

BEA WebLogic Mobility Server

Administration Guide

Version 3.3
December 2005

Copyright
Copyright © 1995-2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software is protected by copyright, and may be protected by patent laws. No copying or
other use of this software is permitted unless you have entered into a license agreement with BEA
authorizing such use. This document is protected by copyright and may not be copied
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form, in whole or in part, without prior consent, in writing, from BEA Systems, Inc.
Information in this document is subject to change without notice and does not represent a
commitment on the part of BEA Systems. THE DOCUMENTATION IS PROVIDED “AS IS”
WITHOUT WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
FURTHER, BEA SYSTEMS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE
DOCUMENT IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR
OTHERWISE.

Trademarks and Service Marks
Copyright © 1995-2005 BEA Systems, Inc. All Rights Reserved.BEA, BEA JRockit, BEA
WebLogic Portal, BEA WebLogic Server, BEA WebLogic Workshop, Built on BEA, Jolt,
JoltBeans, SteelThread, Top End, Tuxedo, and WebLogic are registered trademarks of BEA
Systems, Inc. BEA AquaLogic, BEA AquaLogic Data Services Platform, BEA AquaLogic
Enterprise Security, BEA AquaLogic Service Bus, BEA AquaLogic Service Registry, BEA
Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic,
BEA Manager, BEA MessageQ, BEA WebLogic Commerce Server, BEA WebLogic
Communications Platform, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform,
BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic Log Central,
BEA WebLogic Network Gatekeeper, BEA WebLogic Personalization Server, BEA WebLogic
Personal Messaging API, BEA WebLogic Platform, BEA WebLogic Portlets for Groupware
Integration, BEA WebLogic Server Process Edition, BEA WebLogic SIP Server, BEA WebLogic
WorkGroup Edition, Dev2Dev, Liquid Computing, and Think Liquid are trademarks of BEA
Systems, Inc. BEA Mission Critical Support, BEA Mission Critical Support Continuum, and
BEA SOA Self Assessment are service marks of BEA Systems, Inc.
All other names and marks are property of their respective owners.

Contents

BEA WebLogic Mobility Server .. 1
Administration Guide .. 1
Contents ... 3
Introduction.. 5

About this Manual.. 5
Intended Audience... 5
Using this Guide .. 5
Further Reading ... 5

1—Deploy an Application ... 6
Create the Deployment Site .. 6
Configure the Web Deployment Descriptor .. 7
Configure the WebLogic Mobility Server Filter and Filter Mapping ... 8
Deploy a WebLogic Mobility Server Application as a Web Archive File.. 9

2—Configure BEA WebLogic Mobility Server .. 10
Configure the WebLogic Mobility Server Filter .. 10
Configure the mis.properties File .. 11

3—The ContentAssembly.properties File ... 31
4—The oscache.properties File ... 34
Next Step—Administer the Device Repository... 35
Appendix—web.xml Sample File ... 36

Contents

Introduction

Introduction
About this Manual
This manual introduces you to the various tasks required to configure and manage BEA
WebLogic Mobility Server™ version 3.3.

Intended Audience
It is recommended that your IT department, development team or a technical consultant perform
the tasks outlined in this document.

Begin by reading the next section, which explains how to use the guide.

Using this Guide
The manual is divided into the five sections—chapters 1-4 explain how to set up and configure
WebLogic Mobility Server, describe the various files used by WebLogic Mobility Server and
outline the changes that you need to make during configuration.

The “Appendix” chapter provides a sample web application descriptor.

Notes

• This is the third guide that you will use in the process of installing and running the product.
Ensure that you have performed the tasks outlined in the BEA WebLogic Mobility Server
Installation Guide and installed the Device Repository as per the Device Repository Guide
before proceeding here

• As outlined in the BEA WebLogic Mobility Server Installation Guide, ensure that you have
also installed the BEA WebLogic Mobility Server license before proceeding

Further Reading
For further information on WebLogic Mobility Server, see the Getting Started Tutorials and the
following user guides:

• BEA WebLogic Mobility Server Installation Guide

• Device Repository Guide

• BEA WebLogic Mobility Server User Guide

• BEA Mobilize Your Portal Guide

• BEA Sample Mobility Portal Guide

• BEA Sample Workshop Mobility Project Guide

BEA WebLogic Mobility Server Administration Guide - 5

1—Deploy an Application

1—Deploy an Application
In order to develop Java Server Pages or Java Servlets, regardless of whether they are mobilized
or not, you must establish a server-side environment that interprets, compiles and executes the
pages that you write.

This section describes how to deploy a mobilized web application with the WebLogic Mobility
Server servlet filter.

There are two key steps to deploying the WebLogic Mobility Server applications in a servlet
environment:

• Creating the deployment environment

• Configuring the web deployment descriptor

Create the Deployment Site
Servlet containers such as BEA WebLogic support the Java Servlet 2.3 specification that
standardizes how the various components in a web application are organised. Some things to
remember:

• You store all the files for a web application under a root directory. This root directory also
serves as the document root for this web application. Usually, you would place the root
directory within the applications directory of your container

• You store all application files (such as the JSP pages, HTML pages and images) under the
root directory

• A special directory named WEB-INF contains the information describing the web
application and how it should be configured and how it should behave

• For a new WebLogic Mobility Server deployment, copy the contents of
<install_directory>\lib directory to WEB-INF\lib

Note: If you developed your mobilized application in BEA WebLogic Workshop with WebLogic
Mobility Server installed, “Enable Multi-Channel” has already copied any necessary WebLogic
Mobility Server files into the WEB-INF directory.

The following table shows the contents of the WEB-INF directory:

WEB-INF Directory Contents

WEB-INF Contents Description

/WEB-INF/web.xml The deployment descriptor for the application.

/WEB-INF/classes/* A directory for Java utility classes and other files such as the
mis.properties and oscache.properties files.

For further details on how to set up this directory, see the section
“Configure the Web Deployment Descriptor”.

/WEB-INF/lib/*.jar A directory for Java ARchive (JAR) files that contain servlets, JavaBeans,
and other utility classes for the web application. The container
automatically loads these classes. Copy the contents of the
<install_directory>\lib to this folder.

6 - BEA WebLogic Mobility Server Administration Guide

1—Deploy an Application

For additional information on deploying applications on BEA WebLogic Platform, please see the
Developing Web Applications for BEA WebLogic Server documentation:

http://e-docs.bea.com/wls/docs81/webapp/index.html

Configure the Web Deployment Descriptor
Before deploying a web application, you need to place a deployment descriptor (web.xml) into the
WEB-INF directory. This file pulls together all the components of the Web application.

