RosettaNetControl.html

Tes t ing T i ps

Introducing Trading Partner Integration B-17

secdomain1-client, Sat Oct 18 15:12:15 PDT 2003, keyEntry,
Certificate fingerprint (MD5):
53:13:78:D4:D0:E1:0D:EA:F4:6F:A1:19:6F:BE:4B:AF
secdomain2-sig, Sat Oct 18 16:44:00 PDT 2003, trustedCertEntry,
Certificate fingerprint (MD5):
97:24:2D:B5:CC:F3:FF:E5:06:E0:BD:CC:B6:E2:EF:E6
secdomain1servcert, Sat Oct 18 17:07:30 PDT 2003, trustedCertEntry,
Certificate fingerprint (MD5):
0F:AB:D0:92:0E:28:20:2C:70:4B:54:3E:84:AC:7F:E7
secdomain1-sig, Sat Oct 18 15:10:11 PDT 2003, keyEntry,
Certificate fingerprint (MD5):
AD:9F:BA:80:44:F2:7D:54:65:2C:7B:86:8B:2F:AA:D7
secdomain2-enc, Sat Oct 18 16:44:00 PDT 2003, trustedCertEntry,
Certificate fingerprint (MD5):
3E:6C:A9:E8:5E:03:51:80:AD:6A:76:41:44:76:37:7B
secdomain2servcert, Sat Oct 18 16:46:15 PDT 2003, trustedCertEntry,
Certificate fingerprint (MD5):
0F:AB:D0:92:0E:28:20:2C:70:4B:54:3E:84:AC:7F:E7
secdomain1-enc, Sat Oct 18 15:10:47 PDT 2003, keyEntry,
Certificate fingerprint (MD5):
51:AB:CD:71:A2:E9:26:C8:CC:B2:A8:4C:49:DB:F1:CA
secdomain2-client, Sat Oct 18 16:43:59 PDT 2003, trustedCertEntry,
Certificate fingerprint (MD5):
F9:FA:43:6E:DE:00:FB:FB:D5:68:EF:F6:2A:77:FD:01
demoidentity, Sat Oct 18 13:25:12 PDT 2003, keyEntry,
Certificate fingerprint (MD5):
0F:AB:D0:92:0E:28:20:2C:70:4B:54:3E:84:AC:7F:E7

Enabling the Trace Raw Messages Option
The Trace Raw Messages option enables you to save raw messages in a specified location. You
can then open these messages to review your security settings, such as encryption and signatures.

1. In the WebLogic Integration Administration Console, navigate to Trading Partner
Management→Configuration.

The General Configuration screen appears.

2. Specify the Message Tracking Level and Mode by selecting from the drop-down menu.

3. In the Directory field, enter the path to the folder which you want the raw messages to be
written to.

4. From the Trace Raw Messages options, select Yes.

Example : Rose t taNet Secur i t y Conf igura t i on

B-18 Introducing Trading Partner Integration

5. Click Submit.

After you have run your processes, check the specified directory for any raw messages.

Introducing Trading Partner Integration Index-1

Index

A
attachments 1-19
authentication

about authentication 4-12
basic authentication 4-14
client authentication 4-13
levels of 4-14
one-way (server-side) authentication 4-14
one-way (server-side) plus basic

authentication 4-14
remote users using two-way

authentication 4-23
server authentication 4-13
TPMUserNameMapper class 4-23
trading partner messages 4-21
two-way (mutual) authentication 4-14
types of 4-13

authorization 4-32
defined 4-31
levels of 4-32
policies 4-31
roles 4-31
service authorization 4-32
trading partner authorization 4-32

B
B2BDefaultWebApp 4-6, 4-8, 4-11, 4-32
basic properties, trading partners 1-6
bindings 1-9
business IDs 1-6
business messages 1-19
business processes 4-11

private 1-17
public 1-17

business protocols 1-19

C
certificate authorities 4-16
certificate verification 4-27
client certificates 4-18
controls

ebXML controls 2-10
Process control 1-16
RosettaNet controls 3-16
Service Broker control 1-16
TPM control 1-16

conversations 1-12
credential stores 4-9

keystores 4-9
PasswordStore 4-9

D
data encryption 4-43
DefaultIdentityAsserter 4-24
design patterns

role-based 1-13
RosettaNet 3-6

digital certificates 1-7, 4-15
certificate authorities 4-16
client certificates 4-18
encryption certificates 4-19
server certificates 4-18
signature certificates 4-19

