
A Component of BEA WebLogic Integration

B E A W e b L o g i c C o l l a b o r a t e R e l e a s e 2 . 0
D o c u m e n t E d i t i o n 2 . 0

J u l y 2 0 0 1

Programming

BEA WebLogic

Logic Plug-Ins
BEA WebLogic Collaborate

Collaborate

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, Operating System for the Internet, Liquid Data, BEA WebLogic E-Business Platform, BEA Builder,
BEA Manager, BEA eLink, BEA WebLogic Commerce Server, BEA WebLogic Personalization Server, BEA
WebLogic Process Integrator, BEA WebLogic Collaborate, BEA WebLogic Enterprise, BEA WebLogic Server,
BEA WebLogic Integration, E-Business Control Center, BEA Campaign Manager for WebLogic, and Portal
FrameWork are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Programming BEA WebLogic Collaborate Logic Plug-Ins

Document Edition Date Software Version

2.0 July 2001 2.0

Programming BEA WebLogic Collaborate Logic Plug-Ins iii

Contents

About This Document
What You Need to Know ..v

e-docs Web Site ... vi

How to Print this Document .. vi

Related Information... vi

Contact Us! ... vii

Documentation Conventions .. vii

1. Overview
Types of Applications.. 1-1

Logic Plug-Ins ... 1-3

2. Routing and Filtering Business Messages
Run-Time Message Processing ... 2-1

Send Side.. 2-5

Receive Side... 2-10

Working with Message-Context Documents... 2-13

Working with XPath Expressions ... 2-14

About XPath Expressions... 2-14

Creating WebLogic Collaborate XPath Expressions 2-18

Creating Trading Partner XPath Expressions... 2-19

Creating WebLogic Collaborate XPath Expressions 2-20

3. Creating and Adding Plug-Ins
About Logic Plug-Ins .. 3-1

What Are Logic Plug-Ins?.. 3-2

Logic Plug-In Architecture... 3-3

iv Programming BEA WebLogic Collaborate Logic Plug-Ins

Logic Plug-In Processing Tasks ... 3-3

Chains ... 3-4

Business Messages and Message Envelopes.. 3-6

System and Custom Logic Plug-Ins ... 3-8

Logic Plug-In API ... 3-9

Rules and Guidelines for Logic Plug-Ins .. 3-11

Creating and Adding Logic Plug-Ins... 3-13

Programming Steps for Logic Plug-Ins.. 3-13

Administrative Tasks.. 3-19

Index

Programming BEA WebLogic Collaborate Logic Plug-Ins v

About This Document

This document describes how to develop applications to exchange business messages
and monitor run-time activities in the BEA WebLogic Collaborate™ system.

This document is organized as follows:

� Chapter 1, “Overview,” provides an introduction to developing applications for
the BEA WebLogic Collaborate environment.

� Chapter 2, “Routing and Filtering Business Messages,” describes how routing
and filtering work in the BEA WebLogic Collaborate environment.

� Chapter 3, “Creating and Adding Plug-Ins,” describes how to manipulate
business messages as they travel through WebLogic Collaborate.

What You Need to Know

This document is intended primarily for:

� Business process designers who use the WebLogic Process Integrator Studio to
design workflows that can be integrated with the BEA WebLogic Collaborate
environment.

� Application developers who write Java applications that manage the exchange of
business messages or monitor run-time statistics in the BEA WebLogic
Collaborate environment.

� System administrators who set up and administer BEA WebLogic Collaborate
applications.

vi Programming BEA WebLogic Collaborate Logic Plug-Ins

For an overview of the BEA WebLogic Collaborate architecture, see Introducing BEA
WebLogic Collaborate.

e-docs Web Site

BEA product documentation is available at the following location:

http://e-docs.bea.com

How to Print this Document

You are reading the PDF version of this document, either online or a printout. You can
print the entire document or any portion of the document from Adobe Acrobat Reader.
If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at the following location:

http://www.adobe.com

Alternatively, you can print a copy of the HTML version of this document from a Web
browser, one file at a time, by using the File—>Print option on your Web browser.

Related Information

For more information about Java 2 Enterprise Edition (J2EE), Extended Markup
Language (XML), and Java programming, see the Javasoft Web site at the following
URL:

http://java.sun.com

Contact Us!

Programming BEA WebLogic Collaborate Logic Plug-Ins vii

Contact Us!

Your feedback about the WebLogic Collaborate documentation is important to us.
Send us e-mail at docsupport@bea.com if you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and update
the WebLogic Collaborate documentation.

In your e-mail message, please indicate that you are using the documentation for
Release 2.0 of WebLogic Collaborate.

If you have any questions about this version of WebLogic Collaborate, or if you have
problems installing and running WebLogic Collaborate, contact BEA Customer
Support through BEA WebSupport at the following location:

http://www.bea.com

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

� Your machine type and authorization codes

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

viii Programming BEA WebLogic Collaborate Logic Plug-Ins

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and their members, data
types, directories, and filenames and their extensions. Monospace text also indicates text that
you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]... [-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself should never be typed.

Convention Item

Documentation Conventions

Programming BEA WebLogic Collaborate Logic Plug-Ins ix

... Indicates one of the following in a command line:

� That an argument can be repeated several times in a command line

� That the statement omits additional optional arguments

� That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]... [-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line. The vertical ellipsis
itself should never be typed.

Convention Item

x Programming BEA WebLogic Collaborate Logic Plug-Ins

Programming BEA WebLogic Collaborate Logic Plug-Ins 1-1

CHAPTER

1 Overview

The following sections provide an overview of programming logic plug-ins:

� Types of Applications

� Logic Plug-Ins

Types of Applications

This document introduces WebLogic Collaborate logic plug-ins. Plug-ins are one of
three types of component applications available within WebLogic Collaborate. In
addition to logic plug-ins, WebLogic Collaborate also allows you to use management
applications, based on BEA-implemented MBeans, and messaging applications.

The following figure shows where these types of applications reside in the WebLogic
Collaborate system. For more information about management and messaging
applications, see Programming BEA WebLogic Collaborate Management
Applications and Programming BEA WebLogic Collaborate Messaging Applications.

1 Overview

1-2 Programming BEA WebLogic Collaborate Logic Plug-Ins

Figure 1-1 Types of WebLogic Collaborate Applications

For an introduction to the WebLogic Collaborate system, see Installing BEA WebLogic
Collaborate.

Logic Plug-Ins

Programming BEA WebLogic Collaborate Logic Plug-Ins 1-3

Logic Plug-Ins

Logic plug-ins are Java classes that perform specialized processing of business
messages as they pass through a node. Logic plug-ins insert rules and business logic at
strategic locations along the path that business messages travel as they make their way
through the node. WebLogic Collaborate provides router and filter logic plug-ins for
each business protocol. A service provider or trading partner can develop and install
custom logic plug-ins on a node to provide additional value in hub-and-spoke
configuration for node management and for trading partners who use that node.

Logic plug-ins are stored and executed on a node and are defined in the WebLogic
Collaborate repository on that node. They are transparent to users.

For more information about logic plug-ins, see Chapter 3, “Creating and Adding
Plug-Ins.”

1 Overview

1-4 Programming BEA WebLogic Collaborate Logic Plug-Ins

Programming BEA WebLogic Collaborate Logic Plug-Ins 2-1

CHAPTER

2 Routing and Filtering
Business Messages

The following sections describe how to use routing, filtering, and Xpath expressions
to control the flow of business messages exchanged among trading partners using BEA
WebLogic Collaborate:

� Run-Time Message Processing

� Working with Message-Context Documents

� Working with XPath Expressions

Run-Time Message Processing

BEA WebLogic Collaborate uses logic plug-ins, acting as either routers or filters, to
direct the flow of business messages to trading partners. The following example
illustrates how this process is implemented for XOCP business messages.