Note: For a sample web.xml file, see the “Appendix”.

The following table describes the key elements in the web.xml file.

Key Elements in web.xml File

Element Description

<web-app> This is the root element for the deployment descriptor.

<display-name> Specifies the name to be displayed for the application.

<filter> Names the filter used by this web application and the parameters it
receives.

<filter-mapping> Specifies which URL pattern is mapped to the servlet.

BEA WebLogic Mobility Server Administration Guide - 7

http://e-docs.bea.com/wls/docs8170/webapp/index.html

1—Deploy an Application

Configure the WebLogic Mobility Server Filter and Filter
Mapping
An example of a web.xml file that has been configured for the WebLogic Mobility Server filter is
shown here followed by an explanation of the settings.
<filter>
 <filter-name>mobilityFilter</filter-name>
 <display-name>Mobility Filter</display-name>
 <description>Mobility Filter</description>
 <filter-class>com.mobileaware.mcp.MobilityFilter</filter-class>
 <init-param>
 <param-name>propertiesname</param-name>
 <param-value>/mis.properties</param-value>
 </init-param>
</filter>
<filter-mapping>
 <filter-name>mobilityFilter</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

WebLogic Mobility Server web.xml Filter Settings

Setting Description

<filter-name> The name of the filter used by this web application:

mobilityFilter

<display-name> The name of the filter to be displayed:

WebLogic Mobility Server Mobility Filter

<description> A description of the filter:

WebLogic Mobility Server Mobility Filter

<filter-class> The class file containing the filter:

com.mobileaware.mcp.MobilityFilter

<param-name> A name for each parameter to be passed to WebLogic Mobility Server:

propertiesname

<param-value> A value for each corresponding parameter name. In this case, the name
and location of the properties file.

/mis.properties

8 - BEA WebLogic Mobility Server Administration Guide

1—Deploy an Application

WebLogic Mobility Server web.xml Filter Mapping Settings

Setting Description

<filter-name> Specifies which URL pattern is to be mapped for the servlet specified by
<filter-name>:

mobilityFilter

<url-pattern> The URL pattern to follow:/*

For more details on the Java Server specification and how to configure the web.xml file, please
use the following URLs:

• Java Servlet Specification:
http://www.jcp.org/aboutJava/communityprocess/final/jsr053/

• General Java servlet technology documents:
http://java.sun.com/products/servlet/docs.html

• Developing Web Applications for BEA WebLogic Server documentation:
http://e-docs.bea.com/wls/docs81/webapp/index.html

The WebLogic Mobility Server provides a set of sample JSP error handling pages and images:

Copy the error pages to your web application directory; you can place them in their own directory
below the webapp root if you prefer.

Modify the following lines in the properties file so that they point to the appropriate error
handlers.
<filter-name>mobilityFilter</filter-name>
 <url-pattern>/*</url-pattern>

Deploy a WebLogic Mobility Server Application as a Web
Archive File
In many application servers it is standard practice to deploy web applications as web archive
(WAR) files. To deploy a WebLogic Mobility Server web application as a WAR file:

1. Using a command line window, navigate to the root directory of your WebLogic Mobility
Server web application, for example, webapps/news.

2. Use the "jar" utility from the Java[tm] Development Kit distribution to create the WAR file.
For example, to create a WAR file for the news application, you would run the following
command:
jar -cvf news.war *.*

BEA WebLogic Mobility Server Administration Guide - 9

http://www.jcp.org/aboutJava/communityprocess/final/jsr053/
http://java.sun.com/products/servlet/docs.html
http://e-docs.bea.com/wls/docs8170/webapp/index.html

2—Configure BEA WebLogic Mobility Server

2—Configure BEA WebLogic Mobility Server
Configure the WebLogic Mobility Server Filter
Configuring a WebLogic Mobility Server filter for each web application involves creating a
mis.properties file that specifies:

• the database that WebLogic Mobility Server needs to connect with

• the error pages to be returned in the event of any HTTP- or WAP-generated errors

• a number of additional configuration settings as described in “Configure BEA WebLogic
Mobility Server”

There is a sample properties file, mis.properties.sample, in the lib folder of the installation
directory. Copy this file into WEB-INF/classes folder and make the necessary changes for
configuring the database and the error pages.

You can rename the file to a name of your own choosing, but you need to specify the name in
<param-value> section of the web.xml file that has been configured for the filter. For further
details, see the section “Configure the WebLogic Mobility Server Filter and Filter Mapping”.

This section introduces the various properties used to manage the behavior of WebLogic Mobility
Server. As an administrator, you will need to configure some of these properties to adjust the
behavior of WebLogic Mobility Server.

Some of these properties will have been set during the install process, while others can be
configured later when you want to activate other new features.

10 - BEA WebLogic Mobility Server Administration Guide

2—Configure BEA WebLogic Mobility Server

Configure the mis.properties File
The main configuration file used by WebLogic Mobility Server, which contains a number of
user-modifiable parameters, is the mis.properties file. This file can be found in the WEB-
INF/classes folder. It is a plain text file that can be edited in any text editor.

This section describes configuration settings for the mis.properties file.

Configure the mis.properties File for the Device Repository
The Device Repository can be deployed as either a database or a DeviceRepository file. If it is
deployed as a database, follow the instructions in the “Configure a database Device Repository”
section; if it is deployed as a file, follow the instructions in the “Configure a File-Based Device
Repository” section.

Note: This information is also documented in chapter 2 of the Device Repository Guide

Configure a Database Device Repository
The following Device Repository properties must be configured in order for WebLogic Mobility
Server to successfully communicate with the Device Repository used:

Device Repository Properties Settings

Property Description

deviceDB.driver Location of the JDBC driver to be used by WebLogic Mobility Server to
gain access to the database.

This property also has the effect of informing WebLogic Mobility Server
which database it is connected to.

For Oracle, set to: oracle.jdbc.driver.OracleDriver

For MySQL, set to: org.gjt.mm.mysql.Driver

For Postgres, set to: org.postgresql.Driver

For PointBase, set to: com.pointbase.jdbc.jdbcUniversalDriver

For SQL Server (with WebLogic Mobility Server deployed on BEA
WebLogic only), set to: weblogic.jdbc.sqlserver.SQLServerDriver

For Sybase ASE set to: com.sybase.jdbc2.jdbc.SybDriver

For IBM DB2 Universal Database set to: com.ibm.db2.jcc.DB2Driver

To configure WebLogic Mobility Server to use the BEA WebLogic
database connection pool: weblogic.jdbc.pool.Driver

Example: deviceDB.driver:oracle.jdbc.driver.OracleDriver

deviceDB.url The URL to use to access the Device Repository.

