
A Component of BEA WebLogic Integration

B E A W e b L o g i c C o l l a b o r a t e R e l e a s e 2 . 0
D o c u m e n t E d i t i o n 2 . 0

J u l y 2 0 0 1

Using BEA WebLogic

BEA WebLogic

Collaborate Samples

Collaborate

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, Operating System for the Internet, Liquid Data, BEA WebLogic E-Business Platform, BEA Builder,
BEA Manager, BEA eLink, BEA WebLogic Commerce Server, BEA WebLogic Personalization Server, BEA
WebLogic Process Integrator, BEA WebLogic Collaborate, BEA WebLogic Enterprise, BEA WebLogic Server,
BEA WebLogic Integration, E-Business Control Center, BEA Campaign Manager for WebLogic, and Portal
FrameWork are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Using BEA WebLogic Collaborate Samples

Document Edition Date Software Version

2.0 July 2001 2.0

Using BEA WebLogic Collaborate Samples iii

Contents

About This Document
What You Need to Know ..v
e-docs Web Site..vi
How to Print the Document..vi
Related Information..vi
Contact Us!..vii
Documentation Conventions ...vii

1. Getting Started
Samples Overview... 1-1
Installing the Samples ... 1-2

Installing Using the Default Database ... 1-3
Installing Using Other Supported Databases ... 1-5

2. Hello Partner Sample
Overview of the Hello Partner Sample ... 2-1

What the Sample Demonstrates ... 2-1
Hello Partner Sample Scenario Logic .. 2-2

Setting Up the Hello Partner Sample .. 2-4
Running the Hello Partner Sample.. 2-6
How the Sample Works... 2-7

Documents Exchanged... 2-8
Request WLC Message from Requestor Role 2-8
Reply WLC Message from Replier Role .. 2-9
XML Message Over JMS from JSP to Trigger Private Workflow..... 2-9
XML Message Over JMS from Private Workflow to JSP with Result2-9
XML Event from Replier Public Workflow to Replier Private Workflow2-9

iv Using BEA WebLogic Collaborate Samples

XML Event from Replier Private Workflows to Replier Public Workflows2-10
Requestor Private Workflow.. 2-10
Requestor Public Workflow ... 2-11
Replier Public Workflow ... 2-13
Replier Private Workflow .. 2-15

3. Trading Partner Lightweight Client Sample
Overview of the Lightweight Client Sample... 3-1

Purpose of the Sample.. 3-2
Lightweight Client Sample Scenario and Diagrams 3-2

Running the Lightweight Client Sample ... 3-4
Creating and Using Lightweight Clients ... 3-10

Lightweight Client Source Files... 3-11
Using the JSP Tag Library ... 3-12
Configuring a Lightweight Client .. 3-13

Edit the Configuration File ... 3-13
Edit the File-Sharing File .. 3-14

Configuring a Browser Client .. 3-16
Configuring an HTTP Browser Client .. 3-16
Configuring an HTTPS (SSL) Browser Client 3-17

4. Messaging API Sample
Overview of the Messaging API Sample .. 4-1
Configuration of the Messaging API Sample.. 4-4
Running the Messaging API Sample... 4-5

Messaging API Sample Output .. 4-7

A. JSP Tag Reference
SendMsgTag .. A-2
ChecknewmsgTag.. A-3
CheckallmsgTag... A-4
ReadmsgTag... A-5
DeletemsgTag .. A-6
DeleteallmsgTag .. A-7
CreatemboxTag.. A-8
RemovemboxTag ... A-9

Using BEA WebLogic Collaborate Samples v

About This Document

This document describes the WebLogic Collaborate samples, and provides
configuration information and instructions for running and verifying each sample.

This document includes the following topics:

� Chapter 1, “Getting Started,” describes the WebLogic Collaborate samples, and
discusses basic installation and configuration.

� Chapter 2, “Hello Partner Sample,” demonstrates communication using the
default XOCP messaging protocol.

� Chapter 3, “Trading Partner Lightweight Client Sample,” describes how to
configure and use the browser and file-sharing client samples.

� Chapter 4, “Messaging API Sample,” provides instructions for configuring and
executing the WebLogic Collaborate Messaging API sample.

What You Need to Know

This document is intended for independent software vendors (ISVs) who are interested
in extending BEA BEA WebLogic Process Integrator. It assumes a familiarity with the
BEA BEA WebLogic Process Integrator platform and Java programming.

vi Using BEA WebLogic Collaborate Samples

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “e-docs”
Product Documentation page at http://e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the BEA WebLogic Process Integrator
documentation Home page on the e-docs Web site (and also on the documentation
CD). You can open the PDF in Adobe Acrobat Reader and print the entire document
(or a portion of it) in book format. To access the PDFs, open the BEA WebLogic
Process Integrator documentation Home page, click the PDF files button and select the
document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/.

Related Information

To learn how to use BEA BEA WebLogic Process Integrator to meet your company’s
needs, see the following documents:

� The BEA WebLogic Process Integrator documentation at the following URL:

http://edocs.bea.com

� The Sun Microsystems, Inc. Java site at the following URL:

http://java.sun.com/

Using BEA WebLogic Collaborate Samples vii

Contact Us!

Your feedback on the BEA BEA WebLogic Process Integrator documentation is
important to us. Send us e-mail at docsupport@bea.com if you have questions or
comments. Your comments will be reviewed directly by the BEA professionals who
create and update the BEA WebLogic Process Integrator documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA BEA WebLogic Process Integrator 6.0 release.

If you have any questions about this version of BEA BEA WebLogic Process
Integrator, or if you have problems installing and running BEA BEA WebLogic
Process Integrator, contact BEA Customer Support through BEA WebSupport at
www.bea.com. You can also contact Customer Support by using the contact
information provided on the Customer Support Card, which is included in the product
package.

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

� Your machine type and authorization codes

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

viii Using BEA WebLogic Collaborate Samples

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:
#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.
Example:
void commit ()

monospace
italic
text

Identifies variables in code.
Example:
String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.
Examples:
LPT1
SIGNON
OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

Convention Item

Using BEA WebLogic Collaborate Samples ix

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:
� That an argument can be repeated several times in a command line
� That the statement omits additional optional arguments
� That you can enter additional parameters, values, or other information
The ellipsis itself should never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item

x Using BEA WebLogic Collaborate Samples

Using BEA WebLogic Collaborate Samples 1-1

CHAPTER

Getting Started

The WebLogic Collaborate samples demonstrate implementations of WebLogic
Collaborate features. In addition, successful installation and setup of the Hello Partner
sample provides verification for installation and basic configuration.

This section includes the following topics:

� Samples Overview

� Installing the Samples

Samples Overview

The WebLogic Collaborate samples have the following attributes in common:

� They demonstrate step-by-step deployment.

� They are run by workflows that are triggered by XML events.

� They can be customized and redeployed.

With the exception of the Hello Partner sample, which verifies basic communication
protocols, the samples demonstrate WebLogic Collaborate solutions to plausible
business problems. The following samples are described in this guide:

� Hello Partner Sample—Demonstrates the basic handshake necessary for
communication. The Hello Partner sample uses the WebLogic Collaborate
default XOCP messaging protocol.

� Trading Partner Lightweight Client Sample—Illustrates a request-reply scenario
in which two trading partners without a WebLogic Collaborate installation use

1 Getting Started

1-2 Using BEA WebLogic Collaborate Samples

the WebLogic Collaborate mailbox interface. Two types of lightweight client
communication are simulated for this demonstration:

� Browser-based client—Uses XML and JMS to prepare, deliver, and collect
information

� File-sharing client—Uses a third-party file-sharing server to exchange
messages

� Messaging API Sample—Uses the XOCP protocol. Three trading partners are
collocated on the same server with the hub. Uses a logic plug-in to simulate
delaying message delivery.

Use the WebLogic Collaborate Administration Console to export the sample workflow
templates, and then use the WebLogic Process Integrator Studio to change the
templates as appropriate. For details, see Administering BEA WebLogic Collaborate
and Using the BEA WebLogic Process Integrator Studio, respectively.

Installing the Samples

Before you can run some samples, you must make unique configuration changes or
populate a database. For specific installation and configuration instructions, see the
documentation for the appropriate sample. Instructions are provided for both Windows
and UNIX systems:

� To install the samples on a Windows system, use the Windows Start menu.