digital signatures

Index-2 Introducing Trading Partner Integration

defined 4-33
PKCS7 enveloped data 4-35
XMLDSig 4-34

documentation
PIPs 3-2
RosettaNet Implementation Framework (RNIF) 3-2

E
ebXML

about ebXML 2-2
architecture 2-8
concepts 2-4
ebXML controls 2-10
messages 2-5
participant business processes 2-11
protocol layer 2-4
specifications 2-2
support in WebLogic Integration 2-3
tasks 2-11
XMLDSig 4-34

encryption 4-43
encryption certificates 4-19
extended properties, trading partners 1-6

F
failure paths 1-17

I
identity keystore 4-10
initiator role 1-12

J
JDBC connection pools 4-11
JMS destination 4-11

K
keystores 4-9

Introducing Trading Partner Integration Index-3

default keystores 4-10
production environment 4-10
types of 4-10

L
local trading partners 1-6

M
message attachments 1-19
message tracking 1-25
message-level security

defined 4-33
digital signatures 4-33
nonrepudiation 4-36

monitoring
message tracking 1-25
run-time statistics 1-27

N
nonrepudiation

defined 4-36
digital signatures 4-37
example 4-36
secure audit log 4-37
services 4-37
timestamp provider 4-41

P
participant role 1-12
Partner Interface Processes (PIPs) 3-5
PasswordStore 4-9
payloads 1-19
PIPs

defined 3-5
documentation 3-2

PKCS7 enveloped data 4-35
policies 4-31
private business processes 3-6

Index-4 Introducing Trading Partner Integration

Process controls and TPM lookups 1-16
protocol bindings 1-9
protocol bindings, default protocol bindings 1-11
proxy servers

outbound HTTP proxy servers 4-44
using with trading partner integration 4-44
WebLogic proxy plug-ins 4-46

R
recommended reading

RosettaNet Implementation Framework (RNIF) 3-2
technical advisorys 3-2

reliable messaging 2-7
remote trading partners 1-6
RNIF documentation 3-2
roles 1-12, 4-31
roles, naming 1-13
RosettaNet 3-2

about RosettaNet 3-2
architecture 3-15
business messages 3-10
concepts 3-5
design patterns 3-6, 3-10

asynchronous single-action activity 3-6
asynchronous two-action activity 3-8

encryption 4-43
participant business processes 3-17
Partner Interface Processes (PIPs) 3-5
PKCS7 enveloped data 4-35
protocol layer 3-5
public business processes 3-6
RosettaNet Business Message (RBM) 3-12
RosettaNet controls 3-16
RosettaNet Object (RNO) 3-11
support in WebLogic Integration 3-3
tasks 3-17
validation of business messages 3-14

Introducing Trading Partner Integration Index-5

S
secure audit log 4-37
security

authentication 4-12
authorization 4-31
certificate authorities 4-16
certificate verification 4-27
components of 4-3
credential stores 4-9
default Integration domain configuration 4-3
default security configuration 4-8
digital certificates 4-15
encryption 4-43
features, summary of 4-2
groups 4-48
implementing, steps for 4-48
keystores 4-9
message-level security 4-33
nonrepudiation 4-36
PasswordStore 4-9
proxy servers 4-44
resources to protect 4-11
roles 4-48
SSL protocol 4-12
transport-level security 4-12
users 4-48

server certificates 4-18
service authorization 4-32
Service broker controls and TPM lookups 1-16
service profiles 1-8
services 1-8
signature certificates 4-19
Simple Object Access Protocol (SOAP) 2-2
SSL protocol 4-12
statistics 1-27
success paths 1-17

T
timestamp provider 4-41
TPM control and web services 1-16

Index-6 Introducing Trading Partner Integration

TPM repository
defined 1-4
lookups 1-16

TPMUserNameMapper class 4-23
trading partner integration

defined 1-2
deploying solutions 1-29
designing solutions 1-28
managing solutions 1-30
phases for implementing 1-28
planning solutions 1-28

trading partner management 1-4
trading partners

about trading partners 1-5
authorization 4-32
basic properties 1-6
business IDs 1-6
certificates 1-7
default trading partner 1-7, 1-10
extended properties 1-6
local 1-6
profiles 1-6
remote 1-6
types of 1-5