For Oracle, set to:
jdbc:oracle:thin:@<oracle_host>:<oracle_port>:<oracle_database_nam
e>

For MySQL, set to:
jdbc:mysql://<mysql-server-ip:port>/ <db-name>?user=<connect-
user>&password=<connect-password>

For Postgres, set to:

BEA WebLogic Mobility Server Administration Guide - 11

2—Configure BEA WebLogic Mobility Server

jdbc:postgresql://<postgres_machine>:<postgres_port>/<postgres_data
base_name>

For PointBase, set to:
jdbc:pointbase:server://<pointbase_machine>:<pointbase_port>/cajun

For SQLServer (with WebLogic Mobility Server deployed on BEA
WebLogic only), set to:
jdbc:bea:sqlserver://<sqlserver_host>:<sqlserver_port>;databaseName
=<sqlserver_database_name>

For Sybase ASE set to: jdbc:sybase:Tds:<ip_address>:<port>/SID

For IBM DB2 Universal Database set to:
jdbc:db2://<ip_address>:<port>/SID

When using WebLogic database connection pool, set to:
jdbc:weblogic:pool:<poolname>

Example: deviceDB.url: jdbc:oracle:thin:@oracle_host:1521:mySID

deviceDB.user Username used by WebLogic Mobility Server to access the database
server. Note: For MySQL, this property is left blank. Example:
deviceDB.user: user

deviceDB.password Password of user used by WebLogic Mobility Server to access the
database server. For MySQL, this property is left blank.

Example: deviceDB.password: password

deviceDB.maxDBConnections A numeric value indicating the number of concurrent database
connections in the database pool. This is used to control the number of
concurrent database connections and licenses required by WebLogic
Mobility Server. Defaults to 10. See the section “About Connection
Pools” for more information.

Example: deviceDB.maxDBConnections: 10

deviceDB.waitTime A numeric value indicating (in milliseconds) the time to wait for a
connection from the database pool. Defaults to 5000.

Example: deviceDB.waitTime: 5000

deviceDB.increment A numeric value indicating the number of connections to add to the pool
if there are no connections currently available. If the maximum number
of connections in the pool has been reached then no new connections
will be added to the pool. Defaults to 1

Example: deviceDB.increment: 1

About Connection Pools
A dynamic web site often generates HTML pages from information stored in a database. Each
request for a page results in a database access. Connecting to a database is time consuming since
the database must allocate communication and memory resources as well as authenticates the user
and set up the corresponding security context. Setting up the individual connections can become a
bottleneck.

Establishing the connection once and using the same connection for subsequent requests can
therefore dramatically improve the performance of a database driven web application. Connection

12 - BEA WebLogic Mobility Server Administration Guide

2—Configure BEA WebLogic Mobility Server

pooling is a technique used to avoid the overhead of making a new database connection every
time an application or server object requires access to a database. Rather than making and
breaking connections as required, a "pool" of database connections is maintained by the system
on the server. When WebLogic Mobility Server needs a database connection, it simply requests
an available one from the pool - if none is available, a new one is created & added to the pool.

The connection pool not only grows to specified limits, but also contracts as required, closing
connections that have not been used for a specified time. This avoids taking up system resources
by simply holding connections that are not currently required. This also handles databases which
"time-out" their connections, and prevents handing a "stale" connection to an application object.

BEA WebLogic Mobility Server Administration Guide - 13

2—Configure BEA WebLogic Mobility Server

Configure a File-Based Device Repository
To configure WebLogic Mobility Server to use a file-based Device Repository instead of
connecting to an external database (for example, Oracle, MySQL) where the Device Repository
has been installed, the database settings must be defined properly in the mis.properties file
associated with the web application.

You may deploy the Device Repository file in one of two ways:

• In an absolute location

• On the CLASSPATH

Deploy the Device Repository File in an Absolute Location
Locate the mis.properties file for your web application (for example, for the sample Mobility
Portal application, it is located at:
<bea>\weblogic81\mobility\samples\BEAWorkshop\maportal\WEB-INF\classes\) and open
it in a text editor.

Note: For other applications, it will be in the <install_directory>\WEB-INF\classes\ directory.

1. Look for the Device Repository Type setting in the mis.properties file, similar to :

Device Repository Type

This setting indicates whether the Device Repository is

deployed as a file or installed into a JDBC database.

Possible values are: xml and db

If not specified, db is assumed.

Note: "xml" is used for both ".xml" and ".madr" Device
Repository files

deviceRepositoryType: db

2. Uncomment the last line so that it now reads:
deviceRepositoryType: xml

3. Look for the Device Repository File Location setting in the mis.properties file, similar to :

14 - BEA WebLogic Mobility Server Administration Guide

2—Configure BEA WebLogic Mobility Server

Device Repository File Location

This setting indicates the location of the Device Repository
file

This setting must be set to the location of the file or the

classpath will be checked (see deviceXML.resourceName)

Example:

#C:/bea81sp3/weblogic81/mobility/database/DeviceRepository.xml

#deviceXML.location:
C:/bea81sp3/weblogic81/mobility/database/DeviceRepository.xml

4. Uncomment the ‘deviceXML.location:’ line and change the indicated location to the actual
location of the DeviceRepository.xml file.

5. Save the mis.properties file.

6. In a BEA WebLogic production environment, you must now use the BEA WebLogic
Administration Console to redeploy your web application. In a development environment, the
web application can simply be redeployed directly from within BEA WebLogic Workshop.

Deploy the Device Repository file on the CLASSPATH

1. Either add the directory containing the Device Repository file to the CLASSPATH, or deploy
the Device Repository file onto either the system or application CLASSPATH.

2. Locate the mis.properties file for your web application and open it in a text editor (for
example, for a sample News application, it may be located at:
<install_directory>\samples\news\WEB-INF\classes\).

3. Look for the Device Repository Type setting in the mis.properties file, similar to :

Device Repository Type

This setting indicates whether the Device Repository is

deployed as a file or installed into a JDBC database.

Possible values are: xml and db

If not specified, db is assumed.