� After a trading partner sends an XOCP business message to WebLogic
Collaborate, the logic plug-in, acting as an XOCP router, determines the trading
partners to which the message is sent. The router logic plug-in is on the send
side of WebLogic Collaborate message processing and determines the recipients
to which the sending trading partner intends to send the message.

� Before WebLogic Collaborate sends the business message to a recipient trading
partner, a second logic plug-in, acting as an XOCP filter, determines whether or
not the trading partner should receive it. The second logic plug-in is on the

2 Routing and Filtering Business Messages

2-2 Programming BEA WebLogic Collaborate Logic Plug-Ins

receive side of WebLogic Collaborate message processing and it can prevent a
specific trading partner from receiving a specific business message.

The following figure provides an overview of how WebLogic Collaborate processes a
message.

Figure 2-1 Overview of Message Processing

Run-Time Message Processing

Programming BEA WebLogic Collaborate Logic Plug-Ins 2-3

A router is provided for each business protocol that WebLogic Collaborate supports.
The following figure provides a detailed look at the routers.

Figure 2-2 WebLogic Collaborate Routers

A separate filter is provided for each business protocol that WebLogic Collaborate
supports. The following figure provides a detailed look at the filters.

Figure 2-3 WebLogic Collaborate Filters

2 Routing and Filtering Business Messages

2-4 Programming BEA WebLogic Collaborate Logic Plug-Ins

The following figure provides a detailed look at how WebLogic Collaborate processes
an XOCP business message. Processing for RosettaNet business messages is handled
in a similar manner, as discussed in Implementing RosettaNet for BEA WebLogic
Collaborate.

Figure 2-4 XOCP Message Processing

Run-Time Message Processing

Programming BEA WebLogic Collaborate Logic Plug-Ins 2-5

The following sections explain how the send and receive sides of WebLogic
Collaborate process an XOCP business message:

� Send Side

� Receive Side

Send Side

The following sections describe the components on the send side of WebLogic
Collaborate and explain how they process an XOCP business message:

� WebLogic Collaborate XPath Expression

� Transport Service

� Decoder

� Scheduling Service

� XOCP Router

� Routing Service

WebLogic Collaborate XPath Expression

When sending an XOCP business message, the WebLogic Collaborate instance for the
sending trading partner can specify a local XPath expression that defines the intended
recipients for the business message. The local XPath expression is defined in a
WebLogic Process Integrator workflow or in a locally-run WebLogic Collaborate
application. For more information about XPath expressions, see “Creating WebLogic
Collaborate XPath Expressions” on page 2-18.

2 Routing and Filtering Business Messages

2-6 Programming BEA WebLogic Collaborate Logic Plug-Ins

Transport Service

The transport service reads the incoming XOCP business message and does the
following:

1. Wraps the message in a message envelope to expedite processing as it travels
through the WebLogic Collaborate instance.

2. Forwards the message to the appropriate decoder based on the business protocol,
such as XOCP, RosettaNet, or cXML. The URL at which the transport service
receives the message identifies the protocol and the delivery channel. Each
delivery channel/business protocol combination has a unique URL. A trading
partner uses this URL to access a particular delivery channel using a particular
business protocol.

Warning: A URL for a delivery channel/business protocol combination can be
used only by the WebLogic Collaborate instance. If customer-supplied
software uses one of these URLs, messages are not processed correctly.

For information about configuring business protocols, see Administering BEA
WebLogic Collaborate.

Decoder

The decoder does the following:

1. Processes the protocol-specific headers.

2. Identifies the sending trading partner.

3. Enlists the sending trading partner in a conversation.

4. Prepares a reply to return to the sender.

5. Forwards the message to the scheduling service.

Scheduling Service

The scheduling service enqueues the message to store it for subsequent retrieval by the
XOCP router.

Run-Time Message Processing

Programming BEA WebLogic Collaborate Logic Plug-Ins 2-7

XOCP Router

The XOCP router is a chain of logic plug-ins that specifies the recipients for the XOCP
business message. Each logic plug-in can add trading partners to or remove trading
partners from the set of recipient trading partners.

The logic plug-ins in the XOCP router are arranged in the following order:

1. XOCP router logic plug-in—provided by WebLogic Collaborate

2. Customer-supplied logic plug-ins—optional logic plug-ins that you can create

3. XOCP router enqueue logic plug-in—provided by WebLogic Collaborate

The following sections describe these logic plug-ins.

XOCP Router Logic Plug-In

The XOCP router logic plug-in does the following:

1. Creates a message-context document.

A message-context document is an XML document that the XOCP router logic
plug-in generates from the XOCP business message and associated information
in the repository. The message-context document describes header and content
information about the XOCP business message, such as the hub, business
protocol, conversation, sending trading partner, and receiving trading partners.
The XOCP router logic plug-in uses XPath expressions to evaluate the
message-context document. For more information about message-context
documents, see “Working with Message-Context Documents” on page 2-13.

2. Evaluates the message-context document against the XPath routing expressions,
which can refer to values in the message-context document. This evaluation
results in a set of trading partners that are targeted to receive the XOCP business
message.

The XOCP router logic plug-in uses the XPath routing expressions in the
following order:

a. Sender WebLogic Collaborate instance XPath expression

For information about WebLogic Collaborate XPath expressions, see
“Working with XPath Expressions” on page 2-14 and “Creating WebLogic
Collaborate XPath Expressions” on page 2-18.

2 Routing and Filtering Business Messages

2-8 Programming BEA WebLogic Collaborate Logic Plug-Ins

b. Sequence of sending trading partner XPath routing expressions

These XPath routing expressions are defined in the repository and are
defined for the sending trading partner. Each trading partner XPath routing
expression applies to all XOCP business messages that WebLogic
Collaborate receives from a particular sending trading partner. Each sending
trading partner can have multiple trading partner XPath routing expressions.

Each trading partner XPath routing expression can examine different parts of
the message-context document and select a different set of recipient trading
partners. The trading partners produced by each expression can either replace
the previously generated set of recipient trading partners or add to the current
set.

c. Sequence of WebLogic Collaborate XPath routing expressions

These XPath routing expressions are defined in the repository and are
defined for WebLogic Collaborate. Each WebLogic Collaborate XPath
routing expression applies to all XOCP business messages that WebLogic
Collaborate receives for all sending trading partners. WebLogic Collaborate
can have multiple XPath routing expressions.

As with trading partner XPath routing expressions, each WebLogic
Collaborate XPath routing expression can examine different parts of the
message-context document and return a Boolean result that indicates
acceptance or rejection of the message.

You can add XPath expressions to the repository for use by the XOCP router
logic plug-in. For information about XPath expressions, see “Working with
XPath Expressions” on page 2-14.

3. Discards the message-context document.

4. If the set of recipient trading partners is empty, then the XOCP router logic
plug-in does not forward the message to the next component in WebLogic
Collaborate. Otherwise, the WebLogic Collaborate instance continues to process
the message.

Customer-Supplied Logic Plug-Ins

You can create logic plug-ins and add them to the XOCP router. If you create a new
logic plug-in, you must add it to the chain after the XOCP router logic plug-in and
before the XOCP router enqueue logic plug-in. The order of the logic plug-ins in the
XOCP router chain is specified in the XOCP business protocol definition.

Run-Time Message Processing

Programming BEA WebLogic Collaborate Logic Plug-Ins 2-9

A customer-supplied logic plug-in does not have to provide router functionality to be
part of the XOCP router. For example, a customer-supplied logic plug-in can provide
billing functionality by keeping track of the number of messages sent by a particular
sending trading partner and then billing the trading partner for those messages. Even
when a customer-supplied logic plug-in does not provide routing or filtering
functionality, it can be added only to the XOCP router or the XOCP filter. For more
information about logic plug-ins, see Chapter 3, “Creating and Adding Plug-Ins.”

If the set of recipient trading partners is empty after the processing performed by a
customer-supplied router logic plug-in, then the customer-supplied router logic plug-in
does not forward the message to the next component in WebLogic Collaborate.
Otherwise, WebLogic Collaborate continues to process the message.