Transport Servlet Filter 4-6, 4-22
transport-level security 4-12
trust keystore 4-10

U
UserNameMapper interface 4-26

V
verifying certificates 4-27

W
web services

TPM control 1-16
TPM lookups via Process and Service Broker controls 1-16

Introducing Trading Partner Integration Index-7

X
XMLDSig 4-34

Index-8 Introducing Trading Partner Integration

	Introduction
	About Trading Partner Integration
	Visual Public/Private Process Integration
	Support for Leading Industry Protocols and Standards
	Trading Partner Management (TPM) and Repository Access
	Easy Access to Run-Time Information
	High Performance and Availability
	High Security, Auditing, and Non-Repudiation
	Trading Partner Enablement

	Trading Partner Management Concepts
	About Trading Partner Management
	Trading Partners
	Types of Trading Partners
	Trading Partner Profiles
	Basic and Extended Properties
	Digital Certificates

	Services, Service Profiles, and Protocol Bindings
	Services
	Service Profiles
	Protocol Bindings

	Exchanging Data in the TPM Repository
	Default TPM Repository Settings
	Default Trading Partners
	Default Protocol Bindings

	MBean APIs for Third-Party Access

	Trading Partner Business Process Concepts
	About Business Processes for Trading Partner Integration
	Conversations and Roles
	Conversations
	Roles: Initiators and Participants

	Types of Business Processes
	Initiator and Participant Business Processes
	Public and Private Business Processes
	Success and Failure Paths

	Messaging Concepts
	Messaging Services for Trading Partner Integration
	Business Protocols
	Business Messages
	Business Message Formats
	Attachments

	Run-Time Processing of Business Messages
	Outgoing Message Path

	Run-Time Monitoring Concepts
	Message Tracking

	Summary of Trading Partner Integration Phases
	Phase 1: Plan the Solution
	Phase 2: Design, Build, and Test the Solution
	Phase 3: Deploy the Solution
	Phase 4: Administer and Tune the Solution

	Next Steps

	Introducing ebXML Solutions
	About ebXML Solutions
	About ebXML
	ebXML Specifications
	SOAP Specifications

	ebXML Support in WebLogic Integration
	Supported ebXML 1.0 and 2.0 Features
	Unsupported ebXML 2.0 Features

	Interoperability with WebLogic Integration – Business Connect

	ebXML Concepts
	ebXML Protocol Layer
	ebXML Business Messages
	Diagram of an ebXML Business Message
	Logical MIME Parts of an ebXML Business Message
	Message Attachments

	Reliable Messaging

	ebXML Business Processes
	Guidelines for Building ebXML Business Processes
	ebXML Initiator Business Processes
	ebXML Participant Business Processes

	Tasks for Implementing an ebXML Solution
	Before You Begin
	Planning the ebXML Solution
	Building the ebXML Solution
	Deploying the ebXML Solution
	Managing the ebXML Solution

	Introducing RosettaNet Solutions
	About RosettaNet Solutions
	About RosettaNet
	Understanding RosettaNet

	RosettaNet Support in WebLogic Integration
	Supported RosettaNet 1.1 and 2.0 Features
	Unsupported RosettaNet Features

	RosettaNet Concepts
	RosettaNet Protocol Layer
	Partner Interface Processes (PIPs)
	Public and Private Business Processes
	PIP Design Patterns
	Asynchronous Single-Action Activity
	Asynchronous Two-Action Activity
	Synchronous One-Action / Two-Action Activity

	RosettaNet Business Messages
	Components of a RosettaNet Business Message
	Validation of RosettaNet Business Messages

	RosettaNet Business Processes
	Guidelines for Designing RosettaNet Business Processes
	RosettaNet Initiator Business Processes
	RosettaNet Participant Business Processes

	Tasks for Implementing a RosettaNet Solution
	Before You Begin
	Planning the RosettaNet Solution
	Building the RosettaNet Solution
	Deploying the RosettaNet Solution
	Managing the RosettaNet Solution

	Trading Partner Integration Security
	Before You Begin
	Security Framework for Trading Partner Integration
	Summary of WebLogic Security Features
	WebLogic Server Default Security Configuration
	Components of Trading Partner Integration Security
	Default Domain Security Configuration
	Credential Stores
	WebLogic Integration PasswordStore for Encrypted Passwords
	Keystore for Private Keys and Certificates