� To install the samples on a UNIX system, enter the appropriate command at the
prompt.

Note: The samples installation is configured with a single WebLogic Collaborate
instance. However, in an actual peer-to-peer type of installation, each trading
partner (with the exception of the lightweight clients) has a WebLogic
Collaborate installation, configured for the appropriate delivery channels.

This section describes two types of installations:

� Installing Using the Default Database

� Installing Using Other Supported Databases

Installing the Samples

Using BEA WebLogic Collaborate Samples 1-3

Installing Using the Default Database

1. Install and configure WebLogic Process Integrator.

For instructions, see Installing and Configuring BEA WebLogic Process
Integrator.

2. Install and configure WebLogic Collaborate.

The samples, including all associated files, schemas, and scripts, are loaded
when you install WebLogic Collaborate. For full installation and configuration
instructions, see Installing BEA WebLogic Collaborate.

3. Bulkload the sample data file into the repository, using the procedure appropriate
for your platform.

� Windows: From the Start menu, choose Start→Programs→BEAWebLogic
EBusiness Platform→WebLogic Integration
2.0/Samples→Bulkload→sample_name

� UNIX: For the Hello Partner and Lightweight Client samples:

cd $WLC_HOME/config/samples/shortcuts/
sh BulkloadHelloPartner.sh

For the Messaging API sample:

cd $WLC_HOME/config/samples/shortcuts/
sh BulkloadMessagingAPI.sh

The data, schemas, and logic plug-ins required to run the samples are loaded.
Wait for the bulkloading process to complete.

Note: See also “Working With the Bulk Loader” and “Working with the
Repository” in Administering BEA WebLogic Collaborate.

4. Start WebLogic Collaborate, using the procedure appropriate for your platform:

� Windows: From the Start menu, choose
WebLogic Integration 2.0→Collaborate→Samples→Start Collaborate

� UNIX: Run the shell script as follows:

cd $WLC_HOME/config/samples/
sh startWeblogic.sh

When WebLogic Collaborate is started,WebLogic Process Integrator is started,
too.

1 Getting Started

1-4 Using BEA WebLogic Collaborate Samples

For the Messaging API sample, skip to Step 7.

5. Start the WebLogic Process Integrator Studio, using the procedure appropriate
for your platform:

� Windows: From the Start menu, choose
WebLogic Integration 2.0→Collaborate→Samples→Start Studio

� UNIX: Run the shell script as follows:

cd $WLC_HOME/config/samples/shortcuts
sh studio.sh

To log in, use the following information:

� Login: joe

� Password: password

� URL: t3//localhost:7001

Make sure that ORG1 is selected in the Studio organization list.

6. Using the WebLogic Process Integrator Studio, import the JAR files that contain
the workflows and business operations used by the samples.

Windows:

� From the Studio menu, choose Tools→Import Package.

� Browse to the WLC_HOME/config/samples/workflows directory.

� Select HelloPartnerAndLightWeightClient.jar from the directory
appropriate for your operating system.

Windows: %WLC_HOME%\config\samples\workflows

UNIX: $WLC_HOME/config/samples/workflows

� Select ORG1 as the Target Organization.

� Check for active workflows after importing.

� Import HelloPartnerAndLightWeightClient.jar.

7. Run a sample by completing the appropriate procedure.

Installing the Samples

Using BEA WebLogic Collaborate Samples 1-5

Installing Using Other Supported Databases

The WebLogic Collaborate samples are configured to use Cloudscape as the default
database. In addition to Cloudscape, WebLogic Collaborate supports the Oracle and
Microsoft SQL databases. For more information about the databases supported by
WebLogic Collaborate, see Administering BEA WebLogic Collaborate.

If you prefer to use a database other than Cloudscape when running the samples, you
must execute the following steps:

1. Specify an alternate database during product installation. See Installing BEA
WebLogic Collaborate.

2. Switch the sample database configuration, specifying one of the following as the
value of db_name: Cloudscape, Oracle, or MSSQL7.

Windows: From the Start menu, choose WebLogic Integration
2.0→Collaborate→Samples→Switch DB Config→Change Database,
DBname→Use db_name

UNIX: Run the following shell script:

cd $WLC_HOME/config/samples/shortcuts
sh SwitchDBTodb_name.sh.

3. Create the schemas for the database you are using.

� Oracle on Windows:

a. Run the following script:

cd %WLPI_HOME%\ddl
sqlplus ORACLE_USER/ORACLE_PASSWORD@ORACLE_SERVICENAME@wlpi_oracle.ddl

b. Create the common repository by running the following script:

cd %WLINT_HOME\repository\oracle
createDD oracle

c. Create the WebLogic Collaborate repository by running the following script:
cd %WLC_HOME%\bin
createDB oracle

1 Getting Started

1-6 Using BEA WebLogic Collaborate Samples

� SQL Server on Windows:

a. Run the following script:

cd %WLPI_HOME%\ddl
osql -e -n -S MSSQL_HOSTNAME -U MSSQL_USER -P MSSQL_PASSWORD -i wlpi_mssql.ddl

b. Create the common repository:

cd %WLINT_HOME%\repository\mssql
createDB mssql

c. Create the WebLogic Collaborate repository by running the following script:

cd %WLC_HOME%\bin
createDB mssql

� Oracle on UNIX:

a. Run the following script:

cd $WLPI_HOME/ddl
sqlplus ORACLE_USER/ORACLE_PASSWORD@ORACLE_SERVICENAME@wlpi_oracle.ddl

b. Run the next script:

cd $WLINT_HOME/repository/oracle
sh createDB.sh oracle

c. Run the final script:

cd $WLC_HOME/bin:
sh createDB.sh oracle

� SQL Server on UNIX: SQL Server runs only on Windows systems. In order
to run SQL Server on a UNIX system, you must create the database and
schemas on a machine running the Windows operating system, and accessed
remotely.

To change to SQL Server on a UNIX system, manually edit the SQL
database-specific information in the following files, and bulkload the
repository before switching databases.

$WLC_HOME/config/samples/config.MSSQL7
$WLC_HOME/config/samples/samplesDBManagement/bulkloading/mssql7/HelloPartnerBul
kloadWrapper.xml
$WLC_HOME/config/samples/samplesDBManagement/bulkloading/mssql7/MessagingAPIBul
kloadWrapper.xml
$WLC_HOME/config/samples/samplesDBManagement/mssql7/setDBVars.sh

Installing the Samples

Using BEA WebLogic Collaborate Samples 1-7

For more information about creating the database schemas required, see “Step 7:
Creating the WebLogic Collaborate Tables” in “Installing BEA WebLogic
Collaborate” in Installing BEA WebLogic Collaborate.

Note: To recreate the Cloudscape database, you must perform the following steps
appropriate for your operating system.

Windows: Navigate to the appropriate directories and execute the following
commands:

cd %WLINT_HOME%\repository\cloudscape
rmdir db
cd %WLPI_HOME%\bin
createCloudscape.cmd
cd %WLC_HOME%\bin
createDB cloudscape

UNIX: Navigate to the appropriate directories and execute the following
scripts:

cd $WLINT_HOME/repository/cloudscape
rm -rf db
cd $WLPI_HOME/bin
sh createCloudscape.sh
cd $WLC_HOME/bin
sh createDBsh cloudscape

4. Bulkload the sample data file into the repository, using the procedure appropriate
for your platform.

� Windows: From the Start menu, choose
Start→Program→Samples→Bulkload→sample_name

� UNIX: For the Hello Partner and Lightweight Client samples:
cd $WLC_HOME/config/samples/shortcuts/
sh BulkloadHelloPartner.sh

For the Messaging API sample:

cd $WLC_HOME/config/samples/shortcuts/
sh BulkloadMessagingAPI.sh

The data, schemas, and logic plug-ins required to run the samples are loaded.
Wait for the bulkloading process to complete.

Note: See also “Working With the Bulk Loader” and “Working with the
Repository” in Administering BEA WebLogic Collaborate.

1 Getting Started

1-8 Using BEA WebLogic Collaborate Samples

5. Start WebLogic Collaborate, using the procedure appropriate for your platform:

� Windows: From the Start menu, choose
WebLogic Integration 2.0→Collaborate→Samples→Start Collaborate

� UNIX: Run the script as follows:

cd $WLC_HOME/config/samples/
sh startWeblogic.sh

When WebLogic Collaborate is started, WebLogic Process Integrator is started,
too.