BEA WebLogic Mobility Server Administration Guide - 15

2—Configure BEA WebLogic Mobility Server

Note: "xml" is used for both ".xml" and ".madr" Device
Repository files

deviceRepositoryType: db b

4. Change the last line so that it now reads:

deviceRepositoryType: xml

5. Look for the Device Repository File ResourceName setting in the mis.properties file; see
example:

Device Repository File ResourceName

This setting indicates the name of the Device Repository
file

when it is deployed as a resource on the classpath.

Example:

/DeviceRepository.xml

#deviceXML.ResourceName: /DeviceRepository.xml

6. Uncomment the ‘deviceXML.resourceName:’ line and change the filename if necessary.

Note: It is important that you do not remove the “/” from the beginning of the line.

7. Save the mis.properties file.

8. In a production environment, you must now re-deploy or re-start your web applications.

16 - BEA WebLogic Mobility Server Administration Guide

2—Configure BEA WebLogic Mobility Server

Configure Session Encoding of URLs (Configuration Optional)
Where session cookies are not supported by devices or gateways, session information can be
automatically encoded into URLs using the settings in the table.

Session Encoding of URLs Properties Settings

Property Description

generatedLinks.encodeSessionId For URLs generated by WebLogic Mobility Server, this
property defines whether WebLogic Mobility Server calls
the application server’s encodeURL() method to
automatically append a session ID. By default, this is set to
true. When this property is set to false it will stop WebLogic
Mobility Server from inserting session IDs in any content it
generates. If set to false, all devices or gateways which
connect to WebLogic Mobility Server must support session
cookies.

Example: generatedLinks.encodeSessionId: false

rewriteAllUrls This property defines whether WebLogic Mobility Server
calls the application server’s encodeURL() method to
automatically append a session ID for URLs not generated
by WebLogic Mobility Server. By default, this is set to false.
If set to false, either all such URLs must be manually
encoded with the session ID or all devices or gateways
which connect to WebLogic Mobility Server must support
session cookies.

Example: rewriteAllUrls: true

Configure URL Compression
The URLs generated by portal frameworks and other content servers are often very long. If URL
rewriting is used instead of cookies for session management the length of these URLs is extended
further. Because the length of these URLs takes up valuable space within the limited memory of a
small device, the output visible to the user is often very limited. In extreme cases, pages are
limited to just 2 or 3 links.

To mitigate this, WebLogic Mobility Server supports URL compression, which reduces the
length of these URLs to a minimum, thereby allowing much more content to be delivered to the
device. This is especially relevant where the device has limited memory but could also be
important where limited bandwidth is an issue.

URL compression works by breaking the URL into fragments (query parameters) and replacing
the fragments in the URL with shortened tokens. These shortened tokens are used by WebLogic
Mobility Server to map a request generated from the replacement URL back to the original URL.

BEA WebLogic Mobility Server Administration Guide - 17

2—Configure BEA WebLogic Mobility Server

Examples
The following is an example of a URL of 359 characters produced by BEA WebLogic Portal
/avitekfinancial/application?namespace=tracking&origin=searchResults.jsp&
event=link.clickContent&com.bea.event.type=com.bea.content.click.event&
com.bea.event.userid=null&com.bea.event.documentid=Avitek/DemoDocuments/Demo
FeaturesList.xls&com.bea.event.documenttype=AvitekDocs&contentId=Avitek/DemoDoc
uments/Demo Features List.xls

With URL compression turned on in WebLogic Mobility Server, this URL would be reduced to
99 characters, which is a saving of 260 characters:
/avitekfinancial/application?2=!!3&!!4=!!5&!!6=!!7&!!8=!!9&!!10=!!11&!!12=!!13&
!!14=!!15&!!16=!!13

URL compression can be configured in the mis.properties file.

The table shows sample URL Compression configuration for WebLogic Mobility Server running
against a BEA WebLogic Portal server.

URL Compression Properties Settings for WebLogic Mobility Server Running Against
BEA WebLogic Portal

Property Description

url.compression.store.type Defines the store type to be used. The only valid type in
WebLogic Mobility Server is session.

Example: session

url.compression.token.prefix The string used to prefix the compression tokens. Prefixing helps
avoid clashes with uncompressed tokens which may have the
same value as a compressed token.

Default is "!!".

Note: The Nokia Mobile Internet Toolkit 3.1 does not support “!!”

url.compression.params Comma separated list of query parameter names to be
compressed.

Example: namespace, event, com.bea.event.type,
com.bea.event.userid, com.bea.event.documentid,
com.bea.event.documenttype, contentId, origin, pageid, portletid

url.compression.vals Comma separated list of query parameter names that have
values to be compressed.

Example: namespace, event, com.bea.event.type,
com.bea.event.userid, com.bea.event.documentid,
com.bea.event.documenttype, contentId, origin, pageid, portletid

url.compression.fail.redirect The URL to which WebLogic Mobility Server will redirect a
request if unrecognized compression tokens are received. This
can happen, for example, if the client's session has expired and a
page is refreshed or a bookmark is visited. A sensible value for
this property would be the home page or login page of the site.

18 - BEA WebLogic Mobility Server Administration Guide

2—Configure BEA WebLogic Mobility Server

Note: the URL specified is webapp relative)

Example from BEA WebLogic Portal deployment:

url.compression.fail.redirect: /avitekfinancial/application/

Note: When using the redirect URL for failed decompression it is recommended that content
developers design JSP or XHTML pages that do not make use of, or depend on, the values of
parameters passed in the URL.

Error Handling (Configuration Optional)
The location of Error handler JSPs for HTTP and WAP can be configured using the parameters in
the table. The location of the JSP error handlers is a webapp relative path.

JSP Error Page Properties Settings

Property Description

error.handler.jsp Location of the HTTP JSP error handler, or your own custom file.

Example: /errorHandler.jsp

error.handler.wap.jsp Location of the WAP JSP error handler, or your own custom file.

Example: /errorHandlerWap.jsp

BEA WebLogic Mobility Server Administration Guide - 19

2—Configure BEA WebLogic Mobility Server

Configuration Mode (Configuration Optional)
This configuration entry determines which mode of operation WebLogic Mobility Server runs in.

Configuration Mode Properties Setting

Property Description

operation.mode WebLogic Mobility Server has two modes of operation:
‘development’ and ‘production’. Setting the mode to ‘development’
provides detailed informative warning messages to enable content
developers to tune and troubleshoot content during the
development phase. By default, operation mode is set to
‘production’.