XOCP Router Enqueue Logic Plug-In

The XOCP router enqueue logic plug-in does the following:

1. Enqueues the XOCP business message along with the intended recipients.

2. Forwards the message to the routing service.

Routing Service

The routing service does the following:

1. Performs the final validation of the message recipients.

2. Creates a separate message envelope for each validated recipient trading partner.

3. Forwards each copy of the message envelope to the XOCP filter.

Receive Side

The following sections describe the components on the receive side of WebLogic
Collaborate and explain how they process an XOCP business message:

� XOCP Filter

� Scheduling Service

2 Routing and Filtering Business Messages

2-10 Programming BEA WebLogic Collaborate Logic Plug-Ins

� Encoder

� Transport Service

XOCP Filter

The XOCP filter is a chain of logic plug-ins that determines whether or not to send an
XOCP business message to an intended recipient. These logic plug-ins are evaluated
after the XOCP router logic plug-ins; they can modify or override the XOCP router
results. Each logic plug-in can determine not to send the message.

The logic plug-ins in the XOCP filter are arranged in the following order:

1. Customer-supplied logic plug-ins—optional logic plug-ins that you can create

2. XOCP filter logic plug-in—provided by WebLogic Collaborate

The following sections describe these logic plug-ins.

XOCP Filter Logic Plug-In

The XOCP filter logic plug-in does the following:

1. Creates a message-context document.

A message-context document is an XML document that the XOCP filter logic
plug-in generates from the XOCP business message and associated information
in the repository. The message-context document describes header and content
information about the XOCP business message, such as the hub, business
protocol, conversation, sending trading partner, and receiving trading partners.
The XOCP filter logic plug-in uses XPath expressions to evaluate the
message-context document. For more information about message-context
documents, see “Working with Message-Context Documents” on page 2-13.

2. Evaluates the message-context document against the XPath filtering expressions,
which can refer to values in the message-context document. This evaluation
determines whether or not to send the message to the intended recipient.

Run-Time Message Processing

Programming BEA WebLogic Collaborate Logic Plug-Ins 2-11

The XOCP filter logic plug-in uses the XPath filtering expressions in the
following order:

a. Sequence of trading partner XPath filtering expressions.

These XPath filtering expressions are defined in the repository and are
defined for the recipient trading partner. Each trading partner XPath filtering
expression applies to all XOCP business messages that WebLogic
Collaborate receives for a particular recipient trading partner. Each recipient
trading partner can have multiple trading partner XPath filtering expressions.

Each trading partner XPath filtering expression can examine different parts
of the message-context document and return a Boolean result that indicates
acceptance or rejection of the message.

b. Sequence of WebLogic Collaborate XPath filtering expressions

These XPath filtering expressions are defined in the repository and are
defined for WebLogic Collaborate. Each WebLogic Collaborate XPath
filtering expression applies to all XOCP business messages that WebLogic
Collaborate receives for all recipient trading partners. WebLogic Collaborate
can have multiple XPath filtering expressions.

As with trading partner XPath filtering expressions, each WebLogic
Collaborate XPath filtering expression can examine different parts of the
message-context document and return a Boolean result that indicates
acceptance or rejection of the message.

You can add XPath expressions to the repository for use by the XOCP filter
logic plug-in. For information about XPath expressions, see “Working with
XPath Expressions” on page 2-14.

3. Discards the message-context document.

4. If the XOCP filter logic plug-in cancels delivery of the XOCP business message
to the intended recipient, then the XOCP filter logic plug-in does not forward the
message to the next component in the WebLogic Collaborate instance.
Otherwise, WebLogic Collaborate continues to process the message.

2 Routing and Filtering Business Messages

2-12 Programming BEA WebLogic Collaborate Logic Plug-Ins

Customer-Supplied Logic Plug-Ins

You can create logic plug-ins and add them to the XOCP filter. If you create a new
logic plug-in, you must add it to the chain before the XOCP filter logic plug-in. The
order of the logic plug-ins in the XOCP filter chain is specified in the XOCP business
protocol definition.

A customer-supplied logic plug-in does not have to provide filter functionality to be
part of the XOCP filter. For example, a customer-supplied logic plug-in can provide
sampling functionality by keeping track of the types of messages sent to a particular
recipient trading partner. Even when a customer-supplied logic plug-in does not
provide routing or filtering functionality, it can be added only to the XOCP router or
the XOCP filter. For more information about logic plug-ins, see Chapter 3, “Creating
and Adding Plug-Ins.”

If the customer-supplied logic plug-ins cancel delivery of the XOCP business message
to the intended recipient, then the customer-supplied filter logic plug-in does not
forward the message to the next component in the WebLogic Collaborate instance.
Otherwise, WebLogic Collaborate continues to process the message.

Scheduling Service

The scheduling service does the following:

1. Performs additional internal operations related to quality of service issues and
conversation management. For information about quality of service, see
Programming BEA WebLogic Collaborate Messaging Applications.

2. Forwards the message to the encoder.

Encoder

The encoder transforms the message as necessary to support the business protocol and
forwards the message to the transport service.

Transport Service

The transport service sends the message to the recipient.

Working with Message-Context Documents

Programming BEA WebLogic Collaborate Logic Plug-Ins 2-13

Working with Message-Context Documents

For information about how message-context documents are created and used, see
“XOCP Router Logic Plug-In” on page 2-7 and “XOCP Filter Logic Plug-In” on page
2-10. This section describes the DTD for the message-context document.

The following listing is the Document Type Definition (DTD) for the message-context
document.

Listing 2-1 Document Type Definition for Message-Context Document

<!--Copyright (c) 2001 BEA Systems, Inc. -->
<!--All rights reserved -->

<!-- This DTD describes the message context document for XPATH routers and filters
-->

<!ELEMENT wlc (business-protocol, conversation, sender, trading-partner+) >
<!ATTLIST wlc context (message-router | trading-partner-router | hub-router |
trading-partner-filter | hub-filter) #REQUIRED >

<!ELEMENT business-protocol EMPTY >
<!ATTLIST business-protocol name CDATA #REQUIRED >
<!ATTLIST business-protocol version CDATA #REQUIRED >

<!ELEMENT conversation EMPTY >
<!ATTLIST conversation name CDATA #REQUIRED >
<!ATTLIST conversation version CDATA #REQUIRED >
<!ATTLIST conversation sender-role CDATA #REQUIRED >
<!ATTLIST conversation receiver-role CDATA #REQUIRED >

<!-- A sender is a trading-partner that has sent a message from a role in a
conversation. -->
<!ELEMENT sender (trading-partner) >

<!-- A Trading Partner represents an entity such as a company that sends or
receives messages. -->
<!ELEMENT trading-partner (address, extended-property-set*) >
<!ATTLIST trading-partner email CDATA #IMPLIED >
<!ATTLIST trading-partner fax CDATA #IMPLIED >
<!ATTLIST trading-partner name ID #REQUIRED >
<!ATTLIST trading-partner phone CDATA #IMPLIED >

2 Routing and Filtering Business Messages

2-14 Programming BEA WebLogic Collaborate Logic Plug-Ins

<!ELEMENT address ANY >

<!ELEMENT extended-property-set ANY >
<!ATTLIST extended-property-set name CDATA #REQUIRED >

Working with XPath Expressions

This section describes XPath expressions and how to create them:

� About XPath Expressions

� Creating WebLogic Collaborate XPath Expressions

� Creating Trading Partner XPath Expressions

� Creating WebLogic Collaborate XPath Expressions

About XPath Expressions

XPath is the XML path language that is defined by the World Wide Web Consortium.
The XOCP router logic plug-in and the XOCP filter logic plug-in use XPath
expressions to evaluate message-context documents. You can add XPath expressions
to the repository for use by the XOCP router logic plug-in and the XOCP filter logic
plug-in.