For the Messaging API sample, skip to Step 7.

6. Start the WebLogic Process Integrator Studio, using the procedure appropriate
for your platform:

� Windows: From the Start menu, choose
WebLogic Integration 2.0→Collaborate→Samples→Start WLPI Studio

� UNIX: Run the following script:
cd $WLC_HOME/config/samples/shortcuts/
sh studio.sh

The default username and password are joe (lowercase) and password
(lowercase), respectively.

Make sure that ORG1 is selected in the Studio organization list.

7. When using the WebLogic Process Integrator Studio, import the JAR files that
contain the workflows used by the samples.

Windows:

� From the Studio menu, choose Tools→Import Package.

� Select ORG1 as the Target Organization.

� Check for active workflows after importing.

� Import HelloPartnerAndLightWeightClient.jar from the directory
appropriate for your operating system.

Windows: %WLC_HOME%\config\samples\workflows

UNIX: $WLC_HOME/config/samples/workflows

8. Run a sample by completing the appropriate procedure.

Using BEA WebLogic Collaborate Samples 2-1

CHAPTER

Hello Partner Sample

The Hello Partner sample demonstrates communication using the default XOCP
messaging protocol. This section discusses the following topics:

� Overview of the Hello Partner Sample

� Setting Up the Hello Partner Sample

� Running the Hello Partner Sample

� How the Sample Works

Overview of the Hello Partner Sample

Most WebLogic Collaborate conversations take place between trading partners who
have both installed WebLogic Collaborate. In such environments, the XOCP protocol
is used to exchange messages via a hub. The Hello Partner sample demonstrates all
aspects of this process.

What the Sample Demonstrates

The Hello Partner sample demonstrates how two or more trading partners can
participate in business communication in a properly configured WebLogic Collaborate
environment. Such communication occurs in a networking environment with a
hub-and-spoke configuration. XOCP is used to carry messages between two trading
partners. A hub and two spokes are created in your local WebLogic Collaborate
installation to demonstrate the round-trip path of the message. For each trading partner,
the sample demonstrates the following:

2 Hello Partner Sample

2-2 Using BEA WebLogic Collaborate Samples

� Public process - A public process that handles communication between the
trading partners is shown. The public process workflows are implemented using
XOCP to carry messages between trading partners.

� Private process - A private process for each trading partner that handles message
content processing is shown. The private process interacts with (a) the public
process for trading partner message delivery, and (b) an associated Java
application for external message processing.

In this sample, a JSP-driven Web page initiates a message to the replying trading
partner. The trading partner processes the data in the message and sends a reply to the
initiating trading partner, which is displayed by a second Web page.

This sample also illustrates the preferred method of handling trading partner message
traffic. Public processes are used to manage trading partner message traffic, while
private processes are used for message creation, message processing, and links to
outside applications.

Hello Partner Sample Scenario Logic

The Hello Partner sample scenario involves two trading partners, one requestor and
one replier, both of which communicate via a hub-and-spoke WebLogic Collaborate
configuration. The requestor sends a message and waits for a response from the replier.
The requestor uses a Web browser to access a JSP page that initializes and sends a
message in XML, using JSP tags that are embedded in the browser pages.

The replier receives the message, generates a response, and publishes the response to
the requestor in XML. The response is sent to the requestor, and the contents of the
reply are displayed in the requestor’s JSP page.

Running the Hello Partner sample demonstrates the following events:

� A private workflow is triggered by an XML event from a JSP tag in the
launching Web page.

� The private workflow generates the XML that will be embedded in the message
to the replier, which is sent via the public workflow.

� The replier public workflow is triggered by the message.

Overview of the Hello Partner Sample

Using BEA WebLogic Collaborate Samples 2-3

� When the replier public workflow receives the message, it will extract the XML
data contained in the message, and publish an XML event that will trigger the
replier’s private workflow.

� The replier private workflow generates XML containing the response, sends that
XML data back to the replier public workflow using an XML event.

� The replier public workflow packages the XML into a message that is sent back
to the requestor.

� The requestor public workflow receives the message from the replier public
workflow, extracts the XML containing the response, and then uses the XML to
publish an XML event that is received by the requestor private workflow.

� The replier’s response is posted to the launching JSP page.

Figure 2-1 Hello Partner Sample Scenario Logic

The actual message content used in the sample is relatively simple. The JSP page
allows you to select two numbers. These numbers are sent to the Replier, where they
are multiplied. The multiplication result is returned.

2 Hello Partner Sample

2-4 Using BEA WebLogic Collaborate Samples

Setting Up the Hello Partner Sample

The Hello Partner sample is designed to allow you to verify that you have properly
installed WebLogic Collaborate. The Hello Partner sample runs in its own database
domain, the Sample domain, rather than in your development or production domain.
This isolates the database tables used by the Hello Partner sample from any
development or production configurations or data you may load into WebLogic
Collaborate before or after running Hello Partner.

To load the Hello Partner sample:

1. Install WebLogic Collaborate and WebLogic Process Integrator.

2. Verify that user Joe has been created during the installation of WebLogic
Process Integrator Studio, with password password. This user account is created
during installation by default.

3. Load the Hello Partner database setup using the Bulk Loader.

� On Windows systems:

From the Start Menu, choose Start→Programs→BEA WebLogic E-Business
Platform→WebLogic Integration
2.0→Collaborate→Samples→BulkLoad→Hello Partner. This sequence
loads all data associated with the Hello Partner sample into the Sample
database domain in WebLogic Collaborate. This process may take several
minutes.

� On UNIX systems:

Start the following shell script from the
$WLC_HOME/config/samples/shortcuts directory:

sh BulkloadHelloPartner.sh

This shell script loads all data associated with the Hello Partner sample into
the Sample database domain in WebLogic Collaborate. This process may
take several minutes.

4. Start WebLogic Collaborate.

� On Windows systems:

Setting Up the Hello Partner Sample

Using BEA WebLogic Collaborate Samples 2-5

Choose Start→Programs→BEA WebLogic E-Business
Platform→WebLogic Integration 2.0→Collaborate→Samples→Start
Collaborate.

� On UNIX systems:

Run the following shell script from the $WLC_HOME/config/samples
directory:

sh startWeblogic.sh

When you start WebLogic Collaborate, you will eventually see a message
similar to Started Process Integrator. This does not mean that you have
also started the WebLogic Process Integrator Studio. Rather, it means that you
have started the WebLogic Process Integrator server, which runs in conjunction
with WebLogic Collaborate. To start the WebLogic Process Integrator server,
you need a file manager application and a Web browser.

5. Start the WebLogic Process Integrator Studio.

On Windows systems:

Choose Start→Programs→BEA WebLogic E-Business
Platform→WebLogic Integration 2.0→Collaborate→Samples→Start Studio.

On UNIX systems:

Run the following shell script from the
$WLC_HOME/config/samples/shortcuts directory:

sh studio.sh&

To log in, use the following information:

� Login: joe

� Password: password

� URL: t3//localhost:7001

6. Verify that ORG1 has been selected as the organization.

7. Import the Hello Partner jar file into the WebLogic Process Integrator Studio.
Select Import Package... from the Tools menu. Select the following jar file:

WLC_HOME\config\samples\workflows\HelloPartnerAndLighweightClient.jar

Select the Activate workflows after import option before you click Import.

2 Hello Partner Sample

2-6 Using BEA WebLogic Collaborate Samples

Once you have completed this procedure, WebLogic Collaborate will have loaded all
Hello Partner sample data and configurations.

Running the Hello Partner Sample

Once you have loaded the Hello Partner sample, you can start it.

To run the Hello Partner sample:

1. Choose Start→Programs→BEA WebLogic E-Business Platform→WebLogic
Integration 2.0→Collaborate→Samples→Run Samples→Hello Partner.

For UNIX, load the following URL:

HTTP://localhost:7001/HelloPartnerLauncher.html

Figure 2-2 JSP Launcher Page

How the Sample Works

Using BEA WebLogic Collaborate Samples 2-7

2. Select two numbers.

3. Click Click Here to Begin.

4. The example sends the message to the Replier trading partner for multiplication,
and then sends the result to the JSP. The Web page displays the following result.