Example: operation.mode: development

Generated URLs
WebLogic Mobility Server automatically generates a number of URLs during content
transformation. For content that WebLogic Mobility Server produces for WAP phones,
WebLogic Mobility Server can produce ‘Next’ and ‘Back to Top’ links that contain the identifier
of the required page. Similarly, when WebLogic Mobility Server splits a form into multiple
pages, the URLs generated by WebLogic Mobility Server contain information about required
form ID, current form ID and whether a form reset has been requested.

The parameter name that WebLogic Mobility Server uses for these identifiers can be changed in
the mis.properties file, in the event that they clash with those already used by content developers.

URL Generation Properties Settings

Property Description

form.currpagenumber.paramname

In delivering forms to menu-driven devices, WebLogic
Mobility Server splits large documents into numbered
forms. WebLogic Mobility Server uses the value of this
property to create any URLs that reference the current
page in a paginated form.

By default, this is set to c_-p.

form.nextpagenumber.paramname

Defines the parameter name used by WebLogic Mobility
Server to reference the number of the next page in a
paginated form.

By default, this is set to form_n_-p.

form.uniqueid.paramname

Defines the parameter name for WebLogic Mobility Server
to use in generated URLs which reference the session-
wide form identifier.

By default, this is set to form_-id.

url.idomid.paramname

Defines the name of the parameter that WebLogic Mobility
Server uses to uniquely reference parsed documents in
generating ‘back to top’ links.

20 - BEA WebLogic Mobility Server Administration Guide

2—Configure BEA WebLogic Mobility Server

By default, this is set to page_id.

form.reset.paramname

Defines the name of the parameter that WebLogic Mobility
Server places in URLs to indicate that a form-submit is
actually a ‘reset’.

By default, this is set to form_-reset.

url.pagenumber.paramname

In delivering content for WAP, WebLogic Mobility Server
splits large documents into numbered pages and delivers
one page at a time. In so doing, WebLogic Mobility Server
must add a parameter to certain URLs so they explicitly
reference an individual page of transformed content.

By default, this is set to n_-p.

Strict Attribute Handling and Delivery (configuration optional)
These configuration entries define whether WebLogic Mobility Server rejects stand-alone ‘&’
symbols, and whether it delivers them in HTML content.

Example of malformed xml:

Example of well-formed equivalent:

Strict Attribute Handling and Delivery Properties Settings

Property Description

xsp.strictAttribute

For consistency with XHTML standards, WebLogic Mobility
Server parser is configured by default to reject stand-alone ‘&’
symbols in XHTML attributes. For integration with pre-existing
content and frameworks, this strictness can be switched off
by setting this property to false. Allowable values are “true”
and “false”.

Example/Default: xsp.strictAttribute: true

html.deliverStrictAttribute

When enabled, urls with query string parameters use the full
XML entity reference "&" and thus will be delivered in the
form:

/<file>?x=1&y=2&z=3

When disabled, these URLs take the form:

/<file>?x=1&y=2&z=3

Default: "false" (that is, use '&'). Allowable values are “true”
and “false”.

Example:
html.deliverStrictAttribute: true

BEA WebLogic Mobility Server Administration Guide - 21

2—Configure BEA WebLogic Mobility Server

Diagnostics Subscriptions (Configuration Optional)
WebLogic Mobility Server is configured by default to send certain important diagnostics
messages, such as error messages, to the application server console. It is possible to configure
these and additional diagnostic messages to be sent either to the console or to a specified file.

Example Diagnostics Messages Published to File
diagnostics.startup.subscriptions.abcFile.topic: MIS.General.Startup
diagnostics.startup.subscriptions.abcFile.level: verbose|normal
diagnostics.startup.subscriptions.abcFile.filename: c:/diagerrors.log

Notes

• The term "abc" is simply a placeholder for a unique identifier, to ensure that property names
are unique. You are free to choose your own identifier

• Each topic you subscribe to must be configured to output to a different file

• At start-up, the specified file is overwritten, not appended to

Example Diagnostics Messages Published to the Console
diagnostics.startup.subscriptions.xyzConsole.topic: MIS.General.Startup
diagnostics.startup.subscriptions.xyzConsole.level: verbose|normal

By default, the WebLogic Mobility Server diagnostics are configured to publish start-up
messages and diagnostic-audit messages (to track individuals connecting to diagnostics) to the
console as follows:
diagnostics.startup.subscriptions.startupConsole.topic:MIS.General.Startup
diagnostics.startup.subscriptions.startupConsole.level:normal
diagnostics.startup.subscriptions.diagnosticsauditConsole.topic:MIS.Diagnostics
.Subscription
diagnostics.startup.subscriptions.diagnosticsauditConsole.level:normal

22 - BEA WebLogic Mobility Server Administration Guide

2—Configure BEA WebLogic Mobility Server

Error messages could additionally be configured to publish to file as follows:
diagnostics.startup.subscriptions.errorsFile.topic:
diagnostics.startup.subscriptions.errorsFile.level:verbose
diagnostics.startup.subscriptions.errorsFile.filename:c:/temp/diagerrors.log

This is a special case where no topic is required.

Diagnostics Subscriptions Properties Settings

Property Description

diagnostics.startup.subscriptions.xxxFile.topic: Any diagnostic topic which can be
selected from the WebLogic Mobility
Server Diagnostics

diagnostics.startup.subscriptions.xxxFile.level:verbose Specifies the level of diagnostics
message required – either “verbose” or
“normal”

diagnostics.startup.subscriptions.xxxxFile.filename: Name of file to log this diagnostic
subscription to

Back to Top (Configuration Optional)
This configuration entry defines whether the “Back to Top” feature is enabled or disabled.

When enabled, a shortcut “Back To Top” link is provided on the device, which will allow the
user to return directly to the top of the group based on the hierarchy of the current document. If
the user then uses this enhancement to navigate to the top-level navigation card of the current
document hierarchy, they are provided with a “Back To Top” link that returns them to the
referrer.

Back to Top Properties Setting

Property Description

backtotop.enabled Indicates whether “Back to Top” links should
be used for paginated content.

Default: true

BEA WebLogic Mobility Server Administration Guide - 23

2—Configure BEA WebLogic Mobility Server

Content Length Settings
The response.omitContentLength configuration entry defines whether or not WebLogic
Mobility Server will set the content length in the response. By default,
response.omitContentLength is set to false, implying that WebLogic Mobility Server will set
the content length in the response. If it is set to true WebLogic Mobility Server will not set the
content length and chunked encoding will be used to deliver content.