XPath expressions in the XOCP router logic plug-in and XOCP filter logic plug-in
perform the following functions:

� An XPath routing expression uses the XPath syntax to select a set of trading
partners from the message-context document. These trading partners are the
intended recipients of the XOCP business message. Each XPath routing
expression must evaluate to a set of trading partners.

In the XOCP router logic plug-in, XPath expressions specify the business criteria
for message distribution. For example, a buyer can use an XPath routing
expression to send bid requests to all sellers in a particular area code or to sellers
that can handle large orders.

Working with XPath Expressions

Programming BEA WebLogic Collaborate Logic Plug-Ins 2-15

� An XPath filtering expression uses the XPath syntax to return a Boolean result
that indicates acceptance or rejection of the message. Each XPath filtering
expression must evaluate to a Boolean true or false result.

In the XOCP filter logic plug-in, XPath expressions determine whether or not
WebLogic Collaborate sends a particular business message to a particular trading
partner. An XPath filtering expression in the XOCP filter logic plug-in acts as a
gatekeeper that filters out unwanted business messages for a receiving trading
partner.

2 Routing and Filtering Business Messages

2-16 Programming BEA WebLogic Collaborate Logic Plug-Ins

The following table provides an overview of the various types of XPath expressions.

In the XOCP router logic plug-in, each XPath routing expression can examine different
parts of the message-context document and select a different set of recipient trading
partners. The trading partners produced by each expression can either replace the
previously generated set of recipient trading partners or add to the current set.

Table 2-1 Overview of Types of XPath Expressions

Type of XPath
Expression

XOCP Router Logic Plug-In XOCP Filter Logic Plug-In

Run-Time Evaluated: first

of XPath expressions: one

Defined by: WebLogic Collaborate
instance (in workflow or application)

Purpose: defines recipients

Applies to: XOCP business messages
from the sending WebLogic Collaborate
instance

Not applicable

Trading partner Evaluated: second

of XPath expressions: one or more

Defined in: repository (via Administration
Console or Bulk Loader)

Purpose: adds and removes recipients

Applies to: all XOCP business messages
from the sending trading partner

Evaluated: fourth

of XPath expressions: one or more

Defined in: repository (via
Administration Console or Bulk Loader)

Purpose: determines whether or not to
send the message to the recipient

Applies to: all XOCP business messages
to the recipient trading partner

XOCP hub Evaluated: third

of XPath expressions: one or more

Defined in: repository (via Administration
Console or Bulk Loader)

Purpose: adds and removes recipients

Applies to: all XOCP business messages
from all sending trading partners

Evaluated: fifth

of XPath expressions: one or more

Defined in: repository (via
Administration Console or Bulk Loader)

Purpose: determines whether or not to
send the message to the recipient

Applies to: all XOCP business messages
to all recipient trading partners

Working with XPath Expressions

Programming BEA WebLogic Collaborate Logic Plug-Ins 2-17

The following table steps through an example that shows how XPath routing
expressions can be used.

In the XOCP filter logic plug-in, each XPath filtering expression can examine different
parts of the message-context document to determine whether or not to forward the
message to the recipient trading partner. Each XPath filtering expression can return
true or false using different selection criteria. After an XPath filtering expression
returns false, the message is blocked from further evaluation and is not sent to the
intended recipient.

An XPath expression can refer to the following kinds of information:

� Trading partner attributes, including:

� Standard attributes, such as the trading partner name or a postal code

� Extended attributes, which are custom attributes defined by the WebLogic
Collaborate administrator

� Message information, such as the type of business document, a purchase order
number, or an invoice amount

For more information on XPath Expressions, see Administering BEA WebLogic
Collaborate.

Table 2-2 Example for XPath Routing Expressions

XPath Expression Resulting Set of Recipient
Trading Partners

1. The XOCP spoke XPath expression selects trading partners A and B. A, B

2. A trading partner XPath routing expression adds trading partner C. A, B, C

3. A subsequent trading partner XPath routing expression replaces all previously
selected trading partners with trading partner D.

D

4. An XOCP hub XPath routing expression adds trading partners B and F. D, B, F

5. A subsequent XOCP hub XPath routing expression removes trading partner F. D, B

2 Routing and Filtering Business Messages

2-18 Programming BEA WebLogic Collaborate Logic Plug-Ins

Creating WebLogic Collaborate XPath Expressions

When sending an XOCP business message, the WebLogic Collaborate instance for the
sending trading partner can specify a WebLogic Collaborate XPath expression that
defines the intended recipients for the business message. The WebLogic Collaborate
XPath expression is defined in a WebLogic Process Integrator workflow or in a
WebLogic Collaborate application. This XPath expression selects a subset of
<trading-partner> nodes from the message-context XML document that the
XOCP router logic plug-in generates.

The sending WebLogic Collaborate instance defines this XPath expression and sends
it to the XOCP hub along with the message. WebLogic Collaborate defines an XPath
expression as follows:

� If WebLogic Collaborate uses a workflow to exchange business messages, the
XPath expression is defined in the workflow definition template and applied
when the WebLogic Collaborate instance sends the message to another
WebLogic Collaborate instance. Use the Send Business Message dialog to define
the XPath expression. For more information, see Creating Workflows for BEA
WebLogic Collaborate.

� If WebLogic Collaborate uses a WebLogic Collaborate application to exchange
business messages, the XPath expression is defined in the WebLogic Collaborate
application when it sends the message to another WebLogic Collaborate
instance. Call the setExpression method on the
com.bea.b2b.protocol.messaging.Message instance, passing the XPath
expression as the parameter. For more information, see Creating Workflows for
BEA WebLogic Collaborate.

Note: In many cases, a WebLogic Collaborate application sends a business
message to a single, known trading partner; for example, when replying to
a request from that trading partner. In this case, a WebLogic Collaborate
application can bypass the evaluation of XPath expressions in the XOCP
router logic plug-in by specifying a trading partner name instead of an
XPath expression. To specify a trading partner name, call the
setRecipient method instead of setExpression on the
com.bea.b2b.protocol.messaging.Message instance.

Working with XPath Expressions

Programming BEA WebLogic Collaborate Logic Plug-Ins 2-19

Creating Trading Partner XPath Expressions

A trading partner XPath expression is an XPath expression that is defined for a trading
partner. For routing, a trading partner XPath expression is used by the XOCP router
logic plug-in and is defined for the sending trading partner. For filtering, a trading
partner XPath expression is used by the XOCP filter logic plug-in and is defined for
the receiving trading partner.

Trading partner XPath expressions are defined in the repository. You can use the
following tools to create trading partner XPath expressions for the XOCP router logic
plug-in and the XOCP filter logic plug-in:

� Bulk Loader as described in “Working with the Bulk Loader” in Administering
BEA WebLogic Collaborate. The format for an XPath expression in a repository
data file is:

<xpath-expression expression="//TradingPartner1"
location="ROUTER" type="APPEND"/>

For more information about XPath syntax and usage, see the “XML Path
Language Specification,” published by the World Wide Web Consortium, at the
following URL:

http://www.w3.org/TR/xpath.html

� WebLogic Collaborate Administration Console as described in the BEA
WebLogic Collaborate Administration Console Online Help.

The following table describes the properties that you set when using the
WebLogic Collaborate Administration Console to define XPath expressions for
trading partners and the WebLogic Collaborate instance.

Table 2-3 Properties for XPath Expressions

Component Description

XPath Expression XPath routing or filtering expression as previously described.

Type Flag that specifies whether the results of evaluating the XPath expression append or
replace the results of the evaluations of the previous XPath expressions.