Figure 2-3 JSP Result Page

How the Sample Works

A total of four workflows are used in this sample. Two public workflows manage the
requestor’s and replier’s sides of the XOCP message exchange, while two private
workflows connect the JSP and the requestor’s public workflow on one side, and
creates the replier’s reply data on the other.

2 Hello Partner Sample

2-8 Using BEA WebLogic Collaborate Samples

The following sections provide an overview of this process and describe each type of
workflow in detail:

� Documents Exchanged

� Requestor Private Workflow

� Requestor Public Workflow

� Replier Public Workflow

� Replier Private Workflow

Documents Exchanged

The following documents are used in the Hello Partner sample:

� Request WLC Message from Requestor Role

� Reply WLC Message from Replier Role

� XML Message Over JMS from JSP to Trigger Private Workflow

� XML Message Over JMS from Private Workflow to JSP with Result

� XML Event from Replier Public Workflow to Replier Private Workflow

� XML Event from Replier Private Workflows to Replier Public Workflows

Request WLC Message from Requestor Role

This message is sent by the Requestor. It includes the two numbers to be multiplied
and is packaged as a document of type multiply-request:

<multiply-request>
<integer-one>5</integer-one>
<integer-two>7</integer-two>

</multiply-request>

How the Sample Works

Using BEA WebLogic Collaborate Samples 2-9

Reply WLC Message from Replier Role

The following message, sent by the Replier, contains the multiplication product, as
well as a generated message:

<multiply-reply>
<integer-product>35</integer-product>
<note>Dear RequestorPartner: Here is the product of 7 and 5,

from ReplierPartner to RequestorPartner.</note>
</multiply-reply>

XML Message Over JMS from JSP to Trigger Private Workflow

The following message is sent over JMS by the JSP. Its arrival triggers the Requestor’s
private workflow:

<from-multiply-request-jsp-to-workflow>
<integer-one>5</integer-one>
<integer-two>7</integer-two>

</from-multiply-request-jsp-to-workflow>

XML Message Over JMS from Private Workflow to JSP with Result

The following message is sent over JMS from the Requestor’s private workflow to the
JSP. It contains the product of the multiplication, as well as the text message:

<from-workflow-to-multiply-request-jsp>
<integer-product>35</integer-product>
<note>Dear RequestorPartner: Here is the product of 7 and 5

from ReplierPartner to RequestorPartner.</note>
</from-workflow-to-multiply-request-jsp>

XML Event from Replier Public Workflow to Replier Private Workflow

The following XML event contains the request input message, with four parameters
(the two multiplication inputs, the name of the requestor, and the name of the replier):

<multiply-inputs>
<integer-one>5</integer-one>
<integer-two>7</integer-two>
<requestor-name>PartnerRequestor</requestor-name>
<replier-name>PartnerReplier</replier-name>

</multiply-inputs>

2 Hello Partner Sample

2-10 Using BEA WebLogic Collaborate Samples

XML Event from Replier Private Workflows to Replier Public Workflows

The following XML event contains the reply output of the private workflow:

<multiply-outputs>
<integer-product>35</integer-product>
<note>Dear RequestorPartner: Here is the product of 7 and 5

from ReplierPartner to RequestorPartner.</note>
</multiply-outputs>

Requestor Private Workflow

The Requestor private workflow receives the initial request from the JSP, creates a
message of the appropriate type, and sends it to the public workflow for transmission.
When it receives the reply, it processes the reply message, and sends the results to the
JSP. This process is illustrated by the workflow in the following figure.

Figure 2-4 Requestor Private Workflow

How the Sample Works

Using BEA WebLogic Collaborate Samples 2-11

Requestor Public Workflow

The Requestor public workflow is initiated by the XML event from the private
workflow. It creates a message with the request XML, sends the message to the
Replier, waits for a response, extracts the response XML from the response message,
and then passes the response to the private workflow for processing. The workflow in
the following figure illustrates this process.

An XML event received from the JSP triggers the workflow.
The XML event is of the form
<from-multiply-request-jsp-to-workflow>
discussed in “XML Message Over JMS from JSP to Trigger
Private Workflow.” The Start node extracts the conversion
string from XML, creates a <multiply-request>
document, and stores it in a workflow variable.

The Action node starts the public workflow and passes it a
workflow variable containing the <multiply-request>
document.

The Event node waits for a <multiply-reply> document.
When the <multiply-reply> document is received, the
conversion string is extracted from the <multiply-reply>
document. A
<from-workflow-to-multiply-request-jsp>
document is created and sent to the JSP.

A Stop node ends the workflow.

2 Hello Partner Sample

2-12 Using BEA WebLogic Collaborate Samples

Figure 2-5 Requestor Public Workflow

The workflow is called by having a
<multiply-request> document passed to it. The Start
node extracts the message string and stores it in a
workflow variable.

An Action node sends the <multiply-request>
document inside an XOCP message to the Replier role,
specifying PartnerReplier as the name of the Trading
Partner.

An Event node waits for an XOCP reply message from
the Replier. When the reply arrives, it extracts the
<multiply-reply> document from the message and
stores it in a workflow variable.

How the Sample Works

Using BEA WebLogic Collaborate Samples 2-13

Replier Public Workflow

The Replier public workflow is initiated upon receipt of the Requestor’s message. It
receives the message, extracts the request XML from the message, publishes an XML
event containing the request XML to trigger the replier private workflow, receives an
XML event back from the replier private workflow, and sends a message containing
the response XML back to the requestor as a reply. This process is illustrated by the
workflow in the following figure.

Figure 2-6 Replier Public Workflow

An Action node publishes the <multiply-reply>
document as an XML Event.

A Stop node ends the workflow.

2 Hello Partner Sample

2-14 Using BEA WebLogic Collaborate Samples

The workflow is started upon receipt of a
<multiply-request> document. The Start Node
extracts the message content from the message and stores
it in a workflow variable. The workflow variable is of
format <multiply-input>, using the values from inside
the <multiply-request> document, and the sender and
replier names from within the message.

An Action node publishes the <multiply-inputs>
document as an XML Event, initiating the private
workflow.

An Event node waits for a response, which it receives as
an XML Event containing a <multiply-outputs>
document.

An Action node creates a <multiply-reply> document
based on the <multiply-outputs> document. It stores
the result in an XML workflow variable.

An Action node sends the message containing the
<multiply-reply> document to the Requestor using
XOCP.

How the Sample Works

Using BEA WebLogic Collaborate Samples 2-15

Replier Private Workflow

The Replier private workflow is initiated upon receipt of the XML Event containing
the request XML from the Replier public workflow. It receives the request, processes
the data, generates a reply in an XML document, and publishes the reply XML back to
the replier public workflow using an XML Event.

Figure 2-7 Replier Private Workflow

A Stop node ends the workflow.

2 Hello Partner Sample

2-16 Using BEA WebLogic Collaborate Samples

The workflow is started when an XML Event containing
a document of type <multiply-inputs > is received.
The Start node stores the document in a workflow
variable.

The Action node creates an integer workflow variable
containing the product of the input integers from the
<multiply-inputs> document.

The Action node creates a document of type
<multiply-outputs> as a workflow XML variable.
The values from the integer and note workflow variables
in steps 2 and 3 are stored in this document.

The Action node publishes the <multiply-outputs>
document as an XML Event.

A Stop node ends the workflow.

Using BEA WebLogic Collaborate Samples 3-1

CHAPTER

Trading Partner
Lightweight Client
Sample

The Trading Partner Lightweight Client sample demonstrates two communication
methods (browser and file-sharing) used when one or more trading partner hosts no
BEA software. The sample is based on business practice functions and business
processes for a requestor and replyer communicating via either a browser or a
file-sharing client.

This section includes the following topics:

� Overview of the Lightweight Client Sample

� Running the Lightweight Client Sample

� Creating and Using Lightweight Clients

Overview of the Lightweight Client Sample

WebLogic Collaborate conversations usually take place between two trading partners
who have both installed WebLogic Collaborate. Browser and file-sharing clients
provide a way to communicate with trading partners who have not installed BEA
software. The Lightweight Client sample demonstrates communication between a
requestor trading partner using a browser client, and a replier trading partner using a
file-sharing client.