Content Length Properties Setting

Property Description

response.omitContentLength Indicates whether the content length should be included in the
response from WebLogic Mobility Server
Default: false.

Disallowed Output Encodings (Configuration Optional)
WebLogic Mobility Server determines from the incoming device request which character
encodings will give the best rendering of content. In some circumstances, however, a device may
incorrectly report its quality of support for a given character encoding, or there may be no valid
transformation from the original content encoding to the preferred device encoding. Specifying a
comma-separated list of encodings for the disallowedOutputEncodings property instructs
WebLogic Mobility Server never to deliver content in any of these encodings.

Disallowed Output Encodings Properties Setting

Property Description

disallowedOutputEncodings Indicates output encodings that WebLogic Mobility Server
should never use.

Example: disallowedOutputEncodings: iso-8859-1, iso-8859-5

24 - BEA WebLogic Mobility Server Administration Guide

2—Configure BEA WebLogic Mobility Server

Optimize Performance with the JSP Tag Library (Configuration
Optional)
There are several steps involved in the WebLogic Mobility Server transformation process. Some
of these steps can by bypassed to achieve optimal performance using the WebLogic Mobility
Server JSP tag library.

For full details on achieving optimal performance with the JSP Tag Library, see the section
“Optimizing Performance with the JSP Tag Library” in the BEA WebLogic Mobility Server User
Guide. The properties involved in this process are summarized.

Optimizing JSP Tag Library Performance Properties Setting

Property Description

mis.jsptaglib.passthrough

Optimizes processing when JSP files are known to contain only
mm: and non mm- tags. Allowable values are “true” and “false”.

Example:
mis.jsptaglib.passthrough: true

mis.passthrough.patterns

Optimizes processing when JSP files matching specified patterns
are known to contain only mm: and non mm- tags.

Example:
mis.passthrough.patterns: *.jsp

mis.bypass.patterns

Bypasses certain processing where JSP files matching specified
patterns are to be delivered only to FullBrowsers.

Example:
mis.bypass.patterns: /pc/*.jsp

mis.fullbrowser.device

Specifies fullbrowser device to be used with mis.bypass.patterns, or
in unlicensed mode.

Example:
mis.fullbrowser.device: Mozilla/5

Passthrough Pattern Configuration (Configuration Optional)
The following properties control which HTTP requests WebLogic Mobility Server will act on.
For performance reasons it is beneficial to be able to inform WebLogic Mobility Server to not
process any request that will not produce MMXHTML.

When an HTTP request is received, WebLogic Mobility Server will check the URL against the
"mis.patterns.url.nonmmxhtml" patterns. If it matches, the request will not be processed.

Otherwise, WebLogic Mobility Server will check the "mis.patterns.url.mmxhtml" patterns. If
these match, or the property "mis.patterns.url.unknown.mmxhtml" is set to true, the request is
processed and the Content-Type is checked after the content has been produced.

The Content-Type check is done in much the same was as the URL check. The Content-Type is
checked against the "mis.patterns.contenttype.nonmmxhtml" property. If it matches, the content
is delivered as produced. Otherwise, if either the "mis.patterns.contenttype.unknown.mmxhtml"

BEA WebLogic Mobility Server Administration Guide - 25

2—Configure BEA WebLogic Mobility Server

is set to true or the "mis.patterns.contenttype.mmxhtml" pattern matches the content is
transformed.

Note: If you need to modify or add to these lists you need to include the appropriate values from
the default settings as you are overriding the property. Only remove from these lists if you are
sure that is what you want to do. Configuring these properties incorrectly may cause WebLogic
Mobility Server to no longer process content.

In the following properties the "patterns" may be of the form:

XXX* - starts with XXX, for example /images/*
*XXX - ends with XXX, for example *.gif
XXX - contains XXX, for example */ignore/*

Passthrough Pattern Properties Setting

Property Description

mis.patterns.url.nonmmxhtml

Configure the list of URL patterns to NOT consider
MMXHTML. If a request is received for a URL matching one
of these patterns it will not be processed by WebLogic
Mobility Server.

Default:
mis.patterns.url.nonmmxhtml: *.css *.gif *.jpg *.jpeg *.jpe
*.wbmp *.swf *.dwt *.ico *.png *.txt *.pdf

mis.patterns.url.mmxhtml

Configure the list of URL patterns to consider potentially
MMXHTML. If a request is received for a url matching one of
these patterns it will be processed by WebLogic Mobility
Server.

Default:
mis.patterns.url.mmxhtml=*.htm *.html *.jsp

mis.patterns.url.unknown.mmxhtml Configure if an unknown URL should be considered
potentially MMXHTML. If a request is received for a URL not
matching the "mis.patterns.url.nonmmxhtml" or the
"mis.patterns.url.mmxhtml" patterns, this property decides if
it should be considered MMXHTML.

Default:
mis.patterns.url.unknown.mmxhtml: true

mis.patterns.contenttype.nonmmxhtml Configure the list of Content-Type patterns to NOT consider
MMXHTML. If a response is received with a Content-Type
matching one of these patterns it will not be processed by
WebLogic Mobility Server.

Default:
mis.patterns.contenttype.nonmmxhtml: application/* audio/*
image/* message/* model/* multipart/* video/* text/css
text/plain text/rtf text/vnd* text/xml

mis.patterns.contenttype.mmxhtml Configure the list of Content-Type patterns to consider
MMXHTML. If a response is received with a Content-Type
matching one of these patterns it will be processed by
WebLogic Mobility Server.

26 - BEA WebLogic Mobility Server Administration Guide

2—Configure BEA WebLogic Mobility Server

Default:
mis.patterns.contenttype.mmxhtml: text/html;* text/html
text/tml text/tml;*

mis.patterns.contenttype.unknown.mmxhtml Configure if an unknown Content-Type should be
considered MMXHTML. If a request is received for a
Content-Type not matching the
"mis.patterns.contenttype.nonmmxhtml" or the
"mis.patterns.contenttype.mmxhtml" patterns, this property
decides if it should be considered MMXHTML.

Default:
mis.patterns.contenttype.unknown.mmxhtml: false

mis.patterns.contenttype.askjava Configure whether content type should be ascertained by
asking java to do the mapping from URL to mime-type.