2 Routing and Filtering Business Messages

2-20 Programming BEA WebLogic Collaborate Logic Plug-Ins

As another example, a trading partner might want to route requests to trading partners
that are located in California. To do this, the trading partner can use the detail window
on the Trading Partners tab in the WebLogic Collaborate Administration Console to
create the following XPath expression for the XOCP router logic plug-in:

/hub/trading-partner[extended-property-set/state='California']

Creating WebLogic Collaborate XPath Expressions

A WebLogic Collaborate XPath expression is an XPath expression that is defined for
a business protocol. For routing, a WebLogic Collaborate XPath expression is used by
the XOCP router logic plug-in and is defined for all the XOCP business messages that
pass through the WebLogic Collaborate instance. For filtering, a WebLogic
Collaborate XPath expression is used by the XOCP filter logic plug-in and is defined
for all the XOCP business messages that pass through the WebLogic Collaborate
instance.

WebLogic Collaborate XPath expressions are defined in the repository. You can use
the following tools to create WebLogic Collaborate XPath expressions for the XOCP
router logic plug-in and the XOCP filter logic plug-in:

� Bulk Loader as described in “Working with the Bulk Loader” in Administering
BEA WebLogic Collaborate. The format for an XPath expression in a repository
data file is:

<xpath-expression expression="//TradingPartner1"
location="ROUTER" type="APPEND"/>

For more information about XPath syntax and usage, see the “XML Path
Language Specification,” published by the World Wide Web Consortium, at the
following URL:

http://www.w3.org/TR/xpath.html

� WebLogic Collaborate Administration Console as described in the BEA
WebLogic Collaborate Administration Console Online Help.

Table 2-3 describes the properties that you set when using the WebLogic
Collaborate Administration Console to define an XPath expression.

Working with XPath Expressions

Programming BEA WebLogic Collaborate Logic Plug-Ins 2-21

For example, a WebLogic Collaborate administrator might want to filter messages for
trading partners that are shippers so that they receive only shipping requests, while all
other types of trading partners receive all messages. To do this, the administrator can
use the Business Protocol Definitions tab in the WebLogic Collaborate Administration
Console to create the following XPath expression for the XOCP filter logic plug-in:

/hub/trading-partner/extended-property-set/business='shipper') OR
(/hub/trading-partner/extended-property-set/business!='shipper')

2 Routing and Filtering Business Messages

2-22 Programming BEA WebLogic Collaborate Logic Plug-Ins

Programming BEA WebLogic Collaborate Logic Plug-Ins 3-1

CHAPTER

3 Creating and Adding
Plug-Ins

The following sections describe how to develop logic plug-ins in WebLogic
Collaborate:

� About Logic Plug-Ins

� Logic Plug-In API

� Rules and Guidelines for Logic Plug-Ins

� Creating and Adding Logic Plug-Ins

About Logic Plug-Ins

The following sections describe logic plug-ins and related concepts:

� What Are Logic Plug-Ins?

� Logic Plug-In Architecture

� Chains

� Business Messages and Message Envelopes

� System and Custom Logic Plug-Ins

3 Creating and Adding Plug-Ins

3-2 Programming BEA WebLogic Collaborate Logic Plug-Ins

What Are Logic Plug-Ins?

Logic plug-ins are individual components that perform specialized processing of
business messages that pass through WebLogic Collaborate. A logic plug-in is a
custom service that a WebLogic Collaborate provider or trading partner can develop
and install on a WebLogic Collaborate instance to provide additional value for
WebLogic Collaborate management and for trading partners who use that WebLogic
Collaborate instance.

Logic plug-ins insert rules and business logic at strategic locations along the path that
business messages travel as they make their way through WebLogic Collaborate.
Logic plug-ins are instances of Java classes that are created when business protocols
are created in WebLogic Collaborate, and are activated when a delivery channel is
started. They are invoked when a message passes through.

Each logic plug-in is associated with a business protocol: logic plug-ins process only
the messages that are exchanged using that protocol. For example, if a particular
plug-in is associated with the XOCP protocol, then it processes only XOCP business
messages.

About Logic Plug-Ins

Programming BEA WebLogic Collaborate Logic Plug-Ins 3-3

Logic Plug-In Architecture

Logic plug-ins can be installed at two processing locations in the WebLogic
Collaborate instance: the router and the filter, as shown in the following figure.

Figure 3-1 Logic Plug-In Locations in WebLogic Collaborate: Router and Filter

Logic Plug-In Processing Tasks

WebLogic Collaborate-provided router and filter plug-ins for all supported business
protocols, including XOCP and RosettaNet, are directly involved in the processing of
message recipient information in messages based on Xpath expressions in the
repository. However, custom logic plug-ins can perform a wide range of services that

3 Creating and Adding Plug-Ins

3-4 Programming BEA WebLogic Collaborate Logic Plug-Ins

are entirely unrelated to routing or filtering, as well as routing and filtering operations.
For example, a custom logic plug-in might track the number of messages sent from
each trading partner for billing purposes.

Logic plug-ins perform the types of tasks described in the following table.

Chains

Both the router and filter modules can have multiple plug-ins that are executed when
a business message passes through those modules in WebLogic Collaborate. Multiple
logic plug-ins that share the same protocol are sequenced as a logic plug-in chain.

In a chain, logic plug-ins are processed sequentially at run time. After one plug-in has
finished executing, the next plug-in in the chain is normally activated. Each successive
plug-in can access any changes made previously to the shared message information as
the business message passes throughout WebLogic Collaborate.

Note: The position of a logic plug-in in a chain is configured in the repository using
the WebLogic Collaborate Administration Console, as described in
Administering BEA WebLogic Collaborate.

Table 3-1 Tasks Performed by Logic Plug-Ins

Process Description Examples

Route
Modification

Changes the list of target recipients for a
business message. Subject to conversation and
collaboration agreement validation of the
recipient. (WebLogic Collaborate plug-ins and
custom plug-ins.)

� “If a computer chip order over $1M is
placed, make sure that NewChipCo is one
of the recipients.”

� “After January 1, 2000, no orders should
be sent to OldChipCo.”

Examination Examines the contents of a business message
and takes certain actions based on the results of
the examination. (Custom plug-ins.)

Note: The business messages that are usually
examined are those without encrypted
contents.

� “Log all senders of messages for billing
purposes.”

� “For messages of type X, how many are
conversation version 1 versus
conversation version 2?”

About Logic Plug-Ins

Programming BEA WebLogic Collaborate Logic Plug-Ins 3-5

The following figure shows an example of a chain of XOCP logic plug-ins in the router
location in WebLogic Collaborate.

Figure 3-2 Sample XOCP Router Chain

Router

XOCP
Business
Message

Queue

XOCP Router Chain

XOCP-Router-Enqueue

XOCP-MessageInspector

XOCP-Router

XOCP-MessageTracker

3 Creating and Adding Plug-Ins

3-6 Programming BEA WebLogic Collaborate Logic Plug-Ins

Note that even when custom logic plug-ins do not provide routing or filtering
capability, they must still be part of a router or filter logic plug-in chain. In this
example, the chain contains four logic plug-ins that are processed in the order
described in the following table.

In this example, only XOCP business messages trigger the logic plug-ins in the XOCP
router chain. Non-XOCP business messages (such as RosettaNet or cXML messages)
are processed separately by the router chain associated with those business protocols.

Business Messages and Message Envelopes

A business message is the basic unit of communication exchanged between trading
partners in a conversation. The business message contains the list of message
recipients. A business message is represented in the WebLogic Collaborate API by the

Table 3-2 Logic Plug-Ins in the Sample XOCP Router Chain

Logic Plug-In Description

XOCP router WebLogic Collaborate provides this logic plug-in, which might modify the list of
recipients for an XOCP business message based on XPath router expressions
configured in the repository. This should be the first logic plug-in in the XOCP
router chain.

XOCP-MessageTracker Hypothetical logic plug-in. A WebLogic Collaborate owner or trading partner
might provide such a custom logic plug-in to track the number of business messages
sent from each trading partner for billing purposes.

XOCP-MessageInspector Hypothetical logic plug-in. A WebLogic Collaborate owner or trading partner
might provide such a custom logic plug-in to examine and maintain statistics for the
types of business documents being exchanged through WebLogic Collaborate (for
example, purchase orders, invoices, and so on).