3 Trading Partner Lightweight Client Sample

3-2 Using BEA WebLogic Collaborate Samples

Purpose of the Sample

The Lightweight Client sample demonstrates how business communication can take
place between a requestor and one or more repliers that do not have WebLogic
Collaborate installations. This communication is accomplished using two types of
lightweight clients that are configured in a remote or host WebLogic Collaborate
installation:

� Browser client—Uses JSP served up by predefined WebLogic Collaborate
business processes to initiate a conversation, and send and receive messages.
The Web host facilitates communication via JSP delivered on demand to the
browser client. Uses the WebLogic Collaborate JSP tag libraries to send and
check the messages using the WebLogic Collaborate mailbox interface.

� File-sharing client—Communication is accomplished using a file-sharing client.
The requestor puts a message in a preconfigured mailbox located on the Web
host. The replier uses a file-sharing client provided by WebLogic Collaborate to
transfer messages between its mailboxes and file-sharing directories. The party
using a file-sharing client in the conversation must have a pre-existing FTP
installation.

In this sample, a business operation called by the replier’s private workflow gets a
request from a preconfigured directory, creates a reply based on the request, and puts
the reply into a preconfigured output directory. This sample does not use an actual FTP
server installation; it uses the business operation to simulate the FTP server.

Lightweight Client Sample Scenario and Diagrams

The Lightweight Client sample scenario involves two trading partners (one requestor
and one replier) who communicate via a remote WebLogic Collaborate installation
that has been preconfigured to handle lightweight clients.

The requestor sends a request for multiplication of two integer numbers. Requestor has
no local WebLogic Collaborate installation. Instead, it uses a browser to access the
JSPs that are served from a remote installation of WebLogic Collaborate. The JSPs
create mailboxes and send XML requests using the WLC-provided JSP tag libraries.
The same JSPs are also used to check the messages in the requestor’s mailbox, as well
as to delete messages from the requestor and replier mailboxes.

Overview of the Lightweight Client Sample

Using BEA WebLogic Collaborate Samples 3-3

Note: In an actual business deployment, the requestor would not have access to the
replier’s mailboxes.

The replier uses a third-party FTP server application to communicate with some
trading partners; it has no WebLogic Collaborate installation. The replier may use a
proprietary mechanism for handling messages. It communicates with the requestor via
a file-sharing client.

The Lightweight Client sample demonstrates the following events:

� Requestor’s private workflow is triggered by an XML event from a JSP tag in
the browser client.

� Replier’s public workflow is triggered by a reply placed in the replier’s out
mailbox by the file-sharing client.

� Requestor’s message and replier’s message are put in the appropriate mailboxes.

In the Lightweight Client sample, there are four preconfigured mailboxes, one inbox
and one outbox for each trading partner, as follows:

� Requestor using a browser client: BrowserTP1_Inbox and BrowserTP1_Outbox

� Replier using a file-sharing client: FtpTP1_Inbox, and FtpTP1_Outbox

3 Trading Partner Lightweight Client Sample

3-4 Using BEA WebLogic Collaborate Samples

Figure 3-1 Lightweight Client Deployment Diagram

Running the Lightweight Client Sample

The Lightweight Client sample requires no additional configuration; it can be run as
delivered. See “Installing the Samples” on page 1-2.

To run the Lightweight Client sample implementation:

Workflows

Browser
Client

WebLogic
Collaborate

INOUT

JSP INOUT

FTP
Client

Request XML

Reply XM
L

Request XML

Rep
ly

XML

Running the Lightweight Client Sample

Using BEA WebLogic Collaborate Samples 3-5

1. If you have already run the Hello Partner sample you have already bulkloaded all
of the data required to run the Lightweight Client sample. The Lightweight Client
sample shares WebLogic Collaborate information with the Hello Partner sample.

If you have not run the Hello Partner sample, see “Hello Partner Sample” on
page 2-1. See also “Installing the Samples” on page 1-2.

2. Run the Lightweight Client sample as follows:

� Windows: From the Start menu, choose:
WebLogic Integration 2.0→Collaborate→Samples→Run
Samples→Lightweight Client

� UNIX: Load the following sample file:

http://localhost:7001/lwcWebApp/LwcMain.jsp

The following illustration shows an example of the Lightweight Client main
page.

3. Start the file-sharing client.

Windows: Choose WebLogic Integration
2.0→Collaborate→Samples→Lightweight Client→Start File Sharing Client

UNIX: Execute the following script:
cd $WLC_HOME/config/samples/lightweightClient
sh startFSClient.sh

3 Trading Partner Lightweight Client Sample

3-6 Using BEA WebLogic Collaborate Samples

Note: If you start the file-sharing client before the first JSP has been loaded, you will
get a repeated Mailbox not found exception. These exceptions can be
ignored, since mailboxes are created when the main JSP has been loaded for
the first time. Once the mailboxes have been created these exceptions no
longer appear.

4. Click Go to the request input page. The Request for Multiplication page is
displayed as follows.

5. Test SendmsgTag and the wrapper Mailbox API by manually sending a message
to BrowserTP1_Outbox as follows:

a. Select two integers.

b. Click Send Multiplication Request.

Your display is updated, as shown in the following figure.

Running the Lightweight Client Sample

Using BEA WebLogic Collaborate Samples 3-7

6. Test CheckallmsgTag by clicking Check all replies. A list of replies is displayed
as shown in the following illustration.

If no replies have been received, the following message is displayed.

3 Trading Partner Lightweight Client Sample

3-8 Using BEA WebLogic Collaborate Samples

7. Test DeleteallmsgTag as follows:

a. Click Delete all messages in all mailboxes. A list of all the messages in all the
WebLogic Collaborate mailboxes is displayed.

Running the Lightweight Client Sample

Using BEA WebLogic Collaborate Samples 3-9

b. Click Delete all messages in all mailboxes again. Displays the total number of
messages deleted.

8. Test DeletemsgTag as follows:

� On the Check All Replies screen shown in Step 6, select a message

� Click Delete. The Delete One Reply screen confirms that the message was
successfully deleted.

9. You can view message details as follows:

� On the Check All Replies screen shown in Step 6, click on the message in
the Message ID column that you want to view.

� The View Reply Detail screen is displayed.

3 Trading Partner Lightweight Client Sample

3-10 Using BEA WebLogic Collaborate Samples

Creating and Using Lightweight Clients

This section provides information about creating and configuring lightweight clients:

� Lightweight Client Source Files

� Using the JSP Tag Library

� Configuring a Lightweight Client

� Configuring a Browser Client

Creating and Using Lightweight Clients

Using BEA WebLogic Collaborate Samples 3-11

Lightweight Client Source Files

The source directories included with WebLogic Collaborate contain all of the files
required for creating your own lightweight clients. The Lightweight Client sample
shares WebLogic Collaborate information with the Hello Partner sample.

Files and directories specific to the Lightweight Client sample are listed in the
following table.

Source Directory Contents

WLC_HOME\dtd\

lwcFileSync.dtd TheDTD file for LwcFileSync.xml.

setenv.cmd

setenv.sh

Makes sure that lwclient.jar, applications,
and classes are included in JAVACLASSPATH
for both the spoke configuration and WebLogic
Server.

build.cmd

build.sh

Builds all of the samples. Once this script is
executed, lwcWebApp.war is created and
placed under WLC_HOME\lib. All of the class
files are placed under
WLC_HOME\config\samples\applicati
ons\DefaultWebApp_myserver\WEBINF
\classes.

Note: The WAR file is prepackaged and
installed when you install WebLogic
Collaborate.

WLC_HOME\config\samples\lightweightClient\ Contains the source files for the business
operation and its helper to be called by a
workflow instance.

startFSClient.cmd

startFSClient.sh

A script that starts the file-sharing client that is
responsible for transferring a request from the
replier’s in mailbox to its file sharing directory,
and for transferring a reply from the replier’s out
directory to its out mailbox.

3 Trading Partner Lightweight Client Sample

3-12 Using BEA WebLogic Collaborate Samples

Using the JSP Tag Library

The JSP tag library uses a wrapper to address the WebLogic Collaborate Messaging
API. The JSP tag library is used with predefined workflows to interact with a mailbox,
as shown in Figure 3-2.