Default:
mis.patterns.contenttype.askjava:true

BEA WebLogic Mobility Server Administration Guide - 27

2—Configure BEA WebLogic Mobility Server

Reverse DNS Lookup Settings
The diagnostics.enableReverseDNS configuration entry defines whether or not WebLogic
Mobility Server enables or disables the remotehost name resolution taking place in the Diagnostic
Context for every request. By default, diagnostics.enableReverseDNS is set to false, ensuring
that WebLogic Mobility Server will disable the remotehost name resolution.

Content Length Properties Setting

Property Description

diagnostics.enableReverseDNS Defines whether or not WebLogic Mobility Server enables or
disables the remotehost name resolution taking place in the
Diagnostic Context for every request.
Default: false.

BEA WebLogic Portal Settings (Configuration Mandatory for BEA
Portal Deployment)
The following properties are to facilitate WebLogic Mobility Server Integration with BEA
WebLogic Portal and Server.

Note: Do not change these settings if running with BEA WebLogic Portal or Server.

BEA WebLogic Portal Properties Setting

Property Description

compatibility.illegalState.weblogic Must be set to true if WebLogic Mobility Server deployed
with BEA WebLogic Portal or Server. This is set by
default when using the “Enable Multi-Channel” option in
BEA WebLogic Workshop

bea.portal.integrationOn Must be set to true if WebLogic Mobility Server deployed
with BEA WebLogic Portal or Server. This is set by
default when using the “Enable Multi-Channel” option in
BEA WebLogic Workshop

Specify Locales
By default, WebLogic Mobility Server is configured to use the default locale as specified in the
Accept-Language header on an incoming request. If no locale is specified in the Accept-
Language header, WebLogic Mobility Server will use the locale set on the operating system on
which it is running. However, it is possible to create a customized class that WebLogic Mobility
Server can use to specify a different locale, for example, one preferred by the user. The
locale.customClass property, in the mis.properties file, needs to be configured with the name of
this class. WebLogic Mobility Server will use then this class to determine the required locale for
each request.

Note: If the property is not set, does not exist or has an invalid setting, WebLogic Mobility Server
will use the default behavior described here.

28 - BEA WebLogic Mobility Server Administration Guide

2—Configure BEA WebLogic Mobility Server

locale.customClass property setting

Property Description

locale.customClass A reference to a custom class that can be used to override the
default selection behaviour used by WebLogic Mobility Server
when generating content in reply to a user’s request. Call for
each request.

Example: locale.customClass:
com.mobileaware.util.CustomLocaleFinderImpl

To create a customized locale finder, complete the following steps:

• Create a class to obtain the appropriate locale. Ensure that the class implements the
com.mobileaware.util.CustomLocaleFinder interface

• The CustomLocaleFinder interface has one method called getLocale(). This method takes in
one parameter- the HttpServletRequest object. This can be used to extract information from
the request or Session if necessary

• Either place the class file in an appropriate directory within the WEB-INF/classes directory
or jar the class file and place it in the WEB-INF/lib directory

• In the mis.properties file, set the locale.customClass property to contain the name of this
class

Example
The example illustrates how one can use a customized class to determine the locale in the context
of an application. A Web application might use the following to allow the user to choose their
preferred language:

A JSP directive to set an arbitrary attribute,"UserPreferredLocale" on the Session:
<% request.getSession().setAttribute("UserPreferredLocale","es-ES"); %>

BEA WebLogic Mobility Server Administration Guide - 29

2—Configure BEA WebLogic Mobility Server

A complementary customized class used to access the UserPreferredLocale attribute and create an
appropriate Locale:

package com.mobileaware.util;
import javax.servlet.http.HttpServletRequest;
import java.util.Locale;

public class CustomLocaleFinderImpl implements CustomLocaleFinder{

public Locale getLocale(HttpServletRequest req){
 String locale = (String)req.getSession().getAttribute("UserPreferredLocale");
 if (locale!=null){

 String language = locale.substring(0,2);
 String country = locale.substring(3,5);
 return new Locale(language,country);
 }else{
 return null;

 }
 }
}

Note: For information on localizing those message and content elements that WebLogic Mobility
Server automatically inserts into the content, see the following section, “The
ContentAssembly.properties File”.

30 - BEA WebLogic Mobility Server Administration Guide

3—The ContentAssembly.properties File
This file contains additional configurable settings that relate to the way content appears on the
screen. Most of these settings have to do with the text displayed in the automatically generated
links, which aid navigation around sites being delivered to handheld devices. For example, Next,
Back to, Previous, and so on.

Unlike the other two properties files discussed in this section, this file is located in the webapp’s
WEB-INF/lib/mmJSPtaglib.jar file. This file contains the default property values. If you wish to
make changes to this file, unzip the jar, make a copy of the properties file, make the changes; then
save it to:

WEB-INF/classes/com/mobility/i18n/resources/ContentAssembly.properties

Multiple versions of this file can be created to provide locale specific property values. Which file
is used depends on the language and region settings of the requesting device and the availability
of a properties file matching those settings. This mechanism uses the Java Internationalization
functionality that provides a standard for application designs that are adaptable to various
languages and regions without engineering changes.

As an example, if you had customers in France and Germany who would be accessing your
website, you would create two versions of the ContentAssembly.properties file and name them:

• ContentAssembly_fr.properties

• ContentAssembly.de.properties

Modify the property values to conform to the language of the country.

Next Link

The text link that is inserted by MIS

during pagination of a group to take user to next

page of content within the group.

page.group.next.link: Suivant...

Previous Link

The text link that is inserted by MIS during

pagination of a group to return user to previous page

of the group.

page.group.previous.link: Précédent

BEA WebLogic Mobility Server Administration Guide - 31

3—The ContentAssembly.properties File

Setting properties for French devices

For more information and a list of the fully supported locales and filename extensions, see the
Java documentation at java.sun.com.

Content Assembly Properties Settings

Property Example and Definition

page.group.next.link More...
The text link that is inserted by WebLogic Mobility Server during
pagination of a group to take user to next page of content within
the group.

page.group.previous.link Back
The text link that is inserted by WebLogic Mobility Server during
pagination of a group to return user to previous page of the
group.

form.submit.button.default Submit
The default form submit button text when the user does not
define it themselves.

document.previous.link Back to: %previous_page_title%*
The text link that is inserted by WebLogic Mobility Server during
pagination that would take you to the previous page of content
when in a paginated group.

page.group.top.link Back to: %grp_name%
The text link that is inserted by WebLogic Mobility Server during
pagination of a group to take the user to the top of the page of
content.

table.top.link Back to:%table_name%
The text link that is inserted by WebLogic Mobility Server during
pagination of a group to take the user to the top of the page of
content.

image.alt.text.default <blank>
Placed in the 'alt' text on an image when no 'alt' text is defined in
an mm-img.