XOCP router enqueue WebLogic Collaborate provides this logic plug-in, which enqueues the XOCP
business message in an internal WebLogic Collaborate router message queue. This
should be the last logic plug-in in the XOCP router chain.

About Logic Plug-Ins

Programming BEA WebLogic Collaborate Logic Plug-Ins 3-7

com.bea.b2b.protocol.messaging.Message interface. In addition, the following
classes implement this interface and represent protocol-specific business messages:

� com.bea.b2b.protocol.xocp.messaging.XOCPMessage

� com.bea.b2b.protocol.rosettanet.messaging.RNMessage

When a business message enters the WebLogic Collaborate instance, WebLogic
Collaborate creates a message envelope that acts as a container for the business
message as it travels through WebLogic Collaborate. Message envelopes are instances
of the com.bea.b2b.protocol.messaging.MessageEnvelope class.

The message envelope is used for routing purposes and is analogous to a paper
envelope for a letter: the message envelope contains the business message plus
addressing information, such as the identity of the sender (return address) and one
recipient of the business message (destination address), as shown in the following
figure.

Figure 3-3 Message Envelope Containing an XOCP Business Message

Message envelopes also contain other information about the business message. For
detailed information about the MessageEnvelope class, see the BEA WebLogic
Collaborate Javadoc.

For XOCP business messages, after the system XOCP router processes an XOCP
business message and finalizes the list of intended message recipients, WebLogic
Collaborate validates the recipients and creates a separate message envelope (and a
logical copy of the XOCP business message) for each recipient in the list. These
message envelopes are then forwarded to the XOCP filter for processing.

Message Envelope

Sender URL

Recipient / Destination URL

XOCP Business Message

3 Creating and Adding Plug-Ins

3-8 Programming BEA WebLogic Collaborate Logic Plug-Ins

System and Custom Logic Plug-Ins

WebLogic Collaborate provides the following logic plug-ins to provide standard
services for processing business messages.

In addition to using the system logic plug-ins, delivery channel owners and trading
partners can develop their own custom logic plug-ins to provide specialized services
through WebLogic Collaborate. Each logic plug-in is a Java class that implements the
logic plug-in API, as described in “Programming Steps for Logic Plug-Ins” on page
3-13.

Table 3-3 System Logic Plug-Ins

Logic Plug-In Description

XOCP router Modifies the list of recipients for an XOCP business message based on XPATH
router expressions configured in the repository. In general, this system logic plug-in
should be first in the router logic plug-in chain so that custom logic plug-ins can
subsequently process a business message after its list of intended recipients is
known.

XOCP router enqueue Enqueues the XOCP business message in the WebLogic Collaborate router
message queue. In general, this system logic plug-in should be last in the XOCP
router logic plug-in chain.

XOCP filter Determines whether an XOCP business message is sent to a trading partner based
on XPATH filter expressions configured in the repository. In general, this system
logic plug-in should be first in the XOCP filter logic plug-in chain so that custom
logic plug-ins can subsequently process a business message after rejected business
messages have been filtered out.

RosettaNet router enqueue Enqueues the RosettaNet business message in the WebLogic Collaborate router
message queue. In general, this system logic plug-in should be last in the
RosettaNet router logic plug-in chain.

RosettaNet filter Determines whether a RosettaNet business message is sent to a trading partner. In
general, this system logic plug-in should be first in the RosettaNet filter logic
plug-in chain.

Logic Plug-In API

Programming BEA WebLogic Collaborate Logic Plug-Ins 3-9

Logic Plug-In API

WebLogic Collaborate provides a logic plug-in API that allows WebLogic Collaborate
applications to:

� Add or remove target trading partners from the message recipient list when using
XOCP multicast. WebLogic Collaborate validates the list of recipients before
sending the business message.

� Retrieve, examine, and process parts of business messages. To ensure that the
contents of business messages are not altered or misrepresented
programmatically, the logic plug-in API provides methods for examining
business messages, but not for changing their contents.

The following table lists the components of the logic plug-in API. For more
information, see the BEA WebLogic Collaborate Javadoc.

Table 3-4 Logic Plug-In API

Class/Interface Description

com.bea.b2b.protocol.PlugIn Tagging interface that describes a generic logic plug-in,
that is, code that can be inserted, for execution, at various
places in WebLogic Collaborate.

com.bea.b2b.protocol.PlugInException Exception class that is thrown if an error occurs while a
logic plug-in is being executed.

com.bea.b2b.protocol.messaging.
MessageEnvelope

Represents the container (envelope) for a business
message passing through WebLogic Collaborate. The
MessageEnvelope contains the actual business
message plus high-level routing and processing
information associated with the business message, such as
the sender URL and the URL for one recipient (There is a
single message envelope for each recipient). A Java
InputStream is available in case access to the native
message is needed (because message content modification
is not allowed, however, no OutputStream is
provided).

3 Creating and Adding Plug-Ins

3-10 Programming BEA WebLogic Collaborate Logic Plug-Ins

com.bea.b2b.protocol.messaging.
Message

Represents a business message passing through
WebLogic Collaborate. It provides additional information
to be used to properly route a message between trading
partners. It also contains information specific to the
particular business protocol being used for this business
message. Depending on the protocol used, the Message
class usually includes subclasses to provide additional
protocol-specific information about the message.

com.bea.b2b.protocol.messaging.
PayloadPart

Represents a component of the message payload. Specific
classes that implement this information are provided for
some of the different types of parts of a business message,
such as XML or non XML parts, or to assist in accessing
business protocol-specific information.

com.bea.b2b.protocol.conversation.
ConversationType

Represents a single role in a specific conversation
definition. It contains information such as the
conversation name, conversation version, and trading
partner role.

com.bea.b2b.tpa.CPAInstance Represents a collaboration agreement instance. The
available methods allow you to retrieve a variety of
information about the collaboration agreement. Because
no modification of the collaboration agreement is allowed
from this API, only retrieval and verification methods are
provided.

com.bea.b2b.tpa.PartyInstance Represents the holder of a party to a collaboration
agreement. The available methods allow you to verify or
retrieve assorted information about the collaboration
agreement party.

com.bea.b2b.tpa.
TradingPartnerInstance

Represents a trading partner instance. This is used in
conjunction with PartyInstance or in a stand-alone
mode with a router or filter.

Table 3-4 Logic Plug-In API (Continued)

Class/Interface Description

Rules and Guidelines for Logic Plug-Ins

Programming BEA WebLogic Collaborate Logic Plug-Ins 3-11

Rules and Guidelines for Logic Plug-Ins

Logic plug-ins should conform to the following rules and guidelines:

� Logic plug-ins must be thread-safe and, therefore, stateless. At run time, logic
plug-in instances are cached and shared by multiple threads. Using instance
variables is not recommended.

� If access to shared resources is required, then use the synchronized Java
keyword to restrict access to the shared resource. Certain resources, such as
instance variables within the class, shared objects, or external system resources
(such as files) might need shared access. Using the synchronized keyword can
affect overall application performance, so use it only when necessary.

� Logic plug-ins can modify the message envelope and the list of recipients in the
business message, but they cannot modify the message contents. Changing the
business message invalidates the digital signature, if present. The logic plug-in
API provides mutator methods for modifying the message envelope only.

� Logic plug-ins must be self-contained: they are not interdependent with other
logic plug-ins; they cannot exchange variables; and they do not return a variable.
The message envelope is the only input and the only output. If the logic plug-in
makes a change to the message envelope, it outputs the message envelope as
modified.

� The main logic plug-in class must implement the
com.bea.b2b.protocol.PlugIn interface.

� To ensure secure messaging, logic plug-ins are generally not able to inspect
encrypted business messages. The business messages that are examined are
usually those that do not have encrypted contents. To examine the encrypted
contents of a business message, the logic plug-in must decrypt the message,
inspect its contents, and then encrypt it again. Users must have their own public
key infrastructure.

� It is the responsibility of the plug-in provider to ensure that any custom plug-ins
that are installed on WebLogic Collaborate are properly debugged and designed
from a security perspective.