LwcFileSync.xml File read by the file-sharing client. You must
modify the following sections for your
environment:
� url

� wlcfilesync name

� directoryin

� directoryout

ftpDir\ A directory created for the Lightweight Client
sample runtime execution. It simulates the
file-sharing client’s in and out directories.
Contains FtpTP1_indir and
FtpTP1_outdir to simulate the in and out
directories on the file-sharing client. Names are
hard-coded for the sample.

Note: This directory and its associated
subdirectories are created at runtime.

lwcWebApp\ Contains the files for the Web application, such
as *.jpg and *.jsp files.

WEB-INF\ Contains the JSP tag library description file, and
web.xml used by the Lightweight Client web
application.

taglib\ Contains the reference implementation of the
WebLogic Collaborate JSP tag libraries. Used
for message management by
com.bea.lwclient.LwcMailbox.

Source Directory Contents

Creating and Using Lightweight Clients

Using BEA WebLogic Collaborate Samples 3-13

Figure 3-2 Mailbox Scenario Using the JSP Tag Library

The mailbox shown in Figure 3-2 supplements the repository. The tag library accesses
the mailbox as needed. The repository may also store mailbox messages. Error
handling is based on standard Java exception and error handling via the WebLogic
Collaborate Mailbox API classes and JSP delivered to the browser client.

For a complete listing of the JSP tags, see Appendix A, “JSP Tag Reference.”

Configuring a Lightweight Client

Additional steps are required when configuring a WebLogic Collaborate installation to
support customers using lightweight clients.

A lightweight client does not need any security mechanisms; it is a daemon process
that is independently run in its own Java Virtual Machine by WebLogic Collaborate.
It serves any number of lightweight clients that have been configured through the
LwcFileSync.xml configuration file. For additional information, see “Edit the
File-Sharing File” later in this document.

Edit the Configuration File

Add the lightweight trading partner configuration information, shown in Listing 3-1
and Listing 3-2, to the WebLogic Collaborate config.xml file.

Listing 3-1 Web Application Configuration

<!-- LightweightClient settings -->
<Application

3 Trading Partner Lightweight Client Sample

3-14 Using BEA WebLogic Collaborate Samples

Name="LwcWebApp"
Path="<WLC_HOME>/lib"

>
<WebAppComponent
Name="LwcWebApp"
ServletReloadCheckSecs="1"
Targets="myserver"
URI="LwcWebApp.war"

/>
</Application>

Listing 3-2 File-Sharing Client Configuration

<StartupClass
ClassName="com.bea.lwclient.Startup"
Name="LwcStartup"
Targets="myserver"

/>

Edit the File-Sharing File

Configure the lightweight client by editing lwcFileSync.xml. The file-sharing client
configuration is defined in lwcFileSync.xml, and conforms to lwcFileSync.dtd.

Note: LwcFileSync.dtd must be located in the directory from which the
file-sharing client is started.

Listing 3-3 contains the DTD file. Listing 3-4 provides a sample XML file that sets up
the lightweight trading partners. Replace the values shown in bold with values that
are appropriate for your lightweight client installation.

Listing 3-3 Example of lwcFileSync.dtd

<!-- This DTD describes file sharing client configuration file -->
<!ELEMENT wlcfilesyncconfig (wlcfilesync*) >

<!-- maxThreads The upper limit for number of threads permissible -->
<!-- in thread pool at a given point in time -->
<!ATTLIST wlcfilesyncconfig maxThreads CDATA #REQUIRED>

Creating and Using Lightweight Clients

Using BEA WebLogic Collaborate Samples 3-15

<!-- minThreads The lower limit for number of threads permissible -->
<!-- in thread pool at a given point in time -->
<!ATTLIST wlcfilesyncconfig minThreads CDATA #REQUIRED>

<!-- maxIdleTime The maximum time interval thread could be idle -->
<!-- else removed from the pool -->
<!ATTLIST wlcfilesyncconfig maxIdleTime CDATA #REQUIRED>

<!-- pollInterval Time interval defining wait interval before polling -->
<!ATTLIST wlcfilesyncconfig pollInterval CDATA #REQUIRED>

<!-- url Weblogic URL used for JNDI lookup -->
<!ATTLIST wlcfilesyncconfig url CDATA #REQUIRED>

<!-- debug flag used to turn debugging on/off -->
<!ATTLIST wlcfilesyncconfig debug (TRUE | FALSE) "FALSE">

<!-- The following element is used to configure details of LWTP -->
<!ELEMENT wlcfilesync EMPTY>

<!-- LWTP name -->
<!ATTLIST wlcfilesync name CDATA #REQUIRED>

<!-- path of the incoming directory on local file system -->
<!ATTLIST wlcfilesync directoryin CDATA #REQUIRED>

<!-- path of the outgoing directory on local file system -->
<!ATTLIST wlcfilesync directoryout CDATA #REQUIRED>

Listing 3-4 Example of lwcFileSync.xml

<?xml version="1.0"?>
<!DOCTYPE wlcfilesyncconfig SYSTEM "LwcFileSync.dtd">
<wlcfilesyncconfig maxThreads="9"

minThreads="3"
maxIdleTime="5000"
pollInterval="2000"
url="t3://localhost:7001"
debug="FALSE">

<wlcfilesync name="FtpTP1"
directoryin="<WLC_HOME>/ftpDir/FtpTP1_indir"
directoryout="<WLC_HOME>/ftpDir/FtpTP1_outdir"/>

</wlcfilesyncconfig>

3 Trading Partner Lightweight Client Sample

3-16 Using BEA WebLogic Collaborate Samples

Configuring a Browser Client

WLC supports two methods of configuring a browser client, depending on the security
paradigm desired:

� Configuring an HTTP Browser Client

� Configuring an HTTPS (SSL) Browser Client

Configuring an HTTP Browser Client

To configure an HTTP lightweight client, you must edit the web.xml file. To turn on
security for a browser client, complete the following procedure:

1. The JSP developer responsible for the HTML user interface for trading partner
lightweight client Web application(s) uses the sendmsg tag and provides the
following mandatory argument : security = ON or OFF.

The workflow template developers can also turn security on and off using the
examples.lightweightClient.LwcBizOp.putMessage() method that also
accepts a string as its last argument for SECURITY. To turn security on or off,
the developer passes one of the following arguments: ON or OFF.

2. The person responsible for the hosted Web application deployment modifies
WLC_HOME\lwcWebApp\WEB-INF\web.xml to add security constraints for all the
users with permission to use the application.

For example, to provide a new user with security privileges to use the Web
application lwcWebApp.war, add the following code:

<security-constraint>
<web-resource-collection>
<web-resource-name>lwcWebApp</web-resource-name>
<url-pattern>/*</url-pattern>

</web-resource-collection>
<auth-constraint>

<role-name>newpartner</role-name>
</auth-constraint>
</security-constraint>

<login-config>
<auth-method>BASIC</auth-method>
</login-config>

Creating and Using Lightweight Clients

Using BEA WebLogic Collaborate Samples 3-17

<security-role>
<role-name>newpartner</role-name>

</security-role>

3. The newpartner user must be a valid WebLogic Server user. The user can be
created using either the WebLogic Server Administration Console or the
WebLogic Collaborate Administration Console. For details, see the BEA
WebLogic Server Administration Guide, or Administering BEA WebLogic
Collaborate, respectively.

4. The newpartner user must be mapped to a valid trading partner lightweight
client. This mapping is done using the WebLogic Collaborate Administration
Console. Through the Console, you create the trading partner lightweight client
and map the user’s identification to the appropriate trading partner record. For
details, see Administering BEA WebLogic Collaborate.

5. You must create a collaboration agreement between newpartner and the
WebLogic Collaborate hub. Use the WebLogic Process Integrator Studio to
create the collaboration agreement. For details, see Using the BEA WebLogic
Process Integrator Studio.

Configuring an HTTPS (SSL) Browser Client

To configure a lightweight HTTPS (SSL) client, perform the following steps:

1. Configure certificates at both the browser and the WebLogic Collaborate nodes.

2. Create a WebLogic Server user called newpartner, who will run the browser on
behalf of a trading partner lightweight client. You can create this user through
either the WebLogic Server Administration Console or the WebLogic
Collaborate Administration Console.