32 - BEA WebLogic Mobility Server Administration Guide

table.link.text.default %table_name%
The text link that is used to access the table data.

table.empty.cell.text.default
The text placed in an empty cell that is NOT a link.

media.object.missing.alt.text <blank>
Placed in the 'alt' text on an image when no media object is
defined.

form.next.link Next
The text link included when a form is paginated.

form.reset.button.default Reset
The default form reset button text when the user does not define
it themselves

UnNamedLink Unnamed Link
The default link text for the meta tag defining an mm-section.

Options Options
If all the Options links associated with a page do not fit on the
transformed page, they will be placed on a separate page. This
property specifies the text for the link to the Options page.

BEA WebLogic Mobility Server Administration Guide - 33

4—The oscache.properties File

4—The oscache.properties File
The oscache.properties file is a text file containing the configuration settings that regulate the
content caching mechanism. It is located in the WEB-INF/classes folder of each webapp running
with WebLogic Mobility Server. It is a plain text file and can be modified in any text editor.
There is a sample properties file, oscache.properties.sample, in the lib folder of the installation
directory.

Normally, you do not need to modify anything in this file; however, you might want to change
the directory that stores the caches. You can reset the directory by changing the cache.path
property. By default, a cache directory called tempCache is created relative to the directory from
which WebLogic Mobility Server was launched.

Important Note: If you change the cache.path property, you must ensure that the cache has
permission to write to the new directory.

Configure the Error Pages
WebLogic Mobility Server provides a set of sample JSP error handling pages and images. It is
recommended that you replace these with your own error handling pages and images. This error
pages can be found in the upper directory of the sample BEA Workshop and BEA Portal projects
installed during the installation process (see the BEA WebLogic Mobility Server Installation
Guide).

Sample JSP Error Handling Pages and Images

File Description

errorhandler.jsp Defines the jsp that handles HTTP error messages

errorhandlerWap.jsp Defines the jsp that handles WAP error messages

Copy the error pages to your web application directory or place them in their own directory the
<webapp> root if you prefer.

You will need to modify the following lines in the mis.properties file so that they point to the
appropriate error handlers.

JSP Error Page Settings

Setting Description

error.handler.jsp Location of the HTTP JSP error handler, or your own custom file

error.handler.wap.jsp Location of the WAP JSP error handler, or your own custom file

34 - BEA WebLogic Mobility Server Administration Guide

Next Step—Administer the Device Repository
When administering the Device Repository at a later stage, please see chapter 3, “Administer the
Device Repository” of the Device Repository Guide, which describes how to set up and manage
the devices and device profiles stored in the repository.

BEA WebLogic Mobility Server Administration Guide - 35

Appendix—web.xml Sample File

Appendix—web.xml Sample File
The web.xml file is found in the /WEB-INF directory of each web application folder. we

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app

 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

Standard web deployment
descriptor.

 <filter>

 <filter-name>mobilityFilter</filter-name>

 <display-name>System Test Filter</display-name>

 <description>System Test Filter</description>

User-configured filter-name,
display-name and description
for the instance of the filter.

 <filter-class>com.mobileaware.mcp.MobilityFilter</filter-class> The filter-class must be
configured as shown.

 <init-param>

 <param-name>propertiesname</param-name>

 <param-value>/test.properties</param-value>

 </init-param>

(Optional) propertiesname.
Defaults to "/mis.properties".
Defines where WebLogic
Mobility Server will look for
properties in the CLASSPATH
of the webapp.

 <init-param>

 <param-name>namespace</param-name>

 <param-value>com.mobileaware.mcp</param-value>

 </init-param>

 </filter>

(Optional) namespace. Defaults
to "com.mobileaware.mcp".
This is pre-pended to all
session variables and servlet
context variables used by
WebLogic Mobility Server in the
webapp.

 <filter-mapping>

 <filter-name>mobilityFilter</filter-name>

 <url-pattern>/*</url-pattern>

 </filter-mapping>

Name of filter as specified
above.

Path of request to be handled
by the filter.

 <servlet>

 <servlet-name>DiagnosticsServlet</servlet-name>

 <servlet-class>

 com.mobileaware.diagnostics.http.server.DiagnosticsServlet

 </servlet-class>

 </servlet>

Configuration for diagnostic
servlet.

 <servlet> Configuration for the

36 - BEA WebLogic Mobility Server Administration Guide

 <servlet-name>GUIRequestHandler</servlet-name>

 <servlet-class>

 com.mobileaware.MIS.GUI.GUIRequestHandler

 </servlet-class>

 </servlet>

Administration Console servlet.

 <servlet-mapping>

 <servlet-name>DiagnosticsServlet</servlet-name>

 <url-pattern>/Diagnostics/*</url-pattern>

 </servlet-mapping>

Diagnostics mapping, to be
used from TextUI and
DiagnosticsConsole.

 <servlet-mapping>

 <servlet-name>DiagnosticsServlet</servlet-name>

 <url-pattern>/private/Diagnostics/*</url-pattern>

 </servlet-mapping>

Alternative version of
Diagnostics mapping, protected
by Application Server security.

 <servlet-mapping>

 <servlet-name>GUIRequestHandler</servlet-name>

 <url-pattern>/GUIRequestHandler/*</url-pattern>

 </servlet-mapping>

Administration Console
mapping. To be used from the
Administration Console.

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>SecureURLS</web-resource-name>

 <description>Private</description>

 <url-pattern>/private/*</url-pattern>

 <http-method>POST</http-method>

 <http-method>GET</http-method>

 </web-resource-collection>

 <auth-constraint>

 <description></description>

 <role-name>Acme</role-name>

 </auth-constraint>

 <user-data-constraint>

 <description>SSL not required</description>

 <transport-guarantee>NONE</transport-guarantee>

 </user-data-constraint>

 </security-constraint>

 <login-config>

Example of a Security
constraint used with
Diagnostics

BEA WebLogic Mobility Server Administration Guide - 37

Appendix—web.xml Sample File

 <auth-method>BASIC</auth-method>

 </login-config>

</web-app>

38 - BEA WebLogic Mobility Server Administration Guide