� A logic plug-in is always associated with at least one particular protocol in the
repository. The logic plug-in is triggered only when a business message that uses

3 Creating and Adding Plug-Ins

3-12 Programming BEA WebLogic Collaborate Logic Plug-Ins

that protocol passes through WebLogic Collaborate. For example, a RosettaNet
business message does not trigger an XOCP-defined logic plug-in, and vice
versa.

� A single logic plug-in can be associated with multiple protocols in the
repository. For example, the same logic plug-in class named SentMessages can
be associated with the XOCP and RosettaNet protocols. In the WebLogic
Collaborate Administration Console, you can define separate logic plug-ins for
each business protocol (such as XOCP-SentMessages, RN-SentMessages, and
cXML-SentMessages), although each points to the same SentMessages class.
Alternatively, the same logic plug-in can be used in two different protocol
chains; such chains share initialization parameters, but they are separate
instances.

� An efficient logic plug-in quickly determines whether a business message
qualifies for processing and, if not, exits immediately.

� Logic plug-ins can call other modules, including shared methods in a utility
library (for example, a module that accesses a database).

� Logic plug-ins are initialized one time, when the delivery channel is activated.

� If the delivery channel is shut down (that is, if the shutdown method is
called on the associated
com.bea.b2b.management.hub.runtime.DeliveryChannelMBean), then
all protocol-specific logic plug-ins associated with that delivery channel are
shut down as well. The delivery channel must be restarted for the logic
plug-ins to be active.

� If WebLogic Collaborate is shut down (that is, if the shutdown method is
called on the associated com.bea.b2b.management.runtime.WLCMBean),
then all logic plug-ins running on that WebLogic Collaborate instance are
shut down as well. WebLogic Collaborate and the delivery channel must be
restarted.

� If logic plug-in definitions change in the WebLogic Collaborate repository,
such as when the chain is resequenced or when logic plug-in definitions are
added, changed, or removed, then the delivery channel must be shut down
and restarted to reflect the repository changes.

� The WebLogic Server instance must be restarted (and the Java Virtual Machine,
or JVM, reloaded) if an upgraded version of logic plug-in source code is
installed on WebLogic Collaborate.

Creating and Adding Logic Plug-Ins

Programming BEA WebLogic Collaborate Logic Plug-Ins 3-13

Creating and Adding Logic Plug-Ins

Implementing a custom logic plug-in requires a combination of development and
administrative tasks. The following steps describe the requires procedures:

� Programming Steps for Logic Plug-Ins

� Administrative Tasks

Programming Steps for Logic Plug-Ins

This section describes the programming steps that you must perform in the logic
plug-in code. Although each logic plug-in processes business messages in its own way,
all logic plug-ins must perform certain tasks.

To implement a logic plug-in, complete the following steps:

� Step 1: Import the Necessary Packages

� Step 2: Implement the PlugIn Interface

� Step 3: Specify the Exception Processing Model

� Step 4: Implement the Process Method

� Step 5: Get the Business Message from the Message Envelope

� Step 6: Validate the Business Message

� Step 7: Get Business Message Properties

� Step 8: Process the Business Message as Needed

This section uses code excerpts from a logic plug-in that:

� Intercepts a business message en route through WebLogic Collaborate

� Obtains the names of the message sender, its target recipient, and its associated
conversation definition

� Inserts a row with this information in the billing database

3 Creating and Adding Plug-Ins

3-14 Programming BEA WebLogic Collaborate Logic Plug-Ins

Step 1: Import the Necessary Packages

At a minimum, a logic plug-in needs to import the following packages:

� com.bea.b2b.protocol.*

� com.bea.b2b.protocol.messaging.*

The following listing from the SentMsgCounter.java file shows how to import the
necessary packages.

Listing 3-1 Importing the Necessary Packages

import java.util.Hashtable;
import com.bea.b2b.protocol.*;
import com.bea.b2b.protocol.messaging.*;
import com.bea.eci.logging.*;
import javax.naming.*;
import javax.sql.DataSource;

// This package is needed to access the DB pool
import java.sql.*;

Step 2: Implement the PlugIn Interface

A logic plug-in needs to implement the com.bea.b2b.protocol.PlugIn interface,
as shown in the following listing.

Listing 3-2 Implementing the PlugIn Interface

public class SentMsgCounter implements PlugIn
{

...
}

Creating and Adding Logic Plug-Ins

Programming BEA WebLogic Collaborate Logic Plug-Ins 3-15

Step 3: Specify the Exception Processing Model

A PlugInException is thrown if:

� A run-time exception (such as a NullPointerException) is thrown by a logic
plug-in and caught by WebLogic Collaborate processing code.

� The logic plug-in throws an exception to indicate problems encountered during
logic plug-in processing. The logic plug-in might handle the exception directly
or it might notify the WebLogic Collaborate processing code.

The exception processing model specified in a logic plug-in determines what happens
if an exception is thrown. logic plug-ins must implement the
exceptionProcessingModel method and specify one of the return values described
in the following table.

Table 3-5 Options for the Exception Processing Model

Class/Interface Description

EXCEPTION_CONTINUE Indicates that processing should continue to the next logic plug-in in the chain if a
PlugInException is thrown.

Use this option to allow a business message to continue through WebLogic
Collaborate even if an error occurs during the execution of this logic plug-in.

EXCEPTION_STOP Indicates that processing should stop at this logic plug-in if a PlugInException
is thrown. The business message does not continue to the next logic plug-in in the
chain.

Use this option to cancel message processing and prevent a message from
progressing further through WebLogic Collaborate. For example, a logic plug-in
that is validating business documents can reject any that contain insufficient or
incorrect data.

3 Creating and Adding Plug-Ins

3-16 Programming BEA WebLogic Collaborate Logic Plug-Ins

If a business message is rejected, what happens next depends on the business protocol
as well as on the specified Quality of Service associated with the message. For
example, the sending WebLogic Collaborate application might be notified that
message delivery failed and it might then attempt to send the business message again.

The following listing shows how the SentMsgCounter plug-in implements the
exceptionProcessingModel method.

Listing 3-3 Specifying the Exception Processing Model

public int exceptionProcessingModel()
{

return EXCEPTION_CONTINUE;
}

Step 4: Implement the Process Method

To process a business message, a logic plug-in must implement the process method,
which accepts the message envelope of the business message as its only parameter. In
the following listing, the SentMsgCounter class begins its implementation of the
process method by defining the variables that it later uses to store message properties.

EXCEPTION_UNWIND Indicates that processing should unwind if a PlugInException is thrown. The
business message does not continue to the next logic plug-in in the chain.

Use this option to reject a message; to prevent its further progress through
WebLogic Collaborate; and to undo any changes made by this plug-in, along with
any changes made by previous plug-ins in the chain. If an exception is thrown and
this is the exception processing model, then the unwind methods in all previous
plug-ins in the chain (but not the current logic plug-in), are invoked in reverse order.
In effect, unwinding cancels all changes made by the chain.

For example, if a logic plug-in inserts a row in a database table, its unwindmethod
should delete that row.

Note: To use this exception processing model, all logic plug-ins in the chain
must implement the unwind method, even if the method does nothing.

Table 3-5 Options for the Exception Processing Model (Continued)

Class/Interface Description

Creating and Adding Logic Plug-Ins

Programming BEA WebLogic Collaborate Logic Plug-Ins 3-17

Listing 3-4 Implementing the Process Method

public void process(MessageEnvelope mEnv) throws PlugInException
{

String sender, conversation;
String tRecipient;
Connection conn = null;
Statement stmt = null;
Message bMsg = null;
...

}

Note: When processing a business message, a logic plug-in is allowed to modify
only the message envelope, not the business message.

Step 5: Get the Business Message from the Message Envelope

If a logic plug-in needs to inspect the contents of a business message, it must call the
getMessage method on the MessageEnvelope instance, which retrieves the business
message as a Message object.