3. Use the WebLogic Collaborate Administration Console to create the trading
partner lightweight client.

4. Map newpartner to the trading partner record.

5. Create a collaboration agreement between the lightweight client and the
WebLogic Collaborate hub, using the WebLogic Collaborate Administration
Console. For details, see Administering BEA WebLogic Collaborate.

3 Trading Partner Lightweight Client Sample

3-18 Using BEA WebLogic Collaborate Samples

Using BEA WebLogic Collaborate Samples 4-1

CHAPTER

Messaging API Sample

This section describes the Messaging API sample, which demonstrates two message
delivery mechanisms built with the WebLogic Collaborate messaging API and logic
plug-in features. It includes the following topics:

� Overview of the Messaging API Sample

� Configuration of the Messaging API Sample

� Running the Messaging API Sample

Overview of the Messaging API Sample

WebLogic Collaborate supports two message delivery methods:

� Synchronous—The sending application waits until the published message is
delivered to the destination(s). The messaging system returns control to the
application once the outcome of the activity of publishing the message is known.
The application waits until a timeout occurs or status is known, whichever
happens first.

� Deferred Synchronous—Control returns to the application after a message is
published. A messageToken object is returned to the application, which the
application can later access to check the status of message delivery. Once a
token is accessed, the application must wait until the status of the message
delivery is known or a timeout occurs, whichever happens first.

Figure 4-1 illustrates the Messaging API sample conversation.

4 Messaging API Sample

4-2 Using BEA WebLogic Collaborate Samples

Figure 4-1 Diagram of the Messaging API Sample Conversation

1. Partner1 sends a message (1, 2) to Partner2, who replies (3, 4).

2. The logic plug-in holds the reply for 15 seconds.

3. Before looking for a reply from Partner2, Partner1 sends a second message to
Partner3 (5, 6).

4. Partner3 replies to Partner1 (7, 8).

5. Partner1 now retrieves the reply from Partner2 (9).

6. The results are displayed by Partner1 in an HTML page (10).

A hub delivery channel (VerifierCSpace) is registered in the WebLogic Collaborate
repository. The three trading partners in the delivery channel participate in a
conversation (verifierConversation), assuming the following roles:

Overview of the Messaging API Sample

Using BEA WebLogic Collaborate Samples 4-3

� Requestor (Partner1)

� Replyer (Partner2)

� Replyer (Partner3)

Message definitions are stored in two repository files: request.dtd and reply.dtd.

Partner1, the requestor trading partner, sends two different messages to Partner2 and
Partner3. The first message contains the string FIRST MESSAGE, and is sent to Partner2
using the deferred synchronous delivery method.

Once the first message has been sent, and before checking for a reply from Partner2,
Partner1 sends a second message containing the string SECOND MESSAGE to Partner3
using the synchronous delivery method.

At this point, Partner1 must wait for acknowledgment from Partner3 before
performing any other action. When the acknowledgment from Partner3 is received and
the reply is processed, Partner1 is able to retrieve the messageToken received when
the first message was sent, and check for the acknowledgment received from Partner2.

The reply to the second message is then processed, and the results of the conversation
are displayed for Partner1 in an HTML page produced by the Post method of the
invoking servlet.

The invoking servlet used by Partner1 is represented by the
examples.MessageDeliveryMethods.MdmTp1Servlet.java servlet, which is
registered in the repository as MdmTp1. Partner2 and Partner3 use similar servlets,
registered in their respective repositories as MdmTp2 and MdmTp3.

The servlets used by Partner2 and Partner3 are
examples.MessageDeliveryMethods.MdmTp2Servlet.java and
examples.MessageDeliveryMethods.MdmTp3Servlet.java. They are registered
in WebLogic Collaborate as MdmTp2 and MdmTp3. These servlets are invoked by the
HTML page MessageDeliveryMethods.html, which is located in the WebLogic
Collaborate directory
%WLC-HOME%\config\samples\applications\DefaultWebApp_myserver.

In order to simulate a delay in the reception of the first message by Partner2, a logic
plug-in called WaiterPlugIn has been added to the WebLogic Collaborate filter
chain; the WaiterPlugIn class checks for the target recipient of the outgoing message.
If the target recipient is Partner2, the corresponding thread sleeps for 15 seconds; if the
target recipient is not Partner2, the message is sent immediately to the target trading
partner (Partner3).

4 Messaging API Sample

4-4 Using BEA WebLogic Collaborate Samples

The first message is sent to the target recipient using a deferred synchronous delivery
method. As a result of the sending operation, an XOCPMessageToken object (token1)
is returned to the sender. This token is used to check for the acknowledgment of the
reception by Partner2, as follows:

// send the message in synchronous deferred mode
XOCPMessageToken token1 = (XOCPMessageToken)smsg1.send();
debug("Sending message 1: conversation id="+c.getId()+" done");

Configuration of the Messaging API Sample

The following data is bulkloaded during samples installation and configuration:

� One conversation definition: verifierconversation.

� Two messaging protocols:
� XOCP-hub

� XOCP-spoke

� Four trading partner definitions:

� Hub

� Partner1

� Partner2

� Partner3

� Four document exchange definitions:

� One for the hub with its own transport, end point, and a routing proxy

� One for each of three spokes, Partner1, Partner2, and Partner3, each with its
own transport, end point, and delivery channel

� Four delivery channels:

� One for the hub

� One for each spoke

Running the Messaging API Sample

Using BEA WebLogic Collaborate Samples 4-5

Running the Messaging API Sample

1. Install the samples as described in “Installing the Samples” on page 1-2.

Make sure that you have bulkloaded the schemas and data, and have started
WebLogic Collaborate.

2. Start the Messaging API sample.

Windows: Choose WebLogic Integration 2.0→Collaborate→Samples→Run
Samples→Messaging API

UNIX: Load the following HTML page:

HTTP://localhost:7001/MsgDeliveryMethods.html

A browser window is opened with a Messaging API screen, as shown in the
following illustration.

Figure 4-2 Messaging API Sample First Screen

4 Messaging API Sample

4-6 Using BEA WebLogic Collaborate Samples

3. Submit a request to start WebLogic Collaborate for Partner3, Partner2, and
Partner1.

4. Click Join Partner 3 spoke.

A WebLogic Collaborate session is started for Partner3, and Partner3 is
registered in the replyer role for the verifierConversation conversation.

5. Click Join Partner 2 spoke.

A WebLogic Collaborate session is started for Partner2, who is registered with
the replyer role for the verifierConversation conversation.

6. Click Join Partner 1 spoke and send request.

A WebLogic Collaborate session is started for Partner1, and Partner1 is
registered with the requestor role for the verifierConversation
conversation. Partner1 acts as the conversation initiator, and sends message1
and message2 to Partner2 and Partner3, respectively.

Note: You can follow the progression of the sample by checking the
weblogic.log file displayed in the WebLogic Collaborate
Administration Console.

7. The outgoing message is analyzed by the WaiterPlugIn logic plug-in. If the
target recipient is Partner2, the corresponding thread sleeps for 15 seconds before
delivering the message to the trading partner; otherwise the message is delivered
immediately.

8. Partner3 receives message2 from Partner1 in the form of a string: SECOND
MESSAGE. Partner3 converts the string to lowercase, and adds the following prefix
to it: partner3 -- . The result is the string partner3 -- second message.
At this point, the string is added to a business document and sent back to
Partner1.

9. Partner1 receives the message, processes a response, and then loops for ten
seconds.

10. After the 10-second interval, Partner1 receives the token for sending message1,
and then waits for a response from Partner2.

11. Partner2 receives the response after WaiterPlugIn has slept for 15 seconds.

Running the Messaging API Sample

Using BEA WebLogic Collaborate Samples 4-7

12. Partner2 receives message1 from Partner1 in the form of a string: FIRST
MESSAGE. Partner2 converts the string to lowercase, and adds the following prefix
to it: partner2 -- . The result is the string partner2 -- first message. At
this point the string is added to a business document and sent back to Partner1.

13. Partner1 receives the message and processes the response.

14. Partner1 terminates the conversation and shuts down the session. When the
session is stopped, Partner2 and Partner3 automatically leave the conversation.
The console displays a log message similar to the following:

Wed Oct 25 17:47:42 PDT 2000:<I <WLC <XOCP-Hub INFO: Trading Partner, Partner1
left C-Space, VerifierCSpace

Wed Oct 25 17:47:42 PDT 2000:<I <WLC <User ***MdmTp1Servlet: done.