	Trading Partner Integration Resources Requiring Security Policies

	Transport-Level Security
	Authentication
	SSL Protocol
	Types of Authentication
	Authentication Levels
	Digital Certificates
	Authenticating Trading Partner Messages
	About the TPMUserNameMapper Class
	Configuring the DefaultIdentityAsserter to Use TPMUserNameMapper
	Implementing a Custom UserNameMapper

	Verifying Certificates in Two-Way Authentication
	Benefits of Certificate Verification
	When WebLogic Integration Uses the Certificate Verification Provider
	Certificate Verification Process
	Implementing a Certificate Verification Provider

	Authorization
	Roles and Policies
	Authorization Levels

	Message-Level Security
	Digital Signatures
	WebLogic Integration Support for Digital Signatures
	About Digital Signatures
	XMLDSig for ebXML 1.0 and ebXML 2.0
	Digital Signature with PKCS7 Enveloped Data for RosettaNet 1.1 and RosettaNet 2.0

	NonRepudiation
	Nonrepudiation Example
	Nonrepudiation Services
	Digital Signatures
	Secure Audit Log
	Timestamp Provider

	Encryption—PKCS7 Enveloped Data for RosettaNet 2.0
	How WebLogic Integration Handles Data Encryption
	Supported Encryption Algorithms

	Using Proxy Servers with Trading Partner Integration
	Configuring Trading Partner Integration to Use an Outbound HTTP Proxy Server
	Configuring WebLogic Integration with a Web Server and a WebLogic Proxy Plug-In
	Services Provided by WebLogic Proxy Plug-In
	Topology Using WebLogic Proxy Plug-In
	Configuring the Web Server

	Implementing Security for Trading Partner Integration
	Configure Users, Groups, and Roles
	Configure Trading Partner Profiles
	Configure the Keystores
	Configure Certificates
	Configure SSL
	Configure Transport-Level and Message-Level Options in Service Profiles

	To Learn More
	Security Topics in the WebLogic Platform Documentation Set
	BEA Security Advisories
	Reporting Security Issues
	dev2dev Security Resources

	Example: ebXML Security Configuration
	Before You Begin
	Step 1: Generating a Test Certificate
	Configuring Windows to Run OpenSSL
	Creating a Public/Private Key Pair
	Generating the Test Certificate

	Step 2: Configuring Keystores for WebLogic Integration
	Step 3: Configuring the Local Trading Partner in WebLogic Integration
	Configuring the Local Trading Partner
	Adding the Test Certificate to the Keystore
	Editing the Trading Partner Binding

	Step 4: Configuring the SSL Settings in WebLogic Server
	Step 5: Exporting the WebLogic Integration Trading Partner Data
	Step 6: Configuring the Company Profile in WebLogic Integration - Business Connect
	Creating and Configuring a Company Profile in WebLogic Integration - Business Connect
	Exporting the Company Profile Information

	Step 7: Configuring the Remote Trading Partner in WebLogic Integration
	Step 8: Creating Services and Service Profiles in WebLogic Integration
	Creating the Trading Partner Service
	Creating the Service Profile

	Step 9: Configuring the iPlanet Server
	Creating the Trust Database
	Requesting a Trial Digital Certificate from Verisign
	Installing the iPlanet Server Certificate
	Requesting a Trusted CA Certificate from Verisign
	Installing the Trusted CA Certificate
	Installing the WebLogic Integration - Business Connect certificate
	Configuring iPlanet for SSL

	Step 10: Configuring the Partner Profile in WebLogic Integration - Business Connect
	Importing the WebLogic Integration Partner Profile
	Importing the iPlanet Server Certificate
	Importing the Certificate Authority Certificates

	Example: RosettaNet Security Configuration
	Keystores Used in the Example
	Before You Begin
	Step 1: Configuring the Local Trading Partner for the Trading Partner 1 Setup
	Configuring the Local Trading Partner
	Adding the Certificates
	Editing the Trading Partner Binding
	Enabling the Trading Partner Profile
	Exporting the Trading Partner Data
	Exporting the Server Certificate

	Step 2: Configuring the Local Trading Partner for the Trading Partner 2 Setup
	Step 3: Importing the Remote Trading Partner Information
	Step 4: Creating Services and Service Profiles in WebLogic Integration
	Testing Tips
	Listing the Keystore Content
	Enabling the Trace Raw Messages Option

	Index