In the following listing, the SentMsgCounter class gets the business message from the
message envelope by calling the getMessage method.

Listing 3-5 Retrieving the Business Message from the Message Envelope

if((bMsg = mEnv.getMessage())== null)
{

throw new PlugInException("message is NULL");
}

Step 6: Validate the Business Message

Optionally, a logic plug-in can determine whether a message is a valid business mes-
sage that should be processed, or a system message that should be ignored by the
logic plug-in. To check a business message, the logic plug-in can call the isBusi-

3 Creating and Adding Plug-Ins

3-18 Programming BEA WebLogic Collaborate Logic Plug-Ins

nessMessage method on the Message instance. In the following listing, the SentMs-
gCounter class uses the isBusinessMessage method.

Listing 3-6 Validating the Business Message

if (bMsg.isBusinessMessage())
{

...
}

Step 7: Get Business Message Properties

Optionally, a logic plug-in can retrieve certain properties of the business message by
calling methods on the MessageEnvelope or Message instance. In the following
listing, the SentMsgCounter class gets the name of the conversation definition
associated with the conversation in which this message was sent, the name of the
sender of the business message, and the name of the recipient trading partner.

Listing 3-7 Retrieving Business Message Properties

conversation= bMsg.getConversationType().getName();
sender = mEnv.getSender();
tRecipient = mEnv.getRecipient();

Step 8: Process the Business Message as Needed

After a logic plug-in has obtained the necessary information from the business
message, it processes this information as needed. For example, the SentMsgCounter
plug-in updates the billing database with the message statistics it has collected.

Creating and Adding Logic Plug-Ins

Programming BEA WebLogic Collaborate Logic Plug-Ins 3-19

Administrative Tasks

An administrator adds the logic plug-in definition to the repository by performing the
following tasks from the Logic Plug-Ins tab of the WebLogic Collaborate
Administration Console:

1. Specify the following logic plug-in properties:

� Name of the logic plug-in.

� Java class that implements the PlugIn interface. This class can call auxiliary
classes in the class library, but it must be the main point of entry for the logic
plug-in. In addition, the Java class file must reside in a location specified by
the WebLogic CLASSPATH.

� Parameter name/value pairs to use when initializing the Java class.

2. Assign a logic plug-in to a business protocol.

3. Specify the position of the logic plug-in in the chain.

For more information about administrative tasks, see Administering BEA WebLogic
Collaborate.

3 Creating and Adding Plug-Ins

3-20 Programming BEA WebLogic Collaborate Logic Plug-Ins

Programming BEA WebLogic Collaborate Logic Plug-Ins I-1

Index

A
administrative tasks 3-19
API 3-9
applications 1-1
architecture 3-3

B
business messages

getting from message envelopes 3-17
overview 3-6
properties 3-18
receiving 2-12
sending 2-6
validating 3-17

C
chains 3-4
classes

ConversationType 3-10
CPAInstance 3-10
MessagesEnvelope 3-9
PartyInstance 3-10
PlugInException 3-9
TradingPartnerInstance 3-10

contact information vii
ConversationType class 3-10
CPAInstance class 3-10
creating XPath expressions 2-14, 2-18
customer support vii

customer-supplied logic plug-ins
filtering 2-12
routing 2-9

D
decoders 2-6
developer tasks 3-13
documents

message-context 2-7, 2-13
printing vi
where to find vi

E
encoder 2-12
enqueue

RosettaNet 3-8
XOCP 3-8

envelopes. See message envelopes. 3-6
exception processing model 3-15
EXCEPTION_CONTINUE 3-15
EXCEPTION_STOP 3-15
EXCEPTION_UNWIND 3-16

F
filtering

customer-supplied logic plug-ins 2-12
scheduling service (receiving) 2-12

I-2 Programming BEA WebLogic Collaborate Logic Plug-Ins

filters
RosettaNet 3-8
XOCP 2-10, 3-8

G
getting business messages 3-17
guidelines 3-11

H
how to program 3-13

I
importing packages 3-14
interfaces

Message 3-10
PayloadPart 3-10
PlugIn 3-9, 3-14

L
language, XPath 2-14
logic plug-ins

API 3-9
customer-supplied 2-9, 2-12
RosettaNet filters 3-8
RosettaNet router enqueue 3-8
See also filter logic plug-ins. 2-7
See also router logic plug-ins. 2-7
system 3-8
XOCP filters 3-8
XOCP router enqueue 3-8
XOCP routers 3-8

M
message envelopes

getting business messages 3-17
overview 3-6

Message interface 3-10

message processing
receive side 2-10
See also XOCP message processing. 2-5
send side 2-5
XOCP 2-1
XPath expressions 2-5

message-context documents 2-7, 2-13
MessageEnvelope class 3-9
messages

See business messages. 3-6
XOCP processing 2-1

methods, process 3-16
model, exception processing 3-15

P
packages, importing 3-14
PartyInstance class 3-10
PayloadPart interface 3-10
PlugIn interface 3-9, 3-14
PlugInException class 3-9
printing documents vi
process method 3-16
processing XOCP messages 2-1
programming steps 3-13
properties

business messages 3-18
XPath expressions 2-19

R
receive side 2-10
receiving messages 2-12
related information vi
RosettaNet

filters 3-8
router enqueue 3-8

router logic plug-ins 2-7

Programming BEA WebLogic Collaborate Logic Plug-Ins I-3

routers
RosettaNet enqueue 3-8
XOCP 2-7, 3-8
XOCP enqueue 3-8

routing
customer-supplied logic plug-ins 2-9
scheduling service (sending) 2-6

routing services 2-9
rules 3-11

S
scheduling services

XOCP filtering 2-12
XOCP routing 2-6

send side 2-5
sending messages 2-6
services

scheduling 2-6, 2-12
transport 2-6, 2-12

steps for programming 3-13
support

customer vii
technical vii

system logic plug-ins 3-8

T
tasks for programming 3-13
technical support vii
trading partners, creating XPath expressions

2-19
TradingPartnerInstance class 3-10
transport services

XOCP message processing (receiving)
2-12

XOCP message processing (sending) 2-6

V
validating business messages 3-17

X
XOCP

filters 3-8
router enqueue 3-8
routers 3-8

XOCP filtering. See filtering. 2-12
XOCP message processing

customer-supplied logic plug-ins 2-9,
2-12

decoders 2-6
encoders 2-12
filters 2-10
message-context documents 2-7
router logic plug-ins 2-7
routers 2-7
routing service 2-9
scheduling services (receiving) 2-12
scheduling services (sending) 2-6
See also message processing. 2-5
transport services (receiving) 2-12
transport services (sending) 2-6
XPath expressions 2-5

XOCP routing. See routing. 2-6
XPath expressions 2-5

creating 2-14, 2-18
creating for trading partners 2-19
description 2-14
properties 2-19

XPath language 2-14

I-4 Programming BEA WebLogic Collaborate Logic Plug-Ins

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print this Document
	Related Information
	Contact Us!
	Documentation Conventions
	1 Overview
	Types of Applications
	Logic Plug-Ins

	2 Routing and Filtering Business Messages
	Run-Time Message Processing
	Send Side
	Receive Side

	Working with Message-Context Documents
	Working with XPath Expressions
	About XPath Expressions
	Creating WebLogic Collaborate XPath Expressions
	Creating Trading Partner XPath Expressions
	Creating WebLogic Collaborate XPath Expressions

	3 Creating and Adding Plug-Ins
	About Logic Plug-Ins
	What Are Logic Plug-Ins?
	Logic Plug-In Architecture
	Logic Plug-In Processing Tasks
	Chains
	Business Messages and Message Envelopes
	System and Custom Logic Plug-Ins

	Logic Plug-In API
	Rules and Guidelines for Logic Plug-Ins
	Creating and Adding Logic Plug-Ins
	Programming Steps for Logic Plug-Ins
	Administrative Tasks

	Index