Messaging API Sample Output

When the Messaging API sample is executed successfully, the following output is
displayed in the browser window:

Partner1 process flow:
Starting enabler... done.
Creating conversation :
verifierConversation:1.0:requestor_http://127.0.0.1:7001/Enabler1_0_97252124232
9...done.
send string for Message 1 = FIRST MESSAGE
Sending message 1 using synchronous deferred delivery method to Partner 2
Sending a second message before checking for acknowledgment on the first
send string for Message 2 = SECOND MESSAGE
Sending message 2 using synchronous delivery method to Partner 3
success status for message 2
Waiting for Message 2 response... done.
Processing reply for Message 2:
Received string for Message 2 = partner3 -- second message
Verification for Message 2 SUCCESS

Doing something else... done
Waiting acknowledgment for Message 1... Acknowledgment received
Success status for message 1
Waiting for Message 1 response... done
Processing reply:
Received string for Message 1 = partner2 -- first message
Verification for Message 1 SUCCESS

4 Messaging API Sample

4-8 Using BEA WebLogic Collaborate Samples

Terminating
conversation:verifierConversation:1.0:requestor_http://127.0.0.1:7001/Enabler1_
0_972521242329
success
Shutting down session... done.

Using BEA WebLogic Collaborate Samples A-1

CHAPTER

JSP Tag Reference

A Java Server Pages (JSP) tag library is provided for trading partner lightweight
clients. It uses a wrapper to address the WebLogic Collaborate Messaging API. Error
handling uses standard Java exception and error handling via WebLogic Collaborate
Messaging API classes and JSP pages delivered to the lightweight client.

This section provides reference information for the following JSP tags:

� SendMsgTag

� ChecknewmsgTag

� CheckallmsgTag

� ReadmsgTag

� DeletemsgTag

� DeleteallmsgTag

� CreatemboxTag

� RemovemboxTag

A JSP Tag Reference

A-2 Using BEA WebLogic Collaborate Samples

SendMsgTag

Used to pass a business message to a mailbox for outgoing mail; provides message persistence
for reliability.

Syntax SendMsgTag (String mboxName, String sender, String message, String
URL, String security)

Returns Returns Message has been sent successfully if the message was successfully sent
to the JSP page in which SendMsgTag is embedded.

Variables

Example sendmsg mboxname="<%=outboxName_browserTP1%>"
sender="<%=SENDER%>" message="<%=domAsStr%>" url="<%=url%>"
security="ON"/>

Variable Description

String mboxName Name of the mailbox. To run the sample, use the following
names for the appropriate mailbox:
� For incoming mail: trading_partner_name_Inbox
� For outgoing mail: trading_partner_name_Outbox

String message The message content.

String sender Mailbox address for the sender. This may be an e-mail address or
FTP server address.

String URL The URL for the hosting trading partner.

String security Values may be ON or OFF.

Using BEA WebLogic Collaborate Samples A-3

ChecknewmsgTag

Used to check for new messages in the mailboxes for incoming and outgoing mail. Does not
check for stored messages (see CheckallmsgTag).

Syntax ChecknewmsgTag (String mboxName)

Returns If the mailbox is empty, returns No new message found in mailbox. If the mailbox
contains one or more new messages, the messages are displayed in HTML format.

Variables

Variable Description

mboxName Name of the mailbox. To run the sample, use the following
names for the appropriate mailbox:
� For incoming mail: trading_partner_name_Inbox
� For outgoing mail: trading_partner_name_Outbox

A JSP Tag Reference

A-4 Using BEA WebLogic Collaborate Samples

CheckallmsgTag

Checks all messages in the mailbox, including stored messages.

Syntax CheckallmsgTag (String mboxName)

Returns If there are messages in the mailbox, they are displayed in HTML format. If the mailbox is
empty, returns No message found in mailbox.

Variables

Variable Description

mboxName Name of the mailbox. To run the sample, use the following
names for the appropriate mailbox:
� For incoming mail: trading_partner_name_Inbox
� For outgoing mail: trading_partner_name_Outbox

Using BEA WebLogic Collaborate Samples A-5

ReadmsgTag

Gets details about a specific message from the mailbox.

Syntax ReadmsgTag (String mboxName, String msgId)

Returns Message details are displayed in HTML format.

Variables

Variable Description

mboxName Name of the mailbox. To run the sample, use the following
names for the appropriate mailbox:
� For incoming mail: trading_partner_name_Inbox
� For outgoing mail: trading_partner_name_Outbox

msgID Unique message identifier.

A JSP Tag Reference

A-6 Using BEA WebLogic Collaborate Samples

DeletemsgTag

Deletes a specified message from the mailbox.

Syntax DeletemsgTag (String mboxName, String msgID)

Returns Returns Message with messageID msgID deleted successfully.

Variables

Variable Description

mboxName Name of the mailbox. To run the sample, use the following
names for the appropriate mailbox:
� For incoming mail: trading_partner_name_Inbox
� For outgoing mail: trading_partner_name_Outbox

msgID Unique message identifier.

Using BEA WebLogic Collaborate Samples A-7

DeleteallmsgTag

Deletes all messages from the mailbox.

Syntax DeleteallmsgTag (String mboxName)

Returns Returns All messages were deleted successfully when successful.

Variables

Variable Description

mboxName Name of the mailbox. To run the sample, use the following
names for the appropriate mailbox:
� For incoming mail: trading_partner_name_Inbox
� For outgoing mail: trading_partner_name_Outbox

A JSP Tag Reference

A-8 Using BEA WebLogic Collaborate Samples

CreatemboxTag

Creates a mailbox.

Syntax CreatemboxTag (String mboxName)

Returns

Variable

Variable Description

mboxName Name of the mailbox. To run the sample, use the following
names for the appropriate mailbox:
� For incoming mail: trading_partner_name_Inbox
� For outgoing mail: trading_partner_name_Outbox

Using BEA WebLogic Collaborate Samples A-9

RemovemboxTag

 Removes a specific mailbox.

Syntax RemovemboxTag (String mboxName)

Returns Returns Mailbox removed successfully.

Variables .

Variable Description

mboxName Name of the mailbox. To run the sample, use the following
names for the appropriate mailbox:
� For incoming mail: trading_partner_name_Inbox
� For outgoing mail: trading_partner_name_Outbox

A JSP Tag Reference

A-10 Using BEA WebLogic Collaborate Samples

	About This Document
	1 Getting Started
	Samples Overview
	Installing the Samples
	Installing Using the Default Database
	Installing Using Other Supported Databases

	2 Hello Partner Sample
	Overview of the Hello Partner Sample
	What the Sample Demonstrates
	Hello Partner Sample Scenario Logic

	Setting Up the Hello Partner Sample
	Running the Hello Partner Sample
	How the Sample Works
	Documents Exchanged
	Request WLC Message from Requestor Role
	Reply WLC Message from Replier Role
	XML Message Over JMS from JSP to Trigger Private Workflow
	XML Message Over JMS from Private Workflow to JSP with Result
	XML Event from Replier Public Workflow to Replier Private Workflow
	XML Event from Replier Private Workflows to Replier Public Workflows

	Requestor Private Workflow
	Requestor Public Workflow
	Replier Public Workflow
	Replier Private Workflow

	3 Trading Partner Lightweight Client Sample
	Overview of the Lightweight Client Sample
	Purpose of the Sample
	Lightweight Client Sample Scenario and Diagrams

	Running the Lightweight Client Sample
	Creating and Using Lightweight Clients
	Lightweight Client Source Files
	Using the JSP Tag Library
	Configuring a Lightweight Client
	Edit the Configuration File
	Edit the File-Sharing File

	Configuring a Browser Client
	Configuring an HTTP Browser Client
	Configuring an HTTPS (SSL) Browser Client

	4 Messaging API Sample
	Overview of the Messaging API Sample
	Configuration of the Messaging API Sample
	Running the Messaging API Sample
	Messaging API Sample Output

	A JSP Tag Reference
	SendMsgTag
	ChecknewmsgTag
	CheckallmsgTag
	ReadmsgTag
	DeletemsgTag
	DeleteallmsgTag
	CreatemboxTag
	RemovemboxTag

